
AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions,

Volume

2

SC23-4160-05

���

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions,

Volume

2

SC23-4160-05

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

Appendix

C,

“Notices,”

on

page

725.

Sixth

Edition

(May

2004)

This

edition

applies

to

AIX

5L

Version

5.2

and

to

all

subsequent

releases

of

this

product

until

otherwise

indicated

in

new

editions.

A

reader’s

comment

form

is

provided

at

the

back

of

this

publication.

If

the

form

has

been

removed,

address

comments

to

Information

Development,

Department

H6DS-905-6C006,

11501

Burnet

Road,

Austin,

Texas

78758-3493.

To

send

comments

electronically,

use

this

commercial

Internet

address:

aix6kpub@austin.ibm.com.

Any

information

that

you

supply

may

be

used

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1994,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Who

Should

Use

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Highlighting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Case-Sensitivity

in

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

ISO

9000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiv

32-Bit

and

64-Bit

Support

for

the

UNIX98

Specification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiv

Related

Publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiv

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

.

.

.

.

.

.

.

.

.

.

.

.

. 1

qsort

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

quotactl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

raise

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

rand

or

srand

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

rand_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

random,

srandom,

initstate,

or

setstate

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

ra_attachrset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

ra_detachrset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

ra_exec

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

ra_fork

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

ra_getrset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

read,

readx,

readv,

readvx,

or

pread

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

readdir_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

readlink

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

read_real_time

or

time_base_to_time

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

realpath

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

reboot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

re_comp

or

re_exec

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

regcmp

or

regex

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

regcomp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

regerror

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

regexec

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

regfree

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

reltimerid

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

remainder,

remainderf,

or

remainderl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

remove

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

remquo,

remquof,

or

remquol

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

rename

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

reset_malloc_log

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

revoke

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

rintf,

rintl,

or

rint

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

round,

roundf,

or

roundl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

rmdir

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

rpmatch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

RSiAddSetHot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

RSiChangeFeed

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

RSiChangeHotFeed

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

RSiClose

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

RSiCreateHotSet

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

RSiCreateStatSet

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

RSiDelSetHot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

RSiDelSetStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

RSiFirstCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

RSiFirstStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

©

Copyright

IBM

Corp.

1994,

2004

iii

RSiGetHotItem

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

RSiGetRawValue

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

RSiGetValue

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

RSiInit

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

RSiInstantiate

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

RSiInvite

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

RSiMainLoop

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

RSiNextCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

RSiNextStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

RSiOpen

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

RSiPathAddSetStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

RSiPathGetCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

RSiStartFeed

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

RSiStartHotFeed

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

RSiStatGetPath

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

RSiStopFeed

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

RSiStopHotFeed

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

rs_alloc

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

rs_discardname

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

rs_free

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

rs_getassociativity

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

rs_getinfo

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

rs_getnameattr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

rs_getnamedrset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

rs_getpartition

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

rs_getrad

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

rs_init

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

rs_numrads

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

rs_op

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

rs_registername

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

rs_setnameattr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

rs_setpartition

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

rsqrt

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

rstat

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

scalbln,

scalblnf,

scalblnl,

scalbn,

scalbnf,

scalbnl,

or

scalb

Subroutine

.

.

.

.

.

.

.

.

.

.

.

. 106

scandir

or

alphasort

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

sched_yield

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

select

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

semctl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

semget

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

semop

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

setacldb

or

endacldb

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

setauthdb

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

setbuf,

setvbuf,

setbuffer,

or

setlinebuf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

setcsmap

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

setgid,

setrgid,

setegid,

setregid,

or

setgidx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

setgroups

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

setjmp

or

longjmp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

setlocale

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

setpcred

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

setpenv

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

setpgid

or

setpgrp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

setpri

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

setpwdb

or

endpwdb

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

setroledb

or

endroledb

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

iv

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

setsid

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

setuid,

setruid,

seteuid,

setreuid

or

setuidx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

setuserdb

or

enduserdb

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

sgetl

or

sputl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

shmat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

shmctl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

shmdt

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

shmget

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

sigaction,

sigvec,

or

signal

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

sigaltstack

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

sigemptyset,

sigfillset,

sigaddset,

sigdelset,

or

sigismember

Subroutine

.

.

.

.

.

.

.

.

.

.

.

. 176

siginterrupt

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

signbit

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

sigpending

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

sigprocmask,

sigsetmask,

or

sigblock

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

sigqueue

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

sigset,

sighold,

sigrelse,

or

sigignore

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

sigsetjmp

or

siglongjmp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

sigstack

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

sigsuspend

or

sigpause

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

sigthreadmask

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

sigtimedwait

and

sigwaitinfo

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

sigwait

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

sin,

sinf,

or

sinl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

sinh,

sinhf,

or

sinhl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

sleep,

nsleep

or

usleep

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

sockatmark

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

SpmiAddSetHot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

SpmiCreateHotSet

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

SpmiCreateStatSet

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

SpmiDdsAddCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

SpmiDdsDelCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

SpmiDdsInit

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

SpmiDelSetHot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

SpmiDelSetStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

SpmiExit

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

SpmiFirstCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

SpmiFirstHot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

SpmiFirstStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

SpmiFirstVals

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

SpmiFreeHotSet

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

SpmiFreeStatSet

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

SpmiGetCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

SpmiGetHotSet

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

SpmiGetStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

SpmiGetStatSet

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

SpmiGetValue

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

SpmiInit

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

SpmiInstantiate

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

SpmiNextCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

SpmiNextHot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

SpmiNextHotItem

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

SpmiNextStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

SpmiNextVals

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

SpmiNextValue

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

SpmiPathAddSetStat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

Contents

v

SpmiPathGetCx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

SpmiStatGetPath

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

sqrt,

sqrtf,

or

sqrtl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

src_err_msg

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

src_err_msg_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

srcrrqs

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

srcrrqs_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

srcsbuf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

srcsbuf_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

srcsrpy

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

srcsrqt

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

srcsrqt_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

srcstat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

srcstat_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

srcstathdr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

srcstattxt

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

srcstattxt_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

srcstop

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

srcstrt

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

ssignal

or

gsignal

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

statacl

or

fstatacl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

statfs,

fstatfs,

or

ustat

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

statvfs

or

fstatvfs

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine

.

.

.

.

.

.

.

. 277

strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

strerror

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

strfmon

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

strftime

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

strtok,

or

strsep

Subroutine

.

.

.

.

.

.

.

.

. 291

strncollen

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

strtof,

strtod,

or

strtold

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

strtoimax

or

strtoumax

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

strtok_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

strtol,

strtoul,

strtoll,

strtoull,

or

atoi

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

strptime

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

stty

or

gtty

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

swab

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

swapoff

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

swapon

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

swapqry

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

symlink

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

sync

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

syncvfs

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

_sync_cache_range

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

sysconf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

sysconfig

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

SYS_CFGDD

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

SYS_CFGKMOD

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

SYS_GETLPAR_INFO

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

SYS_GETPARMS

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

SYS_KLOAD

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

SYS_KULOAD

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

SYS_QDVSW

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

SYS_QUERYLOAD

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

SYS_SETPARMS

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

vi

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SYS_SINGLELOAD

sysconfig

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

syslog,

openlog,

closelog,

or

setlogmask

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

syslog_r,

openlog_r,

closelog_r,

or

setlogmask_r

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

sys_parm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

system

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

tan,

tanf,

or

tanl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

tanh,

tanhf,

or

tanhl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

tcb

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

tcdrain

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

tcflow

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

tcflush

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

tcgetattr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

tcgetpgrp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

tcsendbreak

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

tcsetattr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

tcsetpgrp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

termdef

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

test_and_set

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 354

tgamma,

tgammaf,

or

tgammal

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

times

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

timezone

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

thread_post

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

thread_post_many

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 360

thread_self

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

thread_setsched

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

thread_wait

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

tmpfile

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

tmpnam

or

tempnam

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

towctrans

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

towlower

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

towupper

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

t_rcvreldata

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

t_rcvv

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

t_rcvvudata

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

t_sndv

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

t_sndreldata

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

t_sndvudata

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 378

t_sysconf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 380

trc_close

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

trc_find_first,

trc_find_next,

and

trc_compare

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

trc_free

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

trc_hkemptyset,

trc_hkfillset,

trc_hkaddset,

trc_hkdelset,

and

trc_hkisset

Subroutine

.

.

.

.

.

.

. 387

trc_hookname

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

trc_libcntl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

trc_loginfo

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

trc_open

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

trc_perror

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

trc_read

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

trc_seek

and

trc_tell

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

trc_strerror

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 400

trcgen

or

trcgent

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 401

trchook,

utrchook,

trchook64,

and

utrhook64

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

trcoff

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

trcon

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

trcstart

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 406

trcstop

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

Contents

vii

trunc,

truncf,

or

truncl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

truncate,

truncate64,

ftruncate,

or

ftruncate64

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

tsearch,

tdelete,

tfind

or

twalk

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

ttylock,

ttywait,

ttyunlock,

or

ttylocked

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

ttyname

or

isatty

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

ttyslot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

ulimit

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

umask

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

umount

or

uvmount

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

uname

or

unamex

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

ungetc

or

ungetwc

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

unlink

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

unload

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

unlockpt

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

usrinfo

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

utimes

or

utime

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

varargs

Macros

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 430

vfscanf,

vscanf,

or

vsscanf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

vfwscanf,

vswscanf,

or

vwscanf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

vfwprintf,

vwprintf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

vmgetinfo

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

vmount

or

mount

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

vsnprintf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

vwsprintf

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

wait,

waitpid,

wait3,

or

wait364

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

waitid

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

wcscoll

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

wcsftime

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

wcsid

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

wcslen

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

wcsncat,

wcsncmp,

or

wcsncpy

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

wcspbrk

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

wcsrchr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

wcsrtombs

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

wcsspn

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

wcsstr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 455

wcstod,

wcstof,

or

wcstold

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 456

wcstoimax

or

wcstoumax

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

wcstok

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

wcstol

or

wcstoll

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

wcstombs

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

wcstoul

or

wcstoull

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

wcswcs

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

wcswidth

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

wcsxfrm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 467

wctob

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

wctomb

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

wctrans

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

wctype

or

get_wctype

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

wcwidth

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

wlm_assign

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 474

wlm_change_class

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

wlm_check

subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

wlm_classify

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

wlm_class2key

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 480

viii

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

wlm_create_class

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

wlm_delete_class

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 483

wlm_endkey

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 484

wlm_get_bio_stats

subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

wlm_get_info

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

wlm_get_procinfo

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

wlm_init_class_definition

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

wlm_initialize

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

wlm_initkey

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 492

wlm_key2class

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

wlm_load

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

wlm_read_classes

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

wlm_set

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 498

wlm_set_tag

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 500

wmemchr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

wmemcmp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

wmemcpy

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

wmemmove

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

wmemset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 504

wordexp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 504

wordfree

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 507

write,

writex,

writev,

writevx

or

pwrite

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 507

wstring

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 512

wstrtod

or

watof

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 515

wstrtol,

watol,

or

watoi

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 516

xcrypt_key_setup,

xcrypt_encrypt,

xcrypt_decrypt,

xcrypt_hash,

xcrypt_malloc,

xcrypt_free,

xcrypt_printb,

xcrypt_btoa

and

xcrypt_randbuff

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

yield

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

Chapter

2.

Curses

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 523

addch,

mvaddch,

mvwaddch,

or

waddch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 523

addnstr,

addstr,

mvaddnstr,

mvaddstr,

mvwaddnstr,

mvwaddstr,

waddnstr,

or

waddstr

Subroutine

524

attroff,

attron,

attrset,

wattroff,

wattron,

or

wattrset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

attron

or

wattron

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 528

attrset

or

wattrset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 528

baudrate

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 529

beep

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 530

box

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 531

can_change_color,

color_content,

has_colors,init_color,

init_pair,

start_color

or

pair_content

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 532

cbreak,

nocbreak,

noraw,

or

raw

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 535

clear,

erase,

wclear

or

werase

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 536

clearok,

idlok,

leaveok,

scrollok,

setscrreg

or

wsetscrreg

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

. 537

clrtobot

or

wclrtobot

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 540

clrtoeol

or

wclrtoeol

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 541

color_content

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 542

copywin

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 543

curs_set

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 544

def_prog_mode,

def_shell_mode,

reset_prog_mode

or

reset_shell_mode

Subroutine

.

.

.

.

.

.

. 545

def_shell_mode

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 546

del_curterm,

restartterm,

set_curterm,

or

setupterm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 547

delay_output

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 549

delch,

mvdelch,

mvwdelch

or

wdelch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 550

deleteln

or

wdeleteln

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 551

delwin

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 552

echo

or

noecho

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 552

Contents

ix

echochar

or

wechochar

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 553

endwin

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 554

erase

or

werase

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 555

erasechar,

erasewchar,

killchar,

and

killwchar

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 556

filter

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 557

flash

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 557

flushinp

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 558

garbagedlines

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 559

getbegyx,

getmaxyx,

getparyx,

or

getyx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 560

getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 561

getmaxyx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 565

getnstr,

getstr,

mvgetnstr,

mvgetstr,

mvwgetnstr,

mvwgetstr,

wgetnstr,

or

wgetstr

Subroutine

.

.

.

. 566

getsyx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 568

getyx

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 569

halfdelay

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 570

has_colors

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 570

has_ic

and

has_il

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 571

has_il

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 572

idlok

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 573

inch,

mvinch,

mvwinch,

or

winch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 574

init_color

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 575

init_pair

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 576

initscr

and

newterm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 577

insch,

mvinsch,

mvwinsch,

or

winsch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 578

insertln

or

winsertln

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 579

intrflush

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 580

keyname,

key_name

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 581

keypad

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 582

killchar

or

killwchar

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 583

_lazySetErrorHandler

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 584

leaveok

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 585

longname

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 586

makenew

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 587

meta

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 588

move

or

wmove

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 589

mvcur

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 589

mvwin

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 591

newpad,

pnoutrefresh,

prefresh,

or

subpad

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 592

newterm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 594

derwin,

newwin,

or

subwin

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 596

nl

or

nonl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 598

nodelay

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 598

notimeout,

timeout,

wtimeout

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 599

overlay

or

overwrite

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 601

pair_content

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 602

prefresh

or

pnoutrefresh

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 603

printw,

wprintw,

mvprintw,

or

mvwprintw

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 604

putp,

tputs

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 605

raw

or

noraw

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 607

refresh

or

wrefresh

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 608

reset_prog_mode

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 609

reset_shell_mode

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 609

resetterm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 610

resetty,

savetty

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 611

restartterm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 611

ripoffline

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 612

x

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

savetty

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 613

scanw,

wscanw,

mvscanw,

or

mvwscanw

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 614

scr_dump,

scr_init,

scr_restore,

scr_set

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 615

scr_init

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 616

scr_restore

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 618

scrl,

scroll,

wscrl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 618

scrollok

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 619

set_curterm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 620

setscrreg

or

wsetscrreg

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 621

setsyx

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 622

set_term

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 623

setupterm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 624

_showstring

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 626

slk_attroff,

slk_attr_off,

slk_attron,

slk_attrset,

slk_attr_set,

slk_clear,

slk_color,

slk_init,

slk_label,

slk_noutrefresh,

slk_refresh,

slk_restore,

slk_set,

slk_touch,

slk_wset,

Subroutine

.

.

.

.

.

.

. 626

slk_init

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 629

slk_label

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 630

slk_noutrefresh

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 631

slk_refresh

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 632

slk_restore

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 632

slk_set

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 633

slk_touch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 634

standend,

standout,

wstandend,

or

wstandout

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 634

start_color

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 636

subpad

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 637

subwin

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 638

tgetent,

tgetflag,

tgetnum,

tgetstr,

or

tgoto

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 640

tgetflag

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 641

tgetnum

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 642

tgetstr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 642

tgoto

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 643

tigetflag,

tigetnum,

tigetstr,

or

tparm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 644

tigetnum

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 646

tigetstr

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 647

is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine

.

.

.

.

.

. 648

touchoverlap

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 649

touchwin

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 650

tparm

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 651

tputs

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 652

typeahead

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 653

unctrl

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 654

ungetch,

unget_wch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 655

vidattr,

vid_attr,

vidputs,

or

vid_puts

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 656

doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 657

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

.

.

.

.

.

.

.

.

.

.

.

.

. 661

SDOT

or

DDOT

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 661

CDOTC

or

ZDOTC

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 661

CDOTU

or

ZDOTU

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 662

SAXPY,

DAXPY,

CAXPY,

or

ZAXPY

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 663

SROTG,

DROTG,

CROTG,

or

ZROTG

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 663

SROT,

DROT,

CSROT,

or

ZDROT

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 664

SCOPY,

DCOPY,

CCOPY,

or

ZCOPY

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 665

SSWAP,

DSWAP,

CSWAP,

or

ZSWAP

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 666

SNRM2,

DNRM2,

SCNRM2,

or

DZNRM2

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 667

SASUM,

DASUM,

SCASUM,

or

DZASUM

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 668

Contents

xi

SSCAL,

DSCAL,

CSSCAL,

CSCAL,

ZDSCAL,

or

ZSCAL

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

. 668

ISAMAX,

IDAMAX,

ICAMAX,

or

IZAMAX

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 669

SDSDOT

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 670

SROTM

or

DROTM

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 671

SROTMG

or

DROTMG

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 672

SGEMV,

DGEMV,

CGEMV,

or

ZGEMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 673

SGBMV,

DGBMV,

CGBMV,

or

ZGBMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 674

CHEMV

or

ZHEMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 676

CHBMV

or

ZHBMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 677

CHPMV

or

ZHPMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 679

SSYMV

or

DSYMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 680

SSBMV

or

DSBMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 681

SSPMV

or

DSPMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 682

STRMV,

DTRMV,

CTRMV,

or

ZTRMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 683

STBMV,

DTBMV,

CTBMV,

or

ZTBMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 685

STPMV,

DTPMV,

CTPMV,

or

ZTPMV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 687

STRSV,

DTRSV,

CTRSV,

or

ZTRSV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 688

STBSV,

DTBSV,

CTBSV,

or

ZTBSV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 690

STPSV,

DTPSV,

CTPSV,

or

ZTPSV

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 692

SGER

or

DGER

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 694

CGERU

or

ZGERU

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 695

CGERC

or

ZGERC

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 695

CHER

or

ZHER

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 696

CHPR

or

ZHPR

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 697

CHER2

or

ZHER2

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 698

CHPR2

or

ZHPR2

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 699

SSYR

or

DSYR

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 700

SSPR

or

DSPR

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 701

SSYR2

or

DSYR2

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 702

SSPR2

or

DSPR2

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 704

SGEMM,

DGEMM,

CGEMM,

or

ZGEMM

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 705

SSYMM,

DSYMM,

CSYMM,

or

ZSYMM

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 706

CHEMM

or

ZHEMM

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 708

SSYRK,

DSYRK,

CSYRK,

or

ZSYRK

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 710

CHERK

or

ZHERK

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 711

SSYR2K,

DSYR2K,

CSYR2K,

or

ZSYR2K

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 713

CHER2K

or

ZHER2K

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 714

STRMM,

DTRMM,

CTRMM,

or

ZTRMM

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 716

STRSM,

DTRSM,

CTRSM,

or

ZTRSM

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 718

Appendix

A.

Base

Operating

System

Error

Codes

for

Services

That

Require

Path-Name

Resolution

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 721

Appendix

B.

ODM

Error

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 723

Appendix

C.

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 725

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 726

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 727

xii

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

About

This

Book

This

book

provides

information

on

application

programming

interfaces

to

the

operating

system.

This

book

is

part

of

the

six-volume

technical

reference

set,

AIX

5L

Version

5.2

Technical

Reference,

that

provides

information

on

system

calls,

kernel

extension

calls,

and

subroutines

in

the

following

volumes:

v

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1

and

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2

provide

information

on

system

calls,

subroutines,

functions,

macros,

and

statements

associated

with

base

operating

system

runtime

services.

v

AIX

5L

Version

5.2

Technical

Reference:

Communications

Volume

1

and

AIX

5L

Version

5.2

Technical

Reference:

Communications

Volume

2

provide

information

on

entry

points,

functions,

system

calls,

subroutines,

and

operations

related

to

communications

services.

v

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1

and

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2

provide

information

about

kernel

services,

device

driver

operations,

file

system

operations,

subroutines,

the

configuration

subsystem,

the

communications

subsystem,

the

low

function

terminal

(LFT)

subsystem,

the

logical

volume

subsystem,

the

M-audio

capture

and

playback

adapter

subsystem,

the

printer

subsystem,

the

SCSI

subsystem,

and

the

serial

DASD

subsystem.

This

edition

supports

the

release

of

AIX

5L

Version

5.2

with

the

5200-03

Recommended

Maintenance

package.

Any

specific

references

to

this

maintenance

package

are

indicated

as

AIX

5.2

with

5200-03.

Who

Should

Use

This

Book

This

book

is

intended

for

experienced

C

programmers.

To

use

the

book

effectively,

you

should

be

familiar

with

commands,

system

calls,

subroutines,

file

formats,

and

special

files.

Highlighting

The

following

highlighting

conventions

are

used

in

this

book:

Bold

Identifies

commands,

subroutines,

keywords,

files,

structures,

directories,

and

other

items

whose

names

are

predefined

by

the

system.

Also

identifies

graphical

objects

such

as

buttons,

labels,

and

icons

that

the

user

selects.

Italics

Identifies

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

user.

Monospace

Identifies

examples

of

specific

data

values,

examples

of

text

similar

to

what

you

might

see

displayed,

examples

of

portions

of

program

code

similar

to

what

you

might

write

as

a

programmer,

messages

from

the

system,

or

information

you

should

actually

type.

Case-Sensitivity

in

AIX

Everything

in

the

AIX

operating

system

is

case-sensitive,

which

means

that

it

distinguishes

between

uppercase

and

lowercase

letters.

For

example,

you

can

use

the

ls

command

to

list

files.

If

you

type

LS,

the

system

responds

that

the

command

is

″not

found.″

Likewise,

FILEA,

FiLea,

and

filea

are

three

distinct

file

names,

even

if

they

reside

in

the

same

directory.

To

avoid

causing

undesirable

actions

to

be

performed,

always

ensure

that

you

use

the

correct

case.

©

Copyright

IBM

Corp.

1994,

2004

xiii

ISO

9000

ISO

9000

registered

quality

systems

were

used

in

the

development

and

manufacturing

of

this

product.

32-Bit

and

64-Bit

Support

for

the

UNIX98

Specification

Beginning

with

Version

4.3,

the

operating

system

is

designed

to

support

The

Open

Group’s

UNIX98

Specification

for

portability

of

UNIX-based

operating

systems.

Many

new

interfaces,

and

some

current

ones,

have

been

added

or

enhanced

to

meet

this

specification,

making

Version

4.3

even

more

open

and

portable

for

applications.
At

the

same

time,

compatibility

with

previous

releases

of

the

operating

system

is

preserved.

This

is

accomplished

by

the

creation

of

a

new

environment

variable,

which

can

be

used

to

set

the

system

environment

on

a

per-system,

per-user,

or

per-process

basis.
To

determine

the

proper

way

to

develop

a

UNIX98-portable

application,

you

may

need

to

refer

to

The

Open

Group’s

UNIX98

Specification,

which

can

be

obtained

on

a

CD-ROM

by

ordering

Go

Solo

2:

The

Authorized

Guide

to

Version

2

of

the

Single

UNIX

Specification,

a

book

which

includes

The

Open

Group’s

UNIX98

Specification

on

a

CD-ROM.

Related

Publications

The

following

books

contain

information

about

or

related

to

application

programming

interfaces:

v

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices

v

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks

v

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

v

AIX

5L

Version

5.2

Communications

Programming

Concepts

v

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts

v

AIX

5L

Version

5.2

Files

Reference

xiv

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

qsort

Subroutine

Purpose

Sorts

a

table

of

data

in

place.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

void

qsort

(Base,

NumberOfElements,

Size,

ComparisonPointer)

void

*

Base;

size_t

NumberOfElements,

Size;

int

(*ComparisonPointer)(const

void*,

const

void*);

Description

The

qsort

subroutine

sorts

a

table

of

data

in

place.

It

uses

the

quicker-sort

algorithm.

Parameters

Base

Points

to

the

element

at

the

base

of

the

table.

NumberOfElements

Specifies

the

number

of

elements

in

the

table.

Size

Specifies

the

size

of

each

element.

ComparisonPointer

Points

to

the

comparison

function,

which

is

passed

two

parameters

that

point

to

the

objects

being

compared.

The

qsort

subroutine

sorts

the

array

in

ascending

order

according

to

the

comparison

function.

Return

Values

The

comparison

function

compares

its

parameters

and

returns

a

value

as

follows:

v

If

the

first

parameter

is

less

than

the

second

parameter,

the

ComparisonPointer

parameter

returns

a

value

less

than

0.

v

If

the

first

parameter

is

equal

to

the

second

parameter,

the

ComparisonPointer

parameter

returns

0.

v

If

the

first

parameter

is

greater

than

the

second

parameter,

the

ComparisonPointer

parameter

returns

a

value

greater

than

0.

Because

the

comparison

function

need

not

compare

every

byte,

the

elements

can

contain

arbitrary

data

in

addition

to

the

values

being

compared.

Note:

If

two

items

are

the

same

when

compared,

their

order

in

the

output

of

this

subroutine

is

unpredictable.

The

pointer

to

the

base

of

the

table

should

be

of

type

pointer-to-element,

and

cast

to

type

pointer-to-character.

©

Copyright

IBM

Corp.

1994,

2004

1

Related

Information

The

bsearch

subroutine,

lsearch

subroutine.

Searching

and

Sorting

Example

Program,

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

quotactl

Subroutine

Purpose

Manipulates

disk

quotas.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<jfs/quota.h>

int

quotactl

(Path,

Cmd,

ID,

Addr)

int

Cmd,

ID;

char

*

Addr,

*

Path;

Description

The

quotactl

subroutine

enables,

disables,

and

manipulates

disk

quotas

for

file

systems

on

which

quotas

have

been

enabled.

Currently,

disk

quotas

are

supported

only

by

the

Journaled

File

System

(JFS).

Parameters

Path

Specifies

the

path

name

of

any

file

within

the

mounted

file

system

to

which

the

quota

control

command

is

to

be

applied.

2

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Cmd

Specifies

the

quota

control

command

to

be

applied

and

whether

it

is

applied

to

a

user

or

group

quota.

For

JFSs,

the

Cmd

parameter

can

be

constructed

through

use

of

the

QCMD(Cmd,

type)

macro

contained

within

the

jfs/quota.h

file.

The

Cmd

parameter

specifies

the

quota

control

command.

The

type

parameter

specifies

either

user

(USRQUOTA)

or

group

(GRPQUOTA)

quota

type.

The

valid

JFS

specific

quota

control

values

for

the

Cmd

parameter

are:

Q_QUOTAON

Enables

disk

quotas

for

the

file

system

specified

by

the

Path

parameter.

The

Addr

parameter

specifies

a

file

from

which

to

take

the

quotas.

The

quota

file

must

exist;

it

is

normally

created

with

the

quotacheck

command.

The

ID

parameter

is

unused.

Root

user

authority

is

required

to

enable

quotas.

Q_QUOTAOFF

Disables

disk

quotas

for

the

file

system

specified

by

the

Path

parameter.

The

Addr

and

ID

arguments

are

unused.

Root

user

authority

is

required

to

disable

quotas.

Q_GETQUOTA

Gets

disk

quota

limits

and

current

usage

for

a

user

or

group

specified

by

the

ID

parameter.

The

Addr

parameter

points

to

a

dqblk

buffer

to

hold

the

returned

information.

The

dqblk

structure

is

defined

in

the

jfs/quota.h

file.

Root

user

authority

is

required

if

the

ID

value

is

not

the

current

ID

of

the

caller.

Q_SETQUOTA

Sets

disk

quota

limits

for

the

user

or

group

specified

by

the

ID

parameter.

The

Addr

parameter

points

to

a

dqblk

buffer

containing

the

new

quota

limits.

The

dqblk

structure

is

defined

in

the

jfs/quota.h

file.

Root

user

authority

is

required

to

set

quotas.

Q_SETUSE

Sets

disk

usage

limits

for

the

user

or

group

specified

by

the

ID

parameter.

The

Addr

parameter

points

to

a

dqblk

buffer

containing

the

new

usage

limits.

The

dqblk

structure

is

defined

in

the

jfs/quota.h

file.

Root

user

authority

is

required

to

set

disk

usage

limits.

ID

Specifies

the

user

or

group

ID

to

which

the

quota

control

command

applies.

The

ID

parameter

is

interpreted

by

the

specified

quota

type.

The

JFS

file

system

supports

quotas

for

IDs

within

the

range

of

MINDQUID

through

MAXDQID.

Addr

Points

to

the

address

of

an

optional,

command

specific,

data

structure

that

is

copied

in

or

out

of

the

system.

The

interpretation

of

the

Addr

parameter

for

each

quota

control

command

is

given

above.

Return

Values

A

successful

call

returns

0,

otherwise

the

value

-1

is

returned

and

the

errno

global

variable

indicates

the

reason

for

the

failure.

Error

Codes

A

quotactl

subroutine

will

fail

when

one

of

the

following

occurs:

EACCES

In

the

Q_QUOTAON

command,

the

quota

file

is

not

a

regular

file.

EACCES

Search

permission

is

denied

for

a

component

of

a

path

prefix.

EFAULT

An

invalid

Addr

parameter

is

supplied;

the

associated

structure

could

not

be

copied

in

or

out

of

the

kernel.

EFAULT

The

Path

parameter

points

outside

the

process’s

allocated

address

space.

EINVAL

The

specified

quota

control

command

or

quota

type

is

invalid.

EINVAL

Path

name

contains

a

character

with

the

high-order

bit

set.

EINVAL

The

ID

parameter

is

outside

of

the

supported

range

(MINDQID

through

MAXDQID).

EIO

An

I/O

error

occurred

while

reading

from

or

writing

to

a

file

containing

quotas.

ELOOP

Too

many

symbolic

links

were

encountered

in

translating

a

path

name.

ENAMETOOLONG

A

component

of

either

path

name

exceeded

255

characters,

or

the

entire

length

of

either

path

name

exceeded

1023

characters.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

3

ENOENT

A

file

name

does

not

exist.

ENOTBLK

Mounted

file

system

is

not

a

block

device.

ENOTDIR

A

component

of

a

path

prefix

is

not

a

directory.

EOPNOTSUPP

The

file

system

does

not

support

quotas.

EPERM

The

quota

control

commands

is

privileged

and

the

caller

did

not

have

root

user

authority.

EROFS

In

the

Q_QUOTAON

command,

the

quota

file

resides

on

a

read-only

file

system.

EUSERS

The

in-core

quota

table

cannot

be

expanded.

Related

Information

The

quotacheck

command.

Disk

Quota

System

Overview

in

AIX

5L

Version

5.2

Security

Guide.

raise

Subroutine

Purpose

Sends

a

signal

to

the

currently

running

program.

Libraries

Standard

C

Library

(libc.a)

Threads

Library

(libpthreads.a)

Syntax

#include

<sys/signal.h>

int

raise

(

Signal)

int

Signal;

Description

The

raise

subroutine

sends

the

signal

specified

by

the

Signal

parameter

to

the

executing

process

or

thread,

depending

if

the

POSIX

threads

API

(the

libpthreads.a

library)

is

used

or

not.

When

the

program

is

not

linked

with

the

threads

library,

the

raise

subroutine

sends

the

signal

to

the

calling

process

as

follows:

return

kill(getpid(),

Signal);

When

the

program

is

linked

with

the

threads

library,

the

raise

subroutine

sends

the

signal

to

the

calling

thread

as

follows:

return

pthread_kill(pthread_self(),

Signal);

When

using

the

threads

library,

it

is

important

to

ensure

that

the

threads

library

is

linked

before

the

standard

C

library.

Parameter

Signal

Specifies

a

signal

number.

4

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

Upon

successful

completion

of

the

raise

subroutine,

a

value

of

0

is

returned.

Otherwise,

a

nonzero

value

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Code

EINVAL

The

value

of

the

sig

argument

is

an

invalid

signal

number

Related

Information

The

_exit

subroutine,

kill

subroutine,

pthread_kill

subroutine,

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine.

Signal

Management

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

provides

more

information

about

signal

management

in

multi-threaded

processes.

rand

or

srand

Subroutine

Purpose

Generates

pseudo-random

numbers.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

int

rand

void

srand

(

Seed)

unsigned

int

Seed;

Description

Attention:

Do

not

use

the

rand

subroutine

in

a

multithreaded

environment.

See

the

multithread

alternative

in

the

rand_r

(“rand_r

Subroutine”

on

page

6)

subroutine

article.

The

rand

subroutine

generates

a

pseudo-random

number

using

a

multiplicative

congruential

algorithm.

The

random-number

generator

has

a

period

of

2**32,

and

it

returns

successive

pseudo-random

numbers

in

the

range

from

0

through

(2**15)

-1.

The

srand

subroutine

resets

the

random-number

generator

to

a

new

starting

point.

It

uses

the

Seed

parameter

as

a

seed

for

a

new

sequence

of

pseudo-random

numbers

to

be

returned

by

subsequent

calls

to

the

rand

subroutine.

If

you

then

call

the

srand

subroutine

with

the

same

seed

value,

the

rand

subroutine

repeats

the

sequence

of

pseudo-random

numbers.

When

you

call

the

rand

subroutine

before

making

any

calls

to

the

srand

subroutine,

it

generates

the

same

sequence

of

numbers

that

it

would

if

you

first

called

the

srand

subroutine

with

a

seed

value

of

1.

Note:

The

rand

subroutine

is

a

simple

random-number

generator.

Its

spectral

properties,

a

mathematical

measurement

of

randomness,

are

somewhat

limited.

See

the

drand48

subroutine

or

the

random

subroutine

for

more

elaborate

random-number

generators

that

have

greater

spectral

properties.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

5

Parameter

Seed

Specifies

an

initial

seed

value.

Return

Values

Upon

successful

completion,

the

rand

subroutine

returns

the

next

random

number

in

sequence.

The

srand

subroutine

returns

no

value.

There

are

better

random

number

generators,

as

noted

above;

however,

the

rand

and

srand

subroutines

are

the

interfaces

defined

for

the

ANSI

C

library.

Example

The

following

functions

define

the

semantics

of

the

rand

and

srand

subroutines,

and

are

included

here

to

facilitate

porting

applications

from

different

implementations:

static

unsigned

int

next

=

1;

int

rand(

)

{

next

=

next

*

1103515245

+

12345;

return

((next

>>16)

&

32767);

}

void

srand

(Seed)

unsigned

int

Seed;

{

next

=

Seed;

}

Related

Information

The

drand48,

erand48,

lrand48,

nrand48,

mrand48,

jrand48,

srand48,

seed48,

or

lcong48

subroutine,

random,

srandom,

initstate,

or

setstate

(“random,

srandom,

initstate,

or

setstate

Subroutine”

on

page

7)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

rand_r

Subroutine

Purpose

Generates

pseudo-random

numbers.

Libraries

Thread-Safe

C

Library

(libc_r.a)

Berkeley

Compatibility

Library

(libbsd.a)

Syntax

#include

<stdlib.h>

6

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

rand_r

(Seed)

unsigned

int

*

Seed;

Description

The

rand_r

subroutine

generates

and

returns

a

pseudo-random

number

using

a

multiplicative

congruential

algorithm.

The

random-number

generator

has

a

period

of

2**32,

and

it

returns

successive

pseudo-random

numbers.

Note:

The

rand_r

subroutine

is

a

simple

random-number

generator.

Its

spectral

properties

(the

mathematical

measurement

of

the

randomness

of

a

number

sequence)

are

limited.

See

the

drand48

subroutine

or

the

random

(“random,

srandom,

initstate,

or

setstate

Subroutine”)

subroutine

for

more

elaborate

random-number

generators

that

have

greater

spectral

properties.

Programs

using

this

subroutine

must

link

to

the

libpthreads.a

library.

Parameter

Seed

Specifies

an

initial

seed

value.

Return

Values

0

Indicates

that

the

subroutines

was

successful.

-1

Indicates

that

the

subroutines

was

not

successful.

Error

Codes

If

the

following

condition

occurs,

the

rand_r

subroutine

sets

the

errno

global

variable

to

the

corresponding

value.

EINVAL

The

Seed

parameter

specifies

a

null

value.

File

/usr/include/sys/types.h

Defines

system

macros,

data

types,

and

subroutines.

Related

Information

The

drand48

subroutine,

random

(“random,

srandom,

initstate,

or

setstate

Subroutine”)

subroutine.

Subroutines

Overview

and

List

of

Multithread

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

random,

srandom,

initstate,

or

setstate

Subroutine

Purpose

Generates

pseudo-random

numbers

more

efficiently.

Library

Standard

C

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

7

Syntax

#include

<stdlib.h>

long

random

(

)

void

srandom

(Seed)

unsigned

int

Seed;

char

*initstate

(

Seed,

State,

Number)

unsigned

int

Seed;

char

*State;

size_t

Number;

char

*setstate

(State)

const

char

*State;

Description

Attention:

Do

not

use

the

random,

srandom,

initstate,

or

setstate

subroutine

in

a

multithreaded

environment.

The

random

subroutine

uses

a

non-linear

additive

feedback

random-number

generator

employing

a

default-state

array

size

of

31

long

integers

to

return

successive

pseudo-random

numbers

in

the

range

from

0

to

2**31-1.

The

period

of

this

random

number

generator

is

very

large,

approximately

16

*

(2**31-1).

The

size

of

the

state

array

determines

the

period

of

the

random

number

generator.

Increasing

the

state

array

size

increases

the

period.

With

a

full

256

bytes

of

state

information,

the

period

of

the

random-number

generator

is

greater

than

2**69,

which

should

be

sufficient

for

most

purposes.

The

random

and

srandom

subroutines

have

almost

the

same

calling

sequence

and

initialization

properties

as

the

rand

and

srand

subroutines.

The

difference

is

that

the

rand

subroutine

produces

a

much

less

random

sequence;

in

fact,

the

low

dozen

bits

generated

by

the

rand

subroutine

go

through

a

cyclic

pattern.

All

the

bits

generated

by

the

random

subroutine

are

usable.

For

example,

random(

)&01

produces

a

random

binary

value.

The

srandom

subroutine,

unlike

the

srand

subroutine,

does

not

return

the

old

seed

because

the

amount

of

state

information

used

is

more

than

a

single

word.

The

initstate

subroutine

and

setstate

subroutine

handle

restarting

and

changing

random-number

generators.

Like

the

rand

subroutine,

however,

the

random

subroutine

by

default

produces

a

sequence

of

numbers

that

can

be

duplicated

by

calling

the

srandom

subroutine

with

1

as

the

seed.

The

initstate

subroutine

allows

a

state

array,

passed

in

as

an

argument,

to

be

initialized

for

future

use.

The

size

of

the

state

array

(in

bytes)

is

used

by

the

initstate

subroutine,

to

decide

how

sophisticated

a

random-number

generator

it

should

use;

the

larger

the

state

array,

the

more

random

are

the

numbers.

Values

for

the

amount

of

state

information

are

8,

32,

64,

128,

and

256

bytes.

For

amounts

greater

than

or

equal

to

8

bytes,

or

less

than

32

bytes,

the

random

subroutine

uses

a

simple

linear

congruential

random

number

generator,

while

other

amounts

are

rounded

down

to

the

nearest

known

value.

The

Seed

parameter

specifies

a

starting

point

for

the

random-number

sequence

and

provides

for

restarting

at

the

same

point.

The

initstate

subroutine

returns

a

pointer

to

the

previous

state

information

array.

Once

a

state

has

been

initialized,

the

setstate

subroutine

allows

rapid

switching

between

states.

The

array

defined

by

State

parameter

is

used

for

further

random-number

generation

until

the

initstate

subroutine

is

called

or

the

setstate

subroutine

is

called

again.

The

setstate

subroutine

returns

a

pointer

to

the

previous

state

array.

After

initialization,

a

state

array

can

be

restarted

at

a

different

point

in

one

of

two

ways:

v

The

initstate

subroutine

can

be

used,

with

the

desired

seed,

state

array,

and

size

of

the

array.

8

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

The

setstate

subroutine,

with

the

desired

state,

can

be

used,

followed

by

the

srandom

subroutine

with

the

desired

seed.

The

advantage

of

using

both

of

these

subroutines

is

that

the

size

of

the

state

array

does

not

have

to

be

saved

once

it

is

initialized.

Parameters

Seed

Specifies

an

initial

seed

value.

State

Points

to

the

array

of

state

information.

Number

Specifies

the

size

of

the

state

information

array.

Error

Codes

If

the

initstate

subroutine

is

called

with

less

than

8

bytes

of

state

information,

or

if

the

setstate

subroutine

detects

that

the

state

information

has

been

damaged,

error

messages

are

sent

to

standard

error.

Related

Information

The

drand48,

erand48,

jrand48,

lcong48,

lrand48,

mrand48,

nrand48,

seed48,

or

srand48

subroutine,

rand

or

srand

(“rand

or

srand

Subroutine”

on

page

5)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

ra_attachrset

Subroutine

Purpose

Attaches

a

work

component

to

a

resource

set.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

ra_attachrset

(rstype,

rsid,

rset,

flags)

rstype_t

rstype;

rsid_t

rsid;

rsethandle_t

rset;

unsigned

int

flags;

Description

The

ra_attachrset

subroutine

attaches

a

work

component

specified

by

the

rstype

and

rsid

parameters

to

a

resource

set

specified

by

the

rset

parameter.

The

work

component

is

an

existing

process

identified

by

the

process

ID.

A

process

ID

value

of

RS_MYSELF

indicates

the

attachment

applies

to

the

current

process.

The

following

conditions

must

be

met

to

successfully

attach

a

process

to

a

resource

set:

v

The

resource

set

must

contain

processors

that

are

available

in

the

system.

v

The

calling

process

must

either

have

root

authority

or

have

CAP_NUMA_ATTACH

capability.

v

The

calling

process

must

either

have

root

authority

or

the

same

effective

userid

as

the

target

process.

v

The

target

process

must

not

contain

any

threads

that

have

bindprocessor

bindings

to

a

processor.

v

The

resource

set

must

be

contained

in

(be

a

subset

of

)

the

target

process’

partition

resource

set.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

9

If

any

of

these

conditions

are

not

met,

the

attachment

will

fail.

Once

a

process

is

attached

to

a

resource

set,

the

threads

in

the

process

will

only

run

on

processors

contained

in

the

resource

set.

Dynamic

Processor

Deallocation

and

DLPAR

may

invalidate

the

processor

attachment

that

is

being

specified.

A

program

must

become

DLPAR

Aware

to

resolve

this

problem.

Parameters

rstype

Specifies

the

type

of

work

component

to

be

attached

to

the

resource

set

specified

by

the

rset

parameter.

The

rstype

parameter

must

be

the

following

value,

defined

in

rset.h:

v

R_PROCESS:

existing

process

rsid

Identifies

the

work

component

to

be

attached

to

the

resource

set

specified

by

the

rset

parameter.

The

rsid

parameter

must

be

the

following:

v

Process

ID

(for

rstype

of

R_PROCESS):

set

the

rsid_t

at_pid

field

to

the

desired

process’

process

ID.

rset

Specifies

which

work

component

(specified

by

the

rstype

and

rsid

parameters)

to

attach

to

the

resource

set.

flags

Reserved

for

future

use.

Specify

as

0.

Return

Values

If

successful

,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

ra_attachrset

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

The

flags

parameter

contains

an

invalid

value.

v

The

rstype

parameter

contains

an

invalid

type

qualifier.

ENODEV

The

resource

set

specified

by

the

rset

parameter

does

not

contain

any

available

processors.

ESRCH

The

process

identified

by

the

rstype

and

rsid

parameters

does

not

exist.

EPERM

One

of

the

following

is

true:

v

The

resource

set

specified

by

the

rset

parameter

is

not

included

in

the

partition

resource

set

of

the

process

identified

by

the

rstype

and

rsid

parameters.

v

The

calling

process

has

neither

root

authority

nor

CAP_NUMA_ATTACH

attachment

privilege.

v

The

calling

process

has

neither

root

authority

nor

the

same

effective

user

ID

as

the

process

identified

by

the

rstype

and

rsid

parameters.

v

The

process

identified

by

the

rstype

and

rsid

parameters

has

one

or

more

threads

with

a

bindprocessor

processor

binding.

Related

Information

“ra_fork

Subroutine”

on

page

14,

“ra_exec

Subroutine”

on

page

12,

“ra_getrset

Subroutine”

on

page

15,

and

“ra_detachrset

Subroutine”

on

page

11.

The

Dynamic

Logical

Partitioning

article

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

The

dr_reconfig

system

call

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

10

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

ra_detachrset

Subroutine

Purpose

Detaches

a

work

component

from

a

resource

set.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

ra_detachrset

(rstype,

rsid,

flags)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

Description

The

ra_detachrset

subroutine

detaches

a

work

component

specified

by

rstype

and

rsid

from

a

resource

set.

The

work

component

is

an

existing

process

identified

by

the

process

ID.

A

process

ID

value

of

RS_MYSELF

indicates

the

detach

command

applies

to

the

current

process.

The

following

conditions

must

be

met

to

detach

a

process

from

a

resource

set:

v

The

calling

process

must

either

have

root

authority

or

have

CAP_NUMA_ATTACH

capability.

v

The

calling

process

must

either

have

root

authority

or

the

same

effective

userid

as

the

target

process.

If

these

conditions

are

not

met,

the

operation

will

fail.

Once

a

process

is

detached

from

a

resource

set,

the

threads

in

the

process

can

run

on

all

available

processors

contained

in

the

process’

partition

resource

set.

Parameters

rstype

Specifies

the

type

of

work

component

to

be

detached

from

to

the

resource

set

specified

by

rset.

This

parameter

must

be

the

following

value,

defined

in

rset.h:

v

R_PROCESS:

existing

process

rsid

Identifies

the

work

component

to

be

attached

to

the

resource

set

specified

by

rset.

This

parameter

must

be

the

following:

v

Process

ID

(for

rstype

of

R_PROCESS):

set

the

rsid_t

at_pid

field

to

the

desired

process’

process

ID.

flags

Reserved

for

future

use.

Specify

as

0.

Return

Values

If

successful,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

ra_detachrset

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

The

flags

parameter

contains

an

invalid

value.

v

The

rstype

parameter

contains

an

invalid

type

qualifier.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

11

ESRCH

The

process

identified

by

the

rstype

and

rsid

parameters

does

not

exist.

EPERM

One

of

the

following

is

true:

v

The

calling

process

has

neither

root

authority

nor

CAP_NUMA_ATTACH

attachment

privilege.

v

The

calling

process

has

neither

root

authority

nor

the

same

effective

user

ID

as

the

process

identified

by

the

rstype

and

rsid

parameters.

Related

Information

“ra_fork

Subroutine”

on

page

14,

“ra_exec

Subroutine,”

“ra_getrset

Subroutine”

on

page

15,

and

“ra_attachrset

Subroutine”

on

page

9.

ra_exec

Subroutine

Purpose

Executes

a

file

and

attaches

it

to

a

given

resource.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

ra_execl(rstype,

rsid,

flags,

path,

argument0

[,argument1,...],

0)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

const

char

*

path,

argument0,

argument1,...;

int

ra_execle(rstype,

rsid,

flags,

path,

argument0[,argument1,...],

0,

envptr)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

const

char

*

path,

argument0,

argument1,...;

char

*

const

envptr[];

int

ra_execlp(rstype,

rsid,

flags,

File,

argument0[,argument1,...],

0)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

const

char

*

File,

argument0,

argument1,...;

int

ra_execv

(rstype,

rsid,

flags,

path,

argumentv)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

const

char

*

path;

char

*

const

argumentv[];

int

ra_execve

(rstype,

rsid,

flags,

path,

argumentv,

envptr)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

const

char

*

path;

char

*

const

argumentv[],

envptr[];

int

ra_execvp

(rstype,

rsid,

flags,

File,

argumentv)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

const

char

*

File;

char

*

const

argumentv[];

12

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

ra_exect(rstype,

rsid,

flags,

path,

argumentv,

envptr)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

char

*

path,

argumentv,

envptr[];

Description

The

ra_exec

subroutine

in

all

its

forms,

executes

a

new

program

in

the

calling

process,

and

attaches

the

process

to

the

resource

specified

by

the

rstype

and

rsid

parameters.

The

following

conditions

must

be

met

to

successfully

attach

a

process

to

a

resource

set:

v

The

resource

set

must

contain

processors

that

are

available

in

the

system.

v

The

process

must

either

have

root

authority

or

have

CAP_NUMA_ATTACH

capability.

v

The

calling

thread

must

not

have

a

bindprocessor

binding

to

a

processor.

v

The

resource

set

must

be

contained

in

(be

a

subset

of

)

the

process’

partition

resource

set.

Note:

When

the

exec

subroutine

is

used,

the

new

process

image

inherits

its

process’

resource

set

attachments.

Dynamic

Processor

Deallocation

and

DLPAR

may

invalidate

the

processor

attachment

that

is

being

specified.

A

program

must

become

DLPAR

Aware

to

resolve

this

problem.

Parameters

The

ra_exec

subroutine

has

the

same

parameters

as

the

exec

subroutine,

with

the

addition

of

the

following

new

parameters:

rstype

Specifies

the

type

of

resource

the

new

process

image

will

be

attached

to.

This

parameter

must

be

the

following,

defined

in

rset.h:

v

R_RSET:

resource

set

rsid

Identifies

the

resource

the

new

process

image

will

be

attached

to.

This

parameter

must

be

a

resource

set

handle.

v

Process

ID

(for

rstype

of

R_PROCESS):

set

the

rsid_t

at_pid

field

to

the

desired

process’

process

ID.

flags

Reserved

for

future

use.

Specify

as

0.

Return

Values

The

ra_exec

subroutine’s

return

values

are

the

same

as

the

exec

subroutine’s

return

values.

Error

Codes

The

ra_exec

subroutine’s

error

codes

are

the

same

as

the

exec

subroutine’s

error

codes,

with

the

addition

of

the

following

error

codes:

EINVAL

One

of

the

following

is

true:

v

The

rstype

parameter

contains

an

invalid

type

identifier.

v

The

flags

parameter

contains

an

invalid

flags

value.

ENODEV

The

specified

resource

set

does

not

contain

any

available

processors.

EFAULT

Invalid

address.

EPERM

One

of

the

following

is

true:

v

The

calling

process

has

neither

root

authority

nor

CAP_NUMA_ATTACH

attachment

privilege.

v

The

calling

process

contains

one

or

more

threads

with

a

bindprocessor

processor

binding.

v

The

specified

resource

set

is

not

included

in

the

calling

process’

partition

resource

set.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

13

Related

Information

The

“ra_fork

Subroutine,”

“ra_attachrset

Subroutine”

on

page

9,

“ra_detachrset

Subroutine”

on

page

11,

and

“ra_getrset

Subroutine”

on

page

15.

The

Dynamic

Logical

Partitioning

article

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

The

dr_reconfig

system

call

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

The

exec:

execl,

execle,

execlp,

execv,

execve,

execvp,

or

exect

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

ra_fork

Subroutine

Purpose

Creates

and

attaches

a

new

process

to

a

given

resource.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

pid_t

ra_fork(rstype,

rsid,

flags)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

Description

The

ra_fork

subroutine

creates

a

new

process,

and

attaches

the

new

process

to

the

resource

set

specified

by

rstype

and

rsid.

The

following

conditions

must

be

met

to

successfully

attach

a

process

to

a

resource

set:

v

The

resource

set

must

contain

processors

that

are

available

in

the

system.

v

The

process

must

either

have

root

authority

or

have

CAP_NUMA_ATTACH

capability.

v

The

calling

thread

must

not

have

a

bindprocessor

binding

to

a

processor.

v

The

resource

set

must

be

contained

in

(be

a

subset

of

)

the

process’

partition

resource

set.

Note:

When

the

fork

subroutine

is

used,

the

child

process

inherits

its

parent’s

resource

set

attachments.

Dynamic

Processor

Deallocation

and

DLPAR

may

invalidate

the

processor

attachment

that

is

being

specified.

A

program

must

become

DLPAR

Aware

to

resolve

this

problem.

Parameters

rstype

Specifies

the

type

of

resource

the

new

process

will

be

attached

to.

This

parameter

must

be

the

following

value,

defined

in

rset.h.

v

R_RSET:

resource

set.

rsid

Identifies

the

resource

the

new

process

will

be

attached

to.

This

parameter

must

be

a

resource

set

handle.

v

Resource

set

ID

(for

rstype

of

R_RSET):

set

the

rsid_t

at_rset

field

to

the

desired

resource

set.

flags

Reserved

for

future

use.

Specify

as

0.

14

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

The

ra_fork

subroutine’s

return

values

are

the

same

as

the

fork

subroutine’s

return

values.

Error

Codes

The

ra_fork

subroutine’s

error

codes

are

the

same

as

the

fork

subroutine’s

error

codes

with

the

addition

of

the

following:

EINVAL

One

of

the

following

is

true:

v

The

rstype

parameter

contains

an

invalid

type

identifier.

v

The

flags

parameter

contains

an

invalid

flags

value.

ENODEV

The

specified

resource

set

does

not

contain

any

available

processors.

EFAULT

Invalid

address.

EPERM

One

of

the

following

is

true:

v

The

calling

process

has

neither

root

authority

nor

CAP_NUMA_ATTACH

attachment

privilege.

v

The

calling

process

contains

one

or

more

threads

with

a

bindprocessor

processor

binding.

v

The

specified

resource

set

is

not

included

in

the

calling

process’

partition

resource

set.

Related

Information

“ra_attachrset

Subroutine”

on

page

9,

“ra_detachrset

Subroutine”

on

page

11,

and

“ra_getrset

Subroutine.”

The

Dynamic

Logical

Partitioning

article

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

The

dr_reconfig

system

call

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

The

fork,

f_fork,

or

vfork

Subroutine,

and

exec:

execl,

execle,

execlp,

execv,

execve,

execvp,

or

exect

Subroutine

articles

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2.

ra_getrset

Subroutine

Purpose

Gets

the

resource

set

to

which

a

work

component

is

attached.

Library

Standard

C

library

(libc.a)

Syntax

#

include

<sys/rset.h>

int

ra_getrset

(rstype,

rsid,

flags,

rset)

rstype_t

rstype;

rsid_t

rsid;

unsigned

int

flags;

rsethandle_t

rset;

Description

The

ra_getrset

subroutine

returns

the

resource

set

to

which

a

specified

work

component

is

attached.

The

work

component

is

an

existing

process

identified

by

the

process

ID.

A

process

ID

value

of

RS_MYSELF

indicates

the

resource

set

attached

to

the

current

process

is

requested.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

15

The

following

return

values

from

the

ra_getrset

subroutine

indicate

the

type

of

resource

set

returned:

v

A

value

of

RS_EFFECTIVE_RSET

indicates

the

process

was

explicitly

attached

to

the

resource

set.

This

may

have

been

done

with

the

ra_attachrset

subroutine.

v

A

value

of

RS_PARTITION_RSET

indicates

the

process

was

not

explicitly

attached

to

a

resource

set.

However,

the

process

had

an

explicitly

set

partition

resource

set.

This

may

be

set

with

the

rs_setpartition

subroutine

or

through

the

use

of

WLM

work

classes

with

resource

sets.

v

A

value

of

RS_DEFAULT_RSET

indicates

the

process

was

not

explicitly

attached

to

a

resource

set

nor

did

it

have

an

explicitly

set

partition

resource

set.

The

system

default

resource

set

is

returned.

Parameters

rstype

Specifies

the

type

of

the

work

component

whose

resource

set

attachment

is

requested.

This

parameter

must

be

the

following

value,

defined

in

rset.h:

v

R_PROCESS:

existing

process

rsid

Identifies

the

work

component

whose

resource

set

attachment

is

requested.

This

parameter

must

be

the

following:

v

Process

ID

(for

rstype

of

R_PROCESS):

set

the

rsid_t

at_pid

field

to

the

desired

process’

process

ID.

flags

Reserved

for

future

use.

Specify

as

0.

rset

Specifies

the

resource

set

to

receive

the

work

component’s

resource

set.

Return

Values

If

successful,

a

value

of

RS_EFFECTIVE_RSET,

RS_PARTITION_RSET,

or

RS_DEFAULT_RSET

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

ra_getrset

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

The

flags

parameter

contains

an

invalid

value.

v

The

rstype

parameter

contains

an

invalid

type

qualifier.

EFAULT

Invalid

address.

ESRCH

The

process

identified

by

the

rstype

and

rsid

parameters

does

not

exist.

Related

Information

The

“rs_getpartition

Subroutine”

on

page

93.

read,

readx,

readv,

readvx,

or

pread

Subroutine

Purpose

Reads

from

a

file.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

ssize_t

read

(FileDescriptor,

Buffer,

NBytes)

16

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

FileDescriptor;

void

*

Buffer;

size_t

NBytes;

int

readx

(FileDescriptor,

;Buffer,

NBytes,

Extension)

int

FileDescriptor;

char

*

Buffer;

unsigned

int

NBytes;

int

Extension;

#include

<sys/uio.h>

ssize_t

readv

(FileDescriptor,

iov,

iovCount)

int

FileDescriptor;

const

struct

iovec

*

iov;

int

iovCount;

ssize_t

readvx

(FileDescriptor,

iov,

iovCount,

Extension)

int

FileDescriptor;

struct

iovec

*iov;

int

iovCount;

int

Extension;

#include

<unistd.h>

ssize_t

pread

(int

fildes,

void

*buf,

size_t

nbyte,

off_t

offset);

Description

The

read

subroutine

attempts

to

read

NBytes

of

data

from

the

file

associated

with

the

FileDescriptor

parameter

into

the

buffer

pointed

to

by

the

Buffer

parameter.

The

readv

subroutine

performs

the

same

action

but

scatters

the

input

data

into

the

iovCount

buffers

specified

by

the

array

of

iovec

structures

pointed

to

by

the

iov

parameter.

Each

iovec

entry

specifies

the

base

address

and

length

of

an

area

in

memory

where

data

should

be

placed.

The

readv

subroutine

always

fills

an

area

completely

before

proceeding

to

the

next.

The

readx

and

readvx

subroutines

are

the

same

as

the

read

and

readv

subroutines,

respectively,

with

the

addition

of

an

Extension

parameter,

which

is

needed

when

reading

from

some

device

drivers

and

when

reading

directories.

While

directories

can

be

read

directly,

it

is

recommended

that

the

opendir

and

readdir

calls

be

used

instead,

as

this

is

a

more

portable

interface.

On

regular

files

and

devices

capable

of

seeking,

the

read

starts

at

a

position

in

the

file

given

by

the

file

pointer

associated

with

the

FileDescriptor

parameter.

Upon

return

from

the

read

subroutine,

the

file

pointer

is

incremented

by

the

number

of

bytes

actually

read.

Devices

that

are

incapable

of

seeking

always

read

from

the

current

position.

The

value

of

a

file

pointer

associated

with

such

a

file

is

undefined.

On

directories,

the

readvx

subroutine

starts

at

the

position

specified

by

the

file

pointer

associated

with

theFileDescriptor

parameter.

The

value

of

this

file

pointer

must

be

either

0

or

a

value

which

the

file

pointer

had

immediately

after

a

previous

call

to

the

readvx

subroutine

on

this

directory.

Upon

return

from

the

readvx

subroutine,

the

file

pointer

increments

by

a

number

that

may

not

correspond

to

the

number

of

bytes

copied

into

the

buffers.

When

attempting

to

read

from

an

empty

pipe

(first-in-first-out

(FIFO)):

v

If

no

process

has

the

pipe

open

for

writing,

the

read

returns

0

to

indicate

end-of-file.

v

If

some

process

has

the

pipe

open

for

writing:

–

If

O_NDELAY

and

O_NONBLOCK

are

clear

(the

default),

the

read

blocks

until

some

data

is

written

or

the

pipe

is

closed

by

all

processes

that

had

opened

the

pipe

for

writing.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

17

–

If

O_NDELAY

is

set,

the

read

subroutine

returns

a

value

of

0.

–

If

O_NONBLOCK

is

set,

the

read

subroutine

returns

a

value

of

-1

and

sets

the

global

variable

errno

to

EAGAIN.

When

attempting

to

read

from

a

character

special

file

that

supports

nonblocking

reads,

such

as

a

terminal,

and

no

data

is

currently

available:

v

If

O_NDELAY

and

O_NONBLOCK

are

clear

(the

default),

the

read

subroutine

blocks

until

data

becomes

available.

v

If

O_NDELAY

is

set,

the

read

subroutine

returns

0.

v

If

O_NONBLOCK

is

set,

the

read

subroutine

returns

-1

and

sets

the

errno

global

variable

to

EAGAIN

if

no

data

is

available.

When

attempting

to

read

a

regular

file

that

supports

enforcement

mode

record

locks,

and

all

or

part

of

the

region

to

be

read

is

currently

locked

by

another

process:

v

If

O_NDELAY

and

O_NONBLOCK

are

clear,

the

read

blocks

the

calling

process

until

the

lock

is

released.

v

If

O_NDELAY

or

O_NONBLOCK

is

set,

the

read

returns

-1

and

sets

the

global

variable

errno

toEAGAIN.

The

behavior

of

an

interrupted

read

subroutine

depends

on

how

the

handler

for

the

arriving

signal

was

installed.

If

the

handler

was

installed

with

an

indication

that

subroutines

should

not

be

restarted,

the

read

subroutine

returns

a

value

of

-1

and

the

global

variable

errno

is

set

to

EINTR

(even

if

some

data

was

already

consumed).

If

the

handler

was

installed

with

an

indication

that

subroutines

should

be

restarted:

v

If

no

data

had

been

read

when

the

interrupt

was

handled,

this

read

will

not

return

a

value

(it

is

restarted).

v

If

data

had

been

read

when

the

interrupt

was

handled,

this

read

subroutine

returns

the

amount

of

data

consumed.

The

pread

function

performs

the

same

action

as

read,

except

that

it

reads

from

a

given

position

in

the

file

without

changing

the

file

pointer.

The

first

three

arguments

to

pread

are

the

same

as

read

with

the

addition

of

a

fourth

argument

offset

for

the

desired

position

inside

the

file.

An

attempt

to

perform

a

pread

on

a

file

that

is

incapable

of

seeking

results

in

an

error.

Note:

The

pread64

subroutine

applies

to

AIX

4.3

and

later.
ssize_t

pread64(int

filedes

,

void

*buf

,

size_t

nbytes

,

off64_t

offset)

The

pread64

subroutines

performs

the

same

action

as

pread

but

the

limit

of

offset

to

the

maximum

file

size

for

the

file

associated

with

the

file

Descriptor

and

DEV_OFF_MAX

if

the

file

associated

with

fileDescriptor

is

a

block

special

or

character

special

file.

Parameters

FileDescriptor

A

file

descriptor

identifying

the

object

to

be

read.

18

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Extension

Provides

communication

with

character

device

drivers

that

require

additional

information

or

return

additional

status.

Each

driver

interprets

theExtension

parameter

in

a

device-dependent

way,

either

as

a

value

or

as

a

pointer

to

a

communication

area.

Drivers

must

apply

reasonable

defaults

when

the

value

of

the

Extension

parameter

is

0.

For

directories,

the

Extension

parameter

determines

the

format

in

which

directory

entries

should

be

returned:

v

If

the

value

of

the

Extension

parameter

is

0,

the

format

in

which

directory

entries

are

returned

depends

on

the

value

of

the

real

directory

read

flag

(described

in

the

ulimit

(“ulimit

Subroutine”

on

page

416)

subroutine).

v

If

the

calling

process

does

not

have

the

real

directory

read

flag

set,

the

buffers

are

filled

with

an

array

of

directory

entries

truncated

to

fit

the

format

of

the

System

V

directory

structure.

This

provides

compatibility

with

programs

written

for

UNIX

System

V.

v

If

the

calling

process

has

the

real

directory

read

flag

set

(see

the

ulimit

subroutine),

the

buffers

are

filled

with

an

image

of

the

underlying

implementation

of

the

directory.

v

If

the

value

of

the

Extension

parameter

is

1,

the

buffers

are

filled

with

consecutive

directory

entries

in

the

format

of

adirent

structure.

This

is

logically

equivalent

to

the

readdir

subroutine.

v

Other

values

of

the

Extension

parameter

are

reserved.

For

tape

devices,

the

Extension

parameter

determines

the

response

of

the

readx

subroutine

when

the

tape

drive

is

in

variable

block

mode

and

the

read

request

is

for

less

than

the

tape’s

block

size.

v

If

the

value

of

the

Extension

parameter

is

TAPE_SHORT_READ,

the

readx

subroutine

returns

the

number

of

bytes

requested

and

sets

the

errno

global

variable

to

a

value

of

0.

v

If

the

value

of

the

Extension

parameter

is

0,

the

readx

subroutine

returns

a

value

of

0

and

sets

the

errno

global

variable

to

ENOMEM.

iov

Points

to

an

array

of

iovec

structures

that

identifies

the

buffers

into

which

the

data

is

to

be

placed.

The

iovec

structure

is

defined

in

the

sys/uio.h

file

and

contains

the

following

members:

caddr_t

iov_base;

size_t

iov_len;

iovCount

Specifies

the

number

of

iovec

structures

pointed

to

by

the

iov

parameter.

Buffer

Points

to

the

buffer.

NBytes

Specifies

the

number

of

bytes

read

from

the

file

associated

with

theFileDescriptor

parameter.

Note:

When

reading

tapes,

the

read

subroutines

consume

a

physical

tape

block

on

each

call

to

the

subroutine.

If

the

physical

data

block

size

is

larger

than

specified

by

the

Nbytes

parameter,

an

error

will

be

returned,

since

all

of

the

data

from

the

read

will

not

fit

into

the

buffer

specified

by

the

read.

To

avoid

read

errors

due

to

unknown

blocking

sizes

on

tapes,

set

the

NBytes

parameter

to

a

very

large

value

(such

as

32K

bytes).

Return

Values

Upon

successful

completion,

the

read,

readx,

readv,

readvx,

and

pread

subroutines

return

the

number

of

bytes

actually

read

and

placed

into

buffers.

The

system

guarantees

to

read

the

number

of

bytes

requested

if

the

descriptor

references

a

normal

file

that

has

the

same

number

of

bytes

left

before

the

end

of

the

file

is

reached,

but

in

no

other

case.

A

value

of

0

is

returned

when

the

end

of

the

file

has

been

reached.

(For

information

about

communication

files,

see

the

ioctl

and

termio

files.)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

19

Otherwise,

a

value

of

-1

is

returned,

the

global

variable

errno

is

set

to

identify

the

error,

and

the

content

of

the

buffer

pointed

to

by

the

Buffer

or

iov

parameter

is

indeterminate.

Error

Codes

The

read,

readx,

readv,

readvx,

and

pread

subroutines

are

unsuccessful

if

one

or

more

of

the

following

are

true:

EBADMSG

The

file

is

a

STREAM

file

that

is

set

to

control-normal

mode

and

the

message

waiting

to

be

read

includes

a

control

part.

EBADF

The

FileDescriptor

parameter

is

not

a

valid

file

descriptor

open

for

reading.

EINVAL

The

file

position

pointer

associated

with

the

FileDescriptor

parameter

was

negative.

EINVAL

The

sum

of

the

iov_len

values

in

the

iov

array

was

negative

or

overflowed

a

32-bit

integer.

EINVAL

The

value

of

the

iovCount

parameter

was

not

between

1

and

16,

inclusive.

EINVAL

The

value

of

the

Nbytes

parameter

that

is

larger

than

OFF_MAX,

was

requested

on

the

32-bit

kernel.

This

is

a

case

where

the

system

call

is

requested

from

a

64-bit

application

that

is

running

on

a

32-bit

kernel.

EINVAL

The

STREAM

or

multiplexer

referenced

by

FileDescriptor

is

linked

(directly

or

indirectly)

downstream

from

a

multiplexer.

EAGAIN

The

file

was

marked

for

non-blocking

I/O,

and

no

data

was

ready

to

be

read.

EFAULT

The

Buffer

or

part

of

the

iov

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

EDEADLK

A

deadlock

would

occur

if

the

calling

process

were

to

sleep

until

the

region

to

be

read

was

unlocked.

EINTR

A

read

was

interrupted

by

a

signal

before

any

data

arrived,

and

the

signal

handler

was

installed

with

an

indication

that

subroutines

are

not

to

be

restarted.

EIO

An

I/O

error

occurred

while

reading

from

the

file

system.

EIO

The

process

is

a

member

of

a

background

process

attempting

to

read

from

its

controlling

terminal,

and

either

the

process

is

ignoring

or

blocking

the

SIGTTIN

signal

or

the

process

group

has

no

parent

process.

EFBIG

An

offset

greater

than

MAX_FILESIZE

was

requested

on

the

32-bit

kernel.

EOVERFLOW

An

attempt

was

made

to

read

from

a

regular

file

where

NBytes

was

greater

than

zero

and

the

starting

offset

was

before

the

end-of-file

and

was

greater

than

or

equal

to

the

offset

maximum

established

in

the

open

file

description

associated

with

FileDescriptor.

The

read,

readx,

readv,

readvx

and

pread

subroutines

may

be

unsuccessful

if

the

following

is

true:

ENXIO

A

request

was

made

of

a

nonexistent

device,

or

the

request

was

outside

the

capabilities

of

the

device.

ESPIPE

fildes

is

associated

with

a

pipe

or

FIFO.

If

Network

File

System

(NFS)

is

installed

on

the

system,

the

read

system

call

can

also

fail

if

the

following

is

true:

ETIMEDOUT

The

connection

timed

out.

Related

Information

The

fcntl,

dup,

or

dup2

subroutine,

ioctl

subroutine,

lockfx

subroutine,

lseek

subroutine,

open,

openx,

or

creat

subroutine,

opendir,

readdir,

or

seekdir

subroutine,

pipe

subroutine,

poll

subroutine,

socket

subroutine,

socketpair

subroutine.

The

Input

and

Output

Handling

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

20

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

readdir_r

Subroutine

Purpose

Reads

a

directory.

Library

Thread-Safe

C

Library

(libc_r.a)

Syntax

#include

<sys/types.h>

#include

<dirent.h>

int

readdir_r

(DirectoryPointer,

Entry,

Result)

DIR

*

DirectoryPointer;

struct

dirent

*

Entry;

struct

dirent

**

Result;

Description

The

readdir_r

subroutine

returns

the

directory

entry

in

the

structure

pointed

to

by

the

Result

parameter.

The

readdir_r

subroutine

returns

entries

for

the

.

(dot)

and

..

(dot-dot)

directories,

if

present,

but

never

returns

an

invalid

entry

(with

d_ino

set

to

0).

When

it

reaches

the

end

of

the

directory,

the

readdir_r

subroutine

returns

a

0.

When

it

detects

an

invalid

seekdir

operation,

the

readdir_r

subroutine

returns

a

9.

Note:

The

readdir

subroutine

is

reentrant

when

an

application

program

uses

different

DirectoryPointer

parameter

values

(returned

from

the

opendir

subroutine).

Use

the

readdir_r

subroutine

when

multiple

threads

use

the

same

directory

pointer.

Using

the

readdir_r

subroutine

after

the

closedir

subroutine,

for

the

structure

pointed

to

by

the

DirectoryPointer

parameter,

has

an

undefined

result.

The

structure

pointed

to

by

the

DirectoryPointer

parameter

becomes

invalid

for

all

threads,

including

the

caller.

Programs

using

this

subroutine

must

link

to

the

libpthreads.a

library.

Parameters

DirectoryPointer

Points

to

the

DIR

structure

of

an

open

directory.

Entry

Points

to

a

structure

that

contains

the

next

directory

entry.

Result

Points

to

the

directory

entry

specified

by

the

Entry

parameter.

Return

Values

0

Indicates

that

the

subroutines

was

successful.

9

Indicates

that

the

subroutines

was

not

successful.

Error

Codes

If

the

readdir_r

subroutine

is

unsuccessful,

the

errno

global

variable

is

set

to

one

of

the

following

values:

EACCES

Search

permission

is

denied

for

any

component

of

the

structure

pointed

to

by

the

DirectoryPointer

parameter,

or

read

permission

is

denied

for

the

structure

pointed

to

by

the

DirectoryPointer

parameter.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

21

ENAMETOOLONG

The

length

of

the

DirectoryPointer

parameter

exceeds

the

value

of

the

PATH_MAX

variable,

or

a

path-name

component

is

longer

than

the

value

of

NAME_MAX

variable

while

the

_POSIX_NO_TRUNC

variable

is

in

effect.

ENOENT

The

named

directory

does

not

exist.

ENOTDIR

A

component

of

the

structure

pointed

to

by

the

DirectoryPointer

parameter

is

not

a

directory.

EMFILE

Too

many

file

descriptors

are

currently

open

for

the

process.

ENFILE

Too

many

file

descriptors

are

currently

open

in

the

system.

EBADF

The

structure

pointed

to

by

the

DirectoryPointer

parameter

does

not

refer

to

an

open

directory

stream.

Examples

To

search

a

directory

for

the

entry

name,enter:

len

=

strlen(name);

DirectoryPointer

=

opendir(".");

for

(readdir_r(DirectoryPointer,

&Entry,

&Result);

Result

!=

NULL;

readdir_r(DirectoryPointer,

&Entry,

&Result))

if

(dp->d_namlen

==

len

&&

!strcmp(dp->d_name,

name))

{

closedir(DirectoryPointer);

return

FOUND;

}

closedir(DirectoryPointer);

return

NOT_FOUND;

Related

Information

The

close

subroutine,

exec

subroutines,

fork

subroutine,

lseek

subroutine,

openx,

open,

or

creat

subroutine,

read,

readv,

readx,

or

readvx

(“read,

readx,

readv,

readvx,

or

pread

Subroutine”

on

page

16)

subroutine,

scandir

or

alphasort

(“scandir

or

alphasort

Subroutine”

on

page

107)

subroutine.

The

opendir,

readdir,

telldir,

seekdir,

rewinddir,

or

closedir

subroutine.

Subroutines

Overview,

List

of

File

and

Directory

Manipulation

Services,

and

List

of

Multithread

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

readlink

Subroutine

Purpose

Reads

the

contents

of

a

symbolic

link.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

int

readlink

(

Path,

Buffer,

BufferSize)

const

char

*Path;

char

*Buffer;

size_t

BufferSize;

Description

The

readlink

subroutine

copies

the

contents

of

the

symbolic

link

named

by

the

Path

parameter

in

the

buffer

specified

in

the

Buffer

parameter.

The

BufferSize

parameter

indicates

the

size

of

the

buffer

in

bytes.

22

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

If

the

actual

length

of

the

symbolic

link

is

less

than

the

number

of

bytes

specified

in

the

BufferSize

parameter,

the

string

copied

into

the

buffer

will

be

null-terminated.

If

the

actual

length

of

the

symbolic

link

is

greater

than

the

number

of

bytes

specified

in

the

Buffersize

parameter,

an

error

is

returned.

The

length

of

a

symbolic

link

cannot

exceed

1023

characters

or

the

value

of

the

PATH_MAX

constant.

PATH_MAX

is

defined

in

the

limits.h

file.

Parameters

Path

Specifies

the

path

name

of

the

destination

file

or

directory.

Buffer

Points

to

the

user’s

buffer.

The

buffer

should

be

at

least

as

large

as

the

BufferSize

parameter.

BufferSize

Indicates

the

size

of

the

buffer.

The

contents

of

the

link

are

null-terminated,

provided

there

is

room

in

the

buffer.

Return

Values

Upon

successful

completion,

the

readlink

subroutine

returns

a

count

of

the

number

of

characters

placed

in

the

buffer

(not

including

any

terminating

null

character).

If

the

readlink

subroutine

is

unsuccessful,

the

buffer

is

not

modified,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

readlink

subroutine

fails

if

one

or

both

of

the

following

are

true:

ENOENT

The

file

named

by

the

Path

parameter

does

not

exist,

or

the

path

points

to

an

empty

string.

EINVAL

The

file

named

by

the

Path

parameter

is

not

a

symbolic

link.

ERANGE

The

path

name

in

the

symbolic

link

is

longer

than

the

BufferSize

value.

The

readlink

subroutine

can

also

fail

due

to

additional

errors.

See

″Base

Operating

System

Error

Codes

for

Services

that

Require

Path-Name

Resolution″

for

a

list

of

additional

error

codes.

The

readlink

subroutine

can

also

fail

due

to

additional

errors.

See

Appendix

A,″Base

Operating

System

Error

Codes

for

Services

That

Require

Path-Name

Resolution″

on

page

A-1

for

a

list

of

additional

error

codes.

If

Network

File

System

(NFS)

is

installed

on

the

system,

the

readlink

subroutine

can

also

fail

if

the

following

is

true:

ETIMEDOUT

The

connection

timed

out.

Related

Information

The

ln

command.

The

link

subroutine,

statx,

stat,

fstatx,

fstat,

fullstat,

or

ffullstat

(“statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine”

on

page

277)

subroutine,

symlink

(“symlink

Subroutine”

on

page

308)

subroutine,

unlink

(“unlink

Subroutine”

on

page

424)

subroutine.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

read_real_time

or

time_base_to_time

Subroutine

Purpose

Read

the

processor

real

time

clock

or

time

base

registers

to

obtain

high-resolution

elapsed

time.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

23

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/time.h>

#include

<sys/systemcfg.h>

int

read_real_time(timebasestruct_t

*t,

size_t

size_of_timebasestruct_t);

int

time_base_to_time(timebasestruct_t

*t,

size_t

size_of_timebasestruct_t);

Description

These

subroutines

are

designed

to

be

used

for

making

high-resolution

measurement

of

elapsed

time,

using

the

processor

real

time

clock

or

time

base

registers.

The

read_real_time

subroutine

reads

the

value

of

the

appropriate

registers

and

stores

them

in

a

structure.

The

time_base_to_time

subroutine

converts

time

base

data

to

real

time,

if

necessary.

This

process

is

divided

into

two

steps

because

the

process

of

reading

the

time

is

usually

part

of

the

timed

code,

and

so

the

conversion

from

time

base

to

real

time

can

be

moved

out

of

the

timed

code.

The

read_real_time

subroutine

reads

either

the

processor

real

time

clock

(for

the

POWER

family

or

PowerPC

601

RISC

Microprocessor

in

AIX

5.1

and

earlier)

or

the

time

base

register

(in

the

case

of

the

POWER-based

processors

other

than

the

PowerPC

601

RISC

Microprocessor).

The

t

argument

is

a

pointer

to

a

timebasestruct_t,

where

the

time

values

are

recorded.

After

calling

read_real_time,

if

running

on

a

processor

with

a

real

time

clock,

t->tb_high

and

t->tb_low

contain

the

current

clock

values

(seconds

and

nanoseconds),

and

t->flag

contains

the

RTC_POWER.

If

running

on

a

processor

with

a

time

base

register,

t->tb_high

and

t-tb_low

contain

the

current

values

of

the

time

base

register,

and

t->flag

contains

RTC_POWER_PC.

The

time_base_to_time

subroutine

converts

time

base

information

to

real

time,

if

necessary.

It

is

recommended

that

applications

unconditionally

call

the

time_base_to_time

subroutine

rather

than

performing

a

check

to

see

if

it

is

necessary.

If

t->flag

is

RTC_POWER,

the

subroutine

simply

returns

(the

data

is

already

in

real

time

format).

If

t->flag

is

RTC_POWER_PC,

the

time

base

information

in

t->tb_high

and

t->tb_low

is

converted

to

seconds

and

nanoseconds;

t->tb_high

is

replaced

by

the

seconds;

t->tb_low

is

replaced

by

the

nanoseconds;

and

t->flag

is

changed

to

RTC_POWER.

Parameters

t

Points

to

a

timebasestruct_t.

Return

Values

The

read_real_time

subroutine

returns

RTC_POWER

if

the

contents

of

the

real

time

clock

has

been

recorded

in

the

timebasestruct,

or

returns

RTC_POWER_PC

if

the

content

of

the

time

base

registers

has

been

recorded

in

the

timebasestruct.

The

time_base_to_time

subroutine

returns

0

if

the

conversion

to

real

time

is

successful

(or

not

necessary),

otherwise

-1

is

returned.

24

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Examples

This

example

shows

the

time

it

takes

for

print_f

to

print

the

comment

between

the

begin

and

end

time

codes:

#include

<stdio.h>

#include

<sys/time.h>

int

main(void)

{

timebasestruct_t

start,

finish;

int

val

=

3;

int

secs,

n_secs;

/*

get

the

time

before

the

operation

begins

*/

read_real_time(&start,

TIMEBASE_SZ);

/*

begin

code

to

be

timed

*/

(void)

printf("This

is

a

sample

line

%d

\n",

val);

/*

end

code

to

be

timed

*/

/*

get

the

time

after

the

operation

is

complete

*/

read_real_time(&finish,

TIMEBASE_SZ);

/*

*

Call

the

conversion

routines

unconditionally,

to

ensure

*

that

both

values

are

in

seconds

and

nanoseconds

regardless

*

of

the

hardware

platform.

*/

time_base_to_time(&start,

TIMEBASE_SZ);

time_base_to_time(&finish,

TIMEBASE_SZ);

/*

subtract

the

starting

time

from

the

ending

time

*/

secs

=

finish.tb_high

-

start.tb_high;

n_secs

=

finish.tb_low

-

start.tb_low;

/*

*

If

there

was

a

carry

from

low-order

to

high-order

during

*

the

measurement,

we

may

have

to

undo

it.

*/

if

(n_secs

<

0)

{

secs--;

n_secs

+=

1000000000;

}

(void)

printf("Sample

time

was

%d

seconds

%d

nanoseconds\n",

secs,

n_secs);

exit(0);

}

Related

Information

The

gettimer,

settimer,

restimer,

stime,

or

time

subroutines,

getrusage,

times,

or

vtimes

subroutines.

High-Resolution

Time

Measurements

Using

POWER-based

Time

Base

or

POWER

family

Real-Time

Clock

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

realpath

Subroutine

Purpose

Resolves

path

names.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

25

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

char

*realpath

(const

char

*file_name,

char

*resolved_name)

Description

The

realpath

subroutine

performs

filename

expansion

and

path

name

resolution

in

file_name

and

stores

it

in

resolved_name.

The

realpath

subroutine

can

handle

both

relative

and

absolute

path

names.

For

both

absolute

and

relative

path

names,

the

realpath

subroutine

returns

the

resolved

absolute

path

name.

The

character

pointed

to

by

resolved_name

must

be

big

enough

to

contain

the

fully

resolved

path

name.

The

value

of

PATH_MAX

(defined

in

limits.h

header

file

may

be

used

as

an

appropriate

array

size.

Return

Values

On

successful

completion,

the

realpath

subroutine

returns

a

pointer

to

the

resolved

name.

Otherwise,

it

returns

a

null

pointer,

and

sets

errno

to

indicate

the

error.

If

the

realpath

subroutine

encounters

an

error,

the

contents

of

resolved_name

are

undefined.

Error

Codes

Under

the

following

conditions,

the

realpath

subroutine

fails

and

sets

errno

to:

EACCES

Read

or

search

permission

was

denied

for

a

component

of

the

path

name.

EINVAL

File_name

or

resolved_name

is

a

null

pointer.

ELOOP

Too

many

symbolic

links

are

encountered

in

translating

file_name.

ENAMETOOLONG

The

length

of

file_name

or

resolved_name

exceeds

PATH_MAX

or

a

path

name

component

is

longer

than

NAME_MAX.

ENOENT

The

file_name

parameter

does

not

exist

or

points

to

an

empty

string.

ENOTDIR

A

component

of

the

file_name

prefix

is

not

a

directory.

The

realpath

subroutine

may

fail

if:

ENOMEM

Insufficient

storage

space

is

available.

Related

Information

The

getcwd

or

sysconf

(“sysconf

Subroutine”

on

page

312)

subroutine.

reboot

Subroutine

Purpose

Restarts

the

system.

26

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/reboot.h>

void

reboot

(

HowTo,

Argument)

int

HowTo;

void

*Argument;

Description

The

reboot

subroutine

restarts

or

re-initial

program

loads

(IPL)

the

system.

The

startup

is

automatic

and

brings

up

/unix

in

the

normal,

nonmaintenance

mode.

Note:

The

routine

may

coredump

instead

of

returning

EFAULT

when

an

invalid

pointer

is

passed

in

case

of

64-bit

application

calling

32-bit

kernel

interface.

The

calling

process

must

have

root

user

authority

in

order

to

run

this

subroutine

successfully.

Attention:

Users

of

the

reboot

subroutine

are

not

portable.

The

reboot

subroutine

is

intended

for

use

only

by

the

halt,

reboot,

and

shutdown

commands.

Parameters

HowTo

Specifies

one

of

the

following

values:

RB_SOFTIPL

Soft

IPL.

RB_HALT

Halt

operator;

turn

the

power

off.

RB_POWIPL

Halt

operator;

turn

the

power

off.

Wait

a

specified

length

of

time,

and

then

turn

the

power

on.

Argument

Specifies

the

amount

of

time

(in

seconds)

to

wait

between

turning

the

power

off

and

turning

the

power

on.

This

option

is

not

supported

on

all

models.

Please

consult

your

hardware

technical

reference

for

more

details.

Return

Values

Upon

successful

completion,

the

reboot

subroutine

does

not

return

a

value.

If

the

reboot

subroutine

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

reboot

subroutine

is

unsuccessful

if

any

of

the

following

is

true:

EPERM

The

calling

process

does

not

have

root

user

authority.

EINVAL

The

HowTo

value

is

not

valid.

EFAULT

The

Argument

value

is

not

a

valid

address.

Related

Information

The

halt

command,

reboot

command,

shutdown

command.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

27

re_comp

or

re_exec

Subroutine

Purpose

Regular

expression

handler.

Library

Standard

C

Library

(libc.a)

Syntax

char

*re_comp(

String)

const

char

*String;

int

re_exec(String)

const

char

*String;

Description

Attention:

Do

not

use

the

re_comp

or

re_exec

subroutine

in

a

multithreaded

environment.

The

re_comp

subroutine

compiles

a

string

into

an

internal

form

suitable

for

pattern

matching.

The

re_exec

subroutine

checks

the

argument

string

against

the

last

string

passed

to

the

re_comp

subroutine.

The

re_comp

subroutine

returns

0

if

the

string

pointed

to

by

the

String

parameter

was

compiled

successfully;

otherwise

a

string

containing

an

error

message

is

returned.

If

the

re_comp

subroutine

is

passed

0

or

a

null

string,

it

returns

without

changing

the

currently

compiled

regular

expression.

The

re_exec

subroutine

returns

1

if

the

string

pointed

to

by

the

String

parameter

matches

the

last

compiled

regular

expression,

0

if

the

string

pointed

to

by

the

String

parameter

failed

to

match

the

last

compiled

regular

expression,

and

-1

if

the

compiled

regular

expression

was

invalid

(indicating

an

internal

error).

The

strings

passed

to

both

re_comp

and

re_exec

subroutines

may

have

trailing

or

embedded

newline

characters;

they

are

terminated

by

nulls.

The

regular

expressions

recognized

are

described

in

the

manual

entry

for

the

ed

command,

given

the

above

difference.

Parameters

String

Points

to

a

string

that

is

to

be

matched

or

compiled.

Return

Values

If

an

error

occurs,

the

re_exec

subroutine

returns

a

-1,

while

the

re_comp

subroutine

returns

one

of

the

following

strings:

v

No

previous

regular

expression

v

Regular

expression

too

long

v

unmatched

\(

v

missing

]

v

too

many

\(\)

pairs

v

unmatched

\)

28

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

compile,

step,

or

advance

subroutine,

regcmp

or

regex

(“regcmp

or

regex

Subroutine”)

subroutine.

The

ed

command,

sed

command,

grep

command.

List

of

String

Manipulation

Services

and

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

regcmp

or

regex

Subroutine

Purpose

Compiles

and

matches

regular-expression

patterns.

Libraries

Standard

C

Library

(

libc.a

)

Programmers

Workbench

Library

(libPW.a)

Syntax

#include

<libgen.h>

char

*regcmp

(

String

[,

String,

.

.

.

],

(char

*)

0)

const

char

*String,

.

.

.

;

const

char

*regex

(

Pattern,

Subject

[,

ret,

.

.

.

])

char

*Pattern,

*Subject,

*ret,

.

.

.

;

extern

char

*__loc1;

Description

The

regcmp

subroutine

compiles

a

regular

expression

(or

Pattern)

and

returns

a

pointer

to

the

compiled

form.

The

regcmp

subroutine

allows

multiple

String

parameters.

If

more

than

one

String

parameter

is

given,

then

the

regcmp

subroutine

treats

them

as

if

they

were

concatenated

together.

It

returns

a

null

pointer

if

it

encounters

an

incorrect

parameter.

You

can

use

the

regcmp

command

to

compile

regular

expressions

into

your

C

program,

frequently

eliminating

the

need

to

call

the

regcmp

subroutine

at

run

time.

The

regex

subroutine

compares

a

compiled

Pattern

to

the

Subject

string.

Additional

parameters

are

used

to

receive

values.

Upon

successful

completion,

the

regex

subroutine

returns

a

pointer

to

the

next

unmatched

character.

If

the

regex

subroutine

fails,

a

null

pointer

is

returned.

A

global

character

pointer,

__loc1,

points

to

where

the

match

began.

The

regcmp

and

regex

subroutines

are

borrowed

from

the

ed

command;

however,

the

syntax

and

semantics

have

been

changed

slightly.

You

can

use

the

following

symbols

with

the

regcmp

and

regex

subroutines:

[

]

*

.

^

These

symbols

have

the

same

meaning

as

they

do

in

the

ed

command.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

29

-

The

minus

sign

(or

hyphen)

within

brackets

used

with

the

regex

subroutine

means

″through,″

according

to

the

current

collating

sequence.

For

example,

[a-z]

can

be

equivalent

to

[abcd

.

.

.

xyz]

or

[aBbCc

.

.

.

xYyZz].

You

can

use

the

-

by

itself

if

the

-

is

the

last

or

first

character.

For

example,

the

character

class

expression

[

]

-]

matches

the

]

(right

bracket)

and

-

(minus)

characters.

The

regcmp

subroutine

does

not

use

the

current

collating

sequence,

and

the

minus

sign

in

brackets

controls

only

a

direct

ASCII

sequence.

For

example,

[a-z]

always

means

[abc

.

.

.

xyz]

and

[A-Z]

always

means

[ABC

.

.

.

XYZ]

.

If

you

need

to

control

the

specific

characters

in

a

range

using

the

regcmp

subroutine,

you

must

list

them

explicitly

rather

than

using

the

minus

sign

in

the

character

class

expression.

$

Matches

the

end

of

the

string.

Use

the

\n

character

to

match

a

new-line

character.

+

A

regular

expression

followed

by

+

(plus

sign)

means

one

or

more

times.

For

example,

[0-9]

+

is

equivalent

to

[0-9]

[0-9]

*.

{

m}

{m,}

{m,

u}

Integer

values

enclosed

in

{}

(braces)

indicate

the

number

of

times

to

apply

the

preceding

regular

expression.

The

m

character

is

the

minimum

number

and

the

u

character

is

the

maximum

number.

The

u

character

must

be

less

than

256.

If

you

specify

only

m,

it

indicates

the

exact

number

of

times

to

apply

the

regular

expression.

{m,}

is

equivalent

to

{m,u}

and

matches

m

or

more

occurrences

of

the

expression.

The

+

(plus

sign)

and

*

(asterisk)

operations

are

equivalent

to

{1,}

and

{0,},

respectively.

(

.

.

.

)$n

This

stores

the

value

matched

by

the

enclosed

regular

expression

in

the

(n+1)th

ret

parameter.

Ten

enclosed

regular

expressions

are

allowed.

The

regex

subroutine

makes

the

assignments

unconditionally.

(

.

.

.

)

Parentheses

group

subexpressions.

An

operator,

such

as

*,

+,

or

[

]

works

on

a

single

character

or

on

a

regular

expression

enclosed

in

parentheses.

For

example,

(a*(cb+)*)$0.

All

of

the

preceding

defined

symbols

are

special.

You

must

precede

them

with

a

\

(backslash)

if

you

want

to

match

the

special

symbol

itself.

For

example,

\$

matches

a

dollar

sign.

Note:

The

regcmp

subroutine

uses

the

malloc

subroutine

to

make

the

space

for

the

vector.

Always

free

the

vectors

that

are

not

required.

If

you

do

not

free

the

unneeded

vectors,

you

can

run

out

of

memory

if

the

regcmp

subroutine

is

called

repeatedly.

Use

the

following

as

a

replacement

for

the

malloc

subroutine

to

reuse

the

same

vector,

thus

saving

time

and

space:

/*

.

.

.

Your

Program

.

.

.

*/

malloc(n)

int

n;

{

static

int

rebuf[256]

;

return

((n

<=

sizeof(rebuf))

?

rebuf

:

NULL);

}

The

regcmp

subroutine

produces

code

values

that

the

regex

subroutine

can

interpret

as

the

regular

expression.

For

instance,

[a-z]

indicates

a

range

expression

which

the

regcmp

subroutine

compiles

into

a

string

containing

the

two

end

points

(a

and

z).

The

regex

subroutine

interprets

the

range

statement

according

to

the

current

collating

sequence.

The

expression

[a-z]

can

be

equivalent

either

to

[abcd

.

.

.

xyz]

,

or

to

[aBbCcDd

.

.

.

xXyYzZ],

as

long

as

the

character

preceding

the

minus

sign

has

a

lower

collating

value

than

the

character

following

the

minus

sign.

The

behavior

of

a

range

expression

is

dependent

on

the

collation

sequence.

If

you

want

to

match

a

specific

set

of

characters,

you

should

list

each

one.

For

example,

to

select

letters

a,

b,

or

c,

use

[abc]

rather

than

[a-c]

.

30

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Notes:

1.

No

assumptions

are

made

at

compile

time

about

the

actual

characters

contained

in

the

range.

2.

Do

not

use

multibyte

characters.

3.

You

can

use

the

]

(right

bracket)

itself

within

a

pair

of

brackets

if

it

immediately

follows

the

leading

[

(left

bracket)

or

[^

(a

left

bracket

followed

immediately

by

a

circumflex).

4.

You

can

also

use

the

minus

sign

(or

hyphen)

if

it

is

the

first

or

last

character

in

the

expression.

For

example,

the

expression

[

]

-0]

matches

either

the

right

bracket

(

]

),

or

the

characters

-

through

0.

Matching

a

Character

Class

in

National

Language

Support

A

common

use

of

the

range

expression

is

matching

a

character

class.

For

example,

[0-9]

represents

all

digits,

and

[a-z,

A-Z]

represents

all

letters.

This

form

may

produce

unexpected

results

when

ranges

are

interpreted

according

to

the

current

collating

sequence.

Instead

of

the

range

expression

shown

above,

use

a

character

class

expression

within

brackets

to

match

characters.

The

system

interprets

this

type

of

expression

according

to

the

current

character

class

definition.

However,

you

cannot

use

character

class

expressions

in

range

expressions.

The

following

exemplifies

the

syntax

of

a

character

class

expression:

[:charclass:]

that

is,

a

left

bracket

followed

by

a

colon,

followed

by

the

name

of

the

character

class,

followed

by

another

colon

and

a

right

bracket.

National

Language

Support

supports

the

following

character

classes:

[:upper:]

ASCII

uppercase

letters.

[:lower:]

ASCII

lowercase

letters.

[:alpha:]

ASCII

uppercase

and

lowercase

letters.

[:digit:]

ASCII

digits.

[:alnum:]

ASCII

uppercase

and

lowercase

letters,

and

digits.

[:xdigit:]

ASCII

hexadecimal

digits.

[:punct:]

ASCII

punctuation

character

(neither

a

control

character

nor

an

alphanumeric

character).

[:space:]

ASCII

space,

tab,

carriage

return,

new-line,

vertical

tab,

or

form

feed

character.

[:print:]

ASCII

printing

characters.

Parameters

Subject

Specifies

a

comparison

string.

String

Specifies

the

Pattern

to

be

compiled.

Pattern

Specifies

the

expression

to

be

compared.

ret

Points

to

an

address

at

which

to

store

comparison

data.

The

regex

subroutine

allows

multiple

ret

String

parameters.

Related

Information

The

ctype

subroutine,

compile,

step,

or

advance

subroutine,

malloc,

free,

realloc,

calloc,

mallopt,

mallinfo,

or

alloca

subroutine,

regcomp

(“regcomp

Subroutine”

on

page

32)

subroutine,

regex

(“regexec

Subroutine”

on

page

35)

subroutine.

The

ed

command,

regcmp

command.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

31

regcomp

Subroutine

Purpose

Compiles

a

specified

basic

or

extended

regular

expression

into

an

executable

string.

Library

Standard

C

Library

(libc.

a)

Syntax

#include

<regex.h>

int

regcomp

(

Preg,

Pattern,

CFlags)

const

char

*Preg;

const

char

*Pattern;

int

CFlags;

Description

The

regcomp

subroutine

compiles

the

basic

or

extended

regular

expression

specified

by

the

Pattern

parameter

and

places

the

output

in

the

structure

pointed

to

by

the

Preg

parameter.

Parameters

Preg

Specifies

the

structure

to

receive

the

compiled

output

of

the

regcomp

subroutine.

Pattern

Contains

the

basic

or

extended

regular

expression

to

be

compiled

by

the

regcomp

subroutine.

The

default

regular

expression

type

for

the

Pattern

parameter

is

a

basic

regular

expression.

An

application

can

specify

extended

regular

expressions

with

the

REG_EXTENDED

flag.

CFlags

Contains

the

bitwise

inclusive

OR

of

0

or

more

flags

for

the

regcomp

subroutine.

These

flags

are

defined

in

the

regex.h

file:

REG_EXTENDED

Uses

extended

regular

expressions.

REG_ICASE

Ignores

case

in

match.

REG_NOSUB

Reports

only

success

or

failure

in

the

regexec

subroutine.

If

this

flag

is

not

set,

the

regcomp

subroutine

sets

the

re_nsub

structure

to

the

number

of

parenthetic

expressions

found

in

the

Pattern

parameter.

REG_NEWLINE

Prohibits

.

(period)

and

nonmatching

bracket

expression

from

matching

a

new-line

character.

The

^

(circumflex)

and

$

(dollar

sign)

will

match

the

zero-length

string

immediately

following

or

preceding

a

new-line

character.

Return

Values

If

successful,

the

regcomp

subroutine

returns

a

value

of

0.

Otherwise,

it

returns

another

value

indicating

the

type

of

failure,

and

the

content

of

the

Preg

parameter

is

undefined.

Error

Codes

The

following

macro

names

for

error

codes

may

be

written

to

the

errno

global

variable

under

error

conditions:

REG_BADPAT

Indicates

a

basic

or

extended

regular

expression

that

is

not

valid.

32

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

REG_ECOLLATE

Indicates

a

collating

element

referenced

that

is

not

valid.

REG_ECTYPE

Indicates

a

character

class-type

reference

that

is

not

valid.

REG_EESCAPE

Indicates

a

trailing

\

in

pattern.

REG_ESUBREG

Indicates

a

number

in

\digit

is

not

valid

or

in

error.

REG_EBRACK

Indicates

a

[]

imbalance.

REG_EPAREN

Indicates

a

\(\)

or

()

imbalance.

REG_EBRACE

Indicates

a

\{\}

imbalance.

REG_BADBR

Indicates

the

content

of

\{\}

is

unusable:

not

a

number,

number

too

large,

more

than

two

numbers,

or

first

number

larger

than

second.

REG_ERANGE

Indicates

an

unusable

end

point

in

range

expression.

REG_ESPACE

Indicates

out

of

memory.

REG_BADRPT

Indicates

a

?

(question

mark),

*

(asterisk),

or

+

(plus

sign)

not

preceded

by

valid

basic

or

extended

regular

expression.

If

the

regcomp

subroutine

detects

an

illegal

basic

or

extended

regular

expression,

it

can

return

either

the

REG_BADPAT

error

code

or

another

that

more

precisely

describes

the

error.

Examples

The

following

example

illustrates

how

to

match

a

string

(specified

in

the

string

parameter)

against

an

extended

regular

expression

(specified

in

the

Pattern

parameter):

#include

<sys/types.h>

#include

<regex.h>

int

match(char

*string,

char

*pattern)

{

int

status;

regex_t

re;

if

(regcomp(&re,

pattern,

REG_EXTENDED|REG_NOSUB)

!=

0)

{

return(0)

;

/*

report

error

*/

}

status

=

regexec(&re,

string,

(size_t)

0,

NULL,

0);

regfree(&re);

if

(status

!=

0)

{

return(0)

;

/*

report

error

*/

}

return(1);

}

In

the

preceding

example,

errors

are

treated

as

no

match.

When

there

is

no

match

or

error,

the

calling

process

can

get

details

by

calling

the

regerror

subroutine.

Related

Information

The

regerror

(“regerror

Subroutine”)

subroutine,

regexec

(“regexec

Subroutine”

on

page

35)

subroutine,

regfree

(“regfree

Subroutine”

on

page

38)

subroutine.

Subroutines

Overview

and

Understanding

Internationalized

Regular

Expression

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

regerror

Subroutine

Purpose

Returns

a

string

that

describes

the

ErrCode

parameter.

Library

Standard

C

Library

(libc.

a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

33

Syntax

#include

<regex.h>

size_t

regerror

(ErrCode,

Preg,

ErrBuf,

ErrBuf_Size)

int

ErrCode;

const

regex_t

*

Preg;

char

*

ErrBuf;

size_t

ErrBuf_Size;

Description

The

regerror

subroutine

provides

a

mapping

from

error

codes

returned

by

the

regcomp

and

regexec

subroutines

to

printable

strings.

It

generates

a

string

corresponding

to

the

value

of

the

ErrCode

parameter,

which

is

the

last

nonzero

value

returned

by

the

regcomp

or

regexec

subroutine

with

the

given

value

of

the

Preg

parameter.

If

the

ErrCode

parameter

is

not

such

a

value,

the

content

of

the

generated

string

is

unspecified.

The

string

generated

is

obtained

from

the

regex.cat

message

catalog.

If

the

ErrBuf_Size

parameter

is

not

0,

the

regerror

subroutine

places

the

generated

string

into

the

buffer

specifier

by

the

ErrBuf

parameter,

whose

size

in

bytes

is

specified

by

the

ErrBuf_Size

parameter.

If

the

string

(including

the

terminating

null

character)

cannot

fit

in

the

buffer,

the

regerror

subroutine

truncates

the

string

and

null

terminates

the

result.

Parameters

ErrCode

Specifies

the

error

for

which

a

description

string

is

to

be

returned.

Preg

Specifies

the

structure

that

holds

the

previously

compiled

output

of

the

regcomp

subroutine.

ErrBuf

Specifies

the

buffer

to

receive

the

string

generated

by

the

regerror

subroutine.

ErrBuf_Size

Specifies

the

size

of

the

ErrBuf

parameter.

Return

Values

The

regerror

subroutine

returns

the

size

of

the

buffer

needed

to

hold

the

entire

generated

string,

including

the

null

termination.

If

the

return

value

is

greater

than

the

value

of

the

ErrBuf_Size

variable,

the

string

returned

in

the

ErrBuf

buffer

is

truncated.

Error

Codes

If

the

ErrBuf_Size

value

is

0,

the

regerror

subroutine

ignores

the

ErrBuf

parameter,

but

returns

the

one

of

the

following

error

codes.

These

error

codes

defined

in

the

regex.h

file.

REG_NOMATCH

Indicates

the

basic

or

extended

regular

expression

was

unable

to

find

a

match.

REG_BADPAT

Indicates

a

basic

or

extended

regular

expression

that

is

not

valid.

REG_ECOLLATE

Indicates

a

collating

element

referenced

that

is

not

valid.

REG_ECTYPE

Indicates

a

character

class-type

reference

that

is

not

valid.

REG_EESCAPE

Indicates

a

trailing

\

in

pattern.

REG_ESUBREG

Indicates

a

number

in

\digit

is

not

valid

or

in

error.

REG_EBRACK

Indicates

a

[]

imbalance.

REG_EPAREN

Indicates

a

\(\)

or

()

imbalance.

REG_EBRACE

Indicates

a

\{\}

imbalance.

REG_BADBR

Indicates

the

content

of

\{\}

is

unusable:

not

a

number,

number

too

large,

more

than

two

numbers,

or

first

number

larger

than

second.

REG_ERANGE

Indicates

an

unusable

end

point

in

range

expression.

REG_ESPACE

Indicates

out

of

memory.

REG_BADRPT

Indicates

a

?

(question

mark),

*

(asterisk),

or

+

(plus

sign)

not

preceded

by

valid

basic

or

extended

regular

expression.

34

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

REG_ENEWLINE

Indicates

a

new-line

character

was

found

before

the

end

of

the

regular

or

extended

regular

expression,

and

REG_NEWLINE

was

not

set.

If

the

Preg

parameter

passed

to

the

regexec

subroutine

is

not

a

compiled

basic

or

extended

regular

expression

returned

by

the

regcomp

subroutine,

the

result

is

undefined.

Examples

An

application

can

use

the

regerror

subroutine

(with

the

parameters

(Code,

Preg,

null,

(size_t)

0)

passed

to

it)

to

determine

the

size

of

buffer

needed

for

the

generated

string,

call

the

malloc

subroutine

to

allocate

a

buffer

to

hold

the

string,

and

then

call

the

regerror

subroutine

again

to

get

the

string.

Alternately,

this

subroutine

can

allocate

a

fixed,

static

buffer

that

is

large

enough

to

hold

most

strings

(perhaps

128

bytes),

and

then

call

the

malloc

subroutine

to

allocate

a

larger

buffer

if

necessary.

Related

Information

The

regcomp

(“regcomp

Subroutine”

on

page

32)

subroutine,

regexec

(“regexec

Subroutine”)

subroutine,

regfree

(“regfree

Subroutine”

on

page

38)

subroutine.

Subroutines

Overview

and

Understanding

Internationalized

Regular

Expression

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

regexec

Subroutine

Purpose

Compares

the

null-terminated

string

specified

by

the

value

of

the

String

parameter

against

the

compiled

basic

or

extended

regular

expression

Preg,

which

must

have

previously

been

compiled

by

a

call

to

the

regcomp

subroutine.

Library

Standard

C

Library

(libc.

a)

Syntax

#include

<regex.h>

int

regexec

(Preg,

String,

NMatch,

PMatch,

EFlags)

const

regex_t

*

Preg;

const

char

*

String;

size_t

NMatch;

regmatch_t

*

PMatch;

int

EFlags;

Description

The

regexec

subroutine

compares

the

null-terminated

string

in

the

String

parameter

with

the

compiled

basic

or

extended

regular

expression

in

the

Preg

parameter

initialized

by

a

previous

call

to

the

regcomp

subroutine.

If

a

match

is

found,

the

regexec

subroutine

returns

a

value

of

0.

The

regexec

subroutine

returns

a

nonzero

value

if

it

finds

no

match

or

it

finds

an

error.

If

the

NMatch

parameter

has

a

value

of

0,

or

if

the

REG_NOSUB

flag

was

set

on

the

call

to

the

regcomp

subroutine,

the

regexec

subroutine

ignores

the

PMatch

parameter.

Otherwise,

the

PMatch

parameter

points

to

an

array

of

at

least

the

number

of

elements

specified

by

the

NMatch

parameter.

The

regexec

subroutine

fills

in

the

elements

of

the

array

pointed

to

by

the

PMatch

parameter

with

offsets

of

the

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

35

substrings

of

the

String

parameter.

The

offsets

correspond

to

the

parenthetic

subexpressions

of

the

original

pattern

parameter

that

was

specified

to

the

regcomp

subroutine.

The

pmatch.rm_so

structure

is

the

byte

offset

of

the

beginning

of

the

substring,

and

the

pmatch.rm_eo

structure

is

one

greater

than

the

byte

offset

of

the

end

of

the

substring.

Subexpression

i

begins

at

the

i

th

matched

open

parenthesis,

counting

from

1.

The

0

element

of

the

array

corresponds

to

the

entire

pattern.

Unused

elements

of

the

PMatch

parameter,

up

to

the

value

PMatch[NMatch-1],

are

filled

with

-1.

If

more

than

the

number

of

subexpressions

specified

by

the

NMatch

parameter

(the

pattern

parameter

itself

counts

as

a

subexpression),

only

the

first

NMatch-1

subexpressions

are

recorded.

When

a

basic

or

extended

regular

expression

is

being

matched,

any

given

parenthetic

subexpression

of

the

pattern

parameter

might

match

several

different

substrings

of

the

String

parameter.

Otherwise,

it

might

not

match

any

substring

even

though

the

pattern

as

a

whole

did

match.

The

following

rules

are

used

to

determine

which

substrings

to

report

in

the

PMatch

parameter

when

regular

expressions

are

matched:

v

If

a

subexpression

in

a

regular

expression

participated

in

the

match

several

times,

the

offset

of

the

last

matching

substring

is

reported

in

the

PMatch

parameter.

v

If

a

subexpression

did

not

participate

in

a

match,

the

byte

offset

in

the

PMatch

parameter

is

a

value

of

-1.

A

subexpression

does

not

participate

in

a

match

if

any

of

the

following

are

true:

–

An

*

(asterisk)

or

\{\}

(backslash,

left

brace,

backslash,

right

brace)

appears

immediately

after

the

subexpression

in

a

basic

regular

expression.

–

An

*

(asterisk),

?

(question

mark),

or

{

}

(left

and

right

braces)

appears

immediately

after

the

subexpression

in

an

extended

regular

expression

and

the

subexpression

did

not

match

(matched

0

times).

–

A

|

(pipe)

is

used

in

an

extended

regular

expression

to

select

either

the

subexpression

that

didn’t

match

or

another

subexpression,

and

the

other

subexpression

matched.

v

If

a

subexpression

is

contained

in

a

subexpression,

the

data

in

the

PMatch

parameter

refers

to

the

last

such

subexpression.

v

If

a

subexpression

is

contained

in

a

subexpression

and

the

byte

offsets

in

the

PMatch

parameter

have

a

value

of

-1,

the

pointers

in

the

PMatch

parameter

also

have

a

value

of

-1.

v

If

a

subexpression

matched

a

zero-length

string,

the

offsets

in

the

PMatch

parameter

refer

to

the

byte

immediately

following

the

matching

string.

If

the

REG_NOSUB

flag

was

set

in

the

cflags

parameter

in

the

call

to

the

regcomp

subroutine,

and

the

NMatch

parameter

is

not

equal

to

0

in

the

call

to

the

regexec

subroutine,

the

content

of

the

PMatch

array

is

unspecified.

If

the

REG_NEWLINE

flag

was

not

set

in

the

cflags

parameter

when

the

regcomp

subroutine

was

called,

then

a

new-line

character

in

the

pattern

or

String

parameter

is

treated

as

an

ordinary

character.

If

the

REG_NEWLINE

flag

was

set

when

the

regcomp

subroutine

was

called,

the

new-line

character

is

treated

as

an

ordinary

character

except

as

follows:

v

A

new-line

character

in

the

String

parameter

is

not

matched

by

a

period

outside

of

a

bracket

expression

or

by

any

form

of

a

nonmatching

list.

A

nonmatching

list

expression

begins

with

a

^

(circumflex)

and

specifies

a

list

that

matches

any

character

or

collating

element

and

the

expression

in

the

list

after

the

leading

caret.

For

example,

the

regular

expression

[^abc]

matches

any

character

except

a,

b,

or

c.

The

circumflex

has

this

special

meaning

only

when

it

is

the

first

character

in

the

list,

immediately

following

the

left

bracket.

v

A

^

(circumflex)

in

the

pattern

parameter,

when

used

to

specify

expression

anchoring,

matches

the

zero-length

string

immediately

after

a

new-line

character

in

the

String

parameter,

regardless

of

the

setting

of

the

REG_NOTBOL

flag.

36

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

A

$

(dollar

sign)

in

the

pattern

parameter,

when

used

to

specify

expression

anchoring,

matches

the

zero-length

string

immediately

before

a

new-line

character

in

the

String

parameter,

regardless

of

the

setting

of

the

REG_NOTEOL

flag.

Parameters

Preg

Contains

the

compiled

basic

or

extended

regular

expression

to

compare

against

the

String

parameter.

String

Contains

the

data

to

be

matched.

NMatch

Contains

the

number

of

subexpressions

to

match.

PMatch

Contains

the

array

of

offsets

into

the

String

parameter

that

match

the

corresponding

subexpression

in

the

Preg

parameter.

EFlags

Contains

the

bitwise

inclusive

OR

of

0

or

more

of

the

flags

controlling

the

behavior

of

the

regexec

subroutine

capable

of

customizing.

The

EFlags

parameter

modifies

the

interpretation

of

the

contents

of

the

String

parameter.

It

is

the

bitwise

inclusive

OR

of

0

or

more

of

the

following

flags,

which

are

defined

in

the

regex.h

file:

REG_NOTBOL

The

first

character

of

the

string

pointed

to

by

the

String

parameter

is

not

the

beginning

of

the

line.

Therefore,

the

^

(circumflex),

when

used

as

a

special

character,

does

not

match

the

beginning

of

the

String

parameter.

REG_NOTEOL

The

last

character

of

the

string

pointed

to

by

the

String

parameter

is

not

the

end

of

the

line.

Therefore,

the

$

(dollar

sign),

when

used

as

a

special

character,

does

not

match

the

end

of

the

String

parameter.

Return

Values

On

successful

completion,

the

regexec

subroutine

returns

a

value

of

0

to

indicate

that

the

contents

of

the

String

parameter

matched

the

contents

of

the

pattern

parameter,

or

to

indicate

that

no

match

occurred.

The

REG_NOMATCH

error

is

defined

in

the

regex.h

file.

Error

Codes

If

the

regexec

subroutine

is

unsuccessful,

it

returns

a

nonzero

value

indicating

the

type

of

problem.

The

following

macros

for

possible

error

codes

that

can

be

returned

are

defined

in

the

regex.h

file:

REG_NOMATCH

Indicates

the

basic

or

extended

regular

expression

was

unable

to

find

a

match.

REG_BADPAT

Indicates

a

basic

or

extended

regular

expression

that

is

not

valid.

REG_ECOLLATE

Indicates

a

collating

element

referenced

that

is

not

valid.

REG_ECTYPE

Indicates

a

character

class-type

reference

that

is

not

valid.

REG_EESCAPE

Indicates

a

trailing

\

(backslash)

in

the

pattern.

REG_ESUBREG

Indicates

a

number

in

\digit

is

not

valid

or

is

in

error.

REG_EBRACK

Indicates

a

[

]

(left

and

right

brackets)

imbalance.

REG_EPAREN

Indicates

a

\

(

\

)

(backslash,

left

parenthesis,

backslash,

right

parenthesis)

or

(

)

(left

and

right

parentheses)

imbalance.

REG_EBRACE

Indicates

a

\

{

\

}

(backslash,

left

brace,

backslash,

right

brace)

imbalance.

REG_BADBR

Indicates

the

content

of

\

{

\

}

(backslash,

left

brace,

backslash,

right

brace)

is

unusable

(not

a

number,

number

too

large,

more

than

two

numbers,

or

first

number

larger

than

second).

REG_ERANGE

Indicates

an

unusable

end

point

in

range

expression.

REG_ESPACE

Indicates

out

of

memory.

REG_BADRPT

Indicates

a

?

(question

mark),

*

(asterisk),

or

+

(plus

sign)

not

preceded

by

valid

basic

or

extended

regular

expression.

If

the

value

of

the

Preg

parameter

to

the

regexec

subroutine

is

not

a

compiled

basic

or

extended

regular

expression

returned

by

the

regcomp

subroutine,

the

result

is

undefined.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

37

Examples

The

following

example

demonstrates

how

the

REG_NOTBOL

flag

can

be

used

with

the

regexec

subroutine

to

find

all

substrings

in

a

line

that

match

a

pattern

supplied

by

a

user.

(For

simplicity,

very

little

error-checking

is

done

in

this

example.)

(void)

regcomp

(&re,

pattern,

0)

;

/*

this

call

to

regexec

finds

the

first

match

on

the

line

*/

error

=

regexec

(&re,

&buffer[0],

1,

&pm,

0)

;

while

(error

=

=

0)

{

/*

while

matches

found

*/

<subString

found

between

pm.r._sp

and

pm.rm_ep>

/*

This

call

to

regexec

finds

the

next

match

*/

error

=

regexec

(&re,

pm.rm_ep,

1,

&pm,

REG_NOTBOL)

;

Related

Information

The

regcomp

(“regcomp

Subroutine”

on

page

32)

subroutine,

regerror

(“regerror

Subroutine”

on

page

33)

subroutine,

regfree

(“regfree

Subroutine”)

subroutine.

Subroutines

Overview

and

Understanding

Internationalized

Regular

Expression

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

regfree

Subroutine

Purpose

Frees

any

memory

allocated

by

the

regcomp

subroutine

associated

with

the

Preg

parameter.

Library

Standard

C

Library

(libc.

a)

Syntax

#include

<regex.h>

void

regfree

(

Preg)

regex_t

*Preg;

Description

The

regfree

subroutine

frees

any

memory

allocated

by

the

regcomp

subroutine

associated

with

the

Preg

parameter.

An

expression

defined

by

the

Preg

parameter

is

no

longer

treated

as

a

compiled

basic

or

extended

regular

expression

after

it

is

given

to

the

regfree

subroutine.

Parameters

Preg

Structure

containing

the

compiled

output

of

the

regcomp

subroutine.

Memory

associated

with

this

structure

is

freed

by

the

regfree

subroutine.

Related

Information

The

regcomp

(“regcomp

Subroutine”

on

page

32)

subroutine,

regerror

(“regerror

Subroutine”

on

page

33)

subroutine,

regexec

(“regexec

Subroutine”

on

page

35)

subroutine.

Subroutines

Overview

and

Understanding

Internationalized

Regular

Expression

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

38

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

reltimerid

Subroutine

Purpose

Releases

a

previously

allocated

interval

timer.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/time.h>

#include

<sys/events.h>

int

reltimerid

(

TimerID)

timer_t

TimerID;

Description

The

reltimerid

subroutine

is

used

to

release

a

previously

allocated

interval

timer,

which

is

returned

by

the

gettimerid

subroutine.

Any

pending

timer

event

generated

by

this

interval

timer

is

cancelled

when

the

call

returns.

Parameters

TimerID

Specifies

the

ID

of

the

interval

timer

being

released.

Return

Values

The

reltimerid

subroutine

returns

a

0

if

it

is

successful.

If

an

error

occurs,

the

value

-1

is

returned

and

errno

is

set.

Error

Codes

If

the

reltimerid

subroutine

fails,

a

-1

is

returned

and

errno

is

set

with

the

following

error

code:

EINVAL

The

timer

ID

specified

by

the

Timerid

parameter

is

not

a

valid

timer

ID.

Related

Information

The

gettimerid

subroutine.

List

of

Time

Data

Manipulation

Services

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

remainder,

remainderf,

or

remainderl

Subroutine

Purpose

Returns

the

floating-point

remainder.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

39

Syntax

#include

<math.h>

double

remainder

(x,

y)

double

x;

double

y;

float

remainderf

(x,

y)

float

x;

float

y;

long

double

remainderl

(x,

y)

long

double

x;

long

double

y

;

Description

The

remainder,

remainderf,

and

remainderl

subroutines

return

the

floating-point

remainder

r=x

-

ny

when

y

is

nonzero.

The

value

n

is

the

integral

value

nearest

the

exact

value

x/y.

When

|

n

x/y

|=½

,

the

value

n

is

chosen

to

be

even.

Parameters

x

Specifies

the

value

of

the

numerator.

y

Specifies

the

value

of

the

denominator.

Return

Values

Upon

successful

completion,

the

remainder,

remainderf,

and

remainderl

subroutines

return

the

floating-point

remainder

r=x

-

ny

when

y

is

nonzero.

If

x

or

y

is

NaN,

a

NaN

is

returned.

If

x

is

infinite

or

y

is

0

and

the

other

is

non-NaN,

a

domain

error

occurs,

and

a

NaN

is

returned.

Related

Information

abs

Subroutine,

feclearexcept

Subroutine,

fetestexcept

Subroutine,

and

lldiv

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

remove

Subroutine

Purpose

Removes

a

file.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdio.h>

int

remove(

FileName)

const

char

*FileName;

40

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

remove

subroutine

makes

a

file

named

by

FileName

inaccessible

by

that

name.

An

attempt

to

open

that

file

using

that

name

does

not

work

unless

you

recreate

it.

If

the

file

is

open,

the

subroutine

does

not

remove

it.

If

the

file

designated

by

the

FileName

parameter

has

multiple

links,

the

link

count

of

files

linked

to

the

removed

file

is

reduced

by

1.

Parameters

FileName

Specifies

the

name

of

the

file

being

removed.

Return

Values

Upon

successful

completion,

the

remove

subroutine

returns

a

value

of

0;

otherwise

it

returns

a

nonzero

value.

Related

Information

The

link

subroutine,

rename

(“rename

Subroutine”

on

page

42)

subroutine.

The

link

or

unlink

(“unlink

Subroutine”

on

page

424)

command.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

remquo,

remquof,

or

remquol

Subroutine

Purpose

Returns

the

floating-point

remainder.

Syntax

#include

<math.h>

double

remquo

(x,

y,

quo)

double

x;

double

y;

int

*quo;

float

remquof

(x,

y,

quo)

float

x;

float

y;

int

*quo;

long

double

remquol

(x,

y,

quo)

long

double

x;

long

double

y;

int

*quo;

Description

The

remquo,

remquof,

and

remquol

subroutines

compute

the

same

remainder

as

the

remainder,

remainderf,

and

remainderl

functions,

respectively.

In

the

object

pointed

to

by

quo,

they

store

a

value

whose

sign

is

the

sign

of

x/y

and

whose

magnitude

is

congruent

modulo

2n

to

the

magnitude

of

the

integral

quotient

of

x/y,

where

n

is

3.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

41

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Specifies

the

value

of

the

numerator.

y

Specifies

the

value

of

the

denominator.

quo

Points

to

the

object

where

a

value

whose

sign

is

the

sign

of

x/y

is

stored.

Return

Values

The

remquo,

remquof,

and

remquol

subroutines

return

x

REM

y.

If

x

or

y

is

NaN,

a

NaN

is

returned.

If

x

is

±Inf

or

y

is

zero

and

the

other

argument

is

non-NaN,

a

domain

error

occurs,

and

a

NaN

is

returned.

Related

Information

“remainder,

remainderf,

or

remainderl

Subroutine”

on

page

39

feclearexcept

Subroutine,

fetestexcept

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

rename

Subroutine

Purpose

Renames

a

directory

or

a

file.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdio.h>

int

rename

(

FromPath,

ToPath)

const

char

*FromPath,

*ToPath;

Description

The

rename

subroutine

renames

a

directory

or

a

file

within

a

file

system.

To

use

the

rename

subroutine,

the

calling

process

must

have

write

and

search

permission

in

the

parent

directories

of

both

the

FromPath

and

ToPath

parameters.

If

the

path

defined

in

the

FromPath

parameter

is

a

directory,

the

calling

process

must

have

write

and

search

permission

to

the

FromPath

directory

as

well.

If

the

FromPath

and

ToPath

parameters

both

refer

to

the

same

existing

file,

the

rename

subroutine

returns

successfully

and

performs

no

other

action.

42

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

components

of

both

the

FromPath

and

ToPath

parameters

must

be

of

the

same

type

(that

is,

both

directories

or

both

non-directories)

and

must

reside

on

the

same

file

system.

If

the

ToPath

file

already

exists,

it

is

first

removed.

Removing

it

guarantees

that

a

link

named

ToPath

will

exist

throughout

the

operation.

This

link

refers

to

the

file

named

by

either

the

ToPath

or

FromPath

parameter

before

the

operation

began.

If

the

final

component

of

the

FromPath

parameter

is

a

symbolic

link,

the

symbolic

link

(not

the

file

or

directory

to

which

it

points)

is

renamed.

If

the

ToPath

is

a

symbolic

link,

the

link

is

destroyed.

If

the

parent

directory

of

the

FromPath

parameter

has

the

Sticky

bit

attribute

(described

in

the

sys/mode.h

file),

the

calling

process

must

have

an

effective

user

ID

equal

to

the

owner

ID

of

the

FromPath

parameter,

or

to

the

owner

ID

of

the

parent

directory

of

the

FromPath

parameter.

A

user

who

is

not

the

owner

of

the

file

or

directory

must

have

root

user

authority

to

use

the

rename

subroutine.

If

the

FromPath

and

ToPath

parameters

name

directories,

the

following

must

be

true:

v

The

directory

specified

by

the

FromPath

parameter

is

not

an

ancestor

of

ToPath.

For

example,

the

FromPath

path

name

must

not

contain

a

path

prefix

that

names

the

directory

specified

by

the

ToPath

parameter.

v

The

directory

specified

in

the

FromPath

parameter

must

be

well-formed.

A

well-formed

directory

contains

both

.

(dot)

and

..

(dot

dot)

entries.

That

is,

the

.

(dot)

entry

in

the

FromPath

directory

refers

to

the

same

directory

as

that

in

the

FromPath

parameter.

The

..

(dot

dot)

entry

in

the

FromPath

directory

refers

to

the

directory

that

contains

an

entry

for

FromPath.

v

The

directory

specified

by

the

ToPath

parameter,

if

it

exists,

must

be

well-formed

(as

defined

previously).

Parameters

FromPath

Identifies

the

file

or

directory

to

be

renamed.

ToPath

Identifies

the

new

path

name

of

the

file

or

directory

to

be

renamed.

If

ToPath

is

an

existing

file

or

empty

directory,

it

is

replaced

by

FromPath.

If

ToPath

specifies

a

directory

that

is

not

empty,

the

rename

subroutine

exits

with

an

error.

Return

Values

Upon

successful

completion,

the

rename

subroutine

returns

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rename

subroutine

is

unsuccessful

and

the

file

or

directory

name

remains

unchanged

if

one

or

more

of

the

following

are

true:

EACCES

Creating

the

requested

link

requires

writing

in

a

directory

mode

that

denies

the

process

write

permission.

EBUSY

The

directory

named

by

the

FromPath

or

ToPath

parameter

is

currently

in

use

by

the

system,

or

the

file

named

by

FromPath

or

ToPath

is

a

named

STREAM.

EDQUOT

The

directory

that

would

contain

the

path

specified

by

the

ToPath

parameter

cannot

be

extended

because

the

user’s

or

group’s

quota

of

disk

blocks

on

the

file

system

containing

the

directory

is

exhausted.

EEXIST

The

ToPath

parameter

specifies

an

existing

directory

that

is

not

empty.

EINVAL

The

path

specified

in

the

FromPath

or

ToPath

parameter

is

not

a

well-formed

directory

(FromPath

is

an

ancestor

of

ToPath),

or

an

attempt

has

been

made

to

rename

.

(dot)

or

..

(dot

dot).

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

43

EISDIR

The

ToPath

parameter

names

a

directory

and

the

FromPath

parameter

names

a

non-directory.

EMLINK

The

FromPath

parameter

names

a

directory

that

is

larger

than

the

maximum

link

count

of

the

parent

directory

of

the

ToPath

parameter.

ENOENT

A

component

of

either

path

does

not

exist,

the

file

named

by

the

FromPath

parameter

does

not

exist,

or

a

symbolic

link

was

named,

but

the

file

to

which

it

refers

does

not

exist.

ENOSPC

The

directory

that

would

contain

the

path

specified

in

the

ToPath

parameter

cannot

be

extended

because

the

file

system

is

out

of

space.

ENOTDIR

The

FromPath

parameter

names

a

directory

and

the

ToPath

parameter

names

a

non-directory.

ENOTEMPTY

The

ToPath

parameter

specifies

an

existing

directory

that

is

not

empty.

EROFS

The

requested

operation

requires

writing

in

a

directory

on

a

read-only

file

system.

ETXTBSY

The

ToPath

parameter

names

a

shared

text

file

that

is

currently

being

used.

EXDEV

The

link

named

by

the

ToPath

parameter

and

the

file

named

by

the

FromPath

parameter

are

on

different

file

systems.

If

Network

File

System

(NFS)

is

installed

on

the

system,

the

rename

subroutine

can

be

unsuccessful

if

the

following

is

true:

ETIMEDOUT

The

connection

timed

out.

The

rename

subroutine

can

be

unsuccessful

for

other

reasons.

See

Appendix

A,

″Base

Operating

System

Error

Codes

For

Services

That

Require

Path-Name

Resolution″

for

a

list

of

additional

errors.

Related

Information

The

chmod

subroutine,

link

subroutine,

mkdir

subroutine,

rmdir

(“rmdir

Subroutine”

on

page

48)

subroutine,

unlink

(“unlink

Subroutine”

on

page

424)

subroutine.

The

chmod

command,

mkdir

command,

mv

command,

mvdir

command.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

reset_malloc_log

Subroutine

Purpose

Resets

information

collected

by

the

malloc

subsystem.

Syntax

#include

<malloc.h>

void

reset_malloc_log

(addr)

void

*addr;

Description

The

reset_malloc_log

subroutine

resets

the

record

of

currently

active

malloc

allocations

stored

by

the

malloc

subsystem.

These

records

are

stored

in

malloc_log

structures,

which

are

located

in

the

process

heap.

Only

records

corresponding

to

the

heap

of

which

addr

is

a

member

are

reset,

unless

addr

is

NULL,

in

which

case

records

for

all

heaps

are

reset.

The

addr

parameter

must

be

a

pointer

to

space

allocated

previously

by

the

malloc

subsystem

or

NULL,

otherwise

no

information

is

reset

and

the

errno

global

variable

is

set

to

EINVAL.

44

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

addr

Pointer

to

space

allocated

previously

by

the

malloc

subsystem

Related

Information

malloc

Subroutine,

get_malloc_log

Subroutine,

and

get_malloc_log_live

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1

revoke

Subroutine

Purpose

Revokes

access

to

a

file.

Library

Standard

C

Library

(libc.a)

Syntax

int

revoke

(

Path)

char

*Path;

Description

The

revoke

subroutine

revokes

access

to

a

file

by

all

processes.

All

accesses

to

the

file

are

revoked.

Subsequent

attempts

to

access

the

file

using

a

file

descriptor

established

before

the

revoke

subroutine

fail

and

cause

the

process

to

receive

a

return

value

of

-1,

and

the

errno

global

variable

is

set

to

EBADF.

A

process

can

revoke

access

to

a

file

only

if

its

effective

user

ID

is

the

same

as

the

file

owner

ID,

or

if

the

calling

process

is

privileged.

Note:

The

revoke

subroutine

has

no

affect

on

subsequent

attempts

to

open

the

file.

To

assure

exclusive

access

to

the

file,

the

caller

should

change

the

access

mode

of

the

file

before

issuing

the

revoke

subroutine.

Currently

the

revoke

subroutine

works

only

on

terminal

devices.

The

chmod

subroutine

changes

file

access

modes.

Parameters

Path

Path

name

of

the

file

for

which

access

is

to

be

revoked.

Return

Values

Upon

successful

completion,

the

revoke

subroutine

returns

a

value

of

0.

If

the

revoke

subroutine

fails,

a

value

of

-1

returns

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

revoke

subroutine

fails

if

any

of

the

following

are

true:

ENOTDIR

A

component

of

the

path

prefix

is

not

a

directory.

EACCES

Search

permission

is

denied

on

a

component

of

the

path

prefix.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

45

ENOENT

A

component

of

the

path

prefix

does

not

exist,

or

the

process

has

the

disallow

truncation

attribute

(see

the

ulimit

subroutine).

ENOENT

The

path

name

is

null.

ENOENT

A

symbolic

link

was

named,

but

the

file

to

which

it

refers

does

not

exist.

ESTALE

The

process’s

root

or

current

directory

is

located

in

a

virtual

file

system

that

has

been

unmounted.

EFAULT

The

Path

parameter

points

outside

of

the

process’s

address

space.

ELOOP

Too

many

symbolic

links

were

encountered

in

translating

the

path

name.

ENAMETOOLONG

A

component

of

a

path

name

exceeds

255

characters,

or

an

entire

path

name

exceeds

1023

characters.

EIO

An

I/O

error

occurred

during

the

operation.

EPERM

The

effective

user

ID

of

the

calling

process

is

not

the

same

as

the

file’s

owner

ID.

EINVAL

Access

rights

revocation

is

not

implemented

for

this

file.

Related

Information

The

chmod

subroutine,

frevoke

subroutine.

List

of

Security

and

Auditing

Subroutines

and

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

rintf,

rintl,

or

rint

Subroutine

Purpose

Rounds

to

the

nearest

integral

value.

Syntax

#include

<math.h>

float

rintf

(x)

float

x;

long

double

rintl

(x)

long

double

x;

double

rint

(x)

double

x;

Description

The

rintf,

rintl,

and

rint

subroutines

return

the

integral

value

(represented

as

a

double)

nearest

x

in

the

direction

of

the

current

rounding

mode.

The

current

rounding

mode

is

implementation-defined.

The

rintf,

rintl,

and

rint

subroutines

differ

from

the

nearbyint,

nearbyintf,

and

nearbyintl

subroutines

only

in

that

they

may

raise

the

inexact

floating-point

exception

if

the

result

differs

in

value

from

the

argument.

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Specifies

the

value

to

be

rounded.

46

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

Upon

successful

completion,

the

rintf,

rintl,

and

rint

subroutines

return

the

integer

(represented

as

a

double

precision

number)

nearest

x

in

the

direction

of

the

current

rounding

mode.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0

or

±Inf,

x

is

returned.

If

the

correct

value

would

cause

overflow,

a

range

error

occurs

the

rintf,

rintl,

and

rint

subroutines

return

the

value

of

the

macro

±HUGE_VALF

and

±HUGE_VALL

(with

the

same

sign

as

x),

respectively.

Related

Information

abs

Subroutine,

floor,

floorl,

ceil,

ceill,

nearest,

trunc,

rint,

itrunc,

uitrunc,

fmod,

fmodl,

fabs,

or

fabsl

Subroutine,

feclearexcept

Subroutine,

fetestexcept

Subroutine,

class,

_class,

finite,

isnan,

or

unordered

Subroutines,

and

lldiv

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

round,

roundf,

or

roundl

Subroutine

Purpose

Rounds

to

the

nearest

integer

value

in

a

floating-point

format.

Syntax

#include

<math.h>

double

round

(x)

double

x;

float

roundf

(x)

float

x;

long

double

roundl

(x)

long

double

x;

Description

The

round,

roundf,

and

roundl

subroutines

round

the

x

parameter

to

the

nearest

integer

value

in

floating-point

format,

rounding

halfway

cases

away

from

zero,

regardless

of

the

current

rounding

direction.

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Specifies

the

value

to

be

rounded.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

47

Return

Values

Upon

successful

completion,

the

round,

roundf,

and

roundl

subroutines

return

the

rounded

integer

value.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0

or

±Inf,

x

is

returned.

If

the

correct

value

would

cause

overflow,

a

range

error

occurs

and

the

round,

roundf,

and

roundl

subroutines

return

the

value

of

the

macro

±HUGE_VAL,

±HUGE_VALF,

and

±HUGE_VALL

(with

the

same

sign

as

x),

respectively.

Related

Information

feclearexcept

Subroutine

and

fetestexcept

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

rmdir

Subroutine

Purpose

Removes

a

directory.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

int

rmdir

(

Path)

const

char

*Path;

Description

The

rmdir

subroutine

removes

the

directory

specified

by

the

Path

parameter.

If

Network

File

System

(NFS)

is

installed

on

your

system,

this

path

can

cross

into

another

node.

For

the

rmdir

subroutine

to

execute

successfully,

the

calling

process

must

have

write

access

to

the

parent

directory

of

the

Path

parameter.

In

addition,

if

the

parent

directory

of

Path

has

the

Sticky

bit

attribute

(described

in

the

sys/mode.h

file),

the

calling

process

must

have

one

of

the

following:

v

An

effective

user

ID

equal

to

the

directory

to

be

removed

v

An

effective

user

ID

equal

to

the

owner

ID

of

the

parent

directory

of

Path

v

Root

user

authority.

48

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

Path

Specifies

the

directory

path

name.

The

directory

you

specify

must

be:

Empty

The

directory

contains

no

entries

other

than

.

(dot)

and

..

(dot

dot).

Well-formed

If

the

.

(dot)

entry

in

the

Path

parameter

exists,

it

must

refer

to

the

same

directory

as

Path.

Exactly

one

directory

has

a

link

to

the

Path

parameter,

excluding

the

self-referential

.

(dot).

If

the

..

(dot

dot)

entry

in

Path

exists,

it

must

refer

to

the

directory

that

contains

an

entry

for

Path.

Return

Values

Upon

successful

completion,

the

rmdir

subroutine

returns

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned,

the

specified

directory

is

not

changed,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rmdir

subroutine

fails

and

the

directory

is

not

deleted

if

the

following

errors

occur:

EACCES

There

is

no

search

permission

on

a

component

of

the

path

prefix,

or

there

is

no

write

permission

on

the

parent

directory

of

the

directory

to

be

removed.

EBUSY

The

directory

is

in

use

as

a

mount

point.

EEXIST

or

ENOTEMPTY

The

directory

named

by

the

Path

parameter

is

not

empty.

ENAMETOOLONG

The

length

of

the

Path

parameter

exceeds

PATH_MAX;

or

a

path-name

component

longer

than

NAME_MAX

and

POSIX_NO_TRUNC

is

in

effect.

ENOENT

The

directory

named

by

the

Path

parameter

does

not

exist,

or

the

Path

parameter

points

to

an

empty

string.

ENOTDIR

A

component

specified

by

the

Path

parameter

is

not

a

directory.

EINVAL

The

directory

named

by

the

Path

parameter

is

not

well-formed.

EROFS

The

directory

named

by

the

Path

parameter

resides

on

a

read-only

file

system.

The

rmdir

subroutine

can

be

unsuccessful

for

other

reasons.

See

Appendix

A,

″Base

Operating

System

Error

Codes

For

Services

That

Require

Path-Name

Resolution″

on

page

A-1

for

a

list

of

additional

errors.

If

NFS

is

installed

on

the

system,

the

rmdir

subroutine

fails

if

the

following

is

true:

ETIMEDOUT

The

connection

timed

out.

Related

Information

The

chmod

or

fchmod

subroutine,

mkdir

subroutine,

remove

(“remove

Subroutine”

on

page

40)

subroutine,

rename

(“rename

Subroutine”

on

page

42)

subroutine,

umask

(“umask

Subroutine”

on

page

419)

subroutine,

unlink

(“unlink

Subroutine”

on

page

424)

subroutine.

The

rm

command,

rmdir

command.

Files,

Directories,

and

File

Systems

For

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

rpmatch

Subroutine

Purpose

Determines

whether

the

response

to

a

question

is

affirmative

or

negative.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

49

Library

Standard

C

Library

(libc.

a)

Syntax

#include

<stdlib.h>

int

rpmatch

(

Response)

const

char

*Response;

Description

The

rpmatch

subroutine

determines

whether

the

expression

in

the

Response

parameter

matches

the

affirmative

or

negative

response

specified

by

the

LC_MESSAGES

category

in

the

current

locale.

Both

expressions

can

be

extended

regular

expressions.

Parameters

Response

Specifies

input

entered

in

response

to

a

question

that

requires

an

affirmative

or

negative

reply.

Return

Values

This

subroutine

returns

a

value

of

1

if

the

expression

in

the

Response

parameter

matches

the

locale’s

affirmative

expression.

It

returns

a

value

of

0

if

the

expression

in

the

Response

parameter

matches

the

locale’s

negative

expression.

If

neither

expression

matches

the

expression

in

the

Response

parameter,

a

-1

is

returned.

Examples

The

following

example

shows

an

affirmative

expression

in

the

En_US

locale.

This

example

matches

any

expression

in

the

Response

parameter

that

begins

with

a

y

or

Y

followed

by

zero

or

more

alphabetic

characters,

or

it

matches

the

letter

o

followed

by

the

letter

k.

^[yY][:alpha:]*

|

ok

Related

Information

The

localeconv

subroutine,

nl_langinfo

subroutine,

regcomp

(“regcomp

Subroutine”

on

page

32)

subroutine,

regexec

(“regexec

Subroutine”

on

page

35)

subroutine,

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine.

National

Language

Support

Overview

and

Setting

the

Locale

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

RSiAddSetHot

Subroutine

Purpose

Add

a

single

set

of

peer

statistics

to

an

already

defined

SpmiHotSet.

Library

RSI

Library

(libSpmi.a)

50

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

sys/Rsi.h

struct

SpmiHotVals

*RSiAddSetHot(rhandle,

HotSet,

StatName,

GrandParent,

maxresp,

threshold,

frequency,

feed_type,

except_type,

severity,

trap_no)

RSiHandle

rhandle;

struct

SpmiHotSet

*HotSet;

char

*StatName;

cx_handle

GrandParent;

int

maxresp;

int

threshold;

int

frequency;

int

feed_type;

int

excp_type;

int

severity;

int

trap_no;

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

HotSetSpecifies

a

pointer

to

a

valid

structure

of

type

SpmiHotSet

as

created

by

the

RSiCreateHotSet

(“RSiCreateHotSet

Subroutine”

on

page

56)

subroutine

call.

StatNameSpecifies

the

name

of

the

statistic

within

the

subcontexts

(peer

contexts)

of

the

context

identified

by

the

GrandParent

parameter.

GrandParentSpecifies

a

valid

cx_handle

handle

as

obtained

by

another

subroutine

call.

The

handle

must

identify

a

context

with

at

least

one

subcontext,

which

contains

the

statistic

identified

by

the

StatName

parameter.

If

the

context

specified

is

one

of

the

RTime

contexts,

no

subcontext

need

to

be

created

at

the

time

the

SpmiAddSetHot

subroutine

call

is

issued;

the

presence

of

the

metric

identified

by

the

StatName

parameter

is

checked

against

the

context

class

description.

If

the

context

specified

has

or

may

have

multiple

levels

of

instantiable

context

below

it

(such

as

the

FS

and

RTime/ARM

contexts),

the

metric

is

only

searched

for

at

the

lowest

context

level.

The

SpmiHotSet

created

is

a

pseudo

hotvals

structure

used

to

link

together

a

peer

group

of

SpmiHotVals

structures,

which

are

created

under

the

covers,

one

for

each

subcontext

of

the

GrandParent

context.

In

the

case

of

RTime/ARM,

if

additional

contexts

are

later

added

under

the

GrandParent

contexts,

additional

hotsets

are

added

to

the

peer

group.

This

is

transparent

to

the

application

program,

except

that

the

RSiGetHotItem

(“RSiGetHotItem

Subroutine”

on

page

63)

subroutine

call

will

return

the

peer

group

SpmiHotVals

pointer

rather

than

the

pointer

to

the

pseudo

structure.

Note

that

specifying

a

specific

volume

group

context

(such

as

FS/rootvg)

or

a

specific

application

context

(such

as

RTime/ARN/armpeek)

is

still

valid

and

won’t

involve

creation

of

pseudo

SpmiHotVals

structures.

maxrespMust

be

non-zero

if

excp_type

specifies

that

exceptions

or

SNMP

traps

must

be

generated.

If

specified

as

zero,

indicates

that

all

SpmiHotItems

that

meet

the

criteria

specified

by

threshold

must

be

returned,

up-to

a

maximum

of

maxresp

items.

If

both

exceptions/traps

and

feeds

are

requested,

the

maxresp

value

is

used

to

cap

the

number

of

exceptions/alerts

as

well

as

the

number

of

items

returned.

If

feed_type

is

specified

as

SiHotAlways,

the

maxresp

parameter

is

still

used

to

return

at

most

maxresp

items.

Where

the

GrandParent

argument

specifies

a

context

that

has

multiple

levels

of

instantiable

contexts

below

it,

the

maxresp

is

applied

to

each

of

the

lowest

level

contexts

above

the

the

actual

peer

contexts

at

a

time.

For

example,

if

the

GrandParent

context

is

FS

(file

systems)

and

the

system

has

three

volume

groups,

then

a

maxresp

value

of

2

could

cause

up

to

a

maximum

of

2

x

3

=

6

responses

to

be

generated.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

51

thresholdMust

be

non-zero

if

excp_type

specifies

that

exceptions

or

SNMP

traps

must

be

generated.

If

specified

as

zero,

indicates

that

all

values

read

qualify

to

be

returned

in

feeds.

The

value

specified

is

compared

to

the

data

value

read

for

each

peer

statistic.

If

the

data

value

exceeds

the

threshold,

it

qualifies

to

be

returned

as

an

SpmiHotItems

element

in

the

SpmiHotVals

structure.

If

the

threshold

is

specified

as

a

negative

value,

the

value

qualifies

if

it

is

lower

than

the

numeric

value

of

threshold.

If

feed_type

is

specified

as

SiHotAlways,

the

threshold

value

is

ignored

for

feeds.

For

peer

statistics

of

type

SiCounter,

the

threshold

must

be

specified

as

a

rate

per

second;

for

SiQuantity

statistics

the

threshold

is

specified

as

a

level.

frequencyMust

be

non-zero

if

excp_type

specifies

that

exceptions

or

SNMP

traps

must

be

generated.

Ignored

for

feeds.

Specifies

the

minimum

number

of

minutes

that

must

expire

between

any

two

exceptions/traps

generated

from

this

SpmiHotVals

structure.

This

value

must

be

specified

as

no

less

than

5

minutes.

feed_typeSpecifies

if

feeds

of

SpmiHotItems

should

be

returned

for

this

SpmiHotVals

structure.

The

following

values

are

valid:

v

SiHotNoFeedNo

feeds

should

be

generated

v

SiHotThresholdFeeds

are

controlled

by

threshold.

v

SiHotAlwaysAll

values,

up-to

a

maximum

of

maxresp

must

be

returned

as

feeds.

excp_typeControls

the

generation

of

exception

data

packets

and/or

the

generation

of

SNMP

Traps

from

xmservd.

Note

that

these

types

of

packets

and

traps

can

only

actually

be

sent

if

xmservd

is

running.

Because

of

this,

exception

packets

and

SNMP

traps

are

only

generated

as

long

as

xmservd

is

active.

Traps

can

only

be

generated

on

AIX.

The

conditions

for

generating

exceptions

and

traps

are

controlled

by

the

threshold

and

frequency

parameters.

The

following

values

are

valid

for

excp_type:

v

SiNoHotExceptionGenerate

neither

exceptions

not

traps.

v

SiHotExceptionGenerate

exceptions

but

not

traps.

v

SiHotTrapGenerate

SNMP

traps

but

not

exceptions.

v

SiHotBothGenerate

both

exceptions

and

SNMP

traps.

severityRequired

to

be

positive

and

greater

than

zero

if

exceptions

are

generated,

otherwise

specify

as

zero.

Used

to

assign

a

severity

code

to

the

exception

for

display

by

exmon.

trap_noRequired

to

be

positive

and

greater

than

zero

if

SNMP

traps

are

generated,

otherwise

specify

as

zero.

Used

to

assign

the

trap

number

in

the

generated

SNMP

trap.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Return

Values

If

successful,

the

subroutine

returns

a

pointer

to

a

structure

of

type

struct

SpmiHotVals.

If

an

error

occurs,

NULL

is

returned

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

If

you

attempt

to

add

more

values

to

a

statset

than

the

current

local

buffer

size

allows,

RSiErrno

is

set

to

RSiTooMany.

If

you

attempt

to

add

more

values

than

the

buffer

size

of

the

remote

host’s

xmservd

daemon

allows,

RSiErrno

is

set

to

RSiBadStat

and

the

status

field

in

the

returned

packet

is

set

to

too_many_values.

The

external

integer

RSiMaxValues

holds

the

maximum

number

of

values

acceptable

with

the

data-consumer’s

buffer

size.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

52

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes

.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiCreateHotSet

Subroutine”

on

page

56

v

“RSiOpen

Subroutine”

on

page

75.

RSiChangeFeed

Subroutine

Purpose

Changes

the

frequency

at

which

the

xmservd

on

the

host

identified

by

the

first

argument

daemon

is

sending

data_feed

packets

for

a

statset.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiChangeFeed(rhandle,

statset,

msecs)

RSiHandle

rhandle;struct

SpmiStatSet

*statset;int

msecs;

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

statsetMust

be

a

pointer

to

a

structure

of

type

struct

SpmiStatSet,

which

was

previously

returned

by

a

successful

RSiCreateStatSet

subroutine

call.

Data

feeding

must

have

been

started

for

this

SpmiStatSet

via

a

previous

RSiStartFeed

(“RSiStartFeed

Subroutine”

on

page

80)

subroutine

call.

msecsThe

number

of

milliseconds

between

the

sending

of

data_feed

packets.

This

number

is

rounded

to

a

multiple

of

min_remote_int

milliseconds

by

the

xmservd

daemon

on

the

remote

host.

This

minimum

interval

can

be

modified

through

the

-i

command

line

interval

to

xmservd.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Return

Values

If

successful,

the

subroutine

returns

zero,

otherwise

-1.

A

NULL

error

text

is

placed

in

the

external

character

array

RSiEMsg

regardless

of

the

subroutine’s

success

or

failure.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

53

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiCreateStatSet

Subroutine”

on

page

57

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiStartFeed

Subroutine”

on

page

80.

RSiChangeHotFeed

Subroutine

Purpose

Changes

the

frequency

at

which

the

xmservd

on

the

host

identified

by

the

first

argument

daemon

is

sending

hot_feed

packets

for

a

statset

or

checking

if

exceptions

or

SNMP

traps

should

be

generated.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiChangeFeed(rhandle,

hotset,

msecs)

RSiHandle

rhandle;struct

SpmiHotSet

*hotset;int

msecs;

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

hotsetMust

be

a

pointer

to

a

structure

of

type

struct

SpmiHotSet,

which

was

previously

returned

by

a

successful

RsiCreateHotSet

(“RSiCreateHotSet

Subroutine”

on

page

56)

subroutine

call.

Data

feeding

must

have

been

started

for

this

SpmiHotSet

via

a

previous

RSiStartHotFeed

(“RSiStartHotFeed

Subroutine”

on

page

81)

subroutine

call.

msecsThe

number

of

milliseconds

between

the

sending

of

Hot_feed

packets.

This

number

is

rounded

to

a

multiple

of

min_remote_int

milliseconds

by

the

xmservd

daemon

on

the

remote

host.

This

minimum

interval

can

be

modified

through

the

-i

command

line

interval

to

xmservd.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

54

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

If

successful,

the

subroutine

returns

zero,

otherwise

-1.

A

NULL

error

text

is

placed

in

the

external

character

array

RSiEMsg

regardless

of

the

subroutine’s

success

or

failure.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

In

the

sample

program,

the

SpmiStatSet

is

created

in

the

local

function

lststats

shown

previously

in

lines

6

through

10.

v

“RSiCreateHotSet

Subroutine”

on

page

56

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiStartHotFeed

Subroutine”

on

page

81.

RSiClose

Subroutine

Purpose

Terminates

the

RSI

interface

for

a

remote

host

connection.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

void

RSiClose(rhandle)

RSiHandle

rhandle;

Description

The

RSiClose

subroutine

is

responsible

for:

1.

Removing

the

data-consumer

program

as

a

known

data

consumer

on

a

particular

host.

This

is

done

by

sending

a

going_down

packet

to

the

host.

2.

Marking

the

RSI

handle

as

not

active.

3.

Releasing

all

memory

allocated

in

connection

with

the

RSI

handle.

4.

Terminating

the

RSI

interface

for

a

remote

host.

A

successful

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine

creates

tables

on

the

remote

host

it

was

issued

against.

Therefore,

a

data

consumer

program

that

has

issued

successful

RSiOpen

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

55

subroutine

calls

should

issue

an

RSiClose

(“RSiClose

Subroutine”

on

page

55)

subroutine

call

for

each

RSiOpen

call

before

the

program

exits

so

that

the

tables

in

the

remote

xmservd

daemon

can

be

released.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

subroutine.

The

macro

RSiIsOpen

can

be

used

to

test

whether

an

RSI

handle

is

open.

It

takes

an

RSiHandle

as

argument

and

returns

true

(1)

if

the

handle

is

open,

otherwise

false

(0).

Files

/usr/include/sys/Rsi.hDeclares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiInit

Subroutine”

on

page

68

v

“RSiOpen

Subroutine”

on

page

75

RSiCreateHotSet

Subroutine

Purpose

Creates

an

empty

hotset

on

the

remote

host

identified

by

the

argument.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

struct

SpmiHotSet

*RSiCreateHotSet(rhandle)

RSiHandle

rhandle;

Description

The

RSiCreateHotSet

subroutine

allocates

an

SpmiHotSet

structure.

The

structure

is

initialized

as

an

empty

SpmiHotSet

and

a

pointer

to

the

SpmiHotSet

structure

is

returned.

The

SpmiHotSet

structure

provides

the

anchor

point

to

a

set

of

peer

statistics

and

must

exist

before

the

RSiAddSetHot

(“RSiAddSetHot

Subroutine”

on

page

50)

subroutine

can

be

successfully

called.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

Return

Values

The

RSiCreateHotSet

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiHotSet

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

56

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes

.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiAddSetHot

Subroutine”

on

page

50.

RSiCreateStatSet

Subroutine

Purpose

Creates

an

empty

statset

on

the

remote

host

identified

by

the

argument.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

struct

SpmiStatSet

*RSiCreateStatSet(rhandle)

RSiHandle

rhandle;

Description

The

RSiCreateStatSet

subroutine

allocates

an

SpmiStatSet

structure.

The

structure

is

initialized

as

an

empty

SpmiStatSet

and

a

pointer

to

the

SpmiStatSet

structure

is

returned.

The

SpmiStatSet

structure

provides

the

anchor

point

to

a

set

of

statistics

and

must

exist

before

the

RSiPathAddSetStat

(“RSiPathAddSetStat

Subroutine”

on

page

78)

subroutine

can

be

successfully

called.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

57

Return

Values

The

RSiCreateStatSet

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiStatSet

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathAddSetStat

Subroutine”

on

page

78.

RSiDelSetHot

Subroutine

Purpose

Deletes

a

single

set

of

peer

statistics

identified

by

an

SpmiHotVals

structure

from

an

SpmiHotSet.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiDelSetHot(rhandle,

hsp,

hvp)

RSiHandle

rhandle;struct

SpmiHotSet

*hsp;struct

SpmiHotVals*hvp;

Description

The

RSiDelSetHot

subroutine

performs

the

following

actions:

1.

Validates

that

the

SpmiHotSet

identified

by

the

second

argument

exists

and

contains

the

SpmiHotVals

statistic

identified

by

the

third

argument.

2.

Deletes

the

SpmiHotVals

value

from

the

SpmiHotSet

so

that

future

data_feed

packets

do

not

include

the

deleted

statistic.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

58

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

hspMust

be

a

pointer

to

a

structure

type

struct

SpmiHotSet,

which

was

previously

returned

by

a

successful

RSiCreateHotSet

subroutine

call.

hvpMust

be

a

handle

of

type

struct

SpmiHotVals

as

returned

by

a

successful

RSiAddSetHot

(“RSiAddSetHot

Subroutine”

on

page

50)

subroutine

call.

You

cannot

specify

an

SpmiHotVals

that

was

internally

generated

by

the

Spmi

library

code

as

described

under

the

GrandParent

parameter

to

RSiAddSetHot

(“RSiAddSetHot

Subroutine”

on

page

50).

Return

Values

If

successful,

the

subroutine

returns

a

zero

value;

otherwise

it

returns

a

non-zero

value

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiAddSetHot

Subroutine”

on

page

50.

RSiDelSetStat

Subroutine

Purpose

Deletes

a

single

statistic

identified

by

an

SpmiStatVals

pointer

from

an

SpmiStatSet.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiDelSetStat(rhandle,

ssp,

svp)

RSiHandle

rhandle;struct

SpmiStatSet

*ssp;struct

SpmiStatVals*svp;

Description

The

RSiDelSetStat

subroutine

performs

the

following

actions:

1.

Validates

the

SpmiStatSet

identified

by

the

second

argument

exists

and

contains

the

SpmiStatVals

statistic

identified

by

the

third

argument.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

59

2.

Deletes

the

SpmiStatVals

value

from

the

SpmiStatSet

so

that

future

data_feed

packets

do

not

include

the

deleted

statistic.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

sspMust

be

a

pointer

to

a

structure

type

struct

SpmiStatSet,

which

was

previously

returned

by

a

successful

RSiCreateStatSet

(“RSiCreateStatSet

Subroutine”

on

page

57)

subroutine

call.

svpMust

be

a

handle

of

type

struct

SpmiStatVals

as

returned

by

a

successful

RSiPathAddSetStat

(“RSiPathAddSetStat

Subroutine”

on

page

78)

subroutine

call.

Return

Values

If

successful,

the

subroutine

returns

a

zero

value;

otherwise

it

returns

a

non-zero

value

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiCreateStatSet

Subroutine”

on

page

57

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathAddSetStat

Subroutine”

on

page

78.

RSiFirstCx

Subroutine

Purpose

Returns

the

first

subcontext

of

an

SpmiCx

context.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

60

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

struct

SpmiCxLink

*RSiFirstCx(rhandle,

context,

name,

descr)

RSiHandle

rhandle;

cx_handle

*context;

char

**name;

char

**descr;

Description

The

RSiFirstCx

subroutine

performs

the

following

actions:

1.

Validates

that

the

context

identified

by

the

second

argument

exists.

2.

Returns

a

handle

to

the

first

element

of

the

list

of

subcontexts

defined

for

the

context.

3.

Returns

the

short

name

and

description

of

the

subcontext.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

contextMust

be

a

handle

of

type

cx_handle,

which

was

previously

returned

by

a

successful

RSiPathGetCx

(“RSiPathGetCx

Subroutine”

on

page

79)

subroutine

call.

nameMust

be

a

pointer

to

a

pointer

to

a

character

array.

The

pointer

must

be

initialized

to

point

at

a

character

array

pointer.

When

the

subroutine

call

is

successful,

the

short

name

of

the

subcontext

is

returned

in

the

character

array

pointer.

descrMust

be

a

pointer

to

a

pointer

to

a

character

array.

The

pointer

must

be

initialized

to

point

at

a

character

array

pointer.

When

the

subroutine

call

is

successful,

the

description

of

the

subcontext

is

returned

in

the

character

array

pointer.

Return

Values

If

successful,

the

subroutine

returns

a

pointer

to

a

structure

of

type

struct

SpmiCxLink.

If

an

error

occurs

or

if

the

context

doesn’t

contain

subcontexts,

NULL

is

returned

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

61

Related

Information

For

related

information,

see:

v

“RSiNextCx

Subroutine”

on

page

73

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathGetCx

Subroutine”

on

page

79.

RSiFirstStat

Subroutine

Purpose

Returns

the

first

statistic

of

an

SpmiCx

context.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

struct

SpmiStatLink

*RSiFirstStat(rhandle,

context,

name,

descr)

RSiHandle

rhandle;

cx_handle

*context;

char

**name;

char

**descr;

Description

The

RSiFirstStat

subroutine

performs

the

following

actions:

1.

Validates

that

the

context

identified

by

the

second

argument

exists.

2.

Returns

a

handle

to

the

first

element

of

the

list

of

statistics

defined

for

the

context.

3.

Returns

the

short

name

and

description

of

the

statistic.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

contextMust

be

a

handle

of

type

cx_handle,

which

was

previously

returned

by

a

successful

RSiPathGetCx

(“RSiPathGetCx

Subroutine”

on

page

79)

subroutine

call.

nameMust

be

a

pointer

to

a

pointer

to

a

character

array.

The

pointer

must

be

initialized

to

point

at

a

character

array

pointer.

When

the

subroutine

call

is

successful,

the

short

name

of

the

statistics

value

is

returned

in

the

character

array

pointer.

descrMust

be

a

pointer

to

a

pointer

to

a

character

array.

The

pointer

must

be

initialized

to

point

at

a

character

array

pointer.

When

the

subroutine

call

is

successful,

the

description

of

the

statistics

value

is

returned

in

the

character

array

pointer.

Return

Values

If

successful,

the

subroutine

returns

a

pointer

to

a

structure

of

type

struct

SpmiStatLink.

If

an

error

occurs,

NULL

is

returned

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

62

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiNextStat

Subroutine”

on

page

74

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathGetCx

Subroutine”

on

page

79.

RSiGetHotItem

Subroutine

Purpose

Locates

and

decodes

the

next

SpmiHotItems

element

at

the

current

position

in

an

incoming

data

packet

of

type

hot_feed.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

struct

SpmiHotVals

*RSiGetHotItem(rhandle,

HotSet,

index,

value,

absvalue,

name)

RSiHandle

rhandle;

struct

SpmiHotSet

**HotSet;

int

*index;

float

*value;

flost

absvalue;

char

**name;

Description

The

RSiGetHotItem

subroutine

locates

the

SpmiHotItems

structure

in

the

hot_feed

data

packet

indexed

by

the

value

of

the

index

parameter.

The

subroutine

returns

a

NULL

value

if

no

further

SpmiHotItems

structures

are

found.

The

RSiGetHotItem

subroutine

should

only

be

executed

after

a

successful

call

to

the

RSiGetHotSet

subroutine.

The

RSiGetHotItem

subroutine

is

designed

to

be

used

for

walking

all

SpmiHotItems

elements

returned

in

a

hot_feed

data

packet.

Because

the

data

packet

may

contain

elements

belonging

to

more

than

one

SpmiHotSet,

the

index

is

purely

abstract

and

is

only

used

to

keep

position.

By

feeding

the

updated

integer

pointed

to

by

index

back

to

the

next

call,

the

walking

of

the

hot_feed

packet

can

be

done

in

a

tight

loop.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

63

Successful

calls

to

RSiGetHotItem

will

decode

each

SpmiHotItems

element

and

return

the

data

value

in

value

and

the

name

of

the

peer

context

that

owns

the

corresponding

statistic

in

name.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandle

Must

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

HotSet

Used

to

return

a

pointer

to

a

valid

SpmiHotSet

structure

as

obtained

by

a

previous

RSiCreateHotSet

(“RSiCreateHotSet

Subroutine”

on

page

56)

subroutine

call.

The

calling

program

can

use

this

value

to

locate

the

SpmiHotSet

if

its

address

was

stored

by

the

program

after

it

was

created.

The

time

stamps

in

the

SpmiHotSet

are

updated

with

the

time

stamps

of

the

decoded

SpmiHotItems

element.

index

A

pointer

to

an

integer

that

contains

the

desired

relative

element

number

in

the

SpmiHotItems

array

across

all

SpmiStatVals

contained

in

the

data

packet.

A

value

of

zero

points

to

the

first

element.

When

the

RSiGetHotItem

subroutine

returns,

the

integer

contain

the

index

of

the

next

SpmiHotItems

element

in

the

data

packet.

By

passing

the

returned

index

parameter

to

the

next

call

to

RSiGetHotItem,

the

calling

program

can

iterate

through

all

SpmiHotItems

elements

in

the

hot_feed

data

packet.

value

A

pointer

to

a

float

variable.

A

successful

call

will

return

the

decoded

data

value

of

the

peer

statistic.

Before

the

value

is

returned,

the

RSiGetHotItem

function:

v

Determines

the

format

of

the

data

field

as

being

either

SiFloat

or

SiLong

and

extracts

the

data

value

for

further

processing.

v

Determines

the

data

value

as

being

either

type

SiQuantity

or

type

SiCounter

and

performs

one

of

the

actions

listed

here:

–

If

the

data

value

is

of

type

SiQuantity,

the

subroutine

returns

the

val

field

of

the

SpmiHotItems

structure.

–

If

the

data

value

is

of

type

SiCounter,

the

subroutine

returns

the

value

of

the

val_change

field

of

the

SpmiHotItems

structure

divided

by

the

elapsed

number

of

seconds

since

the

previous

time

a

data

value

was

requested

for

this

set

of

statistics.

absvalue

A

pointer

to

a

float

variable.

A

successful

call

will

return

the

decoded

value

of

the

val

field

of

the

SpmiHotItems

structure

of

the

peer

statistic.

In

case

of

a

statistic

of

type

SiQuantity,

this

value

will

be

the

same

as

the

one

returned

in

the

argument

value.

In

case

of

a

peer

statistic

of

type

SiCounter,

the

value

returned

is

the

absolute

value

of

the

counter.

name

A

pointer

to

a

character

pointer.

A

successful

call

will

return

a

pointer

to

the

name

of

the

peer

context

for

which

the

data

value

was

read.

Return

Values

The

RSiGetHotItem

subroutine

returns

a

pointer

to

the

current

SpmiHotVals

structure

within

the

hotset.

If

no

more

SpmiHotItems

elements

are

available,

the

subroutine

returns

a

NULL

value.

The

structure

returned

contains

the

data,

such

as

threshold,

which

may

be

relevant

for

presentation

of

the

results

of

an

SpmiGetHotSet

subroutine

call

to

end-users.

In

the

returned

SpmiHotVals

structure,

all

fields

contain

the

correct

values

as

declared,

except

for

the

following:

stat

Declared

as

SpmiStatHdl,

actually

points

to

a

valid

SpmiStat

structure.

By

casting

the

handle

to

a

pointer

to

SpmiStat,

data

in

the

structure

can

be

accessed.

grandpa

Contains

the

cx_handle

for

the

parent

context

of

the

peer

contexts.

items

When

using

the

Spmi

interface

this

is

an

array

of

SpmiHotItems

structures.

When

using

the

RSiGetHotItem

subroutine,

the

array

is

empty

and

attempts

to

access

it

will

likely

result

in

segmentation

faults

or

access

of

not

valid

data.

64

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

path

Will

contain

the

path

to

the

parent

of

the

peer

contexts.

Even

when

the

peer

contexts

are

multiple

levels

below

the

parent

context,

the

path

points

to

the

top

context

because

the

peer

context

identifiers

in

the

SpmiHotItems

elements

will

contain

the

path

name

from

there

and

on.

For

example,

if

the

hotvals

peer

set

defines

all

volume

groups,

the

path

specified

in

the

returned

SpmiHotVals

structure

would

be

“FS”

and

the

path

name

in

one

SpmiHotItems

element

may

be

“rootvg/lv01”.

When

combined

with

the

metric

name

from

the

stat

field,

the

full

path

name

can

be

constructed

as,

for

example,

“FS/rootvg/lv01/%totfree”.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiCreateHotSet

Subroutine”

on

page

56.

RSiGetRawValue

Subroutine

Purpose

Returns

a

pointer

to

a

valid

SpmiStatVals

structure

for

a

given

SpmiStatVals

pointer

by

extraction

from

a

data_feed

packet.

This

subroutine

call

should

only

be

issued

from

a

callback

function

after

it

has

been

verified

that

a

data_feed

packet

was

received

from

the

host

identified

by

the

first

argument.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

struct

SpmiStatVals

RSiGetRawValue(rhandle,

svp,

index)

RSiHandle

rhandle;

struct

SpmiStatVals

*svp;

int

*index;

Description

The

RSiGetRawValue

subroutine

performs

the

following:

1.

Finds

an

SpmiStatVals

structure

in

the

received

data

packet

based

upon

the

second

argument

to

the

subroutine

call.

This

involves

a

lookup

operation

in

tables

maintained

internally

by

the

RSi

interface.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

65

2.

Updates

the

struct

SpmiStat

pointer

in

the

SpmiStatVals

structure

to

point

at

a

valid

SpmiStat

structure.

3.

Returns

a

pointer

to

the

SpmiStatVals

structure.

The

returned

pointer

points

to

a

static

area

and

is

only

valid

until

the

next

execution

of

RSiGetRawValue.

4.

Updates

an

integer

variable

with

the

index

into

the

ValsSet

array

of

the

data_feed

packet,

which

corresponds

to

the

second

argument

to

the

call.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

svpA

handle

of

type

struct

SpmiStatVals,

which

was

previously

returned

by

a

successful

RSiPathAddSetStat

(“RSiPathAddSetStat

Subroutine”

on

page

78)

subroutine

call.

indexA

pointer

to

an

integer

variable.

When

the

subroutine

call

succeeds,

the

index

into

the

ValsSet

array

of

the

data

feed

packet

is

returned.

The

index

corresponds

to

the

element

that

matches

the

svp

argument

to

the

subroutine.

Return

Values

If

successful,

the

subroutine

returns

a

pointer;

otherwise

NULL

is

returned

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes

.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathAddSetStat

Subroutine”

on

page

78.

RSiGetValue

Subroutine

Purpose

Returns

a

data

value

for

a

given

SpmiStatVals

pointer

by

extraction

from

the

data_feed

packet.

This

subroutine

call

should

only

be

issued

from

a

callback

function

after

it

has

been

verified

that

a

data_feed

packet

was

received

from

the

host

identified

by

the

first

argument.

66

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

float

RSiGetValue(rhandle,

svp)

RSiHandle

rhandle;

struct

SpmiStatVals

*svp;

Description

The

RSiGetValue

subroutine

provides

the

following:

1.

Finds

an

SpmiStatVals

structure

in

the

received

data

packet

based

upon

the

second

argument

to

the

subroutine

call.

This

involves

a

lookup

operation

in

tables

maintained

internally

by

the

RSi

interface.

2.

Determines

the

format

of

the

data

field

as

being

either

SiFloat

or

SiLong

and

extracts

the

data

value

for

further

processing

based

upon

its

data

format.

3.

Determines

the

value

as

either

of

type

SiQuantity

or

SiCounter.

If

the

former

is

the

case,

the

data

value

returned

is

the

val

field

in

the

SpmiStatVals

structure.

If

the

latter

type

is

found,

the

value

returned

by

the

subroutine

is

the

val_change

field

divided

by

the

elapsed

number

of

seconds

since

the

previous

data

packet’s

time

stamp.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

svpA

handle

of

type

struct

SpmiStatVals,

which

was

previously

returned

by

a

successful

RSiPathAddSetStat

(“RSiPathAddSetStat

Subroutine”

on

page

78)

subroutine

call.

Return

Values

If

successful,

the

subroutine

returns

a

non-negative

value;

otherwise

it

returns

a

negative

value

less

than

or

equal

to

-1.0.

A

NULL

error

text

is

placed

in

the

external

character

array

RSiEMsg

regardless

of

the

subroutine’s

success

or

failure.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

67

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathAddSetStat

Subroutine”

on

page

78

RSiInit

Subroutine

Purpose

Allocates

or

changes

the

table

of

RSi

handles.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

RSiHandle

RSiInit(count)

int

count;

Description

Before

any

other

RSi

call

is

executed,

a

data-consumer

program

must

issue

the

RSiInit

call.

Its

purpose

is

to

either:

v

Allocate

an

array

of

RSiHandleStruct

structures

and

return

the

address

of

the

array

to

the

data-consumer

program.

v

Increase

the

size

of

a

previously

allocated

array

of

RSiHandleStruct

structures

and

initialize

the

new

array

with

the

contents

of

the

previous

one.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

countMust

specify

the

number

of

elements

in

the

array

of

RSi

handles.

If

the

call

is

used

to

expand

a

previously

allocated

array,

this

argument

must

be

larger

than

the

current

number

of

array

elements.

It

must

always

be

larger

than

zero.

Specify

the

size

of

the

array

to

be

at

least

as

large

as

the

number

of

hosts

your

data-consumer

program

can

talk

to

at

any

point

in

time.

Return

Values

If

successful,

the

subroutine

returns

the

address

of

the

allocated

array.

If

an

error

occurs,

an

error

text

is

placed

in

the

external

character

array

RSiEMsg

and

the

subroutine

returns

NULL.

When

used

to

increase

the

size

of

a

previously

allocated

array,

the

subroutine

first

allocates

the

new

array,

then

moves

the

entire

old

array

to

the

new

area.

Application

programs

should,

therefore,

refer

to

elements

in

the

RSi

handle

array

by

index

rather

than

by

address

if

they

anticipate

the

need

for

expanding

the

array.

The

array

only

needs

to

be

expanded

if

the

number

of

remote

hosts

a

data-consumer

program

talks

to

might

increase

over

the

life

of

the

program.

An

application

that

calls

RSiInit

repeatedly

needs

to

preserve

the

previous

address

of

the

RSiHandle

array

while

the

RSiInit

call

is

re-executed.

After

the

call

has

completed

successfully,

the

calling

program

should

free

the

previous

array

using

the

free

subroutine.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

68

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see

the

“RSiClose

Subroutine”

on

page

55.

RSiInstantiate

Subroutine

Purpose

Creates

(instantiates)

all

subcontexts

of

an

SpmiCx

context

object.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiInstantiate(rhandle,

context)

RSiHandle

rhandle;

cx_handle

*context;

Description

The

RSiInstantiate

subroutine

performs

the

following

actions:

1.

Validates

that

the

context

identified

by

the

second

argument

exists.

2.

Instantiates

the

context

so

that

all

subcontexts

of

that

context

are

created

in

the

context

hierarchy.

Note

that

this

subroutine

call

currently

only

makes

sense

if

the

context’s

SiInstFreq

is

set

to

SiContInst

or

SiCfgInst

because

all

other

contexts

would

have

been

instantiated

whenever

the

xmservd

daemon

was

started.

The

RSiInstantiate

subroutine

explicitly

instantiates

the

subcontexts

of

an

instantiable

context.

If

the

context

is

not

instantiable,

do

not

call

the

RSiInstantiate

subroutine.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

point

to

a

structure

of

type

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

contextMust

be

a

handle

of

type

cx_handle,

which

was

previously

returned

by

a

successful

RSiPathGetCx

(“RSiPathGetCx

Subroutine”

on

page

79)

subroutine

call.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

69

Return

Values

If

successful,

the

subroutine

returns

a

zero

value;

otherwise

it

returns

an

error

code

as

defined

in

SiError

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes

.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiFirstCx

Subroutine”

on

page

60

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathGetCx

Subroutine”

on

page

79.

RSiInvite

Subroutine

Purpose

Invites

data

suppliers

on

the

network

to

identify

themselves

and

returns

a

table

of

data-supplier

host

names.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

char

**RSiInvite(resy_callb,

excp_callb)

int

(*resy_callb)();

int

(*excp_callb)();

Description

The

RSiInvite

subroutine

call

broadcasts

are_you_there

messages

on

the

network

to

provoke

xmservd

daemons

on

remote

hosts

to

respond

and

returns

a

table

of

all

responding

hosts.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

The

arguments

to

the

subroutine

are:

70

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

resy_callbMust

be

either

NULL

or

a

pointer

to

a

function

that

processes

i_am_back

packets

as

they

are

received

from

the

xmservd

daemons

on

remote

hosts

for

the

duration

of

the

RSiInvite

subroutine

call.

When

the

callback

function

is

invoked,

it

is

passed

three

arguments

as

described

in

the

following

information.

If

this

argument

is

specified

as

NULL,

a

callback

function

internal

to

the

RSiInvite

subroutine

receives

any

i_am_back

packets

and

uses

them

to

build

the

table

of

host

names

the

function

returns.

excp_callbMust

be

NULL

or

a

pointer

to

a

function

that

processes

except_rec

packets

as

they

are

received

from

the

xmservd

daemons

on

remote

hosts.

If

a

NULL

pointer

is

passed,

your

application

does

not

receive

except_rec

messages.

When

this

callback

function

is

invoked,

it

is

passed

three

arguments

as

described

in

the

following

information.

This

argument

always

overrides

the

corresponding

argument

of

any

previous

RSiInvite

or

RSiOpen

call,

and

it

can

be

overridden

by

subsequent

executions

of

either.

In

this

way,

your

application

can

turn

exception

monitoring

on

and

off.

For

an

RSiOpen

to

override

the

exception

processing

specified

by

a

previous

open

call,

the

connection

must

first

be

closed

with

the

RSiClose

call.

That’s

because

an

RSiOpen

against

an

already

active

handle

is

treated

as

a

no-operation.

The

resy_callb

and

excp_callb

functions

in

your

application

are

called

with

the

following

three

arguments:

v

An

RSiHandle.

The

RSi

handle

pointed

to

is

almost

certain

not

to

represent

the

host

that

sent

the

packet.

Ignore

this

argument,

and

use

only

the

second

one:

the

pointer

to

the

input

buffer.

v

A

pointer

of

type

pack

*

to

the

input

buffer

containing

the

received

packet.

Always

use

this

pointer

rather

than

the

pointer

in

the

RSiHandle

structure.

v

A

pointer

of

type

struct

sockaddr_in

*

to

the

IP

address

of

the

originating

host.

Return

Values

If

successful,

the

subroutine

returns

an

array

of

character

pointers,

each

of

which

contains

a

host

name

of

a

host

that

responded

to

the

invitation.

The

returned

host

names

are

actually

constructed

as

two

“words”

with

the

first

one

being

the

host

name

returned

by

the

host

in

response

to

an

are_you_there

request;

the

second

one

being

the

character

form

of

the

host’s

IP

address.

The

two

“words”

are

separated

by

one

or

more

blanks.

This

format

is

suitable

as

an

argument

to

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine

call.

In

addition,

the

external

integer

variable

RSiInvTabActive

contains

the

number

of

host

names

found.

The

returned

pointer

to

an

array

of

host

names

must

not

be

freed

by

the

subroutine

call.

The

calling

program

should

not

assume

that

the

pointer

returned

by

this

subroutine

call

remains

valid

after

subsequent

calls

to

RSiInvite.

If

the

call

is

not

successful,

an

error

text

is

placed

in

the

external

character

array

RSiEMsg,

an

error

number

is

placed

in

RSiErrno,

and

the

subroutine

returns

NULL.

The

list

of

host

names

returned

by

RSiInvite

does

not

include

the

hosts

your

program

has

already

established

a

connection

with

through

an

RSiOpen

call.

Your

program

is

responsible

for

keeping

track

of

such

hosts.

If

you

need

a

list

of

both

sets

of

hosts,

either

let

the

RSiInvite

call

be

the

first

one

issued

from

your

program

or

merge

the

list

of

host

names

returned

by

the

call

with

the

list

of

hosts

to

which

you

have

connections.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

71

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see“RSiOpen

Subroutine”

on

page

75.

RSiMainLoop

Subroutine

Purpose

Allows

an

application

to

suspend

execution

and

wait

to

get

awakened

when

data

feeds

arrive.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

void

RSiMainLoop(msecs)

int

msecs;

Description

The

RSiMainLoop

subroutine:

1.

Allows

the

data-consumer

program

to

suspend

processing

while

waiting

for

data_feed

packets

to

arrive

from

one

or

more

xmservd

daemons.

2.

Tells

the

subroutine

that

waits

for

data

feeds

to

return

control

to

the

data-consumer

program

so

that

the

latter

can

check

for

and

react

to

other

events.

3.

Invokes

the

subroutine

to

process

data_feed

packets

for

each

such

packet

received.

To

work

properly,

the

RSiMainLoop

subroutine

requires

that

at

least

one

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

call

has

been

successfully

completed

and

that

the

connection

has

not

been

closed.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

msecsThe

minimum

elapsed

time

in

milliseconds

that

the

subroutine

should

continue

to

attempt

receives

before

returning

to

the

caller.

Notice

that

your

program

releases

control

for

as

many

milliseconds

you

specify

but

that

the

callback

functions

defined

on

the

RSiOpen

call

may

be

called

repetitively

during

that

time.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

72

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see

“RSiOpen

Subroutine”

on

page

75.

RSiNextCx

Subroutine

Purpose

Returns

the

next

subcontext

of

an

SpmiCx

context.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

struct

SpmiCxLink

*RSiNextCx(rhandle,

context,

link,

name,

descr)

RSiHandle

rhandle;

cx_handle

*context;

struct

SpmiCxLink

*link;

char

**name;

char

**descr;

Description

The

RSiNextCx

subroutine:

1.

Validates

that

the

context

identified

by

the

second

argument

exists.

2.

Returns

a

handle

to

the

next

element

of

the

list

of

subcontexts

defined

for

the

context.

3.

Returns

the

short

name

and

description

of

the

subcontext.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

point

to

a

structure

of

type

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

contextMust

be

a

handle

of

type

cx_handle,

which

was

previously

returned

by

a

successful

RSiPathGetCx

(“RSiPathGetCx

Subroutine”

on

page

79)

subroutine

call.

linkMust

be

a

pointer

to

a

structure

of

type

struct

SpmiCxLink,

which

was

previously

returned

by

a

successful

RSiFirstCx

(“RSiFirstCx

Subroutine”

on

page

60)

or

RSiNextCx

subroutine

call.

nameMust

be

a

pointer

to

a

pointer

to

a

character

array.

The

pointer

must

be

initialized

to

point

at

a

character

array

pointer.

When

the

subroutine

call

is

successful,

the

short

name

of

the

subcontext

is

returned

in

the

character

array

pointer.

descrMust

be

a

pointer

to

a

pointer

to

a

character

array.

The

pointer

must

be

initialized

to

point

at

a

character

array

pointer.

When

the

subroutine

call

is

successful,

the

description

of

the

subcontext

is

returned

in

the

character

array

pointer.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

73

Return

Values

If

successful,

the

subroutine

returns

a

pointer

to

a

structure

of

type

struct

SpmiCxLink.

If

an

error

occurs,

or

if

no

more

subcontexts

exist

for

the

context,

NULL

is

returned

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiFirstCx

Subroutine”

on

page

60

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathGetCx

Subroutine”

on

page

79.

RSiNextStat

Subroutine

Purpose

Returns

the

next

statistic

of

an

SpmiCx

context.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

struct

SpmiStatLink

*RSiNextStat(rhandle,

context,

link,

name,

descr)

RSiHandle

rhandle;

cx_handle

*context;

struct

SpmiStatLink

*link;

char

**name;

char

**descr;

Description

The

RSiNextStat

subroutine:

1.

Validates

that

a

context

identified

by

the

second

argument

exists.

2.

Returns

a

handle

to

the

next

element

of

the

list

of

statistics

defined

for

the

context.

3.

Returns

the

short

name

and

description

of

the

statistic.

74

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”)

subroutine.

contextMust

be

a

handle

of

type

cx_handle,

which

was

previously

returned

by

a

successful

RSiPathGetCx

(“RSiPathGetCx

Subroutine”

on

page

79)

subroutine

call.

linkMust

be

a

pointer

to

a

structure

of

type

struct

SpmiStatLink,

which

was

previously

returned

by

a

successful

RSiFirstStat

(“RSiFirstStat

Subroutine”

on

page

62)

or

RSiNextStat

subroutine

call.

nameMust

be

a

pointer

to

a

pointer

to

a

character

array.

The

pointer

must

be

initialized

to

point

at

a

character

array

pointer.

When

the

subroutine

call

is

successful,

the

short

name

of

the

statistics

value

is

returned

in

the

character

array

pointer.

descrMust

be

a

pointer

to

a

pointer

to

a

character

array.

The

pointer

must

be

initialized

to

point

at

a

character

array

pointer.

When

the

subroutine

call

is

successful,

the

description

of

the

statistics

value

is

returned

in

the

character

array

pointer.

Return

Values

If

successful,

the

subroutine

returns

a

pointer

to

a

structure

of

type

struct

SpmiStatLink.

If

an

error

occurs,

or

if

no

more

statistics

exists

for

the

context,

NULL

is

returned

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiFirstStat

Subroutine”

on

page

62

v

“RSiOpen

Subroutine”

v

“RSiPathGetCx

Subroutine”

on

page

79.

RSiOpen

Subroutine

Purpose

Initializes

the

RSi

interface

for

a

remote

host.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

75

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiOpen(rhandle,

wait,

bufsize,

hostID,

feed_callb,

resy_callb,

excp_callb)

RSiHandle

rhandle;

int

wait;

int

bufsize;

char

*hostID;

int

(*feed_callb)();

int

(*resy_callb)();

int

(*excp_callb)();

Description

The

RSiOpen

subroutine

performs

the

following

actions:

1.

Establishes

the

issuing

data-consumer

program

as

a

data

consumer

known

to

the

xmservd

daemon

on

a

particular

host.

The

subroutine

does

this

by

sending

an

are_you_there

packet

to

the

host.

2.

Initializes

an

RSi

handle

for

subsequent

use

by

the

data-consumer

program.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

The

arguments

to

the

subroutine

are:

rhandleMust

point

to

an

element

of

the

RSiHandleStruct

array,

which

is

returned

by

a

previous

RSiInit

(“RSiInit

Subroutine”

on

page

68)

call.

If

the

subroutine

is

successful

the

structure

is

initialized

and

ready

to

use

as

a

handle

for

subsequent

RSi

interface

subroutine

calls.

waitMust

specify

the

timeout

in

milliseconds

that

the

RSi

interface

shall

wait

for

a

response

when

using

the

request-response

functions.

On

LANs,

a

reasonable

value

for

this

argument

is

100

milliseconds.

If

the

response

is

not

received

after

the

specified

wait

time,

the

library

subroutines

retry

the

receive

operation

until

five

times

the

wait

time

has

elapsed

before

returning

a

timeout

indication.

The

wait

time

must

be

zero

or

more

milliseconds.

bufsizeSpecifies

the

maximum

buffer

size

to

be

used

for

constructing

network

packets.

This

size

must

be

at

least

4,096

bytes.

The

buffer

size

determines

the

maximum

packet

length

that

can

be

received

by

your

program

and

sets

the

limit

for

the

number

of

data

values

that

can

be

received

in

one

data_feed

packet.

There’s

no

point

in

setting

the

buffer

size

larger

than

that

of

the

xmservd

daemon

because

both

must

be

able

to

handle

the

packets.

If

you

need

large

sets

of

values,

you

can

use

the

command

line

argument

-b

of

xmservd

to

increase

its

buffer

size

up

to

16,384

bytes.

The

fixed

part

of

a

data_feed

packet

is

104

bytes

and

each

value

takes

32

bytes.

A

buffer

size

of

4,096

bytes

allows

up

to

124

values

per

packet.

hostIDMust

be

a

character

array

containing

the

identification

of

the

remote

host

whose

xmservd

daemon

is

the

one

with

which

you

want

to

talk.

The

first

characters

of

the

host

identification

(up

to

the

first

white

space)

is

used

as

the

host

name.

The

full

host

identification

is

stored

in

the

RSiHandle

field

longname

and

may

contain

any

description

that

helps

the

end

user

identify

the

host

used.

The

host

name

may

be

either

in

long

format

(including

domain

name)

or

in

short

format.

feed_callbMust

be

a

pointer

to

a

function

that

processes

data_feed

packets

as

they

are

received

from

the

xmservd

daemon.

When

this

callback

function

is

invoked,

it

is

passed

three

arguments

as

described

in

the

following

information.

76

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

resy_callbMust

be

a

pointer

to

a

function

that

processes

i_am_back

packets

as

they

are

received

from

the

xmservd

daemon.

When

this

callback

function

is

invoked

it

is

passed

three

arguments

as

described

in

the

following

information.

excp_callbMust

be

NULL

or

a

pointer

to

a

function

that

processes

except_rec

packets

as

they

are

received

from

the

xmservd

daemon.

If

a

NULL

pointer

is

passed,

your

application

does

not

receive

except_rec

messages.

When

this

callback

function

is

invoked,

it

is

passed

three

arguments

as

described

in

the

following

information.

This

argument

always

overrides

the

corresponding

argument

of

any

previous

RSiInvite

(“RSiInvite

Subroutine”

on

page

70)

or

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine

call

and

can

itself

be

overridden

by

subsequent

executions

of

either.

In

this

way,

your

application

can

turn

exception

monitoring

on

and

off.

For

an

RSiOpen

call

to

override

the

exception

processing

specified

by

a

previous

open

call,

the

connection

must

first

be

closed

with

the

RSiClose

(“RSiClose

Subroutine”

on

page

55)

subroutine

call.

The

feed_callb,

resy_callb,

and

excp_callb

functions

are

called

with

the

arguments:

RSiHandle.

When

a

data_feed

packet

is

received,

the

structure

pointed

to

is

guaranteed

to

represent

the

host

sending

the

packet.

In

all

other

situations

the

RSiHandle

structure

may

represent

any

of

the

hosts

to

which

your

application

is

talking.

Pointer

of

type

pack

*

to

the

input

buffer

containing

the

received

packet.

In

callback

functions,

always

use

this

pointer

rather

than

the

pointer

in

the

RSiHandle

structure.

Pointer

of

type

struct

sockaddr_in

*

to

the

IP

address

of

the

originating

host.

Return

Values

If

successful,

the

subroutine

returns

zero

and

initializes

the

array

element

of

type

RSiHandle

pointed

to

by

rhandle.

If

an

error

occurs,

error

text

is

placed

in

the

external

character

array

RSiEMsg

and

the

subroutine

returns

a

negative

value.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiClose

Subroutine”

on

page

55

v

“RSiInvite

Subroutine”

on

page

70

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

77

RSiPathAddSetStat

Subroutine

Purpose

Add

a

single

statistics

value

to

an

already

defined

SpmiStatSet.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

struct

SpmiStatVals

*RSiPathAddSetStat(rhandle,

statset,

path)

RSiHandle

rhandle;

struct

SpmiStatSet

*statset;

char

*path;

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

statsetMust

be

a

pointer

to

a

structure

of

type

struct

SpmiStatSet,

which

was

previously

returned

by

a

successful

RSiCreateStatSet

(“RSiCreateStatSet

Subroutine”

on

page

57)

subroutine

call.

pathMust

be

the

full

value

path

name

of

the

statistics

value

to

add

to

the

SpmiStatSet.

The

value

path

name

must

not

include

a

terminating

slash.

Note

that

value

path

names

never

start

with

a

slash.

Return

Values

If

successful,

the

subroutine

returns

a

pointer

to

a

structure

of

type

struct

SpmiStatVals.

If

an

error

occurs,

NULL

is

returned

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

If

you

attempt

to

add

more

values

to

a

statset

than

the

current

local

buffer

size

allows,

RSiErrno

is

set

to

RSiTooMany.

If

you

attempt

to

add

more

values

than

the

buffer

size

of

the

remote

host’s

xmservd

daemon

allows,

RSiErrno

is

set

to

RSiBadStat

and

the

status

field

in

the

returned

packet

is

set

to

too_many_values.

The

external

integer

RSiMaxValues

holds

the

maximum

number

of

values

acceptable

with

the

data-consumer’s

buffer

size.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

78

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

For

related

information,

see:

v

“RSiCreateStatSet

Subroutine”

on

page

57

v

“RSiOpen

Subroutine”

on

page

75.

RSiPathGetCx

Subroutine

Purpose

Searches

the

context

hierarchy

for

an

SpmiCx

context

that

matches

a

context

path

name.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

cx_handle

*RSiPathGetCx(rhandle,

path)

RSiHandle

rhandle;

char

*path;

Description

The

RSiPathGetCx

subroutine

performs

the

following

actions:

1.

Searches

the

context

hierarchy

for

a

given

path

name

of

a

context.

2.

Returns

a

handle

to

be

used

when

subsequently

referencing

the

context.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

pathA

path

name

of

a

context

for

which

a

handle

is

to

be

returned.

The

context

path

name

must

be

the

full

path

name

and

must

not

include

a

terminating

slash.

Note

that

context

path

names

never

start

with

a

slash.

Return

Values

If

successful,

the

subroutine

returns

a

handle

defined

as

a

pointer

to

a

structure

of

type

cx_handle.

If

an

error

occurs,

NULL

is

returned

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

79

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiFirstCx

Subroutine”

on

page

60

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiNextCx

Subroutine”

on

page

73.

RSiStartFeed

Subroutine

Purpose

Tells

xmservd

to

start

sending

data

feeds

for

a

statset.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiStartFeed(rhandle,

statset,

msecs)

RSiHandle

rhandle;

struct

SpmiStatSet

*statset;

int

msecs;

Description

The

RSiStartFeed

subroutine

performs

the

following

function:

1.

Informs

xmservd

of

the

frequency

with

which

it

is

required

to

send

data_feed

packets.

2.

Tells

the

xmservd

to

start

sending

data_feed

packets.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

statsetMust

be

a

pointer

to

a

structure

of

type

struct

SpmiStatSet,

which

was

previously

returned

by

a

successful

RSiCreateStatSet

(“RSiCreateStatSet

Subroutine”

on

page

57)

subroutine

call.

msecsThe

number

of

milliseconds

between

the

sending

of

data_feed

packets.

This

number

is

rounded

to

a

multiple

of

min_remote_int

milliseconds

by

the

xmservd

daemon

on

the

remote

host.

This

minimum

interval

can

be

modified

through

the

-i

command

line

interval

to

xmservd.

Return

Values

If

successful,

the

subroutine

returns

zero;

otherwise

it

returns

-1

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

80

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiCreateStatSet

Subroutine”

on

page

57

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiStopFeed

Subroutine”

on

page

84.

RSiStartHotFeed

Subroutine

Purpose

Tells

xmservd

to

start

sending

hot

feeds

for

a

hotset

or

to

start

checking

for

if

exceptions

or

SNMP

traps

should

be

generated.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiStartFeed(rhandle,

hotset,

msecs)

RSiHandle

rhandle;

struct

SpmiHotSet

*hotset;

int

msecs;

Description

The

RSiStartHotFeed

subroutine

performs

the

following

function:

1.

Informs

xmservd

of

the

frequency

with

which

it

is

required

to

send

hot_feed

packets,

if

the

hotset

is

defined

to

generate

hot_feed

packets.

2.

Informs

xmservd

of

the

frequency

with

which

it

is

required

to

check

if

exceptions

or

SNMP

traps

should

be

generated.

This

is

only

done

if

it

is

specified

for

the

hotset

that

exceptions

and/or

SNMP

traps

should

be

generated.

3.

Tells

the

xmservd

to

start

sending

data_feed

packets

and/or

start

checking

for

exceptions

or

traps.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

81

Parameters

rhandleMust

be

an

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

hotsetMust

be

a

pointer

to

a

structure

of

type

struc

SpmiHotSet,

which

was

previously

returned

by

a

successful

RSiCreateHot

(“RSiCreateHotSet

Subroutine”

on

page

56)

subroutine

call.

msecsThe

number

of

milliseconds

between

the

sending

of

hot_feed

packets

and/or

the

number

of

milliseconds

between

checks

for

if

exceptions

or

SNMP

traps

should

be

generated.

This

number

is

rounded

to

a

multiple

of

min_remote_int

milliseconds

by

the

xmservd

daemon

on

the

remote

host.

This

minimum

interval

can

be

modified

through

the

-i

command

line

interval

to

xmservd.

Return

Values

If

successful,

the

subroutine

returns

zero;

otherwise

it

returns

-1

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiCreateHotSet

Subroutine”

on

page

56

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiChangeHotFeed

Subroutine”

on

page

54

v

“RSiStopHotFeed

Subroutine”

on

page

85.

RSiStatGetPath

Subroutine

Purpose

Finds

the

full

path

name

of

a

statistic

identified

by

a

SpmiStatVals

pointer.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

82

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

char

*RSiStatGetPath(rhandle,

svp)

RSiHandle

rhandle;

struct

SpmiStatVals

*svp;

Description

The

RSiStatGetPath

subroutine

performs

the

following:

1.

Validates

that

the

SpmiStatVals

statistic

identified

by

the

second

argument

does

exist.

2.

Returns

a

pointer

to

a

character

array

containing

the

full

value

path

name

of

the

statistic.

The

memory

area

pointed

to

by

the

returned

pointer

is

freed

when

the

RSiStatGetPath

subroutine

call

is

repeated.

For

each

invocation

of

the

subroutine,

a

new

memory

area

is

allocated

and

its

address

returned.

If

the

calling

program

needs

the

returned

character

string

after

issuing

the

RSiStatGetPath

subroutine

call,

the

program

must

copy

the

returned

string

to

locally

allocated

memory

before

reissuing

the

subroutine

call.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

be

an

RSiHandle,

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

svpMust

be

a

handle

of

type

struct

SpmiStatVals

as

returned

by

a

successful

RSiPathAddSetStat

(“RSiPathAddSetStat

Subroutine”

on

page

78)

subroutine

call.

Return

Values

If

successful,

the

RSiStatGetPath

subroutine

returns

a

pointer

to

a

character

array

containing

the

full

path

name

of

the

statistic.

If

unsuccessful,

the

subroutine

returns

a

NULL

value

and

an

error

text

may

be

placed

in

the

external

character

array

RSiEMsg.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiPathAddSetStat

Subroutine”

on

page

78.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

83

RSiStopFeed

Subroutine

Purpose

Tells

xmservd

to

stop

sending

data

feeds

for

a

statset.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiStopFeed(rhandle,

statset,

erase)

RSiHandle

rhandle;

struct

SpmiStatSet

*statset;

boolean

erase;

Description

The

RSiStopFeed

subroutine

instructs

the

xmservd

of

a

remote

system

to:

1.

Stop

sending

data_feed

packets

for

a

given

SpmiStatSet.

If

the

daemon

is

not

told

to

erase

the

SpmiStatSet,

feeding

of

data

can

be

resumed

by

issuing

the

RSiStartFeed

(“RSiStartFeed

Subroutine”

on

page

80)

subroutine

call

for

the

SpmiStatSet.

2.

Optionally

tells

the

daemon

and

the

API

library

subroutines

to

erase

all

their

information

about

the

SpmiStatSet.

Subsequent

references

to

the

erased

SpmiStatSet

are

not

valid.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

point

to

a

structure

of

type

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

statsetMust

be

a

pointer

to

a

structure

of

type

struct

SpmiStatSet,

which

was

previously

returned

by

a

successful

RSiCreateStatSet

(“RSiCreateStatSet

Subroutine”

on

page

57)

subroutine

call.

Data

feeding

must

have

been

started

for

this

SpmiStatSet

via

a

previous

RSiStartFeed

(“RSiStartFeed

Subroutine”

on

page

80)

subroutine

call.

eraseIf

this

argument

is

set

to

true,

the

xmservd

daemon

on

the

remote

host

discards

all

information

about

the

named

SpmiStatSet.

Otherwise

the

daemon

maintains

its

definition

of

the

set

of

statistics.

Return

Values

If

successful,

the

subroutine

returns

zero,

otherwise

-1.

A

NULL

error

text

is

placed

in

the

external

character

array

RSiEMsg

regardless

of

the

subroutine’s

success

or

failure.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

84

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiStartFeed

Subroutine”

on

page

80.

RSiStopHotFeed

Subroutine

Purpose

Tells

xmservd

to

stop

sending

hot

feeds

for

a

hotset

and

to

stop

checking

for

exception

and

SNMP

trap

generation.

Library

RSI

Library

(libSpmi.a)

Syntax

#include

sys/Rsi.h

int

RSiStopFeed(rhandle,

hotset,

erase)

RSiHandle

rhandle;

struct

SpmiHotSet

*hotset;

boolean

erase;

Description

The

RSiStopHotFeed

subroutine

instructs

the

xmservd

of

a

remote

system

to:

1.

Stop

sending

hot_feed

packets

or

check

if

exceptions

or

SNMP

traps

should

be

generated

for

a

given

SpmiHotSet.

If

the

daemon

is

not

told

to

erase

the

SpmiHotSet,

feeding

of

data

can

be

resumed

by

issuing

the

RSiStartHotFeed

(“RSiStartHotFeed

Subroutine”

on

page

81)

subroutine

call

for

the

SpmiHotSet.

2.

Optionally

tells

the

daemon

and

the

API

library

subroutines

to

erase

all

their

information

about

the

SpmiHotSet.

Subsequent

references

to

the

erased

SpmiHotSet

are

not

valid.

This

subroutine

is

part

of

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

rhandleMust

point

to

a

structure

of

type

RSiHandle,

which

was

previously

initialized

by

the

RSiOpen

(“RSiOpen

Subroutine”

on

page

75)

subroutine.

hotsetMust

be

a

pointer

to

a

structure

of

type

struct

SpmiHotSet,

which

was

previously

returned

by

a

successful

RSiCreateHotSet

(“RSiCreateHotSet

Subroutine”

on

page

56)

subroutine

call.

Data

feeding

must

have

been

started

for

this

SpmiStatSet

via

a

previous

RSiStartHotFeed

(“RSiStartHotFeed

Subroutine”

on

page

81)

subroutine

call.

eraseIf

this

argument

is

set

to

true,

the

xmservd

daemon

on

the

remote

host

discards

all

information

about

the

named

SpmiHotSet.

