
man pages section 3: Realtime
Library Functions

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–5171–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050105@10536

Contents

Preface 7

Realtime Library Functions 13

aiocancel(3AIO) 14
aio_cancel(3RT) 15
aio_error(3RT) 17
aio_fsync(3RT) 19
aioread(3AIO) 21
aio_read(3RT) 23
aio_return(3RT) 26
aio_suspend(3RT) 27
aiowait(3AIO) 29
aio_waitn(3RT) 31
aio_write(3RT) 33
clock_nanosleep(3RT) 36
clock_settime(3RT) 38
door_bind(3DOOR) 40

door_call(3DOOR) 43

door_create(3DOOR) 46

door_cred(3DOOR) 49

door_info(3DOOR) 50

door_return(3DOOR) 52

door_revoke(3DOOR) 53

door_server_create(3DOOR) 54

door_ucred(3DOOR) 56

fdatasync(3RT) 57

3

lio_listio(3RT) 58

mq_close(3RT) 62

mq_getattr(3RT) 63

mq_notify(3RT) 64

mq_open(3RT) 66

mq_receive(3RT) 69

mq_send(3RT) 72

mq_setattr(3RT) 75

mq_unlink(3RT) 76

nanosleep(3RT) 77

proc_service(3PROC) 78

ps_lgetregs(3PROC) 81

ps_pglobal_lookup(3PROC) 83

ps_pread(3PROC) 84

ps_pstop(3PROC) 85

sched_getparam(3RT) 87

sched_get_priority_max(3RT) 88

sched_getscheduler(3RT) 89

sched_rr_get_interval(3RT) 90

sched_setparam(3RT) 91

sched_setscheduler(3RT) 93

sched_yield(3RT) 95

sem_close(3RT) 96

sem_destroy(3RT) 97

sem_getvalue(3RT) 98

sem_init(3RT) 99

sem_open(3RT) 101

sem_post(3RT) 104

sem_timedwait(3RT) 106

sem_unlink(3RT) 108

sem_wait(3RT) 109

shm_open(3RT) 112

shm_unlink(3RT) 115

sigqueue(3RT) 116

sigwaitinfo(3RT) 118

timer_create(3RT) 120

timer_delete(3RT) 122

timer_settime(3RT) 123

4 man pages section 3: Realtime Library Functions • January 2005

Index 125

5

6 man pages section 3: Realtime Library Functions • January 2005

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

7

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

8 man pages section 3: Realtime Library Functions • January 2005

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the

9

conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

10 man pages section 3: Realtime Library Functions • January 2005

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

11

12 man pages section 3: Realtime Library Functions • January 2005

Realtime Library Functions

13

aiocancel – cancel an asynchronous operation

cc [flag ...] file ... -laio [library ...]

#include <sys/asynch.h>

int aiocancel(aio_result_t *resultp);

aiocancel() cancels the asynchronous operation associated with the result buffer
pointed to by resultp. It may not be possible to immediately cancel an operation which
is in progress and in this case, aiocancel() will not wait to cancel it.

Upon successful completion, aiocancel() returns 0 and the requested operation is
cancelled. The application will not receive the SIGIO completion signal for an
asynchronous operation that is successfully cancelled.

Upon successful completion, aiocancel() returns 0. Upon failure, aiocancel()
returns −1 and sets errno to indicate the error.

aiocancel() will fail if any of the following are true:

EACCES The parameter resultp does not correspond to any outstanding
asynchronous operation, although there is at least one currently
outstanding.

EFAULT resultp points to an address outside the address space of the
requesting process. See NOTES.

EINVAL There are not any outstanding requests to cancel.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

aioread(3AIO), aiowait(3AIO), attributes(5)

Passing an illegal address as resultp will result in setting errno to EFAULT only if it is
detected by the application process.

aiocancel(3AIO)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

14 man pages section 3: Realtime Library Functions • Last Revised 5 Mar 1997

aio_cancel – cancel asynchronous I/O request

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

The aio_cancel() function attempts to cancel one or more asynchronous I/O
requests currently outstanding against file descriptor fildes. The aiocbp argument points
to the asynchronous I/O control block for a particular request to be canceled. If aiocbp
is NULL, then all outstanding cancelable asynchronous I/O requests against fildes are
canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process takes place for those requests when they are
completed.

For requested operations that are successfully canceled, the associated error status is
set to ECANCELED and the return status is −1. For requested operations that are not
successfully canceled, the aiocbp is not modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor
with which the asynchronous operation was initiated, unspecified results occur.

The aio_cancel() function returns the value AIO_CANCELED to the calling process
if the requested operation(s) were canceled. The value AIO_NOTCANCELED is returned
if at least one of the requested operation(s) cannot be canceled because it is in
progress. In this case, the state of the other operations, if any, referenced in the call to
aio_cancel() is not indicated by the return value of aio_cancel(). The
application may determine the state of affairs for these operations by using
aio_error(3RT). The value AIO_ALLDONE is returned if all of the operations have
already completed. Otherwise, the function returns −1 and sets errno to indicate the
error.