Otherwise

the

daemon

maintains

its

definition

of

the

set

of

statistics.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

85

Return

Values

If

successful,

the

subroutine

returns

zero,

otherwise

-1.

A

NULL

error

text

is

placed

in

the

external

character

array

RSiEMsg

regardless

of

the

subroutine’s

success

or

failure.

Error

Codes

All

RSI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

RSiEMsg[];

v

extern

int

RSiErrno;

If

the

subroutine

returns

without

an

error,

the

RSiErrno

variable

is

set

to

RSiOkay

and

the

RSiEMsg

character

array

is

empty.

If

an

error

is

detected,

the

RSiErrno

variable

returns

an

error

code,

as

defined

in

the

enum

RSiErrorType.

RSi

error

codes

are

described

in

List

of

RSi

Error

Codes.

Files

/usr/include/sys/Rsi.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

RSI.

Related

Information

For

related

information,

see:

v

“RSiOpen

Subroutine”

on

page

75

v

“RSiStartHotFeed

Subroutine”

on

page

81

v

“RSiChangeHotFeed

Subroutine”

on

page

54.

rs_alloc

Subroutine

Purpose

Allocates

a

resource

set

and

returns

its

handle.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

rsethandle_t

rs_alloc

(flags)

unsigned

int

flags;

Description

The

rs_alloc

subroutine

allocates

a

resource

set

and

initializes

it

according

to

the

information

specified

by

the

flags

parameter.

The

value

of

the

flags

parameter

determines

how

the

new

resource

set

is

initialized.

The

handle

for

the

new

resource

set

is

returned

by

the

subroutine.

86

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

flags

Specifies

how

the

new

resource

set

is

initialized.

It

takes

one

of

the

following

values,

defined

in

rset.h:

v

RS_EMPTY

(or

0

value):

The

resource

set

is

initialized

to

contain

no

resources.

v

RS_SYSTEM:

The

resource

set

is

initialized

to

contain

available

system

resources.

v

RS_ALL:

The

resource

set

is

initialized

to

contain

all

resources.

v

RS_PARTITION:

The

resource

set

is

initialized

to

contain

the

resources

in

the

caller’s

process

partition

resource

set.

Return

Values

On

successful

completion,

a

resource

set

handle

for

the

new

resource

set

is

returned.

Otherwise,

a

value

of

0

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_alloc

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

The

flags

parameter

contains

an

invalid

value.

ENOMEM

There

is

not

enough

space

to

create

the

data

structures

related

to

the

resource

set.

Related

Information

“rs_free

Subroutine”

on

page

88,

“rs_getinfo

Subroutine”

on

page

90,

and

“rs_init

Subroutine”

on

page

96.

rs_discardname

Subroutine

Purpose

Discards

a

resource

set

definition

from

the

system

resource

set

registry.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_discardname(namespace,

rsname)

char

*namespace,

*rsname;

Description

The

rs_discardname

subroutine

discards

from

the

system

global

repository

the

definition

of

the

resource

set.

The

resource

set

is

identified

by

the

namespace

and

rsname

parameters.

The

specified

resource

set

is

removed

from

the

registry,

and

can

no

longer

be

shared

with

other

applcations.

In

order

to

be

able

to

discard

a

name

from

the

global

repository,

the

calling

process

must

have

root

authority

or

attachment

privilege,

and

an

effective

user

ID

equal

to

that

of

the

rsname

parameter’s

creator.

Parameters

namespace

Points

to

a

null

terminated

string

corresponding

to

the

name

space

within

which

rsname

should

be

found.

rsname

Points

to

a

null

terminated

string

corresponding

to

the

name

of

a

registered

resource

set

to

be

discarded.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

87

Return

Values

If

successful,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_discardname

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

The

rsname

parameter

contains

a

null

value.

v

The

namespace

parameter

contains

a

null

value.

v

The

rsname

or

namespace

parameters

point

to

an

invalid

name.

v

The

name

length

is

null

or

greater

than

the

RSET_NAME_SIZE

constant

(defined

in

rset.h),

or

the

name

contains

invalid

characters.

EPERM

One

of

the

following

is

true:

v

The

calling

process

has

neither

root

authority

nor

CAP_NUMA_ATTACH

priveleges.

v

The

calling

process

has

neither

the

same

user

ID

as

the

creator

of

the

rsname

definition

nor

root

authority

.

v

The

namespace

parameter

starts

with

sys.

This

name

space

is

reserved

for

system

use.

EFAULT

Invalid

address,

and/or

exceptions

outside

errno

range.

Related

Information

“rs_getnameattr

Subroutine”

on

page

91,

“rs_registername

Subroutine”

on

page

99,

and

“rs_getnamedrset

Subroutine”

on

page

92.

rs_free

Subroutine

Purpose

Frees

a

resource

set.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

void

rs_free(rset)

rsethandle_t

rset;

Description

The

rs_free

subroutine

frees

a

resource

set

identified

by

the

rset

parameter.

The

resource

set

must

have

been

allocated

by

the

rs_alloc

subroutine

Parameters

rset

Specifies

the

resource

set

whose

memory

will

be

freed.

Related

Information

The

“rs_alloc

Subroutine”

on

page

86.

88

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

rs_getassociativity

Subroutine

Purpose

Gets

the

hardware

associativity

values

for

a

resource.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_getassociativity

(type,

id,

assoc_array,

array_size)

unsigned

int

type;

unsigned

int

id;

unsigned

int

*assoc_array;

unsigned

int

array_size;

Description

The

rs_getassociativity

subroutine

returns

the

array

of

hardware

associativity

values

for

a

specified

resource.

This

is

a

special

purpose

subroutine

intended

for

specialized

root

applications

needing

the

hardware

associativity

value

information.

The

rs_getinfo,

rs_getrad,

and

rs_numrads

subroutines

are

provided

for

non-root

applications

to

discover

system

hardware

topology.

The

calling

process

must

have

root

authority

to

get

hardware

associativity

values.

Parameters

type

Specifies

the

resource

type

whose

associativity

values

are

requested.

The

only

value

supported

to

retrieve

values

for

a

processor

is

R_PROCS.

id

Specifies

the

logical

resource

id

whose

associativity

values

are

requested.

assoc_array

Specifies

the

address

of

an

array

of

unsigned

integers

to

receive

the

associativity

values.

array_size

Specifies

the

number

of

unsigned

integers

in

assoc_array.

Return

Values

If

successful,

a

value

of

0

is

returned.

The

assoc_array

parameter

array

contains

the

resource’s

associativity

values.

The

first

entry

in

the

array

indicates

the

number

of

associativity

values

returned.

If

the

hardware

system

does

not

provide

system

topology

data,

a

value

of

0

is

returned

in

the

first

array

entry.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_getassociativity

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

occurred:

v

The

array_size

parameter

was

specified

as

0.

v

An

invalid

type

parameter

was

specified.

ENODEV

The

resource

specified

by

the

id

parameter

does

not

exist.

EFAULT

Invalid

address.

EPERM

The

calling

process

does

not

have

root

authority.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

89

Related

Information

“rs_getinfo

Subroutine,”

“rs_getrad

Subroutine”

on

page

94,

and

“rs_numrads

Subroutine”

on

page

96.

rs_getinfo

Subroutine

Purpose

Gets

information

about

a

resource

set.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_getinfo(rset,

info_type,

flags)

rsethandle_t

rset;

rsinfo_t

info_type;

unsigned

int

flags;

Description

The

rs_getinfo

subroutine

retrieves

information

about

the

resource

set

identified

by

the

rset

parameter.

Depending

on

the

value

of

the

info_type

parameter,

the

rs_getinfo

subroutine

returns

information

about

the

number

of

available

processors,

the

number

of

available

memory

pools,

or

the

amount

of

available

memory

contained

in

the

resource

rset.

The

subroutine

can

also

return

global

system

information

such

as

the

maximum

system

detail

level,

the

symmetric

multiprocessor

(SMP)

and

multiple

chip

module

(MCM)

system

detail

levels,

and

the

maximum

number

of

processor

or

memory

pool

resources

in

a

resource

set.

Parameters

rset

Specifies

a

resource

set

handle

of

a

resource

set

the

information

should

be

retrieved

from.

This

parameter

is

not

meaningful

if

the

info_type

parameter

is

R_MAXSDL,

R_MAXPROCS,

R_MAXMEMPS,

R_SMPSDL,

or

R_MCMSDL.

info_type

Specifies

the

type

of

information

being

requested.

One

of

the

following

values

(defined

in

rset.h)

can

be

used:

v

R_NUMPROCS:

The

number

of

available

processors

in

the

resource

set

is

returned.

v

R_NUMMEMPS:

The

number

of

available

memory

pools

in

the

resource

set

is

returned.

v

R_MEMSIZE:

The

amount

of

available

memory

(in

MB)

contained

in

the

resource

set

is

returned.

v

R_MAXSDL:

The

maximum

system

detail

level

of

the

system

is

returned.

v

R_MAXPROCS:

The

maximum

number

of

processors

that

may

be

contained

in

a

resource

set

is

returned.

v

R_MAXMEMPS:

The

maximum

number

of

memory

pools

that

may

be

contained

in

a

resource

set

is

returned.

v

R_SMPSDL:

The

system

detail

level

that

corresponds

to

the

traditional

notion

of

an

SMP

is

returned.

A

system

detail

level

of

0

is

returned

if

the

hardware

system

does

not

provide

system

topology

data.

v

R_MCMSDL:

The

system

detail

level

that

corresponds

to

resources

packaged

in

an

MCM

is

returned.

A

system

detail

level

of

0

is

returned

if

the

hardware

system

does

not

have

MCMs

or

does

not

provide

system

topology

data.

flags

Reserved

for

future

use.

Specify

as

0.

90

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

If

successful,

the

requested

information

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_getinfo

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

The

info_type

parameter

specifies

an

invalid

resource

type

value.

v

The

flags

parameter

was

not

specified

as

0.

EFAULT

Invalid

address.

Related

Information

The

“rs_numrads

Subroutine”

on

page

96.

rs_getnameattr

Subroutine

Purpose

Retrieves

the

access

control

information

of

a

resource

set

definition

in

the

system

resource

set

registry.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_getnameattr(namespace,

rsname,

attr)

char

*namespace,

*rsname;

rs_attributes_t

*attr;

Description

The

rs_getnameattr

subroutine

retrieves

from

the

system

resource

set

registry

the

access

control

information

of

the

resource

set

definition

specified

by

the

namespace

and

rsname

parameters.

The

owner

ID,

group

ID,

and

access

control

information

of

the

specified

resource

set

are

stored

in

the

structure

pointed

to

by

the

attr

parameter.

Note:

No

special

authority

or

access

permission

is

required

to

query

this

information.

Parameters

namespace

Points

to

a

null

terminated

string

corresponding

to

the

name

space

within

which

the

rsname

parameter

should

be

found.

rsname

Points

to

a

null

terminated

string

corresponding

to

the

name

the

information

should

be

retrieved

for.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

91

attr

Points

to

an

rs_attributes_t

structure

containing

the

owner,

group,

and

mode

fields,

which

will

be

filled

by

the

subroutine.

The

mode

field

in

the

rs_attributes_t

structure

is

used

to

store

the

access

permissions,

and

is

constructed

by

logically

ORing

one

or

more

of

the

following

values,

defined

in

rset.h:

v

RS_IRUSR:

Gives

read

rights

to

the

name’s

owner.

v

RS_IWUSR:

Gives

write

rights

to

the

name’s

owner.

v

RS_IRGRP:

Gives

read

rights

to

users

of

the

same

group

as

the

name’s

owner.

v

RS_IWGRP:

Gives

write

rights

to

users

of

the

same

group

as

the

name’s

owner.

v

RS_IROTH:

Gives

read

rights

to

others.

v

RS_IWOTH:

Gives

write

rights

to

others.

Read

privilege

for

a

user

means

that

the

user

can

retrieve

a

resource

set

definition

by

issuing

a

call

to

the

rs_getnamedrset

subroutine.

Write

privilege

for

a

user

means

that

the

user

can

redefine

a

name

by

issuing

another

call

to

the

rs_getnamedrset

subroutine.

Return

Values

If

successful,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_getnameattr

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

If

one

of

the

following

is

true:

v

The

rsname

parameter

is

a

null

pointer.

v

The

namespace

parameter

is

a

null

pointer.

v

The

rsname

or

namespace

parameters

point

to

an

invalid

name.

The

name

length

is

0

or

greater

than

the

RSET_NAME_SIZE

constant

(defined

in

rset.h),

or

the

rsname

parameter

contains

invalid

characters.

ENOENT

The

rsname

parameter

could

not

be

found

in

the

name

space

identified

by

the

namespace

parameter.

EFAULT

Invalid

address.

Related

Information

“rs_registername

Subroutine”

on

page

99,

“rs_discardname

Subroutine”

on

page

87,

and

“rs_getnamedrset

Subroutine.”

rs_getnamedrset

Subroutine

Purpose

Retrieves

the

contents

of

a

named

resource

set

from

the

system

resource

set

registry.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_getnamedrset

(namespace,

rsname,

rset)

char

*namespace,

*rsname;

92

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

rs_getnamedrset

subroutine

retrieves

a

resource

set

definition

from

the

system

registry.

The

namespace

and

rsname

parameters

identify

the

resource

set

to

be

retrieved.

The

rset

parameter

identifies

where

the

retrieved

resource

set

should

be

returned.

The

namespace

and

rsname

parameters

identify

a

previously

registered

resource

set

definition.

The

calling

process

must

have

root

authority

or

read

access

rights

to

the

resource

set

definition

in

order

to

retrieve

it.

The

rset

parameter

must

be

allocated

(using

the

rs_alloc

subroutine)

prior

to

calling

the

rs_getnamedrset

subroutine.

Parameters

namespace

Points

to

a

null-terminated

string

corresponding

to

the

name

space

within

which

rsname

is

found.

rsname

Points

to

a

null-terminated

string

corresponding

to

the

previously

registered

name

of

a

resource

set.

rset

Specifies

the

resource

set

handle

for

the

resource

set

that

the

registered

resource

set

is

copied

into.

The

registered

resource

set

is

specified

by

the

rsname

parameter.

Return

Values

If

successful

,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_getnamedrset

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

The

rsname

parameter

is

a

null

pointer.

v

The

namespace

parameter

is

a

null

pointer.

v

The

rsname

or

namespace

parameters

point

to

an

invalid

name.

The

name

length

is

0

or

greater

than

the

RSET_NAME_SIZE

constant

(defined

in

rset.h),

or

the

rsname

parameter

contains

invalid

characters.

ENOENT

The

rsname

parameter

could

not

be

found

in

the

name

space

identified

by

the

namespace

parameter.

EPERM

The

calling

process

has

neither

read

permission

on

rsname

nor

root

authority.

EFAULT

Invalid

address.

Related

Information

“rs_alloc

Subroutine”

on

page

86,

“rs_registername

Subroutine”

on

page

99,

“rs_getnameattr

Subroutine”

on

page

91,

and

“rs_discardname

Subroutine”

on

page

87.

rs_getpartition

Subroutine

Purpose

Gets

the

partition

resource

set

to

which

a

process

is

attached.

Library

Standard

C

library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

93

Syntax

#include

<sys/rset.h>

int

rs_getpartition

(pid,

rset)

pid_t

pid;

rsethandle_t

rset;

Description

The

rs_getpartition

subroutine

returns

the

partition

resource

set

attached

to

the

specified

process.

A

process

ID

value

of

RS_MYSELF

indicates

the

partition

resource

set

attached

to

the

current

process

is

requested.

The

return

value

from

the

rs_getpartition

subroutine

indicates

the

type

of

resource

set

returned.

A

value

of

RS_PARTITION_RSET

indicates

the

process

has

a

partition

resource

set

that

is

set

explicitly.

This

may

be

set

with

the

rs_setpartition

subroutine

or

through

the

use

of

WLM

work

classes

with

resource

sets.

A

value

of

RS_DEFAULT_RSET

indicates

the

process

did

not

have

an

explicitly

set

partition

resource

set.

The

system

default

resource

set

is

returned.

Parameters

pid

Specifies

the

process

ID

whose

partition

rset

is

requested.

rset

Specifies

the

resource

set

to

receive

the

process’

partition

resource

set.

Return

Values

If

successful,

a

value

of

RS_PARTITION_RSET,

or

RS_DEFAULT_RSET

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

global

errno

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_getpartition

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EFAULT

Invalid

address.

ESRCH

The

process

identified

by

the

pid

parameter

does

not

exist.

Related

Information

The

“ra_getrset

Subroutine”

on

page

15.

rs_getrad

Subroutine

Purpose

Returns

a

system

resource

allocation

domain

(RAD)

contained

in

an

input

resource

set.

Library

Standard

C

library

(libc.a)

94

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<sys/rset.h>

int

rs_getrad

(rset,

rad,

sdl,

index,

flags)

rsethandle_t

rset,

rad;

unsigned

int

sdl;

unsigned

int

index;

unsigned

int

flags;

Description

The

rs_getrad

subroutine

returns

a

system

RAD

at

a

specified

system

detail

level

and

index

that

is

contained

in

an

input

resource

set.

If

only

some

of

the

resources

in

the

specified

system

RAD

are

contained

in

the

input

resource

set,

only

the

resources

in

both

the

system

RAD

and

the

input

resource

set

are

returned.

The

input

resource

set

is

specified

by

the

rset

parameter.

The

output

system

RAD

is

identified

by

the

rad

parameter.

The

system

RAD

is

specified

by

system

detail

level

sdl

and

index

number

index.

If

only

a

portion

of

the

specified

RAD

is

contained

in

rset,

only

that

portion

is

returned

in

rad.

The

rset

and

rad

parameters

must

be

allocated

(using

the

rs_alloc

subroutine)

prior

to

calling

the

rs_getrad

subroutine.

Parameters

rset

Specifies

a

resource

set

handle

for

the

input

resource

set.

rad

Specifies

a

resource

set

handle

to

receive

the

desired

system

RAD

(contained

in

the

rset

parameter).

sdl

Specifies

the

system

detail

level

of

the

desired

system

RAD.

index

Specifies

the

index

of

the

system

RAD

that

should

be

returned

from

among

those

at

the

specified

sdl.

This

parameter

must

belong

to

the

[0,

rs_numrads(rset,

sdl,

flags)-

1]

interval.

flags

The

following

flags

(defined

in

rset.h)

can

be

used

to

modify

the

default

behavior

of

the

rs_getrad

subroutine.

By

default,

the

rs_getrad

subroutine

empties

the

resource

set

specified

by

rad

before

the

specified

RAD

is

retrieved.

v

RS_UNION:

Instead

of

emptying

rad

before

the

specified

RAD

is

retrieved,

the

RAD

retrieved

is

added

to

the

contents

of

rad.

On

completion,

rad

contains

the

union

of

its

original

contents

and

the

specified

RAD.

v

RS_EXCLUSION:

Instead

of

emptying

rad

before

the

specified

RAD

is

retrieved,

the

resources

in

the

specified

RAD

that

are

also

in

rad

are

removed

from

rad.

On

return,

rad

contains

all

the

resources

it

originally

contained

except

those

in

the

specified

RAD.

Return

Values

If

successful,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_getrad

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

The

flags

parameter

contains

an

invalid

value.

v

The

sdl

parameter

is

greater

than

the

maximum

system

detail

level.

v

The

RAD

specified

by

the

index

parameter

does

not

exist

at

the

system

detail

level

specified

by

the

sdl

parameter.

EFAULT

Invalid

address.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

95

Related

Information

“rs_numrads

Subroutine,”

“rs_getinfo

Subroutine”

on

page

90,

and

“rs_alloc

Subroutine”

on

page

86.

rs_init

Subroutine

Purpose

Initializes

a

previously

allocated

resource

set.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_init

(rset,

flags)

rsethandle_t

rset;

unsigned

int

flags;

Description

The

rs_init

subroutine

initializes

a

previously

allocated

resource

set.

The

resource

set

is

initialized

according

to

information

specified

by

the

flags

parameter.

Parameters

rset

Specifies

the

handle

of

the

resource

set

to

initialize.

flags

Specifies

how

the

resource

set

is

initialized.

It

takes

one

of

the

following

values,

defined

in

rset.h:

v

RS_EMPTY:

The

resource

set

is

initialized

to

contain

no

resources.

v

RS_SYSTEM:

The

resource

set

is

initialized

to

contain

available

system

resources.

v

RS_ALL:

The

resource

set

is

initialized

to

contain

all

resources.

v

RS_PARTITION:

The

resource

set

is

initialized

to

contain

the

resources

in

the

caller’s

process

partition

resource

set.

Return

Values

If

successful,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_init

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

The

flags

parameter

contains

an

invalid

value.

Related

Information

The

“rs_alloc

Subroutine”

on

page

86.

rs_numrads

Subroutine

Purpose

Returns

the

number

of

system

resource

allocation

domains

(RADs)

that

have

available

resources.

96

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_numrads(rset,

sdl,

flags)

rsethandle_t

rset;

unsigned

int

sdl;

unsigned

int

flags;

Description

The

rs_numrads

subroutine

returns

the

number

of

system

RADs

at

system

detail

level

sdl,

that

have

available

resources

contained

in

the

resource

set

identified

by

the

rset

parameter.

The

number

of

atomic

RADs

contained

in

the

rset

parameter

is

returned

if

the

sdl

parameter

is

equal

to

the

maximum

system

detail

level.

Parameters

rset

Specifies

the

resource

set

handle

for

the

resource

set

being

queried.

sdl

Specifies

the

system

detail

level

in

which

the

caller

is

interested.

flags

Reserved

for

future

use.

Specify

as

0.

Return

Values

If

successful,

the

number

of

available

RADs

at

system

detail

level

sdl,

that

have

resources

contained

in

the

specified

resource

set

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_numrads

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

The

flags

parameter

contains

an

invalid

value.

v

The

sdl

parameter

is

greater

than

the

maximum

system

detail

level.

EFAULT

Invalid

address.

Related

Information

“rs_getrad

Subroutine”

on

page

94,

and

“rs_getinfo

Subroutine”

on

page

90.

rs_op

Subroutine

Purpose

Performs

a

set

of

operations

on

one

or

two

resource

sets.

Library

Standard

C

library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

97

Syntax

#include

<sys/rset.h>

int

rs_op

(command,

rset1,

rset2,

flags,

id)

unsigned

int

command;

rsethandle_t

rset1,

rset2;

unsigned

int

flags;

unsigned

int

id;

Description

The

rs_op

subroutine

performs

the

operation

specified

by

the

command

parameter

on

resource

set

rset1

or

both

resource

sets

rset1

and

rset2.

Parameters

command

Specifies

the

operation

to

apply

to

the

resource

sets

identified

by

rset1

and

rset2.

One

of

the

following

values,

defined

in

rset.h,

can

be

used:

v

RS_UNION:

The

resources

contained

in

either

rset1

or

rset2

are

stored

in

rset2.

v

RS_INTERSECTION:

The

resources

that

are

contained

in

both

rset1

and

rset2

are

stored

in

rset2.

v

RS_EXCLUSION:

The

resources

in

rset1

that

are

also

in

rset2

are

removed

from

rset2.

On

completion,

rset2

contains

all

the

resources

that

were

contained

in

rset2

but

were

not

contained

in

rset1.

v

RS_COPY:

All

resources

in

rset1

whose

type

is

flags

are

stored

in

rset2.

If

rset1

contains

no

resources

of

this

type,

rset2

will

be

empty.

The

previous

content

of

rset2

is

lost,

while

the

content

of

rset1

is

unchanged.

v

RS_FIRST:

The

first

resource

whose

type

is

flags

is

retrieved

from

rset1

and

stored

in

rset2.

If

rset1

contains

no

resources

of

this

type,

rset2

will

be

empty.

v

RS_NEXT:

The

resource

from

rset1

whose

type

is

flags

and

that

follows

the

resource

contained

in

rset2

is

retrieved

and

stored

in

rset2.

If

no

resource

of

the

appropriate

type

follows

the

resource

specified

in

rset2,

rset2

will

be

empty.

v

RS_NEXT_WRAP:

The

resource

from

rset1

whose

type

is

flags

and

that

follows

the

resource

contained

in

rset2

is

retrieved

and

stored

in

rset2.

If

no

resource

of

the

appropriate

type

follows

the

resource

specified

in

rset2,

rset2

will

contain

the

first

resource

of

this

type

in

rset1.

v

RS_ISEMPTY:

Test

if

resource

set

rset1

is

empty.

v

RS_ISEQUAL:

Test

if

resource

sets

rset1

and

rset2

are

equal.

v

RS_ISCONTAINED:

Test

if

all

resources

in

resource

set

rset1

are

also

contained

in

resource

set

rset2.

v

RS_TESTRESOURCE:

Test

if

the

resource

whose

type

is

flags

and

index

is

id

is

contained

in

resource

set

rset1.

v

RS_ADDRESOURCE:

Add

the

resource

whose

type

is

flags

and

index

is

id

to

resource

set

rset1.

v

RS_DELRESOURCE:

Delete

the

resource

whose

type

is

flags

and

index

is

id

from

resource

set

rset1.

rset1

Specifies

the

resource

set

handle

for

the

first

of

the

resource

sets

involved

in

the

command

operation.

rset2

Specifies

the

resource

set

handle

for

the

second

of

the

resource

sets

involved

in

the

command

operation.

This

resource

set

is

also

used,

on

return,

to

store

the

result

of

the

operation,

and

its

previous

content

is

lost.

The

rset2

parameter

is

ignored

on

the

RS_ISEMPTY,

RS_TESTRESOURCE,

RS_ADDRESOURCE,

and

RS_DELRESOURCE

commands.

flags

When

combined

with

the

RS_COPY

command,

the

flags

parameter

specifies

the

type

of

the

resources

that

will

be

copied

from

rset1

to

rset2.

When

combined

with

an

RS_FIRST

or

an

RS_NEXT

command,

the

flags

parameter

specifies

the

type

of

the

resource

that

will

be

retrieved

from

rset1.

This

parameter

is

constructed

by

logically

ORing

one

or

more

of

the

following

values,

defined

in

rset.h:

v

R_PROCS:

processors

v

R_MEMPS:

memory

pools

v

R_ALL_RESOURCES:

processors

and

memory

pools

If

none

of

the

above

are

specified

for

flags,

R_ALL_RESOURCES

is

assumed.

98

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

id

On

the

RS_TESTRESOURCE,

RS_ADDRESOURCE,

and

RS_DELRESOURCE

commands,

the

id

parameter

specifies

the

index

of

the

resource

to

be

tested,

added,

or

deleted.

This

parameter

is

ignored

on

the

other

commands.

Return

Values

If

successful,

the

commands

RS_ISEMPTY,

RS_ISEQUAL,

RS_ISCONTAINED,

and

RS_TESTRESOURCE

return

0

if

the

tested

condition

is

not

met

and

1

if

the

tested

condition

is

met.

All

other

commands

return

0

if

successful.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_op

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

If

one

of

the

following

is

true:

v

rset1

identifies

an

invalid

resource

set.

v

rset2

identifies

an

invalid

resource

set.

v

command

identifies

an

invalid

operation.

v

command

is

RS_NEXT

or

RS_NEXT_WRAP*,

and

rset2

does

not

contain

a

single

resource.

v

command

is

RS_NEXT

or

RS_NEXT_WRAP*,

and

the

single

resource

contained

in

rset2

is

not

also

contained

in

rset1.

v

flags

identifies

an

invalid

resource

type.

v

id

specifies

a

resource

index

that

is

too

large.

EFAULT

Invalid

address.

Related

Information

The

“rs_alloc

Subroutine”

on

page

86.

rs_registername

Subroutine

Purpose

Registers

a

resource

set

definition

in

the

system

resource

set

registry.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_registername(rset,

namespace,

rsname,

mode,

command)

rsethandle_t

rset;

char

*namespace,

*rsname;

unsigned

int

mode,

command;

Description

The

rs_registername

subroutine

registers

in

the

system

resource

registry

(within

the

name

space

identified

by

namespace)

the

definition

of

the

resource

set

identified

by

the

rset

handle.

The

rs_registername

subroutine

does

this

by

associating

with

it

the

name

specified

by

the

null

terminated

string

structure

pointed

to

by

rsname.

If

rsname

does

not

exist,

the

owner

and

group

IDs

of

rsname

are

set

to

the

caller’s

owner

and

group

IDs,

and

the

access

control

information

for

rsname

is

set

according

to

the

mode

parameter.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

99

If

rsname

already

exists,

its

owner

and

group

IDs

and

its

access

control

information

are

left

unchanged,

and

the

mode

parameter

is

ignored.

This

name

can

be

shared

with

any

applications

to

identify

a

dedicated

resource

set.

Using

the

command

parameter,

you

can

ask

to

overwrite

or

not

to

overwrite

the

rsname

parameter’s

registration

if

it

already

exists

in

the

global

repository

within

the

name

space

identified

by

namespace.

If

rsname

already

exists

within

the

specified

name

space

and

the

command

parameter

is

set

to

not

overwrite,

an

error

is

reported

to

the

calling

process.

Notes:

1.

Registering

a

resource

set

definition

can

only

be

done

by

a

process

that

has

root

authority

or

CAP_NUMA_ATTACH

attachment

privilege.

2.

Overwriting

an

existing

name’s

registration

can

be

done

only

by

a

process

that

has

root

authority

or

write

access

to

this

name.

An

application

registered

resource

set

definition

is

non-persistent.

It

does

not

persist

over

a

system

boot.

Both

the

namespace

and

rsname

parameters

may

contain

up

to

255

characters.

They

must

begin

with

an

ASCII

alphanumeric

character.

Only

the

period

(.),

minus

(-),

and

underscore

(_)

characters

can

be

mixed

with

ASCII

alphanumeric

characters

within

these

strings.

Moreover,

the

names

are

case-sensitive,

which

means

there

is

a

difference

between

uppercase

and

lowercase

letters

in

resource

set

names

and

name

spaces.

Parameters

rset

Specifies

a

resource

set

handle

of

a

resource

set

a

name

should

be

registered

for.

namespace

Points

to

a

null

terminated

string

corresponding

to

the

name

space

within

which

rsname

will

be

registered.

rsname

Points

to

a

null

terminated

string

corresponding

to

the

name

registered

with

the

setting

of

the

resource

set

specified

by

rset.

mode

Specifies

the

bit

pattern

that

determines

the

created

name

access

permissions.

It

is

constructed

by

logically

ORing

one

or

more

of

the

following

values,

defined

in

rset.h:

v

RS_IRUSR:

Gives

read

rights

to

the

name’s

owner

v

RS_IWUSR:

Gives

write

rights

to

the

name’s

owner

v

RS_IRGRP:

Gives

read

rights

to

users

of

the

same

group

as

the

name’s

owner

v

RS_IWGRP:

Gives

write

rights

to

users

of

the

same

group

as

the

name’s

owner

v

RS_IROTH:

Gives

read

rights

to

others

v

RS_IWOTH:

Gives

write

rights

to

others

Read

privilege

for

a

user

means

that

the

user

can

retrieve

a

resource

set

definition

(by

issuing

a

call

to

the

rs_getnamedrset

subroutine).

Write

privilege

for

a

user

means

that

the

user

can

redefine

a

name

(by

issuing

another

call

to

the

rs_getnamedrset

subroutine).

command

Specifies

whether

the

rsname

parameter’s

registration

should

be

overwritten

if

it

already

exists

in

the

global

repository.

This

parameter

takes

one

of

the

following

values,

defined

in

rset.h:

v

RS_REDEFINE:

The

rsname

parameter

should

be

redefined

if

it

already

exists

in

the

name

space

identified

by

namespace.

In

such

a

case,

the

calling

process

must

have

write

access

to

rsname.

v

RS_DEFINE:

The

rsname

parameter

should

not

be

redefined

if

it

already

exists

in

the

name

space

identified

by

namespace.

If

this

happens,

an

error

is

reported

to

the

calling

process

Return

Values

If

successful,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

100

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

The

rs_registername

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

If

one

of

the

following

is

true:

v

rsname

is

a

null

pointer.

v

namespace

is

a

null

pointer.

v

rsname

or

namespace

points

to

an

invalid

name.

The

name

length

is

0

or

greater

than

the

RSET_NAME_SIZE

constant

(defined

in

rset.h),

or

the

name

contains

invalid

characters.

v

mode

identifies

an

invalid

access

rights

value.

v

command

identifies

an

invalid

command

value.

EEXIST

The

command

parameter

is

set

to

RS_DEFINE

and

rsname

already

exists

in

the

global

repository

within

the

name

space

identified

by

namespace.

ENOMEM

There

is

not

enough

space

to

create

the

data

structures

related

to

the

registry

of

this

resource

set.

EPERM

If

one

of

the

following

is

true:

v

The

command

parameter

is

set

to

RS_REDEFINE

and

the

calling

process

has

neither

write

access

to

rsname

nor

root

authority

.

v

The

calling

process

has

neither

the

attachment

privilege

nor

root

authority.

v

The

namespace

parameter

starts

with

sys.

This

name

space

is

reserved

for

system

use.

EFAULT

Invalid

address,

and/or

exceptions

outside

errno

range.

Related

Information

“rs_getnameattr

Subroutine”

on

page

91,

“rs_discardname

Subroutine”

on

page

87,

and

“rs_getnamedrset

Subroutine”

on

page

92.

rs_setnameattr

Subroutine

Purpose

Sets

the

access

control

information

of

a

resource

set

definition

in

the

system

resource

set

registry.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_setnameattr

(namespace,

rsname,

command,

attr)

char

*namespace,

*rsname;

unsigned

int

command;

rs_attributes

*attr;

Description

The

rs_setnameattr

subroutine

sets

(depending

on

the

command

value)

one

or

more

of

the

owner,

group,

or

access

control

information

of

the

system

registry

resource

set

definition

specified

by

the

namespace

and

rsname

parameters.

The

owner

ID

and/or

group

ID

and/or

access

control

information

of

the

rsname

parameter

must

be

supplied

in

the

structure

pointed

to

by

the

attr

parameter.

Notes:

1.

In

order

to

be

able

to

set

the

attributes

of

a

name,

the

calling

process

must

have

root

authority

or

the

attachment

privilege

and

an

effective

user

ID

equal

to

that

of

the

rsname

parameter’s

owner.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

101

2.

Root

authority

is

required

to

change

the

resource

set

definition

owner

ID,

or

to

set

its

group

ID

outside

of

the

caller’s

list

of

groups.

Parameters

namespace

Points

to

a

null

terminated

string

corresponding

to

the

name

space

within

which

rsname

should

be

found.

rsname

Points

to

a

null

terminated

string

corresponding

to

the

name

the

information

should

be

retrieved

for.

command

Specifies

which

attributes

should

be

changed.

This

parameter

is

constructed

by

logically

ORing

one

or

more

of

the

following

values,

defined

in

rset.h:

v

RS_OWNER:

Set

owner

as

specified

in

the

owner

field

of

attr.

v

RS_GROUP:

Set

group

as

specified

in

the

group

field

of

attr.

v

RS_PERM:

Set

access

control

information

as

specified

in

the

mode

field

of

attr.

attr

Points

to

an

rs_attributes_t

structure

containing

the

owner,

group

and

mode

fields,

which

will

possibly

be

used

by

the

subroutine

for

setting

attributes.

The

mode

field

is

used

to

store

the

access

permissions,

and

is

constructed

by

logically

ORing

one

or

more

of

the

following

values,

defined

in

rset.h:

v

RS_IRUSR:

Gives

read

rights

to

the

name’s

owner

v

RS_IWUSR:

Gives

write

rights

to

the

name’s

owner

v

RS_IRGRP:

Gives

read

rights

to

users

of

the

same

group

as

the

name’s

owner

v

RS_IWGRP:

Gives

write

rights

to

users

of

the

same

group

as

the

name’s

owner

v

RS_IROTH:

Gives

read

rights

to

the

others

v

RS_IWOTH:

Gives

write

rights

to

the

others

Return

Values

If

successful,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_setnameattr

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

One

of

the

following

is

true:

v

rsname

is

a

null

pointer.

v

namespace

is

a

null

pointer.

v

rsname

or

namespace

point

to

an

invalid

name.

Name

length

is

0

or

greater

than

the

RSET_NAME_SIZE

constant

(defined

in

rset.h),

or

name

contains

invalid

characters.

v

command

identifies

an

invalid

command

value.

v

command

includes

RS_PERM

and

the

mode

field

of

attr

identifies

an

invalid

access

rights

value.

v

attr

is

a

null

pointer.

EPERM

One

of

the

following

is

true:

v

The

calling

process

has

neither

CAP_NUMA_ATTACH

attachment

privilege

nor

root

authority.

v

command

includes

RS_OWNER

and

the

owner

field

of

attr

is

different

from

the

caller’s

user

ID

and

the

caller

does

not

have

root

authority.

v

command

includes

RS_GROUP,

the

group

field

of

attr

is

outside

of

the

caller’s

list

of

groups,

and

caller

does

not

have

root

authority.

v

The

namespace

parameter

starts

with

sys.

This

name

space

is

reserved

for

system

use.

ENOENT

rsname

could

not

be

found

in

the

name

space

identified

by

namespace.

ENOSPC

Out

of

file-space

blocks.

EFAULT

Invalid

address;

exceptions

outside

errno

range.

ENOSYS

The

rs_setnameattr

subroutine

is

not

supported

by

the

system.

102

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

“rs_getnameattr

Subroutine”

on

page

91.

rs_setpartition

Subroutine

Purpose

Sets

the

partition

resource

set

of

a

process.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/rset.h>

int

rs_setpartition(pid,

rset,

flags)

pid_t

pid;

rsethandle_t

rset;

unsigned

int

flags;

Description

The

rs_setpartition

subroutine

sets

a

process’

partition

resource

set.

The

subroutine

can

also

be

used

to

remove

a

process’

partition

resource

set.

The

partition

resource

set

limits

the

threads

in

a

process

to

running

only

on

the

processors

contained

in

the

partition

resource

set.

The

work

component

is

an

existing

process

identified

by

the

process

ID.

A

process

ID

value

of

RS_MYSELF

indicates

the

attachment

applies

to

the

current

process.

The

following

conditions

must

be

met

to

set

a

process’

partition

resource

set:

v

The

calling

process

must

have

root

authority.

v

The

resource

set

must

contain

processors

that

are

available

in

the

system.

v

The

new

partition

resource

set

must

be

equal

to,

or

a

superset

of

the

target

process’

effective

resource

set.

v

The

target

process

must

not

contain

any

threads

that

have

bindprocessor

bindings

to

a

processor.

Parameters

pid

Specifies

the

process

ID

of

the

process

whose

partition

resource

set

is

to

be

set.

A

value

of

RS_MYSELF

indicates

the

current

process’

partition

resource

set

should

be

set.

rset

Specifies

the

partition

resource

set

to

be

set.

A

value

of

RS_DEFAULT

indicates

the

process’

partition

resource

set

should

be

removed.

flags

Reserved

for

future

use.

Specify

as

0.

Return

Values

If

successful,

a

value

of

0

is

returned.

If

unsuccessful,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

rs_setpartition

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

The

flags

parameter

contains

an

invalid

value.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

103

ENODEV

The

resource

set

specified

by

the

rset

parameter

does

not

contain

any

available

processors.

ESRCH

The

process

identified

by

the

pid

parameter

does

not

exist.

EFAULT

Invalid

address.

ENOMEM

Memory

not

available.

EPERM

One

of

the

following

is

true:

v

The

calling

process

does

not

have

root

authority.

v

The

process

identified

by

the

pid

parameter

has

one

or

more

threads

with

a

bindprocessor

processor

binding.

v

The

process

identified

by

the

pid

parameter

has

an

effective

resource

set

and

the

new

partition

resource

set

identified

by

the

rset

parameter

does

not

contain

all

of

the

effective

resource

set’s

resources.

Related

Information

“rs_getpartition

Subroutine”

on

page

93

and

“ra_attachrset

Subroutine”

on

page

9.

rsqrt

Subroutine

Purpose

Computes

the

reciprocal

of

the

square

root

of

a

number.

Libraries

IEEE

Math

Library

(libm.a)

System

V

Math

Library

(libmsaa.a)

Syntax

#include

<math.h>

double

rsqrt(double

x)

Description

The

rsqrt

command

computes

the

reciprocal

of

the

square

root

of

a

number

x;

that

is,

1.0

divided

by

the

square

root

of

x

(1.0/sqrt(x)).

On

some

platforms,

using

the

rsqrt

subroutine

is

faster

than

computing

1.0

/

sqrt(x).

The

rsqrt

subroutine

uses

the

same

rounding

mode

used

by

the

calling

program.

When

using

the

libm.a

library,

the

rsqrt

subroutine

responds

to

special

values

of

x

in

the

following

ways:

v

If

x

is

NaN,

then

the

rsqrt

subroutine

returns

NaN.

If

x

is

a

signaling

Nan

(NaNS),

then

the

rsqrt

subroutine

returns

a

quiet

NaN

and

sets

the

VX

and

VXSNAN

(signaling

NaN

invalid

operation

exception)

flags

in

the

FPSCR

(Floating-Point

Status

and

Control

register)

to

1.

v

If

x

is

+/-

0.0,

then

the

rsqrt

subroutine

returns

+/-

INF

and

sets

the

ZX

(zero

divide

exception)

flag

in

the

FPSCR

to

1.

v

If

x

is

negative,

then

the

rsqrt

subroutine

returns

NaN,

sets

the

errno

global

variable

to

EDOM,

and

sets

the

VX

and

VXSQRT

(square

root

of

negative

number

invalid

operation

exception)

flags

in

the

FPSCR

to

1.

When

using

the

libmsaa.a

library,

the

rsqrt

subroutine

responds

to

special

values

of

x

in

the

following

ways:

v

If

x

is

+/-

0.0,

then

the

rsqrt

subroutine

returns

+/-HUGE_VAL

and

sets

the

errno

global

variable

to

EDOM.

The

subroutine

invokes

the

matherr

subroutine,

which

prints

a

message

indicating

a

singularity

error

to

standard

error

output.

104

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

If

x

is

negative,

then

the

rsqrt

subroutine

returns

0.0

and

sets

the

errno

global

variable

to

EDOM.

The

subroutine

invokes

the

matherr

subroutine,

which

prints

a

message

indicating

a

domain

error

to

standard

error

output.

When

compiled

with

libmsaa.a,

a

program

can

use

the

matherr

subroutine

to

change

these

error-handling

procedures.

Parameter

x

Specifies

a

double-precision

floating-point

value.

Return

Values

Upon

successful

completion,

the

rsqrt

subroutine

returns

the

reciprocal

of

the

square

root

of

x.

1.0

If

x

is

1.0.

+0.0

If

x

is

+INF.

Error

Codes

When

using

either

the

libm.a

or

libmsaa.a

library,

the

rsqrt

subroutine

may

return

the

following

error

code:

EDOM

The

value

of

x

is

negative.

Related

Information

The

matherr

subroutine,

sqrt

or

cbrt

(“sqrt,

sqrtf,

or

sqrtl

Subroutine”

on

page

238)

subroutine.

rstat

Subroutines

Purpose

Gets

performance

data

from

remote

kernels.

Library

(librpcsvc.a)

Syntax

#include

<rpcsvc/rstat.h>

rstat

(host,

statp)

char

*host;

struct

statstime

*statp;

Description

The

rstat

subroutine

gathers

statistics

from

remote

kernels.

These

statistics

are

available

on

items

such

as

paging,

swapping

and

CPU

utilization.

Parameters

host

Specifies

the

name

of

the

machine

going

to

be

contacted

to

obtain

statistics

found

in

the

statp

parameter.

statp

Contains

statistics

from

host.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

105

Return

Values

If

successful,

the

rstat

subroutine

fills

in

the

statstime

for

host

and

returns

a

value

of

0.

Files

/usr/include/rpcsvc/rstat.x

Related

Information

The

rup

command.

The

rstatd

daemon

scalbln,

scalblnf,

scalblnl,

scalbn,

scalbnf,

scalbnl,

or

scalb

Subroutine

Purpose

Computes

the

exponent

using

FLT_RADIX=2.

Syntax

#include

<math.h>

double

scalbln

(x,

n)

double

x;

long

n;

float

scalblnf

(x,

n)

float

x;

long

n;

long

double

scalblnl

(x,

n)

long

double

x;

long

n;

double

scalbn

(x,

n)

double

x;

int

n;

float

scalbnf

(x,

n)

float

x;

int

n;

long

double

scalbnl

(x,

n)

long

double

x;

int

n;

double

scalb(x,

y)

double

x,

y;

Description

The

scalbln,

scalblnf,

scalblnl,

scalbn,

scalbnf,

and

scalbnl

subroutines

compute

x

*

FLT_RADIXn

efficiently,

not

normally

by

computing

FLT_RADIXn

explicitly.

For

AIX,

FLT_RADIX

n=2.

The

scalb

subroutine

returns

the

value

of

the

x

parameter

times

2

to

the

power

of

the

y

parameter.

106

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Specifies

the

value

to

be

computed.

n

Specifies

the

value

to

be

computed.

Return

Values

Upon

successful

completion,

the

scalbln,

scalblnf,

scalblnl,

scalbn,

scalbnf,

and

scalbnl

subroutines

return

x

*

FLT_RADIXn

.

If

the

result

would

cause

overflow,

a

range

error

occurs

and

the

scalbln,

scalblnf,

scalblnl,

scalbn,

scalbnf,

and

scalbnl

subroutines

return

±HUGE_VAL,

±HUGE_VALF,

and

±HUGE_VALL

(according

to

the

sign

of

x)

as

appropriate

for

the

return

type

of

the

function.

If

the

correct

value

would

cause

underflow,

and

is

not

representable,

a

range

error

may

occur,

and

0.0

is

returned.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0

or

±Inf,

x

is

returned.

If

n

is

0,

x

is

returned.

If

the

correct

value

would

cause

underflow,

and

is

representable,

a

range

error

may

occur

and

the

correct

value

is

returned.

Error

Codes

If

the

correct

value

would

overflow,

the

scalb

subroutine

returns

+/-INF

(depending

on

a

negative

or

positive

value

of

the

x

parameter)

and

sets

errno

to

ERANGE.

If

the

correct

value

would

underflow,

the

scalb

subroutine

returns

a

value

of

0

and

sets

errno

to

ERANGE.

Related

Information

“remainder,

remainderf,

or

remainderl

Subroutine”

on

page

39

feclearexcept

Subroutine,

fetestexcept

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

scandir

or

alphasort

Subroutine

Purpose

Scans

or

sorts

directory

contents.

Library

Standard

C

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

107

Syntax

#include

<sys/types.h>

#include

<sys/dir.h>

int

scandir(DirectoryName,NameList,Select,Compare)

char

*

DirectoryName;

struct

dirent

*

(*

NameList

[

]);

int

(*

Select)

(struct

dirent

*);

int

(*

Compare)(void

*,

void

*);

int

alphasort

(

Directory1,Directory2)

void

*Directory1,

*Directory2;

Description

The

scandir

subroutine

reads

the

directory

pointed

to

by

the

DirectoryName

parameter,

and

then

uses

the

malloc

subroutine

to

create

an

array

of

pointers

to

directory

entries.

The

scandir

subroutine

returns

the

number

of

entries

in

the

array

and,

through

the

NameList

parameter,

a

pointer

to

the

array.

The

Select

parameter

points

to

a

user-supplied

subroutine

that

is

called

by

the

scandir

subroutine

to

select

which

entries

to

include

in

the

array.

The

selection

routine

is

passed

a

pointer

to

a

directory

entry

and

should

return

a

nonzero

value

for

a

directory

entry

that

is

included

in

the

array.

If

the

Select

parameter

is

a

null

value,

all

directory

entries

are

included.

The

Compare

parameter

points

to

a

user-supplied

subroutine.

This

routine

is

passed

to

the

qsort

subroutine

to

sort

the

completed

array.

If

the

Compare

parameter

is

a

null

value,

the

array

is

not

sorted.

The

alphasort

subroutine

provides

comparison

functions

for

sorting

alphabetically.

The

memory

allocated

to

the

array

can

be

deallocated

by

freeing

each

pointer

in

the

array,

and

the

array

itself,

with

the

free

subroutine.

The

alphasort

subroutine

treats

Directory1

and

Directory2

as

pointers

to

dirent

pointers

and

alphabetically

compares

them.

This

subroutine

can

be

passed

as

the

Compare

parameter

to

either

the

scandir

subroutine

or

the

qsort

subroutine,

or

a

user-supplied

subroutine

can

be

used.

Parameters

DirectoryName

Points

to

the

directory

name.

NameList

Points

to

the

array

of

pointers

to

directory

entries.

Select

Points

to

a

user-supplied

subroutine

that

is

called

by

the

scandir

subroutine

to

select

which

entries

to

include

in

the

array.

Compare

Points

to

a

user-supplied

subroutine

that

sorts

the

completed

array.

Directory1,

Directory2

Point

to

dirent

structures.

Return

Values

The

scandir

subroutine

returns

the

value

-1

if

the

directory

cannot

be

opened

for

reading

or

if

the

malloc

subroutine

cannot

allocate

enough

memory

to

hold

all

the

data

structures.

If

successful,

the

scandir

subroutine

returns

the

number

of

entries

found.

The

alphasort

subroutine

returns

the

following

values:

Less

than

0

The

dirent

structure

pointed

to

by

the

Directory1

parameter

is

lexically

less

than

the

dirent

structure

pointed

to

by

the

Directory2

parameter.

0

The

dirent

structures

pointed

to

by

the

Directory1

parameter

and

the

Directory2

parameter

are

equal.

108

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Greater

than

0

The

dirent

structure

pointed

to

by

the

Directory1

parameter

is

lexically

greater

than

the

dirent

structure

pointed

to

by

the

Directory2

parameter.

Related

Information

The

malloc,

free,

realloc,

calloc,

mallopt,

mallinfo,

or

alloca

subroutine,

opendir,

readdir,

telldir,

seekdir,

rewinddir,

or

closedir

subroutine,

qsort

(“qsort

Subroutine”

on

page

1)

subroutine.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine

Purpose

Converts

formatted

input.

Library

Standard

C

Library

(libc.a)

or

(libc128.a)

Syntax

#include

<stdio.h>

int

scanf

(

Format

[,

Pointer,

...

])

const

char

*Format;

int

fscanf

(Stream,

Format

[,

Pointer,

...

])

FILE

*

Stream;

const

char

*Format;

int

sscanf

(String,

Format

[,

Pointer,

...

])

const

char

*

String,

*Format;

int

wsscanf

(wcs,

Format

[,

Pointer,

...

])

const

wchar_t

*

wcs

const

char

*Format;

Description

The

scanf,

fscanf,

sscanf,

and

wsscanf

subroutines

read

character

data,

interpret

it

according

to

a

format,

and

store

the

converted

results

into

specified

memory

locations.

If

the

subroutine

receives

insufficient

arguments

for

the

format,

the

results

are

unreliable.

If

the

format

is

exhausted

while

arguments

remain,

the

subroutine

evaluates

the

excess

arguments

but

otherwise

ignores

them.

These

subroutines

read

their

input

from

the

following

sources:

scanf

Reads

from

standard

input

(stdin).

fscanf

Reads

from

the

Stream

parameter.

sscanf

Reads

from

the

character

string

specified

by

the

String

parameter.

wsscanf

Reads

from

the

wide

character

string

specified

by

the

wcs

parameter.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

109

The

scanf,

fscanf,

sscanf,

and

wsscanf

subroutines

can

detect

a

language-dependent

radix

character,

defined

in

the

program’s

locale

(LC_NUMERIC),

in

the

input

string.

In

the

C

locale,

or

in

a

locale

that

does

not

define

the

radix

character,

the

default

radix

character

is

a

full

stop

.

(period).

Parameters

wcs

Specifies

the

wide-character

string

to

be

read.

Stream

Specifies

the

input

stream.

String

Specifies

input

to

be

read.

Pointer

Specifies

where

to

store

the

interpreted

data.

110

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Format

Contains

conversion

specifications

used

to

interpret

the

input.

If

there

are

insufficient

arguments

for

the

Format

parameter,

the

results

are

unreliable.

If

the

Format

parameter

is

exhausted

while

arguments

remain,

the

excess

arguments

are

evaluated

as

always

but

are

otherwise

ignored.

The

Format

parameter

can

contain

the

following:

v

Space

characters

(blank,

tab,

new-line,

vertical-tab,

or

form-feed

characters)

that,

except

in

the

following

two

cases,

read

the

input

up

to

the

next

nonwhite

space

character.

Unless

a

match

in

the

control

string

exists,

trailing

white

space

(including

a

new-line

character)

is

not

read.

v

Any

character

except

a

%

(percent

sign),

which

must

match

the

next

character

of

the

input

stream.

v

A

conversion

specification

that

directs

the

conversion

of

the

next

input

field.

The

conversion

specification

consists

of

the

following:

–

The

%

(percent

sign)

or

the

character

sequence

%n$.

Note:

The

%n$

character

sequence

is

an

X/Open

numbered

argument

specifier.

Guidelines

for

use

of

the

%n%

specifier

are:

-

The

value

of

n

in

%n$

must

be

a

decimal

number

without

leading

0’s

and

must

be

in

the

range

from

1

to

the

NL_ARGMAX

value,

inclusive.

See

the

limits.h

file

for

more

information

about

the

NL_ARGMAX

value.

Using

leading

0’s

(octal

numbers)

or

a

larger

n

value

can

have

unpredictable

results.

-

Mixing

numbered

and

unnumbered

argument

specifications

in

a

format

string

can

have

unpredictable

results.

The

only

exceptions

are

%%

(two

percent

signs)

and

%*

(percent

sign,

asterisk),

which

can

be

mixed

with

the

%n$

form.

-

Referencing

numbered

arguments

in

the

argument

list

from

the

format

string

more

than

once

can

have

unpredictable

results.

–

The

optional

assignment-suppression

character

*

(asterisk).

–

An

optional

decimal

integer

that

specifies

the

maximum

field

width.

–

An

optional

character

that

sets

the

size

of

the

receiving

variable

for

some

flags.

Use

the

following

optional

characters:

l

Long

integer

rather

than

an

integer

when

preceding

the

d,

i,

or

n

conversion

codes;

unsigned

long

integer

rather

than

unsigned

integer

when

preceding

the

o,

u,

or

x

conversion

codes;

double

rather

than

float

when

preceding

the

e,

f,

or

g

conversion

codes.

ll

Long

long

integer

rather

than

an

integer

when

preceding

the

d,

i,

or

n

conversion

codes;

unsigned

long

long

integer

rather

than

unsigned

integer

when

preceding

the

o,

u,

or

x

conversion

codes.

L

A

long

double

rather

than

a

float,

when

preceding

the

e,

f,

or

g

conversion

codes;

long

integer

rather

than

an

integer

when

preceding

the

d,

i,

or

n

conversion

codes;

unsigned

long

integer

rather

than

unsigned

integer

when

preceding

the

o,

u,

or

x

conversion

codes.

h

Short

integer

rather

than

an

integer

when

preceding

the

d,

i,

and

n

conversion

codes;

unsigned

short

integer

(half

integer)

rather

than

an

unsigned

integer

when

preceding

the

o,

u,

or

x

conversion

codes.

–

A

conversion

code

that

specifies

the

type

of

conversion

to

be

applied.

The

conversion

specification

takes

the

form:

%[*][width][size]convcode

Format

(Continued)

The

results

from

the

conversion

are

placed

in

the

memory

location

designated

by

the

Pointer

parameter

unless

you

specify

assignment

suppression

with

an

*

(asterisk).

Assignment

suppression

provides

a

way

to

describe

an

input

field

to

be

skipped.

The

input

field

is

a

string

of

nonwhite

space

characters.

It

extends

to

the

next

inappropriate

character

or

until

the

field

width,

if

specified,

is

exhausted.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

111

The

conversion

code

indicates

how

to

interpret

the

input

field.

The

corresponding

Pointer

parameter

must

be

a

restricted

type.

Do

not

specify

the

Pointer

parameter

for

a

suppressed

field.

You

can

use

the

following

conversion

codes:

%

Accepts

a

single

%

(percent

sign)

input

at

this

point;

no

assignment

or

conversion

is

done.

The

complete

conversion

specification

should

be

%%

(two

percent

signs).

d

Accepts

an

optionally

signed

decimal

integer

with

the

same

format

as

that

expected

for

the

subject

sequence

of

the

strtol

subroutine

with

a

value

of

10

for

the

base

parameter.

If

no

size

modifier

is

specified,

the

Pointer

parameter

should

be

a

pointer

to

an

integer.

i

Accepts

an

optionally

signed

integer

with

the

same

format

as

that

expected

for

the

subject

sequence

of

the

strtol

subroutine

with

a

value

of

0

for

the

base

parameter.

If

no

size

modifier

is

specified,

the

Pointer

parameter

should

be

a

pointer

to

an

integer.

u

Accepts

an

optionally

signed

decimal

integer

with

the

same

format

as

that

expected

for

the

subject

sequence

of

the

strtoul

subroutine

with

a

value

of

10

for

the

base

parameter.

If

no

size

modifier

is

specified,

the

Pointer

parameter

should

be

a

pointer

to

an

unsigned

integer.

o

Accepts

an

optionally

signed

octal

integer

with

the

same

format

as

that

expected

for

the

subject

sequence

of

the

strtoul

subroutine

with

a

value

of

8

for

the

base

parameter.

If

no

size

modifier

is

specified,

the

Pointer

parameter

should

be

a

pointer

to

an

unsigned

integer.

x

Accepts

an

optionally

signed

hexadecimal

integer

with

the

same

format

as

that

expected

for

the

subject

sequence

of

the

strtoul

subroutine

with

a

value

of

16

for

the

base

parameter.

If

no

size

modifier

is

specified,

the

Pointer

parameter

should

be

a

pointer

to

an

integer.

e,

f,

or

g

Accepts

an

optionally

signed

floating-point

number

with

the

same

format

as

that

expected

for

the

subject

sequence

of

the

strtod

subroutine.

The

next

field

is

converted

accordingly

and

stored

through

the

corresponding

parameter;

if

no

size

modifier

is

specified,

this

parameter

should

be

a

pointer

to

a

float.

The

input

format

for

floating-point

numbers

is

a

string

of

digits,

with

some

optional

characteristics:

v

It

can

be

a

signed

value.

v

It

can

be

an

exponential

value,

containing

a

decimal

rational

number

followed

by

an

exponent

field,

which

consists

of

an

E

or

an

e

followed

by

an

(optionally

signed)

integer.

v

It

can

be

one

of

the

special

values

INF,

NaNQ,

or

NaNS.

This

value

is

translated

into

the

IEEE-754

value

for

infinity,

quiet

NaN,

or

signaling

NaN,

respectively.

p

Matches

an

unsigned

hexadecimal

integer,

the

same

as

the

%p

conversion

of

the

printf

subroutine.

The

corresponding

parameter

is

a

pointer

to

a

void

pointer.

If

the

input

item

is

a

value

converted

earlier

during

the

same

program

execution,

the

resulting

pointer

compares

equal

to

that

value;

otherwise,

the

results

of

the

%p

conversion

are

unpredictable.

n

Consumes

no

input.

The

corresponding

parameter

is

a

pointer

to

an

integer

into

which

the

scanf,

fscanf,

sscanf,

or

wsscanf

subroutine

writes

the

number

of

characters

(including

wide

characters)

read

from

the

input

stream.

The

assignment

count

returned

at

the

completion

of

this

function

is

not

incremented.

s

Accepts

a

sequence

of

nonwhite

space

characters

(scanf,

fscanf,

and

sscanf

subroutines).

The

wsscanf

subroutine

accepts

a

sequence

of

nonwhite-space

wide-character

codes;

this

sequence

is

converted

to

a

sequence

of

characters

in

the

same

manner

as

the

wcstombs

subroutine.

The

Pointer

parameter

should

be

a

pointer

to

the

initial

byte

of

a

char,

signed

char,

or

unsigned

char

array

large

enough

to

hold

the

sequence

and

a

terminating

null-character

code,

which

is

automatically

added.

S

Accepts

a

sequence

of

nonwhite

space

characters

(scanf,

fscanf,

and

sscanf

subroutines).

This

sequence

is

converted

to

a

sequence

of

wide-character

codes

in

the

same

manner

as

the

mbstowcs

subroutine.

The

wsscanf

subroutine

accepts

a

sequence

of

nonwhite-space

wide

character

codes.

The

Pointer

parameter

should

be

a

pointer

to

the

initial

wide

character

code

of

an

112

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

array

large

enough

to

accept

the

sequence

and

a

terminating

null

wide

character

code,

which

is

automatically

added.

If

the

field

width

is

specified,

it

denotes

the

maximum

number

of

characters

to

accept.

c

Accepts

a

sequence

of

bytes

of

the

number

specified

by

the

field

width

(scanf,

fscanf

and

sscanf

subroutines);

if

no

field

width

is

specified,

1

is

the

default.

The

wsscanf

subroutine

accepts

a

sequence

of

wide-character

codes

of

the

number

specified

by

the

field

width;

if

no

field

width

is

specified,

1

is

the

default.

The

sequence

is

converted

to

a

sequence

of

characters

in

the

same

manner

as

the

wcstombs

subroutine.

The

Pointer

parameter

should

be

a

pointer

to

the

initial

bytes

of

an

array

large

enough

to

hold

the

sequence;

no

null

byte

is

added.

The

normal

skip

over

white

space

does

not

occur.

C

Accepts

a

sequence

of

characters

of

the

number

specified

by

the

field

width

(scanf,

fscanf,

and

sscanf

subroutines);

if

no

field

width

is

specified,

1

is

the

default.

The

sequence

is

converted

to

a

sequence

of

wide

character

codes

in

the

same

manner

as

the

mbstowcs

subroutine.

The

wsscanf

subroutine

accepts

a

sequence

of

wide-character

codes

of

the

number

specified

by

the

field

width;

if

no

field

width

is

specified,

1

is

the

default.

The

Pointer

parameter

should

be

a

pointer

to

the

initial

wide

character

code

of

an

array

large

enough

to

hold

the

sequence;

no

null

wide-character

code

is

added.

[scanset]

Accepts

a

nonempty

sequence

of

bytes

from

a

set

of

expected

bytes

specified

by

the

scanset

variable

(scanf,

fscanf,

and

sscanf

subroutines).

The

wsscanf

subroutine

accepts

a

nonempty

sequence

of

wide-character

codes

from

a

set

of

expected

wide-character

codes

specified

by

the

scanset

variable.

The

sequence

is

converted

to

a

sequence

of

characters

in

the

same

manner

as

the

wcstombs

subroutine.

The

Pointer

parameter

should

be

a

pointer

to

the

initial

character

of

a

char,

signed

char,

or

unsigned

char

array

large

enough

to

hold

the

sequence

and

a

terminating

null

byte,

which

is

automatically

added.

In

the

scanf,

fscanf,

and

sscanf

subroutines,

the

conversion

specification

includes

all

subsequent

bytes

in

the

string

specified

by

the

Format

parameter,

up

to

and

including

the

]

(right

bracket).

The

bytes

between

the

brackets

comprise

the

scanset

variable,

unless

the

byte

after

the

[

(left

bracket)

is

a

^

(circumflex).

In

this

case,

the

scanset

variable

contains

all

bytes

that

do

not

appear

in

the

scanlist

between

the

^

(circumflex)

and

the

]

(right

bracket).

In

the

wsscanf

subroutine,

the

characters

between

the

brackets

are

first

converted

to

wide

character

codes

in

the

same

manner

as

the

mbtowc

subroutine.

These

wide

character

codes

are

then

used

as

described

above

in

place

of

the

bytes

in

the

scanlist.

If

the

conversion

specification

begins

with

[]

or

[^],

the

right

bracket

is

included

in

the

scanlist

and

the

next

right

bracket

is

the

matching

right

bracket

that

ends

the

conversion

specification.

You

can

also:

v

Represent

a

range

of

characters

by

the

construct

First-Last.

Thus,

you

can

express

[0123456789]

as

[0-9].

The

First

parameter

must

be

lexically

less

than

or

equal

to

the

Last

parameter

or

else

the

-

(dash)

stands

for

itself.

The

-

also

stands

for

itself

whenever

it

is

the

first

or

the

last

character

in

the

scanset

variable.

v

Include

the

]

(right

bracket)

as

an

element

of

the

scanset

variable

if

it

is

the

first

character

of

the

scanset.

In

this

case

it

is

not

interpreted

as

the

bracket

that

closes

the

scanset

variable.

If

the

scanset

variable

is

an

exclusive

scanset

variable,

the

]

is

preceded

by

the

^

(circumflex)

to

make

the

]

an

element

of

the

scanset.

The

corresponding

Pointer

parameter

should

point

to

a

character

array

large

enough

to

hold

the

data

field

and

that

ends

with

a

null

character

(\0).

The

\0

is

added

automatically.

A

scanf

conversion

ends

at

the

end-of-file

(EOF

character),

the

end

of

the

control

string,

or

when

an

input

character

conflicts

with

the

control

string.

If

it

ends

with

an

input

character

conflict,

the

conflicting

character

is

not

read

from

the

input

stream.

Unless

a

match

in

the

control

string

exists,

trailing

white

space

(including

a

new-line

character)

is

not

read.

The

success

of

literal

matches

and

suppressed

assignments

is

not

directly

determinable.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

113

The

National

Language

Support

(NLS)

extensions

to

the

scanf

subroutines

can

handle

a

format

string

that

enables

the

system

to

process

elements

of

the

argument

list

in

variable

order.

The

normal

conversion

character

%

is

replaced

by

%n$,

where

n

is

a

decimal

number.

Conversions

are

then

applied

to

the

specified

argument

(that

is,

the

nth

argument),

rather

than

to

the

next

unused

argument.

The

first

successful

run

of

the

fgetc,

fgets,

fread,

getc,

getchar,

gets,

scanf,

or

fscanf

subroutine

using

a

stream

that

returns

data

not

supplied

by

a

prior

call

to

the

ungetc

(“ungetc

or

ungetwc

Subroutine”

on

page

423)

subroutine

marks

the

st_atime

field

for

update.

Return

Values

These

subroutines

return

the

number

of

successfully

matched

and

assigned

input

items.

This

number

can

be

0

if

an

early

conflict

existed

between

an

input

character

and

the

control

string.

If

the

input

ends

before

the

first

conflict

or

conversion,

only

EOF

is

returned.

If

a

read

error

occurs,

the

error

indicator

for

the

stream

is

set,

EOF

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

scanf,

fscanf,

sscanf,

and

wsscanf

subroutines

are

unsuccessful

if

either

the

file

specified

by

the

Stream,

String,

or

wcs

parameter

is

unbuffered

or

data

needs

to

be

read

into

the

file’s

buffer

and

one

or

more

of

the

following

conditions

is

true:

EAGAIN

The

O_NONBLOCK

flag

is

set

for

the

file

descriptor

underlying

the

file

specified

by

the

Stream,

String,

or

wcs

parameter,

and

the

process

would

be

delayed

in

the

scanf,

fscanf,

sscanf,

or

wsscanf

operation.

EBADF

The

file

descriptor

underlying

the

file

specified

by

the

Stream,

String,

or

wcs

parameter

is

not

a

valid

file

descriptor

open

for

reading.

EINTR

The

read

operation

was

terminated

due

to

receipt

of

a

signal,

and

either

no

data

was

transferred

or

a

partial

transfer

was

not

reported.

Note:

Depending

upon

which

library

routine

the

application

binds

to,

this

subroutine

may

return

EINTR.

Refer

to

the

signal

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine

regarding

SA_RESTART.

EIO

The

process

is

a

member

of

a

background

process

group

attempting

to

perform

a

read

from

its

controlling

terminal,

and

either

the

process

is

ignoring

or

blocking

the

SIGTTIN

signal

or

the

process

group

has

no

parent

process.

EINVAL

The

subroutine

received

insufficient

arguments

for

the

Format

parameter.

EILSEQ

A

character

sequence

that

is

not

valid

was

detected,

or

a

wide-character

code

does

not

correspond

to

a

valid

character.

ENOMEM

Insufficient

storage

space

is

available.

Related

Information

The

atof,atoff,

strtod,

or

strtof

subroutine,

fread

subroutine,

getc,

fgetc,getchar,

or

getw

subroutine,

gets

or

fgets

subroutine,

getwc,

fgetwc,

or

getwchar

subroutine,

mbstowcs

subroutine,

mbtowc

subroutine,

printf,

fprintf,sprintf,

wsprintf,

vprintf,

vfprintf,vsprintf,

or

vwsprintf

subroutine,

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine,

strtol,

strtoul,

atol,

or

atoi

(“strtol,

strtoul,

strtoll,

strtoull,

or

atoi

Subroutine”

on

page

299)

subroutine,

ungetc

(“ungetc

or

ungetwc

Subroutine”

on

page

423)

subroutine,

wcstombs

(“wcstombs

Subroutine”

on

page

462)

subroutine.

Input

and

Output

Handling

Programmer’s

Overview,

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

for

Programming

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

114

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

sched_yield

Subroutine

Purpose

Yield

processor.

Library

Standard

Library

(libc.a)

Syntax

#include

<sched.h>

int

sched_yield

(void)

;

Description

The

sched_yield

function

forces

the

running

thread

to

relinquish

the

processor

until

it

again

becomes

the

head

of

its

thread

list.

It

takes

no

arguments.

Return

Values

The

sched_yield

function

returns

0

if

it

completes

successfully,

or

it

returns

a

value

of

-1

and

sets

errno

to

indicate

the

error.

select

Subroutine

Purpose

Checks

the

I/O

status

of

multiple

file

descriptors

and

message

queues.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/time.h>

#include

<sys/select.h>

#include

<sys/types.h>

int

select

(Nfdsmsgs,

ReadList,

WriteList,

ExceptList,

TimeOut)

int

Nfdsmsgs;

struct

sellist

*

ReadList,

*WriteList,

*ExceptList;

struct

timeval

*

TimeOut;

Description

The

select

subroutine

checks

the

specified

file

descriptors

and

message

queues

to

see

if

they

are

ready

for

reading

(receiving)

or

writing

(sending),

or

if

they

have

an

exceptional

condition

pending.

When

selecting

on

an

unconnected

stream

socket,

select

returns

when

the

connection

is

made.

If

selecting

on

a

connected

stream

socket,

then

the

ready

message

indicates

that

data

can

be

sent

or

received.

Files

descriptors

of

regular

files

always

select

true

for

read,

write,

and

exception

conditions.

For

more

information

on

sockets,

refer

to

″Understanding

Socket

Connections″

and

the

related

″Checking

for

Pending

Connections

Example

Program″

dealing

with

pending

connections

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

115

The

select

subroutine

is

also

supported

for

compatibility

with

previous

releases

of

this

operating

system

and

with

BSD

systems.

Note:

If

selecting

on

a

non-blocking

socket

for

both

read

and

write

events

and

if

the

destination

host

is

unreachable,

select

could

show

a

different

behavior

due

to

timing

constraints.

Refer

to

the

Examples

section

of

this

document

for

further

information..

Parameters

Nfdsmsgs

Specifies

the

number

of

file

descriptors

and

the

number

of

message

queues

to

check.

The

low-order

16

bits

give

the

length

of

a

bit

mask

that

specifies

which

file

descriptors

to

check;

the

high-order

16

bits

give

the

size

of

an

array

that

contains

message

queue

identifiers.

If

either

half

of

the

Nfdsmsgs

parameter

is

equal

to

a

value

of

0,

the

corresponding

bit

mask

or

array

is

assumed

not

to

be

present.

TimeOut

Specifies

either

a

null

pointer

or

a

pointer

to

a

timeval

structure

that

specifies

the

maximum

length

of

time

to

wait

for

at

least

one

of

the

selection

criteria

to

be

met.

The

timeval

structure

is

defined

in

the

/usr/include/sys/time.h

file

and

it

contains

the

following

members:

struct

timeval

{

int

tv_sec;

/*

seconds

*/

int

tv_usec;

/*

microseconds

*/

};

The

number

of

microseconds

specified

in

TimeOut.tv_usec,

a

value

from

0

to

999999,

is

set

to

one

millisecond

if

the

process

does

not

have

root

user

authority

and

the

value

is

less

than

one

millisecond.

If

the

TimeOut

parameter

is

a

null

pointer,

the

select

subroutine

waits

indefinitely,

until

at

least

one

of

the

selection

criteria

is

met.

If

the

TimeOut

parameter

points

to

a

timeval

structure

that

contains

zeros,

the

file

and

message

queue

status

is

polled,

and

the

select

subroutine

returns

immediately.

116

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

ReadList,

WriteList,

ExceptList

Specify

what

to

check

for

reading,

writing,

and

exceptions,

respectively.

Together,

they

specify

the

selection

criteria.

Each

of

these

parameters

points

to

a

sellist

structure,

which

can

specify

both

file

descriptors

and

message

queues.

Your

program

must

define

the

sellist

structure

in

the

following

form:

struct

sellist

{

int

fdsmask[F];

/*

file

descriptor

bit

mask

*/

int

msgids[M];

/*

message

queue

identifiers

*/

};

The

fdsmask

array

is

treated

as

a

bit

string

in

which

each

bit

corresponds

to

a

file

descriptor.

File

descriptor

n

is

represented

by

the

bit(1

<<

(n

mod

bits))

in

the

array

element

fdsmask[n

/

BITS(int)].

(The

BITS

macro

is

defined

in

the

values.h

file.)

Each

bit

that

is

set

to

1

indicates

that

the

status

of

the

corresponding

file

descriptor

is

to

be

checked.

Note:

The

low-order

16

bits

of

the

Nfdsmsgs

parameter

specify

the

number

of

bits

(not

elements)

in

the

fdsmask

array

that

make

up

the

file

descriptor

mask.

If

only

part

of

the

last

int

is

included

in

the

mask,

the

appropriate

number

of

low-order

bits

are

used,

and

the

remaining

high-order

bits

are

ignored.

If

you

set

the

low-order

16

bits

of

the

Nfdsmsgs

parameter

to

0,

you

must

not

define

an

fdsmask

array

in

the

sellist

structure.

Each

int

of

the

msgids

array

specifies

a

message

queue

identifier

whose

status

is

to

be

checked.

Elements

with

a

value

of

-1

are

ignored.

The

high-order

16

bits

of

the

Nfdsmsgs

parameter

specify

the

number

of

elements

in

the

msgids

array.

If

you

set

the

high-order

16

bits

of

the

Nfdsmsgs

parameter

to

0,

you

must

not

define

a

msgids

array

in

the

sellist

structure.

Note:

The

arrays

specified

by

the

ReadList,

WriteList,

and

ExceptList

parameters

are

the

same

size

because

each

of

these

parameters

points

to

the

same

sellist

structure

type.

However,

you

need

not

specify

the

same

number

of

file

descriptors

or

message

queues

in

each.

Set

the

file

descriptor

bits

that

are

not

of

interest

to

0,

and

set

the

extra

elements

of

the

msgids

array

to

-1.

You

can

use

the

SELLIST

macro

defined

in

the

sys/select.h

file

to

define

the

sellist

structure.

The

format

of

this

macro

is:

SELLIST(f,

m)

declarator

.

.

.

;

where

f

specifies

the

size

of

the

fdsmask

array,

m

specifies

the

size

of

the

msgids

array,

and

each

declarator

is

the

name

of

a

variable

to

be

declared

as

having

this

type.

Return

Values

Upon

successful

completion,

the

select

subroutine

returns

a

value

that

indicates

the

total

number

of

file

descriptors

and

message

queues

that

satisfy

the

selection

criteria.

The

fdsmask

bit

masks

are

modified

so

that

bits

set

to

1

indicate

file

descriptors

that

meet

the

criteria.

The

msgids

arrays

are

altered

so

that

message

queue

identifiers

that

do

not

meet

the

criteria

are

replaced

with

a

value

of

-1.

The

return

value

is

similar

to

the

Nfdsmsgs

parameter

in

that

the

low-order

16

bits

give

the

number

of

file

descriptors,

and

the

high-order

16

bits

give

the

number

of

message

queue

identifiers.

These

values

indicate

the

sum

total

that

meet

each

of

the

read,

write,

and

exception

criteria.

Therefore,

the

same

file

descriptor

or

message

queue

can

be

counted

up

to

three

times.

You

can

use

the

NFDS

and

NMSGS

macros

found

in

the

sys/select.h

file

to

separate

out

these

two

values

from

the

return

value.

For

example,

if

rc

contains

the

value

returned

from

the

select

subroutine,

NFDS(rc)

is

the

number

of

files

selected,

and

NMSGS(rc)

is

the

number

of

message

queues

selected.

If

the

time

limit

specified

by

the

TimeOut

parameter

expires,

the

select

subroutine

returns

a

value

of

0.

If

a

connection-based

socket

is

specified

in

the

Readlist

parameter

and

the

connection

disconnects,

the

select

subroutine

returns

successfully,

but

the

recv

subroutine

on

the

socket

will

return

a

value

of

0

to

indicate

the

socket

connection

has

been

closed.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

117

For

nonbloking

connection-based

sockets,

both

successful

and

unsuccessful

connections

will

cause

the

select

subroutine

to

return

successfully

without

any

error.

When

the

connection

completes

successfully

the

socket

becomes

writable,

and

if

the

connection

encounters

an

error

the

socket

becomes

both

readable

and

writable.

When

using

the

select

subroutine,

you

can

not

check

any

pending

errors

on

the

socket.

You

need

to

call

the

getsockopt

subroutine

with

SOL_SOCKET

and

SOL_ERROR

to

check

for

a

pending

error.

If

the

select

subroutine

is

unsuccessful,

it

returns

a

value

of

-1

and

sets

the

global

variable

errno

to

indicate

the

error.

In

this

case,

the

contents

of

the

structures

pointed

to

by

the

ReadList,

WriteList,

and

ExceptList

parameters

are

unpredictable.

Error

Codes

The

select

subroutine

is

unsuccessful

if

one

of

the

following

are

true:

EBADF

An

invalid

file

descriptor

or

message

queue

identifier

was

specified.

EAGAIN

Allocation

of

internal

data

structures

was

unsuccessful.

EINTR

A

signal

was

caught

during

the

select

subroutine

and

the

signal

handler

was

installed

with

an

indication

that

subroutines

are

not

to

be

restarted.

EINVAL

An

invalid

value

was

specified

for

the

TimeOut

parameter

or

the

Nfdsmsgs

parameter.

EINVAL

The

STREAM

or

multiplexer

referenced

by

one

of

the

file

descriptors

is

linked

(directly

or

indirectly)

downstream

from

a

multiplexer.

EFAULT

The

ReadList,

WriteList,

ExceptList,

or

TimeOut

parameter

points

to

a

location

outside

of

the

address

space

of

the

process.

Examples

The

following

is

an

example

of

the

behavior

of

the

select

subroutine

called

on

a

non-blocking

socket,

when

trying

to

connect

to

a

host

that

is

unreachable:

#include

<sys/types.h>

#include

<sys/socket.h>

#include

<netinet/in.h>

#include

<netinet/tcp.h>

#include

<fcntl.h>

#include

<sys/time.h>

#include

<errno.h>

#include

<stdio.h>

int

main()

{

int

sockfd,

cnt,

i

=

1;

struct

sockaddr_in

serv_addr;

bzero((char

*)&serv_addr,

sizeof

(serv_addr));

serv_addr.sin_family

=

AF_INET;

serv_addr.sin_addr.s_addr

=

inet_addr("172.16.55.25");

serv_addr.sin_port

=

htons(102);

if

((sockfd

=

socket(AF_INET,

SOCK_STREAM,

0))

<

0)

exit(1);

if

(fcntl(sockfd,

F_SETFL,

FNONBLOCK)

<

0)

exit(1);

if

(connect(sockfd,

(struct

sockaddr

*)&serv_addr,

sizeof

(serv_addr))

<

0

&&

errno

!=

EINPROGRESS)

exit(1);

for

(cnt=0;

cnt<2;

cnt++)

{

fd_set

readfds,

writefds;

FD_ZERO(&readfds);

118

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

FD_SET(sockfd,

&readfds);

FD_ZERO(&writefds);

FD_SET(sockfd,

&writefds);

if

(select(sockfd

+

1,

&readfds,

&writefds,

NULL,

NULL)

<

0)

exit(1);

printf("Iteration

%d

==============\n",

i);

printf("FD_ISSET(sockfd,

&readfds)

==

%d\n",

FD_ISSET(sockfd,

&readfds));

printf("FD_ISSET(sockfd,

&writefds)

==

%d\n",

FD_ISSET(sockfd,

&writefds));

i++;

}

return

0;

}

Here

is

the

output

of

the

above

program

:

Iteration

1

==============

FD_ISSET(sockfd,

&readfds)

==

0

FD_ISSET(sockfd,

&writefds)

==

1

Iteration

2

==============

FD_ISSET(sockfd,

&readfds)

==

1

FD_ISSET(sockfd,

&writefds)

==

1

In

the

first

iteration,

select

notifies

the

write

event

only.

In

the

second

iteration,

select

notifies

both

the

read

and

write

events.

Notes

FD_SETSIZE

is

the

#define

variable

that

defines

how

many

file

descriptors

the

various

FD

macros

will

use.

The

default

value

for

FD_SETSIZE

will

vary,

depending

on

the

version

of

AIX.

As

the

number

of

open

files

supported

has

increased,

the

default

value

of

FD_SETSIZE

has

increased.

In

AIX

Version

4.3.1,

the

size

increased

to

32767

open

file

descriptors

(from

2000

in

prior

releases).

In

AIX

5L

Version

5.2.0,

the

size

increased

to

65534

open

file

descriptors.

This

value

can

not

be

set

greater

than

OPEN_MAX,

which

also

varies

from

one

AIX

Version

to

another.

For

more

information,

refer

to

the

/usr/include/sys/time.h

file.

The

user

may

override

FD_SETSIZE

to

select

a

smaller

value

before

including

the

system

header

files.

This

is

desirable

for

performance

reasons,

because

of

the

overhead

in

FD_ZERO

to

zero

65534

bits.

Performance

Issues

and

Recommended

Coding

Practices

The

select

subroutine

can

be

a

very

compute

intensive

system

call,

depending

on

the

number

of

open

file

descriptors

used

and

the

lengths

of

the

bit

maps

used.

Do

not

follow

the

examples

shown

in

many

text

books.

Most

were

written

when

the

number

of

open

files

supported

was

small,

and

thus

the

bit

maps

were

short.

You

should

avoid

the

following

(where

select

is

being

passed

FD_SETSIZE

as

the

number

of

FDs

to

process):

select(FD_SETSIZE,

....)

Performance

will

be

poor

if

the

program

uses

FD_ZERO

and

the

default

FD_SETSIZE.

FD_ZERO

should

not

be

used

in

any

loops

or

before

each

select

call.

However,

using

it

one

time

to

zero

the

bit

string

will

not

cause

problems.

If

you

plan

to

use

this

simple

programming

method,

you

should

override

FD_SETSIZE

to

define

a

smaller

number

of

FDs.

For

example,

if

your

process

will

only

open

two

FDs

that

you

will

be

selecting

on,

and

there

will

never

be

more

than

a

few

hundred

other

FDs

open

in

the

process,

you

should

lower

FD_SETSIZE

to

approximately

1024.

Do

not

pass

FD_SETSIZE

as

the

first

parameter

to

select.

This

specifies

the

maximum

number

of

file

descriptors

the

system

should

check

for.

The

program

should

keep

track

of

the

highest

FD

that

has

been

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

119

assigned

or

use

the

getdtablesize

subroutine

to

determine

this

value.

This

saves

passing

excessively

long

bit

maps

in

and

out

of

the

kernel

and

reduces

the

number

of

FDs

that

select

must

check.

Use

the

poll

system

call

instead

of

select.

The

poll

system

call

has

the

same

functionality

as

select,

but

it

uses

a

list

of

FDs

instead

of

a

bit

map.

Thus,

if

you

are

only

selecting

on

a

single

FD,

you

would

only

pass

one

FD

to

poll.

With

select,

you

have

to

pass

a

bit

map

that

is

as

long

as

the

FD

number

assigned

for

that

FD.

If

AIX

assigned

FD

4000,

for

example,

you

would

have

to

pass

a

bit

map

4001

bits

long.

Related

Information

The

poll

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

semctl

Subroutine

Purpose

Controls

semaphore

operations.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/sem.h>

int

semctl

(SemaphoreID,

SemaphoreNumber,

Command,

arg)

OR

int

semctl

(SemaphoreID,

SemaphoreNumber,

Command)

int

SemaphoreID;

int

SemaphoreNumber;

int

Command;

union

semun

{

int

val;

struct

semid_ds

*buf;

unsigned

short

*array;

}

arg;

If

the

fourth

argument

is

required

for

the

operation

requested,

it

must

be

of

type

union

semun

and

explicitly

declared

as

shown

above.

Description

The

semctl

subroutine

performs

a

variety

of

semaphore

control

operations

as

specified

by

the

Command

parameter.

The

following

limits

apply

to

semaphores:

v

Maximum

number

of

semaphore

IDs

is

4096

for

operating

system

releases

before

AIX

4.3.2

and

131072

for

AIX

4.3.2

and

following.

v

Maximum

number

of

semaphores

per

ID

is

65,535.

v

Maximum

number

of

operations

per

call

by

the

semop

(“semop

Subroutine”

on

page

125)

subroutine

is

1024.

v

Maximum

number

of

undo

entries

per

procedure

is

1024.

120

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

Maximum

semaphore

value

is

32,767.

v

Maximum

adjust-on-exit

value

is

16,384.

Parameters

SemaphoreID

Specifies

the

semaphore

identifier.

SemaphoreNumber

Specifies

the

semaphore

number.

arg.val

Specifies

the

value

for

the

semaphore

for

the

SETVAL

command.

arg.buf

Specifies

the

buffer

for

status

information

for

the

IPC_STAT

and

IPC_SET

commands.

arg.array

Specifies

the

values

for

all

the

semaphores

in

a

set

for

the

GETALL

and

SETALL

commands.

Command

Specifies

semaphore

control

operations.

The

following

Command

parameter

values

are

executed

with

respect

to

the

semaphore

specified

by

the

SemaphoreID

and

SemaphoreNumber

parameters.

These

operations

get

and

set

the

values

of

a

sem

structure,

which

is

defined

in

the

sys/sem.h

file.

GETVAL

Returns

the

semval

value,

if

the

current

process

has

read

permission.

SETVAL

Sets

the

semval

value

to

the

value

specified

by

the

arg.val

parameter,

if

the

current

process

has

write

permission.

When

this

Command

parameter

is

successfully

executed,

the

semadj

value

corresponding

to

the

specified

semaphore

is

cleared

in

all

processes.

GETPID

Returns

the

value

of

the

sempid

field,

if

the

current

process

has

read

permission.

GETNCNT

Returns

the

value

of

the

semncnt

field,

if

the

current

process

has

read

permission.

GETZCNT

Returns

the

value

of

the

semzcnt

field,

if

the

current

process

has

read

permission.

The

following

Command

parameter

values

return

and

set

every

semval

value

in

the

set

of

semaphores.

These

operations

get

and

set

the

values

of

a

sem

structure,

which

is

defined

in

the

sys/sem.h

file.

GETALL

Stores

semvals

values

into

the

array

pointed

to

by

the

arg.array

parameter,

if

the

current

process

has

read

permission.

SETALL

Sets

semvals

values

according

to

the

array

pointed

to

by

the

arg.array

parameter,

if

the

current

process

has

write

permission.

When

this

Command

parameter

is

successfully

executed,

the

semadj

value

corresponding

to

each

specified

semaphore

is

cleared

in

all

processes.

The

following

Commands

parameter

values

get

and

set

the

values

of

a

semid_ds

structure,

defined

in

the

sys/sem.h

file.

These

operations

get

and

set

the

values

of

a

sem

structure,

which

is

defined

in

the

sys/sem.h

file.

IPC_STAT

Obtains

status

information

about

the

semaphore

identified

by

the

SemaphoreID

parameter.

This

information

is

stored

in

the

area

pointed

to

by

the

arg.buf

parameter.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

121

IPC_SET

Sets

the

owning

user

and

group

IDs,

and

the

access

permissions

for

the

set

of

semaphores

associated

with

the

SemaphoreID

parameter.

The

IPC_SET

operation

uses

as

input

the

values

found

in

the

arg.buf

parameter

structure.

IPC_SET

sets

the

following

fields:

sem_perm.uid

User

ID

of

the

owner

sem_perm.gid

Group

ID

of

the

owner

sem_perm.mode

Permission

bits

only

sem_perm.cuid

Creator’s

user

ID

IPC_SET

can

only

be

executed

by

a

process

that

has

root

user

authority

or

an

effective

user

ID

equal

to

the

value

of

the

sem_perm.uid

or

sem_perm.cuid

field

in

the

data

structure

associated

with

the

SemaphoreID

parameter.

IPC_RMID

Removes

the

semaphore

identifier

specified

by

the

SemaphoreID

parameter

from

the

system

and

destroys

the

set

of

semaphores

and

data

structures

associated

with

it.

This

Command

parameter

can

only

be

executed

by

a

process

that

has

root

user

authority

or

an

effective

user

ID

equal

to

the

value

of

the

sem_perm.uid

or

sem_perm.cuid

field

in

the

data

structure

associated

with

the

SemaphoreID

parameter.

Return

Values

Upon

successful

completion,

the

value

returned

depends

on

the

Command

parameter

as

follows:

Command

Return

Value

GETVAL

Returns

the

value

of

the

semval

field.

GETPID

Returns

the

value

of

the

sempid

field.

GETNCNT

Returns

the

value

of

the

semncnt

field.

GETZCNT

Returns

the

value

of

the

semzcnt

field.

All

Others

Return

a

value

of

0.

If

the

semctl

subroutine

is

unsuccessful,

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

error.

Error

Codes

The

semctl

subroutine

is

unsuccessful

if

any

of

the

following

is

true:

EINVAL

The

SemaphoreID

parameter

is

not

a

valid

semaphore

identifier.

EINVAL

The

SemaphoreNumber

parameter

is

less

than

0

or

greater

than

or

equal

to

the

sem_nsems

value.

EINVAL

The

Command

parameter

is

not

a

valid

command.

EACCES

The

calling

process

is

denied

permission

for

the

specified

operation.

ERANGE

The

Command

parameter

is

equal

to

the

SETVAL

or

SETALL

value

and

the

value

to

which

semval

value

is

to

be

set

is

greater

than

the

system-imposed

maximum.

EPERM

The

Command

parameter

is

equal

to

the

IPC_RMID

or

IPC_SET

value

and

the

calling

process

does

not

have

root

user

authority

or

an

effective

user

ID

equal

to

the

value

of

the

sem_perm.uid

or

sem_perm.cuid

field

in

the

data

structure

associated

with

the

SemaphoreID

parameter.

EFAULT

The

arg.buf

or

arg.array

parameter

points

outside

of

the

allocated

address

space

of

the

process.

ENOMEM

The

system

does

not

have

enough

memory

to

complete

the

subroutine.

Related

Information

The

semget

(“semget

Subroutine”

on

page

123)

subroutine,

semop

(“semop

Subroutine”

on

page

125)

subroutine.

122

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

semget

Subroutine

Purpose

Gets

a

set

of

semaphores.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/sem.h>

int

semget

(Key,

NumberOfSemaphores,

SemaphoreFlag)

key_t

Key;

int

NumberOfSemaphores,

SemaphoreFlag;

Description

The

semget

subroutine

returns

the

semaphore

identifier

associated

with

the

Key

parameter

value.

The

semget

subroutine

creates

a

data

structure

for

the

semaphore

ID

and

an

array

containing

the

NumberOfSemaphores

parameter

semaphores

if

one

of

the

following

conditions

is

true:

v

The

Key

parameter

is

equal

to

the

IPC_PRIVATE

operation.

v

The

Key

parameter

does

not

already

have

a

semaphore

identifier

associated

with

it,

and

the

IPC_CREAT

value

is

set.

Upon

creation,

the

data

structure

associated

with

the

new

semaphore

identifier

is

initialized

as

follows:

v

The

sem_perm.cuid

and

sem_perm.uid

fields

are

set

equal

to

the

effective

user

ID

of

the

calling

process.

v

The

sem_perm.cgid

and

sem_perm.gid

fields

are

set

equal

to

the

effective

group

ID

of

the

calling

process.

v

The

low-order

9

bits

of

the

sem_perm.mode

field

are

set

equal

to

the

low-order

9

bits

of

the

SemaphoreFlag

parameter.

v

The

sem_nsems

field

is

set

equal

to

the

value

of

the

NumberOfSemaphores

parameter.

v

The

sem_otime

field

is

set

equal

to

0

and

the

sem_ctime

field

is

set

equal

to

the

current

time.

The

data

structure

associated

with

each

semaphore

in

the

set

is

not

initialized.

The

semctl

(“semctl

Subroutine”

on

page

120)

subroutine

(with

the

Command

parameter

values

SETVAL

or

SETALL)

can

be

used

to

initialize

each

semaphore.

If

the

Key

parameter

value

is

not

IPC_PRIVATE,

the

IPC_EXCL

value

is

not

set,

and

a

semaphore

identifier

already

exists

for

the

specified

Key

parameter,

the

value

of

the

NumberOfSemaphores

parameter

specifies

the

number

of

semaphores

that

the

current

process

needs.

If

the

NumberOfSemaphores

parameter

has

a

value

of

0,

any

number

of

semaphores

is

acceptable.

If

the

NumberOfSemaphores

parameter

is

not

0,

the

semget

subroutine

is

unsuccessful

if

the

set

contains

fewer

than

the

value

of

the

NumberOfSemaphores

parameter.

The

following

limits

apply

to

semaphores:

v

Maximum

number

of

semaphore

IDs

is

4096

for

operating

system

releases

before

AIX

4.3.2

and

131072

for

AIX

4.3.2

and

following.

v

Maximum

number

of

semaphores

per

ID

is

65,535.

v

Maximum

number

of

operations

per

call

by

the

semop

subroutine

is

1024.

v

Maximum

number

of

undo

entries

per

procedure

is

1024.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

123

v

Maximum

semaphore

value

is

32,767.

v

Maximum

adjust-on-exit

value

is

16,384.

Parameters

Key

Specifies

either

the

IPC_PRIVATE

value

or

an

IPC

key

constructed

by

the

ftok

subroutine

(or

a

similar

algorithm).

NumberOfSemaphores

Specifies

the

number

of

semaphores

in

the

set.

SemaphoreFlag

Constructed

by

logically

ORing

one

or

more

of

the

following

values:

IPC_CREAT

Creates

the

data

structure

if

it

does

not

already

exist.

IPC_EXCL

Causes

the

semget

subroutine

to

fail

if

the

IPC_CREAT

value

is

also

set

and

the

data

structure

already

exists.

S_IRUSR

Permits

the

process

that

owns

the

data

structure

to

read

it.

S_IWUSR

Permits

the

process

that

owns

the

data

structure

to

modify

it.

S_IRGRP

Permits

the

group

associated

with

the

data

structure

to

read

it.

S_IWGRP

Permits

the

group

associated

with

the

data

structure

to

modify

it.

S_IROTH

Permits

others

to

read

the

data

structure.

S_IWOTH

Permits

others

to

modify

the

data

structure.

Values

that

begin

with

the

S_I

prefix

are

defined

in

the

sys/mode.h

file

and

are

a

subset

of

the

access

permissions

that

apply

to

files.

Return

Values

Upon

successful

completion,

the

semget

subroutine

returns

a

semaphore

identifier.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

semget

subroutine

is

unsuccessful

if

one

or

more

of

the

following

conditions

is

true:

EACCES

A

semaphore

identifier

exists

for

the

Key

parameter

but

operation

permission,

as

specified

by

the

low-order

9

bits

of

the

SemaphoreFlag

parameter,

is

not

granted.

EINVAL

A

semaphore

identifier

does

not

exist

and

the

NumberOfSemaphores

parameter

is

less

than

or

equal

to

a

value

of

0,

or

greater

than

the

system-imposed

value.

EINVAL

A

semaphore

identifier

exists

for

the

Key

parameter,

but

the

number

of

semaphores

in

the

set

associated

with

it

is

less

than

the

value

of

the

NumberOfSemaphores

parameter

and

the

NumberOfSemaphores

parameter

is

not

equal

to

0.

ENOENT

A

semaphore

identifier

does

not

exist

for

the

Key

parameter

and

the

IPC_CREAT

value

is

not

set.

ENOSPC

Creating

a

semaphore

identifier

would

exceed

the

maximum

number

of

identifiers

allowed

systemwide.

EEXIST

A

semaphore

identifier

exists

for

the

Key

parameter,

but

both

the

IPC_CREAT

and

IPC_EXCL

values

are

set.

ENOMEM

There

is

not

enough

memory

to

complete

the

operation.

124

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

ftok

subroutine,

semctl

(“semctl

Subroutine”

on

page

120)

subroutine,

semop

(“semop

Subroutine”)

subroutine.

The

mode.h

file.

semop

Subroutine

Purpose

Performs

semaphore

operations.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/sem.h>

int

semop

(SemaphoreID,

SemaphoreOperations,

NumberOfSemaphoreOperations)

int

SemaphoreID;

struct

sembuf

*

SemaphoreOperations;

size_t

NumberOfSemaphoreOperations;

Description

The

semop

subroutine

performs

operations

on

the

set

of

semaphores

associated

with

the

semaphore

identifier

specified

by

the

SemaphoreID

parameter.

The

sembuf

structure

is

defined

in

the

usr/include/sys/sem.h

file.

Each

sembuf

structure

specified

by

the

SemaphoreOperations

parameter

includes

the

following

fields:

sem_num

Semaphore

number

sem_op

Semaphore

operation

sem_flg

Operation

flags

Each

semaphore

operation

specified

by

the

sem_op

field

is

performed

on

the

semaphore

specified

by

the

SemaphoreID

parameter

and

the

sem_num

field.

The

sem_op

field

specifies

one

of

three

semaphore

operations.

1.

If

the

sem_op

field

is

a

negative

integer

and

the

calling

process

has

permission

to

alter,

one

of

the

following

conditions

occurs:

v

If

the

semval

variable

(see

the

/usr/include/sys/sem.h

file)

is

greater

than

or

equal

to

the

absolute

value

of

the

sem_op

field,

the

absolute

value

of

the

sem_op

field

is

subtracted

from

the

semval

variable.

In

addition,

if

the

SEM_UNDO

flag

is

set

in

the

sem_flg

field,

the

absolute

value

of

the

sem_op

field

is

added

to

the

semadj

value

of

the

calling

process

for

the

specified

semaphore.

v

If

the

semval

variable

is

less

than

the

absolute

value

of

the

sem_op

field

and

the

IPC_NOWAIT

value

is

set

in

the

sem_flg

field,

the

semop

subroutine

returns

immediately.

v

If

the

semval

variable

is

less

than

the

absolute

value

of

the

sem_op

field

and

the

IPC_NOWAIT

value

is

not

set

in

the

sem_flg

field,

the

semop

subroutine

increments

the

semncnt

field

associated

with

the

specified

semaphore

and

suspends

the

calling

process

until

one

of

the

following

conditions

occurs:

–

The

value

of

the

semval

variable

becomes

greater

than

or

equal

to

the

absolute

value

of

the

sem_op

field.

The

value

of

the

semncnt

field

associated

with

the

specified

semaphore

is

then

decremented,

and

the

absolute

value

of

the

sem_op

field

is

subtracted

from

the

semval

variable.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

125

In

addition,

if

the

SEM_UNDO

flag

is

set

in

the

sem_flg

field,

the

absolute

value

of

the

sem_op

field

is

added

to

the

semadj

value

of

the

calling

process

for

the

specified

semaphore.

–

The

SemaphoreID

parameter

for

which

the

calling

process

is

awaiting

action

is

removed

from

the

system.

When

this

occurs,

the

errno

global

variable

is

set

to

the

EIDRM

flag

and

a

value

of

-1

is

returned.

–

The

calling

process

received

a

signal

that

is

to

be

caught.

When

this

occurs,

the

semop

subroutine

decrements

the

value

of

the

semncnt

field

associated

with

the

specified

semaphore.

When

the

semzcnt

field

is

decremented,

the

calling

process

resumes

as

prescribed

by

the

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine.

2.

If

the

sem_op

field

is

a

positive

integer

and

the

calling

process

has

alter

permission,

the

value

of

the

sem_op

field

is

added

to

the

semval

variable.

In

addition,

if

the

SEM_UNDO

flag

is

set

in

the

sem_flg

field,

the

value

of

the

sem_op

field

is

subtracted

from

the

calling

process’s

semadj

value

for

the

specified

semaphore.

3.

If

the

value

of

the

sem_op

field

is

0

and

the

calling

process

has

read

permission,

one

of

the

following

occurs:

v

If

the

semval

variable

is

0,

the

semop

subroutine

returns

immediately.

v

If

the

semval

variable

is

not

equal

to

0

and

IPC_NOWAIT

value

is

set

in

the

sem_flg

field,

the

semop

subroutine

returns

immediately.

v

If

the

semval

variable

is

not

equal

to

0

and

the

IPC_NOWAIT

value

is

set

in

the

sem_flg

field,

the

semop

subroutine

increments

the

semzcnt

field

associated

with

the

specified

semaphore

and

suspends

execution

of

the

calling

process

until

one

of

the

following

occurs:

–

The

value

of

the

semval

variable

becomes

0.

When

this

occurs,

the

value

of

the

semzcnt

field

associated

with

the

specified

semaphore

is

decremented.

–

The

SemaphoreID

parameter

for

which

the

calling

process

is

awaiting

action

is

removed

from

the

system.

If

this

occurs,

the

errno

global

variable

is

set

to

the

EIDRM

error

code

and

a

value

of

-1

is

returned.

–

The

calling

process

received

a

signal

that

is

to

be

caught.

When

this

occurs,

the

semop

subroutine

decrements

the

value

of

the

semzcnt

field

associated

with

the

specified

semaphore.

When

the

semzcnt

field

is

decremented,

the

calling

process

resumes

execution

as

prescribed

by

the

sigaction

subroutine.

The

following

limits

apply

to

semaphores:

v

Maximum

number

of

semaphore

IDs

is

4096

for

operating

system

releases

before

AIX

4.3.2

and

131072

for

AIX

4.3.2

and

following.

v

Maximum

number

of

semaphores

per

ID

is

65,535.

v

Maximum

number

of

operations

per

call

by

the

semop

subroutine

is

1024.

v

Maximum

number

of

undo

entries

per

procedure

is

1024.

v

Maximum

capacity

of

a

semaphore

value

is

32,767

bytes.

v

Maximum

adjust-on-exit

value

is

16,384

bytes.

Parameters

SemaphoreID

Specifies

the

semaphore

identifier.

NumberOfSemaphoreOperations

Specifies

the

number

of

structures

in

the

array.

SemaphoreOperations

Points

to

an

array

of

structures,

each

of

which

specifies

a

semaphore

operation.

Return

Values

Upon

successful

completion,

the

semop

subroutine

returns

a

value

of

0.

Also,

the

SemaphoreID

parameter

value

for

each

semaphore

that

is

operated

upon

is

set

to

the

process

ID

of

the

calling

process.

126

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

If

the

semop

subroutine

is

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

If

the

SEM_ORDER

flag

was

set

in

the

sem_flg

field

for

the

first

semaphore

operation

in

the

SemaphoreOperations

array,

the

SEM_ERR

value

is

set

in

the

sem_flg

field

for

the

unsuccessful

operation.

If

the

SemaphoreID

parameter

for

which

the

calling

process

is

awaiting

action

is

removed

from

the

system,

the

errno

global

variable

is

set

to

the

EIDRM

error

code

and

a

value

of

-1

is

returned.

Error

Codes

The

semop

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true

for

any

of

the

semaphore

operations

specified

by

the

SemaphoreOperations

parameter.

If

the

operations

were

performed

individually,

the

discussion

of

the

SEM_ORDER

flag

provides

more

information

about

error

situations.

EINVAL

The

SemaphoreID

parameter

is

not

a

valid

semaphore

identifier.

EFBIG

The

sem_num

value

is

less

than

0

or

it

is

greater

than

or

equal

to

the

number

of

semaphores

in

the

set

associated

with

the

SemaphoreID

parameter.

E2BIG

The

NumberOfSemaphoreOperations

parameter

is

greater

than

the

system-imposed

maximum.

EACCES

The

calling

process

is

denied

permission

for

the

specified

operation.

EAGAIN

The

operation

would

result

in

suspension

of

the

calling

process,

but

the

IPC_NOWAIT

value

is

set

in

the

sem_flg

field.

ENOSPC

The

limit

on

the

number

of

individual

processes

requesting

a

SEM_UNDO

flag

would

be

exceeded.

EINVAL

The

number

of

individual

semaphores

for

which

the

calling

process

requests

a

SEM_UNDO

flag

would

exceed

the

limit.

ERANGE

An

operation

would

cause

a

semval

value

to

overflow

the

system-imposed

limit.

ERANGE

An

operation

would

cause

a

semadj

value

to

overflow

the

system-imposed

limit.

EFAULT

The

SemaphoreOperations

parameter

points

outside

of

the

address

space

of

the

process.

EINTR

A

signal

interrupted

the

semop

subroutine.

EIDRM

The

semaphore

identifier

SemaphoreID

parameter

has

been

removed

from

the

system.

Related

Information

The

exec

subroutine,

exit

subroutine,

fork

subroutine,

semctl

(“semctl

Subroutine”

on

page

120)

subroutine,

semget

(“semget

Subroutine”

on

page

123)

subroutine,

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine.

setacldb

or

endacldb

Subroutine

Purpose

Opens

and

closes

the

SMIT

ACL

database.

Library

Security

Library

(libc.a)

Syntax

#include

<usersec.h>

int

setacldb(Mode)

int

Mode;

int

endacldb;

Description

These

functions

may

be

used

to

open

and

close

access

to

the

user

SMIT

ACL

database.

Programs

that

call

the

getusraclattr

or

getgrpaclattr

subroutines

should

call

the

setacldb

subroutine

to

open

the

database

and

the

endacldb

subroutine

to

close

the

database.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

127

The

setacldb

subroutine

opens

the

database

in

the

specified

mode,

if

it

is

not

already

open.

The

open

count

is

increased

by

1.

The

endacldb

subroutine

decreases

the

open

count

by

1

and

closes

the

database

when

this

count

goes

to

0.

Any

uncommitted

changed

data

is

lost.

Parameters

Mode

Specifies

the

mode

of

the

open.

This

parameter

may

contain

one

or

more

of

the

following

values

defined

in

the

usersec.h

file:

S_READ

Specifies

read

access.

S_WRITE

Specifies

update

access.

Return

Values

The

setacldb

and

endacldb

subroutines

return

a

value

of

0

to

indicate

success.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

setacldb

subroutine

fails

if

the

following

is

true:

EACCES

Access

permission

is

denied

for

the

data

request.

Both

subroutines

return

errors

from

other

subroutines.

Security

Security

Files

Accessed:

The

calling

process

must

have

access

to

the

SMIT

ACL

data.

Mode

File

rw/etc/security/smitacl.user

Related

Information

The

getgrpaclattr,

nextgrpacl,

or

putgrpaclattr

subroutine,

getusraclattr,

nextusracl,

or

putusraclattr

subroutine.

setauthdb

Subroutine

Purpose

Restricts

the

search

order

for

loadable

authentication

modules.

Library

Standard

C

Library

(libc.a)

Syntax

int

setauthdb

(new_db_name,

old_db_name)

const

char

*new_db_name;

char

*old_db_name;

128

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

setauthdb

library

function

controls

which

loadable

authentication

modules

are

examined

by

the

security

library

functions.

Specifying

a

value

for

the

new_auth_db

parameter

will

restrict

the

security

library

functions

to

the

named

simple

or

compound

loadable

authentication

module.

Future

calls

to

security

library

functions

will

be

restricted

to

the

given

loadable

authentication

module.

The

restriction

may

be

removed

by

using

a

zero

length

string

as

the

value

of

the

new_auth_db

parameter.

The

current

value

may

be

obtained

by

providing

a

pointer

to

a

character

array

which

is

long

enough

to

hold

the

longest

permissible

stanza

name

in

the

/usr/lib/security/methods.cfg

file

(15

characters).

Parameters

new_db_name

Pointer

to

the

name

of

the

new

database

module.

The

new_db_name

parameter

must

reference

a

value

module

name

contained

in

the

/usr/lib/security/methods.cfg

file,

or

one

of

the

predefined

values

(BUILTIN,

compat,

or

files).

The

empty

string

may

be

used

to

remove

the

restriction

on

which

modules

are

used.

old_db_name

Pointer

to

where

the

name

of

the

current

module

will

be

stored.

A

NULL

value

for

the

old_db_name

parameter

may

be

used

if

the

current

name

of

the

database

is

not

wanted.

Return

Values

0

The

module

search

restriction

has

been

successfully

changed.

-1

The

module

search

restriction

could

not

be

changed.

The

errno

variable

must

be

examined

to

determine

the

cause

of

the

failure.

Error

Codes

EINVAL

The

new_auth_db

parameter

is

longer

than

the

permissible

length

of

a

stanza

in

the

/usr/lib/security/methods.cfg

file

(15

characters).

ENOENT

The

new_auth_dbdoes

not

reference

a

valid

stanza

in

/usr/lib/security/methods.cfg

or

one

of

the

predefined

values.

Related

Information

getauthdb

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

setbuf,

setvbuf,

setbuffer,

or

setlinebuf

Subroutine

Purpose

Assigns

buffering

to

a

stream.

Library

Standard

C

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

129

Syntax

#include

<stdio.h>

void

setbuf

(

Stream,

Buffer)

FILE

*Stream;

char

*Buffer;

int

setvbuf

(Stream,

Buffer,

Mode,

Size)

FILE

*Stream;

char

*Buffer;

int

Mode;

size_t

Size;

void

setbuffer

(Stream,

Buffer,

Size)

FILE

*Stream;

char

*Buffer;

size_t

Size;

void

setlinebuf

(Stream)

FILE

*Stream;

Description

The

setbuf

subroutine

causes

the

character

array

pointed

to

by

the

Buffer

parameter

to

be

used

instead

of

an

automatically

allocated

buffer.

Use

the

setbuf

subroutine

after

a

stream

has

been

opened,

but

before

it

is

read

or

written.

If

the

Buffer

parameter

is

a

null

character

pointer,

input/output

is

completely

unbuffered.

A

constant,

BUFSIZ,

defined

in

the

stdio.h

file,

tells

how

large

an

array

is

needed:

char

buf[BUFSIZ];

For

the

setvbuf

subroutine,

the

Mode

parameter

determines

how

the

Stream

parameter

is

buffered:

_IOFBF

Causes

input/output

to

be

fully

buffered.

_IOLBF

Causes

output

to

be

line-buffered.

The

buffer

is

flushed

when

a

new

line

is

written,

the

buffer

is

full,

or

input

is

requested.

_IONBF

Causes

input/output

to

be

completely

unbuffered.

If

the

Buffer

parameter

is

not

a

null

character

pointer,

the

array

it

points

to

is

used

for

buffering.

The

Size

parameter

specifies

the

size

of

the

array

to

be

used

as

a

buffer,

but

all

of

the

Size

parameter’s

bytes

are

not

necessarily

used

for

the

buffer

area.

The

constant

BUFSIZ

in

the

stdio.h

file

is

one

buffer

size.

If

input/output

is

unbuffered,

the

subroutine

ignores

the

Buffer

and

Size

parameters.

The

setbuffer

subroutine,

an

alternate

form

of

the

setbuf

subroutine,

is

used

after

Stream

has

been

opened,

but

before

it

is

read

or

written.

The

character

array

Buffer,

whose

size

is

determined

by

the

Size

parameter,

is

used

instead

of

an

automatically

allocated

buffer.

If

the

Buffer

parameter

is

a

null

character

pointer,

input/output

is

completely

unbuffered.

The

setbuffer

subroutine

is

not

needed

under

normal

circumstances

because

the

default

file

I/O

buffer

size

is

optimal.

The

setlinebuf

subroutine

is

used

to

change

the

stdout

or

stderr

file

from

block

buffered

or

unbuffered

to

line-buffered.

Unlike

the

setbuf

and

setbuffer

subroutines,

the

setlinebuf

subroutine

can

be

used

any

time

Stream

is

active.

A

buffer

is

normally

obtained

from

the

malloc

subroutine

at

the

time

of

the

first

getc

subroutine

or

putc

subroutine

on

the

file,

except

that

the

standard

error

stream,

stderr,

is

normally

not

buffered.

130

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Output

streams

directed

to

terminals

are

always

either

line-buffered

or

unbuffered.

Note:

A

common

source

of

error

is

allocating

buffer

space

as

an

automatic

variable

in

a

code

block,

and

then

failing

to

close

the

stream

in

the

same

block.

The

setbuffer

and

setlinebuf

subroutines

are

included

for

compatibility

with

Berkeley

System

Distribution

(BSD).

Parameters

Stream

Specifies

the

input/output

stream.

Buffer

Points

to

a

character

array.

Mode

Determines

how

the

Stream

parameter

is

buffered.

Size

Specifies

the

size

of

the

buffer

to

be

used.

Return

Values

Upon

successful

completion,

setvbuf

returns

a

value

of

0.

Otherwise

it

returns

a

nonzero

value

if

a

value

that

is

not

valid

is

given

for

type,

or

if

the

request

cannot

be

honored.

Related

Information

The

fopen,

freopen,

or

fdopen

subroutine,

fread

subroutine,

getc,

fgetc,

getchar,

or

getw

subroutine,

getwc,

fgetwc,

or

getwchar

subroutine,

malloc,

free,

realloc,

calloc,

mallopt,

mallinfo,

or

alloca

subroutine,

putc,

putchar,

fputc,

or

putw

subroutine,

putwc,

putwchar,

or

fputwc

subroutine.

The

Input

and

Output

Handling

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setcsmap

Subroutine

Purpose

Reads

a

code-set

map

file

and

assigns

it

to

the

standard

input

device.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/termios.h>

int

setcsmap

(Path);

char

*

Path;

Description

The

setcsmap

subroutine

reads

in

a

code-set

map

file.

The

path

parameter

specifies

the

location

of

the

code-set

map

file.

The

path

is

usually

composed

by

forming

a

string

with

the

csmap

directory

and

the

code

set,

as

in

the

following

example:

n=sprintf(path,"%s%s",CSMAP_DIR,nl_langinfo(CODESET));

The

file

is

processed

and

according

to

the

included

informations,

the

setcsmap

subroutine

changes

the

tty

configuration.

Multibyte

processing

may

be

enabled,

and

converter

modules

may

be

pushed

onto

the

tty

stream.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

131

Parameter

Path

Names

the

code-set

map

file.

Return

Values

If

a

code

set-map

file

is

successfully

opened

and

compiled,

a

value

of

0

is

returned.

If

an

error

occurred,

a

value

of

1

is

returned

and

the

errno

global

variable

is

set

to

identify

the

error.

Error

Codes

EINVAL

Indicates

an

invalid

value

in

the

code

set

map.

EIO

An

I/O

error

occurred

while

the

file

system

was

being

read.

ENOMEM

Insufficient

resources

are

available

to

satisfy

the

request.

EFAULT

A

kernel

service,

such

as

copyin,

has

failed.

ENOENT

The

named

file

does

not

exist.

EACCESS

The

named

file

cannot

be

read.

Related

Information

The

setmaps

command.

The

setmaps

file

format.

tty

Subsystem

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setgid,

setrgid,

setegid,

setregid,

or

setgidx

Subroutine

Purpose

Sets

the

process

group

IDs.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

int

setgid

(GID)

gid_t

GID;

int

setrgid

(RGID)

gid_t

RGID;

int

setegid

(EGID)

gid_t

EGID;

int

setregid

(RGID,

EGID)

gid_t

RGID;

gid_t

EGID;

#include

<unistd.h>

#include

<sys/id.h>

int

setgidx

(

which,

GID

)

int

which;

gid_t

GID;

132

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

setgid,

setrgid,

setegid,

setregid,

and

setgidx

subroutines

set

the

process

group

IDs

of

the

calling

process.

The

following

semantics

are

supported:

setgid

If

the

effective

user

ID

of

the

process

is

the

root

user,

the

process’s

real,

effective,

and

saved

group

IDs

are

set

to

the

value

of

the

GID

parameter.

Otherwise,

the

process

effective

group

ID

is

reset

if

the

GID

parameter

is

equal

to

either

the

current

real

or

saved

group

IDs,

or

one

of

its

supplementary

group

IDs.

Supplementary

group

IDs

of

the

calling

process

are

not

changed.

setegid

The

process

effective

group

ID

is

reset

if

one

of

the

following

conditions

is

met:

v

The

EGID

parameter

is

equal

to

either

the

current

real

or

saved

group

IDs.

v

The

EGID

parameter

is

equal

to

one

of

its

supplementary

group

IDs.

v

The

effective

user

ID

of

the

process

is

the

root

user.

setrgid

The

EPERM

error

code

is

always

returned.

setregid

The

RGID

and

EGID

parameters

can

have

one

of

the

following

relationships:

RGID

!=

EGID

If

the

EGID

parameter

is

equal

to

either

the

process’s

real

or

saved

group

IDs,

the

process

effective

group

ID

is

set

to

the

EGID

parameter.

Otherwise,

the

EPERM

error

code

is

returned.

RGID

==

EGID

If

the

effective

user

ID

of

the

process

is

the

root

user,

the

process’s

real

and

effective

group

IDs

are

set

to

the

EGID

parameter.

If

the

EGID

parameter

is

equal

to

the

process’s

real

or

saved

group

IDs,

the

process

effective

group

ID

is

set

to

EGID.

Otherwise,

the

EPERM

error

code

is

returned.

setgidx

The

which

parameter

can

have

one

of

the

following

values:

ID_EFFECTIVE

GID

must

be

either

the

real

or

saved

GID

or

one

of

the

values

in

the

concurrent

group

set.

The

effective

group

ID

for

the

current

process

will

be

set

to

GID.

ID_EFFECTIVE|ID_REAL

Invoker

must

have

appropriate

privilege.

The

real

and

effective

group

ID

for

the

current

process

will

be

set

to

GID.

ID_EFFECTIVE|ID_REAL|ID_SAVED

Invoker

must

have

appropriate

privilege.

The

real,

effective

and

saved

group

ID

for

the

current

process

will

be

set

to

GID.

The

setegid,

setrgid,

setregid,

and

setgidx

subroutines

are

thread-safe.

The

operating

system

does

not

support

setuid

(“setuid,

setruid,

seteuid,

setreuid

or

setuidx

Subroutine”

on

page

151)

or

setgid

shell

scripts.

These

subroutines

are

part

of

Base

Operating

System

(BOS)

Runtime.

Parameters

GID

Specifies

the

value

of

the

group

ID

to

set.

RGID

Specifies

the

value

of

the

real

group

ID

to

set.

EGID

Specifies

the

value

of

the

effective

group

ID

to

set.

which

Specifies

which

group

ID

values

to

set.

Return

Values

0

Indicates

that

the

subroutine

was

successful.

-1

Indicates

the

subroutine

failed.

The

errno

global

variable

is

set

to

indicate

the

error.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

133

Error

Codes

If

the

setgid,

setegid,

or

setgidx

subroutine

fails,

one

or

more

of

the

following

are

returned:

EPERM

Indicates

the

process

does

not

have

appropriate

privileges

and

the

GID

or

EGID

parameter

is

not

equal

to

either

the

real

or

saved

group

IDs

of

the

process.

EINVAL

Indicates

the

value

of

the

GID,

EGID

or

which

parameter

is

invalid.

Related

Information

The

getgid

subroutine,

getgroups

subroutine,

setgroups

(“setgroups

Subroutine”)

subroutine,

setuid

(“setuid,

setruid,

seteuid,

setreuid

or

setuidx

Subroutine”

on

page

151)

subroutine.

The

setgroups

command.

List

of

Security

and

Auditing

Subroutines,

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setgroups

Subroutine

Purpose

Sets

the

supplementary

group

ID

of

the

current

process.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<grp.h>

int

setgroups

(

NumberGroups,

GroupIDSet)

int

NumberGroups;

gid_t

*GroupIDSet;

Description

The

setgroups

subroutine

sets

the

supplementary

group

ID

of

the

process.

The

setgroups

subroutine

cannot

set

more

than

NGROUPS_MAX

groups

in

the

group

set.

(NGROUPS_MAX

is

a

constant

defined

in

the

limits.h

file.)

Note:

The

routine

may

coredump

instead

of

returning

EFAULT

when

an

invalid

pointer

is

passed

in

case

of

64-bit

application

calling

32-bit

kernel

interface.

Parameters

GroupIDSet

Pointer

to

the

array

of

group

IDs

to

be

established.

NumberGroups

Indicates

the

number

of

entries

in

the

GroupIDSet

parameter.

Return

Values

Upon

successful

completion,

the

setgroups

subroutine

returns

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

134

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

The

setgroups

subroutine

fails

if

any

of

the

following

are

true:

EFAULT

The

NumberGroups

and

GroupIDSet

parameters

specify

an

array

that

is

partially

or

completely

outside

of

the

process’

allocated

address

space.

EINVAL

The

NumberGroups

parameter

is

greater

than

the

NGROUPS_MAX

value.

EPERM

A

group

ID

in

the

GroupIDSet

parameter

is

not

presently

in

the

supplementary

group

ID,

and

the

invoker

does

not

have

root

user

authority.

Security

Auditing

Events:

Event

Information

PROC_SetGroups

NumberGroups,

GroupIDSet

Related

Information

The

getgid

subroutine,

getgroups

subroutine,

initgroups

subroutine,

setgid

(“setgid,

setrgid,

setegid,

setregid,

or

setgidx

Subroutine”

on

page

132)

subroutine.

List

of

Security

and

Auditing

Subroutines

and

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setjmp

or

longjmp

Subroutine

Purpose

Saves

and

restores

the

current

execution

context.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<setjmp.h>

int

setjmp

(Context)

jmp_buf

Context;

void

longjmp

(

Context,

Value)

jmp_buf

Context;

int

Value;

int

_setjmp

(Context)

jmp_buf

Context;

void

_longjmp

(Context,

Value)

jmp_buf

Context;

int

Value;

Description

The

setjmp

subroutine

and

the

longjmp

subroutine

are

useful

when

handling

errors

and

interrupts

encountered

in

low-level

subroutines

of

a

program.

The

setjmp

subroutine

saves

the

current

stack

context

and

signal

mask

in

the

buffer

specified

by

the

Context

parameter.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

135

The

longjmp

subroutine

restores

the

stack

context

and

signal

mask

that

were

saved

by

the

setjmp

subroutine

in

the

corresponding

Context

buffer.

After

the

longjmp

subroutine

runs,

program

execution

continues

as

if

the

corresponding

call

to

the

setjmp

subroutine

had

just

returned

the

value

of

the

Value

parameter.

The

subroutine

that

called

the

setjmp

subroutine

must

not

have

returned

before

the

completion

of

the

longjmp

subroutine.

The

setjmp

and

longjmp

subroutines

save

and

restore

the

signal

mask

sigmask

(2),

while

_setjmp

and

_longjmp

manipulate

only

the

stack

context.

If

a

process

is

using

the

AT&T

System

V

sigset

interface,

then

the

setjmp

and

longjmp

subroutines

do

not

save

and

restore

the

signal

mask.

In

such

a

case,

their

actions

are

identical

to

those

of

the

_setjmp

and

_longjmp

subroutines.

Parameters

Context

Specifies

an

address

for

a

jmp_buf

structure.

Value

Indicates

any

integer

value.

Return

Values

The

setjmp

subroutine

returns

a

value

of

0,

unless

the

return

is

from

a

call

to

the

longjmp

function,

in

which

case

setjmp

returns

a

nonzero

value.

The

longjmp

subroutine

cannot

return

0

to

the

previous

context.

The

value

0

is

reserved

to

indicate

the

actual

return

from

the

setjmp

subroutine

when

first

called

by

the

program.

The

longjmp

subroutine

does

not

return

from

where

it

was

called,

but

rather,

program

execution

continues

as

if

the

corresponding

call

to

setjmp

was

returned

with

a

returned

value

of

Value.

If

the

longjmp

subroutine

is

passed

a

Value

parameter

of

0,

then

execution

continues

as

if

the

corresponding

call

to

the

setjmp

subroutine

had

returned

a

value

of

1.

All

accessible

data

have

values

as

of

the

time

the

longjmp

subroutine

is

called.

Attention:

If

the

longjmp

subroutine

is

called

with

a

Context

parameter

that

was

not

previously

set

by

the

setjmp

subroutine,

or

if

the

subroutine

that

made

the

corresponding

call

to

the

setjmp

subroutine

has

already

returned,

then

the

results

of

the

longjmp

subroutine

are

undefined.

If

the

longjmp

subroutine

detects

such

a

condition,

it

calls

the

longjmperror

routine.

If

longjmperror

returns,

the

program

is

aborted.

The

default

version

of

longjmperror

prints

the

message:

longjmp

or

siglongjmp

used

outside

of

saved

context

to

standard

error

and

returns.

Users

wishing

to

exit

in

another

manner

can

write

their

own

version

of

the

longjmperror

program.

Related

Information

The

sigsetjmp

or

siglongjmp

(“sigsetjmp

or

siglongjmp

Subroutine”

on

page

186)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setlocale

Subroutine

Purpose

Changes

or

queries

the

program’s

entire

current

locale

or

portions

thereof.

Library

Standard

C

Library

(libc.a)

136

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<locale.h>

char

*setlocale

(

Category,

Locale)

int

Category;

const

char

*Locale;

Description

The

setlocale

subroutine

selects

all

or

part

of

the

program’s

locale

specified

by

the

Category

and

Locale

parameters.

The

setlocale

subroutine

then

changes

or

queries

the

specified

portion

of

the

locale.

The

LC_ALL

value

for

the

Category

parameter

names

the

entire

locale

(all

the

categories).

The

other

Category

values

name

only

a

portion

of

the

program

locale.

The

Locale

parameter

specifies

a

string

that

provides

information

needed

to

set

certain

conventions

in

the

Category

parameter.

The

components

of

the

Locale

parameter

are

language

and

territory.

Values

allowed

for

the

locale

argument

are

the

predefined

language_territory

combinations

or

a

user-defined

locale.

If

a

user

defines

a

new

locale,

a

uniquely

named

locale

definition

source

file

must

be

provided.

The

character

collation,

character

classification,

monetary,

numeric,

time,

and

message

information

should

be

provided

in

this

file.

The

locale

definition

source

file

is

converted

to

a

binary

file

by

the

localedef

command.

The

binary

locale

definition

file

is

accessed

in

the

directory

specified

by

the

LOCPATH

environment

variable.

Note:

All

setuid

and

setgid

programs

will

ignore

the

LOCPATH

environment

variable.

The

default

locale

at

program

startup

is

the

C

locale.

A

call

to

the

setlocale

subroutine

must

be

made

explicitly

to

change

this

default

locale

environment.

See

Understanding

Locale

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

for

setlocale

subroutine

examples.

The

locale

state

is

common

to

all

threads

within

a

process.

Parameters

Category

Specifies

a

value

representing

all

or

part

of

the

locale

for

a

program.

Depending

on

the

value

of

the

Locale

parameter,

these

categories

may

be

initiated

by

the

values

of

environment

variables

with

corresponding

names.

Valid

values

for

the

Category

parameter,

as

defined

in

the

locale.h

file,

are:

LC_ALL

Affects

the

behavior

of

a

program’s

entire

locale.

LC_COLLATE

Affects

the

behavior

of

regular

expression

and

collation

subroutines.

LC_CTYPE

Affects

the

behavior

of

regular

expression,

character-classification,

case-conversion,

and

wide

character

subroutines.

LC_MESSAGES

Affects

the

content

of

messages

and

affirmative

and

negative

responses.

LC_MONETARY

Affects

the

behavior

of

subroutines

that

format

monetary

values.

LC_NUMERIC

Affects

the

behavior

of

subroutines

that

format

nonmonetary

numeric

values.

LC_TIME

Affects

the

behavior

of

time-conversion

subroutines.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

137

Locale

Points

to

a

character

string

containing

the

required

setting

for

the

Category

parameter.

The

following

are

special

values

for

the

Locale

parameter:

″C″

The

C

locale

is

the

locale

all

programs

inherit

at

program

startup.

″POSIX″

Specifies

the

same

locale

as

a

value

of

″C″.

″″

Specifies

categories

be

set

according

to

locale

environment

variables.

NULL

Queries

the

current

locale

environment

and

returns

the

name

of

the

locale.

The

Language

Territory

Table

contains

supported

language_territory

values

for

the

Locale

parameter:

Table

1.

Language

Territory

Table

Locale

Value

Language

Territory

Code

Set

Ar_AA

Arabic

Arabic

Countries

IBM-1046

ar_AA

Arabic

Arabic

Countries

ISO8859-6

bg_BG

Bulgarian

Bulgaria

ISO8856-5

cs_CZ

Czech

Czech

Republic

ISO8859-2

da_DK

Danish

Denmark

ISO8859-1

de_CH

German

Switzerland

ISO8859-1

de_DE

German

Germany

ISO8859-1

el_GR

Greek

Greece

ISO8859-7

en_GB

English

Great

Britain

ISO8859-1

en_US

English

United

States

ISO8859-1

es_ES

Spanish

Spain

ISO8859-1

fi_FI

Finnish

Finland

ISO8859-1

fr_BE

French

Belgium

ISO8859-1

fr_CA

French

Canada

ISO8859-1

fr_FR

French

France

ISO8859-1

fr_CH

French

Switzerland

ISO8859-1

hr_HR

Croatian

Croatia

ISO8859-2

hu_HU

Hungarian

Hungary

ISO8859-2

is_IS

Icelandic

Iceland

ISO8859-1

it_IT

Italian

Italy

ISO8859-1

Iw_IL

Hebrew

Israel

IBM-856

iw_IL

Hebrew

Israel

ISO8859-8

Ja_JP

Japanese

Japan

IBM-943

ja_JP

Japanese

Japan

IBM-eucJP

ko_KR

Korean

Korea

IBM-eucKR

mk_MK

Macedonian

Former

Yugoslav

Republic

of

Macedonia

ISO8859-5

nl_BE

Dutch

Belgium

ISO8859-1

nl_NL

Dutch

Netherlands

ISO8859-1

no_NO

Norwegian

Norway

ISO8859-1

138

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Table

1.

Language

Territory

Table

(continued)

Locale

Value

Language

Territory

Code

Set

pl_PL

Polish

Poland

ISO8859-2

pt_PT

Portuguese

Portugal

ISO8859-1

ro_RO

Romanian

Romania

ISO8859-2

ru_RU

Russian

Russia

ISO8859-5

sh_SP

Serbian

Latin

Yugoslavia

ISO8859-2

sl_SI

Slovene

Slovenia

ISO8859-2

sk_SK

Slovak

Slovakia

ISO8859-2

sr_SP

Serbian

Cyrillic

Yugoslavia

ISO8859-5

Zh_CN

Simplified

Chinese

PRC

GBK

sv_SE

Swedish

Sweden

ISO8859-1

tr_TR

Turkish

Turkey

ISO8859-9

zh_TW

Chinese

(trad)

Taiwan

IBM-eucTW

Return

Values

If

a

pointer

to

a

string

is

given

for

the

Locale

parameter

and

the

selection

can

be

honored,

the

setlocale

subroutine

returns

the

string

associated

with

the

specified

Category

parameter

for

the

new

locale.

If

the

selection

cannot

be

honored,

a

null

pointer

is

returned

and

the

program

locale

is

unchanged.

If

a

null

is

used

for

the

Locale

parameter,

the

setlocale

subroutine

returns

the

string

associated

with

the

Category

parameter

for

the

program’s

current

locale.

The

program’s

locale

is

not

changed.

A

subsequent

call

with

the

string

returned

by

the

setlocale

subroutine,

and

its

associated

category,

will

restore

that

part

of

the

program

locale.

The

string

returned

is

not

modified

by

the

program,

but

can

be

overwritten

by

a

subsequent

call

to

the

setlocale

subroutine.

Related

Information

The

localeconv

subroutine,

nl_langinfo

subroutine,

rpmatch

(“rpmatch

Subroutine”

on

page

49)

subroutine.

The

localedef

command.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Setting

the

Locale

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

setpcred

Subroutine

Purpose

Sets

the

current

process

credentials.

Library

Security

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

139

Syntax

#include

<usersec.h>

int

setpcred

(

User,

Credentials)

char

**Credentials;

char

*User;

Description

The

setpcred

subroutine

sets

a

process’

credentials

according

to

the

Credentials

parameter.

If

the

User

parameter

is

specified,

the

credentials

defined

for

the

user

in

the

user

database

are

used.

If

the

Credentials

parameter

is

specified,

the

credentials

in

this

string

are

used.

If

both

the

User

and

Credentials

parameters

are

specified,

both

the

user’s

and

the

supplied

credentials

are

used.

However,

the

supplied

credentials

of

the

Credentials

parameter

will

override

those

of

the

user.

At

least

one

parameter

must

be

specified.

The

setpcred

subroutine

requires

the

setpenv

subroutine

to

follow

it.

Note:

If

the

auditwrite

subroutine

is

to

be

called

from

a

program

invoked

from

the

inittab

file,

the

setpcred

subroutine

should

be

called

first

to

establish

the

process’

credentials.

User

Specifies

the

user

for

whom

credentials

are

being

established.

140

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Credentials

Defines

specific

credentials

to

be

established.

This

parameter

points

to

an

array

of

null-terminated

character

strings

that

may

contain

the

following

values.

The

last

character

string

must

be

null.

LOGIN_USER=%s

Login

user

name

REAL_USER=%s

Real

user

name

REAL_GROUP=%s

Real

group

name

GROUPS=%s

Supplementary

group

ID

AUDIT_CLASSES=%s

Audit

classes

RLIMIT_CPU=%d

Process

soft

CPU

limit

RLIMIT_FSIZE=%d

Process

soft

file

size

RLIMIT_DATA=%d

Process

soft

data

segment

size

RLIMIT_STACK=%d

Process

soft

stack

segment

size

RLIMIT_CORE=%d

Process

soft

core

file

size

RLIMIT_RSS=%d

Process

soft

resident

set

size

RLIMIT_CORE_HARD=%d

Process

hard

core

file

size

RLIMIT_CPU_HARD=%d

Process

hard

CPU

limit

RLIMIT_DATA_HARD=%d

Process

hard

data

segment

size

RLIMIT_FSIZE_HARD=%d

Process

hard

file

size

RLIMIT_RSS_HARD=%d

Process

hard

resident

set

size

RLIMIT_STACK_HARD=%d

Process

hard

stack

segment

size

UMASK=%o

Process

umask

(file

creation

mask)

A

process

must

have

root

user

authority

to

set

all

credentials

except

the

UMASK

credential.

Resource

Hard

Soft

RLIMIT_CORE

unlimited

%d

RLIMIT_CPU

%d

%d

RLIMIT_DATA

unlimited

%d

RLIMIT_FSIZE

%d

%d

RLIMIT_RSS

unlimited

%d

RLIMIT_STACK

unlimited

%d

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

141

The

soft

limit

credentials

will

override

the

equivalent

hard

limit

credentials

that

may

proceed

them.

To

set

the

hard

limits,

the

hard

limit

credentials

should

follow

the

soft

limit

credentials.

Return

Values

Upon

successful

return,

the

setpcred

subroutine

returns

a

value

of

0.

If

setpcred

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

setpcred

subroutine

fails

if

one

or

more

of

the

following

are

true:

EINVAL

The

Credentials

parameter

contains

invalid

credentials

specifications.

EINVAL

The

User

parameter

is

null

and

the

Credentials

parameter

is

either

null

or

points

to

an

empty

string.

EPERM

The

process

does

not

have

the

proper

authority

to

set

the

requested

credentials.

Other

errors

may

be

set

by

subroutines

invoked

by

the

setpcred

subroutine.

Related

Information

The

auditwrite

subroutine,

ckuseracct

subroutine,

ckuserID

subroutine,

getpcred

subroutine,

getpenv

subroutine,

setpenv

(“setpenv

Subroutine”)

subroutine.

List

of

Security

and

Auditing

Subroutines,

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setpenv

Subroutine

Purpose

Sets

the

current

process

environment.

Library

Security

Library

(libc.a)

Syntax

#include

<usersec.h>

int

setpenv

(

User,

Mode,

Environment,

Command)

char

*User;

int

Mode;

char

**Environment;

char

*Command;

Description

The

setpenv

subroutine

first

sets

the

environment

of

the

current

process

according

to

its

parameter

values,

and

then

sets

the

working

directory

and

runs

a

specified

command.

If

the

User

parameter

is

specified,

the

process

environment

is

set

to

that

of

the

specified

user,

the

user’s

working

directory

is

set,

and

the

specified

command

run.

If

the

User

parameter

is

not

specified,

then

the

environment

and

working

directory

are

set

to

that

of

the

current

process,

and

the

command

is

run

from

this

process.

The

environment

consists

of

both

user-state

and

system-state

environment

variables.

Note:

The

setpenv

subroutine

requires

the

setpcred

subroutine

to

precede

it.

142

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

setpenv

subroutine

performs

the

following

steps:

Setting

the

Process

Environment

The

first

step

involves

changing

the

user-state

and

system-state

environment.

Since

this

is

dependent

on

the

values

of

the

Mode

and

Environment

parameters,

see

the

description

for

the

Mode

parameter

for

more

information.

Setting

the

Process

Current

Working

Directory

After

the

user-state

and

system-state

environment

is

set,

the

working

directory

of

the

process

may

be

set.

If

the

Mode

parameter

includes

the

PENV_INIT

value,

the

current

working

directory

is

changed

to

the

user’s

initial

login

directory

(defined

in

the

/etc/passwd

file).

Otherwise,

the

current

working

directory

is

unchanged.

Executing

the

Initial

Program

After

the

working

directory

of

the

process

is

reset,

the

initial

program

(usually

the

shell

interpreter)

is

executed.

If

the

Command

parameter

is

null,

the

shell

from

the

user

database

is

used.

If

the

parameter

is

not

defined,

the

shell

from

the

user-state

environment

is

used

and

the

Command

parameter

defaults

to

the

/usr/bin/sh

file.

If

the

Command

parameter

is

not

null,

it

specifies

the

command

to

be

executed.

If

the

Mode

parameter

contains

the

PENV_ARGV

value,

the

Command

parameter

is

assumed

to

be

in

the

argv

structure

and

is

passed

to

the

execve

subroutine.

The

string

contained

in

the

Command

parameter

is

used

as

the

Path

parameter

of

the

execve

subroutine.

If

the

Mode

parameter

does

not

contain

PENV_ARGV

value,

the

Command

parameter

is

parsed

into

an

argv

structure

and

executed.

If

the

Command

parameter

contains

the

$SHELL

value,

substitution

is

done

prior

to

execution.

Note:

This

step

will

fail

if

the

Command

parameter

contains

the

$SHELL

value

but

the

user-state

environment

does

not

contain

the

SHELL

value.

Parameters

Command

Specifies

the

command

to

be

executed.

If

the

Mode

parameter

contains

the

PENV_ARGV

value,

then

the

Command

parameter

is

assumed

to

be

a

valid

argument

vector

for

the

execv

subroutine.

Environment

Specifies

the

value

of

user-state

and

system-state

environment

variables

in

the

same

format

returned

by

the

getpenv

subroutine.

The

user-state

variables

are

prefaced

by

the

keyword

USRENVIRON:,

and

the

system-state

variables

are

prefaced

by

the

keyword

SYSENVIRON:.

Each

variable

is

defined

by

a

string

of

the

form

var=value,

which

is

an

array

of

null-terminated

character

pointers.

Mode

Specifies

how

the

setpenv

subroutine

is

to

set

the

environment

and

run

the

command.

This

parameter

is

a

bit

mask

and

must

contain

only

one

of

the

following

values,

which

are

defined

in

the

usersec.h

file:

PENV_INIT

The

user-state

environment

is

initialized

as

follows:

AUTHSTATE

Retained

from

the

current

environment.

If

the

AUTHSTATE

value

is

not

present,

it

is

defaulted

to

the

compat

value.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

143

KRB5CCNAME

Retained

from

the

current

environment.

This

value

is

defined

if

you

authenticated

through

the

Distributed

Computing

Environment

(DCE).

USER

Set

to

the

name

specified

by

the

User

parameter

or

to

the

name

corresponding

to

the

current

real

user

ID.

The

name

is

shortened

to

a

maximum

of

8

characters.

LOGIN

Set

to

the

name

specified

by

the

User

parameter

or

to

the

name

corresponding

to

the

current

real

user

ID.

If

set

by

the

User

parameter,

this

value

is

the

complete

login

name,

which

may

include

a

DCE

cell

name.

LOGNAME

Set

to

the

current

system

environment

variable

LOGNAME.

TERM

Retained

from

the

current

environment.

If

the

TERM

value

is

not

present,

it

is

defaulted

to

an

IBM6155.

SHELL

Set

from

the

initial

program

defined

for

the

real

user

ID

of

the

current

process.

If

no

program

is

defined,

then

the

/usr/bin/sh

shell

is

used

as

the

default.

HOME

Set

from

the

home

directory

defined

for

the

real

user

ID

of

the

current

process.

If

no

home

directory

is

defined,

the

default

is

/home/guest.

PATH

Set

initially

to

the

value

for

the

PATH

value

in

the

/etc/environment

file.

If

not

set,

it

is

destructively

replaced

by

the

default

value

of

PATH=/usr/bin:$HOME:.

(The

final

period

specifies

the

working

directory).

The

PATH

variable

is

destructively

replaced

by

the

usrenv

attribute

for

this

user

in

the

/etc/security/environ

file

if

the

PATH

value

exists

in

the

/etc/environment

file.

The

following

files

are

read

for

additional

environment

variables:

/etc/environment

Variables

defined

in

this

file

are

added

to

the

environment.

/etc/security/environ

Environment

variables

defined

for

the

user

in

this

file

are

added

to

the

user-state

environment.

The

user-state

variables

in

the

Environment

parameter

are

added

to

the

user-state

environment.

These

are

preceded

by

the

USRENVIRON:

keyword.

The

system-state

environment

is

initialized

as

follows:

LOGNAME

Set

to

the

current

LOGNAME

value

in

the

protected

user

environment.

The

login

(tsm)

command

passes

this

value

to

the

setpenv

subroutine

to

ensure

correctness.

NAME

Set

to

the

login

name

corresponding

to

the

real

user

ID.

TTY

Set

to

the

TTY

name

corresponding

to

standard

input.

The

following

file

is

read

for

additional

environment

variables:

/etc/security/environ

The

system-state

environment

variables

defined

for

the

user

in

this

file

are

added

to

the

environment.

The

system-state

variables

in

the

Environment

parameter

are

added

to

the

environment.

These

are

preceded

by

the

SYSENVIRON

keyword.

144

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

PENV_DELTA

The

existing

user-state

and

system-state

environment

variables

are

preserved

and

the

variables

defined

in

the

Environment

parameter

are

added.

PENV_RESET

The

existing

environment

is

cleared

and

totally

replaced

by

the

content

of

the

Environment

parameter.

PENV_KLEEN

Closes

all

open

file

descriptors,

except

0,

1,

and

2,

before

executing

the

command.

This

value

must

be

logically

ORed

with

PENV_DELTA,

PENV_RESET,

or

PENV_INIT.

It

cannot

be

used

alone.

PENV_NOPROF

The

new

shell

will

not

be

treated

as

a

login

shell.

Only

valid

when

used

with

the

PENV_INIT

flag.

For

both

system-state

and

user-state

environments,

variable

substitution

is

performed.

The

Mode

parameter

may

also

contain:

PENV_ARGV

Specifies

that

the

Command

parameter

is

already

in

argv

format

and

need

not

be

parsed.

This

value

must

be

logically

ORed

with

PENV_DELTA,

PENV_RESET,

or

PENV_INIT.

It

cannot

be

used

alone.

User

Specifies

the

user

name

whose

environment

and

working

directory

is

to

be

set

and

the

specified

command

run.

If

a

null

pointer

is

given,

the

current

real

uid

is

used

to

determine

the

name

of

the

user.

Return

Values

If

the

environment

was

successfully

established,

this

function

does

not

return.

If

the

setpenv

subroutine

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

setpenv

subroutine

fails

if

one

or

more

of

the

following

are

true:

EINVAL

The

Mode

parameter

contains

values

other

than

PENV_INIT,

PENV_DELTA,

PENV_RESET,

or

PENV_ARGV.

EINVAL

The

Mode

parameter

contains

more

than

one

of

PENV_INIT,

PENV_DELTA,

or

PENV_RESET

values.

EINVAL

The

Environment

parameter

is

neither

null

nor

empty,

and

does

not

contain

a

valid

environment

string.

EPERM

The

caller

does

not

have

read

access

to

the

environment

defined

for

the

system,

or

the

user

does

not

have

permission

to

change

the

specified

attributes.

Other

errors

may

be

set

by

subroutines

invoked

by

the

setpenv

subroutine.

Related

Information

The

execl,

execv,

execle,

execve,

execlp,

execvp,

or

exect

subroutine,

getpenv

subroutine,

setpcred

(“setpcred

Subroutine”

on

page

139)

subroutine.

The

login

command,

su

command.

List

of

Security

and

Auditing

Subroutines,

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

145

setpgid

or

setpgrp

Subroutine

Purpose

Sets

the

process

group

ID.

Libraries

setpgid:

Standard

C

Library

(libc.a)

setpgrp:

Standard

C

Library

(libc.a);

Berkeley

Compatibility

Library

(libbsd.a)

Syntax

#include

<unistd.h>

pid_t

setpgid

(

ProcessID,

ProcessGroupID)

pid_t

ProcessID,

ProcessGroupID;

pid_t

setpgrp

(

)

Description

The

setpgid

subroutine

is

used

either

to

join

an

existing

process

group

or

to

create

a

new

process

group

within

the

session

of

the

calling

process.

The

process

group

ID

of

a

session

leader

does

not

change.

Upon

return,

the

process

group

ID

of

the

process

having

a

process

ID

that

matches

the

ProcessID

value

is

set

to

the

ProcessGroupID

value.

As

a

special

case,

if

the

ProcessID

value

is

0,

the

process

ID

of

the

calling

process

is

used.

If

ProcessGroupID

value

is

0,

the

process

ID

of

the

indicated

process

is

used.

This

function

is

implemented

to

support

job

control.

The

setpgrp

subroutine

in

the

libc.a

library

supports

a

subset

of

the

function

of

the

setpgid

subroutine.

It

has

no

parameters.

It

sets

the

process

group

ID

of

the

calling

process

to

be

the

same

as

its

process

ID

and

returns

the

new

value.

In

BSD

systems,

the

setpgrp

subroutine

is

defined

with

two

parameters,

as

follows:

pid_t

setpgrp

(ProcessID,

ProcessGroup)

pid_t

ProcessID,

ProcessGroup;

Parameters

ProcessID

Specifies

the

process

whose

process

group

ID

is

to

be

changed.

ProcessGroupID

Specifies

the

new

value

of

calling

process

group

ID.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

146

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

The

setpgid

subroutine

is

unsuccessful

if

one

or

more

of

the

following

is

true:

EACCES

The

value

of

the

ProcessID

parameter

matches

the

process

ID

of

a

child

process

of

the

calling

process

and

the

child

process

has

successfully

executed

one

of

the

exec

subroutines.

EINVAL

The

value

of

the

ProcessGroupID

parameter

is

less

than

0,

or

is

not

a

valid

value.

ENOSYS

The

setpgid

subroutine

is

not

supported

by

this

implementation.

EPERM

The

process

indicated

by

the

value

of

the

ProcessID

parameter

is

a

session

leader.

EPERM

The

value

of

the

ProcessID

parameter

matches

the

process

ID

of

a

child

process

of

the

calling

process

and

the

child

process

is

not

in

the

same

session

as

the

calling

process.

EPERM

The

value

of

the

ProcessGroupID

parameter

is

valid,

but

does

not

match

the

process

ID

of

the

process

indicated

by

the

ProcessID

parameter.

There

is

no

process

with

a

process

group

ID

that

matches

the

value

of

the

ProcessGroupID

parameter

in

the

same

session

as

the

calling

process.

ESRCH

The

value

of

the

ProcessID

parameter

does

not

match

the

process

ID

of

the

calling

process

of

a

child

process

of

the

calling

process.

Related

Information

The

getpid

subroutine.

setpri

Subroutine

Purpose

Sets

a

process

scheduling

priority

to

a

constant

value.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/sched.h>

int

setpri

(

ProcessID,

Priority)

pid_t

ProcessID;

int

Priority;

Description

The

setpri

subroutine

sets

the

scheduling

priority

of

all

threads

in

a

process

to

be

a

constant.

All

threads

have

their

scheduling

policies

changed

to

SCHED_RR.

A

process

nice

value

and

CPU

usage

can

no

longer

be

used

to

determine

a

process

scheduling

priority.

Only

processes

that

have

root

user

authority

can

set

a

process

scheduling

priority

to

a

constant.

Parameters

ProcessID

Specifies

the

process

ID.

If

this

value

is

0

then

the

current

process

scheduling

priority

is

set

to

a

constant.

Priority

Specifies

the

scheduling

priority

for

the

process.

A

lower

number

value

designates

a

higher

scheduling

priority.

The

Priority

parameter

must

be

in

the

range

PRIORITY_MIN

<

Priority

<

PRIORITY_MAX.

(See

the

sys/sched.h

file.)

Return

Values

Upon

successful

completion,

the

setpri

subroutine

returns

the

former

scheduling

priority

of

the

process

just

changed.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

147

Error

Codes

The

setpri

subroutine

is

unsuccessful

if

one

or

more

of

the

following

is

true:

EINVAL

The

priority

specified

by

the

Priority

parameter

is

outside

the

range

of

acceptable

priorities.

EPERM

The

process

executing

the

setpri

subroutine

call

does

not

have

root

user

authority.

ESRCH

No

process

can

be

found

corresponding

to

that

specified

by

the

ProcessID

parameter.

Related

Information

The

getpri

subroutine.

Performance-Related

Subroutines

in

AIX

5L

Version

5.2

Performance

Management

Guide.

setpwdb

or

endpwdb

Subroutine

Purpose

Opens

or

closes

the

authentication

database.

Library

Security

Library

(libc.a)

Syntax

#include

<userpw.h>

int

setpwdb

(

Mode)

int

Mode;

int

endpwdb

(

)

Description

These

functions

are

used

to

open

and

close

access

to

the

authentication

database.

Programs

that

call

either

the

getuserpw

or

putuserpw

subroutine

should

call

the

setpwdb

subroutine

to

open

the

database

and

the

endpwdb

subroutine

to

close

the

database.

The

setpwdb

subroutine

opens

the

authentication

database

in

the

specified

mode,

if

it

is

not

already

open.

The

open

count

is

increased

by

1.

The

endpwdb

subroutine

decreases

the

open

count

by

one

and

closes

the

authentication

database

when

this

count

drops

to

0.

Subsequent

references

to

individual

data

items

can

cause

a

memory

access

violation.

The

endpwdb

subroutine

also

frees

the

space

that

was

allocated

by

either

the

getuserpw,

putuserpw,

or

putuserpwhist

subroutine.

For

security

reasons,

freeing

the

space

clears

the

password

field.

Any

uncommitted

changed

data

is

lost.

Parameters

Mode

Specifies

the

mode

of

the

open.

This

parameter

may

contain

one

or

more

of

the

following

values,

defined

in

the

usersec.h

file:

S_READ

Specifies

read

access.

S_WRITE

Specifies

update

access.

148

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

The

setpwdb

and

endpwdb

subroutines

return

a

value

of

0

to

indicate

success.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

setpwdb

and

endpwdb

subroutines

fail

if

the

following

is

true:

EACCES

Access

permission

is

denied

for

the

data

request.

Both

of

these

functions

return

errors

from

other

subroutines.

Security

Access

Control:

The

calling

process

must

have

access

to

the

authentication

data.

Files

Accessed:

Modes

File

rw

/etc/security/passwd

rw

/etc/passwd

Related

Information

The

getgroupattr

subroutine,

getuserattr

subroutine,

getuserpw,

putuserpw,

or

putuserpwhist

subroutine.

List

of

Security

and

Auditing

Subroutines,

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setroledb

or

endroledb

Subroutine

Purpose

Opens

and

closes

the

role

database.

Library

Security

Library

(libc.a)

Syntax

#include

<usersec.h>

int

setroledb(Mode)

int

Mode;

int

endroledb

Description

These

functions

may

be

used

to

open

and

close

access

to

the

role

database.

Programs

that

call

the

getroleattr

subroutine

should

call

the

setroledb

subroutine

to

open

the

role

database

and

the

endroledb

subroutine

to

close

the

role

database.

The

setroledb

subroutine

opens

the

role

database

in

the

specified

mode,

if

it

is

not

already

open.

The

open

count

is

increased

by

1.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

149

The

endroledb

subroutine

decreases

the

open

count

by

1

and

closes

the

role

database

when

this

count

goes

to

0.

Any

uncommitted

changed

data

is

lost.

Parameters

Mode

Specifies

the

mode

of

the

open.

This

parameter

may

contain

one

or

more

of

the

following

values

defined

in

the

usersec.h

file:

S_READ

Specifies

read

access.

S_WRITE

Specifies

update

access.

Return

Values

The

setroledb

and

endroledb

subroutines

return

a

value

of

0

to

indicate

success.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

setroledb

subroutine

fails

if

the

following

is

true:

EACCES

Access

permission

is

denied

for

the

data

request.

Both

subroutines

return

errors

from

other

subroutines.

Security

Files

Accessed:

The

calling

process

must

have

access

to

the

role

data.

Mode

File

rw/etc/security/roles

Related

Information

The

getroleattr,

nextrole,

or

putroleattr

subroutine.

setsid

Subroutine

Purpose

Creates

a

session

and

sets

the

process

group

ID.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

pid_t

setsid

(void)

Description

The

setsid

subroutine

creates

a

new

session

if

the

calling

process

is

not

a

process

group

leader.

Upon

return,

the

calling

process

is

the

session

leader

of

this

new

session,

the

process

group

leader

of

a

new

process

group,

and

has

no

controlling

terminal.

The

process

group

ID

of

the

calling

process

is

set

equal

to

its

process

ID.

The

calling

process

is

the

only

process

in

the

new

process

group

and

the

only

process

in

the

new

session.

150

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

Upon

successful

completion,

the

value

of

the

new

process

group

ID

is

returned.

Otherwise,

(pid_t)

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

setsid

subroutine

is

unsuccessful

if

the

following

is

true:

EPERM

The

calling

process

is

already

a

process

group

leader,

or

the

process

group

ID

of

a

process

other

than

the

calling

process

matches

the

process

ID

of

the

calling

process.

Related

Information

The

fork

subroutine,

getpid,

getpgrp,

or

getppid

subroutine,

setpgid

(“setpgid

or

setpgrp

Subroutine”

on

page

146)

subroutine,

setpgrp

(“setpgid

or

setpgrp

Subroutine”

on

page

146)

subroutine.

setuid,

setruid,

seteuid,

setreuid

or

setuidx

Subroutine

Purpose

Sets

the

process

user

IDs.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

int

setuid

(UID)

uid_t

UID;

int

setruid

(RUID)

uid_t

RUID;

int

seteuid

(EUID)

uid_t

EUID;

int

setreuid

(RUID,

EUID)

uid_t

RUID;

uid_t

EUID;

#include

<unistd.h>

#include

<sys/id.h>

int

setuidx

(which,

UID)

int

which;

uid_t

UID;

Description

The

setuid,

setruid,

seteuid,

and

setreuid

subroutines

reset

the

process

user

IDs.

The

following

semantics

are

supported:

setuid

If

the

effective

user

ID

of

the

process

is

the

root

user,

the

process’s

real,

effective,

and

saved

user

IDs

are

set

to

the

value

of

the

UID

parameter.

Otherwise,

the

process

effective

user

ID

is

reset

if

the

UID

parameter

specifies

either

the

current

real

or

saved

user

IDs.

seteuid

The

process

effective

user

ID

is

reset

if

the

UID

parameter

is

equal

to

either

the

current

real

or

saved

user

IDs

or

if

the

effective

user

ID

of

the

process

is

the

root

user.

setruid

The

EPERM

error

code

is

always

returned.

Processes

cannot

reset

only

their

real

user

IDs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

151

setreuid

The

RUID

and

EUID

parameters

can

have

the

following

two

possibilities:

RUID

!=

EUID

If

the

EUID

parameter

specifies

either

the

process’s

real

or

saved

user

IDs,

the

process

effective

user

ID

is

set

to

the

EUID

parameter.

Otherwise,

the

EPERM

error

code

is

returned.

RUID==

EUID

If

the

process

effective

user

ID

is

the

root

user,

the

process’s

real

and

effective

user

IDs

are

set

to

the

EUID

parameter.

Otherwise,

the

EPERM

error

code

is

returned.

setuidx

The

which

parameter

can

have

one

of

the

following

values:

ID_EFFECTIVE

UID

must

be

either

the

real

or

saved

UID.

The

effective

user

ID

for

the

current

process

will

be

set

to

UID.

ID_EFFECTIVE|ID_REAL

Invoker

must

have

appropriate

privilege.

The

real

and

effective

user

ID

for

the

current

process

will

be

set

to

UID.

ID_EFFECTIVE|ID_REAL|ID_SAVED

Invoker

must

have

appropriate

privilege.

The

real,

effective

and

saved

user

ID

for

the

current

process

will

be

set

to

UID.

ID_LOGIN

Invoker

must

have

appropriate

privilege.

The

login

UID

for

the

current

process

will

be

set

to

UID.

The

real

and

effective

user

ID

parameters

can

have

a

value

of

-1.

If

the

value

is

-1,

the

actual

value

for

the

UID

parameter

is

set

to

the

corresponding

current

the

UID

parameter

of

the

process.

The

operating

system

does

not

support

setuid

or

setgid

(“setgid,

setrgid,

setegid,

setregid,

or

setgidx

Subroutine”

on

page

132)

shell

scripts.

These

subroutines

are

part

of

Base

Operating

System

(BOS)

Runtime.

Parameters

UID

Specifies

the

user

ID

to

set.

EUID

Specifies

the

effective

user

ID

to

set.

RUID

Specifies

the

real

user

ID

to

set.

which

Specifies

which

user

ID

values

to

set.

Return

Values

Upon

successful

completion,

the

setuid,

seteuid,

setreuid,

and

setuidx

subroutines

return

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

setuid,

seteuid,

setreuid,

and

setuidx

subroutines

are

unsuccessful

if

either

of

the

following

is

true:

EINVAL

The

value

of

the

UID

or

EUID

parameter

is

not

valid.

EPERM

The

process

does

not

have

the

appropriate

privileges

and

the

UID

and

EUID

parameters

are

not

equal

to

either

the

real

or

saved

user

IDs

of

the

process.

Related

Information

The

getuid

or

geteuid

subroutine,

setgid

(“setgid,

setrgid,

setegid,

setregid,

or

setgidx

Subroutine”

on

page

132)

subroutine.

152

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

List

of

Security

and

Auditing

Subroutines

and

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setuserdb

or

enduserdb

Subroutine

Purpose

Opens

and

closes

the

user

database.

Library

Security

Library

(libc.a)

Syntax

#include

<usersec.h>

int

setuserdb

(

Mode)

int

Mode;

int

enduserdb

(

)

Description

These

functions

may

be

used

to

open

and

close

access

to

the

user

database.

Programs

that

call

either

the

getuserattr

or

getgroupattr

subroutine

should

call

the

setuserdb

subroutine

to

open

the

user

database

and

the

enduserdb

subroutine

to

close

the

user

database.

The

setuserdb

subroutine

opens

the

user

database

in

the

specified

mode,

if

it

is

not

already

open.

The

open

count

is

increased

by

1.

The

enduserdb

subroutine

decreases

the

open

count

by

1

and

closes

the

user

database

when

this

count

goes

to

0.

Any

uncommitted

changed

data

is

lost.

Parameters

Mode

Specifies

the

mode

of

the

open.

This

parameter

may

contain

one

or

more

of

the

following

values

defined

in

the

usersec.h

file:

S_READ

Specifies

read

access

S_WRITE

Specifies

update

access.

Return

Values

The

setuserdb

and

enduserdb

subroutines

return

a

value

of

0

to

indicate

success.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

setuserdb

subroutine

fails

if

the

following

is

true:

EACCES

Access

permission

is

denied

for

the

data

request.

Both

subroutines

return

errors

from

other

subroutines.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

153

Security

Files

Accessed:

The

calling

process

must

have

access

to

the

user

data.

Depending

on

the

actual

attributes

accessed,

this

may

include:

Modes

File

rw

/etc/passwd

rw

/etc/group

rw

/etc/security/user

rw

/etc/security/limits

rw

/etc/security/group

rw

/etc/security/environ

Related

Information

The

getgroupattr

subroutine,

getuserattr

subroutine,

getuserpw

subroutine,

setpwdb

(“setpwdb

or

endpwdb

Subroutine”

on

page

148)

subroutine.

List

of

Security

and

Auditing

Subroutines

and

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

sgetl

or

sputl

Subroutine

Purpose

Accesses

long

numeric

data

in

a

machine-independent

fashion.

Library

Object

File

Access

Routine

Library

(libld.a)

Syntax

long

sgetl

(

Buffer)

char

*Buffer;

void

sputl

(Value,

Buffer)

long

Value;

char

*Buffer;

Description

The

sgetl

subroutine

retrieves

four

bytes

from

memory

starting

at

the

location

pointed

to

by

the

Buffer

parameter.

It

then

returns

the

bytes

as

a

long

Value

with

the

byte

ordering

of

the

host

machine.

The

sputl

subroutine

stores

the

four

bytes

of

the

Value

parameter

into

memory

starting

at

the

location

pointed

to

by

the

Buffer

parameter.

The

order

of

the

bytes

is

the

same

across

all

machines.

Using

the

sputl

and

sgetl

subroutines

together

provides

a

machine-independent

way

of

storing

long

numeric

data

in

an

ASCII

file.

For

example,

the

numeric

data

stored

in

the

portable

archive

file

format

can

be

accessed

with

the

sputl

and

sgetl

subroutines.

Parameters

Value

Specifies

a

4-byte

value

to

store

into

memory.

Buffer

Points

to

a

location

in

memory.

154

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

ar

command,

dump

command.

The

ar

file

format,

a.out

file

format.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

shmat

Subroutine

Purpose

Attaches

a

shared

memory

segment

or

a

mapped

file

to

the

current

process.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/shm.h>

void

*shmat

(SharedMemoryID,

SharedMemoryAddress,

SharedMemoryFlag)

int

SharedMemoryID,

SharedMemoryFlag;

const

void

*

SharedMemoryAddress;

Description

The

shmat

subroutine

attaches

the

shared

memory

segment

or

mapped

file

specified

by

the

SharedMemoryID

parameter

(returned

by

the

shmget

subroutine),

or

file

descriptor

specified

by

the

SharedMemoryID

parameter

(returned

by

the

openx

subroutine)

to

the

address

space

of

the

calling

process.

To

learn

more

about

the

limits

that

apply

to

shared

memory,

see

the

Inter-Process

Communication

(IPC)

Limits

article

in

AIX

5L

Version

5.2

General

Programming

Concepts.

Note:

The

following

applies

to

AIX

4.2.1

and

later

releases

for

32-bit

processes

only.

An

extended

shmat

capability

is

available.

If

an

environment

variable

EXTSHM=ON

is

defined

then

processes

executing

in

that

environment

will

be

able

to

create

and

attach

more

than

eleven

shared

memory

segments.

The

segments

can

be

of

size

from

1

byte

to

2GB,

although

for

segments

larger

than

256MB

in

size

the

environment

variable

EXTSHM=ON

is

ignored.

The

process

can

attach

these

segments

into

the

address

space

for

the

size

of

the

segment.

Another

segment

could

be

attached

at

the

end

of

the

first

one

in

the

same

256MB

segment

region.

The

address

at

which

a

process

can

attach

is

at

page

boundaries

-

a

multiple

of

SHMLBA_EXTSHM

bytes.

For

segments

larger

than

256MB

in

size,

the

address

at

which

a

process

can

attach

is

at

256MB

boundaries,

which

is

a

multiple

of

SHMLBA

bytes.

The

segments

can

be

of

size

from

1

byte

to

256MB.

The

process

can

attach

these

segments

into

the

address

space

for

the

size

of

the

segment.

Another

segment

could

be

attached

at

the

end

of

the

first

one

in

the

same

256MB

segment

region.

The

address

at

which

a

process

can

attach

will

be

at

page

boundaries

-

a

multiple

of

SHMLBA_EXTSHM

bytes.

The

maximum

address

space

available

for

shared

memory

with

or

without

the

environment

variable

and

for

memory

mapping

is

2.75GB.

An

additional

segment

register

″0xE″

is

available

so

that

the

address

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

155

space

is

from

0x30000000

to

0xE0000000.

However,

a

256MB

region

starting

from

0xD0000000

will

be

used

by

the

shared

libraries

and

is

therefore

unavailable

for

shared

memory

regions

or

mmapped

regions.

On

AIX

5.2

and

later,

a

32-bit

process

running

with

the

very

large

address

space

model

has

up

to

3.25

GB

of

address

space

available

for

the

shmat

and

mmap

memory

mappings.

For

a

32-bit

process

with

the

very

large

address

space

model,

the

address

space

available

for

mappings

is

from

0x30000000

to

0xFFFFFFFF.

This

extended

address

range

applies

to

both

extended

shmat

and

standard

shmat.

For

more

information

on

how

to

use

the

very

large

address

space

model,

see

the

Understanding

the

Very

Large

Address-Space

Model

article

in

AIX

5L

Version

5.2

General

Programming

Concepts.

There

are

some

restrictions

on

the

use

of

the

extended

shmat

feature.

These

shared

memory

regions

can

not

be

used

as

I/O

buffers

where

the

unpinning

of

the

buffer

occurs

in

an

interrupt

handler.

The

restrictions

on

the

use

are

the

same

as

that

of

mmap

buffers.

The

smaller

region

sizes

are

not

supported

for

mapping

files.

Regardless

of

whether

EXTSHM=ON

or

not,

mapping

a

file

will

consume

at

least

256MB

of

address

space.

The

SHM_SIZE

shmctl

command

is

not

supported

for

segments

created

with

EXTSHM=ON.

A

segment

created

with

EXTSHM=ON

can

be

attached

by

a

process

without

EXTSHM=ON.

This

will

consume

a

256MB

area

of

the

address

space

irrespective

of

the

size

of

the

shared

memory

region.

A

segment

created

without

EXTSHM=ON

can

be

attached

by

a

process

with

EXTSHM=ON.

This

will

consume

a

256MB

area

of

the

address

space

irrespective

of

the

size

of

the

shared

memory

region.

The

environment

variable

provides

the

option

of

executing

an

application

either

with

the

additional

functionality

of

attaching

more

than

11

segments

when

EXTSHM=ON,

or

the

higher-performance

access

to

11

or

fewer

segments

when

the

environment

variable

is

not

set.

Parameters

SharedMemoryID

Specifies

an

identifier

for

the

shared

memory

segment.

SharedMemoryAddress

Identifies

the

segment

or

file

attached

at

the

address

specified

by

the

SharedMemoryAddress

parameter,

as

follows:

v

If

the

SharedMemoryAddress

parameter

is

not

equal

to

0,

and

the

SHM_RND

flag

is

set

in

the

SharedMemoryFlag

parameter,

the

segment

or

file

is

attached

at

the

next

lower

segment

boundary.

This

address

is

given

by

(SharedMemoryAddress

-(SharedMemoryAddress

modulo

SHMLBA_EXTSHM

if

environment

variable

EXTSHM=ON

or

SHMLBA

if

not).

SHMLBA

specifies

the

low

boundary

address

multiple

of

a

segment.

v

If

the

SharedMemoryAddress

parameter

is

not

equal

to

0

and

the

SHM_RND

flag

is

not

set

in

the

SharedMemoryFlag

parameter,

the

segment

or

file

is

attached

at

the

address

given

by

the

SharedMemoryAddress

parameter.

If

this

address

does

not

point

to

a

SHMLBA_EXTSHM

boundary

if

the

environment

variable

EXTSHM=ON

or

SHMLBA

boundary

if

not,

the

shmat

subroutine

returns

the

value

-1

and

sets

the

errno

global

variable

to

the

EINVAL

error

code.

SHMLBA

specifies

the

low

boundary

address

multiple

of

a

segment.

156

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SharedMemoryFlag

Specifies

several

options.

Its

value

is

either

0

or

is

constructed

by

logically

ORing

one

or

more

of

the

following

values:

SHM_COPY

Changes

an

open

file

to

deferred

update

(see

the

openx

subroutine).

Included

only

for

compatibility

with

previous

versions

of

the

operating

system.

SHM_MAP

Maps

a

file

onto

the

address

space

instead

of

a

shared

memory

segment.

The

SharedMemoryID

parameter

must

specify

an

open

file

descriptor

in

this

case.

SHM_RDONLY

Specifies

read-only

mode

instead

of

the

default

read-write

mode.

SHM_RND

Rounds

the

address

given

by

the

SharedMemoryAddress

parameter

to

the

next

lower

segment

boundary,

if

necessary.

The

shmat

subroutine

makes

a

shared

memory

segment

addressable

by

the

current

process.

The

segment

is

attached

for

reading

if

the

SHM_RDONLY

flag

is

set

and

the

current

process

has

read

permission.

If

the

SHM_RDONLY

flag

is

not

set

and

the

current

process

has

both

read

and

write

permission,

it

is

attached

for

reading

and

writing.

If

the

SHM_MAP

flag

is

set,

file

mapping

takes

place.

In

this

case,

the

shmat

subroutine

maps

the

file

open

on

the

file

descriptor

specified

by

the

SharedMemoryID

onto

a

segment.

The

file

must

be

a

regular

file.

The

segment

is

then

mapped

into

the

address

space

of

the

process.

A

file

of

any

size

can

be

mapped

if

there

is

enough

space

in

the

user

address

space.

When

file

mapping

is

requested,

the

SharedMemoryFlag

parameter

specifies

how

the

file

should

be

mapped.

If

the

SHM_RDONLY

flag

is

set,

the

file

is

mapped

read-only.

To

map

read-write,

the

file

must

have

been

opened

for

writing.

All

processes

that

map

the

same

file

read-only

or

read-write

map

to

the

same

segment.

This

segment

remains

mapped

until

the

last

process

mapping

the

file

closes

it.

A

mapped

file

opened

with

the

O_DEFER

update

has

deferred

update.

That

is,

changes

to

the

shared

segment

do

not

affect

the

contents

of

the

file

resident

in

the

file

system

until

an

fsync

subroutine

is

issued

to

the

file

descriptor

for

which

the

mapping

was

requested.

Setting

the

SHM_COPY

flag

changes

the

file

to

the

deferred

state.

The

file

remains

in

this

state

until

all

processes

close

it.

The

SHM_COPY

flag

is

provided

only

for

compatibility

with

Version

2

of

the

operating

system.

New

programs

should

use

the

O_DEFER

open

flag.

A

file

descriptor

can

be

used

to

map

the

corresponding

file

only

once.

To

map

a

file

several

times

requires

multiple

file

descriptors.

When

a

file

is

mapped

onto

a

segment,

the

file

is

referenced

by

accessing

the

segment.

The

memory

paging

system

automatically

takes

care

of

the

physical

I/O.

References

beyond

the

end

of

the

file

cause

the

file

to

be

extended

in

page-sized

increments.

The

file

cannot

be

extended

beyond

the

next

segment

boundary.

Return

Values

When

successful,

the

segment

start

address

of

the

attached

shared

memory

segment

or

mapped

file

is

returned.

Otherwise,

the

shared

memory

segment

is

not

attached,

the

errno

global

variable

is

set

to

indicate

the

error,

and

a

value

of

-1

is

returned.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

157

Error

Codes

The

shmat

subroutine

is

unsuccessful

and

the

shared

memory

segment

or

mapped

file

is

not

attached

if

one

or

more

of

the

following

are

true:

EACCES

The

calling

process

is

denied

permission

for

the

specified

operation.

EAGAIN

The

file

to

be

mapped

has

enforced

locking

enabled,

and

the

file

is

currently

locked.

EBADF

A

file

descriptor

to

map

does

not

refer

to

an

open

regular

file.

EEXIST

The

file

to

be

mapped

has

already

been

mapped.

EINVAL

The

SHM_RDONLY

and

SHM_COPY

flags

are

both

set.

EINVAL

The

SharedMemoryID

parameter

is

not

a

valid

shared

memory

identifier.

EINVAL

The

SharedMemoryAddress

parameter

is

not

equal

to

0,

and

the

value

of

(SharedMemoryAddress

-

(SharedMemoryAddress

modulo

SHMLBA_EXTSHM

if

the

environment

variable

EXTSHM=ON

or

SHMLBA

if

not

)

points

outside

the

address

space

of

the

process.

EINVAL

The

SharedMemoryAddress

parameter

is

not

equal

to

0,

the

SHM_RND

flag

is

not

set

in

the

SharedMemoryFlag

parameter,

and

the

SharedMemoryAddress

parameter

points

to

a

location

outside

of

the

address

space

of

the

process.

EMFILE

The

number

of

shared

memory

segments

attached

to

the

calling

process

exceeds

the

system-imposed

limit.

ENOMEM

The

available

data

space

in

memory

is

not

large

enough

to

hold

the

shared

memory

segment.

ENOMEM

is

always

returned

if

a

32-bit

process

tries

to

attach

a

shared

memory

segment

larger

than

2GB.

ENOMEM

The

available

data

space

in

memory

is

not

large

enough

to

hold

the

mapped

file

data

structure.

ENOMEM

The

requested

address

and

length

crosses

a

segment

boundary.

This

is

not

supported

when

the

environment

variable

EXTSHM=ON.

Related

Information

The

exec

subroutine,

exit

subroutine,

fclear

subroutine,

fork

subroutine,

fsync

subroutine,mmap

subroutine,

munmap

subroutine,

openx

subroutine,

truncate

subroutine,

readvx

subroutine,

shmctl

subroutine,

shmdt

subroutine,

shmget

subroutine,

writevx

subroutine.

The

ipcs

command

and

ipcrm

command.

List

of

Memory

Manipulation

Services,

Subroutines

Overview,

Understanding

Memory

Mapping

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

shmctl

Subroutine

Purpose

Controls

shared

memory

operations.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/shm.h>

int

shmctl

(SharedMemoryID,

Command,

Buffer)

int

SharedMemoryID,

Command;

struct

shmid_ds

*

Buffer;

Description

The

shmctl

subroutine

performs

a

variety

of

shared-memory

control

operations

as

specified

by

the

Command

parameter.

158

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

following

limits

apply

to

shared

memory:

v

Maximum

shared-memory

segment

size

is:

–

256M

bytes

before

AIX

4.3.1

–

2G

bytes

for

AIX

4.3.1

through

AIX

5.1

–

64G

bytes

for

64-bit

applications

for

AIX

5.1

and

later

v

Minimum

shared-memory

segment

size

is

1

byte.

v

Maximum

number

of

shared

memory

IDs

is

4096

for

operating

system

releases

before

AIX

4.3.2

and

131072

for

AIX

4.3.2

and

following.

Parameters

SharedMemoryID

Specifies

an

identifier

returned

by

the

shmget

subroutine.

Buffer

Indicates

a

pointer

to

the

shmid_ds

structure.

The

shmid_ds

structure

is

defined

in

the

sys/shm.h

file.

Command

The

following

commands

are

available:

IPC_STAT

Obtains

status

information

about

the

shared

memory

segment

identified

by

the

SharedMemoryID

parameter.

This

information

is

stored

in

the

area

pointed

to

by

the

Buffer

parameter.

The

calling

process

must

have

read

permission

to

run

this

command.

IPC_

SET

Sets

the

user

and

group

IDs

of

the

owner

as

well

as

the

access

permissions

for

the

shared

memory

segment

identified

by

the

SharedMemoryID

parameter.

This

command

sets

the

following

fields:

shm_perm.uid

/*

owning

user

ID

*/

shm_perm.gid

/*

owning

group

ID

*/

shm_perm.mode

/*

permission

bits

only

*/

You

must

have

an

effective

user

ID

equal

to

root

or

to

the

value

of

the

shm_perm.cuid

or

shm_perm.uid

field

in

the

shmid_ds

data

structure

identified

by

the

SharedMemoryID

parameter.

IPC_RMID

Removes

the

shared

memory

identifier

specified

by

the

SharedMemoryID

parameter

from

the

system

and

erases

the

shared

memory

segment

and

data

structure

associated

with

it.

This

command

is

only

executed

by

a

process

that

has

an

effective

user

ID

equal

either

to

that

of

superuser

or

to

the

value

of

the

shm_perm.uid

or

shm_perm.cuid

field

in

the

data

structure

identified

by

the

SharedMemoryID

parameter.

SHM_SIZE

Sets

the

size

of

the

shared

memory

segment

to

the

value

specified

by

the

shm_segsz

field

of

the

structure

specified

by

the

Buffer

parameter.

This

value

can

be

larger

or

smaller

than

the

current

size.

The

limit

is

the

maximum

shared-memory

segment

size.

This

command

is

only

executed

by

a

process

that

has

an

effective

user

ID

equal

either

to

that

of

a

process

with

the

appropriate

privileges

or

to

the

value

of

the

shm_perm.uid

or

shm_perm.cuid

field

in

the

data

structure

identified

by

the

SharedMemoryID

parameter.

This

command

is

not

supported

for

regions

created

with

the

environment

variable

EXTSHM=ON.

This

results

in

a

return

value

of

-1

with

errno

set

to

EINVAL.

Attempting

to

use

the

SHM_SIZE

on

a

shared

memory

region

larger

than

256MB

or

attempting

to

increase

the

size

of

a

shared

memory

region

larger

than

256MB

results

in

a

return

value

of

-1

with

errno

set

to

EINVAL.

Return

Values

When

completed

successfully,

the

shmctl

subroutine

returns

a

value

of

0.

Otherwise,

it

returns

a

value

of

-1

and

the

errno

global

variable

is

set

to

indicate

the

error.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

159

Error

Codes

The

shmctl

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EACCES

The

Command

parameter

is

equal

to

the

IPC_STAT

value

and

read

permission

is

denied

to

the

calling

process.

EFAULT

The

Buffer

parameter

points

to

a

location

outside

the

allocated

address

space

of

the

process.

EINVAL

The

SharedMemoryID

parameter

is

not

a

valid

shared

memory

identifier.

EINVAL

The

Command

parameter

is

not

a

valid

command.

EINVAL

The

Command

parameter

is

equal

to

the

SHM_SIZE

value

and

the

value

of

the

shm_segsz

field

of

the

structure

specified

by

the

Buffer

parameter

is

not

valid.

EINVAL

The

Command

parameter

is

equal

to

the

SHM_SIZE

value

and

the

shared

memory

region

was

created

with

the

environment

variable

EXTSHM=ON.

ENOMEM

The

Command

parameter

is

equal

to

the

SHM_SIZE

value,

and

the

attempt

to

change

the

segment

size

is

unsuccessful

because

the

system

does

not

have

enough

memory.

EOVERFLOW

The

Command

parameter

is

IPC_STAT

and

the

size

of

the

shared

memory

region

is

greater

than

or

equal

to

4G

bytes.

This

only

happens

with

32-bit

programs.

EPERM

The

Command

parameter

is

equal

to

the

IPC_RMID

or

SHM_SIZE

value,

and

the

effective

user

ID

of

the

calling

process

is

not

equal

to

the

value

of

the

shm_perm.uid

or

shm_perm.cuid

field

in

the

data

structure

identified

by

the

SharedMemoryID

parameter.

The

effective

user

ID

of

the

calling

process

is

not

the

root

user

ID.

Related

Information

The

disclaim

subroutine,

shmat

subroutine,

shmdt

subroutine,

shmget

subroutine.

The

ipcs

command

and

ipcrm

command.

List

of

Memory

Manipulation

Services,

Subroutines

Overview,

Understanding

Memory

Mapping

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

shmdt

Subroutine

Purpose

Detaches

a

shared

memory

segment.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/shm.h>

int

shmdt

(SharedMemoryAddress)

const

void

*

SharedMemoryAddress;

Description

The

shmdt

subroutine

detaches

from

the

data

segment

of

the

calling

process

the

shared

memory

segment

located

at

the

address

specified

by

the

SharedMemoryAddress

parameter.

Mapped

file

segments

are

automatically

detached

when

the

mapped

file

is

closed.

However,

you

can

use

the

shmdt

subroutine

to

explicitly

release

the

segment

register

used

to

map

a

file.

Shared

memory

segments

must

be

explicitly

detached

with

the

shmdt

subroutine.

160

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

If

the

file

was

mapped

for

writing,

the

shmdt

subroutine

updates

the

mtime

and

ctime

time

stamps.

The

following

limits

apply

to

shared

memory:

v

Maximum

shared-memory

segment

size

is:

–

256M

bytes

before

AIX

4.3.1

–

2G

bytes

for

AIX

4.3.1

through

AIX

5.1

–

64G

bytes

for

64-bit

applications

for

AIX

5.1

and

later

v

Minimum

shared-memory

segment

size

is

1

byte.

v

Maximum

number

of

shared

memory

IDs

is

4096

for

operating

system

releases

before

AIX

4.3.2

and

131072

for

AIX

4.3.2

and

following.

Parameters

SharedMemoryAddress

Specifies

the

data

segment

start

address

of

a

shared

memory

segment.

Return

Values

When

successful,

the

shmdt

subroutine

returns

a

value

of

0.

Otherwise,

the

shared

memory

segment

at

the

address

specified

by

the

SharedMemoryAddress

parameter

is

not

detached,

a

value

of

1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

shmdt

subroutine

is

unsuccessful

if

the

following

condition

is

true:

EINVAL

The

value

of

the

SharedMemoryAddress

parameter

is

not

the

data-segment

start

address

of

a

shared

memory

segment.

Related

Information

The

exec

subroutine,

exit

subroutine,

fork

subroutine,

fsync

subroutine,

mmap

subroutine,

munmap

subroutine,

shmat

subroutine,

shmctl

subroutine,

shmget

subroutine.

The

ipcs

command

and

ipcrm

command.

List

of

Memory

Manipulation

Services,

Subroutines

Overview,

Understanding

Memory

Mapping

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

shmget

Subroutine

Purpose

Gets

shared

memory

segments.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/shm.h>

int

shmget

(Key,

Size,

SharedMemoryFlag)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

161

key_t

Key;

size_t

Size

int

SharedMemoryFlag;

Description

The

shmget

subroutine

returns

the

shared

memory

identifier

associated

with

the

specified

Key

parameter.

The

following

limits

apply

to

shared

memory:

v

Maximum

shared-memory

segment

size

is:

–

256M

bytes

before

AIX

4.3.1

–

2G

bytes

for

AIX

4.3.1

through

AIX

5.1

–

64G

bytes

for

64-bit

applications

for

AIX

5.1

and

later

v

Minimum

shared-memory

segment

size

is

1

byte.

v

Maximum

number

of

shared

memory

IDs

is

4096

for

operating

system

releases

before

AIX

4.3.2

and

131072

for

AIX

4.3.2

and

following.

Parameters

Key

Specifies

either

the

IPC_PRIVATE

value

or

an

IPC

key

constructed

by

the

ftok

subroutine

(or

by

a

similar

algorithm).

Size

Specifies

the

number

of

bytes

of

shared

memory

required.

162

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SharedMemoryFlag

Constructed

by

logically

ORing

one

or

more

of

the

following

values:

IPC_CREAT

Creates

the

data

structure

if

it

does

not

already

exist.

IPC_EXCL

Causes

the

shmget

subroutine

to

be

unsuccessful

if

the

IPC_CREAT

flag

is

also

set,

and

the

data

structure

already

exists.

SHM_LGPAGE

Attempts

to

create

the

region

so

it

can

be

mapped

through

hardware-supported,

large-page

mechanisms,

if

enabled.

This

is

purely

advisory.

For

the

system

to

consider

this

flag,

it

must

be

used

in

conjunction

with

the

SHM_PIN

flag

and

enabled

with

the

vmtune

command

(-L

to

reserve

memory

for

the

region

(which

requires

a

reboot)

and

-S

to

enable

SHM_PIN).

To

successfully

get

large-pages,

the

user

requesting

large-page

shared

memory

must

have

CAP_BYPASS_RAC_VMM

capability.

This

has

no

effect

on

shared

memory

regions

created

with

the

EXTSHM=ON

environment

variable.

SHM_PIN

Attempts

to

pin

the

shared

memory

region

if

enabled.

This

is

purely

advisory.

For

the

system

to

consider

this

flag,

the

system

must

be

enable

with

vmtune

command.

This

has

no

effect

on

shared

memory

regions

created

with

EXTSHM=ON

environment

variable.

S_IRUSR

Permits

the

process

that

owns

the

data

structure

to

read

it.

S_IWUSR

Permits

the

process

that

owns

the

data

structure

to

modify

it.

S_IRGRP

Permits

the

group

associated

with

the

data

structure

to

read

it.

S_IWGRP

Permits

the

group

associated

with

the

data

structure

to

modify

it.

S_IROTH

Permits

others

to

read

the

data

structure.

S_IWOTH

Permits

others

to

modify

the

data

structure.

Values

that

begin

with

the

S_I

prefix

are

defined

in

the

sys/mode.h

file

and

are

a

subset

of

the

access

permissions

that

apply

to

files.

A

shared

memory

identifier,

its

associated

data

structure,

and

a

shared

memory

segment

equal

in

number

of

bytes

to

the

value

of

the

Size

parameter

are

created

for

the

Key

parameter

if

one

of

the

following

is

true:

v

The

Key

parameter

is

equal

to

the

IPC_PRIVATE

value.

v

The

Key

parameter

does

not

already

have

a

shared

memory

identifier

associated

with

it,

and

the

IPC_CREAT

flag

is

set

in

the

SharedMemoryFlag

parameter.

Upon

creation,

the

data

structure

associated

with

the

new

shared

memory

identifier

is

initialized

as

follows:

v

The

shm_perm.cuid

and

shm_perm.uid

fields

are

set

to

the

effective

user

ID

of

the

calling

process.

v

The

shm_perm.cgid

and

shm_perm.gid

fields

are

set

to

the

effective

group

ID

of

the

calling

process.

v

The

low-order

9

bits

of

the

shm_perm.mode

field

are

set

to

the

low-order

9

bits

of

the

SharedMemoryFlag

parameter.

v

The

shm_segsz

field

is

set

to

the

value

of

the

Size

parameter.

v

The

shm_lpid,

shm_nattch,

shm_atime,

and

shm_dtime

fields

are

set

to

0.

v

The

shm_ctime

field

is

set

to

the

current

time.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

163

Note:

Once

created,

a

shared

memory

segment

is

deleted

only

when

the

system

reboots

or

by

issuing

the

ipcrm

command

or

using

the

following

shmctl

subroutine:

if

(shmctl

(id,

IPC_RMID,

0)

==

-1)

perror

("error

in

closing

segment"),exit

(1);

Return

Values

Upon

successful

completion,

a

shared

memory

identifier

is

returned.

Otherwise,

the

shmget

subroutine

returns

a

value

of

-1

and

sets

the

errno

global

variable

to

indicate

the

error.

Error

Codes

The

shmget

subroutine

is

unsuccessful

if

one

or

more

of

the

following

are

true:

EACCES

A

shared

memory

identifier

exists

for

the

Key

parameter,

but

operation

permission

as

specified

by

the

low-order

9

bits

of

the

SharedMemoryFlag

parameter

is

not

granted.

EEXIST

A

shared

memory

identifier

exists

for

the

Key

parameter,

and

both

the

IPC_CREAT

and

IPC_EXCL

flags

are

set

in

the

SharedMemoryFlag

parameter.

EINVAL

A

shared

memory

identifier

does

not

exist

and

the

Size

parameter

is

less

than

the

system-imposed

minimum

or

greater

than

the

system-imposed

maximum.

EINVAL

A

shared

memory

identifier

exists

for

the

Key

parameter,

but

the

size

of

the

segment

associated

with

it

is

less

than

the

Size

parameter,

and

the

Size

parameter

is

not

equal

to

0.

ENOENT

A

shared

memory

identifier

does

not

exist

for

the

Key

parameter,

and

the

IPC_CREAT

flag

is

not

set

in

the

SharedMemoryFlag

parameter.

ENOMEM

A

shared

memory

identifier

and

associated

shared

memory

segment

are

to

be

created

but

the

amount

of

available

physical

memory

is

not

sufficient

to

meet

the

request.

ENOSPC

A

shared

memory

identifier

will

be

created,

but

the

system-imposed

maximum

of

shared

memory

identifiers

allowed

will

be

exceeded.

Related

Information

The

ftok

subroutine,

mmap

subroutine,

munmap

subroutine,

shmat

subroutine,

shmctl

subroutine,

shmdt

subroutine.

The

ipcs

command

and

ipcrm

command.

List

of

Memory

Manipulation

Services,

Subroutines

Overview,

Understanding

Memory

Mapping

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

sigaction,

sigvec,

or

signal

Subroutine

Purpose

Specifies

the

action

to

take

upon

delivery

of

a

signal.

Libraries

sigaction

Standard

C

Library

(libc.a)

signal,

sigvec

Standard

C

Library

(libc.a);

Berkeley

Compatibility

Library

(libbsd.a)

Syntax

#include

<signal.h>

int

sigaction

(

Signal,

Action,

OAction)

164

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

Signal;

struct

sigaction

*Action,

*OAction;

int

sigvec

(Signal,

Invec,

Outvec)

int

Signal;

struct

sigvec

*Invec,

*Outvec;

void

(*signal

(Signal,

Action))

()

int

Signal;

void

(*Action)

(int);

Description

The

sigaction

subroutine

allows

a

calling

process

to

examine

and

change

the

action

to

be

taken

when

a

specific

signal

is

delivered

to

the

process

issuing

this

subroutine.

In

multi-threaded

applications

using

the

threads

library

(libpthreads.a),

signal

actions

are

common

to

all

threads

within

the

process.

Any

thread

calling

the

sigaction

subroutine

changes

the

action

to

be

taken

when

a

specific

signal

is

delivered

to

the

threads

process,

that

is,

to

any

thread

within

the

process.

Note:

The

sigaction

subroutine

must

not

be

used

concurrently

to

the

sigwait

subroutine

on

the

same

signal.

The

Signal

parameter

specifies

the

signal.

If

the

Action

parameter

is

not

null,

it

points

to

a

sigaction

structure

that

describes

the

action

to

be

taken

on

receipt

of

the

Signal

parameter

signal.

If

the

OAction

parameter

is

not

null,

it

points

to

asigaction

structure

in

which

the

signal

action

data

in

effect

at

the

time

of

the

sigaction

subroutine

call

is

returned.

If

the

Action

parameter

is

null,

signal

handling

is

unchanged;

thus,

the

call

can

be

used

to

inquire

about

the

current

handling

of

a

given

signal.

The

sigaction

structure

has

the

following

fields:

Member

Type

Member

Name

Description

void(*)

(int)

sa_handler

SIG_DFL,

SIG_IGN

or

pointer

to

a

function.

sigset_t

sa_mask

Additional

set

of

signals

to

be

blocked

during

execution

of

signal-catching

function.

int

sa_flags

Special

flags

to

affect

behaviour

of

signal.

void(*)

(int,

siginfo_t

*,

void

*)

sa_sigaction

Signal-catching

function.

The

sa_handler

field

can

have

a

SIG_DFL

or

SIG_IGN

value,

or

it

can

be

a

pointer

to

a

function.

A

SIG_DFL

value

requests

default

action

to

be

taken

when

a

signal

is

delivered.

A

value

of

SIG_IGN

requests

that

the

signal

have

no

effect

on

the

receiving

process.

A

pointer

to

a

function

requests

that

the

signal

be

caught;

that

is,

the

signal

should

cause

the

function

to

be

called.

These

actions

are

more

fully

described

in

″Parameters″.

When

a

signal

is

delivered

to

a

thread,

if

the

action

of

that

signal

specifies

termination,

stop,

or

continue,

the

entire

process

is

terminated,

stopped,

or

continued,

respectively.

If

the

SA_SIGINFO

flag

(see

below)

is

cleared

in

the

sa_flags

field

of

the

sigaction

structure,

the

sa_handler

field

identifies

the

action

to

be

associated

with

the

specified

signal.

If

the

SA_SIGINFO

flag

is

set

in

the

sa_flags

field,

the

sa_sigaction

field

specifies

a

signal-catching

function.

If

the

SA_SIGINFO

bit

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

165

is

cleared

and

the

sa_handler

field

specifies

a

signal-catching

function,

or

if

the

SA_SIGINFO

bit

is

set,

the

sa_mask

field

identifies

a

set

of

signals

that

will

be

added

to

the

signal

mask

of

the

thread

before

the

signal-catching

function

is

invoked.

The

sa_mask

field

can

be

used

to

specify

that

individual

signals,

in

addition

to

those

in

the

process

signal

mask,

be

blocked

from

being

delivered

while

the

signal

handler

function

specified

in

the

sa_handler

field

is

operating.

The

sa_flags

field

can

have

the

SA_ONSTACK,

SA_OLDSTYLE,

or

SA_NOCLDSTOP

bits

set

to

specify

further

control

over

the

actions

taken

on

delivery

of

a

signal.

If

the

SA_ONSTACK

bit

is

set,

the

system

runs

the

signal-catching

function

on

the

signal

stack

specified

by

the

sigstack

subroutine.

If

this

bit

is

not

set,

the

function

runs

on

the

stack

of

the

process

to

which

the

signal

is

delivered.

If

the

SA_OLDSTYLE

bit

is

set,

the

signal

action

is

set

to

SIG_DFL

label

prior

to

calling

the

signal-catching

function.

This

is

supported

for

compatibility

with

old

applications,

and

is

not

recommended

since

the

same

signal

can

recur

before

the

signal-catching

subroutine

is

able

to

reset

the

signal

action

and

the

default

action

(normally

termination)

is

taken

in

that

case.

If

a

signal

for

which

a

signal-catching

function

exists

is

sent

to

a

process

while

that

process

is

executing

certain

subroutines,

the

call

can

be

restarted

if

the

SA_RESTART

bit

is

set

for

each

signal.

The

only

affected

subroutines

are

the

following:

v

read,readx,

readv,

or

readvx

(“read,

readx,

readv,

readvx,

or

pread

Subroutine”

on

page

16)

v

write,writex,

writev,

or

writevx

(“write,

writex,

writev,

writevx

or

pwrite

Subroutines”

on

page

507)

v

ioctl

orioctlx

v

fcntl,

lockf,

or

flock

v

wait,

wait3,

orwaitpid

(“wait,

waitpid,

wait3,

or

wait364

Subroutine”

on

page

441)

Other

subroutines

do

not

restart

and

return

EINTR

label,

independent

of

the

setting

of

the

SA_RESTART

bit.

If

SA_SIGINFO

is

cleared

and

the

signal

is

caught,

the

signal-catching

function

will

be

entered

as:

void

func(int

signo);

Where

signo

is

the

only

argument

to

the

signal

catching

function.

In

this

case

the

sa_handler

member

must

be

used

to

describe

the

signal

catching

function

and

the

application

must

not

modify

the

sa_sigaction

member.

If

SA_SIGINFO

is

set

and

the

signal

is

caught,

the

signal-catching

function

will

be

entered

as:

void

func(int

signo,

siginfo_t

*

info,

void

*

context);

where

two

additional

arguments

are

passed

to

the

signal

catching

function.

The

second

argument

will

point

to

an

object

of

type

siginfo_t

explaining

the

reason

why

the

signal

was

generated.

The

third

argument

can

be

cast

to

a

pointer

to

an

object

of

type

ucontext_t

to

refer

to

the

receiving

process’

context

that

was

interrupted

when

the

signal

was

delivered.

In

this

case

the

sa_sigaction

member

must

be

used

to

describe

the

signal

catching

function

and

the

application

must

not

modify

the

sa_handler

member.

The

si_signo

member

contains

the

system-generated

signal

number.

The

si_errno

member

may

contain

implementation-dependent

additional

error

information.

If

nonzero,

it

contains

an

error

number

identifying

the

condition

that

caused

the

signal

to

be

generated.

The

si_code

member

contains

a

code

identifying

the

cause

of

the

signal.

If

the

value

of

si_code

is

less

than

or

equal

to

0,

the

signal

was

generated

by

a

process

and

si_pid

and

si_uid

respectively

indicate

the

process

ID

and

the

real

user

ID

of

the

sender.

The

signal.h

header

description

contains

information

about

the

signal

specific

contents

of

the

elements

of

the

siginfo_t

type.

If

SA_NOCLDWAIT

is

set

and

sig

equals

SIGCHLD,

child

processes

of

the

calling

processes

will

not

be

transformed

into

zombie

processes

when

they

terminate.

If

the

calling

process

subsequently

waits

for

its

children,

and

the

process

has

no

unwaited

for

children

that

were

transformed

166

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

into

zombie

processes,

it

will

block

until

all

of

its

children

terminate,

and

wait,

wait3,

waitid

and

waitpid

will

fail

and

set

errno

to

ECHILD.

Otherwise,

terminating

child

processes

will

be

transformed

into

zombie

processes,

unless

SIGCHLD

is

set

to

SIG_IGN.

If

SA_RESETHAND

is

set,

the

disposition

of

the

signal

will

be

reset

to

SIG_DFL

and

the

SA_SIGINFO

flag

will

be

cleared

on

entry

to

the

signal

handler.

If

SA_NODEFER

is

set

and

sig

is

caught,

sig

will

not

be

added

to

the

process’

signal

mask

on

entry

to

the

signal

handler

unless

it

is

included

in

sa_mask.

Otherwise,

sig

will

always

be

added

to

the

process’

signal

mask

on

entry

to

the

signal

handler.

If

sig

is

SIGCHLD,

the

SA_NOCLDSTOP

flag

is

not

set

in

sa_flags,

and

the

implementation

supports

the

SIGCHLD

signal,

a

SIGCHLD

signal

will

be

generated

for

the

calling

process

whenever

any

of

its

child

processes

stop.

If

sig

is

SIGCHLD

and

the

SA_NOCLDSTOP

flag

is

set

in

sa_flags,

the

implementation

will

not

generate

a

SIGCHLD

signal

in

this

way.

When

a

signal

is

caught

by

a

signal-catching

function

installed

by

sigaction,

a

new

signal

mask

is

calculated

and

installed

for

the

duration

of

the

signal-catching

function

(or

until

a

call

to

either

sigprocmask

orsigsuspend

is

made).

This

mask

is

formed

by

taking

the

union

of

the

current

signal

mask

and

the

value

of

the

sa_mask

for

the

signal

being

delivered

unless

SA_NODEFER

or

SA_RESETHAND

is

set,

and

including

the

signal

being

delivered.

If

the

user’s

signal

handler

returns

normally,

the

original

signal

mask

is

restored.

Once

an

action

is

installed

for

a

specific

signal,

it

remains

installed

until

another

action

is

explicitly

requested

(by

another

call

to

sigaction),

until

the

SA_RESETHAND

flag

causes

resetting

of

the

handler,

or

until

one

of

the

exec

functions

is

called.

If

the

previous

action

for

sig

had

been

established

by

signal,

the

values

of

the

fields

returned

in

the

structure

pointed

to

by

oact

are

unspecified,

and

in

particular

oact->sa_handler

is

not

necessarily

the

same

value

passed

to

signal.

However,

if

a

pointer

to

the

same

structure

or

a

copy

thereof

is

passed

to

a

subsequent

call

to

sigaction

through

the

act

argument,

handling

of

the

signal

will

be

as

if

the

original

call

to

signal

were

repeated.

If

sigaction

fails,

no

new

signal

handler

is

installed.

It

is

unspecified

whether

an

attempt

to

set

the

action

for

a

signal

that

cannot

be

caught

or

ignored

to

SIG_DFL

is

ignored

or

causes

an

error

to

be

returned

with

errno

set

to

EINVAL.

If

SA_SIGINFO

is

not

set

in

sa_flags,

then

the

disposition

of

subsequent

occurrences

of

sig

when

it

is

already

pending

is

implementation-dependent;

the

signal-catching

function

will

be

invoked

with

a

single

argument.

The

sigvec

and

signal

subroutines

are

provided

for

compatibility

to

older

operating

systems.

Their

function

is

a

subset

of

that

available

with

sigaction.

The

sigvec

subroutine

uses

the

sigvec

structure

instead

of

the

sigaction

structure.

The

sigvec

structure

specifies

a

mask

as

an

int

instead

of

a

sigset_t.

The

mask

for

the

sigvec

subroutine

is

constructed

by

setting

the

i-th

bit

in

the

mask

if

signal

i

is

to

be

blocked.

Therefore,

the

sigvec

subroutine

only

allows

signals

between

the

values

of

1

and

31

to

be

blocked

when

a

signal-handling

function

is

called.

The

other

signals

are

not

blocked

by

the

signal-handler

mask.

The

sigvec

structure

has

the

following

members:

int

(*sv_handler)();

/*

signal

handler

*/

int

sv_mask;

/*

signal

mask

*/

int

sv_flags;

/*

flags

*/

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

167

The

sigvec

subroutine

in

the

libbsd.a

library

interprets

the

SV_INTERRUPT

flag

and

inverts

it

to

the

SA_RESTART

flag

of

thesigaction

subroutine.

The

sigvec

subroutine

in

the

libc.a

library

always

sets

the

SV_INTERRUPT

flag

regardless

of

what

was

passed

in

the

sigvec

structure.

The

sigvec

subroutine

in

the

libbsd.a

library

interprets

the

SV_INTERRUPT

flag

and

inverts

it

to

the

SA_RESTART

flag

of

the

sigaction

subroutine.

The

sigvec

subroutine

in

the

libc.a

library

always

sets

the

SV_INTERRUPT

flag

regardless

of

what

was

passed

in

the

sigvec

structure.

The

signal

subroutine

in

the

libc.a

library

allows

an

action

to

be

associated

with

a

signal.

The

Action

parameter

can

have

the

same

values

that

are

described

for

the

sv_handler

field

in

the

sigaction

structure

of

thesigaction

subroutine.

However,

no

signal

handler

mask

or

flags

can

be

specified;

the

signal

subroutine

implicitly

sets

the

signal

handler

mask

to

additional

signals

and

the

flags

to

be

SA_OLDSTYLE.

Upon

successful

completion

of

a

signal

call,

the

value

of

the

previous

signal

action

is

returned.

If

the

call

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error

as

in

the

sigaction

call.

The

signal

in

libc.a

does

not

set

the

SA_RESTART

flag.

It

sets

the

signal

mask

to

the

signal

whose

action

is

being

specified,

and

sets

flags

to

SA_OLDSTYLE.

The

Berkeley

Software

Distribution

(BSD)

version

of

signal

sets

the

SA_RESTART

flag

and

preserves

the

current

settings

of

the

signal

mask

and

flags.

The

BSD

version

can

be

used

by

compiling

with

the

Berkeley

Compatibility

Library

(libbsd.a).

The

signal

in

libc.a

does

not

set

the

SA_RESTART

flag.

It

sets

the

signal

mask

to

the

signal

whose

action

is

being

specified,

and

sets

flags

to

SA_OLDSTYLE.

The

Berkeley

Software

Distribution

(BSD)

version

of

signal

sets

the

SA_RESTART

flag

and

preserves

the

current

settings

of

the

signal

mask

and

flags.

The

BSD

version

can

be

used

by

compiling

with

the

Berkeley

Compatibility

Library

(libbsd.a).

Parameters

Signal

Defines

the

signal.

The

following

list

describes

signal

names

and

the

specification

for

each.

The

value

of

the

Signal

parameter

can

be

any

signal

name

from

this

list

or

its

corresponding

number

except

the

SIGKILL

name.

If

you

use

the

signal

name,

you

must

include

the

signal.h

file,

because

the

name

is

correlated

in

the

file

with

its

corresponding

number.

Note:

The

symbols

in

the

following

list

of

signals

represent

these

actions:

*

Specifies

the

default

action

that

includes

creating

a

core

dump

file.

@

Specifies

the

default

action

that

stops

the

process

receiving

these

signals.

!

Specifies

the

default

action

that

restarts

or

continues

the

process

receiving

these

signals.

+

Specifies

the

default

action

that

ignores

these

signals.

%

Indicates

a

likely

shortage

of

paging

space.

#

See

Terminal

Programming

for

more

information

on

the

use

of

these

signals.

SIGHUP

Hang-up.

(1)

SIGINT

Interrupt.

(2)

SIGQUIT

Quit.

(3*)

SIGILL

Invalid

instruction

(not

reset

when

caught).

(4*)

SIGTRAP

Trace

trap

(not

reset

when

caught).

(5*)

168

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SIGIOT

End

process

(see

the

abort

subroutine).

(6*)

SIGEMT

EMT

instruction.

(7*)

SIGFPE

Arithmetic

exception,

integer

divide

by

0,

or

floating-point

exception.(8*)

SIGKILL

Kill

(cannot

be

caught

or

ignored).

(9)

SIGBUS

Specification

exception.

(10*)

SIGSEGV

Segmentation

violation.

(11*)

SIGSYS

Parameter

not

valid

to

subroutine.

(12*)

SIGPIPE

Write

on

a

pipe

when

there

is

no

process

to

read

it.

(13)

SIGALRM

Alarm

clock.

(14)

SIGTERM

Software

termination

signal.

(15)

SIGURG

Urgent

condition

on

I/O

channel.

(16+)

SIGSTOP

Stop

(cannot

be

caught

or

ignored).

(17@)

SIGTSTP

Interactive

stop.

(18@)

SIGCONT

Continue

if

stopped.

(19!)

SIGCHLD

To

parent

on

child

stop

or

exit.

(20+)

SIGTTIN

Background

read

attempted

from

control

terminal.

(21@)

SIGTTOU

Background

write

attempted

from

control

terminal.

(22@)

SIGIO

Input/output

possible

or

completed.

(23+)

SIGXCPU

CPU

time

limit

exceeded

(see

the

setrlimit

subroutine).

(24)

SIGXFSZ

File

size

limit

exceeded

(see

the

setrlimit

subroutine).(25)

reserved

(26)

SIGMSG

Input

data

has

been

stored

into

the

input

ring

buffer.

(27#)

SIGWINCH

Window

size

change.

(28+)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

169

SIGPWR

Power-fail

restart.

(29+)

SIGUSR1

User-defined

signal

1.

(30)

SIGUSR2

User-defined

signal

2.

(31)

SIGPROF

Profiling

timer

expired.

(see

the

setitimer

subroutine).(32)

SIGDANGER

Paging

space

low.

(33+%)

SIGVTALRM

Virtual

time

alarm

(see

the

setitimer

subroutine).

(34)

SIGMIGRATE

Migrate

process.

(35)

SIGPRE

Programming

exception

(user

defined).

(36)

reserved

(37-58)

SIGGRANT

Monitor

access

wanted.

(60#)

SIGRETRACT

Monitor

access

should

be

relinquished.

(61#)

SIGSOUND

A

sound

control

has

completed

execution.

(62#)

SIGSAK

Secure

attention

key.

(63)

Action

Points

to

a

sigaction

structure

that

describes

the

action

to

be

taken

upon

receipt

of

the

Signal

parameter

signal.

The

three

types

of

actions

that

can

be

associated

with

a

signal

(SIG_DFL,

SIG_IGN,

or

a

pointer

to

a

function)

are

described

as

follows:

v

SIG_DFL

Default

action:

signal-specific

default

action.

Except

for

those

signal

numbers

marked

with

a

+

(plus

sign),

@

(at

sign),

or

!

(exclamation

point),

the

default

action

for

a

signal

ends

the

receiving

process

with

all

of

the

consequences

described

in

the

_exit

subroutine.

In

addition,

a

memory

image

file

is

created

in

the

current

directory

of

the

receiving

process

if

an

asterisk

appears

with

a

Signal

parameter

and

the

following

conditions

are

met:

–

The

saved

user

ID

and

the

real

user

ID

of

the

receiving

process

are

equal.

–

An

ordinary

file

named

core

exists

in

the

current

directory

and

is

writable,

or

it

can

be

created.

If

the

file

is

created,

it

must

have

the

following

properties:

The

access

permission

code

0666

(0x1B6),

modified

by

the

file-creation

mask

(see

the

umask

subroutine)

A

file

owner

ID

that

is

the

same

as

the

effective

user

ID

of

the

receiving

process

A

file

group

ID

that

is

the

same

as

the

effective

group

ID

of

the

receiving

process.

170

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

For

signal

numbers

marked

with

a

!

(exclamation

point),

the

default

action

restarts

the

receiving

process

if

it

has

stopped,

or

continues

to

run

the

receiving

process.

For

signal

numbers

marked

with

a

@

(at

sign),

the

default

action

stops

the

execution

of

the

receiving

process

temporarily.

When

a

process

stops,

a

SIGCHLD

signal

is

sent

to

its

parent

process,

unless

the

parent

process

has

set

the

SA_NOCLDSTOP

bit.

While

a

process

has

stopped,

any

additional

signals

that

are

sent

are

not

delivered

until

the

process

has

started

again.

An

exception

to

this

is

the

SIGKILL

signal,

which

always

terminates

the

receiving

process.

Another

exception

is

the

SIGCONT

signal,

which

always

causes

the

receiving

process

to

restart

or

continue

running.

A

process

whose

parent

process

has

ended

is

sent

a

SIGKILL

signal

if

the

SIGTSTP,

SIGTTIN,

or

SIGTTOU

signals

are

generated

for

that

process.

For

signal

numbers

marked

with

a

+,

the

default

action

ignores

the

signal.

In

this

case,

the

delivery

of

a

signal

does

not

affect

the

receiving

process.

If

a

signal

action

is

set

to

SIG_DFL

while

the

signal

is

pending,

the

signal

remains

pending.

v

SIG_IGN

Ignore

signal.

Delivery

of

the

signal

does

not

affect

the

receiving

process.

If

a

signal

action

is

set

to

the

SIG_IGN

action

while

the

signal

is

pending,

the

pending

signal

is

discarded.

An

exception

to

this

is

the

SIGCHLD

signal

whose

SIG_DFL

action

ignores

the

signal.

If

the

action

for

the

SIGCHLD

signal

is

set

to

SIG_IGN,

child

processes

of

the

calling

processes

will

not

be

transformed

into

zombie

processes

when

they

terminate.

If

the

calling

process

subsequently

waits

for

its

children,

and

the

process

has

no

unwaited

for

children

that

were

transformed

into

zombie

processes,

it

will

block

until

all

of

its

children

terminate,

and

wait,

wait3,

waitid

and

waitpid

will

fail

and

set

errno

to

ECHILD.

Note:

The

SIGKILL

and

SIGSTOP

signals

cannot

be

ignored.

v

Pointer

to

a

function,

catch

signal.

Upon

delivery

of

the

signal,

the

receiving

process

runs

the

signal-catching

function

specified

by

the

pointer

to

function.

The

signal-handler

subroutine

can

be

declared

as

follows:

handler(Signal,

Code,

SCP)

int

Signal,

Code;

struct

sigcontext

*SCP;

The

Signal

parameter

is

the

signal

number.

The

Code

parameter

is

provided

only

for

compatibility

with

other

UNIX-compatible

systems.

The

Code

parameter

value

is

always

0.

The

SCP

parameter

points

to

the

sigcontext

structure

that

is

later

used

to

restore

the

previous

execution

context

of

the

process.

The

sigcontext

structure

is

defined

in

the

signal.h

file.

A

new

signal

mask

is

calculated

and

installed

for

the

duration

of

the

signal-catching

function

(or

until

sigprocmask

orsigsuspend

subroutine

is

made).

This

mask

is

formed

by

joining

the

process-signal

mask

(the

mask

associated

with

the

action

for

the

signal

being

delivered)

and

the

mask

corresponding

to

the

signal

being

delivered.

The

mask

associated

with

the

signal-catching

function

is

not

allowed

to

block

those

signals

that

cannot

be

ignored.

This

is

enforced

by

the

kernel

without

causing

an

error

to

be

indicated.

If

and

when

the

signal-catching

function

returns,

the

original

signal

mask

is

restored

(modified

by

any

sigprocmask

calls

that

were

made

since

the

signal-catching

function

was

called)

and

the

receiving

process

resumes

execution

at

the

point

it

was

interrupted.

The

signal-catching

function

can

cause

the

process

to

resume

in

a

different

context

by

calling

the

longjmp

subroutine.

When

the

longjmp

subroutine

is

called,

the

process

leaves

the

signal

stack,

if

it

is

currently

on

the

stack,

and

restores

the

process

signal

mask

to

the

state

when

the

corresponding

setjmp

subroutine

was

made.

Once

an

action

is

installed

for

a

specific

signal,

it

remains

installed

until

another

action

is

explicitly

requested

(by

another

call

to

the

sigaction

subroutine),

or

until

one

of

the

exec

subroutines

is

called.

An

exception

to

this

is

when

the

SA_OLDSTYLE

bit

is

set.

In

this

case

the

action

of

a

caught

signal

gets

set

to

the

SIG_DFL

action

before

the

signal-catching

function

for

that

signal

is

called.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

171

If

a

signal

action

is

set

to

a

pointer

to

a

function

while

the

signal

is

pending,

the

signal

remains

pending.

When

signal-catching

functions

are

invoked

asynchronously

with

process

execution,

the

behavior

of

some

of

the

functions

defined

by

this

standard

is

unspecified

if

they

are

called

from

a

signal-catching

function.

The

following

set

of

functions

are

reentrant

with

respect

to

signals;

that

is,

applications

can

invoke

them,

without

restriction,

from

signal-catching

functions:

_exit

access

alarm

cfgetispeed

cfgetospeed

cfsetispeed

cfsetospeed

chdir

chmod

chown

close

creat

dup

dup2

exec

execle

execve

fcntl

fork

fpathconf

fstat

getegid

geteuid

getgid

getgroups

getpgrp

getpid

getppid

getuid

kill

link

lseek

mkdir

172

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

mkfifo

open

pathconf

pause

pipe

raise

read

readx

rename

rmdir

setgid

setpgid

setpgrp

setsid

setuid

sigaction

sigaddset

sigdelset

sigemptyset

sigismember

signal

sigpending

sigprocmask

sigsuspend

sleep

stat

statx

sysconf

tcdrain

tcflow

tcflush

tcgetattr

tcgetpgrp

tcsendbreak

tcsetattr

tcsetpgrp

time

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

173

times

umask

uname

unlink

ustat

utime

wait

waitpid

write

All

other

subroutines

should

not

be

called

from

signal-catching

functions

since

their

behavior

is

undefined.

OAction

Points

to

a

sigaction

structure

in

which

the

signal

action

data

in

effect

at

the

time

of

the

sigaction

subroutine

is

returned.

Invec

Points

to

a

sigvec

structure

that

describes

the

action

to

be

taken

upon

receipt

of

the

Signal

parameter

signal.

Outvec

Points

to

a

sigvec

structure

in

which

the

signal

action

data

in

effect

at

the

time

of

the

sigvec

subroutine

is

returned.

Action

Specifies

the

action

associated

with

a

signal.

Return

Values

Upon

successful

completion,

the

sigaction

subroutine

returns

a

value

of

0.

Otherwise,

a

value

of

SIG_ERR

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

sigaction

subroutine

is

unsuccessful

and

no

new

signal

handler

is

installed

if

one

of

the

following

occurs:

EFAULT

The

Action

or

OAction

parameter

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

EINVAL

The

Signal

parameter

is

not

a

valid

signal

number.

EINVAL

An

attempt

was

made

to

ignore

or

supply

a

handler

for

theSIGKILL,

SIGSTOP,

and

SIGCONT

signals.

Related

Information

The

acct

subroutine,

_exit,

exit,

or

atexit

subroutine,

getinterval,incinterval,

absinterval,

resinc,

resabs,

alarm,ualarm,

getitimer,

or

setitimer

subroutine,

getrlimit,

setrlimit,

or

vlimit

subroutine,

kill

subroutine,

longjmp

or

setjmp

(“setjmp

or

longjmp

Subroutine”

on

page

135)

subroutine,

pause

subroutine,

ptrace

subroutine,

sigpause

or

sigsuspend

(“sigsuspend

or

sigpause

Subroutine”

on

page

188)

subroutine,

sigprocmask,sigsetmask,

or

sigblock

(“sigprocmask,

sigsetmask,

or

sigblock

Subroutine”

on

page

180)

subroutine,

sigstack

(“sigstack

Subroutine”

on

page

187)

subroutine,

sigwait

(“sigwait

Subroutine”

on

page

192)

subroutine,

umask

(“umask

Subroutine”

on

page

419)

subroutine,

wait,

waitpid,

or

wait3

(“wait,

waitpid,

wait3,

or

wait364

Subroutine”

on

page

441)

subroutine.

The

kill

command.

174

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

core

file.

Signal

Management

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

provides

more

information

about

signal

management

in

multi-threaded

processes.

sigaltstack

Subroutine

Purpose

Allows

a

thread

to

define

and

examine

the

state

of

an

alternate

stack

for

signal

handlers.

Library

(libc.a)

Syntax

#include

<signal.h>

int

sigaltstack(const

stack_t

*ss,

stack_t

*oss);

Description

The

sigaltstack

subroutine

allows

a

thread

to

define

and

examine

the

state

of

an

alternate

stack

for

signal

handlers.

Signals

that

have

been

explicitly

declared

to

execute

on

the

alternate

stack

will

be

delivered

on

the

alternate

stack.

If

ss

is

not

null

pointer,

it

points

to

a

stack_t

structure

that

specifies

the

alternate

signal

stack

that

will

take

effect

upon

return

from

sigaltstack

subroutine.

The

ss_flags

member

specifies

the

new

stack

state.

If

it

is

set

to

SS_DISABLE,

the

stack

is

disabled

and

ss_sp

and

ss_ssize

are

ignored.

Otherwise

the

stack

will

be

enabled,

and

the

ss_sp

and

ss_size

members

specify

the

new

address

and

size

of

the

stack.

The

range

of

addresses

starting

at

ss_sp,

up

to

but

not

including

ss_sp

+

ss_size,

is

available

to

the

implementation

for

use

as

the

stack.

If

oss

is

not

a

null

pointer,

on

successful

completion

it

will

point

to

a

stack_t

structure

that

specifies

the

alternate

signal

stack

that

was

in

effect

prior

to

the

sigaltstack

subroutine.

The

ss_sp

and

ss_size

members

specify

the

address

and

size

of

the

stack.

The

ss_flags

member

specifies

the

stack’s

state,

and

may

contain

one

of

the

following

values:

SS_ONSTACK

The

process

is

currently

executing

on

the

alternate

signal

stack.

Attempts

to

modify

the

alternate

signal

stack

while

the

process

is

executing

or

it

fails.

This

flag

must

not

be

modified

by

processes.

SS_DISABLE

The

alternate

signal

stack

is

currently

disabled.

The

value

of

SIGSTKSZ

is

a

system

default

specifying

the

number

of

bytes

that

would

be

used

to

cover

the

usual

case

when

manually

allocating

an

alternate

stack

area.

The

value

MINSIGSTKSZ

is

defined

to

be

the

minimum

stack

size

for

a

signal

handler.

In

computing

an

alternate

stack

size,

a

program

should

add

that

amount

to

its

stack

requirements

to

allow

for

the

system

implementation

overhead.

After

a

successful

call

to

one

of

the

exec

functions,

there

are

no

alternate

stacks

in

the

new

process

image.

Parameters

ss

A

pointer

to

a

stack_t

structure

specifying

the

alternate

stack

to

use

during

signal

handling.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

175

oss

A

pointer

to

a

stack_t

structure

that

will

indicate

the

alternate

stack

currently

in

use.

Return

Values

Upon

successful

completion,

sigaltstack

subroutine

returns

0.

Otherwise,

it

returns

-1

and

set

errno

to

indicate

the

error.

-1

Not

successful

and

the

errno

global

variable

is

set

to

one

of

the

following

error

codes.

Error

Codes

EINVAL

The

ss

parameter

is

not

a

null

pointer,

and

the

ss_flags

member

pointed

to

by

ss

contains

flags

other

that

SS_DISABLE.

ENOMEM

The

size

of

the

alternate

stack

area

is

less

than

MINSIGSTKSZ.

EPERM

An

attempt

was

made

to

modify

an

active

stack.

Related

Information

The

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

sigsetjmp

(“sigsetjmp

or

siglongjmp

Subroutine”

on

page

186)

subroutine.

sigemptyset,

sigfillset,

sigaddset,

sigdelset,

or

sigismember

Subroutine

Purpose

Creates

and

manipulates

signal

masks.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<signal.h>

int

sigemptyset

(

Set)

sigset_t

*Set;

int

sigfillset

(Set)

sigset_t

*Set;

int

sigaddset

(Set,

SignalNumber)

sigset_t

*Set;

int

SignalNumber;

int

sigdelset

(Set,

SignalNumber)

sigset_t

*Set;

int

SignalNumber;

int

sigismember

(Set,

SignalNumber)

sigset_t

*Set;

int

SignalNumber;

Description

The

sigemptyset,

sigfillset,

sigaddset,

sigdelset,

and

sigismember

subroutines

manipulate

sets

of

signals.

These

functions

operate

on

data

objects

addressable

by

the

application,

not

on

any

set

of

signals

known

to

the

system,

such

as

the

set

blocked

from

delivery

to

a

process

or

the

set

pending

for

a

process.

176

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

sigemptyset

subroutine

initializes

the

signal

set

pointed

to

by

the

Set

parameter

such

that

all

signals

are

excluded.

The

sigfillset

subroutine

initializes

the

signal

set

pointed

to

by

the

Set

parameter

such

that

all

signals

are

included.

A

call

to

either

the

sigfillset

or

sigemptyset

subroutine

must

be

made

at

least

once

for

each

object

of

the

sigset_t

type

prior

to

any

other

use

of

that

object.

The

sigaddset

and

sigdelset

subroutines

respectively

add

and

delete

the

individual

signal

specified

by

the

SignalNumber

parameter

from

the

signal

set

specified

by

the

Set

parameter.

The

sigismember

subroutine

tests

whether

the

SignalNumber

parameter

is

a

member

of

the

signal

set

pointed

to

by

the

Set

parameter.

Parameters

Set

Specifies

the

signal

set.

SignalNumber

Specifies

the

individual

signal.

Examples

To

generate

and

use

a

signal

mask

that

blocks

only

the

SIGINT

signal

from

delivery,

enter:

#include

<signal.h>

int

return_value;

sigset_t

newset;

sigset_t

*newset_p;

.

.

.

newset_p

=

&newset;

sigemptyset(newset);

sigaddset(newset,

SIGINT);

return_value

=

sigprocmask

(SIG_SETMASK,

newset_p,

NULL);

Return

Values

Upon

successful

completion,

the

sigismember

subroutine

returns

a

value

of

1

if

the

specified

signal

is

a

member

of

the

specified

set,

or

the

value

of

0

if

not.

Upon

successful

completion,

the

other

subroutines

return

a

value

of

0.

For

all

the

preceding

subroutines,

if

an

error

is

detected,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

sigfillset,

sigdelset,

sigismember,

and

sigaddset

subroutines

are

unsuccessful

if

the

following

is

true:

EINVAL

The

value

of

the

SignalNumber

parameter

is

not

a

valid

signal

number.

Related

Information

The

sigaction,

sigvec,

or

signal

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

sigprocmask

(“sigprocmask,

sigsetmask,

or

sigblock

Subroutine”

on

page

180)

subroutine,

sigsuspend

(“sigsuspend

or

sigpause

Subroutine”

on

page

188)

subroutine.

siginterrupt

Subroutine

Purpose

Sets

restart

behavior

with

respect

to

signals

and

subroutines.

Library

Standard

C

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

177

Syntax

int

siginterrupt

(

Signal,

Flag)

int

Signal,

Flag;

Description

The

siginterrupt

subroutine

is

used

to

change

the

subroutine

restart

behavior

when

a

subroutine

is

interrupted

by

the

specified

signal.

If

the

flag

is

false

(0),

subroutines

are

restarted

if

they

are

interrupted

by

the

specified

signal

and

no

data

has

been

transferred

yet.

If

the

flag

is

true

(1),

the

restarting

of

subroutines

is

disabled.

If

a

subroutine

is

interrupted

by

the

specified

signal

and

no

data

has

been

transferred,

the

subroutine

will

return

a

value

of

-1

with

the

errno

global

variable

set

to

EINTR.

Interrupted

subroutines

that

have

started

transferring

data

return

the

amount

of

data

actually

transferred.

Subroutine

interrupt

is

the

signal

behavior

found

on

4.1

BSD

and

AT&T

System

V

UNIX

systems.

Note

that

the

BSD

signal-handling

semantics

are

not

altered

in

any

other

way.

Most

notably,

signal

handlers

always

remain

installed

until

explicitly

changed

by

a

subsequent

sigaction

or

sigvec

call,

and

the

signal

mask

operates

as

documented

in

the

sigaction

subroutine.

Programs

can

switch

between

restartable

and

interruptible

subroutine

operations

as

often

as

desired

in

the

running

of

a

program.

Issuing

a

siginterrupt

call

during

the

running

of

a

signal

handler

causes

the

new

action

to

take

place

on

the

next

signal

caught.

Restart

does

not

occur

unless

it

is

explicitly

specified

with

the

sigaction

or

sigvec

subroutine

in

the

libc.a

library.

This

subroutine

uses

an

extension

of

the

sigvec

subroutine

that

is

not

available

in

the

BSD

4.2;

hence,

it

should

not

be

used

if

backward

compatibility

is

needed.

Parameters

Signal

Indicates

the

signal.

Flag

Indicates

true

or

false.

Return

Values

A

value

of

0

indicates

that

the

call

succeeded.

A

value

of

-1

indicates

that

the

supplied

signal

number

is

not

valid.

Related

Information

The

sigaction

or

sigvec

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

sigpause

(“sigsuspend

or

sigpause

Subroutine”

on

page

188)

subroutine,

sigsetmask

or

sigblock

(“sigprocmask,

sigsetmask,

or

sigblock

Subroutine”

on

page

180)

subroutine.

signbit

Macro

Purpose

Tests

the

sign.

178

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<math.h>

int

signbit

(x)

real-floating

x;

Description

The

signbit

macro

determines

whether

the

sign

of

its

argument

value

is

negative.

NaNs,

zeros,

and

infinities

have

a

sign

bit.

Parameters

x

Specifies

the

value

to

be

tested.

Return

Values

The

signbit

macro

returns

a

nonzero

value

if

the

sign

of

its

argument

value

is

negative.

Related

Information

class,

_class,

finite,

isnan,

or

unordered

Subroutines,

fpclassify

Subroutine,

isfinite

Subroutine,

isinf

Subroutine,

isnormal

Subroutine,

and

lldiv

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

sigpending

Subroutine

Purpose

Returns

a

set

of

signals

that

are

blocked

from

delivery.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<signal.h>

int

sigpending

(

Set)

sigset_t

*Set;

Description

The

sigpending

subroutine

stores

a

set

of

signals

that

are

blocked

from

delivery

and

pending

for

the

calling

thread,

in

the

space

pointed

to

by

the

Set

parameter.

Parameters

Set

Specifies

the

set

of

signals.

Return

Values

Upon

successful

completion,

the

sigpending

subroutine

returns

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

179

Error

Codes

The

sigpending

subroutine

is

unsuccessful

if

the

following

is

true:

EINVAL

The

input

parameter

is

outside

the

user’s

address

space.

Related

Information

The

sigprocmask

(“sigprocmask,

sigsetmask,

or

sigblock

Subroutine”)

subroutine.

sigprocmask,

sigsetmask,

or

sigblock

Subroutine

Purpose

Sets

the

current

signal

mask.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<signal.h>

int

sigprocmask

(

How,

Set,

OSet)

int

How;

const

sigset_t

*Set;

sigset

*OSet;

int

sigsetmask

(

SignalMask)

int

SignalMask;

int

sigblock

(SignalMask)

int

SignalMask;

Description

Note:

The

sigprocmask,

sigsetmask,

and

sigblock

subroutines

must

not

be

used

in

a

multi-threaded

application.

The

sigthreadmask

(“sigthreadmask

Subroutine”

on

page

189)

subroutine

must

be

used

instead.

The

sigprocmask

subroutine

is

used

to

examine

or

change

the

signal

mask

of

the

calling

thread.

The

subroutine

is

used

to

examine

or

change

the

signal

mask

of

the

calling

process.

Typically,

you

should

use

the

sigprocmask(SIG_BLOCK)

subroutine

to

block

signals

during

a

critical

section

of

code.

Then

use

the

sigprocmask(SIG_SETMASK)

subroutine

to

restore

the

mask

to

the

previous

value

returned

by

the

sigprocmask(SIG_BLOCK)

subroutine.

If

there

are

any

pending

unblocked

signals

after

the

call

to

the

sigprocmask

subroutine,

at

least

one

of

those

signals

will

be

delivered

before

the

sigprocmask

subroutine

returns.

The

sigprocmask

subroutine

does

not

allow

the

SIGKILL

or

SIGSTOP

signal

to

be

blocked.

If

a

program

attempts

to

block

either

signal,

the

sigprocmask

subroutine

gives

no

indication

of

the

error.

180

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

How

Indicates

the

manner

in

which

the

set

is

changed.

It

can

have

one

of

the

following

values:

SIG_BLOCK

The

resulting

set

is

the

union

of

the

current

set

and

the

signal

set

pointed

to

by

the

Set

parameter.

SIG_UNBLOCK

The

resulting

set

is

the

intersection

of

the

current

set

and

the

complement

of

the

signal

set

pointed

to

by

the

Set

parameter.

SIG_SETMASK

The

resulting

set

is

the

signal

set

pointed

to

by

the

Set

parameter.

Set

Specifies

the

signal

set.

If

the

value

of

the

Set

parameter

is

not

null,

it

points

to

a

set

of

signals

to

be

used

to

change

the

currently

blocked

set.

If

the

value

of

the

Set

parameter

is

null,

the

value

of

the

How

parameter

is

not

significant

and

the

process

signal

mask

is

unchanged.

Thus,

the

call

can

be

used

to

inquire

about

currently

blocked

signals.

OSet

If

the

OSet

parameter

is

not

the

null

value,

the

signal

mask

in

effect

at

the

time

of

the

call

is

stored

in

the

space

pointed

to

by

the

OSet

parameter.

SignalMask

Specifies

the

signal

mask

of

the

process.

Compatibility

Interfaces

The

sigsetmask

subroutine

allows

changing

the

process

signal

mask

for

signal

values

1

to

31.

This

same

function

can

be

accomplished

for

all

values

with

the

sigprocmask(SIG_SETMASK)

subroutine.

The

signal

of

value

i

will

be

blocked

if

the

ith

bit

of

SignalMask

parameter

is

set.

Upon

successful

completion,

the

sigsetmask

subroutine

returns

the

value

of

the

previous

signal

mask.

If

the

subroutine

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error

as

in

the

sigprocmask

subroutine.

The

sigblock

subroutine

allows

signals

with

values

1

to

31

to

be

logically

ORed

into

the

current

process

signal

mask.

This

same

function

can

be

accomplished

for

all

values

with

the

sigprocmask(SIG_BLOCK)

subroutine.

The

signal

of

value

i

will

be

blocked,

in

addition

to

those

currently

blocked,

if

the

i-th

bit

of

the

SignalMask

parameter

is

set.

It

is

not

possible

to

block

a

SIGKILL

or

SIGSTOP

signal

using

the

sigblock

or

sigsetmask

subroutine.

This

restriction

is

silently

imposed

by

the

system

without

causing

an

error

to

be

indicated.

Upon

successful

completion,

the

sigblock

subroutine

returns

the

value

of

the

previous

signal

mask.

If

the

subroutine

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error

as

in

the

sigprocmask

subroutine.

Return

Values

Upon

completion,

a

value

of

0

is

returned.

If

the

sigprocmask

subroutine

fails,

the

signal

mask

of

the

process

is

unchanged,

a

value

of

-1

is

returned,

and

the

global

variable

errno

is

set

to

indicate

the

error.

Error

Codes

The

sigprocmask

subroutine

is

unsuccessful

if

the

following

is

true:

EPERM

The

user

does

not

have

the

privilege

to

change

the

signal’s

mask.

EINVAL

The

value

of

the

How

parameter

is

not

equal

to

one

of

the

defined

values.

EFAULT

The

user’s

mask

is

not

in

the

process

address

space.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

181

Examples

To

set

the

signal

mask

to

block

only

the

SIGINT

signal

from

delivery,

enter:

#include

<signal.h>

int

return_value;

sigset_t

newset;

sigset_t

*newset_p;

.

.

.

newset_p

=

&newset;

sigemptyset(newset_p);

sigaddset(newset_p,

SIGINT);

return_value

=

sigprocmask

(SIG_SETMASK,

newset_p,

NULL);

Related

Information

The

kill

or

killpg

subroutine,

sigaction,

sigvec,

or

signal

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

sigaddset,

sigdelset,

sigemptyset,

sigfillset,

sigismember

(“sigemptyset,

sigfillset,

sigaddset,

sigdelset,

or

sigismember

Subroutine”

on

page

176)

subroutine,

sigpause

(“sigsuspend

or

sigpause

Subroutine”

on

page

188)

subroutine,

sigpending

(“sigpending

Subroutine”

on

page

179)

subroutine,

sigsuspend

(“sigsuspend

or

sigpause

Subroutine”

on

page

188)

subroutine.

sigqueue

Subroutine

Purpose

Queues

a

signal

to

a

process.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<signal.h>

int

sigqueue

(pid,

signo,

value)

pid_t

pid;

int

signo;

const

union

sigval

value;

Description

The

sigqueue

subroutine

causes

the

signal

specified

by

the

signo

parameter

to

be

sent

with

the

value

specified

by

the

value

parameter

to

the

process

specified

by

the

pid

parameter.

If

the

signo

parameter

is

zero,

error

checking

is

performed

but

no

signal

is

actually

sent.

This

can

be

used

to

check

the

validity

of

the

pid

parameter.

The

conditions

required

for

a

process

to

have

permission

to

queue

a

signal

to

another

process

are

the

same

as

for

the

kill

subroutine.

The

sigqueue

subroutine

returns

immediately.

If

SA_SIGINFO

is

set

by

the

receiving

process

for

the

specified

signal,

and

if

the

resources

are

available

to

queue

the

signal,

the

signal

is

queued

and

sent

to

the

receiving

process.

If

SA_SIGINFO

is

not

set

for

the

signo

parameter,

the

signal

is

sent

at

least

once

to

the

receiving

process.

If

multiple

signals

in

the

range

SIGRTMIN

to

SIGRTMAX

should

be

available

for

delivery,

the

lowest

numbered

of

them

will

be

delivered

first.

182

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

pid

Specifies

the

process

to

which

a

signal

is

to

be

sent.

signo

Specifies

the

signal

number.

value

Specifies

the

value

to

be

sent

with

the

signal.

Return

Values

Upon

successful

completion

the

sigqueue

subroutine

returns

a

zero.

If

unsuccessful,

it

returns

a

-1

and

sets

the

errno

variable

to

indicate

the

error.

Error

Code

The

sigqueue

subroutine

will

fail

if:

EAGAIN

No

resources

are

available

to

queue

the

signal.

The

process

has

already

queued

SIGQUEUE_MAX

signals

that

are

still

pending

at

the

receiver(s),

or

a

system-wide

resource

limit

has

been

exceeded.

EINVAL

The

value

of

the

signo

parameter

is

an

invalid

or

unsupported

signal

number,

or

if

the

selected

signal

can

either

stop

or

continue

the

receiving

process.

AIX

does

not

support

queuing

of

the

following

signals:

SIGKILL,

SIGSTOP,

SIGTSTP,

SIGCONT,

SIGTTIN,

SIGTTOU,

and

SIGCLD.

EPERM

The

process

does

not

have

the

appropriate

privilege

to

send

the

signal

to

the

receiving

process.

ESRCH

The

process

specified

by

the

pid

parameter

does

not

exist.

Related

Information

“sigtimedwait

and

sigwaitinfo

Subroutine”

on

page

191

and

“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164.

sigset,

sighold,

sigrelse,

or

sigignore

Subroutine

Purpose

Enhance

the

signal

facility

and

provide

signal

management.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<signal.h>

void

(*sigset(

Signal,

Function))()

int

Signal;

void

(*Function)();

int

sighold

(

Signal)

int

Signal;

int

sigrelse

(

Signal)

int

Signal;

int

sigignore

(

Signal)

int

Signal;

Description

The

sigset,

sighold,

sigrelse,

and

sigignore

subroutines

enhance

the

signal

facility

and

provide

signal

management

for

application

processes.

The

sigset

subroutine

specifies

the

system

signal

action

to

be

taken

upon

receiving

a

Signal

parameter.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

183

The

sighld

and

sigrelse

subroutines

establish

critical

regions

of

code.

A

call

to

the

sighold

subroutine

is

analogous

to

raising

the

priority

level

and

deferring

or

holding

a

signal

until

the

priority

is

lowered

by

sigrelse.

The

sigrelse

subroutine

restores

the

system

signal

action

to

the

action

that

was

previously

specified

by

the

sigset

structure.

The

sigignore

subroutine

sets

the

action

for

the

Signal

parameter

to

SIG_IGN.

The

other

signal

management

routine,

signal,

should

not

be

used

in

conjunction

with

these

routines

for

a

particular

signal

type.

Parameters

Signal

Specifies

the

signal.

The

Signal

parameter

can

be

assigned

any

one

of

the

following

signals:

SIGHUP

Hang

up

SIGINT

Interrupt

SIGQUIT

Quit*

SIGILL

Illegal

instruction

(not

reset

when

caught)*

SIGTRAP

Trace

trap

(not

reset

when

caught)*

SIGABRT

Abort*

SIGFPE

Floating

point

exception*,

or

arithmetic

exception,

integer

divide

by

0

SIGSYS

Bad

argument

to

routine*

SIGPIPE

Write

on

a

pipe

with

no

one

to

read

it

SIGALRM

Alarm

clock

SIGTERM

Software

termination

signal

SIGUSR1

User-defined

signal

1

SIGUSR2

User-defined

signal

2.

*

The

default

action

for

these

signals

is

an

abnormal

termination.

For

portability,

application

programs

should

use

or

catch

only

the

signals

listed

above.

Other

signals

are

hardware-dependant

and

implementation-dependant

and

may

have

very

different

meanings

or

results

across

systems.

For

example,

the

System

V

signals

(SIGEMT,

SIGBUS,

SIGSEGV,

and

SIGIOT)

are

implementation-dependent

and

are

not

listed

above.

Specific

implementations

may

have

other

implementation-dependent

signals.

184

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Function

Specifies

the

choice.

The

Function

parameter

is

declared

as

a

type

pointer

to

a

function

returning

void.

The

Function

parameter

is

assigned

one

of

four

values:

SIG_DFL,

SIG_IGN,

SIG_HOLD,

or

an

address

of

a

signal-catching

function.

Definitions

of

the

actions

taken

by

each

of

the

values

are:

SIG_DFL

Terminate

process

upon

receipt

of

a

signal.

Upon

receipt

of

the

signal

specified

by

the

Signal

parameter,

the

receiving

process

is

to

be

terminated

with

all

of

the

consequences

outlined

in

the

_exit

subroutine.

In

addition,

if

Signal

is

one

of

the

signals

marked

with

an

asterisk

above,

implementation-dependent

abnormal

process

termination

routines,

such

as

a

core

dump,

can

be

invoked.

SIG_IGN

Ignore

signal.

Any

pending

signal

specified

by

the

Signal

parameter

is

discarded.

A

pending

signal

is

a

signal

that

has

occurred

but

for

which

no

action

has

been

taken.

The

system

signal

action

is

set

to

ignore

future

occurrences

of

this

signal

type.

SIG_HOLD

Hold

signal.

The

signal

specified

by

the

Signal

parameter

is

to

be

held.

Any

pending

signal

of

this

type

remains

held.

Only

one

signal

of

each

type

is

held.

address

Catch

signal.

Upon

receipt

of

the

signal

specified

by

the

Signal

parameter,

the

receiving

process

is

to

execute

the

signal-catching

function

pointed

to

by

the

Function

parameter.

Any

pending

signal

of

this

type

is

released.

This

address

is

retained

across

calls

to

the

other

signal

management

functions,

sighold

and

sigrelse.

The

signal

number

Signal

is

passed

as

the

only

argument

to

the

signal-catching

function.

Before

entering

the

signal-catching

function,

the

value

of

the

Function

parameter

for

the

caught

signal

is

set

to

SIG_HOLD.

During

normal

return

from

the

signal-catching

handler,

the

system

signal

action

is

restored

to

the

Function

parameter

and

any

held

signal

of

this

type

is

released.

If

a

nonlocal

goto

(see

the

setjmp

subroutine)

is

taken,

the

sigrelse

subroutine

must

be

invoked

to

restore

the

system

signal

action

and

to

release

any

held

signal

of

this

type.

Upon

return

from

the

signal-catching

function,

the

receiving

process

will

resume

execution

at

the

point

at

which

it

was

interrupted,

except

for

implementation-defined

signals

in

which

this

may

not

be

true.

When

a

signal

to

be

caught

occurs

during

a

nonatomic

operation

such

as

a

call

to

the

read,

write,

open,

or

ioctl

subroutine

on

a

slow

device

(such

as

a

terminal);

during

a

pause

subroutine;

during

a

wait

subroutine

that

does

not

return

immediately,

the

signal-catching

function

is

executed.

The

interrupted

routine

then

returns

a

value

of

-1

to

the

calling

process

with

the

errno

global

variable

set

to

EINTR.

Return

Values

Upon

successful

completion,

the

sigset

subroutine

returns

the

previous

value

of

the

system

signal

action

for

the

specified

Signal.

Otherwise,

it

returns

SIG_ERR

and

the

errno

global

variable

is

set

to

indicate

the

error.

For

the

sighold,

sigrelse,

and

sigignore

subroutines,

a

value

of

0

is

returned

upon

success.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

sigset,

sighold,

sigrelse,

or

sigignore

subroutine

is

unsuccessful

if

the

following

is

true:

EINVAL

The

Signal

value

is

either

an

illegal

signal

number,

or

the

default

handling

of

Signal

cannot

be

changed.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

185

Related

Information

The

exit

subroutine,

kill

subroutine,

setjmp

(“setjmp

or

longjmp

Subroutine”

on

page

135)

subroutine,

signal

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

wait

(“wait,

waitpid,

wait3,

or

wait364

Subroutine”

on

page

441)subroutine.

sigsetjmp

or

siglongjmp

Subroutine

Purpose

Saves

or

restores

stack

context

and

signal

mask.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<setjmp.h>

int

sigsetjmp

(

Environment,

SaveMask)

sigjmp_buf

Environment;

int

SaveMask;

void

siglongjmp

(Environment,

Value)

sigjmp_buf

Environment;

int

Value;

Description

The

sigsetjmp

subroutine

saves

the

current

stack

context,

and

if

the

value

of

the

SaveMask

parameter

is

not

0,

the

sigsetjmp

subroutine

also

saves

the

current

signal

mask

of

the

process

as

part

of

the

calling

environment.

The

siglongjmp

subroutine

restores

the

saved

signal

mask

only

if

the

Environment

parameter

was

initialized

by

a

call

to

the

sigsetjmp

subroutine

with

a

nonzero

SaveMask

parameter

argument.

Parameters

Environment

Specifies

an

address

for

a

sigjmp_buf

structure.

SaveMask

Specifies

the

flag

used

to

determine

if

the

signal

mask

is

to

be

saved.

Value

Specifies

the

return

value

from

the

siglongjmp

subroutine.

Return

Values

The

sigsetjmp

subroutine

returns

a

value

of

0.

The

siglongjmp

subroutine

returns

a

nonzero

value.

Related

Information

The

setjmp

or

longjmp

(“setjmp

or

longjmp

Subroutine”

on

page

135)

subroutine,

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

sigprocmask

(“sigprocmask,

sigsetmask,

or

sigblock

Subroutine”

on

page

180)

subroutine,

sigsuspend

(“sigsuspend

or

sigpause

Subroutine”

on

page

188)

subroutine.

186

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

sigstack

Subroutine

Purpose

Sets

and

gets

signal

stack

context.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<signal.h>

int

sigstack

(

InStack,

OutStack)

struct

sigstack

*InStack,

*OutStack;

Description

The

sigstack

subroutine

defines

an

alternate

stack

on

which

signals

are

to

be

processed.

When

a

signal

occurs

and

its

handler

is

to

run

on

the

signal

stack,

the

system

checks

to

see

if

the

process

is

already

running

on

that

stack.

If

so,

it

continues

to

do

so

even

after

the

handler

returns.

If

not,

the

signal

handler

runs

on

the

signal

stack,

and

the

original

stack

is

restored

when

the

handler

returns.

Use

the

sigvec

or

sigaction

subroutine

to

specify

whether

a

given

signal-handler

routine

is

to

run

on

the

signal

stack.

Attention:

A

signal

stack

does

not

automatically

increase

in

size

as

a

normal

stack

does.

If

the

stack

overflows,

unpredictable

results

can

occur.

Parameters

InStack

Specifies

the

stack

pointer

of

the

new

signal

stack.

If

the

value

of

the

InStack

parameter

is

nonzero,

it

points

to

a

sigstack

structure,

which

has

the

following

members:

caddr_t

ss_sp;

int

ss_onstack;

The

value

of

InStack->ss_sp

specifies

the

stack

pointer

of

the

new

signal

stack.

Since

stacks

grow

from

numerically

greater

addresses

to

lower

ones,

the

stack

pointer

passed

to

the

sigstack

subroutine

should

point

to

the

numerically

high

end

of

the

stack

area

to

be

used.

InStack->ss_onstack

should

be

set

to

a

value

of

1

if

the

process

is

currently

running

on

that

stack;

otherwise,

it

should

be

a

value

of

0.

If

the

value

of

the

InStack

parameter

is

0

(that

is,

a

null

pointer),

the

signal

stack

state

is

not

set.

OutStack

Points

to

structure

where

current

signal

stack

state

is

stored.

If

the

value

of

the

OutStack

parameter

is

nonzero,

it

points

to

a

sigstack

structure

into

which

the

sigstack

subroutine

stores

the

current

signal

stack

state.

If

the

value

of

the

OutStack

parameter

is

0,

the

previous

signal

stack

state

is

not

reported.

Return

Values

Upon

successful

completion,

the

sigstack

subroutine

returns

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

187

Error

Codes

The

sigstack

subroutine

is

unsuccessful

and

the

signal

stack

context

remains

unchanged

if

the

following

is

true:

EFAULT

The

InStack

or

OutStack

parameter

points

outside

of

the

address

space

of

the

process.

Related

Information

Thelongjmp

(“setjmp

or

longjmp

Subroutine”

on

page

135)

subroutine,

setjmp

(“setjmp

or

longjmp

Subroutine”

on

page

135)

subroutine,

sigaction,

signal,

or

sigvec

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine.

sigsuspend

or

sigpause

Subroutine

Purpose

Automatically

changes

the

set

of

blocked

signals

and

waits

for

a

signal.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<signal.h>

int

sigsuspend

(

SignalMask)

const

sigset_t

*SignalMask;

int

sigpause

(SignalMask)

int

SignalMask;

Description

The

sigsuspend

subroutine

replaces

the

signal

mask

of

a

thread

with

the

set

of

signals

pointed

to

by

the

SignalMask

parameter.

It

then

suspends

execution

of

the

thread

until

a

signal

is

delivered

that

executes

a

signal-catching

function

or

terminates

the

process.

The

sigsuspend

subroutine

does

not

allow

the

SIGKILL

or

SIGSTOP

signal

to

be

blocked.

If

a

program

attempts

to

block

one

of

these

signals,

the

sigsuspend

subroutine

gives

no

indication

of

the

error.

If

delivery

of

a

signal

causes

the

process

to

end,

the

sigsuspend

subroutine

does

not

return.

If

delivery

of

a

signal

causes

a

signal-catching

function

to

start,

the

sigsuspend

subroutine

returns

after

the

signal-catching

function

returns,

with

the

signal

mask

restored

to

the

set

that

existed

prior

to

the

sigsuspend

subroutine.

The

sigsuspend

subroutine

sets

the

signal

mask

and

waits

for

an

unblocked

signal

as

one

atomic

operation.

This

means

that

signals

cannot

occur

between

the

operations

of

setting

the

mask

and

waiting

for

a

signal.

If

a

program

invokes

the

sigprocmask

(SIG_SETMASK)

and

pause

subroutines

separately,

a

signal

that

occurs

between

these

subroutines

might

not

be

noticed

by

the

pause

subroutine.

In

normal

usage,

a

signal

is

blocked

by

using

the

sigprocmask(SIG_BLOCK,...)

subroutine

for

single-threaded

applications,

or

the

sigthreadmask(SIG_BLOCK,...)

subroutine

for

multi-threaded

applications

(using

the

libpthreads.a

threads

library)

at

the

beginning

of

a

critical

section.

The

process/thread

then

determines

whether

there

is

work

for

it

to

do.

If

no

work

is

to

be

done,

the

process/thread

waits

for

work

by

calling

the

sigsuspend

subroutine

with

the

mask

previously

returned

by

the

sigprocmask

or

sigthreadmask

subroutine.

188

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

sigpause

subroutine

is

provided

for

compatibility

with

older

UNIX

systems;

its

function

is

a

subset

of

the

sigsuspend

subroutine.

Parameter

SignalMask

Points

to

a

set

of

signals.

Return

Values

If

a

signal

is

caught

by

the

calling

thread

and

control

is

returned

from

the

signal

handler,

the

calling

thread

resumes

execution

after

the

sigsuspend

or

sigpause

subroutine,

which

always

return

a

value

of

-1

and

set

the

errno

global

variable

to

EINTR.

Related

Information

The

pause

subroutine,

sigprocmask

(“sigprocmask,

sigsetmask,

or

sigblock

Subroutine”

on

page

180)

subroutine,

sigaction

or

signal

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

sigthreadmask

(“sigthreadmask

Subroutine”)

subroutine.

Signal

Management

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

provides

more

information

about

signal

management

in

multi-threaded

processes.

sigthreadmask

Subroutine

Purpose

Sets

the

signal

mask

of

a

thread.

Library

Threads

Library

(libpthreads.a)

Syntax

#include

<pthread.h>

#include

<signal.h>

int

sigthreadmask(

how,

set,

old_set)

int

how;

const

sigset_t

*set;

sigset_t

*old_set;

Description

The

sigthreadmask

subroutine

is

used

to

examine

or

change

the

signal

mask

of

the

calling

thread.

The

sigprocmask

subroutine

must

not

be

used

in

a

multi-threaded

process.

Typically,

the

sigthreadmask(SIG_BLOCK)

subroutine

is

used

to

block

signals

during

a

critical

section

of

code.

The

sigthreadmask(SIG_SETMASK)

subroutine

is

then

used

to

restore

the

mask

to

the

previous

value

returned

by

the

sigthreadmask(SIG_BLOCK)

subroutine.

If

there

are

any

pending

unblocked

signals

after

the

call

to

the

sigthreadmask

subroutine,

at

least

one

of

those

signals

will

be

delivered

before

the

sigthreadmask

subroutine

returns.

The

sigthreadmask

subroutine

does

not

allow

the

SIGKILL

or

SIGSTOP

signal

to

be

blocked.

If

a

program

attempts

to

block

either

signal,

the

sigthreadmask

subroutine

gives

no

indication

of

the

error.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

189

Note:

The

pthread.h

header

file

must

be

the

first

included

file

of

each

source

file

using

the

threads

library.

Parameters

how

Indicates

the

manner

in

which

the

set

is

changed.

It

can

have

one

of

the

following

values:

SIG_BLOCK

The

resulting

set

is

the

union

of

the

current

set

and

the

signal

set

pointed

to

by

the

set

parameter.

SIG_UNBLOCK

The

resulting

set

is

the

intersection

of

the

current

set

and

the

complement

of

the

signal

set

pointed

to

by

the

set

parameter.

SIG_SETMASK

The

resulting

set

is

the

signal

set

pointed

to

by

the

set

parameter.

set

Specifies

the

signal

set.

If

the

value

of

the

Set

parameter

is

not

null,

it

points

to

a

set

of

signals

to

be

used

to

change

the

currently

blocked

set.

If

the

value

of

the

Set

parameter

is

null,

the

value

of

the

How

parameter

is

not

significant

and

the

process

signal

mask

is

unchanged.

Thus,

the

call

can

be

used

to

inquire

about

currently

blocked

signals.

old_set

If

the

old_set

parameter

is

not

the

null

value,

the

signal

mask

in

effect

at

the

time

of

the

call

is

stored

in

the

spaced

pointed

to

by

the

old_set

parameter.

Return

Values

Upon

completion,

a

value

of

0

is

returned.

If

the

sigthreadmask

subroutine

fails,

the

signal

mask

of

the

process

is

unchanged,

a

value

of

-1

is

returned,

and

the

global

variable

errno

is

set

to

indicate

the

error.

Error

Codes

The

sigthreadmask

subroutine

is

unsuccessful

if

the

following

is

true:

EFAULT

The

set

or

old_set

pointers

are

not

in

the

process

address

space.

EINVAL

The

value

of

the

how

parameter

is

not

supported.

EPERM

The

calling

thread

does

not

have

the

privilege

to

change

the

signal’s

mask.

Examples

To

set

the

signal

mask

to

block

only

the

SIGINT

signal

from

delivery,

enter:

#include

<pthread.h>

#include

<signal.h>

int

return_value;

sigset_t

newset;

sigset_t

*newset_p;

.

.

.

newset_p

=

&newset;

sigemptyset(newset_p);

sigaddset(newset_p,

SIGINT);

return_value

=

sigthreadmask(SIG_SETMASK,

newset_p,

NULL);

Related

Information

The

kill

or

killpg

subroutine,

pthread_kill

subroutine,

sigaction,

sigvec,

or

signal

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

sigpause

(“sigsuspend

or

sigpause

Subroutine”

on

page

188)

subroutine,

sigpending

(“sigpending

Subroutine”

on

page

179)

subroutine,

sigwait

(“sigwait

Subroutine”

on

page

192)

subroutine,

sigsuspend

(“sigsuspend

or

sigpause

Subroutine”

on

page

188)

subroutine.

190

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Signal

Management

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

sigtimedwait

and

sigwaitinfo

Subroutine

Purpose

Waits

for

a

signal,

and

provides

a

mechanism

for

retrieving

any

queued

value.

Library

Standard

C

Library

(libc.a)

Threads

Library

(libpthreads.a)

Syntax

#include

<signal.h>

int

sigtimedwait

(set,

info,

timeout)

const

sigset_t

*set;

siginfo_t

*info;

const

struct

timespec

*timeout;

int

sigwaitinfo

(set,

info)

const

sigset_t

*set;

siginfo_t

*info;

Description

The

sigwaitinfo

subroutine

selects

a

pending

signal

from

the

set

specified

by

the

set

parameter.

If

no

signal

in

the

set

parameter

is

pending

at

the

time

of

the

call,

the

calling

thread

is

suspended

until

one

or

more

signals

in

the

set

parameter

become

pending

or

until

it

is

interrupted

by

an

unblocked,

caught

signal.

If

the

wait

was

interrupted

by

an

unblocked,

caught

signal,

the

subroutines

will

restart

themselves.

The

sigwaitinfo

subroutine

is

functionally

equivalent

to

the

sigwait

subroutine

if

the

info

argument

is

NULL.

If

the

info

argument

is

non-NULL,

the

sigwaitinfo

subroutine

is

equivalent

to

the

sigwait

subroutine,

except

that

the

selected

signal

number

is

stored

in

the

si_signo

member,

and

the

cause

of

the

signal

is

stored

in

the

si_code

member

of

the

info

parameter.

If

any

value

is

queued

to

the

selected

signal,

the

first

such

queued

value

is

dequeued,

and

if

the

info

argument

is

non-NULL,

the

value

is

stored

in

the

si_value

member

of

the

info

parameter.

If

no

further

signals

are

queued

for

the

selected

signal,

the

pending

indication

for

that

signal

is

reset.

The

sigtimedwait

subroutine

is

equivalent

to

the

sigwaitinfo

subroutine

except

that

if

none

of

the

signals

specified

by

the

set

parameter

are

pending,

the

sigtimedwait

subroutine

waits

for

the

time

interval

referenced

by

the

timeout

parameter.

If

the

timespec

structure

pointed

to

by

the

timeout

parameter

contains

a

zero

value

and

if

none

of

the

signals

specified

by

the

set

parameter

are

pending,

the

sigtimedwait

subroutine

returns

immediately

with

an

error.

If

there

are

multiple

pending

signals

in

the

range

SIGRTMIN

to

SIGRTMAX,

the

lowest

numbered

signal

in

that

range

will

be

selected.

Note:

All

signals

in

set

should

have

been

blocked

prior

to

calling

any

of

the

sigwait

subroutines.

Parameters

set

Specifies

the

pending

signals

that

may

be

selected.

info

Points

to

a

siginfo_t

in

which

additional

signal

information

can

be

returned.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

191

timeout

Points

to

the

timespec

structure.

Return

Values

Upon

successful

completion,

the

sigtimedwait

and

sigwaitinfo

subroutines

return

the

selected

signal

number.

If

unsuccessful,

the

sigtimedwait

and

sigwaitinfo

subroutines

return

-1

and

set

the

errno

variable

to

indicate

the

error.

Error

Codes

The

sigtimedwait

subroutine

will

fail

if:

EAGAIN

No

signal

specified

by

the

set

parameter

was

generated

within

the

specified

timeout

period.

The

sigtimedwait

and

sigwaitinfo

subroutines

may

fail

if:

EINVAL

The

set

parameter

is

empty,

or

contains

an

invalid,

non-catchable,

or

unsupported

signal

number.

The

sigtimedwait

subroutine

may

also

fail

when

none

of

the

selected

signals

are

pending

if:

EINVAL

The

timeout

parameter

specified

a

tv_nsec

value

less

than

zero

or

greater

than

or

equal

to

1000

million.

Related

Information

“sigqueue

Subroutine”

on

page

182

and

“sigwait

Subroutine.”

sigwait

Subroutine

Purpose

Blocks

the

calling

thread

until

a

specified

signal

is

received.

Library

Threads

Library

(libpthreads.a)

Syntax

#include

</usr/include/dce/cma_sigwait.h>

int

sigwait

(

set,

sig)

const

sigset_t

*set;

int

*sig;

Description

The

sigwait

subroutine

blocks

the

calling

thread

until

one

of

the

signal

in

the

signal

set

set

is

received

by

the

thread.

Only

asynchronous

signals

can

be

waited

for.

The

signal

can

be

either

sent

directly

to

the

thread,

using

the

pthread_kill

subroutine,

or

to

the

process.

In

that

case,

the

signal

will

be

delivered

to

exactly

one

thread

that

has

not

blocked

the

signal.

Concurrent

use

of

sigaction

and

sigwait

subroutines

on

the

same

signal

is

forbidden.

192

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

set

Specifies

the

set

of

signals

to

wait

on.

sig

Points

to

where

the

received

signal

number

will

be

stored.

Return

Values

Upon

successful

completion,

the

received

signal

number

is

returned

via

the

sig

parameter,

and

0

is

returned.

Otherwise,

an

error

code

is

returned.

Error

Code

The

sigwait

subroutine

is

unsuccessful

if

the

following

is

true:

EINVAL

The

set

parameter

contains

an

invalid

or

unsupported

signal

number.

Related

Information

The

kill

subroutine,

pthread_kill

subroutine,

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine,

sigthreadmask

(“sigthreadmask

Subroutine”

on

page

189)

subroutine.

Signal

Management

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

.

sin,

sinf,

or

sinl

Subroutine

Purpose

Computes

the

sine.

Syntax

#include

<math.h>

double

sin

(

x)

double

x;

float

sinf

(x)

float

x;

long

double

sinl

(x)

long

double

x;

Description

The

sin,

sinf,

sinl

subroutines

compute

the

sine

of

the

x

parameter,

measured

in

radians.

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Floating-point

value

y

Floating-point

value

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

193

Return

Values

Upon

successful

completion,

the

sin,

sinf,

and

sinl

subroutines

return

the

sine

of

x.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0,

x

is

returned.

If

x

is

subnormal,

a

range

error

may

occur

and

x

should

be

returned.

If

x

is

±Inf,

a

domain

error

occurs,

and

a

NaN

is

returned.

Error

Codes

The

sin,

sinf,

and

sinl

subroutines

lose

accuracy

when

passed

a

large

value

for

the

x

parameter.

In

the

sin

subroutine,

for

example,

values

of

x

that

are

greater

than

pi

are

argument-reduced

by

first

dividing

them

by

the

machine

value

for

2

*

pi

,

and

then

using

the

IEEE

remainder

of

this

division

in

place

of

x.

Since

the

machine

value

of

pi

can

only

approximate

its

infinitely

precise

value,

the

remainder

of

x/(2

*

pi)

becomes

less

accurate

as

x

becomes

larger.

Similar

loss

of

accuracy

occurs

for

the

sinl

subroutine

during

argument

reduction

of

large

arguments.

sin

When

the

x

parameter

is

extremely

large,

these

functions

return

0

when

there

would

be

a

complete

loss

of

significance.

In

this

case,

a

message

indicating

TLOSS

error

is

printed

on

the

standard

error

output.

For

less

extreme

values

causing

partial

loss

of

significance,

a

PLOSS

error

is

generated

but

no

message

is

printed.

In

both

cases,

the

errno

global

variable

is

set

to

a

ERANGE

value.

These

error-handling

procedures

may

be

changed

with

the

matherr

subroutine

when

using

the

libmsaa.a

(-lmsaa)

library.

Related

Information

The

matherr

subroutine,

sinh,

sinhl

(“sinh,

sinhf,

or

sinhl

Subroutine”)

subroutines.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

128-Bit

long

double

Floating-Point

Format

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

sinh,

sinhf,

or

sinhl

Subroutine

Purpose

Computes

hyperbolic

sine.

Syntax

#include

<math.h>

double

sinh

(

x)

double

x;

float

sinhf

(x)

float

x;

194

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

long

double

sinhl

(x)

double

x;

Description

The

sinh,

sinhf,

and

sinhl

subroutines

compute

the

hyperbolic

sine

of

the

x

parameter.

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Specifies

a

double-precision

floating-point

value.

Return

Values

Upon

successful

completion,

the

sinh,

sinhf,

and

sinhl

subroutines

return

the

hyperbolic

sine

of

x.

If

the

result

would

cause

an

overflow,

a

range

error

occurs

and

±HUGE_VAL,

±HUGE_VALF,

and

±HUGE_VALL

(with

the

same

sign

as

x)

is

returned

as

appropriate

for

the

type

of

the

function.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0

orInf,

x

is

returned.

If

x

is

subnormal,

a

range

error

may

occur

and

x

should

be

returned.

Error

Codes

If

the

correct

value

overflows,

the

sinh,

sinhf

and

sinhl

subroutines

return

a

correctly

signed

HUGE_VAL,

and

the

errno

global

variable

is

set

to

ERANGE.

These

error-handling

procedures

should

be

changed

with

the

matherr

subroutine

when

the

libmsaa.a

(-lmsaa)

library

is

used.

Related

Information

asinh,

acosh,

or

atanh

Subroutine

,

feclearexcept

Subroutine,

fetestexcept

Subroutine,

and

class,

_class,

finite,

isnan,

or

unordered

Subroutines

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

The

matherr

subroutine,

sin,

asin,

acos,

atan,

or

atan2

(“sin,

sinf,

or

sinl

Subroutine”

on

page

193)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

128-Bit

long

double

Floating-Point

Format

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

195

sleep,

nsleep

or

usleep

Subroutine

Purpose

Suspends

a

current

process

from

execution.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

unsigned

int

sleep

(

Seconds)

#include

<sys/time.h>

int

nsleep

(

Rqtp,

Rmtp)

struct

timestruc_t

*Rqtp,

*Rmtp;

int

usleep

(

Useconds)

useconds_t

Useconds;

Description

The

nsleep

subroutine

is

an

extended

form

of

the

sleep

subroutine.

The

sleep

or

nsleep

subroutines

suspend

the

current

process

until:

v

The

time

interval

specified

by

the

Rqtp

parameter

elapses.

v

A

signal

is

delivered

to

the

calling

process

that

invokes

a

signal-catching

function

or

terminates

the

process.

v

The

process

is

notified

of

an

event

through

an

event

notification

function.

The

suspension

time

may

be

longer

than

requested

due

to

the

scheduling

of

other

activity

by

the

system.

Upon

return,

the

location

specified

by

the

Rmtp

parameter

shall

be

updated

to

contain

the

amount

of

time

remaining

in

the

interval,

or

0

if

the

full

interval

has

elapsed.

Parameters

Rqtp

Time

interval

specified

for

suspension

of

execution.

Rmtp

Specifies

the

time

remaining

on

the

interval

timer

or

0.

Seconds

Specifies

time

interval

in

seconds.

Useconds

Specifies

time

interval

in

microseconds.

Compatibility

Interfaces

The

sleep

and

usleep

subroutines

are

provided

to

ensure

compatibility

with

older

versions

of

the

operating

system,

AT&T

System

V

and

BSD

systems.

They

are

implemented

simply

as

front-ends

to

the

nsleep

subroutine.

Programs

linking

with

the

libbsd.a

library

get

a

BSD

compatible

version

of

the

sleep

subroutine.

The

return

value

from

the

BSD

compatible

sleep

subroutine

has

no

significance

and

should

be

ignored.

Return

Values

The

nsleep,

sleep,

and

usleep

subroutines

return

a

value

of

0

if

the

requested

time

has

elapsed.

If

the

nsleep

subroutine

returns

a

value

of

-1,

the

notification

of

a

signal

or

event

was

received

and

the

Rmtp

parameter

is

updated

to

the

requested

time

minus

the

time

actually

slept

(unslept

time),

and

the

errno

global

variable

is

set.

196

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

If

the

sleep

subroutine

returns

because

of

a

premature

arousal

due

to

delivery

of

a

signal,

the

return

value

will

be

the

unslept

amount

(the

requested

time

minus

the

time

actually

slept)

in

seconds.

Error

Codes

If

the

nsleep

subroutine

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

one

of

the

following

error

codes:

EINTR

A

signal

was

caught

by

the

calling

process

and

control

has

been

returned

from

the

signal-catching

routine,

or

the

process

has

been

notified

of

an

event

through

an

event

notification

function.

EINVAL

The

Rqtp

parameter

specified

a

nanosecond

value

less

than

zero

or

greater

than

or

equal

to

one

second.

The

sleep

subroutine

is

always

successful

and

no

return

value

is

reserved

to

indicate

an

error.

Related

Information

The

alarm

subroutine,

pause

subroutine,

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine.

List

of

Time

Data

Manipulation

Services

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

Subroutines

Overview

in

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices.

sockatmark

Subroutine

Purpose

Determines

whether

a

socket

is

at

the

out-of-band

mark.

Syntax

#include

<sys/socket.h>

int

sockatmark(s)

int

s;

Description

The

sockatmark

subroutine

determines

whether

the

socket

specified

by

the

s

parameter

is

at

the

out-of-band

data

mark.

If

the

protocol

for

the

socket

supports

out-of-band

data

by

marking

the

stream

with

an

out-of-band

data

mark,

the

sockatmark

subroutine

returns

a

1

when

all

data

preceding

the

mark

has

been

read

and

the

out-of-band

data

mark

is

the

first

element

in

the

receive

queue.

The

sockatmark

subroutine

does

not

remove

the

mark

from

the

stream.

The

use

of

this

subroutine

between

receive

operations

allows

an

application

to

determine

which

received

data

precedes

the

out-of-band

data

and

which

follows

the

out-of-band

data.

There

is

an

inherent

race

condition

in

the

use

of

this

function.

On

an

empty

receive

queue,

the

current

read

of

the

location

might

well

be

at

the

mark’,

but

the

system

has

no

way

of

knowing

that

the

next

data

segment

that

will

arrive

from

the

network

will

carry

the

mark,

and

sockatmark

will

return

false

The

next

read

operation

will

silently

consume

the

mark.

Because

of

this,

the

sockatmark

subroutine

can

only

be

used

reliably

when

the

application

already

knows

that

the

out-of-band

data

has

been

seen

by

the

system

or

that

it

is

known

that

there

is

data

waiting

to

be

read

at

the

socket.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

197

Parameters

s

Specifies

the

socked

to

be

checked.

Return

Values

Upon

successful

completion,

the

sockatmark

subroutine

returns

a

value

indicating

whether

the

socket

is

at

an

out-of-band

data

mark.

If

the

protocol

has

marked

the

data

stream

and

all

data

preceding

the

mark

has

been

read,

the

return

value

is

1.

If

there

is

no

mark,

or

if

data

precedes

the

mark

in

the

receive

queue,

the

sockatmark

subroutine

returns

a

0.

Otherwise,

it

returns

a

value

of

-1

and

sets

the

errno

global

variable

to

indicate

the

error.

Error

Codes

EBADF

The

s

parameter

is

not

a

valid

file

descriptor.

ENOTTY

The

s

parameter

does

not

specify

a

descriptor

for

a

socket.

SpmiAddSetHot

Subroutine

Purpose

Adds

a

set

of

peer

statistics

values

to

a

hotset.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiHotVals

*SpmiAddSetHot(HotSet,

StatName,

GrandParent,

maxresp,

threshold,

frequency,

feed_type,

except_type,

severity,

trap_no)

struct

SpmiHotSet

*HotSet;

char

*StatName;

SpmiCxHdl

GrandParent;

int

maxresp;

int

threshold;

int

frequency;

int

feed_type;

int

excp_type;

int

severity;

int

trap_no;

Description

The

SpmiAddSetHot

subroutine

adds

a

set

of

peer

statistics

to

a

hotset.

The

SpmiHotSet

structure

that

provides

the

anchor

point

to

the

set

must

exist

before

the

SpmiAddSetHot

subroutine

call

can

succeed.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

HotSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiHotSet

as

created

by

the

SpmiCreateHotSet

(“SpmiCreateHotSet”

on

page

201)

subroutine

call.

198

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

StatName

Specifies

the

name

of

the

statistic

within

the

subcontexts

(peer

contexts)

of

the

context

identified

by

the

GrandParent

parameter.

GrandParent

Specifies

a

valid

SpmiCxHdl

handle

as

obtained

by

another

subroutine

call.

The

handle

must

identify

a

context

with

at

least

one

subcontext,

which

contains

the

statistic

identified

by

the

StatName

parameter.

If

the

context

specified

is

one

of

the

RTime

contexts,

no

subcontext

need

to

exist

at

the

time

the

SpmiAddSetHot

subroutine

call

is

issued;

the

presence

of

the

metric

identified

by

the

StatName

parameter

is

checked

against

the

context

class

description.

If

the

context

specified

has

or

may

have

multiple

levels

of

instantiable

context

below

it

(such

as

the

FS

and

RTime/ARM

contexts),

the

metric

is

only

searched

for

at

the

lowest

context

level.

The

SpmiHotSet

created

is

a

pseudo

hotvals

structure

used

to

link

together

a

peer

group

of

SpmiHotValsstructures,

which

are

created

under

the

covers,

one

for

each

subcontext

of

the

GrandParent

context.

In

the

case

of

RTime/ARM,

if

additional

contexts

are

later

added

under

the

GrandParent

contexts,

additional

hotsets

are

added

to

the

peer

group.

This

is

transparent

to

the

application

program,

except

that

the

SpmiFirstHot,

SpmiNextHot,

and

SpmiNextHotItem

subroutine

calls

will

return

the

peer

group

SpmiHotVals

pointer

rather

than

the

pointer

to

the

pseudo

structure.

Note

that

specifying

a

specific

volume

group

context

(such

as

FS/rootvg)

or

a

specific

application

context

(such

as

RTime/ARN/armpeek)

is

still

valid

and

won’t

involve

creation

of

pseudo

SpmiHotVals

structures.

maxresp

Must

be

non-zero

if

excp_type

specifies

that

exceptions

or

SNMP

traps

must

be

generated.

If

specified

as

zero,

indicates

that

all

SPMIHotItems

that

meet

the

criteria

specified

by

threshold

must

be

returned,

up-to

a

maximum

of

maxresp

items.

If

both

exceptions/traps

and

feeds

are

requested,

the

maxresp

value

is

used

to

cap

the

number

of

exceptions/alerts

as

well

as

the

number

of

items

returned.

If

feed_type

is

specified

as

SiHotAlways,

the

maxresp

parameter

is

still

used

to

return

at

most

maxresp

items.

Where

the

GrandParent

argument

specifies

a

context

that

has

multiple

levels

of

instantiable

contexts

below

it,

the

maxresp

is

applied

to

each

of

the

lowest

level

contexts

above

the

the

actual

peer

contexts

at

a

time.

For

example,

if

the

GrandParent

context

is

FS

(file

systems)

and

the

system

has

three

volume

groups,

then

a

maxresp

value

of

2

could

cause

up

to

a

maximum

of

2

x

3

=

6

responses

to

be

generated.

threshold

Must

be

non-zero

if

excp_type

specifies

that

exceptions

or

SNMP

traps

must

be

generated.

If

specified

as

zero,

indicates

that

all

values

read

qualify

to

be

returned

in

feeds.

The

value

specified

is

compared

to

the

data

value

read

for

each

peer

statistic.

If

the

data

value

exceeds

the

threshold,

it

qualifies

to

be

returned

as

an

SpmiHotItems

element

in

the

SpmiHotVals

structure.

If

the

threshold

is

specified

as

a

negative

value,

the

value

qualifies

if

it

is

lower

than

the

numeric

value

of

threshold.

If

feed_type

is

specified

as

SiHotAlways,

the

threshold

value

is

ignored

for

feeds.

For

peer

statistics

of

type

SiCounter,

the

threshold

must

be

specified

as

a

rate

per

second;

for

SiQuantity

statistics

the

threshold

is

specified

as

a

level.

frequency

Must

be

non-zero

if

excp_type

specifies

that

exceptions

or

SNMP

traps

must

be

generated.

Ignored

for

feeds.

Specifies

the

minimum

number

of

minutes

that

must

expire

between

any

two

exceptions/traps

generated

from

this

SpmiHotVals

structure.

This

value

must

be

specified

as

no

less

than

5

minutes.

feed_type

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

199

Specifies

if

feeds

of

SpmiHotItems

should

be

returned

for

this

SpmiHotVals

structure.

The

following

values

are

valid:

SiHotNoFeed

No

feeds

should

be

generated

SiHotThreshold

Feeds

are

controlled

by

threshold.

SiHotAlways

All

values,

up-to

a

maximum

of

maxresp

must

be

returned

as

feeds.

excp_type

Controls

the

generation

of

exception

data

packets

and/or

the

generation

of

SNMP

Traps

from

xmservd.

Note

that

these

types

of

packets

and

traps

can

only

actually

be

sent

if

xmservd

is

running.

Because

of

this,

exception

packets

and

SNMP

traps

are

only

generated

as

long

as

xmservd

is

active.

Traps

can

only

be

generated

on

AIX

systems.

The

conditions

for

generating

exceptions

and

traps

are

controlled

by

the

threshold

and

frequency

parameters.

The

following

values

are

valid

for

excp_type:

SiNoHotException

Generate

neither

exceptions

not

traps.

SiHotException

Generate

exceptions

but

not

traps.

SiHotTrap

Generate

SNMP

traps

but

not

exceptions.

SiHotBoth

Generate

both

exceptions

and

SNMP

traps.

severity

Required

to

be

positive

and

greater

than

zero

if

exceptions

are

generated,

otherwise

specify

as

zero.

Used

to

assign

a

severity

code

to

the

exception

for

display

by

exmon.

trap_no

Required

to

be

positive

and

greater

than

zero

if

SNMP

traps

are

generated,

otherwise

specify

as

zero.

Used

to

assign

the

trap

number

in

the

generated

SNMP

trap.

Return

Values

The

SpmiAddSetHot

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiHotVals

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Programming

Notes

The

SpmiAddSetHot

functions

in

a

straight

forward

manner

and

as

described

previously

in

all

cases

where

the

GrandParent

context

is

a

context

that

has

only

one

level

of

instantiable

contexts

below

it.

This

covers

most

context

types

such

as

CPU,

Disk,

LAN,

etc.

In

a

few

cases,

currently

only

the

FS

(file

system)

and

RTime/ARM

(application

response)

contexts,

the

SPMI

works

by

creating

pseudo-hotvals

structures

that

effectively

expand

the

hotset.

These

pseudo-hotvals

structures

are

created

either

at

the

time

the

SpmiAddSetHot

call

is

issued

or

when

new

subcontexts

are

created

for

a

context

that’s

already

the

GrandParent

of

a

hotvals

peer

set.

For

example:

When

a

peer

set

is

created

for

RTime/ARM,

maybe

only

a

few

or

no

subcontexts

of

this

context

exists.

If

two

applications

were

defined

at

this

point,

say

checking

and

savings,

one

valsset

would

be

created

for

the

RTime/ARM

context

and

a

pseudo-valsset

for

each

of

RTime/ARM/checking

and

RTime/ARM/savings.

As

new

applications

are

added

to

the

RTime/ARM

contexts,

new

pseudo-valssets

are

automatically

added

to

the

hotset.

200

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Pseudo-valssets

represent

an

implementation

convenience

and

also

helps

minimize

the

impact

of

retrieving

and

presenting

data

for

hotsets.

As

far

as

the

caller

of

the

RSiGetHotItem

subroutine

call

is

concerned,

it

is

completely

transparent.

All

this

caller

will

ever

see

is

the

real

hotvals

structure.

That

is

not

the

case

for

callers

of

SpmiFirstHot,

SpmiNextHot,

and

SpmiNextHotItem.

All

of

these

subroutines

will

return

pseudo-valssets

and

the

calling

program

should

be

prepared

to

handle

this.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

SpmiCreateHotSet

Purpose

Creates

an

empty

hotset.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiHotSet

*SpmiCreateHotSet()

Description

The

SpmiCreateHotSet

subroutine

creates

an

empty

hotset

and

returns

a

pointer

to

an

SpmiHotSet

structure.This

structure

provides

the

anchor

point

for

a

hotset

and

must

exist

before

the

SpmiAddSetHot

subroutine

can

be

successfully

called.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Return

Values

The

SpmiCreateHotSet

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiHotSet

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

201

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiDelSetHot

Subroutine”

on

page

207

v

“SpmiFreeHotSet

Subroutine”

on

page

215

v

“SpmiAddSetHot

Subroutine”

on

page

198

v

Understanding

SPMI

Data

Areas

SpmiCreateStatSet

Subroutine

Purpose

Creates

an

empty

set

of

statistics.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiStatSet

*SpmiCreateStatSet()

Description

The

SpmiCreateStatSet

subroutine

creates

an

empty

set

of

statistics

and

returns

a

pointer

to

an

SpmiStatSet

structure.

The

SpmiStatSet

structure

provides

the

anchor

point

to

a

set

of

statistics

and

must

exist

before

the

SpmiPathAddSetStat

subroutine

can

be

successfully

called.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Return

Values

The

SpmiCreateStatSet

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiStatSet

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

202

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiDelSetStat

Subroutine”

on

page

208

v

“SpmiFreeStatSet

Subroutine”

on

page

216

v

“SpmiPathAddSetStat

Subroutine”

on

page

234

v

Understanding

SPMI

Data

Areas

SpmiDdsAddCx

Subroutine

Purpose

Adds

a

volatile

context

to

the

contexts

defined

by

an

application.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

char

*SpmiDdsAddCx(Ix,

Path,

Descr,

Asnno)

ushort

Ix;

char

*Path,

*Descr;

int

Asnno;

Description

The

SpmiDdsAddCx

subroutine

uses

the

shared

memory

area

to

inform

the

SPMI

that

a

context

is

available

to

be

added

to

the

context

hierarchy,

moves

a

copy

of

the

context

to

shared

memory,

and

allocates

memory

for

the

data

area.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

Ix

Specifies

the

element

number

of

the

added

context

in

the

table

of

dynamic

contexts.

No

context

can

be

added

if

the

table

of

dynamic

contexts

has

not

been

defined

in

the

SpmiDdsInit

subroutine

call.

The

first

element

of

the

table

is

element

number

0.

Path

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

203

Specifies

the

full

path

name

of

the

context

to

be

added.

If

the

context

is

not

at

the

top-level,

the

parent

context

must

already

exist.

Descr

Provides

the

description

of

the

context

to

be

added

as

it

will

be

presented

to

data

consumers.

Asnno

Specifies

the

ASN.1

number

to

be

assigned

to

the

new

context.

All

subcontexts

on

the

same

level

as

the

new

context

must

have

unique

ASN.1

numbers.

Typically,

each

time

the

SpmiDdsAddCx

subroutine

adds

a

subcontext

to

the

same

parent

context,

the

Asnno

parameter

is

incremented.

See

Making

Dynamic

Data-Supplier

Statistics

Unique

for

more

information

about

ASN.1

numbers.

Return

Values

If

successful,

the

SpmiDdsAddCx

subroutine

returns

the

address

of

the

shared

memory

data

area.

If

an

error

occurs,

an

error

text

is

placed

in

the

external

SpmiErrmsg

character

array,

and

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiDdsDelCx

Subroutine”

v

“SpmiDdsInit

Subroutine”

on

page

205

SpmiDdsDelCx

Subroutine

Purpose

Deletes

a

volatile

context.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiDdsDelCx(Area)

char

*Area;

204

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

SpmiDdsDelCx

subroutine

informs

the

SPMI

that

a

previously

added,

volatile

context

should

be

deleted.

If

the

SPMI

has

not

detected

that

the

context

to

delete

was

previously

added

dynamically,

the

SpmiDdsDelCx

subroutine

removes

the

context

from

the

list

of

to-be-added

contexts

and

returns

the

allocated

shared

memory

to

the

free

list.

Otherwise,

the

SpmiDdsDelCx

subroutine

indicates

to

the

SPMI

that

a

context

and

its

associated

statistics

must

be

removed

from

the

context

hierarchy

and

any

allocated

shared

memory

must

be

returned

to

the

free

list.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

Area

Specifies

the

address

of

the

previously

allocated

shared

memory

data

area

as

returned

by

an

SpmiDdsAddCx

subroutine

call.

Return

Values

If

successful,

the

SpmiDdsDelCx

subroutine

returns

a

value

of

0.

If

an

error

occurs,

an

error

text

is

placed

in

the

external

SpmiErrmsg

character

array,

and

the

subroutine

returns

a

nonzero

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiDdsAddCx

Subroutine”

on

page

203

v

“SpmiDdsInit

Subroutine”

v

Understanding

SPMI

Data

Areas

SpmiDdsInit

Subroutine

Purpose

v

Establishes

a

program

as

a

dynamic

data-supplier

(DDS)

program.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

205

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

SpmiShare

*SpmiDdsInit(CxTab,

CxCnt,

IxTab,

IxCnt,

FileName)

cx_create

*CxTab,

*IxTab;

int

CxCnt,

IxCnt;

char

*FileName;

Description

The

SpmiDdsInit

subroutine

establishes

a

program

as

a

dynamic

data-supplier

(DDS)

program.

To

do

so,

the

SpmiDdsInit

subroutine:

1.

Determines

the

size

of

the

shared

memory

required

and

creates

a

shared

memory

segment

of

that

size.

2.

Moves

all

static

contexts

and

all

statistics

referenced

by

those

contexts

to

the

shared

memory.

3.

Calls

the

SPMI

and

requests

it

to

add

all

of

the

DDS

static

contexts

to

the

context

tree.

Notes:

1.

The

SpmiDdsInit

subroutine

issues

an

SpmiInit

subroutine

call

if

the

application

program

has

not

issued

one.

2.

If

the

calling

program

uses

shared

memory

for

other

purposes,

including

memory

mapping

of

files,

the

SpmiDdsInit

or

the

SpmiInit

subroutine

call

must

be

issued

before

access

is

established

to

other

shared

memory

areas.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

CxTab

Specifies

a

pointer

to

the

table

of

nonvolatile

contexts

to

be

added.

CxCnt

Specifies

the

number

of

elements

in

the

table

of

nonvolatile

contexts.

Use

the

CX_L

macro

to

find

this

value.

IxTab

Specifies

a

pointer

to

the

table

of

volatile

contexts

the

program

may

want

to

add

later.

If

no

contexts

are

defined,

specify

NULL.

IxCnt

Specifies

the

number

of

elements

in

the

table

of

volatile

contexts.

Use

the

CX_L

macro

to

find

this

value.

If

no

contexts

are

defined,

specify

0.

FileName

Specifies

the

fully

qualified

path

and

file

name

to

use

when

creating

the

shared

memory

segment.

At

execution

time,

if

the

file

exists,

the

process

running

the

DDS

must

be

able

to

write

to

the

file.

Otherwise,

the

SpmiDdsInit

subroutine

call

does

not

succeed.

If

the

file

does

not

exist,

it

is

created.

If

the

file

cannot

be

created,

the

subroutine

returns

an

error.

If

the

file

name

includes

directories

that

do

not

exist,

the

subroutine

returns

an

error.

206

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

For

non-AIX

systems,

a

sixth

argument

is

required

to

inform

the

SPMI

how

much

memory

to

allocate

in

the

DDS

shared

memory

segment.

This

is

not

required

for

AIX

systems

because

facilities

exist

to

expand

a

memory

allocation

in

shared

memory.

The

sixth

argument

is:

size

Size

in

bytes

of

the

shared

memory

area

to

allocate

for

the

DDS

program.

This

parameter

is

of

type

int.

Return

Values

If

successful,

the

SpmiDdsInit

subroutine

returns

the

address

of

the

shared

memory

control

area.

If

an

error

occurs,

an

error

text

is

placed

in

the

external

SpmiErrmsg

character

array,

and

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiExit

Subroutine”

on

page

210

v

“SpmiInit

Subroutine”

on

page

223

v

Understanding

SPMI

Data

Areas

SpmiDelSetHot

Subroutine

Purpose

Removes

a

single

set

of

peer

statistics

from

a

hotset.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiDelSetHot(HotSet,

HotVal)

struct

SpmiHotSet

*HotSet;

struct

SpmiHotVals

*HotVal;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

207

Description

The

SpmiDelSetHot

subroutine

removes

a

single

set

of

peer

statistics,

identified

by

the

HotVal

parameter,

from

a

hotset,

identified

by

the

HotSet

parameter.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

HotSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiHotSet,

as

created

by

the

“SpmiCreateHotSet”

on

page

201

subroutine

call.

HotVal

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiHotVals,

as

created

by

the

“SpmiAddSetHot

Subroutine”

on

page

198

subroutine

call.

You

cannot

specify

an

SpmiHotVals

that

was

internally

generated

by

the

SPMI

library

code

as

described

under

the

GrandParent

parameter

to

SpmiAddSetHot.

Return

Values

The

SpmiDelSetHot

subroutine

returns

a

value

of

0

if

successful.

If

unsuccessful,

the

subroutine

returns

a

nonzero

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiCreateHotSet”

on

page

201

v

“SpmiFreeHotSet

Subroutine”

on

page

215

v

“SpmiAddSetHot

Subroutine”

on

page

198

v

Understanding

SPMI

Data

Areas

SpmiDelSetStat

Subroutine

Purpose

Removes

a

single

statistic

from

a

set

of

statistics.

208

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiDelSetStat(StatSet,

StatVal)

struct

SpmiStatSet

*StatSet;

struct

SpmiStatVals

*StatVal;

Description

The

SpmiDelSetStat

subroutine

removes

a

single

statistic,

identified

by

the

StatVal

parameter,

from

a

set

of

statistics,

identified

by

the

StatSet

parameter.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatSet

as

created

by

the

“SpmiCreateStatSet

Subroutine”

on

page

202

subroutine

call.

StatVal

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatVals

as

created

by

the

“SpmiPathAddSetStat

Subroutine”

on

page

234

subroutine

call.

Return

Values

The

SpmiDelSetStat

subroutine

returns

a

value

of

0

if

successful.

If

unsuccessful,

the

subroutine

returns

a

nonzero

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiCreateStatSet

Subroutine”

on

page

202

v

“SpmiFreeStatSet

Subroutine”

on

page

216

v

“SpmiPathAddSetStat

Subroutine”

on

page

234

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

209

v

Understanding

SPMI

Data

Areas

SpmiExit

Subroutine

Purpose

Terminates

a

dynamic

data

supplier

(DDS)

or

local

data

consumer

program’s

association

with

the

SPMI,

and

releases

allocated

memory.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

void

SpmiExit()

Description

A

successful

“SpmiInit

Subroutine”

on

page

223

or

“SpmiDdsInit

Subroutine”

on

page

205

call

allocates

shared

memory.

Therefore,

a

Dynamic

Data

Supplier

(DDS)

program

that

has

issued

a

successful

SpmiInit

or

SpmiDdsInit

subroutine

call

should

issue

an

SpmiExit

subroutine

call

before

the

program

exits

the

SPMI.

Allocated

memory

is

not

released

until

the

program

issues

an

SpmiExit

subroutine

call.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiInit

Subroutine”

on

page

223

v

“SpmiDdsInit

Subroutine”

on

page

205

SpmiFirstCx

Subroutine

Purpose

Locates

the

first

subcontext

of

a

context.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiCxLink

*SpmiFirstCx(CxHandle)

SpmiCxHdl

CxHandle;

210

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

SpmiFirstCx

subroutine

locates

the

first

subcontext

of

a

context.

The

subroutine

returns

a

NULL

value

if

no

subcontexts

are

found.

The

structure

pointed

to

by

the

returned

pointer

contains

a

handle

to

access

the

contents

of

the

corresponding

SpmiCx

structure

through

the

SpmiGetCxsubroutine

call.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

CxHandle

Specifies

a

valid

SpmiCxHdl

handle

as

obtained

by

another

subroutine

call.

Return

Values

The

SpmiFirstCx

subroutine

returns

a

pointer

to

an

SpmiCxLink

structure

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiGetCx

Subroutine”

on

page

217

v

“SpmiNextCx

Subroutine”

on

page

226

v

Understanding

SPMI

Data

Areas

v

Understanding

the

SPMI

Data

Hierarchy

SpmiFirstHot

Subroutine

Purpose

Locates

the

first

of

the

sets

of

peer

statistics

belonging

to

a

hotset.

Library

SPMI

Library

(libSpmi.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

211

Syntax

#include

sys/Spmidef.h

struct

SpmiHotVals

*SpmiFirstHot(HotSet)

struct

SpmiHotSet

HotSet;

Description

The

SpmiFirstHot

subroutine

locates

the

first

of

the

SpmiHotVals

structures

belonging

to

the

specified

SpmiHotSet.

Using

the

returned

pointer,

the

SpmiHotSet

can

then

either

be

decoded

directly

by

the

calling

program,

or

it

can

be

used

to

specify

the

starting

point

for

a

subsequent

SpmiNextHotItem

subroutine

call.

The

SpmiFirstHot

subroutine

should

only

be

executed

after

a

successful

call

to

the

SpmiGetHotSet

subroutine.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

HotSet

Specifies

a

valid

SpmiHotSet

structure

as

obtained

by

another

subroutine

call.

Return

Values

The

SpmiFirstHot

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiHotVals

structure

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

A

returned

pointer

may

refer

to

a

pseudo-hotvals

structure

as

described

in

the

SpmiAddSetHot

subroutine.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiCreateHotSet”

on

page

201

v

“SpmiAddSetHot

Subroutine”

on

page

198

v

“SpmiNextHot

Subroutine”

on

page

227

v

“SpmiNextHotItem

Subroutine”

on

page

228

v

Understanding

SPMI

Data

Areas

v

Understanding

the

SPMI

Data

Hierarchy

212

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SpmiFirstStat

Subroutine

Purpose

Locates

the

first

of

the

statistics

belonging

to

a

context.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiStatLink

*SpmiFirstStat(CxHandle)

SpmiCxHdl

CxHandle;

Description

The

SpmiFirstStat

subroutine

locates

the

first

of

the

statistics

belonging

to

a

context.

The

subroutine

returns

a

NULL

value

if

no

statistics

are

found.

The

structure

pointed

to

by

the

returned

pointer

contains

a

handle

to

access

the

contents

of

the

corresponding

SpmiStat

structure

through

the

“SpmiGetStat

Subroutine”

on

page

219

call.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

CxHandle

Specifies

a

valid

SpmiCxHdl

handle

as

obtained

by

another

subroutine

call.

Return

Values

The

SpmiFirstStat

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiStatLink

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

213

Related

Information

For

related

information,

see:

v

“SpmiGetStat

Subroutine”

on

page

219

v

“SpmiNextStat

Subroutine”

on

page

230

v

Understanding

SPMI

Data

Areas

v

Understanding

the

SPMI

Data

Hierarchy

SpmiFirstVals

Subroutine

Purpose

Returns

a

pointer

to

the

first

SpmiStatVals

structure

belonging

to

a

set

of

statistics.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiStatVals

*SpmiFirstVals(StatSet)

struct

SpmiStatSet

*StatSet;

Description

The

SpmiFirstVals

subroutine

returns

a

pointer

to

the

first

SpmiStatVals

structure

belonging

to

the

set

of

statistics

identified

by

the

StatSet

parameter.

SpmiStatVals

structures

are

accessed

in

reverse

order

so

the

last

statistic

added

to

the

set

of

statistics

is

the

first

one

returned.

This

subroutine

call

should

only

be

issued

after

an

SpmiGetStatSet

subroutine

has

been

issued

against

the

statset.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatSet

as

created

by

the

SpmiCreateStatSet

subroutine

call.

Return

Values

The

SpmiFirstVals

subroutine

returns

a

pointer

to

an

SpmiStatVals

structure

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

214

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiCreateStatSet

Subroutine”

on

page

202

v

“SpmiNextVals

Subroutine”

on

page

232

v

Understanding

SPMI

Data

Areas

SpmiFreeHotSet

Subroutine

Purpose

Erases

a

hotset.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiFreeHotSet(HotSet)

struct

SpmiHotSet

*HotSet;

Description

The

SpmiFreeHotSet

subroutine

erases

the

hotset

identified

by

the

HotSet

parameter.

All

SpmiHotVals

structures

chained

off

the

SpmiHotSet

structure

are

deleted

before

the

set

itself

is

deleted.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

HotSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiHotSet

as

created

by

the

“SpmiCreateHotSet”

on

page

201

subroutine

call.

Return

Values

The

SpmiFreeHotSet

subroutine

returns

a

value

of

0

if

successful.

If

unsuccessful,

the

subroutine

returns

a

nonzero

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

215

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiCreateHotSet”

on

page

201

v

“SpmiDelSetHot

Subroutine”

on

page

207

v

“SpmiAddSetHot

Subroutine”

on

page

198

v

Understanding

SPMI

Data

Areas

SpmiFreeStatSet

Subroutine

Purpose

Erases

a

set

of

statistics.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiFreeStatSet(StatSet)

struct

SpmiStatSet

*StatSet;

Description

The

SpmiFreeStatSet

subroutine

erases

the

set

of

statistics

identified

by

the

StatSet

parameter.

All

SpmiStatVals

structures

chained

off

the

SpmiStatSet

structure

are

deleted

before

the

set

itself

is

deleted.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatSet

as

created

by

the

SpmiCreateStatSet

subroutine

call.

Return

Values

The

SpmiFreeStatSet

subroutine

returns

a

value

of

0

if

successful.

If

unsuccessful,

the

subroutine

returns

a

nonzero

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

216

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiCreateStatSet

Subroutine”

on

page

202

v

“SpmiDelSetStat

Subroutine”

on

page

208

v

“SpmiPathAddSetStat

Subroutine”

on

page

234

v

Understanding

SPMI

Data

Areas

SpmiGetCx

Subroutine

Purpose

Returns

a

pointer

to

the

SpmiCx

structure

corresponding

to

a

specified

context

handle.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiCx

*SpmiGetCx(CxHandle)

SpmiCxHdl

CxHandle;

Description

The

SpmiGetCx

subroutine

returns

a

pointer

to

the

SpmiCx

structure

corresponding

to

the

context

handle

identified

by

the

CxHandle

parameter.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

CxHandle

Specifies

a

valid

SpmiCxHdl

handle

as

obtained

by

another

subroutine

call.

Return

Values

The

SpmiGetCx

subroutine

returns

a

a

pointer

to

an

SpmiCx

data

structure

if

successful.

If

unsuccessful,

the

subroutine

returns

NULL.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

217

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiFirstCx

Subroutine”

on

page

210

v

“SpmiNextCx

Subroutine”

on

page

226

v

Understanding

SPMI

Data

Areas

v

Understanding

the

SPMI

Data

Hierarchy

SpmiGetHotSet

Subroutine

Purpose

Requests

the

SPMI

to

read

the

data

values

for

all

sets

of

peer

statistics

belonging

to

a

specified

SpmiHotSet.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiGetHotSet(HotSet,

Force);

struct

SpmiHotSet

*HotSet;

boolean

Force;

Description

The

SpmiGetHotSet

subroutine

requests

the

SPMI

to

read

the

data

values

for

all

peer

sets

of

statistics

belonging

to

the

SpmiHotSet

identified

by

the

HotSet

parameter.

The

Force

parameter

is

used

to

force

the

data

values

to

be

refreshed

from

their

source.

The

Force

parameter

works

by

resetting

a

switch

held

internally

in

the

SPMI

for

all

SpmiStatVals

and

SpmiHotVals

structures,

regardless

of

the

SpmiStatSets

and

SpmiHotSets

to

which

they

belong.

Whenever

the

data

value

for

a

peer

statistic

is

requested,

this

switch

is

checked.

If

the

switch

is

set,

the

SPMI

reads

the

latest

data

value

from

the

original

data

source.

If

the

switch

is

not

set,

the

SPMI

reads

the

data

value

stored

in

the

SpmiHotVals

structure.

This

mechanism

allows

a

program

to

synchronize

and

minimize

the

number

of

times

values

are

retrieved

from

the

source.

One

method

programs

can

use

is

to

ensure

the

force

request

is

not

issued

more

than

once

per

elapsed

amount

of

time.

218

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

HotSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiHotSet

as

created

by

the

“SpmiCreateHotSet”

on

page

201

subroutine

call.

Force

If

set

to

true,

forces

a

refresh

from

the

original

source

before

the

SPMI

reads

the

data

values

for

the

set.

If

set

to

false,

causes

the

SPMI

to

read

the

data

values

as

they

were

previously

retrieved

from

the

data

source.

When

the

force

argument

is

set

true,

the

effect

is

that

of

marking

all

statistics

known

by

the

SPMI

as

obsolete,

which

causes

the

SPMI

to

refresh

all

requested

statistics

from

kernel

memory

or

other

sources.

As

each

statistic

is

refreshed,

the

obsolete

mark

is

reset.

Statistics

that

are

not

part

of

the

HotSet

specified

in

the

subroutine

call

remain

marked

as

obsolete.

Therefore,

if

an

application

repetitively

issues

a

series

of,

SpmiGetHotSet

and

SpmiGetStatSet

subroutine

calls

for

multiple

hotsets

and

statsets,

each

time,

only

the

first

such

call

need

set

the

force

argument

to

true.

Return

Values

The

SpmiGetHotSet

subroutine

returns

a

value

of

0

if

successful.

If

unsuccessful,

the

subroutine

returns

a

nonzero

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiCreateHotSet”

on

page

201

v

“SpmiAddSetHot

Subroutine”

on

page

198

SpmiGetStat

Subroutine

Purpose

Returns

a

pointer

to

the

SpmiStat

structure

corresponding

to

a

specified

statistic

handle.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

219

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiStat

*SpmiGetStat(StatHandle)

SpmiStatHdl

StatHandle;

Description

The

SpmiGetStat

subroutine

returns

a

pointer

to

the

SpmiStat

structure

corresponding

to

the

statistic

handle

identified

by

the

StatHandle

parameter.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatHandle

Specifies

a

valid

SpmiStatHdl

handle

as

obtained

by

another

subroutine

call.

Return

Values

The

SpmiGetStat

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiStat

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Return

Values

The

SpmiGetStat

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiStat

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiFirstStat

Subroutine”

on

page

213

v

“SpmiNextStat

Subroutine”

on

page

230

v

Understanding

SPMI

Data

Areas

v

Understanding

the

SPMI

Data

Hierarchy

220

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SpmiGetStatSet

Subroutine

Purpose

Requests

the

SPMI

to

read

the

data

values

for

all

statistics

belonging

to

a

specified

set.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiGetStatSet(StatSet,

Force);

struct

SpmiStatSet

*StatSet;

boolean

Force;

Description

The

SpmiGetStatSet

subroutine

requests

the

SPMI

to

read

the

data

values

for

all

statistics

belonging

to

the

SpmiStatSet

identified

by

the

StatSet

parameter.

The

Force

parameter

is

used

to

force

the

data

values

to

be

refreshed

from

their

source.

The

Force

parameter

works

by

resetting

a

switch

held

internally

in

the

SPMI

for

all

SpmiStatVals

and

SpmiHotVals

structures,

regardless

of

the

SpmiStatSets

and

SpmiHotSets

to

which

they

belong.

Whenever

the

data

value

for

a

statistic

is

requested,

this

switch

is

checked.

If

the

switch

is

set,

the

SPMI

reads

the

latest

data

value

from

the

original

data

source.

If

the

switch

is

not

set,

the

SPMI

reads

the

data

value

stored

for

the

SpmiStatVals

structure.

This

mechanism

allows

a

program

to

synchronize

and

minimize

the

number

of

times

values

are

retrieved

from

the

source.

One

method

is

to

ensure

the

force

request

is

not

issued

more

than

once

per

elapsed

amount

of

time.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatSet

as

created

by

the

SpmiCreateStatSet

subroutine

call.

Force

If

set

to

true,

forces

a

refresh

from

the

original

source

before

the

SPMI

reads

the

data

values

for

the

set.

If

set

to

false,

causes

the

SPMI

to

read

the

data

values

as

they

were

previously

retrieved

from

the

data

source.

When

the

force

argument

is

set

true,

the

effect

is

that

of

marking

all

statistics

known

by

the

SPMI

as

obsolete,

which

causes

the

SPMI

to

refresh

all

requested

statistics

from

kernel

memory

or

other

sources.

As

each

statistic

is

refreshed,

the

obsolete

mark

is

reset.

Statistics

that

are

not

part

of

the

StatSet

specified

in

the

subroutine

call

remain

marked

as

obsolete.

Therefore,

if

an

application

repetitively

issues

the

SpmiGetStatSet

and

SpmiGetHotSet

subroutine

calls

for

multiple

statsets

and

hotsets,

each

time,

only

the

first

such

call

need

set

the

force

argument

to

true.

Return

Values

The

SpmiGetStatSet

subroutine

returns

a

value

of

0

if

successful.

If

unsuccessful,

the

subroutine

returns

a

nonzero

value.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

221

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiCreateStatSet

Subroutine”

on

page

202

v

“SpmiPathAddSetStat

Subroutine”

on

page

234

SpmiGetValue

Subroutine

Purpose

Returns

a

decoded

value

based

on

the

type

of

data

value

extracted

from

the

data

field

of

an

SpmiStatVals

structure.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

float

SpmiGetValue(StatSet,

StatVal)

struct

SpmiStatSet

*StatSet;

struct

SpmiStatVals

*StatVal;

Description

The

SpmiGetValue

subroutine

performs

the

following

steps:

1.

Verifies

that

an

SpmiStatVals

structure

exists

in

the

set

of

statistics

identified

by

the

StatSet

parameter.

2.

Determines

the

format

of

the

data

field

as

being

either

SiFloat

or

SiLong

and

extracts

the

data

value

for

further

processing.

3.

Determines

the

data

value

as

being

of

either

type

SiQuantity

or

type

SiCounter.

4.

If

the

data

value

is

of

type

SiQuantity,

returns

the

val

field

of

the

SpmiStatVals

structure.

5.

If

the

data

value

is

of

type

SiCounter,

returns

the

value

of

the

val_change

field

of

the

SpmiStatVals

structure

divided

by

the

elapsed

number

of

seconds

since

the

previous

time

a

data

value

was

requested

for

this

set

of

statistics.

222

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

This

subroutine

call

should

only

be

issued

after

an

SpmiGetStatSet

subroutine

has

been

issued

against

the

statset.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatSet

as

created

by

the

SpmiCreateStatSet

subroutine

call.

StatVal

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatVals

as

created

by

the

SpmiPathAddSetStat

subroutine

call

or

returned

by

the

SpmiFirstVals

or

SpmiNextVals

subroutine

calls.

Return

Values

The

SpmiGetValue

subroutine

returns

the

decoded

value

if

successful.

If

unsuccessful,

the

subroutine

returns

a

negative

value

that

has

a

numerical

value

of

at

least

1.1.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiGetStatSet

Subroutine”

on

page

221

v

“SpmiCreateStatSet

Subroutine”

on

page

202

v

“SpmiPathAddSetStat

Subroutine”

on

page

234

v

Understanding

SPMI

Data

Areas

SpmiInit

Subroutine

Purpose

Initializes

the

SPMI

for

a

local

data

consumer

program.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

223

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiInit

(TimeOut)

int

TimeOut;

Description

The

SpmiInit

subroutine

initializes

the

SPMI.

During

SPMI

initialization,

a

memory

segment

is

allocated

and

the

application

program

obtains

basic

addressability

to

that

segment.

An

application

program

must

issue

the

SpmiInit

subroutine

call

before

issuing

any

other

subroutine

calls

to

the

SPMI.

Note:

The

SpmiInit

subroutine

is

automatically

issued

by

the

SpmiDdsInit

subroutine

call.

Successive

SpmiInit

subroutine

calls

are

ignored.

Note:

If

the

calling

program

uses

shared

memory

for

other

purposes,

including

memory

mapping

of

files,

the

SpmiInit

subroutine

call

must

be

issued

before

access

is

established

to

other

shared

memory

areas.

The

SPMI

entry

point

called

by

the

SpmiInit

subroutine

assigns

a

segment

register

to

be

used

by

the

SPMI

subroutines

(and

the

application

program)

for

accessing

common

shared

memory

and

establishes

the

access

mode

to

the

common

shared

memory

segment.

After

SPMI

initialization,

the

SPMI

subroutines

are

able

to

access

the

common

shared

memory

segment

in

read-only

mode.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

TimeOut

Specifies

the

number

of

seconds

the

SPMI

waits

for

a

Dynamic

Data

Supplier

(DDS)

program

to

update

its

shared

memory

segment.

If

a

DDS

program

does

not

update

its

shared

memory

segment

in

the

time

specified,

the

SPMI

assumes

that

the

DDS

program

has

terminated

or

disconnected

from

shared

memory

and

removes

all

contexts

and

statistics

added

by

the

DDS

program.

The

SPMI

saves

the

largest

TimeOut

value

received

from

the

programs

that

invoke

the

SPMI.

The

TimeOut

value

must

be

zero

or

must

be

greater

than

or

equal

to

15

seconds

and

less

than

or

equal

to

600

seconds.

A

value

of

zero

overrides

any

other

value

from

any

other

program

that

invokes

the

SPMI

and

disables

the

checking

for

terminated

DDS

programs.

Return

Values

The

SpmiInit

subroutine

returns

a

value

of

0

if

successful.

If

unsuccessful,

the

subroutine

returns

a

nonzero

value.

If

a

nonzero

value

is

returned,

the

application

program

should

not

attempt

to

issue

additional

SPMI

subroutine

calls.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

224

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiDdsInit

Subroutine”

on

page

205

v

“SpmiExit

Subroutine”

on

page

210

SpmiInstantiate

Subroutine

Purpose

Explicitly

instantiates

the

subcontexts

of

an

instantiable

context.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

int

SpmiInstantiate(CxHandle)

SpmiCxHdl

CxHandle;

Description

The

SpmiInstantiate

subroutine

explicitly

instantiates

the

subcontexts

of

an

instantiable

context.

If

the

context

is

not

instantiable,

do

not

call

the

SpmiInstantiate

subroutine.

An

instantiation

is

done

implicitly

by

the

SpmiPathGetCx

and

SpmiFirstCx

subroutine

calls.

Therefore,

application

programs

usually

do

not

need

to

instantiate

explicitly.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

CxHandle

Specifies

a

valid

context

handle

SpmiCxHdl

as

obtained

by

another

subroutine

call.

Return

Values

The

SpmiInstantiate

subroutine

returns

a

value

of

0

if

successful.

If

the

context

is

not

instantiable,

the

subroutine

returns

a

nonzero

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

225

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiFirstCx

Subroutine”

on

page

210

v

“SpmiPathGetCx

Subroutine”

on

page

236

v

Understanding

the

SPMI

Data

Hierarchy

SpmiNextCx

Subroutine

Purpose

Locates

the

next

subcontext

of

a

context.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiCxLink

*SpmiNextCx(CxLink

)struct

SpmiCxLink

*CxLink;

Description

The

SpmiNextCx

subroutine

locates

the

next

subcontext

of

a

context,

taking

the

context

identified

by

the

CxLink

parameter

as

the

current

subcontext.

The

subroutine

returns

a

NULL

value

if

no

further

subcontexts

are

found.

The

structure

pointed

to

by

the

returned

pointer

contains

an

SpmiCxHdl

handle

to

access

the

contents

of

the

corresponding

SpmiCx

structure

through

the

SpmiGetCx

subroutine

call.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

CxLink

Specifies

a

pointer

to

a

valid

SpmiCxLink

structure

as

obtained

by

a

previous

SpmiFirstCx

subroutine.

226

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

The

SpmiNextCx

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiCxLink

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiFirstCx

Subroutine”

on

page

210

v

“SpmiGetCx

Subroutine”

on

page

217

v

Understanding

SPMI

Data

Areas

v

Understanding

the

SPMI

Data

Hierarchy

SpmiNextHot

Subroutine

Purpose

Locates

the

next

set

of

peer

statistics

SpmiHotVals

belonging

to

an

SpmiHotSet.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiHotVals

*SpmiNextHot(HotSet,

HotVals)

struct

SpmiHotSet

*HotSet;

struct

SpmiHotVals

*HotVals;

Description

The

SpmiNextHot

subroutine

locates

the

next

SpmiHotVals

structure

belonging

to

an

SpmiHotSet,

taking

the

set

of

peer

statistics

identified

by

the

HotVals

parameter

as

the

current

one.

The

subroutine

returns

a

NULL

value

if

no

further

SpmiHotVals

structures

are

found.

The

SpmiNextHot

subroutine

should

only

be

executed

after

a

successful

call

to

the

SpmiGetHotSet

subroutine

and

(usually,

but

not

necessarily)

a

call

to

the

SpmiFirstHot

subroutine

and

one

or

more

subsequent

calls

to

SpmiNextHot.

The

subroutine

allows

the

application

programmer

to

position

at

the

next

set

of

peer

statistics

in

preparation

for

using

the

SpmiNextHotItem

subroutine

call

to

traverse

this

peer

set’s

array

of

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

227

SpmiHotItems

elements.

Use

of

this

subroutine

is

only

necessary

if

it

is

desired

to

skip

over

some

SpmiHotVals

structures

in

an

SpmiHotSet.

Under

most

circumstances,

the

SpmiNextHotItem

will

be

the

sole

means

of

accessing

all

elements

of

the

SpmiHotItems

arrays

of

all

peer

sets

belonging

to

an

SpmiHotSet.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

HotSet

Specifies

a

valid

pointer

to

an

SpmiHotSet

structure

as

obtained

by

a

previous

“SpmiCreateHotSet”

on

page

201

call.

HotVals

Specifies

a

pointer

to

an

SpmiHotVals

structure

as

returned

by

a

previous

SpmiFirstHot

or

SpmiNextHot

subroutine

call

or

as

returned

by

an

SpmiAddSetHot

subroutine

call.

Return

Values

The

SpmiNextHot

subroutine

returns

a

pointer

to

the

next

SpmiHotVals

structure

within

the

hotset.

If

no

more

SpmiHotVals

structures

are

available,

the

subroutine

returns

a

NULL

value.

A

returned

pointer

may

refer

to

a

pseudo-hotvals

structure

as

described

the

SpmiAddSetHot

subroutine.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

more

information,

see:

v

“SpmiFirstHot

Subroutine”

on

page

211

v

“SpmiGetHotSet

Subroutine”

on

page

218

v

“SpmiNextHotItem

Subroutine.”

v

Data

Access

Structures

and

Handles,

HotSets

SpmiNextHotItem

Subroutine

Purpose

Locates

and

decodes

the

next

SpmiHotItems

element

at

the

current

position

in

an

SpmiHotSet.

228

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiHotVals

*SpmiNextHotItem(HotSet,

HotVals,

index,

value,

name)

struct

SpmiHotSet

*HotSet;

struct

SpmiHotVals

*HotVals;

int

*index;

float

*value;

char

**name;

Description

The

SpmiNextHotItem

subroutine

locates

the

next

SpmiHotItems

structure

belonging

to

an

SpmiHotSet,

taking

the

element

identified

by

the

HotVals

and

index

parameters

as

the

current

one.

The

subroutine

returns

a

NULL

value

if

no

further

SpmiHotItems

structures

are

found.

The

SpmiNextHotItem

subroutine

should

only

be

executed

after

a

successful

call

to

the

SpmiGetHotSet

subroutine.

The

SpmiNextHotItem

subroutine

is

designed

to

be

used

for

walking

all

SpmiHotItems

elements

returned

by

a

call

to

the

SpmiGetHotSet

subroutine,

visiting

the

SpmiHotVals

structures

one

by

one.

By

feeding

the

returned

value

and

the

updated

integer

pointed

to

by

index

back

to

the

next

call,

this

can

be

done

in

a

tight

loop.

Successful

calls

to

SpmiNextHotItem

will

decode

each

SpmiHotItems

element

and

return

the

data

value

in

value

and

the

name

of

the

peer

context

that

owns

the

corresponding

statistic

in

name.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

HotSet

Specifies

a

valid

pointer

to

an

SpmiHotSet

structure

as

obtained

by

a

previous

“SpmiCreateHotSet”

on

page

201

call.

HotVals

Specifies

a

pointer

to

an

SpmiHotVals

structure

as

returned

by

a

previousSpmiNextHotItem,

SpmiFirstHot,

or

SpmiNextHot

subroutine

call

or

as

returned

by

an

SpmiAddSetHot

subroutine

call.

If

this

parameter

is

specified

as

NULL,

the

first

SpmiHotVals

structure

of

the

SpmiHotSet

is

used

and

the

index

parameter

is

assumed

to

be

set

to

zero,

regardless

of

its

actual

value.

index

A

pointer

to

an

integer

that

contains

the

desired

element

number

in

the

SpmiHotItems

array

of

the

SpmiHotVals

structure

specified

by

HotVals.

A

value

of

zero

points

to

the

first

element.

When

the

SpmiNextHotItem

subroutine

returns,

the

integer

contain

the

index

of

the

next

SpmiHotItems

element

within

the

returned

SpmiHotVals

structure.

If

the

last

element

of

the

array

is

decoded,

the

value

in

the

integer

will

point

beyond

the

end

of

the

array,

and

the

SpmiHotVals

pointer

returned

will

point

to

the

peer

set,

which

has

now

been

completely

decoded.

By

passing

the

returned

SpmiHotVals

pointer

and

the

index

parameter

to

the

next

call

to

SpmiNextHotItem,

the

subroutine

will

detect

this

and

proceed

to

the

first

SpmiHotItems

element

of

the

next

SpmiHotVals

structure

if

one

exists.

value

A

pointer

to

a

float

variable.

A

successful

call

will

return

the

decoded

data

value

for

the

statistic.

Before

the

value

is

returned,

the

SpmiNextHotItem

function:

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

229

v

Determines

the

format

of

the

data

field

as

being

either

SiFloat

or

SiLong

and

extracts

the

data

value

for

further

processing.

v

Determines

the

data

value

as

being

either

type

SiQuantity

or

type

SiCounter

and

performs

one

of

the

actions

listed

here:

–

If

the

data

value

is

of

type

SiQuantity,

the

subroutine

returns

the

val

field

of

the

SpmiHotItems

structure.

–

If

the

data

value

is

of

type

SiCounter,

the

subroutine

returns

the

value

of

the

val_change

field

of

the

SpmiHotItems

structure

divided

by

the

elapsed

number

of

seconds

since

the

previous

time

a

data

value

was

requested

for

this

set

of

statistics.

name

A

pointer

to

a

character

pointer.

A

successful

call

will

return

a

pointer

to

the

name

of

the

peer

context

for

which

the

data

value

was

read.

Return

Values

The

SpmiNextHotItem

subroutine

returns

a

pointer

to

the

current

SpmiHotVals

structure

within

the

hotset.

If

no

more

SpmiHotVals

structures

are

available,

the

subroutine

returns

a

NULL

value.

The

structure

returned

contains

the

data,

such

as

threshold,

which

may

be

relevant

for

presentation

of

the

results

of

an

SpmiGetHotSet

subroutine

call

to

end-users.

A

returned

pointer

may

refer

to

a

pseudo-hotvals

structure

as

described

in

the

SpmiAddSetHot

subroutine.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

more

information,

see:

v

“SpmiFirstHot

Subroutine”

on

page

211

v

“SpmiNextHot

Subroutine”

on

page

227

v

“SpmiGetHotSet

Subroutine”

on

page

218

v

Data

Access

Structures

and

Handles,

HotSets

SpmiNextStat

Subroutine

Purpose

Locates

the

next

statistic

belonging

to

a

context.

230

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiStatLink

*SpmiNextStat(StatLink)

struct

SpmiStatLink

*StatLink;

Description

The

SpmiNextStat

subroutine

locates

the

next

statistic

belonging

to

a

context,

taking

the

statistic

identified

by

the

StatLink

parameter

as

the

current

statistic.

The

subroutine

returns

a

NULL

value

if

no

further

statistics

are

found.

The

structure

pointed

to

by

the

returned

pointer

contains

an

SpmiStatHdl

handle

to

access

the

contents

of

the

corresponding

SpmiStat

structure

through

the

“SpmiGetStat

Subroutine”

on

page

219

call.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatLink

Specifies

a

valid

pointer

to

a

SpmiStatLink

structure

as

obtained

by

a

previous

“SpmiFirstStat

Subroutine”

on

page

213

call.

Return

Values

The

SpmiNextStat

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiStatLink

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiFirstStat

Subroutine”

on

page

213

v

“SpmiGetStat

Subroutine”

on

page

219

v

Understanding

SPMI

Data

Areas

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

231

v

Understanding

the

SPMI

Data

Hierarchy

SpmiNextVals

Subroutine

Purpose

Returns

a

pointer

to

the

next

SpmiStatVals

structure

in

a

set

of

statistics.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiStatVals

*SpmiNextVals(StatSet,

StatVal)

struct

SpmiStatSet

*StatSet;

struct

SpmiStatVals

*StatVal;

Description

The

SpmiNextVals

subroutine

returns

a

pointer

to

the

next

SpmiStatVals

structure

in

a

set

of

statistics,

taking

the

structure

identified

by

the

StatVal

parameter

as

the

current

structure.

The

SpmiStatVals

structures

are

accessed

in

reverse

order

so

the

statistic

added

before

the

current

one

is

returned.

This

subroutine

call

should

only

be

issued

after

an

SpmiGetStatSet

subroutine

has

been

issued

against

the

statset.

Parameters

StatSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatSet

as

created

by

the

“SpmiCreateStatSet

Subroutine”

on

page

202

call.

StatVal

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatVals

as

created

by

the

“SpmiPathAddSetStat

Subroutine”

on

page

234

subroutine

call

or

returned

by

a

previous

“SpmiFirstVals

Subroutine”

on

page

214

or

SpmiNextVals

subroutine

call.

Return

Values

The

SpmiNextVals

subroutine

returns

a

pointer

to

a

SpmiStatVals

structure

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

SpmiNextValue

Subroutine

Purpose

Returns

either

the

first

SpmiStatVals

structure

in

a

set

of

statistics

or

the

next

SpmiStatVals

structure

in

a

set

of

statistics

and

a

decoded

value

based

on

the

type

of

data

value

extracted

from

the

data

field

of

an

SpmiStatVals

structure.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

232

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

struct

SpmiStatVals*SpmiNextValue(

StatSet,

StatVal,

value)

struct

SpmiStatSet

*StatSet;

struct

SpmiStatVals

*StatVal;

float

*value;

Description

Instead

of

issuing

subroutine

calls

to

“SpmiFirstVals

Subroutine”

on

page

214

/

“SpmiNextVals

Subroutine”

on

page

232

(to

get

the

first

or

next

SpmiStatVals

structure)

followed

by

calls

to

SpmiGetValue

(to

get

the

decoded

value

from

the

SpmiStatVals

structure),

the

SpmiNextValue

subroutine

returns

both

in

one

call.

This

subroutine

call

returns

a

pointer

to

the

first

SpmiStatVals

structure

belonging

to

the

StatSet

parameter

if

the

StatVal

parameter

is

NULL.

If

the

StatVal

parameter

is

not

NULL,

the

next

SpmiStatVals

structure

is

returned,

taking

the

structure

identified

by

the

StatVal

parameter

as

the

current

structure.

The

data

value

corresponding

to

the

returned

SpmiStatVals

structure

is

decoded

and

returned

in

the

field

pointed

to

by

the

value

argument.

In

decoding

the

data

value,

the

subroutine

does

the

following:

v

Determines

the

format

of

the

data

field

as

being

either

SiFloat

or

SiLong

and

extracts

the

data

value

for

further

processing.

v

Determines

the

data

value

as

being

either

type

SiQuantity

or

type

SiCounter

and

performs

one

of

the

actions

listed

here:

–

If

the

data

value

is

of

type

SiQuantity,

the

subroutine

returns

the

val

field

of

the

SpmiStatVals

structure.

–

If

the

data

value

is

of

type

SiCounter,

the

subroutine

returns

the

value

of

the

val_change

field

of

the

SpmiStatVals

structure

divided

by

the

elapsed

number

of

seconds

since

the

previous

time

a

data

value

was

requested

for

this

set

of

statistics.

Note:

This

subroutine

call

should

only

be

issued

after

an

“SpmiGetStatSet

Subroutine”

on

page

221

has

been

issued

against

the

statset.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatSet

as

created

by

the

“SpmiCreateStatSet

Subroutine”

on

page

202

call.

StatVal

Specifies

either

a

NULL

pointer

or

a

pointer

to

a

valid

structure

of

type

SpmiStatVals

as

created

by

the

“SpmiPathAddSetStat

Subroutine”

on

page

234

call

or

returned

by

a

previous

SpmiNextValue

subroutine

call.

If

StatVal

is

NULL,

then

the

first

SpmiStatVals

pointer

belonging

to

the

set

of

statistics

pointed

to

by

StatSet

is

returned.

valueA

pointer

used

to

return

a

decoded

value

based

on

the

type

of

data

value

extracted

from

the

data

field

of

the

returned

SpmiStatVals

structure.

Return

Value

The

SpmiNextValue

subroutine

returns

a

pointer

to

a

SpmiStatVals

structure

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

If

the

StatVal

parameter

is:

NULL
The

first

SpmiStatVals

structure

belonging

to

the

StatSet

parameter

is

returned.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

233

not

NULL
The

next

SpmiStatVals

structure

after

the

structure

identified

by

the

StatVal

parameter

is

returned

and

the

value

parameter

is

used

to

return

a

decoded

value

based

on

the

type

of

data

value

extracted

from

the

data

field

of

the

returned

SpmiStatVals

structure.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Programming

Notes

The

SpmiNextValue

subroutine

maintains

internal

state

information

so

that

retrieval

of

the

next

data

value

from

a

statset

can

be

done

without

traversing

linked

lists

of

data

structures.

The

stats

information

is

kept

separate

for

each

process,

but

is

shared

by

all

threads

of

a

process.

If

the

subroutine

is

accessed

from

multiple

threads,

the

state

information

is

useless

and

the

performance

advantage

is

lost.

The

same

is

true

if

the

program

is

simultaneously

accessing

two

or

more

statsets.

To

benefit

from

the

performance

advantage

of

the

SpmiNextValue

subroutine,

a

program

should

retrieve

all

values

in

order

from

one

stat

set

before

retrieving

values

from

the

next

statset.

The

implementation

of

the

subroutine

allows

a

program

to

retrieve

data

values

beginning

at

any

point

in

the

statset

if

the

SpmiStatVals

pointer

is

known.

Doing

so

will

cause

a

linked

list

traversal.

If

subsequent

invocations

of

SpmiNextValue

uses

the

value

returned

from

the

first

and

following

invocation

as

their

second

argument,

the

traversal

of

the

link

list

can

be

avoided.

It

should

be

noted

that

the

value

returned

by

a

successful

SpmiNextValue

invocation

is

always

the

pointer

to

the

SpmiStatVals

structure

whose

data

value

is

decoded

and

returned

in

the

value

argument.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

“SpmiGetStatSet

Subroutine”

on

page

221

v

“SpmiCreateStatSet

Subroutine”

on

page

202

v

“SpmiPathAddSetStat

Subroutine.”

v

Data

Access

Structures

and

Handles,

StatSets

SpmiPathAddSetStat

Subroutine

Purpose

Adds

a

statistics

value

to

a

set

of

statistics.

234

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

struct

SpmiStatVals

*SpmiPathAddSetStat(StatSet,

StatName,

Parent)

struct

SpmiStatSet

*StatSet;

char

*StatName;

SpmiCxHdl

Parent;

Description

The

SpmiPathAddSetStat

subroutine

adds

a

statistics

value

to

a

set

of

statistics.

The

SpmiStatSet

structure

that

provides

the

anchor

point

to

the

set

must

exist

before

the

SpmiPathAddSetStat

subroutine

call

can

succeed.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

StatSet

Specifies

a

pointer

to

a

valid

structure

of

type

SpmiStatSet

as

created

by

the

“SpmiCreateStatSet

Subroutine”

on

page

202

call.

StatName

Specifies

the

name

of

the

statistic

within

the

context

identified

by

the

Parent

parameter.If

the

Parent

parameter

is

NULL,

you

must

specify

the

fully

qualified

path

name

of

the

statistic

in

the

StatName

parameter.

Parent

Specifies

either

a

valid

SpmiCxHdl

handle

as

obtained

by

another

subroutine

call

or

a

NULL

value.

Return

Values

The

SpmiPathAddSetStat

subroutine

returns

a

pointer

to

a

structure

of

type

SpmiStatVals

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

235

Related

Information

For

related

information,

see:

v

“SpmiGetStatSet

Subroutine”

on

page

221

v

“SpmiCreateStatSet

Subroutine”

on

page

202

v

“SpmiDelSetStat

Subroutine”

on

page

208

v

“SpmiFreeStatSet

Subroutine”

on

page

216.

v

Data

Access

Structures

and

Handles,

StatSets

SpmiPathGetCx

Subroutine

Purpose

Returns

a

handle

to

use

when

referencing

a

context.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h

SpmiCxHdl

SpmiPathGetCx(CxPath,

Parent)

char

*CxPath;

SpmiCxHdl

Parent;

Description

The

SpmiPathGetCx

subroutine

searches

the

context

hierarchy

for

a

given

path

name

of

a

context

and

returns

a

handle

to

use

when

subsequently

referencing

the

context.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Parameters

CxPath

Specifies

the

path

name

of

the

context

to

find.

If

you

specify

the

fully

qualified

path

name

in

the

CxPath

parameter,

you

must

set

the

Parent

parameter

to

NULL.

If

the

path

name

is

not

qualified

or

is

only

partly

qualified

(that

is,

if

it

does

not

include

the

names

of

all

contexts

higher

in

the

data

hierarchy),

the

SpmiPathGetCx

subroutine

begins

searching

the

hierarchy

at

the

context

identified

by

the

Parent

parameter.

If

the

CxPath

parameter

is

either

NULL

or

an

empty

string,

the

subroutine

returns

a

handle

identifying

the

Top

context.

Parent

Specifies

the

anchor

context

that

fully

qualifies

the

CxPath

parameter.

If

you

specify

a

fully

qualified

path

name

in

the

CxPath

parameter,

you

must

set

the

Parent

parameter

to

NULL.

Return

Values

The

SpmiPathGetCx

subroutine

returns

a

handle

to

a

context

if

successful.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

236

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

Understanding

SPMI

Data

Areas

v

Understanding

the

SPMI

Data

Hierarchy

SpmiStatGetPath

Subroutine

Purpose

Returns

the

full

path

name

of

a

statistic.

Library

SPMI

Library

(libSpmi.a)

Syntax

#include

sys/Spmidef.h>

char

*miStatGetPath(Parent,

StatHandle,

MaxLevels)

SpmiCxHdlSp

Parent;

SpmiStatHdl

StatHandle;

int

MaxLevels;

Description

The

SpmiStatGetPath

subroutine

returns

the

full

path

name

of

a

statistic,

given

a

parent

context

SpmiCxHdl

handle

and

a

statistics

SpmiStatHdl

handle.

The

MaxLevels

parameter

can

limit

the

number

of

levels

in

the

hierarchy

that

must

be

searched

to

generate

the

path

name

of

the

statistic.

The

memory

area

pointed

to

by

the

returned

pointer

is

freed

when

the

SpmiStatGetPath

subroutine

call

is

repeated.

For

each

invocation

of

the

subroutine,

a

new

memory

area

is

allocated

and

its

address

returned.If

the

calling

program

needs

the

returned

character

string

after

issuing

the

SpmiStatGetPath

subroutine

call,

the

program

must

copy

the

returned

string

to

locally

allocated

memory

before

reissuing

the

subroutine

call.

This

subroutine

is

part

of

the

server

option

of

the

Performance

Aide

for

AIX

licensed

product

and

is

also

included

in

the

Performance

Toolbox

for

AIX

licensed

product.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

237

Parameters

Parent

Specifies

a

valid

SpmiCxHdl

handle

as

obtained

by

another

subroutine

call.

StatHandle

Specifies

a

valid

SpmiStatHdl

handle

as

obtained

by

another

subroutine

call.

This

handle

must

point

to

a

statistic

belonging

to

the

context

identified

by

the

Parent

parameter.

MaxLevels

Limits

the

number

of

levels

in

the

hierarchy

that

must

be

searched

to

generate

the

path

name.

If

this

parameter

is

set

to

0,

no

limit

is

imposed.

Return

Values

If

successful,

the

SpmiStatGetPath

subroutine

returns

a

pointer

to

a

character

array

containing

the

full

path

name

of

the

statistic.

If

unsuccessful,

the

subroutine

returns

a

NULL

value.

Error

Codes

All

SPMI

subroutines

use

external

variables

to

provide

error

information.

To

access

these

variables,

an

application

program

must

define

the

following

external

variables:

v

extern

char

SpmiErrmsg[];

v

extern

int

SpmiErrno;

If

the

subroutine

returns

without

an

error,

the

SpmiErrno

variable

is

set

to

0

and

the

SpmiErrmsg

character

array

is

empty.

If

an

error

is

detected,

the

SpmiErrno

variable

returns

an

error

code,

as

defined

in

the

sys/Spmidef.h

file,

and

the

SpmiErrmsg

variable

contains

text,

in

English,

explaining

the

cause

of

the

error.

See

the

List

of

SPMI

Error

Codes

for

more

information.

Files

/usr/include/sys/Spmidef.h

Declares

the

subroutines,

data

structures,

handles,

and

macros

that

an

application

program

can

use

to

access

the

SPMI.

Related

Information

For

related

information,

see:

v

Understanding

SPMI

Data

Areas

v

Understanding

the

SPMI

Data

Hierarchy

sqrt,

sqrtf,

or

sqrtl

Subroutine

Purpose

Computes

the

square

root.

Syntax

#include

<math.h>

double

sqrt

(

x)

double

x;

float

sqrtf

(x)

float

x;

238

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

long

double

sqrtl

(x)

long

double

x;

Description

The

sqrt,

sqrtf,

and

sqrtl

subroutines

compute

the

square

root

of

the

x

parameter.

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Specifies

some

double-precision

floating-point

value.

Return

Values

Upon

successful

completion,

the

sqrtf

subroutine

returns

the

square

root

of

x.

For

finite

values

of

x

<

-0,

a

domain

error

occurs,

and

a

NaN

is

returned.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0

or

+Inf,

x

is

returned.

If

x

is

-Inf,

a

domain

error

shall

occur,

and

a

NaN

is

returned.

Error

Codes

When

using

libm.a

(-lm):

For

the

sqrt

subroutine,

if

the

value

of

x

is

negative,

a

NaNQ

is

returned

and

the

errno

global

variable

is

set

to

a

EDOM

value.

When

using

libmsaa.a

(-lmsaa):

If

the

value

of

x

is

negative,

a

0

is

returned

and

the

errno

global

variable

is

set

to

a

EDOM

value.

A

message

indicating

a

DOMAIN

error

is

printed

on

the

standard

error

output.

These

error-handling

procedures

may

be

changed

with

the

matherr

subroutine

when

using

the

libmsaa.a

(-lmsaa)

library.

Related

Information

The

exp,

expm1,

log,

log10,

log1p,

or

pow

subroutine.

feclearexcept

Subroutine,

fetestexcept

Subroutine,

and

class,

_class,

finite,

isnan,

or

unordered

Subroutines

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

Subroutines

Overview

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

239

128-Bit

long

double

Floating-Point

Format

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

src_err_msg

Subroutine

Purpose

Retrieves

a

System

Resource

Controller

(SRC)

error

message.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

int

src_err_msg

(

errno,

ErrorText)

int

errno;

char

**ErrorText;

Description

The

src_err_msg

subroutine

retrieves

a

System

Resource

Controller

(SRC)

error

message.

Parameters

errno

Specifies

the

SRC

error

code.

ErrorText

Points

to

a

character

pointer

to

place

the

SRC

error

message.

Return

Values

Upon

successful

completion,

the

src_err_msg

subroutine

returns

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned.

No

error

message

is

returned.

Related

Information

The

addssys

subroutine,

chssys

subroutine,

delssys

subroutine,

defssys

subroutine,

getsubsvr

subroutine,

getssys

subroutine,

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)

subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259)

subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine,

srcstrt

(“srcstrt

Subroutine”

on

page

268)

subroutine.

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

240

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

src_err_msg_r

Subroutine

Purpose

Gets

the

System

Resource

Controller

(SRC)

error

message

corresponding

to

the

specified

SRC

error

code.

Library

System

Resource

Controller

(libsrc.a)

Syntax

#include

<spc.h>

int

src_err_msg_r

(srcerrno,

ErrorText)

int

srcerrno;

char

**

ErrorText;

Description

The

src_err_msg_r

subroutine

returns

the

message

corresponding

to

the

input

srcerrno

value

in

a

caller-supplied

buffer.

This

subroutine

is

threadsafe

and

reentrant.

Parameters

srcerrno

Specifies

the

SRC

error

code.

ErrorText

Pointer

to

a

variable

containing

the

address

of

a

caller-supplied

buffer

where

the

message

will

be

returned.

If

the

length

of

the

message

is

unknown,

the

maximum

message

length

can

be

used

when

allocating

the

buffer.

The

maximum

message

length

is

SRC_BUF_MAX

in

/usr/include/spc.h

(2048

bytes).

Return

Values

Upon

successful

completion,

the

src_err_msg_r

subroutine

returns

a

value

of

0.

Otherwise,

no

error

message

is

returned

and

the

subroutine

returns

a

value

of

-1.

Related

Information

The

srcsbuf_r

(“srcsbuf_r

Subroutine”

on

page

247),

srcsrqt_r

(“srcsrqt_r

Subroutine”

on

page

256),

srcrrqs_r

(“srcrrqs_r

Subroutine”

on

page

243),

srcstat_r

(“srcstat_r

Subroutine”

on

page

262),

and

srcstattxt_r

(“srcstattxt_r

Subroutine”

on

page

265)

subroutines.

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcrrqs

Subroutine

Purpose

Gets

subsystem

reply

information

from

the

System

Resource

Controller

(SRC)

request

received.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

241

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

struct

srchdr

*srcrrqs

(

Packet)

char

*Packet;

Description

The

srcrrqs

subroutine

saves

the

srchdr

information

contained

in

the

packet

the

subsystem

received

from

the

System

Resource

Controller

(SRC).

The

srchdr

structure

is

defined

in

the

spc.h

file.

This

routine

must

be

called

by

the

subsystem

to

complete

the

reception

process

of

any

packet

received

from

the

SRC.

The

subsystem

requires

this

information

to

reply

to

any

request

that

the

subsystem

receives

from

the

SRC.

Note:

The

saved

srchdr

information

is

overwritten

each

time

this

subroutine

is

called.

Parameters

Packet

Points

to

the

SRC

request

packet

received

by

the

subsystem.

If

the

subsystem

received

the

packet

on

a

message

queue,

the

Packet

parameter

must

point

past

the

message

type

of

the

packet

to

the

start

of

the

request

information.

If

the

subsystem

received

the

information

on

a

socket,

the

Packet

parameter

points

to

the

start

of

the

packet

received

on

the

socket.

Return

Values

The

srcrrqs

subroutine

returns

a

pointer

to

the

static

srchdr

structure,

which

contains

the

return

address

for

the

subsystem

response.

Examples

The

following

will

obtain

the

subsystem

reply

information:

int

rc;

struct

sockaddr

addr;

int

addrsz;

struct

srcreq

packet;

/*

wait

to

receive

packet

from

SRC

daemon

*/

rc=recvfrom(0,

&packet,

sizeof(packet),

0,

&addr,

&addrsz);

/*

grab

the

reply

information

from

the

SRC

packet

*/

if

(rc>0)

srchdr=srcrrqs

(&packet);

Files

/dev/SRC

Specifies

the

AF_UNIX

socket

file.

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)

subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259)subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine,

srcstrt

(“srcstrt

Subroutine”

on

page

268)

subroutine.

242

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcrrqs_r

Subroutine

Purpose

Copies

the

System

Resource

Controller

(SRC)

request

header

to

the

specified

buffer.

The

SRC

request

header

contains

the

return

address

where

the

caller

sends

responses

for

this

request.

Library

System

Resource

Controller

(libsrc.a)

Syntax

#include

<spc.h>

struct

srchdr

*srcrrqs_r

(Packet,

SRChdr)

char

*

Packet;

struct

srchdr

*

SRChdr;

Description

The

srcrrqs_r

subroutine

saves

the

SRC

request

header

(srchdr)

information

contained

in

the

packet

the

subsystem

received

from

the

Source

Resource

Controller.

The

srchdr

structure

is

defined

in

the

spc.h

file.

This

routine

must

be

called

by

the

subsystem

to

complete

the

reception

process

of

any

packet

received

from

the

SRC.

The

subsystem

requires

this

information

to

reply

to

any

request

that

the

subsystem

receives

from

the

SRC.

This

subroutine

is

threadsafe

and

reentrant.

Parameters

Packet

Points

to

the

SRC

request

packet

received

by

the

subsystem.

If

the

subsystem

received

the

packet

on

a

message

queue,

the

Packet

parameter

must

point

past

the

message

type

of

the

packet

to

the

start

of

the

request

information.

If

the

subsystem

received

the

information

on

a

socket,

the

Packet

parameter

points

to

the

start

of

the

packet

received

on

the

socket.

SRChdr

Points

to

a

caller-supplied

buffer.

The

srcrrqs_r

subroutine

copies

the

request

header

to

this

buffer.

Examples

The

following

will

obtain

the

subsystem

reply

information:

int

rc;

struct

sockaddr

addr;

int

addrsz;

struct

srcreq

packet;

struct

srchdr

*header;

struct

srchdr

*rtn_addr;

/*wait

to

receive

packet

from

SRC

daemon

*/

rc=recvfrom(0,

&packet,

sizeof(packet),

0,

&addr,

&addrsz;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

243

/*

grab

the

reply

information

from

the

SRC

packet

*/

if

(rc>0)

{

header

=

(struct

srchdr

*)malloc(sizeof(struct

srchdr));

rtn_addr

=

srcrrqs_r(&packet,header);

if

(rtn_addr

==

NULL)

{

/*

handle

error

*/

.

.

}

Return

Values

Upon

successful

completion,

the

srcrrq_r

subroutine

returns

the

address

of

the

caller-supplied

buffer.

Error

Codes

If

either

of

the

input

addresses

is

NULL,

the

srcrrqs_r

subroutine

fails

and

returns

a

value

of

NULL.

SRC_PARM

One

of

the

input

addresses

is

NULL.

Related

Information

The

src_err_msg_r

(“src_err_msg_r

Subroutine”

on

page

241),

srcsbuf_r

(“srcsbuf_r

Subroutine”

on

page

247),

srcsrqt_r

(“srcsrqt_r

Subroutine”

on

page

256),

srcstat_r

(“srcstat_r

Subroutine”

on

page

262),

and

srcstattxt_r

(“srcstattxt_r

Subroutine”

on

page

265)

subroutines.

srcsbuf

Subroutine

Purpose

Gets

status

for

a

subserver

or

a

subsystem

and

returns

status

text

to

be

printed.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

intsrcsbuf(Host,Type,SubsystemName,

SubserverObject,SubsystemPID,

StatusType,StatusFrom,StatusText,Continued)

char

*

Host,

*

SubsystemName;

char

*

SubserverObject,

**

StatusText;

short

Type,

StatusType;

int

SubsystemPID,

StatusFrom,

*

Continued;

Description

The

srcsbuf

subroutine

gets

the

status

of

a

subserver

or

subsystem

and

returns

printable

text

for

the

status

in

the

address

pointed

to

by

the

StatusText

parameter.

When

the

StatusType

parameter

is

SHORTSTAT

and

the

Type

parameter

is

SUBSYSTEM,

the

srcstat

subroutine

is

called

to

get

the

status

of

one

or

more

subsystems.

When

the

StatusType

parameter

is

244

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

LONGSTAT

and

the

Type

parameter

is

SUBSYSTEM,

the

srcrsqt

subroutine

is

called

to

get

the

long

status

of

one

subsystem.

When

the

Type

parameter

is

not

SUBSYSTEM,

the

srcsrqt

subroutine

is

called

to

get

the

long

or

short

status

of

a

subserver.

Parameters

Host

Specifies

the

foreign

host

on

which

this

status

action

is

requested.

If

the

host

is

null,

the

status

request

is

sent

to

the

System

Resource

Controller

(SRC)

on

the

local

host.

The

local

user

must

be

running

as

″root″.

The

remote

system

must

be

configured

to

accept

remote

System

Resource

Controller

requests.

That

is,

the

srcmstr

daemon

(see

/etc/inittab)

must

be

started

with

the

-r

flag

and

the

/etc/hosts.equiv

or

.rhosts

file

must

be

configured

to

allow

remote

requests.

Type

Specifies

whether

the

status

request

applies

to

the

subsystem

or

subserver.

If

the

Type

parameter

is

set

to

SUBSYSTEM,

the

status

request

is

for

a

subsystem.

If

not,

the

status

request

is

for

a

subserver

and

the

Type

parameter

is

a

subserver

code

point.

SubsystemName

Specifies

the

name

of

the

subsystem

on

which

to

get

status.

To

get

the

status

of

all

subsystems,

use

the

SRCALLSUBSYS

constant.

To

get

the

status

of

a

group

of

subsystems,

the

SubsystemName

parameter

must

start

with

the

SRCGROUP

constant,

followed

by

the

name

of

the

group

for

which

you

want

status

appended.

If

you

specify

a

null

SubsystemName

parameter,

you

must

specify

a

SubsystemPID

parameter.

SubserverObject

Specifies

a

subserver

object.

The

SubserverObject

parameter

modifies

the

Type

parameter.

The

SubserverObject

parameter

is

ignored

if

the

Type

parameter

is

set

to

SUBSYSTEM.

The

use

of

the

SubserverObject

parameter

is

determined

by

the

subsystem

and

the

caller.

This

parameter

will

be

placed

in

the

objname

field

of

the

subreq

structure

that

is

passed

to

the

subsystem.

SubsystemPID

Specifies

the

process

ID

of

the

subsystem

on

which

to

get

status,

as

returned

by

the

srcstrt

subroutine.

You

must

specify

the

SubsystemPID

parameter

if

multiple

instances

of

the

subsystem

are

active

and

you

request

a

long

subsystem

status

or

subserver

status.

If

you

specify

a

null

SubsystemPID

parameter,

you

must

specify

a

SubsystemName

parameter.

StatusType

Specifies

LONGSTAT

for

long

status

or

SHORTSTAT

for

short

status.

StatusFrom

Specifies

whether

status

errors

and

messages

are

to

be

printed

to

standard

output

or

just

returned

to

the

caller.

When

the

StatusFrom

parameter

is

SSHELL,

the

errors

are

printed

to

standard

output.

StatusText

Allocates

memory

for

the

printable

text

and

sets

the

StatusText

parameter

to

point

to

this

memory.

After

it

prints

the

text,

the

calling

process

must

free

the

memory

allocated

for

this

buffer.

Continued

Specifies

whether

this

call

to

the

srcsbuf

subroutine

is

a

continuation

of

a

status

request.

If

the

Continued

parameter

is

set

to

NEWREQUEST,

a

request

for

status

is

sent

and

the

srcsbuf

subroutine

then

waits

for

another.

On

return,

the

srcsbuf

subroutine

is

updated

to

the

new

continuation

indicator

from

the

reply

packet

and

the

Continued

parameter

is

set

to

END

or

STATCONTINUED

by

the

subsystem.

If

the

Continued

parameter

is

set

to

something

other

than

END,

this

field

must

remain

equal

to

that

value;

otherwise,

this

function

will

not

be

able

to

receive

any

more

packets

for

the

original

status

request.

The

calling

process

should

not

set

the

value

of

the

Continued

parameter

to

a

value

other

than

NEWREQUEST.

The

Continued

parameter

should

not

be

changed

while

more

responses

are

expected.

Return

Values

If

the

srcsbuf

subroutine

succeeds,

it

returns

the

size

(in

bytes)

of

printable

text

pointed

to

by

the

StatusText

parameter.

Error

Codes

The

srcsbuf

subroutine

fails

if

one

or

more

of

the

following

are

true:

SRC_BADSOCK

The

request

could

not

be

passed

to

the

subsystem

because

of

some

socket

failure.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

245

SRC_CONT

The

subsystem

uses

signals.

The

request

cannot

complete.

SRC_DMNA

The

SRC

daemon

is

not

active.

SRC_INET_AUTHORIZED_HOST

The

local

host

is

not

in

the

remote

/etc/hosts.equiv

file.

SRC_INET_INVALID_HOST

On

the

remote

host,

the

local

host

is

not

known.

SRC_INVALID_USER

The

user

is

not

root

or

group

system.

SRC_MMRY

An

SRC

component

could

not

allocate

the

memory

it

needs.

SRC_NOCONTINUE

The

Continued

parameter

was

not

set

to

NEWREQUEST,

and

no

continuation

is

currently

active.

SRC_NORPLY

The

request

timed

out

waiting

for

a

response.

SRC_NSVR

The

subsystem

is

not

active.

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_STPG

The

request

was

not

passed

to

the

subsystem.

The

subsystem

is

stopping.

SRC_UDP

The

SRC

port

is

not

defined

in

the

/etc/services

file.

SRC_UHOST

The

foreign

host

is

not

known.

SRC_WICH

There

are

multiple

instances

of

the

subsystem

active.

Examples

1.

To

get

the

status

of

a

subsystem,

enter:

char

*status;

int

continued=NEWREQUEST;

int

rc;

do

{

rc=srcsbuf("MaryC",

SUBSYSTEM,

"srctest",

"",

0,

SHORTSTAT,

SSHELL,

&status,

continued);

if

(status!=0)

{

printf(status);

free(status);

status=0;

}

}

while

(rc>0);

This

gets

short

status

of

the

srctest

subsystem

on

the

MaryC

machine

and

prints

the

formatted

status

to

standard

output.

2.

To

get

the

status

of

a

subserver,

enter:

char

*status;

int

continued=NEWREQUEST;

int

rc;

do

{

rc=srcsbuf("",

12345,

"srctest",

"",

0,

LONGSTAT,

SSHELL,

&status,

continued);

if

(status!=0)

{

printf(status);

free(status);

status=0;

}

}

while

(rc>0);

This

gets

long

status

for

a

specific

subserver

belonging

to

subsystem

srctest.

The

subserver

is

the

one

having

code

point

12345.

This

request

is

processed

on

the

local

machine.

The

formatted

status

is

printed

to

standard

output.

Files

/etc/services

Defines

sockets

and

protocols

used

for

Internet

services.

246

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

/dev/SRC

Specifies

the

AF_UNIX

socket

file.

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)

subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259)

subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine,

srcstrt

(“srcstrt

Subroutine”

on

page

268)

subroutine.

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcsbuf_r

Subroutine

Purpose

Gets

status

for

a

subserver

or

a

subsystem

and

returns

status

text

to

be

printed.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

int

srcsbuf_r(Host,

Type,

SubsystemName,

SubserverObject,

SubsystemPID,

StatusType,

StatusFrom,

StatusText,

Continued,

SRCHandle)

char

*

Host,

*

SubsystemName;

char

*

SubserverObject,

**

StatusText;

short

Type,

StatusType;

pid_t

SubsystemPID;

int

StatusFrom

*

Continued;

char

**

SRCHandle;

Description

The

srcsbuf_r

subroutine

gets

the

status

of

a

subserver

or

subsystem

and

returns

printable

text

for

the

status

in

the

address

pointed

to

by

the

StatusText

parameter.

The

srcsbuf_r

subroutine

supports

all

the

functions

of

the

srcbuf

subroutine

except

the

StatusFrom

parameter.

When

the

StatusType

parameter

is

SHORTSTAT

and

the

Type

parameter

is

SUBSYSTEM,

the

srcstat_r

subroutine

is

called

to

get

the

status

of

one

or

more

subsystems.

When

the

StatusType

parameter

is

LONGSTAT

and

the

Type

parameter

is

SUBSYSTEM,

the

srcrsqt_r

subroutine

is

called

to

get

the

long

status

of

one

subsystem.

When

the

Type

parameter

is

not

SUBSYSTEM,

the

srcsrqt_r

subroutine

is

called

to

get

the

long

or

short

status

of

a

subserver.

This

routine

is

threadsafe

and

reentrant.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

247

Parameters

Host

Specifies

the

foreign

host

on

which

this

status

action

is

requested.

If

the

host

is

null,

the

status

request

is

sent

to

the

System

Resource

Controller

(SRC)

on

the

local

host.

Type

Specifies

whether

the

status

request

applies

to

the

subsystem

or

subserver.

If

the

Type

parameter

is

set

to

SUBSYSTEM,

the

status

request

is

for

a

subsystem.

If

not,

the

status

request

is

for

a

subserver

and

the

Type

parameter

is

a

subserver

code

point.

SubsystemName

Specifies

the

name

of

the

subsystem

on

which

to

get

status.

To

get

the

status

of

all

subsystems,

use

the

SRCALLSUBSYS

constant.

To

get

the

status

of

a

group

of

subsystems,

the

SubsystemName

parameter

must

start

with

the

SRCGROUP

constant,

followed

by

the

name

of

the

group

for

which

you

want

status

appended.

If

you

specify

a

null

SubsystemName

parameter,

you

must

specify

a

SubsystemPID

parameter.

SubserverObject

Specifies

a

subserver

object.

The

SubserverObject

parameter

modifies

the

Type

parameter.

The

SubserverObject

parameter

is

ignored

if

the

Type

parameter

is

set

to

SUBSYSTEM.

The

use

of

the

SubserverObject

parameter

is

determined

by

the

subsystem

and

the

caller.

This

parameter

will

be

placed

in

the

objname

field

of

the

subreq

structure

that

is

passed

to

the

subsystem.

SubsystemPID

Specifies

the

process

ID

of

the

subsystem

on

which

to

get

status,

as

returned

by

the

srcstrt

subroutine.

You

must

specify

the

SubsystemPID

parameter

if

multiple

instances

of

the

subsystem

are

active

and

you

request

a

long

subsystem

status

or

subserver

status.

If

you

specify

a

null

SubsystemPID

parameter,

you

must

specify

a

SubsystemName

parameter.

StatusType

Specifies

LONGSTAT

for

long

status

or

SHORTSTAT

for

short

status.

StatusFrom

Specifies

whether

status

errors

and

messages

are

to

be

printed

to

standard

output

or

just

returned

to

the

caller.

When

the

StatusFrom

parameter

is

SSHELL,

the

errors

are

printed

to

standard

output.

The

SSHELL

value

is

not

recommended

in

a

multithreaded

environment

since

error

messages

to

standard

output

may

be

interleaved

in

an

unexpected

manner.

StatusText

Allocates

memory

for

the

printable

text

and

sets

the

StatusText

parameter

to

point

to

this

memory.

After

it

prints

the

text,

the

calling

process

must

free

the

memory

allocated

for

this

buffer.

Continued

Specifies

whether

this

call

to

the

srcsbuf_r

subroutine

is

a

continuation

of

a

status

request.

If

the

Continued

parameter

is

set

to

NEWREQUEST,

a

request

for

status

is

sent

and

the

srcsbuf_r

subroutine

then

waits

for

a

reply.

On

return

from

the

srcsbuf_r

subroutine,

the

Continued

parameter

is

updated

to

the

new

continuation

indicator

from

the

reply

packet.

The

continuation

indicator

in

the

reply

packet

will

be

set

to

END

or

STATCONTINUED

by

the

subsystem.

If

the

Continued

parameter

is

set

to

something

other

than

END,

the

caller

should

not

change

that

value;

otherwise,

this

function

will

not

be

able

to

receive

any

more

packets

for

the

original

status

request.

The

calling

process

should

not

set

the

value

of

the

Continued

parameter

to

a

value

other

than

NEWREQUEST.

In

normal

processing,

the

Continued

parameter

should

not

be

changed

while

more

responses

are

expected.

The

caller

must

continue

to

call

the

srcsbuf_r

subroutine

until

END

is

received.

As

an

alternative,

call

the

srcsbuf_r

subroutine

with

Continued=SRC_CLOSE

to

discard

the

remaining

data,

close

the

socket,

and

free

the

internal

buffers.

SRCHandle

Identifies

a

request

and

its

associated

responses.

Set

to

NULL

by

the

caller

for

a

NEWREQUEST.

The

srcsbuf_r

subroutine

saves

a

value

in

SRCHandle

to

allow

srcsbuf_r

continuation

calls

to

use

the

same

socket

and

internal

buffers.

The

SRCHandle

parameter

should

not

be

changed

by

the

caller

except

for

NEWREQUESTs.

Return

Values

If

the

srcsbuf_r

subroutine

succeeds,

it

returns

the

size

(in

bytes)

of

printable

text

pointed

to

by

the

StatusText

parameter.

248

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

The

srcsbuf_r

subroutine

fails

and

returns

the

corresponding

error

code

if

one

of

the

following

error

conditions

is

detected:

SRC_BADSOCK

The

request

could

not

be

passed

to

the

subsystem

because

of

some

socket

failure.

SRC_CONT

The

subsystem

uses

signals.

The

request

cannot

complete.

SRC_DMNA

The

SRC

daemon

is

not

active.

SRC_INET_AUTHORIZED_HOST

The

local

host

is

not

in

the

remote

/etc/hosts.equiv

file.

SRC_INET_INVALID_HOST

On

the

remote

host,

the

local

host

is

not

known.

SRC_INVALID_USER

The

user

is

not

root

or

group

system.

SRC_MMRY

An

SRC

component

could

not

allocate

the

memory

it

needs.

SRC_NOCONTINUE

The

Continued

parameter

was

not

set

to

NEWREQUEST,

and

no

continuation

is

currently

active.

SRC_NORPLY

The

request

timed

out

waiting

for

a

response.

SRC_NSVR

The

subsystem

is

not

active.

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_STPG

The

request

was

not

passed

to

the

subsystem.

The

subsystem

is

stopping.

SRC_UDP

The

SRC

port

is

not

defined

in

the

/etc/services

file.

SRC_UHOST

The

foreign

host

is

not

known.

SRC_WICH

There

are

multiple

instances

of

the

subsystem

active.

Examples

1.

To

get

the

status

of

a

subsystem,

enter:

char

*status;

int

continued=NEWREQUEST;

int

rc;

char

*handle

do

{

rc=srcsbuf_r("MaryC",

SUBSYSTEM,

"srctest",

"",

0,

SHORTSTAT,

SDAEMON,

&status,

continued,

&handle);

if

(status!=0)

{

printf(status);

free(status);

status=0;

}

}

while

(rc>0);

if

(rc<0)

{

...handle

error

from

srcsbuf_r...

}

This

gets

short

status

of

the

srctest

subsystem

on

the

MaryC

machine

and

prints

the

formatted

status

to

standard

output.

Caution:

In

a

multithreaded

environment,

the

caller

must

manage

the

sharing

of

standard

output

between

threads.

Set

the

StatusFrom

parameter

to

SDAEMON

to

prevent

unexpected

error

messages

from

being

printed

to

standard

output.

2.

To

get

the

status

of

a

subserver,

enter:

char

*status;

int

continued=NEWREQUEST;

int

rc;

char

*handle

do

{

rc=srcsbuf_r("",

12345,

"srctest",

"",

0,

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

249

LONGSTAT,

SDAEMON,

&status,

continued,

&handle);

if

(status!=0)

{

printf(status);

free(status);

status=0;

}

}

while

(rc>0);

if

(rc<0)

{

...handle

error

from

srcsbuf_r...

}

This

gets

long

status

for

a

specific

subserver

belonging

to

subsystem

srctest.

The

subserver

is

the

one

having

code

point

12345.

This

request

is

processed

on

the

local

machine.

The

formatted

status

is

printed

to

standard

output.

CAUTION:

In

a

multithreaded

environment,

the

caller

must

manage

the

sharing

of

standard

output

between

threads.

Set

the

StatusFrom

parameter

to

SDAEMON

to

prevent

unexpected

error

messages

from

being

printed

to

standard

output.

Related

Information

The

src_err_msg_r

(“src_err_msg_r

Subroutine”

on

page

241)

subroutine,

srcsrqt_r

(“srcsrqt_r

Subroutine”

on

page

256)

subroutine,

srcrrqs_r

(“srcrrqs_r

Subroutine”

on

page

243)

subroutine,

srcstat_r

(“srcstat_r

Subroutine”

on

page

262)

subroutine,

srcstattxt_r

(“srcstattxt_r

Subroutine”

on

page

265)

subroutine.

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcsrpy

Subroutine

Purpose

Sends

a

reply

to

a

request

from

the

System

Resource

Controller

(SRC)

back

to

the

client

process.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

int

srcsrpy

(

SRChdr,

PPacket,

PPacketSize,

Continued)

struct

srchdr

*SRChdr;

char

*PPacket;

int

PPacketSize;

ushort

Continued;

Description

The

srcsrpy

subroutine

returns

a

subsystem

reply

to

a

System

Resource

Controller

(SRC)

subsystem

request.

The

format

and

content

of

the

reply

are

determined

by

the

subsystem

and

the

requester,

but

must

250

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

start

with

a

srchdr

structure.

This

structure

and

all

others

required

for

subsystem

communication

with

the

SRC

are

defined

in

the

/usr/include/spc.h

file.

The

subsystem

must

reply

with

a

pre-defined

format

and

content

for

the

following

requests:

START,

STOP,

STATUS,

REFRESH,

and

TRACE.

The

START,

STOP,

REFRESH,

and

TRACE

requests

must

be

answered

with

a

srcrep

structure.

The

STATUS

request

must

be

answered

with

a

reply

in

the

form

of

a

statbuf

structure.

Note:

The

srcsrpy

subroutine

creates

its

own

socket

to

send

the

subsystem

reply

packets.

Parameters

SRChdr

Points

to

the

reply

address

buffer

as

returned

by

the

srcrrqs

subroutine.

PPacket

Points

to

the

reply

packet.

The

first

element

of

the

reply

packet

is

a

srchdr

structure.

The

cont

element

of

the

PPacket->srchdr

structure

is

modified

on

returning

from

the

srcsrpy

subroutine.

The

second

element

of

the

reply

packet

should

be

a

svrreply

structure,

an

array

of

statcode

structures,

or

another

format

upon

which

the

subsystem

and

the

requester

have

agreed.

PPacketSize

Specifies

the

number

of

bytes

in

the

reply

packet

pointed

to

by

the

PPacket

parameter.

The

PPacketSize

parameter

may

be

the

size

of

a

short,

or

it

may

be

between

the

size

of

a

srchdr

structure

and

the

SRCPKTMAX

value,

which

is

defined

in

the

spc.h

file.

Continued

Indicates

whether

this

reply

is

to

be

continued.

If

the

Continued

parameter

is

set

to

the

constant

END,

no

more

reply

packets

are

sent

for

this

request.

If

the

Continued

parameter

is

set

to

CONTINUED,

the

second

element

of

what

is

indicated

by

the

PPacket

parameter

must

be

a

svrreply

structure,

since

the

rtnmsg

element

of

the

svrreply

structure

is

printed

to

standard

output.

For

a

status

reply,

the

Continued

parameter

is

set

to

STATCONTINUED,

and

the

second

element

of

what

is

pointed

to

by

the

PPacket

parameter

must

be

an

array

of

statcode

structures.

If

a

STOP

subsystem

request

is

received,

only

one

reply

packet

can

be

sent

and

the

Continued

parameter

must

be

set

to

END.

Other

types

of

continuations,

as

determined

by

the

subsystem

and

the

requester,

must

be

defined

using

positive

values

for

the

Continued

parameter.

Values

other

than

the

following

must

be

used:

0

END

1

CONTINUED

2

STATCONTINUED

Return

Values

If

the

srcsrpy

subroutine

succeeds,

it

returns

the

value

SRC_OK.

Error

Codes

The

srcsrpy

subroutine

fails

if

one

or

both

of

the

following

are

true:

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_REPLYSZ

SRC

reply

size

is

invalid.

Examples

1.

To

send

a

STOP

subsystem

reply,

enter:

struct

srcrep

return_packet;

struct

srchdr

*srchdr;

bzero(&return_packet,sizeof(return_packet));

return_packet.svrreply.rtncode=SRC_OK;

strcpy(return_packet.svrreply,"srctest");

srcsrpy(srchdr,return_packet,sizeof(return_packet),END);

This

entry

sends

a

message

that

the

subsystem

srctest

is

stopping

successfully.

2.

To

send

a

START

subserver

reply,

enter:

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

251

struct

srcrep

return_packet;

struct

srchdr

*srchdr;

bzero(&return_packet,sizeof(return_packet));

return_packet.svrreply.rtncode=SRC_SUBMSG;

strcpy(return_packet.svrreply,objname,"mysubserver");

strcpy(return_packet.svrreply,objtext,"The

subserver,\

mysubserver,

has

been

started");

srcsrpy(srchdr,return_packet,sizeof(return_packet),END);

The

resulting

message

indicates

that

the

start

subserver

request

was

successful.

3.

To

send

a

status

reply,

enter:

int

rc;

struct

sockaddr

addr;

int

addrsz;

struct

srcreq

packet;

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[10];

}

status;

struct

srchdr

*srchdr;

struct

srcreq

packet;

.

.

.

/*

grab

the

reply

information

from

the

SRC

packet

*/

srchdr=srcrrqs(&packet);

bzero(&status.statcode[0].objname,

/*

get

SRC

status

header

*/

srcstathdr(status.statcode[0].objname,

status.statcode[0].objtext);

.

.

.

/*

send

status

packet(s)

*/

srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

.

.

.

srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

/*

send

final

packet

*/

srcsrpy(srchdr,&status,sizeof(struct

srchdr),END);

This

entry

sends

several

status

packets.

Files

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)

subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259)

subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine,

srcstrt

(“srcstrt

Subroutine”

on

page

268)

subroutine.

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

252

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

SRC

Communication

Types

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcsrqt

Subroutine

Purpose

Sends

a

request

to

a

subsystem.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

srcsrqt(Host,

SubsystemName,

SubsystemPID,

RequestLength,

SubsystemRequest,

ReplyLength,

ReplyBuffer,

StartItAlso,

Continued)

char

*

Host,

*

SubsystemName;

char

*

SubsystemRequest,

*

ReplyBuffer;

int

SubsystemPID,

StartItAlso,

*

Continued;

short

RequestLength,

*

ReplyLength;

Description

The

srcsrqt

subroutine

sends

a

request

to

a

subsystem,

waits

for

a

response,

and

returns

one

or

more

replies

to

the

caller.

The

format

of

the

request

and

the

reply

is

determined

by

the

caller

and

the

subsystem.

Note:

The

srcsrqt

subroutine

creates

its

own

socket

to

send

a

request

to

the

subsystem.

The

socket

that

this

function

opens

remains

open

until

an

error

or

an

end

packet

is

received.

Two

types

of

continuation

are

returned

by

the

srcsrqt

subroutine:

No

continuation

ReplyBuffer->srchdr.continued

is

set

to

the

END

constant.

Reply

continuation

ReplyBuffer->srchdr.continued

is

not

set

to

the

END

constant,

but

to

a

positive

value

agreed

upon

by

the

calling

process

and

the

subsystem.

The

packet

is

returned

to

the

caller.

Parameters

SubsystemPID

The

process

ID

of

the

subsystem.

Host

Specifies

the

foreign

host

on

which

this

subsystem

request

is

to

be

sent.

If

the

host

is

null,

the

request

is

sent

to

the

subsystem

on

the

local

host.

The

local

user

must

be

running

as

″root″.

The

remote

system

must

be

configured

to

accept

remote

System

Resource

Controller

requests.

That

is,

the

srcmstr

daemon

(see

/etc/inittab)

must

be

started

with

the

-r

flag

and

the

/etc/hosts.equiv

or

.rhosts

file

must

be

configured

to

allow

remote

requests.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

253

SubsystemName

Specifies

the

name

of

the

subsystem

to

which

this

request

is

to

be

sent.

You

must

specify

a

SubsystemName

if

you

do

not

specify

a

SubsystemPID.

RequestLength

Specifies

the

length,

in

bytes,

of

the

request

to

be

sent

to

the

subsystem.

The

maximum

value

in

bytes

for

this

parameter

is

2000

bytes.

SubsystemRequest

Points

to

the

subsystem

request

packet.

ReplyLength

Specifies

the

maximum

length,

in

bytes,

of

the

reply

to

be

received

from

the

subsystem.

On

return

from

the

srcsrqt

subroutine,

the

ReplyLength

parameter

is

set

to

the

actual

length

of

the

subsystem

reply

packet.

ReplyBuffer

Points

to

a

buffer

for

the

receipt

of

the

reply

packet

from

the

subsystem.

StartItAlso

Specifies

whether

the

subsystem

should

be

started

if

it

is

nonactive.

When

nonzero,

the

System

Resource

Controller

(SRC)

attempts

to

start

a

nonactive

subsystem,

and

then

passes

the

request

to

the

subsystem.

Continued

Specifies

whether

this

call

to

the

srcsrqt

subroutine

is

a

continuation

of

a

previous

request.

If

the

Continued

parameter

is

set

to

NEWREQUEST,

a

request

for

it

is

sent

to

the

subsystem

and

the

subsystem

is

notified

that

another

response

is

expected.

The

calling

process

should

never

set

Continued

to

any

value

other

than

NEWREQUEST.

The

last

response

from

the

subsystem

will

set

Continued

to

END.

Return

Values

If

the

srcsrqt

subroutine

is

successful,

the

value

SRC_OK

is

returned.

Error

Codes

The

srcsrqt

subroutine

fails

if

one

or

more

of

the

following

are

true:

SRC_BADSOCK

The

request

could

not

be

passed

to

the

subsystem

because

of

a

socket

failure.

SRC_CONT

The

subsystem

uses

signals.

The

request

cannot

complete.

SRC_DMNA

The

SRC

daemon

is

not

active.

SRC_INET_AUTHORIZED_HOST

The

local

host

is

not

in

the

remote

/etc/hosts.equiv

file.

SRC_INET_INVALID_HOST

On

the

remote

host,

the

local

host

is

not

known.

SRC_INVALID_USER

The

user

is

not

root

or

group

system.

SRC_MMRY

An

SRC

component

could

not

allocate

the

memory

it

needs.

SRC_NOCONTINUE

The

Continued

parameter

was

not

set

to

NEWREQUEST,

and

no

continuation

is

currently

active.

SRC_NORPLY

The

request

timed

out

waiting

for

a

response.

SRC_NSVR

The

subsystem

is

not

active.

SRC_REQLEN2BIG

The

RequestLength

is

greater

than

the

maximum

2000

bytes.

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_STPG

The

request

was

not

passed

to

the

subsystem.

The

subsystem

is

stopping.

SRC_UDP

The

SRC

port

is

not

defined

in

the

/etc/services

file.

SRC_UHOST

The

foreign

host

is

not

known.

Examples

1.

To

request

long

subsystem

status,

enter:

int

cont=NEWREQUEST;

int

rc;

short

replen;

short

reqlen;

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[20];

}

statbuf;

struct

subreq

subreq;

254

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

subreq.action=STATUS;

subreq.object=SUBSYSTEM;

subreq.parm1=LONGSTAT;

strcpy(subreq.objname,"srctest");

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt("MaryC",

"srctest",

0,

reqlen,

&subreq,

&replen,

&statbuf,

SRC_NO,

&cont);

This

entry

gets

long

status

of

the

subsystem

srctest

on

the

MaryC

machine.

The

subsystem

keeps

sending

status

packets

until

statbuf.srchdr.cont=END.

2.

To

start

a

subserver,

enter:

int

cont=NEWREQUEST;

int

rc;

short

replen;

short

reqlen;

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[20];

}

statbuf;

struct

subreq

subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt("",

"",

987,

reqlen,

&subreq,

&replen,

&statbuf,

SRC_NO,

&cont);

This

entry

starts

the

subserver

with

the

code

point

of

1234,

but

only

if

the

subsystem

is

already

active.

3.

To

start

a

subserver

and

a

subsystem,

enter:

int

cont=NEWREQUEST;

int

rc;

short

replen;

short

reqlen;

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[20];

}

statbuf;

struct

subreq

subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt("",

"",

987,

reqlen,

&subreq,

&replen,

&statbuf,

SRC_YES,

&cont);

This

entry

starts

the

subserver

with

the

code

point

of

1234.

If

the

subsystem

to

which

this

subserver

belongs

is

not

active,

the

subsystem

is

started.

Files

/etc/services

Defines

sockets

and

protocols

used

for

Internet

services.

/dev/SRC

Specifies

the

AF_UNIX

socket

file.

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

255

259)

subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine,

srcstrt

(“srcstrt

Subroutine”

on

page

268)

subroutine.

List

of

SRC

Subroutines,

Programming

Subsystem

Communication

with

the

SRC,

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcsrqt_r

Subroutine

Purpose

Sends

a

request

to

a

subsystem.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

srcsrqt_r(Host,

SubsystemName,

SubsystemPID,

RequestLength,

SubsystemRequest,

ReplyLength,

ReplyBuffer,

StartItAlso,

Continued,

SRCHandle)

char

*

Host,

*

SubsystemName;

char

*

SubsystemRequest,

*

ReplyBuffer;

pid_t

SubsystemPID,

int,

StartItAlso,

*

Continued;

short

RequestLength,

*

ReplyLength;

char

**

SRCHandle;

Description

The

srcsrqt_r

subroutine

sends

a

request

to

a

subsystem,

waits

for

a

response

and

returns

one

or

more

replies

to

the

caller.

The

format

of

the

request

and

the

reply

is

determined

by

the

caller

and

the

subsystem.

Note:

For

each

NEWREQUEST,

the

srcsrqt_r

subroutine

creates

its

own

socket

to

send

a

request

to

the

subsystem.

The

socket

that

this

function

opens

remains

open

until

an

error

or

an

end

packet

is

received.

This

system

is

threadsafe

and

reentrant.

Two

types

of

continuation

are

returned

by

the

srcsrqt_r

subroutine:

No

continuation

ReplyBuffer->srchdr.continued

is

set

to

the

END

constant.

Reply

continuation

ReplyBuffer->srchdr.continued

is

not

set

to

the

END

constant,

but

to

a

positive

value

agreed

upon

by

the

calling

process

and

the

subsystem.

The

packet

is

returned

to

the

caller.

Parameters

SubsystemPID

The

process

ID

of

the

subsystem.

Host

Specifies

the

foreign

host

on

which

this

subsystem

request

is

to

be

sent.

If

the

host

is

null,

the

request

is

sent

to

the

subsystem

on

the

local

host.

256

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SubsystemName

Specifies

the

name

of

the

subsystem

to

which

this

request

is

to

be

sent.

You

must

specify

a

SubsystemName

if

you

do

not

specify

a

SubsystemPID.

RequestLength

Specifies

the

length,

in

bytes,

of

the

request

to

be

sent

to

the

subsystem.

The

maximum

length

is

2000

bytes.

SubsystemRequest

Points

to

the

subsystem

request

packet.

ReplyLength

Specifies

the

maximum

length,

in

bytes,

of

the

reply

to

be

received

from

the

subsystem.

On

return

from

the

srcsrqt

subroutine,

the

ReplyLength

parameter

is

set

to

the

actual

length

of

the

subsystem

reply

packet.

ReplyBuffer

Points

to

a

buffer

for

the

receipt

of

the

reply

packet

from

the

subsystem.

StartItAlso

Specifies

whether

the

subsystem

should

be

started

if

it

is

nonactive.

When

nonzero,

the

System

Resource

Controller

(SRC)

attempts

to

start

a

nonactive

subsystem,

and

then

passes

the

request

to

the

subsystem.

Continued

Specifies

whether

this

call

to

the

srcsrqt

subroutine

is

a

continuation

of

a

previous

request.

If

the

Continued

parameter

is

set

to

NEWREQUEST,

a

request

for

it

is

sent

to

the

subsystem

and

the

subsystem

is

notified

that

a

response

is

expected.

Under

normal

circumstances,

the

calling

process

should

never

set

Continued

to

any

value

other

than

NEWREQUEST.

The

last

response

from

the

subsystem

will

set

Continued

to

END.

The

caller

must

continue

to

call

the

srcsrqt_r

subroutine

until

END

is

received.

Otherwise,

the

socket

will

not

be

closed

and

the

internal

buffers

freed.

As

an

alternative,

set

Continued=SRC_CLOSE

to

discard

the

remaining

data,

close

the

socket,

and

free

the

internal

buffers.

SRCHandle

Identifies

a

request

and

its

associated

responses.

Set

to

NULL

by

the

caller

for

a

NEWREQUEST.

The

srcsrqt_r

subroutine

saves

a

value

in

SRCHandle

to

allow

srcsrqt_r

continuation

calls

to

use

the

same

socket

and

internal

buffers.

The

SRCHandle

parameter

should

not

be

changed

by

the

caller

except

for

NEWREQUESTs.

Return

Values

If

the

srcsrqt_r

subroutine

is

successful,

the

value

SRC_OK

is

returned.

Error

Codes

The

srcsrqt_r

subroutine

fails

and

returns

the

corresponding

error

code

if

one

of

the

following

error

conditions

is

detected:

SRC_BADSOCK

The

request

could

not

be

passed

to

the

subsystem

because

of

a

socket

failure.

SRC_CONT

The

subsystem

uses

signals.

The

request

cannot

complete.

SRC_DMNA

The

SRC

daemon

is

not

active.

SRC_INET_AUTHORIZED_HOST

The

local

host

is

not

in

the

remote

/etc/hosts.equiv

file.

SRC_INET_INVALID_HOST

On

the

remote

host,

the

local

host

is

not

known.

SRC_INVALID_USER

The

user

is

not

root

or

group

system.

SRC_MMRY

An

SRC

component

could

not

allocate

the

memory

it

needs.

SRC_NOCONTINUE

The

Continued

parameter

was

not

set

to

NEWREQUEST,

and

no

continuation

is

currently

active.

SRC_NORPLY

The

request

timed

out

waiting

for

a

response.

SRC_NSVR

The

subsystem

is

not

active.

SRC_REQLEN2BIG

The

RequestLength

is

greater

than

the

maximum

2000

bytes.

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_STPG

The

request

was

not

passed

to

the

subsystem.

The

subsystem

is

stopping.

SRC_UDP

The

SRC

port

is

not

defined

in

the

/etc/services

file.

SRC_UHOST

The

foreign

host

is

not

known.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

257

Examples

1.

To

request

long

subsystem

status,

enter:

int

cont=NEWREQUEST;

int

rc;

short

replen;

short

reqlen;

char

*handle;

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[20];

}

statbuf;

struct

subreq

subreq;

subreq.action=STATUS;

subreq.object=SUBSYSTEM;

subreq.parm1=LONGSTAT;

strcpy(subreq.objname,"srctest");

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt_r("MaryC",

"srctest",

0,

reqlen,

&subreq,

&replen,

&statbuf,

SRC_NO,

&cont,

&handle);

This

entry

gets

long

status

of

the

subsystem

srctest

on

the

MaryC

machine.

The

subsystem

keeps

sending

status

packets

until

statbuf.srchdr.cont=END.

2.

To

start

a

subserver,

enter:

int

cont=NEWREQUEST;

int

rc;

short

replen;

short

reqlen;

struct

char

*handle;

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[20];

}

statbuf;

struct

subreq

subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt_r("",

"",

987,

reqlen,

&subreq,

&replen,

&statbuf,

SRC_NO,

&cont,

&handle);

This

entry

starts

the

subserver

with

the

code

point

of

1234,

but

only

if

the

subsystem

is

already

active.

3.

To

start

a

subserver

and

a

subsystem,

enter:

int

cont=NEWREQUEST;

int

rc;

short

replen;

short

reqlen;

char

*handle;

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[20];

}

statbuf;

struct

subreq

subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt("",

"",

987,

reqlen,

&subreq,

&replen,

&statbuf,

SRC_YES,

&cont,

&handle);

258

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

This

entry

starts

the

subserver

with

the

code

point

of

1234.

If

the

subsystem

to

which

this

subserver

belongs

is

not

active,

the

subsystem

is

started.

Files

/etc/services

Defines

sockets

and

protocols

used

for

Internet

services.

/dev/SRC

Specifies

the

AF_UNIX

socket

file.

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

src_err_msg_r

(“src_err_msg_r

Subroutine”

on

page

241),

srcsbuf_r

(“srcsbuf_r

Subroutine”

on

page

247),

srcrrqs_r

(“srcrrqs_r

Subroutine”

on

page

243),

srcstat_r

(“srcstat_r

Subroutine”

on

page

262),

and

srcstattxt_r

(“srcstattxt_r

Subroutine”

on

page

265)

subroutines.

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcstat

Subroutine

Purpose

Gets

short

status

on

one

or

more

subsystems.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

int

srcstat(Host,

SubsystemName,SubsystemPID,

ReplyLength,

StatusReply,Continued)

char

*

Host,

*

SubsystemName;

int

SubsystemPID,

*

Continued;

short

*

ReplyLength;

void

*

StatusReply;

Description

The

srcstat

subroutine

sends

a

short

status

request

to

the

System

Resource

Controller

(SRC)

and

returns

status

for

one

or

more

subsystems

to

the

caller.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

259

Parameters

Host

Specifies

the

foreign

host

on

which

this

status

action

is

requested.

If

the

host

is

null,

the

status

request

is

sent

to

the

SRC

on

the

local

host.

The

local

user

must

be

running

as

″root″.

The

remote

system

must

be

configured

to

accept

remote

System

Resource

Controller

requests.

That

is,

the

srcmstr

daemon

(see

/etc/inittab)

must

be

started

with

the

-r

flag

and

the

/etc/hosts.equiv

or

.rhosts

file

must

be

configured

to

allow

remote

requests.

SubsystemName

Specifies

the

name

of

the

subsystem

on

which

to

get

short

status.

To

get

status

of

all

subsystems,

use

the

SRCALLSUBSYS

constant.

To

get

status

of

a

group

of

subsystems,

the

SubsystemName

parameter

must

start

with

the

SRCGROUP

constant,

followed

by

the

name

of

the

group

for

which

you

want

status

appended.

If

you

specify

a

null

SubsystemName

parameter,

you

must

specify

a

SubsystemPID

parameter.

SubsystemPID

Specifies

the

PID

of

the

subsystem

on

which

to

get

status

as

returned

by

the

srcstat

subroutine.

You

must

specify

the

SubsystemPID

parameter

if

multiple

instances

of

the

subsystem

are

active

and

you

request

a

long

subsystem

status

or

subserver

status.

If

you

specify

a

null

SubsystemPID

parameter,

you

must

specify

a

SubsystemName

parameter.

ReplyLength

Specifies

size

of

a

srchdr

structure

plus

the

number

of

statcode

structures

times

the

size

of

one

statcode

structure.

On

return

from

the

srcstat

subroutine,

this

value

is

updated.

StatusReply

Specifies

a

pointer

to

a

structure

containing

first

element

as

struct

srchdr

and

secondary

element

as

struct

statcode

(both

defined

in

spc.h

file)

array

that

receives

the

status

reply

for

the

requested

subsystem.

The

first

element

of

the

returned

statcode

array

contains

the

status

title

line.

The

number

of

statcode

structures

array

items

depends

on

the

number

of

subsystems

user

queried.

Continued

Specifies

whether

this

call

to

the

srcstat

subroutine

is

a

continuation

of

a

previous

status

request.

If

the

Continued

parameter

is

set

to

NEWREQUEST,

a

request

for

short

subsystem

status

is

sent

to

the

SRC

and

srcstat

waits

for

the

first

status

response.

The

calling

process

should

never

set

Continued

to

a

value

other

than

NEWREQUEST.

The

last

response

for

the

SRC

sets

Continued

to

END.

Return

Values

If

the

srcstat

subroutine

succeeds,

it

returns

a

value

of

0.

An

error

code

is

returned

if

the

subroutine

is

unsuccessful.

Error

Codes

The

srcstat

subroutine

fails

if

one

or

more

of

the

following

are

true:

SRC_DMNA

The

SRC

daemon

is

not

active.

SRC_INET_AUTHORIZED_HOST

The

local

host

is

not

in

the

remote

/etc/hosts.equiv

file.

SRC_INET_INVALID_HOST

On

the

remote

host,

the

local

host

is

not

known.

SRC_INVALID_USER

The

user

is

not

root

or

group

system.

SRC_MMRY

An

SRC

component

could

not

allocate

the

memory

it

needs.

SRC_NOCONTINUE

Continued

was

not

set

to

NEWREQUEST

and

no

continuation

is

currently

active.

SRC_NORPLY

The

request

timed

out

waiting

for

a

response.

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_UDP

The

SRC

port

is

not

defined

in

the

/etc/services

file.

SRC_UHOST

The

foreign

host

is

not

known.

Examples

1.

To

request

the

status

of

a

subsystem,

enter:

intcont=NEWREQUEST;

struct

{

struct

srchdr

srchdr

struct

statcode

statcode[6];

260

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

}

status;

short

replen=sizeof(status);

srcstat("MaryC","srctest",0,&replen,&status,&cont);

This

entry

requests

short

status

of

all

instances

of

the

subsystem

srctest

on

the

MaryC

machine.

2.

To

request

the

status

of

all

subsystems,

enter:

int

cont=NEWREQUEST;

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[80];

}

status;

short

replen=sizeof(status);

srcstat("",SRCALLSUBSYS,0,&replen,&status,&cont);

This

entry

requests

short

status

of

all

subsystems

on

the

local

machine.

3.

To

request

the

status

for

a

group

of

subsystems,

enter:

int

cont=NEWREQUEST;

struct

struct

{

struct

srchdr

srchdr;

struct

statcode

statcode[30];

}

status;

short

replen=sizeof(status),

rep_num;

char

subsysname[30];

strcpy(subsysname,SRCGROUP);

strcat(subsysname,"tcpip");

srcstat("",subsysname,0,&replen,&status,

&cont);

rep_num

=

(replen

-

sizeof(strcut

srchdr))

/

sizeof(strcut

statcode);

for

(i

=

0;

i

<

rep_num;

i++)

printf("objtype

%d

status

%d

objname

%s

objtext

%s\n",

status.statcode[i].objtype,

status.statcode[i].status,

status.statcode[i].objname,

status.statcode[i].objtext);

This

entry

requests

short

status

of

all

members

of

the

subsystem

group

tcpip

on

the

local

machine

,

and

displays

the

query

results

on

stdout.

Files

/etc/services

Defines

the

sockets

and

protocols

used

for

Internet

services.

/dev/SRC

Specifies

the

AF_UNIX

socket

file.

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)

subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine,

srcstrt

(“srcstrt

Subroutine”

on

page

268)

subroutine.

List

of

SRC

Subroutines,

Programming

Subsystem

Communication

with

the

SRC,

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

261

srcstat_r

Subroutine

Purpose

Gets

short

status

on

a

subsystem.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

int

srcstat_r(Host,

SubsystemName,

SubsystemPID,

ReplyLength,

StatusReply,

Continued,

SRCHandle)

char

*

Host,

*

SubsystemName;

pid_t

SubsystemPID;

int

*

Continued;

short

*

ReplyLength;

struct

statrep

*

StatusReply;

char

**

SRCHandle;

Description

The

srcstat_r

subroutine

sends

a

short

status

request

to

the

System

Resource

Controller

(SRC)

and

returns

status

for

one

or

more

subsystems

to

the

caller.

This

subroutine

is

threadsafe

and

reentrant.

Parameters

Host

Specifies

the

foreign

host

on

which

this

status

action

is

requested.

If

the

host

is

null,

the

status

request

is

sent

to

the

SRC

on

the

local

host.

SubsystemName

Specifies

the

name

of

the

subsystem

on

which

to

get

short

status.

To

get

status

of

all

subsystems,

use

the

SRCALLSUBSYS

constant.

To

get

status

of

a

group

of

subsystems,

the

SubsystemName

parameter

must

start

with

the

SRCGROUP

constant,

followed

by

the

name

of

the

group

for

which

you

want

status

appended.

If

you

specify

a

null

SubsystemName

parameter,

you

must

specify

a

SubsystemPID

parameter.

SubsystemPID

Specifies

the

PID

of

the

subsystem

on

which

to

get

status

as

returned

by

the

srcstat_r

subroutine.

You

must

specify

the

SubsystemPID

parameter

if

multiple

instances

of

the

subsystem

are

active

and

you

request

a

long

subsystem

status

or

subserver

status.

If

you

specify

a

null

SubsystemPID

parameter,

you

must

specify

a

SubsystemName

parameter.

ReplyLength

Specifies

size

of

a

srchdr

structure

plus

the

number

of

statcode

structures

times

the

size

of

one

statcode

structure.

On

return

from

the

srcstat_r

subroutine,

this

value

is

updated.

StatusReply

Specifies

a

pointer

to

a

statrep

code

structure

containing

a

statcode

array

that

receives

the

status

reply

for

the

requested

subsystem.

The

first

element

of

the

returned

statcode

array

contains

the

status

title

line.

The

statcode

structure

is

defined

in

the

spc.h

file.

Continued

Specifies

whether

this

call

to

the

srcstat_r

subroutine

is

a

continuation

of

a

previous

status

request.

If

the

Continued

parameter

is

set

to

NEWREQUEST,

a

request

for

short

subsystem

status

is

sent

to

the

SRC

and

srcstat_r

waits

for

the

first

status

response.

During

NEWREQUEST

processing,

the

srcstat_r

subroutine

opens

a

socket,

mallocs

internal

buffers,

and

saves

a

value

in

SRCHandle.

In

normal

circumstances,

the

calling

process

should

never

set

Continued

to

a

value

other

than

NEWREQUEST.

When

the

srcstat_r

subroutine

returns

with

Continued=STATCONTINUED,

call

srcstat_r

without

changing

the

Continued

and

SRCHandle

parameters

to

receive

additional

data.

The

last

response

from

the

SRC

sets

Continued

to

END.

The

caller

must

continue

to

call

srcstat_r

until

END

is

received.

Otherwise,

the

socket

will

not

be

closed

and

the

internal

buffers

freed.

As

an

alternative,

call

srcstat_r

with

Continued=STATCONTINUED

to

discard

the

remaining

data,

close

the

socket,

and

free

the

internal

buffers.

262

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SRCHandle

Identifies

a

request

and

its

associated

responses.

Set

to

NULL

by

the

caller

for

a

NEWREQUEST.

The

srcstat_r

subroutine

saves

a

value

in

SRCHandle

to

allow

subsequent

srcstat_r

calls

to

use

the

same

socket

and

internal

buffers.

The

SRCHandle

parameter

should

not

be

changed

by

the

caller

except

for

NEWREQUESTs.

Return

Values

If

the

srcstat_r

subroutine

succeeds,

it

returns

a

value

of

0.

An

error

code

is

returned

if

the

subroutine

is

unsuccessful.

Error

Codes

The

srcstat_r

subroutine

fails

and

returns

the

corresponding

error

code

if

one

of

the

following

error

conditions

is

detected:

SRC_DMNA

The

SRC

daemon

is

not

active.

SRC_INET_AUTHORIZED_HOST

The

local

host

is

not

in

the

remote

/etc/hosts.equiv

file.

SRC_INET_INVALID_HOST

On

the

remote

host,

the

local

host

is

not

known.

SRC_INVALID_USER

The

user

is

not

root

or

group

system.

SRC_MMRY

An

SRC

component

could

not

allocate

the

memory

it

needs.

SRC_NOCONTINUE

Continued

was

not

set

to

NEWREQUEST

and

no

continuation

is

currently

active.

SRC_NORPLY

The

request

timed

out

waiting

for

a

response.

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_UDP

The

SRC

port

is

not

defined

in

the

/etc/services

file.

SRC_UHOST

The

foreign

host

is

not

known.

Examples

1.

To

request

the

status

of

a

subsystem,

enter:

int

cont=NEWREQUEST;

struct

statcode

statcode[20];

short

replen=sizeof(statcode);

char

*handle;

srcstat_r("MaryC","srctest",0,&replen,statcode,

&cont,

&handle);

This

entry

requests

short

status

of

all

instances

of

the

subsystem

srctest

on

the

MaryC

machine.

2.

To

request

the

status

of

all

subsystems,

enter:

int

cont=NEWREQUEST;

struct

statcode

statcode[20];

short

replen=sizeof(statcode);

char

*handle;

srcstat_r("",SRCALLSUBSYS,0,&replen,statcode,

&cont,

&handle);

This

entry

requests

short

status

of

all

subsystems

on

the

local

machine.

3.

To

request

the

status

for

a

group

of

subsystems,

enter:

int

cont=NEWREQUEST;

struct

statcode

statcode[20];

short

replen=sizeof(statcode);

char

subsysname[30];

char

*handle;

strcpy(subsysname,SRCGROUP);

strcat(subsysname,"tcpip");

srcstat_r("",subsysname,0,&replen,statcode,

&cont,

&handle);

This

entry

requests

short

status

of

all

members

of

the

subsystem

group

tcpip

on

the

local

machine.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

263

Files

/etc/services

Defines

the

sockets

and

protocols

used

for

Internet

services.

/dev/SRC

Specifies

the

AF_UNIX

socket

file.

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

src_err_msg_r

(“src_err_msg_r

Subroutine”

on

page

241),

srcsbuf_r

(“srcsbuf_r

Subroutine”

on

page

247),

srcsrqt_r

(“srcsrqt_r

Subroutine”

on

page

256),

srcrrqs_r

(“srcrrqs_r

Subroutine”

on

page

243),

and

srcstattxt_r

(“srcstattxt_r

Subroutine”

on

page

265)

subroutines.

srcstathdr

Subroutine

Purpose

Gets

the

title

line

of

the

System

Resource

Controller

(SRC)

status

text.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

void

srcstathdr

(

Title1,

Title2)

char

*Title1,

*Title2;

Description

The

srcstathdr

subroutine

retrieves

the

title

line,

or

header,

of

the

SRC

status

text.

Parameters

Title1

Specifies

the

objname

field

of

a

statcode

structure.

The

subsystem

name

title

is

placed

here.

Title2

Specifies

the

objtext

field

of

a

statcode

structure.

The

remaining

titles

are

placed

here.

Return

Values

The

subsystem

name

title

is

returned

in

the

Title1

parameter.

The

remaining

titles

are

returned

in

the

Title2

parameter.

Related

Information

The

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)

subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine,

srcstrt

(“srcstrt

Subroutine”

on

page

268)

subroutine.

List

of

SRC

Subroutines,

Programming

Subsystem

Communication

with

the

SRC,

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

264

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

srcstattxt

Subroutine

Purpose

Gets

the

System

Resource

Controller

(SRC)

status

text

representation

for

a

status

code.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

char

*srcstattxt

(

StatusCode)

short

StatusCode;

Description

The

srcstattxt

subroutine,

given

an

SRC

status

code,

gets

the

text

representation

and

returns

a

pointer

to

this

text.

Parameters

StatusCode

Specifies

an

SRC

status

code

to

be

translated

into

meaningful

text.

Return

Values

The

srcstattxt

subroutine

returns

a

pointer

to

the

text

representation

of

a

status

code.

Related

Information

The

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)

subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259)

subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine,

srcstrt

(“srcstrt

Subroutine”

on

page

268)

subroutine.

List

of

SRC

Subroutines,

Programming

Subsystem

Communication

with

the

SRC,

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcstattxt_r

Subroutine

Purpose

Gets

the

status

text

representation

for

an

SRC

status

code.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

char

*srcstattxt_r

(StatusCode,

Text)

short

StatusCode;

char

*Text;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

265

Description

The

srcstattxt_r

subroutine,

given

an

SRC

status

code,

gets

the

text

representation

and

returns

it

in

a

caller-supplied

buffer.

This

routine

is

threadsafe

and

reentrant.

Parameters

StatusCode

Specifies

an

SRC

status

code

to

be

translated

into

meaningful

text.

Text

Points

to

a

caller-supplied

buffer

where

the

text

will

be

returned.

If

the

length

of

the

text

is

unknown,

the

maximum

text

length

can

be

used

when

allocating

the

buffer.

The

maximum

text

length

is

SRC_STAT_MAX

in

/usr/include/spc.h

(64

bytes).

Return

Values

Upon

successful

completion,

the

srcstattxt_r

subroutine

returns

the

address

of

the

caller-supplied

buffer.

Otherwise,

no

text

is

returned

and

the

subroutine

returns

NULL.

Related

Information

The

src_err_msg_r

(“src_err_msg_r

Subroutine”

on

page

241),

srcsbuf_r

(“srcsbuf_r

Subroutine”

on

page

247),

srcsrqt_r

(“srcsrqt_r

Subroutine”

on

page

256),

srcrrqs_r

(“srcrrqs_r

Subroutine”

on

page

243),

and

srcstat_r

(“srcstat_r

Subroutine”

on

page

262)

subroutines.

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcstop

Subroutine

Purpose

Stops

a

System

Resource

Controller

(SRC)

subsystem.

Library

System

Resource

Controller

Library

(libsrc.a)

Syntax

#include

<spc.h>

srcstop(Host,

SubsystemName,

SubsystemPID,

StopType)

srcstop(ReplyLength,

ServerReply,

StopFrom)

char

*

Host,

*

SubsystemName;

int

SubsystemPID,

StopFrom;

short

StopType,

*

ReplyLength;

struct

srcrep

*

ServerReply;

Description

The

srcstop

subroutine

sends

a

stop

subsystem

request

to

a

subsystem

and

waits

for

a

stop

reply

from

the

System

Resource

Controller

(SRC)

or

the

subsystem.

The

srcstop

subroutine

can

only

stop

a

subsystem

that

was

started

by

the

SRC.

266

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

Host

Specifies

the

foreign

host

on

which

this

stop

action

is

requested.

If

the

host

is

the

null

value,

the

request

is

sent

to

the

SRC

on

the

local

host.

The

local

user

must

be

running

as

″root″.

The

remote

system

must

be

configured

to

accept

remote

System

Resource

Controller

requests.

That

is,

the

srcmstr

daemon

(see

/etc/inittab)

must

be

started

with

the

-r

flag

and

the

/etc/hosts.equiv

or

.rhosts

file

must

be

configured

to

allow

remote

requests.

SubsystemName

Specifies

the

name

of

the

subsystem

to

stop.

SubsystemPID

Specifies

the

process

ID

of

the

system

to

stop

as

returned

by

the

srcstrt

subroutine.

If

you

specify

a

null

SubsystemPID

parameter,

you

must

specify

a

SubsystemName

parameter.

StopType

Specifies

the

type

of

stop

requested

of

the

subsystem.

If

this

parameter

is

null,

a

normal

stop

is

assumed.

The

StopType

parameter

must

be

one

of

the

following

values:

CANCEL

Requires

a

quick

stop

of

the

subsystem.

The

subsystem

is

sent

a

SIGTERM

signal.

After

the

wait

time

defined

in

the

subsystem

object,

the

SRC

issues

a

SIGKILL

signal

to

the

subsystem.

This

waiting

period

allows

the

subsystem

to

clean

up

all

its

resources

and

terminate.

The

stop

reply

is

returned

by

the

SRC.

FORCE

Requests

a

quick

stop

of

the

subsystem

and

all

its

subservers.

The

stop

reply

is

returned

by

the

SRC

for

subsystems

that

use

signals

and

by

the

subsystem

for

other

communication

types.

NORMAL

Requests

the

subsystem

to

terminate

after

all

current

subsystem

activity

has

completed.

The

stop

reply

is

returned

by

the

SRC

for

subsystems

that

use

signals

and

by

the

subsystem

for

other

communication

types.

ReplyLength

Specifies

the

maximum

length,

in

bytes,

of

the

stop

reply.

On

return

from

the

srcstop

subroutine,

this

field

is

set

to

the

actual

length

of

the

subsystem

reply

packet

received.

ServerReply

Points

to

an

svrreply

structure

that

will

receive

the

subsystem

stop

reply.

StopFrom

Specifies

whether

the

srcstop

subroutine

is

to

display

stop

results

to

standard

output.

If

the

StopFrom

parameter

is

set

to

SSHELL,

the

stop

results

are

displayed

to

standard

output

and

the

srcstop

subroutine

returns

successfully.

If

the

StopFrom

parameter

is

set

to

SDAEMON,

the

stop

results

are

not

displayed

to

standard

output,

but

are

passed

back

to

the

caller.

Return

Values

Upon

successful

completion,

the

srcstop

subroutine

returns

SRC_OK

or

SRC_STPOK.

Error

Codes

The

srcstop

subroutine

fails

if

one

or

more

of

the

following

are

true:

SRC_BADFSIG

The

stop

force

signal

is

an

invalid

signal.

SRC_BADNSIG

The

stop

normal

signal

is

an

invalid

signal.

SRC_BADSOCK

The

stop

request

could

not

be

passed

to

the

subsystem

on

its

communication

socket.

SRC_DMNA

The

SRC

daemon

is

not

active.

SRC_INET_AUTHORIZED_HOST

The

local

host

is

not

in

the

remote

/etc/hosts.equiv

file.

SRC_INET_INVALID_HOST

On

the

remote

host,

the

local

host

is

not

known.

SRC_INVALID_USER

The

user

is

not

root

or

group

system.

SRC_MMRY

An

SRC

component

could

not

allocate

the

memory

it

needs.

SRC_NORPLY

The

request

timed

out

waiting

for

a

response.

SRC_NOTROOT

The

SRC

daemon

is

not

running

as

root.

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_STPG

The

request

was

not

passed

to

the

subsystem.

The

subsystem

is

stopping.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

267

SRC_SVND

The

subsystem

is

unknown

to

the

SRC

daemon.

SRC_UDP

The

remote

SRC

port

is

not

defined

in

the

/etc/services

file.

SRC_UHOST

The

foreign

host

is

not

known.

SRC_PARM

Invalid

parameter

passed.

Examples

1.

To

stop

all

instances

of

a

subsystem,

enter:

int

rc;

struct

svrreply

svrreply;

short

replen=sizeof(svrreply);

rc=srcstop("MaryC","srctest",0,FORCE,&replen,&svrreply,SDAEMON);

This

request

stops

a

subsystem

with

a

stop

type

of

FORCE

for

all

instances

of

the

subsystem

srctest

on

the

MaryC

machine

and

does

not

print

a

message

to

standard

output

about

the

status

of

the

stop.

2.

To

stop

a

single

instance

of

a

subsystem,

enter:

struct

svrreply

svrreply;

short

replen=sizeof(svrreply);

rc=srcstop("","",999,CANCEL,&replen,&svrreply,SSHELL);

This

request

stops

a

subsystem

with

a

stop

type

of

CANCEL,

with

the

process

ID

of

999

on

the

local

machine

and

prints

a

message

to

standard

output

about

the

status

of

the

stop.

Files

/etc/services

Defines

sockets

and

protocols

used

for

Internet

services.

/dev/SRC

Specifies

the

AF_UNIX

socket

file.

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)

subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259)

subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstrt

(“srcstrt

Subroutine”)

subroutine.

List

of

SRC

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Programming

Subsystem

Communication

with

the

SRC

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

srcstrt

Subroutine

Purpose

Starts

a

System

Resource

Controller

(SRC)

subsystem.