The aio_cancel() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOSYS The aio_cancel() function is not supported.

The aio_cancel() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

aio_cancel(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Realtime Library Functions 15

MT-Level MT-Safe

aio.h(3HEAD), signal.h(3HEAD), aio_read(3RT), aio_return(3RT),
attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_cancel(3RT)

SEE ALSO

NOTES

16 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

aio_error – retrieve errors status for an asynchronous I/O operation

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

The aio_error() function returns the error status associated with the aiocb
structure referenced by the aiocbp argument. The error status for an asynchronous I/O
operation is the errno value that would be set by the corresponding read(2),
write(2), or fsync(3C) operation. If the operation has not yet completed, then the
error status will be equal to EINPROGRESS.

If the asynchronous I/O operation has completed successfully, then 0 is returned. If
the asynchronous operation has completed unsuccessfully, then the error status, as
described for read(2), write(2), and fsync(3C), is returned. If the asynchronous I/O
operation has not yet completed, then EINPROGRESS is returned.

The aio_error() function will fail if:

ENOSYS The aio_error() function is not supported by the system.

The aio_error() function may fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation
whose return status has not yet been retrieved.

The aio_error() function has a transitional interface for 64-bit file offsets. See
lf64(5).

EXAMPLE 1 The following is an example of an error handling routine using the
aio_error() function.

#include <aio.h>
#include <errno.h>
#include <signal.h>
struct aiocb my_aiocb;
struct sigaction my_sigaction;
void my_aio_handler(int, siginfo_t *, void *);
. . .
my_sigaction.sa_flags = SA_SIGINFO;
my_sigaction.sa_sigaction = my_aio_handler;
sigemptyset(&my_sigaction.sa_mask);
(void) sigaction(SIGRTMIN, &my_sigaction, NULL);
. . .
my_aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
my_aiocb.aio_sigevent.sigev_signo = SIGRTMIN;
my_aiocb.aio_sigevent.sigev_value.sival_ptr = &myaiocb;
. . .
(void) aio_read(&my_aiocb);
. . .
void
my_aio_handler(int signo, siginfo_t *siginfo, void *context) {
int my_errno;
struct aiocb *my_aiocbp;

aio_error(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

EXAMPLES

Realtime Library Functions 17

EXAMPLE 1 The following is an example of an error handling routine using the
aio_error() function. (Continued)

my_aiocbp = siginfo->si_value.sival_ptr;
if ((my_errno = aio_error(my_aiocb)) != EINPROGRESS) {

int my_status = aio_return(my_aiocb);
if (my_status >= 0){ /* start another operation */

. . .
} else { /* handle I/O error */

. . .
}

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

_exit(2), close(2), fork(2), lseek(2), read(2), write(2), aio.h(3HEAD),
aio_cancel(3RT), aio_fsync(3RT), aio_read(3RT), aio_return(3RT),
aio_write(3RT), lio_listio(3RT), signal.h(3HEAD), attributes(5), lf64(5),
standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_error(3RT)

ATTRIBUTES

SEE ALSO

NOTES

18 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

aio_fsync – asynchronous file synchronization

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

The aio_fsync() function asynchronously forces all I/O operations associated with
the file indicated by the file descriptor aio_fildes member of the aiocb structure
referenced by the aiocbp argument and queued at the time of the call to aio_fsync()
to the synchronized I/O completion state. The function call returns when the
synchronization request has been initiated or queued to the file or device (even when
the data cannot be synchronized immediately).

If op is O_DSYNC, all currently queued I/O operations are completed as if by a call to
fdatasync(3RT); that is, as defined for synchronized I/O data integrity completion.
If op is O_SYNC, all currently queued I/O operations are completed as if by a call to
fsync(3C); that is, as defined for synchronized I/O file integrity completion. If the
aio_fsync() function fails, or if the operation queued by aio_fsync() fails, then,
as for fsync(3C) and fdatasync(3RT), outstanding I/O operations are not
guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the
call to aio_fsync() that is guaranteed to be forced to the relevant completion state.
The completion of subsequent I/O on the file descriptor is not guaranteed to be
completed in a synchronized fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value
may be used as an argument to aio_error(3RT) and aio_return(3RT) in order to
determine the error status and return status, respectively, of the asynchronous
operation while it is proceeding. When the request is queued, the error status for the
operation is EINPROGRESS. When all data has been successfully transferred, the error
status will be reset to reflect the success or failure of the operation. If the operation
does not complete successfully, the error status for the operation will be set to indicate
the error. The aio_sigevent member determines the asynchronous notification to occur
when all operations have achieved synchronized I/O completion. All other members
of the structure referenced by aiocbp are ignored. If the control block referenced by
aiocbp becomes an illegal address prior to asynchronous I/O completion, then the
behavior is undefined.