Library

System

Resource

Controller

Library

(libsrc.a)

268

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include<spc.h>

srcstrt

(Host,

SubsystemName,

Environment,

Arguments,

Restart,

StartFrom)

char

*

Host,

*

SubsystemName;

char

*

Environment,

*

Arguments;

unsigned

int

Restart;

int

StartFrom;

Description

The

srcstrt

subroutine

sends

a

start

subsystem

request

packet

and

waits

for

a

reply

from

the

System

Resource

Controller

(SRC).

Parameters

Host

Specifies

the

foreign

host

on

which

this

start

subsystem

action

is

requested.

If

the

host

is

null,

the

request

is

sent

to

the

SRC

on

the

local

host.

The

local

user

must

be

running

as

″root″.

The

remote

system

must

be

configured

to

accept

remote

System

Resource

Controller

requests.

That

is,

the

srcmstr

daemon

(see

/etc/inittab)

must

be

started

with

the

-r

flag

and

the

/etc/hosts.equiv

or

.rhosts

file

must

be

configured

to

allow

remote

requests.

SubsystemName

Specifies

the

name

of

the

subsystem

to

start.

Environment

Specifies

a

string

that

is

placed

in

the

subsystem

environment

when

the

subsystem

is

executed.

The

combined

values

of

the

Environment

and

Arguments

parameters

cannot

exceed

a

maximum

of

2400

characters.

Otherwise,

the

srcstrt

subroutine

will

fail.

The

environment

string

is

parsed

by

the

SRC

according

to

the

same

rules

used

by

the

shell.

For

example,

quoted

strings

are

passed

as

a

single

Environment

value,

and

blanks

outside

a

quoted

string

delimit

each

environment

value.

Arguments

Specifies

a

string

that

is

passed

to

the

subsystem

when

the

subsystem

is

executed.

The

string

is

parsed

from

the

command

line

and

appended

to

the

command

line

arguments

from

the

subsystem

object

class.

The

combined

values

of

the

Environment

and

Arguments

parameters

cannot

exceed

a

maximum

of

2400

characters.

Otherwise,

the

srcstrt

subroutine

will

fail.

The

command

argument

is

parsed

by

the

SRC

according

to

the

same

rules

used

by

the

shell.

For

example,

quoted

strings

are

passed

as

a

single

argument,

and

blanks

outside

a

quoted

string

delimit

each

argument.

Restart

Specifies

override

on

subsystem

restart.

If

the

Restart

parameter

is

set

to

SRCNO,

the

subsystem’s

restart

definition

from

the

subsystem

object

class

is

used.

If

the

Restart

parameter

is

set

to

SRCYES,

the

restart

of

a

subsystem

is

not

attempted

if

it

terminates

abnormally.

StartFrom

Specifies

whether

the

srcstrt

subroutine

is

to

display

start

results

to

standard

output.

If

the

StartFrom

parameter

is

set

to

SSHELL,

the

start

results

are

displayed

to

standard

output,

and

the

srcstrt

subroutine

always

returns

successfully.

If

the

StartFrom

parameter

is

set

to

SDAEMON,

the

start

results

are

not

displayed

to

standard

output

but

are

passed

back

to

the

caller.

Return

Values

When

the

StartFrom

parameter

is

set

to

SSHELL,

the

srcstrt

subroutine

returns

the

value

SRC_OK.

Otherwise,

it

returns

the

subsystem

process

ID.

Error

Codes

The

srcstrt

subroutine

fails

if

any

of

the

following

are

true:

SRC_AUDITID

The

audit

user

ID

is

invalid.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

269

SRC_DMNA

The

SRC

daemon

is

not

active.

SRC_FEXE

The

subsystem

could

not

be

forked

and

execed.

SRC_INET_AUTHORIZED_HOST

The

local

host

is

not

in

the

remote

/etc/hosts.equiv

file.

SRC_INET_INVALID_HOST

On

the

remote

host,

the

local

host

is

not

known.

SRC_INVALID_USER

The

user

is

not

root

or

group

system.

SRC_INPT

The

subsystem

standard

input

file

could

not

be

established.

SRC_MMRY

An

SRC

component

could

not

allocate

the

memory

it

needs.

SRC_MSGQ

The

subsystem

message

queue

could

not

be

created.

SRC_MULT

Multiple

instance

of

the

subsystem

are

not

allowed.

SRC_NORPLY

The

request

timed

out

waiting

for

a

response.

SRC_OUT

The

subsystem

standard

output

file

could

not

be

established.

SRC_PIPE

A

pipe

could

not

be

established

for

the

subsystem.

SRC_SERR

The

subsystem

standard

error

file

could

not

be

established.

SRC_SUBSOCK

The

subsystem

communication

socket

could

not

be

created.

SRC_SUBSYSID

The

system

user

ID

is

invalid.

SRC_SOCK

There

is

a

problem

with

SRC

socket

communications.

SRC_SVND

The

subsystem

is

unknown

to

the

SRC

daemon.

SRC_UDP

The

SRC

port

is

not

defined

in

the

/etc/services

header

file.

SRC_UHOST

The

foreign

host

is

not

known.

Examples

1.

To

start

a

subsystem

passing

the

Environment

and

Arguments

parameters,

enter:

rc=srcstrt("","srctest","HOME=/tmpTERM=ibm6155",

"-z\"thezflagargument\"",SRC_YES,SSHELL);

This

starts

the

srctest

subsystem

on

the

local

host,

placing

HOME=/tmp,

TERM=ibm6155

in

the

environment

and

using

-z

and

thezflagargument

as

two

arguments

to

the

subsystem.

This

also

displays

the

results

of

the

start

command

to

standard

output

and

allows

the

SRC

to

restart

the

subsystem

should

it

end

abnormally.

2.

To

start

a

subsystem

on

a

foreign

host,

enter:

rc=srcstrt("MaryC","srctest","","",SRC_NO,SDAEMON);

This

starts

the

srctest

subsystem

on

the

MaryC

machine.

This

does

not

display

the

results

of

the

start

command

to

standard

output

and

does

not

allow

the

SRC

to

restart

the

subsystem

should

it

end

abnormally.

Files

/etc/services

Defines

sockets

and

protocols

used

for

Internet

services.

/dev/SRC

Specifies

the

AF_UNIX

socket

file.

/dev/.SRC-unix

Specifies

the

location

for

temporary

socket

files.

Related

Information

The

srcrrqs

(“srcrrqs

Subroutine”

on

page

241)

subroutine,

srcsbuf

(“srcsbuf

Subroutine”

on

page

244)

subroutine,

srcsrpy

(“srcsrpy

Subroutine”

on

page

250)

subroutine,

srcsrqt

(“srcsrqt

Subroutine”

on

page

253)subroutine,

srcstat

(“srcstat

Subroutine”

on

page

259)

subroutine,

srcstathdr

(“srcstathdr

Subroutine”

on

page

264)

subroutine,

srcstattxt

(“srcstattxt

Subroutine”

on

page

265)

subroutine,

srcstop

(“srcstop

Subroutine”

on

page

266)

subroutine.

List

of

SRC

Subroutines,

Programming

Subsystem

Communication

with

the

SRC,

System

Resource

Controller

(SRC)

Overview

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

270

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

ssignal

or

gsignal

Subroutine

Purpose

Implements

a

software

signal

facility.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<signal.h>

void

(*ssignal

(

Signal,

Action))(

)

int

Signal;

void

(*Action)(

);

int

gsignal

(Signal)

int

Signal;

Description

Attention:

Do

not

use

the

ssignal

or

gsignal

subroutine

in

a

multithreaded

environment.

The

ssignal

and

gsignal

subroutines

implement

a

software

facility

similar

to

that

of

the

signal

and

kill

subroutines.

However,

there

is

no

connection

between

the

two

facilities.

User

programs

can

use

the

ssignal

and

gsignal

subroutines

to

handle

exceptional

processing

within

an

application.

The

signal

subroutine

and

related

subroutines

handle

system-defined

exceptions.

The

software

signals

available

are

associated

with

integers

in

the

range

1

through

16.

Other

values

are

reserved

for

use

by

the

C

library

and

should

not

be

used.

The

ssignal

subroutine

associates

the

procedure

specified

by

the

Action

parameter

with

the

software

signal

specified

by

the

Signal

parameter.

The

gsignal

subroutine

raises

the

Signal,

causing

the

procedure

specified

by

the

Action

parameter

to

be

taken.

The

Action

parameter

is

either

a

pointer

to

a

user-defined

subroutine,

or

one

of

the

constants

SIG_DFL

(default

action)

and

SIG_IGN

(ignore

signal).

The

ssignal

subroutine

returns

the

procedure

that

was

previously

established

for

that

signal.

If

no

procedure

was

established

before,

or

if

the

signal

number

is

illegal,

then

the

ssignal

subroutine

returns

the

value

of

SIG_DFL.

The

gsignal

subroutine

raises

the

signal

specified

by

the

Signal

parameter

by

doing

the

following:

v

If

the

procedure

for

the

Signal

parameter

is

SIG_DFL,

the

gsignal

subroutine

returns

a

value

of

0

and

takes

no

other

action.

v

If

the

procedure

for

the

Signal

parameter

is

SIG_IGN,

the

gsignal

subroutine

returns

a

value

of

1

and

takes

no

other

action.

v

If

the

procedure

for

the

Signal

parameter

is

a

subroutine,

the

Action

value

is

reset

to

the

SIG_DFL

procedure

and

the

subroutine

is

called,

with

the

Signal

value

passed

as

its

parameter.

The

gsignal

subroutine

returns

the

value

returned

by

the

signal-handling

routine.

v

If

the

Signal

parameter

specifies

an

illegal

value

or

if

no

procedure

is

specified

for

that

signal,

the

gsignal

subroutine

returns

a

value

of

0

and

takes

no

other

action.

Parameters

Signal

Specifies

a

signal.

Action

Specifies

a

procedure.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

271

Related

Information

The

kill

or

killpg

subroutine,

signal

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine.

statacl

or

fstatacl

Subroutine

Purpose

Retrieves

the

access

control

information

for

a

file.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/acl.h>

#include

<sys/stat.h>

int

statacl

(Path,

Command,

ACL,

ACLSize)

char

*

Path;

int

Command;

struct

acl

*

ACL;

int

ACLSize;

int

fstatacl

(FileDescriptor,

Command,

ACL,

ACLSize)

int

FileDescriptor;

int

Command;

struct

acl

*ACL;

int

ACLSize;

Description

The

statacl

and

fstatacl

subroutines

return

the

access

control

information

for

a

file

system

object.

Parameters

Path

Specifies

a

pointer

to

the

path

name

of

a

file.

FileDescriptor

Specifies

the

file

descriptor

of

an

open

file.

Command

Specifies

the

mode

of

the

path

interpretation

for

Path,

specifically

whether

to

retrieve

information

about

a

symbolic

link

or

mount

point.

Valid

values

for

the

Command

parameter

are

defined

in

the

stat.h

file

and

include:

v

STX_LINK

v

STX_MOUNT

v

STX_NORMAL

272

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

ACL

Specifies

a

pointer

to

a

buffer

to

contain

the

Access

Control

List

(ACL)

of

the

file

system

object.

The

format

of

an

ACL

is

defined

in

the

sys/acl.h

file

and

includes

the

following

members:

acl_len

Size

of

the

Access

Control

List

(ACL).

Note:

The

entire

ACL

for

a

file

cannot

exceed

one

memory

page

(4096

bytes).

acl_mode

File

mode.

Note:

The

valid

values

for

the

acl_mode

are

defined

in

the

sys/mode.h

file.

u_access

Access

permissions

for

the

file

owner.

g_access

Access

permissions

for

the

file

group.

o_access

Access

permissions

for

default

class

others.

acl_ext[

]

An

array

of

the

extended

entries

for

this

access

control

list.

The

members

for

the

base

ACL

(owner,

group,

and

others)

may

contain

the

following

bits,

which

are

defined

in

the

sys/access.h

file:

R_ACC

Allows

read

permission.

W_ACC

Allows

write

permission.

X_ACC

Allows

execute

or

search

permission.

ACLSize

Specifies

the

size

of

the

buffer

to

contain

the

ACL.

If

this

value

is

too

small,

the

first

word

of

the

ACL

is

set

to

the

size

of

the

buffer

needed.

Return

Values

On

successful

completion,

the

statacl

and

fstatacl

subroutines

return

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

statacl

subroutine

fails

if

one

or

more

of

the

following

are

true:

ENOTDIR

A

component

of

the

Path

prefix

is

not

a

directory.

ENOENT

A

component

of

the

Path

does

not

exist

or

has

the

disallow

truncation

attribute

(see

the

ulimit

subroutine).

ENOENT

The

Path

parameter

was

null.

EACCES

Search

permission

is

denied

on

a

component

of

the

Path

prefix.

EFAULT

The

Path

parameter

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

ESTALE

The

process’

root

or

current

directory

is

located

in

a

virtual

file

system

that

has

been

unmounted.

ELOOP

Too

many

symbolic

links

were

encountered

in

translating

the

Path

parameter.

ENOENT

A

symbolic

link

was

named,

but

the

file

to

which

it

refers

does

not

exist.

ENAMETOOLONG

A

component

of

the

Path

parameter

exceeded

255

characters,

or

the

entire

Path

parameter

exceeded

1023

characters.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

273

The

fstatacl

subroutine

fails

if

the

following

is

true:

EBADF

The

file

descriptor

FileDescriptor

is

not

valid.

The

statacl

or

fstatacl

subroutine

fails

if

one

or

more

of

the

following

are

true:

EFAULT

The

ACL

parameter

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

EINVAL

The

Command

parameter

is

not

a

value

of

STX_LINK,

STX_MOUNT,

STX_NORMAL.

ENOSPC

The

ACLSize

parameter

indicates

the

buffer

at

ACL

is

too

small

to

hold

the

Access

Control

List.

In

this

case,

the

first

word

of

the

buffer

is

set

to

the

size

of

the

buffer

required.

EIO

An

I/O

error

occurred

during

the

operation.

If

Network

File

System

(NFS)

is

installed

on

your

system,

the

statacl

and

fstatacl

subroutines

can

also

fail

if

the

following

is

true:

ETIMEDOUT

The

connection

timed

out.

Related

Information

The

chacl

subroutine,

stat

(“statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine”

on

page

277)

subroutine.

The

acl_chg

subroutine,

acl_get

subroutine,

acl_put

subroutine,

acl_set

subroutine.

The

aclget

command,

aclput

command,

chmod

command.

List

of

Security

and

Auditing

Subroutines

and

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

statfs,

fstatfs,

or

ustat

Subroutine

Purpose

Gets

file

system

statistics.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/statfs.h>

int

statfs

(

Path,

StatusBuffer)

char

*Path;

struct

statfs

*StatusBuffer;

int

fstatfs

(

FileDescriptor,

StatusBuffer)

int

FileDescriptor;

struct

statfs

*StatusBuffer;

#include

<sys/types.h>

#include

<ustat.h>

274

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

ustat

(

Device,

Buffer)

dev_t

Device;

struct

ustat

*Buffer;

Description

The

statfs

and

fstatfs

subroutines

return

information

about

the

mounted

file

system

that

contains

the

file

named

by

the

Path

or

FileDescriptor

parameters.

The

returned

information

is

in

the

format

of

a

statfs

structure,

described

in

the

sys/statfs.h

file.

The

ustat

subroutine

also

returns

information

about

a

mounted

file

system

identified

by

Device.

This

device

identifier

is

for

any

given

file

and

can

be

determined

by

examining

the

st_dev

field

of

the

stat

structure

defined

in

the

sys/stat.h

file.

The

returned

information

is

in

the

format

of

a

ustat

structure,

described

in

the

ustat.h

file.

The

ustat

subroutine

is

superseded

by

the

statfs

and

fstatfs

subroutines.

Use

one

of

these

(statfs

and

fstatfs)

subroutines

instead.

Parameters

Path

The

path

name

of

any

file

within

the

mounted

file

system.

FileDescriptor

A

file

descriptor

obtained

by

a

successful

open

or

fcntl

subroutine.

A

file

descriptor

is

a

small

positive

integer

used

instead

of

a

file

name.

StatusBuffer

A

pointer

to

a

statfs

buffer

for

the

returned

information

from

the

statfs

or

fstatfs

subroutine.

Device

The

ID

of

the

device.

It

corresponds

to

the

st_rdev

field

of

the

structure

returned

by

the

stat

subroutine.

The

stat

subroutine

and

the

sys/stat.h

file

provide

more

information

about

the

device

driver.

Buffer

A

pointer

to

a

ustat

buffer

to

hold

the

returned

information.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

statfs,

fstatfs,

and

ustat

subroutines

fail

if

the

following

is

true:

EFAULT

The

Buffer

parameter

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

The

fstatfs

subroutine

fails

if

the

following

is

true:

EBADF

The

FileDescriptor

parameter

is

not

a

valid

file

descriptor.

EIO

An

I/O

error

occurred

while

reading

from

the

file

system.

The

statfs

subroutine

can

be

unsuccessful

for

other

reasons.

For

a

list

of

additional

errors,

see

″Base

Operating

System

Error

Codes

For

Services

That

Require

Path-Name

Resolution″.

Related

Information

The

stat

(“statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine”

on

page

277)

subroutine.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

275

statvfs

or

fstatvfs

Subroutine

Purpose

Returns

information

about

a

file

system.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/statvfs.h>

int

statvfs

(

Path,

Buf)

const

char

*Path;

struct

statvfs

*Buf;

int

fstatvfs

(

Fildes,

Buf)

int

Fildes;

struct

statvfs

*Buf;

Description

The

statvfs

and

fstatvfs

subroutines

return

descriptive

information

about

a

mounted

file

system

containing

the

file

referenced

by

the

Path

or

Fildes

parameters.

The

Buf

parameter

is

a

pointer

to

a

structure

which

will

by

filled

by

the

subroutine

call.

The

Path

and

Fildes

parameters

must

reference

a

file

which

resides

on

the

file

system.

Read,

write,

or

execute

permission

of

the

named

file

is

not

required,

but

all

directories

listed

in

the

pathname

leading

to

the

file

must

be

searchable.

Parameters

Path

The

path

name

identifying

the

file.

Buf

A

pointer

to

a

statvfs

structure

in

which

information

is

returned.

The

statvfs

structure

is

described

in

the

sys/statvfs.h

header

file.

Fildes

The

file

descriptor

identifying

the

open

file.

Return

Values

0

Successful

completion.

-1

Not

successful

and

errno

set

to

one

of

the

following.

Error

Codes

EACCES

Search

permission

is

denied

on

a

component

of

the

path.

EBADF

The

file

referred

to

by

the

Fildes

parameter

is

not

an

open

file

descriptor.

EIO

An

I/O

error

occurred

while

reading

from

the

filesystem.

ELOOP

Too

many

symbolic

links

encountered

in

translating

path.

ENAMETOOLONG

The

length

of

the

pathname

exceeds

PATH_MAX,

or

name

component

is

longer

than

NAME_MAX.

ENOENT

The

file

referred

to

by

the

Path

parameter

does

not

exist.

ENOMEM

A

memory

allocation

failed

during

information

retrieval.

276

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

ENOTDIR

A

component

of

the

Path

parameter

prefix

is

not

a

directory.

EOVERFLOW

One

of

the

values

to

be

returned

cannot

be

represented

correctly

in

the

structure

pointed

to

by

buf.

Related

Information

The

stat

(“statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine”)

subroutine,

statfs

(“statfs,

fstatfs,

or

ustat

Subroutine”

on

page

274)

subroutine.

statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine

Purpose

Provides

information

about

a

file.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/stat.h>

int

stat

(

Path,

Buffer)

const

char

*Path;

struct

stat

*Buffer;

int

lstat

(Path,

Buffer)

const

char

*Path;

struct

stat

*Buffer;

int

fstat

(

FileDescriptor,

Buffer)

int

FileDescriptor;

struct

stat

*Buffer;

int

statx

(Path,

Buffer,

Length,

Command)

char

*Path;

struct

stat

*Buffer;

int

Length;

int

Command;

int

fstatx

(FileDescriptor,

Buffer,

Length,

Command)

int

FileDescriptor;

struct

stat

*Buffer;

int

Length;

int

Command;

#include

<sys/fullstat.h>

int

fullstat

(Path,

Command,

Buffer)

struct

fullstat

*Buffer;

char

*Path;

int

Command;

int

ffullstat

(FileDescriptor,

Command,

Buffer)

struct

fullstat

*Buffer;

int

FileDescriptor;

int

Command;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

277

int

stat64

(

Path,

Buffer)

const

char

*Path;

struct

stat64

*Buffer;

int

lstat64

(Path,

Buffer)

const

char

*Path;

struct

stat64

*Buffer;

int

fstat64

(

FileDescriptor,

Buffer)

int

FileDescriptor;

struct

stat64

*Buffer;

Description

The

stat

subroutine

obtains

information

about

the

file

named

by

the

Path

parameter.

Read,

write,

or

execute

permission

for

the

named

file

is

not

required,

but

all

directories

listed

in

the

path

leading

to

the

file

must

be

searchable.

The

file

information,

which

is

a

subset

of

the

stat

structure,

is

written

to

the

area

specified

by

the

Buffer

parameter.

The

lstat

subroutine

obtains

information

about

a

file

that

is

a

symbolic

link.

The

lstat

subroutine

returns

information

about

the

link,

while

the

stat

subroutine

returns

information

about

the

file

referenced

by

the

link.

The

fstat

subroutine

obtains

information

about

the

open

file

referenced

by

the

FileDescriptor

parameter.

The

fstatx

subroutine

obtains

information

about

the

open

file

referenced

by

the

FileDescriptor

parameter,

as

in

the

fstat

subroutine.

The

st_mode,

st_dev,

st_uid,

st_gid,

st_atime,

st_ctime,

and

st_mtime

fields

of

the

stat

structure

have

meaningful

values

for

all

file

types.

The

statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

or

ffullstat

subroutine

sets

the

st_nlink

field

to

a

value

equal

to

the

number

of

links

to

the

file.

The

statx

subroutine

obtains

a

greater

set

of

file

information

than

the

stat

subroutine.

The

Path

parameter

is

processed

differently,

depending

on

the

contents

of

the

Command

parameter.

The

Command

parameter

provides

the

ability

to

collect

information

about

symbolic

links

(as

with

the

lstat

subroutine)

as

well

as

information

about

mount

points

and

hidden

directories.

The

statx

subroutine

returns

the

amount

of

information

specified

by

the

Length

parameter.

The

fullstat

and

ffullstat

subroutines

are

interfaces

maintained

for

backward

compatibility.

With

the

exception

of

some

field

names,

the

fullstat

structure

is

identical

to

the

stat

structure.

The

stat64,

lstat64,

and

fstat64

subroutines

are

similar

to

the

stat,

lstat,

fstat

subroutines

except

that

they

return

file

information

in

a

stat64

structure

instead

of

a

stat

structure.

The

information

is

identical

except

that

the

st_size

field

is

defined

to

be

a

64-bit

size.

This

allows

stat64,

lstat64,

and

fstat64

to

return

file

sizes

which

are

greater

than

OFF_MAX

(2

gigbytes

minus

1).

In

the

large

file

enabled

programming

environment,

stat

is

redefined

to

be

stat64,

lstat

is

redefined

to

be

lstat64

and

fstat

is

redefined

to

be

fstat64.

Parameters

Path

Specifies

the

path

name

identifying

the

file.

This

name

is

interpreted

differently

depending

on

the

interface

used.

FileDescriptor

Specifies

the

file

descriptor

identifying

the

open

file.

Buffer

Specifies

a

pointer

to

the

stat

structure

in

which

information

is

returned.

The

stat

structure

is

described

in

the

sys/stat.h

file.

278

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Length

Indicates

the

amount

of

information,

in

bytes,

to

be

returned.

Any

value

between

0

and

the

value

returned

by

the

STATXSIZE

macro,

inclusive,

may

be

specified.

The

following

macros

may

be

used:

STATSIZE

Specifies

the

subset

of

the

stat

structure

that

is

normally

returned

for

a

stat

call.

FULLSTATSIZE

Specifies

the

subset

of

the

stat

(fullstat)

structure

that

is

normally

returned

for

a

fullstat

call.

STATXSIZE

Specifies

the

complete

stat

structure.

0

specifies

the

complete

stat

structure,

as

if

STATXSIZE

had

been

specified.

Command

Specifies

a

processing

option.

For

the

statx

subroutine,

the

Command

parameter

determines

how

to

interpret

the

path

name

provided,

specifically,

whether

to

retrieve

information

about

a

symbolic

link,

hidden

directory,

or

mount

point.

Flags

can

be

combined

by

logically

ORing

them

together.

The

following

options

are

possible

values:

STX_LINK

If

the

Command

parameter

specifies

the

STX_LINK

flag

and

the

Path

parameter

is

a

path

name

that

refers

to

a

symbolic

link,

the

statx

subroutine

returns

information

about

the

symbolic

link.

If

the

STX_LINK

flag

is

not

specified,

the

statx

subroutine

returns

information

about

the

file

to

which

the

link

refers.

If

the

Command

parameter

specifies

the

STX_LINK

flag

and

the

Path

value

refers

to

a

symbolic

link,

the

st_mode

field

of

the

returned

stat

structure

indicates

that

the

file

is

a

symbolic

link.

STX_HIDDEN

If

the

Command

parameter

specifies

the

STX_HIDDEN

flag

and

the

Path

value

is

a

path

name

that

refers

to

a

hidden

directory,

the

statx

subroutine

returns

information

about

the

hidden

directory.

If

the

STX_HIDDEN

flag

is

not

specified,

the

statx

subroutine

returns

information

about

a

subdirectory

of

the

hidden

directory.

If

the

Command

parameter

specifies

the

STX_HIDDEN

flag

and

Path

refers

to

a

hidden

directory,

the

st_mode

field

of

the

returned

stat

structure

indicates

that

this

is

a

hidden

directory.

STX_MOUNT

If

the

Command

parameter

specifies

the

STX_MOUNT

flag

and

the

Path

value

is

the

name

of

a

file

or

directory

that

has

been

mounted

over,

the

statx

subroutine

returns

information

about

the

mounted-over

file.

If

the

STX_MOUNT

flag

is

not

specified,

the

statx

subroutine

returns

information

about

the

mounted

file

or

directory

(the

root

directory

of

a

virtual

file

system).

If

the

Command

parameter

specifies

the

STX_MOUNT

flag,

the

FS_MOUNT

bit

in

the

st_flag

field

of

the

returned

stat

structure

is

set

if,

and

only

if,

this

file

is

mounted

over.

If

the

Command

parameter

does

not

specify

the

STX_MOUNT

flag,

the

FS_MOUNT

bit

in

the

st_flag

field

of

the

returned

stat

structure

is

set

if,

and

only

if,

this

file

is

the

root

directory

of

a

virtual

file

system.

STX_NORMAL

If

the

Command

parameter

specifies

the

STX_NORMAL

flag,

then

no

special

processing

is

performed

on

the

Path

value.

This

option

should

be

used

when

STX_LINK,

STX_HIDDEN,

and

STX_MOUNT

flags

are

not

desired.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

279

For

the

fstatx

subroutine,

there

are

currently

no

special

processing

options.

The

only

valid

value

for

the

Command

parameter

is

the

STX_NORMAL

flag.

For

the

fullstat

and

ffullstat

subroutines,

the

Command

parameter

may

specify

the

FL_STAT

flag,

which

is

equivalent

to

the

STX_NORMAL

flag,

or

the

FL_NOFOLLOW

flag,

which

is

equivalent

to

STX_LINK

flag.

STX_64

If

the

Command

parameter

specifies

the

STX_64

flag

and

the

file

size

is

greater

than

OFF_MAX,

then

statx

succeeds

and

returns

the

file

size.

Otherwise,

statx

fails

and

sets

the

errno

to

EOVERFLOW.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

stat,

lstat,

statx,

and

fullstat

subroutines

are

unsuccessful

if

one

or

more

of

the

following

are

true:

EACCES

Search

permission

is

denied

for

one

component

of

the

path

prefix.

ENAMETOOLONG

The

length

of

the

path

prefix

exceeds

the

PATH_MAX

flag

value

or

a

path

name

is

longer

than

the

NAME_MAX

flag

value

while

the

POSIX_NO_TRUNC

flag

is

in

effect.

ENOTDIR

A

component

of

the

path

prefix

is

not

a

directory.

EFAULT

Either

the

Path

or

the

Buffer

parameter

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

ENOENT

The

file

named

by

the

Path

parameter

does

not

exist.

EOVERFLOW

The

size

of

the

file

is

larger

than

can

be

represented

in

the

stat

structure

pointed

to

by

the

Buffer

parameter.

The

stat,

lstat,

statx,

and

fullstat

subroutines

can

be

unsuccessful

for

other

reasons.

See

″Base

Operating

System

Error

Codes

for

Services

that

Require

Path-Name

Resolution″

for

a

list

of

additional

errors.

The

fstat,

fstatx,

and

ffullstat

subroutines

fail

if

one

or

more

of

the

following

are

true:

EBADF

The

FileDescriptor

parameter

is

not

a

valid

file

descriptor.

EFAULT

The

Buffer

parameter

points

to

a

location

outside

the

allocated

address

space

of

the

process.

EIO

An

input/output

(I/O)

error

occurred

while

reading

from

the

file

system.

The

statx

and

fstatx

subroutines

are

unsuccessful

if

one

or

more

of

the

following

are

true:

EINVAL

The

Length

value

is

not

between

0

and

the

value

returned

by

the

STATSIZE

macro,

inclusive.

EINVAL

The

Command

parameter

contains

an

unacceptable

value.

Files

/usr/include/sys/fullstat.h

Contains

the

fullstat

structure.

/usr/include/sys/mode.h

Defines

values

on

behalf

of

the

stat.h

file.

280

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

chmod

subroutine,

chown

subroutine,

link

subroutine,

mknod

subroutine,

mount

(“vmount

or

mount

Subroutine”

on

page

436)

subroutine,

openx,

open,

or

creat

subroutine,

pipe

subroutine,

symlink

(“symlink

Subroutine”

on

page

308)

subroutine,

vtimes

subroutine.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

Subroutine

Purpose

Copies

and

appends

strings

in

memory.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

char

*

strcat

(

String1,

String2)

char

*String1;

const

char

*String2;

char

*

strncat

(String1,

String2,

Number)

char

*String1;

const

char

*String2;

size_t

Number;

size_t

strxfrm

(String1,

String2,

Number)

char

*String1;

const

char

*String2;

size_t

Number;

char

*

strcpy

(String1,

String2)

char

*String1;

const

char

*String2;

char

*

strncpy

(String1,

String2,

Number)

char

*String1;

const

char

*String2;

size_t

Number;

char

*

strdup

(String1)

const

char

*String1;

Description

The

strcat,

strncat,

strxfrm,

strcpy,

strncpy,

and

strdup

subroutines

copy

and

append

strings

in

memory.

The

String1

and

String2

parameters

point

to

strings.

A

string

is

an

array

of

characters

terminated

by

a

null

character.

The

strcat,

strncat,

strcpy,

and

strncpy

subroutines

all

alter

the

string

in

the

String1

parameter.

However,

they

do

not

check

for

overflow

of

the

array

to

which

the

String1

parameter

points.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

281

String

movement

is

performed

on

a

character-by-character

basis

and

starts

at

the

left.

Overlapping

moves

toward

the

left

work

as

expected,

but

overlapping

moves

to

the

right

may

give

unexpected

results.

All

of

these

subroutines

are

declared

in

the

string.h

file.

The

strcat

subroutine

adds

a

copy

of

the

string

pointed

to

by

the

String2

parameter

to

the

end

of

the

string

pointed

to

by

the

String1

parameter.

The

strcat

subroutine

returns

a

pointer

to

the

null-terminated

result.

The

strncat

subroutine

copies

a

number

of

bytes

specified

by

the

Number

parameter

from

the

String2

parameter

to

the

end

of

the

string

pointed

to

by

the

String1

parameter.

The

subroutine

stops

copying

before

the

end

of

the

number

of

bytes

specified

by

the

Number

parameter

if

it

encounters

a

null

character

in

the

String2

parameter’s

string.

The

strncat

subroutine

returns

a

pointer

to

the

null-terminated

result.

The

strncat

subroutine

returns

the

value

of

the

String1

parameter.

The

strxfrm

subroutine

transforms

the

string

pointed

to

by

the

String2

parameter

and

places

it

in

the

array

pointed

to

by

the

String1

parameter.

The

strxfrm

subroutine

transforms

the

entire

string

if

possible,

but

places

no

more

than

the

number

of

bytes

specified

by

the

Number

parameter

in

the

array

pointed

to

by

the

String1

parameter.

Consequently,

if

the

Number

parameter

has

a

value

of

0,

the

String1

parameter

can

be

a

null

pointer.

The

strxfrm

subroutine

returns

the

length

of

the

transformed

string,

not

including

the

terminating

null

byte.

If

the

returned

value

is

equal

to

or

more

than

that

of

the

Number

parameter,

the

contents

of

the

array

pointed

to

by

the

String1

parameter

are

indeterminable.

If

the

number

of

bytes

specified

by

the

Number

parameter

is

0,

the

strxfrm

subroutine

returns

the

length

required

to

store

the

transformed

string,

not

including

the

terminating

null

byte.

The

strxfrm

subroutine

is

determined

by

the

LC_COLLATE

category.

The

strcpy

subroutine

copies

the

string

pointed

to

by

the

String2

parameter

to

the

character

array

pointed

to

by

the

String1

parameter.

Copying

stops

after

the

null

character

is

copied.

The

strcpy

subroutine

returns

the

value

of

the

String1

parameter,

if

successful.

Otherwise,

a

null

pointer

is

returned.

The

strncpy

subroutine

copies

the

number

of

bytes

specified

by

the

Number

parameter

from

the

string

pointed

to

by

the

String2

parameter

to

the

character

array

pointed

to

by

the

String1

parameter.

If

the

String2

parameter

value

is

less

than

the

specified

number

of

characters,

then

the

strncpy

subroutine

pads

the

String1

parameter

with

trailing

null

characters

to

a

number

of

bytes

equaling

the

value

of

the

Number

parameter.

If

the

String2

parameter

is

exactly

the

specified

number

of

characters

or

more,

then

only

the

number

of

characters

specified

by

the

Number

parameter

are

copied

and

the

result

is

not

terminated

with

a

null

byte.

The

strncpy

subroutine

returns

the

value

of

the

String1

parameter.

The

strdup

subroutine

returns

a

pointer

to

a

new

string,

which

is

a

duplicate

of

the

string

pointed

to

by

the

String1

parameter.

Space

for

the

new

string

is

obtained

by

using

the

malloc

subroutine.

A

null

pointer

is

returned

if

the

new

string

cannot

be

created.

Parameters

Number

Specifies

the

number

of

bytes

in

a

string

to

be

copied

or

transformed.

String1

Points

to

a

string

to

which

the

specified

data

is

copied

or

appended.

String2

Points

to

a

string

which

contains

the

data

to

be

copied,

appended,

or

transformed.

Error

Codes

The

strcat,

strncat,

strxfrm,

strcpy,

strncpy,

and

strdup

subroutines

fail

if

the

following

occurs:

EFAULT

A

string

parameter

is

an

invalid

address.

282

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

In

addition,

the

strxfrm

subroutine

fails

if:

EINVAL

A

string

parameter

contains

characters

outside

the

domain

of

the

collating

sequence.

Related

Information

The

memccpy,

memchr,

memcmp,

memcpy,

or

memmove

subroutine,

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine,

strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

(“strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

Subroutine”)

subroutine,

strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

or

strtok

(“strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

strtok,

or

strsep

Subroutine”

on

page

291)

subroutine,

swab

(“swab

Subroutine”

on

page

304)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

and

List

of

String

Manipulation

Services

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview,

Multibyte

and

Wide

Character

String

Collation

Subroutines,

and

Multibyte

and

Wide

Character

String

Comparison

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference

strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

Subroutine

Purpose

Compares

strings

in

memory.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

int

strcmp

(

String1,

String2)

const

char

*String1,

*String2;

int

strncmp

(String1,

String2,

Number)

const

char

*String1,

*String2;

size_t

Number;

int

strcoll

(String1,

String2)

const

char

*String1,

*String2;

#include

<strings.h>

int

strcasecmp

(String1,

String2)

const

char

*String1,

*String2;

int

strncasecmp

(String1,

String2,

Number)

const

char

*String1,

*String2;

size_t

Number;

Description

The

strcmp,

strncmp,

strcasecmp,

strncasecmp,

and

strcoll

subroutines

compare

strings

in

memory.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

283

The

String1

and

String2

parameters

point

to

strings.

A

string

is

an

array

of

characters

terminated

by

a

null

character.

The

strcmp

subroutine

performs

a

case-sensitive

comparison

of

the

string

pointed

to

by

the

String1

parameter

and

the

string

pointed

to

by

the

String2

parameter,

and

analyzes

the

extended

ASCII

character

set

values

of

the

characters

in

each

string.

The

strcmp

subroutine

compares

unsigned

char

data

types.

The

strcmp

subroutine

then

returns

a

value

that

is:

v

Less

than

0

if

the

value

of

string

String1

is

lexicographically

less

than

string

String2.

v

Equal

to

0

if

the

value

of

string

String1

is

lexicographically

equal

to

string

String2.

v

Greater

than

0

if

the

value

of

string

String1

is

lexicographically

greater

than

string

String2.

The

strncmp

subroutine

makes

the

same

comparison

as

the

strcmp

subroutine,

but

compares

up

to

the

maximum

number

of

pairs

of

bytes

specified

by

the

Number

parameter.

The

strcasecmp

subroutine

performs

a

character-by-character

comparison

similar

to

the

strcmp

subroutine.

However,

the

strcasecmp

subroutine

is

not

case-sensitive.

Uppercase

and

lowercase

letters

are

mapped

to

the

same

character

set

value.

The

sum

of

the

mapped

character

set

values

of

each

string

is

used

to

return

a

value

that

is:

v

Less

than

0

if

the

value

of

string

String1

is

lexicographically

less

than

string

String2.

v

Equal

to

0

if

the

value

of

string

String1

is

lexicographically

equal

to

string

String2.

v

Greater

than

0

if

the

value

of

string

String1

is

lexicographically

greater

than

string

String2.

The

strncasecmp

subroutine

makes

the

same

comparison

as

the

strcasecmp

subroutine,

but

compares

up

to

the

maximum

number

of

pairs

of

bytes

specified

by

the

Number

parameter.

Note:

Both

the

strcasecmp

and

strncasecmp

subroutines

only

work

with

7-bit

ASCII

characters.

The

strcoll

subroutine

works

the

same

as

the

strcmp

subroutine,

except

that

the

comparison

is

based

on

a

collating

sequence

determined

by

the

LC_COLLATE

category.

If

the

strcmp

subroutine

is

used

on

transformed

strings,

it

returns

the

same

result

as

the

strcoll

subroutine

for

the

corresponding

untransformed

strings.

Parameters

Number

The

number

of

bytes

in

a

string

to

be

examined.

String1

Points

to

a

string

which

is

compared.

String2

Points

to

a

string

which

serves

as

the

source

for

comparison.

Error

Codes

The

strcmp,

strncmp,

strcasecmp,

strncasecmp,

and

strcoll

subroutines

fail

if

the

following

occurs:

EFAULT

A

string

parameter

is

an

invalid

address.

In

addition,

the

strcoll

subroutine

fails

if:

EINVAL

A

string

parameter

contains

characters

outside

the

domain

of

the

collating

sequence.

Related

Information

The

memccpy,

memchr,

memcmp,

memcpy,

or

memmove

subroutine,

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine,

strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

(“strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

Subroutine”

on

page

281)

subroutine,

strlen,

strchr,

strrchr,

strpbrk,

strspn,

284

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

strcspn,

strstr,

or

strtok

(“strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

strtok,

or

strsep

Subroutine”

on

page

291)

subroutine,

swab

(“swab

Subroutine”

on

page

304)

subroutine.

List

of

String

Manipulation

Subroutines

and

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview,

Multibyte

and

Wide

Character

String

Collation

Subroutines,

and

Multibyte

and

Wide

Character

String

Comparison

Subroutines

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference

strerror

Subroutine

Purpose

Maps

an

error

number

to

an

error

message

string.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

char

*strerror

(

ErrorNumber)

int

ErrorNumber;

Description

Attention:

Do

not

use

the

strerror

subroutine

in

a

multithreaded

environment.

The

strerror

subroutine

maps

the

error

number

in

the

ErrorNumber

parameter

to

the

error

message

string.

The

strerror

subroutine

retrieves

an

error

message

based

on

the

current

value

of

the

LC_MESSAGES

category.

If

the

specified

message

catalog

cannot

be

opened,

the

default

message

is

returned.

The

returned

message

does

not

contain

a

new

line

(″\n″).

Parameters

ErrorNumber

Specifies

the

error

number

to

be

associated

with

the

error

message.

Return

Values

The

strerror

subroutine

returns

a

pointer

to

the

error

message.

Related

Information

The

perror

subroutine.

The

clearerr

macro,

feof

macro,

ferror

macro,

fileno

macro.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

285

strfmon

Subroutine

Purpose

Formats

monetary

strings.

Library

Standard

C

Library

(libc.

a)

Syntax

#include

<monetary.h>

ssize_t

strfmon

(

S,

MaxSize,

Format,

...)

char

*S;

size_t

MaxSize;

const

char

*Format,

...;

Description

The

strfmon

subroutine

converts

numeric

values

to

monetary

strings

according

to

the

specifications

in

the

Format

parameter.

This

parameter

also

contains

numeric

values

to

be

converted.

Characters

are

placed

into

the

S

array,

as

controlled

by

the

Format

parameter.

The

LC_MONETARY

category

governs

the

format

of

the

conversion.

The

strfmon

subroutine

can

be

called

multiple

times

by

including

additional

format

structures,

as

specified

by

the

Format

parameter.

The

Format

parameter

specifies

a

character

string

that

can

contain

plain

characters

and

conversion

specifications.

Plain

characters

are

copied

to

the

output

stream.

Conversion

specifications

result

in

the

fetching

of

zero

or

more

arguments,

which

are

converted

and

formatted.

If

there

are

insufficient

arguments

for

the

Format

parameter,

the

results

are

undefined.

If

arguments

remain

after

the

Format

parameter

is

exhausted,

the

excess

arguments

are

ignored.

A

conversion

specification

consists

of

the

following

items

in

the

following

order:

a

%

(percent

sign),

optional

flags,

optional

field

width,

optional

left

precision,

optional

right

precision,

and

a

required

conversion

character

that

determines

the

conversion

to

be

performed.

Parameters

S

Contains

the

output

of

the

strfmon

subroutine.

MaxSize

Specifies

the

maximum

number

of

bytes

(including

the

null

terminating

byte)

that

may

be

placed

in

the

S

parameter.

Format

Contains

characters

and

conversion

specifications.

Flags

One

or

more

of

the

following

flags

can

be

specified

to

control

the

conversion:

=f

An

=

(equal

sign)

followed

by

a

single

character

that

specifies

the

numeric

fill

character.

The

default

numeric

fill

character

is

the

space

character.

This

flag

does

not

affect

field-width

filling,

which

always

uses

the

space

character.

This

flag

is

ignored

unless

a

left

precision

is

specified.

^

Does

not

use

grouping

characters

when

formatting

the

currency

amount.

The

default

is

to

insert

grouping

characters

if

defined

for

the

current

locale.

286

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

+

or

(

Determines

the

representation

of

positive

and

negative

currency

amounts.

Only

one

of

these

flags

may

be

specified.

The

locale’s

equivalent

of

+

(plus

sign)

and

-

(negative

sign)

are

used

if

+

is

specified.

The

locale’s

equivalent

of

enclosing

negative

amounts

within

parentheses

is

used

if

(

(left

parenthesis)

is

specified.

If

neither

flag

is

included,

a

default

specified

by

the

current

locale

is

used.

-

Left-justifies

all

fields

(pads

to

the

right).

The

default

is

right-justification.

!

Suppresses

the

currency

symbol

from

the

output

conversion.

Field

Width

w

The

decimal-digit

string

w

specifies

the

minimum

field

width

in

which

the

result

of

the

conversion

is

right-justified.

If

-w

is

specified,

the

result

is

left-justified.

The

default

is

a

value

of

0.

Left

Precision

#n

A

#

(pound

sign)

followed

by

a

decimal-digit

string,

n,

specifies

the

maximum

number

of

digits

to

be

formatted

to

the

left

of

the

radix

character.

This

option

can

be

specified

to

keep

formatted

output

from

multiple

calls

to

the

strfmon

subroutine

aligned

in

the

same

columns.

It

can

also

be

used

to

fill

unused

positions

with

a

special

character

(for

example,

$***123.45).

This

option

causes

an

amount

to

be

formatted

as

if

it

has

the

number

of

digits

specified

by

the

n

variable.

If

more

than

n

digit

positions

are

required,

this

option

is

ignored.

Digit

positions

in

excess

of

those

required

are

filled

with

the

numeric

fill

character

set

with

the

=f

flag.

If

defined

for

the

current

locale

and

not

suppressed

with

the

^

flag,

the

subroutine

inserts

grouping

characters

before

fill

characters

(if

any).

Grouping

characters

are

not

applied

to

fill

characters,

even

if

the

fill

character

is

a

digit.

In

the

example:

$0000001,234.56

grouping

characters

do

not

appear

after

the

first

or

fourth

0

from

the

left.

To

ensure

alignment,

any

characters

appearing

before

or

after

the

number

in

the

formatted

output,

such

as

currency

or

sign

symbols,

are

padded

as

necessary

with

space

characters

to

make

their

positive

and

negative

formats

equal

in

length.

Right

Precision

.p

A

.

(period)

followed

by

a

decimal

digit

string,

p,

specifies

the

number

of

digits

after

the

radix

character.

If

the

value

of

the

p

variable

is

0,

no

radix

character

is

used.

If

a

right

precision

is

not

specified,

a

default

specified

by

the

current

locale

is

use.

The

amount

being

formatted

is

rounded

to

the

specified

number

of

digits

prior

to

formatting.

Conversion

Characters

i

The

double

argument

is

formatted

according

to

the

current

locale’s

international

currency

format;

for

example,

in

the

U.S.:

1,234.56.

n

The

double

argument

is

formatted

according

to

the

current

locale’s

national

currency

format;

for

example,

in

the

U.S.:

$1,234.56.

%

No

argument

is

converted;

the

conversion

specification

%%

is

replaced

by

a

single

%.

Return

Values

If

successful,

and

if

the

number

of

resulting

bytes

(including

the

terminating

null

character)

is

not

more

than

the

number

of

bytes

specified

by

the

MaxSize

parameter,

the

strfmon

subroutine

returns

the

number

of

bytes

placed

into

the

array

pointed

to

by

the

S

parameter

(not

including

the

terminating

null

byte).

Otherwise,

a

value

of

-1

is

returned

and

the

contents

of

the

S

array

are

indeterminate.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

287

Error

Codes

The

strfmon

subroutine

may

fail

if

the

following

is

true:

E2BIG

Conversion

stopped

due

to

lack

of

space

in

the

buffer.

Related

Information

The

scanf

(“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109)

subroutine,

strftime

(“strftime

Subroutine”)

subroutine,

strptime

(“strptime

Subroutine”

on

page

300)

subroutine,

wcsftime

(“wcsftime

Subroutine”

on

page

448)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

List

of

Time

and

Monetary

Formatting

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

strftime

Subroutine

Purpose

Formats

time

and

date.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<time.h>

size_t

strftime

(

String,

Length,

Format,

TmDate)

char

*String;

size_t

Length;

const

char

*Format;

const

struct

tm

*TmDate;

Description

The

strftime

subroutine

converts

the

internal

time

and

date

specification

of

the

tm

structure,

which

is

pointed

to

by

the

TmDate

parameter,

into

a

character

string

pointed

to

by

the

String

parameter

under

the

direction

of

the

format

string

pointed

to

by

the

Format

parameter.

The

actual

values

for

the

format

specifiers

are

dependent

on

the

current

settings

for

the

LC_TIME

category.

The

tm

structure

values

may

be

assigned

by

the

user

or

generated

by

the

localtime

or

gmtime

subroutine.

The

resulting

string

is

similar

to

the

result

of

the

printf

Format

parameter,

and

is

placed

in

the

memory

location

addressed

by

the

String

parameter.

The

maximum

length

of

the

string

is

determined

by

the

Length

parameter

and

terminates

with

a

null

character.

Many

conversion

specifications

are

the

same

as

those

used

by

the

date

command.

The

interpretation

of

some

conversion

specifications

is

dependent

on

the

current

locale

of

the

process.

The

Format

parameter

is

a

character

string

containing

two

types

of

objects:

plain

characters

that

are

simply

placed

in

the

output

string,

and

conversion

specifications

that

convert

information

from

the

TmDate

parameter

into

readable

form

in

the

output

string.

Each

conversion

specification

is

a

sequence

of

this

form:

%

type

v

A

%

(percent

sign)

introduces

a

conversion

specification.

288

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

The

type

of

conversion

is

specified

by

one

or

two

conversion

characters.

The

characters

and

their

meanings

are:

%a

Represents

the

locale’s

abbreviated

weekday

name

(for

example,

Sun)

defined

by

the

abday

statement

in

the

LC_TIME

category.

%A

Represents

the

locale’s

full

weekday

name

(for

example,

Sunday)

defined

by

the

day

statement

in

the

LC_TIME

category.

%b

Represents

the

locale’s

abbreviated

month

name

(for

example,

Jan)

defined

by

the

abmon

statement

in

the

LC_TIME

category.

%B

Represents

the

locale’s

full

month

name

(for

example,

January)

defined

by

the

mon

statement

in

the

LC_TIME

category.

%c

Represents

the

locale’s

date

and

time

format

defined

by

the

d_t_fmt

statement

in

the

LC_TIME

category.

%C

Represents

the

century

number

(the

year

divided

by

100

and

truncated

to

an

integer)

as

a

decimal

number

(00

through

99).

%d

Represents

the

day

of

the

month

as

a

decimal

number

(01

to

31).

%D

Represents

the

date

in

%m/%d/%y

format

(for

example,

01/31/91).

%e

Represents

the

day

of

the

month

as

a

decimal

number

(01

to

31).

The

%e

field

descriptor

uses

a

two-digit

field.

If

the

day

of

the

month

is

not

a

two-digit

number,

the

leading

digit

is

filled

with

a

space

character.

%E

Represents

the

locale’s

combined

alternate

era

year

and

name,

respectively,

in

%o

%N

format.

%h

Represents

the

locale’s

abbreviated

month

name

(for

example,

Jan)

defined

by

the

abmon

statement

in

the

LC_TIME

category.

This

field

descriptor

is

a

synonym

for

the

%b

field

descriptor.

%H

Represents

the

24-hour-clock

hour

as

a

decimal

number

(00

to

23).

%I

Represents

the

12-hour-clock

hour

as

a

decimal

number

(01

to

12).

%j

Represents

the

day

of

the

year

as

a

decimal

number

(001

to

366).

%m

Represents

the

month

of

the

year

as

a

decimal

number

(01

to

12).

%M

Represents

the

minutes

of

the

hour

as

a

decimal

number

(00

to

59).

%n

Specifies

a

new-line

character.

%N

Represents

the

locale’s

alternate

era

name.

%o

Represents

the

alternate

era

year.

%p

Represents

the

locale’s

a.m.

or

p.m.

string

defined

by

the

am_pm

statement

in

the

LC_TIME

category.

%r

Represents

12-hour

clock

time

with

a.m./p.m.

notation

as

defined

by

the

t_fmt_ampm

statement.

The

usual

format

is

%I:%M:%S

%p.

%R

Represents

24-hour

clock

time

in

%H:%M

format.

%S

Represents

the

seconds

of

the

minute

as

a

decimal

number

(00

to

59).

%t

Specifies

a

tab

character.

%T

Represents

24-hour-clock

time

in

the

format

%H:%M:%S

(for

example,

16:55:15).

%u

Represents

the

weekday

as

a

decimal

number

(1

to

7).

Monday

or

its

equivalent

is

considered

the

first

day

of

the

week

for

calculating

the

value

of

this

field

descriptor.

%U

Represents

the

week

of

the

year

as

a

decimal

number

(00

to

53).

Sunday,

or

its

equivalent

as

defined

by

the

day

statement

in

the

LC_TIME

category,

is

considered

the

first

day

of

the

week

for

calculating

the

value

of

this

field

descriptor.

%V

Represents

the

week

number

of

the

year

(with

Monday

as

the

first

day

of

the

week)

as

a

decimal

number

(01

to

53).

If

the

week

containing

January

1

has

four

or

more

days

in

the

new

year,

then

it

is

considered

week

1;

otherwise,

it

is

considered

week

53

of

the

previous

year,

and

the

next

week

is

week

1

of

the

new

year.

%w

Represents

the

day

of

the

week

as

a

decimal

number

(0

to

6).

Sunday,

or

its

equivalent

as

defined

by

the

day

statement,

is

considered

as

0

for

calculating

the

value

of

this

field

descriptor.

%W

Represents

the

week

of

the

year

as

a

decimal

number

(00

to

53).

Monday,

or

its

equivalent

as

defined

by

the

day

statement,

is

considered

the

first

day

of

the

week

for

calculating

the

value

of

this

field

descriptor.

%x

Represents

the

locale’s

date

format

as

defined

by

the

d_fmt

statement.

%X

Represents

the

locale’s

time

format

as

defined

by

the

t_fmt

statement.

%y

Represents

the

year

of

the

century.

Note:

When

the

environment

variable

XPG_TIME_FMT=ON,

%y

is

the

year

within

the

century.

When

a

century

is

not

otherwise

specified,

values

in

the

range

69-99

refer

to

years

in

the

twentieth

century

(1969

to

1999,

inclusive);

values

in

the

range

00-68

refer

to

2000

to

2068,

inclusive.

%Y

Represents

the

year

as

a

decimal

number

(for

example,

1989).

%Z

Represents

the

time-zone

name

if

one

can

be

determined

(for

example,

EST).

No

characters

are

displayed

if

a

time

zone

cannot

be

determined.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

289

%%

Specifies

a

%

(percent

sign).

Some

conversion

specifiers

can

be

modified

by

the

E

or

O

modifier

characters

to

indicate

that

an

alternative

format

or

specification

should

be

used.

If

the

alternative

format

or

specification

does

not

exist

for

the

current

locale,

the

behavior

will

be

the

same

as

with

the

unmodified

conversion

specification.

The

following

modified

conversion

specifiers

are

supported:

%Ec

Represents

the

locale’s

alternative

appropriate

date

and

time

as

defined

by

the

era_d_t_fmt

statement.

%EC

Represents

the

name

of

the

base

year

(or

other

time

period)

in

the

locale’s

alternative

form

as

defined

by

the

era

statement

under

the

era_name

category

of

the

current

era.

%Ex

Represents

the

locale’s

alternative

date

as

defined

by

the

era_d_fmt

statement.

%EX

Represents

the

locale’s

alternative

time

as

defined

by

the

era_t_fmt

statement.

%Ey

Represents

the

offset

from

the

%EC

modified

conversion

specifier

(year

only)

in

the

locale’s

alternative

form.

%EY

Represents

the

full

alternative-year

form.

%Od

Represents

the

day

of

the

month,

using

the

locale’s

alternative

numeric

symbols,

filled

as

needed

with

leading

0’s

if

an

alternative

symbol

for

0

exists.

If

an

alternative

symbol

for

0

does

not

exist,

the

%Od

modified

conversion

specifier

uses

leading

space

characters.

%Oe

Represents

the

day

of

the

month,

using

the

locale’s

alternative

numeric

symbols,

filled

as

needed

with

leading

0’s

if

an

alternative

symbol

for

0

exists.

If

an

alternative

symbol

for

0

does

not

exist,

the

%Oe

modified

conversion

specifier

uses

leading

space

characters.

%OH

Represents

the

hour

in

24-hour

clock

time,

using

the

locale’s

alternative

numeric

symbols.

%OI

Represents

the

hour

in

12-hour

clock

time,

using

the

locale’s

alternative

numeric

symbols.

%Om

Represents

the

month,

using

the

locale’s

alternative

numeric

symbols.

%OM

Represents

the

minutes,

using

the

locale’s

alternative

numeric

symbols.

%OS

Represents

the

seconds,

using

the

locale’s

alternative

numeric

symbols.

%Ou

Represents

the

weekday

as

a

number

using

the

locale’s

alternative

numeric

symbols.

%OU

Represents

the

week

number

of

the

year,

using

the

locale’s

alternative

numeric

symbols.

Sunday

is

considered

the

first

day

of

the

week.

Use

the

rules

corresponding

to

the

%U

conversion

specifier.

%OV

Represents

the

week

number

of

the

year

(Monday

as

the

first

day

of

the

week,

rules

corresponding

to

%V)

using

the

locale’s

alternative

numeric

symbols.

%Ow

Represents

the

number

of

the

weekday

(with

Sunday

equal

to

0),

using

the

locale’s

alternative

numeric

symbols.

%OW

Represents

the

week

number

of

the

year

using

the

locale’s

alternative

numeric

symbols.

Monday

is

considered

the

first

day

of

the

week.

Use

the

rules

corresponding

to

the

%W

conversion

specifier.

%Oy

Represents

the

year

(offset

from

%C)

using

the

locale’s

alternative

numeric

symbols.

Parameters

String

Points

to

the

string

to

hold

the

formatted

time.

Length

Specifies

the

maximum

length

of

the

string

pointed

to

by

the

String

parameter.

Format

Points

to

the

format

character

string.

TmDate

Points

to

the

time

structure

that

is

to

be

converted.

Return

Values

If

the

total

number

of

resulting

bytes,

including

the

terminating

null

byte,

is

not

more

than

the

Length

value,

the

strftime

subroutine

returns

the

number

of

bytes

placed

into

the

array

pointed

to

by

the

String

parameter,

not

including

the

terminating

null

byte

.

Otherwise,

a

value

of

0

is

returned

and

the

contents

of

the

array

are

indeterminate.

Related

Information

The

localtime

subroutine,

gmtime

subroutine,

mbstowcs

subroutine,

printf

subroutine,

strfmon

(“strfmon

Subroutine”

on

page

286)

subroutine,

strptime

(“strptime

Subroutine”

on

page

300)

subroutine,

wcsftime

(“wcsftime

Subroutine”

on

page

448)

subroutine.

290

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

date

command.

LC_TIME

Category

for

the

Locale

Definition

Source

File

Format

in

AIX

5L

Version

5.2

Files

Reference.

List

of

Time

Data

Manipulation

Services

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

,

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

strtok,

or

strsep

Subroutine

Purpose

Determines

the

size,

location,

and

existence

of

strings

in

memory.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

size_t

strlen

(String)

const

char

*String;

char

*strchr

(String,

Character)

const

char

*String;

int

Character;

char

*strchr

(String,

Character)

const

char

*String;

int

Character;

char

*strpbrk

(String1,

String2)

const

char

*String1,

String2;

size_t

strspn

(String1,

String2)

const

char

*String1,

*

String2;

size_t

strcspn

(String1,

String2)

const

char

*String1,

*String2;

char

*strstr

(String1,

String2)

const

char

*String1,

*String2;

char

*strtok

(String1,

String2)

char

*String1;

const

char

*String2;

char

*strsep

(String1,

String2)

char

**String1;

const

char

*String2;

char

*index

(String,

Character)

const

char

*String;

int

Character;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

291

char

*rindex

(String,

Character)

const

char

*String;

int

Character;

Description

Attention:

Do

not

use

the

strtok

subroutine

in

a

multithreaded

environment.

Use

the

strtok_r

subroutine

instead.

The

strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

and

strtok

subroutines

determine

such

values

as

size,

location,

and

the

existence

of

strings

in

memory.

The

String1,

String2,

and

String

parameters

point

to

strings.

A

string

is

an

array

of

characters

terminated

by

a

null

character.

The

strlen

subroutine

returns

the

number

of

bytes

in

the

string

pointed

to

by

the

String

parameter,

not

including

the

terminating

null

bytes.

The

strchr

subroutine

returns

a

pointer

to

the

first

occurrence

of

the

character

specified

by

the

Character

(converted

to

an

unsigned

character)

parameter

in

the

string

pointed

to

by

the

String

parameter.

A

null

pointer

is

returned

if

the

character

does

not

occur

in

the

string.

The

null

byte

that

terminates

a

string

is

considered

to

be

part

of

the

string.

The

strrchr

subroutine

returns

a

pointer

to

the

last

occurrence

of

the

character

specified

by

the

Character

(converted

to

a

character)

parameter

in

the

string

pointed

to

by

the

String

parameter.

A

null

pointer

is

returned

if

the

character

does

not

occur

in

the

string.

The

null

byte

that

terminates

a

string

is

considered

to

be

part

of

the

string.

The

strpbrk

subroutine

returns

a

pointer

to

the

first

occurrence

in

the

string

pointed

to

by

the

String1

parameter

of

any

bytes

from

the

string

pointed

to

by

the

String2

parameter.

A

null

pointer

is

returned

if

no

bytes

match.

The

strspn

subroutine

returns

the

length

of

the

initial

segment

of

the

string

pointed

to

by

the

String1

parameter,

which

consists

entirely

of

bytes

from

the

string

pointed

to

by

the

String2

parameter.

The

strcspn

subroutine

returns

the

length

of

the

initial

segment

of

the

string

pointed

to

by

the

String1

parameter,

which

consists

entirely

of

bytes

not

from

the

string

pointed

to

by

the

String2

parameter.

The

strstr

subroutine

finds

the

first

occurrence

in

the

string

pointed

to

by

the

String1

parameter

of

the

sequence

of

bytes

specified

by

the

string

pointed

to

by

the

String2

parameter

(excluding

the

terminating

null

character).

It

returns

a

pointer

to

the

string

found

in

the

String1

parameter,

or

a

null

pointer

if

the

string

was

not

found.

If

the

String2

parameter

points

to

a

string

of

0

length,

the

strstr

subroutine

returns

the

value

of

the

String1

parameter.

The

strtok

subroutine

breaks

the

string

pointed

to

by

the

String1

parameter

into

a

sequence

of

tokens,

each

of

which

is

delimited

by

a

byte

from

the

string

pointed

to

by

the

String2

parameter.

The

first

call

in

the

sequence

takes

the

String1

parameter

as

its

first

argument

and

is

followed

by

calls

that

take

a

null

pointer

as

their

first

argument.

The

separator

string

pointed

to

by

the

String2

parameter

may

be

different

from

call

to

call.

The

first

call

in

the

sequence

searches

the

String1

parameter

for

the

first

byte

that

is

not

contained

in

the

current

separator

string

pointed

to

by

the

String2

parameter.

If

no

such

byte

is

found,

no

tokens

exist

in

the

string

pointed

to

by

the

String1

parameter,

and

a

null

pointer

is

returned.

If

such

a

byte

is

found,

it

is

the

start

of

the

first

token.

292

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

strtok

subroutine

then

searches

from

the

first

token

for

a

byte

that

is

contained

in

the

current

separator

string.

If

no

such

byte

is

found,

the

current

token

extends

to

the

end

of

the

string

pointed

to

by

the

String1

parameter,

and

subsequent

searches

for

a

token

return

a

null

pointer.

If

such

a

byte

is

found,

the

strtok

subroutine

overwrites

it

with

a

null

byte,

which

terminates

the

current

token.

The

strtok

subroutine

saves

a

pointer

to

the

following

byte,

from

which

the

next

search

for

a

token

will

start.

The

subroutine

returns

a

pointer

to

the

first

byte

of

the

token.

Each

subsequent

call

with

a

null

pointer

as

the

value

of

the

first

argument

starts

searching

from

the

saved

pointer,

using

it

as

the

first

token.

Otherwise,

the

subroutine’s

behavior

does

not

change.

The

strsep

subroutine

returns

the

next

token

from

the

string

String1

which

is

delimited

by

String2.

The

token

is

terminated

with

a

\0

character

and

String1

is

updated

to

point

past

the

token.

The

strsep

subroutine

returns

a

pointer

to

the

token,

or

NULL

if

String2

is

not

found

in

String1.

The

index,

rindex

and

strsep

subroutines

are

included

for

compatibility

with

BSD

and

are

not

part

of

the

ANSI

C

Library.

The

index

subroutine

is

implemented

as

a

call

to

the

strchr

subroutine.

The

rindex

subroutine

is

implemented

as

a

call

to

the

strrchr

subroutine.

Parameters

Character

Specifies

a

character

for

which

to

return

a

pointer.

String

Points

to

a

string

from

which

data

is

returned.

String1

Points

to

a

string

from

which

an

operation

returns

results.

String2

Points

to

a

string

which

contains

source

for

an

operation.

Error

Codes

The

strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

and

strtok

subroutines

fail

if

the

following

occurs:

EFAULT

A

string

parameter

is

an

invalid

address.

Related

Information

The

“setlocale

Subroutine”

on

page

136,

“strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

Subroutine”

on

page

281,

“strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

Subroutine”

on

page

283,

“strtok_r

Subroutine”

on

page

298,

and

“swab

Subroutine”

on

page

304.

The

memccpy,

memchr,

memcmp,

memcpy,

or

memmove

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1

List

of

String

Manipulation

Services

and

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

strncollen

Subroutine

Purpose

Returns

the

number

of

collation

values

for

a

given

string.

Library

Standard

C

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

293

Syntax

include

<string.h>

int

strncollen

(

String,

Number)

const

char

*String;

const

int

Number;

Description

The

strncollen

subroutine

returns

the

number

of

collation

values

for

a

given

string

pointed

to

by

the

String

parameter.

The

count

of

collation

values

is

terminated

when

either

a

null

character

is

encountered

or

when

the

number

of

bytes

indicated

by

the

Number

parameter

have

been

examined.

The

collation

values

are

set

by

the

setlocale

subroutine

for

the

LC_COLLATE

category.

For

example,

if

the

locale

is

set

to

Es_ES

(Spanish

spoken

in

Spain)

for

the

LC_COLLATE

category,

where

`ch’

has

one

collation

value,

then

strncollen

(’abchd’,

5)

returns

4.

In

German,

the

<Sharp-S>

character

has

two

collation

values,

so

substituting

the

<Sharp-S>

character

for

B

in

the

following

example,

strncollen

(’straBa’,

6)

returns

7.

If

a

character

has

no

collation

value,

its

collation

length

is

0.

Parameters

Number

The

number

of

bytes

in

a

string

to

be

examined.

String

Pointer

to

a

string

to

be

examined

for

collation

value.

Return

Values

Upon

successful

completion,

the

strncollen

subroutine

returns

the

collation

value

for

a

given

string,

pointed

to

by

the

String

parameter.

Related

Information

The

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine,

strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

(“strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

Subroutine”

on

page

281)

subroutine,

strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

(“strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

Subroutine”

on

page

283)

subroutine,

strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

or

strtok

(“strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

strtok,

or

strsep

Subroutine”

on

page

291)

subroutine.

National

Language

Support

Overview

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

strtof,

strtod,

or

strtold

Subroutine

Purpose

Converts

a

string

to

a

double-precision

number.

Syntax

#include

<stdlib.h>

float

strtof

(nptr,

endptr)

const

char

*restrict

nptr;

char

**restrict

endptr;

294

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

double

strtod

(

nptr,

endptr)

const

char

*nptr

char**endptr;

long

double

strtold

(nptr,

endptr)

const

char

*restrict

nptr;

char

**restrict

endptr;

Description

The

strtof,

strtod,

and

strtold

subroutines

convert

the

initial

portion

of

the

string

pointed

to

by

nptr

to

double,

float,

and

long

double

representation,

respectively.

First,

they

decompose

the

input

string

into

three

parts:

v

An

initial,

possibly

empty,

sequence

of

white-space

characters

(as

specified

by

isspace()).

v

A

subject

sequence

interpreted

as

a

floating-point

constant

or

representing

infinity

or

NaN.

v

A

final

string

of

one

or

more

unrecognized

characters,

including

the

terminating

null

byte

of

the

input

string.

Then,

they

attempt

to

convert

the

subject

sequence

to

a

floating-point

number,

and

return

the

result.

The

expected

form

of

the

subject

sequence

is

an

optional

plus

or

minus

sign,

and

one

of

the

following:

v

A

non-empty

sequence

of

decimal

digits

optionally

containing

a

radix

character,

and

an

optional

exponent

part

v

A

0x

or

0X,

and

a

non-empty

sequence

of

hexadecimal

digits

optionally

containing

a

radix

character,

and

an

optional

binary

exponent

part

v

One

of

INF

or

INFINITY,

ignoring

case

v

One

of

NAN

or

NAN(n-char-sequence

opt

),

ignoring

case

in

the

NAN

part,

where:

n-char-sequence:

digit

nondigit

n-char-sequence

digit

n-char-sequence

nondigit

The

subject

sequence

is

defined

as

the

longest

initial

subsequence

of

the

input

string,

starting

with

the

first

non-white-space

character,

that

is

of

the

expected

form.

The

subject

sequence

contains

no

characters

if

the

input

string

is

not

of

the

expected

form.

If

the

subject

sequence

has

the

expected

form

for

a

floating-point

number,

the

sequence

of

characters

starting

with

the

first

digit

or

the

decimal-point

character

(whichever

occurs

first)

are

interpreted

as

a

floating

constant

of

the

C

language,

except

that

the

radix

character

is

used

in

place

of

a

period,

and

if

neither

an

exponent

part

nor

a

radix

character

appears

in

a

decimal

floating-point

number,

or

if

a

binary

exponent

part

does

not

appear

in

a

hexadecimal

floating-point

number,

an

exponent

part

of

the

appropriate

type

with

value

zero

is

assumed

to

follow

the

last

digit

in

the

string.

If

the

subject

sequence

begins

with

a

minus

sign,

the

sequence

is

interpreted

as

negated.

A

character

sequence

INF

or

INFINITY

shall

be

interpreted

as

an

infinity,

if

representable

in

the

return

type,

or

else

as

if

it

were

a

floating

constant

that

is

too

large

for

the

range

of

the

return

type.

A

character

sequence

NAN

or

NAN(n-char-sequence

opt

)

is

interpreted

as

a

quiet

NaN,

if

supported

in

the

return

type,

or

else

as

if

it

were

a

subject

sequence

part

that

does

not

have

the

expected

form.

The

meaning

of

the

n-char

sequences

is

implementation-defined.

A

pointer

to

the

final

string

is

stored

in

the

object

pointed

to

by

the

endptr

parameter,

provided

that

the

endptr

parameter

is

not

a

null

pointer.

If

the

subject

sequence

has

the

hexadecimal

form,

the

value

resulting

from

the

conversion

is

correctly

rounded.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

295

The

radix

character

is

defined

in

the

program’s

locale

(category

LC_NUMERIC).

In

the

POSIX

locale,

or

in

a

locale

where

the

radix

character

is

not

defined,

the

radix

character

defaults

to

a

period.

In

other

than

the

C

or

POSIX

locales,

other

implementation-defined

subject

sequences

may

be

accepted.

If

the

subject

sequence

is

empty

or

does

not

have

the

expected

form,

no

conversion

shall

be

performed;

the

value

of

str

is

stored

in

the

object

pointed

to

by

endptr,

provided

that

endptr

is

not

a

null

pointer.

The

strtod

subroutine

does

not

change

the

setting

of

the

errno

global

variable

if

successful.

Since

0

is

returned

on

error

and

is

also

a

valid

return

on

success,

an

application

wishing

to

check

for

error

situations

should

set

errno

to

0,

call

the

strtof

or

strtold

subroutine,

then

check

errno.

Parameters

nptr

Specifies

the

string

to

be

converted.

endptr

Points

to

the

final

string.

Return

Values

Upon

successful

completion,

the

strtof

and

strtold

subroutines

return

the

converted

value.

If

no

conversion

could

be

performed,

0

is

returned,

and

the

errno

global

variable

may

be

set

to

EINVAL.

If

the

correct

value

is

outside

the

range

of

representable

values,

HUGE_VAL,

HUGE_VALF,

or

HUGE_VALL

is

returned

(according

to

the

sign

of

the

value),

and

errno

is

set

to

ERANGE.

If

the

correct

value

would

cause

an

underflow,

a

value

whose

magnitude

is

no

greater

than

the

smallest

normalized

positive

number

in

the

return

type

is

returned

and

the

errno

global

variable

is

set

to

ERANGE.

Error

Codes

Note:

Because

a

value

of

0

can

indicate

either

an

error

or

a

valid

result,

an

application

that

checks

for

errors

with

the

strtod,

strtof,

and

strtold

subroutines

should

set

the

errno

global

variable

equal

to

0

prior

to

the

subroutine

call.

The

application

can

check

the

errno

global

variable

after

the

subroutine

call.

If

the

string

pointed

to

by

NumberPointer

is

empty

or

begins

with

an

unrecognized

character,

a

value

of

0

is

returned

for

the

strtod,

strtof,

and

strtold

subroutines.

If

the

conversion

cannot

be

performed,

a

value

of

0

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

If

the

conversion

causes

an

overflow

(that

is,

the

value

is

outside

the

range

of

representable

values),

+/-

HUGE_VAL

is

returned

with

the

sign

indicating

the

direction

of

the

overflow,

and

the

errno

global

variable

is

set

to

ERANGE.

If

the

conversion

would

cause

an

underflow,

a

properly

signed

value

of

0

is

returned

and

the

errno

global

variable

is

set

to

ERANGE.

For

the

strtod,

strtof,

and

strtold

subroutines,

if

the

value

of

the

EndPointer

parameter

is

not

(char**)

NULL,

a

pointer

to

the

character

that

stopped

the

subroutine

is

stored

in

*EndPointer.

If

a

floating-point

value

cannot

be

formed,

*EndPointer

is

set

to

NumberPointer.

296

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

strtof

subroutine

has

only

one

rounding

error.

(If

the

strtod

subroutine

is

used

to

create

a

double-precision

floating-point

number

and

then

that

double-precision

number

is

converted

to

a

floating-point

number,

two

rounding

errors

could

occur.)

Related

Information

“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109,

“setlocale

Subroutine”

on

page

136,

and

“strtol,

strtoul,

strtoll,

strtoull,

or

atoi

Subroutine”

on

page

299.

ctype,

isalpha,

isupper,

islower,

isdigit,

isxdigit,

isalnum,

isspace,

ispunct,

isprint,

isgraph,

iscntrl,

or

isascii

Subroutines

and

localeconv

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

strtoimax

or

strtoumax

Subroutine

Purpose

Converts

string

to

integer

type.

Syntax

#include

<inttypes.h>

intmax_t

strtoimax

(nptr,

endptr,

base)

const

char

*restrict

nptr;

char

**restrict

endptr;

int

base;

uintmax_t

strtoumax

(nptr,

endptr,

base)

const

char

*restrict

nptr;

char

**restrict

endptr;

int

base;

Description

The

strtoimax

and

strtoumax

subroutines

are

equivalent

to

the

strtol,

strtoll,

strtoul,

and

strtoull

subroutines,

except

that

the

initial

portion

of

the

string

shall

be

converted

to

intmax_t

and

uintmax_t

representation,

respectively.

Parameters

nptr

Points

to

the

string

to

be

converted.

endptr

Points

to

the

object

where

the

final

string

is

stored.

base

Determines

the

value

of

the

integer

represented

in

some

radix.

Return

Values

The

strtoimax

and

strtoumax

subroutines

return

the

converted

value,

if

any.

If

no

conversion

could

be

performed,

zero

is

returned.

If

the

correct

value

is

outside

the

range

of

representable

values,

{INTMAX_MAX},

{INTMAX_MIN},

or

{UINTMAX_MAX}

is

returned

(according

to

the

return

type

and

sign

of

the

value,

if

any),

and

the

errno

global

variable

is

set

to

ERANGE.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

297

Related

Information

The

“strtol,

strtoul,

strtoll,

strtoull,

or

atoi

Subroutine”

on

page

299.

inttypes.h

in

AIX

5L

Version

5.2

Files

Reference.

strtok_r

Subroutine

Purpose

Breaks

a

string

into

a

sequence

of

tokens.

Libraries

Thread-Safe

C

Library

(libc_r.a)

Syntax

#include<string.h>

char

*strtok_r

(String,

Separators,

Pointer);

char

*String;

const

char

*Separators;

char

**Pointer;

Description

Note:

The

strtok_r

subroutine

is

used

in

a

multithreaded

environment.

The

strtok_r

subroutine

breaks

the

string

pointed

to

by

the

String

parameter

into

a

sequence

of

tokens,

each

of

which

is

delimited

by

a

byte

from

the

string

pointed

to

by

the

Separators

parameter.

The

Pointer

parameter

holds

the

information

necessary

for

the

strok_r

subroutine

to

perform

scanning

on

the

String

parameter.

In

the

first

call

to

the

strok_r

subroutine,

the

value

passed

as

the

Pointer

parameter

is

ignored.

The

first

call

in

the

sequence

searches

the

String

parameter

for

the

first

byte

that

is

not

contained

in

the

current

separator

string

pointed

to

by

the

Separators

parameter.

If

no

such

byte

is

found,

no

tokens

exist

in

the

String

parameter,

and

a

null

pointer

is

returned.

If

such

a

byte

is

found,

it

is

the

start

of

the

first

token.

The

strok_r

subroutine

also

updates

the

Pointer

parameter

with

the

starting

address

of

the

token

following

the

first

occurrence

of

the

Separators

parameter.

In

subsequent

calls,

a

null

pointer

should

be

passed

as

the

first

parameter

to

the

strtok_r

subroutine

instead

of

the

String

parameter.

Each

subsequent

call

with

a

null

pointer

as

the

value

of

the

first

argument

starts

searching

from

the

Pointer

parameter,

using

it

as

the

first

token.

Otherwise,

the

subroutine’s

behavior

does

not

change.

The

strtok_r

subroutine

would

return

successive

tokens

until

no

tokens

remain.

The

Separators

parameter

may

be

different

from

one

call

to

another.

Parameters

String

Points

to

a

string

from

which

an

operation

returns

results.

Separators

Points

to

a

string

which

contains

source

for

an

operation.

Pointer

Points

to

a

user

provided

pointer.

Error

Codes

The

strtok_r

subroutine

fails

if

the

following

occurs:

EFAULT

A

String

parameter

is

an

invalid

address.

298

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

“strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

strtok,

or

strsep

Subroutine”

on

page

291.

Writing

Reentrant

and

Thread-Safe

Code

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

strtol,

strtoul,

strtoll,

strtoull,

or

atoi

Subroutine

Purpose

Converts

a

string

to

a

signed

or

unsigned

long

integer

or

long

long

integer.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

long

strtol

(

String,

EndPointer,

Base)

const

char

*String;

char

**EndPointer;

int

Base;

unsigned

long

strtoul

(String,

EndPointer,

Base)

const

char

*String;

char

**EndPointer;

int

Base;

long

long

int

strtoll

(String,

EndPointer,

Base)

char

*String,

**EndPointer;

int

Base;

long

long

int

strtoull

(String,

EndPointer,

Base)

char

*String,

**EndPointer;

int

Base;

int

atoi

(String)

const

char

*String;

Description

The

strtol

subroutine

returns

a

long

integer

whose

value

is

represented

by

the

character

string

to

which

the

String

parameter

points.

The

strtol

subroutine

scans

the

string

up

to

the

first

character

that

is

inconsistent

with

the

Base

parameter.

Leading

white-space

characters

are

ignored,

and

an

optional

sign

may

precede

the

digits.

The

strtoul

subroutine

provides

the

same

functions

but

returns

an

unsigned

long

integer.

The

strtoll

and

strtoull

subroutines

provide

the

same

functions

but

return

long

long

integers.

The

atoi

subroutine

is

equivalent

to

the

strtol

subroutine

where

the

value

of

the

EndPointer

parameter

is

a

null

pointer

and

the

Base

parameter

is

a

value

of

10.

If

the

value

of

the

EndPointer

parameter

is

not

null,

then

a

pointer

to

the

character

that

ended

the

scan

is

stored

in

EndPointer.

If

an

integer

cannot

be

formed,

the

value

of

the

EndPointer

parameter

is

set

to

that

of

the

String

parameter.

If

the

Base

parameter

is

a

value

between

2

and

36,

the

subject

sequence’s

expected

form

is

a

sequence

of

letters

and

digits

representing

an

integer

whose

radix

is

specified

by

the

Base

parameter.

This

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

299

sequence

is

optionally

preceded

by

a

+

(positive)

or

-

(negative)

sign.

Letters

from

a

(or

A)

to

z

(or

Z)

inclusive

are

ascribed

the

values

10

to

35;

only

letters

whose

ascribed

values

are

less

than

that

of

the

Base

parameter

are

permitted.

If

the

Base

parameter

has

a

value

of

16,

the

characters

0x

or

0X

optionally

precede

the

sequence

of

letters

and

digits,

following

the

+

(positive)

or

-

(negative)

sign

if

present.

If

the

value

of

the

Base

parameter

is

0,

the

string

determines

the

base.

Thus,

after

an

optional

leading

sign,

a

leading

0

indicates

octal

conversion,

and

a

leading

0x

or

0X

indicates

hexadecimal

conversion.

The

default

is

to

use

decimal

conversion.

Parameters

String

Points

to

the

character

string

to

be

converted.

EndPointer

Points

to

a

character

string

that

contains

the

first

character

not

converted.

Base

Specifies

the

base

to

use

for

the

conversion.

Return

Values

Upon

successful

completion,

the

strtol,

strtoul,

strtoll,

and

strtoull

subroutines

return

the

converted

value.

If

no

conversion

could

be

performed,

0

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

If

the

correct

value

is

outside

the

range

of

representable

values,

the

strtol

subroutine

returns

a

value

of

LONG_MAX

or

LONG_MIN

according

to

the

sign

of

the

value,

while

the

strtoul

subroutine

returns

a

value

of

ULONG_MAX.

The

strtoll

subroutine

returns

a

value

of

LLONG_MAX

or

LLONG_MIN,

according

to

the

sign

of

the

value.

The

strtoul

subroutine

returns

a

value

of

ULONG_MAX,

and

the

strtoull

subroutine

returns

a

value

of

ULLONG_MAX.

Error

Codes

The

strtol

and

strtoul

subroutines

return

the

following

error

codes:

ERANGE

The

correct

value

of

the

converted

number

causes

underflow

or

overflow.

EINVAL

The

value

of

the

Base

parameter

is

not

valid.

Related

Information

The

atof,

atoff,

strtod,

or

strtof

subroutine,

scanf,

fscanf,

sscanf,

or

wsscanf

(“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109)

subroutine,

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine,

wstrtod

or

watof

(“wstrtod

or

watof

Subroutine”

on

page

515)

subroutine,

wstrtol,

watol,

or

watoi

(“wstrtol,

watol,

or

watoi

Subroutine”

on

page

516)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

strptime

Subroutine

Purpose

Converts

a

character

string

to

a

time

value.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<time.h>

300

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

char

*strptime

(

Buf,

Format,

Tm)

const

char

*Buf,

*Format;

struct

tm

*Tm;

Description

The

strptime

subroutine

converts

the

characters

in

the

Buf

parameter

to

values

that

are

stored

in

the

Tm

structure,

using

the

format

specified

by

the

Format

parameter.

Parameters

Buf

Contains

the

character

string

to

be

converted

by

the

strptime

subroutine.

Format

Contains

format

specifiers

for

the

strptime

subroutine.

The

Format

parameter

contains

0

or

more

specifiers.

Each

specifier

is

composed

of

one

of

the

following

elements:

v

One

or

more

white-space

characters

v

An

ordinary

character

(neither

%

[percent

sign]

nor

a

white-space

character)

v

A

format

specifier

Note:

If

more

than

one

format

specifier

is

present,

they

must

be

separated

by

white

space

or

a

non-percent/non-alphanumeric

character.

If

the

seperator

between

format

specifiers

is

other

than

white

space,

the

Buf

string

should

hold

the

same

seperator

at

the

corresponding

locations.

The

LC_TIME

category

defines

the

locale

values

for

the

format

specifiers.

The

following

format

specifiers

are

supported:

%a

Represents

the

weekday

name,

either

abbreviated

as

specified

by

the

abday

statement

or

full

as

specified

by

the

day

statement.

%A

Represents

the

weekday

name,

either

abbreviated

as

specified

by

the

abday

statement

or

full

as

specified

by

the

day

statement.

%b

Represents

the

month

name,

either

abbreviated

as

specified

by

the

abmon

statement

or

full

as

specified

by

the

month

statement.

%B

Represents

the

month

name,

either

abbreviated

as

specified

by

the

abmon

statement

or

full

as

specified

by

the

month

statement.

%c

Represents

the

date

and

time

format

defined

by

the

d_t_fmt

statement

in

the

LC_TIME

category.

%C

Represents

the

century

number

(0

through

99);

leading

zeros

are

permitted

but

not

required.

%d

Represents

the

day

of

the

month

as

a

decimal

number

(01

to

31).

%D

Represents

the

date

in

%m/%d/%y

format

(for

example,

01/31/91).

%e

Represents

the

day

of

the

month

as

a

decimal

number

(01

to

31).

%E

Represents

the

combined

alternate

era

year

and

name,

respectively,

in

%o

%N

format.

%h

Represents

the

month

name,

either

abbreviated

as

specified

by

the

abmon

statement

or

full

as

specified

by

the

month

statement.

%H

Represents

the

24-hour-clock

hour

as

a

decimal

number

(00

to

23).

%I

Represents

the

12-hour-clock

hour

as

a

decimal

number

(01

to

12).

%j

Represents

the

day

of

the

year

as

a

decimal

number

(001

to

366).

%m

Represents

the

month

of

the

year

as

a

decimal

number

(01

to

12).

%M

Represents

the

minutes

of

the

hour

as

a

decimal

number

(00

to

59).

%n

Represents

any

white

space.

%N

Represents

the

alternate

era

name.

%o

Represents

the

alternate

era

year.

%p

Represents

the

a.m.

or

p.m.

string

defined

by

the

am_pm

statement

in

the

LC_TIME

category.

%r

Represents

12-hour-clock

time

with

a.m./p.m.

notation

as

defined

by

the

t_fmt_ampm

statement,

usually

in

the

format

%I:%M:%S

%p.

%S

Represents

the

seconds

of

the

minute

as

a

decimal

number

(00

to

61).

The

decimal

number

range

of

00

to

61

provides

for

leap

seconds.

%t

Represents

any

white

space.

%T

Represents

24-hour-clock

time

in

the

format

%H:%M:%S

(for

example,

16:55:15).

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

301

%U

Represents

the

week

of

the

year

as

a

decimal

number

(00

to

53).

Sunday,

or

its

equivalent

as

defined

by

the

day

statement,

is

considered

the

first

day

of

the

week

for

calculating

the

value

of

this

field

descriptor.

%w

Represents

the

day

of

the

week

as

a

decimal

number

(0

to

6).

Sunday,

or

its

equivalent

as

defined

by

the

day

statement

in

the

LC_TIME

category,

is

considered

to

be

0

for

calculating

the

value

of

this

field

descriptor.

%W

Represents

the

week

of

the

year

as

a

decimal

number

(00

to

53).

Monday,

or

its

equivalent

as

defined

by

the

day

statement

in

the

LC_TIME

category,

is

considered

the

first

day

of

the

week

for

calculating

the

value

of

this

field

descriptor.

%x

Represents

the

date

format

defined

by

the

d_fmt

statement

in

the

LC_TIME

category.

%X

Represents

the

time

format

defined

by

the

t_fmt

statement

in

the

LC_TIME

category.

%y

Represents

the

year

within

century.

Note:

When

the

environment

variable

XPG_TIME_FMT=ON,

%y

is

the

year

within

the

century.

When

a

century

is

not

otherwise

specified,

values

in

the

range

69-99

refer

to

years

in

the

twentieth

century

(1969

to

1999,

inclusive);

values

in

the

range

00-68

refer

to

2000

to

2068,

inclusive.

%Y

Represents

the

year

as

a

decimal

number

(for

example,

1989).

%Z

Represents

the

time-zone

name,

if

one

can

be

determined

(for

example,

EST).

No

characters

are

displayed

if

a

time

zone

cannot

be

determined.

%%

Specifies

a

%

(percent

sign)

character.

Some

format

specifiers

can

be

modified

by

the

E

and

O

modifier

characters

to

indicate

an

alternative

format

or

specification.

If

the

alternative

format

or

specification

does

not

exist

in

the

current

locale,

the

behavior

will

be

as

if

the

unmodified

format

specifier

were

used.

The

following

modified

format

specifiers

are

supported:

%Ec

Represents

the

locale’s

alternative

appropriate

date

and

time

as

defined

by

the

era_d_t_fmt

statement.

%EC

Represents

the

base

year

(or

other

time

period)

in

the

locale’s

alternative

form

as

defined

by

the

era

statement

under

the

era_name

category

of

the

current

era.

%Ex

Represents

the

alternative

date

as

defined

by

the

era_d_fmt

statement.

%EX

Represents

the

locale’s

alternative

time

as

defined

by

the

era_t_fmt

statement.

%Ey

Represents

the

offset

from

the

%EC

format

specifier

(year

only)

in

the

locale’s

alternative

form.

%EY

Represents

the

full

alternative-year

format.

%Od

Represents

the

month

using

the

locale’s

alternative

numeric

symbols.

Leading

0’s

are

permitted

but

not

required.

%Oe

Represents

the

month

using

the

locale’s

alternative

numeric

symbols.

Leading

0’s

are

permitted

but

not

required.

%OH

Represents

the

hour

in

24-hour-clock

time

using

the

locale’s

alternative

numeric

symbols.

%OI

Represents

the

hour

in

12-hour-clock

time

using

the

locale’s

alternative

numeric

symbols.

%Om

Represents

the

month

using

the

locale’s

alternative

numeric

symbols.

%OM

Represents

the

minutes

using

the

locale’s

alternative

numeric

symbols.

%OS

Represents

the

seconds

using

the

locale’s

alternative

numeric

symbols.

%OU

Represents

the

week

number

of

the

year

using

the

locale’s

alternative

numeric

symbols.

Sunday

is

considered

the

first

day

of

the

week.

Use

the

rules

corresponding

to

the

%U

format

specifier.

%Ow

Represents

the

day

of

the

week

using

the

locale’s

alternative

numeric

symbols.

Sunday

is

considered

the

first

day

of

the

week.

%OW

Represents

the

week

number

of

the

year

using

the

locale’s

alternative

numeric

symbols.

Monday

is

considered

the

first

day

of

the

week.

Use

the

rules

corresponding

to

the

%W

format

specifier.

%Oy

Represents

the

year

(offset

from

%C)

using

the

locale’s

alternative

numeric

symbols.

A

format

specification

consisting

of

white-space

characters

is

performed

by

reading

input

until

the

first

nonwhite-space

character

(which

is

not

read)

or

up

to

no

more

characters

can

be

read.

A

format

specification

consisting

of

an

ordinary

character

is

performed

by

reading

the

next

character

from

the

Buf

parameter.

If

this

character

differs

from

the

character

comprising

the

directive,

the

directive

fails

and

the

differing

character

and

any

characters

following

it

remain

unread.

Case

is

ignored

when

matching

Buf

items,

such

as

month

or

weekday

names.

302

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

A

series

of

directives

composed

of

%n

format

specifiers,

%t

format

specifiers,

white-space

characters,

or

any

combination

of

the

three

items

is

processed

by

reading

up

to

the

first

character

that

is

not

white

space

(which

remains

unread),

or

until

no

more

characters

can

be

read.

Tm

Specifies

the

structure

to

contain

the

output

of

the

strptime

subroutine.

If

a

conversion

fails,

the

contents

of

the

Tm

structure

are

undefined.

Return

Values

If

successful,

the

strptime

subroutine

returns

a

pointer

to

the

character

following

the

last

character

parsed.

Otherwise,

a

null

pointer

is

returned.

Related

Information

The

scanf

(“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109)

subroutine,

“strfmon

Subroutine”

on

page

286,

strftime

(“strftime

Subroutine”

on

page

288)

subroutine,

time

subroutine,

wcsftime

(“wcsftime

Subroutine”

on

page

448)

subroutine.

LC_TIME

Category

in

the

Locale

Definition

Source

File

Format

in

AIX

5L

Version

5.2

Files

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

List

of

Time

and

Monetary

Formatting

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

stty

or

gtty

Subroutine

Purpose

Sets

or

gets

terminal

state.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sgtty.h>

stty

(

FileDescriptor,

Buffer)

int

FileDescriptor;

struct

sgttyb

*Buffer;

gtty

(FileDescriptor,

Buffer)

int

FileDescriptor;

struct

sgttyb

*Buffer;

Description

These

subroutines

have

been

made

obsolete

by

the

ioctl

subroutine.

The

stty

subroutine

sets

the

state

of

the

terminal

associated

with

the

FileDescriptor

parameter.

The

gtty

subroutine

retrieves

the

state

of

the

terminal

associated

with

FileDescriptor.

To

set

the

state

of

a

terminal,

the

calling

process

must

have

write

permission.

Use

of

the

stty

subroutine

is

equivalent

to

the

ioctl

(FileDescriptor,

TIOSETP,

Buffer)

subroutine,

while

use

of

the

gtty

subroutine

is

equivalent

to

the

ioctl

(FileDescriptor,

TIOGETP,

Buffer)

subroutine.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

303

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

Buffer

Specifies

the

buffer.

Return

Values

If

the

stty

or

gtty

subroutine

is

successful,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Related

Information

The

ioctl

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

swab

Subroutine

Purpose

Copies

bytes.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

void

swab

(

From,

To,

NumberOfBytes)

const

void

*From;

void

*To;

ssize_t

NumberOfBytes;

Description

The

swab

subroutine

copies

the

number

of

bytes

pointed

to

by

the

NumberOfBytes

parameter

from

the

location

pointed

to

by

the

From

parameter

to

the

array

pointed

to

by

the

To

parameter,

exchanging

adjacent

even

and

odd

bytes.

The

NumberOfBytes

parameter

should

be

even

and

nonnegative.

If

the

NumberOfBytes

parameter

is

odd

and

positive,

the

swab

subroutine

uses

NumberOfBytes

-1

instead.

If

the

NumberOfBytes

parameter

is

negative,

the

swab

subroutine

does

nothing.

Parameters

From

Points

to

the

location

of

data

to

be

copied.

To

Points

to

the

array

to

which

the

data

is

to

be

copied.

NumberOfBytes

Specifies

the

number

of

even

and

nonnegative

bytes

to

be

copied.

Related

Information

The

memccpy,

memchr,

memcmp,

memmove,

or

memset

subroutine,

string

(“strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

strtok,

or

strsep

Subroutine”

on

page

291)

subroutine.

304

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

List

of

Interfaces

for

Input

and

Output

Handling

in

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices.

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

swapoff

Subroutine

Purpose

Deactivates

paging

or

swapping

to

a

designated

block

device.

Library

Standard

C

Library

(libc.a)

Syntax

int

swapoff

(PathName)

char

*PathName;

Description

The

swapoff

subroutine

deactivates

a

block

device

or

logical

volume

that

is

actively

being

used

for

paging

and

swapping.

There

must

be

sufficient

space

to

satisfy

the

system’s

paging

space

requirements

in

the

remaining

devices

after

this

device

is

deactivated

or

swapoff

will

fail.

Parameters

PathName

Specifies

the

full

path

name

of

the

block

device

or

logical

volume.

Error

Codes

If

an

error

occurs,

the

errno

global

variable

is

set

to

indicate

the

error:

EBUSY

The

deactivation

is

already

running.

EINTR

The

signal

was

received

during

the

processing

of

a

request.

ENODEV

The

PathName

file

does

not

exist.

ENOMEM

No

memory

is

available.

ENOSPC

There

is

not

enough

space

in

other

paging

spaces

to

satisfy

the

system’s

requirements.

ENOTBLK

The

device

must

be

a

block

device

or

logical

volume.

ENOTDIR

A

component

of

the

PathName

prefix

is

not

a

directory.

EPERM

Caller

does

not

have

proper

authority.

Other

errors

are

from

calls

to

the

device

driver’s

open

subroutine

or

ioctl

subroutine.

Related

Information

The

swapoff

command.

The

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

305

swapon

Subroutine

Purpose

Activates

paging

or

swapping

to

a

designated

block

device.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/vminfo.h>

int

swapon

(

PathName)

char

*PathName;

Description

The

swapon

subroutine

makes

the

designated

block

device

available

to

the

system

for

allocation

for

paging

and

swapping.

The

specified

block

device

must

be

a

logical

volume

on

a

disk

device.

The

paging

space

size

is

determined

from

the

current

size

of

the

logical

volume.

Parameters

PathName

Specifies

the

full

path

name

of

the

block

device.

Error

Codes

If

an

error

occurs,

the

errno

global

variable

is

set

to

indicate

the

error:

EINTR

Signal

was

received

during

processing

of

a

request.

EINVAL

Invalid

argument

(size

of

device

is

invalid).

ENOENT

The

PathName

file

does

not

exist.

ENOMEM

The

maximum

number

of

paging

space

devices

(16)

are

already

defined,

or

no

memory

is

available.

ENOTBLK

Block

device

required.

ENOTDIR

A

component

of

the

PathName

prefix

is

not

a

directory.

ENXIO

No

such

device

address.

Other

errors

are

from

calls

to

the

device

driver’s

open

subroutine

or

ioctl

subroutine.

Related

Information

The

swapoff

subroutine,swapqry

subroutine.

The

swapoff

command,

swapon

command.

The

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

swapqry

Subroutine

Purpose

Returns

paging

device

status.

306

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/vminfo.h>

int

swapqry

(PathName,

Buffer)

char

*PathName;

struct

pginfo

*Buffer;

Description

The

swapqry

subroutine

returns

information

to

a

user-designated

buffer

about

active

paging

and

swap

devices.

Parameters

PathName

Specifies

the

full

path

name

of

the

block

device.

Buffer

Points

to

the

buffer

into

which

the

status

is

stored.

Return

Values

The

swapqry

subroutine

returns

0

if

the

PathName

value

is

an

active

paging

device.

If

the

Buffer

value

is

not

null,

it

also

returns

status

information.

Error

Codes

If

an

error

occurs,

the

subroutine

returns

-1

and

the

errno

global

variable

is

set

to

indicate

the

error,

as

follows:

EFAULT

Buffer

pointer

is

invalid.

EINVAL

Invalid

argument.

EINTR

Signal

was

received

while

processing

request.

ENODEV

Device

is

not

an

active

paging

device.

ENOENT

The

PathName

file

does

not

exist.

ENOTBLK

Block

device

required.

ENOTDIR

A

component

of

the

PathName

prefix

is

not

a

directory.

ENXIO

No

such

device

address.

Related

Information

The

swapoff

subroutine,

swapon

subroutine.

The

swapoff

command,

swapon

command.

Paging

Space

Overview

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

Subroutines

Overview

and

Understanding

Paging

Space

Programming

Requirements

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

307

symlink

Subroutine

Purpose

Makes

a

symbolic

link

to

a

file.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

int

symlink

(

Path1,

Path2)

const

char

*Path1;

const

char

*Path2;

Description

The

symlink

subroutine

creates

a

symbolic

link

with

the

file

named

by

the

Path2

parameter,

which

refers

to

the

file

named

by

the

Path1

parameter.

As

with

a

hard

link

(described

in

the

link

subroutine),

a

symbolic

link

allows

a

file

to

have

multiple

names.

The

presence

of

a

hard

link

guarantees

the

existence

of

a

file,

even

after

the

original

name

has

been

removed.

A

symbolic

link

provides

no

such

assurance.

In

fact,

the

file

named

by

the

Path1

parameter

need

not

exist

when

the

link

is

created.

In

addition,

a

symbolic

link

can

cross

file

system

boundaries.

When

a

component

of

a

path

name

refers

to

a

symbolic

link

rather

than

a

directory,

the

path

name

contained

in

the

symbolic

link

is

resolved.

If

the

path

name

in

the

symbolic

link

starts

with

a

/

(slash),

it

is

resolved

relative

to

the

root

directory

of

the

process.

If

the

path

name

in

the

symbolic

link

does

not

start

with

/

(slash),

it

is

resolved

relative

to

the

directory

that

contains

the

symbolic

link.

If

the

symbolic

link

is

not

the

last

component

of

the

original

path

name,

remaining

components

of

the

original

path

name

are

resolved

from

the

symbolic-link

point.

If

the

last

component

of

the

path

name

supplied

to

a

subroutine

refers

to

a

symbolic

link,

the

symbolic

link

path

name

may

or

may

not

be

traversed.

Most

subroutines

always

traverse

the

link;

for

example,

the

chmod,

chown,

link,

and

open

subroutines.

The

statx

subroutine

takes

an

argument

that

determines

whether

the

link

is

to

be

traversed.

The

following

subroutines

refer

only

to

the

symbolic

link

itself,

rather

than

to

the

object

to

which

the

link

refers:

mkdir

Fails

with

the

EEXIST

error

code

if

the

target

is

a

symbolic

link.

mknod

Fails

with

the

EEXIST

error

code

if

a

symbolic

link

exists

with

the

same

name

as

the

target

file

as

specified

by

the

Path

parameter

in

the

mknod

and

mkfifo

subroutines.

open

Fails

with

EEXIST

error

code

when

the

O_CREAT

and

O_EXCL

flags

are

specified

and

a

symbolic

link

exists

for

the

path

name

specified.

readlink

(“readlink

Subroutine”

on

page

22)

Applies

only

to

symbolic

links.

rename

(“rename

Subroutine”

on

page

42)

308

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Renames

the

symbolic

link

if

the

file

to

be

renamed

(the

FromPath

parameter

for

the

rename

subroutine)

is

a

symbolic

link.

If

the

new

name

(the

ToPath

parameter

for

the

rename

subroutine)

refers

to

an

existing

symbolic

link,

the

symbolic

link

is

destroyed.

rmdir

(“rmdir

Subroutine”

on

page

48)

Fails

with

the

ENOTDIR

error

code

if

the

target

is

a

symbolic

link.

symlink

Running

this

subroutine

causes

an

error

if

a

symbolic

link

named

by

the

Path2

parameter

already

exists.

A

symbolic

link

can

be

created

that

refers

to

another

symbolic

link;

that

is,

the

Path1

parameter

can

refer

to

a

symbolic

link.

unlink

(“unlink

Subroutine”

on

page

424)

Removes

the

symbolic

link.

Since

the

mode

of

a

symbolic

link

cannot

be

changed,

its

mode

is

ignored

during

the

lookup

process.

Any

files

and

directories

referenced

by

a

symbolic

link

are

checked

for

access

normally.

Parameters

Path1

Specifies

the

contents

of

the

Path2

symbolic

link.

This

value

is

a

null-terminated

string

representing

the

object

to

which

the

symbolic

link

will

point.

Path1

cannot

be

the

null

value

and

cannot

be

more

than

PATH_MAX

characters

long.

PATH_MAX

is

defined

in

the

limits.h

file.

Path2

Names

the

symbolic

link

to

be

created.

Return

Values

Upon

successful

completion,

the

symlink

subroutine

returns

a

value

of

0.

If

the

symlink

subroutine

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

symlink

subroutine

fails

if

one

or

more

of

the

following

are

true:

EEXIST

Path2

already

exists.

EACCES

The

requested

operation

requires

writing

in

a

directory

with

a

mode

that

denies

write

permission.

EROFS

The

requested

operation

requires

writing

in

a

directory

on

a

read-only

file

system.

ENOSPC

The

directory

in

which

the

entry

for

the

symbolic

link

is

being

placed

cannot

be

extended

because

there

is

no

space

left

on

the

file

system

containing

the

directory.

EDQUOT

The

directory

in

which

the

entry

for

the

new

symbolic

link

is

being

placed

cannot

be

extended

or

disk

blocks

could

not

be

allocated

for

the

symbolic

link

because

the

user’s

or

group’s

quota

of

disk

blocks

on

the

file

system

containing

the

directory

has

been

exhausted.

The

symlink

subroutine

can

be

unsuccessful

for

other

reasons.

See

″Base

Operating

System

Error

Codes

For

Services

That

Require

Path-Name

Resolution″

for

a

list

of

additional

errors.

Related

Information

The

chown,

fchown,

chownx,

or

fchown

subroutine,

link

subroutine,

mkdir

subroutine,

mknod

subroutine,

openx,

open,

or

create

subroutine,

readlink

(“readlink

Subroutine”

on

page

22)

subroutine,

rename

(“rename

Subroutine”

on

page

42)

subroutine,

rmdir

(“rmdir

Subroutine”

on

page

48)

subroutine,

statx

(“statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine”

on

page

277)

subroutine,

unlink

(“unlink

Subroutine”

on

page

424)

subroutine.

The

ln

command.

The

limits.h

file.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

309

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

sync

Subroutine

Purpose

Updates

all

file

systems.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

void

sync

(

)

Description

The

sync

subroutine

causes

all

information

in

memory

that

should

be

on

disk

to

be

written

out.

The

writing,

although

scheduled,

is

not

necessarily

complete

upon

return

from

this

subroutine.

Types

of

information

to

be

written

include

modified

superblocks,

i-nodes,

data

blocks,

and

indirect

blocks.

The

sync

subroutine

should

be

used

by

programs

that

examine

a

file

system,

such

as

the

df

and

fsck

commands.

If

Network

File

System

(NFS)

is

installed

on

your

system,

information

in

memory

that

relates

to

remote

files

is

scheduled

to

be

sent

to

the

remote

node.

Related

Information

The

fsync

subroutine.

The

df

command,

sync

command.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

syncvfs

Subroutine

Purpose

Updates

a

filesystem.

Syntax

#include

<fscntl.h>

int

syncvfs

(vfsName,

command)

char

*vfsName;

int

command;

Description

The

syncvfs

subroutine

behaves

in

3

different

manners

depending

on

the

granularity

specified.

In

each

case

the

GFS_SYNCVFS

flag

is

checked

and

VFS_SYNCVFS

or

VFS_SYNC

is

called

on

the

GFS

and/or

VFS

specified.

In

each

case

the

the

command

parameter

is

passed

untouched.

The

cases

are:

310

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

If

a

NULL

pointer

is

passed

through

the

vfsName

parameter,

the

FS_SYNCVFS_ALL

level

is

assumed,

and

the

call

loops

through

each

GFS

in

a

similar

manner

to

the

sync

call.

v

If

FS_SYNCVFS_FSTYPE

is

passed,

the

GFS

is

scanned

and

the

names

compared.

The

GFS

with

the

correct

name

(if

one

exists)

is

called

with

its

own

GFS

pointer

and

a

null

VFS

pointer.

v

If

FS_SYNCVFS_FS

is

passed,

the

mount

point

is

looked

up

and,

if

it

exists,

VFS_SYNCVFS

is

called

with

the

GFS

pointer

and

the

VFS

pointer

of

the

filesystem

found.

Parameters

vfsName

Depending

on

the

value

of

the

command

parameter,

this

can

either

be

NULL,

the

name

of

a

filesystem

type

(for

example,

″jfs″,

″j2″)

or

the

name

of

a

filesystem,

specified

by

mount

point

(for

example,

″/testj2″).

command

Command

is

the

mask

of

two

options,

a

level

and

a

granularity.

The

granularity

can

be

one

of:

FS_SYNCVFS_ALL

sync

every

filesystem

FS_SYNCVFS_FSTYPE

sync

every

filesystem

of

VFS

type

corresponding

to

vfsName

FS_SYNCVFS_FS

sync

specific

filesystem

at

vfsName

The

level

can

be

one

of:

FS_SYNCVFS_TRY

daemon

heurstics

FS_SYNCVFS_FORCE

user

requested

sync

FS_SYNCVFS_QUIESCE

full

filesystem

quiesce

Return

Values

Upon

successful

completion,

the

syncvfs

subroutine

returns

0.

If

unsuccessful,

-1

is

returned

and

the

errno

global

variable

is

set.

_sync_cache_range

Subroutine

Purpose

Synchronizes

the

I

cache

with

the

D

cache.

Library

Standard

C

Library

(libc.a)

Syntax

void

_sync_cache_range

(eaddr,

count)

caddr_t

eaddr;

uint

count;

Description

The

_sync_cache_range

subroutine

synchronizes

the

I

cache

with

the

D

cache,

given

an

effective

address

and

byte

count.

Programs

performing

instruction

modification

can

call

this

routine

to

ensure

that

the

most

recent

instructions

are

fetched

for

the

address

range.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

311

Parameters

eaddr

Specifies

the

starting

effective

address

of

the

address

range.

count

Specifies

the

byte

count

of

the

address

range.

Related

Information

The

clf

(Cache

Line

Flush)

Instruction

in

Assembler

Language

Reference.

sysconf

Subroutine

Purpose

Determines

the

current

value

of

a

specified

system

limit

or

option.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

long

int

sysconf

(

Name)

int

Name;

Description

The

sysconf

subroutine

determines

the

current

value

of

certain

system

parameters,

the

configurable

system

limits,

or

whether

optional

features

are

supported.

The

Name

parameter

represents

the

system

variable

to

be

queried.

Parameters

Name

Specifies

which

system

variable

setting

should

be

returned.

The

valid

values

for

the

Name

parameter

are

defined

in

the

limits.h,

time.h,

and

unistd.h

files

and

are

described

below:

_SC_AIO_LISTIO_MAX

Maximum

number

of

Input

and

Output

operations

that

can

be

specified

in

a

list

Input

and

Output

call.

_SC_AIO_MAX

Maximum

number

of

outstanding

asynchronous

Input

and

Output

operations.

_SC_ASYNCHRONOUS_IO

Implementation

supports

the

Asynchronous

Input

and

Output

option.

_SC_ARG_MAX

Specifies

the

maximum

byte

length

of

the

arguments

for

one

of

the

exec

functions,

including

environment

data.

_SC_BC_BASE_MAX

Specifies

the

maximum

number

ibase

and

obase

variables

allowed

by

the

bc

command.

_SC_BC_DIM_MAX

Specifies

the

maximum

number

of

elements

permitted

in

an

array

by

the

bc

command.

_SC_BC_SCALE_MAX

Specifies

the

maximum

scale

variable

allowed

by

the

bc

command.

_SC_BC_STRING_MAX

Specifies

the

maximum

length

of

a

string

constant

allowed

by

the

bc

command.

_SC_CHILD_MAX

Specifies

the

number

of

simultaneous

processes

per

real

user

ID.

_SC_CLK_TCK

Indicates

the

clock-tick

increment

as

defined

by

the

CLK_TCK

in

the

time.h

file.

_SC_COLL_WEIGHTS_MAX

Specifies

the

maximum

number

of

weights

that

can

be

assigned

to

an

entry

of

the

LC_COLLATE

keyword

in

the

locale

definition

file.

_SC_DELAYTIMER_MAX

Maximum

number

of

Timer

expiration

overruns.

312

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

_SC_EXPR_NEST_MAX

Specifies

the

maximum

number

of

expressions

that

can

be

nested

within

parentheses

by

the

expr

command.

_SC_JOB_CONTROL

If

this

symbol

is

defined,

job

control

is

supported.

_SC_IOV_MAX

Specifies

the

maximum

number

of

iovec

structures

one

process

has

available

for

use

with

the

readv

and

writev

subroutines.

_SC_LARGE_PAGESIZE

Size

(in

bytes)

of

a

large-page.

_SC_LINE_MAX

Specifies

the

maximum

byte

length

of

a

command’s

input

line

(either

standard

input

or

another

file)

when

a

command

is

described

as

processing

text

files.

The

length

includes

room

for

the

trailing

new-line

character.

_SC_LOGIN_NAME_MAX

Maximum

length

of

a

login

name.

_SC_MQ_OPEN_MAX

Maximum

number

of

open

message

queue

descriptors.

_SC_MQ_PRIO_MAX

Maximum

number

of

message

priorities.

_SC_MEMLOCK

Implementation

supports

the

Process

Memory

Locking

option.

_SC_MEMLOCK_RANGE

Implementation

supports

the

Range

Memory

Locking

option.

_SC_MEMORY_PROTECTION

Implementation

supports

the

Memory

Protection

option.

_SC_MESSAGE_PASSING

Implementation

supports

the

Message

Passing

option.

_SC_NGROUPS_MAX

Specifies

the

maximum

number

of

simultaneous

supplementary

group

IDs

per

process.

_SC_OPEN_MAX

Specifies

the

maximum

number

of

files

that

one

process

can

have

open

at

any

one

time.

_SC_PASS_MAX

Specifies

the

maximum

number

of

significant

characters

in

a

password

(not

including

the

terminating

null

character).

_SC_PASS_MAX

Maximum

number

of

significant

bytes

in

a

password.

_SC_PAGESIZE

Equivalent

to

_SC_PAGE_SIZE.

_SC_PAGE_SIZE

Size

in

bytes

of

a

page.

_SC_PRIORITIZED_IO

Implementation

supports

the

Prioritized

Input

and

Output

option.

_SC_PRIORITY_SCHEDULING

Implementation

supports

the

Process

Scheduling

option.

_SC_RE_DUP_MAX

Specifies

the

maximum

number

of

repeated

occurrences

of

a

regular

expression

permitted

when

using

the

\{

m,

n

\}

interval

notation.

_SC_RTSIG_MAX

Maximum

number

of

Realtime

Signals

reserved

for

applications

use.

_SC_REALTIME_SIGNALS

Implementation

supports

the

Realtime

Signals

Extension

option.

_SC_SAVED_IDS

If

this

symbol

is

defined,

each

process

has

a

saved

set-user

ID

and

set-group

ID.

_SC_SEM_NSEMS_MAX

Maximum

number

of

Semaphores

per

process.

_SC_SEM_VALUE_MAX

Maximum

value

a

Semaphore

may

have.

_SC_SEMAPHORES

Implementation

supports

the

Semaphores

option.

_SC_SHARED_MEMORY_OBJECTS

Implementation

supports

the

Shared

Memory

Objects

option.

_SC_SIGQUEUE_MAX

Maximum

number

of

signals

a

process

may

send

and

have

pending

at

any

time.

_SC_STREAM_MAX

Specifies

the

maximum

number

of

streams

that

one

process

can

have

open

simultaneously.

_SC_SYNCHRONIZED_IO

Implementation

supports

the

Synchronised

Input

and

Output

option.

_SC_TIMER_MAX

Maximum

number

of

per-process

Timers.

_SC_TIMERS

Implementation

supports

the

Timers

option.

_SC_TZNAME_MAX

Specifies

the

maximum

number

of

bytes

supported

for

the

name

of

a

time

zone

(not

of

the

TZ

value).

_SC_VERSION

Indicates

that

the

version

or

revision

number

of

the

POSIX

standard

is

implemented

to

indicate

the

4-digit

year

and

2-digit

month

that

the

standard

was

approved

by

the

IEEE

Standards

Board.

This

value

is

currently

the

long

integer

198808.

_SC_XBS5_ILP32_OFF32

Implementation

provides

a

C-language

compilation

environment

with

32-bit

int,

long,

pointer

and

off_t

types.

_SC_XBS5_ILP32_OFFBIG

Implementation

provides

a

C-language

compilation

environment

with

32-bit

int,

long

and

pointer

types

and

an

off_t

type

using

at

least

64

bits.

_SC_XBS5_LP64_OFF64

Implementation

provides

a

C-language

compilation

environment

with

32-bit

int

and

64-bit

long,

pointer

and

off_t

types.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

313

_SC_XBS5_LPBIG_OFFBIG

Implementation

provides

a

C-language

compilation

environment

with

an

int

type

using

at

least

32

bits

and

long,

pointer

and

off_t

types

using

at

least

64

bits.

_SC_XOPEN_CRYPT

Indicates

that

the

system

supports

the

X/Open

Encryption

Feature

Group.

_SC_XOPEN_LEGACY

The

implementation

supports

the

Legacy

Feature

Group.

_SC_XOPEN_REALTIME

The

implementation

supports

the

X/Open

Realtime

Feature

Group.

_SC_XOPEN_REALTIME_THREADS

The

implementation

supports

the

X/Open

Realtime

Threads

Feature

Group.

_SC_XOPEN_ENH_I18N

Indicates

that

the

system

supports

the

X/Open

Enhanced

Internationalization

Feature

Group.

_SC_XOPEN_SHM

Indicates

that

the

system

supports

the

X/Open

Shared

Memory

Feature

Group.

_SC_XOPEN_VERSION

Indicates

that

the

version

or

revision

number

of

the

X/Open

standard

is

implemented.

_SC_XOPEN_XCU_VERSION

Specifies

the

value

describing

the

current

version

of

the

XCU

specification.

_SC_ATEXIT_MAX

Specifies

the

maximum

number

of

register

functions

for

the

atexit

subroutine.

_SC_PAGE_SIZE

Specifies

page-size

granularity

of

memory.

_SC_AES_OS_VERSION

Indicates

OSF

AES

version.

_SC_2_VERSION

Specifies

the

value

describing

the

current

version

of

POSIX.2.

_SC_2_C_BIND

Indicates

that

the

system

supports

the

C

Language

binding

option.

_SC_2_C_CHAR_TERM

Indicates

that

the

system

supports

at

least

one

terminal

type.

_SC_2_C_DEV

Indicates

that

the

system

supports

the

C

Language

Development

Utilities

Option.

_SC_2_C_VERSION

Specifies

the

value

describing

the

current

version

of

POSIX.2

with

the

C

Language

binding.

_SC_2_FORT_DEV

Indicates

that

the

system

supports

the

FORTRAN

Development

Utilities

Option.

_SC_2_FORT_RUN

Indicates

that

the

system

supports

the

FORTRAN

Development

Utilities

Option.

_SC_2_LOCALEDEF

Indicates

that

the

system

supports

the

creation

of

locales.

_SC_2_SW_DEV

Indicates

that

the

system

supports

the

Software

Development

Utilities

Option.

_SC_2_UPE

Indicates

that

the

system

supports

the

User

Portability

Utilities

Option.

_SC_NPROCESSORS_CONF

Number

of

processors

configured.

_SC_NPROCESSORS_ONLN

Number

of

processors

online.

_SC_THREAD_DATAKEYS_MAX

Maximum

number

of

data

keys

that

can

be

defined

in

a

process.

_SC_THREAD_DESTRUCTOR_ITERATIONS

Maximum

number

attempts

made

to

destroy

a

thread’s

thread-specific

data.

_SC_THREAD_KEYS_MAX

Maximum

number

of

data

keys

per

process.

_SC_THREAD_STACK_MIN

Minimum

value

for

the

threads

stack

size.

_SC_THREAD_THREADS_MAX

Maximum

number

of

threads

within

a

process.

_SC_REENTRANT_FUNCTIONS

System

supports

reentrant

functions

(reentrant

functions

must

be

used

in

multi-threaded

applications).

_SC_THREADS

System

supports

POSIX

threads.

_SC_THREAD_ATTR_STACKADDR

System

supports

the

stack

address

option

for

POSIX

threads

(stackaddr

attribute

of

threads).

_SC_THREAD_ATTR_STACKSIZE

System

supports

the

stack

size

option

for

POSIX

threads

(stacksize

attribute

of

threads).

_SC_THREAD_PRIORITY_SCHEDULING

System

supports

the

priority

scheduling

for

POSIX

threads.

_SC_THREAD_PRIO_INHERIT

System

supports

the

priority

inheritance

protocol

for

POSIX

threads

(priority

inversion

protocol

for

mutexes).

_SC_THREAD_PRIO_PROTECT

System

supports

the

priority

ceiling

protocol

for

POSIX

threads

(priority

inversion

protocol

for

mutexes).

_SC_THREAD_PROCESS_SHARED

System

supports

the

process

sharing

option

for

POSIX

threads

(pshared

attribute

of

mutexes

and

conditions).

_SC_TTY_NAME_MAX

Maximum

length

of

a

terminal

device

name.

314

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Note:

The

_SYNCHRONIZED_IO,

_SC_FSYNC,

and

SC_MAPPED_FILES

commands

apply

to

operating

system

version

4.3

and

later

releases.

_SC_SYNCHRONIZED_IO

Implementation

supports

the

Synchronized

Input

and

Output

option.

_SC_FSYNC

Implementation

supports

the

File

Synchronization

option.

_SC_MAPPED_FILES

Implementation

supports

the

Memory

Mapped

Files

option.

_SC_LPAR_ENABLED

Indicates

whether

LPARs

are

enabled

or

not.

_SC_AIX_KERNEL_BITMODE

Determines

if

the

kernel

is

32-bit

or

64-bit.

_SC_AIX_REALMEM

Determines

the

amount

of

real

memory

in

kilobytes.

_SC_AIX_HARDWARE_BITMODE

Determines

whether

the

machine

is

32-bit

or

64-bit.

_SC_AIX_MP_CAPABLE

Determines

if

the

hardware

is

MP-capable

or

not.

Note:

The

_SC_AIX_MP_CAPABLE

variable

is

available

only

to

the

root

user.

The

values

returned

for

the

variables

supported

by

the

system

do

not

change

during

the

lifetime

of

the

process

making

the

call.

Return

Values

If

the

sysconf

subroutine

is

successful,

the

current

value

of

the

system

variable

is

returned.

The

returned

value

cannot

be

more

restrictive

than

the

corresponding

value

described

to

the

application

by

the

limits.h,

time.h,

or

unistd.h

file

at

compile

time.

The

returned

value

does

not

change

during

the

lifetime

of

the

calling

process.

If

the

sysconf

subroutine

is

unsuccessful,

a

value

of

-1

is

returned.

Error

Codes

If

the

Name

parameter

is

invalid,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

If

the

Name

parameter

is

valid

but

is

a

variable

not

supported

by

the

system,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

a

value

of

EINVAL.

If

the

system

variable

_SC_AIX_MP_CAPABLE

is

accessed

by

a

non-root

user,

a

value

of

-1

is

returned

and

the

errno

global

variable

indicates

the

error

File

/usr/include/limits.h

Contains

system-defined

limits.

Related

Information

The

confstr

subroutine,

pathconf

subroutine.

The

bc

command,

expr

command.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

sysconfig

Subroutine

Purpose

Provides

a

service

for

controlling

system/kernel

configuration.

Library

Standard

C

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

315

Syntax

#include

<sys/types.h>

#include

<sys/sysconfig.h>

int

sysconfig

(

Cmd,

Parmp,

Parmlen)

int

Cmd;

void

*Parmp;

int

Parmlen;

Description

The

sysconfig

subroutine

is

used

to

customize

the

operating

system.

This

subroutine

provides

a

means

of

loading,

unloading,

and

configuring

kernel

extensions.

These

kernel

extensions

can

be

additional

kernel

services,

system

calls,

device

drivers,

or

file

systems.

The

sysconfig

subroutine

also

provides

the

ability

to

read

and

set

system

run-time

operating

parameters.

Use

of

the

sysconfig

subroutine

requires

appropriate

privilege.

The

particular

operation

that

the

sysconfig

subroutine

provides

is

defined

by

the

value

of

the

Cmd

parameter.

The

following

operations

are

defined:

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

Loads

a

kernel

extension

object

file

into

kernel

memory.

SYS_SINGLELOAD

(“SYS_SINGLELOAD

sysconfig

Operation”

on

page

329)

Loads

a

kernel

extension

object

file

only

if

it

is

not

already

loaded.

SYS_QUERYLOAD

(“SYS_QUERYLOAD

sysconfig

Operation”

on

page

327)

Determines

if

a

specified

kernel

object

file

is

loaded.

SYS_KULOAD

(“SYS_KULOAD

sysconfig

Operation”

on

page

324)

Unloads

a

previously

loaded

kernel

object

file.

SYS_QDVSW

(“SYS_QDVSW

sysconfig

Operation”

on

page

325)

Checks

the

status

of

a

device

switch

entry

in

the

device

switch

table.

SYS_CFGDD

(“SYS_CFGDD

sysconfig

Operation”

on

page

317)

Calls

the

specified

device

driver

configuration

routine

(module

entry

point).

SYS_CFGKMOD

(“SYS_CFGKMOD

sysconfig

Operation”

on

page

318)

Calls

the

specified

module

at

its

module

entry

point

for

configuration

purposes.

SYS_GETPARMS

(“SYS_GETPARMS

sysconfig

Operation”

on

page

321)

Returns

a

structure

containing

the

current

values

of

run-time

system

parameters

found

in

the

var

structure.

SYS_SETPARMS

(“SYS_SETPARMS

sysconfig

Operation”

on

page

328)

Sets

run-time

system

parameters

from

a

caller-provided

structure.

SYS_GETLPARINFO

(“SYS_GETLPAR_INFO

sysconfig

Operation”

on

page

320)

Copies

the

system

LPAR

information

into

a

user-allocated

buffer.

316

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

In

addition,

the

SYS_64BIT

flag

can

be

bitwise

or’ed

with

the

Cmd

parameter

(if

the

Cmd

parameter

is

SYS_KLOAD

or

SYS_SINGLELOAD).

For

kernel

extensions,

this

indicates

that

the

kernel

extension

does

not

export

64-bit

system

calls,

but

that

all

32-bit

system

calls

also

work

for

64-bit

applications.

For

device

drivers,

this

indicates

that

the

device

driver

can

be

used

by

64-bit

applications.

“Loader

Symbol

Binding

Support”

on

page

322

explains

the

symbol

binding

support

provided

when

loading

kernel

object

files.

Parameters

Cmd

Specifies

the

function

that

the

sysconfig

subroutine

is

to

perform.

Parmp

Specifies

a

user-provided

structure.

Parmlen

Specifies

the

length

of

the

user-provided

structure

indicated

by

the

Parmp

parameter.

Return

Values

These

sysconfig

operations

return

a

value

of

0

upon

successful

completion

of

the

subroutine.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Any

sysconfig

operation

requiring

a

structure

from

the

caller

fails

if

the

structure

is

not

entirely

within

memory

addressable

by

the

calling

process.

A

return

value

of

-1

is

passed

back

and

the

errno

global

variable

is

set

to

EFAULT.

Related

Information

The

ddconfig

device

driver

entry

point.

Device

Configuration

Subsystem,

Kernel

Environment,

Understanding

Kernel

Extension

Binding

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_CFGDD

sysconfig

Operation

Purpose

Calls

a

previously

loaded

device

driver

at

its

module

entry

point.

Description

The

SYS_CFGDD

sysconfig

operation

calls

a

previously

loaded

device

driver

at

its

module

entry

point.

The

device

driver’s

module

entry

point,

by

convention,

is

its

ddconfig

entry

point.

The

SYS_CFGDD

operation

is

typically

invoked

by

device

configure

or

unconfigure

methods

to

initialize

or

terminate

a

device

driver,

or

to

request

device

vital

product

data.

The

sysconfig

subroutine

puts

no

restrictions

on

the

command

code

passed

to

the

device

driver.

This

allows

the

device

driver’s

ddconfig

entry

point

to

provide

additional

services,

if

desired.

The

parmp

parameter

on

the

SYS_CFGDD

operation

points

to

a

cfg_dd

structure

defined

in

the

sys/sysconfig.h

file.

The

parmlen

parameter

on

the

sysconfig

system

call

should

be

set

to

the

size

of

this

structure.

If

the

kmid

variable

in

the

cfg_dd

structure

is

0,

the

desired

device

driver

is

assumed

to

be

already

installed

in

the

device

switch

table.

The

major

portion

of

the

device

number

(passed

in

the

devno

field

in

the

cfg_dd

structure)

is

used

as

an

index

into

the

device

switch

table.

The

device

switch

table

entry

indexed

by

this

devno

field

contains

the

device

driver’s

ddconfig

entry

point

to

be

called.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

317

If

the

kmid

variable

is

not

0,

it

contains

the

module

ID

to

use

in

calling

the

device

driver.

A

uio

structure

is

used

to

pass

the

address

and

length

of

the

device-dependent

structure,

specified

by

the

cfg_dd.ddsptr

and

cfg_dd.ddslen

fields,

to

the

device

driver

being

called.

The

ddconfig

device

driver

entry

point

provides

information

on

how

to

define

the

ddconfig

subroutine.

The

device

driver

to

be

called

is

responsible

for

using

the

appropriate

routines

to

copy

the

device-dependent

structure

(DDS)

from

user

to

kernel

space.

Return

Values

If

the

SYS_CFGDD

operation

successfully

calls

the

specified

device

driver,

the

return

code

from

the

ddconfig

subroutine

determines

the

value

returned

by

this

subroutine.

If

the

ddconfig

routine’s

return

code

is

0,

then

the

value

returned

by

the

sysconfig

subroutine

is

0.

Otherwise

the

value

returned

is

a

-1,

and

the

errno

global

variable

is

set

to

the

return

code

provided

by

the

device

driver

ddconfig

subroutine.

Error

Codes

Errors

detected

by

the

SYS_CFGDD

operation

result

in

the

following

values

for

the

errno

global

variable:

EACESS

The

calling

process

does

not

have

the

required

privilege.

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

on

the

system

call.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

this

area.

EINVAL

Invalid

module

ID.

ENODEV

Module

ID

specified

by

the

cfg_dd.kmid

field

was

0,

and

an

invalid

or

undefined

devno

value

was

specified.

Related

Information

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine.

The

ddconfig

device

driver

entry

point.

The

uio

structure.

Device

Configuration

Subsystem

Programming

Introduction,

Device

Dependent

Structure

(DDS)

Overview,

Device

Driver

Kernel

Extension

Overview,

Programming

in

the

Kernel

Environment

Overview,

Understanding

Kernel

Extension

Binding,

Understanding

the

Device

Switch

Table

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_CFGKMOD

sysconfig

Operation

Purpose

Invokes

a

previously

loaded

kernel

object

file

at

its

module

entry

point.

Description

The

SYS_CFGKMOD

sysconfig

operation

invokes

a

previously

loaded

kernel

object

file

at

its

module

entry

point,

typically

for

initialization

or

termination

functions.

The

SYS_CFGDD

(“SYS_CFGDD

sysconfig

Operation”

on

page

317)

operation

performs

a

similar

function

for

device

drivers.

The

parmp

parameter

on

the

sysconfig

subroutine

points

to

a

cfg_kmod

structure,

which

is

defined

in

the

sys/sysconfig.h

file.

The

kmid

field

in

this

structure

specifies

the

kernel

module

ID

of

the

module

to

318

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

invoke.

This

value

is

returned

when

using

the

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

or

SYS_SINGLELOAD

(“SYS_SINGLELOAD

sysconfig

Operation”

on

page

329)

operation

to

load

the

object

file.

The

cmd

field

in

the

cfg_kmod

structure

is

a

module-dependent

parameter

specifying

the

action

that

the

routine

at

the

module’s

entry

point

should

perform.

This

is

typically

used

for

initialization

and

termination

commands

after

loading

and

prior

to

unloading

the

object

file.

The

mdiptr

field

in

the

cfg_kmod

structure

points

to

a

module-dependent

structure

whose

size

is

specified

by

the

mdilen

field.

This

field

is

used

to

provide

module-dependent

information

to

the

module

to

be

called.

If

no

such

information

is

needed,

the

mdiptr

field

can

be

null.

If

the

mdiptr

field

is

not

null,

then

the

SYS_CFGKMOD

operation

builds

a

uio

structure

describing

the

address

and

length

of

the

module-dependent

information

in

the

caller’s

address

space.

The

mdiptr

and

mdilen

fields

are

used

to

fill

in

the

fields

of

this

uio

structure.

The

module

is

then

called

at

its

module

entry

point

with

the

cmd

parameter

and

a

pointer

to

the

uio

structure.

If

there

is

no

module-dependent

information

to

be

provided,

the

uiop

parameter

passed

to

the

module’s

entry

point

is

set

to

null.

The

module’s

entry

point

should

be

defined

as

follows:

int

module_entry(cmd,

uiop)

int

cmd;

struct

uio

*uiop;

The

definition

of

the

module-dependent

information

and

its

length

is

specific

to

the

module

being

configured.

The

called

module

is

responsible

for

using

the

appropriate

routines

to

copy

the

module-dependent

information

from

user

to

kernel

space.

Return

Values

If

the

kernel

module

to

be

invoked

is

successfully

called,

its

return

code

determines

the

value

that

is

returned

by

the

SYS_CFGKMOD

operation.

If

the

called

module’s

return

code

is

0,

then

the

value

returned

by

the

sysconfig

subroutine

is

0.

Otherwise

the

value

returned

is

-1

and

the

errno

global

variable

is

set

to

the

called

module’s

return

code.

Error

Codes

Errors

detected

by

the

SYS_CFGKMOD

operation

result

in

the

following

values

for

the

errno

global

variable:

EINVAL

Invalid

module

ID.

EACESS

The

calling

process

does

not

have

the

required

privilege.

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

on

the

system

call.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

this

area.

File

sys/sysconfig.h

Contains

structure

definitions.

Related

Information

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine.

The

SYS_CFGDD

(“SYS_CFGDD

sysconfig

Operation”

on

page

317)

sysconfig

operation,

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

sysconfig

operation,

SYS_SINGLELOAD

(“SYS_SINGLELOAD

sysconfig

Operation”

on

page

329)

sysconfig

operation.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

319

The

uio

structure.

Device

Configuration

Subsystem

Programming

Introduction

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts

Programming

in

the

Kernel

Environment

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts

Understanding

Kernel

Extension

Binding

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts

SYS_GETLPAR_INFO

sysconfig

Operation

Purpose

Copies

the

system

LPAR

information

into

a

user-allocated

buffer.

Description

The

SYS_GETLPAR_INFO

sysconfig

operation

copies

the

system

LPAR

information

into

a

user-allocated

buffer.

The

parmp

parameter

on

the

sysconfig

subroutine

points

to

a

structure

of

type

getlpar_info.

Within

the

getlpar_info

structure,

the

lpar_namelen

field

must

be

set

by

the

user

to

the

maximum

length

of

the

character

buffer

pointed

to

by

lpar_name.

On

return,

the

lpar_namelen

field

will

have

its

value

replaced

by

the

acual

length

of

the

lpar_name

field.

However,

only

the

minimum

of

the

actual

length

or

the

length

provided

by

the

user

will

be

copied

into

the

buffer

pointed

to

by

lpar_name.

The

lpar_namesz,

lpar_num,

and

lpar_name

fields

will

contain

valid

data

on

returning

from

the

call

only

if

the

system

is

running

as

an

LPAR

as

indicated

by

the

value

of

the

lpar_flags

field

being

equal

to

LPAR_ENABLED.

If

a

value

of

0

is

specified

for

the

lpar_namesz

field,

the

partition

name

will

not

be

copied

out.

If

the

system

is

not

an

LPAR

(namely

it

is

running

as

an

SMP

system),

but

it

is

LPAR-capable,

the

LPAR_CAPABLE

flag

will

be

set

on

return.

The

getlpar_info

structure

is

defined

below:

lpar_flags

unsigned

short

LPAR_ENABLED:

System

is

LPAR

enabled.

LPAR_CAPABLE:

System

is

LPAR

capable,

but

running

in

SMP

mode.

lpar_namesz

unsigned

short

Size

of

partition

name.

lpar_num

int

Partition

Number.

lpar_name

char

*

Partition

Name.

Note:

The

parmlen

parameter

(which

is

the

third

parameter

to

the

sysconfig

system

call)

is

ignored

by

the

SYS_GETLPAR_INFO

sysconfig

operation.

Error

Codes

The

SYS_GETLPAR_INFO

operation

returns

a

value

of

-1

if

an

error

occurs

and

the

errno

global

variable

is

set

to

one

of

the

following

error

codes:

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

on

the

subroutine

or

the

lpar_name

field

in

the

getlpar_info

structure.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

any

of

these

areas.

EINVAL

Invalid

command

parameter

to

the

sysconfig

subroutine.

320

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Files

sys/sysconfig.h

Contains

structure

definitions

and

flags.

Related

Information

The

“sysconfig

Subroutine”

on

page

315.

Programming

in

the

Kernel

Environment

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_GETPARMS

sysconfig

Operation

Purpose

Copies

the

system

parameter

structure

into

a

user-specified

buffer.

Description

The

SYS_GETPARMS

sysconfig

operation

copies

the

system

parameter

var

structure

into

a

user-allocated

buffer.

This

structure

may

be

used

for

informational

purposes

alone

or

prior

to

setting

specific

system

parameters.

In

order

to

set

system

parameters,

the

required

fields

in

the

var

structure

must

be

modified,

and

then

the

SYS_SETPARMS

(“SYS_SETPARMS

sysconfig

Operation”

on

page

328)

operation

can

be

called

to

change

the

system

run-time

operating

parameters

to

the

desired

state.

The

parmp

parameter

on

the

sysconfig

subroutine

points

to

a

buffer

that

is

to

contain

all

or

part

of

the

var

structure

defined

in

the

sys/var.h

file.

The

fields

in

the

var_hdr

part

of

the

var

structure

are

used

for

parameter

update

control.

The

parmlen

parameter

on

the

system

call

should

be

set

to

the

length

of

the

var

structure

or

to

the

number

of

bytes

of

the

structure

that

is

desired.

The

complete

definition

of

the

system

parameters

structure

can

be

found

in

the

sys/var.h

file.

Return

Values

The

SYS_GETPARMS

operation

returns

a

value

of

-1

if

an

error

occurs

and

the

errno

global

variable

is

set

to

one

of

the

following

error

codes.

Error

Codes

EACCES

The

calling

process

does

not

have

the

required

privilege.

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

on

the

subroutine.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

this

area.

File

sys/var.h

Contains

structure

definitions.

Related

Information

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine

and

sys_parm

(“sys_parm

Subroutine”

on

page

337)

subroutine.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

321

The

SYS_SETPARMS

(“SYS_SETPARMS

sysconfig

Operation”

on

page

328)

sysconfig

operation.

Programming

in

the

Kernel

Environment

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_KLOAD

sysconfig

Operation

Purpose

Loads

a

kernel

extension

into

the

kernel.

Description

The

SYS_KLOAD

sysconfig

operation

is

used

to

load

a

kernel

extension

object

file

specified

by

a

path

name

into

the

kernel.

A

kernel

module

ID

for

that

instance

of

the

module

is

returned.

The

SYS_KLOAD

operation

loads

a

new

copy

of

the

object

file

into

the

kernel

even

though

one

or

more

copies

of

the

specified

object

file

may

have

already

been

loaded

into

the

kernel.

The

returned

module

ID

can

then

be

used

for

any

of

these

three

functions:

v

Subsequent

invocation

of

the

module’s

entry

point

(using

the

SYS_CFGKMOD

(“SYS_CFGKMOD

sysconfig

Operation”

on

page

318)

operation)

v

Invocation

of

a

device

driver’s

ddconfig

subroutine

(using

the

SYS_CFGDD

(“SYS_CFGDD

sysconfig

Operation”

on

page

317)

operation)

v

Unloading

the

kernel

module

(using

the

SYS_KULOAD

(“SYS_KULOAD

sysconfig

Operation”

on

page

324)

operation).

The

parmp

parameter

on

the

sysconfig

subroutine

must

point

to

a

cfg_load

structure,

(defined

in

the

sys/sysconfig.h

file),

with

the

path

field

specifying

the

path

name

for

a

valid

kernel

object

file.

The

parmlen

parameter

should

be

set

to

the

size

of

the

cfg_load

structure.

Note:

A

separate

sysconfig

operation,

the

SYS_SINGLELOAD

(“SYS_SINGLELOAD

sysconfig

Operation”

on

page

329)

operation,

also

loads

kernel

extensions.

This

operation,

however,

only

loads

the

requested

object

file

if

not

already

loaded.

Loader

Symbol

Binding

Support

The

following

information

describes

the

symbol

binding

support

provided

when

loading

kernel

object

files.

Importing

Symbols

Symbols

imported

from

the

kernel

name

space

are

resolved

with

symbols

that

exist

in

the

kernel

name

space

at

the

time

of

the

load.

(Symbols

are

imported

from

the

kernel

name

space

by

specifying

the

#!/unix

character

string

as

the

first

field

in

an

import

list

at

link-edit

time.)

Kernel

modules

can

also

import

symbols

from

other

kernel

object

files.

These

other

kernel

object

files

are

loaded

along

with

the

specified

object

file

if

they

are

required

to

resolve

the

imported

symbols.

Finding

Directory

Locations

for

Unqualified

File

Names:

If

the

module

header

contains

an

unqualified

base

file

name

for

the

symbol

(

that

is,

no

/

[slash]

characters

in

the

name),

a

libpath

search

string

is

used

to

find

the

location

of

the

shared

object

file

required

to

resolve

imported

symbols.

This

libpath

search

string

can

be

taken

from

one

of

two

places.

If

the

libpath

field

in

the

cfg_load

structure

is

not

null,

then

it

points

to

a

character

string

specifying

the

libpath

to

be

used.

However,

if

the

libpath

field

is

null,

then

the

libpath

is

taken

from

the

module

header

of

the

object

file

specified

by

the

path

field

in

the

same

(cfg_load)

structure.

The

libpath

specification

found

in

object

files

loaded

in

order

to

resolve

imported

symbols

is

not

used.

322

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

kernel

loader

service

does

not

support

deferred

symbol

resolution.

The

load

of

the

kernel

object

file

is

terminated

with

an

error

if

any

imported

symbols

cannot

be

resolved.

Exporting

Symbols

Any

symbols

exported

by

the

specified

kernel

object

file

are

added

to

the

kernel

name

space.

This

makes

these

symbols

available

to

other

subsequently

loaded

kernel

object

files.

Any

symbols

specified

with

the

SYSCALL

keyword

in

the

export

list

at

link-edit

time

are

added

to

the

system

call

table

at

load

time.

These

symbols

are

then

available

to

application

programs

as

a

system

call.

Symbols

can

be

added

to

the

32-bit

and

64-bit

system

call

tables

separately

by

using

the

syscall32

and

syscall64

keywords.

Symbols

can

be

added

to

both

system

call

tables

by

using

the

syscall3264

keyword.

A

kernel

extension

that

just

exports

32-bit

system

calls

can

have

all

its

system

calls

exported

to

64-bit

as

well

by

passing

the

SYS_64BIT

flag

or’ed

with

the

SYS_KLOAD

command

to

sysconfig.

Kernel

object

files

loaded

on

behalf

of

the

specified

kernel

object

file

to

resolve

imported

symbols

do

not

have

their

exported

symbols

added

to

the

kernel

name

space.

These

object

files

are

considered

private

since

they

do

not

export

symbols

to

the

global

kernel

name

space.

For

these

types

of

object

files,

a

new

copy

of

the

object

file

is

loaded

on

each

SYS_KLOAD

operation

of

a

kernel

extension

that

imports

symbols

from

the

private

object

file.

In

order

for

a

kernel

extension

to

add

its

exported

symbols

to

the

kernel

name

space,

it

must

be

explicitly

loaded

with

the

SYS_KLOAD

operation

before

any

other

object

files

using

the

symbols

are

loaded.

For

kernel

extensions

of

this

type

(those

exporting

symbols

to

the

kernel

name

space),

typically

only

one

copy

of

the

object

file

should

ever

be

loaded.

Return

Values

If

the

object

file

is

loaded

without

error,

the

module

ID

is

returned

in

the

kmid

variable

within

the

cfg_load

structure

and

the

subroutine

returns

a

value

of

0.

Error

Codes

On

error,

the

subroutine

returns

a

value

of

-1

and

the

errno

global

variable

is

set

to

one

of

the

following

values:

EACESS

One

of

the

following

reasons

applies:

v

The

calling

process

does

not

have

the

required

privilege.

v

An

object

module

to

be

loaded

is

not

an

ordinary

file.

v

The

mode

of

the

object

module

file

denies

read-only

permission.

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

on

the

system

call.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

this

area.

ENOEXEC

The

program

file

has

the

appropriate

access

permission,

but

has

an

invalid

XCOFF

object

file

indication

in

its

header.

The

SYS_KLOAD

operation

only

supports

loading

of

XCOFF

object

files.

This

error

is

also

returned

if

the

loader

is

unable

to

resolve

an

imported

symbol.

EINVAL

The

program

file

has

a

valid

XCOFF

indicator

in

its

header,

but

the

header

is

damaged

or

is

incorrect

for

the

machine

on

which

the

file

is

to

be

run.

ENOMEM

The

load

requires

more

kernel

memory

than

is

allowed

by

the

system-imposed

maximum.

ETXTBSY

The

object

file

is

currently

open

for

writing

by

some

process.

File

sys/sysconfig.h

Contains

structure

definitions.

Related

Information

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

323

The

SYS_SINGLELOAD

(“SYS_SINGLELOAD

sysconfig

Operation”

on

page

329)

sysconfig

operation,

SYS_KULOAD

(“SYS_KULOAD

sysconfig

Operation”)

sysconfig

operation,

SYS_CFGDD

(“SYS_CFGDD

sysconfig

Operation”

on

page

317)

sysconfig

operation,

SYS_CFGKMOD

(“SYS_CFGKMOD

sysconfig

Operation”

on

page

318)

sysconfig

operation.

The

ddconfig

device

driver

entry

point.

Device

Configuration

Subsystem

Programming

Introduction

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

Programming

in

the

Kernel

Environment

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

Understanding

Kernel

Extension

Binding

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_KULOAD

sysconfig

Operation

Purpose

Unloads

a

loaded

kernel

object

file

and

any

imported

kernel

object

files

that

were

loaded

with

it.

Description

The

SYS_KULOAD

sysconfig

operation

unloads

a

previously

loaded

kernel

file

and

any

imported

kernel

object

files

that

were

automatically

loaded

with

it.

It

does

this

by

decrementing

the

load

and

use

counts

of

the

specified

object

file

and

any

object

file

having

symbols

imported

by

the

specified

object

file.

The

parmp

parameter

on

the

sysconfig

subroutine

should

point

to

a

cfg_load

structure,

as

described

for

the

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

operation.

The

kmid

field

should

specify

the

kernel

module

ID

that

was

returned

when

the

object

file

was

loaded

by

the

SYS_KLOAD

or

SYS_SINGLELOAD

(“SYS_SINGLELOAD

sysconfig

Operation”

on

page

329)

operation.

The

path

and

libpath

fields

are

not

used

for

this

command

and

can

be

set

to

null.

The

parmlen

parameter

should

be

set

to

the

size

of

the

cfg_load

structure.

Upon

successful

completion,

the

specified

object

file

(and

any

other

object

files

containing

symbols

that

the

specified

object

file

imports)

will

have

their

load

and

use

counts

decremented.

If

there

are

no

users

of

any

of

the

module’s

exports

and

its

load

count

is

0,

then

the

object

file

is

immediately

unloaded.

However,

if

there

are

users

of

this

module

(that

is,

modules

bound

to

this

module’s

exported

symbols),

the

specified

module

is

not

unloaded.

Instead,

it

is

unloaded

on

some

subsequent

unload

request,

when

its

use

and

load

counts

have

gone

to

0.

The

specified

module

is

not

in

fact

unloaded

until

all

current

users

have

been

unloaded.

Notes:

1.

Care

must

be

taken

to

ensure

that

a

subroutine

has

freed

all

of

its

system

resources

before

being

unloaded.

For

example,

a

device

driver

is

typically

prepared

for

unloading

by

using

the

SYS_CFGDD

(“SYS_CFGDD

sysconfig

Operation”

on

page

317)

operation

and

specifying

termination.

2.

If

the

use

count

is

not

0,

and

you

cannot

force

it

to

0,

the

only

way

to

terminate

operation

of

the

kernel

extension

is

to

reboot

the

machine.

“Loader

Symbol

Binding

Support”

on

page

322

explains

the

symbol

binding

support

provided

when

loading

kernel

object

files.

324

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

If

the

unload

operation

is

successful

or

the

specified

object

file

load

count

is

successfully

decremented,

a

value

of

0

is

returned.

Error

Codes

On

error,

the

specified

file

and

any

imported

files

are

not

unloaded,

nor

are

their

load

and

use

counts

decremented.

A

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

one

of

the

following:

EACESS

The

calling

process

does

not

have

the

required

privilege.

EINVAL

Invalid

module

ID

or

the

specified

module

is

no

longer

loaded

or

already

has

a

load

count

of

0.

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

to

the

subroutine.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

this

area.

Related

Information

The

SYS_CFGDD

(“SYS_CFGDD

sysconfig

Operation”

on

page

317)

sysconfig

operation,

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

sysconfig

operation,

SYS_SINGLELOAD

(“SYS_SINGLELOAD

sysconfig

Operation”

on

page

329)

sysconfig

operation.

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine.

Device

Configuration

Subsystem

Programming

Introduction

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

Programming

in

the

Kernel

Environment

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

Understanding

Kernel

Extension

Binding

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_QDVSW

sysconfig

Operation

Purpose

Checks

the

status

of

a

device

switch

entry

in

the

device

switch

table.

Description

The

SYS_QDVSW

sysconfig

operation

checks

the

status

of

a

device

switch

entry

in

the

device

switch

table.

The

parmp

parameter

on

the

sysconfig

subroutine

points

to

a

qry_devsw

structure

defined

in

the

sys/sysconfig.h

file.

The

parmlen

parameter

on

the

subroutine

should

be

set

to

the

length

of

the

qry_devsw

structure.

The

qry_devsw

field

in

the

qry_devsw

structure

is

modified

to

reflect

the

status

of

the

device

switch

entry

specified

by

the

qry_devsw

field.

(

Only

the

major

portion

of

the

devno

field

is

relevant.)

The

following

flags

can

be

returned

in

the

status

field:

DSW_UNDEFINED

The

device

switch

entry

is

not

defined

if

this

flag

has

a

value

of

0

on

return.

DSW_DEFINED

The

device

switch

entry

is

defined.

DSW_CREAD

The

device

driver

in

this

device

switch

entry

provides

a

routine

for

character

reads

or

raw

input.

This

flag

is

set

when

the

device

driver

provides

a

ddread

entry

point.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

325

DSW_CWRITE

The

device

driver

in

this

device

switch

entry

provides

a

routine

for

character

writes

or

raw

output.

This

flag

is

set

when

the

device

driver

provides

a

ddwrite

entry

point.

DSW_BLOCK

The

device

switch

entry

is

defined

by

a

block

device

driver.

This

flag

is

set

when

the

device

driver

provides

a

ddstrategy

entry

point.

DSW_MPX

The

device

switch

entry

is

defined

by

a

multiplexed

device

driver.

This

flag

is

set

when

the

device

driver

provides

a

ddmpx

entry

point.

DSW_SELECT

The

device

driver

in

this

device

switch

entry

provides

a

routine

for

handling

the

select

(“select

Subroutine”

on

page

115)

or

poll

subroutines.

This

flag

is

set

when

the

device

driver

provides

a

ddselect

entry

point.

DSW_DUMP

The

device

driver

defined

by

this

device

switch

entry

provides

the

capability

to

support

one

or

more

of

its

devices

as

targets

for

a

kernel

dump.

This

flag

is

set

when

the

device

driver

has

provided

a

dddump

entry

point.

DSW_CONSOLE

The

device

switch

entry

is

defined

by

the

console

device

driver.

DSW_TCPATH

The

device

driver

in

this

device

switch

entry

supports

devices

that

are

considered

to

be

in

the

trusted

computing

path

and

provides

support

for

the

revoke

(“revoke

Subroutine”

on

page

45)

and

frevoke

subroutines.

This

flag

is

set

when

the

device

driver

provides

a

ddrevoke

entry

point.

DSW_OPENED

The

device

switch

entry

is

defined

and

the

device

has

outstanding

opens.

This

flag

is

set

when

the

device

driver

has

at

least

one

outstanding

open.

The

DSW_UNDEFINED

condition

is

indicated

when

the

device

switch

entry

has

not

been

defined

or

has

been

defined

and

subsequently

deleted.

Multiple

status

flags

may

be

set

for

other

conditions

of

the

device

switch

entry.

Return

Values

If

no

error

is

detected,

this

operation

returns

with

a

value

of

0.

If

an

error

is

detected,

the

return

value

is

set

to

a

value

of

-1.

Error

Codes

When

an

error

is

dected,

the

errno

global

variable

is

also

set

to

one

of

the

following

values:

EACESS

The

calling

process

does

not

have

the

required

privilege.

EINVAL

Device

number

exceeds

the

maximum

allowed

by

the

kernel.

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

on

the

system

call.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

this

area.

File

sys/sysconfig.h

Contains

structure

definitions.

Related

Information

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine.

The

ddread

device

driver

entry

point,

ddwrite

device

driver

entry

point,

ddstrategy

device

driver

entry

point,

ddmpx

device

driver

entry

point,

ddselect

device

driver

entry

point,

dddump

device

driver

entry

point,

ddrevoke

device

driver

entry

point.

The

console

special

file.

Device

Configuration

Subsystem

Programming

Introduction

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

326

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Programming

in

the

Kernel

Environment

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

Understanding

Kernel

Extension

Binding

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_QUERYLOAD

sysconfig

Operation

Purpose

Determines

if

a

kernel

object

file

has

already

been

loaded.

Description

The

SYS_QUERYLOAD

sysconfig

operation

performs

a

query

operation

to

determine

if

a

given

object

file

has

been

loaded.

This

object

file

is

specified

by

the

path

field

in

the

cfg_load

structure

passed

in

with

the

parmp

parameter.

This

operation

utilizes

the

same

cfg_load

structure

that

is

specified

for

the

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

operation.

If

the

specified

object

file

is

not

loaded,

the

kmid

field

in

the

cfg_load

structure

is

set

to

a

value

of

0

on

return.

Otherwise,

the

kernel

module

ID

of

the

module

is

returned

in

the

kmid

field.

If

multiple

instances

of

the

module

have

been

loaded

into

the

kernel,

the

module

ID

of

the

one

most

recently

loaded

is

returned.

The

libpath

field

in

the

cfg_load

structure

is

not

used

for

this

option.

Note:

A

path-name

comparison

is

done

to

determine

if

the

specified

object

file

has

been

loaded.

However,

this

operation

will

erroneously

return

a

not

loaded

condition

if

the

path

name

to

the

object

file

is

expressed

differently

than

it

was

on

a

previous

load

request.

“Loader

Symbol

Binding

Support”

on

page

322

explains

the

symbol

binding

support

provided

when

loading

kernel

object

files.

Return

Values

If

the

specified

object

file

is

found,

the

module

ID

is

returned

in

the

kmid

variable

within

the

cfg_load

structure

and

the

subroutine

returns

a

0.

If

the

specified

file

is

not

found,

a

kmid

variable

of

0

is

returned

with

a

return

code

of

0.

Error

Codes

On

error,

the

subroutine

returns

a

-1

and

the

errno

global

variable

is

set

to

one

of

the

following

values:

EACCES

The

calling

process

does

not

have

the

required

privilege.

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

on

the

subroutine.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

this

area.

EFAULT

The

path

parameter

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

EIO

An

I/O

error

occurred

during

the

operation.

Related

Information

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine.

The

SYS_SINGLELOAD

(“SYS_SINGLELOAD

sysconfig

Operation”

on

page

329)

sysconfig

operation,

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

sysconfig

operation.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

327

Programming

in

the

Kernel

Environment

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

Understanding

Kernel

Extension

Binding

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_SETPARMS

sysconfig

Operation

Purpose

Sets

the

kernel

run-time

tunable

parameters.

Description

The

SYS_SETPARMS

sysconfig

operation

sets

the

current

system

parameters

from

a

copy

of

the

system

parameter

var

structure

provided

by

the

caller.

Only

the

run-time

tunable

parameters

in

the

var

structure

can

be

set

by

this

subroutine.

If

the

var_vers

and

var_gen

values

in

the

caller-provided

structure

do

not

match

the

var_vers

and

var_gen

values

in

the

current

system

var

structure,

no

parameters

are

modified

and

an

error

is

returned.

The

var_vers,

var_gen,

and

var_size

fields

in

the

structure

should

not

be

altered.

The

var_vers

value

is

assigned

by

the

kernel

and

is

used

to

insure

that

the

correct

version

of

the

structure

is

being

used.

The

var_gen

value

is

a

generation

number

having

a

new

value

for

each

read

of

the

structure.

This

provides

consistency

between

the

data

read

by

the

SYS_GETPARMS

(“SYS_GETPARMS

sysconfig

Operation”

on

page

321)

operation

and

the

data

written

by

the

SYS_SETPARMS

operation.

The

parmp

parameter

on

the

sysconfig

subroutine

points

to

a

buffer

that

contains

all

or

part

of

the

var

structure

as

defined

in

the

sys/var.h

file.

The

parmlen

parameter

on

the

subroutine

should

be

set

either

to

the

length

of

the

var

structure

or

to

the

size

of

the

structure

containing

the

parameters

to

be

modified.

The

number

of

system

parameters

modified

by

this

operation

is

determined

either

by

the

parmlen

parameter

value

or

by

the

var_size

field

in

the

caller-provided

var

structure.

(The

smaller

of

the

two

values

is

used.)

The

structure

provided

by

the

caller

must

contain

at

least

the

header

fields

of

the

var

structure.

Otherwise,

an

error

will

be

returned.

Partial

modification

of

a

parameter

in

the

var

structure

can

occur

if

the

caller’s

data

area

does

not

contain

enough

data

to

end

on

a

field

boundary.

It

is

up

to

the

caller

to

ensure

that

this

does

not

happen.

Return

Values

The

SYS_SETPARMS

sysconfig

operation

returns

a

value

of

-1

if

an

error

occurred.

Error

Codes

When

an

error

occurs,

the

errno

global

variable

is

set

to

one

of

the

following

values:

EACESS

The

calling

process

does

not

have

the

required

privilege.

EINVAL

One

of

the

following

error

situations

exists:

v

The

var_vers

version

number

of

the

provided

structure

does

not

match

the

version

number

of

the

current

var

structure.

v

The

structure

provided

by

the

caller

does

not

contain

enough

data

to

specify

the

header

fields

within

the

var

structure.

v

One

of

the

specified

variable

values

is

invalid

or

not

allowed.

On

the

return

from

the

subroutine,

the

var_vers

field

in

the

caller-provided

buffer

contains

the

byte

offset

of

the

first

variable

in

the

structure

that

was

detected

in

error.

328

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

EAGAIN

The

var_gen

generation

number

in

the

structure

provided

does

not

match

the

current

generation

number

in

the

kernel.

This

occurs

if

consistency

is

lost

between

reads

and

writes

of

this

structure.

The

caller

should

repeat

the

read,

modify,

and

write

operations

on

the

structure.

EFAULT

The

calling

process

does

not

have

sufficient

authority

to

access

the

data

area

described

by

the

parmp

and

parmlen

parameters

provided

to

the

subroutine.

This

error

is

also

returned

if

an

I/O

error

occurred

when

accessing

data

in

this

area.

File

sys/var.h

Contains

structure

definitions.

Related

Information

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine

and

sys_parm

(“sys_parm

Subroutine”

on

page

337)

subroutine.

The

SYS_GETPARMS

(“SYS_GETPARMS

sysconfig

Operation”

on

page

321)

sysconfig

operation.

Programming

in

the

Kernel

Environment

Overview

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

SYS_SINGLELOAD

sysconfig

Operation

Purpose

Loads

a

kernel

extension

module

if

it

is

not

already

loaded.

Description

The

SYS_SINGLELOAD

sysconfig

operation

is

identical

to

the

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

operation,

except

that

the

SYS_SINGLELOAD

operation

loads

the

object

file

only

if

an

object

file

with

the

same

path

name

has

not

already

been

loaded

into

the

kernel.

If

an

object

file

with

the

same

path

name

has

already

been

loaded,

the

module

ID

for

that

object

file

is

returned

in

the

kmid

field

and

its

load

count

incremented.

If

the

object

file

is

not

loaded,

this

operation

performs

the

load

request

exactly

as

defined

for

the

SYS_KLOAD

operation.

This

option

is

useful

in

supporting

global

kernel

routines

where

only

one

copy

of

the

routine

and

its

data

can

be

present.

Typically

routines

that

export

symbols

to

be

added

to

the

kernel

name

space

are

of

this

type.

Note:

A

path

name

comparison

is

done

to

determine

if

the

same

object

file

has

already

been

loaded.

However,

this

function

will

erroneously

load

a

new

copy

of

the

object

file

into

the

kernel

if

the

path

name

to

the

object

file

is

expressed

differently

than

it

was

on

a

previous

load

request.

“Loader

Symbol

Binding

Support”

on

page

322

explains

the

symbol

binding

support

provided

when

loading

kernel

object

files.

Return

Values

The

SYS_SINGLELOAD

operation

returns

the

same

set

of

error

codes

that

the

SYS_KLOAD

operation

returns.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

329

Related

Information

The

sysconfig

(“sysconfig

Subroutine”

on

page

315)

subroutine.

The

SYS_KLOAD

(“SYS_KLOAD

sysconfig

Operation”

on

page

322)

sysconfig

operation.

Programming

in

the

Kernel

Environment

Overview,

and

Understanding

Kernel

Extension

Binding

in

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts.

syslog,

openlog,

closelog,

or

setlogmask

Subroutine

Purpose

Controls

the

system

log.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<syslog.h>

void

openlog

(

ID,

LogOption,

Facility)

const

char

*ID;

int

LogOption,

Facility;

void

syslog

(

Priority,

Value,...

)

int

Priority;

const

char

*Value;

void

closelog

(

)

int

setlogmask(

MaskPriority)

int

MaskPriority;

void

bsdlog

(Priority,

Value,...)

int

Priority;

const

char

*Value;

Description

Attention:

Do

not

use

the

syslog,

openlog,

closelog,

or

setlogmask

subroutine

in

a

multithreaded

environment.

See

the

multithread

alternatives

in

the

syslog_r

(“syslog_r,

openlog_r,

closelog_r,

or

setlogmask_r

Subroutine”

on

page

333),

openlog_r,

closelog_r,

or

setlogmask_r

subroutine

article.

The

syslog

subroutine

is

not

threadsafe;

for

threadsafe

programs

the

syslog_r

subroutine

should

be

used

instead.

The

syslog

subroutine

writes

messages

onto

the

system

log

maintained

by

the

syslogd

command.

Note:

Messages

passed

to

syslog

that

are

longer

than

900

bytes

may

be

truncated

by

syslogd

before

being

logged.

The

message

is

similar

to

the

printf

fmt

string,

with

the

difference

that

%m

is

replaced

by

the

current

error

message

obtained

from

the

errno

global

variable.

A

trailing

new-line

can

be

added

to

the

message

if

needed.

330

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Messages

are

read

by

the

syslogd

command

and

written

to

the

system

console

or

log

file,

or

forwarded

to

the

syslogd

command

on

the

appropriate

host.

If

special

processing

is

required,

the

openlog

subroutine

can

be

used

to

initialize

the

log

file.

Messages

are

tagged

with

codes

indicating

the

type

of

Priority

for

each.

A

Priority

is

encoded

as

a

Facility,

which

describes

the

part

of

the

system

generating

the

message,

and

as

a

level,

which

indicates

the

severity

of

the

message.

If

the

syslog

subroutine

cannot

pass

the

message

to

the

syslogd

command,

it

writes

the

message

on

the

/dev/console

file,

provided

the

LOG_CONS

option

is

set.

The

closelog

subroutine

closes

the

log

file.

The

setlogmask

subroutine

uses

the

bit

mask

in

the

MaskPriority

parameter

to

set

the

new

log

priority

mask

and

returns

the

previous

mask.

The

LOG_MASK

and

LOG_UPTO

macros

in

the

sys/syslog.h

file

are

used

to

create

the

priority

mask.

Calls

to

the

syslog

subroutine

with

a

priority

mask

that

does

not

allow

logging

of

that

particular

level

of

message

causes

the

subroutine

to

return

without

logging

the

message.

Parameters

ID

Contains

a

string

that

is

attached

to

the

beginning

of

every

message.

The

Facility

parameter

encodes

a

default

facility

from

the

previous

list

to

be

assigned

to

messages

that

do

not

have

an

explicit

facility

encoded.

LogOption

Specifies

a

bit

field

that

indicates

logging

options.

The

values

of

LogOption

are:

LOG_CONS

Sends

messages

to

the

console

if

unable

to

send

them

to

the

syslogd

command.

This

option

is

useful

in

daemon

processes

that

have

no

controlling

terminal.

LOG_NDELAY

Opens

the

connection

to

the

syslogd

command

immediately,

instead

of

when

the

first

message

is

logged.

This

option

is

useful

for

programs

that

need

to

manage

the

order

in

which

file

descriptors

are

allocated.

LOG_NOWAIT

Logs

messages

to

the

console

without

waiting

for

forked

children.

Use

this

option

for

processes

that

enable

notification

of

child

termination

through

SIGCHLD;

otherwise,

the

syslog

subroutine

may

block,

waiting

for

a

child

process

whose

exit

status

has

already

been

collected.

LOG_ODELAY

Delays

opening

until

the

syslog

subroutine

is

called.

LOG_PID

Logs

the

process

ID

with

each

message.

This

option

is

useful

for

identifying

daemons.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

331

Facility

Specifies

which

of

the

following

values

generated

the

message:

LOG_AUTH

Indicates

the

security

authorization

system:

the

login

command,

the

su

command,

and

so

on.

LOG_DAEMON

Logs

system

daemons.

LOG_KERN

Logs

messages

generated

by

the

kernel.

Kernel

processes

should

use

the

bsdlog

routine

to

generate

syslog

messages.

The

syntax

of

bsdlog

is

identical

to

syslog.

The

bsdlog

messages

can

only

be

created

by

kernel

processes

and

must

be

of

LOG_KERN

priority.

The

syslog

subroutine

cannot

log

LOG_KERN

facility

messages.

Instead

it

will

log

LOG_USER

facility

messages.

LOG_LPR

Logs

the

line

printer

spooling

system.

LOG_LOCAL0

through

LOG_LOCAL7

Reserved

for

local

use.

LOG_MAIL

Logs

the

mail

system.

LOG_NEWS

Logs

the

news

subsystem.

LOG_UUCP

Logs

the

UUCP

subsystem.

LOG_USER

Logs

messages

generated

by

user

processes.

This

is

the

default

facility

when

none

is

specified.

Priority

Specifies

the

part

of

the

system

generating

the

message,

and

as

a

level,

indicates

the

severity

of

the

message.

The

level

of

severity

is

selected

from

the

following

list:

LOG_ALERT

Indicates

a

condition

that

should

be

corrected

immediately;

for

example,

a

corrupted

database.

LOG_CRIT

Indicates

critical

conditions;

for

example,

hard

device

errors.

LOG_DEBUG

Displays

messages

containing

information

useful

to

debug

a

program.

LOG_EMERG

Indicates

a

panic

condition

reported

to

all

users;

system

is

unusable.

LOG_ERR

Indicated

error

conditions.

LOG_INFO

Indicates

general

information

messages.

LOG_NOTICE

Indicates

a

condition

requiring

special

handling,

but

not

an

error

condition.

LOG_WARNING

Logs

warning

messages.

MaskPriority

Enables

logging

for

the

levels

indicated

by

the

bits

in

the

mask

that

are

set

and

disabled

where

the

bits

are

not

set.

The

default

mask

allows

all

priorities

to

be

logged.

Value

Specifies

the

values

given

in

the

Value

parameters

and

follows

the

the

same

syntax

as

the

printf

subroutine

Format

parameter.

332

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Examples

1.

To

log

an

error

message

concerning

a

possible

security

breach,

such

as

the

following,

enter:

syslog

(LOG_ALERT,

"who:internal

error

23");

2.

To

initialize

the

log

file,

set

the

log

priority

mask,

and

log

an

error

message,

enter:

openlog

("ftpd",

LOG_PID,

LOG_DAEMON);

setlogmask

(LOG_UPTO

(LOG_ERR));

syslog

(LOG_INFO);

3.

To

log

an

error

message

from

the

system,

enter:

syslog

(LOG_INFO

|

LOG_LOCAL2,

"foobar

error:

%m");

Related

Information

The

profil

subroutine.

The

prof

command.

The

syslogd

daemon.

_end,

_etext,

or

edata

identifiers.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

syslog_r,

openlog_r,

closelog_r,

or

setlogmask_r

Subroutine

Purpose

Controls

the

system

log.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<syslog.h>

int

syslog_r

(Priority,

SysLogData,

Format,

.

.

.)

int

Priority;

struct

syslog_data

*

SysLogData;

const

char

*

Format;

int

openlog_r

(ID,

LogOption,

Facility,

SysLogData)

const

char

*

ID;

int

LogOption;

int

Facility;

struct

syslog_data

*SysLogData;

void

closelog_r

(SysLogData)

struct

syslog_data

*SysLogData;

int

setlogmask_r

(

MaskPriority,

SysLogData)

int

MaskPriority;

struct

syslog_data

*SysLogData;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

333

Description

The

syslog_r

subroutine

writes

messages

onto

the

system

log

maintained

by

the

syslogd

daemon.

The

messages

are

similar

to

the

Format

parameter

in

the

printf

subroutine,

except

that

the

%m

field

is

replaced

by

the

current

error

message

obtained

from

the

errno

global

variable.

A

trailing

new-line

character

can

be

added

to

the

message

if

needed.

Messages

are

read

by

the

syslogd

daemon

and

written

to

the

system

console

or

log

file,

or

forwarded

to

the

syslogd

daemon

on

the

appropriate

host.

If

a

program

requires

special

processing,

you

can

use

the

openlog_r

subroutine

to

initialize

the

log

file.

The

syslog_r

subroutine

takes

as

a

second

parameter

a

variable

of

the

type

struct

syslog_data,

which

should

be

provided

by

the

caller.

When

that

variable

is

declared,

it

should

be

set

to

the

SYSLOG_DATA_INIT

value,

which

specifies

an

initialization

macro

defined

in

the

sys/syslog.h

file.

Without

initialization,

the

data

structure

used

to

support

the

thread

safety

is

not

set

up

and

the

syslog_r

subroutine

does

not

work

properly.

Messages

are

tagged

with

codes

indicating

the

type

of

Priority

for

each.

A

Priority

is

encoded

as

a

Facility,

which

describes

the

part

of

the

system

generating

the

message,

and

as

a

level,

which

indicates

the

severity

of

the

message.

If

the

syslog_r

subroutine

cannot

pass

the

message

to

the

syslogd

daemon,

it

writes

the

message

the

/dev/console

file,

provided

the

LOG_CONS

option

is

set.

The

closelog_r

subroutine

closes

the

log

file.

The

setlogmask_r

subroutine

uses

the

bit

mask

in

the

MaskPriority

parameter

to

set

the

new

log

priority

mask

and

returns

the

previous

mask.

The

LOG_MASK

and

LOG_UPTO

macros

in

the

sys/syslog.h

file

are

used

to

create

the

priority

mask.

Calls

to

the

syslog_r

subroutine

with

a

priority

mask

that

does

not

allow

logging

of

that

particular

level

of

message

causes

the

subroutine

to

return

without

logging

the

message.

Programs

using

this

subroutine

must

link

to

the

libpthreads.a

library.

Parameters

Priority

Specifies

the

part

of

the

system

generating

the

message

and

indicates

the

level

of

severity

of

the

message.

The

level

of

severity

is

selected

from

the

following

list:

v

A

condition

that

should

be

corrected

immediately,

such

as

a

corrupted

database.

v

A

critical

condition,

such

as

hard

device

errors.

v

A

message

containing

information

useful

to

debug

a

program.

v

A

panic

condition

reported

to

all

users,

such

as

an

unusable

system.

v

An

error

condition.

v

A

general

information

message.

v

A

condition

requiring

special

handling,

other

than

an

error

condition.

v

A

warning

message.

334

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SysLogData

Specifies

a

structure

that

contains

the

following

information:

v

The

file

descriptor

for

the

log

file.

v

The

status

bits

for

the

log

file.

v

A

string

for

tagging

the

log

entry.

v

The

mask

of

priorities

to

be

logged.

v

The

default

facility

code.

v

The

address

of

the

local

logger.

Format

Specifies

the

format,

given

in

the

same

format

as

for

the

printf

subroutine.

ID

Contains

a

string

attached

to

the

beginning

of

every

message.

The

Facility

parameter

encodes

a

default

facility

from

the

previous

list

to

be

assigned

to

messages

that

do

not

have

an

explicit

facility

encoded.

LogOption

Specifies

a

bit

field

that

indicates

logging

options.

The

values

of

LogOption

are:

LOG_CONS

Sends

messages

to

the

console

if

unable

to

send

them

to

the

syslogd

command.

This

option

is

useful

in

daemon

processes

that

have

no

controlling

terminal.

LOG_NDELAY

Opens

the

connection

to

the

syslogd

command

immediately,

instead

of

when

the

first

message

is

logged.

This

option

is

useful

for

programs

that

need

to

manage

the

order

in

which

file

descriptors

are

allocated.

LOG_NOWAIT

Logs

messages

to

the

console

without

waiting

for

forked

children.

Use

this

option

for

processes

that

enable

notification

of

child

termination

through

SIGCHLD;

otherwise,

the

syslog

subroutine

may

block,

waiting

for

a

child

process

whose

exit

status

has

already

been

collected.

LOG_ODELAY

Delays

opening

until

the

syslog

subroutine

is

called.

LOG_PID

Logs

the

process

ID

with

each

message.

This

option

is

useful

for

identifying

daemons.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

335

Facility

Specifies

which

of

the

following

values

generated

the

message:

LOG_AUTH

Indicates

the

security

authorization

system:

the

login

command,

the

su

command,

and

so

on.

LOG_DAEMON

Logs

system

daemons.

LOG_KERN

Logs

messages

generated

by

the

kernel.

Kernel

processes

should

use

the

bsdlog

routine

to

generate

syslog

messages.

The

syntax

of

bsdlog

is

identical

to

syslog.

The

bsdlog

messages

can

only

be

created

by

kernel

processes

and

must

be

of

LOG_KERN

priority.

LOG_LPR

Logs

the

line

printer

spooling

system.

LOG_LOCAL0

through

LOG_LOCAL7

Reserved

for

local

use.

LOG_MAIL

Logs

the

mail

system.

LOG_NEWS

Logs

the

news

subsystem.

LOG_UUCP

Logs

the

UUCP

subsystem.

LOG_USER

Logs

messages

generated

by

user

processes.

This

is

the

default

facility

when

none

is

specified.

v

Remote

file

systems,

such

as

the

Andrew

File

System

(AFS).

v

The

UUCP

subsystem.

v

Messages

generated

by

user

processes.

This

is

the

default

facility

when

none

is

specified.

MaskPriority

Enables

logging

for

the

levels

indicated

by

the

bits

in

the

mask

that

are

set,

and

disables

logging

where

the

bits

are

not

set.

The

default

mask

allows

all

priorities

to

be

logged.

Return

Values

0

Indicates

that

the

subroutine

was

successful.

-1

Indicates

that

the

subroutine

was

not

successful.

Examples

1.

To

log

an

error

message

concerning

a

possible

security

breach,

enter:

syslog_r

(LOG_ALERT,

syslog_data_struct,

"%s",

"who:internal

error

23");

2.

To

initialize

the

log

file,

set

the

log

priority

mask,

and

log

an

error

message,

enter:

openlog_r

("ftpd",

LOG_PID,

LOG_DAEMON,

syslog_data_struct);

setlogmask_r

(LOG_UPTO

(LOG_ERR),

syslog_data_struct);

syslog_r

(LOG_INFO,

syslog_data_struct,

"");

3.

To

log

an

error

message

from

the

system,

enter:

syslog_r

(LOG_INFO

|

LOG_LOCAL2,

syslog_data_struct,

"system

error:

%m");

336

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

prof

command.

The

syslogd

daemon.

The

printf,

fprintf,

sprintf,

wsprintf,

vprintf,

vfprintf,

vsprintf,

or

vwsprintf

subroutine.

Subroutines

Overview

and

List

of

Multithread

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

sys_parm

Subroutine

Purpose

Provides

a

service

for

examining

or

setting

kernel

run-time

tunable

parameters.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/types.h>

#include

<sys/var.h>

int

sys_parm

(

cmd,

parmflag,

parmp)

int

cmd;

int

parmflag;

struct

vario

*parmp;

Description

The

sys_parm

subroutine

is

used

to

query

and/or

customize

run-time

operating

system

parameters.

Note:

This

is

a

replacement

service

for

sysconfig

with

respect

to

querying

or

changing

information

in

the

var

structure.

The

sys_parm

subroutine:

v

Works

on

both

32

bit

and

64

bit

platforms

v

Requires

appropriate

privilege

for

its

use.

The

following

operations

are

supported:

SYSP_GET

Returns

a

structure

containing

the

current

value

of

the

specified

run-time

parameter

found

in

the

var

structure.

SYSP_SET

Sets

the

value

of

the

specfied

run-time

parameter.

The

run-time

parameters

that

can

be

returned

or

set

are

found

in

the

var

structure

as

defined

in

var.h

Parameters

cmd

Specifies

the

SYSP_GET

or

SYSP_SET

function.

parmflag

Specifies

the

parameter

upon

which

the

function

will

act.

parmp

Points

to

the

user

specified

structure

from

which

or

to

which

the

system

parameter

value

is

copied.

parmp

points

to

a

structure

of

type

vario

as

defined

in

var.h.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

337

The

vario

structure

is

an

abstraction

of

the

various

fields

in

the

var

structure

for

which

each

field

is

size

invariant.

The

size

of

the

data

does

not

depend

on

the

execution

environment

of

the

kernel

being

32

or

64

bit

or

the

calling

application

being

32

or

64

bit.

Examples

1.

To

examine

the

value

of

v.v_iostrun

(collect

disk

usage

statistics).

#include

<sys/var.h>

#include

<stdio.h>

struct

vario

myvar;

rc=sys_parm(SYSP_GET,SYSP_V_IOSTRUN,);

if(rc==0)

printf("v.v_iostrun

is

set

to

%d\n",myvar.v.v_iostrun.value);

2.

To

change

the

value

of

v.v_iostrun

(collect

disk

usage

statistics).

#include

<sys/var.h>

#include

<stdio.h>

struct

vario

myvar;

myvar.v.v_iostrun.value=0;

/*

initialize

to

false

*/

rc=sys_parm(SYSP_SET,SYSP_V_IOSTRUN,);

if(rc==0)

printf("disk

usage

statistics

are

not

being

collected\n");

Other

parameters

may

be

examined

or

set

by

changing

the

parmflag

parameter.

Return

Values

These

operations

return

a

value

of

0

upon

succesful

completion

of

the

subroutine.

Otherwise

or

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

EACCES

The

calling

process

does

not

have

the

required

privilege.

EINVAL

One

of

the

following

is

true:

v

The

command

is

neither

SYSP_GET

nor

SYSP_SET

v

parmflag

is

out

of

range

of

parameters

defined

in

var.h

v

The

value

specified

in

the

parmp

parameter

is

not

a

valid

value

for

the

field

indicated

by

the

parmflag

parameter.

EFAULT

An

invalid

address

was

specified

by

the

parmp

parameter.

File

sys/var.h

Contains

structure

definitions.

Related

Information

The

SYS_GETPARMS

(“SYS_GETPARMS

sysconfig

Operation”

on

page

321)

sysconfig

Operation,

and

SYS_SETPARMS

(“SYS_SETPARMS

sysconfig

Operation”

on

page

328)

sysconfig

Operation

system

Subroutine

Purpose

Runs

a

shell

command.

338

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

int

system

(

String)

const

char

*String;

Description

The

system

subroutine

passes

the

String

parameter

to

the

sh

command

as

input.

Then

the

sh

command

interprets

the

String

parameter

as

a

command

and

runs

it.

The

system

subroutine

calls

the

fork

subroutine

to

create

a

child

process

that

in

turn

uses

the

exec

l

subroutine

to

run

the

/usr/bin/sh

command,

which

interprets

the

shell

command

contained

in

the

String

parameter.

When

invoked

on

the

Trusted

Path,

the

system

subroutine

runs

the

Trusted

Path

shell

(/usr/bin/tsh).

The

current

process

waits

until

the

shell

has

completed,

then

returns

the

exit

status

of

the

shell.

The

exit

status

of

the

shell

is

returned

in

the

same

manner

as

a

call

to

the

wait

or

waitpid

subroutine,

using

the

structures

in

the

sys/wait.h

file.

The

system

subroutine

ignores

the

SIGINT

and

SIGQUIT

signals,

and

blocks

the

SIGCHILD

signal

while

waiting

for

the

command

specified

by

the

String

parameter

to

terminate.

If

this

might

cause

the

application

to

miss

a

signal

that

would

have

killed

it,

the

application

should

use

the

value

returned

by

the

system

subroutine

to

take

the

appropriate

action

if

the

command

terminated

due

to

receipt

of

a

signal.

The

system

subroutine

does

not

affect

the

termination

status

of

any

child

of

the

calling

process

unless

that

process

was

created

by

the

system

subroutine.

The

system

subroutine

does

not

return

until

the

child

process

has

terminated.

Parameters

String

Specifies

a

valid

sh

shell

command.

Note:

The

system

subroutine

runs

only

sh

shell

commands.

The

results

are

unpredictable

if

the

String

parameter

is

not

a

valid

sh

shell

command.

Return

Values

Upon

successful

completion,

the

system

subroutine

returns

the

exit

status

of

the

shell.

The

exit

status

of

the

shell

is

returned

in

the

same

manner

as

a

call

to

the

wait

or

waitpid

subroutine,

using

the

structures

in

the

sys/wait.h

file.

If

the

String

parameter

is

a

null

pointer

and

a

command

processor

is

available,

the

system

subroutine

returns

a

nonzero

value.

If

the

fork

subroutine

fails

or

if

the

exit

status

of

the

shell

cannot

be

obtained,

the

system

subroutine

returns

a

value

of

-1.

If

the

exec

l

subroutine

fails,

the

system

subroutine

returns

a

value

of

127.

In

all

cases,

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

system

subroutine

fails

if

any

of

the

following

are

true:

EAGAIN

The

system-imposed

limit

on

the

total

number

of

running

processes,

either

systemwide

or

by

a

single

user

ID,

was

exceeded.

EINTR

The

system

subroutine

was

interrupted

by

a

signal

that

was

caught

before

the

requested

process

was

started.

The

EINTR

error

code

will

never

be

returned

after

the

requested

process

has

begun.

ENOMEM

Insufficient

storage

space

is

available.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

339

Related

Information

The

execl

subroutine,

exit

subroutine,

fork

subroutine,

pipe

subroutine,

wait

(“wait,

waitpid,

wait3,

or

wait364

Subroutine”

on

page

441)

subroutine,

waitpid

(“wait,

waitpid,

wait3,

or

wait364

Subroutine”

on

page

441)

subroutine.

The

sh

command.

List

of

Security

and

Auditing

Subroutines,

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tan,

tanf,

or

tanl

Subroutine

Purpose

Computes

the

tangent.

Syntax

#include

<math.h>

float

tanf

(x)

float

x;

long

double

tanl

(x)

long

double

x;

double

tan

(x)

double

x;

Description

The

tan,

tanf,

and

tanl

subroutines

compute

the

tangent

of

the

x

parameter,

measured

in

radians.

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

functions.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Specifies

the

value

to

be

computed.

Return

Values

Upon

successful

completion,

the

tan,

tanf,

and

tanl

subroutines

return

the

tangent

of

x.

If

the

correct

value

would

cause

underflow,

and

is

not

representable,

a

range

error

may

occur,

and

0.0

is

returned.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0,

x

is

returned.

If

x

is

subnormal,

a

range

error

may

occur

and

x

should

be

returned.

340

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

If

x

is

±Inf,

a

domain

error

occurs,

and

a

NaN

returned.

If

the

correct

value

would

cause

underflow,

and

is

representable,

a

range

error

may

occur

and

the

correct

value

is

returned.

If

the

correct

value

would

cause

overflow,

a

range

error

occurs

and

the

tan,

tanf,

and

tanl

subroutines

return

the

value

of

the

macro

HUGE_VAL,

HUGE_VALF,

and

HUGE_VALL,

respectively.

Error

Codes

The

tan,

tanf,

and

tanl

subroutines

lose

accuracy

when

passed

a

large

value

for

the

x

parameter.

Since

the

machine

value

of

pi

can

only

approximate

its

infinitely

precise

value,

the

remainder

of

x/(2

*

pi)

becomes

less

accurate

as

x

becomes

larger.

Similar

loss

of

accuracy

occurs

for

the

tan,

tanf,

and

tanl

subroutines

during

argument

reduction

of

large

arguments.

Related

Information

atanf

or

atanl

Subroutine,

feclearexcept

Subroutine,

fetestexcept

Subroutine,

and

class,

_class,

finite,

isnan,

or

unordered

Subroutines

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

tanh,

tanhf,

or

tanhl

Subroutine

Purpose

Computes

the

hyperbolic

tangent.

Syntax

#include

<math.h>

float

tanhf

(x)

float

x;

long

double

tanhl

(x)

double

x;

double

tanh

(x)

double

x;

Description

The

tanhf,

tanhl,

and

tanh

subroutines

compute

the

hyperbolic

tangent

of

the

x

.

An

application

wishing

to

check

for

error

situations

should

set

the

errno

global

variable

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Parameters

x

Specifies

the

value

to

be

computed.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

341

Return

Values

Upon

successful

completion,

the

tanhf,

tanhl,

and

tanh

subroutines

return

the

hyperbolic

tangent

of

x.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0,

x

is

returned.

If

x

is

±Inf,

±1

is

returned.

If

x

is

subnormal,

a

range

error

may

occur

and

x

should

be

returned.

Related

Information

The

“sin,

sinf,

or

sinl

Subroutine”

on

page

193.

atanf

or

atanl

Subroutine,

feclearexcept

Subroutine,

fetestexcept

Subroutine,

and

class,

_class,

finite,

isnan,

or

unordered

Subroutines

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

tcb

Subroutine

Purpose

Alters

the

Trusted

Computing

Base

(TCB)

status

of

a

file.

Library

Security

Library

(libc.a)

Syntax

#include

<sys/tcb.h>

int

tcb

(

Path,

Flag)

char

*Path;

int

Flag;

Description

The

tcb

subroutine

provides

a

mechanism

to

query

or

set

the

TCB

attributes

of

a

file.

This

subroutine

is

not

safe

for

use

with

multiple

threads.

To

call

this

subroutine

from

a

threaded

application,

enclose

the

call

with

the

_libs_rmutex

lock.

See

″Making

a

Subroutine

Safe

for

Multiple

Threads″

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

for

more

information

about

this

lock.

Parameters

Path

Specifies

the

path

name

of

the

file

whose

TCB

status

is

to

be

changed.

342

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Flag

Specifies

the

function

to

be

performed.

Valid

values

are

defined

in

the

sys/tcb.h

file

and

include

the

following:

TCB_ON

Enables

the

TCB

attribute

of

a

file.

TCB_OFF

Disables

the

Trusted

Process

and

TCB

attributes

of

a

file.

TCB_QUERY

Queries

the

TCB

status

of

a

file.

This

function

returns

one

of

the

preceding

values.

Return

Values

Upon

successful

completion,

the

tcb

subroutine

returns

a

value

of

0

if

the

Flags

parameter

is

either

TCB_ON

or

TCB_OFF.

If

the

Flags

parameter

is

TCB_QUERY,

the

current

status

is

returned.

If

the

tcb

subroutine

fails,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

tcb

subroutine

fails

if

one

of

the

following

is

true:

EINVAL

The

Flags

parameter

is

not

one

of

TCB_ON,

TCB_OFF,

or

TCB_QUERY.

EPERM

Not

authorized

to

perform

this

operation.

ENOENT

The

file

specified

by

the

Path

parameter

does

not

exist.

EROFS

The

file

system

is

read-only.

EBUSY

The

file

specified

by

the

Path

parameter

is

currently

open

for

writing.

EACCES

Access

permission

is

denied

for

the

file

specified

by

the

Path

parameter.

Security

Access

Control:

The

calling

process

must

have

search

permission

for

the

object

named

by

the

Path

parameter.

Only

the

root

user

can

set

the

tcb

attributes

of

a

file.

Related

Information

The

chmod

or

fchmod

subroutine,

statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

or

ffullstat

(“statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine”

on

page

277)

subroutine.

The

chmod

command.

List

of

Security

and

Auditing

Subroutines,

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tcdrain

Subroutine

Purpose

Waits

for

output

to

complete.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<termios.h>

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

343

int

tcdrain(

FileDescriptor)

int

FileDescriptor;

Description

The

tcdrain

subroutine

waits

until

all

output

written

to

the

object

referred

to

by

the

FileDescriptor

parameter

has

been

transmitted.

Parameter

FileDescriptor

Specifies

an

open

file

descriptor.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

tcdrain

subroutine

is

unsuccessful

if

one

of

the

following

is

true:

EBADF

The

FileDescriptor

parameter

does

not

specify

a

valid

file

descriptor.

EINTR

A

signal

interrupted

the

tcdrain

subroutine.

EIO

The

process

group

of

the

writing

process

is

orphaned,

and

the

writing

process

does

not

ignore

or

block

the

SIGTTOU

signal.

ENOTTY

The

file

associated

with

the

FileDescriptor

parameter

is

not

a

terminal.

Example

To

wait

until

all

output

has

been

transmitted,

enter:

rc

=

tcdrain(stdout);

Related

Information

The

tcflow

(“tcflow

Subroutine”)

subroutine,

tcflush

(“tcflush

Subroutine”

on

page

345)

subroutine,

tcsendbreak

(“tcsendbreak

Subroutine”

on

page

349)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tcflow

Subroutine

Purpose

Performs

flow

control

functions.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<termios.h>

int

tcflow(

FileDescriptor,

Action)

int

FileDescriptor;

int

Action;

344

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

tcflow

subroutine

suspends

transmission

or

reception

of

data

on

the

object

referred

to

by

the

FileDescriptor

parameter,

depending

on

the

value

of

the

Action

parameter.

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

Action

Specifies

one

of

the

following:

TCOOFF

Suspend

output.

TCOON

Restart

suspended

output.

TCIOFF

Transmit

a

STOP

character,

which

is

intended

to

cause

the

terminal

device

to

stop

transmitting

data

to

the

system.

See

the

description

of

IXOFF

in

the

Input

Modes

section

of

the

termios.h

file.

TCION

Transmit

a

START

character,

which

is

intended

to

cause

the

terminal

device

to

start

transmitting

data

to

the

system.

See

the

description

of

IXOFF

in

the

Input

Modes

section

of

the

termios.h

file.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

tcflow

subroutine

is

unsuccessful

if

one

of

the

following

is

true:

EBADF

The

FileDescriptor

parameter

does

not

specify

a

valid

file

descriptor.

EINVAL

The

Action

parameter

does

not

specify

a

proper

value.

EIO

The

process

group

of

the

writing

process

is

orphaned,

and

the

writing

process

does

not

ignore

or

block

the

SIGTTOU

signal.

ENOTTY

The

file

associated

with

the

FileDescriptor

parameter

is

not

a

terminal.

Example

To

restart

output

from

a

terminal

device,

enter:

rc

=

tcflow(stdout,

TCION);

Related

Information

The

tcdrain

(“tcdrain

Subroutine”

on

page

343)

subroutine,

tcflush

(“tcflush

Subroutine”)

subroutine,

tcsendbreak

(“tcsendbreak

Subroutine”

on

page

349)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tcflush

Subroutine

Purpose

Discards

data

from

the

specified

queue.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

345

Library

Standard

C

Library

(libc.a)

Syntax

#include

<termios.h>

int

tcflush(

FileDescriptor,

QueueSelector)

int

FileDescriptor;

int

QueueSelector;

Description

The

tcflush

subroutine

discards

any

data

written

to

the

object

referred

to

by

the

FileDescriptor

parameter,

or

data

received

but

not

read

by

the

object

referred

to

by

FileDescriptor,

depending

on

the

value

of

the

QueueSelector

parameter.

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

QueueSelector

Specifies

one

of

the

following:

TCIFLUSH

Flush

data

received

but

not

read.

TCOFLUSH

Flush

data

written

but

not

transmitted.

TCIOFLUSH

Flush

both

of

the

following:

v

Data

received

but

not

read

v

Data

written

but

not

transmitted

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

tcflush

subroutine

is

unsuccessful

if

one

of

the

following

is

true:

EBADF

The

FileDescriptor

parameter

does

not

specify

a

valid

file

descriptor.

EINVAL

The

QueueSelector

parameter

does

not

specify

a

proper

value.

EIO

The

process

group

of

the

writing

process

is

orphaned,

and

the

writing

process

does

not

ignore

or

block

the

SIGTTOU

signal.

ENOTTY

The

file

associated

with

the

FileDescriptor

parameter

is

not

a

terminal.

Example

To

flush

the

output

queue,

enter:

rc

=

tcflush(2,

TCOFLUSH);

Related

Information

The

tcdrain

(“tcdrain

Subroutine”

on

page

343)

subroutine,

tcflow

(“tcflow

Subroutine”

on

page

344)

subroutine,

tcsendbreak

(“tcsendbreak

Subroutine”

on

page

349)

subroutine.

346

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tcgetattr

Subroutine

Purpose

Gets

terminal

state.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<termios.h>

int

tcgetattr

(

FileDescriptor,

TermiosPointer)

int

FileDescriptor;

struct

termios

*TermiosPointer;

Description

The

tcgetattr

subroutine

gets

the

parameters

associated

with

the

object

referred

to

by

the

FileDescriptor

parameter

and

stores

them

in

the

termios

structure

referenced

by

the

TermiosPointer

parameter.

This

subroutine

is

allowed

from

a

background

process;

however,

the

terminal

attributes

may

subsequently

be

changed

by

a

foreground

process.

Whether

or

not

the

terminal

device

supports

differing

input

and

output

baud

rates,

the

baud

rates

stored

in

the

termios

structure

returned

by

the

tcgetattr

subroutine

reflect

the

actual

baud

rates,

even

if

they

are

equal.

Note:

If

differing

baud

rates

are

not

supported,

returning

a

value

of

0

as

the

input

baud

rate

is

obsolete.

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

TermiosPointer

Points

to

a

termios

structure.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

tcgetattr

subroutine

is

unsuccessful

if

one

of

the

following

is

true:

EBADF

The

FileDescriptor

parameter

does

not

specify

a

valid

file

descriptor.

ENOTTY

The

file

associated

with

the

FileDescriptor

parameter

is

not

a

terminal.

Examples

To

get

the

current

terminal

state

information,

enter:

rc

=

tcgetattr(stdout,

&my_termios);

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

347

Related

Information

The

tcsetattr

(“tcsetattr

Subroutine”

on

page

350)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tcgetpgrp

Subroutine

Purpose

Gets

foreground

process

group

ID.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

pid_t

tcgetpgrp

(

FileDescriptor)

int

FileDescriptor;

Description

The

tcgetpgrp

subroutine

returns

the

value

of

the

process

group

ID

of

the

foreground

process

group

associated

with

the

terminal.

The

function

can

be

called

from

a

background

process;

however,

the

foreground

process

can

subsequently

change

the

information.

Parameters

FileDescriptor

Indicates

the

open

file

descriptor

for

the

terminal

special

file.

Return

Values

Upon

successful

completion,

the

process

group

ID

of

the

foreground

process

is

returned.

If

there

is

no

foreground

process

group,

a

value

greater

than

1

that

does

not

match

the

process

group

ID

of

any

existing

process

group

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

tcgetpgrp

subroutine

is

unsuccessful

if

one

of

the

following

is

true:

EBADF

The

FileDescriptor

argument

is

not

a

valid

file

descriptor.

EINVAL

The

function

is

not

appropriate

for

the

file

associated

with

the

FileDescriptor

argument.

ENOTTY

The

calling

process

does

not

have

a

controlling

terminal

or

the

file

is

not

the

controlling

terminal.

Related

Information

The

setpgid

(“setpgid

or

setpgrp

Subroutine”

on

page

146)

subroutine,

setsid

(“setsid

Subroutine”

on

page

150)

subroutine,

tcsetpgrp

(“tcsetpgrp

Subroutine”

on

page

352)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

348

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

tcsendbreak

Subroutine

Purpose

Sends

a

break

on

an

asynchronous

serial

data

line.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<termios.h>

int

tcsendbreak(

FileDescriptor,

Duration)

int

FileDescriptor;

int

Duration;

Description

If

the

terminal

is

using

asynchronous

serial

data

transmission,

the

tcsendbreak

subroutine

causes

transmission

of

a

continuous

stream

of

zero-valued

bits

for

a

specific

duration.

If

the

terminal

is

not

using

asynchronous

serial

data

transmission,

the

tcsendbreak

subroutine

returns

without

taking

any

action.

Pseudo-terminals

and

LFT

do

not

generate

a

break

condition.

They

return

without

taking

any

action.

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

Duration

Specifies

the

number

of

milliseconds

that

zero-valued

bits

are

transmitted.

If

the

value

of

the

Duration

parameter

is

0,

it

causes

transmission

of

zero-valued

bits

for

at

least

250

milliseconds

and

not

longer

than

500

milliseconds.

If

Duration

is

not

0,

it

sends

zero-valued

bits

for

Duration

milliseconds.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

tcsendbreak

subroutine

is

unsuccessful

if

one

or

both

of

the

following

are

true:

EBADF

The

FileDescriptor

parameter

does

not

specify

a

valid

open

file

descriptor.

EIO

The

process

group

of

the

writing

process

is

orphaned,

and

the

writing

process

does

not

ignore

or

block

the

SIGTTOU

signal.

ENOTTY

The

file

associated

with

the

FileDescriptor

parameter

is

not

a

terminal.

Examples

1.

To

send

a

break

condition

for

500

milliseconds,

enter:

rc

=

tcsendbreak(stdout,500);

2.

To

send

a

break

condition

for

25

milliseconds,

enter:

rc

=

tcsendbreak(1,25);

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

349

This

could

also

be

performed

using

the

default

Duration

by

entering:

rc

=

tcsendbreak(1,

0);

Related

Information

The

tcdrain

(“tcdrain

Subroutine”

on

page

343)

subroutine,

tcflow

(“tcflow

Subroutine”

on

page

344)

subroutine,

tcflush

(“tcflush

Subroutine”

on

page

345)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tcsetattr

Subroutine

Purpose

Sets

terminal

state.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<termios.h>

int

tcsetattr

(FileDescriptor,

OptionalActions,

TermiosPointer)

int

FileDescriptor,

OptionalActions;

const

struct

termios

*

TermiosPointer;

Description

The

tcsetattr

subroutine

sets

the

parameters

associated

with

the

object

referred

to

by

the

FileDescriptor

parameter

(unless

support

required

from

the

underlying

hardware

is

unavailable),

from

the

termios

structure

referenced

by

the

TermiosPointer

parameter.

The

value

of

the

OptionalActions

parameter

determines

how

the

tcsetattr

subroutine

is

handled.

The

0

baud

rate

(B0)

is

used

to

terminate

the

connection.

If

B0

is

specified

as

the

output

baud

rate

when

the

tcsetattr

subroutine

is

called,

the

modem

control

lines

are

no

longer

asserted.

Normally,

this

disconnects

the

line.

Using

0

as

the

input

baud

rate

in

the

termios

structure

to

cause

tcsetattr

to

change

the

input

baud

rate

to

the

same

value

as

that

specified

by

the

value

of

the

output

baud

rate,

is

obsolete.

If

an

attempt

is

made

using

the

tcsetattr

subroutine

to

set:

v

An

unsupported

baud

rate

v

Baud

rates,

such

that

the

input

and

output

baud

rates

differ

and

the

hardware

does

not

support

that

combination

v

Other

features

not

supported

by

the

hardware

but

the

tcsetattr

subroutine

is

able

to

perform

some

of

the

requested

actions,

then

the

subroutine

returns

successfully,

having

set

all

supported

attributes

and

leaving

the

above

unsupported

attributes

unchanged.

If

no

part

of

the

request

can

be

honored,

the

tcsetattr

subroutine

returns

a

value

of

-1

and

the

errno

global

variable

is

set

to

EINVAL.

350

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

If

the

input

and

output

baud

rates

differ

and

are

a

combination

that

is

not

supported,

neither

baud

rate

is

changed.

A

subsequent

call

to

the

tcgetattr

subroutine

returns

the

actual

state

of

the

terminal

device

(reflecting

both

the

changes

made

and

not

made

in

the

previous

tcsetattr

call).

The

tcsetattr

subroutine

does

not

change

the

values

in

the

termios

structure

whether

or

not

it

actually

accepts

them.

If

the

tcsetattr

subroutine

is

called

by

a

process

which

is

a

member

of

a

background

process

group

on

a

FileDescriptor

associated

with

its

controlling

terminal,

a

SIGTTOU

signal

is

sent

to

the

background

process

group.

If

the

calling

process

is

blocking

or

ignoring

SIGTTOU

signals,

the

process

performs

the

operation

and

no

signal

is

sent.

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

OptionalActions

Specifies

one

of

the

following

values:

TCSANOW

The

change

occurs

immediately.

TCSADRAIN

The

change

occurs

after

all

output

written

to

the

object

referred

to

by

FileDescriptor

has

been

transmitted.

This

function

should

be

used

when

changing

parameters

that

affect

output.

TCSAFLUSH

The

change

occurs

after

all

output

written

to

the

object

referred

to

by

FileDescriptor

has

been

transmitted.

All

input

that

has

been

received

but

not

read

is

discarded

before

the

change

is

made.

TermiosPointer

Points

to

a

termios

structure.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

tcsetattr

subroutine

is

unsuccessful

if

one

of

the

following

is

true:

EBADF

The

FileDescriptor

parameter

does

not

specify

a

valid

file

descriptor.

EINTR

A

signal

interrupted

the

tcsetattr

subroutine.

EINVAL

The

OptionalActions

argument

is

not

a

proper

value,

or

an

attempt

was

made

to

change

an

attribute

represented

in

the

termios

structure

to

an

unsupported

value.

EIO

The

process

group

of

the

writing

process

is

orphaned,

and

the

writing

process

does

not

ignore

or

block

the

SIGTTOU

signal.

ENOTTY

The

file

associated

with

the

FileDescriptor

parameter

is

not

a

terminal.

Example

To

set

the

terminal

state

after

the

current

output

completes,

enter:

rc

=

tcsetattr(stdout,

TCSADRAIN,

&my_termios);

Related

Information

The

cfgetispeed

subroutine,

tcgetattr

(“tcgetattr

Subroutine”

on

page

347)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

351

tcsetpgrp

Subroutine

Purpose

Sets

foreground

process

group

ID.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

int

tcsetpgrp

(

FileDescriptor,

ProcessGroupID)

int

FileDescriptor;

pid_t

ProcessGroupID;

Description

If

the

process

has

a

controlling

terminal,

the

tcsetpgrp

subroutine

sets

the

foreground

process

group

ID

associated

with

the

terminal

to

the

value

of

the

ProcessGroupID

parameter.

The

file

associated

with

the

FileDescriptor

parameter

must

be

the

controlling

terminal

of

the

calling

process,

and

the

controlling

terminal

must

be

currently

associated

with

the

session

of

the

calling

process.

The

value

of

the

ProcessGroupID

parameter

must

match

a

process

group

ID

of

a

process

in

the

same

session

as

the

calling

process.

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

ProcessGroupID

Specifies

the

process

group

identifier.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

This

function

is

unsuccessful

if

one

of

the

following

is

true:

EBADF

The

FileDescriptor

parameter

is

not

a

valid

file

descriptor.

EINVAL

The

ProcessGroupID

parameter

is

invalid.

ENOTTY

The

calling

process

does

not

have

a

controlling

terminal,

or

the

file

is

not

the

controlling

terminal,

or

the

controlling

terminal

is

no

longer

associated

with

the

session

of

the

calling

process.

EPERM

The

ProcessGroupID

parameter

is

valid,

but

does

not

match

the

process

group

ID

of

a

process

in

the

same

session

as

the

calling

process.

Related

Information

The

tcgetpgrp

(“tcgetpgrp

Subroutine”

on

page

348)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

352

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

termdef

Subroutine

Purpose

Queries

terminal

characteristics.

Library

Standard

C

Library

(libc.a)

Syntax

char

*termdef

(

FileDescriptor,

Characteristic)

int

FileDescriptor;

char

Characteristic;

Description

The

termdef

subroutine

returns

a

pointer

to

a

null-terminated,

static

character

string

that

contains

the

value

of

a

characteristic

defined

for

the

terminal

specified

by

the

FileDescriptor

parameter.

Asynchronous

Terminal

Support

Shell

profiles

usually

set

the

TERM

environment

variable

each

time

you

log

in.

The

stty

command

allows

you

to

change

the

lines

and

columns

(by

using

the

lines

and

cols

options).

This

is

preferred

over

changing

the

LINES

and

COLUMNS

environment

variables,

since

the

termdef

subroutine

examines

the

environment

variables

last.

You

consider

setting

LINES

and

COLUMNS

environment

variables

if:

v

You

are

using

an

asynchronous

terminal

and

want

to

override

the

lines

and

cols

setting

in

the

terminfo

database

OR

v

Your

asynchronous

terminal

has

an

unusual

number

of

lines

or

columns

and

you

are

running

an

application

that

uses

the

termdef

subroutine

but

not

an

application

which

uses

the

terminfo

database

(for

example,

curses).

This

is

because

the

curses

initialization

subroutine,

setupterm

(“setupterm

Subroutine”

on

page

624),

calls

the

termdef

subroutine

to

determine

the

number

of

lines

and

columns

on

the

display.

If

the

termdef

subroutine

cannot

supply

this

information,

the

setupterm

subroutine

uses

the

values

in

the

terminfo

database.

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

353

Characteristic

Specifies

the

characteristic

that

is

to

be

queried.

The

following

values

can

be

specified:

c

Causes

the

termdef

subroutine

to

query

for

the

number

of

″columns″

for

the

terminal.

This

is

determined

by

performing

the

following

actions:

1.

It

requests

a

copy

of

the

terminal’s

winsize

structure

by

issuing

the

TIOCGWINSZ

ioctl.

If

ws_col

is

not

0,

the

ws_col

value

is

used.

2.

If

the

TIOCGWINSZ

ioctl

is

unsuccessful

or

if

ws_col

is

0,

the

termdef

subroutine

attempts

to

use

the

value

of

the

COLUMNS

environment

variable.

3.

If

the

COLUMNS

environment

variable

is

not

set,

the

termdef

subroutine

returns

a

pointer

to

a

null

string.

l

Causes

the

termdef

subroutine

to

query

for

the

number

of

″lines″

(or

rows)

for

the

terminal.

This

is

determined

by

performing

the

following

actions:

1.

It

requests

a

copy

of

the

terminal’s

winsize

structure

by

issuing

the

TIOCGWINSZ

ioctl.

If

ws_row

is

not

0,

the

ws_row

value

is

used.

2.

If

the

TIOCGWINSZ

ioctl

is

unsuccessful

or

if

ws_row

is

0,

the

termdef

subroutine

attempts

to

use

the

value

of

the

LINES

environment

variable.

3.

If

the

LINES

environment

variable

is

not

set,

the

termdef

subroutine

returns

a

pointer

to

a

null

string.

Characters

other

than

c

or

l

Cause

the

termdef

subroutine

to

query

for

the

″terminal

type″

of

the

terminal.

This

is

determined

by

performing

the

following

actions:

1.

The

termdef

subroutine

attempts

to

use

the

value

of

the

TERM

environment

variable.

2.

If

the

TERM

environment

variable

is

not

set,

the

termdef

subroutine

returns

a

pointer

to

string

set

to

″dumb″.

Examples

1.

To

display

the

terminal

type

of

the

standard

input

device,

enter:

printf("%s\n",

termdef(0,

’t’));

2.

To

display

the

current

lines

and

columns

of

the

standard

output

device,

enter:

printf("lines\tcolumns\n%s\t%s\n",

termdef(2,

’l’),

termdef(2,

’c’));

Note:

If

the

termdef

subroutine

is

unable

to

determine

a

value

for

lines

or

columns,

it

returns

pointers

to

null

strings.

Related

Information

The

setupterm

(“setupterm

Subroutine”

on

page

624)

subroutine.

The

stty

command.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

test_and_set

Subroutine

Purpose

Atomically

tests

and

sets

a

memory

location.

354

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/atomic_op.h>

boolean_t

test_and_set

(word_addr,

mask)

atomic_p

word_addr;

int

mask;

Description

The

test_and_set

subroutine

attempts

to

atomically

OR

the

value

stored

at

word_addr

with

the

value

specified

by

mask.

If

any

bit

in

mask

was

already

set

in

the

value

stored

at

word_addr,

no

update

is

made.

Parameters

word_addr

Specifies

the

address

of

the

memory

location

to

be

set.

mask

Specifies

the

mask

value

to

be

used

to

set

the

memory

location

specified

by

word_addr.

Return

Values

The

test_and_set

subroutine

returns

true

if

the

the

value

stored

at

word_addr

was

updated.

Otherwise,

it

returns

false.

Related

Information

The

fetch_and_and

or

fetch_and_or

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

tgamma,

tgammaf,

or

tgammal

Subroutine

Purpose

Computes

the

gamma.

Syntax

#include

<math.h>

double

tgamma

(x)

double

x;

float

tgammaf

(x)

float

x;

long

double

tgammal

(x)

long

double

x;

Description

The

tgamma,

tgammaf,

and

tgammal

subroutines

compute

the

gamma

function

of

x.

An

application

wishing

to

check

for

error

situations

should

set

errno

to

zero

and

call

feclearexcept(FE_ALL_EXCEPT)

before

calling

these

subroutines.

Upon

return,

if

errno

is

nonzero

or

fetestexcept(FE_INVALID

|

FE_DIVBYZERO

|

FE_OVERFLOW

|

FE_UNDERFLOW)

is

nonzero,

an

error

has

occurred.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

355

Parameters

x

Specifies

the

value

to

be

computed.

Return

Values

Upon

successful

completion,

the

tgamma,

tgammaf,

and

tgammal

subroutines

return

Gamma(x).

If

x

is

a

negative

integer,

a

domain

error

occurs,

and

either

a

NaN

(if

supported),

or

an

implementation-defined

value

is

returned.

If

the

correct

value

would

cause

overflow,

a

range

error

occurs

and

the

tgamma,

tgammaf,

and

tgammal

subroutines

return

the

value

of

the

macro

HUGE_VAL,

HUGE_VALF,

or

HUGE_VALL,

respectively.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

+Inf,

x

is

returned.

If

x

is

±0,

a

pole

error

occurs,

and

the

tgamma,

tgammaf,

and

tgammal

subroutines

return

±HUGE_VAL,

±HUGE_VALF,

and

±HUGE_VALL,

respectively.

If

x

is

−Inf,

a

domain

error

occurs,

and

either

a

NaN

(if

supported),

or

an

implementation-defined

value

is

returned.

Related

Information

feclearexcept

Subroutine,

fetestexcept

Subroutine,

and

lgamma,

lgammal,

or

gamma

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

math.h

in

AIX

5L

Version

5.2

Files

Reference.

times

Subroutine

Purpose

Gets

process

and

waited-for

child

process

times

Syntax

#include

<sys/times.h>

clock_t

times

(buffer)

struct

tms

*buffer;

Description

The

times

subroutine

fills

the

tms

structure

pointed

to

by

buffer

with

time-accounting

information.

The

tms

structure

is

defined

in

<sys/times.h>.

All

times

are

measured

in

terms

of

the

number

of

clock

ticks

used.

The

times

of

a

terminated

child

process

is

included

in

the

tms_cutime

and

tms_cstime

elements

of

the

parent

when

the

wait

or

waitpid

subroutine

returns

the

process

ID

of

the

terminated

child.

If

a

child

process

has

not

waited

for

its

children,

their

times

are

not

included

in

its

times.

v

The

tms_utime

structure

member

is

the

CPU

time

charged

for

the

execution

of

user

instructions

of

the

calling

process.

356

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

The

tms_stime

structure

member

is

the

CPU

time

charged

for

execution

by

the

system

on

behalf

of

the

calling

process.

v

The

tms_cutime

structure

member

is

the

sum

of

the

tms_utime

and

tms_cutime

times

of

the

child

processes.

v

The

tms_cstime

structure

member

is

the

sum

of

the

tms_stime

and

tms_cstime

times

of

the

child

processes.

Applications

should

use

sysconf(_SC_CLK_TCK)

to

determine

the

number

of

clock

ticks

per

second

as

it

may

vary

from

system

to

system.

Parameters

*buffer

Points

to

the

tms

structure.

Return

Values

Upon

successful

completion,

the

times

subroutine

returns

the

elapsed

real

time,

in

clock

ticks,

since

an

arbitrary

point

in

the

past

(for

example,

system

startup

time).

This

point

does

not

change

from

one

invocation

of

the

times

subroutine

within

the

process

to

another.

The

return

value

may

overflow

the

possible

range

of

type

clock_t.

If

the

times

subroutine

fails,

(clock_t)-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Examples

Timing

a

Database

Lookup

The

following

example

defines

two

functions,

start_clock

and

end_clock,

that

are

used

to

time

a

lookup.

It

also

defines

variables

of

type

clock_t

and

tms

to

measure

the

duration

of

transactions.

The

start_clock

function

saves

the

beginning

times

given

by

the

times

subroutine.

The

end_clock

function

gets

the

ending

times

and

prints

the

difference

between

the

two

times.

#include

<sys/times.h>

#include

<stdio.h>

...

void

start_clock(void);

void

end_clock(char

*msg);

...

static

clock_t

st_time;

static

clock_t

en_time;

static

struct

tms

st_cpu;

static

struct

tms

en_cpu;

...

void

start_clock()

{

st_time

=

times(&st_cpu);

}

/*

This

example

assumes

that

the

result

of

each

subtraction

is

within

the

range

of

values

that

can

be

represented

in

an

integer

type.

*/

void

end_clock(char

*msg)

{

en_time

=

times(&en_cpu);

fputs(msg,stdout);

printf("Real

Time:

%jd,

User

Time

%jd,

System

Time

%jd\n",

(intmax_t)(en_time

-

st_time),

(intmax_t)(en_cpu.tms_utime

-

st_cpu.tms_utime),

(intmax_t)(en_cpu.tms_stime

-

st_cpu.tms_stime));

}

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

357

Related

Information

“sysconf

Subroutine”

on

page

312

and

“wait,

waitpid,

wait3,

or

wait364

Subroutine”

on

page

441

The

gettimer,

settimer,

restimer,

stime,

or

time

Subroutine,

getinterval,

incinterval,

absinterval,

resinc,

resabs,

alarm,

ualarm,

getitimer

or

setitimer

Subroutine,

exec:

execl,

execle,

execlp,

execv,

execve,

execvp,

or

exect

Subroutine,

and

fork,

f_fork,

or

vfork

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

timezone

Subroutine

Attention:

Do

not

use

the

tzset

subroutine,

from

libc.a,

when

linkning

libc.a

libbsd.a.

The

tzset

subroutine

uses

the

global

external

variable

timezone

which

conflicts

with

the

timezone

subroutine

in

libbsd.a.

This

name

collision

can

cause

unpredictable

results.

Purpose

Returns

the

name

of

the

timezone

associated

with

the

first

arguement.

Library

Berkeley

compatability

library

(libbsd.a)

(for

timezone

only)

Syntax

#include

<time.h>

char

*timezone(zone,

dst)

int

zone;

int

dst;

#include

<time.h>

#include

<limits.h>

int

zone;

int

dst;

char

czone[TZNAME_MAX+1];

Description

The

timezone

subroutine

returns

the

name

of

the

timezone

associated

with

the

first

argument

which

is

measured

in

minutes

westward

frow

Greenwich.

If

the

environment

variable

TZ

is

set,

the

first

argument

is

ignored

and

the

current

timezone

is

calculated

from

the

value

of

TZ.

If

the

second

argument

is

0,

the

standard

name

is

returned

otherwise

the

Daylight

Saving

Time

name

is

returned.

If

TZ

is

not

set,

then

the

internal

table

is

searched

for

a

matching

timezone.

If

the

timezone

does

not

appear

in

the

built

in

table

then

difference

from

GMT

is

produced.

Timezone

returns

a

pointer

to

static

data

that

will

be

overwritten

by

subsequent

calls.

Parameters

zone

Specifies

minutes

westward

from

Greenwich.

dst

Specifies

whether

to

return

Standard

time

or

Daylight

Savings

time.

czone

Specifies

a

buffer

of

size

TZNAME_MAX+1,

that

the

result

is

placed

in.

Return

Values

timezone

returns

a

pointer

to

static

data

that

contains

the

name

of

the

timezone.

Errors

There

are

no

errors

defined.

358

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

Subroutines

Overview

List

of

Multi-threaded

Programming

Subroutines

thread_post

Subroutine

Purpose

Posts

a

thread

of

an

event

completion.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/thread.h>

int

thread_post(

tid)

tid_t

tid;

Description

The

thread_post

subroutine

posts

the

thread

whose

thread

ID

is

indicated

by

the

value

of

the

tid

parameter,

of

the

occurrence

of

an

event.

If

the

posted

thread

is

waiting

in

thread_wait,

it

will

be

awakened

immediately.

If

it

not

waiting

in

thread_wait,

the

next

call

to

thread_wait

does

not

block

but

returns

with

success

immediately.

Multiple

posts

to

the

same

thread

without

an

intervening

wait

by

the

specified

thread

will

only

count

as

a

single

post.

The

posting

remains

in

effect

until

the

indicated

thread

calls

the

thread_wait

subroutine

upon

which

the

posting

gets

cleared.

The

thread_wait

and

the

thread_post

subroutine

can

be

used

by

applications

to

implement

a

fast

IPC

mechanism

between

threads

in

different

processes.

Parameters

tid

Specifies

the

thread

ID

of

the

thread

to

be

posted.

Return

Values

On

successful

completion,

the

thread_post

subroutine

returns

a

value

of

0.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

error.

Error

Codes

ESRCH

This

indicated

thread

is

non-existent

or

the

thread

has

exited

or

is

exiting.

EPERM

The

real

or

effective

user

ID

does

not

match

the

real

or

effective

user

ID

of

the

thread

being

posted,

or

else

the

calling

process

does

not

have

root

user

authority.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

359

Related

Information

The

thread_wait

(“thread_wait

Subroutine”

on

page

363)

subroutine,

and

thread_post_many

(“thread_post_many

Subroutine”)

subroutine.

thread_post_many

Subroutine

Purpose

Posts

one

or

more

threads

of

an

event

completion.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/thread.h>

int

thread_post_many(

nthreads,

tidp,

erridp)

int

nthreads;

tid_t

*

tidp;

tid_t

*

erridp;

Description

The

thread_post_many

subroutine

posts

one

or

more

threads

of

the

occurrence

of

the

event.

The

number

of

threads

to

be

posted

is

specified

by

the

value

of

the

nthreads

parameter,

while

the

tidp

parameter

points

to

an

array

of

thread

IDs

of

threads

that

need

to

be

posted.

The

subroutine

works

just

like

the

thread_post

subroutine

but

can

be

used

to

post

to

multiple

threads

at

the

same

time.

A

maximum

of

512

threads

can

be

posted

in

one

call

to

the

thread_post_many

subroutine.

An

optional

address

to

a

thread

ID

field

may

be

passed

in

the

erridp

parameter.

This

field

is

normally

ignored

by

the

kernel

unless

the

subroutine

fails

because

the

calling

process

has

no

permissions

to

post

to

any

one

of

the

specified

threads.

In

this

case,

the

kernel

posts

all

threads

in

the

array

pointed

at

by

the

tidp

parameter

up

to

the

first

failing

thread

and

fills

the

erridp

parameter

with

the

failing

thread’s

ID.

Parameters

nthreads

Specifies

the

number

of

threads

to

be

posted.

tidp

Specifies

the

address

of

an

array

of

thread

IDs

corresponding

to

the

list

of

threads

to

be

posted.

erridp

Either

NULL

or

specifies

the

pointer

to

a

thread

ID

variable

in

which

the

kernel

will

return

the

thread

ID

of

the

first

failing

thread

when

an

errno

of

EPERM

is

set.

Return

Values

On

successful

completion,

the

thread_post_many

subroutine

returns

a

value

of

0.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

error.

Error

Codes

The

thread_post_many

subroutine

is

unsuccessful

when

one

of

the

following

is

true:

ESRCH

None

of

the

indicated

threads

are

existent

or

they

have

all

exited

or

are

exiting.

360

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

EPERM

The

real

or

effective

user

ID

does

not

match

the

real

or

effective

user

ID

of

one

or

more

threads

being

posted,

or

else

the

calling

process

does

not

have

root

user

authority.

EFAULT

The

tidp

parameter

points

to

a

location

outside

of

the

address

space

of

the

process.

EINVAL

A

negative

value

or

a

value

greater

than

512

was

was

specified

in

the

nthreads

parameter.

Related

Information

The

thread_wait

(“thread_wait

Subroutine”

on

page

363)

subroutine,

and

thread_post

(“thread_post

Subroutine”

on

page

359)

subroutine.

thread_self

Subroutine

Purpose

Returns

the

caller’s

kernel

thread

ID.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/thread.h>

tid_t

thread_self

()

Description

The

thread_self

subroutine

returns

the

caller’s

kernel

thread

ID.

The

kernel

thread

ID

may

be

useful

for

the

bindprocessor

and

ptrace

subroutines.

The

ps,

trace,

and

vmstat

commands

also

report

kernel

thread

IDs,

thus

this

subroutine

can

be

useful

for

debugging

multi-threaded

programs.

The

kernel

thread

ID

is

unrelated

with

the

thread

ID

used

in

the

threads

library

(libpthreads.a)

and

returned

by

the

pthread_self

subroutine.

Return

Values

The

thread_self

subroutine

returns

the

caller’s

kernel

thread

ID.

Related

Information

The

bindprocessor

subroutine,

pthread_self

subroutine,

ptrace

subroutine.

thread_setsched

Subroutine

Purpose

Changes

the

scheduling

policy

and

priority

of

a

kernel

thread.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/sched.h>

#include

<sys/pri.h>

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

361

#include

<sys/types.h>

int

thread_setsched

(

tid,

priority,

policy)

tid_t

tid;

int

priority;

int

policy;

Description

The

thread_setsched

subroutine

changes

the

scheduling

policy

and

priority

of

a

kernel

thread.

User

threads

(pthreads)

have

their

own

scheduling

attributes

that

in

some

cases

allow

a

pthread

to

execute

on

top

of

multiple

kernel

threads.

Therefore,

if

the

policy

or

priority

change

is

being

granted

on

behalf

of

a

pthread,

then

the

pthreads

contention

scope

should

be

PTHREAD_SCOPE_SYSTEM.

Note:

Caution

must

be

exercised

when

using

the

thread_setsched

subroutine,

since

improper

use

may

result

in

system

hangs.

See

sys/pri.h

for

restrictions

on

thread

priorities.

Parameters

tid

Specifies

the

kernel

thread

ID

of

the

thread

whose

priority

and

policy

are

to

be

changed.

priority

Specifies

the

priority

to

use

for

this

kernel

thread.

The

priority

parameter

is

ignored

if

the

policy

is

being

set

to

SCHED_OTHER.

The

priority

parameter

must

have

a

value

in

the

range

0

to

PRI_LOW.

PRI_LOW

is

defined

in

sys/pri.h.

See

sys/pri.h

for

more

information

on

thread

priorities.

policy

Specifies

the

policy

to

use

for

this

kernel

thread.

The

policy

parameter

can

be

one

of

the

following

values,

which

are

defined

in

sys/sched.h:

SCHED_OTHER

Default

operating

system

scheduling

policy.

SCHED_FIFO

First

in-first

out

scheduling

policy.

SCHED_FIFO2

Allows

a

thread

that

sleeps

for

a

relatively

short

amount

of

time

to

be

requeued

to

the

head,

rather

than

the

tail,

of

its

priority

run

queue.

SCHED_FIFO3

Causes

threads

to

be

enqueued

to

the

head

of

their

run

queues.

SCHED_RR

Round-robin

scheduling

policy.

Return

Values

Upon

successful

completion,

the

thread_setsched

subroutine

returns

a

value

of

zero.

If

the

thread_setsched

subroutine

is

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

thread_setsched

subroutine

is

unsuccessful

if

one

or

more

of

the

following

is

true:

ESRCH

The

kernel

thread

id

tid

is

invalid.

EINVAL

The

policy

or

priority

is

invalid.

EPERM

The

caller

does

not

have

enough

privilege

to

change

the

policy

or

priority.

362

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

thread_wait

Subroutine

Purpose

Suspends

the

thread

until

it

receives

a

post

or

times

out.

Library

Standard

C

library

(libc.a)

Syntax

#include

<sys/thread.h>

int

thread_wait(

timeout)

int

timeout;

Description

The

thread_wait

subroutine

allows

a

thread

to

wait

or

block

until

another

thread

posts

it

with

the

thread_post

or

the

thread_post_many

subroutine

or

until

the

time

limit

specified

by

the

timeout

value

expires.

It

returns

immediately

if

there

is

a

pending

post

for

this

thread

or

if

a

timeout

value

of

0

is

specified.

If

the

event

for

which

the

thread

is

waiting

and

for

which

it

will

be

posted

will

occur

only

in

the

future,

the

thread_wait

subroutine

may

be

called

with

a

timeout

value

of

0

to

clear

any

pending

posts.

The

thread_wait

and

the

thread_post

subroutine

can

be

used

by

applications

to

implement

a

fast

IPC

mechanism

between

threads

in

different

processes.

Parameters

timeout

Specifies

the

maximum

length

of

time,

in

milliseconds,

to

wait

for

a

posting.

If

the

timeout

parameter

value

is

-1,

the

thread_wait

subroutine

does

not

return

until

a

posting

actually

occurs.

If

the

value

of

the

timeout

parameter

is

0,

the

thread_wait

subroutine

does

not

wait

for

a

post

to

occur

but

returns

immediately,

even

if

there

are

no

pending

posts.

For

a

non-privileged

user,

the

minimum

timeout

value

is

10

msec

and

any

value

less

than

that

is

automatically

increased

to

10

msec.

Return

Values

On

successful

completion,

the

thread_wait

subroutine

returns

a

value

of

0.

The

thread_wait

subroutine

completes

successfully

if

there

was

a

pending

post

or

if

the

calling

thread

was

posted

before

the

time

limit

specified

by

the

timeout

parameter

expires.

A

return

value

of

THREAD_WAIT_TIMEDOUT

indicates

that

the

thread_wait

subroutine

timed

out.

If

unsuccessful,

a

value

of

-1

is

returned

and

the

global

variable

errno

is

set

to

indicate

the

error.

Error

Codes

The

thread_wait

subroutine

is

unsuccessful

when

one

of

the

following

is

true:

EINTR

This

subroutine

was

terminated

by

receipt

of

a

signal.

ENOMEM

There

is

not

enough

memory

to

allocate

a

timer

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

363

Related

Information

The

thread_post

(“thread_post

Subroutine”

on

page

359)

subroutine,

and

thread_post_many

(“thread_post_many

Subroutine”

on

page

360)

subroutine.

tmpfile

Subroutine

Purpose

Creates

a

temporary

file.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdio.h>

FILE

*tmpfile

(

)

Description

The

tmpfile

subroutine

creates

a

temporary

file

and

opens

a

corresponding

stream.

The

file

is

opened

for

update.

The

temporary

file

is

automatically

deleted

when

all

references

(links)

to

the

file

have

been

closed.

The

stream

refers

to

a

file

which

has

been

unlinked.

If

the

process

ends

in

the

period

between

file

creation

and

unlinking,

a

permanent

file

may

remain.

Return

Values

The

tmpfile

subroutine

returns

a

pointer

to

the

stream

of

the

file

that

is

created

if

the

call

is

successful.

Otherwise,

it

returns

a

null

pointer

and

sets

the

errno

global

variable

to

indicate

the

error.

Error

Codes

The

tmpfile

subroutine

fails

if

one

of

the

following

occurs:

EINTR

A

signal

was

caught

during

the

tmpfile

subroutine.

EMFILE

The

number

of

file

descriptors

currently

open

in

the

calling

process

is

already

equal

to

OPEN_MAX.

ENFILE

The

maximum

allowable

number

of

files

is

currently

open

in

the

system.

ENOSPEC

The

directory

or

file

system

which

would

contain

the

new

file

cannot

be

expanded.

Related

Information

The

fopen,

freopen,

fdopen

subroutines,

mktemp

subroutine,

tmpnam

or

tempnam

(“tmpnam

or

tempnam

Subroutine”)

subroutine,

unlink

(“unlink

Subroutine”

on

page

424)

subroutine.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tmpnam

or

tempnam

Subroutine

Purpose

Constructs

the

name

for

a

temporary

file.

364

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdio.h>

char

*tmpnam

(

String)

char

*String;

char

*tempnam

(

Directory,

FileXPointer)

const

char

*Directory,

*FileXPointer;

Description

Attention:

The

tmpnam

and

tempnam

subroutines

generate

a

different

file

name

each

time

they

are

called.

If

called

more

than

16,384

(TMP_MAX)

times

by

a

single

process,

these

subroutines

recycle

previously

used

names.

The

tmpnam

and

the

tempnam

subroutines

generate

file

names

for

temporary

files.

The

tmpnam

subroutine

generates

a

file

name

using

the

path

name

defined

as

P_tmpdir

in

the

stdio.h

file.

Files

created

using

the

tmpnam

subroutine

reside

in

a

directory

intended

for

temporary

use.

The

file

names

are

unique.

The

application

must

create

and

remove

the

file.

The

tempnam

subroutine

enables

you

to

define

the

directory.

The

Directory

parameter

points

to

the

name

of

the

directory

in

which

the

file

is

to

be

created.

If

the

Directory

parameter

is

a

null

pointer

or

points

to

a

string

that

is

not

a

name

for

a

directory,

the

path

prefix

defined

as

P_tmpdir

in

the

stdio.h

file

is

used.

For

an

application

that

has

temporary

files

with

initial

letter

sequences,

use

the

FileXPointer

parameter

to

define

the

sequence.

The

FileXPointer

parameter

(a

null

pointer

or

a

string

of

up

to

5

bytes)

is

used

as

the

beginning

of

the

file

name.

Between

the

time

a

file

name

is

created

and

the

file

is

opened,

another

process

can

create

a

file

with

the

same

name.

Name

duplication

is

unlikely

if

the

other

process

uses

these

subroutines

or

the

mktemp

subroutine,

and

if

the

file

names

are

chosen

to

avoid

duplication

by

other

means.

Parameters

String

Specifies

the

address

of

an

array

of

at

least

the

number

of

bytes

specified

by

L_tmpnam,

a

constant

defined

in

the

stdio.h

file.

If

the

String

parameter

has

a

null

value,

the

tmpnam

subroutine

places

its

result

into

an

internal

static

area

and

returns

a

pointer

to

that

area.

The

next

call

to

this

subroutine

destroys

the

contents

of

the

area.

If

the

String

parameter’s

value

is

not

null,

the

tmpnam

subroutine

places

its

results

into

the

specified

array

and

returns

the

value

of

the

String

parameter.

Directory

Points

to

the

path

name

of

the

directory

in

which

the

file

is

to

be

created.

The

tempnam

subroutine

controls

the

choice

of

a

directory.

If

the

Directory

parameter

is

a

null

pointer

or

points

to

a

string

that

is

not

a

path

name

for

an

appropriate

directory,

the

path

name

defined

as

P_tmpdir

in

the

stdio.h

file

is

used.

If

that

path

name

is

not

accessible,

the

/tmp

directory

is

used.

You

can

bypass

the

selection

of

a

path

name

by

providing

an

environment

variable,

TMPDIR,

in

the

user’s

environment.

The

value

of

the

TMPDIR

environment

variable

is

a

path

name

for

the

desired

temporary-file

directory.

FileXPointer

A

pointer

to

an

initial

character

sequence

with

which

the

file

name

begins.

The

FileXPointer

parameter

value

can

be

a

null

pointer,

or

it

can

point

to

a

string

of

characters

to

be

used

as

the

first

characters

of

the

temporary-file

name.

The

number

of

characters

allowed

is

file

system

dependent,

but

5

bytes

is

the

maximum

allowed.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

365

Return

Values

Upon

completion,

the

tempnam

subroutine

allocates

space

for

the

string

using

the

malloc

subroutine,

puts

the

generated

path

name

in

that

space,

and

returns

a

pointer

to

the

space.

Otherwise,

it

returns

a

null

pointer

and

sets

the

errno

global

variable

to

indicate

the

error.

The

pointer

returned

by

tempnam

may

be

used

in

the

free

subroutine

when

the

space

is

no

longer

needed.

Error

Codes

The

tempnam

subroutine

returns

the

following

error

code

if

unsuccessful:

ENOMEM

Insufficient

storage

space

is

available.

ENINVAL

Indicates

an

invalid

string

value.

Related

Information

The

fopen,

freopen,

fdopen

subroutine,

malloc,

free,

realloc,

calloc,

mallopt,

mallinfo,

or

alloca

subroutine,

mktemp

or

mkstemp

subroutine,

openx,

open,

creat

subroutine,

tmpfile

(“tmpfile

Subroutine”

on

page

364)

subroutine,

unlink

(“unlink

Subroutine”

on

page

424)

subroutine.

The

environment

file.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

towctrans

Subroutine

Purpose

Character

transliteration.

Library

Standard

library

(libc.a)

Syntax

#include

<wctype.h>

wint_t

towctrans

(wint_t

wc,

wctrans_t

desc)

;

Description

The

towctrans

function

transliterates

the

wide-character

code

wc

using

the

mapping

described

by

desc.

The

current

setting

of

the

LC_CTYPE

category

should

be

the

same

as

during

the

call

to

wctrans

that

returned

the

value

desc.

If

the

value

of

desc

is

invalid

(that

is,

not

obtained

by

a

call

to

wctrans

or

desc

is

invalidated

by

a

subsequent

call

to

setlocale

that

has

affected

category

LC_CTYPE)

the

result

is

implementation-dependent.

Return

Values

If

successful,

the

towctrans

function

returns

the

mapped

value

of

wc

using

the

mapping

described

by

desc.

Otherwise

it

returns

wc

unchanged.

366

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

The

towctrans

function

may

fail

if:

EINVAL

desc

contains

an

invalid

transliteration

descriptor.

Related

Information

The

towlower

(“towlower

Subroutine”)

subroutine,

towupper

(“towupper

Subroutine”

on

page

368)

subroutine,

wctrans

(“wctrans

Subroutine”

on

page

470)

subroutine.

The

wctype.h

file.

towlower

Subroutine

Purpose

Converts

an

uppercase

wide

character

to

a

lowercase

wide

character.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wchar.h>

wint_t

towlower

(

WC)

wint_t

WC;

Description

The

towlower

subroutine

converts

the

uppercase

wide

character

specified

by

the

WC

parameter

into

the

corresponding

lowercase

wide

character.

The

LC_CTYPE

category

affects

the

behavior

of

the

towlower

subroutine.

Parameters

WC

Specifies

the

wide

character

to

convert

to

lowercase.

Return

Values

If

the

WC

parameter

contains

an

uppercase

wide

character

that

has

a

corresponding

lowercase

wide

character,

that

wide

character

is

returned.

Otherwise,

the

WC

parameter

is

returned

unchanged.

Related

Information

The

iswalnum

subroutine,

iswalpha

subroutine,

iswcntrl

subroutine,

iswctype

subroutine,

iswdigit

subroutine,

iswgraph

subroutine,

iswlower

subroutine,

iswprint

subroutine,

iswpunct

subroutine,

iswspace

subroutine,

iswupper

subroutine,

iswxdigit

subroutine,

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine,

towupper

(“towupper

Subroutine”

on

page

368)

subroutine,

wctype

(“wctype

or

get_wctype

Subroutine”

on

page

471)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

367

National

Language

Support

Overview

and

Wide

Character

Classification

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

towupper

Subroutine

Purpose

Converts

a

lowercase

wide

character

to

an

uppercase

wide

character.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wchar.h>

wint_t

towupper

(

WC)

wint_t

WC;

Description

The

towupper

subroutine

converts

the

lowercase

wide

character

specified

by

the

WC

parameter

into

the

corresponding

uppercase

wide

character.

The

LC_CTYPE

category

affects

the

behavior

of

the

towupper

subroutine.

Parameters

WC

Specifies

the

wide

character

to

convert

to

uppercase.

Return

Values

If

the

WC

parameter

contains

a

lowercase

wide

character

that

has

a

corresponding

uppercase

wide

character,

that

wide

character

is

returned.

Otherwise,

the

WC

parameter

is

returned

unchanged.

Related

Information

The

iswalnum

subroutine,

iswalpha

subroutine,

iswcntrl

subroutine,

iswctype

subroutine,

iswdigit

subroutine,

iswgraph

subroutine,

iswlower

subroutine,

iswprint

subroutine,

iswpunct

subroutine,

iswspace

subroutine,

iswupper

subroutine,

iswxdigit

subroutine,

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine,

towlower

(“towlower

Subroutine”

on

page

367)

subroutine,

wctype

(“wctype

or

get_wctype

Subroutine”

on

page

471)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

t_rcvreldata

Subroutine

Purpose

Receive

an

orderly

release

indication

or

confirmation

containing

user

data.

368

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Syntax

#include

<xti.h>

int

t_rcvreldata(

int

fd,

struct

t_discon

*discon)

Description

This

function

is

used

to

receive

an

orderly

release

indication

for

the

incoming

direction

of

data

transfer

and

to

retrieve

any

user

data

sent

with

the

release.

The

argument

fd

identifies

the

local

transport

endpoint

where

the

connection

exists,

and

discon

points

to

a

t_discon

structure

containing

the

following

members:

struct

netbuf

udata;

int

reason;

int

sequence;

After

receipt

of

this

indication,

the

user

may

not

attempt

to

receive

more

data

via

t_rcv

or

t_rcvv

(“t_rcvv

Subroutine”

on

page

370).

Such

an

attempt

will

fail

with

t_error

set

to

[TOUTSTATE].

However,

the

user

may

continue

to

send

data

over

the

connection

if

t_sndrel

or

t_sndreldata

(“t_sndreldata

Subroutine”

on

page

377)

has

not

been

called

by

the

user.

The

field

reason

specifies

the

reason

for

the

disconnection

through

a

protocol-dependent

reason

code,

and

udata

identifies

any

user

data

that

was

sent

with

the

disconnection;

the

field

sequence

is

not

used.

If

a

user

does

not

care

if

there

is

incoming

data

and

does

not

need

to

know

the

value

of

reason,

discon

may

be

a

null

pointer,

and

any

user

data

associated

with

the

disconnection

will

be

discarded.

If

discon->udata.maxlen

is

greater

than

zero

and

less

than

the

length

of

the

value,

t_rcvreldata

fails

with

t_errno

set

to

[TBUFOVFLW].

This

function

is

an

optional

service

of

the

transport

provider,

only

supported

by

providers

of

service

type

T_COTS_ORD.

The

flag

T_ORDRELDATA

in

the

info->flag

field

returned

by

t_open

or

t_getinfo

indicates

that

the

provider

supports

orderly

release

user

data;

when

the

flag

is

not

set,

this

function

behaves

as

t_rcvrel

and

no

user

data

is

returned.

This

function

may

not

be

available

on

all

systems.

Parameters

Before

call

After

call

fd

x

/

discon->

udata.maxlen

x

discon->

udata.len

/

discon->

udata.buf

?

discon->

reason

/

discon->

sequence

/

Valid

States

T_DATAXFER,

T_OUTREL

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

t_errno

is

set

to

indicate

an

error.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

369

Error

Codes

On

failure,

the

t_errno

subroutine

is

set

to

one

of

the

following:

TBADF

The

specified

file

descriptor

does

not

refer

to

a

transport

endpoint.

TBUFOVFLW

The

number

of

bytes

allocated

for

incoming

data

(maxlen)

is

greater

than

0

but

not

sufficient

to

store

the

data,

and

the

disconnection

information

to

be

returned

in

discon

will

be

discarded.

The

provider

state,

as

seen

by

the

user,

will

be

changed

as

if

the

data

was

successfully

retrieved.

TLOOK

An

asynchronous

event

has

occurred

on

this

transport

endpoint

and

requires

immediate

attention.

TNOREL

No

orderly

release

indication

currently

exists

on

the

specified

transport

endpoint.

TNOTSUPPORT

Orderly

release

is

not

supported

by

the

underlying

transport

provider.

TOUTSTATE

The

communications

endpoint

referenced

by

fd

is

not

in

one

of

the

states

in

which

a

call

to

this

function

is

valid.

TPROTO

This

error

indicates

that

a

communication

problem

has

been

detected

between

XTI

and

the

transport

provider

for

which

there

is

no

other

suitable

XTI

error

(t_errno).

TSYSERR

A

system

error

has

occurred

during

execution

of

this

function.

Related

Information

The

t_getinfo,

t_open,

t_sndreldata

(“t_sndreldata

Subroutine”

on

page

377),

t_rcvrel,

t_sndrel

subroutines.

t_rcvv

Subroutine

Purpose

Receive

data

or

expedited

data

sent

over

a

connection

and

put

the

data

into

one

or

more

non-contiguous

buffers.

Library

libxti.*

Syntax

#include

<xti.h>

int

t_rcvv

(int

fd,

struct

t_iovec

*iov,

unsigned

int

iovcount,

int

*flags)

;

Description

This

function

receives

either

normal

or

expedited

data.

The

argument

fd

identifies

the

local

transport

endpoint

through

which

data

will

arrive,

iov

points

to

an

array

of

buffer

address/buffer

size

pairs

(iov_base,

iov_len).

The

t_rcvv

function

receives

data

into

the

buffers

specified

by

iov[0].iov_base,

iov[1].iov_base,

through

iov[iovcount-1].iov_base,

always

filling

one

buffer

before

proceding

to

the

next.

Note:

The

limit

on

the

total

number

of

bytes

available

in

all

buffers

passed

(that

is,

iov(0).iov_len

+

.

.

+

iov(iovcount-1).iov_len)

may

be

constrained

by

implementation

limits.

If

no

other

constraint

applies,

370

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

it

will

be

limited

by

[INT_MAX].

In

practice,

the

availability

of

memory

to

an

application

is

likely

to

impose

a

lower

limit

on

the

amount

of

data

that

can

be

sent

or

received

using

scatter/gather

functions.

The

argument

iovcount

contains

the

number

of

buffers

which

is

limited

to

T_IOV_MAX

(an

implementation-defined

value

of

at

least

16).

If

the

limit

is

exceeded,

the

function

will

fail

with

[TBADDATA].

The

argument

flags

may

be

set

on

return

from

t_rcvv

and

specifies

optional

flags

as

described

below.

By

default,

t_rcvv

operates

in

synchronous

mode

and

will

wait

for

data

to

arrive

if

none

is

currently

available.

However,

if

O_NONBLOCK

is

set

(via

t_open

or

fcntl,

t_rcvv

will

execute

in

asynchronous

mode

and

will

fail

if

no

data

is

available

(see

[TNODATA]

below).

On

return

from

the

call,

if

T_MORE

is

set

in

flags,

this

indicates

that

there

is

more

data,

and

the

current

transport

service

data

unit

(TSDU)

or

expedited

transport

service

data

unit

(ETSDU)

must

be

received

in

multiple

t_rcvv

or

t_rcv

calls.

In

the

asynchronous

mode,

or

under

unusual

conditions

(for

example,

the

arrival

of

a

signal

or

T_EXDATA

event),

the

T_MORE

flag

may

be

set

on

return

from

the

t_rcvv

call

even

when

the

number

of

bytes

received

is

less

than

the

total

size

of

all

the

receive

buffers.

Each

t_rcvv

with

the

T_MORE

flag

set

indicates

that

another

t_rcvv

must

follow

to

get

more

data

for

the

current

TSDU.

The

end

of

the

TSDU

is

identified

by

the

return

of

a

t_rcvv

call

with

the

T_MORE

flag

not

set.

If

the

transport

provider

does

not

support

the

concept

of

a

TSDU

as

indicated

in

the

info

argument

on

return

from

t_open

ort_getinfo

,

the

T_MORE

flag

is

not

meaningful

and

should

be

ignored.

If

the

amount

of

buffer

space

passed

in

iov

is

greater

than

zero

on

the

call

to

t_rcvv,

then

t_rcvv

will

return

0

only

if

the

end

of

a

TSDU

is

being

returned

to

the

user.

On

return,

the

data

is

expedited

if

T_EXPEDITED

is

set

in

flags.

If

T_MORE

is

also

set,

it

indicates

that

the

number

of

expedited

bytes

exceeded

nbytes,

a

signal

has

interrupted

the

call,

or

that

an

entire

ETSDU

was

not

available

(only

for

transport

protocols

that

support

fragmentation

of

ETSDUs).

The

rest

of

the

ETSDU

will

be

returned

by

subsequent

calls

to

t_rcvv

which

will

return

with

T_EXPEDITED

set

in

flags.

The

end

of

the

ETSDU

is

identified

by

the

return

of

a

t_rcvv

call

with

T_EXPEDITED

set

and

T_MORE

cleared.

If

the

entire

ETSDU

is

not

available

it

is

possible

for

normal

data

fragments

to

be

returned

between

the

initial

and

final

fragments

of

an

ETSDU.

If

a

signal

arrives,

t_rcvv

returns,

giving

the

user

any

data

currently

available.

If

no

data

is

available,

t_rcvv

returns

-1,

sets

t_errno

to

[TSYSERR]

and

errno

to

[EINTR].

If

some

data

is

available,

t_rcvv

returns

the

number

of

bytes

received

and

T_MORE

is

set

in

flags.

In

synchronous

mode,

the

only

way

for

the

user

to

be

notified

of

the

arrival

of

normal

or

expedited

data

is

to

issue

this

function

or

check

for

the

T_DATA

or

T_EXDATA

events

using

the

t_look

function.

Additionally,

the

process

can

arrange

to

be

notified

via

the

EM

interface.

Parameters

Before

call

After

call

fd

X

/

iov

X/

iovcount

X

/

iov[0].iov_base

X(/)

=(X)

iov[0].iov_len

X

=

.

.

.

.

iov[iovcount-1].iov_base

X(/)

=(X)

iov[iovcount-1].iov_len

X

=

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

371

Return

Values

On

successful

completion,

t_rcvv

returns

the

number

of

bytes

received.

Otherwise,

it

returns

-1

on

failure

and

t_errno

is

set

to

indicate

the

error.

Error

Codes

On

failure,

t_errno

is

set

to

one

of

the

following:

TBADDATA

iovcount

is

greater

than

T_IOV_MAX.

TBADF

The

specified

file

descriptor

does

not

refer

to

a

transport

endpoint.

TLOOK

An

asynchronous

event

has

occurred

on

this

transport

endpoint

and

requires

immediate

attention.

TNODATA

O_NONBLOCK

was

set,

but

no

data

is

currently

available

from

the

transport

provider.

TNOTSUPPORT

This

function

is

not

supported

by

the

underlying

transport

provider.

TOUTSTATE

The

communications

endpoint

referenced

by

fd

is

not

in

one

of

the

states

in

which

a

call

to

this

function

is

valid.

TPROTO

This

error

indicates

that

a

communication

problem

has

been

detected

between

XTI

and

the

transport

provider

for

which

there

is

no

other

suitable

XTI

error

(t_errno).

TSYSERR

A

system

error

has

occurred

during

execution

of

this

function.

Related

Information

The

fcntl

subroutine,

t_getinfo

subroutine,

t_look

subroutine,

t_open

subroutine,

t_rcv

subroutine,

t_snd

subroutine,

and

t_sndv

(“t_sndv

Subroutine”

on

page

374)

subroutine.

t_rcvvudata

Subroutine

Purpose

Receive

a

data

unit

into

one

or

more

noncontiguous

buffers.

Library

Standard

library

(libxti.a)

Syntax

#include

<xti.h>

int

t_rcvvudata

(

int

fd,

struct

t_unitdata

*unitdata,

struct

t_iovec

*iov,

unsigned

int

iovcount,

int

*flags)

Description

This

function

is

used

in

connectionless

mode

to

receive

a

data

unit

from

another

transport

user.

The

argument

fd

identifies

the

local

transport

endpoint

through

which

data

will

be

received,

unitdata

holds

information

associated

with

the

received

data

unit,

iovcount

contains

the

number

of

non-contiguous

udata

buffers

which

is

limited

to

T_IOV_MAX

(an

implementation-defined

value

of

at

least

16),

and

flags

is

set

on

return

to

indicate

that

the

complete

data

unit

was

not

received.

If

the

limit

on

iovcount

is

exceeded,

the

function

fails

with

[TBADDATA].

The

argument

unitdata

points

to

a

t_unitdata

structure

containing

the

following

members:

struct

netbuf

addr;

struct

netbuf

opt;

struct

netbuf

udata;

The

maxlen

field

of

addr

and

opt

must

be

set

before

calling

this

function

to

indicate

the

maximum

size

of

the

buffer

for

each.

The

udata

field

of

t_unitdata

is

not

used.

The

iov_len

and

iov_base

fields

of

iov[0]

372

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

through

iov[iovcount-1]

must

be

set

before

calling

t_rcvvudata

to

define

the

buffer

where

the

userdata

will

be

placed.

If

the

maxlen

field

of

addr

or

opt

is

set

to

zero

then

no

information

is

returned

in

the

buf

field

for

this

parameter.

On

return

from

this

call,

addr

specifies

the

protocol

address

of

the

sending

user,

opt

identifies

options

that

were

associated

with

this

data

unit,

and

iov[0].iov_base

through

iov[iovcount-1].

iov_base

contains

the

user

data

that

was

received.

The

return

value

of

t_rcvvudata

is

the

number

of

bytes

of

user

data

given

to

the

user.

Note:

The

limit

on

the

total

number

of

bytes

available

in

all

buffers

passed

(that

is,

iov(0).iov_len

+

.

.

+

iov(iovcount-1).iov_len)

may

be

constrained

by

implementation

limits.

If

no

other

constraint

applies,

it

will

be

limited

by

[INT_MAX].

In

practice,

the

availability

of

memory

to

an

application

is

likely

to

impose

a

lower

limit

on

the

amount

of

data

that

can

be

sent

or

received

using

scatter/gather

functions.

By

default,

t_rcvvudata

operates

in

synchronous

mode

and

waits

for

a

data

unit

to

arrive

if

none

is

currently

available.

However,

if

O_NONBLOCK

is

set

(via

t_open

or

fcntl

),

t_rcvvudata

executes

in

asynchronous

mode

and

fails

if

no

data

units

are

available.

If

the

buffers

defined

in

the

iov[]

array

are

not

large

enough

to

hold

the

current

data

unit,

the

buffers

will

be

filled

and

T_MORE

will

be

set

in

flags

on

return

to

indicate

that

another

t_rcvvudata

should

be

called

to

retrieve

the

rest

of

the

data

unit.

Subsequent

calls

to

t_rcvvudata

will

return

zero

for

the

length

of

the

address

and

options,

until

the

full

data

unit

has

been

received.

Parameters

Before

call

After

call

fd

X

/

unitdata->addr.maxlen

X

=

unitdata->addr.len

/

X

unitdata->addr.buf

?(/)

=(/)

unitdata->opt.maxlen

X

=

unitdata->opt.len

/

X

unitdata->opt.buf

?(/)

=(?)

unitdata->udata.maxlen

/

=

unitdata->udata.len

/

=

unitdata->udata.buf

/

=

iov[0].iov_base

X

=(X)

iov[0].iov_len

X

=

.

.

.

.

iov[iovcount-1].iov_base

X(/)

=(X)

iov[iovcount-1].iov_len

X

=

iovcoun

X

/

flags

/

/

Return

Values

On

successful

completion,

t_rcvvudata

returns

the

number

of

bytes

received.

Otherwise,

it

returns

-1

on

failure

and

t_errno

is

set

to

indicate

the

error.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

373

Error

Codes

On

failure,

t_errno

is

set

to

one

of

the

following:

TBADDATA

iovcount

is

greater

than

T_IOV_MAX.

TBADF

The

specified

file

descriptor

does

not

refer

to

a

transport

endpoint.

TBUFOVFLW

The

number

of

bytes

allocated

for

the

incoming

protocol

address

or

options

(maxlen)

is

greater

than

0

but

not

sufficient

to

store

the

information.

The

unit

data

information

to

be

returned

in

unitdata

will

be

discarded.

TLOOK

An

asynchronous

event

has

occurred

on

this

transport

endpoint

and

requires

immediate

attention.

TNODATA

O_NONBLOCK

was

set,

but

no

data

units

are

currently

available

from

the

transport

provider.

TNOTSUPPORT

This

function

is

not

supported

by

the

underlying

transport

provider.

TOUTSTATE

The

communications

endpoint

referenced

by

fd

is

not

in

one

of

the

states

in

which

a

call

to

this

function

is

valid.

TPROTO

This

error

indicates

that

a

communication

problem

has

been

detected

between

XTI

and

the

transport

provider

for

which

there

is

no

other

suitable

XTI

error

(t_errno).

TSYSERR

A

system

error

has

occurred

during

execution

of

this

function.

Related

Information

The

fcntl

subroutine,

t_alloc

subroutine,

t_open

subroutine,

t_rcvudata

subroutine,

t_rcvuderr

subroutine,

t_sndudata

subroutine,

t_sndvudata

(“t_sndvudata

Subroutine”

on

page

378)

subroutine.

t_sndv

Subroutine

Purpose

Send

data

or

expedited

data,

from

one

or

more

non-contiguous

buffers,

on

a

connection.

Library

Standard

library

(libxti.a)

Syntax

#include

<xti.h>

int

t_sndv

(int

fd,

const

struct

t_iovec

*iov,

unsigned

it

iovcount,

int

flags)

Description

Parameters

Before

call

After

call

fd

X

/

iovec

X

/

iovcount

X

/

iov[0].iov_base

X(X)

/

iov[0].iov_len

X

/

.

.

.

.

iov[iovcount-1].iov_base

X(X)

/

iov[iovcount-1].iov_len

X

=

flags

X

/

This

function

is

used

to

send

either

normal

or

expedited

data.

The

argument

fd

identifies

the

local

transport

endpoint

over

which

data

should

be

sent,

iov

points

to

an

array

of

buffer

address/buffer

length

374

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

pairs.

t_sndv

sends

data

contained

in

buffers

iov[0],

iov[1],

through

iov[iovcount-1].

iovcount

contains

the

number

of

non-contiguous

data

buffers

which

is

limited

to

T_IOV_MAX

(an

implementation-defined

value

of

at

least

16).

If

the

limit

is

exceeded,

the

function

fails

with

[TBADDATA].

Note:

The

limit

on

the

total

number

of

bytes

available

in

all

buffers

passed

(that

is:

iov(0).iov_len

+

.

.

+

iov(iovcount-1).iov_len)

may

be

constrained

by

implementation

limits.

If

no

other

constraint

applies,

it

will

be

limited

by

[INT_MAX].

In

practice,

the

availability

of

memory

to

an

application

is

likely

to

impose

a

lower

limit

on

the

amount

of

data

that

can

be

sent

or

received

using

scatter/gather

functions.

The

argument

flags

specifies

any

optional

flags

described

below:

T_EXPEDITED

If

set

in

flags,

the

data

will

be

sent

as

expedited

data

and

will

be

subject

to

the

interpretations

of

the

transport

provider.

T_MORE

If

set

in

flags,

this

indicates

to

the

transport

provider

that

the

transport

service

data

unit

(TSDU)

(or

expedited

transport

service

data

unit

ETSDU)

is

being

sent

through

multiple

t_sndv

calls.

Each

t_sndv

with

the

T_MORE

flag

set

indicates

that

another

t_sndv

(or

t_snd)

will

follow

with

more

data

for

the

current

TSDU

(or

ETSDU).

The

end

of

the

TSDU

(or

ETSDU)

is

identified

by

a

t_sndv

call

with

the

T_MORE

flag

not

set.

Use

of

T_MORE

enables

a

user

to

break

up

large

logical

data

units

without

losing

the

boundaries

of

those

units

at

the

other

end

of

the

connection.

The

flag

implies

nothing

about

how

the

data

is

packaged

for

transfer

below

the

transport

interface.

If

the

transport

provider

does

not

support

the

concept

of

a

TSDU

as

indicated

in

the

info

argument

on

return

from

t_open

ort_getinfo,

the

T_MORE

flag

is

not

meaningful

and

will

be

ignored

if

set.

The

sending

of

a

zero-length

fragment

of

a

TSDU

or

ETSDU

is

only

permitted

where

this

is

used

to

indicate

the

end

of

a

TSDU

or

ETSDU,

that

is,

when

the

T_MORE

flag

is

not

set.

Some

transport

providers

also

forbid

zero-length

TSDUs

and

ETSDUs.

See

Appendix

A

for

a

fuller

explanation.

If

set

in

flags,

requests

that

the

provider

transmit

all

data

that

it

has

accumulated

but

not

sent.

The

request

is

a

local

action

on

the

provider

and

does

not

affect

any

similarly

named

protocol

flag

(for

example,

the

TCP

PUSH

flag).

This

effect

of

setting

this

flag

is

protocol-dependent,

and

it

may

be

ignored

entirely

by

transport

providers

which

do

not

support

the

use

of

this

feature.

Note:

The

communications

provider

is

free

to

collect

data

in

a

send

buffer

until

it

accumulates

a

sufficient

amount

for

transmission.

By

default,

t_sndv

operates

in

synchronous

mode

and

may

wait

if

flow

control

restrictions

prevent

the

data

from

being

accepted

by

the

local

transport

provider

at

the

time

the

call

is

made.

However,

if

O_NONBLOCK

is

set

(via

t_open

or

fcntl),

t_sndv

executes

in

asynchronous

mode,

and

will

fail

immediately

if

there

are

flow

control

restrictions.

The

process

can

arrange

to

be

informed

when

the

flow

control

restrictions

are

cleared

via

either

t_look

or

the

EM

interface.

On

successful

completion,

t_sndv

returns

the

number

of

bytes

accepted

by

the

transport

provider.

Normally

this

will

equal

the

total

number

of

bytes

to

be

sent,

that

is,

(iov[0].iov_len

+

.

.

+

iov[iovcount-1].iov_len)

However,

the

interface

is

constrained

to

send

at

most

INT_MAX

bytes

in

a

single

send.

When

t_sndv

has

submitted

INT_MAX

(or

lower

constrained

value,

see

the

note

above)

bytes

to

the

provider

for

a

single

call,

this

value

is

returned

to

the

user.

However,

if

O_NONBLOCK

is

set

or

the

function

is

interrupted

by

a

signal,

it

is

possible

that

only

part

of

the

data

has

actually

been

accepted

by

the

communications

provider.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

375

In

this

case,

t_sndv

returns

a

value

that

is

less

than

the

value

of

nbytes.

If

t_sndv

is

interrupted

by

a

signal

before

it

could

transfer

data

to

the

communications

provider,

it

returns

-1

with

t_errno

set

to

[TSYSERR]

and

errno

set

to

[EINTR].

If

the

number

of

bytes

of

data

in

the

iov

array

is

zero

and

sending

of

zero

octets

is

not

supported

by

the

underlying

transport

service,

t_sndv

returns

-1

with

t_errno

set

to

[TBADDATA].

The

size

of

each

TSDU

or

ETSDU

must

not

exceed

the

limits

of

the

transport

provider

as

specified

by

the

current

values

in

the

TSDU

or

ETSDU

fields

in

the

info

argument

returned

by

t_getinfo.

The

error

[TLOOK]

is

returned

for

asynchronous

events.

It

is

required

only

for

an

incoming

disconnect

event

but

may

be

returned

for

other

events.

Return

Values

On

successful

completion,

t_sndv

returns

the

number

of

bytes

accepted

by

the

transport

provider.

Otherwise,

-1

is

returned

on

failure

and

t_errno

is

set

to

indicate

the

error.

Notes:

1.

In

synchronous

mode,

if

more

than

INT_MAX

bytes

of

data

are

passed

in

the

iov

array,

only

the

first

INT_MAX

bytes

will

be

passed

to

the

provider.

2.

If

the

number

of

bytes

accepted

by

the

communications

provider

is

less

than

the

number

of

bytes

requested,

this

may

either

indicate

that

O_NONBLOCK

is

set

and

the

communications

provider

is

blocked

due

to

flow

control,

or

that

O_NONBLOCK

is

clear

and

the

function

was

interrupted

by

a

signal.

Error

Codes

On

failure,

t_errno

is

set

to

one

of

the

following:

TBADDATA

Illegal

amount

of

data:

v

A

single

send

was

attempted

specifying

a

TSDU

(ETSDU)

or

fragment

TSDU

(ETSDU)

greater

than

that

specified

by

the

current

values

of

the

TSDU

or

ETSDU

fields

in

the

info

argument.

v

A

send

of

a

zero

byte

TSDU

(ETSDU)

or

zero

byte

fragment

of

a

TSDU

(ETSDU)

is

not

supported

by

the

provider.

v

Multiple

sends

were

attempted

resulting

in

a

TSDU

(ETSDU)

larger

than

that

specified

by

the

current

value

of

the

TSDU

or

ETSDU

fields

in

the

info

argument

the

ability

of

an

XTI

implementation

to

detect

such

an

error

case

is

implementation-dependent

(see

CAVEATS,

below).

v

iovcount

is

greater

than

T_IOV_MAX.

TBADF

The

specified

file

descriptor

does

not

refer

to

a

transport

endpoint.

TBADFLAG

An

invalid

flag

was

specified.

TFLOW

O_NONBLOCK

was

set,

but

the

flow

control

mechanism

prevented

the

transport

provider

from

accepting

any

data

at

this

time.

TLOOK

An

asynchronous

event

has

occurred

on

this

transport

endpoint.

TNOTSUPPORT

This

function

is

not

supported

by

the

underlying

transport

provider.

TOUTSTATE

The

communications

endpoint

referenced

by

fd

is

not

in

one

of

the

states

in

which

a

call

to

this

function

is

valid.

TPROTO

This

error

indicates

that

a

communication

problem

has

been

detected

between

XTI

and

the

transport

provider

for

which

there

is

no

other

suitable

XTI

error

(t_errno).

TSYSERR

A

system

error

has

occurred

during

execution

of

this

function.

Related

Information

The

t_getinfo

subroutine,

t_open

subroutine,

t_rcvv

(“t_rcvv

Subroutine”

on

page

370)

subroutine,

t_rcv

subroutine,

t_snd

subroutine.

376

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

t_sndreldata

Subroutine

Purpose

Initiate/respond

to

an

orderly

release

with

user

data.

Library

Syntax

#include

<xti.h>

int

t_sndreldata(int

fd,

struct

t_discon

*discon)

Description

This

function

is

used

to

initiate

an

orderly

release

of

the

outgoing

direction

of

data

transfer

and

to

send

user

data

with

the

release.

The

argument

fd

identifies

the

local

transport

endpoint

where

the

connection

exists,

and

discon

points

to

a

t_discon

structure

containing

the

following

members:

struct

netbuf

udata;

int

reason;

int

sequence;

After

calling

t_sndreldata,

the

user

may

not

send

any

more

data

over

the

connection.

However,

a

user

may

continue

to

receive

data

if

an

orderly

release

indication

has

not

been

received.

The

field

reason

specifies

the

reason

for

the

disconnection

through

a

protocol-dependent

reason

code,

and

udata

identifies

any

user

data

that

is

sent

with

the

disconnection;

the

field

sequence

is

not

used.

The

udata

structure

specifies

the

user

data

to

be

sent

to

the

remote

user.

The

amount

of

user

data

must

not

exceed

the

limits

supported

by

the

transport

provider,

as

returned

in

the

discon

field

of

the

info

argument

of

t_open

or

t_getinfo.

If

the

len

field

of

udata

is

zero

or

if

the

provider

did

not

return

T_ORDRELDATA

in

the

t_open

flags,

no

data

will

be

sent

to

the

remote

user.

If

a

user

does

not

wish

to

send

data

and

reason

code

to

the

remote

user,

the

value

of

discon

may

be

a

null

pointer.

This

function

is

an

optional

service

of

the

transport

provider,

only

supported

by

providers

of

service

type

T_COTS_ORD.

The

flag

T_ORDRELDATA

in

the

info->flag

field

returned

by

t_open

or

t_getinfo

indicates

that

the

provider

supports

orderly

release

user

data;

when

the

flag

is

not

set,

this

function

behaves

as

t_rcvrel

and

no

user

data

is

returned.

This

function

may

not

be

available

on

all

systems.

Parameters

Before

call

After

call

fd

x

/

discon->

udata.maxlen

/

discon->

udata.len

x

discon->

udata.buf

?(?)

discon->

reason

?

discon->

sequence

/

Valid

States

T_DATAXFER,

T_INREL

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

377

Error

Codes

On

failure,

t_errno

is

set

to

one

of

the

following:

[TBADDATA]

The

amount

of

user

data

specified

was

not

within

the

bounds

allowed

by

the

transport

provider,

or

user

data

was

supplied

and

the

provider

did

not

return

T_ORDRELDATA

in

the

t_open

flags.

[TBADF]

The

specified

file

descriptor

does

not

refer

to

a

transport

endpoint.

[TFLOW]

O_NONBLOCK

was

set,

but

the

flow

control

mechanism

prevented

the

transport

provider

from

accepting

the

function

at

this

time.

[TLOOK]

An

asynchronous

event

has

occurred

on

this

transport

endpoint

and

requires

immediate

attention.

[TNOTSUPPORT]

Orderly

release

is

not

supported

by

the

underlying

transport

provider.

[TOUTSTATE]

The

communications

endpoint

referenced

by

fd

is

not

in

one

of

the

states

in

which

a

call

to

this

function

is

valid.

[TPROTO]

This

error

indicates

that

a

communication

problem

has

been

detected

between

XTI

and

the

transport

provider

for

which

there

is

no

other

suitable

XTI

error

(t_errno).

[TSYSERR]

A

system

error

has

occurred

during

execution

of

this

function.

Return

Value

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

t_errno

is

set

to

indicate

an

error.

Related

Information

The

t_getinfo,

t_open,

t_rcvreldata

(“t_rcvreldata

Subroutine”

on

page

368),

t_rcvrel,

and

t_sndrel

subroutines.

t_sndvudata

Subroutine

Purpose

Send

a

data

unit

from

one

or

more

noncontiguous

buffers.

Library

Syntax

#include

<xti.h>

int

t_sndvudata(

int

fd,

struct

t_unitdata

*unitdata,

struct

t_iovec

*iov,

unsigned

int

iovcount)

378

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

This

function

is

used

in

connectionless

mode

to

send

a

data

unit

to

another

transport

user.

The

argument

fd

identifies

the

local

transport

endpoint

through

which

data

will

be

sent,

iovcount

contains

the

number

of

non-contiguous

udata

buffers

and

is

limited

to

an

implementation-defined

value

given

by

T_IOV_MAX,

which

is

at

least

16,

and

unitdata

points

to

a

t_unitdata

structure

containing

the

following

members:

struct

netbuf

addr;

struct

netbuf

opt;

struct

netbuf

udata;

If

the

limit

on

iovcount

is

exceeded,

the

function

fails

with

[TBADDATA].

In

unitdata,

addr

specifies

the

protocol

address

of

the

destination

user,

and

opt

identifies

options

that

the

user

wants

associated

with

this

request.

The

udata

field

is

not

used.

The

user

may

choose

not

to

specify

what

protocol

options

are

associated

with

the

transfer

by

setting

the

len

field

of

opt

to

zero.

In

this

case,

the

provider

may

use

default

options.

The

data

to

be

sent

is

identified

by

iov[0]

through

iov[iovcount-1].

The

limit

on

the

total

number

of

bytes

available

in

all

buffers

passed

(that

is:

iov(0).iov_len

+

.

.

+

iov(iovcount-1).iov_len

)

may

be

constrained

by

implementation

limits.

If

no

other

constraint

applies,

it

will

be

limited

by

[INT_MAX].

In

practice,

the

availability

of

memory

to

an

application

is

likely

to

impose

a

lower

limit

on

the

amount

of

data

that

can

be

sent

or

received

using

scatter/gather

functions.

By

default,

t_sndvudata

operates

in

synchronous

mode

and

may

wait

if

flow

control

restrictions

prevent

the

data

from

being

accepted

by

the

local

transport

provider

at

the

time

the

call

is

made.

However,

if

O_NONBLOCK

is

set

(via

t_open

or

fcntl,

t_sndvudata

executes

in

asynchronous

mode

and

will

fail

under

such

conditions.

The

process

can

arrange

to

be

notified

of

the

clearance

of

a

flow

control

restriction

via

either

t_look

or

the

EM

interface.

If

the

amount

of

data

specified

in

iov[0]

through

iov[iovcount-1]

exceeds

the

TSDU

size

as

returned

in

the

tsdu

field

of

the

info

argument

of

t_open

or

t_getinfo,

or

is

zero

and

sending

of

zero

octets

is

not

supported

by

the

underlying

transport

service,

a

[TBADDATA]

error

is

generated.

If

t_sndvudata

is

called

before

the

destination

user

has

activated

its

transport

endpoint

(see

t_bind),

the

data

unit

may

be

discarded.

If

it

is

not

possible

for

the

transport

provider

to

immediately

detect

the

conditions

that

cause

the

errors

[TBADDADDR]

and

[TBADOPT],

these

errors

will

alternatively

be

returned

by

t_rcvuderr.

An

application

must

therefore

be

prepared

to

receive

these

errors

in

both

of

these

ways.

Parameters

Before

call

After

call

fd

x

/

unitdata->

addr.maxlen

/

unitdata->

addr.len

x

unitdata->

addr.buf

x(x)

unitdata->

opt.maxlen

/

unitdata->

opt.len

x

unitdata->

opt.buf

?(?)

unitdata->

udata.maxlen

/

unitdata->

udata.len

/

unitdata->

udata.buf

/

iov[0].iov_base

x(x)

=(=)

left>iov[0].iov_len

x

=

.

.

.

.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

379

Parameters

Before

call

After

call

iov[iovcount-1].iov_base

x(x)

=(=)

iov[iovcount-1].iov_len

x

=

iovcount

x

/

Valid

States

T_IDLE

Error

Codes

On

failure,

t_errno

is

set

to

one

of

the

following:

[TBADADDR]

The

specified

protocol

address

was

in

an

incorrect

format

or

contained

illegal

information.

[TBADDATA]

Illegal

amount

of

data.

v

A

single

send

was

attempted

specifying

a

TSDU

greater

than

that

specified

in

the

info

argument,

or

a

send

of

a

zero

byte

TSDU

is

not

supported

by

the

provider.

v

iovcount

is

greater

than

T_IOV_MAX.

[TBADF]

The

specified

file

descriptor

does

not

refer

to

a

transport

endpoint.

[TBADOPT]

The

specified

options

were

in

an

incorrect

format

or

contained

illegal

information.

[TFLOW]

O_NONBLOCK

was

set,

but

the

flow

control

mechanism

prevented

the

transport

provider

from

accepting

any

data

at

this

time.

[TLOOK]

An

asynchronous

event

has

occurred

on

this

transport

endpoint.

[TNOTSUPPORT]

This

function

is

not

supported

by

the

underlying

transport

provider.

[TOUTSTATE]

The

communications

endpoint

referenced

by

fd

is

not

in

one

of

the

states

in

which

a

call

to

this

function

is

valid.

[TPROTO]

This

error

indicates

that

a

communication

problem

has

been

detected

between

XTI

and

the

transport

provider

for

which

there

is

no

other

suitable

XTI

error

(t_errno).

[TSYSERR]

A

system

error

has

occurred

during

execution

of

this

function.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

t_errno

is

set

to

indicate

an

error.

Related

Information

The

fcntl,

t_alloc,

t_open,

t_rcvudata,

t_rcvvudata

(“t_rcvvudata

Subroutine”

on

page

372),

t_rcvuderr,

t_sndudata

subroutines.

t_sysconf

Subroutine

Purpose

Get

configurable

XTI

variables.

Library

Standard

library

(libxti.a)

Syntax

#include

<xti.h>

int

t_sysconf

(

int

name)

380

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

Parameters

Before

call

After

call

name

X

/

The

t_sysconf

function

provides

a

method

for

the

application

to

determine

the

current

value

of

configurable

and

implementation-dependent

XTI

limits

or

options.

The

name

argument

represents

the

XTI

system

variable

to

be

queried.

The

following

table

lists

the

minimal

set

of

XTI

system

variables

from

xti.h

that

can

be

returned

by

t_sysconf,

and

the

symbolic

constants,

defined

in

xti.h

that

are

the

corresponding

values

used

for

name.

Variable

Value

of

Name

T_IOV_MAX

_SC_T_IOV_MAX

Return

Values

If

name

is

valid,

t_sysconf

returns

the

value

of

the

requested

limit/option

(which

might

be

-1)

and

leaves

t_errno

unchanged.

Otherwise,

a

value

of

-1

is

returned

and

t_errno

is

set

to

indicate

an

error.

Error

Codes

On

failure,

t_errno

is

set

to

the

following:

TBADFLAG

name

has

an

invalid

value.

Related

Information

The

t_rcvv

(“t_rcvv

Subroutine”

on

page

370)

subroutine,

t_rcvvudata

(“t_rcvvudata

Subroutine”

on

page

372)

subroutine,

t_sndv

(“t_sndv

Subroutine”

on

page

374)

subroutine,

t_sndvudata

(“t_sndvudata

Subroutine”

on

page

378)

subroutine.

trc_close

Subroutine

Purpose

Closes

and

frees

a

trace

log

object.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

int

trc_close

(handle)

trc_log_handle_t

handle;

Description

The

trc_close

subroutine

closes

a

trace

log

object.

The

object

must

have

been

opened

with

the

trc_open

subroutine.

If

the

TRC_RETAIN_HANDLE

type

was

specified

at

open

time,

the

trc_close

subroutine

must

be

called

after

a

call

to

the

trc_open

subroutine,

regardless

of

whether

the

open

succeeded

or

not.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

381

Parameters

handle

Contains

the

handle

returned

from

a

successful

call

to

the

trc_open

subroutine.

Return

Values

Upon

successful

completion,

the

trc_close

subroutine

returns

a

0.

Error

Codes

Upon

error,

the

trc_close

subroutine

sets

the

errno

global

variable

and

returrns

the

error

from

the

fclose

subroutine.

In

addition,

EINVAL

is

returned

if

handle

contains

an

invalid

trc_log_handle_t

object.

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_read

Subroutine”

on

page

396,

“trc_loginfo

Subroutine”

on

page

391,

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine,”

“trc_seek

and

trc_tell

Subroutine”

on

page

399,

“trc_libcntl

Subroutine”

on

page

389,

“trc_strerror

Subroutine”

on

page

400,

“trc_perror

Subroutine”

on

page

395,

“trcstart

Subroutine”

on

page

406,

“trcon

Subroutine”

on

page

405,

“trcoff

Subroutine”

on

page

405

and

“trcstop

Subroutine”

on

page

407.

The

trace

daemon

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

The

trcrpt,

trcstop,

and

trcupdate

commands

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

trc_find_first,

trc_find_next,

and

trc_compare

Subroutine

Purpose

Finds

the

first,

or

next,

occurrence

of

the

argument,

or

compares

the

current

entry

with

the

argument.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

int

trc_find_first

(handle,

argp,

ret)

trc_log_handle_t

handle;

trc_logsearch_t

*argp;

trc_read_t

*ret;

int

trc_find_next

(handle,

argp,

ret)

trc_log_handle_t

handle;

trc_logsearch_t

*argp;

trc_read_t

*ret;

int

trc_compare

(handle,

argp)

trc_log_handle_t

handle;

trc_logsearch_t

*argp;

Description

The

trc_find_first

subroutine

finds

the

first

occurrence

of

the

trace

log

entry

matching

the

argument

pointed

to

by

the

argp

parameter.

The

trc_find_next

subroutine

finds

the

next

occurrence

of

the

argument

starting

from

the

current

position

in

the

log

object.

If

the

search

argument

pointer,

argp,

is

NULL,

the

argument

from

the

previous

search

is

used.

Both

the

trc_find_first

and

trc_find_next

subroutines

return

the

item

found.

382

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

trc_compare

subroutine

is

used

to

check

the

current

entry

against

the

argument.

No

data

is

read.

It

is

useful

when

implementing

exit

criteria,

where

you

need

to

find

entries

according

to

some

criteria,

but

then

check

for

an

exit

criteria

which

is

not

part

of

the

normal

search.

Parameters

handle

Contains

the

handle

returned

from

a

successful

call

to

the

trc_open

subroutine.

argp

Points

to

the

argument

list

as

defined

in

the

/usr/include/sys/libtrace.a

file.

Arguments

may

be

chained

together

to

perform

complex

searches.

ret

Points

to

the

trc_read_t

structure

to

be

returned.

The

trc_free

subroutine

should

be

used

to

free

data

referenced

from

the

trc_read_t

data

type,

unless

TRC_LOGLIVE

was

specified

at

open

time.

The

search

argument

consists

of

three

parts,

the

operator,

tls_op,

and

the

left

and

right

sides.

The

operator

values

can

be

easily

identified,

because

they

have

the

form

TLS_OP_....

Operators

are

split

into

two

categories,

leaf

and

compound

operators.

Leaf

operators

are

operators

that

compare

the

field

on

the

left

with

the

value

on

the

right.

Compound

operators

are

used

to

compare

two

expressions,

(for

example)

to

combined

expressions.

Leaf

operations

may

be

performed

using

numeric

or

string

data.

If

performed

on

string

data,

the

strcmp

libc

string

compare

function

is

used

to

do

the

comparison

for

all

operators

except

TLS_OP_SUBSTR.

The

valid

leaf

operators

are:

TLS_OP_EQUAL

Exactly

equal

TLS_OP_NE

Not

equal

TLS_OP_LT

Less

than

TLS_OP_LE

Less

than

or

equal

TLS_OP_GT

Greater

than

TLS_OP_GE

Greater

than

or

equal

TLS_OP_SUBSTR

The

string

on

the

left

contains

the

string

on

the

right.

The

compound

operators

are:

TLS_OP_AND

The

logical

AND

of

the

results

of

the

left

and

right

expressions.

TLS_OP_OR

The

logical

OR

of

the

results

of

the

left

and

right

expressions.

TLS_OP_XOR

The

exclusive

or

of

the

results

of

the

left

and

right

expressions.

TLS_OP_NOT

The

negation

of

the

argument

referenced

by

tls_left.

The

left

and

right

sides

of

the

expression

are

defined

as

follows:

tls_left

and

tls_right

These

are

used

when

the

operator

requires

the

left

and

right

sides

to

be

an

expression,

(for

example)

when

it

is

a

compound

operator.

tls_left

and

tls_right

point

to

other

trc_logsearch_t

structures.

tls_field

and

corresponding

values

For

a

leaf

operation,

tls_field,

on

the

left,

specifies

the

field

to

be

compared.

The

field

names

can

be

identified

easily,

because

they

all

have

the

form

TLS_MATCH_....

The

righthand

side

is

a

value

specified

according

to

the

data

type

of

the

field

on

the

left.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

383

The

following

table

shows

the

lefthand

field

values

and

their

corresponding

righthand

side

data

values:

Field

Value

Description

TLS_MATCH_HOOKID

tls_shortvalue

Compare

the

hookid

with

a

short

data

item.

TLS_MATCH_HOOK_AND_SUBHOOK

tls_intvalue

Compare

the

hook

and

subhook,

28

bits,

with

the

specified

integer.Note

that

the

field

is

of

the

form

0x0hhhssss,

where

hhh

is

the

hook

id,

and

ssss

is

the

subhook.

TLS_MATCH_HOOKSET

tls_hooksetvalue

The

bit

map

specifying

the

hooks

to

be

tested

for.

This

allows

you

to

test

for

multiple

hooks

with

one

search

argument.

The

bit

map

is

manipulated

with

the

trc_hkemptyset,

trc_hkfillset,

trc_hkaddset,

and

trc_hkdelset

subroutines.

TLS_MATCH_TIME

tls_longvalue

Compare

the

time

value

in

nanoseconds

from

the

start

of

the

trace.

TLS_MATCH_TID

tls_longvalue

Thread

id

TLS_MATCH_PID

tls_longvalue

Process

id

TLS_MATCH_RAWOFST

tls_longvalue

Raw

file

offset

TLS_MATCH_CPUID

tls_intvalue

cpu

id

TLS_MATCH_RCPU

tls_intvalue

Remaining

cpus

in

the

trace.

TLS_MATCH_FLAGS

tls_intvalue

Compare

with

trcr_flags

TLS_MATCH_INTR_DEPTH

tls_intvalue

Compare

with

trchi_intr_depth

TLS_MATCH_PROCNAME

tls_strvalue

Process

name

TLS_MATCH_SVCNAME

tls_strvalue

svc

name

TLS_MATCH_PRI

tls_intvalue

Dispatch

priority

TLS_MATCH_TICKS

tls_longvalue

Match

with

the

number

of

timer

register

ticks

since

the

start

of

the

trace.

TLS_MATCH_DATA

tls_strvalue

Compare

string

with

the

ascii

data,

trchi_ascii

TLS_MATCH_FILENAME

tls_strvalue

Compare

with

trchi_filename

TLS_MATCH_TRCONTIME

tls_longvalue

Compare

with

trchi_trcontime

TLS_MATCH_TRCOFFTIME

tls_longvalue

Compare

with

trchi_trcofftime

Return

Values

Upon

successful

completion,

the

trc_find_first,

trc_find_next,

and

trc_compare

subroutines

return

0.

Error

Codes

Upon

error,

the

errno

global

variable

is

set

to

a

value

from

the

errno.h

file.

The

trc_find_first,

trc_find_next,

and

trc_compare

subroutines

return

either

a

value

from

the

errno.h

file,

or

an

error

value

from

the

libtrace.h

file.

384

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

EINVAL

The

handle

is

invalid,

or

the

search

argument

is

invalid.

TRCE_EOF

No

matching

item

was

found,

or

no

more

matching

items

exist.

The

errno

global

variable

is

set

to

0.

TRCE_BADFORMAT

The

log

object

contains

badly

formatted

data.

The

errno

global

variable

is

set

to

EINVAL.

Examples

1.

Find

the

SVC

hooks,

101

and

104,

for

program

mypgm.

{

int

rv;

trc_loghandle_t

h;

trc_read_t

r;

trc_logsearch_t

t1,

t2,

t3,

t4,

t5;

/*

Setup

the

leaf

search

arguments.

*/

t1.tls_op

=

TLS_OP_EQUAL;

t1.tls_field

=

TLS_MATCH_HOOKID;

t1.tls_shortvalue

=

0x101;

t2.tls_op

=

TLS_OP_EQUAL;

t2.tls_field

=

TLS_MATCH_HOOKID;

t2.tls_shortvalue

=

0x104;

t3.tls_op

=

TLS_OP_EQUAL;

t3.tls_field

=

TLS_MATCH_PROCNAME;

t3.tls_strvalue

=

"mypgm";

/*

Join

the

items

and

form

a

single

search

tree.

*/

t4.tls_op

=

TLS_OP_AND;

t4.tls_left

=

&t1

t4.tls_right

=

&t2

t5.tls_op

=

TLS_OP_AND;

t5.tls_left

=

&t4

t5.tls_right

=

&t3

/*

Open

the

default

trace

log

object.

*/

rv

=

trc_open("",

"",

TRC_LOGREAD|TRC_LOGPROC,

>h);

if

(rv)

{

trc_perror(h,

rv,

"open");

return(rv);

}

/*

Do

the

search.

*/

rv

=

trc_find_first(h,

&t5,

&r);

if

(rv)

{

trc_perror(h,

rv,

"find

test");

return(rv);

}

...

}

Note

that

subsequent

entries

matching

this

search

could

be

returned

with

the

following:

rv

=

trc_find_next(h,

NULL,

&r);

After

a

find,

trc_find_next

can

be

used

to

change

the

search

argument

without

starting

the

search

over.

In

other

words,

trc_find_first

always

starts

from

the

beginning

of

the

file,

while

trc_find_next

starts

from

the

current

position

in

the

file,

but

either

one

can

change

the

search

argument.

2.

Find

the

SVC

hooks,

101

and

104,

for

program

mypgm.

Use

a

single

argument

to

search

for

both

hook

ids.

{

int

rv;

trc_loghandle_t

h;

trc_read_t

r;

trc_logsearch_t

t1,

t2,

t3;

trc_hookset_t

hs;

/*

Setup

the

hook

set.

*/

trc_hkemptyset(hs);

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

385

(void)trc_hkaddset(hs,

0x101);

(void)trc_hkaddset(hs,

0x104);

/*

Setup

the

leaf

search

arguments.

*/

t1.tls_op

=

TLS_OP_EQUAL;

t1.tls_field

=

TLS_MATCH_HOOKSET;

t1.tls_hooksetvalue

=

hs;

t2.tls_op

=

TLS_OP_EQUAL;

t2.tls_field

=

TLS_MATCH_PROCNAME;

t2.tls_strvalue

=

"mypgm";

/*

Join

the

items

and

form

a

single

search

tree.

*/

t3.tls_op

=

TLS_OP_AND;

t3.tls_left

=

&t1

t3.tls_right

=

&t2

/*

Open

the

default

trace

log

object.

*/

rv

=

trc_open("",

"",

TRC_LOGREAD|TRC_LOGPROC,

&h);

if

(rv)

{

trc_perror(h,

rv,

"open");

return(rv);

}

/*

Do

the

search.

*/

rv

=

trc_find_first(h,

&t3,

&r);

if

(rv)

{

trc_perror(h,

rv,

"find

test");

return(rv);

}

...

}

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_close

Subroutine”

on

page

381,

“trc_read

Subroutine”

on

page

396,

“trc_loginfo

Subroutine”

on

page

391,

“trc_seek

and

trc_tell

Subroutine”

on

page

399,

“trc_libcntl

Subroutine”

on

page

389,

“trc_strerror

Subroutine”

on

page

400,

“trc_perror

Subroutine”

on

page

395,

“trcstart

Subroutine”

on

page

406,

“trcon

Subroutine”

on

page

405,

“trcoff

Subroutine”

on

page

405,

“trcstop

Subroutine”

on

page

407,

and

“trc_hkemptyset,

trc_hkfillset,

trc_hkaddset,

trc_hkdelset,

and

trc_hkisset

Subroutine”

on

page

387.

The

trace

daemon

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

The

trcrpt,

trcstop,

and

trcupdate

commands

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

trc_free

Subroutine

Purpose

Frees

memory

allocated

by

the

trc_read,

trc_find,

trc_loginfo,

or

trc_hookname

subroutine.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

int

trc_free

(parmp)

void

*parmp;

386

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

trc_free

subroutine

is

used

to

free

memory

associated

with

data

structures

returned

by

the

trace

retrieval

API.

It

does

not

free

the

storage

for

the

base

structure,

however,

only

storage

allocated

by

the

API

on

behalf

of

the

user.

The

pointer

must

point

to

one

of

the

following:

trc_read_t

Data

returned

by

the

trc_read

or

trc_find

subroutine.

trc_loginfo_t

Data

returned

by

the

trc_loginfo

subroutine.

trc_hookname_t

Data

returned

by

the

trc_hookname

subroutine.

trc_logpos_t

A

log

position

object

returned

by

the

trc_tell

subroutine.

A

log

handle,

trc_loghandle_t,

must

be

freed

using

the

trc_close

subroutine.

For

example,

trc_free(&trc_data),

where

trc_data

is

of

type

trc_read_t,

frees

the

storage

referenced

by

the

trc_data

structure,

but

does

not

free

trc_data

since

it

must

be

pre-allocated

by

the

user.

Parameters

parmp

Points

to

a

structure

as

described

above.

Return

Values

Upon

successful

completion,

the

trc_free

subroutine

returns

0.

Error

Codes

EINVAL

The

parmp

parameter

points

to

an

unsupported

data

type.

Related

Information

“trc_read

Subroutine”

on

page

396,

“trc_loginfo

Subroutine”

on

page

391,

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382,

“trc_hookname

Subroutine”

on

page

388,

“trc_seek

and

trc_tell

Subroutine”

on

page

399,

“trc_strerror

Subroutine”

on

page

400,

and

“trc_perror

Subroutine”

on

page

395.

trc_hkemptyset,

trc_hkfillset,

trc_hkaddset,

trc_hkdelset,

and

trc_hkisset

Subroutine

Purpose

Manipulates

a

trace

hook

set.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

void

trc_hkemptyset(hookset)

trc_hookset_t

hookset;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

387

void

trc_hkfillset(hookset)

trc_hookset_t

hookset;

int

trc_hkaddset(hookset,

hook)

trc_hookset_t

hookset;

short

hook;

int

trc_hkdelset(hookset,

hook)

trc_hookset_t

hookset;

short

hook;

int

trc_hkisset

(hookset,

hook)

trc_hookset_t

hookset;

short

hook

Description

These

subroutines

manipulate

a

trace

hook

set

used

by

the

trc_find

subroutines.

This

hook

set

can

be

used

to

search

for

several

trace

hooks

simultaneously.

Parameters

hookset

References

the

hook

set

to

be

operated

on.

hook

Specifies

a

hook

value

in

the

range

0x000

-

0xfff.

Return

Values

The

trc_hkaddset,

trc_hkdelset,

and

trc_hkisset

subroutines

return

EINVAL

if

the

hook

is

out

of

range

(that

is,

greater

than

0xfff).

The

trc_hkaddset

subroutine

returns

0

if

the

hook

wasn’t

in

the

set,

and

-1

if

it

was

already

present.

The

trc_hkdelset

subroutine

returns

0

if

the

hook

was

in

the

set,

and

-1

if

it

wasn’t

present.

The

trc_hkisset

subroutine

returns

0

if

the

hook

isn’t

present,

and

-1

if

it

is

present.

Related

Information

“trc_loginfo

Subroutine”

on

page

391

and

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382.

trc_hookname

Subroutine

Purpose

Returns

one

or

all

hooks

and

associated

names

from

the

template

file.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

int

trc_hookname

(handle,

hook,

hooknamep)

trc_log_handle_t

handle;

trc_hookid_t

hook;

trc_hookname_t

*hooknamep;

388

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

trc_hookname

subroutine

returns

one

or

more

hook

ids

and

their

associated

descriptions.

This

allows

a

trace

data

formatter

to

provide

a

hook

selection

list

with

some

descriptive

text

for

each

hook.

Parameters

handle

Contains

a

trc_log_handle_t

data

item

returned

from

a

successful

call

to

the

trc_open

subroutine.

hook

Contains

a

hook

id

of

the

form

0xhhh

where

hhh

is

the

3-hex-digit

hook

id.

If

the

hook

parameter

is

TRC_HOOK_ALL,

the

names

for

all

hooks

in

the

template

file

are

returned.

hooknamep

Points

to

a

trc_hookname_t

structure.

The

trc_free

subroutine

should

be

used

to

free

any

data

referenced

by

the

trc_hookname_t

data

item.

/*

Array

element

type

for

hook

ids

and

names.

*/

typedef

struct

{

trc_hookid_t

hookid;

char

*hookname;

}

trc_hooknm_t;

typedef

struct

{

int

trchn_magic;

/*

Identifier

for

this

data

structure.

*/

unsigned

trchn_nhooks;

/*

Number

of

hooks.

*/

trc_hooknm_t

*trchn_names;

/*

Pointer

to

array

of

ids

and

names.

*/

}

trc_hookname_t;

Return

Values

Upon

successful

completion,

the

trc_hookname

subroutine

returns

0.

Error

Codes

ENOMEM

Not

enough

memory

to

satisfy

the

request.

TRCE_WARN

A

formatting

error

was

found

in

the

template

file.

If

TRCE_WARN

is

returned,

the

function

completed.

TRCE_BADFORMAT

A

formatting

error

was

found

in

the

template

file.

If

TRCE_BADFORMAT

was

returned,

the

errno

global

variable

is

set

to

EINVAL.

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_loginfo

Subroutine”

on

page

391,

“trc_free

Subroutine”

on

page

386,

“trc_strerror

Subroutine”

on

page

400,

and

“trc_perror

Subroutine”

on

page

395.

trc_libcntl

Subroutine

Purpose

Performs

trace

API

control

functions.

Library

libtrace.a

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

389

Syntax

#include

<sys/libtrace.h>

int

trc_libcntl

(handle,

cmd,

datap)

trc_log_handle_t

handle;

int

cmd;

void

*datap;

Description

The

trc_libcntl

subroutine

provides

miscellaneous

control

functions.

Parameters

handle

Contains

the

handle

returned

from

a

successful

call

to

the

trc_open

subroutine.

cmd

This

is

the

control

function

to

be

performed.

Supported

functions

are:

TRC_CNTL_ADJLINENO

This

allows

a

trace

report

program

to

adjust

the

$LINENO

value

supplied

through

the

trace

templates.

Normally,

a

trace

reporting

program

may

assume

the

$LINENO

value

is

calculated

based

upon

the

first

line

of

the

output,

in

trchi_ascii,

being

the

first

line

printed

for

that

hook

in

the

report.

If

this

is

not

the

case,

such

as

with

the

2line

trcrpt

option,

the

$LINENO

value

must

be

adjusted.

For

TRC_CNTL_ADJLINENO,

the

datap

parameter

must

contain

a

signed

long

value

which

is

added

to

$LINENO.

If

the

value

is

negative,

TRC_CNTL_ADJLINENO

will

decrement

the

value.

TRC_CNTL_NAMELIST

This

allows

the

namelist

to

be

specified.

The

default

is

/unix.

It

does

not

initialize

the

symbols,

however,

and

the

trc_libcntl

subroutine

returns

EINVAL

if

the

symbols

are

already

initialized.

If

symbols

are

in

the

trace

stream,

specified

by

trace

-n,

those

symbols

are

used

regardless

of

the

namelist

specification.

TRC_CNTL_TEXTOFFSET

This

offsets

each

line

of

text,

in

the

trchi_ascii

data

area,

by

the

number

of

character

positions

specified,

plus

(trchi_indent-1)

*

8;

If

the

associated

value

is

0,

each

line

is

only

offset

by

(trchi_indent-1)

*

8;

TRC_CNTL_TEXTOFFSET_SUBSEQUENT

This

works

exactly

like

TRC_CNTL_TEXTOFFSET,

except

it

offsets

all

lines

except

the

first

line

of

text.

The

first

line

is

still

offset

by

(trchi_indent-1)

*

8;

TRC_CNTL_PAGESIZE

This

specifies

the

length

of

a

page.

TRC_CNTL_TEXTHEADER

This

specifies

a

header

to

be

output

every

page,

as

specified

by

the

TRC_CNTL_PAGESIZE

command.

datap

Specifies

the

data

parameter.

Return

Values

Upon

successful

completion,

the

trc_libcntl

subroutine

returns

0.

Error

Codes

EINVAL

The

handle

or

cmd

parameter

is

invalid.

EINVAL

is

also

returned

if

the

value

specified

with

TRC_CNTL_ADJLINENO

would

cause

the

$LINENO

value

to

be

negative.

390

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_close

Subroutine”

on

page

381,

“trc_read

Subroutine”

on

page

396,

“trc_loginfo

Subroutine,”

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382,

“trcstart

Subroutine”

on

page

406,

“trcon

Subroutine”

on

page

405,

“trcoff

Subroutine”

on

page

405

and

“trcstop

Subroutine”

on

page

407.

The

trace

daemon

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

The

trcrpt,

trcstop,

and

trcupdate

commands

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

trc_loginfo

Subroutine

Purpose

Returns

information

about

a

trace

log

object.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

int

trc_loginfo

(log_object_name,

infop)

char

*log_object_name;

trc_log_info_t

*infop;

Description

The

trc_loginfo

subroutine

returns

information

about

the

named

trace

log

object.

If

the

log_object_name

parameter

is

NULL

or

an

empty

string,

the

trc_loginfo

subroutine

returns

information

about

the

default

log

object.

Parameters

log_object_name

Names

the

trace

log

object.

This

is

specified

as

it

is

for

the

trc_open

subroutine.

infop

Points

to

an

item

of

type

trc_log_info_t

where

the

information

will

be

returned.

The

trc_log_info_t

structure

is

defined

in

the

/usr/include/sys/libtrace.h

file.

It

contains

such

fields

as

the

file

size,

the

time

the

trace

was

taken,

the

trace

log

file

magic

number,

the

command

used

to

start

the

trace,

cpus

in

the

machine,

number

of

cpus

traced,

multicpu

trace

indicator

(-C),

and

the

trace

object

type

as

defined

in

the

trcopen

subroutine.

The

trc_free

subroutine

should

be

called

to

free

the

trc_loginfo_t

information,

even

if

the

trc_loginfo

subroutine

returned

an

error.

The

/usr/include/sys/libtrace.h

file

contains

the

data

definitions

for

the

returned

data,

*infop.

The

following

table

contains

the

data

item

name,

data

type,

and

description

for

each

item

returned:

Label

Data

Type

Description

trci_magic

int

Structure

magic

number

managed

by

the

library.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

391

Label

Data

Type

Description

trci_logmagic

int

The

trace

log

file’s

magic

number,

see

the

/usr/include/sys/trchdr.h

file.

This

identifies

the

type

of

log

file,

and

is

included

mainly

for

completeness.

The

pertinent

log

file

information

may

be

gotten

from

other

fields

in

this

structure.

trci_time

time_t

The

time

the

trace

was

taken.

trci_ipaddr

int

The

system’s

IP

address.

trci_uname

struct

utsname

uname

information.

trci_cmd

char

*

The

command

used

to

start

the

trace.

trci_fnames

trci_fname_t*

Log

file

names

array.

trci_mach_cpus

int

Number

of

cpus

in

the

machine.

trci_traced_cpus

int

Number

of

traced

cpus.

trci_flags

int

Data

stream

flags.

trci_obj_type

int

Trace

object

type.

trci_hookids

trc_hookset_t

Binary

hook

ids

map

showing

the

hooks

traced.

This

can

be

examined

with

the

trc_hkisset

subroutine.

The

trci_flags

field

contains

bit

flags

as

follows:

TRCIF_MULTICPU

This

trace

was

taken

with

the

-C

trace

option,

(for

example)

it

is

a

multi-cpu

trace.

TRCIF_64BIT

This

is

a

64-bit

trace,

32-bit

if

not

set.

TRCIF_SEPSEG

Separate

segment

buffering

was

used.

TRCIF_CONDTRACE

Conditional

trace

by

hookid,

trace

-j,

-k,

-J,

or

-K.

TRCIF_CONDEXCL

Trace

hook

exclusion,

-k

or

-K,

was

used.

Return

Values

Upon

successful

completion,

the

trc_loginfo

subroutine

returns

a

0,

and

information

about

the

trace

log

object

is

placed

into

the

memory

pointed

to

by

the

infop

parameter.

Error

Codes

Upon

error,

the

trc_loginfo

subroutine

returns

information

identical

to

that

returned

by

the

“trc_open

Subroutine”

on

page

393.

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_close

Subroutine”

on

page

381,

“trc_read

Subroutine”

on

page

396,

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382,

“trc_seek

and

trc_tell

Subroutine”

on

page

399,

“trc_libcntl

Subroutine”

on

page

389,

“trc_strerror

Subroutine”

on

page

400,

“trc_perror

Subroutine”

on

page

395,

“trcstart

Subroutine”

on

page

406,

“trcon

Subroutine”

on

page

405,

“trcoff

Subroutine”

on

page

405,

“trcstop

Subroutine”

on

page

407,

and

“trc_hkemptyset,

trc_hkfillset,

trc_hkaddset,

trc_hkdelset,

and

trc_hkisset

Subroutine”

on

page

387.

The

trace

daemon

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

The

trcrpt,

trcstop,

and

trcupdate

commands

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

392

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

trc_open

Subroutine

Purpose

Opens

a

trace

log

object.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

int

trc_open

(log_object_name,

template_file_name,

type,

handlep)

char

*log_object_name,

template_file_name;

int

type;

trc_log_handle_t

*handlep;

Description

The

trc_open

subroutine

opens

a

trace

log

object.

A

log

object

may

only

be

opened

for

reading.

Two

object

types

are

supported,

raw

and

processed.

As

their

names

imply,

a

raw

object

consists

of

the

raw

trace

data

as

it

was

traced.

A

processed

object

consists

of

data

as

processed

by

a

trace

formatting

template

file

such

as

the

/etc/trcfmt

file.

Parameters

log_object_name

Specifies

the

log

object

to

be

opened.

If

this

is

NULL

or

an

empty

string,

the

default

log

object,

/var/adm/ras/trcfile,

is

opened.

If

it

is

a

dash,

the

input

is

read

from

standard

input.

In

this

case,

the

file

must

be

a

sequential

trace

file

such

as

one

produced

by

the

trcrpt

-r

command,

the

-o

trace

option,

or

the

trcdead

command.

If

the

file

is

the

base

file

for

a

multi-cpu

trace,

the

trace

events

are

merged

by

the

trcrpt

command,

unless

the

TRC_NOTEMPLATES

option

was

specified.

Also,

if

the

file

is

a

single

cpu’s

trace

file,

it

is

treated

as

a

single

log

file.

template_file_name

This

names

the

template

file.

The

template

file

is

used

if

the

TRC_LOGPROC

type

is

specified.

If

NULL,

/etc/trcfmt

(the

default

template

file)

is

used.

The

template

file

specification

is

ignored

if

the

TRC_NOTEMPLATES

option

is

specified.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

393

type

Consists

of

flag

bits

OR’d

together.

One

open

type

and

one

object

type

flag

must

be

specified.

The

following

is

the

open

type

flag:

TRC_LOGREAD

Open

for

reading

The

following

are

the

object

type

flags:

TRC_LOGRAW

Specifies

that

raw

trace

data

is

to

be

read.

This

data

is

defined

in

Debug

and

Performance

Tracing

and

in

the

/etc/trcfmt

file.

TRC_LOGPROC

This

processes

a

raw

trace

log

file,

one

produced

by

the

trace

command,

using

either

the

trace

templates

found

in

the

/etc/trcfmt

file,

or

the

template

file

specified

by

the

template_file_name

parameter

on

the

trc_open

command.

The

following

are

the

modifier

type

flags:

TRC_LOGVERBATIM

Returns

the

file

data

verbatim,

exactly

as

traced.

This

is

how

trcrpt

-r

returns

data.

See

also

the

TRC_NOTEMPLATES

modifier.

TRC_LIBDEBUG

Turns

on

debug

mode.

This

is

for

IBM

customer

support

use

only.

TRC_LOGLIVE

The

data

returned

in

the

trc_read_t

structure

is

not

a

unique

copy,

it

is

live

data.

Such

data

may

only

be

used

until

the

next

retrieval

API

operation.

It

is

not

necessary

to

call

the

trc_free

subroutine

to

free

such

data.

The

TRC_LOGLIVE

modifier

is

used

to

improve

performance

when

the

data

read

does

not

need

to

be

retained.

TRC_RETAIN_HANDLE

Don’t

free

the

handle

after

an

open

failure.

This

allows

errors

to

be

processed

by

the

trc_perror

or

trc_strerror

subroutines.

The

trc_close

subroutine

must

be

used

to

free

the

file

handle.

TRC_NOTEMPLATES

Ignore

any

template

file.

This

is

used

with

the

TRC_LOGRAW

object

flag

to

prevent

any

template

processing,

such

as

merging

multi-cpu

trace

files.

When

used

in

conjunction

with

the

TRC_LOGVERBATIM

flag,

it

causes

the

retrieval

API

to

return

the

same

data

reported

with

trcrpt

-r.

handlep

Points

to

the

handle

returned

from

a

successful

call

to

the

trc_open

subroutine.

Return

Values

Upon

successful

completion,

the

trc_open

subroutine

returns

a

0

and

puts

the

trace

log

object

handle

into

the

memory

pointed

to

by

the

handlep

parameter.

Error

Codes

Upon

error,

the

trc_open

subroutine

sets

the

errno

global

variable

to

a

value

in

the

errno.h

file,

and

returns

either

an

errno.h

value,

or

an

error

value

defined

in

the

libtrace.h

file.

EINVAL

Invalid

parameter.

ENOMEM

Cannot

allocate

memory.

TRCE_BADFORMAT

The

file

is

not

a

valid

trace

file,

and

errno

is

set

to

EINVAL.

TRCE_WARN

The

template

file

contains

errors.

The

errno

global

variable

is

set

to

EINVAL

if

TRCE_TMPLTFORMAT

is

returned.

If

TRCE_WARN

is

returned,

the

open

succeeded.

394

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

TRCE_TMPLTFORMAT

The

template

file

contains

errors.

The

errno

global

variable

is

set

to

EINVAL

if

TRCE_TMPLTFORMAT

is

returned.

If

TRCE_WARN

is

returned,

the

open

succeeded.

TRCE_TOOMANY

An

internal

limit

is

exceeded.

The

errno

global

variable

is

set

to

ENOMEM

in

this

case.

Related

Information

“trc_close

Subroutine”

on

page

381,

“trc_read

Subroutine”

on

page

396,

“trc_loginfo

Subroutine”

on

page

391,

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382,

“trc_seek

and

trc_tell

Subroutine”

on

page

399,

“trc_libcntl

Subroutine”

on

page

389,

“trc_strerror

Subroutine”

on

page

400,

“trc_perror

Subroutine,”

“trcstart

Subroutine”

on

page

406,

“trcon

Subroutine”

on

page

405,

“trcoff

Subroutine”

on

page

405

and

“trcstop

Subroutine”

on

page

407.

The

trace

daemon

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

The

trcrpt,

trcstop,

and

trcupdate

commands

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

trc_perror

Subroutine

Purpose

Prints

all

errors

associated

with

a

trace

log

object.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

void

trc_perror

(handle,

rv,

str)

void

*handle;

int

rv;

char

*str;

Description

The

trc_perror

subroutine

works

like

the

perror

subroutine.

If

the

error

in

the

rv

parameter

is

an

error

from

the

errno.h

file,

it

behaves

exactly

like

the

perror

subroutine.

If

there

are

multiple

errors

associated

with

the

handle,

the

trc_perror

subroutine

prints

all

errors

associated

with

the

object.

If

the

str

parameter

is

NULL,

the

error’s

text

is

the

only

text

printed.

Errors

are

printed

to

standard

error.

Parameters

handle

Contains

the

handle

returned

from

the

call

to

the

trc_open

subroutine,

the

trc_logpos_t

object

returned

by

the

call

to

the

trc_loginfo

subroutine,or

NULL.

If

a

handle

returned

by

the

trc_open

subroutine

is

passed,

the

trc_open

subroutine

need

not

have

been

successful,

and

the

TRC_RETAIN_HANDLE

option

must

have

been

used.

rv

The

return

value

from

a

libtrace

subroutine.

str

Used

the

same

as

the

string

passed

to

the

perror

subroutine.

Errors

printed

by

the

trc_perror

subroutine

are

printed

as

str:

error-message.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

395

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_read

Subroutine,”

“trc_loginfo

Subroutine”

on

page

391,

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382,

“trc_seek

and

trc_tell

Subroutine”

on

page

399,

“trc_strerror

Subroutine”

on

page

400,

and

“trc_hookname

Subroutine”

on

page

388.

The

perror

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

trc_read

Subroutine

Purpose

Reads

from

a

trace

log

object.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

int

trc_read

(handle,

ret)

trc_log_handle_t

handle;

trc_read_t

*ret;

Description

The

trc_read

subroutine

reads

the

next

sequential

data

item

from

the

trace

log

object

whose

handle

is

contained

in

the

handle

parameter.

If

the

trc_read

subroutine

follows

a

trc_find_first

or

trc_find_next

call,

it

reads

the

next

sequential

data

item

after

the

one

found.

To

read

the

next

item

matching

that

criteria,

use

the

trc_find_next

subroutine.

Parameters

handle

Contains

the

handle

returned

from

a

successful

call

to

the

trc_open

subroutine.

ret

Points

to

the

trc_read_t

structure

to

contain

the

returned

information.

The

raw

data

will

be

formatted

the

same

way

it

is

formatted

today

in

the

trcrpt

internal

data

buffer.

This

is

described

in

the

/etc/trcfmt

file

for

both

32

and

64

bit

events.

Thus

32-bit

trace

items

will

be

formatted

as

32-bit

items

regardless

of

whether

they

came

from

a

32

or

64

bit

trace.

If

TRC_LOGVERBATIM

was

specified,

data

is

returned

exactly

as

traced.

Processed

datea

is

the

result

of

trace

template

processing,

see

the

/etc/trcfmt

file.

The

trc_free

subroutine

should

be

used

to

free

data

referenced

from

the

trc_read_t

data

type.

The

trc_free

subroutine

need

not

be

used

if

the

TRC_LOGLIVE

flag

was

specified

when

the

object

was

opened.

The

/usr/include/sys/libtrace.h

file

contains

the

data

definitions

for

the

returned

data.

Label

Data

Type

Description

trcr_magic

int

Trace

read

data

magic

number.

This

is

maintained

by

the

library

to

identify

the

library

version

in

use.

trcr_flags

int

Flags

that

describe

the

data

returned.

396

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

following

are

definitions

for

raw

data

items:

Label

Data

Type

Description

trcri_hookid

trc_hookid_t

Trace

hook

id

of

the

form

0x0hhh,

where

hhh

is

the

hook

id

value,

(for

example)

134.

trcri_subhookid

trc_subhookid_t

Subhook

id.

trcri_cpuid

unsigned

The

cpu

id

if

known.

If

the

TRCRF_CPUIDOK

flag

is

set,

the

cpuid

value

could

be

determined,

otherwise

it

should

be

ignored.

trcri_tid

unsigned

long

long

Thread

id.

trcri_timestamp

unsigned

long

long

Specifies

the

timestamp

in

ticks.

Use

the

trc_ticks2nanos

function

to

convert

this

value

to

nanoseconds.

trcri_rawofst

unsigned

long

long

The

offset

to

the

start

of

this

trace

item

in

the

trace

log

file.

trcri_rawlen

int

The

length

of

the

raw

data

as

traced.

This

is

not

necessarily

the

amount

of

space

used

for

the

data

in

the

log

file.

trcri_rawbuf

char

*

Pointer

to

the

raw

data.

TRC_LONGD1(r)

-

TRC_LONGD5(r)

return

the

5

data

words

traced

by

non-generic

trace

hooks.

The

r

value

is

of

type

trc_read_t

*,

and

must

point

to

a

trc_read_t

item.

These

macros

return

unsigned,

64-bit

values.

Note:

These

macros

do

not

check

to

ensure

that

the

specified

register

was

traced.

The

following

are

definitions

for

processed

data

items:

Label

Data

Type

Description

trchi_hookid

trc_hookid_t

The

trace

hook

id

of

the

form

0x0hhh,

where

hhh

is

the

hook

id

value,

(for

example)

134.

trchi_subhookid

trc_subhookid_t

Subhook

id.

trchi_elapsed_nseconds

unsigned

long

long

The

elapsed

time

from

the

start

of

the

trace

in

nanoseconds.

trchi_tid

unsigned

long

long

Thread

id.

trchi_pid

unsigned

long

long

Process

id.

trchi_svc

unsigned

long

long

System

call

address.

trchi_rawofst

unsigned

long

long

Offset

of

the

trace

event

in

the

log

file.

trchi_trcontime

time64_t

The

time

of

the

last

TRCON,

or

this

TRCON.

trchi_trcofftime

time64_t

The

time

of

the

last

TRCOFF,

or

this

TRCOFF.

trchi_cpuid

int

cpu

id.

trchi_rcpu

int

cpus

remaining

in

this

trace.

trchi_pri

int

Process

priority.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

397

Label

Data

Type

Description

trchi_intr_depth

int

Interrupt

depth.

trchi_indent

int

The

indentation

level

used

by

trcrpt.

The

values

are

-1

-

$NOPRINT,

0

-

no

indentation,

1

-

application

level,

2

-

SVC

level,

3

-

kernel

level.

Items

greater

than

zero

specify

the

number

of

tabs,

minus

1,

that

precede

each

line

of

the

ascii

data,

see

the

trchi_ascii

field.

Each

tab

represents

8

blanks,

so

trchi_indent

=

2

implies

2

-

1,

or

1

tab

before

each

line

of

data,

or

8

blanks.

trchi_svcname

char

*

Current

svc

name.

trchi_procname

char

*

Current

process

name.

trchi_filename

char

*

Current

file

name.

trchi_ascii

char

*

This

is

the

data

produced

by

the

trace

template

for

this

hook.

Each

line

of

data

is

indented

with

blanks,

according

to

the

trchi_indent

value,

and

the

text

offset

and

the

subsequent

line

offset,

see

the

trc_libcntl

subroutine.

The

trcr_flags

field

contains

bit

flags

describing

characteristics

of

the

returned

data.

The

values

are:

TRCRF_RAW

Raw

data

was

read,

(for

example)

the

log

object

was

opened

with

the

TRC_LOGRAW

open

type.

Use

the

raw

data

items

in

the

return

data,

(for

example)

those

beginning

with

trcri_.

TRCRF_PROC

Processed

data

was

read,

(for

example)

the

log

object

was

opened

with

the

TRC_LOGPROC

open

type.

Use

the

processed

data

items

in

the

return

data,

(for

example)

those

beginning

with

trchi_.

TRCRF_64BIT

The

data

is

from

a

64-bit

environment.

Note

that

the

trace

itself

may

be

from

a

32

or

64

bit

kernel.

TRCRF_TIMESTAMPED

The

entry

was

timestamped

when

traced.

TRCRF_CPUIDOK

The

cpu

id

is

known.

This

is

always

set

for

a

processed

entry,

and

set

for

a

raw

entry

if

the

cpuid

was

contained

in

each

trace

hook

(see

the

-p

trace

command

option),

or

the

trace

is

a

multi-cpu

trace

(see

the

-C

trace

option).

For

a

processed

trace,

the

cpu

id

may

not

be

accurate

if

the

appropriate

hooks,

106

and

10C,

weren’t

traced.

TRCRF_GENERIC

This

is

a

generic

trace

entry,

one

traced

with

the

TRCGEN

or

TRCGENT

macros.

This

is

set

for

a

raw

trace

only.

TRCRF_64BITTRACE

This

is

a

64-bit

trace,

(for

example)

it

was

taken

with

a

64-bit

kernel.

TRCRF_LIVEDATA

The

data

is

live,

don’t

free

it.

The

data

will

be

changed

when

another

read

operation

is

done.

TRCRF_NOPRINT

The

associated

trace

template

specified

$NOPRINT

or

$SKIP,

(for

example)

no

data

should

be

printed.

398

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

Upon

successful

completion,

the

trc_read

subroutine

returns

a

0

and

puts

the

data

into

the

ret

area.

Error

Codes

Upon

error,

the

trc_read

subroutine

sets

the

errno

global

variable

to

a

value

from

errno.h,

and

returns

either

a

value

from

the

errno.h

file

or

an

error

defined

in

the

libtrace.h

file.

EINVAL

The

handle

is

not

valid.

TRCE_BADFORMAT

The

trace

data

is

improperly

formatted,

and

the

errno

global

variable

is

set

to

EINVAL.

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_close

Subroutine”

on

page

381,

“trc_loginfo

Subroutine”

on

page

391,

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382,

“trc_libcntl

Subroutine”

on

page

389,

“trc_strerror

Subroutine”

on

page

400,

“trc_perror

Subroutine”

on

page

395,

“trcstart

Subroutine”

on

page

406,

“trcon

Subroutine”

on

page

405,

“trcoff

Subroutine”

on

page

405

and

“trcstop

Subroutine”

on

page

407.

The

trace

daemon

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

The

trcrpt,

trcstop,

and

trcupdate

commands

in

AIX

5L

Version

5.2

Commands

Reference,

Volume

5.

trc_seek

and

trc_tell

Subroutine

Purpose

Seeks

into

a

trace

object

and

returns

the

current

position

that

will

be

used

with

a

future

seek.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

int

trc_seek

(handle,

log_positionp,

r)

trc_loghandle_t

handle;

trc_logpos_t

log_positionp;

trc_read_t

*r;

int

trc_tell

(handle,

log_positionp)

trc_loghandle_t

handle;

trc_logpos_t

*log_positionp;

Description

The

trc_seek

subroutine

seeks

into

the

log

object

identified

by

the

handle

parameter.

The

log_positionp

parameter

must

have

been

obtained

from

a

previous

call

to

the

trc_tell

subroutine.

If

the

trc_read_t

pointer,

r,

is

not

NULL,

the

trc_seek

subroutine

returns

the

trace

data

at

the

seek

point.

The

trc_tell

subroutine

creates

a

trc_logpos_t

object

using

the

current

log

position

and

state.

The

trc_free

subroutine

should

be

used

to

free

a

trc_logpos_t

object

that’s

no

longer

needed.

However,

trc_free

is

not

necessary

if

the

trc_logpos_t

object

is

passed

to

another

trc_tell.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

399

Parameters

handle

Contains

the

handle

returned

from

a

successful

call

to

the

trc_open

subroutine.

log_positionp

A

trc_logpos_t

returned

by

a

previous

call

to

the

trc_tell

subroutine.

r

If

not

NULL,

points

to

a

trc_read_t

data

item

where

the

data

at

the

new

position

is

returned.

Return

Values

Upon

successful

return,

the

trc_seek

and

trc_tell

subroutines

return

0.

Error

Codes

If

unsuccessful,

the

trc_seek

subroutine

returns

an

i/o

error,

or

EINVAL

if

either

the

handle

or

log_positionp

parameter

is

in

error.

Upon

error,

the

trc_tell

subroutine

returns

EINVAL

if

the

handle

is

invalid,

or

ENOMEM

if

storage

can’t

be

obtained

for

the

trc_logpos_t

object.

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_read

Subroutine”

on

page

396,

“trc_loginfo

Subroutine”

on

page

391,

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382,

“trc_libcntl

Subroutine”

on

page

389,

“trc_strerror

Subroutine,”

“trc_perror

Subroutine”

on

page

395,

and

“trc_hookname

Subroutine”

on

page

388.

The

perror

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

trc_strerror

Subroutine

Purpose

Returns

the

error

message,

or

next

error

message,

associated

with

a

trace

log

object

or

trc_loginfo

object.

Library

libtrace.a

Syntax

#include

<sys/libtrace.h>

char

*trc_strerror

(handle,

rv)

void

*handle;

int

rv;

Description

The

trc_strerror

subroutine

is

similar

to

the

strerror

subroutine.

If

the

error

in

the

rv

parameter

is

an

error

from

the

errno.h

file,

it

simply

returns

the

string

from

the

strerror

subroutine.

If

the

rv

parameter

is

a

libtrace

error

such

as

TRCE_EOF,

it

returns

the

string

associated

with

this

error.

It

is

possible

for

multiple

libtrace

errors

to

be

present.

The

trc_strerror

subroutine

returns

the

next

error

in

this

case.

When

no

more

errors

are

present,

the

trc_strerror

subroutine

returns

NULL.

Like

the

strerror

subroutine,

the

trc_strerror

subroutine

must

not

be

used

in

a

threaded

environment.

400

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

handle

Contains

the

handle

returned

from

the

trc_open

subroutine,

the

pointer

to

a

trc_loginfo_t

object,

or

NULL.

If

a

handle

returned

by

the

trc_open

subroutine

is

passed,

the

trc_open

subroutine

need

not

have

been

successful,

but

the

TRC_RETAIN_HANDLE

open

option

must

have

been

used.

rv

Contains

the

return

value

from

a

call

to

the

libtrace

subroutine.

Return

Values

The

trc_strerror

subroutine

returns

a

pointer

to

the

associated

error

message.

It

returns

NULL

if

no

more

errors

are

present.

Examples

1.

To

retrieve

all

error

messages

from

a

call

to

the

trc_open

subroutine,

call

the

trc_strerror

subroutine

as

follows:

{

trc_loghandle_t

h;

int

rv;

char

*fn,

*tfn,

*s;

...

rv

=

trc_open(fn,tfn,

TRC_LOGREAD|TRC_LOGPROC|TRC_RETAIN_HANDLE,

&h);

while

(rv

&&

s=trc_strerror(h,

rv))

{

fprintf(stderr,

"%s\n",

s);

}

}

2.

To

accomplish

the

same

thing

as

the

previous

example

with

a

single

call,

do

the

following:

{

trc_loghandle_t

h;

int

rv;

char

*fn,

*tfn;

...

rv

=

trc_open(fn,tfn,

TRC_LOGREAD|TRC_LOGPROC|TRC_RETAIN_HANDLE,

&h);

if

(rv)

trc_perror(h,

rv,

"");

}

Related

Information

“trc_open

Subroutine”

on

page

393,

“trc_read

Subroutine”

on

page

396,

“trc_loginfo

Subroutine”

on

page

391,

“trc_find_first,

trc_find_next,

and

trc_compare

Subroutine”

on

page

382,

“trc_seek

and

trc_tell

Subroutine”

on

page

399,

“trc_perror

Subroutine”

on

page

395,

“trc_hookname

Subroutine”

on

page

388,

and

“strerror

Subroutine”

on

page

285.

trcgen

or

trcgent

Subroutine

Purpose

Records

a

trace

event

for

a

generic

trace

channel.

Library

Runtime

Services

Library

(librts.a)

Syntax

#include

<sys/trchkid.h>

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

401

void

trcgen(Channel,

HkWord,

DataWord,

Length,

Buffer)

unsigned

int

Channel,

HkWord,

DataWord,

Length;

char

*

Buffer;

void

trcgent(Channel,

HkWord,

DataWord,

Length,

Buffer)

unsigned

int

Channel,

HkWord,

DataWord,

Length;

char

*Buffer;

Description

The

trcgen

subroutine

records

a

trace

event

for

a

generic

trace

entry

consisting

of

a

hook

word,

a

data

word,

and

a

variable

number

of

bytes

of

trace

data.

The

trcgent

subroutine

records

a

trace

event

for

a

generic

trace

entry

consisting

of

a

hook

word,

a

data

word,

a

variable

number

of

bytes

of

trace

data,

and

a

time

stamp.

The

trcgen

subroutine

and

trcgent

subroutine

are

located

in

pinned

kernel

memory.

Parameters

Buffer

Specifies

a

pointer

to

a

buffer

of

trace

data.

The

maximum

size

of

the

trace

data

is

4096

bytes.

Channel

Specifies

a

channel

number

for

the

trace

session,

obtained

from

the

trcstart

subroutine.

DataWord

Specifies

a

word

of

user-defined

data.

HkWord

Specifies

an

integer

consisting

of

two

bytes

of

user-defined

data

(HkData),

a

hook

ID

(HkID),

and

a

hook

type

(Hk_Type).

HkData

Specifies

two

bytes

of

user-defined

data.

HkID

Specifies

a

hook

identifier.

For

user

programs,

the

hook

ID

value

ranges

from

010

to

0FF.

Hk_Type

Specifies

a

4-bit

value

that

identifies

the

amount

of

trace

data

to

be

recorded:

Value

Records

1

Hook

word

9

Hook

word

and

a

time

stamp

2

Hook

word

and

one

data

word

A

Hook

word,

one

data

word,

and

a

time

stamp

6

Hook

word

and

up

to

five

data

words

E

Hook

word,

up

to

five

data

words,

and

a

time

stamp.

Length

Specifies

the

length

in

bytes

of

the

Buffer

parameter.

Related

Information

The

trchook

(“trchook,

utrchook,

trchook64,

and

utrhook64

Subroutine”

on

page

403)

subroutine,

trcoff

(“trcoff

Subroutine”

on

page

405)

subroutine,

trcon

(“trcon

Subroutine”

on

page

405)

subroutine,

trcstart

(“trcstart

Subroutine”

on

page

406)

subroutine,

trcstop

(“trcstop

Subroutine”

on

page

407)

subroutine.

The

trace

daemon.

The

trcgenk

kernel

service,

trcgenkt

kernel

service.

402

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

trchook,

utrchook,

trchook64,

and

utrhook64

Subroutine

Purpose

Records

a

trace

event.

Library

Runtime

Services

Library

(librts.a)

Syntax

#include

<sys/trchkid.h>

void

trchook(

HkWord,

d1,

d2,

d3,

d4,

d5)

unsigned

int

HkWord,

d1,

d2,

d3,

d4,

d5;

void

utrchook(HkWord,

d1,

d2,

d3,

d4,

d5)

unsigned

int

HkWord,

d1,

d2,

d3,

d4,

d5;

void

trchook64

(HkWord,

d1,

d2,

d3,

d4,

d5)

unsigned

long

HkWord,

d1,

d2,

d3,

d4,

d5;

void

utrchook64

(HkWord,

d1,

d2,

d3,

d4,

d5)

unsigned

long

HkWord,

d1,

d2,

d3,

d4,

d5;

Description

The

trchook

subroutine

records

a

trace

event

if

a

trace

session

is

active.

Input

parameters

include

a

hook

word

(HkWord)

and

from

0

to

5

words

of

data.

The

trchook

and

trchook64

subroutines

are

intended

for

use

by

the

kernel

and

extensions.

The

utrchook

and

utrchook64

subroutines

are

intended

for

programs

running

at

user

(application)

level.

The

trchook

and

utrchook

subroutines

are

for

use

in

a

32-bit

environment,

while

the

trchook64

and

utrchook64

subroutines

are

intended

for

use

in

a

64-bit

environment.

Note

that

if

running

a

64-bit

application

on

a

32-bit

kernel,

the

application

should

use

utrchook64(the

subroutine

for

its

64-bit

environment).

It

is

strongly

recommended

that

the

C

macros

TRCHKLn

and

TRCHKLnT

(where

n

is

from

0

to

5)

be

used

if

possible,

instead

of

calling

these

subroutines

directly.

Parameters

d1,

d2,

d3,

d4,

d5

Up

to

5

words

of

data

from

the

calling

program.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

403

HkWord

The

HkWord

parameter

has

a

different

format

based

upon

the

environment.

For

the

trchook

and

utrchook

subroutines,

it

is

an

unsigned

long

consisting

of

a

hook

ID

(HkID),

a

hook

type

(Hk_Type),

and

two

bytes

of

data

from

the

calling

program

(HkData).

HkID

A

hook

ID

is

a

12-bit

value.

For

user

programs,

the

hook

ID

may

be

a

value

from

0x010

to

0x0FF.

Hook

identifiers

are

defined

in

the

/usr/include/sys/trchkid.h

file.

Hk_Type

A

4-bit

value

that

identifies

the

amount

of

trace

data

to

be

recorded:

Value

Records

1

Hook

word

9

Hook

word

and

a

time

stamp

2

Hook

word

and

one

data

word

A

Hook

word,

one

data

word,

and

a

time

stamp

6

Hook

word

and

up

to

five

data

words

E

Hook

word,

up

to

five

data

words,

and

a

time

stamp.

HkData

Two

bytes

of

data

from

the

calling

program.

In

a

64-bit

environment,

when

using

the

trchook64

or

utrchook64

subroutine,

the

format

is

ffffllllhhhxssss,

where

f

represents

flags,

l

is

length,

h

is

the

hook

id,

and

s

is

the

subhook.

The

hook

and

subhook

ids

are

the

same

as

for

the

32-bit

environment

(12-bit

hook

id

and

a

16-bit

subhook

id).

Note

that

the

4

bits

between

the

hook

id

and

subhook

are

unused.

The

flags

(the

first

16

bits

of

the

64-bit

hookword)

are

specified

as

follows:

8000

The

hook

should

be

timestamped.

4000

A

generic

trace

entry,

should

not

use

the

trchook64

or

utrchook64

subroutine.

For

more

information

see

“trcgen

or

trcgent

Subroutine”

on

page

401.

2000

The

hook

contains

32-bit

data.

Used

by

aix

trace

only.

1000

Automatically

include

the

cpuid

when

tracing

the

data.

The

length

(l)

is

the

second

16

bits

of

the

hookword.

It

is

the

length

of

the

data.

The

length

is

0

if

no

data

other

than

the

hookword

is

traced

(TRCHKL0),

8

if

one

parameter,

8

bytes,

is

traced

(TRCHKL1),

16

for

2

parameters,

24

for

3

parameters,

32

for

4

parameters,

and

40

for

5

parameters

(TRCHKL5).

Related

Information

The

trcgen

(“trcgen

or

trcgent

Subroutine”

on

page

401)

subroutine,

trcgent

(“trcgen

or

trcgent

Subroutine”

on

page

401)

subroutine,

trcoff

(“trcoff

Subroutine”

on

page

405)

subroutine,

trcon

(“trcon

Subroutine”

on

page

405)

subroutine,

trcstart

(“trcstart

Subroutine”

on

page

406)

subroutine,

trcstop

(“trcstop

Subroutine”

on

page

407)

subroutine.

The

trace

daemon.

The

trcgenk

kernel

service,

trcgenkt

kernel

service.

404

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

trcoff

Subroutine

Purpose

Halts

the

collection

of

trace

data

from

within

a

process.

Library

Runtime

Services

Library

(librts.a)

Syntax

int

trcoff(

Channel)

int

Channel;

Description

The

trcoff

subroutine

stops

trace

data

collection

for

a

trace

channel.

The

trace

session

must

have

already

been

started

using

the

trace

command

or

the

trcstart

subroutine.

Parameters

Channel

Channel

number

for

the

trace

session.

Return

Values

If

the

trcoff

subroutine

was

successful,

zero

is

returned

and

trace

data

collection

stops.

If

unsuccessful,

a

negative

one

is

returned.

Related

Information

The

trcgen

(“trcgen

or

trcgent

Subroutine”

on

page

401)

subroutine,

trchook

(“trchook,

utrchook,

trchook64,

and

utrhook64

Subroutine”

on

page

403)

subroutine,

trcon

(“trcon

Subroutine”)

subroutine,

trcstart

(“trcstart

Subroutine”

on

page

406)

subroutine,

trcstop

(“trcstop

Subroutine”

on

page

407)

subroutine.

The

trace

daemon.

trcgenk

kernel

service,

trcgenkt

kernel

service.

trcon

Subroutine

Purpose

Starts

the

collection

of

trace

data.

Library

Runtime

Services

Library

(librts.a)

Syntax

int

trcon(

Channel)

int

Channel;

Description

The

trcon

subroutine

starts

trace

data

collection

for

a

trace

channel.The

trace

session

must

have

already

been

started

using

the

trace

command

or

the

trcstart

(“trcstart

Subroutine”

on

page

406)

subroutine.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

405

Parameters

Channel

Specifies

one

of

eight

trace

channels.

Channel

number

0

always

refers

to

the

Event/Performance

trace.

Channel

numbers

1

through

7

specify

generic

trace

channels.

Return

Values

If

the

trcon

subroutine

was

successful,

zero

is

returned

and

trace

data

collection

starts.

If

unsuccessful,

a

negative

one

is

returned.

Related

Information

The

trcgen

(“trcgen

or

trcgent

Subroutine”

on

page

401)

subroutine,

trchook

(“trchook,

utrchook,

trchook64,

and

utrhook64

Subroutine”

on

page

403)

subroutine,

trcoff

(“trcoff

Subroutine”

on

page

405)

subroutine,

trcstart

(“trcstart

Subroutine”)

subroutine,

trcstop

(“trcstop

Subroutine”

on

page

407)

subroutine.

The

trace

daemon.

The

trcgenk

kernel

service,

trcgenkt

kernel

service.

trcstart

Subroutine

Purpose

Starts

a

trace

session.

Library

Runtime

Services

Library

(librts.a)

Syntax

int

trcstart(

Argument)

char

*Argument;

Description

The

trcstart

subroutine

starts

a

trace

session.

The

Argument

parameter

points

to

a

character

string

containing

the

flags

invoked

with

the

trace

daemon.

To

specify

that

a

generic

trace

session

is

to

be

started,

include

the

-g

flag.

Parameters

Argument

Character

pointer

to

a

string

holding

valid

arguments

from

the

trace

daemon.

Return

Values

If

the

trace

daemon

is

started

successfully,

the

channel

number

is

returned.

Channel

number

0

is

returned

if

a

generic

trace

was

not

requested.

If

the

trace

daemon

is

not

started

successfully,

a

value

of

-1

is

returned.

Files

/dev/trace

Trace

special

file.

406

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

trcon

(“trcon

Subroutine”

on

page

405)

subroutine.

The

trace

daemon.

trcstop

Subroutine

Purpose

Stops

a

trace

session.

Library

Runtime

Services

Library

(librts.a)

Syntax

int

trcstop(

Channel)

int

Channel;

Description

The

trcstop

subroutine

stops

a

trace

session

for

a

particular

trace

channel.

Parameters

Channel

Specifies

one

of

eight

trace

channels.

Channel

number

0

always

refers

to

the

Event/Performance

trace.

Channel

numbers

1

through

7

specify

generic

trace

channels.

Return

Values

0

The

trace

session

was

stopped

successfully.

-1

The

trace

session

did

not

stop.

Related

Information

The

trcgen

(“trcgen

or

trcgent

Subroutine”

on

page

401)

subroutine,

trchook

(“trchook,

utrchook,

trchook64,

and

utrhook64

Subroutine”

on

page

403)

subroutine,

trcoff

(“trcoff

Subroutine”

on

page

405)

subroutine,

trcon

(“trcon

Subroutine”

on

page

405)

subroutine,

trcstart

(“trcstart

Subroutine”

on

page

406)

subroutine.

The

trace

daemon.

The

trcgenk

kernel

service,

trcgenkt

kernel

service.

trunc,

truncf,

or

truncl

Subroutine

Purpose

Rounds

to

truncated

integer

value.

Syntax

#include

<math.h>

double

trunc

(x)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

407

double

x;

float

truncf

(x)

float

x;

long

double

truncl

(x)

long

double

x;

Description

The

trunc,

truncf,

and

truncl

subroutines

round

the

x

parameter

to

the

integer

value,

in

floating

format,

nearest

to

but

no

larger

in

magnitude

than

the

x

parameter.

Parameters

x

Specifies

the

value

to

be

rounded.

Return

Values

Upon

successful

completion,

the

trunc,

truncf,

and

truncl

subroutines

return

the

truncated

integer

value.

If

x

is

NaN,

a

NaN

is

returned.

If

x

is

±0

or

±Inf,

x

is

returned.

Related

Information

math.h

in

AIX

5L

Version

5.2

Files

Reference.

truncate,

truncate64,

ftruncate,

or

ftruncate64

Subroutine

Purpose

Changes

the

length

of

regular

files.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

int

truncate

(

Path,

Length)

const

char

*Path;

off_t

Length;

int

ftruncate

(

FileDescriptor,

Length)

int

FileDescriptor;

off_t

Length;

Note:

The

truncate64

and

ftruncate64

subroutines

apply

to

AIX

4.2

and

later

releases.

int

truncate64

(

Path,

Length)

const

char

*Path;

off64_t

Length;

408

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

ftruncate64

(

FileDescriptor,

Length)

int

FileDescriptor;

off64_t

Length;

Description

Note:

The

truncate64

and

ftruncate64

subroutines

apply

to

AIX

4.2

and

later

releases.

The

truncate

and

ftruncate

subroutines

change

the

length

of

regular

files.

The

Path

parameter

must

point

to

a

regular

file

for

which

the

calling

process

has

write

permission.

The

Length

parameter

specifies

the

desired

length

of

the

new

file

in

bytes.

The

Length

parameter

measures

the

specified

file

in

bytes

from

the

beginning

of

the

file.

If

the

new

length

is

less

than

the

previous

length,

all

data

between

the

new

length

and

the

previous

end

of

file

is

removed.

If

the

new

length

in

the

specified

file

is

greater

than

the

previous

length,

data

between

the

old

and

new

lengths

is

read

as

zeros.

Full

blocks

are

returned

to

the

file

system

so

that

they

can

be

used

again,

and

the

file

size

is

changed

to

the

value

of

the

Length

parameter.

If

the

file

designated

in

the

Path

parameter

names

a

symbolic

link,

the

link

will

be

traversed

and

path-name

resolution

will

continue.

These

subroutines

do

not

modify

the

seek

pointer

of

the

file.

These

subroutines

cannot

be

applied

to

a

file

that

a

process

has

open

with

the

O_DEFER

flag.

Successful

completion

of

the

truncate

or

ftruncate

subroutine

updates

the

st_ctime

and

st_mtime

fields

of

the

file.

Successful

completion

also

clears

the

SetUserID

bit

(S_ISUID)

of

the

file

if

any

of

the

following

are

true:

v

The

calling

process

does

not

have

root

user

authority.

v

The

effective

user

ID

of

the

calling

process

does

not

match

the

user

ID

of

the

file.

v

The

file

is

executable

by

the

group

(S_IXGRP)

or

others

(S_IXOTH).

These

subroutines

also

clear

the

SetGroupID

bit

(S_ISGID)

if:

v

The

file

does

not

match

the

effective

group

ID

or

one

of

the

supplementary

group

IDs

of

the

process

v

OR

v

The

file

is

executable

by

the

owner

(S_IXUSR)

or

others

(S_IXOTH).

Note:

Clearing

of

the

SetUserID

and

SetGroupID

bits

can

occur

even

if

the

subroutine

fails

because

the

data

in

the

file

was

modified

before

the

error

was

detected.

truncate

and

ftruncate

can

be

used

to

specify

any

size

up

to

OFF_MAX.

truncate64

and

ftruncate64

can

be

used

to

specify

any

length

up

to

the

maximum

file

size

for

the

file.

In

the

large

file

enabled

programming

environment,

truncate

is

redefined

to

be

truncate64

and

ftruncate

is

redefined

to

be

ftruncate64.

Parameters

Path

Specifies

the

name

of

a

file

that

is

opened,

truncated,

and

then

closed.

FileDescriptor

Specifies

the

descriptor

of

a

file

that

must

be

open

for

writing.

Length

Specifies

the

new

length

of

the

truncated

file

in

bytes.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

409

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

If

the

truncate

or

ftruncate

subroutine

is

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

nature

of

the

error.

Error

Codes

The

truncate

and

ftruncate

subroutines

fail

if

the

following

is

true:

EROFS

An

attempt

was

made

to

truncate

a

file

that

resides

on

a

read-only

file

system.

Note:

In

addition,

the

truncate

subroutine

can

return

the

same

errors

as

the

open

subroutine

if

there

is

a

problem

opening

the

file.

The

truncate

and

ftruncate

subroutines

fail

if

one

of

the

following

is

true:

EAGAIN

The

truncation

operation

fails

due

to

an

enforced

write

lock

on

a

portion

of

the

file

being

truncated.

Because

the

target

file

was

opened

with

the

O_NONBLOCK

or

O_NDELAY

flags

set,

the

subroutine

fails

immediately

rather

than

wait

for

a

release.

EDQUOT

New

disk

blocks

cannot

be

allocated

for

the

truncated

file.

The

quota

of

the

user’s

or

group’s

allotted

disk

blocks

has

been

exhausted

on

the

target

file

system.

EFBIG

An

attempt

was

made

to

write

a

file

that

exceeds

the

process’

file

size

limit

or

the

maximum

file

size.

If

the

user

has

set

the

environment

variable

XPG_SUS_ENV=ON

prior

to

execution

of

the

process,

then

the

SIGXFSZ

signal

is

posted

to

the

process

when

exceeding

the

process’

file

size

limit.

EFBIG

The

file

is

a

regular

file

and

length

is

greater

than

the

offset

maximum

established

in

the

open

file

description

associated

with

fildes.

EINVAL

The

file

is

not

a

regular

file.

EINVAL

The

Length

parameter

was

less

than

zero.

EISDIR

The

named

file

is

a

directory.

EINTR

A

signal

was

caught

during

execution.

EIO

An

I/O

error

occurred

while

reading

from

or

writing

to

the

file

system.

EMFILE

The

file

is

open

with

O_DEFER

by

one

or

more

processes.

ENOSPC

New

disk

blocks

cannot

be

allocated

for

the

truncated

file.

There

is

no

free

space

on

the

file

system

containing

the

file.

ETXTBSY

The

file

is

part

of

a

process

that

is

running.

EROFS

The

named

file

resides

on

a

read-only

file

system.

Notes:

1.

The

truncate

subroutine

can

also

be

unsuccessful

for

other

reasons.

For

a

list

of

additional

errors,

see

″Base

Operating

System

Error

Codes

For

Services

That

Require

Path-Name

Resolution″

.

2.

The

truncate

subroutine

can

return

the

same

errors

as

the

open

subroutine

if

there

is

a

problem

opening

the

file.

The

ftruncate

subroutine

fails

if

the

following

is

true:

EBADF

The

FileDescriptor

parameter

is

not

a

valid

file

descriptor

open

for

writing.

EINVAL

The

FileDescriptor

argument

references

a

file

that

was

opened

without

write

permission.

The

truncate

function

will

fail

if:

EACCES

A

component

of

the

path

prefix

denies

search

permission,

or

write

permission

is

denied

on

the

file.

EISDIR

The

named

file

is

a

directory.

ELOOP

Too

many

symbolic

links

were

encountered

in

resolving

path.

410

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

ENAMETOOLONG

The

length

of

the

specified

pathname

exceeds

PATH_MAX

bytes,

or

the

length

of

a

component

of

the

pathname

exceeds

NAME_MAX

bytes.

ENOENT

A

component

of

path

does

not

name

an

existing

file

or

path

is

an

empty

string.

ENTDIR

A

component

of

the

path

prefix

of

path

is

not

a

directory.

EROFS

The

named

file

resides

on

a

read-only

file

system.

The

truncate

function

may

fail

if:

ENAMETOOLONG

Pathname

resolution

of

a

symbolic

link

produced

an

intermediate

result

whose

length

exceeds

PATH_MAX.

Related

Information

The

fclear

subroutine,

openx,

open,

or

creat

subroutine.

Appendix

A,

“Base

Operating

System

Error

Codes

for

Services

That

Require

Path-Name

Resolution,”

on

page

721.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tsearch,

tdelete,

tfind

or

twalk

Subroutine

Purpose

Manages

binary

search

trees.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<search.h>

void

*tsearch

(

Key,

RootPointer,

ComparisonPointer)

const

void

*Key;

void

**RootPointer;

int

(*ComparisonPointer)

(const

void

*Element1,

const

void

*Element2);

void

*tdelete

(Key,

RootPointer,

ComparisonPointer)

const

void

*Key;

void

**RootPointer;

int

(*ComparisonPointer)

(const

void

*Element1,

const

void

*Element2);

void

*tfind

(Key,

RootPointer,

ComparisonPointer)

const

void

*Key;

void

*const

*RootPointer;

int

(*ComparisonPointer)

(const

void

*Element1,

const

void

*Element2);

void

twalk

(

Root,

Action)

const

void

*Root;

void

(*Action)

(const

void

*Node,

VISIT

Type,

int

Level);

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

411

Description

The

tsearch,

tdelete,

tfind

and

twalk

subroutines

manipulate

binary

search

trees.

Comparisons

are

made

with

the

user-supplied

routine

specified

by

the

ComparisonPointer

parameter.

This

routine

is

called

with

two

parameters,

the

pointers

to

the

elements

being

compared.

The

tsearch

subroutine

performs

a

binary

tree

search,

returning

a

pointer

into

a

tree

indicating

where

the

data

specified

by

the

Key

parameter

can

be

found.

If

the

data

specified

by

the

Key

parameter

is

not

found,

the

data

is

added

to

the

tree

in

the

correct

place.

If

there

is

not

enough

space

available

to

create

a

new

node,

a

null

pointer

is

returned.

Only

pointers

are

copied,

so

the

calling

routine

must

store

the

data.

The

RootPointer

parameter

points

to

a

variable

that

points

to

the

root

of

the

tree.

If

the

RootPointer

parameter

is

the

null

value,

the

variable

is

set

to

point

to

the

root

of

a

new

tree.

If

the

RootPointer

parameter

is

the

null

value

on

entry,

then

a

null

pointer

is

returned.

The

tdelete

subroutine

deletes

the

data

specified

by

the

Key

parameter.

The

RootPointer

and

ComparisonPointer

parameters

perform

the

same

function

as

they

do

for

the

tsearch

subroutine.

The

variable

pointed

to

by

the

RootPointer

parameter

is

changed

if

the

deleted

node

is

the

root

of

the

binary

tree.

The

tdelete

subroutine

returns

a

pointer

to

the

parent

node

of

the

deleted

node.

If

the

data

is

not

found,

a

null

pointer

is

returned.

If

the

RootPointer

parameter

is

null

on

entry,

then

a

null

pointer

is

returned.

The

tfind

subroutine

searches

the

binary

search

tree.

Like

the

tsearch

subroutine,

the

tfind

subroutine

searches

for

a

node

in

the

tree,

returning

a

pointer

to

it

if

found.

However,

if

it

is

not

found,

the

tfind

subroutine

will

return

a

null

pointer.

The

parameters

for

the

tfind

subroutine

are

the

same

as

for

the

tsearch

subroutine.

The

twalk

subroutine

steps

through

the

binary

search

tree

whose

root

is

pointed

to

by

the

RootPointer

parameter.

(Any

node

in

a

tree

can

be

used

as

the

root

to

step

through

the

tree

below

that

node.)

The

Action

parameter

is

the

name

of

a

routine

to

be

invoked

at

each

node.

The

routine

specified

by

the

Action

parameter

is

called

with

three

parameters.

The

first

parameter

is

the

address

of

the

node

currently

being

pointed

to.

The

second

parameter

is

a

value

from

an

enumeration

data

type:

typedef

enum

[preorder,

postorder,

endorder,

leaf]

VISIT;

(This

data

type

is

defined

in

the

search.h

file.)

The

actual

value

of

the

second

parameter

depends

on

whether

this

is

the

first,

second,

or

third

time

that

the

node

has

been

visited

during

a

depth-first,

left-to-right

traversal

of

the

tree,

or

whether

the

node

is

a

leaf.

A

leaf

is

a

node

that

is

not

the

parent

of

another

node.

The

third

parameter

is

the

level

of

the

node

in

the

tree,

with

the

root

node

being

level

zero.

Although

declared

as

type

pointer-to-void,

the

pointers

to

the

key

and

the

root

of

the

tree

should

be

of

type

pointer-to-element

and

cast

to

type

pointer-to-character.

Although

declared

as

type

pointer-to-character,

the

value

returned

should

be

cast

into

type

pointer-to-element.

Parameters

Key

Points

to

the

data

to

be

located.

ComparisonPointer

Points

to

the

comparison

function,

which

is

called

with

two

parameters

that

point

to

the

elements

being

compared.

RootPointer

Points

to

a

variable

that

in

turn

points

to

the

root

of

the

tree.

Action

Names

a

routine

to

be

invoked

at

each

node.

Root

Points

to

the

roots

of

a

binary

search

node.

Return

Values

The

comparison

function

compares

its

parameters

and

returns

a

value

as

follows:

v

If

the

first

parameter

is

less

than

the

second

parameter,

the

ComparisonPointer

parameter

returns

a

value

less

than

0.

412

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

If

the

first

parameter

is

equal

to

the

second

parameter,

the

ComparisonPointer

parameter

returns

a

value

of

0.

v

If

the

first

parameter

is

greater

than

the

second

parameter,

the

ComparisonPointer

parameter

returns

a

value

greater

than

0.

The

comparison

function

need

not

compare

every

byte,

so

arbitrary

data

can

be

contained

in

the

elements

in

addition

to

the

values

being

compared.

If

the

node

is

found,

the

tsearch

and

tfind

subroutines

return

a

pointer

to

it.

If

the

node

is

not

found,

the

tsearch

subroutine

returns

a

pointer

to

the

inserted

item

and

the

tfind

subroutine

returns

a

null

pointer.

If

there

is

not

enough

space

to

create

a

new

node,

the

tsearch

subroutine

returns

a

null

pointer.

If

the

RootPointer

parameter

is

a

null

pointer

on

entry,

a

null

pointer

is

returned

by

the

tsearch

and

tdelete

subroutines.

The

tdelete

subroutine

returns

a

pointer

to

the

parent

of

the

deleted

node.

If

the

node

is

not

found,

a

null

pointer

is

returned.

Related

Information

The

bsearch

subroutine,

hsearch

subroutine,

lsearch

subroutine.

Searching

and

Sorting

Example

Program,

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

ttylock,

ttywait,

ttyunlock,

or

ttylocked

Subroutine

Purpose

Controls

tty

locking

functions.

Library

Standard

C

Library

(libc.a)

Syntax

int

ttylock

(

DeviceName)

char

*DeviceName;

int

ttywait

(DeviceName)

char

*DeviceName;

int

ttyunlock

(DeviceName)

char

*DeviceName;

int

ttylocked

(DeviceName)

char

*DeviceName;

Description

The

ttylock

subroutine

creates

the

LCK..DeviceName

file

in

the

/etc/locks

directory

and

writes

the

process

ID

of

the

calling

process

in

that

file.

If

LCK..DeviceName

exists

and

the

process

whose

ID

is

contained

in

this

file

is

active,

the

ttylock

subroutine

returns

an

error.

There

are

programs

like

uucp

and

connect

that

create

tty

locks

in

the

/etc/locks

directory.

The

convention

followed

by

these

programs

is

to

call

the

ttylock

subroutine

with

an

argument

of

DeviceName

for

locking

the

/dev/DeviceName

file.

This

convention

must

be

followed

by

all

callers

of

the

ttylock

subroutine

to

make

the

locking

mechanism

work.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

413

The

ttywait

subroutine

blocks

the

calling

process

until

the

lock

file

associated

with

DeviceName,

the

/etc/locks/LCK..DeviceName

file,

is

removed.

The

ttyunlock

subroutine

removes

the

lock

file,

/etc/locks/LCK..DeviceName,

if

it

is

held

by

the

current

process.

The

ttylocked

subroutine

checks

to

see

if

the

lock

file,

/etc/locks/LCK..DeviceName,

exists

and

the

process

that

created

the

lock

file

is

still

active.

If

the

process

is

no

longer

active,

the

lock

file

is

removed.

Parameters

DeviceName

Specifies

the

name

of

the

device.

Return

Values

Upon

successful

completion,

the

ttylock

subroutine

returns

a

value

of

0.

Otherwise,

a

value

of

-1

is

returned.

The

ttylocked

subroutine

returns

a

value

of

0

if

no

process

has

a

lock

on

device.

Otherwise,

a

value

of

-1

is

returned.

Examples

1.

To

create

a

lock

for

/dev/tty0,

use

the

following

statement:

rc

=

ttylock("tty0");

2.

To

lock

/dev/tty0

device

and

wait

for

lock

to

be

cleared

if

it

exists,

use

the

following

statements:

if

(ttylock("tty0"))

ttywait("tty0");

rc

=

ttylock("tty0");

3.

To

remove

the

lock

file

for

device

/dev/tty0

created

by

a

previous

call

to

the

ttylock

subroutine,

use

the

following

statement:

ttyunlock("tty0");

4.

To

check

for

a

lock

on

/dev/tty0,

use

the

following

statement:

rc

=

ttylocked("tty0");

Related

Information

The

/etc/locks

directory.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

ttyname

or

isatty

Subroutine

Purpose

Gets

the

name

of

a

terminal

or

determines

if

the

device

is

a

terminal.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

414

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

char

*ttyname(

FileDescriptor)

int

FileDescriptor;

int

isatty(FileDescriptor)

int

FileDescriptor;

Description

Attention:

Do

not

use

the

ttyname

subroutine

in

a

multithreaded

environment.

The

ttyname

subroutine

gets

the

path

name

of

a

terminal.

The

isatty

subroutine

determines

if

the

file

descriptor

specified

by

the

FileDescriptor

parameter

is

associated

with

a

terminal.

The

isatty

subroutine

does

not

necessarily

indicate

that

a

person

is

available

for

interaction,

since

nonterminal

devices

may

be

connected

to

the

communications

line.

Parameters

FileDescriptor

Specifies

an

open

file

descriptor.

Return

Values

The

ttyname

subroutine

returns

a

pointer

to

a

string

containing

the

null-terminated

path

name

of

the

terminal

device

associated

with

the

file

descriptor

specified

by

the

FileDescriptor

parameter.

A

null

pointer

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error

if

the

file

descriptor

does

not

describe

a

terminal

device

in

the

/dev

directory.

The

return

value

of

the

ttyname

subroutine

may

point

to

static

data

whose

content

is

overwritten

by

each

call.

If

the

specified

file

descriptor

is

associated

with

a

terminal,

the

isatty

subroutine

returns

a

value

of

1.

If

the

file

descriptor

is

not

associated

with

a

terminal,

a

value

of

0

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

ttyname

and

isatty

subroutines

are

unsuccessful

if

one

of

the

following

is

true:

EBADF

The

FileDescriptor

parameter

does

not

specify

a

valid

file

descriptor.

ENOTTY

The

FileDescriptor

parameter

does

not

specify

a

terminal

device.

Files

/dev/*

Terminal

device

special

files.

Related

Information

The

ttyslot

(“ttyslot

Subroutine”

on

page

416)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

415

ttyslot

Subroutine

Purpose

Finds

the

slot

in

the

utmp

file

for

the

current

user.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

int

ttyslot

(void)

Description

The

ttyslot

subroutine

returns

the

index

of

the

current

user’s

entry

in

the

/etc/utmp

file.

The

ttyslot

subroutine

scans

the

/etc/utmp

file

for

the

name

of

the

terminal

associated

with

the

standard

input,

the

standard

output,

or

the

error

output

file

descriptors

(0,

1,

or

2).

The

ttyslot

subroutine

returns

-1

if

an

error

is

encountered

while

searching

for

the

terminal

name,

or

if

none

of

the

first

three

file

descriptors

(0,

1,

and

2)

is

associated

with

a

terminal

device.

Files

/etc/inittab

The

path

to

the

inittab

file,

which

controls

the

initialization

process.

/etc/utmp

The

path

to

the

utmp

file,

which

contains

a

record

of

users

logged

in

to

the

system.

Related

Information

The

getutent

subroutine,

ttyname

or

isatty

(“ttyname

or

isatty

Subroutine”

on

page

414)

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

ulimit

Subroutine

Purpose

Sets

and

gets

user

limits.

Library

Standard

C

Library

(libc.a)

Syntax

The

syntax

for

the

ulimit

subroutine

when

the

Command

parameter

specifies

a

value

of

GET_FSIZE

or

SET_FSIZE

is:

#include

<ulimit.h>

long

int

ulimit

(

Command,

NewLimit)

int

Command;

off_t

NewLimit;

The

syntax

for

the

ulimit

subroutine

when

the

Command

parameter

specifies

a

value

of

GET_DATALIM,

SET_DATALIM,

GET_STACKLIM,

SET_STACKLIM,

GET_REALDIR,

or

SET_REALDIR

is:

416

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

#include

<ulimit.h>

long

int

ulimit

(Command,

NewLimit)

int

Command;

unsigned

long

NewLimit;

Description

The

ulimit

subroutine

controls

process

limits.

Even

with

remote

files,

the

ulimit

subroutine

values

of

the

process

on

the

client

node

are

used.

Note:

Raising

the

data

ulimit

does

not

necessarily

raise

the

program

break

value.

If

the

proper

memory

segments

are

not

initialized

at

program

load

time,

raising

your

memory

limit

will

not

allow

access

to

this

memory.

Also,

without

these

memory

segments

initialized,

the

value

returned

after

such

a

change

may

not

be

the

proper

break

value.

If

your

data

limit

is

RLIM_INFINITY,

this

value

will

never

advance

past

the

segment

size,

even

if

that

data

is

available.

Use

the

-bmaxdata

flag

of

the

ld

command

to

set

up

these

segments

at

load

time.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

417

Parameters

Command

Specifies

the

form

of

control.

The

following

Command

parameter

values

require

that

the

NewLimit

parameter

be

declared

as

an

off_t

structure:

GET_FSIZE

(1)

Returns

the

process

file

size

limit.

The

limit

is

in

units

of

UBSIZE

blocks

(see

the

sys/param.h

file)

and

is

inherited

by

child

processes.

Files

of

any

size

can

be

read.

The

process

file

size

limit

is

returned

in

the

off_t

structure

specified

by

the

NewLimit

parameter.

SET_FSIZE

(2)

Sets

the

process

file

size

limit

to

the

value

in

the

off_t

structure

specified

by

the

NewLimit

parameter.

Any

process

can

decrease

this

limit,

but

only

a

process

with

root

user

authority

can

increase

the

limit.

The

new

file

size

limit

is

returned.

The

following

Command

parameter

values

require

that

the

NewLimit

parameter

be

declared

as

an

integer:

GET_DATALIM

(3)

Returns

the

maximum

possible

break

value

(as

described

in

the

brk

or

sbrk

subroutine).

SET_DATALIM

(1004)

Sets

the

maximum

possible

break

value

(described

in

the

brk

and

sbrk

subroutines).

Returns

the

new

maximum

break

value,

which

is

the

NewLimit

parameter

rounded

up

to

the

nearest

page

boundary.

GET_STACKLIM

(1005)

Returns

the

lowest

valid

stack

address.

Note:

Stacks

grow

from

high

addresses

to

low

addresses.

SET_STACKLIM

(1006)

Sets

the

lowest

valid

stack

address.

Returns

the

new

minimum

valid

stack

address,

which

is

the

NewLimit

parameter

rounded

down

to

the

nearest

page

boundary.

GET_REALDIR

(1007)

Returns

the

current

value

of

the

real

directory

read

flag.

If

this

flag

is

a

value

of

0,

a

read

system

call

(or

readx

with

Extension

parameter

value

of

0)

against

a

directory

returns

fixed-format

entries

compatible

with

the

System

V

UNIX

operating

system.

Otherwise,

a

read

system

call(or

readx

with

Extension

parameter

value

of

0)

against

a

directory

returns

the

underlying

physical

format.

SET_REALDIR

(1008)

Sets

the

value

of

the

real

directory

read

flag.

If

the

NewLimit

parameter

is

a

value

of

0,

this

flag

is

cleared;

otherwise,

it

is

set.

The

old

value

of

the

real

directory

read

flag

is

returned.

NewLimit

Specifies

the

new

limit.

The

value

and

data

type

or

structure

of

the

NewLimit

parameter

depends

on

the

Command

parameter

value

that

is

used.

Examples

To

increase

the

size

of

the

stack

by

4096

bytes

(use

4096

or

PAGESIZE),

and

set

the

rc

to

the

new

lowest

valid

stack

address,

enter:

rc

=

ulimit(SET_STACKLIM,

ulimit(GET_STACKLIM,

0)

-

4096);

Return

Values

Upon

successful

completion,

the

value

of

the

requested

limit

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

418

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

All

return

values

are

permissible

if

the

ulimit

subroutine

is

successful.

To

check

for

error

situations,

an

application

should

set

the

errno

global

variable

to

0

before

calling

the

ulimit

subroutine.

If

the

ulimit

subroutine

returns

a

value

of

-1,

the

application

should

check

the

errno

global

variable

to

verify

that

it

is

nonzero.

Error

Codes

The

ulimit

subroutine

is

unsuccessful

and

the

limit

remains

unchanged

if

one

of

the

following

is

true:

EPERM

A

process

without

root

user

authority

attempts

to

increase

the

file

size

limit.

EINVAL

The

Command

parameter

is

a

value

other

than

GET_FSIZE,

SET_FSIZE,

GET_DATALIM,

SET_DATALIM,

GET_STACKLIM,

SET_STACKLIM,

GET_REALDIR,

or

SET_REALDIR.

Related

Information

The

brk

subroutine,

sbrk

subroutine,

getrlimit

or

setrlimit

subroutine,

pathconf

subroutine,

read

(“read,

readx,

readv,

readvx,

or

pread

Subroutine”

on

page

16)

subroutines,

vlimit

subroutine,

write

(“write,

writex,

writev,

writevx

or

pwrite

Subroutines”

on

page

507)

subroutine.

umask

Subroutine

Purpose

Sets

and

gets

the

value

of

the

file

creation

mask.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/stat.h>

mode_t

umask

(

CreationMask)

mode_t

CreationMask;

Description

The

umask

subroutine

sets

the

file-mode

creation

mask

of

the

process

to

the

value

of

the

CreationMask

parameter

and

returns

the

previous

value

of

the

mask.

Whenever

a

file

is

created

(by

the

open,

mkdir,

or

mknod

subroutine),

all

file

permission

bits

set

in

the

file

mode

creation

mask

are

cleared

in

the

mode

of

the

created

file.

This

clearing

allows

users

to

restrict

the

default

access

to

their

files.

The

mask

is

inherited

by

child

processes.

Parameters

CreationMask

Specifies

the

value

of

the

file

mode

creation

mask.

The

CreationMask

parameter

is

constructed

by

logically

ORing

file

permission

bits

defined

in

the

sys/mode.h

file.

Nine

bits

of

the

CreationMask

parameter

are

significant.

Return

Values

If

successful,

the

file

permission

bits

returned

by

the

umask

subroutine

are

the

previous

value

of

the

file-mode

creation

mask.

The

CreationMask

parameter

can

be

set

to

this

value

in

subsequent

calls

to

the

umask

subroutine,

returning

the

mask

to

its

initial

state.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

419

Related

Information

The

chmod

subroutine,

mkdir

subroutine,

mkfifo

subroutine,

mknod

subroutine,

openx,

open,

or

creat

subroutine,

stat

(“statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine”

on

page

277)

subroutine.

The

sh

command,

ksh

command.

The

sys/mode.h

file.

Shells

Overview

in

AIX

5L

Version

5.2

System

User’s

Guide:

Operating

System

and

Devices.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

umount

or

uvmount

Subroutine

Purpose

Removes

a

virtual

file

system

from

the

file

tree.

Library

Standard

C

Library

(libc.a)

Syntax

int

umount

(

Device)

char

*Device;

#include

<sys/vmount.h>

int

uvmount

(

VirtualFileSystemID,

Flag)

int

VirtualFileSystemID;

int

Flag;

Description

The

umount

and

uvmount

subroutines

remove

a

virtual

file

system

(VFS)

from

the

file

tree.

The

umount

subroutine

unmounts

only

file

systems

mounted

from

a

block

device

(a

special

file

identified

by

its

path

to

the

block

device).

In

addition

to

local

devices,

the

uvmount

subroutine

unmounts

local

or

remote

directories,

identified

by

the

VirtualFileSystemID

parameter.

Only

a

calling

process

with

root

user

authority

or

in

the

system

group

and

having

write

access

to

the

mount

point

can

unmount

a

device,

file

and

directory

mount.

Parameters

Device

The

path

name

of

the

block

device

to

be

unmounted

for

the

umount

subroutine.

VirtualFileSystemID

The

unique

identifier

of

the

VFS

to

be

unmounted

for

the

uvmount

subroutine.

This

value

is

returned

when

a

VFS

is

created

by

the

vmount

subroutine

and

may

subsequently

be

obtained

by

the

mntctl

subroutine.

The

VirtualFileSystemID

is

also

reported

in

the

stat

subroutine

st_vfs

field.

420

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Flag

Specifies

special

action

for

the

uvmount

subroutine.

Currently

only

one

value

is

defined:

UVMNT_FORCE

Force

the

unmount.

This

flag

is

ignored

for

device

mounts.

Return

Values

Upon

successful

completion

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

uvmount

subroutine

fails

if

one

of

the

following

is

true:

EPERM

The

calling

process

does

not

have

write

permission

to

the

root

of

the

VFS,

the

mounted

object

is

a

device

or

remote,

and

the

calling

process

does

not

have

root

user

authority.

EINVAL

No

VFS

with

the

specified

VirtualFileSystemID

parameter

exists.

EBUSY

A

device

that

is

still

in

use

is

being

unmounted.

The

umount

subroutine

fails

if

one

of

the

following

is

true:

EPERM

The

calling

process

does

not

have

root

user

authority.

ENOENT

The

Device

parameter

does

not

exist.

ENOBLK

The

Device

parameter

is

not

a

block

device.

EINVAL

The

Device

parameter

is

not

mounted.

EINVAL

The

Device

parameter

is

not

local.

EBUSY

A

process

is

holding

a

reference

to

a

file

located

on

the

file

system.

The

umount

subroutine

can

be

unsuccessful

for

other

reasons.

For

a

list

of

additional

errors,

see

″Base

Operating

System

Error

Codes

For

Services

That

Require

Path-Name

Resolution″.

The

umount

subroutine

can

be

unsuccessful

for

other

reasons.

For

a

list

of

additional

errors,

see

Appendix

A,

″Base

Operating

System

Error

Codes

for

Services

That

Require

Path-Name

Resolution.″

Related

Information

The

mount

(“vmount

or

mount

Subroutine”

on

page

436)

subroutine.

The

mount

command,

umount

command.

Mounting

Overview

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

uname

or

unamex

Subroutine

Purpose

Gets

the

name

of

the

current

operating

system.

Library

Standard

C

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

421

Syntax

#include

<sys/utsname.h>

int

uname

(

Name)

struct

utsname

*Name;

int

unamex

(

Name)

struct

xutsname

*Name;

Description

The

uname

subroutine

stores

information

identifying

the

current

system

in

the

structure

pointed

to

by

the

Name

parameter.

The

uname

subroutine

uses

the

utsname

structure,

which

is

defined

in

the

sys/utsname.h

file,

and

contains

the

following

members:

char

sysname[SYS_NMLN];

char

nodename[SYS_NMLN];

char

release[SYS_NMLN];

char

version[SYS_NMLN];

char

machine[SYS_NMLN];

The

uname

subroutine

returns

a

null-terminated

character

string

naming

the

current

system

in

the

sysname

character

array.

The

nodename

array

contains

the

name

that

the

system

is

known

by

on

a

communications

network.

The

release

and

version

arrays

further

identify

the

system.

The

machine

array

identifies

the

system

unit

hardware

being

used.

The

utsname.machine

field

is

not

unique

if

the

last

two

characters

in

the

string

are

4C.

The

character

string

returned

by

the

uname

-Mu

command

is

unique

for

all

systems

and

the

character

string

returned

by

the

uname

-MuL

command

is

unique

for

all

partitions

is

all

systems.

The

unamex

subroutine

uses

the

xutsname

structure,

which

is

defined

in

the

sys/utsname.h

file,

and

contains

the

following

members:

unsigned

long

nid;

long

reserved[3];

The

xutsname.nid

field

is

the

binary

form

of

the

utsname.machine

field.

The

xutsname.nid

field

is

not

unique

if

the

last

two

nibbles

are

0x4C.

The

character

string

returned

by

the

uname

-Mu

command

is

unique

for

all

systems

and

the

character

string

returned

by

the

uname

-MuL

command

is

unique

for

all

partitions

in

all

systems.

For

local

area

networks

in

which

a

binary

node

name

is

appropriate,

the

xutsname.nid

field

contains

such

a

name.

Release

and

version

variable

numbers

returned

by

the

uname

and

unamex

subroutines

may

change

when

new

BOS

software

levels

are

installed.

This

change

affects

applications

using

these

values

to

access

licensed

programs.

Machine

variable

changes

are

due

to

hardware

fixes

or

upgrades.

Contact

the

appropriate

support

organization

if

your

application

is

affected.

Parameters

Name

A

pointer

to

the

utsname

or

xutsname

structure.

Return

Values

Upon

successful

completion,

the

uname

or

unamex

subroutine

returns

a

nonnegative

value.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

422

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

The

uname

and

unamex

subroutines

is

unsuccessful

if

the

following

is

true:

EFAULT

The

Name

parameter

points

outside

of

the

process

address

space.

Related

Information

The

uname

command.

ungetc

or

ungetwc

Subroutine

Purpose

Pushes

a

character

back

into

the

input

stream.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdio.h>

int

ungetc

(

Character,

Stream)

int

Character;

FILE

*Stream;

wint_t

ungetwc

(Character,

Stream)

wint_t

Character;

FILE

*Stream;

Description

The

ungetc

and

ungetwc

subroutines

insert

the

character

specified

by

the

Character

parameter

(converted

to

an

unsigned

character

in

the

case

of

the

ungetc

subroutine)

into

the

buffer

associated

with

the

input

stream

specified

by

the

Stream

parameter.

This

causes

the

next

call

to

the

getc

or

getwc

subroutine

to

return

the

Character

value.

A

successful

intervening

call

(with

the

stream

specified

by

the

Stream

parameter)

to

a

file-positioning

subroutine

(fseek,

fsetpos,

or

rewind)

discards

any

inserted

characters

for

the

stream.

The

ungetc

and

ungetwc

subroutines

return

the

Character

value,

and

leaves

the

file

(in

its

externally

stored

form)

specified

by

the

Stream

parameter

unchanged.

You

can

always

push

one

character

back

onto

a

stream,

provided

that

something

has

been

read

from

the

stream

or

the

setbuf

subroutine

has

been

called.

If

the

ungetc

or

ungetwc

subroutine

is

called

too

many

times

on

the

same

stream

without

an

intervening

read

or

file-positioning

operation,

the

operation

may

not

be

successful.

The

fseek

subroutine

erases

all

memory

of

inserted

characters.

The

ungetc

and

ungetwc

subroutines

return

a

value

of

EOF

or

WEOF

if

a

character

cannot

be

inserted.

A

successful

call

to

the

ungetc

or

ungetwc

subroutine

clears

the

end-of-file

indicator

for

the

stream

specified

by

the

Stream

parameter.

The

value

of

the

file-position

indicator

after

all

inserted

characters

are

read

or

discarded

is

the

same

as

before

the

characters

were

inserted.

The

value

of

the

file-position

indicator

is

decreased

after

each

successful

call

to

the

ungetc

or

ungetwc

subroutine.

If

its

value

was

0

before

the

call,

its

value

is

indeterminate

after

the

call.

Parameters

Character

Specifies

a

character.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

423

Stream

Specifies

the

input

stream.

Return

Values

The

ungetc

and

ungetwc

subroutines

return

the

inserted

character

if

successful;

otherwise,

EOF

or

WEOF

is

returned,

respectively.

Related

Information

Other

wide

character

I/O

subroutines:

fgetwc

subroutine,

fgetws

subroutine,

fputwc

subroutine,

fputws

subroutine,

getwc

subroutine,

getwchar

subroutine,

getws

subroutine,

putwc

subroutine,

putwchar

subroutine,

putws

subroutine.

Related

standard

I/O

subroutines:

fdopen

subroutine,

fgets

subroutine,

fopen

subroutine,

fprintf

subroutine,

fputc

subroutine,

fputs

subroutine,

fread

subroutine,

freopen

subroutine,

fwrite

subroutine,

gets

subroutine,

printf

subroutine,

putc

subroutine,

putchar

subroutine,

puts

subroutine,

putw

subroutine,

sprintf

subroutine.

Subroutines,

Example

Programs,

and

Libraries,

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Multibyte

Code

and

Wide

Character

Code

Conversion

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

unlink

Subroutine

Purpose

Removes

a

directory

entry.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

int

unlink

(

Path)

const

char

*Path;

Description

The

unlink

subroutine

removes

the

directory

entry

specified

by

the

Path

parameter

and

decreases

the

link

count

of

the

file

referenced

by

the

link.

If

Network

File

System

(NFS)

is

installed

on

your

system,

this

path

can

cross

into

another

node.

Attention:

Removing

a

link

to

a

directory

requires

root

user

authority.

Unlinking

of

directories

is

strongly

discouraged

since

erroneous

directory

structures

can

result.

The

rmdir

subroutine

should

be

used

to

remove

empty

directories.

When

all

links

to

a

file

are

removed

and

no

process

has

the

file

open,

all

resources

associated

with

the

file

are

reclaimed,

and

the

file

is

no

longer

accessible.

If

one

or

more

processes

have

the

file

open

when

the

last

link

is

removed,

the

directory

entry

disappears.

However,

the

removal

of

the

file

contents

is

postponed

until

all

references

to

the

file

are

closed.

424

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

If

the

parent

directory

of

Path

has

the

sticky

attribute

(described

in

the

mode.h

file),

the

calling

process

must

have

root

user

authority

or

an

effective

user

ID

equal

to

the

owner

ID

of

Path

or

the

owner

ID

of

the

parent

directory

of

Path.

The

st_ctime

and

st_mtime

fields

of

the

parent

directory

are

marked

for

update

if

the

unlink

subroutine

is

successful.

In

addition,

if

the

file’s

link

count

is

not

0,

the

st_ctime

field

of

the

file

will

be

marked

for

update.

Applications

should

use

the

rmdir

subroutine

to

remove

a

directory.

If

the

Path

parameter

names

a

symbolic

link,

the

link

itself

is

removed.

Parameters

Path

Specifies

the

directory

entry

to

be

removed.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned,

the

errno

global

variable

is

set

to

indicate

the

error,

and

the

specified

file

is

not

changed.

Error

Codes

The

unlink

subroutine

fails

and

the

named

file

is

not

unlinked

if

one

of

the

following

is

true:

ENOENT

The

named

file

does

not

exist.

EACCES

Write

permission

is

denied

on

the

directory

containing

the

link

to

be

removed.

EBUSY

The

entry

to

be

unlinked

is

the

mount

point

for

a

mounted

filesystem,

or

the

file

named

by

Path

is

a

named

STREAM.

EPERM

The

file

specified

by

the

Path

parameter

is

a

directory,

and

the

calling

process

does

not

have

root

user

authority.

EPERM

is

also

returned

if

the

file

named

by

the

Path

parameter

is

a

directory

in

a

JFS2

file

system.

Note

that

JFS

allows

you

to

unlink

a

directory.

EROFS

The

entry

to

be

unlinked

is

part

of

a

read-only

file

system.

The

unlink

subroutine

can

be

unsuccessful

for

other

reasons.

For

a

list

of

additional

errors,

see

Appendix

A,

″Base

Operating

System

Error

Codes

for

Service

That

Require

Path-Name

Resolution″

If

NFS

is

installed

on

the

system,

the

unlink

subroutine

can

also

fail

if

the

following

is

true:

ETIMEDOUT

The

connection

timed

out.

Related

Information

The

close

subroutine,

link

subroutine,

open

subroutine,

remove

(“remove

Subroutine”

on

page

40)

subroutine,

rmdir

(“rmdir

Subroutine”

on

page

48)

subroutine.

The

rm

command.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

425

unload

Subroutine

Purpose

Unloads

a

module.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/ldr.h>

int

unload(

FunctionPointer)

int

(*FunctionPointer)(

);

Description

The

unload

subroutine

unloads

the

specified

module

and

its

dependents.

The

value

returned

by

the

load

subroutine

is

passed

to

the

unload

subroutine

as

FunctionPointer.

The

unload

subroutine

calls

termination

routines

(fini

routines)

for

the

specified

module

and

any

of

its

dependents

that

are

not

being

used

by

any

other

module.

The

unload

subroutine

frees

the

storage

used

by

the

specified

module

only

if

the

module

is

no

longer

in

use.

A

module

is

in

use

as

long

as

any

other

module

that

is

in

use

imports

symbols

from

it.

When

a

module

is

unloaded,

any

deferred

resolution

symbols

that

were

bound

to

the

module

remain

bound.

These

bindings

create

references

to

the

module

that

cannot

be

undone,

even

with

the

unload

subroutine.

(This

paragraph

only

applies

to

AIX

4.3.1

and

previous

releases.)

When

a

process

is

executing

under

ptrace

control,

portions

of

the

process’s

address

space

are

recopied

after

the

unload

processing

completes.

For

a

32-bit

process,

the

main

program

text

(loaded

in

segment

1)

and

shared

library

modules

(loaded

in

segment

13)

are

recopied.

Any

breakpoints

or

other

modifications

to

these

segments

must

be

reinserted

after

the

unload

call.

For

a

64-bit

process,

shared

library

modules

are

recopied

after

an

unload

call.

The

debugger

will

be

notified

by

setting

the

W_SLWTED

flag

in

the

status

returned

by

wait,

so

that

it

can

reinsert

breakpoints.

(This

paragraph

only

applies

to

AIX

4.3.2

and

later

releases.)

When

a

process

executing

under

ptrace

control

calls

unload,

the

debugger

is

notified

by

setting

the

W_SLWTED

flag

in

the

status

returned

by

wait.

If

a

module

loaded

in

the

shared

library

is

no

longer

in

use

by

the

process,

the

module

is

deleted

from

the

process’s

copy

of

the

shared

library

segment

by

freeing

the

pages

containing

the

module.

Parameters

FunctionPointer

Specifies

the

name

of

the

function

returned

by

the

load

subroutine.

Return

Values

Upon

successful

completion,

the

unload

subroutine

returns

a

value

of

0,

even

if

the

module

couldn’t

be

unloaded

because

it

is

still

in

use.

Error

Codes

If

the

unload

subroutine

fails,

a

value

of

-1

is

returned,

the

program

is

not

unloaded,

and

errno

is

set

to

indicate

the

error.

errno

may

be

set

to

one

of

the

following:

426

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

EINVAL

The

FunctionPointer

parameter

does

not

correspond

to

a

program

loaded

by

the

load

subroutine.

Related

Information

The

load

subroutine,

loadbind

subroutine,

loadquery

subroutine,

dlclose

subroutine.

The

ld

command.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

unlockpt

Subroutine

Purpose

Unlocks

a

pseudo-terminal

device.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

int

unlockpt

(

FileDescriptor)

int

FileDescriptor;

Description

The

unlockpt

subroutine

unlocks

the

slave

peudo-terminal

device

associated

with

the

master

peudo-terminal

device

defined

by

the

FileDescriptor

parameter.

This

subroutine

has

no

effect

if

the

environment

variable

XPG_SUS_ENV

is

not

set

equal

to

the

string

″ON″,

or

if

the

BSD

PTY

driver

is

used.

Parameters

FileDescriptor

Specifies

the

file

descriptor

of

the

master

pseudo-terminal

device.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Related

Information

The

grantpt

subroutine.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

usrinfo

Subroutine

Purpose

Gets

and

sets

user

information

about

the

owner

of

the

current

process.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

427

Library

Standard

C

Library

(libc.a)

Syntax

#include

<uinfo.h>

int

usrinfo

(

Command,

Buffer,

Count)

int

Command;

char

*Buffer;

int

Count;

Description

The

usrinfo

subroutine

gets

and

sets

information

about

the

owner

of

the

current

process.

The

information

is

a

sequence

of

null-terminated

name=value

strings.

The

last

string

in

the

sequence

is

terminated

by

two

successive

null

characters.

A

child

process

inherits

the

user

information

of

the

parent

process.

Parameters

Command

Specifies

one

of

the

following

constants:

GETUINFO

Copies

user

information,

up

to

the

number

of

bytes

specified

by

the

Count

parameter,

into

the

buffer

pointed

to

by

the

Buffer

parameter.

SETUINFO

Sets

the

user

information

for

the

process

to

the

number

of

bytes

specified

by

the

Count

parameter

in

the

buffer

pointed

to

by

the

Buffer

parameter.

The

calling

process

must

have

root

user

authority

to

set

the

user

information.

The

minimum

user

information

consists

of

four

strings

typically

set

by

the

login

program:

NAME=UserName

LOGIN=LoginName

LOGNAME=LoginName

TTY=TTYName

If

the

process

has

no

terminal,

the

TTYName

parameter

should

be

null.

Buffer

Specifies

a

pointer

to

a

user

buffer.

This

buffer

is

usually

UINFOSIZ

bytes

long.

Count

Specifies

the

number

of

bytes

of

user

information

copied

from

or

to

the

user

buffer.

Return

Values

If

successful,

the

usrinfo

subroutine

returns

a

non-negative

integer

giving

the

number

of

bytes

transferred.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

usrinfo

subroutine

fails

if

one

of

the

following

is

true:

EPERM

The

Command

parameter

is

set

to

SETUINFO,

and

the

calling

process

does

not

have

root

user

authority.

EINVAL

The

Command

parameter

is

not

set

to

SETUINFO

or

GETUINFO.

EINVAL

The

Command

parameter

is

set

to

SETUINFO,

and

the

Count

parameter

is

larger

than

UINFOSIZ.

EFAULT

The

Buffer

parameter

points

outside

of

the

address

space

of

the

process.

428

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

getuinfo

subroutine,

setpenv

(“setpenv

Subroutine”

on

page

142)

subroutine.

The

login

command.

List

of

Security

and

Auditing

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

utimes

or

utime

Subroutine

Purpose

Sets

file-access

and

modification

times.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/time.h>

int

utimes

(

Path,

Times)

char

*Path;

struct

timeval

Times[2];

#include

<utime.h>

int

utime

(

Path,

Times)

const

char

*Path;

const

struct

utimbuf

*Times;

Description

The

utimes

subroutine

sets

the

access

and

modification

times

of

the

file

pointed

to

by

the

Path

parameter

to

the

value

of

the

Times

parameter.

This

subroutine

allows

time

specifications

accurate

to

the

second.

The

utime

subroutine

also

sets

file

access

and

modification

times.

Each

time

is

contained

in

a

single

integer

and

is

accurate

only

to

the

nearest

second.

If

successful,

the

utime

subroutine

marks

the

time

of

the

last

file-status

change

(st_ctime)

to

be

updated.

Microsecond

time

stamps

are

not

implemented,

even

though

the

utimes

subroutine

provides

a

way

to

specify

them.

Parameters

Path

Points

to

the

file.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

429

Times

Specifies

the

date

and

time

of

last

access

and

of

last

modification.

For

the

utimes

subroutine,

this

is

an

array

of

timeval

structures,

as

defined

in

the

sys/time.h

file.

The

first

array

element

represents

the

date

and

time

of

last

access,

and

the

second

element

represents

the

date

and

time

of

last

modification.

The

times

in

the

timeval

structure

are

measured

in

seconds

and

microseconds

since

00:00:00

Greenwich

Mean

Time

(GMT),

1

January

1970,

rounded

to

the

nearest

second.

For

the

utime

subroutine,

this

parameter

is

a

pointer

to

a

utimbuf

structure,

as

defined

in

the

utime.h

file.

The

first

structure

member

represents

the

date

and

time

of

last

access,

and

the

second

member

represents

the

date

and

time

of

last

modification.

The

times

in

the

utimbuf

structure

are

measured

in

seconds

since

00:00:00

Greenwich

Mean

Time

(GMT),

1

January

1970.

If

the

Times

parameter

has

a

null

value,

the

access

and

modification

times

of

the

file

are

set

to

the

current

time.

If

the

file

is

remote,

the

current

time

at

the

remote

node,

rather

than

the

local

node,

is

used.

To

use

the

call

this

way,

the

effective

user

ID

of

the

process

must

be

the

same

as

the

owner

of

the

file

or

must

have

root

authority,

or

the

process

must

have

write

permission

to

the

file.

If

the

Times

parameter

does

not

have

a

null

value,

the

access

and

modification

times

are

set

to

the

values

contained

in

the

designated

structure,

regardless

of

whether

those

times

are

the

same

as

the

current

time.

Only

the

owner

of

the

file

or

a

user

with

root

authority

can

use

the

call

this

way.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned,

the

errno

global

variable

is

set

to

indicate

the

error,

and

the

file

times

are

not

changed.

Error

Codes

The

utimes

or

utime

subroutine

fails

if

one

of

the

following

is

true:

EPERM

The

Times

parameter

is

not

null

and

the

calling

process

neither

owns

the

file

nor

has

root

user

authority.

EACCES

The

Times

parameter

is

null,

effective

user

ID

is

neither

the

owner

of

the

file

nor

has

root

authority,

or

write

access

is

denied.

EROFS

The

file

system

that

contains

the

file

is

mounted

read-only.

The

utimes

or

utime

subroutine

can

be

unsuccessful

for

other

reasons.

For

a

list

of

additional

errors,

see

″Base

Operating

System

Error

Codes

For

Services

That

Require

Path-Name

Resolution.″

The

utimes

or

utime

subroutine

can

be

unsuccessful

for

other

reasons.

For

a

list

of

additional

errors,

see

Appendix

A,

″Base

Operating

System

Error

Codes

For

Services

That

Require

Path-Name

Resolution.″

Related

Information

The

stat

(“statx,

stat,

lstat,

fstatx,

fstat,

fullstat,

ffullstat,

stat64,

lstat64,

or

fstat64

Subroutine”

on

page

277)

subroutine.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

varargs

Macros

Purpose

Handles

a

variable-length

parameter

list.

Library

Standard

C

Library

(libc.a)

430

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<stdarg.h>

type

va_arg

(

Argp,

Type)

va_list

Argp;

void

va_start

(Argp,

ParmN)

va_list

Argp;

void

va_end

(Argp)

va_list

Argp;

OR

#include

<varargs.h>

va_alist

Argp;

va_dcl

void

va_start

(Argp)

va_list

Argp;

type

va_arg

(Argp,

Type)

va_list

Argp;

void

va_end

(Argp)

va_list

Argp;

Description

The

varargs

set

of

macros

allows

you

to

write

portable

subroutines

that

accept

a

variable

number

of

parameters.

Subroutines

that

have

variable-length

parameter

lists

(such

as

the

printf

subroutine),

but

that

do

not

use

the

varargs

macros,

are

inherently

nonportable

because

different

systems

use

different

parameter-passing

conventions.

Note:

Do

not

include

both

<stdarg.h>

and

<varargs.h>.

Use

of

<varargs.h>

is

not

recommended.

It

is

supplied

for

backwards

compatibility.

For

<stdarg.h>

va_start

Initializes

the

Argp

parameter

to

point

to

the

beginning

of

the

list.

The

ParmN

parameter

identifies

the

rightmost

parameter

in

the

function

definition.

For

compatibility

with

previous

programs,

it

defaults

to

the

address

of

the

first

parameter

on

the

parameter

list.

Acceptable

parameters

include:

integer,

double,

and

pointer.

The

va_start

macro

is

started

before

any

access

to

the

unnamed

arguments.

For

<varargs.h>

va_alist

A

variable

used

as

the

parameter

list

in

the

function

header.

va_argp

A

variable

that

the

varargs

macros

use

to

keep

track

of

the

current

location

in

the

parameter

list.

Do

not

modify

this

variable.

va_dcl

Declaration

for

va_alist.

No

semicolon

should

follow

va_dcl.

va_start

Initializes

the

Argp

parameter

to

point

to

the

beginning

of

the

list.

For

<stdarg.h>

and

<varargs.h>

va_list

Defines

the

type

of

the

variable

used

to

traverse

the

list.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

431

va_arg

Returns

the

next

parameter

in

the

list

pointed

to

by

the

Argp

parameter.

va_end

Cleans

up

at

the

end.

Your

subroutine

can

traverse,

or

scan,

the

parameter

list

more

than

once.

Start

each

traversal

with

a

call

to

the

va_start

macro

and

end

it

with

the

va_end

macro.

Note:

The

calling

routine

is

responsible

for

specifying

the

number

of

parameters

because

it

is

not

always

possible

to

determine

this

from

the

stack

frame.

For

example,

execl

is

passed

a

null

pointer

to

signal

the

end

of

the

list.

The

printf

subroutine

determines

the

number

of

parameters

from

its

Format

parameter.

Parameters

Argp

Specifies

a

variable

that

the

varargs

macros

use

to

keep

track

of

the

current

location

in

the

parameter

list.

Do

not

modify

this

variable.

Type

Specifies

the

type

to

which

the

expected

argument

will

be

converted

when

passed

as

an

argument.

In

C,

arguments

that

are

char

or

short

should

be

accessed

as

int;

unsigned

char

or

short

arguments

are

converted

to

unsigned

int,

and

float

arguments

are

converted

to

double.

Different

types

can

be

mixed,

but

it

is

up

to

the

routine

to

know

what

type

of

argument

is

expected,

because

it

cannot

be

determined

at

runtime.

ParmN

Specifies

a

parameter

that

is

the

identifier

of

the

rightmost

parameter

in

the

function

definition.

Examples

The

following

execl

system

call

implementations

are

examples

of

the

varargs

macros

usage.

1.

The

following

example

includes

<stdarg.h>:

#include

<stdarg.h>

#define

MAXargs

31

int

execl

(const

char

*path,

...)

{

va_list

Argp;

char

*array

[MAXargs];

int

argno=0;

va_start

(Argp,

path);

while

((array[argno++]

=

va_arg(Argp,

char*))

!=

(char*)0)

;

va_end(Argp);

return(execv(path,

array));

}

main()

{

execl("/usr/bin/echo",

"ArgV[0]",

"This",

"Is",

"A",

"Test",

"\0");

/*

ArguementV[0]

will

be

discarded

by

the

execv

in

main():

*/

/*

by

convention

ArgV[0]

should

be

a

copy

of

path

parameter

*/

}

2.

The

following

example

includes

<varargs.h>:

#include

<varargs.h>

#define

MAXargS

100

/*

**

execl

is

called

by

**

execl(file,

arg1,

arg2,

.

.

.

,

(char

*)

0);

*/

execl(va_alist)

va_dcl

{

va_list

ap;

char

*file;

char

*args[MAXargS];

int

argno

=

0;

432

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

va_start(ap);

file

=

va_arg(ap,

char

*);

while

((args[argno++]

=

va_arg(ap,

char

*))

!=

(char

*)

0)

;

/*

Empty

loop

body

*/

va_end(ap);

return

(execv(file,

args));

}

Related

Information

The

exec

subroutines.

The

printf

subroutine.

List

of

String

Manipulation

Services

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

vfscanf,

vscanf,

or

vsscanf

Subroutine

Purpose

Formats

input

of

an

argument

list.

Syntax

#include

<stdarg.h>

#include

<stdio.h>

int

vfscanf

(stream,

format,

arg)

File

*restrict

stream

const

char

format;

va_list

arg;

int

vscanf

(format,

arg)

const

char

format;

va_list

arg;

int

vsscanf

(format,

arg)

const

char

format;

va_list

arg;

Description

The

vscanf,

vfscanf,

and

vsscanf

subroutines

are

equivalent

to

the

scanf,

fscanf,

and

sscanf

subroutines,

respectively,

except

that

instead

of

being

called

with

a

variable

number

of

arguments,

they

are

called

with

an

argument

list

as

defined

in

the

<stdarg.h>

header

file.

These

subroutines

do

not

invoke

the

va_end

macro.

As

these

functions

invoke

the

va_arg

macro,

the

value

of

ap

after

the

return

is

unspecified.

Parameters

stream

format

arg

Return

Values

Upon

successful

completion,

these

functions

shall

return

the

number

of

successfully

matched

and

assigned

input

items;

this

number

can

be

zero

in

the

event

of

an

early

matching

failure.

If

the

input

ends

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

433

before

the

first

matching

failure

or

conversion,

EOF

shall

be

returned.

If

a

read

error

occurs,

the

error

indicator

for

the

stream

is

set,

EOF

shall

be

returned,

and

errno

shall

be

set

to

indicate

the

error.

Related

Information

The

“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109.

vfwscanf,

vswscanf,

or

vwscanf

Subroutine

Purpose

Wide-character

formatted

input

of

the

argument

list.

Syntax

#include

<stdarg.h>

#include

<stdio.h>

#include

<wchar.h>

int

vfwscanf

(stream,

format,

arg)

FILE

*restrict

stream;

const

wchar_t

format;

va_list

arg;

int

vswscanf

(ws,

format,

arg)

const

wchar_t

*restrict

ws;

const

wchar_t

format;

va_list

arg;

int

vwscanf

(format,

arg)

const

wchar_t

format;

va_list

arg;

Description

The

vfwscanf,

vswscanf,

and

vwscanf

subroutines

are

equivalent

to

the

fwscanf,

swscanf,

and

wscanf

subroutines,

respectively,

except

that

instead

of

being

called

with

a

variable

number

of

arguments,

they

are

called

with

an

argument

list

as

defined

in

the

<stdarg.h>

header

file.

These

subroutines

do

not

invoke

the

va_end

macro.

As

these

subroutines

invoke

the

va_arg

macro,

the

value

of

ap

after

the

return

is

unspecified.

Return

Values

Upon

successful

completion,

the

vfwscanf,

vswscanf,

and

vwscanf

subroutines

return

the

number

of

successfully

matched

and

assigned

input

items.

This

number

can

be

zero

in

the

event

of

an

early

matching

failure.

If

the

input

ends

before

the

first

matching

failure

or

conversion,

EOF

is

returned.

If

a

read

error

occurs,

the

error

indicator

for

the

stream

is

set,

EOF

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Related

Information

fwscanf,

wscanf,

swscanf

Subroutines

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

vfwprintf,

vwprintf

Subroutine

Purpose

Wide-character

formatted

output

of

a

stdarg

argument

list.

434

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

library

(libc.a)

Syntax

#include

<stdarg.h>

#include

<stdio.h>

#include

<wchar.h>

int

vwprintf

((const

wchar_t

*

format,

va_list

arg)

;

int

vfwprintf(FILE

*

stream,

const

wchar_t

*

format,

va_list

arg);

int

vswprintf

(wchar_t

*

s,

size_t

n,

const

wchar_t

*

format,

va_list

arg);

Description

The

vwprintf,

vfwprintf

and

vswprintf

functions

are

the

same

as

wprintf,

fwprintf

and

swprintf

respectively,

except

that

instead

of

being

called

with

a

variable

number

of

arguments,

they

are

called

with

an

argument

list

as

defined

by

stdarg.h.

These

functions

do

not

invoke

the

va_end

macro.

However,

as

these

functions

do

invoke

the

va_arg

macro,

the

value

of

ap

after

the

return

is

indeterminate.

Return

Values

Refer

to

fwprintf.

Error

Codes

Refer

to

fwprintf.

Related

Information

The

fwprintf

subroutine.

vmgetinfo

Subroutine

Purpose

Retrieves

Virtual

Memory

Manager

(VMM)

information.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/vminfo.h>

int

vmgetinfo(void

*out,

int

command,

int

arg)

Description

The

vmgetinfo

subroutine

returns

the

current

value

of

certain

VMM

parameters.

Parameters

arg

Additional

parameter

which

depends

on

the

command

parameter.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

435

command

Specifies

which

information

should

be

returned.

The

command

parameter

has

the

following

valid

value:

VMINFO

The

content

of

the

vminfo

structure

(described

in

sys/vminfo.h)

is

returned.

The

out

parameter

should

point

to

a

vminfo

structure

and

arg

should

be

the

size

of

this

structure.

The

smaller

of

the

arg

or

sizeof

(struct

vminfo)

parameters

will

be

copied.

VM_PAGE_INFO

The

size,

in

bytes,

of

the

page

backing

the

address

specified

in

the

addr

field

of

the

vm_page_info

structure

(described

in

sys/vminfo.h)

is

returned.

The

out

parameter

should

point

to

a

vm_page_info

structure

with

the

addr

field

set

to

the

desired

address

of

which

to

query

the

page

size.

The

arg

parameter

should

be

the

size

of

the

vm_page_info

structure.

IPC_LIMITS

The

content

of

the

ipc_limits

struct

(described

in

the

sys/vminfo.h

file)

is

returned.

The

out

parameter

should

point

to

an

ipc_limits

structure

and

arg

should

be

the

size

of

this

structure.

The

smaller

of

the

arg

or

sizeof

(struct

ipc_limits)

parameters

will

be

copied.

The

ipc_limits

struct

contains

the

inter-process

communication

(IPC)

limits

for

the

system.

out

Specifies

the

address

where

VMM

information

should

be

returned.

Return

Values

If

the

vmgetinfo

subroutine

is

successful,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

vmgetinfo

does

not

succeed

if

the

following

are

true:

EFAULT

The

copy

operation

to

the

buffer

was

not

successful.

ENOSYS

The

command

parameter

is

not

valid

(or

not

yet

implemented).

EINVAL

When

VM_PAGE_INFO

is

the

command,

the

addr

field

of

the

vm_page_info

structure

is

an

invalid

address.

vmount

or

mount

Subroutine

Purpose

Makes

a

file

system

available

for

use.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/types.h>

#include

<sys/vmount.h>

int

vmount

(

VMount,

Size)

struct

vmount

*VMount;

int

Size;

int

mount

(

Device,

Path,

Flags)

436

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

char

*Device;

char

*Path;

int

Flags;

Description

The

vmount

subroutine

mounts

a

file

system,

thereby

making

the

file

available

for

use.

The

vmount

subroutine

effectively

creates

what

is

known

as

a

virtual

file

system.

After

a

file

system

is

mounted,

references

to

the

path

name

that

is

to

be

mounted

over

refer

to

the

root

directory

on

the

mounted

file

system.

A

directory

can

only

be

mounted

over

a

directory,

and

a

file

can

only

be

mounted

over

a

file.

(The

file

or

directory

may

be

a

symbolic

link.)

Therefore,

the

vmount

subroutine

can

provide

the

following

types

of

mounts:

v

A

local

file

over

a

local

or

remote

file

v

A

local

directory

over

a

local

or

remote

directory

v

A

remote

file

over

a

local

or

remote

file

v

A

remote

directory

over

a

local

or

remote

directory.

A

mount

to

a

directory

or

a

file

can

be

issued

if

the

calling

process

has

root

user

authority

or

is

in

the

system

group

and

has

write

access

to

the

mount

point.

To

mount

a

block

device,

remote

file,

or

remote

directory,

the

calling

process

must

also

have

root

user

authority.

The

mount

subroutine

only

allows

mounts

of

a

block

device

over

a

local

directory

with

the

default

file

system

type.

The

mount

subroutine

searches

the

/etc/filesystems

file

to

find

a

corresponding

stanza

for

the

desired

file

system.

Note:

The

mount

subroutine

interface

is

provided

only

for

compatibility

with

previous

releases

of

the

operating

system.

The

use

of

the

mount

subroutine

is

strongly

discouraged

by

normal

application

programs.

If

the

directory

you

are

trying

to

mount

over

has

the

sticky

bit

set

to

on,

you

must

either

own

that

directory

or

be

the

root

user

for

the

mount

to

succeed.

This

restriction

applies

only

to

directory-over-directory

mounts.

Parameters

Device

A

path

name

identifying

the

block

device

(also

called

a

special

file)

that

contains

the

physical

file

system.

Path

A

path

name

identifying

the

directory

on

which

the

file

system

is

to

be

mounted.

Flags

Values

that

define

characteristics

of

the

object

to

be

mounted.

Currently

these

values

are

defined

in

the

/usr/include/sys/vmount.h

file:

MNT_READONLY

Indicates

that

the

object

to

be

mounted

is

read-only

and

that

write

access

is

not

allowed.

If

this

value

is

not

specified,

writing

is

permitted

according

to

individual

file

accessibility.

MNT_NOSUID

Indicates

that

setuid

and

setgid

programs

referenced

through

the

mount

should

not

be

executable.

If

this

value

is

not

specified,

setuid

and

setgid

programs

referenced

through

the

mount

may

be

executable.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

437

MNT_NODEV

Indicates

that

opens

of

device

special

files

referenced

through

the

mount

should

not

succeed.

If

this

value

is

not

specified,

opens

of

device

special

files

referenced

through

the

mount

may

succeed.

VMount

A

pointer

to

a

variable-length

vmount

structure.

This

structure

is

defined

in

the

sys/vmount.h

file.

The

following

fields

of

the

VMount

parameter

must

be

initialized

before

the

call

to

the

vmount

subroutine:

vmt_revision

The

revision

code

in

effect

when

the

program

that

created

this

virtual

file

system

was

compiled.

This

is

the

value

VMT_REVISION.

vmt_length

The

total

length

of

the

structure

with

all

its

data.

This

must

be

a

multiple

of

the

word

size

(4

bytes)

and

correspond

with

the

Size

parameter.

vmt_flags

Contains

the

general

mount

characteristics.

The

following

value

may

be

specified:

MNT_READONLY

A

read-only

virtual

file

system

is

to

be

created.

vmt_gfstype

The

type

of

the

generic

file

system

underlying

the

VMT_OBJECT.

Values

for

this

field

are

defined

in

the

sys/vmount.h

file

and

include:

MNT_JFS

Indicates

the

native

file

system.

MNT_NFS

Indicates

a

Network

File

System

client.

MNT_CDROM

Indicates

a

CD-ROM

file

system.

vmt_data

An

array

of

structures

that

describe

variable

length

data

associated

with

the

vmount

structure.

The

structure

consists

of

the

following

fields:

vmt_off

The

offset

of

the

data

from

the

beginning

of

the

vmount

structure.

vmt_size

The

size,

in

bytes,

of

the

data.

The

array

consists

of

the

following

fields:

vmt_data[VMT_OBJECT]

Specifies

he

name

of

the

device,

directory,

or

file

to

be

mounted.

vmt_data[VMT_STUB]

Specifies

the

name

of

the

device,

directory,

or

file

to

be

mounted

over.

vmt_data[VMT_HOST]

Specifies

the

short

(binary)

name

of

the

host

that

owns

the

mounted

object.

This

need

not

be

specified

if

VMT_OBJECT

is

local

(that

is,

it

has

the

same

vmt_gfstype

as

/

(root),

the

root

of

all

file

systems).

vmt_data[VMT_HOSTNAME]

Specifies

the

long

(character)

name

of

the

host

that

owns

the

mounted

object.

This

need

not

be

specified

if

VMT_OBJECT

is

local.

438

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

vmt_data[VMT_INFO]

Specifies

binary

information

to

be

passed

to

the

generic

file-system

implementation

that

supports

VMT_OBJECT.

The

interpretation

of

this

field

is

specific

to

the

gfs_type.

vmt_data[VMT_ARGS]

Specifies

a

character

string

representation

of

VMT_INFO.

On

return

from

the

vmount

subroutine,

the

following

additional

fields

of

the

VMount

parameter

are

initialized:

vmt_fsid

Specifies

the

two-word

file

system

identifier;

the

interpretation

of

this

identifier

depends

on

the

gfs_type.

vmt_vfsnumber

Specifies

the

unique

identifier

of

the

virtual

file

system.