If the aio_fsync() function fails or the aiocbp indicates an error condition, data is
not guaranteed to have been successfully transferred.

If aiocbp is NULL, then no status is returned in aiocbp, and no signal is generated upon
completion of the operation.

The aio_fsync() function returns 0 to the calling process if the I/O operation is
successfully queued; otherwise, the function returns −1 and sets errno to indicate the
error.

The aio_fsync() function will fail if:

aio_fsync(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Realtime Library Functions 19

EAGAIN The requested asynchronous operation was not queued due to
temporary resource limitations.

EBADF The aio_fildes member of the aiocb structure referenced by
the aiocbp argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

EINVAL A value of op other than O_DSYNC or O_SYNC was specified.

ENOSYS The aio_fsync() function is not supported by the system.

In the event that any of the queued I/O operations fail, aio_fsync() returns the
error condition defined for read(2) and write(2). The error will be returned in the
error status for the asynchronous fsync(3C) operation, which can be retrieved using
aio_error(3RT).

The aio_fsync() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fcntl(2), open(2), read(2), write(2), aio_error(3RT), aio_return(3RT),
fdatasync(3RT), fsync(3C), attributes(5), fcntl.h(3HEAD), aio.h(3HEAD),
signal.h(3HEAD), attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_fsync(3RT)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

20 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

aioread, aiowrite – read or write asynchronous I/O operations

cc [flag ...] file... -laio [library...]
#include <sys/types.h>

#include <sys/asynch.h>

int aioread(int fildes, char *bufp, int bufs, off_t offset, int whence,
aio_result_t *resultp);

int aiowrite(int fildes, const char *bufp, int bufs, off_t offset, int
whence, aio_result_t *resultp);

The aioread() function initiates one asynchronous read(2) and returns control to
the calling program. The read continues concurrently with other activity of the
process. An attempt is made to read bufs bytes of data from the object referenced by
the descriptor fildes into the buffer pointed to by bufp.

The aiowrite() function initiates one asynchronous write(2) and returns control to
the calling program. The write continues concurrently with other activity of the
process. An attempt is made to write bufs bytes of data from the buffer pointed to by
bufp to the object referenced by the descriptor fildes.

On objects capable of seeking, the I/O operation starts at the position specified by
whence and offset. These parameters have the same meaning as the corresponding
parameters to the llseek(2) function. On objects not capable of seeking the I/O
operation always start from the current position and the parameters whence and offset
are ignored. The seek pointer for objects capable of seeking is not updated by
aioread() or aiowrite(). Sequential asynchronous operations on these devices
must be managed by the application using the whence and offset parameters.

The result of the asynchronous operation is stored in the structure pointed to by
resultp:

int aio_return; /* return value of read() or write() */
int aio_errno; /* value of errno for read() or write() */

Upon completion of the operation both aio_return and aio_errno are set to reflect
the result of the operation. Since AIO_INPROGRESS is not a value used by the system,
the client can detect a change in state by initializing aio_return to this value.

The application-supplied buffer bufp should not be referenced by the application until
after the operation has completed. While the operation is in progress, this buffer is in
use by the operating system.

Notification of the completion of an asynchronous I/O operation can be obtained
synchronously through the aiowait(3AIO) function, or asynchronously by installing
a signal handler for the SIGIO signal. Asynchronous notification is accomplished by
sending the process a SIGIO signal. If a signal handler is not installed for the SIGIO
signal, asynchronous notification is disabled. The delivery of this instance of the
SIGIO signal is reliable in that a signal delivered while the handler is executing is not
lost. If the client ensures that aiowait() returns nothing (using a polling timeout)
before returning from the signal handler, no asynchronous I/O notifications are lost.

aioread(3AIO)

NAME

SYNOPSIS

DESCRIPTION

Realtime Library Functions 21

The aiowait() function is the only way to dequeue an asynchronous notification.
The SIGIO signal can have several meanings simultaneously. For example, it can
signify that a descriptor generated SIGIO and an asynchronous operation completed.
Further, issuing an asynchronous request successfully guarantees that space exists to
queue the completion notification.

The close(2), exit(2) and execve(2)) functions block until all pending
asynchronous I/O operations can be canceled by the system.

It is an error to use the same result buffer in more than one outstanding request. These
structures can be reused only after the system has completed the operation.

Upon successful completion, aioread() and aiowrite() return 0. Upon failure,
aioread() and aiowrite() return −1 and set errno to indicate the error.

The aioread() and aiowrite() functions will fail if:

EAGAIN The number of asynchronous requests that the system can handle
at any one time has been exceeded

EBADF The fildes argument is not a valid file descriptor open for reading.