Virtual

file

systems

do

not

survive

the

IPL;

neither

does

this

identifier.

vmt_time

Specifies

the

time

at

which

the

virtual

file

system

was

created.

Size

Specifies

the

size,

in

bytes,

of

the

supplied

data

area.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

Otherwise,

a

value

of

-1

is

returned,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

mount

and

vmount

subroutines

fail

and

the

virtual

file

system

is

not

created

if

any

of

the

following

is

true:

EACCES

The

calling

process

does

not

have

write

permission

on

the

stub

directory

(the

directory

to

be

mounted

over).

EBUSY

VMT_OBJECT

specifies

a

device

that

is

already

mounted

or

an

object

that

is

open

for

writing,

or

the

kernel’s

mount

table

is

full.

EFAULT

The

VMount

parameter

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

EFBIG

The

size

of

the

file

system

is

too

big.

EFORMAT

An

internal

inconsistency

has

been

detected

in

the

file

system.

EINVAL

The

contents

of

the

VMount

parameter

are

unintelligible

(for

example,

the

vmt_gfstype

is

unrecognizable,

or

the

file

system

implementation

does

not

understand

the

VMT_INFO

provided).

ENOSYS

The

file

system

type

requested

has

not

been

configured.

ENOTBLK

The

object

to

be

mounted

is

not

a

file,

directory,

or

device.

ENOTDIR

The

types

of

VMT_OBJECT

and

VMT_STUB

are

incompatible.

EPERM

VMT_OBJECT

specifies

a

block

device,

and

the

calling

process

does

not

have

root

user

authority.

EROFS

An

attempt

has

been

made

to

mount

a

file

system

for

read/write

when

the

file

system

cannot

support

writing.

The

mount

and

vmount

subroutines

can

also

fail

if

additional

errors

occur.

Related

Information

The

mntctl

subroutine,

umount

(“umount

or

uvmount

Subroutine”

on

page

420)

subroutine.

The

mount

command,

umount

command.

Files,

Directories,

and

File

Systems

for

Programmers

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

439

vsnprintf

Subroutine

Purpose

Print

formatted

output.

Library

Standard

library

(libc.a)

Syntax

#include

<stdarg.h>

#include

<stdio.h>

int

vsnprintf(char

*

s,

size_t

n,

const

char

*

format,

va_list

ap)

Description

Refer

to

vfprintf.

vwsprintf

Subroutine

Purpose

Writes

formatted

wide

characters.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wchar.h>

#include

<stdarg.h>

int

vwsprintf

(wcs,

Format,

arg)

wchar_t

*

wcs;

const

char

*

Format;

va_list

arg;

Description

The

vwsprintf

subroutine

writes

formatted

wide

characters.

It

is

structured

like

the

vsprintf

subroutine

with

a

few

differences.

One

difference

is

that

the

wcs

parameter

specifies

a

wide

character

array

into

which

the

generated

output

is

to

be

written,

rather

than

a

character

array.

The

second

difference

is

that

the

meaning

of

the

S

conversion

specifier

is

always

the

same

in

the

case

where

the

#

flag

is

specified.

If

copying

takes

place

between

objects

that

overlap,

the

behavior

is

undefined.

Parameters

wcs

Specifies

the

array

of

wide

characters

where

the

output

is

to

be

written.

Format

Specifies

a

multibyte

character

sequence

composed

of

zero

or

more

directives

(ordinary

multibyte

characters

and

conversion

specifiers).

The

new

formats

added

to

handle

the

wide

characters

are:

%C

Formats

a

single

wide

character.

%S

Formats

a

wide

character

string.

arg

Specifies

the

parameters

to

be

printed.

440

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

The

vwsprintf

subroutine

returns

the

number

of

wide

characters

(not

including

the

terminating

wide

character

null)

written

into

the

wide

character

array

and

specified

by

the

wcs

parameter.

Related

Information

The

vsprintf

subroutine.

The

printf

command.

National

Language

Support

Overview

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wait,

waitpid,

wait3,

or

wait364

Subroutine

Purpose

Waits

for

a

child

process

to

stop

or

terminate.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/wait.h>

pid_t

wait

(

StatusLocation)

int

*StatusLocation;

pid_t

wait

((void

*)

0)

#include

<sys/wait.h>

pid_t

waitpid

(

ProcessID,

StatusLocation,

Options)

int

*StatusLocation;

pid_t

ProcessID;

int

Options;

#include

<sys/time.h>

#include

<sys/resource.h>

#include

<sys/wait.h>

pid_t

wait3

(StatusLocation,

Options,

ResourceUsage)

int

*StatusLocation;

int

Options;

struct

rusage

*ResourceUsage;

pid_t

wait364

(StatusLocation,

Options,

ResourceUsage)

int

*StatusLocation;

int

Options;

struct

rusage64

*ResourceUsage;

Description

The

wait

subroutine

suspends

the

calling

thread

until

the

process

receives

a

signal

that

is

not

blocked

or

ignored,

or

until

any

one

of

the

calling

process’

child

processes

stops

or

terminates.

The

wait

subroutine

returns

without

waiting

if

the

child

process

that

has

not

been

waited

for

has

already

stopped

or

terminated

prior

to

the

call.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

441

Note:

The

effect

of

the

wait

subroutine

can

be

modified

by

the

setting

of

the

SIGCHLD

signal.

See

the

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine

for

details.

The

waitpid

subroutine

includes

a

ProcessID

parameter

that

allows

the

calling

thread

to

gather

status

from

a

specific

set

of

child

processes,

according

to

the

following

rules:

v

If

the

ProcessID

value

is

equal

to

a

value

of

-1,

status

is

requested

for

any

child

process.

In

this

respect,

the

waitpid

subroutine

is

equivalent

to

the

wait

subroutine.

v

A

ProcessID

value

that

is

greater

than

0

specifies

the

process

ID

of

a

single

child

process

for

which

status

is

requested.

v

If

the

ProcessID

parameter

is

equal

to

0,

status

is

requested

for

any

child

process

whose

process

group

ID

is

equal

to

that

of

the

calling

thread’s

process.

v

If

the

ProcessID

parameter

is

less

than

0,

status

is

requested

for

any

child

process

whose

process

group

ID

is

equal

to

the

absolute

value

of

the

ProcessID

parameter.

The

waitpid,

wait3,

and

wait364

subroutine

variants

provide

an

Options

parameter

that

can

modify

the

behavior

of

the

subroutine.

Two

values

are

defined,

WNOHANG

and

WUNTRACED,

which

can

be

combined

by

specifying

their

bitwise-inclusive

OR.

The

WNOHANG

option

prevents

the

calling

thread

from

being

suspended

even

if

there

are

child

processes

to

wait

for.

In

this

case,

a

value

of

0

is

returned

indicating

there

are

no

child

processes

that

have

stopped

or

terminated.

If

the

WUNTRACED

option

is

set,

the

call

should

also

return

information

when

children

of

the

current

process

are

stopped

because

they

received

a

SIGTTIN,

SIGTTOU,

SIGSSTP,

or

SIGTSTOP

signal.

The

wait364

subroutine

can

be

called

to

make

64-bit

rusage

counters

explicitly

available

in

a

32-bit

environment.

In

AIX

5.1

and

later,

64-bit

quantities

are

also

available

to

64-bit

applications

through

the

wait3()

interface

in

the

ru_utime

and

ru_stime

fields

of

struct

rusage.

When

a

32-bit

process

is

being

debugged

with

ptrace,

the

status

location

is

set

to

W_SLWTED

if

the

process

calls

load,

unload,

or

loadbind.

When

a

64-bit

process

is

being

debugged

with

ptrace,

the

status

location

is

set

to

W_SLWTED

if

the

process

calls

load

or

unload.

If

multiprocessing

debugging

mode

is

enabled,

the

status

location

is

set

to

W_SEWTED

if

a

process

is

stopped

during

an

exec

subroutine

and

to

W_SFWTED

if

the

process

is

stopped

during

a

fork

subroutine.

If

more

than

one

thread

is

suspended

awaiting

termination

of

the

same

child

process,

exactly

one

thread

returns

the

process

status

at

the

time

of

the

child

process

termination.

If

the

WCONTINUED

option

is

set,

the

call

should

return

information

when

the

children

of

the

current

process

have

been

continued

from

a

job

control

stop

but

whose

status

has

not

yet

been

reported.

Parameters

StatusLocation

Points

to

integer

variable

that

contains

(or

will

contain)

the

child

process

termination

status,

as

defined

in

the

sys/wait.h

file.

ProcessID

Specifies

the

child

process.

Options

Modifies

behavior

of

subroutine.

ResourceUsage

Specifies

the

location

of

a

structure

to

be

filled

in

with

resource

utilization

information

for

terminated

children.

Macros

The

value

pointed

to

by

StatusLocation

when

wait,

waitpid,

or

wait3

subroutines

are

returned,

can

be

used

as

the

ReturnedValue

parameter

for

the

following

macros

defined

in

the

sys/wait.h

file

to

get

more

information

about

the

process

and

its

child

process.

442

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

WIFCONTINUED(ReturnedValue)

pid_t

ReturnedValue;

Returns

a

nonzero

value

if

status

returned

for

a

child

process

that

has

continued

from

a

job

control

stop.

WIFSTOPPED(ReturnedValue)

int

ReturnedValue;

Returns

a

nonzero

value

if

status

returned

for

a

stopped

child.

int

WSTOPSIG(ReturnedValue)

int

ReturnedValue;

Returns

the

number

of

the

signal

that

caused

the

child

to

stop.

WIFEXITED(ReturnedValue)

int

ReturnedValue;

Returns

a

nonzero

value

if

status

returned

for

normal

termination.

int

WEXITSTATUS(ReturnedValue)

int

ReturnedValue;

Returns

the

low-order

8

bits

of

the

child

exit

status.

WIFSIGNALED(ReturnedValue)

int

ReturnedValue;

Returns

a

nonzero

value

if

status

returned

for

abnormal

termination.

int

WTERMSIG(ReturnedValue)

int

ReturnedValue;

Returns

the

number

of

the

signal

that

caused

the

child

to

terminate.

Return

Values

If

the

wait

subroutine

is

unsuccessful,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

In

addition,

the

waitpid,

wait3,

and

wait364

subroutines

return

a

value

of

0

if

there

are

no

stopped

or

exited

child

processes,

and

the

WNOHANG

option

was

specified.

The

wait

subroutine

returns

a

0

if

there

are

no

stopped

or

exited

child

processes,

also.

Error

Codes

The

wait,

waitpid,

wait3,

and

wait364

subroutines

are

unsuccessful

if

one

of

the

following

is

true:

ECHILD

The

calling

thread’s

process

has

no

existing

unwaited-for

child

processes.

EINTR

This

subroutine

was

terminated

by

receipt

of

a

signal.

EFAULT

The

StatusLocation

or

ResourceUsage

parameter

points

to

a

location

outside

of

the

address

space

of

the

process.

The

waitpid

subroutine

is

unsuccessful

if

the

following

is

true:

ECHILD

The

process

or

process

group

ID

specified

by

the

ProcessID

parameter

does

not

exist

or

is

not

a

child

process

of

the

calling

process.

The

waitpid

and

wait3

subroutines

are

unsuccessful

if

the

following

is

true:

EINVAL

The

value

of

the

Options

parameter

is

not

valid.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

443

Related

Information

The

exec

subroutine,

_exit,

exit,

or

atexit

subroutine,

fork

subroutine,

getrusage

subroutine,

pause

subroutine,

ptrace

subroutine,

sigaction

(“sigaction,

sigvec,

or

signal

Subroutine”

on

page

164)

subroutine.

waitid

Subroutine

Purpose

Waits

for

a

child

process

to

change

state.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<sys/wait.h>;

int

waitid

(idtype,

id,

infop,

options)

idtype_t

idtype;

id_t

id;

siginfo_t

*infop;

int

options;

Description

The

waitid

subroutine

suspends

the

calling

thread

until

one

child

of

the

process

containing

the

calling

thread

changes

state.

It

records

the

current

state

of

a

child

in

the

structure

pointed

to

by

the

infop

parameter.

If

a

child

process

changed

state

prior

to

the

call

to

the

waitid

subroutine,

the

waitid

subroutine

returns

immediately.

If

more

than

one

thread

is

suspended

in

the

wait

or

waitpid

subroutines

waiting

for

termination

of

the

same

process,

exactly

one

thread

will

return

the

process

status

at

the

time

of

the

target

process

termination.

Parameters

idtype

Specifies

the

child

process.

id

Specifies

the

child

process.

infop

Specifies

the

location

of

a

siginfo_t

structure

to

be

filled

in

with

resource

utilization

information.

options

Specifies

which

state

changes

the

waitid

subroutine

will

wait

for.

It

is

formed

by

OR’ing

together

one

or

more

of

the

following

flags:

WEXITED

Wait

for

processes

that

have

exited.

WSTOPPED

Status

will

be

returned

for

any

child

that

has

stopped

upon

receipt

of

a

signal.

WCONTINUED

Status

will

be

returned

for

any

child

that

was

stopped

and

has

been

continued.

WNOHANG

Return

immediately

if

there

are

no

children

to

wait

for.

WNOWAIT

Keep

the

process

whose

status

is

returned

in

the

infop

parameter

in

a

waitable

state.

This

will

not

affect

the

state

of

the

process.

The

process

can

be

waited

for

again

after

this

call

completes.

444

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

If

WNOHANG

was

specified

and

there

are

no

children

to

wait

for,

0

is

returned.

If

the

waitid

subroutine

returns

due

to

the

change

of

state

of

one

of

its

children,

0

is

returned.

Otherwise,

-1

is

returned

and

errno

is

set

to

indicate

the

error.

Error

Codes

The

waitid

subroutine

will

fail

if:

ECHILD

The

calling

process

has

no

existing

unwaited-for

child

processes.

EINTR

The

waitid

subroutine

was

interrupted

by

a

signal.

EINVAL

An

invalid

value

was

specified

for

the

options,

or

idtype

parameters

and

the

id

parameter

specifies

an

invalid

set

of

processes.

Related

Information

The

“wait,

waitpid,

wait3,

or

wait364

Subroutine”

on

page

441.

The

exec

subroutine

and

_exit,

exit,

or

atexit

subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine

Purpose

Performs

operations

on

wide-character

strings.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

wchar_t

*

wcscat(WcString1,

WcString2)

wchar_t

*

WcString1;

const

wchar_t

*

WcString2;

wchar_t

*

wcschr(WcString,

WideCharacter)

const

wchar_t

*WcString;

wchar_t

WideCharacter;

int

*

wcscmp

(WcString1,

WcString2)

const

wchar_t

*WcString1,

*WcString2;

wchar_t

*

wcscpy(WcString1,

WcString2)

wchar_t

*WcString1;

const

wchar_t

*

WcString2;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

445

size_t

wcscspn(WcString1,

WcString2)

const

wchar_t

*WcString1,

*WcString2;

Description

The

wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

subroutine

operates

on

null-terminated

wchar_t

strings.

These

subroutines

expect

the

string

arguments

to

contain

a

wchar_t

null

character

marking

the

end

of

the

string.

A

copy

or

concatenation

operation

does

not

perform

boundary

checking.

The

wcscat

subroutine

appends

a

copy

of

the

wide-character

string

pointed

to

by

the

WcString2

parameter

(including

the

terminating

null

wide-character

code)

to

the

end

of

the

wide-character

string

pointed

to

by

the

WcString1

parameter.

The

initial

wide-character

code

of

the

WcString2

parameter

overwrites

the

null

wide-character

code

at

the

end

of

the

WcString1

parameter.

If

successful,

the

wcscat

subroutine

returns

the

WcString1

parameter.

The

wcschr

subroutine

returns

a

pointer

to

the

first

occurrence

of

the

WideCharacter

parameter

in

the

WcString

parameter.

The

character

value

may

be

a

wchar_t

null

character.

The

wchar_t

null

character

at

the

end

of

the

string

is

included

in

the

search.

The

wcschr

subroutine

returns

a

pointer

to

the

wide

character

code,

if

found,

or

returns

a

null

pointer

if

the

wide

character

is

not

found.

The

wcscmp

subroutine

compares

two

wchar_t

strings.

It

returns

an

integer

greater

than

0

if

the

WcString1

parameter

is

greater

than

the

WcString2

parameter.

It

returns

0

if

the

two

strings

are

equivalent.

It

returns

a

number

less

than

0

if

the

WcString1

parameter

is

less

than

the

WcString2

parameter.

The

sign

of

the

difference

in

value

between

the

first

pair

of

wide-character

codes

that

differ

in

the

objects

being

compared

determines

the

sign

of

a

nonzero

return

value.

The

wcscpy

subroutine

copies

the

contents

of

the

WcString2

parameter

(including

the

ending

wchar_t

null

character)

into

the

WcString1

parameter.

If

successful,

the

wcscpy

subroutine

returns

the

WcString1

parameter.

If

the

wcscpy

subroutine

copies

between

overlapping

objects,

the

result

is

undefined.

The

wcscspn

subroutine

computes

the

number

of

wchar_t

characters

in

the

initial

segment

of

the

string

pointed

to

by

the

WcString1

parameter

that

do

not

appear

in

the

string

pointed

to

by

the

WcString2

parameter.

If

successful,

the

wcscspn

subroutine

returns

the

number

of

wchar_t

characters

in

the

segment.

Parameters

WcString1

Points

to

a

wide-character

string.

WcString2

Points

to

a

wide-character

string.

WideCharacter

Specifies

a

wide

character

for

location.

Return

Values

Upon

successful

completion,

the

wcscat

and

wcscpy

subroutines

return

a

value

of

ws1.

The

wcschr

subroutine

returns

a

pointer

to

the

wide

character

code.

Otherwise,

a

null

pointer

is

returned.

The

wcscmp

subroutine

returns

an

integer

greater

than,

equal

to,

or

less

than

0,

if

the

wide

character

string

pointed

to

by

the

WcString1

parameter

is

greater

than,

equal

to,

or

less

than

the

wide

character

string

pointed

to

by

the

WcString2

parameter.

The

wcscspn

subroutine

returns

the

length

of

the

segment.

Related

Information

The

mbscat

subroutine,

mbschr

subroutine,

mbscmp

subroutine,

mbscpy

subroutine,

mbsrchr

subroutine,

wcsncat

(“wcsncat,

wcsncmp,

or

wcsncpy

Subroutine”

on

page

450)

subroutine,

wcsncmp

446

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

(“wcsncat,

wcsncmp,

or

wcsncpy

Subroutine”

on

page

450)

subroutine,

wcsncpy

(“wcsncat,

wcsncmp,

or

wcsncpy

Subroutine”

on

page

450)

subroutine,

wcsrchr

(“wcsrchr

Subroutine”

on

page

452)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview,

Multibyte

and

Wide

Character

String

Comparison

Subroutines,

Understanding

Wide

Character

String

Copy

Subroutines,

and

Wide

Character

String

Search

Subroutine

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcscoll

Subroutine

Purpose

Compares

wide

character

strings.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

int

wcscoll

(

WcString1,

WcString2)

const

wchar_t

*WcString1,

*WcString2;

Description

The

wcscoll

subroutine

compares

the

two

wide-character

strings

pointed

to

by

the

WcString1

and

WcString2

parameters

based

on

the

collation

values

specified

by

the

LC_COLLATE

environment

variable

of

the

current

locale.

Note:

The

wcscoll

subroutine

differs

from

the

wcscmp

subroutine

in

that

the

wcscoll

subroutine

compares

wide

characters

based

on

their

collation

values,

while

the

wcscmp

subroutine

compares

wide

characters

based

on

their

ordinal

values.

The

wcscoll

subroutine

uses

more

time

than

the

wcscmp

subroutine

because

it

obtains

the

collation

values

from

the

current

locale.

The

wcscoll

subroutine

may

be

unsuccessful

if

the

wide

character

strings

specified

by

the

WcString1

or

WcString2

parameter

contains

characters

outside

the

domain

of

the

current

collating

sequence.

Parameters

WcString1

Points

to

a

wide-character

string.

WcString2

Points

to

a

wide-character

string.

Return

Values

The

wcscoll

subroutine

returns

the

following

values:

<

0

The

collation

value

of

the

WcString1

parameter

is

less

than

that

of

the

WcString2

parameter.

=0

The

collation

value

of

the

WcString1

parameter

is

equal

to

that

of

the

WcString2

parameter.

>0

The

collation

value

of

the

WcString1

parameter

is

greater

than

that

of

the

WcString2

parameter.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

447

The

wcscoll

subroutine

indicates

error

conditions

by

setting

the

errno

global

variable.

However,

there

is

no

return

value

to

indicate

an

error.

To

check

for

errors,

the

errno

global

variable

should

be

set

to

0,

then

checked

upon

return

from

the

wcscoll

subroutine.

If

the

errno

global

variable

is

nonzero,

an

error

occurred.

Error

Codes

EINVAL

The

WcString1

or

WcString2

arguments

contain

wide-character

codes

outside

the

domain

of

the

collating

sequence.

Related

Information

The

wcscmp

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Understanding

Wide

Character

String

Collation

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcsftime

Subroutine

Purpose

Converts

date

and

time

into

a

wide

character

string.

Library

Standard

C

Library

(libc.

a)

Syntax

#include

<time.h>

size_t

wcsftime

(WcString,

Maxsize,

Format,

TimPtr)

wchar_t

*

WcString;

size_t

Maxsize;

const

wchar_t

*

Format;

const

struct

tm

*

TimPtr;

Description

The

wcsftime

function

is

equivalent

to

the

strftime

function,

except

that:

v

The

argument

wcs

points

to

the

initial

element

of

an

array

of

wide-characters

into

which

the

generated

output

is

to

be

placed.

v

The

argument

maxsize

indicates

the

maximum

number

of

wide-characters

to

be

placed

in

the

output

array.

v

The

argument

format

is

a

wide-character

string

and

the

conversion

specifications

are

replaced

by

corresponding

sequences

of

wide-characters.

v

The

return

value

indicates

the

number

of

wide-characters

placed

in

the

output

array.

If

copying

takes

place

between

objects

that

overlap,

the

behavior

is

undefined.

Parameters

WcString

Contains

the

output

of

the

wcsftime

subroutine.

448

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Maxsize

Specifies

the

maximum

number

of

bytes

(including

the

wide

character

null-terminating

byte)

that

may

be

placed

in

the

WcString

parameter.

Format

Specifiers

are

the

same

as

in

strftime

(“strftime

Subroutine”

on

page

288)

function.

TimPtr

Contains

the

data

to

be

converted

by

the

wcsftime

subroutine.

Return

Values

If

successful,

and

if

the

number

of

resulting

wide

characters

(including

the

wide

character

null-terminating

byte)

is

no

more

than

the

number

of

bytes

specified

by

the

Maxsize

parameter,

the

wcsftime

subroutine

returns

the

number

of

wide

characters

(not

including

the

wide

character

null-terminating

byte)

placed

in

the

WcString

parameter.

Otherwise,

0

is

returned

and

the

contents

of

the

WcString

parameter

are

indeterminate.

Related

Information

The

mbstowcs

subroutine,

strfmon

(“strfmon

Subroutine”

on

page

286)

subroutine,

strftime

(“strftime

Subroutine”

on

page

288)

subroutine,

strptime

(“strptime

Subroutine”

on

page

300)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

List

of

Time

and

Monetary

Formatting

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcsid

Subroutine

Purpose

Returns

the

charsetID

of

a

wide

character.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

int

wcsid

(

WC)

const

wchar_t

WC;

Description

The

wcsid

subroutine

returns

the

charsetID

of

the

wchar_t

character.

No

validation

of

the

character

is

performed.

The

parameter

must

point

to

a

value

in

the

character

range

of

the

current

code

set

defined

in

the

current

locale.

Parameters

WC

Specifies

the

character

to

be

tested.

Return

Values

Successful

completion

returns

an

integer

value

representing

the

charsetID

of

the

character.

This

integer

can

be

a

number

from

0

through

n,

where

n

is

the

maximum

character

set

defined

in

the

CHARSETID

field

of

the

charmap.

See

″Understanding

the

Character

Set

Description

(charmap)

Source

File″

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference

for

more

information.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

449

Related

Information

The

csid

subroutine,

mbstowcs

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

National

Language

Support

Overview,

Multibyte

Code

and

Wide

Character

Code

Conversion

Subroutines,

and

Understanding

the

Character

Set

Description

(charmap)

Source

File

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcslen

Subroutine

Purpose

Determines

the

number

of

characters

in

a

wide-character

string.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wcstr.h>

size_t

wcslen(

WcString)

const

wchar_t

*WcString;

Description

The

wcslen

subroutine

computes

the

number

of

wchar_t

characters

in

the

string

pointed

to

by

the

WcString

parameter.

Parameters

WcString

Specifies

a

wide-character

string.

Return

Values

The

wcslen

subroutine

returns

the

number

of

wchar_t

characters

that

precede

the

terminating

wchar_t

null

character.

Related

Information

The

mbslen

subroutine,

wctomb

(“wctomb

Subroutine”

on

page

469)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Multibyte

Code

and

Wide

Character

Code

Conversion

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcsncat,

wcsncmp,

or

wcsncpy

Subroutine

Purpose

Performs

operations

on

a

specified

number

of

wide

characters

from

one

string

to

another.

450

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wcstr.h>

wchar_t

*

wcsncat

(WcString1,

WcString2,

Number)

wchar_t

*

WcString1;

const

wchar_t

*

WcString2;

size_t

Number;

wchar_t

*

wcsncmp

(WcString1,

WcString2,

Number)

const

wchar_t

*WcString1,

*WcString2;

size_t

Number;

wchar_t

*

wcsncpy

(WcString1,

WcString2,

Number)

wchar_t

*WcString1;

const

wchar_t

*WcString2;

size_t

Number;

Description

The

wcsncat,

wcsncmp

and

wcsncpy

subroutines

operate

on

null-terminated

wide

character

strings.

The

wcsncat

subroutine

appends

characters

from

the

WcString2

parameter,

up

to

the

value

of

the

Number

parameter,

to

the

end

of

the

WcString1

parameter.

It

appends

a

wchar_t

null

character

to

the

result

and

returns

the

WcString1

value.

The

wcsncmp

subroutine

compares

wide

characters

in

the

WcString1

parameter,

up

to

the

value

of

the

Number

parameter,

to

the

WcString2

parameter.

It

returns

an

integer

greater

than

0

if

the

value

of

the

WcString1

parameter

is

greater

than

the

value

of

the

WcString2

parameter.

It

returns

a

0

if

the

strings

are

equivalent.

It

returns

an

integer

less

than

0

if

the

value

of

the

WcString1

parameter

is

less

than

the

value

of

the

WcString2

parameter.

The

wcsncpy

subroutine

copies

wide

characters

from

the

WcString2

parameter,

up

to

the

value

of

the

Number

parameter,

to

the

WcString1

parameter.

It

returns

the

value

of

the

WcString1

parameter.

If

the

number

of

characters

in

the

WcString2

parameter

is

less

than

the

Number

parameter,

the

WcString1

parameter

is

padded

out

with

wchar_t

null

characters

to

a

number

equal

to

the

value

of

the

Number

parameter.

Parameters

WcString1

Specifies

a

wide-character

string.

WcString2

Specifies

a

wide-character

string.

Number

Specifies

the

range

of

characters

to

process.

Related

Information

The

mbsncat

subroutine,

mbsncmp

subroutine,

mbsncpy

subroutine,

wcscat

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcscmp

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcscpy

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

451

National

Language

Support

Overview,

Multibyte

and

Wide

Character

String

Comparison

Subroutines,

and

Wide

Character

String

Copy

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcspbrk

Subroutine

Purpose

Locates

the

first

occurrence

of

characters

in

a

string.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

wchar_t

*wcspbrk(

WcString1,

WcString2)

const

wchar_t

*WcString1;

const

wchar_t

*WcString2;

Description

The

wcspbrk

subroutine

locates

the

first

occurrence

in

the

wide

character

string

pointed

to

by

the

WcString1

parameter

of

any

wide

character

from

the

string

pointed

to

by

the

WcString2

parameter.

Parameters

WcString1

Points

to

a

wide-character

string

being

searched.

WcString2

Points

to

a

wide-character

string.

Return

Values

If

no

wchar_t

character

from

the

WcString2

parameter

occurs

in

the

WcString1

parameter,

the

wcspbrk

subroutine

returns

a

pointer

to

the

wide

character,

or

a

null

value.

Related

Information

The

mbspbrk

subroutine,

wcschr

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcscspn

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcsrchr

(“wcsrchr

Subroutine”)

subroutine,

wcsspn

(“wcsspn

Subroutine”

on

page

454)

subroutine,

wcstok

(“wcstok

Subroutine”

on

page

459)

subroutine,

wcswcs

(“wcswcs

Subroutine”

on

page

465)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Wide

Character

String

Search

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcsrchr

Subroutine

Purpose

Locates

a

wchar_t

character

in

a

wide-character

string.

452

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wcstr.h>

wchar_t

*wcsrchr

(

WcString,

WideCharacter)

const

wchar_t

*WcString;

wint_t

WideCharacter;

Description

The

wcsrchr

subroutine

locates

the

last

occurrence

of

the

WideCharacter

value

in

the

string

pointed

to

by

the

WcString

parameter.

The

terminating

wchar_t

null

character

is

considered

to

be

part

of

the

string.

Parameters

WcString

Points

to

a

string.

WideCharacter

Specifies

a

wchar_t

character.

Return

Values

The

wcsrchr

subroutine

returns

a

pointer

to

the

WideCharacter

parameter

value,

or

a

null

pointer

if

that

value

does

not

occur

in

the

specified

string.

Related

Information

The

mbschr

subroutine,

mbsrchr

subroutine,

wcschr

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcscspn

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcspbrk

(“wcspbrk

Subroutine”

on

page

452)

subroutine,

wcsspn

(“wcsspn

Subroutine”

on

page

454)

subroutine,

wcstok

(“wcstok

Subroutine”

on

page

459)

subroutine,

wcswcs

(“wcswcs

Subroutine”

on

page

465)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Understanding

Wide

Character

String

Search

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcsrtombs

Subroutine

Purpose

Convert

a

wide-character

string

to

a

character

string

(restartable).

Library

Standard

library

(libc.a)

Syntax

#include

<wchar.h>

size_t

wcsrtombs

(char

*

dst,

const

wchar_t

**

src,

size_t

len,

mbstate_t

*

ps);

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

453

Description

The

wcsrtombs

function

converts

a

sequence

of

wide-characters

from

the

array

indirectly

pointed

to

by

src

into

a

sequence

of

corresponding

characters,

beginning

in

the

conversion

state

described

by

the

object

pointed

to

by

ps.If

dst

is

not

a

null

pointer,

the

converted

characters

are

then

stored

into

the

array

pointed

to

by

dst.

Conversion

continues

up

to

and

including

a

terminating

null

wide-character,

which

is

also

stored.

Conversion

stops

earlier

in

the

following

cases:

v

When

a

code

is

reached

that

does

not

correspond

to

a

valid

character.

v

When

the

next

character

would

exceed

the

limit

of

len

total

bytes

to

be

stored

in

the

array

pointed

to

by

dst

(and

dst

is

not

a

null

pointer).

Each

conversion

takes

place

as

if

by

a

call

to

the

wcrtomb

function.

If

dst

is

not

a

null

pointer,

the

pointer

object

pointed

to

by

src

is

assigned

either

a

null

pointer

(if

conversion

stopped

due

to

reaching

a

terminating

null

wide-character)

or

the

address

just

past

the

last

wide-character

converted

(if

any).

If

conversion

stopped

due

to

reaching

a

terminating

null

wide-character,

the

resulting

state

described

is

the

initial

conversion

state.

If

ps

is

a

null

pointer,

the

wcsrtombs

function

uses

its

own

internal

mbstate_t

object,

which

is

initialised

at

program

startup

to

the

initial

conversion

state.

Otherwise,

the

mbstate_t

object

pointed

to

by

ps

is

used

to

completely

describe

the

current

conversion

state

of

the

associated

character

sequence.

The

implementation

will

behave

as

if

no

function

defined

in

this

specification

calls

wcsrtombs.

The

behavior

of

this

function

is

affected

by

the

LC_CTYPE

category

of

the

current

locale.

Return

Values

If

conversion

stops

because

a

code

is

reached

that

does

not

correspond

to

a

valid

character,

an

encoding

error

occurs.

In

this

case,

the

wcsrtombs

function

stores

the

value

of

the

macro

EILSEQ

in

errno

and

returns

(size_t)-1;

the

conversion

state

is

undefined.

Otherwise,

it

returns

the

number

of

bytes

in

the

resulting

character

sequence,

not

including

the

terminating

null

(if

any).

Error

Codes

The

wcsrtombs

function

may

fail

if:

EINVAL

ps

points

to

an

object

that

contains

an

invalid

conversion

state.

EILSEQ

A

wide-character

code

does

not

correspond

to

a

valid

character.

Related

Information

The

wctomb

(“wctomb

Subroutine”

on

page

469)

subroutine.

wcsspn

Subroutine

Purpose

Returns

the

number

of

wide

characters

in

the

initial

segment

of

a

string.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wcstr.h>

454

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

size_t

wcsspn(

WcString1,

WcString2)

const

wchar_t

*WcString1,

*WcString2;

Description

The

wcsspn

subroutine

computes

the

number

of

wchar_t

characters

in

the

initial

segment

of

the

string

pointed

to

by

the

WcString1

parameter.

The

WcString1

parameter

consists

entirely

of

wchar_t

characters

from

the

string

pointed

to

by

the

WcString2

parameter.

Parameters

WcString1

Points

to

the

initial

segment

of

a

string.

WcString2

Points

to

a

set

of

characters

string.

Return

Values

The

wcsspn

subroutine

returns

the

number

of

wchar_t

characters

in

the

segment.

Related

Information

The

wcschr

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcscspn

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcspbrk

(“wcspbrk

Subroutine”

on

page

452)

subroutine,

wcsrchr

(“wcsrchr

Subroutine”

on

page

452)

subroutine,

wcstok

(“wcstok

Subroutine”

on

page

459)

subroutine,

wcswcs

(“wcswcs

Subroutine”

on

page

465)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Wide

Character

String

Search

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcsstr

Subroutine

Purpose

Find

a

wide-character

substring.

Library

Standard

library

(libc.a)

Syntax

#include

<wchar.h>

wchar_t

*wcsstr

(const

wchar_t

*

ws1,

const

wchar_t

*

ws2);

Description

The

wcsstr

function

locates

the

first

occurrence

in

the

wide-character

string

pointed

to

by

ws1

of

the

sequence

of

wide-characters

(excluding

the

terminating

null

wide-character)

in

the

wide-

character

string

pointed

to

by

ws2.

Return

Values

On

successful

completion,

wcsstr

returns

a

pointer

to

the

located

wide-character

string,

or

a

null

pointer

if

the

wide-character

string

is

not

found.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

455

If

ws2

points

to

a

wide-character

string

with

zero

length,

the

function

returns

ws1.

wcstod,

wcstof,

or

wcstold

Subroutine

Purpose

Converts

a

wide

character

string

to

a

double-precision

number.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

#include

<wchar.h>

double

wcstod

(

nptr,

endptr)

const

wchar_t

*nptr;

wchar_t

**endptr;

float

wcstof

(nptr,

endptr)

const

wchar_t

*restrict

nptr;

wchar_t

**restrict

endptr;

long

double

wcstold

(nptr,

endptr)

const

wchar_t

*restrict

format;

wchar_t

**restrict

nptr;

Description

The

wcstod,

wcstof,

and

wcstold

subroutines

convert

the

initial

portion

of

the

wide-character

string

pointed

to

by

nptr

to

double,

float

and

long

double

representation,

respectively.

First,

they

decompose

the

input

wide-character

string

into

three

parts:

v

An

initial,

possibly

empty,

sequence

of

white-space

wide-character

codes.

v

A

subject

sequence

interpreted

as

a

floating-point

constant

or

representing

infinity

or

NaN.

v

A

final

wide-character

string

of

one

or

more

unrecognized

wide-character

codes,

including

the

terminating

null

wide-character

code

of

the

input

wide-character

string.

Then

they

convert

the

subject

sequence

to

a

floating-point

number,

and

return

the

result.

The

expected

form

of

the

subject

sequence

is

an

optional

plus

or

minus

sign,

and

one

of

the

following:

v

A

non-empty

sequence

of

decimal

digits

optionally

containing

a

radix

character,

and

an

optional

exponent

part.

v

A

0x

or

0X,

and

a

non-empty

sequence

of

hexadecimal

digits

optionally

containing

a

radix

character,

and

an

optional

binary

exponent

part.

v

One

of

INF

or

INFINITY,

or

any

other

wide

string

equivalent

except

for

case.

v

One

of

NAN

or

NAN(n-wchar-sequence

opt

),

or

any

other

wide

string

ignoring

case

in

the

NAN

part,

where:

n-wchar-sequence:

digit

nondigit

n-wchar-sequence

digit

n-wchar-sequence

nondigit

456

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

subject

sequence

is

defined

as

the

longest

initial

subsequence

of

the

input

wide

string,

starting

with

the

first

non-white-space

wide

character,

that

is

of

the

expected

form.

The

subject

sequence

contains

no

wide

characters

if

the

input

wide

string

is

not

of

the

expected

form.

If

the

subject

sequence

has

the

expected

form

for

a

floating-point

number,

the

sequence

of

wide

characters

starting

with

the

first

digit

or

the

radix

character

(whichever

occurs

first)

are

interpreted

as

a

floating

constant

according

to

the

rules

of

the

C

language,

except

that

the

radix

character

is

used

in

place

of

a

period.

If

neither

an

exponent

part

or

a

radix

character

appears

in

a

decimal

floating-point

number,

or

if

a

binary

exponent

part

does

not

appear

in

a

hexadecimal

floating-point

number,

an

exponent

part

of

the

appropriate

type

with

value

zero

is

assumed

to

follow

the

last

digit

in

the

string.

If

the

subject

sequence

begins

with

a

minus

sign,

the

sequence

is

interpreted

as

negated.

A

wide-character

sequence

INF

or

INFINITY

is

interpreted

as

an

infinity,

if

representable

in

the

return

type,

or

else

as

if

it

were

a

floating

constant

that

is

too

large

for

the

range

of

the

return

type.

A

wide-character

sequence

NAN

or

NAN(n-wchar-sequence

opt

)

is

interpreted

as

a

quiet

NaN,

if

supported

in

the

return

type,

or

else

as

if

it

were

a

subject

sequence

part

that

does

not

have

the

expected

form.

The

meaning

of

the

n-wchar

sequences

is

implementation-defined.

A

pointer

to

the

final

wide

string

is

stored

in

the

object

pointed

to

by

endptr,

provided

that

endptr

is

not

a

null

pointer.

If

the

subject

sequence

has

the

hexadecimal

form

and

FLT_RADIX

is

a

power

of

2,

the

conversion

will

be

rounded

in

an

implementation-defined

manner.

The

radix

character

is

as

defined

in

the

program’s

locale

(category

LC_NUMERIC).

In

the

POSIX

locale,

or

in

a

locale

where

the

radix

character

is

not

defined,

the

radix

character

defaults

to

a

period.

In

other

than

the

C

or

POSIX

locales,

other

implementation-defined

subject

sequences

may

be

accepted.

If

the

subject

sequence

is

empty

or

does

not

have

the

expected

form,

no

conversion

is

performed.

The

value

of

nptr

is

stored

in

the

object

pointed

to

by

endptr,

provided

that

endptr

is

not

a

null

pointer.

The

wcstod,

wcstof,

and

wcstold

subroutines

do

not

change

the

setting

of

the

errno

global

variable

if

successful.

Since

0

is

returned

on

error

and

is

also

a

valid

return

on

success,

an

application

wishing

to

check

for

error

situations

should

set

errno

to

0,

call

wcstod,

wcstof,

or

wcstold,

and

check

errno.

Parameters

nptr

Contains

a

pointer

to

the

wide

character

string

to

be

converted

to

a

double-precision

value.

endptr

Contains

a

pointer

to

the

position

in

the

string

specified

by

the

nptr

parameter

where

a

wide

character

is

found

that

is

not

a

valid

character

for

the

purpose

of

this

conversion.

Return

Values

Upon

successful

completion,

the

wcstod,

wcstof,

and

wcstold

subroutines

return

the

converted

value.

If

no

conversion

could

be

performed,

0

is

returned

and

the

errno

global

variable

may

be

set

to

EINVAL.

If

the

correct

value

is

outside

the

range

of

representable

values,

plus

or

minus

HUGE_VAL,

HUGE_VALF,

or

HUGE_VALL

is

returned

(according

to

the

sign

of

the

value),

and

errno

is

set

to

ERANGE.

If

the

correct

value

would

cause

underflow,

a

value

whose

magnitude

is

no

greater

than

the

smallest

normalized

positive

number

in

the

return

type

is

returned

and

errno

set

to

ERANGE.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

457

Related

Information

“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109,

“setlocale

Subroutine”

on

page

136,

and

“strtol,

strtoul,

strtoll,

strtoull,

or

atoi

Subroutine”

on

page

299.

ctype,

isalpha,

isupper,

islower,

isdigit,

isxdigit,

isalnum,

isspace,

ispunct,

isprint,

isgraph,

iscntrl,

or

isascii

Subroutines

and

localeconv

Subroutine

in

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1.

wcstoimax

or

wcstoumax

Subroutine

Purpose

Converts

a

wide-character

string

to

an

integer

type.

Syntax

#include

<stddef.h>

#include

<inttypes.h>

intmax_t

wcstoimax

(nptr,

endptr,

base)

const

wchar_t

*restrict

nptr;

wchar_t

**restrict

endptr;

int

base;

uintmax_t

wcstoumax

(nptr,

endptr,

base)

const

wchar_t

*restrict

nptr;

wchar_t

**restrict

endptr;

int

base;

Description

The

wcstoimax

or

wcstoumax

subroutines

are

equivalent

to

the

wcstol,

wcstoll,

wcstoul,

and

wcstoull

subroutines,

respectively,

except

that

the

initial

portion

of

the

wide

string

is

converted

to

intmax_t

and

uintmax_t

representation,

respectively.

Parameters

nptr

Points

to

the

wide-character

string.

endptr

Points

to

the

object

where

the

final

wide-character

string

is

stored.

base

Determines

the

subject

sequence

interpreted

as

an

integer.

Return

Values

The

wcstoimax

or

wcstoumax

subroutines

return

the

converted

value,

if

any.

If

no

conversion

could

be

performed,

zero

is

returned.

If

the

correct

value

is

outside

the

range

of

representable

values,

{INTMAX_MAX},

{INTMAX_MIN},

or

{UINTMAX_MAX}

is

returned

(according

to

the

return

type

and

sign

of

the

value,

if

any),

and

the

errno

global

variable

is

set

to

ERANGE.

Related

Information

The

“wcstol

or

wcstoll

Subroutine”

on

page

460.

inttypes.h

in

AIX

5L

Version

5.2

Files

Reference.

458

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

wcstok

Subroutine

Purpose

Converts

wide-character

strings

to

tokens.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wchar.h>

wchar_t

*wcstok

(

WcString1,

WcString2,

ptr)

wchar_t

*WcString1;

const

wchar_t

*WcString2;

wchar_t

**ptr

Description

A

sequence

of

calls

to

the

wcstok

subroutine

breaks

the

wide-character

string

pointed

to

by

WcString1

into

a

sequence

of

tokens,

each

of

which

is

delimited

by

a

wide-character

code

from

the

wide-character

string

pointed

to

by

WcString2.

The

third

argument

points

to

a

caller-provided

wchar_t

pointer

where

wcstok

stores

information

necessary

for

it

to

continue

scanning

the

same

wide-character

string.

The

first

call

in

the

sequence

has

WcString1

as

its

first

argument

and

is

followed

by

calls

with

a

nullpointer

as

their

first

argument.

The

separator

string

pointed

to

by

WcString2

may

be

different

from

call

to

call.

The

first

call

in

the

sequence

searches

the

wide-character

string

pointed

to

by

WcString1

for

the

first

wide-character

code

that

is

not

contained

in

the

current

separator

string

pointed

to

by

WcString2.

If

no

such

wide-character

code

is

found,

then

there

are

no

tokens

in

the

wide-character

string

pointed

to

by

WcString1

and

wcstok

returns

a

null

pointer.

If

such

a

wide-character

code

is

found,

it

is

the

start

of

the

first

token.

The

wcstok

subroutine

then

searches

from

there

for

a

wide-character

code

that

is

contained

in

the

current

separator

string.

If

no

such

wide-character

code

is

found,

the

current

token

extends

to

the

end

of

the

wide-character

string

pointed

to

by

WcString1,

and

subsequent

searches

for

a

token

returns

a

null

pointer.

If

such

a

wide-character

code

is

found,

it

is

overwritten

by

a

null

wide-character,

which

terminates

the

current

token.

The

wcstok

subroutine

saves

a

pointer

to

the

following

wide-character

code,

from

which

the

next

search

for

a

token

starts.

Each

subsequent

call,

with

a

null

pointer

as

the

value

of

the

first

argument,

starts

searching

from

the

saved

pointer

and

behaves

as

described

above.

The

implementation

behaves

as

if

no

function

calls

wcstok.

Parameters

ptr

Contains

a

pointer

to

a

caller-provided

wchar_t

pointer

where

wcstok

stores

information

necessary

for

it

to

continue

scanning

the

same

wide-character

string.

WcString1

Contains

a

pointer

to

the

wide-character

string

to

be

searched.

WcString2

Contains

a

pointer

to

the

string

of

wide-character

token

delimiters.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

459

Return

Values

Upon

successful

completion,

wcstok

returns

a

pointer

to

the

first

wide-character

code

of

a

token.

Otherwise,

if

there

is

no

token,

wcstok

returns

a

null

pointer.

Examples

To

convert

a

wide-character

string

to

tokens,

use

the

following:

#include

<wchar.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*WCString1

=

L"?a???b,,,#c";

wchar_t

*ptr;

wchar_t

*pwcs;

(void)setlocale(LC_ALL,

"");

pwcs

=

wcstok(WCString1,

L"?",

&ptr);

/*

pwcs

points

to

the

token

L"a"*/

pwcs

=

wcstok((wchar_t

*)NULL,

L",",

&ptr);

/*

pwcs

points

to

the

token

L"??b"*/

pwcs

=

wcstok(

(wchar_t

*)NULL,

L"#,",

&ptr);

/*

pwcs

points

to

the

token

L"c"*/

}

Related

Information

The

wcschr

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcscspn

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcspbrk

(“wcspbrk

Subroutine”

on

page

452)

subroutine,

wcsrchr

(“wcsrchr

Subroutine”

on

page

452)

subroutine,

wcsspn

(“wcsspn

Subroutine”

on

page

454)

subroutine,

wcstod

(“wcstod,

wcstof,

or

wcstold

Subroutine”

on

page

456)

subroutine,

wcstol

(“wcstol

or

wcstoll

Subroutine”)

subroutine,

wcstoul

(“wcstoul

or

wcstoull

Subroutine”

on

page

464)

subroutine,

wcswcs

(“wcswcs

Subroutine”

on

page

465)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

for

Programming

and

Wide

Character

String

Search

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcstol

or

wcstoll

Subroutine

Purpose

Converts

a

wide-character

string

to

a

long

integer

representation.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

long

int

wcstol

(

Nptr,

Endptr,

Base)

const

wchar_t

*Nptr;

wchar_t

**Endptr;

int

Base;

460

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

long

long

int

wcstoll

(*Nptr,

**Endptr,

Base)

const

wchar_t

*Nptr;

wchar_t

**Endptr:

int

Base

Description

The

wcstol

subroutine

converts

a

wide-character

string

to

a

long

integer

representation.

The

wcstoll

subroutine

converts

a

wide-character

string

to

a

long

long

integer

representation.

1.

An

initial,

possibly

empty,

sequence

of

white-space

wide-character

codes

(as

specified

by

the

iswspace

subroutine)

2.

A

subject

sequence

interpreted

as

an

integer

and

represented

in

a

radix

determined

by

the

Base

parameter

3.

A

final

wide-character

string

of

one

or

more

unrecognized

wide-character

codes,

including

the

terminating

wide-character

null

of

the

input

wide-character

string

If

possible,

the

subject

is

then

converted

to

an

integer,

and

the

result

is

returned.

The

Base

parameter

can

take

the

following

values:

0

through

9,

or

a

(or

A)

through

z

(or

Z).

There

are

potentially

36

values

for

the

base.

If

the

base

value

is

0,

the

expected

form

of

the

subject

string

is

that

of

a

decimal,

octal,

or

hexadecimal

constant,

any

of

which

can

be

preceded

by

a

+

(plus

sign)

or

-

(minus

sign).

A

decimal

constant

starts

with

a

non

zero

digit,

and

is

composed

of

a

sequence

of

decimal

digits.

An

octal

constant

consists

of

the

prefix

0

optionally

followed

by

a

sequence

of

the

digits

0

to

7.

A

hexadecimal

constant

is

defined

as

the

prefix

0x

(or

0X)

followed

by

a

sequence

of

decimal

digits

and

the

letters

a

(or

A)

to

f

(or

F)

with

values

ranging

from

10

(for

a

or

A)

to

15

(for

f

or

F).

If

the

base

value

is

between

2

and

36,

the

expected

form

of

the

subject

sequence

is

a

sequence

of

letters

and

digits

representing

an

integer

in

the

radix

specified

by

the

Base

parameter,

optionally

preceded

by

a

+

or

-,

but

not

including

an

integer

suffix.

The

letters

a

(or

A)

through

z

(or

Z)

are

ascribed

the

values

of

10

to

35.

Only

letters

whose

values

are

less

than

that

of

the

base

are

permitted.

If

the

value

of

base

is

16,

the

characters

0x

or

0X

may

optionally

precede

the

sequence

of

letters

or

digits,

following

the

sign,

if

present.

The

wide-character

string

is

parsed

to

skip

the

initial

space

characters

(as

determined

by

the

iswspace

subroutine).

Any

non-space

character

signifies

the

start

of

a

subject

string

that

may

form

an

integer

in

the

radix

specified

by

the

Base

parameter.

The

subject

sequence

is

defined

to

be

the

longest

initial

substring

that

is

a

long

integer

of

the

expected

form.

Any

character

not

satisfying

this

form

begins

the

final

portion

of

the

wide-character

string

pointed

to

by

the

Endptr

parameter

on

return

from

the

call

to

the

wcstol

or

wcstoll

subroutine.

Parameters

Nptr

Contains

a

pointer

to

the

wide-character

string

to

be

converted

to

a

long

integer

number.

Endptr

Contains

a

pointer

to

the

position

in

the

Nptr

parameter

string

where

a

wide-character

is

found

that

is

not

a

valid

character.

Base

Specifies

the

radix

in

which

the

characters

are

interpreted.

Return

Values

The

wcstol

and

wcstoll

subroutines

return

the

converted

value

of

the

long

or

long

long

integer

if

the

expected

form

is

found.

If

no

conversion

could

be

performed,

a

value

of

0

is

returned.

If

the

converted

value

is

outside

the

range

of

representable

values,

LONG_MAX

or

LONG_MIN

is

returned

for

the

wcstol

subroutine

and

LLONG_MAX

or

LLONG_MIN

is

returned

for

the

wcstoll

subroutine

(according

to

the

sign

of

the

value).

The

value

of

errno

is

set

to

ERANGE.

If

the

base

value

specified

by

the

Base

parameter

is

not

supported,

EINVAL

is

returned.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

461

If

the

subject

sequence

has

the

expected

form,

it

is

interpreted

as

an

integer

constant

in

the

appropriate

base.

A

pointer

to

the

final

string

is

stored

in

the

Endptr

parameter

if

that

parameter

is

not

a

null

pointer.

If

the

subject

sequence

is

empty

or

does

not

have

a

valid

form,

no

conversion

is

done.

The

value

of

the

Nptr

parameter

is

stored

in

the

Endptr

parameter

if

that

parameter

is

not

a

null

pointer.

Since

0,

LONG_MIN,

and

LONG_MAX

(for

wcstol)

and

LLONG_MIN,

and

LLONG_MAX

(for

wcstoll)

are

returned

in

the

event

of

an

error

and

are

also

valid

returns

if

the

wcstol

or

wcstoll

subroutine

is

successful,

applications

should

set

the

errno

global

variable

to

0

before

calling

either

subroutine,

and

check

errno

after

return.

If

the

errno

global

value

has

changed,

an

error

occurred.

Examples

To

convert

a

wide-character

string

to

a

signed

long

integer,

use

the

following

code:

#include

<stdlib.h>

#include

<locale.h>

#include

<errno.h>

main()

{

wchar_t

*WCString,

*endptr;

long

int

retval;

(void)setlocale(LC_ALL,

"");

/**Set

errno

to

0

so

a

failure

for

wcstol

can

be

**detected

*/

errno=0;

/*

**Let

WCString

point

to

a

wide

character

null

terminated

**

string

containing

a

signed

long

integer

value

**

*/retval

=

wcstol

(

WCString

&endptr,

0

);

/*

Check

errno,

if

it

is

non-zero,

wcstol

failed

*/

if

(errno

!=

0)

{

/*Error

handling*/

}

else

if

(&WCString

==

endptr)

{

/*

No

conversion

could

be

performed

*/

/*

Handle

this

case

accordingly.

*/

}

/*

retval

contains

long

integer

*/

}

Related

Information

The

iswspace

subroutine,

wcstod

(“wcstod,

wcstof,

or

wcstold

Subroutine”

on

page

456)

subroutine,

wcstoul

(“wcstoul

or

wcstoull

Subroutine”

on

page

464)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Wide

Character

String

Conversion

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

wcstombs

Subroutine

Purpose

Converts

a

sequence

of

wide

characters

into

a

sequence

of

multibyte

characters.

462

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

size_t

wcstombs

(

String,

WcString,

Number)

char

*String;

const

wchar_t

*WcString;

size_t

Number;

Description

The

wcstombs

subroutine

converts

the

sequence

of

wide

characters

pointed

to

by

the

WcString

parameter

to

a

sequence

of

corresponding

multibyte

characters

and

places

the

results

in

the

area

pointed

to

by

the

String

parameter.

The

conversion

is

terminated

when

the

null

wide

character

is

encountered

or

when

the

number

of

bytes

specified

by

the

Number

parameter

(or

the

value

of

the

Number

parameter

minus

1)

has

been

placed

in

the

area

pointed

to

by

the

String

parameter.

If

the

amount

of

space

available

in

the

area

pointed

to

by

the

String

parameter

would

cause

a

partial

multibyte

character

to

be

stored,

the

subroutine

uses

a

number

of

bytes

equalling

the

value

of

the

Number

parameter

minus

1,

because

only

complete

multibyte

characters

are

allowed.

Parameters

String

Points

to

the

area

where

the

result

of

the

conversion

is

stored.

If

the

String

parameter

is

a

null

pointer,

the

subroutine

returns

the

number

of

bytes

required

to

hold

the

conversion.

WcString

Points

to

a

wide-character

string.

Number

Specifies

a

number

of

bytes

to

be

converted.

Return

Values

The

wcstombs

subroutine

returns

the

number

of

bytes

modified.

If

a

wide

character

is

encountered

that

is

not

valid,

a

value

of

-1

is

returned.

Error

Codes

The

wcstombs

subroutine

is

unsuccessful

if

the

following

error

occurs:

EILSEQ

An

invalid

character

sequence

is

detected,

or

a

wide-character

code

does

not

correspond

to

a

valid

character.

Related

Information

The

mbstowcs

subroutine,

mbtowc

subroutine,

wcslen

(“wcslen

Subroutine”

on

page

450)

subroutine,

wctomb

(“wctomb

Subroutine”

on

page

469)

subroutine.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

and

Multibyte

Code

and

Wide

Character

Code

Conversion

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

463

wcstoul

or

wcstoull

Subroutine

Purpose

Converts

wide

character

strings

to

unsigned

long

or

long

long

integer

representation.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

unsigned

long

int

wcstoul

(Nptr,

Endptr,

Base)

const

wchar_t

*

Nptr;

wchar_t

**

Endptr;

int

Base;

unsigned

long

long

int

wcstoull

(Nptr,

Endptr,

Base)

const

wchar_t

*Nptr;

wchar_t

**Endptr;

int

Base;

Description

The

wcstoul

and

wcstoull

subroutines

convert

the

initial

portion

of

the

wide

character

string

pointed

to

by

the

Nptr

parameter

to

an

unsigned

long

or

long

long

integer

representation.

To

do

this,

it

parses

the

wide

character

string

pointed

to

by

the

Nptr

parameter

to

obtain

a

valid

string

(that

is,

subject

string)

for

the

purpose

of

conversion

to

an

unsigned

long

integer.

It

then

points

the

Endptr

parameter

to

the

position

where

an

unrecognized

character,

including

the

terminating

null,

is

found.

The

base

specified

by

the

Base

parameter

can

take

the

following

values:

0

through

9,

a

(or

A)

through

z

(or

Z).

There

are

potentially

36

values

for

the

base.

If

the

base

value

is

0,

the

expected

form

of

the

subject

string

is

that

of

an

unsigned

integer

constant,

with

an

optional

+

(plus

sign)

or

-

(minus

sign),

but

not

including

the

integer

suffix.

If

the

base

value

is

between

2

and

36,

the

expected

form

of

the

subject

sequence

is

a

sequence

of

letters

and

digits

representing

an

integer

with

the

radix

specified

by

the

Base

parameter,

optionally

preceded

by

a

+

or

-,

but

not

including

an

integer

suffix.

The

letters

a

(or

A)

through

z

(or

Z)

are

ascribed

the

values

of

10

to

35.

Only

letters

whose

values

are

less

than

that

of

the

base

are

permitted.

If

the

value

of

the

base

is

16,

the

characters

0x

(or

0X)

may

optionally

precede

the

sequence

of

letters

or

digits,

following

a

+

or

-

.

present.

The

wide

character

string

is

parsed

to

skip

the

initial

white-space

characters

(as

determined

by

the

iswspace

subroutine).

Any

nonspace

character

signifies

the

start

of

a

subject

string

that

may

form

an

unsigned

long

integer

in

the

radix

specified

by

the

Base

parameter.

The

subject

sequence

is

defined

to

be

the

longest

initial

substring

that

is

an

unsigned

long

integer

of

the

expected

form.

Any

character

not

satisfying

this

expected

form

begins

the

final

portion

of

the

wide

character

string

pointed

to

by

the

Endptr

parameter

on

return

from

the

call

to

this

subroutine.

Parameters

Nptr

Contains

a

pointer

to

the

wide

character

string

to

be

converted

to

an

unsigned

long

integer.

Endptr

Contains

a

pointer

to

the

position

in

the

Nptr

string

where

a

wide

character

is

found

that

is

not

a

valid

character

for

the

purpose

of

this

conversion.

Base

Specifies

the

radix

in

which

the

wide

characters

are

interpreted.

464

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

The

wcstoul

and

wcstoull

subroutines

return

the

converted

value

of

the

unsigned

long

or

long

long

integer

if

the

expected

form

is

found.

If

no

conversion

could

be

performed,

a

value

of

0

is

returned.

If

the

converted

value

is

outside

the

range

of

representable

values,

a

ULONG_MAX

value

is

returned

(for

wcstoul),

and

ULLONG_MAX

is

returned

(for

wcstoull),

and

the

value

of

the

errno

global

variable

is

set

to

a

ERANGE

value.

If

the

subject

sequence

has

the

expected

form,

it

is

interpreted

as

an

integer

constant

in

the

appropriate

base.

A

pointer

to

the

final

string

is

stored

in

the

Endptr

parameter

if

that

parameter

is

not

a

null

pointer.

If

the

subject

sequence

is

empty

or

does

not

have

a

valid

form,

no

conversion

is

done

and

the

value

of

the

Nptr

parameter

is

stored

in

the

Endptr

parameter

if

it

is

not

a

null

pointer.

If

the

radix

specified

by

the

Base

parameter

is

not

supported,

an

EINVAL

value

is

returned.

If

the

value

to

be

returned

is

not

representable,

an

ERANGE

value

is

returned.

Examples

To

convert

a

wide

character

string

to

an

unsigned

long

integer,

use

the

following

code:

#include

<stdlib.h>

#include

<locale.h>

#include

<errno.h>

extern

int

errno;

main()

{

wchar_t

*WCString,

*EndPtr;

unsigned

long

int

retval;

(void)setlocale(LC_ALL,

"");

/*

**

Let

WCString

point

to

a

wide

character

null

terminated

**

string

containing

an

unsigned

long

integer

value.

**

*/

retval

=

wcstoul

(

WCString

&EndPtr,

0

);

if(retval==0)

{

/*

No

conversion

could

be

performed

*/

/*

Handle

this

case

accordingly.

*/

}

else

if(retval

==

ULONG_MAX)

{

/*

Error

handling

*/

}

/*

retval

contains

the

unsigned

long

integer

value.

*/

}

Related

Information

National

Language

Support

Overview

and

Wide

Character

String

Conversion

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

wcswcs

Subroutine

Purpose

Locates

first

occurrence

of

a

wide

character

in

a

string.

Library

Standard

C

Library

(libc.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

465

Syntax

#include

<string.h>

wchar_t

*wcswcs(

WcString1,

WcString2)

const

wchar_t

*WcString1,

*WcString2;

Description

The

wcswcs

subroutine

locates

the

first

occurrence,

in

the

string

pointed

to

by

the

WcString1

parameter,

of

a

sequence

of

wchar_t

characters

(excluding

the

terminating

wchar_t

null

character)

from

the

string

pointed

to

by

the

WcString2

parameter.

Parameters

WcString1

Points

to

the

wide-character

string

being

searched.

WcString2

Points

to

a

wide-character

string,

which

is

a

source

string.

Return

Values

The

wcswcs

subroutine

returns

a

pointer

to

the

located

string,

or

a

null

value

if

the

string

is

not

found.

If

the

WcString2

parameter

points

to

a

string

with

0

length,

the

function

returns

the

WcString1

value.

Related

Information

The

mbspbrk

subroutine,

wcschr

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcscspn

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcspbrk

(“wcspbrk

Subroutine”

on

page

452)

subroutine,

wcsrchr

(“wcsrchr

Subroutine”

on

page

452)

subroutine,

wcsspn

(“wcsspn

Subroutine”

on

page

454)

subroutine,

wcstok

(“wcstok

Subroutine”

on

page

459)

subroutine.

National

Language

Support

Overview

and

Wide

Character

String

Search

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

wcswidth

Subroutine

Purpose

Determines

the

display

width

of

wide

character

strings.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

int

wcswidth

(*

Pwcs,

n)

const

wchar_t

*Pwcs;

size_t

n;

466

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

wcswidth

subroutine

determines

the

number

of

display

columns

to

be

occupied

by

the

number

of

wide

characters

specified

by

the

N

parameter

in

the

string

pointed

to

by

the

Pwcs

parameter.

The

LC_CTYPE

category

affects

the

behavior

of

the

wcswidth

subroutine.

Fewer

than

the

number

of

wide

characters

specified

by

the

N

parameter

are

counted

if

a

null

character

is

encountered

first.

Parameters

N

Specifies

the

maximum

number

of

wide

characters

whose

display

width

is

to

be

determined.

Pwcs

Contains

a

pointer

to

the

wide

character

string.

Return

Values

The

wcswidth

subroutine

returns

the

number

of

display

columns

to

be

occupied

by

the

number

of

wide

characters

(up

to

the

terminating

wide

character

null)

specified

by

the

N

parameter

(or

fewer)

in

the

string

pointed

to

by

the

Pwcs

parameter.

A

value

of

zero

is

returned

if

the

Pwcs

parameter

is

a

wide

character

null

pointer

or

a

pointer

to

a

wide

character

null

(that

is,

Pwcs

or

*Pwcs

is

null).

If

the

Pwcs

parameter

points

to

an

unusable

wide

character

code,

-1

is

returned.

Examples

To

find

the

display

column

width

of

a

wide

character

string,

use

the

following:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

*pwcs;

int

retval,

n

;

(void)setlocale(LC_ALL,

"");

/*

Let

pwcs

point

to

a

wide

character

null

terminated

**

string.

Let

n

be

the

number

of

wide

characters

whose

**

display

column

width

is

to

be

determined.

*/

retval=

wcswidth(

pwcs,

n

);

if(retval

==

-1){

/*

Error

handling.

Invalid

wide

character

code

**

encountered

in

the

wide

character

string

pwcs.

*/

}

}

Related

Information

The

wcwidth

(“wcwidth

Subroutine”

on

page

472)

subroutine.

National

Language

Support

Overview

and

Wide

Character

Display

Column

Width

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

wcsxfrm

Subroutine

Purpose

Transforms

wide-character

strings

to

wide-character

codes

of

current

locale.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

467

Library

Standard

C

Library

(libc.a)

Syntax

#include

<string.h>

size_t

wcsxfrm

(

WcString1,

WcString2,

Number)

wchar_t

*WcString1;

const

wchar_t

*WcString2;

size_t

Number;

Description

The

wcsxfrm

subroutine

transforms

the

wide-character

string

specified

by

the

WcString2

parameter

into

a

string

of

wide-character

codes,

based

on

the

collation

values

of

the

wide

characters

in

the

current

locale

as

specified

by

the

LC_COLLATE

category.

No

more

than

the

number

of

character

codes

specified

by

the

Number

parameter

are

copied

into

the

array

specified

by

the

WcString1

parameter.

When

two

such

transformed

wide-character

strings

are

compared

using

the

wcscmp

subroutine,

the

result

is

the

same

as

that

obtained

by

a

direct

call

to

the

wcscoll

subroutine

on

the

two

original

wide-character

strings.

Parameters

WcString1

Points

to

the

destination

wide-character

string.

WcString2

Points

to

the

source

wide-character

string.

Number

Specifies

the

maximum

number

of

wide-character

codes

to

place

into

the

array

specified

by

WcString1.

To

determine

the

necessary

size

specification,

set

the

Number

parameter

to

a

value

of

0,

so

that

the

WcString1

parameter

becomes

a

null

pointer.

The

return

value

plus

1

is

the

size

necessary

for

the

conversion.

Return

Values

If

the

WcString1

parameter

is

a

wide-character

null

pointer,

the

wcsxfrm

subroutine

returns

the

number

of

wide-character

elements

(not

including

the

wide-character

null

terminator)

required

to

store

the

transformed

wide

character

string.

If

the

count

specified

by

the

Number

parameter

is

sufficient

to

hold

the

transformed

string

in

the

WcString1

parameter,

including

the

wide

character

null

terminator,

the

return

value

is

set

to

the

actual

number

of

wide

character

elements

placed

in

the

WcString1

parameter,

not

including

the

wide

character

null.

If

the

return

value

is

equal

to

or

greater

than

the

value

specified

by

the

Number

parameter,

the

contents

of

the

array

pointed

to

by

the

WcString1

parameter

are

indeterminate.

This

occurs

whenever

the

Number

value

parameter

is

too

small

to

hold

the

entire

transformed

string.

If

an

error

occurs,

the

wcsxfrm

subroutine

returns

the

size_t

data

type

with

a

value

of

-1

and

sets

the

errno

global

variable

to

indicate

the

error.

If

the

wide

character

string

pointed

to

by

the

WcString2

parameter

contains

wide

character

codes

outside

the

domain

of

the

collating

sequence

defined

by

the

current

locale,

the

wcsxfrm

subroutine

returns

a

value

of

EINVAL.

Related

Information

The

wcscmp

(“wcscat,

wcschr,

wcscmp,

wcscpy,

or

wcscspn

Subroutine”

on

page

445)

subroutine,

wcscoll

(“wcscoll

Subroutine”

on

page

447)

subroutine.

National

Language

Support

Overview

and

Wide

Character

String

Collation

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

468

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

wctob

Subroutine

Purpose

Wide-character

to

single-byte

conversion.

Library

Standard

library

(libc.a)

Syntax

#include

<stdio.h>

#include

<wchar.h>

int

wctob

(wint_t

c);

Description

The

wctob

function

determines

whether

c

corresponds

to

a

member

of

the

extended

character

set

whose

character

representation

is

a

single

byte

when

in

the

initial

shift

state.

The

behavior

of

this

function

is

affected

by

the

LC_CTYPE

category

of

the

current

locale.

Return

Values

The

wctob

function

returns

EOF

if

c

does

not

correspond

to

a

character

with

length

one

in

the

initial

shift

state.

Otherwise,

it

returns

the

single-byte

representation

of

that

character.

Related

Information

The

btowc

subroutine.

wctomb

Subroutine

Purpose

Converts

a

wide

character

into

a

multibyte

character.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<stdlib.h>

int

wctomb

(

Storage,

WideCharacter)

char

*Storage;

wchar_t

WideCharacter;

Description

The

wctomb

subroutine

determines

the

number

of

bytes

required

to

represent

the

wide

character

specified

by

the

WideCharacter

parameter

as

the

corresponding

multibyte

character.

It

then

converts

the

WideCharacter

value

to

a

multibyte

character

and

stores

the

results

in

the

area

pointed

to

by

the

Storage

parameter.

The

wctomb

subroutine

can

store

a

maximum

of

MB_CUR_MAX

bytes

in

the

area

pointed

to

by

the

Storage

parameter.

Thus,

the

length

of

the

area

pointed

to

by

the

Storage

parameter

should

be

at

least

MB_CUR_MAX

bytes.

The

MB_CUR_MAX

macro

is

defined

in

the

stdlib.h

file.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

469

Parameters

Storage

Points

to

an

area

where

the

result

of

the

conversion

is

stored.

WideCharacter

Specifies

a

wide-character

value.

Return

Values

The

wctomb

subroutine

returns

a

0

if

the

Storage

parameter

is

a

null

pointer.

If

the

WideCharacter

parameter

does

not

correspond

to

a

valid

multibyte

character,

a

-1

is

returned.

Otherwise,

the

number

of

bytes

that

comprise

the

multibyte

character

is

returned.

Related

Information

The

mbtowc

subroutine,

mbstowcs

subroutine,

wcslen

(“wcslen

Subroutine”

on

page

450)

subroutine,

wcstombs

(“wcstombs

Subroutine”

on

page

462)

subroutine.

National

Language

Support

Overview

and

Multibyte

Code

and

Wide

Character

Code

Conversion

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

wctrans

Subroutine

Purpose

Define

character

mapping.

Library

Standard

library

(libc.a)

Syntax

#include

<wctype.h>

wctrans_t

wctrans

(const

char

*

charclass);

Description

The

wctrans

function

is

defined

for

valid

character

mapping

names

identified

in

the

current

locale.

The

charclass

is

a

string

identifying

a

generic

character

mapping

name

for

which

codeset-specific

information

is

required.

The

following

character

mapping

names

are

defined

in

all

locales

″tolower″

and

″toupper″.

The

function

returns

a

value

of

type

wctrans_t,

which

can

be

used

as

the

second

argument

to

subsequent

calls

of

towctrans.

The

wctrans

function

determines

values

of

wctrans_t

according

to

the

rules

of

the

coded

character

set

defined

by

character

mapping

information

in

the

program’s

locale

(category

LC_CTYPE).

The

values

returned

by

wctrans

are

valid

until

a

call

to

setlocale

that

modifies

the

category

LC_CTYPE.

Return

Values

The

wctrans

function

returns

0

if

the

given

character

mapping

name

is

not

valid

for

the

current

locale

(category

LC_CTYPE),

otherwise

it

returns

a

non-zero

object

of

type

wctrans_t

that

can

be

used

in

calls

to

towctrans.

470

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Error

Codes

The

wctrans

function

may

fail

if:

EINVAL

The

character

mapping

name

pointed

to

by

charclass

is

not

valid

in

the

current

locale.

Related

Information

The

towctrans

(“towctrans

Subroutine”

on

page

366)

subroutine.

wctype

or

get_wctype

Subroutine

Purpose

Obtains

a

handle

for

valid

property

names

in

the

current

locale

for

wide

characters.

Library

Standard

C

library

(libc.a).

Syntax

#include

<wchar.h>

wctype_t

wctype

(

Property)

const

char

*Property;

wctype_t

get_wctype

(

Property)

char

*Property;

Description

The

wctype

subroutine

obtains

a

handle

for

valid

property

names

for

wide

characters

as

defined

in

the

current

locale.

The

handle

is

of

data

type

wctype_t

and

can

be

used

as

the

WC_PROP

parameter

in

the

iswctype

subroutine.

Values

returned

by

the

wctype

subroutine

are

valid

until

the

setlocale

subroutine

modifies

the

LC_CTYPE

category.

The

get_wctype

subroutine

is

identical

to

the

wctype

subroutine.

The

wctype

subroutine

adheres

to

X/Open

Portability

Guide

Issue

5.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

471

Parameters

Property

Points

to

a

string

that

identifies

a

generic

character

class

for

which

code

set-specific

information

is

required.

The

basic

character

classes

are:

alnum

Alphanumeric

character.

alpha

Alphabetic

character.

blank

Space

and

tab

characters.

cntrl

Control

character.

No

characters

in

alpha

or

print

are

included.

digit

Numeric

digit

character.

graph

Graphic

character

for

printing.

Does

not

include

the

space

character

or

cntrl

characters,

but

does

include

all

characters

in

digit

and

punct.

lower

Lowercase

character.

No

characters

in

cntrl,

digit,

punct,

or

space

are

included.

print

Print

character.

Includes

characters

in

graph,

but

does

not

include

characters

in

cntrl.

punct

Punctuation

character.

No

characters

in

alpha,

digit,

or

cntrl,

or

the

space

character

are

included.

space

Space

characters.

upper

Uppercase

character.

xdigit

Hexadecimal

character.

Return

Values

Upon

successful

completion,

the

subroutine

returns

a

value

of

type

wctype_t,

which

is

a

handle

for

valid

property

names

in

the

current

locale.

Otherwise,

it

returns

a

value

or

-

1

if

the

Property

parameter

specifies

a

character

class

that

is

not

valid

for

the

current

locale.

Related

Information

The

iswalnum

subroutine,

iswalpha

subroutine,

iswcntrl

subroutine,

iswctype

subroutine,

iswdigit

subroutine,

iswgraph

subroutine,

iswlower

subroutine,

iswprint

subroutine,

iswpunct

subroutine,

iswspace

subroutine,

iswupper

subroutine,

iswxdigit

subroutine,

setlocale

(“setlocale

Subroutine”

on

page

136)

subroutine,

towlower

(“towlower

Subroutine”

on

page

367)

subroutine,

towupper

(“towupper

Subroutine”

on

page

368)

subroutine.

National

Language

Support

Overview,

Wide

Character

Classification

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

wcwidth

Subroutine

Purpose

Determines

the

display

width

of

wide

characters.

Library

Standard

C

Library

(libc.a)

472

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<string.h>

int

wcwidth

(

WC)

wchar_t

WC;

Description

The

wcwidth

subroutine

determines

the

number

of

display

columns

to

be

occupied

by

the

wide

character

specified

by

the

WC

parameter.

The

LC_CTYPE

subroutine

affects

the

behavior

of

the

wcwidth

subroutine.

Parameters

WC

Specifies

a

wide

character.

Return

Values

The

wcwidth

subroutine

returns

the

number

of

display

columns

to

be

occupied

by

the

WC

parameter.

If

the

WC

parameter

is

a

wide

character

null,

a

value

of

0

is

returned.

If

the

WC

parameter

points

to

an

unusable

wide

character

code,

-1

is

returned.

Examples

To

find

the

display

column

width

of

a

wide

character,

use

the

following:

#include

<string.h>

#include

<locale.h>

#include

<stdlib.h>

main()

{

wchar_t

wc;

int

retval;

(void)setlocale(LC_ALL,

"");

/*

Let

wc

be

the

wide

character

whose

**

display

width

is

to

be

found.

*/

retval=

wcwidth(

wc

);

if(retval

==

-1){

/*

**

Error

handling.

Invalid

wide

character

in

wc.

*/

}

}

Related

Information

The

wcswidth

(“wcswidth

Subroutine”

on

page

466)

subroutine.

National

Language

Support

Overview,

Wide

Character

Display

Column

Width

Subroutines

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

473

wlm_assign

Subroutine

Purpose

Manually

assigns

processes

to

a

class

or

cancels

prior

manual

assignments

for

processes.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_assign

(

args)

struct

wlm_assign

*args;

Description

The

wlm_assign

subroutine:

v

Assigns

a

set

of

processes

specified

by

their

process

IDs

(PIDS)

or

process

group

IDs

(PGID)

to

a

specified

superclass

or

subclass,

thus

overriding

the

automatic

class

assignment

or

a

prior

manual

assignment.

v

Cancels

a

previous

manual

assignment

for

the

specified

processes,

allowing

the

processes

to

be

subjected

to

the

automatic

assignment

rules

again.

The

target

processes

are

identified

by

their

process

ID

(pid)

or

by

their

process

group

ID

(pgid).

The

wlm_assign

subroutine

allows

specifying

processes

using

a

list

of

pids,

a

list

of

pgids,

or

both.

The

name

of

a

valid

superclass

or

subclass

must

be

specified

to

manually

assign

the

target

processes

to

a

class.

If

the

target

class

is

a

superclass,

each

process

is

assigned

to

one

of

the

subclasses

of

the

specified

superclass

according

to

the

assignment

rules

for

the

subclasses

of

this

superclass.

A

manual

assignment

remains

in

effect

(and

a

process

remains

in

its

manually

assigned

class)

until:

v

The

process

terminates.

v

The

Workload

Manager

(WLM)

is

stopped.

When

WLM

is

restarted,

the

manual

assignments

in

effect

when

WLM

was

stopped

are

lost.

v

The

class

the

process

has

been

assigned

to

is

deleted.

v

The

manual

assignment

for

the

process

is

canceled.

v

A

new

manual

assignment

overrides

a

prior

one.

The

name

of

a

valid

superclass

or

subclass

must

be

specified

to

manually

assign

the

target

processes

to

a

class.

The

assignment

can

be

done

or

canceled

at

the

superclass

level,

the

subclass

level,

or

both.

The

interactions

between

automatic

assignment,

inheritance

and

manual

assignment

are

detailed

in

the

Manual

Assignment

in

WLM

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

Flags

in

the

wa_versflags

field

described

below

are

used

to

specify

if

the

requested

operation

is

an

assignment

or

cancellation

and

at

which

level.

To

assign

a

process

to

a

class

or

cancel

a

prior

manual

assignment,

the

caller

must

have

authority

both

on

the

process

and

on

the

target

class.

These

constraints

translate

into

the

following:

v

The

root

user

can

assign

any

process

to

any

class.

474

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

A

user

with

administration

privileges

on

the

subclasses

of

a

given

superclass

(that

is,

the

user

or

group

name

matches

the

user

or

group

names

specified

in

the

attributes

adminuser

and

admingroup

of

the

superclass)

can

manually

reassign

any

process

from

one

of

the

subclasses

of

this

superclass

to

another

subclass

of

the

superclass.

v

A

user

can

manually

assign

the

user’s

own

processes

(same

real

or

effective

user

ID)

to

a

superclass

or

a

subclass,

for

which

the

user

has

manual

assignment

privileges

(that

is,

the

user

or

group

name

matches

the

user

or

group

names

specified

in

the

attributes

authuser

and

authgroup

of

the

superclass

or

the

subclass).

This

defines

three

levels

of

privilege

among

the

persons

who

can

manually

assign

processes

to

classes,

root

being

the

highest.

For

a

user

to

modify

or

terminate

a

manual

assignment,

the

user

must

be

at

the

same

level

of

privilege

as

the

person

who

issued

the

last

manual

assignment,

or

higher.

Note:

The

wlm_assign

subroutine

works

with

the

in-core

WLM

data

structures.

Even

if

the

WLM

current

configuration

is

a

set,

it

applies

to

the

currently

loaded

regular

configuration.

If

an

assignment

is

made

to

a

class

that

does

not

exist

in

all

configurations

of

the

set,

it

will

be

lost

when

the

first

configuration

that

does

not

contain

this

class

is

activated

(when

the

class

is

deleted).

Parameter

args

Specifies

the

address

of

the

struct

wlm_assign

data

structure

containing

the

parameters

for

the

desired

class

assignment.

The

following

fields

of

the

wlm_args

structure

and

the

embedded

substructures

can

be

provided:

wa_versflags

Needs

to

be

initialized

with

WLM_VERSION.

The

flags

values

available,

defined

in

the

sys/wlm.h

header

file,

are:

v

WLM_ASSIGN_SUPER

v

WLM_ASSIGN_SUB

v

WLM_ASSIGN_BOTH

v

WLM_UNASSIGN_SUPER

v

WLM_UNASSIGN_SUB

v

WLM_UNASSIGN_BOTH

wa_pids

Specifies

the

address

of

the

array

containing

the

process

IDs

of

processes

to

be

manually

assigned.

When

this

list

is

empty,

a

NULL

pointer

can

be

passed

together

with

a

count

of

zero

(0).

wa_pid_count

Specifies

the

number

of

PIDS

in

the

above

array.

Could

be

zero

(0)

if

using

only

pgids

to

identify

the

processes.

wa_pgids

Specifies

the

address

of

the

array

containing

the

process

group

identifiers

(pids)

of

processes

to

be

manually

assigned.

When

this

list

is

empty,

a

NULL

pointer

can

be

passed

together

with

a

count

of

zero

(0).

wa_pgid_count

Specifies

the

number

of

PGIDs

in

the

above

array.

Could

be

zero

(0)

if

using

only

pids

to

identify

the

processes.

If

both

pids

and

pgids

counts

are

zero

(0),

no

process

is

assigned,

but

the

operation

is

considered

successful.

wa_classname

Specifies

the

full

name

of

the

superclass

(super_name)

or

the

subclass

(super_name.sub_name)

of

the

class

you

want

to

manually

assign

processes

to.

The

class

name

field

is

ignored

when

canceling

an

existing

manual

assignment.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

475

Return

Values

Upon

successful

completion,

the

wlm_assign

subroutine

returns

a

value

of

0.

If

the

wlm_assign

subroutine

is

unsuccessful,

a

non-0

value

is

returned.

The

routine

is

considered

successful

if

some

of

the

target

processes

are

not

found,

(to

account

for

process

terminations)

or

are

not

assigned/deassigned

due

to

a

lack

of

privileges,

for

instance.

If

none

of

the

processes

in

the

lists

can

be

assigned/deassigned,

this

is

considered

an

error.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

Manual

Assignment

in

WLM

and

Workload

Manager

Application

Programming

Interface

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

wlm_change_class

Subroutine

Purpose

Changes

some

of

the

attributes

of

a

class.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_change_class

(

wlmargs)

struct

wlm_args

*wlmargs;

Description

The

wlm_change_class

subroutine

changes

attributes

of

an

existing

superclass

or

subclass.

Except

for

its

name,

any

of

the

attributes

of

the

class

can

be

modified

by

a

call

to

wlm_change_class.

v

If

the

name

of

a

valid

configuration

is

passed

in

the

confdir

field,

the

subroutine

updates

the

Workload

Manager

(WLM)

properties

files

for

the

target

configuration.

v

If

a

null

string

(’\0’)

is

passed

in

the

confdir

field,

the

changes

are

applied

only

to

the

in-core

WLM

data.

No

WLM

properties

file

is

updated.

The

structure

of

type

struct

class_definition,

which

is

part

of

struct

wlm_args,

has

normally

been

initialized

with

a

call

to

wlm_init_class_definition.

Once

this

has

been

done,

initialize

the

required

fields

of

this

structure

(such

as

the

name

of

the

class

to

be

modified)

and

the

fields

corresponding

to

the

class

attributes

you

want

to

modify.

For

a

description

of

the

possible

values

for

the

various

class

attributes

and

their

default

values,

refer

to

the

description

of

wlm.h

in

the

AIX

5L

Version

5.2

Files

Reference.

The

caller

must

have

root

authority

to

change

the

attributes

of

a

superclass

and

must

have

administrator

authority

on

a

superclass

to

change

the

attributes

of

a

subclass

of

the

superclass.

Note:

Do

not

specify

a

set

in

the

confdir

field

of

the

wlm_args

structure.

The

wlm_change_class

subroutine

cannot

apply

to

a

set

of

time-based

configurations.

476

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

wlmargs

Specifies

the

address

of

the

struct

wlm_args

data

structure

containing

the

class_definition

structure

for

the

class

to

be

modified.

The

following

fields

of

the

wlm_args

structure

and

the

embedded

substructures

need

to

be

provided:

versflags

Needs

to

be

initialized

with

WLM_VERSION.

confdir

Specifies

the

name

of

the

WLM

configuration

the

target

class

belongs

to.

It

must

be

either

the

name

of

a

valid

subdirectory

of

/etc/wlm

or

an

empty

string

(starting

with

’\0’).

If

the

name

is

a

valid

subdirectory,

the

relevant

class

description

file

in

the

given

configuration

are

modified.

If

the

name

is

a

null

string,

no

description

files

are

updated.

The

modified

class

attributes

are

passed

to

the

kernel

similarly

to

a

call

to

wlm_load.

name

Specifies

the

name

of

the

superclass

or

of

the

subclass

to

be

modified.

If

this

is

a

subclass

name,

it

must

be

of

the

form

super_name.sub_name.

There

is

no

default

for

this

field.

All

the

other

fields

can

be

left

at

their

initial

value

as

set

by

wlm_init_class_definition

if

the

user

does

not

wish

to

change

the

current

values.

Return

Values

Upon

successful

completion,

the

wlm_change_class

subroutine

returns

a

value

of

0.

If

the

wlm_change_class

subroutine

is

unsuccessful,

a

nonzero

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

wlm.h

header

file.

The

wlm_create_class

(“wlm_create_class

Subroutine”

on

page

481)

subroutine,

wlm_delete_class

(“wlm_delete_class

Subroutine”

on

page

483)

subroutine.

Workload

Manager

Application

Programming

Interface

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

wlm_check

subroutine

Purpose

Check

a

WLM

configuration.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

477

int

wlm_check

(

config)

char

*config;

Description

The

wlm_check

subroutine

checks

the

class

definitions

and

the

coherency

of

the

assignment

rules

file(s)

(syntax,

existence

of

the

classes,

validity

of

user

and

group

names,

application

path

names,

etc.)

for

the

configuration

whose

name

is

passed

as

an

argument.

If

config

is

a

null

pointer

or

points

to

an

empty

string,

wlm_check

performs

the

checks

on

the

configuration

files,

in

the

configuration

pointed

to

by

/etc/wlm/current.

The

wlm_check

subroutine

can

apply

to

a

configuration

set.

If

config

is

a

configuration

set

name

(or

if

config

is

not

provided

and

current

is

a

configuration

set),

the

checks

mentioned

above

are

performed

on

all

configurations

of

the

set,

after

checking

the

set

itself.

Parameter

config

A

pointer

to

a

character

string.

This

pointer

should

be:

v

The

address

of

a

character

string

representing

the

name

of

a

valid

configuration

(a

subdirectory

of

/etc/wlm)

v

A

null

pointer

v

A

pointer

to

a

null

string

(″″)

If

config

is

a

null

pointer

or

a

pointer

to

a

null

string,

the

configuration

files

in

the

directory

pointed

to

by

/etc/wlm/current

(active

configuration)

is

checked

for

errors.

Otherwise,

the

configuration

files

in

directory

/etc/wlm/<config_name>

is

checked.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned.

If

the

wlm_checksubroutine

is

unsuccessful

a

non

0

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

header

file

sys/wlm.h.

Related

Information

The

wlm.h

header

file.

System

Management

Concepts:

Operating

System

and

Devices,

Chapter

13

Workload

Manager,

Automatic

class

Assignment.

The

rules

file.

wlm_classify

Subroutine

Purpose

Determines

which

classes

a

process

is

assigned

to.

Library

Workload

Manager

Library

(libwlm.a)

478

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<sys/wlm.h>

int

wlm_classify

(

config,

attributes,

class,

len)

char

*config;

char

*attributes;

char

*class;

int

*len;

Description

The

wlm_classify

subroutine

must

be

passed

the

name

of

a

valid

configuration

and

a

set

of

process

attributes

in

a

format

identical

to

the

format

of

the

rules

file

(assignment

rules).

The

names

of

the

classes

are

copied

into

the

area

pointed

to

by

class.

The

integer

pointed

to

by

len

contains

the

size

of

the

class

names

area

on

input

and

the

number

of

matches

on

output.

If

the

area

pointed

to

by

class

is

not

big

enough

to

contain

the

names

of

all

the

potential

matches,

an

error

is

returned.

The

normal

use

of

the

wlm_classify

routine

is

to

explicitly

provide

all

the

process

classification

attributes:

user

name,

group

name,

application

pathname,

type,

and

tag

when

applicable.

This

gives

a

match

to

a

single

class.

To

implement

″what

if″

scenarios,

the

interface

allows

you

to

leave

some

of

the

attributes

unspecified

by

using

a

hyphen

(’-’)

instead.

This

may

lead

to

multiple

classes

the

process

could

be

assigned

to,

depending

on

the

values

of

the

unspecified

attributes.

If

all

the

attributes

are

left

unspecified,

an

error

is

returned.

The

attributes

string

is

provided

in

a

format

identical

to

the

format

of

the

attributes

in

the

rules

file:

a

list

of

attribute

values

separated

by

spaces.

The

order

of

the

attributes

in

the

assignment

rules

is:

1.

reserved:

must

be

a

hyphen

(’-’)

2.

user

name

3.

group

name

4.

application

pathname

5.

type

of

application

6.

tag

Each

field

can

have

at

most

one

value.

Exclusion

(!),

attribute

value

groupings

($),

comma

separated

lists

and

wild

cards

are

not

allowed.

For

the

type

field,

the

AND

operator

″+″

is

allowed,

since

a

process

can

have

several

of

the

possible

values

for

the

type

attribute

at

the

same

time.

For

instance

a

process

can

be

a

32

bit

process

and

call

plock,

or

be

a

64

bit

fixed

priority

process.

Here

are

examples

of

valid

attributes

strings:

"-

bob

staff

/usr/bin/emacs

-

-"

"-

-

-

/usr/sbin/dbserv

-

_DB1"

"-

-

devlt

-

32bit+fixed"

"-

sally"

The

class

name(s)

returned

by

the

function

in

the

class

buffer

is

fully-qualified,

null-terminated

class

names

of

the

form

supername.subname.

This

function

does

not

require

any

special

privileges

and

can

be

called

by

all

users.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

479

Parameters

config

Specifies

a

pointer

to

a

string

containing

the

name

of

a

valid

Workload

Manager

(WLM)

configuration

(the

name

of

a

subdirectory

of

/etc/wlm).

If

a

null

string

(’\0’)

is

given,

the

wlm_classify

subroutine

uses

current

as

the

default

configuration.

If

the

configuration

is

a

set

of

time-based

configurations,

either

because

config

or

current

is

a

configuration

set,

the

subroutine

will

apply

to

the

currently

applicable

configurations

of

the

set.

attributes

Specifies

the

address

of

a

string,

with

the

format

described

above,

containing

a

list

of

values

for

the

process

attributes

used

for

automatic

classification

of

processes.

class

Specifies

a

pointer

to

a

buffer

where

the

name

of

the

class

the

process

could

be

assigned

to

is

returned

as

consecutive

null-terminated

character

strings.

len

Specifies

a

pointer

to

an

integer

containing

the

length

in

bytes

of

the

buffer

pointed

to

by

class

when

calling

wlm_classify

and

the

actual

number

of

class

names

copied

into

the

class

buffer

upon

successful

return.

Return

Values

Upon

successful

completion,

the

wlm_classify

subroutine

returns

a

value

of

0.

In

case

of

error,

a

non-0

value

is

returned.

When

a

non-0

value

is

returned,

the

content

of

the

class

buffer

and

the

value

of

the

integer

pointed

to

by

len

are

unspecified.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

wlmcheck

command.

The

wlm.h

header

file.

Workload

Manager

rules

File

in

AIX

5L

Version

5.2

Files

Reference.

Automatic

assignment

(“wlm_classify

Subroutine”

on

page

478)

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

wlm_class2key

Subroutine

Purpose

Class

name

to

key

translation.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_class2key

(

struct

wlm_args

*args,

wlm_key_t

*key)

480

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

wlm_class2key

subroutine

generates

a

64-bit

numeric

key

from

a

WLM

class

name.

The

wlm_class2key

subroutine

is

provided

for

applications

gathering

high

volumes

of

per-class

usage

statistics

or

accounting

data

and

allows

those

applications

to

save

storage

space

by

compressing

the

class

name

(up

to

34

characters

long)

into

a

64-bit

integer.

The

wlm_key2class

subroutine

can

then

get

the

key-to-class

name

conversion

for

data

reporting

purposes

Parameters

wlm_args

Only

2

fields

need

to

be

initialized

in

the

wlm_args

structure

pointed

to

by

args:

v

cl_def.data.descr.name

specifies

the

null

terminated

full

name

of

the

class

(<super_name>.<subname>

for

a

subclass).

v

versflags

initialized

with

WLM_VERSION

and

optionally

WLM_MUTE.

Return

Values

If

the

wlm_class2key

subroutine

is

successful,

a

value

of

0

is

returned.

If

the

wlm_class2key

subroutine

is

unsuccessful,

an

error

code

is

returned.

Error

Codes

If

the

wlm_class2key

subroutine

is

unsuccessful,

one

of

the

following

error

codes

is

returned:

WLM_NOT_INITED

Missing

call

to

wlm_init.

WLM_EFAULT

Invalid

key

or

args

pointer.

WLM_BADCNAME

The

class

name

contains

invalid

characters.

Related

Information

The

wlm_endkey

subroutine.

The

wlm_initkey

subroutine.

The

wlm_key2class

subroutine.

wlm_create_class

Subroutine

Purpose

Creates

a

new

Workload

Manager

(WLM)

class.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_create_class

(

wlmargs)

struct

wlm_args

*wlmargs;

Description

The

wlm_create_class

subroutine

creates

a

new

class

for

a

given

WLM

configuration

using

the

values

passed

in

the

data

structure

of

type

struct

wlm_args

pointed

to

by

wlmargs.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

481

v

If

the

name

of

a

configuration

is

passed

in

the

confdir

field,

the

subroutine

updates

the

WLM

properties

files

for

the

target

configuration.

When

creating

the

first

subclass

of

a

superclass,

the

subroutine

creates

a

subdirectory

of

/etc/wlm/<confdir>

with

the

name

of

the

superclass

and

create

the

WLM

properties

files

in

this

new

directory.

The

newly

created

properties

files

have

entries

for

the

Default

and

Shared

subclass

automatically

created

in

addition

to

entries

for

the

new

subclass.

v

If

a

null

string

(’\0’)

is

passed

in

the

confdir

field,

the

new

superclass

or

subclass

is

created

only

in

the

in-core

WLM

data.

No

WLM

properties

file

are

updated.

In

that

case,

the

new

class

definition

is

lost

if

WLM

is

stopped

and

restarted,

or

if

the

system

reboots.

The

structure

of

type

struct

class_definition,

which

is

part

of

struct

wlm_args,

has

normally

been

initialized

with

a

call

to

wlm_init_class_definition.

Once

this

has

been

done,

initialize

the

fields

of

this

structure

which

have

no

default

value

(such

as

the

name

of

the

new

class)

or

for

which

the

desired

value

is

different

from

the

default

value.

For

a

description

of

the

possible

values

for

all

the

class

attributes

and

their

default

values,

refer

to

the

description

of

wlm.h

in

the

AIX

5L

Version

5.2

Files

Reference.

The

caller

must

have

root

authority

to

create

a

superclass

and

must

have

administrator

authority

on

a

superclass

to

create

a

subclass

of

the

superclass.

Note:

Do

not

specify

a

set

in

the

confdir

field

of

the

wlm_args

structure.

The

wlm_create_class

subroutine

cannot

apply

to

a

set

of

time-based

configurations.

Parameter

wlmargs

Specifies

the

address

of

the

struct

wlm_args

data

structure

containing

the

class_definition

structure

for

the

new

class

to

be

created.

The

following

fields

of

the

wlm_args

structure

and

the

embedded

substructures

need

to

be

provided:

versflags

Needs

to

be

initialized

with

WLM_VERSION.

confdir

Specifies

the

name

of

the

WLM

configuration

the

new

class

is

to

be

added

to.

It

must

be

either

the

name

of

a

valid

subdirectory

of

/etc/wlm

or

an

empty

string

(starting

with

’\0’).

If

the

name

is

a

valid

subdirectory,

the

new

class

data

is

added

to

the

given

WLM

configuration’s

class

description

files.

If

the

name

is

a

null

string,

no

description

files

are

updated.

The

new

class

is

created

and

the

data

is

passed

to

the

kernel

immediately.

name

Specifies

the

name

of

the

superclass

or

of

the

subclass

to

be

created.

If

this

is

a

subclass

name,

it

must

be

of

the

form

super_name.sub_name.

There

is

no

default

for

this

field.

All

the

other

fields

can

be

left

at

their

default

value

if

the

user

does

not

wish

to

use

specific

values.

Return

Values

Upon

successful

completion,

the

wlm_create_class

subroutine

returns

a

value

of

0.

If

the

wlm_create_class

subroutine

is

unsuccessful,

a

nonzero

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

mkclass

command,

chclass

command,

rmclass

command.

The

wlm.h

header

file.

482

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

wlm_change_class

(“wlm_change_class

Subroutine”

on

page

476)

subroutine,

wlm_delete_class

(“wlm_delete_class

Subroutine”)

subroutine.

Workload

Management

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

wlm_delete_class

Subroutine

Purpose

Deletes

a

class.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_delete_class

(

wlmargs)

struct

wlm_args

*wlmargs;

Description

The

wlm_delete_class

subroutine

deletes

an

existing

superclass

or

subclass.

A

superclass

cannot

be

deleted

if

it

still

has

subclasses

other

than

Default

and

Shared

defined.

v

If

the

name

of

a

valid

configuration

is

passed

in

the

confdir

field,

the

subroutine

updates

the

Workload

Manager

(WLM)

properties

files

for

the

target

configuration,

removing

all

references

to

the

class

to

be

deleted.

v

If

a

null

string

(’\0’)

is

passed

in

the

confdir

field,

the

class

is

deleted

only

from

the

in-core

WLM

data

structures.

No

WLM

properties

file

is

updated.

This

is

normally

used

to

delete

a

class

which

was

also

only

created

in

the

in-core

WLM

data

structures.

Otherwise,

the

class

deletion

is

temporary

and

the

class

will

be

created

again

when

WLM

is

updated

or

restarted

with

a

configuration

where

the

class

exists

in

the

classes

file.

The

caller

must

have

root

authority

to

delete

a

superclass

and

must

have

administrator

authority

on

a

superclass

to

delete

a

subclass

of

the

superclass.

Note:

Do

not

specify

a

set

in

the

confdir

field

of

the

wlm_args

structure.

The

wlm_delete_class

subroutine

cannot

apply

to

a

set

of

time-based

configurations.

Parameter

wlmargs

Specifies

the

address

of

the

struct

wlm_args

data

structure

containing

the

information

about

the

class

to

be

deleted.

The

following

fields

of

the

wlm_args

structure

and

the

embedded

substructures

need

to

be

provided:

versflags

Needs

to

be

initialized

with

WLM_VERSION.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

483

confdir

Specifies

the

name

of

the

WLM

configuration

the

target

class

belongs

to.

It

must

be

either

the

name

of

a

valid

subdirectory

of

/etc/wlm

or

an

empty

string

(starting

with

’\0’).

If

the

name

is

a

valid

subdirectory,

the

relevant

class

description

files

in

the

specified

configuration

are

modified.

If

the

name

is

a

null

string,

no

description

files

are

updated.

The

class

is

removed

from

the

kernel

WLM

data

structures.

name

Specifies

the

name

of

the

superclass

or

of

the

subclass

to

be

deleted.

If

this

is

a

subclass

name,

it

must

be

of

the

form

super_name.sub_name.

There

is

no

default

for

this

field.

All

the

other

fields

can

be

left

uninitialized

for

this

call.

Return

Values

Upon

successful

completion,

the

wlm_delete_class

subroutine

returns

a

value

of

0.

If

the

wlm_delete_class

subroutine

is

unsuccessful,

a

non-0

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

mkclass

command,

chclass

command,

rmclass

command.

The

wlm.h

header

file.

The

wlm_change_class

(“wlm_change_class

Subroutine”

on

page

476)

subroutine,

wlm_create_class

(“wlm_create_class

Subroutine”

on

page

481)

subroutine.

Workload

Management

in

AIX

5L

Version

5.2

System

Management

Concepts:

Operating

System

and

Devices.

wlm_endkey

Subroutine

Purpose

Frees

the

classes

to

keys

translation

table.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_endkey(struct

wlm_args

*args,

void

*ctx)

484

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

wlm_endkey

subroutine

frees

the

classes

to

the

keys

translation

table.

The

memory

area

pointed

to

by

ctx

is

freed.

Parameters

-

ctx

Points

to

the

memory

area

to

be

freed.

wlm_args

A

pointer

to

a

wlm_args

structure:

versflag

field

is

the

only

field

in

the

structure

that

needs

to

be

initialized

with

WLM_VERSION

and

optionally

WLM_MUTE.

Return

Values

When

the

wlm_endkey

operation

is

successful,

it

returns

a

value

of

0,

and

if

it

is

unsuccessful,

it

returns

an

error

code.

Error

Codes

If

the

wlm_endkey

subroutine

is

unsuccessful,

one

of

the

following

error

codes

is

returned:

WLM_BADVERS

Bad

version

number.

WLM_NOT_INITED

Missing

call

to

wlm_init.

WLM_EFAULT

Invalid

ctx

or

args

argument.

Related

Information

The

wlm_class2key

subroutine.

The

wlm_initkey

subroutine.

The

wlm_key2class

subroutine.

wlm_get_bio_stats

subroutine

Purpose

Read

the

WLM

disk

I/O

statistics

per

class

or

per

device.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/types.h>

#include

<sys/wlm.h>

int

wlm_get_bio_stats

(

dev,

array,

count,

class,

flags)

dev_t

dev;

void

*array;

int

*count;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

485

char

*class;

int

flags;

Description

The

wlm_get_bio_stats

subroutine

is

used

to

get

the

WLM

disk

IO

statistics.

There

are

two

types

of

statistics

available:

v

The

statistics

about

disk

IO

utilization

per

class

and

per

devices,

returned

by

wlm_get_bio_stats

in

wlm_bio_class_info_t

structures,

v

The

statistics

about

the

disk

IO

utilization

per

device,

all

classes

combined,

returned

by

wlm_get_bio_stats

in

wlm_bio_dev_info_t

structures.

The

type

of

statistics

returned

by

the

function

is

predicated

on

the

value

of

the

flags

argument.

The

flags

argument,

together

with

the

dev

and

class

arguments,

are

used

to

restrict

the

scope

of

the

function

to

a

class

or

a

set

of

classes

and/or

a

device

or

a

set

of

devices.

If

the

value

passed

to

the

routine

in

the

count

argument

is

equal

to

zero

(0),

wlm_get_bio_stats

does

not

copy

any

device

statistics

(and,

in

this

case,

the

array

argument

can

be

a

NULL

pointer

but

sets

this

count

to

the

number

of

elements

in

scope

for

the

specific

set

of

parameters.

This

is

a

way

of

finding

out

how

big

an

array

is

needed

to

get

all

the

information

for

a

given

set

of

classes

and

devices.

wlm_get_bio_stats

does

not

require

any

special

privileges

and

is

accessible

to

all

users.

wlm_get_bio_stats

fails

if

WLM

is

off.

Parameters

flags

Need

to

be

initialized

with

WLM_VERSION.

Optionally,

the

following

flag

values

can

be

or’ed

to

WLM_VERSION:

WLM_SUPER_ONLY

Limits

the

scope

to

superclasses

only

WLM_SUB_ONLY

Limits

the

scope

to

subclasses

only

WLM_BIO_CLASS_INFO

Per

class

statistics

requested

WLM_BIO_DEV_INFO

Per

device

statistics

requested

WLM_BIO_ALL_DEV

Requests

statistics

for

all

devices.

When

this

flag

is

set,

the

value

passed

in

the

dev

argument

is

ignored.

WLM_BIO_ALL_MINOR

Requests

statistics

for

all

devices

associated

with

a

given

major

number.

When

this

flag

is

set,

only

the

major

number

part

of

the

value

passed

in

the

dev

argument

is

used.

WLM_VERBOSE_MODE

Shows

the

system

defined

subclasses

(Default

and

Shared)even

if

they

have

not

been

modified

by

a

WLM

administrator.

One

of

the

flags

WLM_BIO_CLASS_INFO

or

WLM_BIO_DEV_INFO

(and

only

one)

must

be

specified.

WLM_SUPER_ONLY

and

WLM_SUB_ONLYare

mutually

exclusive.

486

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

dev

Device

identification

(major,

minor)

of

a

disk

device.

v

If

dev

is

equal

to

0,

the

statistics

for

all

devices

are

returned

(even

if

WLM_BIO_ALL_DEV

is

not

specified

in

the

flags

argument).

v

If

dev

is

not

equal

to

0

and

WLM_BIO_ALL_MINOR

is

specified

in

the

flags

argument,

the

statistics

for

all

disk

devices

with

the

same

major

number

specified

in

dev

are

returned.

v

If

dev

is

not

equal

to

0

and

WLM_BIO_ALL_MINOR

is

not

specified

in

the

flags

argument,

only

the

statistics

for

the

disk

device

with

the

major

and

minor

numbers

specified

in

dev

are

returned.

array

Pointer

to

an

array

of

wlm_bio_class_info_t

structures

(when

WLM_BIO_CLASS_INFO

is

specified

in

the

flags

argument)

or

an

array

of

wlm_bio_dev_info_t

structures

(when

WLM_BIO_DEV_INFO

is

specified

in

the

flags

argument).

A

NULL

pointer

can

be

passed

together

with

a

count

of

0

to

determine

how

many

elements

are

in

scope

for

the

set

of

arguments

passed.

count

The

address

of

an

integer

containing

the

maximum

number

of

elements

to

be

copied

into

the

array

above.

If

the

call

to

wlm_get_bio_stats

is

successful,

this

integer

will

contain

the

number

of

elements

actually

copied.

If

the

initial

value

is

equal

to

zero

(0),

wlm_get_bio_stats

sets

this

value

to

the

number

elements

selected

by

the

specified

combination

of

flags

and

class.

class

A

pointer

to

a

character

string

containing

the

name

of

a

superclass

or

subclass.

If

class

is

a

pointer

to

an

empty

string

(″″),

the

information

for

all

classes

are

returned.

The

class

parameter

is

taken

into

account

only

when

the

flag

WLM_BIO_CLASS_INFO

is

set.

Return

Values

Upon

successful

completion,

a

value

of

0

is

returned

and

the

value

pointed

to

by

count

is

set

to

the

number

of

elements

copied

into

the

array

of

structures

pointed

to

by

array.

If

the

wlm_get_bio_stats

subroutine

is

unsuccessful

a

non

0

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

header

file

sys/wlm.h.

Related

Information

The

wlm.h

header

file.

wlm_get_info

Subroutine

Purpose

Read

the

characteristics

of

superclasses

or

subclasses.

Library

Workload

Manager

Library

(libwlm.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

487

Syntax

#include

<sys/wlm.h>

int

wlm_get_info

(

wlmargs,

info,

count)

struct

wlm_args

*wlmargs;

struct

wlm_info

*info

int

*count

Description

The

wlm_get_info

subroutine

is

used

to

get

the

characteristics

of

the

classes

defined

in

the

active

Workload

Manager

(WLM)

configuration,

together

with

their

current

resource

usage

statistics.

For

a

detailed

description

of

the

fields

of

the

structure

wlm_info,

refer

to

the

description

of

the

wlm.h

header

file

in

the

AIX

5L

Version

5.2

Files

Reference

documentation.

By

default,

the

scope

of

the

wlm_get_info

subroutine

is

all

the

superclasses

and

all

the

subclasses.

This

scope

can

be

limited

to

a

subset

of

the

classes

using

flags

in

the

versflags

field

of

wlm_args

or

a

superclass

or

subclass

name

in

the

name

field

of

the

substructure

class_definition

of

wlm_args.

The

information

related

to

the

superclasses

and

subclasses

within

the

scope

of

wlm_get_info

are

copied

to

the

array

of

wlm_info

structures

pointed

to

by

info.

The

total

number

of

classes

for

which

information

is

copied

to

the

array

at

info

is

limited

to

the

value

of

the

integer

pointed

to

by

count.

If

the

routine

is

successful,

the

value

of

the

integer

pointed

to

by

count

is

set

to

the

actual

number

of

classes

copied.

If

the

value

passed

to

the

routine

for

the

count

is

equal

to

zero

(0),

wlm_get_info

does

not

copy

any

class

statistics

but

sets

this

count

to

the

number

of

classes

in

scope

for

the

specific

set

of

parameters.

This

is

a

way

of

finding

out

how

big

an

array

is

needed

to

get

all

the

information

for

a

given

set

of

classes

(superclasses

or

subclasses).

This

is

a

way

of

finding

out

how

big

an

array

is

needed

to

get

all

the

information

for

a

given

set

of

classes

(superclasses

or

subclasses).

The

wlm_get_info

subroutine

does

not

require

any

special

privileges

and

is

accessible

to

all

users.

wlm_get_info

fails

if

WLM

is

off.

Parameters

wlmargs

The

address

of

a

struct

wlm_args

data

structure.

The

following

fields

of

the

wlm_args

structure

and

the

embedded

substructures

need

to

be

provided:

versflags

Needs

to

be

initialized

with

WLM_VERSION.

Optionally,

the

following

flag

value

can

be

or’ed

to

WLM_VERSION:

WLM_SUPER_ONLY

Limits

the

scope

to

superclasses

only

WLM_SUB_ONLY

Limits

the

scope

to

subclasses

only

WLM_VERBOSE_MODE

Shows

the

system-defined

subclasses

(Default

and

Shared)

even

if

they

have

not

been

modified

by

a

WLM

administrator.

488

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

WLM_SUPER_ONLY

and

WLM_SUB_ONLY

are

mutually

exclusive.

name

Contains

either

a

null

string

or

the

name

of

a

valid

superclass

or

subclass

(in

the

form

Super.Sub).

This

field

can

be

used

in

conjunction

with

the

flags

to

further

narrow

the

scope

of

wlm_get_info:

v

If

the

name

of

a

subclass

is

provided,

wlm_get_info

returns

the

statistics

only

for

the

specified

subclass.

v

If

the

name

of

a

superclass

is

provided

or

if

none

of

the

WLM_SUPER_ONLY

and

WLM_SUB_ONLY

flag

is

provided,

wlm_get_info

returns

the

statistics

for

the

specified

superclass

and

all

its

subclasses.

v

If

the

name

of

a

superclass

is

provided

together

with

WLM_SUPER_ONLY,

wlm_get_info

returns

only

the

statistics

for

the

specified

superclass.

v

If

the

name

of

a

superclass

is

provided

together

with

WLM_SUB_ONLY,

wlm_get_info

returns

the

statistics

for

all

the

subclasses

of

the

specified

superclass.

All

the

other

fields

of

the

wlm_args

structure

can

be

left

uninitialized.

info

The

address

of

an

array

of

structures

of

type

struct

wlm_info.

Upon

successful

return

from

wlm_get_info,

this

array

contains

the

WLM

statistics

for

the

classes

selected.

count

The

address

of

an

integer

containing

the

maximum

number

of

element

(of

type

wlm_info)

for

wlm_get_info

to

copy

into

the

array

above.

If

the

call

to

wlm_get_info

is

successful,

this

integer

contains

the

number

of

elements

actually

copied.

If

the

initial

value

is

equal

to

zero

(0),

wlm_get_info

sets

this

value

to

the

number

of

classes

selected

by

the

specified

combination

of

versflags

and

name

above.

Return

Values

Upon

successful

completion,

the

wlm_get_info

subroutine

returns

a

value

of

0.

If

the

wlm_get_info

subroutine

is

unsuccessful

a

non-0

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

wlmstat

command.

The

wlm.h

header

file.

wlm_get_procinfo

Subroutine

Purpose

Retreives

per-process

Workload

Manager

information.

Library

Workload

Manager

Library

(libwlm.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

489

Syntax

#include

<sys/wlm.h>

int

wlm_get_procinfo

(pid,

wlmpinfop)

pid_t

pid;

struct

wlm_procinfo

*wlmpinfop;

Description

The

wlm_get_procinfo

subroutine

returns

Workload

Manager

information

for

the

process

associated

with

the

pid

parameter,

into

the

buffer

pointed

to

by

the

wlmpinfop

parameter.

If

process

total

accounting

is

disabled,

the

related

fields

(totalconnecttime,

termtime,

totalcputime,

and

totaldiskio)

are

set

to

-1.

When

WLM

is

on,

the

class

name

of

the

process

is

set

in

the

classname

field

of

the

wlm_procinfo

structure.

When

WLM

is

off,

this

field

is

set

to

Unclassified.

Parameters

pid

Indicates

from

which

process

to

retrieve

the

Workload

Manager

information.

wlmpinfop

Points

to

the

buffer

where

the

Workload

Manager

information

is

stored.

Return

Values

Upon

successful

completion,

the

wlm_get_procinfo

subroutine

returns

a

zero.

If

the

wlm_get_procinfo

subroutine

is

unsuccessful,

a

nonzero

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

wlm.h

header

file.

wlm_init_class_definition

Subroutine

Purpose

Initializes

a

variable

of

type

struct

class_definition,

defined

in

<sys/wlm.h>

for

use

as

an

argument

to

Workload

Manager

(WLM)

API

function

calls.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_init_class_definition

(

wlmargs)

struct

wlm_args

*wlmargs;

Description

The

wlm_init_class_definition

subroutine

initializes

or

reinitializes

the

data

structure

of

type

struct

class_definition,

which

is

part

of

the

argument

of

type

struct

wlm_args

pointed

to

by

wlmargs

(field

class),

so

that

this

data

structure

can

be

used

as

an

argument

for

the

class

management

subroutines

of

the

WLM

API

library.

The

purpose

of

this

call

is

to

allow

applications

to

initialize

only

the

fields

that

are

490

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

relevant

for

the

operation

they

execute.

For

example,

to

change

a

CPU

limit

or

share

for

an

existing

class

after

a

call

to

wlm_init_class_definition,

the

application

has

to

initialize

the

fields

corresponding

to

the

values

it

wishes

to

modify.

This

routine

initializes

all

values

to

specific

invalid

values

so

that

the

WLM

library

routines

can

find

out

which

fields

have

been

explicitly

initialized

by

the

user.

This

way,

they

can

set

or

modify

only

the

corresponding

attributes.

When

creating

a

class,

for

instance,

it

is

different

to

leave

a

class

attribute

at

its

invalid

value

set

by

wlm_initialize

than

setting

its

value

to

the

current

default

value

for

the

attribute.

In

the

former

case,

the

attribute

will

not

appear

in

the

property

file.

In

the

latter,

it

will

appear

and

will

be

set

with

the

value

passed.

This

makes

a

difference

if

a

WLM

administrator

decides

to

change

the

default

value

for

an

attribute

using

the

special

stanza

default

in

a

property

file.

For

instance,

the

system

default

for

the

inheritance

attribute

is

no.

If

a

WLM

administrator

wants

the

inheritance

to

be

yes

by

default,

using

this

special

stanza,

all

the

classes

in

the

classes

property

file,

for

which

the

inheritance

attribute

has

not

been

specified,

will

now

use

the

default

of

yes.

Those

for

which

the

inheritance

attribute

has

been

specified

with

its

old

default

of

no

will

not

have

inheritance.

Parameter

wlmargs

Specifies

the

address

of

the

struct

wlm_args

data

structure

containing

the

class_definition

structure

to

be

initialized.

Only

the

versflags

field

of

the

wlm_args

structure

passed

need

to

be

initialized

with

WLM_VERSION.

Return

Values

Upon

successful

completion,

the

wlm_init_class_definition

subroutine

returns

a

value

of

0.

If

the

wlm_init_class_definition

subroutine

is

unsuccessful

a

non-0

value

is

returned.

Error

Codes

There

are

two

possible

error

code

returned

by

wlm_init_class_definition:

BADVERSION

Specifies

the

value

of

the

flags

parameter

is

not

a

supported

version

number.

NOTINITED

Specifies

the

WLM

API

has

not

been

initialized

by

a

prior

call

to

wlm_init.

Related

Information

The

wlm.h

header

file.

The

wlm_change_class

(“wlm_change_class

Subroutine”

on

page

476)

subroutine,

wlm_create_class

(“wlm_create_class

Subroutine”

on

page

481)

subroutine,

wlm_delete_class

(“wlm_delete_class

Subroutine”

on

page

483)

subroutine.

wlm_initialize

Subroutine

Purpose

Prepares

Workload

Manager

(WLM)

for

use

by

an

application.

Library

Workload

Manager

Library

(libwlm.a)

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

491

Syntax

#include

<sys/wlm.h>

int

wlm_initialize

(

flags)

int

flags;

Description

The

wlm_initialize

subroutine

initializes

the

WLM

API

for

use

with

an

application

program.

It

is

mandatory

to

call

wlm_initialize

prior

to

using

the

WLM

API.

Otherwise,

all

other

WLM

API

function

calls

return

an

error.

Parameter

flags

Specifies

that

the

format

is

the

same

as

the

versflag

field

of

the

wlm_args

structure.

The

value

for

the

argument

must

have

the

version

number

in

the

upper

4

bits

(WLM_VERSION)

possibly

or’ed

with

a

flag

in

the

lower

28

bits.

Return

Values

Upon

successful

completion,

the

wlm_initialize

subroutine

returns

a

value

of

0.

If

the

wlm_initialize

subroutine

is

unsuccessful

a

non-0

value

is

returned.

Error

Codes

There

are

two

possible

error

codes

returned

by

wlm_initialize:

BADVERSION

The

value

of

the

flags

parameter

is

not

a

supported

version

number.

WLMINITED

There

has

already

been

a

previous

call

to

wlm_initialize.

Related

Information

The

wlm.h

header

file.

wlm_initkey

Subroutine

Purpose

Allocates

and

initializes

the

classes

to

keys

translation

table.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_initkey

(

struct

wlm_args

*args,

void

**ctx)

Description

The

wlm_initkey

subroutine

allocates

a

block

of

memory,

builds

the

keys

<==>

class

names

translation

table

and

returns

its

address

into

the

ctx

argument.

492

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

args

Only

2

fields

need

to

be

initialized

in

the

wlm_args

structure

pointed

to

by

args:

v

confdir

specifies

the

null-terminated

name

of

the

WLM

configuration

to

be

searched

(the

name

can

be

″current″

to

specify

the

current

configuration).

If

the

configuration

name

passed

is

an

empty

string

(starts

with

’\0’),

then

all

the

configurations

in

/etc/wlm

are

searched.

v

versflags

initialized

with

WLM_VERSION

and

optionally

WLM_MUTE.

Return

Values

If

the

wlm_initkey

subroutine

is

successful,

a

value

of

0

is

returned.

If

the

wlm_initkey

subroutine

is

unsuccessful,

an

error

code

is

returned.

Error

Codes

If

the

wlm_initkey

subroutine

is

unsuccessful,

one

of

the

following

error

codes

is

returned:

WLM_BADVERS

Bad

version

number.

WLM_NOT_INITED

Missing

call

to

wlm_init.

WLM_NOMEM

Not

enough

memory.

WLM_NOCLASS

Specified

configuration

does

not

exist.

WLM_EFAULT

Invalid

ctx

or

args

argument.

Related

Information

The

wlm_endkey

subroutine.

The

wlm_class2key

subroutine.

The

wlm_key2class

subroutine.

wlm_key2class

Subroutine

Purpose

Retrieves

a

class

name

from

a

key.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_key2class

(

struct

wlm_args

*args,

wlm_key_t

key,

void

*ctx)

Description

The

wlm_key2class

subroutine

retrieves

a

class

name

from

a

64-bit

key

calculated

using

the

wlm_class2key

subroutine.

The

key-to-class

translation

is

made

by

going

through

the

WLM

configuration

files

for

the

configuration

named

in

the

wlm_args

structure

pointed

to

by

args

(or

all

the

WLM

configuration

files,

if

no

configuration

name

is

given),

and

translating

all

the

class

names

to

a

64-bit

key

until

the

matching

key

is

found.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

493

This

process

is

time

consuming

and

WLM

offers

the

subroutines

wlm_initkey

and

wlm_endkey

for

applications

needing

to

translate

several

64-bit

keys

back

to

class

names.

These

subroutines

can

be

used

in

conjunction

with

the

wlm_key2class

subroutine

to

speed

up

searches.

The

wlm_initkey

subroutine

allocates

a

block

of

memory,

calculates

the

keys

corresponding

to

the

class

names

in

the

configuration(s)

in

scope,

stores

the

names

with

the

corresponding

keys

in

the

memory

buffer,

and

returns

its

address.

This

address

is

passed

to

the

wlm_key2class

subroutine

using

the

ctx

argument,

so

that

wlm_key2class

only

needs

to

search

through

the

memory

buffer.

After

all

keys

have

been

translated

into

class

names,

the

application

must

call

wlm_endkey

to

free

the

memory

buffer.

Alternatively,

for

an

application

translating

only

one

key,

it

is

possible

to

call

wlm_key2class

directly

using

a

null

pointer

in

the

ctx

argument.

This

causes

the

wlm_key2class

subroutine

to

internally

call

wlm_initkey

and

wlm_endkey.

The

method

of

retrieving

class

names

through

the

WLM

configuration

files

implies

that

if

a

class

has

been

deleted

between

the

time

the

class

name

was

converted

into

a

key

and

the

call

to

the

wlm_key2class

subroutine,

the

name

corresponding

to

the

key

will

not

be

found

and

the

wlm_key2class

subroutine

returns

an

error.

Parameters

-

args

A

pointer

to

a

wlm_args

structure:

v

confdir

field

needs

to

be

initialized

as

described

in

wlm_initkey

if

wlm_initkey

has

not

been

previously

invoked

(ctx

==

NULL).

Otherwise,

the

confdir

field

is

ignored.

v

versflags

field

needs

to

be

initialized

with

WLM_VERSION

and

optionally

WLM_MUTE.

-

ctx

The

context

handler

returned

by

wlm_initkey,

or

a

NULL

pointer

otherwise.

.

-

key

The

search

key.

Return

Values

When

the

wlm_key2class

operation

is

successful,

the

first

class

name

matching

the

value

of

the

key

is

returned

in

the

name

sub-field

of

the

wlm_args

structure

pointed

to

by

args.

Error

Codes

If

the

wlm_key2class

subroutine

is

unsuccessful,

one

of

the

following

error

codes

is

returned:

WLM_BADVERS

Bad

version

number.

WLM_NOT_INITED

Missing

call

to

wlm_init.

WLM_NOMEM

Not

enough

memory.

WLM_NOCLASS

No

class

matching

the

key

was

found.

WLM_EFAULT

Invalid

ctx

or

args

argument.

Related

Information

The

wlm_class2key

subroutine.

The

wlm_endkey

subroutine.

The

wlm_initkey

subroutine.

wlm_load

Subroutine

Purpose

Loads

a

Workload

Manager

(WLM)

configuration

into

the

kernel.

494

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_load

(

wlmargs)

struct

wlm_args

*wlmargs;

Description

The

wlm_load

subroutine

loads

into

the

kernel

the

property

files

for

the

WLM

configuration

passed

in

the

confdir

field

of

the

wlmargs

structure.

The

confdir

field

may

also

refer

to

a

set

of

time-based

configurations,

in

which

case

the

appropriate

configuration

of

the

set

will

be

loaded

and

the

WLM

daemon

will

later

switch

to

the

other

configurations

of

the

set

on

a

time

basis.

If

the

WLM

is

running

and

confdir

is

not

current,

this

leads

to

switch

to

the

specified

configuration

(or

configuration

set).

If

the

WLM

is

running

and

confdir

is

current,

wlm_load

will

refresh

the

current

WLM

configuration

into

the

kernel.

If

a

superclass

name

is

given

in

the

name

field

of

the

class_definition

substructure,

only

the

subclasses

of

the

given

superclass

are

refreshed.

In

this

context:

v

The

wlm_load

subroutine

is

accessible

to

root

users

and

to

users

with

administration

privileges

on

the

subclasses

of

the

superclass.

In

all

other

cases,

the

wlm_load

subroutine

is

only

accessible

to

root

users.

v

The

wlm_load

subroutine

cannot

be

used

to

change

the

mode

of

operation

of

WLM

(for

example,

to

switch

between

active

and

passive

modes).

v

If

current

is

a

configuration

set,

confdir

must

be

given

in

the

form

current/config

where

config

is

the

regular

configuration

of

the

set

the

superclass

belongs

to.

If

config

is

the

active

configuration

of

the

set,

the

changes

will

take

effect

immediately,

otherwise

they

will

take

effect

the

next

time

config

is

made

active.

If

the

caller

of

wlm_load

has

root

privileges

and

does

not

specify

a

superclass,

the

flags

passed

in

versflags

can

be

used

to

start

WLM

in

active

or

passive

mode,

switch

between

active

and

passive

modes,

or

enable/disable

the

rset

bindings

or

the

process

or

class

total

limits.

The

wlm_load

subroutine

cannot

be

used

to

stop

WLM.

Use

the

wlm_set

subroutine

instead.

Parameter

wlmargs

Specifies

the

address

of

the

struct

wlm_args

data

structure

containing

information

about

the

configuration

(or

configuration

set

or

superclass)

to

be

loaded

and

the

mode

of

operation

of

WLM.

The

following

fields

of

the

wlm_args

structure

and

the

embedded

substructures

can

be

provided:

versflags

Needs

to

be

initialized

with

WLM_VERSION.

May

be

ORed

with

WLM_MUTE

for

wlm_load

to

be

silent.

If

no

change

must

be

done

to

the

mode

of

operation

of

WLM,

it

must

be

ORed

with

WLM_TEST_ON

(mandatory

if

superclass

is

specified).

Otherwise,

one

of

the

mutually

exclusive

flags

(WLM_ACTIVE,

WLM_CPUONLY,

or

WLM_PASSIVE)

must

be

given.

One

or

more

of

the

WLM_BIND_RSETS,

WLM_PROCTOTAL,

or

WLM_CLASSTOTAL

flags

can

be

given

optionally.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

495

confdir

Specifies

the

name

of

the

WLM

configuration

to

be

loaded

into

the

kernel.

It

must

be

either

the

name

of

a

valid

configuration

or

configuration

set

in

the

/etc/wlm

subdirectory,

the

current

string

to

refer

to

the

active

configuration,

or,

if

superclass

is

specified

and

current

is

a

configuration

set,

it

must

indicate

which

configuration

of

current

set

the

superclass

belongs

to

in

the

form:

current/config

(this

is

different

from

specifying

config

only,

which

is

considered

a

configuration

switch

request).

name

Specifies

the

name

of

a

superclass.

This

is

used

to

refresh

only

the

subclasses

of

a

given

superclass.

Return

Values

Upon

successful

completion,

the

wlm_load

subroutine

returns

a

value

of

0.

If

the

wlm_load

subroutine

is

unsuccessful,

a

nonzero

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

wlmcntrl

command.

The

wlm_set

(“wlm_set

Subroutine”

on

page

498)

subroutine.

The

wlm.h

header

file.

wlm_read_classes

Subroutine

Purpose

Reads

the

characteristics

of

superclasses

or

subclasses.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_read_classes

(wlmargs,

class_tbl,

nclass)

struct

wlm_args

*wlmargs;

struct

class_definition

*class_tbl;

int

*nclass;

Description

The

wlm_read_classes

subroutine

is

used

to

get

the

characteristics

of

the

superclasses

or

the

subclasses

of

a

given

subclass

of

a

Workload

Manager

(WLM)

configuration.

v

If

the

name

of

a

configuration

is

passed

in

the

confdir

field,

the

wlm_read_classes

subroutine

reads

the

property

files

of

the

classes

of

the

specified

configuration.

If

confdir

is

set

to

a

null

string

(’\0’),

wlm_read

classes

reads

the

classes’

characteristics

from

the

in-core

WLM

data

structures

when

WLM

is

on

(and

returns

an

error

when

WLM

is

off).

Note:

These

values

may

be

different

from

the

values

in

the

property

files

of

the

configuration

pointed

to

by

/etc/wlm/current.

For

instance

when

a

WLM

administrator

has

modified

the

property

files

for

496

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

the

configuration

pointed

to

by

/etc/wlm/current

but

has

not

refreshed

WLM

yet.

Another

example

is

if

applications

dynamically

created

or

modified

classes

through

the

API

without

saving

the

changes

in

the

current

configuration

property

files.

If

your

application

specifically

needs

to

access

the

properties

of

the

classes

as

described

in

the

/etc/wlm/current

configuration,

you

must

specify

current

as

the

configuration

name

in

confdir.

If

the

name

of

a

set

of

time-based

configurations

is

passed

in

the

confdir

field,

the

wlm_read_classes

subroutine

reads

the

classes

of

the

currently

applicable

configuration

of

the

set.

v

If

the

name

of

a

valid

superclass

of

the

given

configuration

is

passed

in

the

name

field

of

the

class_descr

substructure

of

wlmargs,

wlm_read_classes

reads

the

property

files

for

the

subclasses

of

this

superclass.

If

a

null

string

(’\0’)

is

passed

in

the

name

field,

wlm_read_classes

reads

the

property

files

for

the

superclasses

of

the

WLM

configuration

described

above.

v

When

wlm_read_classes

is

successful,

the

characteristics

of

the

superclasses

or

subclasses

are

copied

into

the

array

of

class_definition

structures

pointed

to

by

class_tbl.

The

integer

value

pointed

to

by

nclass

indicates

the

maximum

number

of

class

definitions

to

be

copied.

Upon

successful

return

from

the

function,

this

value

reflects

the

actual

number

of

classes

read.

If

the

number

of

elements

copied

by

wlm_read_classes

is

strictly

smaller

than

the

number

of

elements

passed

as

an

argument,

all

the

classes

have

been

read.

If

it

is

equal,

it

may

mean

that

some

classes

were

not

copied

into

the

class_tbl

array

because

its

size

is

too

small.

The

maximum

number

of

classes

read

by

wlm_read_classes

is

67

(64

user-defined

superclasses

plus

System,

Shared

and

Default)

when

reading

superclasses

and

63

(61

user-defined

subclasses

plus

Shared

and

Default)

when

reading

subclasses

characteristics.

v

Upon

successful

return

from

wlm_read_classes,

the

substructure

class

of

type

struct

class_definition

of

the

structure

pointed

to

by

wlmargs

contains

the

default

values

of

various

class

attributes

for

the

returned

set

of

classes.

This

operation

does

not

require

any

special

privileges

and

is

accessible

to

all

users.

Parameter

wlmargs

Specifies

the

address

of

a

struct

wlm_args

data

structure.

The

following

fields

of

the

wlm_args

structure

and

the

embedded

substructures

need

to

be

provided:

versflags

Needs

to

be

initialized

with

WLM_VERSION.

confdir

Specifies

the

name

of

a

WLM

configuration.

It

must

be

either

the

name

of

a

valid

subdirectory

of

/etc/wlm

or

a

null

string

(starting

with

’\0’).

name

Specifies

the

name

of

a

superclass

existing

in

the

specified

configuration

or

a

null

string.

All

the

other

fields

can

be

left

uninitialized.

class_tbl

Specifies

the

address

of

an

array

of

structures

of

type

struct

class_definition.

Upon

successful

return

from

wlm_read_classes,

this

array

contains

the

characteristics

of

the

classes

read.

nclass

Specifies

the

address

of

an

integer

containing

the

maximum

number

of

element

(class

definitions)

for

wlm_read_classes

to

copy

into

the

array

above.

If

the

call

to

wlm_read_classes

is

successful,

this

integer

contains

the

number

of

elements

actually

copied.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

497

Return

Values

Upon

successful

completion,

the

wlm_read_classes

subroutine

returns

a

value

of

0.

If

the

wlm_read_classes

subroutine

is

unsuccessful,

a

nonzero

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

lsclass

command.

The

wlm.h

header

file.

wlm_set

Subroutine

Purpose

Sets

or

queries

the

Workload

Manager

(WLM)

state.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

int

wlm_set

(

flags)

int

*flags;

Description

The

wlm_set

subroutine

is

used

to

set,

change,

or

query

the

mode

of

operations

of

WLM.

The

state

of

WLM

can

be:

OFF

Does

not

classify

processes,

monitor

or

regulate

resource

utilization.

ON

in

passive

mode

Classifies

the

processes

and

monitors

their

resource

usage

but

does

no

regulation.

ON

in

active

mode

Specifies

the

normal

operating

mode

where

WLM

classifies

processes,

monitors

and

regulates

the

resource

usage.

498

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

flags

Specifies

the

address

of

an

integer

interpreted

in

a

manner

similar

to

the

versflags

field

of

the

wlmargs

structure

passed

to

the

other

API

routines.

The

integer

pointed

to

by

flags

should

be

initialized

with

WLM_VERSION.

In

addition,

one

or

more

of

the

following

values

can

be

or’ed

to

WLM_VERSION:

WLM_TEST_ON

Queries

the

state

of

WLM

without

altering

it.

WLM_OFF

Turns

WLM

off.

WLM_ACTIVE

Turns

WLM

on

in

active

mode

or

transitions

from

any

mode

to

active

mode.

WLM_CPU_ONLY

Turns

WLM

on

in

active

mode

for

CPU

resource

only,

or

transitions

from

any

mode

to

this

mode.

This

is

the

same

as

WLM_ACTIVE,

but

only

CPU

resources

are

regulated.

Other

resources

(memory,

disk

IO,

and

total

limits

when

enabled)

are

still

accounted.

WLM_PASSIVE

Turns

WLM

on

in

passive

mode

or

transitions

from

any

mode

to

passive

mode.

WLM_BIND_RSETS

Requests

that

WLM

takes

the

resource

set

bindings

into

account.

WLM_PROCTOTAL

Enables

process

total

limits

on

resource

usage.

WLM_CLASSTOTAL

Enables

class

total

limits

on

resource

usage.

Some

combinations

of

the

flags

above

are

not

legal:

v

WLM_OFF,

WLM_ACTIVE,

WLM_CPU_ONLY,

and

WLM_PASSIVE

are

mutually

exclusive.

v

WLM_BIND_RSETS,

WLM_PROCTOTAL,

and

WLM_CLASSTOTAL,

are

ineffective

when

used

together

with

WLM_OFF.

v

Only

WLM_TEST_ON

is

allowed

to

non-root

users.

v

If

WLM_TEST_ON

is

specified,

the

other

flags

are

ineffective

and

should

not

be

specified.

Return

Values

Upon

successful

completion,

the

wlm_set

subroutine

returns

a

value

of

0,

and

the

current

state

of

WLM

is

returned

in

the

flags

parameter.

The

return

value

is

WLM_OFF,

WLM_ACTIVE,

WLM_CPU_ONLY,

or

WLM_PASSIVE.

When

WLM

is

on

in

either

mode,

the

WLM_BIND_RSETS,

WLM_PROCTOTAL,

and

WLM_CLASSTOTAL,

flags

are

added

when

appropriate.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

wlmcntrl

command.

The

wlm.h

header

file.

The

wlm_load

(“wlm_load

Subroutine”

on

page

494)

subroutine.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

499

wlm_set_tag

Subroutine

Purpose

Sets

the

current

process’s

tag

and

related

flags.

Library

Workload

Manager

Library

(libwlm.a)

Syntax

#include

<sys/wlm.h>

#include

<sys/user.h>

int

wlm_set_tag

(

tag,

flags)

char

*tag;

int

*flags;

Description

The

tag

attribute

is

a

new

attribute

of

a

process

that

can

be

set

using

the

Workload

Manager

(WLM)

wlm_set_tag

subroutine.

This

tag

is

a

character

string

with

a

maximum

length

of

WLM_TAG_LENGTH

(not

including

the

null

terminator).

Process

tags

can

be

displayed

using

the

ps

command.

The

tag

attribute

is

also

one

of

the

process

attributes

used

in

the

assignment

rules

to

automatically

assign

a

process

to

a

given

class.

The

syntax

of

the

assignment

rules

precludes

the

use

of

special

characters

in

the

application

tag

string.

Thus,

application

tags

should

be

comprised

only

of

upper

and

lower

case

letters,

numbers

and

underscores

(’_’).

The

main

use

of

the

tag

attribute

is

to

allow

WLM

administrators

to

discriminate

between

several

instances

of

the

same

application,

which

typically

have

the

same

user

and

group

ids,

execute

the

same

binary,

and,

therefore,

end

up

in

the

same

class

using

the

standard

classification

criteria.

For

more

details

about

application

tags,

refer

to

Workload

Manager

Application

Programming

Interface.

When

an

application

sets

its

tag

using

wlm_set_tag,

it

is

automatically

reclassified

according

to

the

current

assignment

rules

and

the

new

tag

is

taken

into

account

when

doing

this

reclassification.

In

addition

to

the

tag

itself,

the

application

can

also

specify

flags

indicating

to

WLM

if

a

child

process

should

inherit

the

tag

from

its

parent

after

a

fork

or

an

exec

subroutine.

A

process

does

not

require

any

special

privileges

to

set

its

tag.

Parameters

tag

Specifies

the

address

of

a

character

string.

An

error

is

returned

if

this

tag

is

too

long.

500

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

flags

Specifies

the

address

of

an

integer

interpreted

in

a

manner

similar

to

the

versflags

field

of

the

wlmargs

structure

passed

to

other

API

routines.

The

integer

pointed

to

by

flags

should

be

initialized

with

WLM_VERSION.

In

addition,

one

or

more

of

the

following

values

can

be

or’ed

to

WLM_VERSION:

SWLMTAGINHERITFORK

Specifies

that

the

children

of

this

process

inherit

the

parent’s

tag

on

the

fork

subroutine.

SWLMTAGINHERITEXEC

Specifies

that

the

process

retains

its

tag

after

a

call

to

the

exec

subroutine.

Both

flags

can

be

set

to

specify

that

the

children

of

a

tagged

process

inherits

the

tag

on

the

fork

subroutine

and

then

retains

it

on

the

exec

subroutine.

Return

Values

Upon

successful

completion,

the

wlm_set_tag

subroutine

returns

a

value

of

0.

In

case

of

error,

a

non-0

value

is

returned.

Error

Codes

For

a

list

of

the

possible

error

codes

returned

by

the

WLM

API

functions,

see

the

description

of

the

wlm.h

header

file.

Related

Information

The

wlm.h

header

file.

Workload

Manager

rules

File

in

AIX

5L

Version

5.2

Files

Reference.

wmemchr

Subroutine

Purpose

Find

a

wide-character

in

memory.

Library

Standard

library

(libc.a)

Syntax

#include

<wchar.h>

wchar_t

*wmemchr

(const

wchar_t

*

ws,

wchar_t

wc,

size_t

n)

;

Description

The

wmemchr

function

locates

the

first

occurrence

of

wc

in

the

initial

n

wide-characters

of

the

object

pointed

to

be

ws.

This

function

is

not

affected

by

locale

and

all

wchar_t

values

are

treated

identically.

The

null

wide-character

and

wchar_t

values

not

corresponding

to

valid

characters

are

not

treated

specially.

If

n

is

zero,

ws

must

be

a

valid

pointer

and

the

function

behaves

as

if

no

valid

occurrence

of

wc

is

found.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

501

Return

Values

The

wmemchr

function

returns

a

pointer

to

the

located

wide-character,

or

a

null

pointer

if

the

wide-character

does

not

occur

in

the

object.

Related

Information

The

wmemcmp

(“wmemcmp

Subroutine”)

subroutine,

wmemcpy

(“wmemcpy

Subroutine”)

subroutine,

wmemmove

(“wmemmove

Subroutine”

on

page

503)

subroutine,

wmemset

(“wmemset

Subroutine”

on

page

504)

subroutine.

wmemcmp

Subroutine

Purpose

Compare

wide-characters

in

memory.

Library

Standard

library

(libc.a)

Syntax

#include

<wchar.h>

int

wmemcmp

(const

wchar_t

*

ws1,

const

wchar_t

*

ws2,

size_t

n);

Description

The

wmemcmp

function

compares

the

first

n

wide-characters

of

the

object

pointed

to

by

ws1

to

the

first

n

wide-characters

of

the

object

pointed

to

by

ws2.

This

function

is

not

affected

by

locale

and

all

wchar_t

values

are

treated

identically.

The

null

wide-character

and

wchar_t

values

not

corresponding

to

valid

characters

are

not

treated

specially.

If

n

is

zero,

ws1

and

ws2

must

be

a

valid

pointers

and

the

function

behaves

as

if

the

two

objects

compare

equal.

Return

Values

The

wmemcmp

function

returns

an

integer

greater

than,

equal

to,

or

less

than

zero,

accordingly

as

the

object

pointed

to

by

ws1

is

greater

than,

equal

to,

or

less

than

the

object

pointed

to

by

ws2.

Related

Information

The

wmemchr

(“wmemchr

Subroutine”

on

page

501)

subroutine,

wmemcpy

(“wmemcpy

Subroutine”)

subroutine,

wmemmove

(“wmemmove

Subroutine”

on

page

503)

subroutine,

wmemset

(“wmemset

Subroutine”

on

page

504)

subroutine.

wmemcpy

Subroutine

Purpose

Copy

wide-characters

in

memory.

Library

Standard

library

(libc.a)

502

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<wchar.h>

wchar_t

*wmemcpy

(wchar_t

*

ws1,

const

wchar_t

*

ws2,

size_t

n)

;

Description

The

wmemcpy

function

copies

n

wide-characters

from

the

object

pointed

to

by

ws2

to

the

object

pointed

to

be

ws1.

This

function

is

not

affected

by

locale

and

all

wchar_t

values

are

treated

identically.

The

null

wide-character

and

wchar_t

values

not

corresponding

to

valid

characters

are

not

treated

specially.

If

n

is

zero,

ws1

and

ws2

must

be

a

valid

pointers,

and

the

function

copies

zero

wide-characters.

Return

Values

The

wmemcpy

function

returns

the

value

of

ws1.

Related

Information

The

wmemchr

(“wmemchr

Subroutine”

on

page

501)

subroutine,

wmemcmp

(“wmemcmp

Subroutine”

on

page

502)

subroutine,

wmemmove

(“wmemmove

Subroutine”)

subroutine,

wmemset

(“wmemset

Subroutine”

on

page

504)

subroutine.

wmemmove

Subroutine

Purpose

Copy

wide-characters

in

memory

with

overlapping

areas.

Library

Standard

library

(libc.a)

Syntax

#include

<wchar.h>

wchar_t

*wmemmove

(wchar_t

*

ws1,

const

wchar_t

*

ws2,

size_t

n)

;

Description

The

wmemmove

function

copies

n

wide-characters

from

the

object

pointed

to

by

ws2

to

the

object

pointed

to

by

ws1.

Copying

takes

place

as

if

the

n

wide-characters

from

the

object

pointed

to

by

ws2

are

first

copied

into

a

temporary

array

of

n

wide-characters

that

does

not

overlap

the

objects

pointed

to

by

ws1

or

ws2,

and

then

the

n

wide-characters

from

the

temporary

array

are

copied

into

the

object

pointed

to

by

ws1.

This

function

is

not

affected

by

locale

and

all

wchar_t

values

are

treated

identically.

The

null

wide-character

and

wchar_t

values

not

corresponding

to

valid

characters

are

not

treated

specially.

If

n

is

zero,

ws1

and

ws2

must

be

a

valid

pointers,

and

the

function

copies

zero

wide-characters.

Return

Values

The

wmemmove

function

returns

the

value

of

ws1.

Related

Information

The

wmemchr

(“wmemchr

Subroutine”

on

page

501)

subroutine,

wmemcmp

(“wmemcmp

Subroutine”

on

page

502)

subroutine,

wmemcpy

(“wmemcpy

Subroutine”

on

page

502)

subroutine,

wmemset

(“wmemset

Subroutine”

on

page

504)

subroutine.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

503

wmemset

Subroutine

Purpose

Set

wide-characters

in

memory.

Library

Standard

library

(libc.a)

Syntax

#include

<wchar.h>

wchar_t

*wmemset

(wchar_t

*

ws,

wchar_t

wc,

size_t

n);

Description

The

wmemset

function

copies

the

value

of

wc

into

each

of

the

first

n

wide-characters

of

the

object

pointed

to

by

ws.

This

function

is

not

affected

by

locale

and

all

wchar_t

values

are

treated

identically.

The

null

wide-character

and

wchar_t

values

not

corresponding

to

valid

characters

are

not

treated

specially.

If

n

is

zero,

ws

must

be

a

valid

pointer

and

the

function

copies

zero

wide-characters.

Return

Values

The

wmemset

functions

returns

the

value

of

ws.

Related

Information

The

wmemchr

(“wmemchr

Subroutine”

on

page

501)

subroutine,

wmemcmp

(“wmemcmp

Subroutine”

on

page

502)

subroutine,

wmemcpy

(“wmemcpy

Subroutine”

on

page

502)

subroutine,

wmemmove

(“wmemmove

Subroutine”

on

page

503)

subroutine.

wordexp

Subroutine

Purpose

Expands

tokens

from

a

stream

of

words.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wordexp.h>

int

wordexp

(

Words,

Pwordexp,

Flags)

const

char

*Words;

wordexp_t

*Pwordexp;

int

Flags;

Description

The

wordexp

subroutine

performs

word

expansions

equivalent

to

the

word

expansion

that

would

be

performed

by

the

shell

if

the

contents

of

the

Words

parameter

were

arguments

on

the

command

line.

The

list

of

expanded

words

are

placed

in

the

Pwordexp

parameter.

The

expansions

are

the

same

as

that

which

would

be

performed

by

the

shell

if

the

Words

parameter

were

the

part

of

a

command

line

representing

the

parameters

to

a

command.

Therefore,

the

Words

parameter

cannot

contain

an

unquoted

<newline>

character

or

any

of

the

unquoted

shell

special

characters

|

(pipe),

&

(ampersand),

;

(semicolon),

<

(less

504

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

than

sign),

or

>

(greater

than

sign),

except

in

the

case

of

command

substitution.

The

Words

parameter

also

cannot

contain

unquoted

parentheses

or

braces,

except

in

the

case

of

command

or

variable

substitution.

If

the

Words

parameter

contains

an

unquoted

comment

character

#

(number

sign)

that

is

the

beginning

of

a

token,

the

wordexp

subroutine

may

treat

the

comment

character

as

a

regular

character,

or

may

interpret

it

as

a

comment

indicator

and

ignore

the

remainder

of

the

expression

in

the

Words

parameter.

The

wordexp

subroutine

allows

an

application

to

perform

all

of

the

shell’s

expansions

on

a

word

or

words

obtained

from

a

user.

For

example,

if

the

application

prompts

for

a

file

name

(or

a

list

of

file

names)

and

then

uses

the

wordexp

subroutine

to

process

the

input,

the

user

could

respond

with

anything

that

would

be

valid

as

input

to

the

shell.

The

wordexp

subroutine

stores

the

number

of

generated

words

and

a

pointer

to

a

list

of

pointers

to

words

in

the

Pwordexp

parameter.

Each

individual

field

created

during

the

field

splitting

or

path

name

expansion

is

a

separate

word

in

the

list

specified

by

the

Pwordexp

parameter.

The

first

pointer

after

the

last

last

token

in

the

list

is

a

null

pointer.

The

expansion

of

special

parameters

*

(asterisk),

@

(at

sign),

#

(number

sign),

?

(question

mark),

-

(minus

sign),

$

(dollar

sign),

!

(exclamation

point),

and

0

is

unspecified.

The

words

are

expanded

in

the

order

shown

below:

1.

Tilde

expansion

is

performed

first.

2.

Parameter

expansion,

command

substitution,

and

arithmetic

expansion

are

performed

next,

from

beginning

to

end.

3.

Field

splitting

is

then

performed

on

fields

generated

by

step

2,

unless

the

IFS

(input

field

separators)

is

full.

4.

Path-name

expansion

is

performed,

unless

the

set

-f

command

is

in

effect.

5.

Quote

removal

is

always

performed

last.

Parameters

Flags

Contains

a

bit

flag

specifying

the

configurable

aspects

of

the

wordexp

subroutine.

Pwordexp

Contains

a

pointer

to

a

wordexp_t

structure.

Words

Specifies

the

string

containing

the

tokens

to

be

expanded.

The

value

of

the

Flags

parameter

is

the

bitwise,

inclusive

OR

of

the

constants

below,

which

are

defined

in

the

wordexp.h

file.

WRDE_APPEND

Appends

words

generated

to

those

generated

by

a

previous

call

to

the

wordexp

subroutine.

WRDE_DOOFFS

Makes

use

of

the

we_offs

structure.

If

the

WRDE_DOOFFS

flag

is

set,

the

we_offs

structure

is

used

to

specify

the

number

of

null

pointers

to

add

to

the

beginning

of

the

we_words

structure.

If

the

WRDE_DOOFFS

flag

is

not

set

in

the

first

call

to

the

wordexp

subroutine

with

the

Pwordexp

parameter,

it

should

not

be

set

in

subsequent

calls

to

the

wordexp

subroutine

with

the

Pwordexp

parameter.

WRDE_NOCMD

Fails

if

command

substitution

is

requested.

WRDE_REUSE

The

Pwordexp

parameter

was

passed

to

a

previous

successful

call

to

the

wordexp

subroutine.

Therefore,

the

memory

previously

allocated

may

be

reused.

WRDE_SHOWERR

Does

not

redirect

standard

error

to

/dev/null.

WRDE_UNDEF

Reports

error

on

an

attempt

to

expand

an

undefined

shell

variable.

The

WRDE_

APPEND

flag

can

be

used

to

append

a

new

set

of

words

to

those

generated

by

a

previous

call

to

the

wordexp

subroutine.

The

following

rules

apply

when

two

or

more

calls

to

the

wordexp

subroutine

are

made

with

the

same

value

of

the

Pwordexp

parameter

and

without

intervening

calls

to

the

wordfree

subroutine:

1.

The

first

such

call

does

not

set

the

WRDE_

APPEND

flag.

All

subsequent

calls

set

it.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

505

2.

For

a

single

invocation

of

the

wordexp

subroutine,

all

calls

either

set

the

WRDE_DOOFFS

flag,

or

do

not

set

it.

3.

After

the

second

and

each

subsequent

call,

the

Pwordexp

parameter

points

to

a

list

containing

the

following:

a.

Zero

or

more

null

characters,

as

specified

by

the

WRDE_DOOFFS

flag

and

the

we_offs

structure.

b.

Pointers

to

the

words

that

were

in

the

Pwordexp

parameter

before

the

call,

in

the

same

order

as

before.

c.

Pointers

to

the

new

words

generated

by

the

latest

call,

in

the

specified

order.

4.

The

count

returned

in

the

Pwordexp

parameter

is

the

total

number

of

words

from

all

of

the

calls.

5.

The

application

should

not

modify

the

Pwordexp

parameter

between

the

calls.

The

WRDE_NOCMD

flag

is

provided

for

applications

that,

for

security

or

other

reasons,

want

to

prevent

a

user

from

executing

shell

commands.

Disallowing

unquoted

shell

special

characters

also

prevents

unwanted

side

effects

such

as

executing

a

command

or

writing

to

a

file.

Unless

the

WRDE_SHOWERR

flag

is

set

in

the

Flags

parameter,

the

wordexp

subroutine

redirects

standard

error

to

the

/dev/null

file

for

any

utilities

executed

as

a

result

of

command

substitution

while

expanding

the

Words

parameter.

If

the

WRDE_SHOWERR

flag

is

set,

the

wordexp

subroutine

may

write

messages

to

standard

error

if

syntax

errors

are

detected

while

expanding

the

Words

parameter.

The

Pwordexp

structure

is

allocated

by

the

caller,

but

memory

to

contain

the

expanded

tokens

is

allocated

by

the

wordexp

subroutine

and

added

to

the

structure

as

needed.

The

Words

parameter

cannot

contain

any

<newline>

characters,

or

any

of

the

unquoted

shell

special

characters

|,

&,

;,

(),

{},

<,

or

>,

except

in

the

context

of

command

substitution.

Return

Values

If

no

errors

are

encountered

while

expanding

the

Words

parameter,

the

wordexp

subroutine

returns

a

value

of

0.

If

an

error

occurs,

it

returns

a

nonzero

value

indicating

the

error.

Errors

If

the

wordexp

subroutine

terminates

due

to

an

error,

it

returns

one

of

the

nonzero

constants

below,

which

are

defined

in

the

wordexp.h

file.

WRDE_BADCHAR

One

of

the

unquoted

characters

|,

&,

;,

<,

>,

parenthesis,

or

braces

appears

in

the

Words

parameter

in

an

inappropriate

context.

WRDE_BADVAL

Reference

to

undefined

shell

variable

when

the

WRDE_UNDEF

flag

is

set

in

the

Flags

parameter.

WRDE_CMDSUB

Command

substitution

requested

when

the

WRDE_NOCMD

flag

is

set

in

the

Flags

parameter.

WRDE_NOSPACE

Attempt

to

allocate

memory

was

unsuccessful.

WRDE_SYNTAX

Shell

syntax

error,

such

as

unbalanced

parentheses

or

unterminated

string.

If

the

wordexp

subroutine

returns

the

error

value

WRDE_SPACE,

then

the

expression

in

the

Pwordexp

parameter

is

updated

to

reflect

any

words

that

were

successfully

expanded.

In

other

cases,

the

Pwordexp

parameter

is

not

modified.

Related

Information

The

glob

subroutine,

wordfree

(“wordfree

Subroutine”

on

page

507)

subroutine.

For

more

information

on

basic

and

extended

regular

expressions,

see

Manipulating

Strings

with

sed.

506

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

wordfree

Subroutine

Purpose

Frees

all

memory

associated

with

the

Pwordexp

parameter.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wordexp.h>

void

wordfree

(

Pwordexp)

wordexp_t

*Pwordexp;

Description

The

wordfree

subroutine

frees

any

memory

associated

with

the

Pwordexp

parameter

from

a

previous

call

to

the

wordexp

subroutine.

Parameters

Pwordexp

Structure

containing

a

list

of

expanded

words.

Related

Information

The

wordexp

(“wordexp

Subroutine”

on

page

504)

subroutine.

write,

writex,

writev,

writevx

or

pwrite

Subroutines

Purpose

Writes

to

a

file.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<unistd.h>

ssize_t

write

(FileDescriptor,

Buffer,

NBytes)

int

FileDescriptor;

const

void

*

Buffer;

size_t

NBytes;

int

writex

(FileDescriptor,

Buffer,

NBytes,

Extension)

int

FileDescriptor;

char

*Buffer;

unsigned

int

NBytes;

int

Extension;

#include

<sys/uio.h>

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

507

ssize_t

writev

(FileDescriptor,

iov,

iovCount)

int

FileDescriptor;

const

struct

iovec

*

iov;

int

iovCount;

ssize_t

writevx

(FileDescriptor,

iov,

iovCount,

Extension)

int

FileDescriptor;

struct

iovec

*iov;

int

iovCount;

int

Extension;

ssize_t

pwrite

(FileDescriptor,

Buffer,

NBytes,

Offset)

int

FileDescriptor;

const

void

*

Buffer;

size_t

NBytes;

off_t

Offset;

Description

The

write

subroutine

attempts

to

write

the

number

of

bytes

of

data

specified

by

the

NBytes

parameter

to

the

file

associated

with

the

FileDescriptor

parameter

from

the

buffer

pointed

to

by

the

Buffer

parameter.

The

writev

subroutine

performs

the

same

action

but

gathers

the

output

data

from

the

iovCount

buffers

specified

by

the

array

of

iovec

structures

pointed

to

by

the

iov

parameter.

Each

iovec

entry

specifies

the

base

address

and

length

of

an

area

in

memory

from

which

data

should

be

written.

The

writev

subroutine

always

writes

a

complete

area

before

proceeding

to

the

next.

The

writex

and

writevx

subroutines

are

the

same

as

the

write

and

writev

subroutines,

respectively,

with

the

addition

of

an

Extension

parameter,

which

is

used

when

writing

to

some

device

drivers.

With

regular

files

and

devices

capable

of

seeking,

the

actual

writing

of

data

proceeds

from

the

position

in

the

file

indicated

by

the

file

pointer.

Upon

return

from

the

write

subroutine,

the

file

pointer

increments

by

the

number

of

bytes

actually

written.

With

devices

incapable

of

seeking,

writing

always

takes

place

starting

at

the

current

position.

The

value

of

a

file

pointer

associated

with

such

a

device

is

undefined.

If

a

write

requests

that

more

bytes

be

written

than

there

is

room

for

(for

example,

the

ulimit

or

the

physical

end

of

a

medium),

only

as

many

bytes

as

there

is

room

for

will

be

written.

For

example,

suppose

there

is

space

for

20

bytes

more

in

a

file

before

reaching

a

limit.

A

write

of

512

bytes

will

return

20.

The

next

write

of

a

non-zero

number

of

bytes

will

give

a

failure

return

(except

as

noted

below)

and

the

implementation

will

generate

a

SIGXFSZ

signal

for

the

thread.

Fewer

bytes

can

be

written

than

requested

if

there

is

not

enough

room

to

satisfy

the

request.

In

this

case

the

number

of

bytes

written

is

returned.

The

next

attempt

to

write

a

nonzero

number

of

bytes

is

unsuccessful

(except

as

noted

in

the

following

text).

The

limit

reached

can

be

either

that

set

by

the

ulimit

subroutine

or

the

end

of

the

physical

medium.

Successful

completion

of

a

write

subroutine

clears

the

SetUserID

bit

(S_ISUID)

of

a

file

if

all

of

the

following

are

true:

v

The

calling

process

does

not

have

root

user

authority.

v

The

effective

user

ID

of

the

calling

process

does

not

match

the

user

ID

of

the

file.

v

The

file

is

executable

by

the

group

(S_IXGRP)

or

other

(S_IXOTH).

The

write

subroutine

clears

the

SetGroupID

bit

(S_ISGID)

if

all

of

the

following

are

true:

v

The

calling

process

does

not

have

root

user

authority.

508

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

v

The

group

ID

of

the

file

does

not

match

the

effective

group

ID

or

one

of

the

supplementary

group

IDs

of

the

process.

v

The

file

is

executable

by

the

owner

(S_IXUSR)

or

others

(S_IXOTH).

Note:

Clearing

of

the

SetUserID

and

SetGroupID

bits

can

occur

even

if

the

write

subroutine

is

unsuccessful,

if

file

data

was

modified

before

the

error

was

detected.

If

the

O_APPEND

flag

of

the

file

status

is

set,

the

file

offset

is

set

to

the

end

of

the

file

prior

to

each

write.

If

the

FileDescriptor

parameter

refers

to

a

regular

file

whose

file

status

flags

specify

O_SYNC,

this

is

a

synchronous

update

(as

described

in

the

open

subroutine).

If

the

FileDescriptor

parameter

refers

to

a

regular

file

that

a

process

has

opened

with

the

O_DEFER

file

status

flag

set,

the

data

and

file

size

are

not

updated

on

permanent

storage

until

a

process

issues

an

fsync

subroutine

or

performs

a

synchronous

update.

If

all

processes

that

have

the

file

open

with

the

O_DEFER

file

status

flag

set

close

the

file

before

a

process

issues

an

fsync

subroutine

or

performs

a

synchronous

update,

the

data

and

file

size

are

not

updated

on

permanent

storage.

Write

requests

to

a

pipe

(or

first-in-first-out

(FIFO))

are

handled

the

same

as

a

regular

file

with

the

following

exceptions:

v

There

is

no

file

offset

associated

with

a

pipe;

hence,

each

write

request

appends

to

the

end

of

the

pipe.

v

If

the

size

of

the

write

request

is

less

than

or

equal

to

the

value

of

the

PIPE_BUF

system

variable

(described

in

the

pathconf

routine),

the

write

subroutine

is

guaranteed

to

be

atomic.

The

data

is

not

interleaved

with

data

from

other

write

processes

on

the

same

pipe.

Writes

of

greater

than

PIPE_BUF

bytes

can

have

data

interleaved,

on

arbitrary

boundaries,

with

writes

by

other

processes,

whether

or

not

the

O_NDELAY

or

O_NONBLOCK

file

status

flags

are

set.

v

If

the

O_NDELAY

and

O_NONBLOCK

file

status

flags

are

clear

(the

default),

a

write

request

to

a

full

pipe

causes

the

process

to

block

until

enough

space

becomes

available

to

handle

the

entire

request.

v

If

the

O_NDELAY

file

status

flag

is

set,

a

write

to

a

full

pipe

returns

a

0.

v

If

the

O_NONBLOCK

file

status

flag

is

set,

a

write

to

a

full

pipe

returns

a

value

of

-1

and

sets

the

errno

global

variable

to

EAGAIN.

When

attempting

to

write

to

a

character

special

file

that

supports

nonblocking

writes

and

no

data

can

currently

be

written

(streams

are

an

exception

described

later

in

this

article):

v

If

the

O_NDELAY

and

O_NONBLOCK

flags

are

clear

(the

default),

the

write

subroutine

blocks

until

data

can

be

written.

v

If

the

O_NDELAY

flag

is

set,

the

write

subroutine

returns

0.

v

If

the

O_NONBLOCK

flag

is

set,

the

write

subroutine

returns

-1

and

sets

the

errno

global

variable

to

EAGAIN

if

no

data

can

be

written.

When

attempting

to

write

to

a

regular

file

that

supports

enforcement-mode

record

locks,

and

all

or

part

of

the

region

to

be

written

is

currently

locked

by

another

process,

the

following

can

occur:

v

If

the

O_NDELAY

and

O_NONBLOCK

file

status

flags

are

clear

(the

default),

the

calling

process

blocks

until

the

lock

is

released.

v

If

the

O_NDELAY

or

O_NONBLOCK

file

status

flag

is

set,

then

the

write

subroutine

returns

a

value

of

-1

and

sets

the

errno

global

variable

to

EAGAIN.

Note:

The

fcntl

subroutine

provides

more

information

about

record

locks.

If

fildes

refers

to

a

STREAM,

the

operation

of

write

is

determined

by

the

values

of

the

minimum

and

maximum

nbyte

range

(″packet

size″)

accepted

by

the

STREAM.

These

values

are

determined

by

the

topmost

STREAM

module.

If

nbyte

falls

within

the

packet

size

range,

nbyte

bytes

will

be

written.

If

nbyte

does

not

fall

within

the

range

and

the

minimum

packet

size

value

is

0,

write

will

break

the

buffer

into

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

509

maximum

packet

size

segments

prior

to

sending

the

data

downstream

(the

last

segment

may

contain

less

than

the

maximum

packet

size).

If

nbyte

does

not

fall

within

the

range

and

the

minimum

value

is

non-zero,

write

will

fail

with

errno

set

to

ERANGE.

Writing

a

zero-length

buffer

(nbyte

is

0)

to

a

STREAMS

device

sends

0

bytes

with

0

returned.

However,

writing

a

zero-length

buffer

to

a

STREAMS-based

pipe

or

FIFO

sends

no

message

and

0

is

returned.

The

process

may

issue

I_SWROPT

ioctl

to

enable

zero-length

messages

to

be

sent

across

the

pipe

or

FIFO.

When

writing

to

a

STREAM,

data

messages

are

created

with

a

priority

band

of

0.

When

writing

to

a

STREAM

that

is

not

a

pipe

or

FIFO:

v

O_NONBLOCK

should

specify

either

O_NONBLOCK

or

O_NDELAY.

The

IBM

streams

implementation

treats

these

two

the

same.

v

If

O_NONBLOCK

or

O_NDELAY

is

clear,

and

the

STREAM

cannot

accept

data

(the

STREAM

write

queue

is

full

due

to

internal

flow

control

conditions),

write

will

block

until

data

can

be

accepted.

v

If

O_NONBLOCK

or

O_NDELAY

is

set

and

the

STREAM

cannot

accept

data,

write

will

return

-1

and

set

errno

to

EAGAIN.

v

If

O_NONBLOCK

or

O_NDELAY

is

set

and

part

of

the

buffer

has

been

written

while

a

condition

in

which

the

STREAM

cannot

accept

additional

data

occurs,

write

will

terminate

and

return

the

number

of

bytes

written.

Note:

The

IBM

streams

implementation

treats

O_NONBLOCK

and

O_NDELAY

the

same.

In

addition,

write

and

writev

will

fail

if

the

STREAM

head

had

processed

an

asynchronous

error

before

the

call.

In

this

case,

the

value

of

errno

does

not

reflect

the

result

of

write

or

writev

but

reflects

the

prior

error.

The

writev

function

is

equivalent

to

write,

but

gathers

the

output

data

from

the

iovcnt

buffers

specified

by

the

members

of

the

iov

array:

iov[0],

iov[1],

...,

iov[iovcnt

-

1].

iovcnt

is

valid

if

greater

than

0

and

less

than

or

equal

to

{IOV_MAX},

defined

in

limits.h.

Each

iovec

entry

specifies

the

base

address

and

length

of

an

area

in

memory

from

which

data

should

be

written.

The

writev

function

will

always

write

a

complete

area

before

proceeding

to

the

next.

If

fildes

refers

to

a

regular

file

and

all

of

the

iov_len

members

in

the

array

pointed

to

by

iov

are

0,

writev

will

return

0

and

have

no

other

effect.

For

other

file

types,

the

behaviour

is

unspecified.

If

the

sum

of

the

iov_len

values

is

greater

than

SSIZE_MAX,

the

operation

fails

and

no

data

is

transferred.

The

behavior

of

an

interrupted

write

subroutine

depends

on

how

the

handler

for

the

arriving

signal

was

installed.

The

handler

can

be

installed

in

one

of

two

ways,

with

the

following

results:

v

If

the

handler

was

installed

with

an

indication

that

subroutines

should

not

be

restarted,

the

write

subroutine

returns

a

value

of

-1

and

sets

the

errno

global

variable

to

EINTR

(even

if

some

data

was

already

written).

v

If

the

handler

was

installed

with

an

indication

that

subroutines

should

be

restarted,

and:

–

If

no

data

had

been

written

when

the

interrupt

was

handled,

the

write

subroutine

will

not

return

a

value

(it

is

restarted).

–

If

data

had

been

written

when

the

interrupt

was

handled,

this

write

subroutine

returns

the

amount

of

data

already

written.

Note:

A

write

to

a

regular

file

is

not

interruptible.

Only

writes

to

objects

that

may

block

indefinitely,

such

as

FIFOs,

sockets,

and

some

devices,

are

generally

interruptible.

The

pwrite

function

performs

the

same

action

as

write,

except

that

it

writes

into

a

given

position

without

changing

the

file

pointer.

The

first

three

arguments

to

pwrite

are

the

same

as

write

with

the

addition

of

a

fourth

argument

offset

for

the

desired

position

inside

the

file.

510

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Note:

The

pwrite64

subroutine

applies

to

AIX

4.3

and

later.

ssize_t

pwrite64(int

fd

,

const

void

*buf

,

size_t

nbytes

,

off64_t

offset)

The

pwrite64

subroutine

performs

the

same

action

as

pwrite

but

the

limit

of

offset

to

the

maximum

file

size

for

the

file

associated

with

the

fileDescriptor

and

DEV_OFF_MAX

if

the

file

associated

with

fileDescriptor

is

a

block

special

or

character

special

file.

Parameters

Buffer

Identifies

the

buffer

containing

the

data

to

be

written.

Extension

Provides

communication

with

character

device

drivers

that

require

additional

information

or

return

additional

status.

Each

driver

interprets

the

Extension

parameter

in

a

device-dependent

way,

either

as

a

value

or

as

a

pointer

to

a

communication

area.

Drivers

must

apply

reasonable

defaults

when

the

Extension

parameter

value

is

0.

FileDescriptor

Identifies

the

object

to

which

the

data

is

to

be

written.

iov

Points

to

an

array

of

iovec

structures,

which

identifies

the

buffers

containing

the

data

to

be

written.

The

iovec

structure

is

defined

in

the

sys/uio.h

file

and

contains

the

following

members:

caddr_t

iov_base;

size_t

iov_len;

iovCount

Specifies

the

number

of

iovec

structures

pointed

to

by

the

iov

parameter.

NBytes

Specifies

the

number

of

bytes

to

write.

Return

Values

Upon

successful

completion,

the

write,

writex,

writev,

and

writevx

subroutines

return

the

number

of

bytes

that

were

actually

written.

The

number

of

bytes

written

is

never

greater

than

the

value

specified

by

the

NBytes

parameter.

Otherwise,

a

value

of

-1

is

returned

and

the

errno

global

variable

is

set

to

indicate

the

error.

Error

Codes

The

write,

writex,

writev,

and

writevx

subroutines

are

unsuccessful

when

one

of

the

following

is

true:

EAGAIN

The

O_NONBLOCK

flag

is

set

on

this

file

and

the

process

would

be

delayed

in

the

write

operation;

or

an

enforcement-mode

record

lock

is

outstanding

in

the

portion

of

the

file

that

is

to

be

written.

EBADF

The

FileDescriptor

parameter

does

not

specify

a

valid

file

descriptor

open

for

writing.

EDQUOT

New

disk

blocks

cannot

be

allocated

for

the

file

because

the

user

or

group

quota

of

disk

blocks

has

been

exhausted

on

the

file

system.

EFBIG

An

offset

greater

than

MAX_FILESIZE

was

requested

on

the

32-bit

kernel.

EFAULT

The

Buffer

parameter

or

part

of

the

iov

parameter

points

to

a

location

outside

of

the

allocated

address

space

of

the

process.

EFBIG

An

attempt

was

made

to

write

a

file

that

exceeds

the

process’

file

size

limit

or

the

maximum

file

size.

If

the

user

has

set

the

environment

variable

XPG_SUS_ENV=ON

prior

to

execution

of

the

process,

then

the

SIGXFSZ

signal

is

posted

to

the

process

when

exceeding

the

process’

file

size

limit.

EINVAL

The

file

position

pointer

associated

with

the

FileDescriptor

parameter

was

negative;

the

iovCount

parameter

value

was

not

between

1

and

16,

inclusive;

or

one

of

the

iov_len

values

in

the

iov

array

was

negative

or

the

sum

overflowed

a

32-bit

integer.

EINVAL

The

STREAM

or

multiplexer

referenced

by

FileDescriptor

is

linked

(directly

or

indirectly)

downstream

from

a

multiplexer.

EINVAL

The

value

of

the

Nbytes

parameter

that

is

larger

than

OFF_MAX,

was

requested

on

the

32-bit

kernel.

This

is

a

case

where

the

system

call

is

requested

from

a

64-bit

application

that

is

running

on

a

32-bit

kernel.

EINTR

A

signal

was

caught

during

the

write

operation,

and

the

signal

handler

was

installed

with

an

indication

that

subroutines

are

not

to

be

restarted.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

511

EIO

An

I/O

error

occurred

while

writing

to

the

file

system;

or

the

process

is

a

member

of

a

background

process

group

attempting

to

write

to

its

controlling

terminal,

TOSTOP

is

set,

the

process

is

neither

ignoring

nor

blocking

SIGTTOU,

and

the

process

group

has

no

parent

process.

ENOSPC

No

free

space

is

left

on

the

file

system

containing

the

file.

ENXIO

A

hangup

occurred

on

the

STREAM

being

written

to.

EPIPE

An

attempt

was

made

to

write

to

a

file

that

is

not

opened

for

reading

by

any

process,

or

to

a

socket

of

type

SOCK_STREAM

that

is

not

connected

to

a

peer

socket;

or

an

attempt

was

made

to

write

to

a

pipe

or

FIFO

that

is

not

open

for

reading

by

any

process.

If

this

occurs,

a

SIGPIPE

signal

will

also

be

sent

to

the

process.

ERANGE

The

transfer

request

size

was

outside

the

range

supported

by

the

STREAMS

file

associated

with

FileDescriptor.

The

write,

writex,

writev,

and

writevx

subroutines

may

be

unsuccessful

if

the

following

is

true:

ENXIO

A

request

was

made

of

a

nonexistent

device,

or

the

request

was

outside

the

capabilities

of

the

device.

EFBIG

An

attempt

was

made

to

write

to

a

regular

file

where

NBytes

greater

than

zero

and

the

starting

offset

is

greater

than

or

equal

to

the

offset

maximum

established

in

the

open

file

description

associated

with

FileDescriptor.

EINVAL

The

offset

argument

is

invalid.

The

value

is

negative.

ESPIPE

fildes

is

associated

with

a

pipe

or

FIFO.

Related

Information

The

fcntl,

dup,

or

dup2

subroutine,

fsync

subroutine,

ioctl

subroutine,

lockfx

subroutine,

lseek

subroutine,

open,

openx,

or

creat

subroutine,

pathconf

subroutine,

pipe

subroutine,

poll

subroutine,

select

(“select

Subroutine”

on

page

115)

subroutine,

ulimit

(“ulimit

Subroutine”

on

page

416)

subroutine.

The

limits.h

file,

unistd.h

file.

The

Input

and

Output

Handling

Programmer’s

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

wstring

Subroutine

Purpose

Perform

operations

on

wide

character

strings.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wstring.h>

wchar_t

*wstrcat

(“wstring

Subroutine”)

(XString1,

XString2)

wchar_t

*XString1,

*XString2;

wchar_t

*

wstrncat

(XString,

XString2,

Number)

wchar_t

*XString1,

*XString2;

int

Number;

int

wstrcmp

(XString1,

XString2)

wchar_t

*XString1,

*XString2;

512

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

wstrncmp

(XString1,

XString2,

Number)

wchar_t

*XString1,

*XString2;

int

Number;

wchar_t

*

wstrcpy

(XString1,

XString2)

wchar_t

*XString1,

*XString2;

wchar_t

*

wstrncpy

(XString1,

XString2,

Number)

wchar_t

*XString1,

*XString2;

int

Number;

int

wstrlen

(XString)

wchar_t

*XString;

wchar_t

*

wstrchr

(XString,

Number)

wchar_t

*XString;

int

Number;

wchar_t

*

wstrrchr

(XString,

Number)

wchar_t

*XString;

int

Number;

wchar_t

*

wstrpbrk

(XString1,

XString2)

wchar_t

*XString1,

XString2;

int

wstrspn

(XString1,

XString2)

wchar_t

*XString1,

XString2;

int

wstrcspn

(XString1,

XString2)

wchar_t

*XString1,

XString2;

wchar_t

*

wstrtok

(XString1,

XString2)

wchar_t

*XString1,

XString2;

wchar_t

*

wstrdup

(XString1)

wchar_t

*XString1;

Description

The

wstring

subroutines

copy,

compare,

and

append

strings

in

memory,

and

determine

location,

size,

and

existence

of

strings

in

memory.

For

these

subroutines,

a

string

is

an

array

of

wchar_t

characters,

terminated

by

a

null

character.

The

wstring

subroutines

parallel

the

string

subroutines,

but

operate

on

strings

of

type

wchar_t

rather

than

on

type

char,

except

as

specifically

noted

below.

The

parameters

XString1,

XString2,

and

XString

point

to

strings

of

type

wchar_t

(arrays

of

wchar

characters

terminated

by

a

wchar_t

null

character).

The

subroutines

wstrcat,

wstrncat,

wstrcpy,

and

wstrncpy

all

alter

the

XString1

parameter.

They

do

not

check

for

overflow

of

the

array

pointed

to

by

XString1.

All

string

movement

is

performed

wide

character

by

wide

character.

Overlapping

moves

toward

the

left

work

as

expected,

but

overlapping

moves

to

the

right

may

give

unexpected

results.

All

of

these

subroutines

are

declared

in

the

wstring.h

file.

The

wstrcat

subroutine

appends

a

copy

of

the

wchar_t

string

pointed

to

by

the

XString2

parameter

to

the

end

of

the

wchar_t

string

pointed

to

by

the

XString1

parameter.

The

wstrcat

subroutine

returns

a

pointer

to

the

null-terminated

result.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

513

The

wstrncat

subroutine

copies,

at

most,

the

value

of

the

Number

parameter

of

wchar_

t

characters

in

the

XString2

parameter

to

the

end

of

the

wchar_t

string

pointed

to

by

the

XString1

parameter.

Copying

stops

before

Number

wchar_t

character

if

a

null

character

is

encountered

in

the

string

pointed

to

by

the

XString2

parameter.

The

wstrncat

subroutine

returns

a

pointer

to

the

null-terminated

result.

The

wstrcmp

subroutine

lexicographically

compares

the

wchar_t

string

pointed

to

by

the

XString1

parameter

to

the

wchar_t

string

pointed

to

by

the

XString2

parameter.

The

wstrcmp

subroutine

returns

a

value

that

is:

v

Less

than

0

if

XString1

is

less

than

XString2

v

Equal

to

0

if

XString1

is

equal

to

XString2

v

Greater

than

0

if

XString1

is

greater

than

XString2

The

wstrncmp

subroutine

makes

the

same

comparison

as

wstrcmp,

but

it

compares,

at

most,

the

value

of

the

Number

parameter

of

pairs

of

wchar

characters.

The

comparisons

are

based

on

collation

values

as

determined

by

the

locale

category

LC_COLLATE

and

the

LANG

variable.

The

wstrcpy

subroutine

copies

the

string

pointed

to

by

the

XString2

parameter

to

the

array

pointed

to

by

the

XString1

parameter.

Copying

stops

when

the

wchar_t

null

is

copied.

The

wstrcpy

subroutine

returns

the

value

of

the

XString1

parameter.

The

wstrncpy

subroutine

copies

the

value

of

the

Number

parameter

of

wchar_t

characters

from

the

string

pointed

to

by

the

XString2

parameter

to

the

wchar_t

array

pointed

to

by

the

XString1

parameter.

If

XString2

is

less

than

Number

wchar_t

characters

long,

then

wstrncpy

pads

XString1

with

trailing

null

characters

to

fill

Number

wchar_t

characters.

If

XString2

is

Number

or

more

wchar_t

characters

long,

only

the

first

Number

wchar_t

characters

are

copied;

the

result

is

not

terminated

with

a

null

character.

The

wstrncpy

subroutine

returns

the

value

of

the

XString1

parameter.

The

wstrlen

subroutine

returns

the

number

of

wchar_t

characters

in

the

string

pointed

to

by

the

XString

parameter,

not

including

the

terminating

wchar_t

null.

The

wstrchr

subroutine

returns

a

pointer

to

the

first

occurrence

of

the

wchar_t

specified

by

the

Number

parameter

in

the

wchar_t

string

pointed

to

by

the

XString

parameter.

A

null

pointer

is

returned

if

the

wchar_t

does

not

occur

in

the

wchar_t

string.

The

wchar_t

null

that

terminates

a

string

is

considered

to

be

part

of

the

wchar_t

string.

The

wstrrchr

subroutine

returns

a

pointer

to

the

last

occurrence

of

the

character

specified

by

the

Number

parameter

in

the

wchar_t

string

pointed

to

by

the

XString

parameter.

A

null

pointer

is

returned

if

the

wchar_t

does

not

occur

in

the

wchar_t

string.

The

wchar_t

null

that

terminates

a

string

is

considered

to

be

part

of

the

wchar_t

string.

The

wstrpbrk

subroutine

returns

a

pointer

to

the

first

occurrence

in

the

wchar_t

string

pointed

to

by

the

XString1

parameter

of

any

code

point

from

the

string

pointed

to

by

the

XString2

parameter.

A

null

pointer

is

returned

if

no

character

matches.

The

wstrspn

subroutine

returns

the

length

of

the

initial

segment

of

the

string

pointed

to

by

the

XString1

parameter

that

consists

entirely

of

code

points

from

the

wchar_t

string

pointed

to

by

the

XString2

parameter.

The

wstrcspn

subroutine

returns

the

length

of

the

initial

segment

of

the

wchar_t

string

pointed

to

by

the

XString1

parameter

that

consists

entirely

of

code

points

not

from

the

wchar_t

string

pointed

to

by

the

XString2

parameter.

The

wstrtok

subroutine

returns

a

pointer

to

an

occurrence

of

a

text

token

in

the

string

pointed

to

by

the

XString1

parameter.

The

XString2

parameter

specifies

a

set

of

code

points

as

token

delimiters.

If

the

XString1

parameter

is

anything

other

than

null,

then

the

wstrtok

subroutine

reads

the

string

pointed

to

by

514

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

the

XString1

parameter

until

it

finds

one

of

the

delimiter

code

points

specified

by

the

XString2

parameter.

It

then

stores

a

wchar_t

null

into

the

wchar_t

string,

replacing

the

delimiter

code

point,

and

returns

a

pointer

to

the

first

wchar_t

of

the

text

token.

The

wstrtok

subroutine

keeps

track

of

its

position

in

the

wchar_t

string

so

that

subsequent

calls

with

a

null

XString1

parameter

step

through

the

wchar_t

string.

The

delimiters

specified

by

the

XString2

parameter

can

be

changed

for

subsequent

calls

to

wstrtok.

When

no

tokens

remain

in

the

wchar_t

string

pointed

to

by

the

XString1

parameter,

the

wstrtok

subroutine

returns

a

null

pointer.

The

wstrdup

subroutine

returns

a

pointer

to

a

wchar_t

string

that

is

a

duplicate

of

the

wchar_t

string

to

which

the

XString1

parameter

points.

Space

for

the

new

string

is

allocated

using

the

malloc

subroutine.

When

a

new

string

cannot

be

created,

a

null

pointer

is

returned.

Related

Information

The

malloc

subroutine,

strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

(“strcat,

strncat,

strxfrm,

strcpy,

strncpy,

or

strdup

Subroutine”

on

page

281)

subroutine,

strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

(“strcmp,

strncmp,

strcasecmp,

strncasecmp,

or

strcoll

Subroutine”

on

page

283)

subroutine,

strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

or

strtok

(“strlen,

strchr,

strrchr,

strpbrk,

strspn,

strcspn,

strstr,

strtok,

or

strsep

Subroutine”

on

page

291)

subroutine.

List

of

String

Manipulation

Services

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

National

Language

Support

Overview

in

AIX

5L

Version

5.2

National

Language

Support

Guide

and

Reference.

Subroutines,

Example

Programs,

and

Libraries

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

wstrtod

or

watof

Subroutine

Purpose

Converts

a

string

to

a

double-precision

floating-point.

Library

Standard

C

Library

Syntax

#include

<wstring.h>

double

wstrtod

(

String,

Pointer)

wchar_t

*String,

**Pointer;

double

watof

(String)

wchar_t

*String;

Description

The

wstrtod

subroutine

returns

a

double-precision

floating-point

number

that

is

converted

from

an

wchar_t

string

pointed

to

by

the

String

parameter.

The

system

searches

the

String

until

it

finds

the

first

unrecognized

character.

The

wstrtod

subroutine

recognizes

a

string

that

starts

with

any

number

of

white-space

characters

(defined

by

the

iswspace

subroutine),

followed

by

an

optional

sign,

a

string

of

decimal

digits

that

may

include

a

decimal

point,

e

or

E,

an

optional

sign

or

space,

and

an

integer.

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

515

When

the

value

of

Pointer

is

not

(wchar_t

**)

null,

a

pointer

to

the

search

terminating

character

is

returned

to

the

address

indicated

by

Pointer.

When

the

resulting

number

cannot

be

created,

*Pointer

is

set

to

String

and

0

(zero)

is

returned.

The

watof

(String)

subroutine

functions

like

the

wstrtod

(String

(wchar_t

**)

null).

Parameters

String

Specifies

the

address

of

the

string

to

scan.

Pointer

Specifies

the

address

at

which

the

pointer

to

the

terminating

character

is

stored.

Error

Codes

When

the

value

causes

overflow,

HUGE_VAL

(defined

in

the

math.h

file)

is

returned

with

the

appropriate

sign,

and

the

errno

global

variable

is

set

to

ERANGE.

When

the

value

causes

underflow,

0

is

returned

and

the

errno

global

variable

is

set

to

ERANGE.

Related

Information

The

atof,

atoff,

strtod,

strtof

subroutine,

scanf,

fscanf,

sscanf

(“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109)

subroutine,

strtol,

strtoul,

atol,

atoi

(“strtol,

strtoul,

strtoll,

strtoull,

or

atoi

Subroutine”

on

page

299)

subroutine,

wstrtol,

watol,

watoi

(“wstrtol,

watol,

or

watoi

Subroutine”)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

wstrtol,

watol,

or

watoi

Subroutine

Purpose

Converts

a

string

to

an

integer.

Library

Standard

C

Library

(libc.a)

Syntax

#include

<wstring.h>

long

wstrtol

(

String,

Pointer,

Base)

wchar_t

*String,

**Pointer;

int

Base;

long

watol

(String)

wchar_t

*String;

int

watoi

(String)

wchar_t

*String;

Description

The

wstrtol

subroutine

returns

a

long

integer

that

is

converted

from

the

string

pointed

to

by

the

String

parameter.

The

string

is

searched

until

a

character

is

found

that

is

inconsistent

with

Base.

Leading

white-space

characters

defined

by

the

ctype

subroutine

iswspace

are

ignored.

516

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

When

the

value

of

Pointer

is

not

(wchar_t

**)

null,

a

pointer

to

the

terminating

character

is

returned

to

the

address

indicated

by

Pointer.

When

an

integer

cannot

be

created,

the

address

indicated

by

Pointer

is

set

to

String,

and

0

is

returned.

When

the

value

of

Base

is

positive

and

not

greater

than

36,

that

value

is

used

as

the

base

during

conversion.

Leading

zeros

that

follow

an

optional

leading

sign

are

ignored.

When

the

value

of

Base

is

16,

0x

and

0X

are

ignored.

When

the

value

of

Base

is

0,

the

system

chooses

an

appropriate

base

after

examining

the

actual

string.

An

optional

sign

followed

by

a

leading

zero

signifies

octal,

and

a

leading

0x

or

0X

signifies

hexadecimal.

In

all

other

cases,

the

subroutines

assume

a

decimal

base.

Truncation

from

long

data

type

to

int

data

type

occurs

by

assignment,

and

also

by

explicit

casting.

The

watol

(String)

subroutine

functions

like

wstrtol

(String,

(wchar_t

**)

null,

10).

The

watoi

(String)

subroutine

functions

like

(int)

wstrtol

(String,

(wchar_t

**)

null,

10).

Note:

Even

if

overflow

occurs,

it

is

ignored.

Parameters

String

Specifies

the

address

of

the

string

to

scan.

Pointer

Specifies

the

address

at

which

the

pointer

to

the

terminating

character

is

stored.

Base

Specifies

an

integer

value

used

as

the

base

during

conversion.

Related

Information

The

atof,

atoff,

strtod,

strtof

subroutine,

scanf,

fscanf,

sscanf

(“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109)

subroutine,

strtol,

strtoul,

atol,

atoi

(“strtol,

strtoul,

strtoll,

strtoull,

or

atoi

Subroutine”

on

page

299)

subroutine,

wstrtod,

watof

(“wstrtod

or

watof

Subroutine”

on

page

515)

subroutine.

Subroutines

Overview

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

xcrypt_key_setup,

xcrypt_encrypt,

xcrypt_decrypt,

xcrypt_hash,

xcrypt_malloc,

xcrypt_free,

xcrypt_printb,

xcrypt_btoa

and

xcrypt_randbuff

Subroutine

Purpose

Provides

various

block

and

stream

cipher

algorithms

and

two

crypto-secure

hash

algorithms.

Library

Cryptographic

Library

(libmodcrypt.a)

Syntax

#include

<xcrypt.h>

int

xcrypt_key_setup

(alg,

key,

keymat,

keysize,

dir)

int

alg;

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

517

xcrypt_key

*key;

u_char

*keymat;

int

keysize;

int

dir;

int

xcrypt_encrypt

(alg,

mode,

key,

IV,

in,

insize,

out,

padding)

int

alg;

int

mode;

xcrypt_key

*key;

u_char

*IV;

u_char

*in;

int

insize;

u_char

*out;

int

padding;

int

xcrypt_decrypt

(alg,

mode,

key,

IV,

in,

insize,

out,

padding)

int

alg;

int

mode;

xcrypt_key

*key;

u_char

*IV;

u_char

*in;

int

insize;

u_char

*out;

int

padding;

int

xcrypt_hash

(alg,

in,

insize,

out)

int

alg;

u_char

*in;

int

insize;

u_char

*out;

int

xcrypt_malloc

(pp,

size,

blocksize)

uchar

**pp;

int

size;

int

blocksize;

void

xcrypt_free

(p,

size)

void

*p;

int

size;

void

xcrypt_printb

(p,

size)

void

*p;

int

size;

void

xcrypt_btoa

(dest,

buff,

size)

char

*dest;

void

*buff;

int

size;

void

xcrypt_randbuff

(dest,

size)

void

*dest;

int

size;

Description

These

subroutines

provide

block

and

stream

cipher

algorithms,

plus

two

crypto-secure

hash

algorithms.

Encryption

may

be

done

through

the

Rijndael,

Mars,

and

Twofish

block

ciphers

or

the

SEAL

stream

cipher.

Each

of

these

algorithms

uses

a

use

a

block

length

of

128

bits

and

key

lengths

of

128,

192

and

256

bits.

SEAL

is

a

stream

cipher

that

uses

a

160

bit

key

and

a

32

bit

word

input

stream.

In

addition,

the

MD5

and

SHA-1

cryptographic

hash

algorithms

are

included.

The

xcrypt_key_setup

subroutine

is

used

to

setup

a

key

schedule

for

any

of

the

block

cipher

algorithms.

It

stores

the

key

schedule

in

the

xcrypt_key

data

structure

that

is

passed

in.

Note

that

when

using

the

Twofish

method,

the

keymat

parameter

should

be

set

to

NULL.

The

xcrypt_encrypt

subroutine

encrypts

a

buffer.

Data

can

be

encrypted

using

the

CBC

mode

(Cipher

Block

Chaining),

EBC

mode

(Electronic

Codebook)

or

CBF1

mode.

Note

that

when

EBC

mode

is

being

used,

no

initalization

vector

is

required.

518

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

xcrypt_decrypt

subroutine

decrypts

a

buffer.

Data

can

be

encrypted

using

the

CBC

mode

(Cipher

Block

Chaining),

EBC

mode

(Electronic

Codebook)

or

CBF1

mode.

Note

that

when

EBC

mode

is

being

used,

no

initalization

vector

is

required.

The

xcrypt_hash

subroutine

hashes

a

buffer

using

either

the

MD5

or

SHA-1

algorithm.

The

xcrypt_malloc

subroutine

dynamically

allocates

the

least

size

bytes

of

memory

to

provide

blocks

of

blocksize

bytes.

For

example,

if

size

is

105

and

blocksize

is

10,

the

xcrypt_malloc

subroutine

will

return

at

least

110

bytes

of

memory

(11

blocks,

each

10

bytes

in

size).

The

xcrypt_malloc

subroutine

should

be

used

when

you

need

xcrypt

to

pad

buffers.

It

will

make

sure

that

enough

memory

is

allocated

for

the

data

to

be

encrypted,

plus

the

padding.

The

xcrypt_free

subroutine

overwrites

and

frees

dynamically

allocated

memory.

The

xcrypt_printb

subroutine

prints

a

buffer

to

the

screen

in

hexadecimal

notation.

The

xcrypt_btoa

subroutine

returns

a

string

representing

the

buffer

in

hexadecimal.

Note

that

the

dest

parameter

must

point

to

a

buffer

of

size

*

2

+

1.

The

xcrypt_randbuff

subroutine

fills

a

buffer

with

random

data.

Parameters

alg

Specifies

the

cipher

to

use.

Use

the

symbolic

constants

that

are

described

below:

RIJNDAEL

Rijndael

(AES)

block

cipher

MARS

Mars

block

cipher

TWOFISH

Twofish

block

cipher

SEAL

SEAL

stream

cipher

SHA1

SHA-1

one-way

hash

function

MD5

MD5

one-way

hash

function

key

Points

to

the

key

instance

to

set

up.

Use

for

encryption

or

decryption.

keymat

Points

to

the

key

material

used

to

build

the

key

schedule.

keysize

Size

of

the

keymat

parameter.

Use

the

symbolic

constants

described

below:

KEY_80

80

bit

key

KEY_128

128

bit

key

KEY_192

192

bit

key

KEY_256

256

bit

key

dir

The

direction

(encryption

or

decryption).

Use

the

symbolic

constants

described

below:

DIR_ENCRYPT

Encrypt

DIR_DECRYPT

Decrypt

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

519

mode

Specifies

the

mode

of

operation.

Use

the

symbolic

constants

described

below:

MODE_ECB

Ciphering

in

ECB

mode

MODE_CBC

Ciphering

in

CBC

mode

MODE_CFB1

Ciphering

in

1-bit

CFB

mode

IV

Points

to

the

buffer

holding

the

initialization

vector.

Note:

When

using

ECB

mode,

the

IV

parameter

should

point

to

NULL.

in

Points

to

the

buffer

holding

the

data

to

encrypt,

decrypt,

or

hash.

insize

Contains

the

size

of

the

in

parameter.

out

Points

to

a

preallocated

output

buffer.

padding

Specifies

whether

xcrypt

should

pad

the

buffers

or

not.

Use

the

symbolic

constants

described

below:

TRUE

True

FALSE

False

pp

A

double

pointer

to

the

destination.

size

Contains

the

amount

of

memory

to

allocate,

deallocate,

print

the

contents

of,

or

convert

to

a

string.

blocksize

Contains

the

size

of

the

blocks.

Use

the

symbolic

constants

described

below:

BITS_32

32

bits

BITS_80

80

bits

BITS_128

128

bits

BITS_160

160

bits

BITS_192

192

bits

BITS_256

256

bits

p

Points

to

the

memory

to

overwrite

and

free.

buff

Points

to

a

buffer

to

print

or

convert

to

a

string.

dest

Points

to

a

preallocated

destination

buffer.

Return

Values

The

xcrypt_key_setup

and

xcrypt_hash

subroutines

return

0

on

success.

The

xcrypt_malloc

subroutine

returns

the

amount

of

memory

allocated

on

success.

The

xcrypt_encrypt

subroutine

returns

the

amount

of

data

encrypted

on

success.

The

xcrypt_decrypt

subroutine

returns

the

amount

of

data

decrypted

on

success.

On

failure

the

above

subroutines

return

the

following

error

codes:

Error

Codes

xcrypt_key_setup:

BAD_ALIGN32

A

parameter

is

not

aligned

on

a

32

bit

boundary.

BAD_KEY_DIR

The

dir

parameter

is

not

valid

BAD_KEY_INSTANCE

The

key

parameter

is

not

valid

520

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

BAD_KEY_MAT

The

keysize

parameter

is

not

valid

or

the

key

parameter

is

corrupt.

xcrypt_encrypt:

BAD_ALG

The

alg

parameter

is

not

valid.

BAD_CIPHER_MODE

The

mode

parameter

is

not

valid.

BAD_CIPHER_STATE

The

key

parameter

is

not

valid.

BAD_INPUT_LEN

The

insize

parameter

is

not

a

multiple

of

of

the

blocksize

being

used

by

a

block

cipher

for

encryption

or

decryption.

BAD_IV

The

IV

parameter

is

set

to

NULL

when

the

mode

parameter

is

set

to

MODE_CBC.

BAD_IV_MAT

The

IV

parameter

is

not

valid.

BAD_KEY_INSTANCE

The

key

parameter

is

not

valid.

xcrypt_decrypt:

BAD_ALG

The

alg

parameter

is

not

valid.

BAD_CIPHER_MODE

The

mode

parameter

is

not

valid.

BAD_CIPHER_STATE

The

key

parameter

is

not

valid.

BAD_INPUT_LEN

The

insize

parameter

is

not

a

multiple

of

of

the

blocksize

being

used

by

a

block

cipher

for

encryption

or

decryption.

BAD_IV

The

IV

parameter

is

set

to

NULL

when

the

mode

parameter

is

set

to

MODE_CBC.

BAD_IV_MAT

The

IV

parameter

is

not

valid.

BAD_KEY_INSTANCE

The

key

parameter

is

not

valid.

xcrypt_hash:

BAD_ALG

The

alg

parameter

is

not

valid.

xcrypt_malloc:

BAD_MEM_ALLOC

The

system

could

not

allocate

size

bytes.

yield

Subroutine

Purpose

Yields

the

processor

to

processes

with

higher

priorities.

Library

Standard

C

library

(libc.a)

Syntax

void

yield

(void);

Description

The

yield

subroutine

forces

the

current

running

process

or

thread

to

relinquish

use

of

the

processor.

If

the

run

queue

is

empty

when

the

yield

subroutine

is

called,

the

calling

process

or

kernel

thread

is

immediately

Chapter

1.

Base

Operating

System

(BOS)

Runtime

Services

(Q-Z)

521

rescheduled.

If

the

calling

process

has

multiple

threads,

only

the

calling

thread

is

affected.

The

process

or

thread

resumes

execution

after

all

threads

of

equal

or

greater

priority

are

scheduled

to

run.

Related

Information

The

getpriority,

setpriority,

or

nice

subroutine,

setpri

(“setpri

Subroutine”

on

page

147)

subroutine.

522

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Chapter

2.

Curses

Subroutines

addch,

mvaddch,

mvwaddch,

or

waddch

Subroutine

Purpose

Adds

a

single-byte

character

and

rendition

to

a

window

and

advances

the

cursor.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

addch(const

chtype

ch);

int

mvaddch(int

y,

int

x,

const

chtype

ch);

int

mvwaddch(WINDOW

*in,

const

chtype

ch);

int

waddch(WINDOW

*win,

const

chtype

ch);

Description

The

addch,

waddch,

mvaddch,

and

mvwaddch

subroutines

add

a

character

to

a

window

at

the

logical

cursor

location.

After

adding

the

character,

curses

advances

the

position

of

the

cursor

one

character.

At

the

right

margin,

an

automatic

new

line

is

performed.

The

addch

subroutine

adds

the

character

to

the

stdscr

at

the

current

logical

cursor

location.

To

add

a

character

to

a

user-defined

window,

use

the

waddch

and

mvwaddch

subroutines.

The

mvaddch

and

mvwaddch

subroutines

move

the

logical

cursor

before

adding

a

character.

If

you

add

a

character

to

the

bottom

of

a

scrolling

region,

curses

automatically

scrolls

the

region

up

one

line

from

the

bottom

of

the

scrolling

region

if

scrollok

is

enabled.

If

the

character

to

add

is

a

tab,

new-line,

or

backspace

character,

curses

moves

the

cursor

appropriately

in

the

window

to

reflect

the

addition.

Tabs

are

set

at

every

eighth

column.

If

the

character

is

a

new-line,

curses

first

uses

the

wclrtoeol

subroutine

to

erase

the

current

line

from

the

logical

cursor

position

to

the

end

of

the

line

before

moving

the

cursor.

You

can

also

use

the

addch

subroutines

to

add

control

characters

to

a

window.

Control

characters

are

drawn

in

the

^X

notation.

Adding

Video

Attributes

and

Text

Because

the

Char

parameter

is

an

integer,

not

a

character,

you

can

combine

video

attributes

with

a

character

by

ORing

them

into

the

parameter.

The

video

attributes

are

also

set.

With

this

capability

you

can

copy

text

and

video

attributes

from

one

location

to

another

using

the

inch

(“inch,

mvinch,

mvwinch,

or

winch

Subroutine”

on

page

574)

and

addch

subroutines.

Parameters

ch

y

x

*win

©

Copyright

IBM

Corp.

1994,

2004

523

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

add

the

character

H

represented

by

variable

x

to

stdscr

at

the

current

cursor

location,

enter:

chtype

x;

x=’H’;

addch(x);

2.

To

add

the

x

character

to

stdscr

at

the

coordinates

y

=

10,

x

=

5,

enter:

mvaddch(10,

5,

’x’);

3.

To

add

the

x

character

to

the

user-defined

window

my_window

at

the

coordinates

y

=

10,

x

=

5,

enter:

WINDOW

*my_window;

mvwaddch(my_window,

10,

5,

’x’);

4.

To

add

the

x

character

to

the

user-defined

window

my_window

at

the

current

cursor

location,

enter:

WINDOW

*my_window;

waddch(my_window,

’x’);

5.

To

add

the

character

x

in

standout

mode,

enter:

waddch(my_window,

’x’

|

A_STANDOUT);

This

allows

’x’

to

be

highlighted,

but

leaves

the

rest

of

the

window

alone.

Related

Information

The

inch,

winch,

mvinch,

or

mvwinch

(“inch,

mvinch,

mvwinch,

or

winch

Subroutine”

on

page

574)

subroutines,

wclrtoeol

(“clrtoeol

or

wclrtoeol

Subroutine”

on

page

541)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

addnstr,

addstr,

mvaddnstr,

mvaddstr,

mvwaddnstr,

mvwaddstr,

waddnstr,

or

waddstr

Subroutine

Purpose

Adds

a

string

of

multi-byte

characters

without

rendition

to

a

window

and

advances

the

cursor.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

addnstr(const

char

*str,

int

n);

int

addstr(const

char

*str);

int

mvaddnstr(int

y,

int

x,

const

char

*str,

int

n);

int

mvaddstr(int

y,

int

x,

const

char

*str);

524

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

mvwaddnstr(WINDOW

*win,

int

y,

int

x,

const

char

*str,

int

n);

int

mvwaddstr(WINDOW

*win,

int

y,

int

x,

const

char

*str);

int

waddnstr(WINDOW

*win,

const

char

*str,

int

n);

int

waddstr(WINDOW

*win,

const

char

*str);

Description

These

subroutines

write

the

characters

of

the

string

str

on

the

current

or

specified

window

starting

at

the

current

or

specified

position

using

the

background

rendition.

These

subroutines

advance

the

cursor

position,

perform

special

character

processing,

and

perform

wrapping.

The

addstr,

mvaddstr,

mvwaddstr

and

waddstr

subroutines

are

similar

to

calling

mbstowcs

on

str,

and

then

calling

addwstr,

mvaddwstr,

mvwaddwstr,

and

waddwstr,

respectively.

The

addnstr,

mvaddnstr,

mvwaddnstr

and

waddnstr

subroutines

use

at

most,

n

bytes

from

str.

These

subroutines

add

the

entire

string

when

n

is

-1.

Parameters

Column

Specifies

the

horizontal

position

to

move

the

cursor

to

before

adding

the

string.

Line

Specifies

the

vertical

position

to

move

the

cursor

to

before

adding

the

string.

String

Specifies

the

string

to

add.

Window

Specifies

the

window

to

add

the

string

to.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

add

the

string

represented

by

xyz

to

the

stdscr

at

the

current

cursor

location,

enter:

char

*xyz;

xyz="Hello!";

addstr(xyz);

2.

To

add

the

″Hit

a

Key″

string

to

the

stdscr

at

the

coordinates

y=10,

x=5,

enter:

mvaddstr(10,

5,

"Hit

a

Key");

3.

To

add

the

xyz

string

to

the

user-defined

window

my_window

at

the

coordinates

y=10,

x=5,

enter:

mvwaddstr(my_window,

10,

5,

"xyz");

4.

To

add

the

xyz

string

to

the

user-defined

string

at

the

current

cursor

location,

enter:

waddstr(my_window,

"xyz");

Related

Information

The

addch

(“addch,

mvaddch,

mvwaddch,

or

waddch

Subroutine”

on

page

523)

subroutine.

Chapter

2.

Curses

Subroutines

525

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

attroff,

attron,

attrset,

wattroff,

wattron,

or

wattrset

Subroutine

Purpose

Restricted

window

attribute

control

functions.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

attroff

(int

*attrs);

int

attron

(int

*attrs);

int

attrset

(int

*attrs);

int

wattroff

(WINDOW

*win,

int

*attsr);

int

wattron

(WINDOW

*win,

int

*attrs);

int

wattrset

(WINDOW

*win,

int

*attsr);

Description

These

subroutines

manipulate

the

window

attributes

of

the

current

or

specified

window.

The

attroff

and

wattroff

subroutines

turn

off

attrs

in

the

current

or

specified

specified

window

without

affecting

any

others.

The

attron

and

wattron

subroutines

turn

on

attrs

in

the

current

or

specified

specified

window

without

affecting

any

others.

526

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

attrset

and

wattrset

subroutines

set

the

background

attributes

of

the

current

or

specified

specified

window

to

attrs.

It

unspecified

whether

these

subroutines

can

be

used

to

manipulate

attributes

than

A_BLINK,

A_BOLD,

A_DIM,

A_REVERSE,

A_STANDOUT

and

A_UNDERLINE.

Parameters

*attrs

Specifies

which

attributes

to

turn

off.

*win

Specifies

the

window

in

which

to

turn

off

the

specified

attributes.

Return

Values

These

subroutines

always

return

either

OK

or

1.

Examples

For

the

attroff

or

wattroff

subroutines:

1.

To

turn

the

off

underlining

attribute

in

stdscr,

enter:

attroff(A_UNDERLINE);

2.

To

turn

off

the

underlining

attribute

in

the

user-defined

window

my_window,

enter:

wattroff(my_window,

A_UNDERLINE);

For

the

attron

or

wattron

subroutines:

1.

To

turn

on

the

underlining

attribute

in

stdscr,

enter:

attron(A_UNDERLINE);

2.

To

turn

on

the

underlining

attribute

in

the

user-defined

window

my_window,

enter:

wattron(my_window,

A_UNDERLINE);

For

the

attrset

or

wattrset

subroutines:

1.

To

set

the

current

attribute

in

the

stdscr

global

variable

to

blink,

enter:

attrset(A_BLINK);

2.

To

set

the

current

attribute

in

the

user-defined

window

my_window

to

blinking,

enter:

wattrset(my_window,

A_BLINK);

3.

To

turn

off

all

attributes

in

the

stdscr

global

variable,

enter:

attrset(0);

4.

To

turn

off

all

attributes

in

the

user-defined

window

my_window,

enter:

wattrset(my_window,

0);

Related

Information

The

standend

(“standend,

standout,

wstandend,

or

wstandout

Subroutine”

on

page

634)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

527

attron

or

wattron

Subroutine

Purpose

Turns

on

specified

attributes.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

attron(

Attributes)

char

*Attributes;

wattron(

Window,

Attributes)

WINDOW

*Window;

char

*Attributes;

Description

The

attron

and

wattron

subroutines

turn

on

specified

attributes

without

affecting

any

others.

The

attron

subroutine

turns

the

specified

attributes

on

in

stdscr.

The

wattron

subroutine

turns

the

specified

attributes

on

in

the

specified

window.

Parameters

Attributes

Specifies

which

attributes

to

turn

on.

Window

Specifies

the

window

in

which

to

turn

on

the

specified

attributes.

Examples

1.

To

turn

on

the

underlining

attribute

in

stdscr,

enter:

attron(A_UNDERLINE);

2.

To

turn

on

the

underlining

attribute

in

the

user-defined

window

my_window,

enter:

wattron(my_window,

A_UNDERLINE);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

attrset

or

wattrset

Subroutine

Purpose

Sets

the

current

attributes

of

a

window

to

the

specified

attributes.

528

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Libraries

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

attrset(

Attributes)

char

*Attributes;

wattrset(

Window,

Attributes)

WINDOW

*Window;

char

*Attributes;

Description

The

attrset

and

wattrset

subroutines

set

the

current

attributes

of

a

window

to

the

specified

attributes.

The

attrset

subroutine

sets

the

current

attribute

of

stdscr.

The

wattrset

subroutine

sets

the

current

attribute

of

the

specified

window.

Parameters

Attributes

Specifies

which

attributes

to

set.

Window

Specifies

the

window

in

which

to

set

the

attributes.

Examples

1.

To

set

the

current

attribute

in

the

stdscr

global

variable

to

blink,

enter:

attrset(A_BLINK);

2.

To

set

the

current

attribute

in

the

user-defined

window

my_window

to

blinking,

enter:

wattrset(my_window,

A_BLINK);

3.

To

turn

off

all

attributes

in

the

stdscr

global

variable,

enter:

attrset(0);

4.

To

turn

off

all

attributes

in

the

user-defined

window

my_window,

enter:

wattrset(my_window,

0);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

baudrate

Subroutine

Purpose

Gets

the

terminal

baud

rate.

Library

Curses

Library

(libcurses.a)

Chapter

2.

Curses

Subroutines

529

Syntax

#include

<curses.h>

int

baudrate(void)

Description

The

baudrate

subroutine

extracts

the

output

speed

of

the

terminal

in

bits

per

second.

Return

Values

The

baudrate

subroutine

returns

the

output

speed

of

the

terminal.

Examples

To

query

the

baud

rate

and

place

the

value

in

the

user-defined

integer

variable

BaudRate,

enter:

BaudRate

=

baudrate();

Related

Information

The

tcgetattr

(“tcgetattr

Subroutine”

on

page

347)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

beep

Subroutine

Purpose

Sounds

the

audible

alarm

on

the

terminal.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

beep(void);

Description

The

beep

subroutine

alerts

the

user.

It

sounds

the

audible

alarm

on

the

terminal,

or

if

that

is

not

possible,

it

flashes

the

screen

(visible

bell).

If

neither

signal

is

possible,

nothing

happens.

Return

Values

The

beep

subroutine

always

returns

OK.

Examples

To

sound

an

audible

alarm,

enter:

beep();

Related

Information

The

flash

(“flash

Subroutine”

on

page

557)

subroutine.

530

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

box

Subroutine

Purpose

Draws

borders

from

single-byte

characters

and

renditions.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

box(WINDOW

*win,

chtype

verch,

chtype

horch);

Description

The

box

subroutine

draws

a

border

around

the

edges

of

the

specified

window.

This

subroutine

does

not

advance

the

cursor

position.

This

subroutine

does

not

perform

special

character

processing

or

perform

wrapping.

The

box

subroutine

(*win,

verch,

horch)

has

an

effect

equivalent

to:

wborder(win,

verch,

verch,

horch,

horch,

0,

0,

0,

0);

Parameters

horch

Specifies

the

character

to

draw

the

horizontal

lines

of

the

box.

The

character

must

be

a

1-column

character.

verch

Specifies

the

character

to

draw

the

vertical

lines

of

the

box.

The

character

must

be

a

1-column

character.

*win

Specifies

the

window

to

draw

the

box

in

or

around.

Return

Values

Upon

successful

completion,

the

box

function

returns

OK.

Otherwise,

it

returns

ERR.

Examples

1.

To

draw

a

box

around

the

user-defined

window,

my_window,

using

|

(pipe)

as

the

vertical

character

and

-

(minus

sign)

as

the

horizontal

character,

enter:

WINDOW

*my_window;

box(my_window,

’|’,

’-’);

2.

To

draw

a

box

around

my_window

using

the

default

characters

ACS_VLINE

and

ACS_HLINE,

enter:

WINDOW

*my_window;

box(my_window,

0,

0);

Chapter

2.

Curses

Subroutines

531

Related

Information

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

and

Windows

in

the

Curses

Environment

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

can_change_color,

color_content,

has_colors,init_color,

init_pair,

start_color

or

pair_content

Subroutine

Purpose

Color

manipulation

functions

and

external

variables

for

color

support.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

bool

can_change_color(void);

int

color_content(short

color,

short

*red,

short

*green,

short

*blue);

int

COLOR_PAIR(int

n);

bool

has_colors(void);

int

init_color

(short

color,

short

red,

short

green,

short

blue);

int

init_pair

(short

pair,

short

f,

short

b);

int

pair_content

(short

pair,

short

*f,

short

*b);

int

PAIR_NUMBER

(int

value);

int

start_color

(void);

extern

int

COLOR_PAIRS;

extern

int

COLORS;

Description

These

functions

manipulate

color

on

terminals

that

support

color.

Querying

Capabilities

The

has_colors

subroutine

indicates

whether

the

terminal

is

a

color

terminal.

The

can_change_color

subroutine

indicates

whether

the

terminal

is

a

color

terminal

on

which

colors

can

be

redefined.

532

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Initialisation

The

start_color

subroutine

must

be

called

in

order

to

enable

use

of

colors

and

before

any

color

manipulation

function

is

called.

This

subroutine

initializes

eight

basic

colors

(black,

blue,

green,

cyan,

red,

magenta,

yellow,

and

white)

that

can

be

specified

by

the

color

macros

(such

as

COLOR_BLACK)

defined

in

<curses.h>.

The

initial

appearance

of

these

eight

colors

is

not

specified.

The

function

also

initialises

two

global

external

variables:

v

COLORS

defines

the

number

of

colors

that

the

terminal

supports.

If

COLORS

is

0,

the

terminal

does

not

support

redefinition

of

colors

(and

can_change_color

subroutine

will

return

FALSE).

v

COLOR_PAIRS

defines

the

maximum

number

of

color-pairs

that

the

terminal

supports.

Color

Identification

The

init_color

subroutine

redefines

color

number

color,

on

terminals

that

support

the

redefinition

of

colors,

to

have

the

red,

green,

and

blue

intensity

components

specified

by

red,

green,

and

blue,

respectively.

Calling

init_color

subroutine

also

changes

all

occurrences

of

the

specified

color

on

the

screen

to

the

new

definition.

The

color_content

subroutine

identifies

the

intensity

components

of

color

number

color.

It

stores

the

red,

green,

and

blue

intensity

components

of

this

color

in

the

addresses

pointed

to

by

red,

green,

and

blue,

respectively.

For

both

functions,

the

color

argument

must

be

in

the

range

from

0

to

and

including

COLORS

-1.

Valid

intensity

values

range

from

0

(no

intensity

component)

up

to

and

including

1000

(maximum

intensity

in

that

component).

User-Defined

Color

Pairs

Calling

init_pair

defines

or

redefines

color-pair

number

pair

to

have

foreground

color

f

and

background

color

b.

Calling

init_pair

changes

any

characters

that

were

displayed

in

the

color

pair’s

old

definition

to

the

new

definition

and

refreshes

the

screen.

After

defining

the

color

pair,

the

macro

COLOR_PAIR(n)

returns

the

value

of

color

pair

n.

This

value

is

the

color

attribute

as

it

would

be

extracted

from

a

chtype.

Conversely,

the

macro

PAIR_NUMBER(value)

returns

the

color

pair

number

associated

with

the

color

attribute

value.

The

pair_content

subroutine

retrieves

the

component

colors

of

a

color-pair

number

pair.

It

stores

the

foreground

and

background

color

numbers

in

the

variables

pointed

to

by

f

and

b,

respectively.

With

init_pair

and

pair_content

subroutines,

the

value

of

pair

must

be

in

a

range

from

0

to

and

including

COLOR_PAIRS

-1.

(There

may

be

an

implementation-specific

upper

limit

on

the

valid

value

of

pair,

but

any

such

limit

is

at

least

63.)

Valid

values

for

f

and

b

are

the

range

from

0

to

and

including

COLORS

-1.

The

can_change_color

subroutine

returns

TRUE

if

the

terminal

supports

colors

and

can

change

their

definitions;

otherwise,

it

returns

FALSE.

Parameters

color

*red

*green

*blue

pair

f

b

value

Chapter

2.

Curses

Subroutines

533

Return

Values

The

has_colors

subroutine

returns

TRUE

if

the

terminal

can

manipulate

colors;

otherwise,

it

returns

FALSE.

Upon

successful

completion,

the

other

functions

return

OK.

Otherwise,

they

return

ERR.

Examples

For

the

can_change_color

subroutine:

To

test

whether

or

not

a

terminal

can

change

its

colors,

enter

the

following

and

check

the

return

for

TRUE

or

FALSE:

can_change_color();

For

the

color_content

subroutine:

To

obtain

the

RGB

component

information

for

color

10

(assuming

the

terminal

supports

at

least

11

colors),

use:

short

*r,

*g,

*b;

color_content(10,r,g,b);

For

the

has_color

subroutine:

To

determine

whether

or

not

a

terminal

supports

color,

use:

has_colors();

For

the

pair_content

subroutine:

To

obtain

the

foreground

and

background

colors

for

color-pair

5,

use:

short

*f,

*b;

pair_content(5,f,b);

For

this

subroutine

to

succeed,

you

must

have

already

initialized

the

color

pair.

The

foreground

and

background

colors

will

be

stored

at

the

locations

pointed

to

by

f

and

b.

For

the

start_color

subroutine:

To

enable

the

color

support

for

a

terminal

that

supports

color,

use:

start_color();

For

the

init_pair

subroutine:

To

initialize

the

color

definition

for

color-pair

2

to

a

black

foreground

(color

0)

with

a

cyan

background

(color

3),

use:

init_pair(2,COLOR_BLACK,

COLOR_CYAN);

For

the

init_color

subroutine:

To

initialize

the

color

definition

for

color

11

to

violet

on

a

terminal

that

supports

at

least

12

colors,

use:

init_color(11,500,0,500);

Related

Information

The

attroff

(“attroff,

attron,

attrset,

wattroff,

wattron,

or

wattrset

Subroutine”

on

page

526)

subroutine.

534

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Curses

Overview

for

Programming

and

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

cbreak,

nocbreak,

noraw,

or

raw

Subroutine

Purpose

Puts

the

terminal

into

or

out

of

CBREAK

mode.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

cbreak(void);

int

nocbreak(void);

int

noraw(void);

int

raw(void);

Description

The

cbreak

subroutine

sets

the

input

mode

for

the

current

terminal

to

cbreak

mode

and

overrides

a

call

to

the

raw

subroutine.

The

nocbreak

subroutine

sets

the

input

mode

for

the

current

terminal

to

Cooked

Mode

without

changing

the

state

of

the

ISIG

and

IXON

flags.

The

noraw

subroutine

sets

the

input

mode

for

the

current

terminal

to

Cooked

Mode

and

sets

the

ISIG

and

IXON

flags.

The

raw

subroutine

sets

the

input

mode

for

the

current

terminal

to

Raw

Mode.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

For

the

cbreak

and

nocbreak

subroutines:

1.

To

put

the

terminal

into

CBREAK

mode,

enter:

cbreak();

2.

To

take

the

terminal

out

of

CBREAK

mode,

enter:

nocbreak();

3.

To

place

the

terminal

into

raw

mode,

use:

raw();

4.

To

place

the

terminal

out

of

raw

mode,

use:

noraw();

For

the

noraw

and

raw

subroutines:

1.

To

place

the

terminal

into

raw

mode,

use:

raw();

2.

To

place

the

terminal

out

of

raw

mode,

use:

noraw();

Chapter

2.

Curses

Subroutines

535

Related

Information

The

getch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

clear,

erase,

wclear

or

werase

Subroutine

Purpose

Clears

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

clear(void);

int

erase(void);

int

wclear(WINDOW

*win);

int

werase(WINDOW

*win);

Description

The

clear,

erase,

wclear,

and

werase

subroutines

clear

every

position

in

the

current

or

specified

window.

The

clear

and

wclear

subroutines

also

achieve

the

same

effect

as

calling

the

clearok

subroutine,

so

that

the

window

is

cleared

completely

on

the

next

call

to

the

wrefresh

subroutine

for

the

window

and

is

redrawn

in

its

entirety.

Parameters

*win

Specifies

the

window

to

clear.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

For

the

clear

and

wclear

subroutines:

1.

To

clear

stdscr

and

set

a

clear

flag

for

the

next

call

to

the

refresh

subroutine,

enter:

clear();

2.

To

clear

the

user-defined

window

my_window

and

set

a

clear

flag

for

the

next

call

to

the

wrefresh

subroutine,

enter:

536

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

WINDOW

*my_window;

wclear(my_window);

waddstr

(my_window,

"This

will

be

cleared.");

wrefresh

(my_window);

3.

To

erase

the

standard

screen

structure,

enter:

erase();

4.

To

erase

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

werase

(my_window);

Note:

After

the

wrefresh,

the

window

will

be

cleared

completely.

You

will

not

see

the

string

″This

will

be

cleared.″

For

the

erase

and

werase

subroutines:

1.

To

erase

the

standard

screen

structure,

enter:

erase();

2.

To

erase

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

werase(my_window);

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

erase

(“erase

or

werase

Subroutine”

on

page

555)

and

werase

(“erase

or

werase

Subroutine”

on

page

555)

subroutines,

clearok

(“clearok,

idlok,

leaveok,

scrollok,

setscrreg

or

wsetscrreg

Subroutine”)

subroutine,

refresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

clearok,

idlok,

leaveok,

scrollok,

setscrreg

or

wsetscrreg

Subroutine

Purpose

Terminal

output

control

subroutines.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

clearok(WINDOW

*win,

bool

bf);

int

idlok(WINDOW

*win,

bool

bf);

int

leaveok(WINDOW

*win,

bool

bf);

int

scrollok(WINDOW

*win,

bool

bf);

int

setscrreg(int

top,

int

bot);

Chapter

2.

Curses

Subroutines

537

int

wsetscrreg(WINDOW

*win,

int

top,

int

bot);

Description

These

subroutines

set

options

that

deal

with

output

within

Curses.

The

clearok

subroutine

assigns

the

value

of

bf

to

an

internal

flag

in

the

specified

window

that

governs

clearing

of

the

screen

during

a

refresh.

If,

during

a

refresh

operation

on

the

specified

window,

the

flag

in

curscr

is

TRUE

or

the

flag

in

the

specified

window

is

TRUE,

then

the

implementation

clears

the

screen,

redraws

it

in

its

entirety,

and

sets

the

flag

to

FALSE

in

curscr

and

in

the

specified

window.

The

initial

state

is

unspecified.

The

idlok

subroutine

specifies

whether

the

implementation

may

use

the

hardware

insert-line,

delete-line,

and

scroll

features

of

terminals

so

equIpped.

If

bf

is

TRUE,

use

of

these

features

is

enabled.

If

bf

is

FALSE,

use

of

these

features

is

disabled

and

lines

are

instead

redrawn

as

required.

The

initial

state

is

FALSE.

The

leaveok

subroutine

controls

the

cursor

position

after

a

refresh

operation.

If

bf

is

TRUE,

refresh

operations

on

the

specified

window

may

leave

the

terminal’s

cursor

at

an

arbitrary

position.

If

bf

is

FALSE,

then

at

the

end

of

any

refresh

operation,

the

terminal’s

cursor

is

positioned

at

the

cursor

position

contained

in

the

specified

window.

The

initial

state

is

FALSE.

The

scrollok

subroutine

controls

the

use

of

scrolling.

If

bf

is

TRUE,

then

scrolling

is

enabled

for

the

specified

window,

with

the

consequences

discussed

in

Truncation,

Wrapping

and

Scrolling

on

page

28.

If

bf

is

FALSE,

scrolling

is

disabled

for

the

specified

window.

The

initial

state

is

FALSE.

The

setscrreg

and

wsetscrreg

subroutines

define

a

software

scrolling

region

in

the

current

or

specified

window.

The

top

and

bot

arguments

are

the

line

numbers

of

the

first

and

last

line

defining

the

scrolling

region.

(Line

0

is

the

top

line

of

the

window.)

If

this

option

and

the

scrollok

subroutine

are

enabled,

an

attempt

to

move

off

the

last

line

of

the

margin

causes

all

lines

in

the

scrolling

region

to

scroll

one

line

in

the

direction

of

the

first

line.

Only

characters

in

the

window

are

scrolled.

If

a

software

scrolling

region

is

set

and

the

scrollok

subroutine

is

not

enabled,

an

attempt

to

move

off

the

last

line

of

the

margin

does

not

reposition

any

lines

in

the

scrolling

region.

Parameters

The

parameters

for

the

clearok

subroutine

are:

Flag

Sets

the

window

clear

flag.

If

TRUE,

curses

clears

the

window

on

the

next

call

to

the

wrefresh

or

refresh

subroutines.

If

FALSE,

curses

does

not

clear

the

window.

Window

Specifies

the

window

to

clear.

The

parameters

for

the

idlok

subroutine

are:

Flag

Specifies

whether

to

enable

curses

to

use

the

hardware

insert/delete

line

feature

(TRUE)

or

not

(FALSE).

Window

Specifies

the

window

it

will

affect.

The

parameters

for

the

leaveok

subroutine

are:

Flag

Specifies

whether

to

leave

the

physical

cursor

alone

after

a

refresh

(TRUE)

or

to

move

the

physical

cursor

to

the

logical

cursor

after

a

refresh

(FALSE).

Window

Specifies

the

window

for

which

to

set

the

Flag

parameter.

538

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

parameters

for

the

scrollok

subroutine

are:

Flag

Enables

scrolling

when

set

to

TRUE.

Otherwise,

set

the

Flag

parameter

to

FALSE

to

disable

scrolling.

Window

Identifies

the

window

in

which

to

enable

or

disable

scrolling.

The

parameters

for

the

setscrreg

and

wsetscrreg

subroutines

are:

Bmargin

Specifies

the

last

line

number

in

the

scrolling

region.

Tmargin

Specifies

the

first

line

number

in

the

scrolling

region

(0

is

the

top

line

of

the

window.).

Window

Specifies

the

window

in

which

to

place

the

scrolling

region.

You

specify

this

parameter

only

with

the

wsetscrreg

subroutine.

Return

Values

Upon

successful

completion,

the

setscrreg

and

wsetscrreg

subroutines

return

OK.

Otherwise,

they

return

ERR.

The

other

subroutines

always

return

OK.

Examples

Examples

for

the

clearok

subroutine

are:

1.

To

set

the

user-defined

screen

my_screen

to

clear

on

the

next

call

to

the

wrefresh

subroutine,

enter:

WINDOW

*my_screen;

clearok(my_screen,

TRUE);

2.

To

set

the

standard

screen

structure

to

clear

on

the

next

call

to

the

refresh

subroutine,

enter:

clearok(stdscr,

TRUE);

Examples

for

the

idlok

subroutine

are:

1.

To

enable

curses

to

use

the

hardware

insert/delete

line

feature

in

stdscr,

enter:

idlok(stdscr,

TRUE);

2.

To

force

curses

not

to

use

the

hardware

insert/delete

line

feature

in

the

user-defined

window

my_window

,

enter:

idlok(my_window,

FALSE);

Examples

for

the

leaveok

subroutine

are:

1.

To

move

the

physical

cursor

to

the

same

location

as

the

logical

cursor

after

refreshing

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

leaveok(my_window,

FALSE);

2.

To

leave

the

physical

cursor

alone

after

refreshing

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

leaveok(my_window,

TRUE);

Examples

for

the

scrollok

subroutine

are:

1.

To

turn

scrolling

on

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

scrollok(my_window,

TRUE);

2.

To

turn

scrolling

off

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

scrollok(my_window,

FALSE);

Examples

for

the

setscrreg

or

wsetscrreg

subroutine

are:

Chapter

2.

Curses

Subroutines

539

1.

To

set

a

scrolling

region

starting

at

the

10th

line

and

ending

at

the

30th

line

in

the

stdscr,

enter:

setscrreg(9,

29);

Note:

Zero

is

always

the

first

line.

2.

To

set

a

scrolling

region

starting

at

the

10th

line

and

ending

at

the

30th

line

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

wsetscrreg(my_window,

9,

29);

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

scrl

(“scrl,

scroll,

wscrl

Subroutine”

on

page

618)

subroutine,

refresh

or

wrefresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine.

Curses

Library,

List

of

Additional

Curses

Subroutines,

and

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

clrtobot

or

wclrtobot

Subroutine

Purpose

Erases

the

current

line

from

the

logical

cursor

position

to

the

end

of

the

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

clrtobot(void);

int

wclrtobot(WINDOW

*win);

Description

The

clrtobot

and

wclrtobot

subroutines

erase

all

lines

following

the

cursor

in

the

current

or

specified

window,

and

erase

the

current

line

from

the

cursor

to

the

end

of

the

line,

inclusive.

These

subroutines

do

not

update

the

cursor.

Parameters

*win

Specifies

the

window

in

which

to

erase

lines.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

erase

the

lines

below

and

to

the

right

of

the

logical

cursor

in

the

stdscr,

enter:

clrtobot();

2.

To

erase

the

lines

below

and

to

the

right

of

the

logical

cursor

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

wclrtobot(my_window);

540

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

clrtoeol

or

wclrtoeol

Subroutine

Purpose

Erases

the

current

line

from

the

logical

cursor

position

to

the

end

of

the

line.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

clrtoeol(void);

int

wclrtoeol(WINDOW

*

win);

Description

The

clrtoeol

and

wclrtoeol

subroutines

erase

the

current

line

from

the

cursor

to

the

end

of

the

line,

inclusive,

in

the

current

or

specified

window.

These

subroutines

do

not

update

the

cursor.

Parameters

*win

Specifies

the

window

in

which

to

clear

the

line.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

clear

the

line

to

the

right

of

the

logical

cursor

in

the

stdscr,

enter:

clrtoeol();

2.

To

clear

the

line

to

the

right

of

the

logical

cursor

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

wclrtoeol(my_window);

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

541

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

color_content

Subroutine

Purpose

Returns

the

current

intensity

of

the

red,

green,

and

blue

(RGB)

components

of

a

color.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

color_content(Color,

R,

G,

B)

short

Color;

short

*R,

*

G,

*

B;

Description

The

color_content

subroutine,

given

a

color

number,

returns

the

current

intensity

of

its

red,

green,

and

blue

(RGB)

components.

This

subroutine

stores

the

information

in

the

address

specified

by

the

R,

G,

and

B

arguments.

If

successful,

this

returns

OK.

Otherwise,

this

subroutine

returns

ERR

if

the

color

does

not

exist,

is

outside

the

valid

range,

or

the

terminal

cannot

change

its

color

definitions.

To

determine

if

you

can

change

the

color

definitions

for

a

terminal,

use

the

can_change_color

subroutine.

You

must

call

the

start_color

subroutine

before

you

can

call

the

color_content

subroutine.

Note:

The

values

stored

at

the

addresses

pointed

to

by

R,

G,

and

B

are

between

0

(no

component)

and

1000

(maximum

amount

of

component)

inclusive.

Return

Values

OK

Indicates

the

subroutine

was

successful.

ERR

Indicates

the

color

does

not

exist,

is

outside

the

valid

range,

or

the

terminal

cannot

change

its

color

definitions.

Parameters

B

Points

to

the

address

that

stores

the

intensity

value

of

the

blue

component.

Color

Specifies

the

color

number.

The

color

parameter

must

be

a

value

between

0

and

COLORS-1

inclusive.

R

Points

to

the

address

that

stores

the

intensity

value

of

the

red

component.

G

Points

to

the

address

that

stores

the

intensity

value

of

the

green

component.

Example

To

obtain

the

RGB

component

information

for

color

10

(assuming

the

terminal

supports

at

least

11

colors),

use:

short

*r,

*g,

*b;

color_content(10,r,g,b);

542

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

start_color

(“start_color

Subroutine”

on

page

636)

subroutine.

Curses

Overview

for

Programming,

Manipulating

Video

Attributes,

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

copywin

Subroutine

Purpose

Copies

a

region

of

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

copywin(const

WINDOW

*scrwin,

WINDOW

*dstwin,

int

sminrow,

int

smincol,

int

dminrow,

int

dmincol,

int

dmaxrow,

int

dmaxcol,

int

overlay);

Description

The

copywin

subroutine

provides

a

finer

granularity

of

control

over

the

overlay

and

overwrite

subroutines.

As

in

the

prefresh

subroutine,

a

rectangle

is

specified

in

the

destination

window,

(dimrow,

dimincol)

and

(dmaxrow,

dmaxcol),

and

the

upper-left-corner

coordinates

of

the

source

window,

(sminrow,

smincol).

If

the

overlay

subroutine

is

TRUE,

then

copying

is

non-destructive,

as

in

the

overlay

subroutine.

If

the

overlay

subroutine

is

FALSE,

then

copying

is

destructive,

as

in

the

overwrite

subroutine.

Parameters

*srcwin

Points

to

the

source

window

containing

the

region

to

copy.

*dstwin

Points

to

the

destination

window

to

copy

into.

sminrow

Specifies

the

upper

left

row

coordinate

of

the

source

region.

smincol

Specifies

the

upper

left

column

coordinate

of

the

source

region.

dminrow

Specifies

the

upper

left

row

coordinate

of

the

destination

region.

dmincol

Specifies

the

upper

left

column

coordinate

for

the

destination

region.

dmaxrow

Specifies

the

lower

right

row

coordinate

for

the

destination

region.

dmaxcol

Specifies

the

lower

right

column

coordinate

for

the

destination

region.

overlay

Sets

the

type

of

copy.

If

set

to

TRUE

the

copy

is

nondestructive.

Otherwise,

if

set

to

FALSE,

the

copy

is

destructive.

Return

Values

Upon

successful

completion,

the

copywin

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Chapter

2.

Curses

Subroutines

543

Examples

To

copy

to

an

area

in

the

destination

window

defined

by

coordinates

(30,40),

(30,49),

(39,40),

and

(39,49)

beginning

with

coordinates

(0,0)

in

the

source

window,

enter

the

following:

WINDOW

*srcwin,

*dstwin;

copywin(srcwin,

dstwin,

0,

0,

30,40,

39,

49,

TRUE);

The

example

copies

ten

rows

and

ten

columns

from

the

source

window

beginning

with

coordinates

(0,0)

to

the

region

in

the

destination

window

defined

by

the

upper

left

coordinates

(30,

40)

and

lower

right

coordinates

(39,

49).

Because

the

Overlay

parameter

is

set

to

TRUE,

the

copy

is

nondestructive

and

blanks

from

the

source

window

are

not

copied.

Related

Information

The

newpad

(“newpad,

pnoutrefresh,

prefresh,

or

subpad

Subroutine”

on

page

592)

and

overlay

or

overwrite

(“overlay

or

overwrite

Subroutine”

on

page

601)

subroutines.

Curses

Overview

for

Programming,

Manipulating

Window

Data

with

Curses

Manipulating

Characters

with

Curses,

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

curs_set

Subroutine

Purpose

Sets

the

cursor

visibility.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

curs_set(int

visibility);

Description

The

curs_set

subroutine

sets

the

appearance

of

the

cursor

based

on

the

value

of

visibility:

Value

of

visibility

Appearance

of

Cursor

0

invisible

1

terminal-specific

normal

mode

2

terminal-specific

high

visibility

mode

The

terminal

does

not

necessarily

support

all

the

above

values.

544

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

Visibility

Sets

the

cursor

state.

You

can

set

the

cursor

state

to

one

of

the

following:

0

Invisible

1

Visible

2

Very

visible

Return

Values

If

the

terminal

supports

the

cursor

mode

specified

by

visibility,

then

the

cur_set

subroutine

returns

the

previous

cursor

state.

Otherwise,

the

subroutine

returns

ERR.

Examples

To

set

the

cursor

state

to

invisible,

use:

curs_set(0);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

Setting

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

def_prog_mode,

def_shell_mode,

reset_prog_mode

or

reset_shell_mode

Subroutine

Purpose

Saves/restores

the

program

or

shell

terminal

modes.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

def_prog_mode

(void);

int

def_shell_mode

(void);

int

reset_prog_mode

(void);

int

reset_shell_mode

(void);

Chapter

2.

Curses

Subroutines

545

Description

The

def_prog_mode

subroutine

saves

the

current

terminal

modes

as

the

″program″

(in

Curses)

state

for

use

by

the

reset_prog_mode

subroutine.

The

def_shell_mode

subroutine

saves

the

current

terminal

modes

as

the

″shell″

(not

in

Curses)

state

for

use

by

the

reset_shell_mode

subroutine.

The

reset_prog_mode

subroutine

restores

the

terminal

to

the

″program″

(in

Curses)

state.

The

reset_shell_mode

subroutine

restores

the

terminal

to

the

″shell″

(not

in

Curses)

state.

These

subroutines

affect

the

mode

of

the

terminal

associated

with

the

current

screen.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

For

the

def_prog_mode

subroutine:

To

save

the

″in

curses″

state,

enter:

def_prog_mode();

For

the

def_shell_mode

subroutine:

To

save

the

″out

of

curses″

state,

enter:

def_shell_mode();

This

routine

saves

the

″out

of

curses″

state.

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657),

endwin

(“endwin

Subroutine”

on

page

554),

initscr

(“initscr

and

newterm

Subroutine”

on

page

577),

and

the

setupterm

(“setupterm

Subroutine”

on

page

624)

subroutines.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

def_shell_mode

Subroutine

Purpose

Saves

the

current

terminal

modes

as

shell

mode

(″out

of

curses″).

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

def_shell_mode(

)

546

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

def_shell_mode

subroutine

saves

the

current

terminal

driver

line

discipline

modes

in

the

current

terminal

structure

for

later

use

by

reset_shell_mode().

The

def_shell_mode

subroutine

is

called

automatically

by

the

setupterm

subroutine.

This

routine

would

normally

not

be

called

except

by

a

library

routine.

Example

To

save

the

″out

of

curses″

state,

enter:

def_shell_mode();

This

routine

saves

the

″out

of

curses″

state.

Related

Information

The

setupterm

(“setupterm

Subroutine”

on

page

624)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

del_curterm,

restartterm,

set_curterm,

or

setupterm

Subroutine

Purpose

Interfaces

to

the

terminfo

database.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<term.h>

int

del_curterm(TERMINAL

*oterm);

int

restartterm(char

*term,

int

fildes,

int

*erret);

TERMINAL

*set_curterm(TERMINAL

*nterm);

int

setupterm(char

*term,

int

fildes,

int

*erret);

Description

The

del_curterm,

restartterm,

set_curterm,

setupterm

subroutines

retrieve

information

from

the

terminfo

database.

To

gain

access

to

the

terminfo

database,

the

setupterm

subroutine

must

be

called

first.

It

is

automatically

called

by

the

initscr

and

newterm

subroutines.

The

setupterm

subroutine

initialises

the

other

subroutines

to

use

the

terminfo

record

for

a

specified

terminal

(which

depends

on

whether

the

use_env

subroutine

was

called).

It

sets

the

dur_term

external

variable

to

a

TERMINAL

structure

that

contains

the

record

from

the

terminfo

database

for

the

specified

terminal.

The

terminal

type

is

the

character

string

term;

if

term

is

a

null

pointer,

the

environment

variable

TERM

is

used.

If

TERM

is

not

set

or

if

its

value

is

an

empty

string,

the

″unknown″

is

used

as

the

terminal

type.

The

Chapter

2.

Curses

Subroutines

547

application

must

set

the

fildes

parameter

to

a

file

descriptor,

open

for

output,

to

the

terminal

device,

before

calling

the

setupterm

subroutine.

If

the

erret

parameter

is

not

null,

the

integer

it

points

to

is

set

to

one

of

the

following

values

to

report

the

function

outcome:

-1

The

terminfo

database

was

not

found

(function

fails).

0

The

entry

for

the

terminal

was

not

found

in

terminfo

(function

fails).

1

Success.

A

simple

call

to

the

setupterm

subroutine

that

uses

all

the

defaults

and

sends

the

output

to

stdout

is:

setupterm(char

*)0,

fileno(stdout),

(int

*)0);

The

set_curterm

subroutine

sets

the

variable

cur_term

to

nterm,

and

makes

all

of

the

terminfo

boolean,

numeric,

and

string

variables

use

the

values

from

nterm.

The

del_curterm

subroutine

frees

the

space

pointed

to

by

oterm

and

makes

it

available

for

further

use.

If

oterm

is

the

same

as

cur_term,

references

to

any

of

the

terminfo

boolean,

numeric,

and

string

variables

thereafter

may

refer

to

invalid

memory

locations

until

the

setupterm

subroutine

is

called

again.

The

restartterm

subroutine

assumes

a

previous

call

to

the

setupterm

subroutine

(perhaps

from

the

initscr

or

newterm

subroutine).

It

lets

the

application

specify

a

different

terminal

type

in

term

and

updates

the

information

returned

by

the

baudrate

subroutine

based

on

the

fildes

parameter,

but

does

not

destroy

other

information

created

by

the

initscr,

newterm,

or

setupterm

subroutines.

Parameters

*oterm

*term

fildes

*erret

*nterm

Return

Values

Upon

successful

completion,

the

set_curterm

subroutine

returns

the

previous

value

of

cur_term.

Otherwise,

it

returns

a

null

pointer.

Upon

successful

completion,

the

other

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

To

free

the

space

occupied

by

a

TERMINAL

structure

called

my_term,

use:

TERMINAL

*my_term;

del_curterm(my_term);

For

the

restartterm

subroutine:

To

restart

an

aixterm

after

a

previous

memory

save

and

exit

on

error

with

a

message,

enter:

restartterm("aixterm",

1,

(int*)0);

For

the

set_curterm

subroutine:

To

set

the

cur_term

variable

to

point

to

the

my_term

terminal,

use:

548

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

TERMINAL

*newterm;

set_curterm(newterm);

For

the

setupterm

subroutine:

To

determine

the

current

terminal’s

capabilities

using

$TERM

as

the

terminal

name,

standard

output

as

output,

and

returning

no

error

codes,

enter:

setupterm((char*)

0,

1,

(int*)

0);

Related

Information

The

baudrate

(“baudrate

Subroutine”

on

page

529)

subroutine,

longname

(“longname

Subroutine”

on

page

586)

subroutine,

putc

subroutine,

tgetent

(“tgetent,

tgetflag,

tgetnum,

tgetstr,

or

tgoto

Subroutine”

on

page

640)

subroutine,

tigetflag

(“tigetflag,

tigetnum,

tigetstr,

or

tparm

Subroutine”

on

page

644)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

delay_output

Subroutine

Purpose

Sets

the

delay

output.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

delay_output(int

ms);

Description

On

terminals

that

support

pad

characters,

the

delay_output

subroutine

pauses

the

output

for

at

least

ms

milliseconds.

Otherwise,

the

length

of

the

delay

is

unspecified.

Parameters

ms

Specifies

the

number

of

milliseconds

to

delay

output.

Return

Values

Upon

successful

completion,

the

delay_output

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Chapter

2.

Curses

Subroutines

549

Examples

To

set

the

output

to

delay

250

milliseconds,

enter:

delay_output(250);

Related

Information

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

delch,

mvdelch,

mvwdelch

or

wdelch

Subroutine

Purpose

Deletes

the

character

from

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

delch(void);

int

mvdelch

(int

y

int

x);

mvwdelch

(WINDOW

*win;

int

y

int

x);

wdelch

(WINDOW

*win);

Description

The

delch,

mvdelch,

mvwdelch,

and

wdelch

subroutines

delete

the

character

at

the

current

or

specified

position

in

the

current

or

specified

window.

This

subroutine

does

not

change

the

cursor

position.

Parameters

x

y

*win

Identifies

the

window

from

which

to

delete

the

character.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

delete

the

character

at

the

current

cursor

location

in

the

standard

screen

structure,

enter:

mvdelch();

2.

To

delete

the

character

at

cursor

position

y=20

and

x=30

in

the

standard

screen

structure,

enter:

mvwdelch(20,

30);

3.

To

delete

the

character

at

cursor

position

y=20

and

x=30

in

the

user-defined

window

my_window,

enter:

550

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

wdelch(my_window,

20,

30);

Related

Information

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

deleteln

or

wdeleteln

Subroutine

Purpose

Deletes

lines

in

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

deleteln(void);

int

wdeleteln(WINDOW

*win);

Description

The

deleteln

and

wdeleteln

subroutines

delete

the

line

containing

the

cursor

in

the

current

or

specified

window

and

move

all

lines

following

the

current

line

one

line

toward

the

cursor.

The

last

line

of

the

window

is

cleared.

The

cursor

position

does

not

change.

Parameters

*win

Specifies

the

window

in

which

to

delete

the

line.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

delete

the

current

line

in

stdscr,

enter:

deleteln();

2.

To

delete

the

current

line

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

wdeleteln(my_window);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

551

delwin

Subroutine

Purpose

Deletes

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

delwin(WINDOW

*win);

Description

The

delwin

subroutine

deletes

win,

freeing

all

memory

associated

with

it.

The

application

must

delete

subwindows

before

deleting

the

main

window.

Parameters

*win

Specifies

the

window

to

delete.

Return

Values

Upon

successful

completion,

the

delwin

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Examples

To

delete

the

user-defined

window

my_window

and

its

subwindow

my_sub_window,

enter:

WINDOW

*my_sub_window,

*my_window;

delwin(my_sub_window);

delwin(my_window);

Related

Information

The

derwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Window

Data

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

echo

or

noecho

Subroutine

Purpose

Enables/disables

terminal

echo.

Library

Curses

Library

(libcurses.a)

552

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<curses.h>

int

echo(void);

int

noecho(void);

Description

The

echo

subroutine

enables

Echo

mode

for

the

current

screen.

The

noecho

subroutine

disables

Echo

mode

for

the

current

screen.

Initially,

curses

software

echo

mode

is

enabled

and

hardware

echo

mode

of

the

tty

driver

is

disabled.

The

echo

and

noecho

subroutines

control

software

echo

only.

Hardware

echo

must

remain

disabled

for

the

duration

of

the

application,

else

the

behaviour

is

undefined.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

turn

echoing

on,

use:

echo();

2.

To

turn

echoing

off,

use:

noecho();

Related

Information

The

wgetch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

and

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

echochar

or

wechochar

Subroutines

Purpose

Echos

single-byte

character

and

rendition

to

a

window

and

refreshes

the

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

echochar(const

chtype

ch);

int

wechochar(WINDOW

*win,

const

chtype

ch);

Description

The

echochar

subroutine

is

equivalent

to

a

call

to

the

addch

soubroutine

followed

by

a

call

to

the

refresh

subroutine.

The

wechochar

subroutine

is

equivalent

to

a

call

to

the

waddch

subroutine

followed

by

a

call

to

the

wrefresh

subroutine.

Chapter

2.

Curses

Subroutines

553

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Example

To

output

the

character

I

to

the

stdscr

at

the

present

cursor

location

and

to

update

the

physical

screen,

do

the

following:

echochar(’I’);

Related

Information

The

addch,

doupdate,

echo_wchar,

waddch,

wmvaddch,

and

mvaddch

(“addch,

mvaddch,

mvwaddch,

or

waddch

Subroutine”

on

page

523)

subroutines.

Curses

Overview

for

Programming

and

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

endwin

Subroutine

Purpose

Suspends

curses

session.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

endwin(void)

Description

The

endwin

subroutine

restores

the

terminal

after

Curses

activity

by

at

least

restoring

the

saved

shell

terminal

mode,

flushing

any

output

to

the

terminal

and

moving

the

cursor

to

the

first

column

of

the

last

line

of

the

screen.

Refreshing

a

window

resumes

program

mode.

The

application

must

call

the

endwin

subroutine

for

each

terminal

being

used

before

exiting.

If

the

newterm

subroutine

is

called

more

than

once

for

the

same

terminal,

the

first

screen

created

must

be

the

last

one

for

which

the

endwin

subroutine

is

called.

Return

Values

Upon

successful

completion,

the

endwin

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Examples

To

terminate

curses

permanently

or

temporarily,

enter:

endwin();

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutine,

and

isendwin

subroutine.

554

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Starting

and

Stopping

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

erase

or

werase

Subroutine

Purpose

Copies

blank

spaces

to

every

position

in

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

erase(

)

werase(

Window)

WINDOW

*Window;

Description

The

erase

and

werase

subroutines

copy

blank

spaces

to

every

position

in

the

specified

window.

Use

the

erase

subroutine

with

the

stdscr

and

the

werase

subroutine

with

user-defined

windows.

Parameters

Window

Specifies

the

window

to

erase.

Examples

1.

To

erase

the

standard

screen

structure,

enter:

erase();

2.

To

erase

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

werase(my_window);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

555

erasechar,

erasewchar,

killchar,

and

killwchar

Subroutine

Purpose

Terminal

environment

query

functions.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

char

erasechar(void);

int

erasewchar(wchar_t

*ch);

char

killchar(void);

int

killwchar(wchar_t

*ch);

Description

The

erasechar

subroutine

returns

the

current

character.

chosen

by

the

user.

The

erasechar

subroutine

stores

the

current

erase

character

in

the

object

pointed

to

by

the

ch

parameter.

If

no

erase

character

has

been

defined,

the

subroutine

will

fail

and

the

object

pointed

to

by

ch

will

not

be

changed.

The

killchar

subroutine

returns

the

current

line.

The

killchar

subroutine

stores

the

current

line

kill

character

in

the

object

pointed

to

by

ch.

If

no

line

kill

character

has

been

defined,

the

subroutine

will

fail

and

the

object

pointed

to

by

ch

will

not

be

changed.

Return

Values

The

erasechar

subroutine

returns

the

erase

character

and

the

killchar

subroutine

returns

the

line

kill

character.

The

return

value

is

unspecified

when

these

characters

are

multi-byte

characters.

Upon

successful

completion,

the

erasechar

subroutine

and

the

killchar

subroutine

return

OK.

Otherwise,

they

return

ERR.

Examples

To

retrieve

a

user’s

erase

character

and

return

it

to

the

user-defined

variable

myerase,

enter:

myerase

=

erasechar();

Related

Information

The

clearok

(“clearok,

idlok,

leaveok,

scrollok,

setscrreg

or

wsetscrreg

Subroutine”

on

page

537)

subroutine,

tcgetattr

(“tcgetattr

Subroutine”

on

page

347)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

556

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

filter

Subroutine

Purpose

Disables

use

of

certain

terminal

capabilities.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

void

filter(void);

Description

The

filter

subroutine

changes

the

algorithm

for

initialising

terminal

capabilities

that

assume

that

the

terminal

has

more

than

one

line.

A

subsequent

call

to

the

initscr

or

newterm

subroutine

performs

the

following

actions:

v

Disables

use

of

clear,

cud,

cud1,

cup,

cuu1,

and

vpa.

v

Sets

the

value

of

the

home

string

to

the

value

of

the

cr.

string.

v

Sets

lines

equal

to

1.

Any

call

to

the

filter

subroutine

must

precede

the

call

to

the

initscr

or

newterm

subroutine.

Related

Information

The

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutine,

newterm

(“newterm

Subroutine”

on

page

594)

subroutine.

Curses

Overview

for

Programming

and

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

flash

Subroutine

Purpose

Flashes

the

screen.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

flash(void);

Description

The

flash

subroutine

alerts

the

user.

It

flashes

the

screen,

or

if

that

is

not

possible,

it

sounds

the

audible

alarm

on

the

terminal.

If

neither

signal

is

possible,

nothing

happens.

Return

Values

The

flash

subroutine

always

returns

OK.

Chapter

2.

Curses

Subroutines

557

Examples

To

cause

the

terminal

to

flash,

enter:

flash();

Related

Information

The

beep

(“beep

Subroutine”

on

page

530)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

flushinp

Subroutine

Purpose

Discards

input.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

flushinp(void);

Description

The

flushinp

subroutine

discards

(flushes)

any

characters

in

the

input

buffers

associated

with

the

current

screen.

Return

Values

The

flushinp

subroutine

always

returns

OK.

Examples

To

flush

all

type-ahead

characters

typed

by

the

user

but

not

yet

read

by

the

program,

enter:

flushinp();

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

558

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

garbagedlines

Subroutine

Purpose

Discards

and

replaces

a

number

of

lines

in

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

garbagedlines(Window,

BegLine,

NumLines)

WINDOW

*

Window;

int

BegLine,

NumLines;

Description

The

garbagedlines

subroutine

discards

and

replaces

lines

in

a

window.

The

Begline

parameter

specifies

the

beginning

line

number

and

the

Numlines

parameter

specifies

the

number

of

lines

to

discard.

Curses

discards

and

replaces

the

specified

lines

before

adding

more

data.

Uses

this

subroutine

for

applications

that

need

to

redraw

a

line

that

is

garbled.

Lines

may

become

garbled

as

the

result

of

noisy

communication

lines.

Instead

of

refreshing

the

entire

display,

use

the

garbagedlines

subroutine

to

refresh

a

portion

of

the

display

and

to

avoid

even

more

communication

noise.

Parameters

Window

Points

to

a

window.

BegLine

Identifies

the

beginning

line

in

a

range

of

lines

to

discard.

NumLines

Specifies

the

total

number

of

lines

in

a

range

of

lines

to

discard

and

replace.

Examples

To

discard

and

replace

5

lines

in

the

mywin

window

starting

with

line

10,

use:

WINDOW

*mywin;

garbagedlines(mywin,

10,

5);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Window

Data

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

559

getbegyx,

getmaxyx,

getparyx,

or

getyx

Subroutine

Purpose

Gets

the

cursor

and

window

coordinates.

Library

Curses

Library

(libcurses.a)

Syntax

include

<curses.h>

void

getbegyx(WINDOW

*win,

int

y,

int

x);

void

getmaxyx(WINDOW

*win,

int

y,

int

x);

void

getparyx(WINDOW

*win,

int

y,

int

x);

void

getyx(WINDOW

*win,

int

y,

int

x);

Description

The

getbegyx

macro

stores

the

absolute

screen

coordinates

of

the

specified

window’s

origin

in

y

and

x.

The

getmaxyx

macro

stores

the

number

of

rows

of

the

specified

window

in

y

and

x

and

stores

the

window’s

number

of

columns

in

x.

The

getparyx

macro,

if

the

specified

window

is

a

subwindow,

stores

in

y

and

x

the

coordinates

of

the

window’s

origin

relative

to

its

parent

window.

Otherwise,

-1

is

stored

in

y

and

x.

The

getyx

macro

stores

the

cursor

position

of

the

specified

window

in

y

and

x.

Parameters

*win

Identifies

the

window

to

get

the

coordinates

from.

Y

Returns

the

row

coordinate.

X

Returns

the

column

coordinate.

Examples

For

the

getbegyx

subroutine:

To

obtain

the

beginning

coordinates

for

the

my_win

window

and

store

in

integers

y

and

x,

use:

WINDOW

*my_win;

int

y,

x;

getbegyx(my_win,

y,

x);

For

the

getmaxyx

subroutine:

To

obtain

the

size

of

the

my_win

window,

use:

560

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

WINDOW

*my_win;

int

y,x;

getmaxyx(my_win,

y,

x);

Integers

y

and

x

will

contain

the

size

of

the

window.

Related

Information

Controlling

the

Cursor

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine

Purpose

Gets

a

single-byte

character

from

the

terminal.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

getch(void)

int

mvgetch(int

y,

int

x);

int

mvwgetch(WINDOW

*win,

int

y,

int

x);

int

wgetch(WINDOW

*win);

Description

The

getch,

wgetch,

mvgetch,

and

mvwgetch

subroutines

read

a

single-byte

character

from

the

terminal

associated

with

the

current

or

specified

window.

The

results

are

unspecified

if

the

input

is

not

a

single-byte

character.

If

the

keypad

subroutine

is

enabled,

these

subroutines

respond

to

the

corresponding

KEY_

value

defined

in

<curses.h>.

Processing

of

terminal

input

is

subject

to

the

general

rules

described

in

Section

3.5

on

page

34.

If

echoing

is

enabled,

then

the

character

is

echoed

as

though

it

were

provided

as

an

input

argument

to

the

addch

subroutine,

except

for

the

following

characters:

<backspace>,

<left-arrow>

and

the

current

erase

character:

Chapter

2.

Curses

Subroutines

561

The

input

is

interpreted

as

specified

in

Section

3.4.3

on

page

31

and

then

the

character

at

the

resulting

cursor

position

is

deleted

as

though

the

delch

subroutine

was

called,

except

that

if

the

cursor

was

originally

in

the

first

column

of

the

line,

then

the

user

is

alerted

as

though

the

beep

subroutine

was

called.

The

user

is

alerted

as

though

the

beep

subroutine

was

called.

Information

concerning

the

function

keys

is

not

returned

to

the

caller.

Function

Keys

If

the

current

or

specified

window

is

not

a

pad,

and

it

has

been

moved

or

modified

since

the

last

refresh

operation,

then

it

will

be

refreshed

before

another

character

is

read.

The

Importance

of

Terminal

Modes

The

output

of

the

getch

subroutines

is,

in

part,

determined

by

the

mode

of

the

terminal.

The

following

describes

the

action

of

the

getch

subroutines

in

each

type

of

terminal

mode:

Mode

Action

of

getch

Subroutines

NODELAY

Returns

a

value

of

ERR

if

there

is

no

input

waiting.

DELAY

Halts

execution

until

the

system

passes

text

through

the

program.

If

CBREAK

mode

is

also

set,

the

program

stops

after

receiving

one

character.

If

NOCBREAK

mode

is

set,

the

getch

subroutine

stops

reading

after

the

first

new

line

character.

HALF-DELAY

Halts

execution

until

a

character

is

typed

or

a

specified

time

out

is

reached.

If

echo

is

set,

the

character

is

also

echoed

to

the

window.

Note:

When

using

the

getch

subroutines

do

not

set

both

the

NOCBREAK

mode

and

the

ECHO

mode

at

the

same

time.

This

can

cause

undesirable

results

depending

on

the

state

of

the

tty

driver

when

each

character

is

typed.

Getting

Function

Keys

If

your

program

enables

the

keyboard

with

the

keypad

subroutine,

and

the

user

presses

a

function

key,

the

token

for

that

function

key

is

returned

instead

of

raw

characters.

The

possible

function

keys

are

defined

in

the

/usr/include/curses.h

file.

Each

#define

macro

begins

with

a

KEY_

prefix.

If

a

character

is

received

that

could

be

the

beginning

of

a

function

key

(such

as

an

Escape

character)

curses

sets

a

timer.

If

the

remainder

of

the

sequence

is

not

received

before

the

timer

expires,

the

character

is

passed

through.

Otherwise,

the

function

key’s

value

is

returned.

For

this

reason,

after

a

user

presses

the

Esc

key

there

is

a

delay

before

the

escape

is

returned

to

the

program.

Programmers

should

not

use

the

Esc

key

for

a

single

character

routine.

Within

the

getch

subroutine,

a

structure

of

type

timeval,

defined

in

the

/usr/include/sys/time.h

file,

indicates

the

maximum

number

of

microseconds

to

wait

for

the

key

response

to

complete.

The

ESCDELAY

environment

variable

sets

the

length

of

time

to

wait

before

timing

out

and

treating

the

ESC

keystroke

as

the

ESC

character

rather

than

combining

it

with

other

characters

in

the

buffer

to

create

a

key

sequence.

The

ESCDELAY

environment

variable

is

measured

in

fifths

of

a

millisecond.

If

ESCDELAY

is

0,

the

system

immediately

composes

the

ESCAPE

response

without

waiting

for

more

information

from

the

buffer.

The

user

may

choose

any

value

between

0

and

99,999,

inclusive.

The

default

setting

for

the

ESCDELAY

environment

variable

is

500

(one

tenth

of

a

second).

Programs

that

do

not

want

the

getch

subroutines

to

set

a

timer

can

call

the

notimeout

subroutine.

If

notimeout

is

set

to

TRUE,

curses

does

not

distinguish

between

function

keys

and

characters

when

retrieving

data.

The

getch

subroutines

might

not

be

able

to

return

all

function

keys

because

they

are

not

defined

in

the

terminfo

database

or

because

the

terminal

does

not

transmit

a

unique

code

when

the

key

is

pressed.

The

following

function

keys

may

be

returned

by

the

getch

subroutines:

562

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

KEY_MIN

Minimum

curses

key.

KEY_BREAK

Break

key

(unreliable).

KEY_DOWN

Down

Arrow

key.

KEY_UP

Up

Arrow

key.

KEY_LEFT

Left

Arrow

key.

KEY_RIGHT

Right

Arrow

key.

KEY_HOME

Home

key.

KEY_BACKSPACE

Backspace.

KEY_F(n)

Function

key

Fn,

where

n

is

an

integer

from

0

to

64.

KEY_DL

Delete

line.

KEY_IL

Insert

line.

KEY_DC

Delete

character.

KEY_IC

Insert

character

or

enter

insert

mode.

KEY_EIC

Exit

insert

character

mode.

KEY_CLEAR

Clear

screen.

KEY_EOS

Clear

to

end

of

screen.

KEY_EOL

Clear

to

end

of

line.

KEY_SF

Scroll

1

line

forward.

KEY_SR

Scroll

1

line

backwards

(reverse).

KEY_NPAGE

Next

page.

KEY_PPAGE

Previous

page.

KEY_STAB

Set

tab.

KEY_CTAB

Clear

tab.

KEY_CATAB

Clear

all

tabs.

KEY_ENTER

Enter

or

send

(unreliable).

KEY_SRESET

Soft

(partial)

reset

(unreliable).

KEY_RESET

Reset

or

hard

reset

(unreliable).

KEY_PRINT

Print

or

copy.

KEY_LL

Home

down

or

bottom

(lower

left).

KEY_A1

Upper-left

key

of

keypad.

KEY_A3

Upper-right

key

of

keypad.

KEY_B2

Center-key

of

keypad.

KEY_C1

Lower-left

key

of

keypad.

KEY_C3

Lower-right

key

of

keypad.

KEY_BTAB

Back

tab

key.

KEY_BEG

beg(inning)

key

KEY_CANCEL

cancel

key

KEY_CLOSE

close

key

KEY_COMMAND

cmd

(command)

key

KEY_COPY

copy

key

KEY_CREATE

create

key

KEY_END

end

key

KEY_EXIT

exit

key

KEY_FIND

find

key

KEY_HELP

help

key

KEY_MARK

mark

key

KEY_MESSAGE

message

key

KEY_MOVE

move

key

KEY_NEXT

next

object

key

KEY_OPEN

open

key

KEY_OPTIONS

options

key

KEY_PREVIOUS

previous

object

key

KEY_REDO

redo

key

KEY_REFERENCE

ref(erence)

key

KEY_REFRESH

refresh

key

Chapter

2.

Curses

Subroutines

563

KEY_REPLACE

replace

key

KEY_RESTART

restart

key

KEY_RESUME

resume

key

KEY_SAVE

save

key

KEY_SBEG

shifted

beginning

key

KEY_SCANCEL

shifted

cancel

key

KEY_SCOMMAND

shifted

command

key

KEY_SCOPY

shifted

copy

key

KEY_SCREATE

shifted

create

key

KEY_SDC

shifted

delete

char

key

KEY_SDL

shifted

delete

line

key

KEY_SELECT

select

key

KEY_SEND

shifted

end

key

KEY_SEOL

shifted

clear

line

key

KEY_SEXIT

shifted

exit

key

KEY_SFIND

shifted

find

key

KEY_SHELP

shifted

help

key

KEY_SHOME

shifted

home

key

KEY_SIC

shifted

input

key

KEY_SLEFT

shifted

left

arrow

key

KEY_SMESSAGE

shifted

message

key

KEY_SMOVE

shifted

move

key

KEY_SNEXT

shifted

next

key

KEY_SOPTIONS

shifted

options

key

KEY_SPREVIOUS

shifted

prev

key

KEY_SPRINT

shifted

print

key

KEY_SREDO

shifted

redo

key

KEY_SREPLACE

shifted

replace

key

KEY_SRIGHT

shifted

right

arrow

KEY_SRSUME

shifted

resume

key

KEY_SSAVE

shifted

save

key

KEY_SSUSPEND

shifted

suspend

key

KEY_SUNDO

shifted

undo

key

KEY_SUSPEND

suspend

key

KEY_UNDO

undo

key

Parameters

Column

Specifies

the

horizontal

position

to

move

the

logical

cursor

to

before

getting

the

character.

Line

Specifies

the

vertical

position

to

move

the

logical

cursor

to

before

getting

the

character.

Window

Identifies

the

window

to

get

the

character

from

and

echo

it

into.

Return

Values

Upon

successful

completion,

the

getch,

mvwgetch,

and

wgetch

subroutines,

CURSES,

and

Curses

Interface

return

the

single-byte

character,

KEY_

value,

or

ERR.

When

in

the

nodelay

mode

and

no

data

is

available,

ERR

is

returned.

Examples

1.

To

get

a

character

and

echo

it

to

the

stdscr,

use:

mvgetch();

2.

To

get

a

character

and

echo

it

into

stdscr

at

the

coordinates

y=20,

x=30,

use:

mvgetch(20,

30);

564

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

3.

To

get

a

character

and

echo

it

into

the

user-defined

window

my_window

at

coordinates

y=20,

x=30,

use:

WINDOW

*my_window;

mvwgetch(my_window,

20,

30);

Related

Information

The

cbreak

(“cbreak,

nocbreak,

noraw,

or

raw

Subroutine”

on

page

535),

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657),

and

insch

(“insch,

mvinsch,

mvwinsch,

or

winsch

Subroutine”

on

page

578)

subroutines,

keypad

(“keypad

Subroutine”

on

page

582)

subroutine,

meta

(“meta

Subroutine”

on

page

588)

subroutine,

nodelay

(“nodelay

Subroutine”

on

page

598)

subroutine,

echo

or

noecho

(“echo

or

noecho

Subroutine”

on

page

552)

subroutine,

notimeout

(“notimeout,

timeout,

wtimeout

Subroutine”

on

page

599)subroutine,

ebreak

or

nocbreak

(“cbreak,

nocbreak,

noraw,

or

raw

Subroutine”

on

page

535)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

getmaxyx

Subroutine

Purpose

Returns

the

size

of

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

getmaxyx(

Window,

Y,

X);

WINDOW

*Window;

int

Y,

X;

Description

The

getmaxyx

subroutine

returns

the

size

of

a

window.

The

size

is

returned

as

the

number

of

rows

and

columns

in

the

window.

The

values

are

stored

in

integers

Y

and

X.

Parameters

Window

Identifies

the

window

whose

size

to

get.

Y

Contains

the

number

of

rows

in

the

window.

X

Contains

the

number

of

columns

in

the

window.

Example

To

obtain

the

size

of

the

my_win

window,

use:

Chapter

2.

Curses

Subroutines

565

WINDOW

*my_win;

int

y,x;

getmaxyx(my_win,

y,

x);

Integers

y

and

x

will

contain

the

size

of

the

window.

Related

Information

Controlling

the

Cursor

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

getnstr,

getstr,

mvgetnstr,

mvgetstr,

mvwgetnstr,

mvwgetstr,

wgetnstr,

or

wgetstr

Subroutine

Purpose

Gets

a

multi-byte

character

string

from

the

terminal.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

getnstr(char

*str,

int

n);

int

getstr(char

*str);

int

mvgetnstr(int

y,

int

x,

char

*st,

int

n);

int

mvgetstr(int

y,

int

x,

char

*str);

int

mvwgetnstr(WINDOW

*win,

int

y,

int

x,

char

*str,

int

n);

int

mvwgetstr(WINDOW

*win,

int

y,

566

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

x,

char

*str);

int

wgetnstr(WINDOW

*win,

char

*str,

int

n);

int

wgetstr(WINDOW

*win,

char

*str);

Description

The

effect

of

the

getstr

subroutine

is

as

though

a

series

of

calls

to

the

getch

subroutine

was

made,

until

a

newline

subroutine,

carriage

return,

or

end-of-file

is

received.

The

resulting

value

is

placed

in

the

area

pointed

to

by

str.

The

string

is

then

terminated

with

a

null

byte.

The

getnstr,

mvgetnstr,

mvwgetnstr,

and

wgetnsrt

subroutines

read

at

most

n

bytes,

thus

preventing

a

possible

overflow

of

the

input

buffer.

The

user’s

erase

and

kill

characters

are

interpreted,

as

well

as

any

special

keys

(such

as

function

keys,

home

key,

clear

key,

and

so

on).

The

mvgetstr

subroutines

is

identical

to

the

getstr

subroutine

except

that

it

is

as

though

it

is

a

call

to

the

move

subroutine

and

then

a

series

of

calls

to

the

getch

subroutine.

The

mvwgetstr

subroutine

is

identical

to

the

getstr

subroutine

except

that

it

is

as

though

it

is

a

call

to

the

wmove

subroutine

and

then

a

series

of

calls

to

the

wgetch

subroutine.

The

mvgetnstr

subroutines

is

identical

to

the

getstr

subroutine

except

that

it

is

as

though

it

is

a

call

to

the

move

subroutine

and

then

a

series

of

calls

to

the

getch

subroutine.

The

mvwgetnstr

subroutine

is

identical

to

the

getstr

subroutine

except

that

it

is

as

though

it

is

a

call

to

the

wmove

subroutine

and

then

a

series

of

calls

to

the

wgetch

subroutine.

The

getstr,

wgetstr,

mvgetstr,

and

mvwgetstr

subroutines

will

only

return

the

entire

multi-byte

sequence

associated

with

a

character.

If

the

array

is

large

enough

to

contain

at

least

one

character,

the

subroutines

fill

the

array

with

complete

characters.

If

the

array

is

not

large

enough

to

contain

any

complete

characters,

the

function

fails.

Parameters

n

x

y

*str

Identifies

where

to

store

the

string.

*win

Identifies

the

window

to

get

the

string

from

and

echo

it

into.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

get

a

string,

store

it

in

the

user-defined

variable

my_string,

and

echo

it

into

the

stdscr,

enter:

char

*my_string;

getstr(my_string);

2.

To

get

a

string,

echo

it

into

the

user-defined

window

my_window,

and

store

it

in

the

user-defined

variable

my_string,

enter:

WINDOW

*my_window;

char

*my_string;

wgetstr(my_window,

my_string);

Chapter

2.

Curses

Subroutines

567

3.

To

get

a

string

in

the

stdscr

at

coordinates

y=20,

x=30,

and

store

it

in

the

user-defined

variable

my_string,

enter:

char

*string;

mvgetstr(20,

30,

string);

4.

To

get

a

string

in

the

user-defined

window

my_window

at

coordinates

y=20,

x=30,

and

store

it

in

the

user-defined

variable

my_string,

enter:

WINDOW

*my_window;

char

*my_string;

mvwgetstr(my_window,

20,

30,

my_string);

Related

Information

The

beep

(“beep

Subroutine”

on

page

530)

subroutine,

getch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine,

keypad

(“keypad

Subroutine”

on

page

582)

subroutine,

nodelay

(“nodelay

Subroutine”

on

page

598)

subroutine,

wgetch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

getsyx

Subroutine

Purpose

Retrieves

the

current

coordinates

of

the

virtual

screen

cursor.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

getsyx(Y,

X)

int

*

Y,

*

X;

Description

The

getsyx

subroutine

retrieves

the

current

coordinates

of

the

virtual

screen

cursor

and

stores

them

in

the

location

specified

by

Y

and

X.

The

current

coordinates

are

those

where

the

cursor

was

placed

after

the

last

call

to

the

wnoutrefresh,

pnoutrefresh,

or

wrefresh,

subroutine.

If

the

leaveok

subroutine

was

TRUE

for

the

last

window

refreshed,

then

the

getsyx

subroutine

returns

-1

for

both

X

and

Y.

If

lines

have

been

removed

from

the

top

of

the

screen

using

the

ripoffline

subroutine,

Y

and

X

include

these

lines.

Y

and

X

should

only

be

used

as

arguments

for

the

setsyx

subroutine.

The

getsyx

subroutine,

along

with

the

setsyx

subroutine,

is

meant

to

be

used

by

a

user-defined

function

that

manipulates

curses

windows

but

wants

the

position

of

the

cursor

to

remain

the

same.

Such

a

function

would

do

the

following:

v

Call

the

getsyx

subroutine

to

obtain

the

current

virtual

cursor

coordinates.

v

Continue

manipulating

the

windows.

v

Call

the

wnoutrefresh

subroutine

on

each

window

manipulated.

v

Reset

the

current

virtual

cursor

coordinates

to

the

original

values

with

the

setsyx

subroutine.

v

Refresh

the

display

with

a

call

to

the

doupdate

subroutine.

568

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

X

Points

to

the

current

row

position

of

the

virtual

screen

cursor.

A

value

of

-1

indicates

the

leaveok

subroutine

was

TRUE

for

the

last

window

refreshed.

Y

Points

to

the

current

column

position

of

the

virtual

screen

cursor.

A

value

of

-1

indicates

the

leaveok

subroutine

was

TRUE

for

the

last

window

refreshed.

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Controlling

the

Cursor

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

getyx

Macro

Purpose

Returns

the

coordinates

of

the

logical

cursor

in

the

specified

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

getyx(

Window,

Line,

Column)

WINDOW

*Window;

int

Line,

Column;

Description

The

getyx

macro

returns

the

coordinates

of

the

logical

cursor

in

the

specified

window.

Parameters

Window

Identifies

the

window

to

get

the

cursor

location

from.

Column

Holds

the

column

coordinate

of

the

logical

cursor.

Line

Holds

the

line

or

row

coordinate

of

the

logical

cursor.

Example

To

get

the

location

of

the

logical

cursor

in

the

user-defined

window

my_window

and

then

put

these

coordinates

in

the

user-defined

integer

variables

Line

and

Column,

enter:

WINDOW

*my_window;

int

line,

column;

getyx(my_window,

line,

column);

Chapter

2.

Curses

Subroutines

569

Related

Information

Controlling

the

Cursor

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

halfdelay

Subroutine

Purpose

Controls

input

character

delay

mode.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

halfdelay(int

tenths);

Description

The

halfdelay

subroutine

sets

the

input

mode

for

the

current

window

to

Half-Delay

Mode

and

specifies

tenths

of

seconds

as

the

half-delay

interval.

The

tenths

argument

must

be

in

a

range

from

1

up

to

and

including

255.

Flag

x

Instructs

wgetch

to

wait

x

tenths

of

a

second

for

input

before

timing

out.

Parameters

tenths

Return

Values

Upon

successful

completion,

the

halfdelay

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Related

Information

The

cbreak

(“cbreak,

nocbreak,

noraw,

or

raw

Subroutine”

on

page

535)

subroutine.

has_colors

Subroutine

Purpose

Determines

whether

a

terminal

supports

color.

Library

Curses

Library

(libcurses.a)

570

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<curses.h>

has_colors()

Description

The

has_colors

subroutine

determines

whether

a

terminal

supports

color.

If

the

terminal

supports

color,

the

has_colors

subroutine

returns

TRUE.

Otherwise,

it

returns

FALSE.

Because

this

subroutine

tests

for

color,

you

can

call

it

before

the

start_color

subroutine.

The

has_colors

routine

makes

writing

terminal-independent

programs

easier

because

you

can

use

the

subroutine

to

determine

whether

to

use

color

or

another

video

attribute.

Use

the

can_change_colors

subroutine

to

determine

whether

a

terminal

that

supports

colors

also

supports

changing

its

color

definitions.

Examples

To

determine

whether

or

not

a

terminal

supports

color,

use:

has_colors();

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

has_ic

and

has_il

Subroutine

Purpose

Query

functions

for

terminal

insert

and

delete

capability.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

bool

has_ic(void);

bool

has_il(void);

Description

The

has_ic

subroutine

indicates

whether

the

terminal

has

insert-

and

delete-character

capabilities.

The

has_il

subroutine

indicates

whether

the

terminal

has

insert-

and

delete-line

capabilities,

or

can

simulate

them

using

scrolling

regions.

Chapter

2.

Curses

Subroutines

571

Return

Values

The

has_ic

subroutine

returns

a

value

of

TRUE

if

the

terminal

has

insert-

and

delete-character

capabilities.

Otherwise,

it

returns

FALSE.

The

has_il

subroutine

returns

a

value

of

TRUE

if

the

terminal

has

insert-

and

delete-line

capabilities.

Otherwise,

it

returns

FALSE.

Examples

For

the

has_ic

subroutine:

To

determine

the

insert

capability

of

a

terminal

by

returning

TRUE

or

FALSE

into

the

user-defined

variable

insert_cap,

enter:

int

insert_cap;

insert_cap

=

has_ic();

For

the

has_il

subroutine:

To

determine

the

insert

capability

of

a

terminal

by

returning

TRUE

or

FALSE

into

the

user-defined

variable

insert_line,

enter:

int

insert_line;

insert_line

=

has_il();

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

has_il

Subroutine

Purpose

Determines

whether

the

terminal

has

insert-line

capability.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

has_il(

)

Description

The

has_il

subroutine

determines

whether

a

terminal

has

insert-line

capability.

Return

Values

The

has_il

subroutine

returns

TRUE

if

terminal

has

insert-line

capability

and

FALSE,

if

not.

572

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Examples

To

determine

the

insert

capability

of

a

terminal

by

returning

TRUE

or

FALSE

into

the

user-defined

variable

insert_line,

enter:

int

insert_line;

insert_line

=

has_il();

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

idlok

Subroutine

Purpose

Allows

curses

to

use

the

hardware

insert/delete

line

feature.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

idlok(

Window,

Flag)

WINDOW

*Window;

bool

Flag;

Description

The

idlok

subroutine

enables

curses

to

use

the

hardware

insert/delete

line

feature

for

terminals

so

equipped.

If

this

feature

is

disabled,

curses

cannot

use

it.

The

insert/delete

line

feature

is

always

considered.

Enable

this

option

only

if

your

application

needs

the

insert/delete

line

feature;

for

example,

for

a

screen

editor.

If

the

insert/delete

line

feature

cannot

be

used,

curses

will

redraw

the

changed

portions

of

all

lines

that

do

not

match

the

desired

line.

Parameters

Flag

Specifies

whether

to

enable

curses

to

use

the

hardware

insert/delete

line

feature

(True)

or

not

(False).

Window

Specifies

the

window

it

will

affect.

Examples

1.

To

enable

curses

to

use

the

hardware

insert/delete

line

feature

in

stdscr,

enter:

idlok(stdscr,

TRUE);

2.

To

force

curses

not

to

use

the

hardware

insert/delete

line

feature

in

the

user-defined

window

my_window

,

enter:

idlok(my_window,

FALSE);

Chapter

2.

Curses

Subroutines

573

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

inch,

mvinch,

mvwinch,

or

winch

Subroutine

Purpose

Inputs

a

single-byte

character

and

rendition

from

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

chtype

inch(void);

chtype

mvinch(int

y,

int

x);

chtype

mvwinch(WINDOW

*win,

int

y,

int

x);

chtype

winch(WINDOW

*win);

Description

The

inch,

winch,

mvinch,

and

mvwinch

subroutines

return

the

character

and

rendition,

of

type

chtype,

at

the

current

or

specified

position

in

the

current

or

specified

window.

Parameters

*win

Specifies

the

window

from

which

to

get

the

character.

x

y

Return

Values

Upon

successful

completion,

these

subroutines

return

the

specified

character

and

rendition.

Otherwise,

they

return

(chtype)

ERR.

Examples

1.

To

get

the

character

at

the

current

cursor

location

in

the

stdscr,

enter:

chtype

character;

character

=

inch();

2.

To

get

the

character

at

the

current

cursor

location

in

the

user-defined

window

my_window,

enter:

574

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

WINDOW

*my_window;

chtype

character;

character

=

winch(my_window);

3.

To

move

the

cursor

to

the

coordinates

y

=

0,

x

=

5

and

then

get

that

character,

enter:

chtype

character;

character

=

mvinch(0,

5);

4.

To

move

the

cursor

to

the

coordinates

y

=

0,

x

=

5

in

the

user-defined

window

my_window

and

then

get

that

character,

enter:

WINDOW

*my_window;

chtype

character;

character

=

mvwinch(my_window,

0,

5);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

init_color

Subroutine

Purpose

Changes

a

color

definition.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

init_color(

Color,

R,

G,

B)

register

short

Color,

R,

G,

B;

Description

The

init_color

subroutine

changes

a

color

definition.

A

single

color

is

defined

by

the

combination

of

its

red,

green,

and

blue

components.

The

init_color

subroutine

changes

all

the

occurrences

of

the

color

on

the

screen

immediately.

If

the

color

is

changed

successfully,

this

subroutines

returns

OK.

Otherwise,

it

returns

ERR.

Note:

The

values

for

the

red,

green,

and

blue

components

must

be

between

0

(no

component)

and

1000

(maximum

amount

of

component).

The

init_color

subroutine

sets

values

less

than

0

to

0

and

values

greater

than

1000

to

1000.

To

determine

if

you

can

change

a

terminal’s

color

definitions,

see

the

can_change_color

subroutine.

Chapter

2.

Curses

Subroutines

575

Return

Values

OK

Indicates

the

color

was

changed

successfully.

ERR

Indicates

the

color

was

not

changed.

Parameters

Color

Identifies

the

color

to

change.

The

value

of

the

parameter

must

be

between

0

and

COLORS-1.

R

Specifies

the

desired

intensity

of

the

red

component.

G

Specifies

the

desired

intensity

of

the

green

component.

B

Specifies

the

desired

intensity

of

the

blue

component.

Examples

To

initialize

the

color

definition

for

color

11

to

violet

on

a

terminal

that

supports

at

least

12

colors,

use:

init_color(11,500,0,500);

Related

Information

The

start_color

(“start_color

Subroutine”

on

page

636)

subroutine.

Curses

Overview

for

Programming

and

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

init_pair

Subroutine

Purpose

Changes

a

color-pair

definition.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

init_pair(

Pair,

F,

B)

register

short

Pair,

F,

B;

Description

The

init_pair

subroutine

changes

a

color-pair

definition.

A

color

pair

is

a

combination

of

a

foreground

and

a

background

color.

If

you

specify

a

color

pair

that

was

previously

initialized,

curses

refreshes

the

screen

and

changes

all

occurrences

of

that

color

pair

to

the

new

definition.

You

must

call

the

start_color

subroutine

before

you

call

this

subroutine.

Return

Values

OK

Indicates

successful

completion.

ERR

Indicates

the

subroutine

failed.

576

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

Pair

Identifies

the

color-pair

number.

The

value

of

the

Pair

parameter

must

be

between

1

and

COLORS_PAIRS-1.

F

Specifies

the

foreground

color

number.

This

number

must

be

between

0

and

COLORS-1.

B

Specifies

the

background

color

number.

This

number

must

be

between

0

and

COLORS-1.

Examples

To

initialize

the

color

definition

for

color-pair

2

to

a

black

foreground

(color

0)

with

a

cyan

background

(color

3),

use:

init_pair(2,COLOR_BLACK,

COLOR_CYAN);

Related

Information

The

init_color

(“init_color

Subroutine”

on

page

575)

subroutine,

start_color

(“start_color

Subroutine”

on

page

636)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

initscr

and

newterm

Subroutine

Purpose

Initializes

curses

and

its

data

structures.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

WINDOW

*initscr(void);

SCREEN

*newterm(char

*type,

FILE

*outfile,

FILE

*infile);

Description

The

initscr

subroutine

determines

the

terminal

type

and

initializes

all

implementation

data

structures.

The

TERM

environment

variable

specifies

the

terminal

type.

The

initscr

subroutine

also

causes

the

first

refresh

operation

to

clear

the

screen.

If

errors

occur,

initscr

writes

an

appropriate

error

message

to

standard

error

and

exits.

The

only

subroutines

that

can

be

called

before

initscr

or

newterm

are

the

filter,

ripoffline,

slk_init,

use_env,

and

the

subroutines

whose

prototypes

are

defined

in

<term.h>.

Portable

applications

must

not

call

initscr

twice.

The

newterm

subroutine

can

be

called

as

many

times

as

desired

to

attach

a

terminal

device.

The

type

argument

points

to

a

string

specifying

the

terminal

type,

except

that,

if

type

is

a

null

pointer,

the

TERM

environment

variable

is

used.

The

outfile

and

infile

arguments

are

file

pointers

for

output

to

the

terminal

and

input

from

the

terminal,

respectively.

It

is

unspecified

whether

Curses

modifies

the

buffering

mode

of

these

file

pointers.

The

newterm

subroutine

should

be

called

once

for

each

terminal.

The

initscr

subroutine

is

equivalent

to:

newterm(gentenv("TERM"),

stdout,

stdin);

return

stdscr;

Chapter

2.

Curses

Subroutines

577

If

the

current

disposition

for

the

signals

SIGINT,

SIGQUIT

or

SIGTSTP

is

SIGDFL,

then

the

initscr

subroutine

may

also

install

a

handler

for

the

signal,

which

may

remain

in

effect

for

the

life

of

the

process

or

until

the

process

changes

the

disposition

of

the

signal.

The

initscr

and

newterm

subroutines

initialise

the

cur_term

external

variable.

initscr

CURSES

Curses

Interfaces

Return

Values

Upon

successful

completion,

the

initscr

subroutine

returns

a

pointer

to

stdscr.

Otherwise,

it

does

not

return.

Upon

successful

completion,

the

newterm

subroutine

returns

a

pointer

to

the

specified

terminal.

Otherwise,

it

returns

a

null

pointer.

Example

To

initialize

curses

so

that

other

curses

subroutines

can

be

called,

use:

initscr();

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

del_curterm

(“del_curterm,

restartterm,

set_curterm,

or

setupterm

Subroutine”

on

page

547)

subroutine,

filter

(“filter

Subroutine”

on

page

557)

subroutine,

slk_attroff

(“slk_attroff,

slk_attr_off,

slk_attron,

slk_attrset,

slk_attr_set,

slk_clear,

slk_color,

slk_init,

slk_label,

slk_noutrefresh,

slk_refresh,

slk_restore,

slk_set,

slk_touch,

slk_wset,

Subroutine”

on

page

626)

subroutine,

setupterm

(“setupterm

Subroutine”

on

page

624)

subroutine.

Curses

Overview

for

Programming,

Initializing

Curses,

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

insch,

mvinsch,

mvwinsch,

or

winsch

Subroutine

Purpose

Inserts

a

single-byte

character

and

rendition

in

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

insch(chtype

ch);

int

mvinsch(int

y,

chtype

h);

int

mvwinsch(WINDOW

*win,

int

x,

int

y,

chtype

h);

int

winsch(WINDOW

*win,

chtype

h);

578

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

These

subroutines

insert

the

character

and

rendition

into

the

current

or

specified

window

at

the

current

or

specified

position.

These

subroutines

do

not

perform

wrapping

or

advance

the

cursor

position.

These

functions

perform

special-character

processing,

with

the

exception

that

if

a

newline

is

inserted

into

the

last

line

of

a

window

and

scrolling

is

not

enabled,

the

behavior

is

unspecified.

Parameters

ch

y

x

*win

Specifies

the

window

in

which

to

insert

the

character.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

insert

the

character

x

in

the

stdscr,

enter:

chtype

x;

insch(x);

2.

To

insert

the

character

x

into

the

user-defined

window

my_window,

enter:

WINDOW

*my_window

chtype

x;

winsch(my_window,

x);

3.

To

move

the

logical

cursor

to

the

coordinates

Y=10,

X=5

prior

to

inserting

the

character

x

in

the

stdscr,

enter:

chtype

x;

mvinsch(10,

5,

x);

4.

To

move

the

logical

cursor

to

the

coordinates

y=10,

X=5

prior

to

inserting

the

character

x

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

chtype

x;

mvwinsch(my_window,

10,

5,

x);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

insertln

or

winsertln

Subroutine

Purpose

Inserts

a

blank

line

above

the

current

line

in

a

window.

Chapter

2.

Curses

Subroutines

579

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

insertln(void)

int

winsertln(WINDOW

*win);

Description

The

insertln

and

winsertln

subroutines

insert

a

blank

line

before

the

current

line

in

the

current

or

specified

window.

The

bottom

line

is

no

longer

displayed.

The

cursor

position

does

not

change.

Parameters

*win

Specifies

the

window

in

which

to

insert

the

blank

line.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

insert

a

blank

line

above

the

current

line

in

the

stdscr,

enter:

insertln();

2.

To

insert

a

blank

line

above

the

current

line

in

the

user-defined

window

my_window,

enter:

WINDOW

*mywindow;

winsertln(my_window);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

intrflush

Subroutine

Purpose

Enables

or

disables

flush

on

interrupt.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

580

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

intrflush(WINDOW

*

win,

bool

bf);

Description

The

intrflush

subroutine

specifies

whether

pressing

an

interrupt

key

(interrupt,

suspend,

or

quit)

will

flush

the

input

buffer

associated

with

the

current

screen.

If

the

value

of

bf

is

TRUE,

then

flushing

of

the

output

buffer

associated

with

the

current

screen

will

occur

when

an

interrupt

key

(interrupt,

suspend,

or

quit)

is

pressed.

If

the

value

of

bf

is

FALSE

then

no

flushing

of

the

buffer

will

occur

when

an

interrupt

key

is

pressed.

The

default

for

the

option

is

inherited

from

the

display

driver

settings.

The

win

argument

is

ignored.

Parameters

bf

*win

Specifies

the

window

for

which

to

enable

or

disable

queue

flushing.

Return

Values

Upon

successful

completion,

the

intrflush

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Examples

1.

To

enable

queue

flushing

in

the

user-defined

window

my_window,

enter:

intrflush(my_window,

TRUE);

2.

To

disable

queue

flushing

in

the

user-defined

window

my_window,

enter:

intrflush(my_window,

FALSE);

Related

Information

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

keyname,

key_name

Subroutine

Purpose

Gets

the

name

of

keys.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

char

*keyname(int

c);

char

*key_name(wchar_t

c);

Chapter

2.

Curses

Subroutines

581

Description

The

keyname

and

key_name

subroutines

generate

a

character

string

whose

value

describes

the

key

c.

The

c

argument

of

keyname

can

be

an

8-bit

character

or

a

key

code.

The

c

argument

of

key_name

must

be

a

wide

character.

The

string

has

a

format

according

to

the

first

applicable

row

in

the

following

table:

Input

Format

of

Returned

String

Visible

character

The

same

character

Control

character

^X

Meta-character

(keyname

only)

M-X

Key

value

defined

in

<curses.h>

(keyname

only)

KEY_name

None

of

the

above

UNKNOWN

KEY

The

meta-character

notation

shown

above

is

used

only,

if

meta-characters

are

enabled.

Parameter

c

Return

Values

Upon

successful

completion,

the

keyname

subroutine

returns

a

pointer

to

a

string

as

described

above,

Otherwise,

it

returns

a

null

pointer.

Examples

int

key;

char

*name;

keypad(stdscr,

TRUE);

addstr("Hit

a

key");

key=getch();

name=keyname(key);

Note:

If

the

Page

Up

key

is

pressed,

keyname

will

return

KEY_PPAGE.

Related

Information

The

meta

(“meta

Subroutine”

on

page

588)

and

wgetch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutines.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

keypad

Subroutine

Purpose

Enables

or

disables

abbreviation

of

function

keys.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

582

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

int

keypad(WINDOW

*win,

bool

bf);

Description

The

keypad

subroutine

controls

keypad

translation.

If

bf

is

TRUE,

keypad

translation

is

turned

on.

If

bf

is

FALSE,

keypad

translation

is

turned

off.

The

initial

state

is

FALSE.

This

subroutine

affects

the

behavior

of

any

function

that

provides

keyboard

input.

If

the

terminal

in

use

requires

a

command

to

enable

it

to

transmit

distinctive

codes

when

a

function

key

is

pressed,

then

after

keypad

translation

is

first

enabled,

the

implemenation

transmits

this

command

to

the

terminal

before

an

affected

input

function

tries

to

read

any

characters

from

that

terminal.

Parameters

bf

*win

Specifies

the

window

in

which

to

enable

or

disable

the

keypad.

Return

Values

Upon

successful

completion,

the

keypad

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Examples

To

turn

on

the

keypad

in

the

user-defined

window

my_window,

use:

WINDOW

*my_window;

keypad(my_window,

TRUE);

Related

Information

The

getch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine.

The

terminfo

file

format.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

killchar

or

killwchar

Subroutine

Purpose

Terminal

environment

query

functions.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

char

killchar(void);

int

killwchar(wchar_t

*ch);

Description

The

killchar

subroutine

returns

the

current

line.

Chapter

2.

Curses

Subroutines

583

The

killchar

subroutine

stores

the

current

line

kill

character

in

the

object

pointed

to

by

ch.

If

no

line

kill

character

has

been

defined,

the

subroutine

will

fail

and

the

object

pointed

to

by

ch

will

not

be

changed.

Parameters

*ch

Return

Values

The

killchar

subroutine

returns

the

line

kill

character.

The

return

value

is

unspecified

when

this

character

is

a

multi-byte

character.

Upon

successful

completion,

the

killchar

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

_lazySetErrorHandler

Subroutine

Purpose

Installs

an

error

handler

into

the

lazy

loading

runtime

system

for

the

current

process.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<sys/ldr.h>

#include

<sys/errno.h>

typedef

void

*handler_t

char

*module;

char

*symbol;

unsigned

int

errval;

handler_t

*_lazySetErrorHandler

handler_t

*err_handler;

Description

This

function

allows

a

process

to

install

a

custom

error

handler

to

be

called

when

a

lazy

loading

reference

fails

to

find

the

required

module

or

function.

This

function

should

only

be

used

when

the

main

program

or

one

of

its

dependent

modules

was

linked

with

the

-blazy

option.

To

call

_lazySetErrorHandler

from

a

module

that

is

not

linked

with

the

-blazy

option,

you

must

use

the

-lrtl

option.

If

you

use

-blazy,

you

do

not

need

to

specify

-lrtl.

This

function

is

not

thread

safe.

The

calling

program

should

ensure

that

_lazySetErrorHandler

is

not

called

by

multiple

threads

at

the

same

time.

The

user-supplied

error

handler

may

print

its

own

error

message,

provide

a

substitute

function

to

be

used

in

place

of

the

called

function,

or

call

longjmp

subroutine.

To

provide

a

substitute

function

that

will

be

called

instead

of

the

originally

referenced

function,

the

error

handler

should

return

a

pointer

584

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

Column

Specifies

the

horizontal

position

to

move

the

logical

cursor

to

before

getting

the

character.

Line

Specifies

the

vertical

position

to

move

the

logical

cursor

to

before

getting

the

character.

Window

Identifies

the

window

to

get

the

character

from

and

echo

it

into.

Return

Values

Upon

completion,

the

character

code

for

the

data

key

or

one

of

the

following

values

is

returned:

KEY_xxxx

The

keypad

subroutine

is

set

to

TRUE

and

a

control

key

was

recognized.

See

the

curses.

h

file

for

a

complete

list

of

the

key

codes

that

can

be

returned.

Examples

1.

To

get

a

character

and

echo

it

to

the

stdscr,

use:

mvgetch();

2.

To

get

a

character

and

echo

it

into

stdscr

at

the

coordinates

y=20,

x=30,

use:

mvgetch(20,

30);

3.

To

get

a

character

and

echo

it

into

the

user-defined

window

my_window

at

coordinates

y=20,

x=30,

use:

WINDOW

*my_window;

mvwgetch(my_window,

20,

30);

Related

Information

The

keypad

(“keypad

Subroutine”

on

page

582)

subroutine,

meta

(“meta

Subroutine”

on

page

588)

subroutine,

nodelay

(“nodelay

Subroutine”

on

page

598)

subroutine,

echo

or

noecho

(“echo

or

noecho

Subroutine”

on

page

552)

subroutine,notimeout

(“notimeout,

timeout,

wtimeout

Subroutine”

on

page

599)subroutine,

ebreak

or

nocbreak

(“cbreak,

nocbreak,

noraw,

or

raw

Subroutine”

on

page

535)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

leaveok

Subroutine

Purpose

Controls

physical

cursor

placement

after

a

call

to

the

refresh

subroutine.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

Chapter

2.

Curses

Subroutines

585

leaveok(

Window,

Flag)

WINDOW

*Window;

bool

Flag;

Description

The

leaveok

subroutine

controls

cursor

placement

after

a

call

to

the

refresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine.

If

the

Flag

parameter

is

set

to

FALSE,

curses

leaves

the

physical

cursor

in

the

same

location

as

logical

cursor

when

the

window

is

refreshed.

If

the

Flag

parameter

is

set

to

TRUE,

curses

leaves

the

cursor

as

is

and

does

not

move

the

physical

cursor

when

the

window

is

refreshed.

This

option

is

useful

for

applications

that

do

not

use

the

cursor,

because

it

reduces

physical

cursor

motions.

By

default

leaveok

is

FALSE,

and

the

physical

cursor

is

moved

to

the

same

position

as

the

logical

cursor

after

a

refresh.

Parameters

Flag

Specifies

whether

to

leave

the

physical

cursor

alone

after

a

refresh

(TRUE)

or

to

move

the

physical

cursor

to

the

logical

cursor

after

a

refresh

(FALSE).

Window

Identifies

the

window

to

set

the

Flag

parameter

for.

Return

Values

OK

Indicates

the

subroutine

completed.

The

leaveok

subroutine

always

returns

this

value.

Examples

1.

To

move

the

physical

cursor

to

the

same

location

as

the

logical

cursor

after

refreshing

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

leaveok(my_window,

FALSE);

2.

To

leave

the

physical

cursor

alone

after

refreshing

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

leaveok(my_window,

TRUE);

Related

Information

The

refresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine.

Controlling

the

Cursor

with

Curses,

Curses

Overview

for

Programming,

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

longname

Subroutine

Purpose

Returns

the

verbose

name

of

a

terminal.

Library

Curses

Library

(libcurses.a)

586

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<curses.h>

char

*longname(void);

Description

The

longname

subroutine

generates

a

verbose

description

for

the

current

terminal.

The

maximum

length

of

a

verbose

description

is

128

bytes.

It

is

defined

only

after

the

call

to

the

initscr

or

newterm

subroutines.

The

area

is

overwritten

by

each

call

to

the

newterm

subroutine,

so

the

value

should

be

saved

if

you

plan

on

using

the

longname

subroutine

with

multiple

terminals.

Return

Values

Upon

successful

completion,

the

longname

subroutine

returns

a

pointer

to

the

description

specified

above.

Otherwise,

it

returns

a

null

pointer

on

error.

Related

Information

The

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutine,

newterm

(“newterm

Subroutine”

on

page

594)

subroutine,

setupterm

(“setupterm

Subroutine”

on

page

624)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

makenew

Subroutine

Purpose

Creates

a

new

window

buffer

and

returns

a

pointer.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

WINDOW

*makenew(

)

Description

The

makenew

subroutine

creates

a

new

window

buffer

and

returns

a

pointer

to

it.

The

makenew

subroutine

is

called

by

the

newwin

subroutine

to

create

the

window

structure.

The

makenew

subroutine

should

not

be

called

directly

by

a

program.

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Windows

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

587

meta

Subroutine

Purpose

Enables/disables

meta-keys.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

meta(WINDOW

*win,

bool

bf);

Description

Initially,

whether

the

terminal

returns

7

or

8

significant

bits

on

input

depends

on

the

control

mode

of

the

display

driver.

To

force

8

bits

to

be

returned,

invoke

the

meta

subroutine

(win,

TRUE).

To

force

7

bits

to

be

returned,

invoke

the

meta

subroutine

(win,

FALSE).

The

win

argument

is

always

ignored.

If

the

terminfo

capabilities

smm

(meta_on)

and

rmm

(meta_off)

are

defined

for

the

terminal,

smm

is

sent

to

the

terminal

when

meta

(win,

TRUE)

is

called

and

rmm

is

sent

when

meta

(win,

FALSE)

is

called.

Parameters

bf

*win

Return

Values

Upon

successful

completion,

the

meta

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Examples

1.

To

request

an

8-bit

character

return

when

using

a

getch

routine,

enter:

WINDOW

*some_window;

meta(some_window,

TRUE);

2.

To

strip

the

highest

bit

off

the

character

returns

in

the

user-defined

window

my_window,

enter:

WINDOW

*some_window;

meta(some_window,

FALSE);

Related

Information

The

getch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

588

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

move

or

wmove

Subroutine

Purpose

Window

location

cursor

functions.

Library

Curses

Library

(libcurses.a)

Syntax

int

(

x);

int

wmove

(WINDOW

*win,

int

y,

int

x);

Description

The

move

and

wmove

subroutines

move

the

logical

cursor

associated

with

the

current

or

specified

window

to

(y,

x)

relative

to

the

window’s

origin.

This

subroutine

does

not

move

the

cursor

of

the

terminal

until

the

next

refresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

operation.

Parameters

y

x

*win

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

move

the

logical

cursor

in

the

stdscr

to

the

coordinates

y

=

5,

x

=

10,

use:

move(5,

10);

2.

To

move

the

logical

cursor

in

the

user-defined

window

my_window

to

the

coordinates

y

=

5,

x

=

10,

use:

WINDOW

*my_window;

wmove(my_window,

5,

10);

Related

Information

The

getch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

and

refresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutines.

Controlling

the

Cursor

with

Curses,

Curses

Overview

for

Programming,

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

mvcur

Subroutine

Purpose

Output

cursor

movement

commands

to

the

terminal.

Chapter

2.

Curses

Subroutines

589

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

mvcur(int

oldrow,

int

oldcol,

int

newrow,

int

newcol);

Description

The

mvcur

subroutine

outputs

one

or

more

commands

to

the

terminal

that

move

the

terminal’s

cursor

to

(newrow,

newcol),

an

absolute

position

on

the

terminal

screen.

The

(oldrow,

oldcol)

arguments

specify

the

former

cursor

position.

Specifying

the

former

position

is

necessary

on

terminals

that

do

not

provide

coordinate-based

movement

commands.

On

terminals

that

provide

these

commands,

Curses

may

select

a

more

efficient

way

to

move

the

cursor

based

on

the

former

position.

If

(newrow,

newcol)

is

not

a

valid

address

for

the

terminal

in

use,

the

mvcur

subroutine

fails.

If

(oldrow,

oldcol)

is

the

same

as

(newrow,

newcol),

mvcur

succeeds

without

taking

any

action.

If

mvcur

outputs

a

cursor

movement

command,

it

updates

its

information

concerning

the

location

of

the

cursor

on

the

terminal.

Parameters

newcol

newrow

oldcol

oldrow

Return

Values

Upon

successful

completion,

the

mvcur

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Examples

1.

To

move

the

physical

cursor

from

the

coordinates

y

=

5,

x

=

15

to

y

=

25,

x

=

30,

use:

mvcur(5,

15,

25,

30);

2.

To

move

the

physical

cursor

from

unknown

coordinates

to

y

=

5,

x

=

0,

use:

mvcur(50,

50,

5,

0);

In

this

example,

the

physical

cursor’s

current

coordinates

are

unknown.

Therefore,

arbitrary

values

are

assigned

to

the

OldLine

and

OldColumn

parameters

and

the

desired

coordinates

are

assigned

to

the

NewLine

and

NewColumn

parameters.

This

is

called

an

absolute

move.

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

is_linetouched

(“is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine”

on

page

648)

subroutine,

move

(“move

or

wmove

Subroutine”

on

page

589)

subroutine,

refresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine.

Controlling

the

Cursor

with

Curses,

Curses

Overview

for

Programming,

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

590

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

mvwin

Subroutine

Purpose

Moves

a

window

or

subwindow

to

the

specified

coordinates.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

mvwin

(WINDOW

*win,

int

y,

int

x);

Description

The

mvwin

subroutine

moves

the

specified

window

so

that

its

origin

is

at

position

(y,

x).

If

the

move

causes

any

portion

of

the

window

to

extend

past

any

edge

of

the

screen,

the

function

fails

and

the

window

is

not

moved.

Parameters

*win

x

y

Return

Values

Upon

successful

completion,

the

mvwin

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Examples

1.

To

move

the

user-defined

window

my_window

from

its

present

location

to

the

upper

left

corner

of

the

terminal,

enter:

WINDOW

*my_window;

mvwin(my_window,

0,

0);

2.

To

move

the

user-defined

window

my_window

from

its

present

location

to

the

coordinates

y

=

20,

x

=

10,

enter:

WINDOW

*my_window;

mvwin(my_window,

20,

10);

Related

Information

The

derwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)

subroutine,

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

is_linetouched

(“is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine”

on

page

648)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

591

Manipulating

Window

Data

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

newpad,

pnoutrefresh,

prefresh,

or

subpad

Subroutine

Purpose

Pad

management

functions.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

WINDOW

*newpad

(int

nlines,

int

ncols);

int

pnoutrefresh

(WINDOW

*pad,

int

pminrow,

int

pmincol,

int

sminrow,

int

smincol,

int

smaxrorw,

int

smaxcol);

int

prefresh

(WINDOW

*pad,

int

pminrow,

int

pmincol,

int

sminrow,

int

smincol,

int

smaxrorw,

int

smaxcol);

WINDOW

*subpad

(WINDOW

*orig,

int

nlines,

int

ncols,

int

begin_y,

int

begin_x);

Description

The

newpad

subroutine

creates

a

specialised

WINDOW

data

structure

with

nlines

lines

and

ncols

columns.

A

pad

is

similar

to

a

window,

except

that

it

is

not

associated

with

a

viewable

part

of

the

screen.

Automatic

refreshes

of

pads

do

not

occur.

The

subpad

subroutine

creates

a

subwindow

within

a

pad

with

nlines

lines

and

ncols

columns.

Unlike

the

subwin

subroutine,

which

uses

screen

coordinates,

the

window

is

at

a

position

(begin_y,

begin_x)

on

the

pad.

The

window

is

made

in

the

middle

of

the

window

orig,

so

that

changes

made

to

one

window

affects

both

windows.

The

prefresh

(“prefresh

or

pnoutrefresh

Subroutine”

on

page

603)

or

pnoutrefresh

(“prefresh

or

pnoutrefresh

Subroutine”

on

page

603)

subroutines

are

analogous

to

the

wrefresh

and

wnoutrefresh

subroutines

except

that

they

relate

to

pads

instead

of

windows.

The

additional

arguments

indicate

what

592

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

part

of

the

pad

and

screen

are

involved.

The

pminrow

and

pmincol

arguments

specify

the

origin

of

the

rectangle

to

be

displayed

in

the

screen.

The

lower

right-hand

corner

of

the

rectangle

to

be

displayed

in

the

pad

is

calculated

from

the

screen

coordinates,

since

the

rectangles

must

be

the

same

size.

Both

rectangles

must

be

entirely

contained

within

their

respective

structures.

Negative

values

of

pminrow,

pmincol,

sminrow

or

smincol

are

treated

as

if

they

were

zero.

Parameters

ncols

nlines

begin_x

begin_y

*orig

*pad

pminrow

pmincol

sminrow

smincol

smaxrorw

smaxcol

Return

Values

Upon

successful

completion,

the

newpad

and

subpad

subroutines

return

a

pointer

to

the

pad

structure.

Otherwise,

they

return

a

null

pointer.

Upon

successful

completion,

the

pnoutrefresh

and

prefresh

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

For

the

newpad

subroutine:

1.

To

create

a

new

pad

and

save

the

pointer

to

it

in

my_pad,

enter:

WINDOW

*my_pad;

my_pad

=

newpad(5,

10);

my_pad

is

now

a

pad

5

lines

deep,

10

columns

wide.

2.

To

create

a

pad

and

save

the

pointer

to

it

in

my_pad,

which

is

flush

with

the

right

side

of

the

terminal,

enter:

WINDOW

*my_pad;

my_pad

=

newpad(5,

0);

my_pad

is

now

a

pad

5

lines

deep,

extending

to

the

far

right

side

of

the

terminal.

3.

To

create

a

pad

and

save

the

pointer

to

it

in

my_pad,

which

fills

the

entire

terminal,

enter:

WINDOW

*my_pad;

my_pad

=

newpad(0,

0);

my_pad

is

now

a

pad

that

fills

the

entire

terminal.

4.

To

create

a

very

large

pad

and

display

part

of

it

on

the

screen,

enter;

WINDOW

*my_pad;

my_pal

=

newpad(120,120);

prefresh

(my_pal,

0,0,0,0,20,30);

Chapter

2.

Curses

Subroutines

593

This

causes

the

first

21

rows

and

first

31

columns

of

the

pad

to

be

displayed

on

the

screen.

The

upper

left

coordinates

of

the

resulting

rectangle

are

(0,0)

and

the

bottom

right

coordinates

are

(20,30).

For

the

prefresh

or

pnoutrefresh

subroutines:

1.

To

update

the

user-defined

my_pad

pad

from

the

upper-left

corner

of

the

pad

on

the

terminal

with

the

upper-left

corner

at

the

coordinates

Y=20,

X=10

and

the

lower-right

corner

at

the

coordinates

Y=30,

X=25

enter

WINDOW

*my_pad;

prefresh(my_pad,

0,

0,

20,

10,

30,

25);

2.

To

update

the

user-defined

my_pad1

and

my_pad2

pads

and

output

them

both

to

the

terminal

in

one

burst

of

output,

enter:

WINDOW

*my_pad1;

*my_pad2;

pnoutrefresh(my_pad1,

0,

0,

20,

10,

30,

25);

pnoutrefresh(my_pad2,

0,

0,

0,

0,

10,

5);

doupdate();

For

the

subpad

subroutine:

To

create

a

subpad,

use:

WINDOW

*orig,

*mypad;

orig

=

newpad(100,

200);

mypad

=

subpad(orig,

30,

5,

25,

180);

The

parent

pad

is

100

lines

by

200

columns.

The

subpad

is

30

lines

by

5

columns

and

starts

in

line

25,

column

180

of

the

parent

pad.

Related

Information

The

derwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)

subroutine,

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

is_linetouched

(“is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine”

on

page

648)

subroutine,

prefresh

(“prefresh

or

pnoutrefresh

Subroutine”

on

page

603)

or

pnoutrefresh

(“prefresh

or

pnoutrefresh

Subroutine”

on

page

603)

subroutine,

and

subpad

(“subpad

Subroutine”

on

page

637)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Windows

in

the

Curses

Environment

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

newterm

Subroutine

Purpose

Initializes

curses

and

its

data

structures

for

a

specified

terminal.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

594

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SCREEN

*newterm(

Type,

OutFile,

InFile)

char

*Type;

FILE

*OutFile,

*InFile;

Description

The

newterm

subroutine

initializes

curses

and

its

data

structures

for

a

specified

terminal.

Use

this

subroutine

instead

of

the

initscr

subroutine

if

you

are

writing

a

program

that

sends

output

to

more

than

one

terminal.

You

should

also

use

this

subroutine

if

your

program

requires

indication

of

error

conditions

so

that

it

can

run

in

a

line-oriented

mode

on

terminals

that

do

not

support

a

screen-oriented

program.

If

you

are

directing

your

program’s

output

to

more

than

one

terminal,

you

must

call

the

newterm

subroutine

once

for

each

terminal.

You

must

also

call

the

endwin

subroutine

for

each

terminal

to

stop

curses

and

restore

the

terminal

to

its

previous

state.

Parameters

InFile

Identifies

the

input

device

file.

OutFile

Identifies

the

output

device

file.

Type

Specifies

the

type

of

output

terminal.

This

parameter

is

the

same

as

the

$TERM

environment

variable

for

that

terminal.

Return

Values

The

newterm

subroutine

returns

a

variable

of

type

SCREEN

*.

You

should

save

this

reference

to

the

terminal

within

your

program.

Examples

1.

To

initialize

curses

on

a

terminal

represented

by

the

lft

device

file

as

both

the

input

and

output

terminal,

open

the

device

file

with

the

following:

fdfile

=

fopen("/dev/lft0",

"r+");

Then,

use

the

newterm

subroutine

to

initialize

curses

on

the

terminal

and

save

the

new

terminal

in

the

my_terminal

variable

as

follows:

char

termname

[]

=

"terminaltype";

SCREEN

*my_terminal;

my_terminal

=

newterm(termname,fdfile,

fdfile);

2.

To

open

the

device

file

/dev/lft0

as

the

input

terminal

and

the

/dev/tty0

(an

ibm3151)

as

the

output

terminal,

do

the

following:

fdifile

=

fopen("/dev/lft0",

"r");

fdofile

=

fopen("/dev/tty0",

"w");

SCREEN

*my_terminal2;

my_terminal2

=

newterm("ibm3151",fdofile,

fdifile);

3.

To

use

stdin

for

input

and

stdout

for

output,

do

the

following:

char

termname

[]

=

"terminaltype";

SCREEN

*my_terminal;

my_terminal

=

newterm(termname,stdout,stdin);

Related

Information

The

endwin

(“endwin

Subroutine”

on

page

554)

subroutine,

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutine.

Chapter

2.

Curses

Subroutines

595

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Initializing

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

derwin,

newwin,

or

subwin

Subroutine

Purpose

Window

creation

subroutines.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

WINDOW

*derwin(WINDOW

*orig,

int

nlines,

int

ncols,

int

begin_y,

int

begin_x);

WINDOW

*newwin(int

nlines,

int

ncols,

int

begin_y,

int

begin_x);

WINDOW

*subwin(WINDOW

*orig,

int

nlines,

int

ncols,

int

begin_y,

int

begin_x);

Description

The

derwin

subroutine

is

the

same

as

the

subwin

subroutine

except

that

begin_y

and

begin_x

are

relative

to

the

origin

of

the

window

orig

rather

than

absolute

screen

positions.

The

newwin

subroutine

creates

a

new

window

with

nlines

lines

and

ncols

columns,

positioned

so

that

the

origin

is

at

(begin_y,

begin_x).

If

nlines

is

zero,

it

defaults

to

LINES

-

begin_y;

if

ncols

is

zero,

it

defaults

to

COLS

-

begin_x.

The

subwin

subroutine

creates

a

new

window

with

nlines

lines

and

ncols

columns,

positioned

so

that

the

origin

is

at

(begin_y,

begin_x).

(This

position

is

an

absolute

screen

position,

not

a

position

relative

to

the

window

orig.)

If

any

part

of

the

new

window

is

outside

orig,

the

subroutine

fails

and

the

window

is

not

created.

Parameters

ncols

nlines

begin_y

begin_x

Return

Values

Upon

successful

completion,

these

subroutines

return

a

pointer

to

the

new

window.

Otherwise,

they

return

a

null

pointer.

596

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Examples

For

the

derwin

and

newwin

subroutines:

1.

To

create

a

new

window,

enter:

WINDOW

*my_window;

my_window

=

newwin(5,

10,

20,

30);

my_window

is

now

a

window

5

lines

deep,

10

columns

wide,

starting

at

the

coordinates

y

=

20,

x

=

30.

That

is,

the

upper

left

corner

is

at

coordinates

y

=

20,

x

=

30,

and

the

lower

right

corner

is

at

coordinates

y

=

24,

x

=

39.

2.

To

create

a

window

that

is

flush

with

the

right

side

of

the

terminal,

enter:

WINDOW

*my_window;

my_window

=

newwin(5,

0,

20,

30);

my_window

is

now

a

window

5

lines

deep,

extending

all

the

way

to

the

right

side

of

the

terminal,

starting

at

the

coordinates

y

=

20,

x

=

30.

The

upper

left

corner

is

at

coordinates

y

=

20,

x

=

30,

and

the

lower

right

corner

is

at

coordinates

y

=

24,

x

=

lastcolumn.

3.

To

create

a

window

that

fills

the

entire

terminal,

enter:

WINDOW

*my_window;

my_window

=

newwin(0,

0,

0,

0);

my_window

is

now

a

screen

that

is

a

window

that

fills

the

entire

terminal’s

display.

For

the

subwin

subroutine:

1.

To

create

a

subwindow,

use:

WINDOW

*my_window,

*my_sub_window;

my_window

=

newwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)

(5,

10,

20,

30);

my_sub_window

is

now

a

subwindow

2

lines

deep,

5

columns

wide,

starting

at

the

same

coordinates

of

its

parent

window

my_window.

That

is,

the

subwindow’s

upper-left

corner

is

at

coordinates

y

=

20,

x

=

30

and

lower-right

corner

is

at

coordinates

y

=

21,

x

=

34.

2.

To

create

a

subwindow

that

is

flush

with

the

right

side

of

its

parent,

use

WINDOW

*my_window,

*my_sub_window;

my_window

=

newwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)(5,

10,

20,

30);

my_sub_window

=

subwin(my_window,

2,

0,

20,

30);

my_sub_window

is

now

a

subwindow

2

lines

deep,

extending

all

the

way

to

the

right

side

of

its

parent

window

my_window,

and

starting

at

the

same

coordinates.

That

is,

the

subwindow’s

upper-left

corner

is

at

coordinates

y

=

20,

x

=

30

and

lower-right

corner

is

at

coordinates

y

=

21,

x

=

39.

3.

To

create

a

subwindow

in

the

lower-right

corner

of

its

parent,

use:

WINDOW

*my_window,

*my_sub_window

my_window

=

newwwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)

(5,

10,

20,

30);

my_sub_window

=

subwin(my_window,

0,

0,

22,

35);

Chapter

2.

Curses

Subroutines

597

my_sub_window

is

now

a

subwindow

that

fills

the

bottom

right

corner

of

its

parent

window,

my_window,

starting

at

the

coordinates

y

=

22,

x

=

35.

That

is,

the

subwindow’s

upper-left

corner

is

at

coordinates

y

=

22,

x

=

35

and

lower-right

corner

is

at

coordinates

y

=

24,

x

=

39.

Related

Information

The

endwin

(“endwin

Subroutine”

on

page

554),

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutines.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Windows

in

the

Curses

Enviroment

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

nl

or

nonl

Subroutine

Purpose

Enables/disables

newline

translation.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

nl(void);

int

nonl(void);

Description

The

nl

subroutine

enables

a

mode

in

which

carriage

return

is

translated

to

newline

on

input.

The

nonnl

subroutine

disables

the

above

translation.

Initially,

the

above

translation

is

enabled.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

instruct

wgetch

to

translate

the

carriage

return

into

a

newline,

enter:

nl();

2.

To

instruct

wgetch

not

to

translate

the

carriage

return,

enter:

nonl();

Related

Information

The

refresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine,

waddch

(“addch,

mvaddch,

mvwaddch,

or

waddch

Subroutine”

on

page

523)

subroutine.

Curses

Overview

for

Programming,

Understanding

Terminals

with

Curses,

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

nodelay

Subroutine

Purpose

Enables

or

disables

block

during

read.

598

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

nodelay(WINDOW

*win,

bool

bf);

Description

The

nodelay

subroutine

specifies

whether

Delay

Mode

or

No

Delay

Mode

is

in

effect

for

the

screen

associated

with

the

specified

window.

If

bf

is

TRUE,

this

screen

is

set

to

No

Delay

Mode.

If

bf

is

FALSE,

this

screen

is

set

to

Delay

Mode.

The

initial

state

is

FALSE.

Parameters

bf

*win

Return

Values

Upon

successful

completion,

the

nodelay

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Examples

1.

To

cause

the

wgetch

subroutine

to

return

an

error

message,

if

no

input

is

ready

in

the

user-defined

window

my_window,

use:

nodelay(my_window,

TRUE);

2.

To

allow

for

a

delay

when

retrieving

a

character

in

the

user-defined

window

my_window,

use:

WINDOW

*my_window;

nodelay(my_window,

FALSE);

Related

Information

The

halfdelay

(“halfdelay

Subroutine”

on

page

570)

subroutine,

wgetch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

notimeout,

timeout,

wtimeout

Subroutine

Purpose

Controls

blocking

on

input.

Library

Curses

Library

(libcurses.a)

Curses

Syntax

#include

<curses.h>

int

notimeout

(WINDOW

*win,

bool

bf);

Chapter

2.

Curses

Subroutines

599

void

timeout

(int

delay);

void

wtimeout

(WINDOW

*win,

int

delay);

Description

The

notimeout

subroutine

specifies

whether

Timeout

Mode

or

No

Timeout

Mode

is

in

effect

for

the

screen

associated

with

the

specified

window.

If

bf

is

TRUE,

this

screen

is

set

to

No

Timeout

Mode.

If

bf

is

FALSE,

this

screen

is

set

to

Timeout

Mode.

The

initial

state

is

FALSE.

The

timeout

and

wtimeout

subroutines

set

blocking

or

non-blocking

read

for

the

current

or

specified

window

based

on

the

value

of

delay:

delay

<

0

One

or

more

blocking

reads

(indefinite

waits

for

input)

are

used.

delay

=

0

One

or

more

non-blocking

reads

are

used.

Any

Curses

input

subroutine

will

fail

if

every

character

of

the

requested

string

is

not

immediately

available.

delay

>

0

Any

Curses

input

subroutine

blocks

for

delay

milliseconds

and

fails

if

there

is

still

no

input.

Parameters

*win

bf

Return

Values

Upon

successful

completion,

the

notimeout

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

The

timeout

and

wtimeout

subroutines

do

not

return

a

value.

Examples

To

set

the

flag

so

that

the

wgetch

subroutine

does

not

set

the

timer

when

getting

characters

from

the

my_win

window,

use:

WINDOW

*my_win;

notimeout(my_win,

TRUE);

Related

Information

The

getch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561),

halfdelay

(“halfdelay

Subroutine”

on

page

570),

nodelay

(“nodelay

Subroutine”

on

page

598),

and

notimeout

(“notimeout,

timeout,

wtimeout

Subroutine”

on

page

599)

subroutines.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Getting

Characters

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

600

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

overlay

or

overwrite

Subroutine

Purpose

Copies

one

window

on

top

of

another.

Library

Curses

Library

(libcurses.a)

Syntax

WINDOW

*dstwin);

int

overwrite(const

WINDOW

*srcwin,

WINDOW

*dstwin);

Description

The

overlay

and

overwrite

subroutines

overlay

srcwin

on

top

of

dstwin.

The

scrwin

and

dstwin

arguments

need

not

be

the

same

size;

only

text

where

the

two

windows

overlap

is

copied.

The

overwrite

subroutine

copies

characters

as

though

a

sequence

of

win_wch

and

wadd_wch

subroutines

were

performed

with

the

destination

window’s

attributes

and

background

attributes

cleared.

The

overlay

subroutine

does

the

same

thing,

except

that,

whenever

a

character

to

be

copied

is

the

background

character

of

the

source

window.

the

overlay

subroutine

does

not

copy

the

character

but

merely

moves

the

destination

cursor

the

width

of

the

source

background

character.

If

any

portion

of

the

overlaying

window

border

is

not

the

first

column

of

a

multi-column

character

then

all

the

column

positions

will

be

replaced

with

the

background

character

and

rendition

before

the

overlay

is

done.

If

the

default

background

character

is

a

multi-column

character

when

this

occurs,

then

these

subroutines

fail.

Parameters

srcwin

deswin

Return

Values

Upon

successful

completion.

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

copy

my_window

on

top

of

other_window,

excluding

spaces,

use:

WINDOW

*my_window,

*other_window;

overlay(my_window,

other_window);

2.

To

copy

my_window

on

top

of

other_window,

including

spaces,

use:

WINDOW

*my_window,

*other_window;

overwrite(my_window,

other_window);

Related

Information

The

copywin

(“copywin

Subroutine”

on

page

543)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Window

Data

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

601

pair_content

Subroutine

Purpose

Returns

the

colors

in

a

color

pair.

Library

Curses

Library

(libcurses.a)

Curses

Syntax

#include

<curses.h>

pair_content

(

Pair,

F,

B)

short

Pair;

short

*F,

*B;

Description

The

pair_content

subroutine

returns

the

colors

in

a

color

pair.

A

color

pair

is

made

up

of

a

foreground

and

background

color.

You

must

call

the

start_color

subroutine

before

calling

the

pair_content

subroutine.

Note:

The

color

pair

must

already

be

initialized

before

calling

the

pair_content

subroutine.

Return

Values

OK

Indicates

the

subroutine

completed

successfully.

ERR

Indicates

the

pair

has

not

been

initialized.

Parameters

Pair

Identifies

the

color-pair

number.

The

Pair

parameter

must

be

between

1

and

COLORS_PAIRS-1.

F

Points

to

the

address

where

the

foreground

color

will

be

stored.

The

F

parameter

will

be

between

0

and

COLORS-1.

B

Points

to

the

address

where

the

background

color

will

be

stored.

The

B

parameter

will

be

between

0

and

COLORS-1.

Example

To

obtain

the

foreground

and

background

colors

for

color-pair

5,

use:

short

*f,

*b;

pair_content(5,f,b);

For

this

subroutine

to

succeed,

you

must

have

already

initialized

the

color

pair.

The

foreground

and

background

colors

will

be

stored

at

the

locations

pointed

to

by

f

and

b.

Related

Information

The

start_color

(“start_color

Subroutine”

on

page

636)

subroutine,

init_pair

(“init_pair

Subroutine”

on

page

576)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes,

Working

with

Color

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

602

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

prefresh

or

pnoutrefresh

Subroutine

Purpose

Updates

the

terminal

and

curscr

(current

screen)

to

reflect

changes

made

to

a

pad.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

prefresh(Pad,

PY,

PX,

TTY,

TTX,

TBY,

TBX)

WINDOW

*

Pad;

int

PY,

PX,

TTY;

int

TTX,

TBY,

TBX;

pnoutrefresh(Pad,

PY,

PX,

TTY,

TTX,

TBY,

TBX)

WINDOW

*Pad;

int

PY,

PX,

TTY;

int

TTX,

TBY,

TBX;

Description

The

prefresh

and

pnoutrefresh

subroutines

are

similar

to

the

wrefresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

and

wnoutrefresh

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutines.

They

are

different

in

that

pads,

instead

of

windows,

are

involved,

and

additional

parameters

are

necessary

to

indicate

what

part

of

the

pad

and

screen

are

involved.

The

PX

and

PY

parameters

specify

the

upper

left

corner,

in

the

pad,

of

the

rectangle

to

be

displayed.

The

TTX,

TTY,

TBX,

and

TBY

parameters

specify

the

edges,

on

the

screen,

for

the

rectangle

to

be

displayed

in.

The

lower

right

corner

of

the

rectangle

to

be

displayed

is

calculated

from

the

screen

coordinates,

since

both

rectangle

and

pad

must

be

the

same

size.

Both

rectangles

must

be

entirely

contained

within

their

respective

structures.

The

prefresh

subroutine

copies

the

specified

portion

of

the

pad

to

the

physical

screen.

if

you

wish

to

output

several

pads

at

once,

call

pnoutrefresh

for

each

pad

and

then

issue

one

call

to

doupdate.

This

updates

the

physical

screen

once.

Parameters

Pad

Specifies

the

pad

to

be

refreshed.

PX

(Pad’s

x-coordinate)

Specifies

the

upper-left

column

coordinate,

in

the

pad,

of

the

rectangle

to

be

displayed.

PY

(Pad’s

y-coordinate)

Specifies

the

upper-left

row

coordinate,

in

the

pad,

of

the

rectangle

to

be

displayed.

TBX

(Terminal’s

Bottom

x-coordinate)

Specifies

the

lower-right

column

coordinate,

on

the

terminal,

for

the

pad

to

be

displayed

in.

TBY

(Terminal’s

Bottom

y-coordinate)

Specifies

the

lower-right

row

coordinate,

on

the

terminal,

for

the

pad

to

be

displayed

in.

TTX

(Terminal’s

Top

x-coordinate)

Specifies

the

upper-left

column

coordinate,

on

the

terminal,

for

the

pad

to

be

displayed

in.

TTY

(Terminal’s

Top

Y

coordinate)

Specifies

the

upper-left

row

coordinate,

on

the

terminal,

for

the

pad

to

be

displayed

in.

Chapter

2.

Curses

Subroutines

603

Examples

1.

To

update

the

user-defined

my_pad

pad

from

the

upper-left

corner

of

the

pad

on

the

terminal

with

the

upper-left

corner

at

the

coordinates

Y=20,

X=10

and

the

lower-right

corner

at

the

coordinates

Y=30,

X=25

enter

WINDOW

*my_pad;

prefresh(my_pad,

0,

0,

20,

10,

30,

25);

2.

To

update

the

user-defined

my_pad1

and

my_pad2

pads

and

output

them

both

to

the

terminal

in

one

burst

of

output,

enter:

WINDOW

*my_pad1;

*my_pad2;

pnoutrefresh(my_pad1,

0,

0,

20,

10,

30,

25);

pnoutrefresh(my_pad2,

0,

0,

0,

0,

10,

5);

doupdate();

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Window

Data

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

printw,

wprintw,

mvprintw,

or

mvwprintw

Subroutine

Purpose

Performs

a

printf

command

on

a

window

using

the

specified

format

control

string.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

printw(

Format,

[

Argument

...])

char

*Format,

*Argument;

wprintw(

Window,

Format,

[Argument

...])

WINDOW

*Window;

char

*Format,

*Argument;

mvprintw(

Line,

Column,

Format,

[Argument

...])

int

Line,

Column;

char

*Format,

*Argument;

mvwprintw(Window,

Line,

Column,

Format,

[Argument

...])

WINDOW

*Window;

int

Line,

Column;

char

*Format,

*Argument;

Description

The

printw,

wprintw,

mvprintw,

and

mvwprintw

subroutines

perform

output

on

a

window

by

using

the

specified

format

control

string.

However,

the

waddch

(“addch,

mvaddch,

mvwaddch,

or

waddch

604

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Subroutine”

on

page

523)

subroutine

is

used

to

output

characters

in

a

given

window

instead

of

invoking

the

printf

subroutine.

The

mvprintw

and

mvwprintw

subroutines

move

the

logical

cursor

before

performing

the

output.

Use

the

printw

and

mvprintw

subroutines

on

the

stdscr

and

the

wprintw

and

mvwprintw

subroutines

on

user-defined

windows.

Note:

The

maximum

length

of

the

format

control

string

after

expansion

is

512

bytes.

Parameters

Argument

Specifies

the

item

to

print.

See

the

printf

subroutine

for

more

details.

Column

Specifies

the

horizontal

position

to

move

the

cursor

to

before

printing.

Format

Specifies

the

format

for

printing

the

Argument

parameter.

See

the

printf

subroutine.

Line

Specifies

the

vertical

position

to

move

the

cursor

to

before

printing.

Window

Specifies

the

window

to

print

into.

Examples

1.

To

print

the

user-defined

integer

variables

x

and

y

as

decimal

integers

in

the

stdscr,

enter:

int

x,

y;

printw("%d%d",

x,

y);

2.

To

print

the

user-defined

integer

variables

x

and

y

as

decimal

integers

in

the

user-defined

window

my_window,

enter:

int

x,

y;

WINDOW

*my_window;

wprintw(my_window,

"%d%d",

x,

y);

3.

To

move

the

logical

cursor

to

the

coordinates

y

=

5,

x

=

10

before

printing

the

user-defined

integer

variables

x

and

y

as

decimal

integers

in

the

stdscr,

enter:

int

x,

y;

mvprintw(5,

10,

"%d%d",

x,

y);

4.

To

move

the

logical

cursor

to

the

coordinates

y

=

5,

x

=

10

before

printing

the

user-defined

integer

variables

x

and

y

as

decimal

integers

in

the

user-defined

window

my_window,

enter:

int

x,

y;

WINDOW

*my_window;

mvwprintw(my_window,

5,

10,

"%d%d",

x,

y);

Related

Information

The

waddch

(“addch,

mvaddch,

mvwaddch,

or

waddch

Subroutine”

on

page

523)

subroutine,

printf

subroutine.

The

printf

command.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

putp,

tputs

Subroutine

Purpose

Outputs

commands

to

the

terminal.

Library

Curses

Library

(libcurses.a)

Chapter

2.

Curses

Subroutines

605

Syntax

#include

<curses.h>

int

putp(const

char

*str);

int

tputs(const

char

*str,

int

affcnt,

int

(*putfunc)(int));

Description

These

subroutines

output

commands

contained

in

the

terminfo

database

to

the

terminal.

The

putp

subroutine

is

equivalent

to

tputs(str,

1,

putchar).

The

output

of

the

putp

subroutine

always

goes

to

stdout,

not

to

the

fildes

specified

in

the

setupterm

subroutine.

The

tputs

subroutine

outputs

str

to

the

terminal.

The

str

argument

must

be

a

terminfo

string

variable

or

the

return

value

from

the

tgetstr,

tgoto,

tigestr,

or

tparm

subroutines.

The

affcnt

argument

is

the

number

of

lines

affected,

or

1

if

not

applicable.

If

the

terminfo

database

indicates

that

the

terminal

in

use

requires

padding

after

any

command

in

the

generated

string,

the

tputs

subroutine

inserts

pad

characters

into

the

string

that

is

sent

to

the

terminal,

at

positions

indicated

by

the

terminfo

database.

The

tputs

subroutine

outputs

each

character

of

the

generated

string

by

calling

the

user-supplied

putfunc

subroutine

(see

below).

The

user-supplied

putfunc

subroutine

(specified

as

an

argument

to

the

tputs

subroutine

is

either

putchar

or

some

other

subroutine

with

the

same

prototype.

The

tputs

subroutine

ignores

the

return

value

of

the

putfunc

subroutine.

Parameters

*str

affcnt

*putfunc

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

For

the

putp

subroutine:

To

call

the

tputs(my_string,

1,

putchar)

subroutine,

enter:

char

*my_string;

putp(my_string);

For

the

tputs

subroutine:

1.

To

output

the

clear

screen

sequence

using

the

user-defined

putchar-like

subroutine

my_putchar,

enter:

int_my_putchar();

tputs(clear_screen,

1

,my_putchar);

2.

To

output

the

escape

sequence

used

to

move

the

cursor

to

the

coordinates

x=40,

y=18

through

the

user-defined

putchar-like

subroutine

my_putchar,

enter:

int_my_putchar();

tputs(tparm(cursor_address,

18,

40),

1,

my_putchar);

606

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

is_linetouched

(“is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine”

on

page

648)

subroutine,

putchar

subroutine,

tgetent

(“tgetent,

tgetflag,

tgetnum,

tgetstr,

or

tgoto

Subroutine”

on

page

640)

subroutine,

tigetflag

(“tigetflag,

tigetnum,

tigetstr,

or

tparm

Subroutine”

on

page

644)

subroutine,

tputs

(“putp,

tputs

Subroutine”

on

page

605)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

raw

or

noraw

Subroutine

Purpose

Places

the

terminal

into

or

out

of

raw

mode.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

raw(

)

noraw(

)

Description

The

raw

or

noraw

subroutine

places

the

terminal

into

or

out

of

raw

mode,

respectively.

RAW

mode

is

similar

to

CBREAK

mode

(cbreak

or

nocbreak

(“cbreak,

nocbreak,

noraw,

or

raw

Subroutine”

on

page

535)

subroutine).

In

RAW

mode,

the

system

immediately

passes

typed

characters

to

the

user

program.

The

interrupt,

quit,

and

suspend

characters

are

passed

uninterrupted,

instead

of

generating

a

signal.

RAW

mode

also

causes

8-bit

input

and

output.

To

get

character-at-a-time

input

without

echoing,

call

the

cbreak

and

noecho

subroutines.

Most

interactive

screen-oriented

programs

require

this

sort

of

input.

Return

Values

OK

Indicates

the

subroutine

completed.

The

raw

and

noraw

routines

always

return

this

value.

Examples

1.

To

place

the

terminal

into

raw

mode,

use:

raw();

2.

To

place

the

terminal

out

of

raw

mode,

use:

noraw();

Chapter

2.

Curses

Subroutines

607

Related

Information

The

getch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine,

cbreak

or

nocbreak

(“cbreak,

nocbreak,

noraw,

or

raw

Subroutine”

on

page

535)

subroutine

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

refresh

or

wrefresh

Subroutine

Purpose

Updates

the

terminal’s

display

and

the

curscr

to

reflect

changes

made

to

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

refresh(

)

wrefresh(

Window)

WINDOW

*Window;

Description

The

refresh

or

wrefresh

subroutines

update

the

terminal

and

the

curscr

to

reflect

changes

made

to

a

window.

The

refresh

subroutine

updates

the

stdscr.

The

wrefresh

subroutine

refreshes

a

user-defined

window.

Other

subroutines

manipulate

windows

but

do

not

update

the

terminal’s

physical

display

to

reflect

their

changes.

Use

the

refresh

or

wrefresh

subroutines

to

update

a

terminal’s

display

after

internal

window

representations

change.

Both

subroutines

check

for

possible

scroll

errors

at

display

time.

Note:

The

physical

terminal

cursor

remains

at

the

location

of

the

window’s

cursor

during

a

refresh,

unless

the

leaveok

(“leaveok

Subroutine”

on

page

585)

subroutine

is

enabled.

The

refresh

and

wrefresh

subroutines

call

two

other

subroutines

to

perform

the

refresh

operation.

First,

the

wnoutrefresh

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine

copies

the

designated

window

structure

to

the

terminal.

Then,

the

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine

updates

the

terminal’s

display

and

the

cursor.

Parameters

Window

Specifies

the

window

to

refresh.

Examples

1.

To

update

the

terminal’s

display

and

the

current

screen

structure

to

reflect

changes

made

to

the

standard

screen

structure,

use:

refresh();

2.

To

update

the

terminal

and

the

current

screen

structure

to

reflect

changes

made

to

a

user-defined

window

called

my_window,

use:

608

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

WINDOW

*my_window;

wrefresh(my_window);

3.

To

restore

the

terminal

to

its

state

at

the

last

refresh,

use:

wrefresh(curscr);

This

subroutine

is

useful

if

the

terminal

becomes

garbled

for

any

reason.

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

leaveok

(“leaveok

Subroutine”

on

page

585)

subroutine,

wnoutrefresh

(“leaveok

Subroutine”

on

page

585)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

reset_prog_mode

Subroutine

Purpose

Restores

the

terminal

to

program

mode.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

reset_prog_mode(

)

Description

The

reset_prog_mode

subroutine

restores

the

terminal

to

program

or

in

curses

mode.

The

reset_prog_mode

subroutine

is

a

low-level

routine

and

normally

would

not

be

called

directly

by

a

program.

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

reset_shell_mode

Subroutine

Purpose

Restores

the

terminal

to

shell

mode.

Library

Curses

Library

(libcurses.a)

Chapter

2.

Curses

Subroutines

609

Syntax

#include

<curses.h>

reset_shell_mode(

)

Description

The

reset_shell_mode

subroutine

restores

the

terminal

into

shell

,

or

″out

of

curses,″

mode.

This

happens

automatically

when

the

endwin

subroutine

is

called.

Related

Information

The

endwin

(“endwin

Subroutine”

on

page

554)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

resetterm

Subroutine

Purpose

Resets

terminal

modes

to

what

they

were

when

the

saveterm

subroutine

was

last

called.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

resetterm(

)

Description

The

resetterm

subroutine

resets

terminal

modes

to

what

they

were

when

the

saveterm

subroutine

was

last

called.

The

resetterm

subroutine

is

called

by

the

endwin

(“endwin

Subroutine”

on

page

554)

subroutine,

and

should

normally

not

be

called

directly

by

a

program.

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

610

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

resetty,

savetty

Subroutine

Purpose

Saves/restores

the

terminal

mode.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

resetty(void);

int

savetty(void):

Description

The

resetty

subroutine

restores

the

program

mode

as

of

the

most

recent

call

to

the

savetty

subroutine.

The

savetty

subroutine

saves

the

state

that

would

be

put

in

place

by

a

call

to

the

reset_prog_mode

subroutine.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise.

they

return

ERR.

Examples

To

restore

the

terminal

to

the

state

it

was

in

at

the

last

call

to

savetty,

enter:

resetty();

Related

Information

The

def_prog_mode

(“def_prog_mode,

def_shell_mode,

reset_prog_mode

or

reset_shell_mode

Subroutine”

on

page

545)

subroutine,

endwin

(“endwin

Subroutine”

on

page

554)

subroutine,

savetty

(“savetty

Subroutine”

on

page

613)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

restartterm

Subroutine

Purpose

Re-initializes

the

terminal

structures

after

a

restore.

Library

Curses

Library

(libcurses.a)

Chapter

2.

Curses

Subroutines

611

Syntax

#include

<curses.h>

#include

<term.h>

restartterm

(

Term,

FileNumber,

ErrorCode)

char

*Term;

int

FileNumber;

int

*ErrorCode;

Description

The

restartterm

subroutine

is

similar

to

the

setupterm

subroutine

except

that

it

is

called

after

restoring

memory

to

a

previous

state.

For

example,

you

would

call

the

restartterm

subroutine

after

a

call

to

scr_restore

if

the

terminal

type

has

changed.

The

restartterm

subroutine

assumes

that

the

windows

and

the

input

and

output

options

are

the

same

as

when

memory

was

saved,

but

the

terminal

type

and

baud

rate

may

be

different.

Parameters

Term

Specifies

the

terminal

name

to

obtain

the

terminal

for.

If

0

is

passed

for

the

parameter,

the

value

of

the

$TERM

environment

variable

is

used.

FileNumber

Specifies

the

output

file’s

file

descriptor

(1

equals

standard

out).

ErrorCode

Specifies

a

pointer

to

an

integer

to

return

the

error

code

to.

If

0,

then

the

restartterm

subroutine

exits

with

an

error

message

instead

of

returning.

Example

To

restart

an

aixterm

after

a

previous

memory

save

and

exit

on

error

with

a

message,

enter:

restartterm("aixterm",

1,

(int*)0);

Prerequisite

Information

Curses

Overview

for

Programming

and

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

.

Related

Information

The

setupterm

(“setupterm

Subroutine”

on

page

624)

subroutine.

ripoffline

Subroutine

Purpose

Reserves

a

line

for

a

dedicated

purpose.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

ripoffline(int

line,

int

(*init)(WINDOW

*win,

int

columns));

612

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

ripoffline

subroutine

reserves

a

screen

line

for

use

by

the

application.

Any

call

to

the

ripoffline

subroutine

must

precede

the

call

to

the

initscr

or

newterm

subroutine.

If

line

is

positive,

one

line

is

removed

from

the

beginning

of

stdstr;

if

line

is

negative,

one

line

is

removed

from

the

end.

Removal

occurs

during

the

subsequent

call

to

the

initscr

or

newterm

subroutine.

When

the

subsequent

call

is

made,

the

subroutine

pointed

to

by

init

is

called

with

two

arguments:

a

WINDOW

pointer

to

the

one-line

window

that

has

been

allocated

and

an

integer

with

the

number

of

columns

in

the

window.

The

initialisation

subroutine

cannot

use

the

LINES

and

COLS

external

variables

and

cannot

call

the

wrefresh

or

doupdate

subroutine,

but

may

call

the

wnoutrefresh

subroutine.

Up

to

five

lines

can

be

ripped

off.

Calls

to

the

ripoffline

subroutine

above

this

limit

have

no

effect,

but

report

success.

Parameters

line

*init

columns

*win

Return

Values

The

ripoffline

subroutine

returns

OK.

Example

To

remove

three

lines

from

the

top

of

the

screen,

enter:

#include

<curses.h>

ripoffline(1,initfunc);

ripoffline(1,initfunc);

ripoffline(1,initfunc);

initscr();

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

slk_attroff,

slk_init

(“slk_attroff,

slk_attr_off,

slk_attron,

slk_attrset,

slk_attr_set,

slk_clear,

slk_color,

slk_init,

slk_label,

slk_noutrefresh,

slk_refresh,

slk_restore,

slk_set,

slk_touch,

slk_wset,

Subroutine”

on

page

626)

subroutine,

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutine,

newterm

(“newterm

Subroutine”

on

page

594)

subroutine.

Curses

Overview

for

Programming

and

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

savetty

Subroutine

Purpose

Saves

the

state

of

the

tty

modes.

Library

Curses

Library

(libcurses.a)

Chapter

2.

Curses

Subroutines

613

Syntax

#include

<curses.h>

savetty(

)

Description

The

savetty

subroutine

saves

the

current

state

of

the

tty

modes

in

a

buffer.

It

saves

the

current

state

in

a

buffer

that

the

resetty

subroutine

then

reads

to

reset

the

tty

state.

The

savetty

subroutine

is

called

by

the

initscr

subroutine

and

normally

should

not

be

called

directly

by

the

program.

Related

Information

The

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutine,

resetty

(“resetty,

savetty

Subroutine”

on

page

611)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

scanw,

wscanw,

mvscanw,

or

mvwscanw

Subroutine

Purpose

Calls

the

wgetstr

subroutine

on

a

window

and

uses

the

resulting

line

as

input

for

a

scan.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

scanw(

Format,

Argument1,

Argument2,

...)

char

*Format,

*Argument1,

...;

wscanw(

Window,

Format,

Argument1,

Argument2,

...)

WINDOW

*Window;

char

*Format,

*Argument1,

...;

mvscanw(

Line,

Column,

Format,

Argument1,

Argument2,

...)

int

Line,

Column;

char

*Format,

*Argument1,

...;

mvwscanw(Window,

Line,

Column,

Format,

Argument1,

Argument2,

...)

WINDOW

*Window;

int

Line,

Column;

char

*Format,

*Argument1,

...;

Description

The

scanw,

wscanw,

mvscanw,

and

mvwscanw

subroutines

call

the

wgetstr

subroutine

on

a

window

and

use

the

resulting

line

as

input

for

a

scan.

The

mvscanw

and

mvwscanw

subroutines

move

the

cursor

before

performing

the

scan

function.

Use

the

scanw

and

mvscanw

subroutines

on

the

stdscr

and

the

wscanw

and

mvwscanw

subroutines

on

the

user-defined

window.

614

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

Argument

Specifies

the

input

to

read.

Column

Specifies

the

vertical

coordinate

to

move

the

logical

cursor

to

before

performing

the

scan.

Format

Specifies

the

conversion

specifications

to

use

to

interpret

the

input.

For

more

information

about

this

parameter,

see

the

discussion

of

the

Format

parameter

in

the

scanf

(“scanf,

fscanf,

sscanf,

or

wsscanf

Subroutine”

on

page

109)

subroutine.

Line

Specifies

the

horizontal

coordinate

to

move

the

logical

cursor

to

before

performing

the

scan.

Window

Specifies

the

window

to

perform

the

scan

in.

You

only

need

to

specify

this

parameter

with

the

wscanw

and

mvwscanw

subroutines.

Example

The

following

shows

how

to

read

input

from

the

keyboard

using

the

scanw

subroutine.

int

id;

char

deptname[25];

mvprintw(5,0,"Enter

your

i.d.

followed

by

the

department

name:\n");

refresh();

scanw("%d

%s",

&id,

deptname);

mvprintw(7,0,"i.d.:

%d,

Name:

%s\n",

id,

deptname);

refresh();

Related

Information

The

wgetstr

(“getnstr,

getstr,

mvgetnstr,

mvgetstr,

mvwgetnstr,

mvwgetstr,

wgetnstr,

or

wgetstr

Subroutine”

on

page

566)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

scr_dump,

scr_init,

scr_restore,

scr_set

Subroutine

Purpose

File

input/output

functions.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

scr_dump

(const

char

*filename);

int

scr_init

(const

char

*filename);

int

scr_restore

(const

char

*filename);

int

scr_set

(const

char

*filename);

Description

The

scr_dump

subroutine

writes

the

current

contents

of

the

virtual

screen

to

the

file

named

by

filename

in

an

unspecified

format.

Chapter

2.

Curses

Subroutines

615

The

scr_restore

subroutine

sets

the

virtual

screen

to

the

contents

of

the

file

named

by

filename,

which

must

have

been

written

using

the

scr_dump

subroutine.

The

next

refresh

operation

restores

the

screen

to

the

way

it

looked

in

the

dump

file.

The

scr_init

subroutine

reads

the

contents

of

the

file

named

by

filename

and

uses

them

to

initialize

the

Curses

data

structures

to

what

the

terminal

currently

has

on

its

screen.

The

next

refresh

operation

bases

any

updates

of

this

information,

unless

either

of

the

following

conditions

is

true:

v

The

terminal

has

been

written

to

since

the

virtual

screen

was

dumped

to

filename.

v

The

terminfo

capabilities

rmcup

and

nrrmc

are

defined

for

the

current

terminal.

The

scr_set

subroutine

is

a

combination

of

scr_restore

and

scr_init

subroutines.

It

tells

the

program

that

the

information

i

the

file

named

by

filename

is

what

is

currently

on

the

screen,

and

also

what

the

program

wants

on

the

screen.

This

can

be

thought

of

as

a

screen

inheritance

function.

Parameters

filename

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

For

the

scr_dump

subroutine:

To

write

the

contents

of

the

virtual

screen

to

/tmp/virtual.dump

file,

use:

scr_dump("/tmp/virtual.dump");

For

the

scr_restrore

subroutine:

To

restore

the

contents

of

the

virtual

screen

from

the

/tmp/virtual.dump

file

and

update

the

terminal

screen,

use:

scr_restore("/tmp/virtual.dump");

doupdate();

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

endwin

(“endwin

Subroutine”

on

page

554)

subroutine,

open

subroutine,

read

(“read,

readx,

readv,

readvx,

or

pread

Subroutine”

on

page

16)

subroutine,

write

(“write,

writex,

writev,

writevx

or

pwrite

Subroutines”

on

page

507)

subroutine,

scr_init

(“scr_init

Subroutine”)

subroutine,

scr_restore

(“scr_restore

Subroutine”

on

page

618)

subroutine.

Curses

Overview

for

Programming,

Manipulating

Window

Data

with

Curses,

Understanding

Terminals

with

Curses

and

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

scr_init

Subroutine

Purpose

Initializes

the

curses

data

structures

from

a

dump

file.

616

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

scr_init(

Filename)

char

*Filename;

Description

The

scr_init

subroutine

initializes

the

curses

data

structures

from

a

dump

file.

You

create

dump

files

with

the

scr_dump

subroutine.

If

the

file’s

data

is

valid,

the

next

screen

update

is

based

on

the

contents

of

the

file

rather

than

clearing

the

screen

and

starting

from

scratch.

The

data

is

invalid

if

the

terminfo

database

boolean

capability

nrrmc

is

TRUE

or

the

contents

of

the

terminal

differ

from

the

contents

of

the

dump

file.

Note:

If

nrrmc

is

TRUE,

avoid

calling

the

putp

subroutine

with

the

exit_ca_mode

value

before

calling

scr_init

subroutine

in

your

application.

You

can

call

the

scr_init

subroutine

after

the

initscr

subroutine

to

update

the

screen

with

the

dump

file

contents.

Using

the

keypad,

meta,

slk_clear,

curs_set,

flash,

and

beep

subroutines

do

not

affect

the

contents

of

the

screen,

but

cause

the

terminal’s

modification

time

to

change.

You

can

allow

more

than

one

process

to

share

screen

dumps.

Both

processes

must

be

run

from

the

same

terminal.

The

scr_init

subroutine

first

ensures

that

the

process

that

created

the

dump

is

in

sync

with

the

current

terminal

data.

If

the

modification

time

of

the

terminal

is

not

the

same

as

that

specified

in

the

dump

file,

the

scr_init

subroutine

assumes

that

the

screen

image

on

the

terminal

has

changed

from

that

in

the

file,

and

the

file’s

data

is

invalid.

If

you

are

allowing

two

processes

to

share

a

screen

dump,

it

is

important

to

understand

that

one

process

starts

up

another

process.

The

following

activities

happen:

v

The

second

process

creates

the

dump

file

with

the

scr_init

subroutine.

v

The

second

process

exits

without

causing

the

terminal’s

time

stamp

to

change

by

calling

the

endwin

subroutine

followed

by

the

scr_dump

subroutine,

and

then

the

exit

subroutine.

v

Control

is

passed

back

to

the

first

process.

v

The

first

process

calls

the

scr_init

subroutine

to

update

the

screen

contents

with

the

dump

file

data.

Return

Values

ERR

Indicates

the

dump

file’s

time

stamp

is

old

or

the

boolean

capability

nrrmc

is

TRUE.

OK

Indicates

that

the

curses

data

structures

were

successfully

initialized

using

the

contents

of

the

dump

file.

Parameters

Filename

Points

to

a

dump

file.

Related

Information

The

scr_dump

(“scr_dump,

scr_init,

scr_restore,

scr_set

Subroutine”

on

page

615)

subroutine,

scr_restore

(“scr_restore

Subroutine”

on

page

618)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Window

Data

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

617

scr_restore

Subroutine

Purpose

Restores

the

virtual

screen

from

a

dump

file.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

scr_restore(

FileName)

char

*FileName;

Description

The

scr_restore

subroutine

restores

the

virtual

screen

from

the

contents

of

a

dump

file.

You

create

a

dump

file

with

the

scr_dump

subroutine.

To

update

the

terminal’s

display

with

the

restored

virtual

screen,

call

the

wrefresh

or

doupdate

subroutine

after

restoring

from

a

dump

file.

To

communicate

the

screen

image

across

processes,

use

the

scr_restore

subroutine

along

with

the

scr_dump

subroutine.

Return

Values

ERR

Indicates

the

content

of

the

dump

file

is

incompatible

with

the

current

release

of

curses.

OK

Indicates

that

the

virtual

screen

was

successfully

restored

from

a

dump

file.

Parameters

FileName

Identifies

the

name

of

the

dump

file.

Example

To

restore

the

contents

of

the

virtual

screen

from

the

/tmp/virtual.dump

file

and

update

the

terminal

screen,

use:

scr_restore("/tmp/virtual.dump");

doupdate();

Related

Information

The

scr_dump

(“scr_dump,

scr_init,

scr_restore,

scr_set

Subroutine”

on

page

615)

subroutine,

scr_init

(“scr_init

Subroutine”

on

page

616)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

scrl,

scroll,

wscrl

Subroutine

Purpose

Scrolls

a

Curses

window.

618

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

scrl

(int

n);

int

scroll

(WINDOW

*win);

int

wscrl

(WINDOW

*win,

int

n);

Description

The

scroll

subroutine

scrolls

win

one

line

in

the

direction

of

the

first

line

The

scrl

and

wscrl

subroutines

scroll

the

current

or

specified

window.

If

n

is

positive,

the

window

scrolls

n

lines

toward

the

first

line.

Otherwise,

the

window

scrolls

-n

lines

toward

the

last

line.

Theses

subroutines

do

not

change

the

cursor

position.

If

scrolling

is

disabled

for

the

current

or

specified

window,

these

subroutines

have

no

effect.

The

interaction

of

these

subroutines

with

the

setsccreg

subroutine

is

currently

unspecified.

Parameters

*win

Specifies

the

window

to

scroll.

n

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

To

scroll

the

user-defined

window

my_window

up

one

line,

enter:

WINDOW

*my_window;

scroll(my_window);

Related

Information

The

scrollok

(“scrollok

Subroutine”)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

scrollok

Subroutine

Purpose

Enables

or

disables

scrolling.

Library

Curses

Library

(libcurses.a)

Chapter

2.

Curses

Subroutines

619

Syntax

#include

<curses.h>

scrollok(

Window,

Flag)

WINDOW

*Window;

bool

Flag;

Description

The

scrollok

subroutine

enables

or

disables

scrolling.

Scrolling

occurs

when

a

program

or

user:

v

Moves

the

cursor

off

the

window’s

bottom

edge.

v

Enters

a

new-line

character

on

the

last

line.

v

Types

the

last

character

of

the

last

line.

If

enabled,

curses

calls

a

refresh

as

part

of

the

scrolling

action

on

both

the

window

and

the

physical

display.

To

get

the

physical

scrolling

effect

on

the

terminal,

it

is

also

necessary

to

call

the

idlok

(“idlok

Subroutine”

on

page

573)

subroutine.

If

scrolling

is

disabled,

the

cursor

is

left

on

the

bottom

line

at

the

location

where

the

character

was

entered.

Parameters

Flag

Enables

scrolling

when

set

to

TRUE.

Otherwise,

set

the

Flag

parameter

to

FALSE

to

disable

scrolling.

Window

Identifies

the

window

to

enable

or

disable

scrolling

in.

Examples

1.

To

turn

scrolling

on

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

scrollok(my_window,

TRUE);

2.

To

turn

scrolling

off

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

scrollok(my_window,

FALSE);

Related

Information

The

idlok

(“idlok

Subroutine”

on

page

573)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

set_curterm

Subroutine

Purpose

Sets

the

current

terminal

variable

to

the

specified

terminal.

Library

Curses

Library

(libcurses.a)

Curses

Syntax

#include

<curses.h>

#include

<term.h>

620

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

set_curterm(

Newterm)

TERMINAL

*Newterm;

Description

The

cur_term

subroutine

sets

the

cur_term

variable

to

the

terminal

specified

by

the

Newterm

parameter.

The

cur_term

subroutine

is

useful

when

the

setupterm

subroutine

is

called

more

than

once.

The

set_curterm

subroutine

allows

the

programmer

to

toggle

back

and

forth

between

terminals.

When

information

for

a

particular

terminal

is

no

longer

required,

remove

it

using

the

del_curterm

subroutine.

Note:

The

cur_term

subroutine

is

a

low-level

subroutine.

You

should

use

this

subroutine

only

if

your

application

must

deal

directly

with

the

terminfo

database

to

handle

certain

terminal

capabilities.

For

example,

use

this

subroutine

if

your

application

programs

function

keys.

Parameters

Newterm

Points

to

a

TERMINAL

structure.

This

structure

contains

information

about

a

specific

terminal.

Examples

To

set

the

cur_term

variable

to

point

to

the

my_term

terminal,

use:

TERMINAL

*newterm;

set_curterm(newterm);

Related

Information

The

setupterm

(“setupterm

Subroutine”

on

page

624)

subroutine.

Curses

Overview

for

Programming

and

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setscrreg

or

wsetscrreg

Subroutine

Purpose

Creates

a

software

scrolling

region

within

a

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

setscrreg(

Tmargin,

Bmargin)

int

Tmargin,

Bmargin;

wsetscrreg(

Window,

Tmargin,

Bmargin)

WINDOW

*Window;

int

Tmargin,

Bmargin;

Chapter

2.

Curses

Subroutines

621

Description

The

setscrreg

and

wsetscrreg

subroutines

create

a

software

scrolling

region

within

a

window.

Use

the

setscrreg

subroutine

with

the

stdscr

and

the

the

wsetscrreg

subroutine

with

user-defined

windows.

You

pass

the

setscrreg

subroutines

values

for

the

top

line

and

bottom

line

of

the

region.

If

the

setscrreg

subroutine

and

scrollok

subroutine

are

enabled

for

the

region,

any

attempt

to

move

off

the

line

specified

by

the

Bmargin

parameter

causes

all

the

lines

in

the

region

to

scroll

up

one

line.

Note:

Unlike

the

idlok

subroutine,

the

setscrreg

subroutines

have

nothing

to

do

with

the

use

of

a

physical

scrolling

region

capability

that

the

terminal

may

or

may

not

have.

Parameters

Bmargin

Specifies

the

last

line

number

in

the

scrolling

region.

Tmargin

Specifies

the

first

line

number

in

the

scrolling

region

(0

is

the

top

line

of

the

window.)

Window

Specifies

the

window

to

place

the

scrolling

region

in.

You

specify

this

parameter

only

with

the

wsetscrreg

subroutine.

Examples

1.

To

set

a

scrolling

region

starting

at

the

10th

line

and

ending

at

the

30th

line

in

the

stdscr,

enter:

setscrreg(9,

29);

Note:

Zero

is

always

the

first

line.

2.

To

set

a

scrolling

region

starting

at

the

10th

line

and

ending

at

the

30th

line

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

wsetscrreg(my_window,

9,

29);

Related

Information

The

idlok

(“idlok

Subroutine”

on

page

573)

subroutine,

scrollok

(“scrollok

Subroutine”

on

page

619)

subroutine,

wrefresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setsyx

Subroutine

Purpose

Sets

the

coordinates

of

the

virtual

screen

cursor.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

setsyx(

Y,

X)

int

Y,

X;

622

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

setsyx

subroutine

sets

the

coordinates

of

the

virtual

screen

cursor

to

the

specified

row

and

column

coordinates.

If

Y

and

X

are

both

-1,

then

the

leaveok

flag

is

set.

(leaveok

may

be

set

by

applications

that

do

not

use

the

cursor.)

The

setsyx

subroutine

is

intended

for

use

in

combination

with

the

getsyx

subroutine.

These

subroutines

should

be

used

by

a

user-defined

function

that

manipulates

curses

windows

but

wants

the

position

of

the

cursor

to

remain

the

same.

Such

a

function

would

do

the

following:

v

Call

the

getsyx

subroutine

to

obtain

the

current

virtual

cursor

coordinates.

v

Continue

processing

the

windows.

v

Call

the

wnoutrefresh

subroutine

on

each

window

manipulated.

v

Call

the

setsyx

subroutine

to

reset

the

current

virtual

cursor

coordinates

to

the

original

values.

v

Refresh

the

display

by

calling

the

doupdate

subroutine.

Parameters

X

Specifies

the

column

to

set

the

virtual

screen

cursor

to.

Y

Specifies

the

row

to

set

the

virtual

screen

cursor

to.

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine,

getsyx

(“getsyx

Subroutine”

on

page

568)

subroutine,

leaveok

(“leaveok

Subroutine”

on

page

585)

subroutine,

wnoutrefresh

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine.

Controlling

the

Cursor

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Curses

Overview

for

Programming

and

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

set_term

Subroutine

Purpose

Switches

between

screens.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

SCREEN

*set_term

(SCREEN

*new);

Description

The

set_term

subroutine

switches

between

different

screens.

The

new

argument

specifies

the

current

screen.

Chapter

2.

Curses

Subroutines

623

Parameters

*new

Return

Values

Upon

successful

completion,

the

set_term

subroutine

returns

a

pointer

to

the

previous

screen.

Otherwise,

it

returns

a

null

pointer.

Examples

To

make

the

terminal

stored

in

the

user-defined

SCREEN

variable

my_terminal

the

current

terminal

and

then

store

a

pointer

to

the

old

terminal

in

the

user-defined

variable

old_terminal,

enter:

SCREEN

*old_terminal,

*my_terminal;

old_terminal

=

set_term(my_terminal);

Related

Information

The

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutine,

newterm

(“newterm

Subroutine”

on

page

594)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

setupterm

Subroutine

Purpose

Initializes

the

terminal

structure

with

the

values

in

the

terminfo

database.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

#include

<term.h>

setupterm(

Term,

FileNumber,

ErrorCode)

char

*Term;

int

FileNumber;

int

*ErrorCode;

Description

The

setupterm

subroutine

determines

the

number

of

lines

and

columns

available

on

the

output

terminal.

The

setupterm

subroutine

calls

the

termdef

subroutine

to

define

the

number

of

lines

and

columns

on

the

display.

If

the

termdef

subroutine

cannot

supply

this

information,

the

setupterm

subroutine

uses

the

values

in

the

terminfo

database.

624

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

setupterm

subroutine

initializes

the

terminal

structure

with

the

terminal-dependent

capabilities

from

terminfo.

This

routine

is

automatically

called

by

the

initscr

and

newterm

subroutines.

The

setupterm

subroutine

deals

directly

with

the

terminfo

database.

Two

of

the

terminal-dependent

capabilities

are

the

lines

and

columns.

The

setupterm

subroutine

populates

the

lines

and

column

fields

in

the

terminal

structure

in

the

following

manner:

1.

If

the

environment

variables

LINES

and

COLUMNS

are

set,

the

setupterm

subroutine

uses

these

values.

2.

If

the

environment

variables

are

not

set,

the

setupterm

subroutine

obtains

the

lines

and

columns

information

from

the

tty

subsystem.

3.

As

a

last

resort,

the

setupterm

subroutine

uses

the

values

defined

in

the

terminfo

database.

Note:

These

may

or

may

not

be

the

same

as

the

values

in

the

terminfo

database.

The

simplest

call

is

setupterm((char*)

0,

1,

(int*)

0),

which

uses

all

defaults.

After

the

call

to

the

setupterm

subroutine,

the

cur_term

global

variable

is

set

to

point

to

the

current

structure

of

terminal

capabilities.

A

program

can

use

more

than

one

terminal

at

a

time

by

calling

the

setupterm

subroutine

for

each

terminal

and

then

saving

and

restoring

the

cur_term

variable.

Parameters

ErrorCode

Specifies

a

pointer

to

an

integer

to

return

the

error

code

to.

If

a

null

pointer

(0)

is

passed

for

this

parameter,

no

status

is

returned.

An

error

causes

the

setupterm

subroutine

to

print

an

error

message

and

exit

instead

of

returning.

FileNumber

Specifies

the

output

files

file

descriptor

(1

equals

standard

output).

Term

Specifies

the

terminal

name.

If

0

is

passed

for

this

parameter,

the

value

of

the

$TERM

environment

variable

is

used.

Return

Values

One

of

the

following

status

values

is

stored

into

the

integer

pointed

to

by

the

ErrorCode

parameter:

1

Successful

completion.

0

No

such

terminal.

-1

An

error

occurred

while

locating

the

terminfo

database.

Example

To

determine

the

current

terminal’s

capabilities

using

$TERM

as

the

terminal

name,

standard

output

as

output,

and

returning

no

error

codes,

enter:

setupterm((char*)

0,

1,

(int*)

0);

Related

Information

The

termdef

(“termdef

Subroutine”

on

page

353)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

625

_showstring

Subroutine

Purpose

Dumps

the

string

in

the

specified

string

address

to

the

terminal

at

the

specified

location.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

_showstring(Line,

Column,

First,

Last,

String)

int

Line,

Column,

First,

Last;

char

*

String;

Description

The

_showstring

subroutine

dumps

the

string

in

the

specified

string

address

to

the

terminal

at

the

specified

location.

This

is

an

internal

extended

curses

subroutine

and

should

not

normally

be

called

directly

by

the

program.

Parameters

Column

Specifies

the

horizontal

coordinate

of

the

terminal

at

which

to

dump

the

string.

First

Specifies

the

beginning

string

address

of

the

string

to

dump

to

the

terminal.

Last

Specifies

the

end

string

address

of

the

string

to

dump

to

the

terminal.

Line

Specifies

the

vertical

coordinate

of

the

terminal

at

which

to

dump

the

string.

String

Specifies

the

string

to

dump

to

the

terminal.

Related

Information

Curses

Overview

for

Programming

,

List

of

Curses

Subroutines

,

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

slk_attroff,

slk_attr_off,

slk_attron,

slk_attrset,

slk_attr_set,

slk_clear,

slk_color,

slk_init,

slk_label,

slk_noutrefresh,

slk_refresh,

slk_restore,

slk_set,

slk_touch,

slk_wset,

Subroutine

Purpose

Soft

label

subroutines.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

slk_attroff

(const

chtype

attrs);

int

slk_attr_off

626

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

(const

attr_t

attrs,

void

*opts);

int

slk_attron

(const

chtype

attrs);

int

slk_attr_on

(const

attr_t

attrs,

void

*opts);

int

slk_attrset

(const

chtype

attrs);

int

slk_attr_set

(const

attr_t

attrs,

short

color_pair_number,

void

*opts);

int

slk_clear

(void);

int

slk_color

(short

color_pair_number);

int

slk_init

(int

fmt);

char

*slk_label

(int

labnum);

int

slk_noutrefresh

(void);

int

slk_refresh

(void);

int

slk_restore

(void);

int

slk_set

(int

labnum,

const

char

*label,

int

justify);

int

slk_touch

(void);

int

slk_wset

(int

labnum,

const

wchar_t

*label,

int

justify);

Description

The

Curses

interface

manipulates

the

set

of

soft

function-key

labels

that

exist

on

many

terminals.

For

those

terminals

that

do

not

have

sort

labels,

Curses

takes

over

the

bottom

line

of

stdscr,

reducing

the

size

of

stdscr

and

the

value

of

the

LINES

external

variable.

There

can

be

up

to

eight

labels

of

up

to

eight

display

columns

each.

To

use

soft

labels,

the

slk_init

subroutine

must

be

called

before

initscr,

newterm,

or

ripoffline

is

called.

If

initscr

eventually

uses

a

line

from

stdscr

to

emulate

the

soft

labels,

then

fmt

determines

how

the

labels

are

arranged

on

the

screen.

Setting

fmt

to

0

indicates

a

3-2-3

arrangement

of

the

labels;

1

indicates

a

4-4

arrangement.

Other

values

for

fmt

are

unspecified.

Chapter

2.

Curses

Subroutines

627

The

slk_init

subroutine

has

the

effect

of

calling

the

ripoffline

subroutine

to

reserve

one

screen

line

to

accommodate

the

requested

format.

The

slk_set

and

slk_wset

subroutines

specify

the

text

of

soft

label

number

labnum,

within

the

range

from

1

to

and

including

8.

The

label

argument

is

the

string

to

be

put

on

the

label.

With

slk_set

and

slk_wset,

the

width

of

the

label

is

limited

to

eight

column

positions.

A

null

string

or

a

null

pointer

specifies

a

blank

label.

The

justify

argument

can

have

the

following

values

to

indicate

how

to

justify

label

within

the

space

reserved

for

it:

0

Align

the

start

of

label

with

the

start

of

the

space.

1

Center

label

within

the

space.

2

Align

the

end

of

label

with

the

end

of

the

space.

The

slk_refresh

and

slk_noutrefresh

subroutines

correspond

to

the

wrefresh

and

wnoutrefresh

subroutines.

The

slk_label

subroutine

obtains

soft

label

number

labnum.

The

slk_clear

subroutine

immediately

clears

the

soft

labels

from

the

screen.

The

slk_touch

subroutine

forces

all

the

soft

labels

to

be

output

the

next

time

slk_noutrefresh

or

slk_refresh

subroutines

is

called.

The

slk_attron,

slk_attrset

and

slk_attroff

subroutines

correspond

to

the

attron,

attrset,

and

attroff

subroutines.

They

have

an

effect

only

if

soft

labels

are

simulated

on

the

bottom

line

of

the

screen.

The

slk_attr_off,

slk_attr_on,

slk_sttr_set,

and

slk_attroff

subroutines

correspond

to

the

slk_attroff,

slk_attron,

slk_attrset,

and

color_set

and

thus

support

the

attribute

constants

with

the

WA_prefix

and

color.

The

opts

argument

is

reserved

for

definition

in

a

future

edition

of

this

document.

Currently,

the

application

must

provide

a

null

pointer

as

opts.

Parameters

attrs

*opts

color_pair_number

fmt

labnum

justify

*label

Examples

For

the

slk_init

subroutine:

To

initialize

soft

labels

on

a

terminal

that

does

not

support

soft

labels

internally,

do

the

following:

slk_init(1);

This

example

arranges

the

labels

so

that

four

labels

appear

on

the

right

of

the

screen

and

four

appear

on

the

left.

For

the

slk_label

subroutine:

628

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

To

obtain

the

label

name

for

soft

label

3,

use:

char

*label_name;

label_name

=

slk_label(3);

For

the

slk_noutrefresh

subroutine:

To

refresh

soft

label

8

on

the

virtual

screen

but

not

on

the

physical

screen,

use:

slk_set(8,

"Insert",

1);

slk_noutrefresh();

For

the

slk_refresh

subroutine:

To

set

and

left-justify

the

soft

labels

and

then

refresh

the

physical

screen,

use:

slk_init(0);

initscr();

slk_set(1,

"Insert",

0);

slk_set(2,

"Quit",

0);

slk_set(3,

"Add",

0);

slk_set(4,

"Delete",

0);

slk_set(5,

"Undo",

0);

slk_set(6,

"Search",

0);

slk_set(7,

"Replace",

0);

slk_set(8,

"Save",

0);

slk_refresh();

For

the

slk_set

subroutine:

slk_set(2,

"Quit",

1);

Return

Values

Upon

successful

completion,

the

slk_label

subroutine

returns

the

requested

label

with

leading

and

trailing

blanks

stripped.

Otherwise,

it

returns

a

null

pointer.

Upon

successful

completion,

the

other

subroutines

return

OK.

Otherwise,

they

return

ERR.

Related

Information

The

attroff

(“attroff,

attron,

attrset,

wattroff,

wattron,

or

wattrset

Subroutine”

on

page

526)

subroutine,

ripoffline

(“ripoffline

Subroutine”

on

page

612)

subroutine,

wcswidth

(“wcswidth

Subroutine”

on

page

466)

subroutine,

slk_init

(“slk_init

Subroutine”)

subroutine,

slk_set

(“slk_set

Subroutine”

on

page

633)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

slk_init

Subroutine

Purpose

Initializes

soft

function-key

labels.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

Chapter

2.

Curses

Subroutines

629

slk_init(

Labfmt)

int

Labfmt;

Description

The

slk_init

subroutine

initializes

soft

function-key

labels.

This

is

one

of

several

subroutines

curses

provides

for

manipulating

soft

function-key

labels.

These

labels

appear

at

the

bottom

of

the

screen

and

give

applications,

such

as

editors,

a

more

user-friendly

look.

To

use

soft

labels,

you

must

call

the

slk_init

subroutine

before

calling

the

initscr

or

newterm

subroutine.

Some

terminals

support

soft

labels,

others

do

not.

For

terminals

that

do

not

support

soft

labels.

Curses

emulates

soft

labels

by

using

the

bottom

line

of

the

stdscr.

To

accommodate

soft

labels,

curses

reduces

the

size

of

the

stdscr

and

the

LINES

environment

variable

as

required.

Parameter

Labfmt

Simulates

soft

labels.

To

arrange

three

labels

on

the

right,

two

in

the

center,

and

three

on

the

right

of

the

screen,

specify

a

0

for

this

parameter.

To

arrange

four

labels

on

the

left

and

four

on

the

right

of

the

screen,

specify

a

1

for

this

parameter.

Example

To

initialize

soft

labels

on

a

terminal

that

does

not

support

soft

labels

internally,

do

the

following:

slk_init(1);

This

example

arranges

the

labels

so

that

four

labels

appear

on

the

right

of

the

screen

and

four

appear

on

the

left.

Related

Information

The

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutine,

newterm

(“newterm

Subroutine”

on

page

594)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Soft

Labels

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

slk_label

Subroutine

Purpose

Returns

the

label

name

for

a

specified

soft

label.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

char

*slk_label(

LabNum)

int

LabNum;

Description

The

slk_label

subroutine

returns

the

label

name

for

a

specified

soft

function-key

label.

These

labels

appear

at

the

bottom

of

the

screen

and

give

applications,

such

as

editors,

a

more

user-friendly

look.

The

630

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

slk_label

subroutine

returns

the

name

in

the

format

it

was

in

when

passed

to

the

slk_set

subroutine.

If

the

name

was

justified

by

the

slk_set

subroutine,

the

justification

is

removed.

Parameters

LabNum

Specifies

the

label

number.

This

parameter

must

be

in

the

range

1

to

8.

Example

To

obtain

the

label

name

for

soft

label

3,

use:

char

*label_name;

label_name

=

slk_label(3);

Return

Values

NULL

Indicates

a

label

number

that

is

not

valid

or

a

label

number

not

set

with

the

slk_set

subroutine.

OK

Indicates

that

the

label

name

was

successfully

retrieved.

Related

Information

The

slk_init

(“slk_init

Subroutine”

on

page

629)

subroutine

and

slk_set

(“slk_set

Subroutine”

on

page

633)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

slk_noutrefresh

Subroutine

Purpose

Updates

the

soft

labels

on

the

virtual

screen.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

slk_noutrefresh()

Description

The

slk_noutrefresh

subroutine

updates

the

soft

function-key

labels

on

the

virtual

screen.

These

labels

appear

at

the

bottom

of

the

screen

and

give

applications,

such

as

editors,

a

more

user-friendly

look.

This

subroutine

is

useful

for

updating

multiple

labels.

You

can

use

the

slk_noutrefresh

subroutine

to

update

all

soft

labels

on

the

virtual

screen

with

no

updates

to

the

physic

al

screen.

To

update

the

physical

screen,

use

the

slk_refresh

or

refresh

subroutine.

Example

To

refresh

soft

label

8

on

the

virtual

screen

but

not

on

the

physical

screen,

use:

slk_set(8,

"Insert",

1);

slk_noutrefresh();

Chapter

2.

Curses

Subroutines

631

Related

Information

The

slk_init

(“slk_init

Subroutine”

on

page

629)

subroutine,

slk_refresh

(“slk_refresh

Subroutine”)

subroutine,

wrefresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine.

Curses

Overview

for

Programming,

Manipulating

Video

Attributes,

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

slk_refresh

Subroutine

Purpose

Updates

soft

labels

on

the

virtual

and

physical

screens.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

slk_refresh()

Description

The

slk_refresh

subroutine

refreshes

the

virtual

and

physical

screens

after

an

update

to

soft

function-key

labels.

These

labels

appear

at

the

bottom

of

the

screen

and

give

applications,

such

as

editors,

a

more

user-friendly

look.

Example

To

set

and

left-justify

the

soft

labels

and

then

refresh

the

physical

screen,

use:

slk_init(0);

initscr();

slk_set(1,

"Insert",

0);

slk_set(2,

"Quit",

0);

slk_set(3,

"Add",

0);

slk_set(4,

"Delete",

0);

slk_set(5,

"Undo",

0);

slk_set(6,

"Search",

0);

slk_set(7,

"Replace",

0);

slk_set(8,

"Save",

0);

slk_refresh();

Related

Information

The

slk_init

routine

(“slk_init

Subroutine”

on

page

629)

subroutine,

slk_set

routine

(“slk_set

Subroutine”

on

page

633)

subroutine,

slk_noutrefresh

(“slk_noutrefresh

Subroutine”

on

page

631)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

slk_restore

Subroutine

Purpose

Restores

soft

function-key

labels

to

the

screen.

632

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

slk_restore()

Description

The

slk_restore

subroutine

restores

the

soft

function-key

labels

to

the

screen

after

a

call

to

the

slk_clear

subroutine.

The

label

names

are

not

restored.

These

labels

appear

at

the

bottom

of

the

screen

and

give

applications,

such

as

editors,

a

more

user-friendly

look.

You

must

call

the

slk_init

subroutine

before

you

can

use

soft

labels.

Related

Information

The

slk_init

(“slk_init

Subroutine”

on

page

629)

subroutine,

slk_clear

(“slk_attroff,

slk_attr_off,

slk_attron,

slk_attrset,

slk_attr_set,

slk_clear,

slk_color,

slk_init,

slk_label,

slk_noutrefresh,

slk_refresh,

slk_restore,

slk_set,

slk_touch,

slk_wset,

Subroutine”

on

page

626)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Soft

Labels

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

slk_set

Subroutine

Purpose

Sets

up

soft

function-key

labels.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

slk_set(LabNum,

LabStr,

LabFmt)

int

LabNum;

char

*

LabStr;

int

LabFmt;

Description

The

slk_set

subroutine

sets

up

each

soft

function-key

label

with

the

appropriate

name.

These

labels

appear

at

the

bottom

of

the

screen

and

give

applications,

such

as

editors,

a

more

user-friendly

look.

Label

names

are

restricted

to

8

characters

each.

Parameters

LabNum

Specifies

the

label

number.

The

value

can

range

from

1

to

8.

LabStr

Specifies

the

string

(name)

to

put

on

the

label.

If

the

string

is

NULL,

the

label

is

blank.

Chapter

2.

Curses

Subroutines

633

LabFmt

Specifies

the

label

alignment.

The

following

values

are

valid:

0

Left-justified

1

Centered

2

Right-justified

Example

slk_set(2,

"Quit",

1);

Related

Information

The

slk_init

(“slk_init

Subroutine”

on

page

629)

routine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

slk_touch

Subroutine

Purpose

Forces

an

update

of

the

soft

function-key

labels.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

slk_touch()

Description

The

slk_touch

subroutine

forces

an

update

of

the

soft

function-key

labels

on

the

physical

screen

the

next

time

the

slk_noutrefresh

subroutine

is

called.

These

labels

appear

at

the

bottom

of

the

screen

and

give

applications,

such

as

editors,

a

more

user-friendly

look.

You

must

call

the

slk_init

subroutine

before

using

soft

labels.

Related

Information

The

slk_init

(“slk_init

Subroutine”

on

page

629)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

standend,

standout,

wstandend,

or

wstandout

Subroutine

Purpose

Sets

and

clears

window

attributes.

Library

Curses

Library

(libcurses.a)

634

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Syntax

#include

<curses.h>

int

standend

(void);

int

standout

(void);

int

wstandend

(WINDOW

*win);

int

wstandout

(WINDOW

*win);

Description

The

standend

and

standout

subroutines

turn

off

all

attributes

of

the

current

or

specified

window.

The

wstandout

and

wstandend

subroutines

turn

on

the

standout

attribute

of

the

current

or

specified

window.

Parameters

*win

Specifies

the

window

in

which

to

set

the

attributes.

Return

Values

These

subroutines

always

return

1.

Examples

1.

To

turn

on

the

standout

attribute

in

the

stdscr,

enter:

standout();

This

example

is

functionally

equivalent

to:

attron(A_STANDOUT);

2.

To

turn

on

the

standout

attribute

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

wstandout(my_window);

This

example

is

functionally

equivalent

to:

wattron(my_window,

A_STANDOUT);

3.

To

turn

off

the

standout

attribute

in

the

default

window,

enter:

standend();

This

example

is

functionally

equivalent

to:

attroff(A_STANDOUT);

4.

To

turn

off

the

standout

attribute

in

the

user-defined

window

my_window,

enter:

WINDOW

*my_window;

wstandend(my_window);

This

example

is

functionally

equivalent

to:

Chapter

2.

Curses

Subroutines

635

wattroff(my_window,

A_STANDOUT);

Related

Information

The

attroff,

attron,

or

wattroff

(“attroff,

attron,

attrset,

wattroff,

wattron,

or

wattrset

Subroutine”

on

page

526)

subroutines.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

start_color

Subroutine

Purpose

Initializes

color.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

start_color()

Description

The

start_color

subroutine

initializes

color.

This

subroutine

requires

no

arguments.

You

must

call

the

start_color

subroutine

if

you

intend

to

use

color

in

your

application.

Except

for

the

has_colors

and

can_change_color

subroutines,

you

must

call

the

start_color

subroutine

before

any

other

color

manipulation

subroutine.

A

good

time

to

call

start_color

is

right

after

calling

the

initscr

routine

and

after

establishing

whether

the

terminal

supports

color.

The

start_color

routine

initializes

the

following

basic

colors:

COLOR_BLACK

0

COLOR_BLUE

1

COLOR_GREEN

2

COLOR_CYAN

3

COLOR_RED

4

COLOR_MAGENTA

5

COLOR_YELLOW

6

COLOR_WHITE

7

The

subroutine

also

initializes

two

global

variables:

COLORS

and

COLOR_PAIRS.

The

COLORS

variable

is

the

maximum

number

of

colors

supported

by

the

terminal.

The

COLOR_PAIRS

variable

is

the

maximum

number

of

color-pairs

supported

by

the

terminal.

The

start_color

subroutine

also

restores

the

terminal’s

colors

to

the

original

values

right

after

the

terminal

was

turned

on.

Return

Values

ERR

Indicates

the

terminal

does

not

support

colors.

OK

Indicates

the

terminal

does

support

colors.

636

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Example

To

enable

the

color

support

for

a

terminal

that

supports

color,

use:

start_color();

Related

Information

The

has_colors

(“has_colors

Subroutine”

on

page

570)

subroutine,

can_change_color

(“can_change_color,

color_content,

has_colors,init_color,

init_pair,

start_color

or

pair_content

Subroutine”

on

page

532)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Manipulating

Video

Attributes

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

subpad

Subroutine

Purpose

Creates

a

subwindow

within

a

pad.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

WINDOW

*subpad(Orig,

NLines,

NCols,

Begin_Y,

Begin_X)

WINDOW

*

Orig;

int

NCols,

NLines,

Begin_Y,

Begin_X;

Description

The

subpad

subroutine

creates

and

returns

a

pointer

to

a

subpad.

A

subpad

is

a

window

within

a

pad.

You

specify

the

size

of

the

subpad

by

supplying

a

starting

coordinate

and

the

number

of

rows

and

columns

within

the

subpad.

Unlike

the

subwin

subroutine,

the

starting

coordinates

are

relative

to

the

pad

and

not

the

terminal’s

display.

Changes

to

the

subpad

affect

the

character

image

of

the

parent

pad,

as

well.

If

you

change

a

subpad,

use

the

touchwin

or

touchline

subroutine

on

the

parent

pad

before

refreshing

the

parent

pad.

Use

the

prefresh

subroutine

to

refresh

a

pad.

Parameters

Orig

Points

to

the

parent

pad.

NLines

Specifies

the

number

of

lines

(rows)

in

the

subpad.

NCols

Specifies

the

number

of

columns

in

the

subpad.

Begin_Y

Identifies

the

upper

left-hand

row

coordinate

of

the

subpad

relative

to

the

parent

pad.

Begin_X

Identifies

the

upper

left-hand

column

coordinate

of

the

subpad

relative

to

the

parent

pad.

Examples

To

create

a

subpad,

use:

WINDOW

*orig,

*mypad;

orig

=

newpad(100,

200);

mypad

=

subpad(orig,

30,

5,

25,

180);

Chapter

2.

Curses

Subroutines

637

The

parent

pad

is

100

lines

by

200

columns.

The

subpad

is

30

lines

by

5

columns

and

starts

in

line

25,

column

180

of

the

parent

pad.

Related

Information

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Windows

in

the

Curses

Environment

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

subwin

Subroutine

Purpose

Creates

a

subwindow

within

an

existing

window.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

WINDOW

*subwin

(ParentWindow,

NumLines,

NumCols,Line,Column)

WINDOW

*

ParentWindow

;

int

NumLines,

NumCols,

Line,

Column;

Description

The

subwin

subroutine

creates

a

subwindow

within

an

existing

window.

You

must

supply

coordinates

for

the

subwindow

relative

to

the

terminal’s

display.

Recall

that

the

subwindow

shares

its

parent’s

window

buffer.

Changes

made

to

the

shared

window

buffer

in

the

area

covered

by

a

subwindow,

through

either

the

parent

window

or

any

of

its

subwindows,

affects

all

windows

sharing

the

window

buffer.

When

changing

the

image

of

a

subwindow,

it

is

necessary

to

call

the

touchwin

(“touchwin

Subroutine”

on

page

650)

or

touchline

subroutine

on

the

parent

window

before

calling

the

wrefresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine

on

the

parent

window.

Changes

to

one

window

will

affect

the

character

image

of

both

windows.

Parameters

NumCols

Indicates

the

number

of

vertical

columns

in

the

subwindow’s

width.

If

0

is

passed

as

the

NumCols

value,

the

subwindow

runs

from

the

Column

to

the

right

edge

of

its

parent

window.

NumLines

Indicates

the

number

of

horizontal

lines

in

the

subwindow’s

height.

If

0

is

passed

as

the

NumLines

parameter,

then

the

subwindow

runs

from

the

Line

to

the

bottom

of

its

parent

window.

ParentWindow

Specifies

the

subwindow’s

parent.

Column

Specifies

the

horizontal

coordinate

for

the

upper-left

corner

of

the

subwindow.

This

coordinate

is

relative

to

the

(0,

0)

coordinates

of

the

terminal,

not

the

(0,

0)

coordinates

of

the

parent

window.

Note:

The

upper-left

corner

of

the

terminal

is

referenced

by

the

coordinates

(0,

0).

Line

Specifies

the

vertical

coordinate

for

the

upper-left

corner

of

the

subwindow.

This

coordinate

is

relative

to

the

(0,

0)

coordinates

of

the

terminal,

not

the

(0,

0)

coordinates

of

the

parent

window.

Note:

The

upper-left

corner

of

the

terminal

is

referenced

by

the

coordinates

(0,

0).

638

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

When

the

subwin

subroutine

is

successful,

it

returns

a

pointer

to

the

subwindow

structure.

Otherwise,

it

returns

the

following:

ERR

Indicates

one

or

more

of

the

parameters

is

invalid

or

there

is

insufficient

storage

available

for

the

new

structure.

Examples

1.

To

create

a

subwindow,

use:

WINDOW

*my_window,

*my_sub_window;

my_window

=

newwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)

(5,

10,

20,

30);

my_sub_window

=

subwin(my_window,

2,

5,

20,

30);

my_sub_window

is

now

a

subwindow

2

lines

deep,

5

columns

wide,

starting

at

the

same

coordinates

of

its

parent

window

my_window.

That

is,

the

subwindow’s

upper-left

corner

is

at

coordinates

y

=

20,

x

=

30

and

lower-right

corner

is

at

coordinates

y

=

21,

x

=

34.

2.

To

create

a

subwindow

that

is

flush

with

the

right

side

of

its

parent,

use:

WINDOW

*my_window,

*my_sub_window;

my_window

=

newwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)

(5,

10,

20,

30);

my_sub_window

=

subwin(my_window,

2,

0,

20,

30);

my_sub_window

is

now

a

subwindow

2

lines

deep,

extending

all

the

way

to

the

right

side

of

its

parent

window

my_window,

and

starting

at

the

same

coordinates.

That

is,

the

subwindow’s

upper-left

corner

is

at

coordinates

y

=

20,

x

=

30

and

lower-right

corner

is

at

coordinates

y

=

21,

x

=

39.

3.

To

create

a

subwindow

in

the

lower-right

corner

of

its

parent,

use:

WINDOW

*my_window,

*my_sub_window

my_window

=

newwwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596)

(5,

10,

20,

30);

my_sub_window

=

subwin(my_window,

0,

0,

22,

35);

my_sub_window

is

now

a

subwindow

that

fills

the

bottom

right

corner

of

its

parent

window,

my_window,

starting

at

the

coordinates

y

=

22,

x

=

35.

That

is,

the

subwindow’s

upper-left

corner

is

at

coordinates

y

=

22,

x

=

35

and

lower-right

corner

is

at

coordinates

y

=

24,

x

=

39.

Related

Information

The

touchwin

(“touchwin

Subroutine”

on

page

650),

newwin

(“derwin,

newwin,

or

subwin

Subroutine”

on

page

596),

and

wrefresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutines.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Windows

in

the

Curses

Environment

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

639

tgetent,

tgetflag,

tgetnum,

tgetstr,

or

tgoto

Subroutine

Purpose

Termcap

database

emulation.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

tgetent

(char

*bp,

const

char

*name);

int

tgetflag

(char

id[2]);

int

tgetnum

(char

id[2]);

char

*tgetstr

(char

id[2],

char

**area);

char

*tgoto

(char

*cap,

int

col,

int

row);

Description

The

tgetent

subroutine

looks

up

the

termcap

entry

for

name,

The

emulation

ignores

the

buffer

pointer

bp.

The

tgetflag

subroutine

gets

the

boolean

entry

for

id.

The

tgetnum

subroutine

gets

the

numeric

entry

for

id.

The

tgetstr

subroutine

gets

the

string

entry

for

id.

If

area

is

not

a

null

pointer

and

does

not

point

to

a

null

pointer,

the

tgetstr

subroutine

copies

the

string

entry

into

the

buffer

pointed

to

by

*area

and

advances

the

variable

pointed

to

by

area

to

the

first

byte

after

the

copy

of

the

string

entry.

The

tgoto

subroutine

instantiates

the

parameters

col

and

row

into

the

capability

cap

and

returns

a

pointer

to

the

resulting

string.

All

of

the

information

available

in

the

terminfo

database

need

not

be

available

through

these

subroutines.

Parameters

bp

name

col

row

**area

cap

id[2]

640

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

Upon

successful

completion,

subroutines

that

return

an

integer

return

OK.

Otherwise,

they

return

ERR.

Related

Information

The

putc,

setupterm

(“setupterm

Subroutine”

on

page

624),

tigetflg

(“tigetflag,

tigetnum,

tigetstr,

or

tparm

Subroutine”

on

page

644)

subroutines.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tgetflag

Subroutine

Purpose

Returns

the

boolean

entry

for

the

specified

identifier.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

bool

tgetflag(

ID)

char

*ID;

Description

The

tgetflag

subroutine

returns

the

boolean

entry

for

the

specified

termcap

identifier.

This

subroutine

is

provided

for

binary

compatibility

with

applications

that

use

the

termcap

file.

Parameters

ID

Specifies

the

2-character

string

that

contains

a

termcap

identifier.

Return

Values

The

tgetflag

subroutine

returns

the

boolean

entry

for

the

specified

termcap

identifier.

If

ID

is

not

found,

on

not

a

boolean,

0

is

returned.

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

641

tgetnum

Subroutine

Purpose

Returns

the

numeric

entry

for

the

specified

termcap

identifier.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

tgetnum(

ID)

char

*ID;

Description

The

tgetnum

subroutine

returns

the

numeric

entry

for

the

specified

termcap

identifier.

This

subroutine

is

provided

for

binary

compatibility

with

applications

that

use

the

termcap

file.

Parameters

ID

Specifies

the

2-character

string

that

contains

a

termcap

identifier.

Return

Values

The

tgetnum

subroutine

returns

the

numeric

entry

for

the

specified

termcap

identifier.

-1

Returned

if

the

ID

is

not

found

or

not

numeric.

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tgetstr

Subroutine

Purpose

Returns

the

string

entry

for

the

specified

termcap

identifier.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

642

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

char

*tgetstr(

ID,

Area)

char

*ID,

**Area;

Description

The

tgetstr

subroutine

returns

the

string

entry

for

the

specified

termcap

identifier.

This

subroutine

is

provided

for

binary

compatibility

with

applications

that

use

the

termcap

file.

Parameters

Area

Contains

the

string

entry

for

the

specified

termcap

identifier.

This

also

is

returned

to

the

calling

program.

ID

Specifies

the

2-character

string

that

contains

the

termcap

identifier.

Return

Values

The

tgetstr

subroutine

returns

the

string

entry

for

the

ID

parameter,

which

is

a

2-character

string

that

contains

a

termcap

identifier.

0

Returned

if

ID

is

not

found

or

not

a

string

capability.

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tgoto

Subroutine

Purpose

Duplicates

the

tparm

subroutine.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

#include

<term.h>

char

*tgoto(

Capability,

Column,

Row)

char

*Capability;

int

Column,

Row;

Description

The

tgoto

subroutine

calls

the

tparm

(“tparm

Subroutine”

on

page

651)

subroutine.

This

subroutine

is

provided

for

binary

compatibility

with

applications

that

use

the

termcap

file.

Chapter

2.

Curses

Subroutines

643

Parameters

Capability

Specifies

the

termcap

capability

to

apply

the

parameters

to.

Column

Specifies

which

column

to

apply

to

the

capability.

Row

Specifies

which

row

to

apply

to

the

capability.

Related

Information

The

tparm

(“tparm

Subroutine”

on

page

651)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tigetflag,

tigetnum,

tigetstr,

or

tparm

Subroutine

Purpose

Retrieves

capabilities

from

the

terminfo

database.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<term.h>

int

tigetflag(char

*capname,);

int

tigetnum(char

*capname);

char

*tigetstr(char

*capname);

char

*tparm(char

*cap,

long

p1,

long

p2,

long

p3,

long

p4,

long

p5,

long

p6

long

p7,

long

p8,

long

p9);

Description

The

tigetflag,

tigetnum,

and

tigetstr

subroutines

obtain

boolean,

numeric,

and

string

capabilities,

respectively,

from

the

selected

record

of

the

terminfo

database.

For

each

capability,

the

value

to

use

as

capname

appears

in

the

Capname

column

in

the

table

in

Section

6.1.3

on

page

296.

The

tparm

subroutine

takes

as

cap

a

string

capability.

If

cap

is

parameterised

(as

described

in

Section

A.1.2

on

page

313),

the

tparm

subroutine

resolves

the

parameterisation.

If

the

parameterised

string

refers

to

parameters

%p1

through

%p9,

then

the

tparm

subroutine

substitutes

the

values

of

p1

through

p9,

respectively.

Return

Values

Upon

successful

completion,

the

tigetflag,

tigetnum,

and

tigetstr

subroutines

return

the

specified

capability.

The

tigetflag

subroutine

returns

-1

if

capname

is

not

a

boolean

capability.

The

tigetnum

subroutine

returns

-2

if

capname

is

not

a

numeric

capability.

The

tigetstr

subroutine

returns

(char*)-1

if

capname

is

not

a

string

capability.

Upon

successful

completion,

the

tparm

subroutine

returns

str

with

parameterisation

resolved.

Otherwise,

it

returns

a

null

pointer.

644

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

*capname

*tparm

long

p1

long

p2

long

p3

long

p4

long

p5

long

p6

long

p7

long

p8

long

p9

Examples

For

the

tigetflag

subroutine:

To

determine

if

erase

overstrike

is

a

defined

boolean

capability

for

the

current

terminal,

use:

rc

=

tigetflag("eo");

For

the

tigetnum

subroutine:

To

determine

if

number

of

labels

is

a

defined

numeric

capability

for

the

current

terminal,

use:

rc

=

tigetnum("nlab");

For

the

tigetstr

subroutine:

To

determine

if

″turn

on

soft

labels″

is

a

defined

string

capability

for

the

current

terminal,

do

the

following:

char

*rc;

rc

=

tigetstr("smln");

For

the

tparm

subroutine:

1.

To

save

the

escape

sequence

used

to

home

the

cursor

in

the

user-defined

variable

home_sequence,

enter:

home_sequence

=

tparm(cursor_home);

2.

To

save

the

escape

sequence

used

to

move

the

cursor

to

the

coordinates

X=40,

Y=18

in

the

user-defined

variable

move_sequence,

enter:

move_sequence

=

tparm(cursor_address,

18,

40);

Related

Information

The

def_prog_mode

(“def_prog_mode,

def_shell_mode,

reset_prog_mode

or

reset_shell_mode

Subroutine”

on

page

545),

tgetent

(“tgetent,

tgetflag,

tgetnum,

tgetstr,

or

tgoto

Subroutine”

on

page

640),

and

putp

(“putp,

tputs

Subroutine”

on

page

605)

subroutines.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

645

tigetnum

Subroutine

Purpose

Gets

the

value

of

terminal’s

numeric

capability.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

#include

<term.h>

tigetnum(

CapName)

register

char

*CapName;

Description

The

tigetnum

subroutine

returns

the

value

of

terminal’s

numeric

capability.

Use

this

subroutine

to

get

a

capability

for

the

current

terminal.

When

successful,

this

subroutine

returns

the

current

value

of

the

capability

specified

by

the

CapName

parameter.

Otherwise,

if

it

is

not

a

numeric

value,

this

subroutine

returns

-2.

Note:

The

tigetnum

subroutine

is

a

low-level

routine.

Use

this

subroutine

only

if

your

application

must

deal

directly

with

the

terminfo

database

to

handle

certain

terminal

capabilities

(for

example,

programming

function

keys).

Return

Values

Upon

successful

completion,

the

tigetnum

subroutine

returns

the

value

of

terminal’s

numeric

capability.

-2

Indicates

the

value

specified

by

the

CapName

parameter

is

not

numeric.

Parameters

CapName

Identifies

the

terminal

capability

to

check

for.

Example

To

determine

if

number

of

labels

is

a

defined

numeric

capability

for

the

current

terminal,

use:

rc

=

tigetnum("nlab");

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

646

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

tigetstr

Routine

Purpose

Returns

the

value

of

a

terminal’s

string

capability.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

#include

<term.h>

tigetstr(

Capname)

register

char

*Capname;

Description

The

tigetstr

subroutine

returns

the

value

of

terminal’s

string

capability.

Use

this

subroutine

to

get

a

capability

for

the

current

terminal

pointed

to

by

cur_term.

When

successful,

this

subroutine

returns

the

current

value

of

the

capability

specified

by

the

Capname

parameter.

Otherwise,

if

it

is

not

a

string

value,

this

subroutine

returns

(char*)

-1.

Note:

The

tigetstr

subroutine

is

a

low-level

routine.

Use

this

subroutine

only

if

your

application

must

deal

directly

with

the

terminfo

database

to

handle

certain

terminal

capabilities

(for

example,

programming

function

keys).

Parameters

Capname

Identifies

the

terminal

capability

to

check.

Example

To

determine

if

″turn

on

soft

labels″

is

a

defined

string

capability

for

the

current

terminal,

do

the

following:

char

*rc;

rc

=

tigetstr("smln");

Return

Values

Upon

successful

completion,

the

tigetstr

subroutine

returns

the

value

of

terminal’s

string

capability.

(char

*)-1

Indicates

the

value

specified

by

the

Capname

parameter

is

not

a

string.

Files

/usr/include/curses.h

Contains

C

language

subroutines

and

define

statements

for

curses.

Related

Information

List

of

Curses

Subroutines,

Curses

Overview

for

Programming,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

647

is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine

Purpose

Window

refresh

control

functions.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

bool

is_linetouched(WINDOW

*win,

int

line);

bool

is_wintouched(WINDOW

*win);

int

touchline(WINDOW

*win,

int

start,

int

count);

int

touchwin(WINDOW

*win);

int

untouchwin(WINDOW

*win);

int

wtouchln(WINDOW

*win,

int

y,

int

n,

int

changed);

Description

The

touchline

subroutine

touches

the

specified

window

(that

is,

marks

it

as

having

changed

more

recently

than

the

last

refresh

operation).

The

touchline

subroutine

only

touches

count

lines,

beginning

with

line

start.

The

untouchwin

subroutine

marks

all

lines

in

the

window

as

unchanged

since

the

last

refresh

operation.

Calling

the

wtouchln

subroutine,

if

changed

is

1,

touches

n

lines

in

the

specified

window,

starting

at

line

y.

If

changed

is

0,

wtouchln

marks

such

lines

as

unchanged

since

the

last

refresh

operation.

The

is_wintouchwin

subroutine

determines

whether

the

specified

window

is

touched.

The

is_linetouched

subroutine

determines

whether

line

line

of

the

specified

window

is

touched.

Parameters

line

start

count

changed

y

n

*win

648

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Return

Values

The

is_linetouched

and

is_wintouched

subroutines

return

TRUE

if

any

of

the

specified

lines,

or

the

specified

window,

respectively,

has

been

touched

since

the

last

refresh

operation.

Otherwise,

they

return

FALSE.

Upon

successful

completion,

the

other

subroutines

return

OK.

Otherwise,

they

return

ERR.

Exceptions

to

this

are

noted

in

the

preceding

subroutine.

Examples

For

the

touchline

subroutine:

To

set

10

lines

for

refresh

starting

from

line

5

of

the

user-defined

window

my_window,

use:

WINDOW

*my_window;

touchline(my_window,

5,

10);

wrefresh(my_window);

This

forces

curses

to

disregard

any

optimization

information

it

may

have

for

lines

0-4

in

my_window.

curses

assumes

all

characters

in

lines

0-4

have

changed.

For

the

touchwin

subroutine:

To

refresh

a

user-defined

parent

window,

parent_window,

that

has

been

edited

through

its

subwindows,

use:

WINDOW

*parent_window;

touchwin(parent_window);

wrefresh(parent_window);

This

forces

curses

to

disregard

any

optimization

information

it

may

have

for

my_window.

curses

assumes

all

lines

and

columns

have

changed

for

my_window.

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Windows

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

touchoverlap

Subroutine

Purpose

Marks

the

overlap

of

two

windows

as

changed

and

makes

arrangements

for

their

refresh.

Library

Curses

Library

(libcurses.a)

Chapter

2.

Curses

Subroutines

649

Syntax

#include

<curses.h>

touchoverlap(

Window1,

Window2)

WINDOW

*Window1,

Window2;

Description

The

touchoverlap

subroutine

marks

the

overlap

of

two

windows

as

changed

and

makes

arrangements

for

their

refresh.

Parameters

Window1

Specifies

the

first

window

as

changed.

Window2

Specifies

the

second

window

as

changed.

Examples

To

mark

the

overlap

of

the

two

user-defined

windows

my_window

and

my_new_window

as

changed,

enter:

touchoverlap(my_window,

my_new_window);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Windows

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

touchwin

Subroutine

Purpose

Forces

every

character

in

a

window’s

buffer

to

be

refreshed

at

the

next

call

to

the

wrefresh

subroutine.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

touchwin(

Window)

WINDOW

*Window;

Description

The

touchwin

(“touchwin

Subroutine”)

subroutine

forces

every

character

in

the

specified

window

to

be

refreshed

during

the

next

call

to

the

refresh

or

wrefresh

subroutine.

To

force

a

specific

range

of

lines

to

be

refreshed,

use

the

touchline

(“is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine”

on

page

648)

subroutine.

650

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

combined

usage

of

the

touchwin

and

wrefresh

subroutines

is

helpful

when

dealing

with

subwindows

or

overlapping

windows.

When

dealing

with

overlapping

windows,

it

may

become

necessary

to

bring

the

back

window

to

the

front.

A

call

to

the

wrefresh

subroutine

does

not

change

the

terminal

because

none

of

the

characters

in

the

window

were

changed.

Calling

the

touchwin

subroutine

on

the

back

window

before

the

wrefresh

subroutine

redisplays

the

window

on

the

terminal

and,

effectively,

brings

it

to

the

front.

Parameters

Window

Specifies

the

window

to

be

touched.

Example

To

refresh

a

user-defined

parent

window,

parent_window,

that

has

been

edited

through

its

subwindows,

use:

WINDOW

*parent_window;

touchwin(parent_window);

wrefresh(parent_window);

This

forces

curses

to

disregard

any

optimization

information

it

may

have

for

my_window.

curses

assumes

all

lines

and

columns

have

changed

for

my_window.

Related

Information

The

touchline

(“is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine”

on

page

648)

subroutine,

wrefresh

(“refresh

or

wrefresh

Subroutine”

on

page

608)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Windows

in

the

Curses

Environment

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tparm

Subroutine

Purpose

Applies

parameters

(padding)

to

a

terminal

capability.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

char

*tparm(

TermCap,

Parm1,

Parm2,

.

.

.

Parm9)

char

*TermCap;

int

Parm1,

Parm2,

.

.

.

Parm9;

Description

The

tparm

subroutine

applies

parameters

(padding)

to

a

terminal

capability.

Note:

If

the

tparm

subroutine

is

called

with

less

than

10

paramameters,

then

the

-D_TPARM_COMPAT

option

should

be

used

when

compiling

the

program.

Otherwise

the

compiler

gives

the

following

error.

1506-098

(E)

Missing

argument(s)

Chapter

2.

Curses

Subroutines

651

Parameters

Parm#

Specifies

the

parameters

(up

to

nine)

to

instantiate.

TermCap

Specifies

the

terminal

capability

to

apply

the

parameters

to.

These

terminal

capabilities

are

defined

in

the

term.h

file.

Return

Values

The

tparm

subroutine

returns

the

escape

sequence

specified

by

the

TermCap

parameter

with

the

specified

parameters

applied.

After

the

escape

sequence

is

received,

it

can

be

output

by

a

subroutine

like

the

tputs

(“tputs

Subroutine”)

subroutine.

Examples

1.

To

save

the

escape

sequence

used

to

home

the

cursor

in

the

user-defined

variable

home_sequence,

enter:

home_sequence

=

tparm(cursor_home);

2.

To

save

the

escape

sequence

used

to

move

the

cursor

to

the

coordinates

X=40,

Y=18

in

the

user-defined

variable

move_sequence,

enter:

move_sequence

=

tparm(cursor_address,

18,

40);

Related

Information

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

tputs

Subroutine

Purpose

Outputs

a

string

with

padding

information.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

#include

<term.h>

tputs(

String,

LinesAffected,

PutcLikeSub)

char

*String;

int

LinesAffected;

int

(*PutcLikeSub)

();

Description

The

tputs

subroutine

outputs

a

string

with

padding

information

applied.

String

must

be

a

terminfo

string

variable

or

the

return

value

from

tparm,

tgetstr,

tigetstr,

or

tgoto

subroutines.

652

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

LinesAffected

Specifies

the

number

of

lines

affected,

or

specifies

1

if

not

applicable.

PutcLikeSub

Specifies

a

putchar-like

subroutine

through

which

the

characters

are

passed

one

at

a

time.

String

Specifies

the

string

to

which

to

add

padding

information.

Examples

1.

To

output

the

clear

screen

sequence

using

the

user-defined

putchar-like

subroutine

my_putchar,

enter:

int_my_putchar();

tputs(clear_screen,

1

,my_putchar);

2.

To

output

the

escape

sequence

used

to

move

the

cursor

to

the

coordinates

x=40,

y=18

through

the

user-defined

putchar-like

subroutine

my_putchar,

enter:

int_my_putchar();

tputs(tparm(cursor_address,

18,

40),

1,

my_putchar);

Related

Information

The

tparm

(“tparm

Subroutine”

on

page

651)

subroutine.

Curses

Overview

for

Programming,

List

of

Curses

Subroutines,

Understanding

Terminals

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

typeahead

Subroutine

Purpose

Controls

checking

for

typeahead.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

typeahead

(int

fildes);

Description

The

typeahead

subroutine

controls

the

detection

of

typeahead

during

a

refresh,

based

on

the

value

of

fildes:

v

If

fildes

is

a

valid

file

descriptor,

the

typeahead

subroutine

is

enabled

during

refresh;

Curses

periodically

checks

fildes

for

input

and

aborts

refresh

if

any

character

is

available.

(This

is

the

initial

setting,

and

the

typeahead

file

descriptor

corresponds

to

the

input

file

associated

with

the

screen

created

by

the

initscr

or

newterm

subroutine.)

The

value

of

fildes

need

not

be

the

file

descriptor

on

which

the

refresh

is

occurring.

v

If

fildes

is

-1,

Curses

does

not

check

for

typeahead

during

refresh.

Parameters

fildes

Chapter

2.

Curses

Subroutines

653

Return

Value

Upon

successful

completion,

the

typeahead

subroutine

returns

OK.

Otherwise,

it

returns

ERR.

Example

To

turn

typeahead

checking

on,

enter:

typeahead(1);

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”

on

page

657),

getch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561),

and

initscr

(“initscr

and

newterm

Subroutine”

on

page

577)

subroutines.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

unctrl

Subroutine

Purpose

Generates

a

printable

representation

of

a

character.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

char

*unctrl

(chtype

c);

Description

The

unctrl

subroutine

generates

a

character

string

that

is

a

printable

representation

of

c.

If

c

is

a

control

character,

it

is

converted

to

the

^X

notation.

If

c

contains

rendition

information,

the

effect

is

undefined.

Parameters

c

Return

Values

Upon

successful

completion,

the

unctrl

subroutine

returns

the

generated

string.

Otherwise,

it

returns

a

null

pointer.

Examples

To

display

a

printable

representation

of

the

newline

character,

enter:

654

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

char

*new_line;

int

my_character;

addstr

("Hit

the

enter

key.");

my_character=getch();

new_line=unctrl

(my_character);

printw

(Newline=%s",

new_line);

refresh();

This

prints,

″newline=^J″.

Related

Information

The

keyname

(“keyname,

key_name

Subroutine”

on

page

581)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

ungetch,

unget_wch

Subroutine

Purpose

Pushes

a

character

onto

the

input

queue.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

ungetch

(int

ch);

int

unget_wch

(const

wchar_t

wch);

Description

The

ungetch

subroutine

pushes

the

single-byte

character

ch

onto

the

head

of

the

input

queue.

The

unget_wch

subroutine

pushes

the

wide

character

wch

onto

the

head

of

the

input

queue.

One

character

of

push-back

is

guaranteed.

The

result

of

successive

calls

without

an

intervening

call

to

the

getch

or

get_wch

subroutine

are

unspecified.

Parameters

ch

wch

Chapter

2.

Curses

Subroutines

655

Examples

To

force

the

key

KEY_ENTER

back

into

the

queue,

use:

ungetch(KEY_ENTER);

Related

Information

The

getch

or

wgetch

(“getch,

mvgetch,

mvwgetch,

or

wgetch

Subroutine”

on

page

561)

subroutine.

Curses

Overview

for

Programming

and

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Characters

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

vidattr,

vid_attr,

vidputs,

or

vid_puts

Subroutine

Purpose

Outputs

attributes

to

the

terminal.

Library

Curses

Library

(libcurses.a)

Syntax

#include

<curses.h>

int

vidattr

(chtype

attr);

int

vid_attr

(attr_t

attr,

short

color_pair_number,

void

*opt);

int

vidputs

(chtype

attr,

int

(*putfunc)(int));

int

vid_puts

(attr_t

attr,

short

color_pair_number,

void

*opt,

int

(*putfunc)(int));

Description

These

subroutines

output

commands

to

a

terminal

that

changes

the

terminal’s

attributes.

If

the

terminfo

database

indicates

that

the

terminal

in

use

can

display

characters

in

the

rendition

specified

by

attr,

then

the

vadattr

subroutine

outputs

one

or

more

commands

to

request

that

the

terminal

display

subsequent

characters

in

that

rendition.

The

subroutine

outputs

by

calling

the

putchar

subroutine.

The

vidattr

subroutine

neither

relies

on

nor

updates

the

model

that

Curses

maintains

of

the

prior

rendition

mode.

The

vidputs

subroutine

computes

the

same

terminal

output

string

that

vidattr

does,

based

on

attr,

but

the

vidputs

subroutine

outputs

by

calling

the

user-supplied

subroutine

putfunc.

The

vid_attr

and

vid_puts

subroutines

correspond

to

vidattr

and

vidputs

respectively,

but

take

a

set

of

arguments,

one

of

type

attr_t

for

the

attributes,

short

for

the

color

pair

number

and

a

void

*,

and

thus

support

the

attribute

constants

with

the

WA_prefix.

656

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

The

opts

argument

is

reserved

for

definition

in

a

future

edition

of

this

document.

Currently,

the

application

must

provide

a

null

pointer

as

opts.

The

user-supplied

putfunc

subroutine

(which

can

be

specified

as

an

argument

to

either

vidputs

or

vid_puts

is

either

putchar

or

some

other

subroutine

with

the

same

prototype.

Both

the

vidputs

and

the

vid_puts

subroutines

ignore

the

return

value

of

putfunc.

Parameters

att

color_pair_number

*opt

*putfunc

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

1.

To

output

the

string

that

puts

the

terminal

in

its

best

standout

mode

through

the

putchar

subroutine,

enter

vidattr(A_STANDOUT);

2.

To

output

the

string

that

puts

the

terminal

in

its

best

standout

mode

through

the

putchar-like

subroutine

my_putc,

enter

int

(*my_putc)

();

vidputs(A_STANDOUT,

my_putc);

Related

Information

The

doupdate

(“doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines”),

is_linetouched

(“is_linetouched,

is_wintouched,

touchline,

touchwin,

untouchwin,

or

wtouchin

Subroutine”

on

page

648),

putchar,

putwchar

and

tigetflag

(“tigetflag,

tigetnum,

tigetstr,

or

tparm

Subroutine”

on

page

644)

subroutines.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Setting

Video

Attributes

and

Curses

Options

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

doupdate,

refresh,

wnoutrefresh,

or

wrefresh

Subroutines

Purpose

Refreshes

windows

and

lines.

Library

Curses

Library

(libcurses.a)

Chapter

2.

Curses

Subroutines

657

Syntax

#include

<curses.h>

int

doupdate(void);

int

refresh(void);

int

wnoutrefresh(WINDOW

*win);

int

wrefresh(WINDOW

*win);

Description

The

refresh

and

wrefresh

subroutines

refresh

the

current

or

specified

window.

The

subroutines

position

the

terminal’s

cursor

at

the

cursor

position

of

the

window,

except

that,

if

the

leaveok

mode

has

been

enabled,

they

may

leave

the

cursor

at

an

arbitrary

position.

The

wnoutrefresh

subroutine

determines

which

parts

of

the

terminal

may

need

updating.

The

doupdate

subroutine

sends

to

the

terminal

the

commands

to

perform

any

required

changes.

Parameters

*win

Specifies

the

window

to

be

refreshed.

Return

Values

Upon

successful

completion,

these

subroutines

return

OK.

Otherwise,

they

return

ERR.

Examples

For

the

doupdate

or

wnoutrefresh

subroutine:

To

update

the

user-defined

windows

my_window1

and

my_window2,

enter:

WINDOW

*my_window1,

my_window2;

wnoutrefresh(my_window1);

wnoutrefresh(my_window2);

doupdate();

For

the

refresh

or

wrefresh

subroutine:

1.

To

update

the

terminal’s

display

and

the

current

screen

structure

to

reflect

changes

made

to

the

standard

screen

structure,

use:

refresh();

2.

To

update

the

terminal

and

the

current

screen

structure

to

reflect

changes

made

to

a

user-defined

window

called

my_window,

use:

WINDOW

*my_window;

wrefresh(my_window);

3.

To

restore

the

terminal

to

its

state

at

the

last

refresh,

use:

wrefresh(curscr);

This

subroutine

is

useful

if

the

terminal

becomes

garbled

for

any

reason.

658

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Related

Information

The

clearok

(“clearok,

idlok,

leaveok,

scrollok,

setscrreg

or

wsetscrreg

Subroutine”

on

page

537)

subroutine.

Curses

Overview

for

Programming

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

List

of

Curses

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Manipulating

Window

Data

with

Curses

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

Chapter

2.

Curses

Subroutines

659

660

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

SDOT

or

DDOT

Function

Purpose

Returns

the

dot

product

of

two

vectors.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

REAL

FUNCTION

SDOT(N,

X,

INCX,

Y,

INCY)

INTEGER

INCX,

INCY,

N

REAL

X(*),

Y(*)

DOUBLE

PRECISION

FUNCTION

DDOT(N,

X,

INCX,

Y,

INCY)

INTEGER

INCX,

INCY,

N

DOUBLE

PRECISION

X(*),

Y(*)

Description

The

SDOT

or

DDOT

function

returns

the

dot

product

of

vectors

X

and

Y.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

a

value

of

0

is

returned.

CDOTC

or

ZDOTC

Function

Purpose

Returns

the

complex

dot

product

of

two

vectors,

conjugating

the

first.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

COMPLEX

FUNCTION

CDOTC(N,

X,

INCX,

Y,

INCY)

INTEGER

INCX,

INCY,

N

COMPLEX

X(*),

Y(*)

©

Copyright

IBM

Corp.

1994,

2004

661

DOUBLE

COMPLEX

FUNCTION

ZDOTC(N,

X,

INCX,

Y,

INCY)

INTEGER

INCX,

INCY,

N

COMPLEX*16

X(*),

Y(*)

Description

The

CDOTC

or

ZDOTC

function

returns

the

complex

dot

product

of

two

vectors,

conjugating

the

first.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

a

value

of

0

is

returned.

CDOTU

or

ZDOTU

Function

Purpose

Returns

the

complex

dot

product

of

two

vectors.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

COMPLEX

FUNCTION

CDOTU(N,

X,

INCX,

Y,

INCY)

INTEGER

INCX,

INCY,

N

COMPLEX

X(*),

Y(*)

DOUBLE

COMPLEX

FUNCTION

ZDOTU(N,

X,

INCX,

Y,

INCY)

INTEGER

INCX,

INCY,

N

COMPLEX*16

X(*),

Y(*)

Description

The

CDOTU

or

ZDOTU

function

returns

the

complex

dot

product

of

two

vectors.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

a

value

of

0

is

returned.

662

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SAXPY,

DAXPY,

CAXPY,

or

ZAXPY

Subroutine

Purpose

Computes

a

constant

times

a

vector

plus

a

vector.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SAXPY(N,A,X,INCX,Y,INCY)

INTEGER

INCX,

INCY,

N

REAL

A

REAL

X(*),

Y(*)

SUBROUTINE

DAXPY(N,A,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

DOUBLE

PRECISION

A

DOUBLE

PRECISION

X(*),Y(*)

SUBROUTINE

CAXPY(N,A,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

COMPLEX

A

COMPLEX

X(*),Y(*)

SUBROUTINE

ZAXPY(N,A,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

COMPLEX*16

A

COMPLEX*16

X(*),Y(*)

Description

The

SAXPY,

DAXPY,

CAXPY,

or

ZAXPY

subroutine

computes

a

constant

times

a

vector

plus

a

vector:

Y

=

A

*

X

+

Y

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

A

On

entry,

A

contains

a

constant

to

be

multiplied

by

the

X

vector;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

the

result

is

returned

in

vector

Y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

unchanged

on

exit.

Error

Codes

If

SA

=

0

or

N

<=

0,

the

subroutine

returns

immediately.

SROTG,

DROTG,

CROTG,

or

ZROTG

Subroutine

Purpose

Constructs

Givens

plane

rotation.

Library

BLAS

Library

(libblas.a)

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

663

FORTRAN

Syntax

SUBROUTINE

SROTG(A,B,C,S)

REAL

A,

B,

C,

S

SUBROUTINE

DROTG(A,B,C,S)

DOUBLE

PRECISION

A,B,C,S

SUBROUTINE

CROTG(A,B,C,S)

REAL

C

COMPLEX

A,B,S

SUBROUTINE

ZROTG(A,B,C,S)

DOUBLE

PRECISION

C

COMPLEX*16

A,B,S

Description

Given

vectors

A

and

B,

the

SROTG,

DROTG,

CROTG,

or

ZROTG

subroutine

computes:

A

B

a

=

---------,

b

=

|A|

+

|B|

|A|

+

|B|

2

2

1/2

roe

=

{

a

if

|A|

>

|B|

}

r

=

roe

(

a

+

b

),

{

b

if

|B|

>=

|A|

}

C

=

{

A/r

if

r

not

=

0}

S

=

{

B/r

if

r

not

=

0

}

{

1

if

r

=

0

}

{

0

if

r

=

0

}

The

numbers

C,

S,

and

r

then

satisfy

the

matrix

equation:

|

C

S

|

|

A

|

|

r

|

|

|

.

|

|

=

|

|

|

-S

C

|

|

B

|

|

0

|

The

subroutines

also

compute:

{

S

if

|A|

>

|B|,

z

=

{

1/C

if

|B|

>=

|A|

and

C

not

=

0,

{

1

if

C

=

0.

The

subroutines

return

r

overwriting

A

and

z

overwriting

B,

as

well

as

returning

C

and

S.

Parameters

A

On

entry,

contains

a

scalar

constant;

on

exit,

contains

the

value

r.

B

On

entry,

contains

a

scalar

constant;

on

exit,

contains

the

value

z.

C

Can

contain

any

value

on

entry;

the

value

C

returned

on

exit.

S

Can

contain

any

value

on

entry;

the

value

S

returned

on

exit.

SROT,

DROT,

CSROT,

or

ZDROT

Subroutine

Purpose

Applies

a

plane

rotation.

Library

BLAS

Library

(libblas.a)

664

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

FORTRAN

Syntax

SUBROUTINE

SROT(N,X,INCX,Y,INCY,C,S)

INTEGER

INCX,

INCY,

N

REAL

C,

S

REAL

X(*),

Y(*)

SUBROUTINE

DROT(N,X,INCX,Y,INCY,C,S)

INTEGER

INCX,INCY,N

DOUBLE

PRECISION

C,S

DOUBLE

PRECISION

X(*),Y(*)

SUBROUTINE

CSROT(N,X,INCX,Y,INCY,C,S)

INTEGER

INCX,INCY,N

REAL

C,S

COMPLEX

X(*),Y(*)

SUBROUTINE

ZDROT(N,X,INCX,Y,INCY,C,S)

INTEGER

INCX,INCY,N

DOUBLE

PRECISION

C,S

COMPLEX*16

X(*),Y(*)

Description

The

SROT,

DROT,

CSROT,

or

ZDROT

subroutine

computes:

|

X

|

|

C

S

|

|

X

|

|

i

|

|

|

|

i

|

|

|

:=

|

|

.

|

|

for

i

=

1,

...,

N.

|

Y

|

|

|

|

Y

|

|

i

|

|

-S

C

|

|

i

|

The

subroutines

return

the

modified

X

and

Y.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs

(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

modified

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

unchanged

on

exit.

C

Scalar

constant;

unchanged

on

exit.

S

Scalar

constant;

unchanged

on

exit.

Error

Codes

If

N

<=

0,

or

if

C

=

1

and

S

=

0,

the

subroutines

return

immediately.

SCOPY,

DCOPY,

CCOPY,

or

ZCOPY

Subroutine

Purpose

Copies

vector

X

to

Y.

Library

BLAS

Library

(libblas.a)

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

665

FORTRAN

Syntax

SUBROUTINE

SCOPY(N,X,INCX,Y,INCY)

INTEGER

INCX,

INCY,

N

REAL

X(*),

Y(*)

SUBROUTINE

DCOPY(N,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

DOUBLE

PRECISION

X(*),Y(*)

SUBROUTINE

CCOPY(N,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

COMPLEX

X(*),Y(*)

SUBROUTINE

ZCOPY(N,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

COMPLEX*16

X(*),Y(*)

Description

The

SCOPY,

DCOPY,

CCOPY,

or

ZCOPY

subroutine

copies

vector

X

to

vector

Y.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

)

or

greater;

can

contain

any

values

on

entry;

on

exit,

contains

the

same

values

as

X.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

the

subroutines

return

immediately.

SSWAP,

DSWAP,

CSWAP,

or

ZSWAP

Subroutine

Purpose

Interchanges

vectors

X

and

Y.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSWAP(N,X,INCX,Y,INCY)

INTEGER

INCX,

INCY,

N

REAL

X(*),

Y(*)

SUBROUTINE

DSWAP(N,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

DOUBLE

PRECISION

X(*),Y(*)

SUBROUTINE

CSWAP(N,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

COMPLEX

X(*),Y(*)

SUBROUTINE

ZSWAP(N,X,INCX,Y,INCY)

INTEGER

INCX,INCY,N

COMPLEX*16

X(*),Y(*)

666

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Description

The

SSWAP,

DSWAP,

CSWAP,

or

ZSWAP

subroutine

interchanges

vector

X

and

vector

Y.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

exit,

contains

the

elements

of

vector

Y.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

on

exit,

contains

the

elements

of

vector

X.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

the

subroutines

return

immediately.

SNRM2,

DNRM2,

SCNRM2,

or

DZNRM2

Function

Purpose

Computes

the

Euclidean

length

of

the

N-vector

stored

in

X()

with

storage

increment

INCX.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

REAL

FUNCTION

SNRM2(N,X,INCX)

INTEGER

INCX,

N

REAL

X(*)

DOUBLE

PRECISION

FUNCTION

DNRM2(N,X,INCX)

INTEGER

INCX,N

DOUBLE

PRECISION

X(*)

REAL

FUNCTION

SCNRM2(N,X,INCX)

INTEGER

INCX,N

COMPLEX

X(*)

DOUBLE

PRECISION

FUNCTION

DZNRM2(N,X,INCX)

INTEGER

INCX,N

COMPLEX*16

X(*)

Description

The

SNRM2,

DNRM2,

SCNRM2,

or

DZNRM2

function

returns

the

Euclidean

norm

of

the

N-vector

stored

in

X()

with

storage

increment

INCX.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

be

greater

than

0;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

a

value

of

0

is

returned.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

667

SASUM,

DASUM,

SCASUM,

or

DZASUM

Function

Purpose

Returns

the

sum

of

absolute

values

of

vector

components.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

REAL

FUNCTION

SASUM(N,X,INCX)

INTEGER

INCX,

N

REAL

X(*)

DOUBLE

PRECISION

FUNCTION

DASUM(N,X,INCX)

INTEGER

INCX,N

DOUBLE

PRECISION

X(*)

REAL

FUNCTION

SCASUM(N,X,INCX)

INTEGER

INCX,N

COMPLEX

X(*)

DOUBLE

PRECISION

FUNCTION

DZASUM(N,X,INCX)

INTEGER

INCX,N

COMPLEX*16

X(*)

Description

The

SASUM,

DASUM,

SCASUM,

or

DZASUM

function

returns

the

sum

of

absolute

values

of

vector

components.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

be

greater

than

0;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

a

value

of

0

is

returned.

SSCAL,

DSCAL,

CSSCAL,

CSCAL,

ZDSCAL,

or

ZSCAL

Subroutine

Purpose

Scales

a

vector

by

a

constant.

Library

BLAS

Library

(libblas.a)

668

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

FORTRAN

Syntax

SUBROUTINE

SSCAL(N,A,X,INCX)

INTEGER

INCX,

N

REAL

A

REAL

X(*)

SUBROUTINE

DSCAL(N,A,X,INCX)

INTEGER

INCX,N

DOUBLE

PRECISION

A

DOUBLE

PRECISION

X(*)

SUBROUTINE

CSSCAL(N,A,X,INCX)

INTEGER

INCX,N

REAL

A

COMPLEX

X(*)

SUBROUTINE

CSCAL

INTEGER

INCX,N

COMPLEX

A

COMPLEX

X(*)

SUBROUTINE

ZDSCAL

INTEGER

INCX,N

DOUBLE

PRECISION

A

COMPLEX*16

X(*)

SUBROUTINE

ZSCAL(

INTEGER

INCX,N

COMPLEX*16

A

COMPLEX*16

X(*)

Description

The

SSCAL,

DSCAL,

CSSCAL,

CSCAL,

ZDSCAL,

or

ZSCAL

subroutine

scales

a

vector

by

a

constant:

X

:=

X

*

A

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

A

Scaling

constant;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

exit,

contains

the

scaled

vector.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

be

greater

than

0;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

the

subroutines

return

immediately.

ISAMAX,

IDAMAX,

ICAMAX,

or

IZAMAX

Function

Purpose

Finds

the

index

of

element

having

maximum

absolute

value.

Library

BLAS

Library

(libblas.a)

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

669

FORTRAN

Syntax

INTEGER

FUNCTION

ISAMAX(N,X,INCX)

INTEGER

INCX,

N

REAL

X(*)

INTEGER

FUNCTION

IDAMAX(N,X,INCX)

INTEGER

INCX,N

DOUBLE

PRECISION

X(*)

INTEGER

FUNCTION

ICAMAX(N,X,INCX)

INTEGER

INCX,N

COMPLEX

X(*)

INTEGER

FUNCTION

IZAMAX(N,X,INCX)

INTEGER

INCX,N

COMPLEX*16

X(*)

Description

The

ISAMAX,

IDAMAX,

ICAMAX,

or

IZAMAX

function

returns

the

index

of

element

having

maximum

absolute

value.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

a

value

of

0

is

returned.

SDSDOT

Function

Purpose

Returns

the

dot

product

of

two

vectors

plus

a

constant.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

REAL

FUNCTION

SDSDOT(N,B,X,INCX,Y,INCY)

INTEGER

N,

INCX,

INCY

REAL

B,

X(*),

Y(*)

Purpose

The

SDSDOT

function

computes

the

sum

of

constant

B

and

dot

product

of

vectors

X

and

Y.

Note:

Computation

is

performed

in

double

precision.

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

B

Scalar;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

unchanged

on

exit.

670

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

be

greater

than

zero;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

be

greater

than

0;

unchanged

on

exit.

Error

Codes

For

values

of

N

<=

0,

the

subroutine

returns

immediately.

SROTM

or

DROTM

Subroutine

Purpose

Applies

the

modified

Givens

transformation.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SROTM(N,X,INCX,Y,INCY,PARAM)

INTEGER

N,

INCX,

INCY

REAL

X(*),

Y(*),

PARAM(5)

SUBROUTINE

DROTM(N,X,INCX,Y,INCY,PARAM)

INTEGER

N,INCX,INCY

DOUBLE

PRECISION

X(*),Y(*),PARAM(5)

Description

Let

H

denote

the

modified

Givens

transformation

defined

by

the

parameter

array

PARAM.

The

SROTM

or

DROTM

subroutine

computes:

|

x

|

|

x

|

|

|

:=

H

*

|

|

|

y

|

|

y

|

where

H

is

a

2

x

2

matrix

with

the

components

defined

by

the

elements

of

the

array

PARAM

as

follows:

if

PARAM(1)

==

0.0

H(1,1)

=

H(2,2)

=

1.0

H(2,1)

=

PARAM(3)

H(1,2)

=

PARAM(4)

if

PARAM(1)

==

1.0

H(1,2)

=

H(2,1)

=

-1.0

H(1,1)

=

PARAM(2)

H(2,2)

=

PARAM(5)

if

PARAM(1)

==

-1.0

H(1,1)

=

PARAM(2)

H(2,1)

=

PARAM(3)

H(1,2)

=

PARAM(4)

H(2,2)

=

PARAM(5)

if

PARAM(1)

==

-2.0

H

=

I

(Identity

matrix)

If

N

<=

0

or

H

is

an

identity

matrix,

the

subroutines

return

immediately.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

671

Parameters

N

On

entry,

N

specifies

the

number

of

elements

in

X

and

Y;

unchanged

on

exit.

X

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

exit,

modified

as

described

above.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

be

greater

than

0;

unchanged

on

exit.

Y

Vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

on

exit,

modified

as

described

above.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

be

greater

than

0;

unchanged

on

exit.

PARAM

Vector

of

dimension

(5);

on

entry,

must

be

set

as

described

above.

Specifically,

PARAM(1)

is

a

flag

and

must

have

value

of

either

0.0,

-1.0,

1.0,

or

2.0;

unchanged

on

exit.

Related

information

The

SROTMG

or

DROTMG

(“SROTMG

or

DROTMG

Subroutine”)

subroutine

builds

the

PARAM

array

prior

to

use

by

the

SROTM

or

DROTM

subroutine.

SROTMG

or

DROTMG

Subroutine

Purpose

Constructs

a

modified

Givens

transformation.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SROTMG(D1,D2,X1,X2,PARAM)

REAL

D1,

D2,

X1,

X2,

PARAM(5)

SUBROUTINE

DROTMG(D1,D2,X1,X2,PARAM)

DOUBLE

PRECISION

D1,D2,X1,X2,PARAM(5)

Description

The

SROTMG

or

DROTMG

subroutine

constructs

a

modified

Givens

transformation.

The

input

quantities

D1,

D2,

X1,

and

X2

define

a

2-vector

in

partitioned

form:

|

a1

|

|

sqrt(D1)

0

|

|

X1

|

|

|

=

|

|

|

|

|

a2

|

|

0

sqrt(D2)

|

|

X2

|

The

subroutines

determine

the

modified

Givens

rotation

matrix

H

that

transforms

X2

and,

thus,

a2

to

0.

A

representation

of

this

matrix

is

stored

in

the

array

PARAM

as

follows:

Case

1:

PARAM(1)

=

1.0

PARAM(2)

=

H(1,1)

PARAM(5)

=

H(2,2)

Case

2:

PARAM(1)

=

0.0

PARAM(3)

=

H(2,1)

PARAM(4)

=

H(1,2)

Case

3:

PARAM(1)

=

-1.0

H(1,1)

=

PARAM(2)

H(2,1)

=

PARAM(3)

H(1,2)

=

PARAM(4)

H(2,2)

=

PARAM(5)

672

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Case

4:

PARAM(1)

=

-2.0

H

=

I

(Identity

matrix)

Note:

Locations

in

PARAM

not

listed

are

left

unchanged.

Parameters

D1

Nonnegative

scalar;

modified

on

exit

to

reflect

the

results

of

the

transformation.

D2

Scalar;

can

be

negative

on

entry;

modified

on

exit

to

reflect

the

results

of

the

transformation.

X1

Scalar;

modified

on

exit

to

reflect

the

results

of

the

transformation.

X2

Scalar;

unchanged

on

exit.

PARAM

Vector

of

dimension

(5);

values

on

entry

are

unused;

modified

on

exit

as

described

above.

Related

Information

The

SROTM

and

DROTM

(“SROTM

or

DROTM

Subroutine”

on

page

671)

subroutines

apply

the

Modified

Givens

Transformation.

SGEMV,

DGEMV,

CGEMV,

or

ZGEMV

Subroutine

Purpose

Performs

matrix-vector

operation

with

general

matrices.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SGEMV(TRANS,

M,

N,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

REAL

ALPHA,

BETA

INTEGER

INCX,

INCY,

LDA,

M,

N

CHARACTER*1

TRANS

REAL

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

DGEMV(TRANS,

M,

N,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

DOUBLE

PRECISION

ALPHA,BETA

INTEGER

INCX,INCY,LDA,M,N

CHARACTER*1

TRANS

DOUBLE

PRECISION

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

CGEMV(TRANS,

M,

N,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX

ALPHA,BETA

INTEGER

INCX,INCY,LDA,M,N

CHARACTER*1

TRANS

COMPLEX

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

ZGEMV(TRANS,

M,

N,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX*16

ALPHA,BETA

INTEGER

INCX,INCY,LDA,M,N

CHARACTER*1

TRANS

COMPLEX*16

A(LDA,*),

X(*),

Y(*)

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

673

Description

The

SGEMV,

DGEMV,

CGEMV,

or

ZGEMV

subroutine

performs

one

of

the

following

matrix-vector

operations:

y

:=

alpha

*

A

*

x

+

beta

*

y

OR

y

:=

alpha

*

A’

*

x

+

beta

*

y

where

alpha

and

beta

are

scalars,

x

and

y

are

vectors,

and

A

is

an

M

by

N

matrix.

Parameters

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

y

:=

alpha

*

A

*

x

+

beta

*

y

TRANS

=

’T’

or

’t’

y

:=

alpha

*

A’

*

x

+

beta

*

y

TRANS

=

’C’

or

’c’

y

:=

alpha

*

A’

*

x

+

beta

*

y

Unchanged

on

exit.

M

On

entry,

M

specifies

the

number

of

rows

of

the

matrix

A;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

A

must

contain

the

matrix

of

coefficients;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

)

when

TRANS

=

’N’

or

’n’,

otherwise,

at

least

(1

+

(M-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

when

BETA

is

supplied

as

0,

Y

need

not

be

set

on

input;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

1

+

(M-1)

*

abs(

INCY

)

)

when

TRANS

=

’N’

or

’n’,

otherwise

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

with

BETA

nonzero,

the

incremented

array

Y

must

contain

the

vector

y;

on

exit,

Y

is

overwritten

by

the

updated

vector

y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

SGBMV,

DGBMV,

CGBMV,

or

ZGBMV

Subroutine

Purpose

Performs

matrix-vector

operations

with

general

banded

matrices.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SGBMV(TRANS,

M,

N,

KL,

KU,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

REAL

ALPHA,

BETA

674

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

INTEGER

INCX,

INCY,

KL,

KU,

LDA,

M,

N

CHARACTER*1

TRANS

REAL

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

DGBMV(TRANS,

M,

N,

KL,

KU,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

DOUBLE

PRECISION

ALPHA,BETA

INTEGER

INCX,INCY,KL,KU,LDA,M,N

CHARACTER*1

TRANS

DOUBLE

PRECISION

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

CGBMV(TRANS,

M,

N,

KL,

KU,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX

ALPHA,BETA

INTEGER

INCX,INCY,KL,KU,LDA,M,N

CHARACTER*1

TRANS

COMPLEX

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

ZGBMV(TRANS,

M,

N,

KL,

KU,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX*16

ALPHA,BETA

INTEGER

INCX,INCY,KL,KU,LDA,M,N

CHARACTER*1

TRANS

COMPLEX*16

A(LDA,*),

X(*),

Y(*)

Description

The

SGBMV,

DGBMV,

CGBMV,

or

ZGBMV

subroutine

performs

one

of

the

following

matrix-vector

operations:

y

:=

alpha

*

A

*

x

+

beta

*

y

OR

y

:=

alpha

*

A’

*

x

+

beta

*

y

where

alpha

and

beta

are

scalars,

x

and

y

are

vectors

and

A

is

an

M

by

N

band

matrix,

with

KL

subdiagonals

and

KU

superdiagonals.

Parameters

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

y

:=

alpha

*

A

*

x

+

beta

*

y

TRANS

=

’T’

or

’t’

y

:=

alpha

*

A’

*

x

+

beta

*

y

TRANS

=

’C’

or

’c’

y

:=

alpha

*

A’

*

x

+

beta

*

y

Unchanged

on

exit.

M

On

entry,

M

specifies

the

number

of

rows

of

the

matrix

A;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

KL

On

entry,

KL

specifies

the

number

of

subdiagonals

of

the

matrix

A;

KL

must

satisfy

0

.le.

KL;

unchanged

on

exit.

KU

On

entry,

KU

specifies

the

number

of

superdiagonals

of

the

matrix

A;

KU

must

satisfy

0

.le.

KU;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

675

A

A

vector

of

dimension

(

LDA,

N

);

on

entry,

the

leading

(

KL

+

KU

+

1

)

by

N

part

of

the

array

A

must

contain

the

matrix

of

coefficients,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

(

KU

+

1

)

of

the

array,

the

first

superdiagonal

starting

at

position

2

in

row

KU,

the

first

subdiagonal

starting

at

position

1

in

row

(

KU

+

2

),

and

so

on.

Elements

in

the

array

A

that

do

not

correspond

to

elements

in

the

band

matrix

(such

as

the

top

left

KU

by

KU

triangle)

are

not

referenced.

The

following

program

segment

transfers

a

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

DO

20,

J

=

1,

N

K

=

KU

+

1

-

J

DO

10,

I

=

MAX(

1,

J

-

KU

),

MIN(

M,

J

+

KL

)

A(

K

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

Unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

LDA

must

be

at

least

(

KL

+

KU

+

1

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

)

when

TRANS

=

’N’

or

’n’,

otherwise,

at

least

(1

+

(M-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

when

BETA

is

supplied

as

0

then

Y

need

not

be

set

on

input;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(M-1)

*

abs(

INCY

)

)

when

TRANS

=

’N’

or

’n’

,

otherwise,

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

the

incremented

array

Y

must

contain

the

vector

y;

on

exit,

Y

is

overwritten

by

the

updated

vector

y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

CHEMV

or

ZHEMV

Subroutine

Purpose

Performs

matrix-vector

operations

using

Hermitian

matrices.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHEMV(UPLO,

N,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX

ALPHA,

BETA

INTEGER

INCX,

INCY,

LDA,

N

CHARACTER*1

UPLO

COMPLEX

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

ZHEMV(UPLO,

N,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX*16

ALPHA,BETA

INTEGER

INCX,INCY,LDA,N

CHARACTER*1

UPLO

COMPLEX*16

A(LDA,*),

X(*),

Y(*)

Description

The

CHEMV

or

ZHEMV

subroutine

performs

the

matrix-vector

operation:

y

:=

alpha

*

A

*

x

+

beta

*

y

where

alpha

and

beta

are

scalars,

x

and

y

are

N

element

vectors

and

A

is

an

N

by

N

Hermitian

matrix.

676

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

A

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

A

is

to

be

referenced;

unchanged

on

exit.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

A

is

to

be

referenced;

unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced;

on

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set

and

are

assumed

to

be

0;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

when

BETA

is

supplied

as

0

then

Y

need

not

be

set

on

input;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

on

exit,

Y

is

overwritten

by

the

updated

vector

y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

CHBMV

or

ZHBMV

Subroutine

Purpose

Performs

matrix-vector

operations

using

a

Hermitian

band

matrix.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHBMV(UPLO,

N,

K,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX

ALPHA,

BETA

INTEGER

INCX,

INCY,

K,

LDA,

N

CHARACTER*1

UPLO

COMPLEX

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

ZHBMV(UPLO,

N,

K,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX*16

ALPHA,BETA

INTEGER

INCX,INCY,K,LDA,N

CHARACTER*1

UPLO

COMPLEX*16

A(LDA,*),

X(*),

Y(*)

Description

The

CHBMV

or

ZHBMV

subroutine

performs

the

matrix-vector

operation:

y

:=

alpha

*

A

*

x

+

beta

*

y

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

677

where

alpha

and

beta

are

scalars,

x

and

y

are

N

element

vectors,

and

A

is

an

N

by

N

Hermitian

band

matrix

with

K

superdiagonals.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

band

matrix

A

is

being

supplied

as

follows:

UPLO

=

’U’

or

’u’

The

upper

triangular

part

of

A

is

being

supplied.

UPLO

=

’L’

or

’l’

The

lower

triangular

part

of

A

is

being

supplied.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry,

K

specifies

the

number

of

superdiagonals

of

the

matrix

A;

K

must

satisfy

0

.le.

K;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

).

On

entry

with

UPLO

=

’U’

or

’u’,

the

leading

(

K

+

1

)

by

N

part

of

the

array

A

must

contain

the

upper

triangular

band

part

of

the

Hermitian

matrix,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

(

K

+

1

)

of

the

array,

the

first

superdiagonal

starting

at

position

2

in

row

K,

and

so

on.

The

top

left

K

by

K

triangle

of

the

array

A

is

not

referenced.

The

following

program

segment

transfers

the

upper

triangular

part

of

a

Hermitian

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

DO

20,

J

=

1,

N

M

=

K

+

1

-

J

DO

10,

I

=

MAX(

1,

J

-

K

),

J

A(

M

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

Note:

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

(

K

+

1

)

by

N

part

of

the

array

A

must

contain

the

lower

triangular

band

part

of

the

Hermitian

matrix,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

1

of

the

array,

the

first

subdiagonal

starting

at

position

1

in

row

2,

and

so

on.

The

bottom

right

K

by

K

triangle

of

the

array

A

is

not

referenced.

The

following

program

segment

transfers

the

lower

triangular

part

of

a

Hermitian

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

DO

20,

J

=

1,

N

M

=

1

-

J

DO

10,

I

=

J,

MIN(

N,

J

+

K

)

A(

M

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set

and

are

assumed

to

be

0.

Unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

(

K

+

1

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

the

incremented

array

Y

must

contain

the

vector

y;

on

exit,

Y

is

overwritten

by

the

updated

vector

y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

678

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

CHPMV

or

ZHPMV

Subroutine

Purpose

Performs

matrix-vector

operations

using

a

packed

Hermitian

matrix.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHPMV(UPLO,

N,

ALPHA,

AP,

X,

INCX,

BETA,

Y,

INCY)

COMPLEX

ALPHA,

BETA

INTEGER

INCX,

INCY,

N

CHARACTER*1

UPLO

COMPLEX

AP(*),

X(*),

Y(*)

SUBROUTINE

ZHPMV

COMPLEX*16

ALPHA,BETA

INTEGER

INCX,INCY,N

CHARACTER*1

UPLO

COMPLEX*16

AP(*),

X(*),

Y(*)

Description

The

CHPMV

or

ZHPMV

subroutine

performs

the

matrix-vector

operation:

y

:=

alpha

*

A

*

x

+

beta

*

y

where

alpha

and

beta

are

scalars,

x

and

y

are

N

element

vectors

and

A

is

an

N

by

N

Hermitian

matrix,

supplied

in

packed

form.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

matrix

A

is

supplied

in

the

packed

array

AP

as

follows:

UPLO

=

’U’

or

’u’

The

upper

triangular

part

of

A

is

supplied

in

AP.

UPLO

=

’L’

or

’l’

The

lower

triangular

part

of

A

is

supplied

in

AP.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

AP

A

vector

of

dimension

at

least

(

(

N

*

(N+1)

)/2

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

array

AP

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(1,2)

and

A(2,2)

respectively,

and

so

on;

on

entry

with

UPLO

=

’L’

or

’l’,

the

array

AP

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(2,1)

and

A(3,1)

respectively,

and

so

on.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set

and

are

assumed

to

be

0;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

when

BETA

is

supplied

as

0

then

Y

need

not

be

set

on

input;

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

679

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

on

exit,

Y

is

overwritten

by

the

updated

vector

y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

SSYMV

or

DSYMV

Subroutine

Purpose

Performs

matrix-vector

operations

using

a

symmetric

matrix.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSYMV(UPLO,

N,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

REAL

ALPHA,

BETA

INTEGER

INCX,

INCY,

LDA,

N

CHARACTER*1

UPLO

REAL

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

DSYMV(UPLO,

N,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

DOUBLE

PRECISION

ALPHA,BETA

INTEGER

INCX,INCY,LDA,N

CHARACTER*1

UPLO

DOUBLE

PRECISION

A(LDA,*),

X(*),

Y(*)

Description

The

SSYMV

or

DSYMV

subroutine

performs

the

matrix-vector

operation:

y

:=

alpha

*

A

*

x

+

beta

*

y

where

alpha

and

beta

are

scalars,

x

and

y

are

N

element

vectors

and

A

is

an

N

by

N

symmetric

matrix.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

A

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

A

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

A

is

to

be

referenced.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

symmetric

matrix;

the

strictly

lower

triangular

part

of

A

is

not

referenced;

on

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

symmetric

matrix;

the

strictly

upper

triangular

part

of

A

is

not

referenced;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

680

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

when

BETA

is

supplied

as

0

then

Y

need

not

be

set

on

input;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

on

exit,

Y

is

overwritten

by

the

updated

vector

y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

SSBMV

or

DSBMV

Subroutine

Purpose

Performs

matrix-vector

operations

using

symmetric

band

matrix.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSBMV(UPLO,

N,

K,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

REAL

ALPHA,

BETA

INTEGER

INCX,

INCY,

K,

LDA,

N

CHARACTER*1

UPLO

REAL

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

DSBMV(UPLO,

N,

K,

ALPHA,

A,

LDA,

X,

INCX,

BETA,

Y,

INCY)

DOUBLE

PRECISION

ALPHA,BETA

INTEGER

INCX,INCY,K,LDA,N

CHARACTER*1

UPLO

DOUBLE

PRECISION

A(LDA,*),

X(*),

Y(*)

Description

The

SSBMV

or

DSBMV

subroutine

performs

the

matrix-vector

operation:

y

:=

alpha

*

A

*

x

+

beta

*

y

where

alpha

and

beta

are

scalars,

x

and

y

are

N

element

vectors,

and

A

is

an

N

by

N

symmetric

band

matrix

with

K

super-diagonals.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

band

matrix

A

is

being

supplied

as

follows:

UPLO

=

’U’

or

’u’

The

upper

triangular

part

of

A

is

being

supplied.

UPLO

=

’L’

or

’l’

The

lower

triangular

part

of

A

is

being

supplied.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry,

K

specifies

the

number

of

superdiagonals

of

the

matrix

A;

K

must

satisfy

0

.le.

K;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

681

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

(

K

+

1

)

by

N

part

of

the

array

A

must

contain

the

upper

triangular

band

part

of

the

symmetric

matrix,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

(

K

+

1

)

of

the

array,

the

first

superdiagonal

starting

at

position

2

in

row

K,

and

so

on.

The

top

left

K

by

K

triangle

of

the

array

A

is

not

referenced.

The

following

program

segment

transfers

the

upper

triangular

part

of

a

symmetric

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

DO

20,

J

=

1,

N

M

=

K

+

1

-

J

DO

10,

I

=

MAX(

1,

J

-

K

),

J

A(

M

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

(

K

+

1

)

by

N

part

of

the

array

A

must

contain

the

lower

triangular

band

part

of

the

symmetric

matrix,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

1

of

the

array,

the

first

subdiagonal

starting

at

position

1

in

row

2,

and

so

on.

The

bottom

right

K

by

K

triangle

of

the

array

A

is

not

referenced.

The

following

program

segment

transfers

the

lower

triangular

part

of

a

symmetric

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

DO

20,

J

=

1,

N

M

=

1

-

J

DO

10,

I

=

J,

MIN(

N,

J

+

K

)

A(

M

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

Unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

(

K

+

1

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

the

incremented

array

Y

must

contain

the

vector

y;

on

exit,

Y

is

overwritten

by

the

updated

vector

y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

SSPMV

or

DSPMV

Subroutine

Purpose

Performs

matrix-vector

operations

using

a

packed

symmetric

matrix.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSPMV(UPLO,

N,

ALPHA,

AP,

X,

INCX,

BETA,

Y,

INCY)

REAL

ALPHA,

BETA

INTEGER

INCX,

INCY,

N

CHARACTER*1

UPLO

REAL

AP(*),

X(*),

Y(*)

682

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SUBROUTINE

DSPMV(UPLO,

N,

ALPHA,

AP,

X,

INCX,

BETA,

Y,

INCY)

DOUBLE

PRECISION

ALPHA,BETA

INTEGER

INCX,INCY,N

CHARACTER*1

UPLO

DOUBLE

PRECISION

AP(*),

X(*),

Y(*)

Description

The

SSPMV

or

DSPMV

subroutine

performs

the

matrix-vector

operation:

y

:=

alpha

*

A

*

x

+

beta

*

y

where

alpha

and

beta

are

scalars,

x

and

y

are

N

element

vectors

and

A

is

an

N

by

N

symmetric

matrix,

supplied

in

packed

form.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

matrix

A

is

supplied

in

the

packed

array

AP

as

follows:

UPLO

=

’U’

or

’u’

The

upper

triangular

part

of

A

is

supplied

in

AP.

UPLO

=

’L’

or

’l’

The

lower

triangular

part

of

A

is

supplied

in

AP.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

AP

A

vector

of

dimension

at

least

(

(

N

*

(N+1)

)/2

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

array

AP

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(1,2)

and

A(2,2)

respectively,

and

so

on;

on

entry

with

UPLO

=

’L’

or

’l’,

the

array

AP

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(2,1)

and

A(3,1)

respectively,

and

so

on;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

when

BETA

is

supplied

as

0

then

Y

need

not

be

set

on

input;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

on

exit,

Y

is

overwritten

by

the

updated

vector

y.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

STRMV,

DTRMV,

CTRMV,

or

ZTRMV

Subroutine

Purpose

Performs

matrix-vector

operations

using

a

triangular

matrix.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

STRMV(UPLO,

TRANS,

DIAG,

N,

A,

LDA,

X,

INCX)

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

683

INTEGER

INCX,

LDA,

N

CHARACTER*1

DIAG,

TRANS,

UPLO

REAL

A(LDA,*),

X(*)

SUBROUTINE

DTRMV(UPLO,

TRANS,

DIAG,

N,

A,

LDA,

X,

INCX)

INTEGER

INCX,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

DOUBLE

PRECISION

A(LDA,*),

X(*)

SUBROUTINE

CTRMV(UPLO,

TRANS,

DIAG,

N,

A,

LDA,

X,

INCX)

INTEGER

INCX,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX

A(LDA,*),

X(*)

SUBROUTINE

ZTRMV(UPLO,

TRANS,

DIAG,

N,

A,

LDA,

X,

INCX)

INTEGER

INCX,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX*16

A(LDA,*),X(*)

Description

The

STRMV,

DTRMV,

CTRMV,

or

ZTRMV

subroutine

performs

one

of

the

matrix-vector

operations:

x

:=

A

*

x

OR

x

:=

A’

*

x

where

x

is

an

N

element

vector

and

A

is

an

N

by

N

unit,

or

non-unit,

upper

or

lower

triangular

matrix.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

matrix

is

an

upper

or

lower

triangular

matrix

as

follows:

UPLO

=

’U’

or

’u’

A

is

an

upper

triangular

matrix.

UPLO

=

’L’

or

’l’

A

is

a

lower

triangular

matrix.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

x

:=

A

*

x

TRANS

=

’T’

or

’t’

x

:=

A’

*

x

TRANS

=

’C’

or

’c’

x

:=

A’

*

x

Unchanged

on

exit.

DIAG

On

entry,

DIAG

specifies

whether

or

not

A

is

unit

triangular

as

follows:

DIAG

=

’U’

or

’u’

A

is

assumed

to

be

unit

triangular.

DIAG

=

’N’

or

’n’

A

is

not

assumed

to

be

unit

triangular.

Unchanged

on

exit.

684

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced;

on

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

When

DIAG

=

’U’

or

’u’,

the

diagonal

elements

of

A

are

not

referenced,

but

are

assumed

to

be

unity;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

).

On

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

on

exit,

X

is

overwritten

with

the

transformed

vector

x.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

STBMV,

DTBMV,

CTBMV,

or

ZTBMV

Subroutine

Purpose

Performs

matrix-vector

operations

using

a

triangular

band

matrix.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

STBMV(UPLO,

TRANS,

DIAG,

N,

K,

A,

LDA,

X,

INCX)

INTEGER

INCX,

K,

LDA,

N

CHARACTER*1

DIAG,

TRANS,

UPLO

REAL

A(LDA,*),

X(*)

SUBROUTINE

DTBMV(UPLO,

TRANS,

DIAG,

N,

K,

A,

LDA,

X,

INCX)

INTEGER

INCX,K,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

DOUBLE

PRECISION

A(LDA,*),

X(*)

SUBROUTINE

CTBMV(UPLO,

TRANS,

DIAG,

N,

K,

A,

LDA,

X,

INCX)

INTEGER

INCX,K,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX

A(LDA,*),

X(*)

SUBROUTINE

ZTBMV(UPLO,

TRANS,

DIAG,

N,

K,

A,

LDA,

X,

INCX)

INTEGER

INCX,K,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX*16

A(LDA,*),

X(*)

Description

The

STBMV,

DTBMV,

CTBMV,

or

ZTBMV

subroutine

performs

one

of

the

matrix-vector

operations:

x

:=

A

*

x

OR

x

:=

A’

*

x

where

x

is

an

N

element

vector

and

A

is

an

N

by

N

unit,

or

non-unit,

upper

or

lower

triangular

band

matrix,

with

(

K

+

1

)

diagonals.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

685

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

matrix

is

an

upper

or

lower

triangular

matrix

as

follows:

UPLO

=

’U’

or

’u’

A

is

an

upper

triangular

matrix.

UPLO

=

’L’

or

’l’

A

is

a

lower

triangular

matrix.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

x

:=

A

*

x

TRANS

=

’T’

or

’t’

x

:=

A’

*

x

TRANS

=

’C’

or

’c’

x

:=

A’

*

x

Unchanged

on

exit.

DIAG

On

entry,

DIAG

specifies

whether

or

not

A

is

unit

triangular

as

follows:

DIAG

=

’U’

or

’u’

A

is

assumed

to

be

unit

triangular.

DIAG

=

’N’

or

’n’

A

is

not

assumed

to

be

unit

triangular.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry

with

UPLO

=

’U’

or

’u’,

K

specifies

the

number

of

superdiagonals

of

the

matrix

A;

on

entry

with

UPLO

=

’L’

or

’l’,

K

specifies

the

number

of

subdiagonals

of

the

matrix

A.

K

must

satisfy

0

.le.

K;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

).

On

entry

with

UPLO

=

’U’

or

’u’,

the

leading

(

K

+

1

)

by

N

part

of

the

array

A

must

contain

the

upper

triangular

band

part

of

the

matrix

of

coefficients,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

(

K

+

1

)

of

the

array,

the

first

superdiagonal

starting

at

position

2

in

row

K,

and

so

on.

The

top

left

K

by

K

triangle

of

the

array

A

is

not

referenced.

The

following

program

segment

will

transfer

an

upper

triangular

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

DO

20,

J

=

1,

N

M

=

K

+

1

-

J

DO

10,

I

=

MAX(

1,

J

-

K

),

J

A(

M

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

DO

20,

J

=

1,

N

M

=

1

-

J

DO

10,

I

=

J,

MIN(

N,

J

+

K

)

A(

M

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

(

K

+

1

)

by

N

part

of

the

array

A

must

contain

the

lower

triangular

band

part

of

the

matrix

of

coefficients,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

1

of

the

array,

the

first

subdiagonal

starting

at

position

1

in

row

2,

and

so

on.

The

bottom

right

K

by

K

triangle

of

the

array

A

is

not

referenced.

The

following

program

segment

will

transfer

a

lower

triangular

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

When

DIAG

=

’U’

or

’u’

the

elements

of

the

array

A

corresponding

to

the

diagonal

elements

of

the

matrix

are

not

referenced,

but

are

assumed

to

be

unity;

unchanged

on

exit.

686

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

(

K

+

1

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

on

exit,

X

is

overwritten

with

the

transformed

vector

x.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

STPMV,

DTPMV,

CTPMV,

or

ZTPMV

Subroutine

Purpose

Performs

matrix-vector

operations

on

a

packed

triangular

matrix.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

STPMV(UPLO,

TRANS,

DIAG,

N,

AP,

X,

INCX)

INTEGER

INCX,

N

CHARACTER*1

DIAG,

TRANS,

UPLO

REAL

AP(*),

X(*)

SUBROUTINE

DTPMV(UPLO,

TRANS,

DIAG,

N,

AP,

X,

INCX)

INTEGER

INCX,N

CHARACTER*1

DIAG,TRANS,UPLO

DOUBLE

PRECISION

AP(*),

X(*)

SUBROUTINE

CTPMV(UPLO,

TRANS,

DIAG,

N,

AP,

X,

INCX)

INTEGER

INCX,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX

AP(*),

X(*)

SUBROUTINE

ZTPMV(UPLO,

TRANS,

DIAG,

N,

AP,

X,

INCX)

INTEGER

INCX,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX*16

AP(*),

X(*)

Description

The

STPMV,

DTPMV,

CTPMV,

or

ZTPMV

subroutine

performs

one

of

the

matrix-vector

operations:

x

:=

A

*

x

OR

x

:=

A’

*

x

where

x

is

an

N

element

vector

and

A

is

an

N

by

N

unit,

or

non-unit,

upper

or

lower

triangular

matrix,

supplied

in

packed

form.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

687

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

matrix

is

an

upper

or

lower

triangular

matrix

as

follows:

UPLO

=

’U’

or

’u’

A

is

an

upper

triangular

matrix.

UPLO

=

’L’

or

’l’

A

is

a

lower

triangular

matrix.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

x

:=

A

*

x

TRANS

=

’T’

or

’t’

x

:=

A’

*

x

TRANS

=

’C’

or

’c’

x

:=

A’

*

x

Unchanged

on

exit.

DIAG

On

entry,

DIAG

specifies

whether

or

not

A

is

unit

triangular

as

follows:

DIAG

=

’U’

or

’u’

A

is

assumed

to

be

unit

triangular.

DIAG

=

’N’

or

’n’

A

is

not

assumed

to

be

unit

triangular.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

AP

A

vector

of

dimension

at

least

(

(

N

*

(N+1)

)/2

).

On

entry

with

UPLO

=

’U’

or

’u’,

the

array

AP

must

contain

the

upper

triangular

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(1,2)

and

A(2,2)

respectively,

and

so

on.

On

entry

with

UPLO

=

’L’

or

’l’,

the

array

AP

must

contain

the

lower

triangular

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(2,1)

and

A(3,1)

respectively,

and

so

on.

When

DIAG

=

’U’

or

’u’,

the

diagonal

elements

of

A

are

not

referenced,

but

are

assumed

to

be

unity;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1

)

*

abs(

INCX

)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

on

exit,

X

is

overwritten

with

the

transformed

vector

x.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

STRSV,

DTRSV,

CTRSV,

or

ZTRSV

Subroutine

Purpose

Solves

system

of

equations.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

STRSV(UPLO,

TRANS,

DIAG,

N,

A,

LDA,

X,

INCX)

INTEGER

INCX,

LDA,

N

CHARACTER*1

DIAG,

TRANS,

UPLO

REAL

A(LDA,*),

X(*)

688

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SUBROUTINE

DTRSV(UPLO,

TRANS,

DIAG,

N,

A,

LDA,

X,

INCX)

INTEGER

INCX,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

DOUBLE

PRECISION

A(LDA,*),

X(*)

SUBROUTINE

CTRSV(UPLO,

TRANS,

DIAG,

N,

A,

LDA,

X,

INCX)

INTEGER

INCX,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX

A(LDA,*),

X(*)

SUBROUTINE

ZTRSV(UPLO,

TRANS,

DIAG,

N,

A,

LDA,

X,

INCX)

INTEGER

INCX,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX*16

A(LDA,*),

X(*)

Description

The

STRSV,

DTRSV,

CTRSV,

or

ZTRSV

subroutine

solves

one

of

the

systems

of

equations:

A

*

x

=

b

OR

A’

*

x

=

b

where

b

and

x

are

N

element

vectors

and

A

is

an

N

by

N

unit,

or

non-unit,

upper

or

lower

triangular

matrix.

No

test

for

singularity

or

near-singularity

is

included

in

this

routine.

Such

tests

must

be

performed

before

calling

this

routine.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

matrix

is

an

upper

or

lower

triangular

matrix

as

follows:

UPLO

=

’U’

or

’u’

A

is

an

upper

triangular

matrix.

UPLO

=

’L’

or

’l’

A

is

a

lower

triangular

matrix.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

equations

to

be

solved

as

follows:

TRANS

=

’N’

or

’n’

A

*

x

=

b

TRANS

=

’T’

or

’t’

A’

*

x

=

b

TRANS

=

’C’

or

’c’

A’

*

x

=

b

Unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

689

DIAG

On

entry,

DIAG

specifies

whether

or

not

A

is

unit

triangular

as

follows:

DIAG

=

’U’

or

’u’

A

is

assumed

to

be

unit

triangular.

DIAG

=

’N’

or

’n’

A

is

not

assumed

to

be

unit

triangular.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced.

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

When

DIAG

=

’U’

or

’u’,

the

diagonal

elements

of

A

are

not

referenced,

but

are

assumed

to

be

unity;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

right-hand

side

vector

b;

on

exit,

X

is

overwritten

with

the

solution

vector

x.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

STBSV,

DTBSV,

CTBSV,

or

ZTBSV

Subroutine

Purpose

Solves

system

of

equations.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

STBSV(UPLO,

TRANS,

DIAG,

N,

K,

A,

LDA,

X,

INCX)

INTEGER

INCX,

K,

LDA,

N

CHARACTER*1

DIAG,

TRANS,

UPLO

REAL

A(LDA,*),

X(*)

SUBROUTINE

DTBSV(UPLO,

TRANS,

DIAG,

N,

K,

A,

LDA,

X,

INCX)

INTEGER

INCX,K,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

DOUBLE

PRECISION

A(LDA,*),

X(*)

SUBROUTINE

CTBSV(UPLO,

TRANS,

DIAG,

N,

K,

A,

LDA,

X,

INCX)

INTEGER

INCX,K,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX

A(LDA,*),

X(*)

SUBROUTINE

ZTBSV(UPLO,

TRANS,

DIAG,

N,

K,

A,

LDA,

X,

INCX)

INTEGER

INCX,K,LDA,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX*16

A(LDA,*),

X(*)

Description

The

STBSV,

DTBSV,

CTBSV,

or

ZTBSV

subroutine

solves

one

of

the

systems

of

equations:

A

*

x

=

b

690

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

OR

A’

*

x

=

b

where

b

and

x

are

N

element

vectors

and

A

is

an

N

by

N

unit,

or

non-unit,

upper

or

lower

triangular

band

matrix,

with

(

K

+

1

)

diagonals.

No

test

for

singularity

or

near-singularity

is

included

in

this

routine.

Such

tests

must

be

performed

before

calling

this

routine.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

matrix

is

an

upper

or

lower

triangular

matrix

as

follows:

UPLO

=

’U’

or

’u’

A

is

an

upper

triangular

matrix.

UPLO

=

’L’

or

’l’

A

is

a

lower

triangular

matrix.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

equations

to

be

solved

as

follows:

TRANS

=

’N’

or

’n’

A

*

x

=

b

TRANS

=

’T’

or

’t’

A’

*

x

=

b

TRANS

=

’C’

or

’c’

A’

*

x

=

b

Unchanged

on

exit.

DIAG

On

entry,

DIAG

specifies

whether

A

is

unit

triangular

as

follows:

DIAG

=

’U’

or

’u’

A

is

assumed

to

be

unit

triangular.

DIAG

=

’N’

or

’n’

A

is

not

assumed

to

be

unit

triangular.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry

with

UPLO

=

’U’

or

’u’,

K

specifies

the

number

of

superdiagonals

of

the

matrix

A.

On

entry

with

UPLO

=

’L’

or

’l’,

K

specifies

the

number

of

subdiagonals

of

the

matrix

A;

K

must

satisfy

0

.le.

K;

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

691

A

An

array

of

dimension

(

LDA,

N

).

On

entry

with

UPLO

=

’U’

or

’u’,

the

leading

(

K

+

1

)

by

N

part

of

the

array

A

must

contain

the

upper

triangular

band

part

of

the

matrix

of

coefficients,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

(

K

+

1

)

of

the

array,

the

first

superdiagonal

starting

at

position

2

in

row

K,

and

so

on.

The

top

left

K

by

K

triangle

of

the

array

A

is

not

referenced.

The

following

program

segment

will

transfer

an

upper

triangular

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

DO

20,

J

=

1,

N

M

=

K

+

1

-

J

DO

10,

I

=

MAX(

1,

J

-

K

),

J

A(

M

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

(

K

+

1

)

by

N

part

of

the

array

A

must

contain

the

lower

triangular

band

part

of

the

matrix

of

coefficients,

supplied

column

by

column,

with

the

leading

diagonal

of

the

matrix

in

row

1

of

the

array,

the

first

subdiagonal

starting

at

position

1

in

row

2,

and

so

on.

The

bottom

right

K

by

K

triangle

of

the

array

A

is

not

referenced.

The

following

program

segment

will

transfer

a

lower

triangular

band

matrix

from

conventional

full

matrix

storage

to

band

storage:

DO

20,

J

=

1,

N

M

=

1

-

J

DO

10,

I

=

J,

MIN(

N,

J

+

K

)

A(

M

+

I,

J

)

=

matrix(

I,

J

)

10

CONTINUE

20

CONTINUE

When

DIAG

=

’U’

or

’u’

the

elements

of

the

array

A

corresponding

to

the

diagonal

elements

of

the

matrix

are

not

referenced,

but

are

assumed

to

be

unity.

Unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

(

K

+

1

);

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

right-hand

side

vector

b;

on

exit,

X

is

overwritten

with

the

solution

vector

x.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

STPSV,

DTPSV,

CTPSV,

or

ZTPSV

Subroutine

Purpose

Solves

systems

of

equations.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

STPSV(UPLO,

TRANS,

DIAG,

N,

AP,

X,

INCX)

INTEGER

INCX,

N

CHARACTER*1

DIAG,

TRANS,

UPLO

REAL

AP(*),

X(*)

SUBROUTINE

DTPSV(UPLO,

TRANS,

DIAG,

N,

AP,

X,

INCX)

INTEGER

INCX,N

CHARACTER*1

DIAG,TRANS,UPLO

DOUBLE

PRECISION

AP(*),

X(*)

692

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SUBROUTINE

CTPSV(UPLO,

TRANS,

DIAG,

N,

AP,

X,

INCX)

INTEGER

INCX,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX

AP(*),

X(*)

SUBROUTINE

ZTPSV(UPLO,

TRANS,

DIAG,

N,

AP,

X,

INCX)

INTEGER

INCX,N

CHARACTER*1

DIAG,TRANS,UPLO

COMPLEX*16

AP(*),

X(*)

Description

The

STPSV,

DTPSV,

DTPSV,

or

ZTPSV

subroutine

solves

one

of

the

systems

of

equations:

A

*

x

=

b

OR

A’

*

x

=

b

where

b

and

x

are

N

element

vectors

and

A

is

an

N

by

N

unit,

or

non-unit,

upper

or

lower

triangular

matrix,

supplied

in

packed

form.

No

test

for

singularity

or

near-singularity

is

included

in

this

routine.

Such

tests

must

be

performed

before

calling

this

routine.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

matrix

is

an

upper

or

lower

triangular

matrix

as

follows:

UPLO

=

’U’

or

’u’

A

is

an

upper

triangular

matrix.

UPLO

=

’L’

or

’l’

A

is

a

lower

triangular

matrix.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

equations

to

be

solved

as

follows:

TRANS

=

’N’

or

’n’

A

*

x

=

b

TRANS

=

’T’

or

’t’

A’

*

x

=

b

TRANS

=

’C’

or

’c’

A’

*

x

=

b

Unchanged

on

exit.

DIAG

On

entry,

DIAG

specifies

whether

or

not

A

is

unit

triangular

as

follows:

DIAG

=

’U’

or

’u’

A

is

assumed

to

be

unit

triangular.

DIAG

=

’N’

or

’n’

A

is

not

assumed

to

be

unit

triangular.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

693

AP

A

vector

of

dimension

at

least

(

(

N

*

(N+1)

)/2

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

array

AP

must

contain

the

upper

triangular

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(1,2)

and

A(2,2)

respectively,

and

so

on.

Before

entry

with

UPLO

=

’L’

or

’l’,

the

array

AP

must

contain

the

lower

triangular

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(2,1)

and

A(3,1)

respectively,

and

so

on.

When

DIAG

=

’U’

or

’u’,

the

diagonal

elements

of

A

are

not

referenced,

but

are

assumed

to

be

unity;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

right-hand

side

vector

b;

on

exit,

X

is

overwritten

with

the

solution

vector

x.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

SGER

or

DGER

Subroutine

Purpose

Performs

the

rank

1

operation.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SGER(M,

N,

ALPHA,

X,

INCX,

Y,

INCY,

A,

LDA)

REAL

ALPHA

INTEGER

INCX,

INCY,

LDA,

M,

N

REAL

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

DGER(M,

N,

ALPHA,

X,

INCX,

Y,

INCY,

A,

LDA)

DOUBLE

PRECISION

ALPHA

INTEGER

INCX,INCY,LDA,M,N

DOUBLE

PRECISION

A(LDA,*),

X(*),

Y(*)

Description

The

SGER

or

DGER

subroutine

performs

the

rank

1

operation:

A

:=

alpha

*

x

*

y’

+

A

where

alpha

is

a

scalar,

x

is

an

M

element

vector,

y

is

an

N

element

vector

and

A

is

an

M

by

N

matrix.

Parameters

M

On

entry,

M

specifies

the

number

of

rows

of

the

matrix

A;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(M-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

M

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

A

must

contain

the

matrix

of

coefficients;

on

exit,

A

is

overwritten

by

the

updated

matrix.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

694

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

CGERU

or

ZGERU

Subroutine

Purpose

Performs

the

rank

1

operation.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CGERU(M,

N,

ALPHA,

X,

INCX,

Y,

INCY,

A,

LDA)

COMPLEX

ALPHA

INTEGER

INCX,

INCY,

LDA,

M,

N

COMPLEX

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

ZGERU

COMPLEX*16

ALPHA

INTEGER

INCX,INCY,LDA,M,N

COMPLEX*16

A(LDA,*),

X(*),

Y(*)

Description

The

CGERU

or

ZGERU

subroutine

performs

the

rank

1

operation:

A

:=

alpha

*

x

*

y’

+

A

where

alpha

is

a

scalar,

x

is

an

M

element

vector,

y

is

an

N

element

vector

and

A

is

an

M

by

N

matrix.

Parameters

M

On

entry,

M

specifies

the

number

of

rows

of

the

matrix

A;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(M-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

M

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

A

must

contain

the

matrix

of

coefficients;

on

exit,

A

is

overwritten

by

the

updated

matrix.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

CGERC

or

ZGERC

Subroutine

Purpose

Performs

the

rank

1

operation.

Library

BLAS

Library

(libblas.a)

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

695

FORTRAN

Syntax

SUBROUTINE

CGERC(M,

N,

ALPHA,

X,

INCX,

Y,

INCY,

A,

LDA)

COMPLEX

ALPHA

INTEGER

INCX,

INCY,

LDA,

M,

N

COMPLEX

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

ZGERC

COMPLEX*16

ALPHA

INTEGER

INCX,INCY,LDA,M,N

COMPLEX*16

A(LDA,*),

X(*),

Y(*)

Description

The

CGERC

or

ZGERC

subroutine

performs

the

rank

1

operation:

A

:=

alpha

*

x

*

conjg(

y’

)

+

A

where

alpha

is

a

scalar,

x

is

an

M

element

vector,

y

is

an

N

element

vector

and

A

is

an

M

by

N

matrix.

Parameters

M

On

entry,

M

specifies

the

number

of

rows

of

the

matrix

A;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(M-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

M

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

A

must

contain

the

matrix

of

coefficients;

on

exit,

A

is

overwritten

by

the

updated

matrix.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

CHER

or

ZHER

Subroutine

Purpose

Performs

the

Hermitian

rank

1

operation.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHER(UPLO,

N,

ALPHA,

X,

INCX,

A,

LDA)

REAL

ALPHA

INTEGER

INCX,

LDA,

N

CHARACTER*1

UPLO

COMPLEX

A(LDA,*),

X(*)

696

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SUBROUTINE

ZHER(UPLO,

N,

ALPHA,

X,

INCX,

A,

LDA)

DOUBLE

PRECISION

ALPHA

INTEGER

INCX,LDA,N

CHARACTER*1

UPLO

COMPLEX*16

A(LDA,*),

X(*)

Description

The

CHER

or

ZHER

subroutine

performs

the

Hermitian

rank

1

operation:

A

:=

alpha

*

x

*

conjg(

x’

)

+

A

where

alpha

is

a

real

scalar,

x

is

an

N

element

vector

and

A

is

an

N

by

N

Hermitian

matrix.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

A

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

A

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

A

is

to

be

referenced.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced.

On

exit,

the

upper

triangular

part

of

the

array

A

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

On

exit,

the

lower

triangular

part

of

the

array

A

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set,

they

are

assumed

to

be

0,

and

on

exit

they

are

set

to

0.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

CHPR

or

ZHPR

Subroutine

Purpose

Performs

the

Hermitian

rank

1

operation.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHPR(UPLO,

N,

ALPHA,

X,

INCX,

AP)

REAL

ALPHA

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

697

INTEGER

INCX,

N

CHARACTER*1

UPLO

COMPLEX

AP(*),

X(*)

SUBROUTINE

ZHPR(UPLO,

N,

ALPHA,

X,

INCX,

AP)

DOUBLE

PRECISION

ALPHA

INTEGER

INCX,N

CHARACTER*1

UPLO

COMPLEX*16

AP(*),

X(*)

Description

The

CHPR

or

ZHPR

subroutine

performs

the

Hermitian

rank

1

operation:

A

:=

alpha

*

x

*

conjg(

x’

)

+

A

where

alpha

is

a

real

scalar,

x

is

an

N

element

vector

and

A

is

an

N

by

N

Hermitian

matrix,

supplied

in

packed

form.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

matrix

A

is

supplied

in

the

packed

array

AP

as

follows:

UPLO

=

’U’

or

’u’

The

upper

triangular

part

of

A

is

supplied

in

AP.

UPLO

=

’L’

or

’l’

The

lower

triangular

part

of

A

is

supplied

in

AP.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

AP

A

vector

of

dimension

at

least

(

(

N

*

(N+1)

)/2

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

array

AP

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(1,2)

and

A(2,2)

respectively,

and

so

on.

On

exit,

the

array

AP

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

array

AP

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(2,1)

and

A(3,1)

respectively,

and

so

on.

On

exit,

the

array

AP

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set,

they

are

assumed

to

be

0,

and

on

exit

they

are

set

to

0.

CHER2

or

ZHER2

Subroutine

Purpose

Performs

the

Hermitian

rank

2

operation.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHER2(UPLO,

N,

ALPHA,

X,

INCX,

Y,

INCY,

A,

LDA)

698

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

COMPLEX

ALPHA

INTEGER

INCX,

INCY,

LDA,

N

CHARACTER*1

UPLO

COMPLEX

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

ZHER2(UPLO,

N,

ALPHA,

X,

INCX,

Y,

INCY,

A,

LDA)

COMPLEX*16

ALPHA

INTEGER

INCX,INCY,LDA,N

CHARACTER*1

UPLO

COMPLEX*16

A(LDA,*),

X(*),

Y(*)

Description

The

CHER2

or

ZHER2

subroutine

performs

the

Hermitian

rank

2

operation:

A

:=

alpha

*

x

*

conjg(

y’

)

+

conjg(

alpha

)

*

y

*

conjy(

x’

)

+

A

where

alpha

is

a

scalar,

x

and

y

are

N

element

vectors

and

A

is

an

N

by

N

Hermitian

matrix.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

A

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

A

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

A

is

to

be

referenced.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

vector

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

on

entry,

the

incremented

vector

Y

must

contain

the

N

element

vector

y;

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced.

On

exit,

the

upper

triangular

part

of

the

array

A

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

On

exit,

the

lower

triangular

part

of

the

array

A

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set;

they

are

assumed

to

be

0,

and

on

exit

they

are

set

to

0.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

CHPR2

or

ZHPR2

Subroutine

Purpose

Performs

the

Hermitian

rank

2

operation.

Library

BLAS

Library

(libblas.a)

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

699

FORTRAN

Syntax

SUBROUTINE

CHPR2

(UPLO,

N,

ALPHA,

X,

INCX,

Y,

INCY,

AP)

COMPLEX

ALPHA

INTEGER

INCX,

INCY,

N

CHARACTER*1

UPLO

COMPLEX

AP(*),

X(*),

Y(*)

SUBROUTINE

ZHPR2

COMPLEX*16

ALPHA

INTEGER

INCX,INCY,N

CHARACTER*1

UPLO

COMPLEX*16

AP(*),

X(*),

Y(*)

Description

The

CHPR2

or

ZHPR2

subroutine

performs

the

Hermitian

rank

2

operation:

A

:=

alpha

*

x

*

conjg(

y’

)

+

conjg(

alpha

)

*

y

*

conjg(

x’

)

+

A

where

alpha

is

a

scalar,

x

and

y

are

N

element

vectors

and

A

is

an

N

by

N

Hermitian

matrix,

supplied

in

packed

form.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

matrix

A

is

supplied

in

the

packed

array

AP

as

follows:

UPLO

=

’U’

or

’u’

The

upper

triangular

part

of

A

is

supplied

in

AP.

UPLO

=

’L’

or

’l’

The

lower

triangular

part

of

A

is

supplied

in

AP.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(

INCY

)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

AP

A

vector

of

dimension

at

least

(

(

N

*

(N+1)

)/2

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

array

AP

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(1,2)

and

A(2,2)

respectively,

and

so

on.

On

exit,

the

array

AP

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

array

AP

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(2,1)

and

A(3,1)

respectively,

and

so

on.

On

exit,

the

array

AP

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set,

they

are

assumed

to

be

0,

and

on

exit

they

are

set

to

0.

SSYR

or

DSYR

Subroutine

Purpose

Performs

the

symmetric

rank

1

operation.

700

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSYR(UPLO,

N,

ALPHA,

X,

INCX,

A,

LDA)

REAL

ALPHA

INTEGER

INCX,

LDA,

N

CHARACTER*1

UPLO

REAL

A(LDA,*),

X(*)

SUBROUTINE

DSYR(UPLO,

N,

ALPHA,

X,

INCX,

A,

LDA)

DOUBLE

PRECISION

ALPHA

INTEGER

INCX,LDA,N

CHARACTER*1

UPLO

DOUBLE

PRECISION

A(LDA,*),

X(*)

Description

The

SSYR

or

DSYR

subroutine

performs

the

symmetric

rank

1

operation:

A

:=

alpha

*

x

*

x’

+

A

where

alpha

is

a

real

scalar,

x

is

an

N

element

vector

and

A

is

an

N

by

N

symmetric

matrix.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

A

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

A

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

A

is

to

be

referenced.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced.

On

exit,

the

upper

triangular

part

of

the

array

A

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

On

exit,

the

lower

triangular

part

of

the

array

A

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

SSPR

or

DSPR

Subroutine

Purpose

Performs

the

symmetric

rank

1

operation.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

701

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSPR(UPLO,

N,

ALPHA,

X,

INCX,

AP)

REAL

ALPHA

INTEGER

INCX,

N

CHARACTER*1

UPLO

REAL

AP(*),

X(*)

SUBROUTINE

DSPR(UPLO,

N,

ALPHA,

X,

INCX,

AP)

DOUBLE

PRECISION

ALPHA

INTEGER

INCX,N

CHARACTER*1

UPLO

DOUBLE

PRECISION

AP(*),

X(*)

Description

The

SSPR

or

DSPR

subroutine

performs

the

symmetric

rank

1

operation:

A

:=

alpha

*

x

*

x’

+

A

where

alpha

is

a

real

scalar,

x

is

an

N

element

vector

and

A

is

an

N

by

N

symmetric

matrix,

supplied

in

packed

form.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

matrix

A

is

supplied

in

the

packed

array

AP

as

follows:

UPLO

=

’U’

or

’u’

The

upper

triangular

part

of

A

is

supplied

in

AP.

UPLO

=

’L’

or

’l’

The

lower

triangular

part

of

A

is

supplied

in

AP.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

AP

A

vector

of

dimension

at

least

(

(

N

*

(N+1)

)/2

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

array

AP

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(1,2)

and

A(2,2)

respectively,

and

so

on.

On

exit,

the

array

AP

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

array

AP

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(2,1)

and

A(3,1)

respectively,

and

so

on.

On

exit,

the

array

AP

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

SSYR2

or

DSYR2

Subroutine

Purpose

Performs

the

symmetric

rank

2

operation.

702

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSYR2(UPLO,

N,

ALPHA,

X,

INCX,

Y,

INCY,

A,

LDA)

REAL

ALPHA

INTEGER

INCX,

INCY,

LDA,

N

CHARACTER*1

UPLO

REAL

A(LDA,*),

X(*),

Y(*)

SUBROUTINE

DSYR2(UPLO,

N,

ALPHA,

X,

INCX,

Y,

INCY,

A,

LDA)

DOUBLE

PRECISION

ALPHA

INTEGER

INCX,INCY,LDA,N

CHARACTER*1

UPLO

DOUBLE

PRECISION

A(LDA,*),

X(*),

Y(*)

Description

The

SSYR2

or

DSYR2

subroutine

performs

the

symmetric

rank

2

operation:

A

:=

alpha

*

x

*

y’

+

alpha

*

y

*

x’

+

A

where

alpha

is

a

scalar,

x

and

y

are

N

element

vectors

and

A

is

an

N

by

N

symmetric

matrix.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

A

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

A

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

A

is

to

be

referenced.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced.

On

exit,

the

upper

triangular

part

of

the

array

A

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

On

exit,

the

lower

triangular

part

of

the

array

A

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program;

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

703

SSPR2

or

DSPR2

Subroutine

Purpose

Performs

the

symmetric

rank

2

operation.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSPR2(UPLO,

N,

ALPHA,

X,

INCX,

Y,

INCY,

AP)

REAL

ALPHA

INTEGER

INCX,

INCY,

N

CHARACTER*1

UPLO

REAL

AP(*),

X(*),

Y(*)

SUBROUTINE

DSPR2(UPLO,

N,

ALPHA,

X,

INCX,

Y,

INCY,

AP)

DOUBLE

PRECISION

ALPHA

INTEGER

INCX,INCY,N

CHARACTER*1

UPLO

DOUBLE

PRECISION

AP(*),

X(*),

Y(*)

Description

The

SSPR2

or

DSPR2

subroutine

performs

the

symmetric

rank

2

operation:

A

:=

alpha

*

x

*

y’

+

alpha

*

y

*

x’

+

A

where

alpha

is

a

scalar,

x

and

y

are

N

element

vectors

and

A

is

an

N

by

N

symmetric

matrix,

supplied

in

packed

form.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

matrix

A

is

supplied

in

the

packed

array

AP

as

follows:

UPLO

=

’U’

or

’u’

The

upper

triangular

part

of

A

is

supplied

in

AP.

UPLO

=

’L’

or

’l’

The

lower

triangular

part

of

A

is

supplied

in

AP.

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

A;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

X

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCX)

);

on

entry,

the

incremented

array

X

must

contain

the

N

element

vector

x;

unchanged

on

exit.

INCX

On

entry,

INCX

specifies

the

increment

for

the

elements

of

X;

INCX

must

not

be

0;

unchanged

on

exit.

Y

A

vector

of

dimension

at

least

(1

+

(N-1)

*

abs(INCY)

);

on

entry,

the

incremented

array

Y

must

contain

the

N

element

vector

y;

unchanged

on

exit.

INCY

On

entry,

INCY

specifies

the

increment

for

the

elements

of

Y;

INCY

must

not

be

0;

unchanged

on

exit.

704

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

AP

A

vector

of

dimension

at

least

(

(

N

*

(N+1)

)/2

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

array

AP

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(1,2)

and

A(2,2)

respectively,

and

so

on.

On

exit,

the

array

AP

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

array

AP

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

packed

sequentially,

column

by

column,

so

that

AP(1)

contains

A(1,1),

AP(2)

and

AP(3)

contain

A(2,1)

and

A(3,1)

respectively,

and

so

on.

On

exit,

the

array

AP

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

SGEMM,

DGEMM,

CGEMM,

or

ZGEMM

Subroutine

Purpose

Performs

matrix-matrix

operations

on

general

matrices.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SGEMM(TRANSA,

TRANSB,

M,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

TRANSA,

TRANSB

INTEGER

M,

N,

K,

LDA,

LDB,

LDC

REAL

ALPHA,

BETA

REAL

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

DGEMM(TRANSA,

TRANSB,

M,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

TRANSA,TRANSB

INTEGER

M,N,K,LDA,LDB,LDC

DOUBLE

PRECISION

ALPHA,BETA

DOUBLE

PRECISION

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

CGEMM(TRANSA,

TRANSB,

M,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

TRANSA,TRANSB

INTEGER

M,N,K,LDA,LDB,LDC

COMPLEX

ALPHA,BETA

COMPLEX

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

ZGEMM(TRANSA,

TRANSB,

M,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

TRANSA,TRANSB

INTEGER

M,N,K,LDA,LDB,LDC

COMPLEX*16

ALPHA,BETA

COMPLEX*16

A(LDA,*),

B(LDB,*),

C(LDC,*)

Description

The

SGEMM,

DGEMM,

CGEMM,

or

ZGEMM

subroutine

performs

one

of

the

matrix-matrix

operations:

C

:=

alpha

*

op(

A

)

*

op(

B

)

+

beta

*

C

where

op(

X

)

is

one

of

op(

X

)

=

X

or

op(

X

)

=

X’,alpha

and

beta

are

scalars,

and

A,

B

and

C

are

matrices,

with

op(

A

)

an

M

by

K

matrix,

op(

B

)

a

K

by

N

matrix

and

C

an

M

by

N

matrix.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

705

Parameters

TRANSA

On

entry,

TRANSA

specifies

the

form

of

op(

A

)

to

be

used

in

the

matrix

multiplication

as

follows:

TRANSA

=

’N’

or

’n’

op(

A

)

=

A

TRANSA

=

’T’

or

’t’

op(

A

)

=

A’

TRANSA

=

’C’

or

’c’

op(

A

)

=

A’

Unchanged

on

exit.

TRANSB

On

entry,

TRANSB

specifies

the

form

of

op(

B

)

to

be

used

in

the

matrix

multiplication

as

follows:

TRANSB

=

’N’

or

’n’

op(

B

)

=

B

TRANSB

=

’T’

or

’t’

op(

B

)

=

B’

TRANSB

=

’C’

or

’c’

op(

B

)

=

B’

Unchanged

on

exit.

M

On

entry,

M

specifies

the

number

of

rows

of

the

matrix

op(

A

)

and

of

the

matrix

C;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

the

matrix

op(

B

)

and

the

number

of

columns

of

the

matrix

C;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry,

K

specifies

the

number

of

columns

of

the

matrix

op(

A

)

and

the

number

of

rows

of

the

matrix

op(

B

);

K

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

KA

),

where

KA

is

K

when

TRANSA

=

’N’

or

’n’,

and

is

M

otherwise;

on

entry

with

TRANSA

=

’N’

or

’n’,

the

leading

M

by

K

part

of

the

array

A

must

contain

the

matrix

A,

otherwise

the

leading

K

by

M

part

of

the

array

A

must

contain

the

matrix

A;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

TRANSA

=

’N’

or

’n’

then

LDA

must

be

at

least

max(

1,

M

),

otherwise

LDA

must

be

at

least

max(

1,

K

);

unchanged

on

exit.

B

An

array

of

dimension

(

LDB,

KB

)

where

KB

is

N

when

TRANSB

=

’N’

or

’n’,

and

is

K

otherwise;

on

entry

with

TRANSB

=

’N’

or

’n’,

the

leading

K

by

N

part

of

the

array

B

must

contain

the

matrix

B,

otherwise

the

leading

N

by

K

part

of

the

array

B

must

contain

the

matrix

B;

unchanged

on

exit.

LDB

On

entry,

LDB

specifies

the

first

dimension

of

B

as

declared

in

the

calling

(sub)

program.

When

TRANSB

=

’N’

or

’n’

then

LDB

must

be

at

least

max(

1,

K

),

otherwise

LDB

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta.

When

BETA

is

supplied

as

0

then

C

need

not

be

set

on

input;

unchanged

on

exit.

C

An

array

of

dimension

(

LDC,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

C

must

contain

the

matrix

C,

except

when

beta

is

0,

in

which

case

C

need

not

be

set

on

entry;

on

exit,

the

array

C

is

overwritten

by

the

M

by

N

matrix

(

alpha

*

op(

A

)

*

op(

B

)

+

beta

*

C

).

LDC

On

entry,

LDC

specifies

the

first

dimension

of

C

as

declared

in

the

calling

(sub)

program;

LDC

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

SSYMM,

DSYMM,

CSYMM,

or

ZSYMM

Subroutine

Purpose

Performs

matrix-matrix

matrix

operations

on

symmetric

matrices.

706

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSYMM(SIDE,

UPLO,

M,

N,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

SIDE,

UPLO

INTEGER

M,

N,

LDA,

LDB,

LDC

REAL

ALPHA,

BETA

REAL

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

DSYMM(SIDE,

UPLO,

M,

N,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

SIDE,UPLO

INTEGER

M,N,LDA,LDB,LDC

DOUBLE

PRECISION

ALPHA,BETA

DOUBLE

PRECISION

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

CSYMM(SIDE,

UPLO,

M,

N,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

SIDE,UPLO

INTEGER

M,N,LDA,LDB,LDC

COMPLEX

ALPHA,BETA

COMPLEX

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

ZSYMM(SIDE,

UPLO,

M,

N,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

SIDE,UPLO

INTEGER

M,N,LDA,LDB,LDC

COMPLEX*16

ALPHA,BETA

COMPLEX*16

A(LDA,*),

B(LDB,*),

C(LDC,*)

Description

The

SSYMM,

DSYMM,

CSYMM,

or

ZSYMM

subroutine

performs

one

of

the

matrix-matrix

operations:

C

:=

alpha

*

A

*

B

+

beta

*

C

OR

C

:=

alpha

*

B

*

A

+

beta

*

C

where

alpha

and

beta

are

scalars,

A

is

a

symmetric

matrix

and

B

and

C

are

M

by

N

matrices.

Parameters

SIDE

On

entry,

SIDE

specifies

whether

the

symmetric

matrix

A

appears

on

the

left

or

right

in

the

operation

as

follows:

SIDE

=

’L’

or

’l’

C

:=

alpha

*

A

*

B

+

beta

*

C

SIDE

=

’R’

or

’r’

C

:=

alpha

*

B

*

A

+

beta

*

C

Unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

707

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

symmetric

matrix

A

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

the

symmetric

matrix

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

the

symmetric

matrix

is

to

be

referenced.

Unchanged

on

exit.

M

On

entry,

M

specifies

the

number

of

rows

of

the

matrix

C;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

the

matrix

C;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

KA

),

where

KA

is

M

when

SIDE

=

’L’

or

’l’

and

is

N

otherwise;

on

entry

with

SIDE

=

’L’

or

’l’,

the

M

by

M

part

of

the

array

A

must

contain

the

symmetric

matrix,

such

that

when

UPLO

=

’U’

or

’u’,

the

leading

M

by

M

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced,

and

when

UPLO

=

’L’

or

’l’,

the

leading

M

by

M

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

On

entry

with

SIDE

=

’R’

or

’r’,

the

N

by

N

part

of

the

array

A

must

contain

the

symmetric

matrix,

such

that

when

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced,

and

when

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

SIDE

=

’L’

or

’l’

then

LDA

must

be

at

least

max(

1,

M

),

otherwise

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

B

An

array

of

dimension

(

LDB,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

B

must

contain

the

matrix

B;

unchanged

on

exit.

LDB

On

entry,

LDB

specifies

the

first

dimension

of

B

as

declared

in

the

calling

(sub)

program;

LDB

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

when

BETA

is

supplied

as

0

then

C

need

not

be

set

on

input;

unchanged

on

exit.

C

An

array

of

dimension

(

LDC,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

C

must

contain

the

matrix

C,

except

when

beta

is

0,

in

which

case

C

need

not

be

set

on

entry;

on

exit,

the

array

C

is

overwritten

by

the

M

by

N

updated

matrix.

LDC

On

entry,

LDC

specifies

the

first

dimension

of

C

as

declared

in

the

calling

(sub)

program;

LDC

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

CHEMM

or

ZHEMM

Subroutine

Purpose

Performs

matrix-matrix

operations

on

Hermitian

matrices.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHEMM(SIDE,

UPLO,

M,

N,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

SIDE,

UPLO

INTEGER

M,

N,

LDA,

LDB,

LDC

COMPLEX

ALPHA,

BETA

COMPLEX

A(LDA,*),

B(LDB,*),

C(LDC,*)

708

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SUBROUTINE

ZHEMM(SIDE,

UPLO,

M,

N,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

SIDE,UPLO

INTEGER

M,N,LDA,LDB,LDC

COMPLEX*16

ALPHA,BETA

COMPLEX*16

A(LDA,*),

B(LDB,*),

C(LDC,*)

Purpose

The

CHEMM

or

ZHEMM

subroutine

performs

one

of

the

matrix-matrix

operations:

C

:=

alpha

*

A

*

B

+

beta

*

C

OR

C

:=

alpha

*

B

*

A

+

beta

*

C

where

alpha

and

beta

are

scalars,

A

is

an

Hermitian

matrix,

and

B

and

C

are

M

by

N

matrices.

Parameters

SIDE

On

entry,

SIDE

specifies

whether

the

Hermitian

matrix

A

appears

on

the

left

or

right

in

the

operation

as

follows:

SIDE

=

’L’

or

’l’

C

:=

alpha

*

A

*

B

+

beta

*

C

SIDE

=

’R’

or

’r’

C

:=

alpha

*

B

*

A

+

beta

*

C

Unchanged

on

exit.

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

Hermitian

matrix

A

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

the

Hermitian

matrix

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

the

Hermitian

matrix

is

to

be

referenced.

Unchanged

on

exit.

M

On

entry,

M

specifies

the

number

of

rows

of

the

matrix

C;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

the

matrix

C;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

KA

),

where

KA

is

M

when

SIDE

=

’L’

or

’l’

and

is

N

otherwise;

on

entry

with

SIDE

=

’L’

or

’l’,

the

M

by

M

part

of

the

array

A

must

contain

the

Hermitian

matrix,

such

that

when

UPLO

=

’U’

or

’u’,

the

leading

M

by

M

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced,

and

when

UPLO

=

’L’

or

’l’,

the

leading

M

by

M

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced;

on

entry

with

SIDE

=

’R’

or

’r’,

the

N

by

N

part

of

the

array

A

must

contain

the

Hermitian

matrix,

such

that

when

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced,

and

when

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set,

they

are

assumed

to

be

0;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

SIDE

=

’L’

or

’l’

then

LDA

must

be

at

least

max(

1,

M

),

otherwise

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

B

An

array

of

dimension

(

LDB,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

B

must

contain

the

matrix

B;

unchanged

on

exit.

LDB

On

entry,

LDB

specifies

the

first

dimension

of

B

as

declared

in

the

calling

(sub)

program;

LDB

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

709

BETA

On

entry,

BETA

specifies

the

scalar

beta.

When

BETA

is

supplied

as

0

then

C

need

not

be

set

on

input;

unchanged

on

exit.

C

An

array

of

dimension

(

LDC,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

C

must

contain

the

matrix

C,

except

when

beta

is

0,

in

which

case

C

need

not

be

set

on

entry;

on

exit,

the

array

C

is

overwritten

by

the

M

by

N

updated

matrix.

LDC

On

entry,

LDC

specifies

the

first

dimension

of

C

as

declared

in

the

calling

(sub)

program;

LDC

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

SSYRK,

DSYRK,

CSYRK,

or

ZSYRK

Subroutine

Purpose

Perform

symmetric

rank

k

operations.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSYRK(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

BETA,

C,

LDC)

CHARACTER*1

UPLO,

TRANS

INTEGER

N,

K,

LDA,

LDC

REAL

ALPHA,

BETA

REAL

A(LDA,*),

C(LDC,*)

SUBROUTINE

DSYRK(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

BETA,

C,

LDC)

CHARACTER*1

UPLO,TRANS

INTEGER

N,K,LDA,LDC

DOUBLE

PRECISION

ALPHA,BETA

DOUBLE

PRECISION

A(LDA,*),

C(LDC,*)

SUBROUTINE

CSYRK(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

BETA,

C,

LDC)

CHARACTER*1

UPLO,TRANS

INTEGER

N,K,LDA,LDC

COMPLEX

ALPHA,BETA

COMPLEX

A(LDA,*),

C(LDC,*)

SUBROUTINE

ZSYRK(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

BETA,

C,

LDC)

CHARACTER*1

UPLO,TRANS

INTEGER

N,K,LDA,LDC

COMPLEX*16

ALPHA,BETA

COMPLEX*16

A(LDA,*),

C(LDC,*)

Description

The

SSYRK,

DSYRK,

CSYRK

or

ZSYRK

subroutine

performs

one

of

the

symmetric

rank

k

operations:

C

:=

alpha

*

A

*

A’

+

beta

*

C

OR

C

:=

alpha

*

A’

*

A

+

beta

*

C

where

alpha

and

beta

are

scalars,

C

is

an

N

by

N

symmetric

matrix,

and

A

is

an

N

by

K

matrix

in

the

first

case

and

a

K

by

N

matrix

in

the

second

case.

710

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

C

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

C

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

C

is

to

be

referenced.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

C

:=

alpha

*

A

*

A’

+

beta

*

C

TRANS

=

’T’

or

’t’

C

:=

alpha

*

A’

*

A

+

beta

*

C

TRANS

=

’C’

or

’c’

C

:=

alpha

*

A’

*

A

+

beta

*

C

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

C;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry

with

TRANS

=

’N’

or

’n’,

K

specifies

the

number

of

columns

of

the

matrix

A,

and

on

entry

with

TRANS

=

’T’

or

’t’

or

’C’

or

’c’,

K

specifies

the

number

of

rows

of

the

matrix

A;

K

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

KA

),

where

KA

is

K

when

TRANS

=

’N’

or

’n’,

and

is

N

otherwise;

on

entry

with

TRANS

=

’N’

or

’n’,

the

leading

N

by

K

part

of

the

array

A

must

contain

the

matrix

A,

otherwise

the

leading

K

by

N

part

of

the

array

A

must

contain

the

matrix

A;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

TRANS

=

’N’

or

’n’,

LDA

must

be

at

least

max(

1,

N

);

otherwise

LDA

must

be

at

least

max(

1,

K

);

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

unchanged

on

exit.

C

An

array

of

dimension

(

LDC,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

C

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

and

the

strictly

lower

triangular

part

of

C

is

not

referenced;

on

exit,

the

upper

triangular

part

of

the

array

C

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix;

on

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

C

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

and

the

strictly

upper

triangular

part

of

C

is

not

referenced;

on

exit,

the

lower

triangular

part

of

the

array

C

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

LDC

On

entry,

LDC

specifies

the

first

dimension

of

C

as

declared

in

the

calling

(sub)

program;

LDC

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

CHERK

or

ZHERK

Subroutine

Purpose

Performs

Hermitian

rank

k

operations.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHERK(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

BETA,

C,

LDC)

CHARACTER*1

UPLO,

TRANS

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

711

INTEGER

N,

K,

LDA,

LDC

REAL

ALPHA,

BETA

COMPLEX

A(LDA,*),

C(LDC,*)

SUBROUTINE

ZHERK(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

BETA,

C,

LDC)

CHARACTER*1

UPLO,TRANS

INTEGER

N,K,LDA,LDC

DOUBLE

PRECISION

ALPHA,BETA

COMPLEX*16

A(LDA,*),

C(LDC,*)

Description

The

CHERK

or

ZHERK

subroutine

performs

one

of

the

Hermitian

rank

k

operations:

C

:=

alpha

*

A

*

conjg(

A’

)

+

beta

*

C

OR

C

:=

alpha

*

conjg(

A’

)

*

A

+

beta

*

C

where

alpha

and

beta

are

real

scalars,

C

is

an

N

by

N

Hermitian

matrix,

and

A

is

an

N

by

K

matrix

in

the

first

case

and

a

K

by

N

matrix

in

the

second

case.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

C

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

C

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

C

is

to

be

referenced.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

C

:=

alpha

*

A

*

conjg(

A’

)

+

beta

*

C

TRANS

=

’C’

or

’c’

C

:=

alpha

*

conjg(

A’

)

*

A

+

beta

*

C

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

C;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry

with

TRANS

=

’N’

or

’n’,

K

specifies

the

number

of

columns

of

the

matrix

A,

and

on

entry

with

TRANS

=

’C’

or

’c’,

K

specifies

the

number

of

rows

of

the

matrix

A;

K

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

KA

),

where

KA

is

K

when

TRANS

=

’N’

or

’n’,

and

is

N

otherwise;

on

entry

with

TRANS

=

’N’

or

’n’,

the

leading

N

by

K

part

of

the

array

A

must

contain

the

matrix

A,

otherwise

the

leading

K

by

N

part

of

the

array

A

must

contain

the

matrix

A;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

TRANS

=

’N’

or

’n’,

LDA

must

be

at

least

max(

1,

N

),

otherwise

LDA

must

be

at

least

max(

1,

K

);

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

unchanged

on

exit.

712

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

C

An

array

of

dimension

(

LDC,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

C

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

and

the

strictly

lower

triangular

part

of

C

is

not

referenced;

on

exit,

the

upper

triangular

part

of

the

array

C

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix;

on

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

C

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

and

the

strictly

upper

triangular

part

of

C

is

not

referenced;

on

exit,

the

lower

triangular

part

of

the

array

C

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set,

they

are

assumed

to

be

0,

and

on

exit

they

are

set

to

0.

LDC

On

entry,

LDC

specifies

the

first

dimension

of

C

as

declared

in

the

calling

(sub)

program;

LDC

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

SSYR2K,

DSYR2K,

CSYR2K,

or

ZSYR2K

Subroutine

Purpose

Performs

symmetric

rank

2k

operations.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

SSYR2K(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

UPLO,

TRANS

INTEGER

N,

K,

LDA,

LDB,

LDC

REAL

ALPHA,

BETA

REAL

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

DSYR2K(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

UPLO,TRANS

INTEGER

N,K,LDA,LDB,LDC

DOUBLE

PRECISION

ALPHA,BETA

DOUBLE

PRECISION

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

CSYR2K(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

UPLO,TRANS

INTEGER

N,K,LDA,LDB,LDC

COMPLEX

ALPHA,BETA

COMPLEX

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

ZSYR2K(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

BETA,

C,

LDC)

CHARACTER*1

UPLO,TRANS

INTEGER

N,K,LDA,LDB,LDC

COMPLEX*16

ALPHA,BETA

COMPLEX*16

A(LDA,*),

B(LDB,*),

C(LDC,*)

Description

The

SSYR2K,

DSYR2K,

CSYR2K,

or

ZSYR2K

subroutine

performs

one

of

the

symmetric

rank

2k

operations:

C

:=

alpha

*

A

*

B’

+

alpha

*

B

*

A’

+

beta

*

C

OR

C

:=

alpha

*

A’

*

B

+

alpha

*

B’

*

A

+

beta

*

C

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

713

where

alpha

and

beta

are

scalars,

C

is

an

N

by

N

symmetric

matrix,

and

A

and

B

are

N

by

K

matrices

in

the

first

case

and

K

by

N

matrices

in

the

second

case.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

C

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

C

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

C

is

to

be

referenced.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

C

:=

alpha

*

A

*

B’

+

alpha

*

B

*

A’

+

beta

*

C

TRANS

=

’T’

or

’t’

C

:=

alpha

*

A’

*

B

+

alpha

*

B’

*

A

+

beta

*

C

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

C;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry

with

TRANS

=

’N’

or

’n’,

K

specifies

the

number

of

columns

of

the

matrices

A

and

B,

and

on

entry

with

TRANS

=

’T’

or

’t’,

K

specifies

the

number

of

rows

of

the

matrices

A

and

B;

K

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

KA

),

where

KA

is

K

when

TRANS

=

’N’

or

’n’,

and

is

N

otherwise;

on

entry

with

TRANS

=

’N’

or

’n’,

the

leading

N

by

K

part

of

the

array

A

must

contain

the

matrix

A,

otherwise

the

leading

K

by

N

part

of

the

array

A

must

contain

the

matrix

A;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

TRANS

=

’N’

or

’n’,

LDA

must

be

at

least

max(

1,

N

);

otherwise

LDA

must

be

at

least

max(

1,

K

);

unchanged

on

exit.

B

An

array

of

dimension

(

LDB,

KB

),

where

KB

is

K

when

TRANS

=

’N’

or

’n’,

and

is

N

otherwise;

on

entry

with

TRANS

=

’N’

or

’n’,

the

leading

N

by

K

part

of

the

array

B

must

contain

the

matrix

B,

otherwise

the

leading

K

by

N

part

of

the

array

B

must

contain

the

matrix

B;

unchanged

on

exit.

LDB

On

entry,

LDB

specifies

the

first

dimension

of

B

as

declared

in

the

calling

(sub)

program.

When

TRANS

=

’N’

or

’n’,

LDB

must

be

at

least

max(

1,

N

);

otherwise

LDB

must

be

at

least

max(

1,

K

);

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

unchanged

on

exit.

C

An

array

of

dimension

(

LDC,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

C

must

contain

the

upper

triangular

part

of

the

symmetric

matrix

and

the

strictly

lower

triangular

part

of

C

is

not

referenced;

on

exit,

the

upper

triangular

part

of

the

array

C

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix.

On

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

C

must

contain

the

lower

triangular

part

of

the

symmetric

matrix

and

the

strictly

upper

triangular

part

of

C

is

not

referenced;

on

exit,

the

lower

triangular

part

of

the

array

C

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

LDC

On

entry,

LDC

specifies

the

first

dimension

of

C

as

declared

in

the

calling

(sub)

program;

LDC

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

CHER2K

or

ZHER2K

Subroutine

Purpose

Performs

Hermitian

rank

2k

operations.

714

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

CHER2K(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

C,

LDC)

CHARACTER*1

UPLO,

TRANS

INTEGER

N,

K,

LDA,

LDB,

LDC

REAL

BETA

COMPLEX

ALPHA

COMPLEX

A(LDA,*),

B(LDB,*),

C(LDC,*)

SUBROUTINE

ZHER2K(UPLO,

TRANS,

N,

K,

ALPHA,

A,

LDA,

B,

LDB,

C,

LDC)

CHARACTER*1

UPLO,TRANS

INTEGER

N,K,LDA,LDB,LDC

DOUBLE

PRECISION

BETA

COMPLEX*16

ALPHA

COMPLEX*16

A(LDA,*),

B(LDB,*),

C(LDC,*)

Description

The

CHER2K

or

ZHER2K

subroutine

performs

one

of

the

Hermitian

rank

2k

operations:

C

:=

alpha

*

A

*

conjg(B’)

+

conjg(alpha)

*

B

*

conjg(A’)

+

beta

*

C

OR

C

:=

alpha

*

conjg(A’)

*

B

+

conjg(alpha)

*

conjg(B’)

*

A

+

beta

*

C

where

alpha

and

beta

are

scalars

with

beta

real,

C

is

an

N

by

N

Hermitian

matrix,

and

A

and

B

are

N

by

K

matrices

in

the

first

case

and

K

by

N

matrices

in

the

second

case.

Parameters

UPLO

On

entry,

UPLO

specifies

whether

the

upper

or

lower

triangular

part

of

the

array

C

is

to

be

referenced

as

follows:

UPLO

=

’U’

or

’u’

Only

the

upper

triangular

part

of

C

is

to

be

referenced.

UPLO

=

’L’

or

’l’

Only

the

lower

triangular

part

of

C

is

to

be

referenced.

Unchanged

on

exit.

TRANS

On

entry,

TRANS

specifies

the

operation

to

be

performed

as

follows:

TRANS

=

’N’

or

’n’

C

:=

alpha

*

A

*

conjg(

B’

)

+

conjg(

alpha

)

*

B

*

conjg(

A’

)

+

beta

*

C

TRANS

=

’C’

or

’c’

C

:=

alpha

*

conjg(

A’

)

*

B

+

conjg(

alpha

)

*

conjg(

B’

)

*

A

+

beta

*

C

Unchanged

on

exit.

N

On

entry,

N

specifies

the

order

of

the

matrix

C;

N

must

be

at

least

0;

unchanged

on

exit.

K

On

entry

with

TRANS

=

’N’

or

’n’,

K

specifies

the

number

of

columns

of

the

matrices

A

and

B,

and

on

entry

with

TRANS

=

’C’

or

’c’,

K

specifies

the

number

of

rows

of

the

matrices

A

and

B;

K

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha;

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

715

A

An

array

of

dimension

(

LDA,

KA

),

where

KA

is

K

when

TRANS

=

’N’

or

’n’,

and

is

N

otherwise;

on

entry

with

TRANS

=

’N’

or

’n’,

the

leading

N

by

K

part

of

the

array

A

must

contain

the

matrix

A,

otherwise

the

leading

K

by

N

part

of

the

array

A

must

contain

the

matrix

A;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

TRANS

=

’N’

or

’n’,

LDA

must

be

at

least

max(

1,

N

);

otherwise

LDA

must

be

at

least

max(

1,

K

);

unchanged

on

exit.

B

An

array

of

dimension

(

LDB,

KB

),

where

KB

is

K

when

TRANS

=

’N’

or

’n’,

and

is

N

otherwise;

on

entry

with

TRANS

=

’N’

or

’n’,

the

leading

N

by

K

part

of

the

array

B

must

contain

the

matrix

B,

otherwise

the

leading

K

by

N

part

of

the

array

B

must

contain

the

matrix

B;

unchanged

on

exit.

LDB

On

entry,

LDB

specifies

the

first

dimension

of

B

as

declared

in

the

calling

(sub)

program.

When

TRANS

=

’N’

or

’n’,

LDB

must

be

at

least

max(

1,

N

);

otherwise

LDB

must

be

at

least

max(

1,

K

);

unchanged

on

exit.

BETA

On

entry,

BETA

specifies

the

scalar

beta;

unchanged

on

exit.

C

An

array

of

dimension

(

LDC,

N

);

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

N

by

N

upper

triangular

part

of

the

array

C

must

contain

the

upper

triangular

part

of

the

Hermitian

matrix

and

the

strictly

lower

triangular

part

of

C

is

not

reference;

on

exit,

the

upper

triangular

part

of

the

array

C

is

overwritten

by

the

upper

triangular

part

of

the

updated

matrix;

on

entry

with

UPLO

=

’L’

or

’l’,

the

leading

N

by

N

lower

triangular

part

of

the

array

C

must

contain

the

lower

triangular

part

of

the

Hermitian

matrix

and

the

strictly

upper

triangular

part

of

C

is

not

referenced;

on

exit,

the

lower

triangular

part

of

the

array

C

is

overwritten

by

the

lower

triangular

part

of

the

updated

matrix.

The

imaginary

parts

of

the

diagonal

elements

need

not

be

set,

they

are

assumed

to

be

0,

and

on

exit

they

are

set

to

0.

LDC

On

entry,

LDC

specifies

the

first

dimension

of

C

as

declared

in

the

calling

(sub)

program;

LDC

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

STRMM,

DTRMM,

CTRMM,

or

ZTRMM

Subroutine

Purpose

Performs

matrix-matrix

operations

on

triangular

matrices.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

STRMM(SIDE,

UPLO,

TRANSA,

DIAG,

M,

N,

ALPHA,

A,

LDA,

B,

LDB)

CHARACTER*1

SIDE,

UPLO,

TRANSA,

DIAG

INTEGER

M,

N,

LDA,

LDB

REAL

ALPHA

REAL

A(LDA,*),

B(LDB,*)

SUBROUTINE

DTRMM(SIDE,

UPLO,

TRANSA,

DIAG,

M,

N,

ALPHA,

A,

LDA,

B,

LDB)

CHARACTER*1

SIDE,UPLO,TRANSA,DIAG

INTEGER

M,N,LDA,LDB

DOUBLE

PRECISION

ALPHA

DOUBLE

PRECISION

A(LDA,*),

B(LDB,*)

SUBROUTINE

CTRMM(SIDE,

UPLO,

TRANSA,

DIAG,

M,

N,

ALPHA,

A,

LDA,

B,

LDB)

CHARACTER*1

SIDE,UPLO,TRANSA,DIAG

INTEGER

M,N,LDA,LDB

COMPLEX

ALPHA

COMPLEX

A(LDA,*),

B(LDB,*)

SUBROUTINE

ZTRMM(SIDE,

UPLO,

TRANSA,

DIAG,

M,

N,

ALPHA,

A,

LDA,

B,

LDB)

CHARACTER*1

716

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

SIDE,UPLO,TRANSA,DIAG

INTEGER

M,N,LDA,LDB

COMPLEX*16

ALPHA

COMPLEX*16

A(LDA,*),

B(LDB,*)

Description

The

STRMM,

DTRMM,

CTRMM,

or

ZTRMM

subroutine

performs

one

of

the

matrix-matrix

operations:

B

:=

alpha

*

op(

A

)

*

B

OR

B

:=

alpha

*

B

*

op(

A

)

where

alpha

is

a

scalar,

B

is

an

M

by

N

matrix,

A

is

a

unit,

or

non-unit,

upper

or

lower

triangular

matrix,

and

op(

A

)

is

either

op(

A

)

=

A

or

op(

A

)

=

A’.

Parameters

SIDE

On

entry,

SIDE

specifies

whether

op(

A

)

multiplies

B

from

the

left

or

right

as

follows:

SIDE

=

’L’

or

’l’

B

:=

alpha

*

op(

A

)

*

B

SIDE

=

’R’

or

’r’

B

:=

alpha

*

B

*

op(

A

)

Unchanged

on

exit.

UPLO

On

entry,

UPLO

specifies

whether

the

matrix

A

is

an

upper

or

lower

triangular

matrix

as

follows:

UPLO

=

’U’

or

’u’

A

is

an

upper

triangular

matrix.

UPLO

=

’L’

or

’l’

A

is

a

lower

triangular

matrix.

Unchanged

on

exit.

TRANSA

On

entry,

TRANSA

specifies

the

form

of

op(

A

)

to

be

used

in

the

matrix

multiplication

as

follows:

TRANSA

=

’N’

or

’n’

op(

A

)

=

A

TRANSA

=

’T’

or

’t’

op(

A

)

=

A’

TRANSA

=

’C’

or

’c’

op(

A

)

=

A’

Unchanged

on

exit.

DIAG

On

entry,

DIAG

specifies

whether

or

not

A

is

unit

triangular

as

follows:

DIAG

=

’U’

or

’u’

A

is

assumed

to

be

unit

triangular.

DIAG

=

’N’

or

’n’

A

is

not

assumed

to

be

unit

triangular.

Unchanged

on

exit.

M

On

entry,

M

specifies

the

number

of

rows

of

B;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

B;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha.

When

alpha

is

0

then

A

is

not

referenced

and

B

need

not

be

set

before

entry;

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

717

A

An

array

of

dimension

(

LDA,

k

),

where

k

is

M

when

SIDE

=

’L’

or

’l’

and

is

N

when

SIDE

=

’R’

or

’r’;

on

entry

with

UPLO

=

’U’

or

’u’,

the

leading

k

by

k

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced;

on

entry

with

UPLO

=

’L’

or

’l’,

the

leading

k

by

k

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

When

DIAG

=

’U’

or

’u’,

the

diagonal

elements

of

A

are

not

referenced

either,

but

are

assumed

to

be

unity;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

SIDE

=

’L’

or

’l’

then

LDA

must

be

at

least

max(

1,

M

),

when

SIDE

=

’R’

or

’r’

then

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

B

An

array

of

dimension

(

LDB,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

B

must

contain

the

matrix

B,

and

on

exit

is

overwritten

by

the

transformed

matrix.

LDB

On

entry,

LDB

specifies

the

first

dimension

of

B

as

declared

in

the

calling

(sub)

program;

LDB

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

STRSM,

DTRSM,

CTRSM,

or

ZTRSM

Subroutine

Purpose

Solves

certain

matrix

equations.

Library

BLAS

Library

(libblas.a)

FORTRAN

Syntax

SUBROUTINE

STRSM(SIDE,

UPLO,

TRANSA,

DIAG,

M,

N,

ALPHA,

A,

LDA,

B,

LDB)

CHARACTER*1

SIDE,

UPLO,

TRANSA,

DIAG

INTEGER

M,

N,

LDA,

LDB

REAL

ALPHA

REAL

A(LDA,*),

B(LDB,*)

SUBROUTINE

DTRSM(SIDE,

UPLO,

TRANSA,

DIAG,

M,

N,

ALPHA,

A,

LDA,

B,

LDB)

CHARACTER*1

SIDE,UPLO,TRANSA,DIAG

INTEGER

M,N,LDA,LDB

DOUBLE

PRECISION

ALPHA

DOUBLE

PRECISION

A(LDA,*),

B(LDB,*)

SUBROUTINE

CTRSM(SIDE,

UPLO,

TRANSA,

DIAG,

M,

N,

ALPHA,

A,

LDA,

B,

LDB)

CHARACTER*1

SIDE,UPLO,TRANSA,DIAG

INTEGER

M,N,LDA,LDB

COMPLEX

ALPHA

COMPLEX

A(LDA,*),

B(LDB,*)

SUBROUTINE

ZTRSM(SIDE,

UPLO,

TRANSA,

DIAG,

M,

N,

ALPHA,

A,

LDA,

B,

LDB)

CHARACTER*1

SIDE,UPLO,TRANSA,DIAG

INTEGER

M,N,LDA,LDB

COMPLEX*16

ALPHA

COMPLEX*16

A(LDA,*),

B(LDB,*)

Description

The

STRSM,

DTRSM,

CTRSM,

or

ZTRSM

subroutine

solves

one

of

the

matrix

equations:

v

op(

A

)

*

X

=

alpha

*

B

v

X

*

op(

A

)

=

alpha

*

B

718

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

where

alpha

is

a

scalar,

X

and

B

are

M

by

N

matrices,

A

is

a

unit,

or

non-unit,

upper

or

lower

triangular

matrix,

and

op(

A

)

is

either

op(

A

)

=

A

or

op(

A

)

=

A’.

The

matrix

X

is

overwritten

on

B.

Parameters

SIDE

On

entry,

SIDE

specifies

whether

op(

A

)

appears

on

the

left

or

right

of

X

as

follows:

SIDE

=

’L’

or

’l’

op(

A

)

*

X

=

alpha

*

B

SIDE

=

’R’

or

’r’

X

*

op(

A

)

=

alpha

*

B

Unchanged

on

exit.

UPLO

On

entry,

UPLO

specifies

whether

the

matrix

A

is

an

upper

or

lower

triangular

matrix

as

follows:

UPLO

=

’U’

or

’u’

A

is

an

upper

triangular

matrix.

UPLO

=

’L’

or

’l’

A

is

a

lower

triangular

matrix.

Unchanged

on

exit.

TRANSA

On

entry,

TRANSA

specifies

the

form

of

op(

A

)

to

be

used

in

the

matrix

multiplication

as

follows:

TRANSA

=

’N’

or

’n’

op(

A

)

=

A

TRANSA

=

’T’

or

’t’

op(

A

)

=

A’

TRANSA

=

’C’

or

’c’

op(

A

)

=

A’

Unchanged

on

exit.

DIAG

On

entry,

DIAG

specifies

whether

or

not

A

is

unit

triangular

as

follows:

DIAG

=

’U’

or

’u’

A

is

assumed

to

be

unit

triangular.

DIAG

=

’N’

or

’n’

A

is

not

assumed

to

be

unit

triangular.

Unchanged

on

exit.

M

On

entry,

M

specifies

the

number

of

rows

of

B;

M

must

be

at

least

0;

unchanged

on

exit.

N

On

entry,

N

specifies

the

number

of

columns

of

B;

N

must

be

at

least

0;

unchanged

on

exit.

ALPHA

On

entry,

ALPHA

specifies

the

scalar

alpha.

When

alpha

is

0

then

A

is

not

referenced

and

B

need

not

be

set

before

entry;

unchanged

on

exit.

A

An

array

of

dimension

(

LDA,

k

),

where

k

is

M

when

SIDE

=

’L’

or

’l’

and

is

N

when

SIDE

=

’R’

or

’r’.

On

entry

with

UPLO

=

’U’

or

’u’,

the

leading

k

by

k

upper

triangular

part

of

the

array

A

must

contain

the

upper

triangular

matrix

and

the

strictly

lower

triangular

part

of

A

is

not

referenced;

on

entry

with

UPLO

=

’L’

or

’l’,

the

leading

k

by

k

lower

triangular

part

of

the

array

A

must

contain

the

lower

triangular

matrix

and

the

strictly

upper

triangular

part

of

A

is

not

referenced.

When

DIAG

=

’U’

or

’u’,

the

diagonal

elements

of

A

are

not

referenced,

but

are

assumed

to

be

unity;

unchanged

on

exit.

LDA

On

entry,

LDA

specifies

the

first

dimension

of

A

as

declared

in

the

calling

(sub)

program.

When

SIDE

=

’L’

or

’l’,

LDA

must

be

at

least

max(

1,

M

);

when

SIDE

=

’R’

or

’r’,

LDA

must

be

at

least

max(

1,

N

);

unchanged

on

exit.

B

An

array

of

dimension

(

LDB,

N

);

on

entry,

the

leading

M

by

N

part

of

the

array

B

must

contain

the

right-hand

side

matrix

B,

and

on

exit

is

overwritten

by

the

solution

matrix

X.

LDB

On

entry,

LDB

specifies

the

first

dimension

of

B

as

declared

in

the

calling

(sub)

program.

LDB

must

be

at

least

max(

1,

M

);

unchanged

on

exit.

Chapter

3.

FORTRAN

Basic

Linear

Algebra

Subroutines

(BLAS)

719

720

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Appendix

A.

Base

Operating

System

Error

Codes

for

Services

That

Require

Path-Name

Resolution

The

following

errors

apply

to

any

service

that

requires

path

name

resolution:

EACCES

Search

permission

is

denied

on

a

component

of

the

path

prefix.

EFAULT

The

Path

parameter

points

outside

of

the

allocated

address

space

of

the

process.

EIO

An

I/O

error

occurred

during

the

operation.

ELOOP

Too

many

symbolic

links

were

encountered

in

translating

the

Path

parameter.

ENAMETOOLONG

A

component

of

a

path

name

exceeded

255

characters

and

the

process

has

the

DisallowTruncation

attribute

(see

the

ulimit

subroutine)

or

an

entire

path

name

exceeded

1023

characters.

ENOENT

A

component

of

the

path

prefix

does

not

exist.

ENOENT

A

symbolic

link

was

named,

but

the

file

to

which

it

refers

does

not

exist.

ENOENT

The

path

name

is

null.

ENOTDIR

A

component

of

the

path

prefix

is

not

a

directory.

ESTALE

The

root

or

current

directory

of

the

process

is

located

in

a

virtual

file

system

that

is

unmounted.

Related

Information

List

of

File

and

Directory

Manipulation

Services.

©

Copyright

IBM

Corp.

1994,

2004

721

722

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Appendix

B.

ODM

Error

Codes

When

an

ODM

subroutine

is

unsuccessful,

a

value

of

-1

is

returned

and

the

odmerrno

variable

is

set

to

one

of

the

following

values:

ODMI_BAD_CLASSNAME

The

specified

object

class

name

does

not

match

the

object

class

name

in

the

file.

Check

path

name

and

permissions.

ODMI_BAD_CLXNNAME

The

specified

collection

name

does

not

match

the

collection

name

in

the

file.

ODMI_BAD_CRIT

The

specified

search

criteria

is

incorrectly

formed.

Make

sure

the

criteria

contains

only

valid

descriptor

names

and

the

search

values

are

correct.

For

information

on

qualifying

criteria,

see

″Understanding

ODM

Object

Searches″

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

ODMI_BAD_LOCK

Cannot

set

a

lock

on

the

file.

Check

path

name

and

permissions.

ODMI_BAD_TIMEOUT

The

time-out

value

was

not

valid.

It

must

be

a

positive

integer.

ODMI_BAD_TOKEN

Cannot

create

or

open

the

lock

file.

Check

path

name

and

permissions.

ODMI_CLASS_DNE

The

specified

object

class

does

not

exist.

Check

path

name

and

permissions.

ODMI_CLASS_EXISTS

The

specified

object

class

already

exists.

An

object

class

must

not

exist

when

it

is

created.

ODMI_CLASS_PERMS

The

object

class

cannot

be

opened

because

of

the

file

permissions.

ODMI_CLXNMAGICNO_ERR

The

specified

collection

is

not

a

valid

object

class

collection.

ODMI_FORK

Cannot

fork

the

child

process.

Make

sure

the

child

process

is

executable

and

try

again.

ODMI_INTERNAL_ERR

An

internal

consistency

problem

occurred.

Make

sure

the

object

class

is

valid

or

contact

the

person

responsible

for

the

system.

ODMI_INVALID_CLASS

The

specified

file

is

not

an

object

class.

ODMI_INVALID_CLXN

Either

the

specified

collection

is

not

a

valid

object

class

collection

or

the

collection

does

not

contain

consistent

data.

ODMI_INVALID_PATH

The

specified

path

does

not

exist

on

the

file

system.

Make

sure

the

path

is

accessible.

ODMI_LINK_NOT_FOUND

The

object

class

that

is

accessed

could

not

be

opened.

Make

sure

the

linked

object

class

is

accessible.

ODMI_LOCK_BLOCKED

Cannot

grant

the

lock.

Another

process

already

has

the

lock.

ODMI_LOCK_ENV

Cannot

retrieve

or

set

the

lock

environment

variable.

Remove

some

environment

variables

and

try

again.

ODMI_LOCK_ID

The

lock

identifier

does

not

refer

to

a

valid

lock.

The

lock

identifier

must

be

the

same

as

what

was

returned

from

the

odm_lock

subroutine.

ODMI_MAGICNO_ERR

The

class

symbol

does

not

identify

a

valid

object

class.

ODMI_MALLOC_ERR

Cannot

allocate

sufficient

storage.

Try

again

later

or

contact

the

person

responsible

for

the

system.

ODMI_NO_OBJECT

The

specified

object

identifier

did

not

refer

to

a

valid

object.

ODMI_OPEN_ERR

Cannot

open

the

object

class.

Check

path

name

and

permissions.

ODMI_OPEN_PIPE

Cannot

open

a

pipe

to

a

child

process.

Make

sure

the

child

process

is

executable

and

try

again.

ODMI_PARAMS

The

parameters

passed

to

the

subroutine

were

not

correct.

Make

sure

there

are

the

correct

number

of

parameters

and

that

they

are

valid.

ODMI_READ_ONLY

The

specified

object

class

is

opened

as

read-only

and

cannot

be

modified.

ODMI_READ_PIPE

Cannot

read

from

the

pipe

of

the

child

process.

Make

sure

the

child

process

is

executable

and

try

again.

ODMI_TOOMANYCLASSES

Too

many

object

classes

have

been

accessed.

An

application

can

only

access

less

than

1024

object

classes.

ODMI_UNLINKCLASS_ERR

Cannot

remove

the

object

class

from

the

file

system.

Check

path

name

and

permissions.

ODMI_UNLINKCLXN_ERR

Cannot

remove

the

object

class

collection

from

the

file

system.

Check

path

name

and

permissions.

ODMI_UNLOCK

Cannot

unlock

the

lock

file.

Make

sure

the

lock

file

exists.

©

Copyright

IBM

Corp.

1994,

2004

723

Related

Information

List

of

ODM

Commands

and

Subroutines

in

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs.

724

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Appendix

C.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

"AS

IS"

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Dept.

LRAS/Bldg.

003

11400

Burnet

Road

Austin,

TX

78758-3498

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

©

Copyright

IBM

Corp.

1994,

2004

725

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

AIX

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

the

trademarks

or

service

marks

of

others.

726

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Index

Special

characters
_lazySetErrorHanhler

subroutine

584

_showstring

subroutine

626

_sync_cache_range

subroutine

311

Numerics
8-bit

character

capability

588

A
absolute

values
finding

index

of

element

with

maximum

value

669

access

control

information
retrieving

272

access

control

subroutines
fstatacl

272

revoke

45

statacl

272

addch

subroutine

523

addstr

subroutine

524

alarm

signals
beeping

530

flashing

557

alphasort

subroutine

107

alternate

stack

175

argument

formatting
vfscanf

433

vscanf

433

vsscanf

433

asynchronous

serial

data

line
sending

breaks

on

349

atoi

subroutine

299

attroff

subroutine

526

attron

subroutine

528

attrset

subroutine

528

authentication

database
opening

and

closing

148

authentication

subroutines
endpwdb

148

enduserdb

153

setpwdb

148

setuserdb

153

tcb

342

B
backspace

character
returning

556

baudrate

subroutine

529

beep

subroutine

530

Berkeley

Compatibility

Library
subroutines

rand_r

6

binary

trees,

manipulating

411

BLAS

matrix-matrix

operations

711

BLAS

matrix-matrix

subroutines

705,

706,

708,

710,

713,

714,

716,

718

BLAS

matrix-vector

subroutines

673,

674,

676,

677,

679,

680,

681,

682,

683,

685,

687,

688,

690,

692,

694,

695,

696,

697,

698,

699,

700,

701,

702,

704

BLAS

vector-vector

functions

661,

662,

667,

668,

669,

670

BLAS

vector-vector

subroutines

663,

664,

665,

666,

668,

671,

672

box

subroutine

531

buffers
assigning

to

streams

129

bytes
copying

304

C
carriage

return

598

CAXPY

subroutine

663

cbox

subroutine

531

cboxalt

subroutine

531

CBREAK

mode

535

cbreak

subroutine

535

CCOPY

subroutine

665

CDOTC

function

661

CDOTU

function

662

CGBMV

subroutine

674

CGEMM

subroutine

705

CGEMV

subroutine

673

CGERC

subroutine

695

CGERU

subroutine

695

change

color

definition

575

change

color-pair

definition

576

change

terminal

capabilities

557

character

conversion
wide

characters
lowercase

to

uppercase

368

to

double-precision

number

456

to

long

integer

460

to

multibyte

462,

469

to

tokens

459

to

unsigned

long

integer

464

uppercase

to

lowercase

367

character

data
interpreting

109

reading

109

character

manipulation

subroutines
vwsprintf

440

character

mapping

470

character

transliteration

366

characters
adding

lines

579

single

characters

523,

578

strings

524

backspace

556

clearing

screen

536,

537

controlling

text

scrolling

618,

619,

621

©

Copyright

IBM

Corp.

1994,

2004

727

characters

(continued)
deleting

550

dumping

strings

626

echoing

552

erasing

lines

540,

541,

551

erasing

window

555

getting

single

characters

561

getting

strings

566

handling

input

588,

598

line-kill

583

placing

at

cursor

location

574

reading

formatted

input

614

refreshing

648,

650

type

ahead

653

typeahead

558

writing

440

writing

formatted

output

604

charsetID
wide

character

449

CHBMV

subroutine

677

CHEMM

subroutine

708

CHEMV

subroutine

676

CHER

subroutine

696

CHER2

subroutine

698

CHER2K

subroutine

714

CHERK

subroutine

711

CHPMV

subroutine

679

CHPR

subroutine

697

CHPR2

subroutine

699

clear

subroutine

536

clearok

subroutine

537

close

role

database

149

close

SMIT

ACL

database

127

closelog

subroutine

330

closelog_r

subroutine

333

clrtobot

subroutine

540

clrtoeol

subroutine

541

code

sets
reading

map

files

131

color

definition

575

color

intensity

542

color

manipulation

532

color

pair

602

color

support

570

color-pair

definition

576

color,

initialize

636

columns
determining

number

624,

640

compare

wide

character

502

complex

dot

products
determining

661,

662

control

characters
specifying

654

control

input

characters

570

convert

wide

character

469

converter

subroutines
wcsrtombs

453

copy

a

window

region

543

copy

wide

character

502,

503

create

subwindows

637

cresetty

subroutine

611

CROTG

subroutine

663

CSCAL

subroutine

668

CSROT

subroutine

664

CSSCAL

subroutine

668

CSWAP

subroutine

666

CSYMM

subroutine

706

CSYR2K

subroutine

713

CSYRK

subroutine

710

CTBMV

subroutine

685

CTBSV

subroutine

690

CTPMV

subroutine

687

CTPSV

subroutine

692

CTRMM

subroutine

716

CTRMV

subroutine

683

CTRSM

subroutine

718

CTRSV

subroutine

688

current

process

credentials
setting

139

current

process

environment
setting

142

current

processes
group

ID
setting

134

suspending

196

user

information

427

current

screen
refreshing

608,

657

current

screens
refreshing

603

curses
initializing

577

terminating

554

curses

character

control

subroutines
_showstring

626

addch

523

addstr

524

clear

536

clearok

537

clrtobot

540

clrtoeol

541

delch

550

deleteln

551

erase

555

getch

561

getstr

566

inch

574

insch

578

insertln

579

meta

588

mvaddch

523

mvaddstr

524

mvdelch

550

mvgetch

561

mvgetstr

566

mvinch

574

mvinsch

578

mvscanw

614

mvwaddch

523

mvwaddstr

524

mvwdelch

550

mvwgetch

561

728

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

curses

character

control

subroutines

(continued)
mvwgetstr

566

mvwinch

574

mvwinsch

578

mvwscanw

614

nodelay

598

scanw

614

scroll

618

scrollok

619

setscrreg

621

unctrl

654

waddch

523

waddstr

524

wclear

536

wclrtobot

540

wclrtoeol

541

wdelch

550

wdeleteln

551

werase

555

wgetch

561

wgetstr

566

winch

574

winsch

578

winsertln

579

wscanw

614

wsetscrreg

621

curses

cursor

control

subroutines
getyx

569

leaveok

585

move

589

mvcur

589

wmove

589

curses

data

structure

616

curses

options

setting

subroutines
idlok

573

intrflush

580

keypad

582

typeahead

653

curses

portability

subroutines
baudrate

529

erasechar

556

flushinp

558

killchar

583

curses

subroutine
getbegyx

560

getmaxyx

565

curses

subroutines
character

locations
echochar,

wechochar,

pechochar

553

endwin

554

initscr

577

switching

input/output

to

different

terminals

623

curses

terminal

manipulation

subroutines
cbreak

535

cresetty

611

def_prog_mode

545

def_shell_mode

546

delay_output

549

echo

552

has_ic

571

has_il

572

curses

terminal

manipulation

subroutines

(continued)
longname

586

newterm

594

nl

598

nocbreak

535

noecho

552

nonl

598

noraw

607

putp

605

raw

607

reset_prog_mode

609

reset_shell_mode

609

resetterm

610

resetty

611

set_term

623

setupterm

624

tgetent

640

tgetflag

641

tgetnum

642

tgetstr

642

tgoto

643

tparm

651

tputs

652

curses

video

attributes

subroutines
attroff

526

attron

528

attrset

528

beep

530

flash

557

standend

634

standout

634

vidattr

656

vidputs

656

wattroff

526

wattron

528

wattrset

528

wstandend

634

wstandout

634

curses

window

manipulation

subroutines
box

531

delwin

552

doupdate

657

makenew

587

mvwin

591

newpad

592

newwin

596

overlay

601

overwrite

601

pnoutrefresh

603

prefresh

603

refresh

608

subwin

638

touchline

648

touchoverlap

649

touchwin

650

wnoutrefresh

657

wrefresh

608

cursor

control
moving

logical

cursor

589

moving

physical

cursor

589

placing

cursor

585

Index

729

cursor

control

(continued)
returning

logical

cursor

coordinates

569

cursor

coordinates

560

cursor

visibility

544

D
D

cache

311

DASUM

subroutine

668

data
sorting

with

quicker-sort

algorithms

1

data

sorting

subroutines
qsort

1

tdelete

411

tfind

411

tsearch

411

twalk

411

data

transmissions
suspending

344

waiting

for

completion

343

data

words
trace

401

databases
authentication

opening

and

closing

148

date
format

conversions

288

date

format

conversions

300,

448

DAXPY

subroutine

663

DCOPY

subroutine

665

DDOT

function

661

def_prog_mode

subroutine

545

def_shell_mode

subroutine

546

defect

220643

365

define

character

mapping

470

delay

mode

570

delay_output

subroutine

549

delch

subroutine

550

deleteln

subroutine

551

delwin

subroutine

552

determine

terminal

color

support

570

device

driver
calling

317

device

switch

tables
checking

entry

status

325

DGBMV

subroutine

674

DGEMM

subroutine

705

DGEMV

subroutine

673

DGER

subroutine

694

directories
reading

21

removing

48

removing

entries

424

renaming

42

scanning

contents

107

sorting

contents

107

directory

subroutines
alphasort

107

readlink

22

rmdir

48

scandir

107

directory

subroutines

(continued)
symlink

308

unlink

424

disable

terminal

capabilities

557

discard

lines

in

windows

559

disk

quotas
manipulating

2

DNRM2

function

667

dot

products
determining

661,

670

doupdate

subroutine

657

drawbox

subroutine

531

drawboxalt

subroutine

531

DROT

subroutine

664

DROTG

subroutine

663

DROTM

subroutine

671

DROTMG

subroutine

672

DSBMV

subroutine

681

DSCAL

subroutine

668

DSPMV

subroutine

682

DSPR

subroutine

701

DSPR2

subroutine

704

DSWAP

subroutine

666

DSYMM

subroutine

706

DSYMV

subroutine

680

DSYR

subroutine

700

DSYR2

subroutine

702

DSYR2K

subroutine

713

DSYRK

subroutine

710

DTBMV

subroutine

685

DTBSV

subroutine

690

DTPMV

subroutine

687

DTPSV

subroutine

692

DTRMM

subroutine

716

DTRMV

subroutine

683

DTRSM

subroutine

718

DTRSV

subroutine

688

dump

file,

data

structure

616

dump

file,

restore

screen

618

DZASUM

subroutine

668

DZNRM2

function

667

E
echo

subroutine

552

echochar

subroutine

553

echoing

characters

552

endpwdb

subroutine

148

endroledb

subroutine

149

enduserdb

subroutine

153

endwin

subroutine

554

equations
solving

systems

688,

690,

692

erase

subroutine

555

erasechar

subroutine

556

error

codes

721

error

codes,

ODM

723

error

handler,

install

584

error

handling
controlling

system

logs

330

numbering

error

message

string

285

730

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

errorlogging

subroutines
closelog

330

openlog

330

setlogmask

330

syslog

330

errorlogging_r

subroutines

333

Euclidean

lengths
determining

667

examine

state

of

alternate

stack

175

execution

control
saving

and

restoring

context

135

execution

control

subroutines
longjmp

135

setjmp

135

exponential

numbers
scalbln

106

scalblnf

106

scalblnl

106

scalbn

106

scalbnf

106

scalbnl

106

extended

curses
initializing

577

extended

curses

character

control

subroutines
_showstring

626

getch

561

inch

574

insch

578

meta

588

mvgetch

561

mvinch

574

mvinsch

578

mvscanw

614

mvwgetch

561

mvwinch

574

mvwinsch

578

mvwscanw

614

printw

604

scanw

614

scroll

618

scrollok

619

wgetch

561

winch

574

winsch

578

wscanw

614

extended

curses

options

setting

subroutines
idlok

573

intrflush

580

extended

curses

portability

subroutines
baudrate

529

erasechar

556

flushinp

558

killchar

583

extended

curses

subroutines
initscr

577

extended

curses

terminal

manipulation

subroutines
delay_output

549

has_ic

571

has_il

572

newterm

594

putp

605

extended

curses

terminal

manipulation

subroutines

(continued)
resetterm

610

set_term

623

setupterm

624

tgentent

640

tgetflag

641

tgetnum

642

tparm

651

extended

curses

video

attributes

subroutines
attroff

526

attron

528

attrset

528

standend

635

standout

635

vidputs

656

wattroff

526

wattron

528

wattrset

528

wstandend

634

wstandout

635

extended

curses

window

manipulation

subroutines
box

531

cbox

531

cboxalt

531

delwin

552

doupdate

657

drawbox

531

drawboxalt

531

fullbox

531

makenew

587

mvwin

591

newwin

596

overlay

601

overwrite

601

superbox

531

superbox1

531

touchline

648

touchoverlap

650

wnoutrefresh

657

F
ffullstat

subroutine

277

file

access

times
setting

429

file

creation

masks
getting

or

setting

values

419

file

descriptors
checking

I/O

status

115

file

modification

times
setting

429

file

subroutines
ffullstat

277

fstat

277

fstatx

277

ftruncate

408

fullstat

277

lstat

277

remove

40

rename

42

Index

731

file

subroutines

(continued)
stat

277

statx

277

tempnam

364

tmpfile

364

tmpnam

364

truncate

408

umask

419

utime

429

utimes

429

file

system

information

276

file

system

subroutines
fstatfs

274

mount

436

quotactl

2

statfs

274

sync

310

sysconf

312

umount

420

ustat

274

uvmount

420

vmount

436

file

systems
manipulating

disk

quotas

2

mounting

436

returning

statistics

274

unmounting

420

updating

310

file,

input/output

615

files
changing

length

of

regular

408

constructing

names

for

temporary

364

creating

symbolic

links

308

creating

temporary

364

deleting

40

providing

status

information

277

reading

16

removing

40

renaming

42

revoking

access

45

writing

to

507

find

wide

character

501

find

wide

character

substring

455

flash

subroutine

557

flow

control
performing

344

flushing
typeahead

characters

558

flushinp

subroutine

558

foreground

process

group

IDs
getting

348

setting

352

formatted

input
converting

109

fscanf

subroutine

109

fstat

subroutine

277

fstatacl

subroutine

272

fstatfs

subroutine

274

fstatvfs

subroutine

276

fstatx

subroutine
described

277

ftruncate

subroutine

408

fullbox

subroutine

531

fullstat

subroutine

277

G
gamma

subroutines
tgamma

355

tgammaf

355

tgammal

355

get

capabilities,

terminfo

644

get

key

name

581

get

terminals

numeric

value

646

get

terminals

string

capabiltiy

647

get

XTI

variables

380

get_wctype

subroutine

471

getbegyx

subroutine

560

getch

subroutine

561,

588,

598

getmaxyx

subroutine

565

getstr

subroutine

566

getyx

macro

569

Givens

plane

rotations
constructing

663

Givens

transformations
applying

671

constructing

672

gsignal

subroutine

271

gtty

subroutine

303

H
half-delay

mode

570

has_ic

subroutine

571

has_il

subroutine

572

Hermitian

operations
performing

rank

1

696,

697

performing

rank

2

698,

699

performing

rank

2k

714

performing

rank

k

711

highlight

mode

634

hook

words
trace

401

hyperbolic

functions
computing

194

hyperbolic

sine

subroutines
sinhf

194

hyperbolic

tangent

subroutines
tanhf

341

I
I

cache

311

I/O

asynchronous

subroutines
select

115

I/O

low-level

subroutines

16,

507

readvx

16

readx

16

writevx

507

writex

507

I/O

stream

subroutines
fscanf

109

732

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

I/O

stream

subroutines

(continued)
scanf

109

setbuf

129

setbuffer

129

setlinebuf

129

setvbuf

129

sscanf

109

ungetc

423

ungetwc

423

wsscanf

109

I/O

terminal

subroutines
gtty

303

isatty

414

stty

303

tcdrain

343

tcflow

344

tcflush

345

tcgetattr

347

tcgetpgrp

348

tcsendbreak

349

tcsetattr

350

tcsetpgrp

352

termdef

353

ttylock

413

ttylocked

413

ttyname

414

ttyslot

416

ttyunlock

413

ttywait

413

ICAMAX

subroutine

669

IDAMAX

subroutine

669

idlok

subroutine

573

idxpg4

281

inch

subroutine

574

index

subroutine

291

initialize

color

636

initscr

subroutine

577

initstate

subroutine

7

input

streams
pushing

single

character

into

423

insch

subroutine

578

insert-character

capability

571

insert-line

capability

572

insert/delete

line

option

573

insertln

subroutine

579

interval

timers
releasing

39

intrflush

subroutine

580

ISAMAX

subroutine

669

isatty

subroutine

414

IZAMAX

subroutine

669

J
JFS

manipulating

disk

quotas

2

K
kernel

configurations
customizing

315

kernel

extension

modules
loading

329

kernel

extensions
loading

322

kernel

object

files
determining

status

327

invoking

318

unloading

324

kernel

parameters
setting

328

key

name

581

keypad
enabling

582

keypad

subroutine

582

killchar

subroutine

583

L
label

name,

return

630

lazy

loading

runtime

system

584

LC_ALL

environment

variable

137

LC_COLLATE

category

137

LC_CTYPE

category

137

LC_MESSAGES

category

137

LC_MONETARY

category

137

LC_NUMERIC

category

137

LC_TIME

category

137

leaveok

subroutine

585

line-kill

character

583

lines
adding

579

determining

number

624,

640

erasing

540,

541,

551

links
creating

symbolic

308

reading

contents

of

symbolic

22

locale

subroutines
rpmatch

49

setlocale

136

locales
changing

or

querying

136

response

matching

49

localization

subroutines
strfmon

286

strftime

288

strptime

300

locking

functions
controlling

tty

413

logical

cursor

569,

589

long

integers,

converting
from

character

strings

299

from

wide-character

strings

460

long

numeric

data

154

longjmp

subroutine

135

longname

subroutine

586

lowercase

characters
converting

from

uppercase

367

converting

to

uppercase

368

lstat

subroutine

277

Index

733

M
m_initscr

subroutine

577

makenew

subroutine

587

mapped

files
attaching

to

process

155

mapping,

character

470

matrices
performing

matrix-matrix

operations

with
general

matrices

705

Hermitian

matrices

708

symmetric

matrices

706

triangular

matrices

716

performing

matrix-vector

operations

with
general

banded

matrices

674

general

matrices

673

Hermitian

band

matrices

677

Hermitian

matrices

676

packed

Hermitian

matrices

679

packed

symmetric

matrices

682

packed

triangular

matrices

687

symmetric

band

matrices

681

symmetric

matrices

680

triangular

band

matrices

685

triangular

matrices

683

solving

equations

718

memory
freeing

507

memory

management
activating

paging

or

swapping

305,

306

controlling

shared

memory

operations

158

returning

paging

device

status

306

returning

shared

memory

segments

161

memory

management

subroutines
shmat

155

shmctl

158

shmdt

160

shmget

161

swapoff

305

swapon

306

swapqry

306

memory

mapping
attaching

segment

or

file

to

process

155

message

queues
checking

I/O

status

115

meta

subroutine

588

minicurses
initializing

577

minicurses

subroutines
attrset

528

baudrate

529

erasechar

556

flushinp

558

getch

561

m_initscr

577

monetary

strings

286

mount

subroutine

436

mounted

file

systems
returning

statistics

274

move

subroutine

589

multibyte

characters
converting

from

wide

462,

469

mvaddch

subroutine

523

mvaddstr

subroutine

524

mvcur

subroutine

589

mvdelch

subroutine

550

mvgetch

subroutine

561

mvgetstr

subroutine

566

mvinch

subroutine

574

mvinsch

subroutine

578

mvprintw

subroutine

604

mvscanw

subroutine

614

mvwaddch

subroutine

523

mvwaddstr

subroutine

524

mvwdelch

subroutine

550

mvwgetch

subroutine

561

mvwgetstr

subroutine

566

mvwin

subroutine

591

mvwinch

subroutine

574

mvwinsch

subroutine

578

mvwprintw

subroutine

604

mvwscanw

subroutine

614

N
new-line

character

598

newpad

subroutine

592

newterm

subroutine

594

newwin

subroutine

596

nl

subroutine

598

no

timeout

mode

599

nocbreak

subroutine

535

nodelay

subroutine

598

noecho

subroutine

552

nonl

subroutine

598

noraw

subroutine

607

nsleep

subroutine

196

numbers
generating

pseudo-random

5

random

5,

7

numerical

data
generating

pseudo-random

numbers

6

numerical

manipulation

subroutines
atoi

299

initstate

7

rand

5

random

7

rinl

46

rint

46

rsqrt

104

scalb

106

setstate

7

sgetl

154

sinh

194

sinl

193

sputl

154

sqrt

238

sqrtl

238

srand

5

srandom

7

strtod

294

strtof

294

734

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

numerical

manipulation

subroutines

(continued)
strtol

299

strtold

294

strtoul

299

tan

340

tanhl

341

tanl

340

watof

515

watoi

516

watol

516

wstrtod

515

wstrtol

516

O
object

file

access

subroutines
sgetl

154

sputl

154

object

file

subroutines
unload

426

object

files
unloading

426

Obtaining

high-resolution

elapsed

time
read_real_time

or

time_base_to_time

23

ODM

error

codes

723

open

role

database

149

open

SMIT

ACL

database

127

openlog

subroutine

330

openlog_r

subroutine

333

operating

system
customizing

configurations

315

identifying

421

output
waiting

for

completion

343

overlay

subroutine

601

overwrite

subroutine

601

P
paging

memory
activating

305,

306

returning

information

on

devices

306

parameter

lists
handling

variable-length

430

parameter

structures
copying

into

buffers

320,

321

path

name
resolve

25

path-name

resolution

721

pechochar

subroutine

553

performance

data

from

remote

kernels

105

physical

cursor

589

plane

rotations
applying

664

pnoutrefresh

subroutine

603

prefresh

subroutine

603

print

formatted

output

440

printf

subroutine

604

printw

subroutine

604

process

credentials
setting

139

process

environments
setting

142

process

group

IDs
returning

348

setting

132,

146,

150,

352

supplementary

IDs
setting

134

process

identification
current

operating

system

name

421

process

initiation
restarting

system

26

process

priorities
setting

scheduled

priorities

147

yielding

to

higher

priorities

521

process

resource

allocation
setting

and

getting

user

limits

416

process

signals
blocked

signal

sets
changing

188

returning

179

changing

subroutine

restart

behavior

177

enhancement

and

management

183

handling

system-defined

exceptions

164

implementing

software

signal

facility

271

manipulating

signal

sets

176

sending

to

executing

program

4

signal

masks
replacing

188

saving

or

restoring

186

setting

180

specifying

action

upon

delivery

164

stacks
defining

alternate

187

saving

or

restoring

context

186

process

subroutines

(security

and

auditing)
setegid

132

seteuid

151

setgid

132

setgidx

132

setgroups

134

setpcred

139

setpenv

142

setregid

132

setreuid

151

setrgid

132

setruid

151

setuid

151

setuidx

151

system

338

usrinfo

427

process

user

IDs
setting

151

processes
handling

user

information

427

suspending

196,

441,

444

processes

subroutines
gsignal

271

raise

4

reboot

26

semctl

120

semget

123

Index

735

processes

subroutines

(continued)
semop

125

setpgid

146

setpgrp

146

setpri

147

setsid

150

sigaddset

176

sigblock

180

sigdelset

176

sigemptyset

176

sigfillset

176

sighold

183

sigignore

183

siginterrupt

177

sigismember

176

siglongjmp

186

sigpause

188

sigpending

179

sigprocmask

180

sigreise

183

sigset

183

sigsetjmp

186

sigsetmask

180

sigstack

187

sigsuspend

188

ssignal

271

ulimit

416

uname

421

unamex

421

wait

441

wait3

441

waitid

444

waitpid

441

yield

521

program

mode

609

pseudo-random

numbers
generating

5

pthread_kill

subroutine

4

push

character

to

input

queue

655

putp

subroutine

605

Q
qsort

subroutine

1

queues
discarding

data

345

quotactl

subroutine

2

R
ra_attachrset

Subroutine

9

ra_detachrset

Subroutine

11

ra_exec

Subroutine

12

ra_fork

Subroutine

14

ra_getrset

Subroutine

15

raise

subroutine

4

rand

subroutine

5

rand_r

subroutine

6

random

numbers
generating

5,

7

random

subroutine

7

rank

1

operations

694,

695

raw

mode

607

raw

subroutine

607

re_comp

subroutine

28

re_exec

subroutine

28

re-initializest

terminal

structures

611

read

operations
from

a

file

16

read

subroutine

16

read_real_time

Subroutine

23

readdir_r

subroutine

21

readlink

subroutine

22

readv

subroutine
described

16

readvx

subroutine

16

readx

subroutine
described

16

realpath

subroutine

25

reboot

subroutine

26

receive

data

unit

372

reception

of

data
suspending

344

reciprocals

of

square

roots
computing

104

refresh

subroutine

608

refreshing
characters

648,

650

current

screen

603,

608,

657

standard

screen

657

terminal

603,

608

windows

649,

658

regcmp

subroutine

29

regcomp

subroutine

32

regerror

subroutine

33

regex

subroutine

29

regexec

subroutine

35

regfree

subroutine

38

regular

expression

subroutines
regcmp

29

regcomp

32

regerror

33

regex

29

regexec

35

regfree

38

regular

expressions
comparing

35

compiling

29,

32

error

messages

33

freeing

memory

38

matching

29

regular

files
changing

length

408

release

indication
user

data

368

relinquish

processor

115

reltimerid

subroutine

39

remainder

subroutine

39

remainder

subroutines
remquo

41

remquof

41

remquol

41

736

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Remainder

subroutines
remainder

39

remainderf

39

remainderl

39

remainderf

subroutine

39

remainderl

subroutine

39

remote

hosts
rstat

subroutine

105

Remote

Statistics

Interface
subroutines

RSiChangeFeed

53

RSiChangeHotFeed

54

RSiClose

55

RSiCreateStatSet

57

RSiDelSetHot

58

RSiDelSetStat

59

RSiFirstCx

60

RSiFirstStat

62

RSiGetHotItem

63

RSiGetRawValue

65

RSiGetValue

66

RSiInit

68

RSiInstantiate

69

RSiMainLoop

72

RSiNextCx

73

RSiNextStat

74

RSiOpen

75

RSiPathAddSetStat

78

RSiPathGetCx

79

RSiStartFeed

80

RSiStartHotFeed

81

RSiStatGetPath

82

RSiStopHotFeed

85

remove

subroutine

40

remquo

subroutine

41

remquof

subroutine

41

remquol

subroutine

41

rename

subroutine

42

replace

lines

in

windows

559

reserve

a

screen

line

612

reset_malloc_log

subroutine

44

reset_prog_mode

subroutine

609

reset_shell_mode

subroutine

609

resetterm

subroutine

610

resetty

subroutine

611

Resource

Set

APIs
ra_attachrset

9

ra_detachrset

11

ra_exec

12

ra_fork

14

ra_getrset

15

rs_alloc

86

rs_discardname

87

rs_free

88

rs_getassociativity

89

rs_getinfo

90

rs_getnameattr

91

rs_getnamedrset

92

rs_getpartition

93

rs_getrad

94

rs_init

96

Resource

Set

APIs

(continued)
rs_numrads

96

rs_op

97

rs_registername

99

rs_setnameattr

101

rs_setpartition

103

restore

soft

function

key

632

restore

virtual

screen

618

retrieves

information

from

terminfo

547

return

color

intensity

542

return

file

system

information

276

return

label,

soft

label

630

return

window

size

565

returns

color

to

color

pair

602

revoke

subroutine

45

rindex

subroutine

291

rint

subroutine

46

rintf

subroutine

46

rintl

subroutine

46

ripoffline

subtoutine

612

rmdir

subroutine

48

round

subroutine

47

roundf

subroutine

47

rounding

numbers
rintf

46

rintl

46

round

47

roundf

47

roundl

47

trunc

407

truncf

407

truncl

407

roundl

subroutine

47

rpmatch

subroutine

49

rs_alloc

Subroutine

86

rs_discardname

Subroutine

87

rs_free

Subroutine

88

rs_getassociativity

Subroutine

89

rs_getinfo

Subroutine

90

rs_getnameattr

Subroutine

91

rs_getnamedrset

Subroutine

92

rs_getpartition

Subroutine

93

rs_getrad

Subroutine

94

rs_init

Subroutine

96

rs_numrads

Subroutine

96

rs_op

Subroutine

97

rs_registername

Subroutine

99

rs_setnameattr

Subroutine

101

rs_setpartition

Subroutine

103

rsqrt

subroutine

104

rstat

subroutine

105

runtime

tunable

parameters
setting

328

S
SASUM

subroutine

668

savetty

subroutine

613

SAXPY

subroutine

663

scalb

subroutine

106

scalbln

subroutine

106

Index

737

scalblnf

subroutine

106

scalblnl

subroutine

106

scalbn

subroutine

106

scalbnf

subroutine

106

scalbnl

subroutine

106

scandir

subroutine

107

scanf

subroutine

109,

614

scanw

subroutine

614

SCASUM

subroutine

668

sched_yield

subtoutine

115

scheduling

policy

and

priority
kernel

thread

361

SCNRM2

function

667

SCOPY

subroutine

665

scr_dump

subtoutine

615

scr_init

subtoutine

616

scr_restore

subtoutine

618

screen

line

612

screens
refreshing

603,

608,

658

scroll

subroutine

618

scrollok

subroutine

619

SDOT

function

661

SDSDOT

function

670

select

subroutine

115

semaphore

identifiers

123

semaphore

operations

120,

125

semctl

subroutine

120

semget

subroutine

123

semop

subroutine

125

send

data

374

serial

data

lines
sending

breaks

on

349

sessions
creating

150

set

blocking

or

non-blocking

read

599

set

cursor

visibility

544

set

terminal

variables

620

set

wide

character

504

set_curterm

subtoutine

620

set_term

subroutine

623

setauthdb

subroutine

128

setbuf

subroutine

129

setbuffer

subroutine

129

setcsmap

subroutine

131

setegid

subroutine

132

seteuid

subroutine

151

setgid

subroutine

132

setgidx

subroutine

132

setgroups

subroutine

134

setjmp

subroutine

135

setlinebuf

subroutine

129

setlocale

subroutine

136

setlogmask

subroutine

330

setlogmask_r

subroutine

333

setpcred

subroutine

139

setpenv

subroutine

142

setpgid

subroutine

146

setpgrp

subroutine

146

setpri

subroutine

147

setpwdb

subroutine

148

setregid

subroutine

132

setreuid

subroutine

151

setrgid

subroutine

132

setroledb

subtoutine

149

setruid

subroutine

151

setscrreg

subroutine

621

setsid

subroutine

150

setstate

subroutine

7

setsyx

subroutine

622

setuid

subroutine

151

setuidx

subroutine

151

setup

soft

labels

633

setupterm

subroutine

624

setuserdb

subroutine

153

setvbuf

subroutine

129

SGBMV

subroutine

674

SGEMM

subroutine

705

SGEMV

subroutine

673

SGER

subroutine

694

sgetl

subroutine

154

shared

memory

segments
attaching

to

process

155

detaching

160

operations

on

158

returning

161

shell

commands
running

338

shell

mode

546,

609

shmat

subroutine

155

shmctl

subroutine

158

shmdt

subroutine

160

shmget

subroutine

161

short

status

requests
sending

259,

262

sigaddset

subroutine

176

sigaltstack

subroutine

175

sigblock

subroutine

180

sigdelset

subroutine

176

sigemptyset

subroutine

176

sigfillset

subroutine

176

sighold

subroutine

183

sigignore

subroutine

183

siginterrupt

subroutine

177

sigismember

subroutine

176

siglongjmp

subroutine

186

signal

masks
replacing

188

saving

or

restoring

186

setting

180

signal

stacks
defining

alternate

187

saving

or

restoring

context

186

signbit

macro

178

sigpause

subroutine

188

sigpending

subroutine

179

sigprocmask

subroutine

180

sigqueue

subroutine

182

sigrelse

subroutine

183

sigset

subroutine

183

sigsetjmp

subroutine

186

sigsetmask

subroutine

180

738

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

sigstack

subroutine

187

sigsuspend

subroutine

188

sigtimedwait

subroutine

191

sigwait

subroutine

192

sigwaitinfo

subroutine

191

sin

subroutine

193

sine

subroutines
sinf

193

sinf

subroutine

193

single-byte

conversion

469

sinh

subroutine

194

sinhf

subroutine

194

sinhl

subroutine

194

sinl

subroutine

193

sleep

subroutine

196

slk_attroff

subroutine

626

slk_init

subroutine

629

slk_label

subroutine

630

slk_noutrefresh

subroutine

631

slk_refresh

subroutine

632

slk_restore

subroutine

632

slk_set

subroutine

633

slk_touch

subroutine

634

SMIT

ACL

database

127

SNRM2

function

667

sockatmark

subroutine

197

soft

function

key

label,

restore

632

soft

function

key-label

629

soft

function

key,

setup

633

soft

function

key,

update

634

soft

label

subroutines

626

soft

label,

label

name

630

soft

label,

update

631,

632

sputl

subroutine

154

sqrt

subroutine

238

sqrtf

subroutine

238

sqrtl

subroutine

238

square

route

subroutines
sqrtf

238

srand

subroutine

5

srandom

subroutine

7

src

error

message
src

error

code

241

SRC

error

messages
retrieving

240

src

request

headers
return

address

243

SRC

requests
getting

subsystem

reply

information

241

sending

replies

250

SRC

status

text
returning

title

line

264

SRC

status

text

representations
getting

265

SRC

subroutines
src_err_msg

240

srcrrqs

241

srcsbuf

244

srcsbuf_r

247

srcsrpy

250

srcsrqt

253

SRC

subroutines

(continued)
srcsrqt_r

256

srcstat

259

srcstat_r

262

srcstathdr

264

srcstattxt

265

srcstattxt_r

265

srcstop

266

srcstrt

268

src_err_msg

subroutine

240

src_err_msg_r

subroutine

241

srcrrqs

subroutine

241

srcrrqs_r

subroutine

243

srcsbuf

subroutine

244

srcsbuf_r

subroutine

247

srcsrpy

subroutine

250

srcsrqt

subroutine

253

srcsrqt_r

subroutine

256

srcstat

subroutine

259

srcstat_r

subroutine

262

srcstathdr

subroutine

264

srcstattxt

subroutine

265

srcstattxt_r

subroutine

265

srcstop

subroutine

266

srcstrt

subroutine

268

SROT

subroutine

664

SROTG

subroutine

663

SROTM

subroutine

671

SROTMG

subroutine

672

SSBMV

subroutine

681

SSCAL

subroutine

668

sscanf

subroutine

109

ssignal

subroutine

271

SSPMV

subroutine

682

SSPR

subroutine

701

SSPR2

subroutine

704

SSWAP

subroutine

666

SSYMM

subroutine

706

SSYMV

subroutine

680

SSYR

subroutine

700

SSYR2

subroutine

702

SSYR2K

subroutine

713

SSYRK

subroutine

710

stack,

alternate

175

standard

screen
clearing

536

refreshing

657

standend

subroutine

634

standout

subroutine

634

start_color

subroutine

636

stat

subroutine

277

statacl

subroutine

272

statfs

subroutine

274

statvfs

subroutine

276

statx

subroutine

277

STBMV

subroutine

685

STBSV

subroutine

690

store

screen

coordinates

560

STPMV

subroutine

687

STPSV

subroutine

692

strcasecmp

subroutine

283

Index

739

strcat

subroutine

281

strchr

subroutine

291

strcmp

subroutine

283

strcoll

subroutine

283

strcpy

subroutine

281

strcspn

subroutine

291

strdup

subroutine

281

streams
assigning

buffers

129

strerror

subroutine

285

strfmon

subroutine

286

strftime

subroutine

288

string

conversion
strtof

294

strtoimax

297

strtold

294

strtoumax

297

to

double-precision

floating

points

515

to

integers

299,

516

to

long

integers

516

string

manipulation

macros
varargs

430

string

manipulation

subroutines
re_comp

28

re_exec

28

strncollen

293

wordexp

504

wordfree

507

wstring

512

string

operations
appending

strings

281

comparing

strings

283

copying

strings

281

determining

existence

of

strings

291

determining

string

location

291

determining

string

size

291

splitting

strings

into

tokens

291

string

subroutines
index

291

rindex

291

strcasecmp

283

strcat

281

strchr

291

strcmp

283

strcoll

283

strcpy

281

strcspn

291

strdup

281

strerror

285

strlen

291

strncasecmp

283

strncat

281

strncmp

283

strncpy

281

strpbrk

291

strrchr

291

strsep

291

strspn

291

strstr

291

strtok

291

strtok_r

298

string

subroutines

(continued)
strxfrm

281

strings
breaking

strings

into

tokens

298

compiling

for

pattern

matching

28

performing

operations

on

type

wchar

512

returning

number

of

collation

values

293

strlen

subroutine

291

STRMM

subroutine

716

STRMV

subroutine

683

strncasecmp

subroutine

283

strncat

subroutine

281

strncmp

subroutine

283

strncollen

subroutine

293

strncpy

subroutine

281

strpbrk

subroutine

291

strptime

subroutine

300

strrchr

subroutine

291

strsep

subroutine

291

STRSM

subroutine

718

strspn

subroutine

291

strstr

subroutine

291

STRSV

subroutine

688

strtod

subroutine

294

strtof

subroutine

294

strtoimax

subroutine

297

strtok

subroutine

291

strtok_r

subroutine

298

strtol

subroutine

299

strtold

subroutine

294

strtoul

subroutine

299

strtoumax

subroutine

297

strxfrm

subroutine

281

stty

subroutine

303

subpad

subroutine

637

subroutines
remote

statistics

interface
RSiChangeFeed

53

RSiChangeHotFeed

54

RSiClose

55

RSiCreateStatSet

57

RSiDelSetHot

58

RSiDelSetStat

59

RSiFirstCx

60

RSiFirstStat

62

RSiGetHotItem

63

RSiGetRawValue

65

RSiGetValue

66

RSiInit

68

RSiInstantiate

69

RSiMainLoop

72

RSiNextCx

73

RSiNextStat

74

RSiOpen

75

RSiPathAddSetStat

78

RSiPathGetCx

79

RSiStartFeed

80

RSiStartHotFeed

81

RSiStatGetPath

82

RSiStopHotFeed

85

restart

behavior

177

740

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

subroutines

(continued)
SPMI

interface
SpmiAddSetHot

198

SpmiCreateHotSet

201

SpmiCreateStatSet

202

SpmiDdsAddCx

203

SpmiDdsDelCx

204

SpmiDdsInit

205

SpmiDelSetHot

207

SpmiDelSetStat

208

SpmiExit

210

SpmiFirstCx

210

SpmiFirstHot

211

SpmiFirstStat

213

SpmiFirstVals

214

SpmiFreeHotSet

215

SpmiFreeStatSet

216

SpmiGetCx

217

SpmiGetHotSet

218

SpmiGetStat

219

SpmiGetStatSet

221

SpmiGetValue

222

SpmiInit

223

SpmiInstantiate

225

SpmiNextCx

226

SpmiNextHot

227

SpmiNextHotItem

228

SpmiNextStat

230

SpmiNextVals

232

SpmiNextValue

232

SpmiPathAddSetStat

234

SpmiPathGetCx

236

SpmiStatGetPath

237

subservers

244,

247

substring,

wide

character

455

subsystems
getting

status

244,

247

returning

status

259,

262

sending

requests

253,

256

starting

268

stopping

266

subwin

subroutine

638

subwindows

637

superbox

subroutine

531

superbox1

subroutine

531

supplementary

process

group

IDs
setting

134

swab

subroutine

304

swapoff

subroutine

305

swapon

subroutine

306

swapping

memory
activating

305,

306

returning

information

on

devices

306

swapqpry

subroutine

306

symbolic

links
creating

308

reading

contents

22

symlink

subroutine

308

symmetric

operations
performing

rank

1

700,

701

performing

rank

2

702,

704

symmetric

operations

(continued)
performing

rank

2k

713

performing

rank

k

710

sync

subroutine

310

synchronize

I

cache

with

D

cache

311

syncvfs

subroutine

310

SYS_CFGDD

operation

317

SYS_CFGKMOD

operation

318

SYS_GETLPAR_INFO

operation

320

SYS_GETPARMS

operation

321

SYS_KLOAD

operation

322

SYS_KULOAD

operation

324

SYS_QDVSW

operation

325

SYS_QUERYLOAD

operation

327

SYS_SETPARMS

operation

328

SYS_SINGLELOAD

operation

329

sysconf

subroutine

312

sysconfig

operations
SYS_CFGDD

317

SYS_CFGKMOD

318

SYS_GETLPAR_INFO

320

SYS_GETPARMS

321

SYS_KLOAD

322

SYS_KULOAD

324

SYS_QDVSW

325

SYS_QUERYLOAD

327

SYS_SETPARMS

328

SYS_SINGLELOAD

329

sysconfig

subroutine

315

syslog

subroutine

330

syslog_r

subroutine

333

system

limits
determining

values

312

System

Performance

Measurement

Interface
subroutines

SpmiAddSetHot

198

SpmiCreateHotSet

201

SpmiCreateStatSet

202

SpmiDdsAddCx

203

SpmiDdsDelCx

204

SpmiDdsInit

205

SpmiDelSetHot

207

SpmiDelSetStat

208

SpmiExit

210

SpmiFirstCx

210

SpmiFirstHot

211

SpmiFirstStat

213

SpmiFirstVals

214

SpmiFreeHotSet

215

SpmiFreeStatSet

216

SpmiGetCx

217

SpmiGetHotSet

218

SpmiGetStat

219

SpmiGetStatSet

221

SpmiGetValue

222

SpmiInit

223

SpmiInstantiate

225

SpmiNextCx

226

SpmiNextHot

227

SpmiNextHotItem

228

SpmiNextStat

230

Index

741

System

Performance

Measurement

Interface

(continued)
subroutines

(continued)
SpmiNextVals

232

SpmiNextValue

232

SpmiPathAddSetStat

234

SpmiPathGetCx

236

SpmiStatGetPath

237

system

subroutine

338

T
t_rcvreldata

subroutine

368

t_rcvv

subroutine

370

t_rcvvudata

subroutine

372

t_sndreldata
subroutine

377

t_sndv

subroutine

374

t_sndvudata
subroutine

378

t_sysconf

subroutine

380

tables
sorting

data

1

tan

subroutine

340

tanf

subroutine

340

tangent

subroutines
tanf

340

tanh

subroutine

341

tanhf

subroutine

341

tanhl

subroutine

341

tanl

subroutine

340

TCB

attributes
querying

or

setting

342

tcb

subroutine

342

tcdrain

subroutine

343

tcflow

subroutine

344

tcflush

subroutine

345

tcgetattr

subroutine

347

tcgetpgrp

subroutine

348

tcsendbreak

subroutine

349

tcsetattr

subroutine

350

tcsetpgrp

subroutine

352

tdelete

subroutine

411

tempnam

subroutine

364

temporary

files
constructing

names

364

creating

364

termcap

identifiers
returning

Boolean

entry

641

returning

numeric

entry

642

returning

string

entry

642

termdef

subroutine

353

terminal

attributes
getting

347

setting

350

terminal

capabilities
applying

parameters

to

643,

651

insert-character

capability

571

insert-line

capability

572

terminal

capabilities,

disable

557

terminal

color

support

570

terminal

manipulation
determining

number

of

lines

and

columns

624,

640

echoing

characters

552

outputting

string

with

padding

information

605,

652

switching

input/output

of

curses

subroutines

623

toggling

new-line

and

return

translation

598

terminal

modes
CBREAK

535

program

609

raw

607

resetting

610

saving

545

shell

546,

609

terminal

names

414

terminal

numeric

capability

646

terminal

speed

529

terminal

srting

capability

647

terminal

states
getting

303,

347

setting

303,

350

terminal

structures

611

terminal

variables

620

terminals
beeping

530

delaying

output

to

549

determining

type

414

flashing

557

getting

names

414

putting

in

video

attribute

mode

656

querying

characteristics

353

refreshing

603,

608

setting

up

594

verbose

name

586

terminfo

database

644

test_and_set

subroutine

354

tfind

subroutine

411

tgamma

subroutine

355

tgammaf

subroutine

355

tgammal

subroutine

355

tgetent

subroutine

640

tgetflag

subroutine

641

tgetnum

subroutine

642

tgetstr

subroutine

642

tgoto

subroutine

643

thread_self

subroutine

361

thread_setsched

subroutine

361

Thread-Safe

C

Library
subroutines

rand_r

6

readdir_r

21

strtok_r

298

Threads

Library
signal,

sleep,

and

timer

handling
raise

subroutine

4

sithreadmask

subroutine

189

sigqueue

subroutine

182

sigtimedwait

subroutine

191

sigwait

subroutine

192

sigwaitinfo

subroutine

191

tigetflag

subroutine

644

742

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

tigetnum

subroutine

646

tigetstr

subroutine

647

time

format

conversions

288,

300,

448

time

manipulation

subroutines
nsleep

196

reltimerid

39

sleep

196

usleep

196

time

stamps
trace

401

time

subroutines
read_real_time

23

time_base_to_time

23

time_base_to_time

Subroutine

23

timeout

mode

599

times

subroutine

356

timezone

subroutine

358

tmpfile

subroutine

364

tmpnam

subroutine

364

touchline

subroutine

648

touchoverlap

subroutine

649

touchwin

subroutine

650

towctrans

subroutine

366

towlower

subroutine

367

towupper

subroutine

368

tparm

subroutine

651

tputs

subroutine

652

trace

channels
halting

data

collection

405

recording

trace

event

for

401

starting

data

collection

405

trace

data
halting

collection

405

recording

401

starting

collection

405

trace

events
recording

401,

403

trace

sessions
starting

406

stopping

407

trace

subroutines
trcgen

401

trcgent

401

trchook

403

trchook64

403

trcoff

405

trcon

405

trcstart

406

trcstop

407

utrchook

403

utrhook64

403

transmission

of

data
suspending

344

waiting

for

completion

343

trc_close

subroutine

381

trc_compare

subroutine

382

trc_find_first

subroutine

382

trc_find_next

subroutine

382

trc_free

subroutine

386

trc_hkaddset

subroutine

387

trc_hkdelset

subroutine

387

trc_hkemptyset

subroutine

387

trc_hkfillset

subroutine

387

trc_hkisset

subroutine

387

trc_hookname

subroutine

388

trc_libcntl

subroutine

389

trc_loginfo

subroutine

391

trc_open

subroutine

393

trc_perror

subroutine

395

trc_read

subroutine

396

trc_seek

subroutine

399

trc_strerror

subroutine

400

trc_tell

subroutine

399

trcgen

subroutine

401

trcgent

subroutine

401

trchook

subroutine

403

trchook64

subroutine

403

trcoff

subroutine

405

trcon

subroutine

405

trcstart

subroutine

406

trcstop

subroutine

407

trigonometric

functions
computing

193

computing

hyperbolic

194

trunc

subroutine

407

truncate

subroutine

408

truncf

subroutine

407

truncl

subroutine

407

Trusted

Computing

Base

attributes
querying

or

setting

342

tsearch

subroutine

411

tty

(teletypewriter)
flushing

driver

queue

580

tty

devices
determining

414

tty

locking

functions
controlling

413

tty

modes
restoring

state

611

saving

state

613

tty

subroutines
setcsmap

131

ttylock

subroutine

413

ttylocked

subroutine

413

ttyname

subroutine

414

ttyslot

subroutine

416

ttyunlock

subroutine

413

ttywait

subroutine

413

twalk

subroutine

411

type

ahead

check

653

type-ahead

characters
flushing

558

typeahead

subroutine

653

U
ulimit

subroutine

416

umask

subroutine

419

umount

subroutine

420

uname

subroutine

421

unamex

subroutine

421

unctrl

subroutine

654

Index

743

ungetc

subroutine

423

ungetch

subroutine

655

ungetwc

subroutine

423

unlink

subroutine

424

unload

subroutine

426

unlockpt

subroutine

427

unsigned

long

integers
converting

wide-character

strings

to

464

update

soft

labels

631,

632,

634

uppercase

characters
converting

from

lowercase

368

converting

to

lowercase

367

user

database
opening

and

closing

153

user

information
getting

and

setting

427

usleep

subroutine

196

usrinfo

subroutine

427

ustat

subroutine

274

utime

subroutine

429

utimes

subroutine

429

utmp

file
finding

current

user

slot

in

416

utrchook

subroutine

403

utrchook64

subroutine

403

uvmount

subroutine

420

V
varargs

macros

430

vectors
computing

constant

times

vector

plus

vector

663

copying

X

to

Y

665

interchanging

X

and

Y

666

returning

complex

dot

products

661,

662

returning

dot

products

661,

670

returning

sum

of

absolute

values

668

scaling

by

constants

668

VFS

(Virtual

File

System)
mounting

436

unmounting

420

vfscanf

subroutine

433

vfwprintf

subroutine

434

vfwscanf

subroutine

434

vidattr

subroutine

656

video

attributes
alarm

signals
beeping

530

flashing

557

highlight

mode

635

putting

terminal

in

specified

mode

656

setting

528

turning

off

526

turning

on

528

vidputs

subroutine

656

Virtual

File

System

436

virtual

screen

cursor

coordinates

568

vmount

subroutine

436

vscanf

subroutine

433

vsnprintf

subroutine

440

vsscanf

subroutine

433

vswscanf

subroutine

434

vwscanf

subroutine

434

vwsprintf

subroutine

440

W
waddch

subroutine

523

waddstr

subroutine

524

wait

subroutine

441

wait3

subroutine

441

waitid

subroutine

444

waitpid

subroutine

441

watof

subroutine

515

watoi

subroutine

516

watol

subroutine

516

wattroff

subroutine

526

wattron

subroutine

528

wattrset

subroutine

528

wclear

subroutine

536

wclrtobot

subroutine

540

wclrtoeol

subroutine

541

wcscat

subroutine

445

wcschr

subroutine

445

wcscmp

subroutine

445

wcscoll

subroutine

447

wcscpy

subroutine

445

wcscspn

subroutine

445

wcsftime

subroutine

448

wcsid

subroutine

449

wcslen

subroutine

450

wcsncat

subroutine

450

wcsncmp

subroutine

450

wcsncpy

subroutine

450

wcspbrk

subroutine

452

wcsrchr

subroutine

452

wcsrtombs

subroutine

453

wcsspn

subroutine

454

wcsstr

subroutine

455

wcstod

subroutine

456

wcstof

subroutine

456

wcstoimax

subroutine

458

wcstok

subroutine

459

wcstol

subroutine

460

wcstold

subroutine

456

wcstoll

subroutine

460

wcstombs

subroutine

462

wcstoul

subroutine

464

wcstoumax

subroutine

458

wcswcs

subroutine

465

wcswidth

subroutine

466

wcsxfrm

subroutine

467

wctob

subroutine

469

wctomb

subroutine

469

wctrans

subroutine

470

wctype

subroutine

471

wcwidth

subroutine

472

wdelch

subroutine

550

wdeleteln

subroutine

551

wechochar

subroutine

553

werase

subroutine

555

wgetch

subroutine

561

744

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

wgetstr

subroutine

566

wide

character

format
vfwscanf

434

vswscanf

434

vwscanf

434

wide

character

output

434

wide

character

strings
wcstof

456

wcstoimax

458

wcstold

456

wcstoumax

458

wide

character

subroutines
get_wctype

471

towlower

367

towupper

368

ungetc

423

ungetwc

423

wcscat

445

wcschr

445

wcscmp

445

wcscoll

447

wcscpy

445

wcscspn

446

wcsftime

448

wcsid

449

wcslen

450

wcsncat

450

wcsncmp

450

wcsncpy

450

wcspbrk

452

wcsrchr

452

wcsspn

454

wcstod

456

wcstok

459

wcstol

460

wcstoll

460

wcstombs

462

wcstoul

464

wcswcs

465

wcswidth

466

wcsxfrm

467

wctomb

469

wctype

471

wcwidth

472

wide

character

substring

455

wide

character

to

single-byte

469

wide

character,

memory

501,

502,

503,

504

wide

characters
comparing

strings

447

converting
from

date

and

time

448

lowercase

to

uppercase

368

to

double-precision

number

456

to

long

integer

460

to

multibyte

462,

469

to

tokens

459

to

unsigned

long

integer

464

uppercase

to

lowercase

367

determining

display

width

466,

472

determining

number

in

string

450

locating

character

sequences

465

wide

characters

(continued)
locating

single

characters

452

obtaining

handle

for

valid

property

names

471

operations

on

null-terminated

strings

446,

450

pushing

into

input

stream

423

returning

charsetID

449

returning

number

in

initial

string

segment

454

transforming

strings

to

codes

467

winch

subroutine

574

window

coordinates

560

window

manipulation
creating

structures
pad

592

subwindow

638

window

596

window

buffer

587

drawing

boxes

531

marking

changed

overlap

649

overwriting

window

601

refreshing
characters

648,

650

current

screen

603,

608,

658

standard

screen

658

terminal

603,

608,

658

window

649,

657

window

size

565

window,

copy

543

windows

559

clearing

536,

537

creating

596,

638

deleting

552

erasing

555

moving

591

refreshing

649,

657

scrolling

618,

619,

621

setting

standout

bit

pattern

551

winsch

subroutine

578

winsertln

subroutine

579

wmemchr

subroutine

501

wmemcmp

subroutine

502

wmemcpy

subroutine

502

wmemmove

subroutine

503

wmemmset

subroutine

504

wmove

subroutine

589

wnoutrefresh

subroutine

657

word

expansions
performing

504

wordexp

subroutine

504,

507

wordfree

subroutine

507

wprintw

subroutine

604

wrefresh

subroutine

608

write

contents

of

virtual

screen

615

write

operations
writing

to

files

507

write

subroutine
described

507

writev

subroutine
described

507

writevx

subroutine

507

writex

subroutine
described

507

Index

745

wscanw

subroutine

614

wsetscrreg

subroutine

621

wsscanf

subroutine

109

wstandend

subroutine

634

wstandout

subroutine

634

wstring

subroutines

512

wstrtod

subroutine

515

wstrtol

subroutine

516

X
xcrypt_btoa

517

xcrypt_decrypt

subroutine

517

xcrypt_encrypt

subroutine

517

xcrypt_free

subroutine

517

xcrypt_hash

subroutine

517

xcrypt_key_setup

subroutine

517

xcrypt_malloc

subroutine

517

xcrypt_printb

subroutine

517

xcrypt_randbuff

subroutine

517

XTI

variables

380

Y
yield

processor

115

yield

subroutine

521

Z
ZAXPY

subroutine

663

ZCOPY

subroutine

665

ZDOTC

function

661

ZDOTU

function

662

ZDROT

subroutine

664

ZDSCAL

subroutine

668

ZGBMV

subroutine

674

ZGEMM

subroutine

705

ZGEMV

subroutine

673

ZGERC

subroutine

695

ZGERU

subroutine

695

ZHBMV

subroutine

677

ZHEMM

subroutine

708

ZHEMV

subroutine

676

ZHER

subroutine

696

ZHER2

subroutine

698

ZHER2K

subroutine

714

ZHERK

subroutine

711

ZHPMV

subroutine

679

ZHPR

subroutine

697

ZHPR2

subroutine

699

ZROTG

subroutine

663

ZSCAL

subroutine

668

ZSWAP

subroutine

666

ZSYMM

subroutine

706

ZSYR2K

subroutine

713

ZSYRK

subroutine

710

ZTBMV

subroutine

685

ZTBSV

subroutine

690

ZTPMV

subroutine

687

ZTPSV

subroutine

692

ZTRMM

subroutine

716

ZTRMV

subroutine

683

ZTRSM

subroutine

718

ZTRSV

subroutine

688

746

Technical

Reference,

Volume

2:

Base

Operating

System

and

Extensions

Readers’

Comments

—

We’d

Like

to

Hear

from

You

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions,

Volume

2

Publication

No.

SC23-4160-05

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC23-4160-05

SC23-4160-05

���

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Information

Development

Department

H6DS-905-6C006

11501

Burnet

Road

Austin,

TX

78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed

in

the

U.S.A.

SC23-4160-05

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the UNIX98 Specification
	Related Publications

	Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z)
	qsort Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	quotactl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	raise Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameter
	Return Values
	Error Code
	Related Information

	rand or srand Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Example
	Related Information

	rand_r Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	File
	Related Information

	random, srandom, initstate, or setstate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	ra_attachrset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ra_detachrset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ra_exec Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ra_fork Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ra_getrset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	read, readx, readv, readvx, or pread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	readdir_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	readlink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	read_real_time or time_base_to_time Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	realpath Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	reboot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	re_comp or re_exec Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	regcmp or regex Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Related Information

	regcomp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	regerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	regexec Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	regfree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	reltimerid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	remainder, remainderf, or remainderl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	remove Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	remquo, remquof, or remquol Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	rename Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	reset_malloc_log Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	revoke Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rintf, rintl, or rint Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	round, roundf, or roundl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	rmdir Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rpmatch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	RSiAddSetHot Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiChangeFeed Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiChangeHotFeed Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiClose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	RSiCreateHotSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiCreateStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiDelSetHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiDelSetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiFirstCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiFirstStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiGetHotItem Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiGetRawValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiGetValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiInit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiInstantiate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiInvite Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiMainLoop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	RSiNextCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiNextStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiOpen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiPathAddSetStat Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiPathGetCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiStartFeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiStartHotFeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiStatGetPath Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiStopFeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	RSiStopHotFeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	rs_alloc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_discardname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_free Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	rs_getassociativity Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_getinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_getnameattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_getnamedrset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_getpartition Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_getrad Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_numrads Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_op Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_registername Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_setnameattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rs_setpartition Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	rsqrt Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	rstat Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl, or scalb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	scandir or alphasort Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	scanf, fscanf, sscanf, or wsscanf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sched_yield Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values

	select Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Notes
	Related Information

	semctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	semget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	semop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	setacldb or endacldb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	setauthdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	setbuf, setvbuf, setbuffer, or setlinebuf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	setcsmap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	setgid, setrgid, setegid, setregid, or setgidx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	setgroups Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	setjmp or longjmp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	setlocale Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	setpcred Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	setpenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	setpgid or setpgrp Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	setpri Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	setpwdb or endpwdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	setroledb or endroledb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	setsid Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	setuid, setruid, seteuid, setreuid or setuidx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	setuserdb or enduserdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	sgetl or sputl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	shmat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	shmctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	shmdt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	shmget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sigaction, sigvec, or signal Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sigaltstack Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Related Information

	siginterrupt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	signbit Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	sigpending Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sigprocmask, sigsetmask, or sigblock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Compatibility Interfaces
	Return Values
	Error Codes
	Examples
	Related Information

	sigqueue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Code
	Related Information

	sigset, sighold, sigrelse, or sigignore Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sigsetjmp or siglongjmp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	sigstack Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sigsuspend or sigpause Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Related Information

	sigthreadmask Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	sigtimedwait and sigwaitinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sigwait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Code
	Related Information

	sin, sinf, or sinl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sinh, sinhf, or sinhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sleep, nsleep or usleep Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Compatibility Interfaces
	Return Values
	Error Codes
	Related Information

	sockatmark Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	SpmiAddSetHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Programming Notes
	Error Codes
	Files

	SpmiCreateHotSet
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	SpmiCreateStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	SpmiDdsAddCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiDdsDelCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiDdsInit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiDelSetHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiDelSetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiExit Subroutine
	Purpose
	Library
	Syntax
	Description
	Files
	Related Information

	SpmiFirstCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiFirstHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiFirstStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiFirstVals Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiFreeHotSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiFreeStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiGetCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiGetHotSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiGetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Return Values
	Error Codes
	Files
	Related Information

	SpmiGetStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiGetValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiInit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiInstantiate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiNextCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiNextHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiNextHotItem Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiNextStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiNextVals Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	SpmiNextValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Programming Notes
	Files
	Related Information

	SpmiPathAddSetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiPathGetCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	SpmiStatGetPath Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	sqrt, sqrtf, or sqrtl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	src_err_msg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	src_err_msg_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	srcrrqs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Files
	Related Information

	srcrrqs_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Related Information

	srcsbuf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	srcsbuf_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	srcsrpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	srcsrqt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	srcsrqt_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	srcstat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	srcstat_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	srcstathdr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	srcstattxt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	srcstattxt_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	srcstop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	srcstrt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	ssignal or gsignal Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	statacl or fstatacl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	statfs, fstatfs, or ustat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	statvfs or fstatvfs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	strfmon Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Flags
	Return Values
	Error Codes
	Related Information

	strftime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, or strsep Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	strncollen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	strtof, strtod, or strtold Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	strtoimax or strtoumax Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	strtok_r Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	strtol, strtoul, strtoll, strtoull, or atoi Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	strptime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	stty or gtty Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	swab Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	swapoff Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	swapon Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	swapqry Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	symlink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sync Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	syncvfs Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	_sync_cache_range Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	sysconf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	File
	Related Information

	sysconfig Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SYS_CFGDD sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	Related Information

	SYS_CFGKMOD sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	File
	Related Information

	SYS_GETLPAR_INFO sysconfig Operation
	Purpose
	Description
	Error Codes
	Files
	Related Information

	SYS_GETPARMS sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	File
	Related Information

	SYS_KLOAD sysconfig Operation
	Purpose
	Description
	Loader Symbol Binding Support
	Return Values
	Error Codes
	File
	Related Information

	SYS_KULOAD sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	Related Information

	SYS_QDVSW sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	File
	Related Information

	SYS_QUERYLOAD sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	Related Information

	SYS_SETPARMS sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	File
	Related Information

	SYS_SINGLELOAD sysconfig Operation
	Purpose
	Description
	Return Values
	Related Information

	syslog, openlog, closelog, or setlogmask Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	sys_parm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	File
	Related Information

	system Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	tan, tanf, or tanl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	tanh, tanhf, or tanhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	tcb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	tcdrain Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Example
	Related Information

	tcflow Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Related Information

	tcflush Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Related Information

	tcgetattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	tcgetpgrp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	tcsendbreak Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	tcsetattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Related Information

	tcsetpgrp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	termdef Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	test_and_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	tgamma, tgammaf, or tgammal Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	times Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	timezone Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Errors
	Related Information

	thread_post Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	thread_post_many Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	thread_self Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	thread_setsched Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	thread_wait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	tmpfile Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	tmpnam or tempnam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	towctrans Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	towlower Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	towupper Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	t_rcvreldata Subroutine
	Purpose
	Library
	Syntax
	Description
	Valid States
	Return Values
	Error Codes
	Related Information

	t_rcvv Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	t_rcvvudata Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	t_sndv Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	t_sndreldata Subroutine
	Purpose
	Library
	Syntax
	Description
	Valid States
	Error Codes
	Return Value
	Related Information

	t_sndvudata Subroutine
	Purpose
	Library
	Syntax
	Description
	Valid States
	Error Codes
	Return Values
	Related Information

	t_sysconf Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	trc_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	trc_find_first, trc_find_next, and trc_compare Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	trc_free Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	trc_hkemptyset, trc_hkfillset, trc_hkaddset, trc_hkdelset, and trc_hkisset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	trc_hookname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	trc_libcntl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	trc_loginfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	trc_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	trc_perror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	trc_read Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	trc_seek and trc_tell Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	trc_strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	trcgen or trcgent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	trchook, utrchook, trchook64, and utrhook64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	trcoff Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	trcon Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	trcstart Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	trcstop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	trunc, truncf, or truncl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	truncate, truncate64, ftruncate, or ftruncate64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	tsearch, tdelete, tfind or twalk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ttylock, ttywait, ttyunlock, or ttylocked Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	ttyname or isatty Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	ttyslot Subroutine
	Purpose
	Library
	Syntax
	Description
	Files
	Related Information

	ulimit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Related Information

	umask Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	umount or uvmount Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	uname or unamex Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ungetc or ungetwc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	unlink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	unload Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	unlockpt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	usrinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	utimes or utime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	varargs Macros
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	vfscanf, vscanf, or vsscanf Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	vfwscanf, vswscanf, or vwscanf Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Related Information

	vfwprintf, vwprintf Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	vmgetinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	vmount or mount Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	vsnprintf Subroutine
	Purpose
	Library
	Syntax
	Description

	vwsprintf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wait, waitpid, wait3, or wait364 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Macros
	Return Values
	Error Codes
	Related Information

	waitid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcscoll Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wcsftime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcsid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcslen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcsncat, wcsncmp, or wcsncpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	wcspbrk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcsrchr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcsrtombs Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	wcsspn Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcsstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values

	wcstod, wcstof, or wcstold Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcstoimax or wcstoumax Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcstok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	wcstol or wcstoll Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	wcstombs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wcstoul or wcstoull Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	wcswcs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcswidth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	wcsxfrm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wctob Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	wctomb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wctrans Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	wctype or get_wctype Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	wcwidth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	wlm_assign Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_change_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_check subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_classify Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_class2key Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_create_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_delete_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_endkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_get_bio_stats subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_get_info Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_get_procinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_init_class_definition Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_initialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_initkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_key2class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_load Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_read_classes Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_set_tag Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wmemchr Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	wmemcmp Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	wmemcpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	wmemmove Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	wmemset Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	wordexp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Errors
	Related Information

	wordfree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	write, writex, writev, writevx or pwrite Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wstring Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	wstrtod or watof Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	wstrtol, watol, or watoi Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xcrypt_key_setup, xcrypt_encrypt, xcrypt_decrypt, xcrypt_hash, xcrypt_malloc, xcrypt_free, xcrypt_printb, xcrypt_btoa and xcrypt_randbuff Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	yield Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	Chapter 2. Curses Subroutines
	addch, mvaddch, mvwaddch, or waddch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr, waddnstr, or waddstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	attron or wattron Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	attrset or wattrset Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Examples
	Related Information

	baudrate Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	beep Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	box Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	can_change_color, color_content, has_colors,init_color, init_pair, start_color or pair_content Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	cbreak, nocbreak, noraw, or raw Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	clear, erase, wclear or werase Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	clrtobot or wclrtobot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	clrtoeol or wclrtoeol Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	color_content Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Example
	Related Information

	copywin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	curs_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	def_prog_mode, def_shell_mode, reset_prog_mode or reset_shell_mode Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	def_shell_mode Subroutine
	Purpose
	Library
	Syntax
	Description
	Example
	Related Information

	del_curterm, restartterm, set_curterm, or setupterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	delay_output Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	delch, mvdelch, mvwdelch or wdelch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	deleteln or wdeleteln Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	delwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	echo or noecho Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	echochar or wechochar Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values
	Example
	Related Information

	endwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	erase or werase Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	erasechar, erasewchar, killchar, and killwchar Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	filter Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	flash Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	flushinp Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	garbagedlines Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	getbegyx, getmaxyx, getparyx, or getyx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	getch, mvgetch, mvwgetch, or wgetch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	getmaxyx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Related Information

	getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr, or wgetstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	getsyx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	getyx Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Related Information

	halfdelay Subroutine
	Purpose
	Library
	Syntax
	Description
	Flag
	Parameters
	Return Values
	Related Information

	has_colors Subroutine
	Purpose
	Library
	Syntax
	Description
	Examples
	Related Information

	has_ic and has_il Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	has_il Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	idlok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	inch, mvinch, mvwinch, or winch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	init_color Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Examples
	Related Information

	init_pair Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Examples
	Related Information

	initscr and newterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Example
	Related Information

	insch, mvinsch, mvwinsch, or winsch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	insertln or winsertln Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	intrflush Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	keyname, key_name Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Examples
	Related Information

	keypad Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	killchar or killwchar Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	_lazySetErrorHandler Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	leaveok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	longname Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	makenew Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	meta Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	move or wmove Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	mvcur Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	mvwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	newpad, pnoutrefresh, prefresh, or subpad Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	newterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	derwin, newwin, or subwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	nl or nonl Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	nodelay Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	notimeout, timeout, wtimeout Subroutine
	Purpose
	Library
	Curses Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	overlay or overwrite Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	pair_content Subroutine
	Purpose
	Library
	Curses Syntax
	Description
	Return Values
	Parameters
	Example
	Related Information

	prefresh or pnoutrefresh Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	printw, wprintw, mvprintw, or mvwprintw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	putp, tputs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	raw or noraw Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	refresh or wrefresh Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	reset_prog_mode Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	reset_shell_mode Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	resetterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	resetty, savetty Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	restartterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Prerequisite Information
	Related Information

	ripoffline Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Example
	Related Information

	savetty Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	scanw, wscanw, mvscanw, or mvwscanw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Related Information

	scr_dump, scr_init, scr_restore, scr_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	scr_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Related Information

	scr_restore Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Example
	Related Information

	scrl, scroll, wscrl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	scrollok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	set_curterm Subroutine
	Purpose
	Library
	Curses Syntax
	Description
	Parameters
	Examples
	Related Information

	setscrreg or wsetscrreg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	setsyx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	set_term Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	setupterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Example
	Related Information

	_showstring Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set, slk_clear, slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch, slk_wset, Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Related Information

	slk_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Example
	Related Information

	slk_label Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Return Values
	Related Information

	slk_noutrefresh Subroutine
	Purpose
	Library
	Syntax
	Description
	Example
	Related Information

	slk_refresh Subroutine
	Purpose
	Library
	Syntax
	Description
	Example
	Related Information

	slk_restore Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	slk_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Related Information

	slk_touch Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	standend, standout, wstandend, or wstandout Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	start_color Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Example
	Related Information

	subpad Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	tgetflag Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	tgetnum Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	tgetstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	tgoto Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	tigetflag, tigetnum, tigetstr, or tparm Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Examples
	Related Information

	tigetnum Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Example
	Related Information

	tigetstr Routine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Return Values
	Files
	Related Information

	is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	touchoverlap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	touchwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Related Information

	tparm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	tputs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	typeahead Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Example
	Related Information

	unctrl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	ungetch, unget_wch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	vidattr, vid_attr, vidputs, or vid_puts Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	doupdate, refresh, wnoutrefresh, or wrefresh Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS)
	SDOT or DDOT Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	CDOTC or ZDOTC Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	CDOTU or ZDOTU Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SAXPY, DAXPY, CAXPY, or ZAXPY Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SROTG, DROTG, CROTG, or ZROTG Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SROT, DROT, CSROT, or ZDROT Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SCOPY, DCOPY, CCOPY, or ZCOPY Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SSWAP, DSWAP, CSWAP, or ZSWAP Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SNRM2, DNRM2, SCNRM2, or DZNRM2 Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SASUM, DASUM, SCASUM, or DZASUM Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	ISAMAX, IDAMAX, ICAMAX, or IZAMAX Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SDSDOT Function
	Purpose
	Library
	FORTRAN Syntax
	Purpose
	Parameters
	Error Codes

	SROTM or DROTM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Related information

	SROTMG or DROTMG Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Related Information

	SGEMV, DGEMV, CGEMV, or ZGEMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SGBMV, DGBMV, CGBMV, or ZGBMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHEMV or ZHEMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHBMV or ZHBMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHPMV or ZHPMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYMV or DSYMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSBMV or DSBMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSPMV or DSPMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STRMV, DTRMV, CTRMV, or ZTRMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STBMV, DTBMV, CTBMV, or ZTBMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STPMV, DTPMV, CTPMV, or ZTPMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STRSV, DTRSV, CTRSV, or ZTRSV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STBSV, DTBSV, CTBSV, or ZTBSV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STPSV, DTPSV, CTPSV, or ZTPSV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SGER or DGER Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CGERU or ZGERU Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CGERC or ZGERC Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHER or ZHER Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHPR or ZHPR Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHER2 or ZHER2 Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHPR2 or ZHPR2 Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYR or DSYR Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSPR or DSPR Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYR2 or DSYR2 Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSPR2 or DSPR2 Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SGEMM, DGEMM, CGEMM, or ZGEMM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYMM, DSYMM, CSYMM, or ZSYMM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHEMM or ZHEMM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Purpose
	Parameters

	SSYRK, DSYRK, CSYRK, or ZSYRK Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHERK or ZHERK Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYR2K, DSYR2K, CSYR2K, or ZSYR2K Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHER2K or ZHER2K Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STRMM, DTRMM, CTRMM, or ZTRMM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STRSM, DTRSM, CTRSM, or ZTRSM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	Appendix A. Base Operating System Error Codes for Services That Require Path-Name Resolution
	Appendix B. ODM Error Codes
	Appendix C. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