EFAULT At least one of bufp or resultp points to an address outside the
address space of the requesting process. This condition is reported
only if detected by the application process.

EINVAL The resultp argument is currently being used by an outstanding
asynchronous request.

EINVAL The offset argument is not a valid offset for this file system type.

ENOMEM Memory resources are unavailable to initiate request.

The aioread() and aiowrite() functions have transitional interfaces for 64-bit file
offsets. See lf64(5).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

close(2), execve(2), exit(2), llseek(2), lseek(2), open(2), read(2), write(2),
aiocancel(3AIO), aiowait(3AIO), sigvec(3UCB), attributes(5), lf64(5)

aioread(3AIO)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

22 man pages section 3: Realtime Library Functions • Last Revised 22 Mar 2004

aio_read – asynchronous read from a file

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_read(struct aiocb *aiocbp);

The aio_read() function allows the calling process to read aiocbp->aio_nbytes
from the file associated with aiocbp->aio_fildes into the buffer pointed to by
aiocbp->aio_buf. The function call returns when the read request has been initiated or
queued to the file or device (even when the data cannot be delivered immediately). If
_POSIX_PRIORITIZED_IO is defined and prioritized I/O is supported for this file,
then the asynchronous operation is submitted at a priority equal to the scheduling
priority of the process minus aiocbp->aio_reqprio. The aiocbp value may be used as
an argument to aio_error(3RT) and aio_return(3RT) in order to determine the
error status and return status, respectively, of the asynchronous operation while it is
proceeding. If an error condition is encountered during queuing, the function call
returns without having initiated or queued the request. The requested operation takes
place at the absolute position in the file as given by aio_offset, as if lseek(2) were
called immediately prior to the operation with an offset equal to aio_offset and a
whence equal to SEEK_SET. After a successful call to enqueue an asynchronous I/O
operation, the value of the file offset for the file is unspecified.

The aiocbp->aio_lio_opcode field is ignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp->aio_buf or the control block pointed to by aiocbp becomes an illegal address
prior to asynchronous I/O completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined
results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronized I/O is enabled on the file
associated with aiocbp->aio_fildes, the behavior of this function is according to the
definitions of synchronized I/O data integrity completion and synchronized I/O file
integrity completion.

For any system action that changes the process memory space while an asynchronous
I/O is outstanding to the address range being changed, the result of that action is
undefined.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with aiocbp->aio_fildes.

The aio_read() function returns 0 to the calling process if the I/O operation is
successfully queued; otherwise, the function returns −1 and sets errno to indicate the
error.

The aio_read() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to
system resource limitations.

aio_read(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Realtime Library Functions 23

ENOSYS The aio_read() function is not supported by the system.

Each of the following conditions may be detected synchronously at the time of the call
to aio_read(), or asynchronously. If any of the conditions below are detected
synchronously, the aio_read() function returns –1 and sets errno to the
corresponding value. If any of the conditions below are detected asynchronously, the
return status of the asynchronous operation is set to −1, and the error status of the
asynchronous operation will be set to the corresponding value.

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor
open for reading.

EINVAL The file offset value implied by aiocbp->aio_offset would be
invalid, aiocbp->aio_reqprio is not a valid value, or
aiocbp->aio_nbytes is an invalid value.

In the case that the aio_read() successfully queues the I/O operation but the
operation is subsequently canceled or encounters an error, the return status of the
asynchronous operation is one of the values normally returned by the read(2)
function call. In addition, the error status of the asynchronous operation will be set to
one of the error statuses normally set by the read() function call, or one of the
following values:

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor
open for reading.

ECANCELED The requested I/O was canceled before the I/O completed due to
an explicit aio_cancel(3RT) request.

EINVAL The file offset value implied by aiocbp->aio_offset would be
invalid.

The following condition may be detected synchronously or asynchronously:

EOVERFLOW The file is a regular file, aiobcp->aio_nbytes is greater than 0 and
the starting offset in aiobcp->aio_offset is before the end-of-file
and is at or beyond the offset maximum in the open file
description associated with aiocbp->aio_fildes.

For portability, the application should set aiocb->aio_reqprio to 0.

The aio_read() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

aio_read(3RT)

USAGE

ATTRIBUTES

24 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2), aio.h(3HEAD),
siginfo.h(3HEAD), signal.h(3HEAD), aio_cancel(3RT), aio_return(3RT),
lio_listio(3RT), attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_read(3RT)

SEE ALSO

NOTES

Realtime Library Functions 25

aio_return – retrieve return status of an asynchronous I/O operation

cc [flag...] file... -lrt [library...]

#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

The aio_return() function returns the return status associated with the aiocb
structure referenced by the aiocbp argument. The return status for an asynchronous
I/O operation is the value that would be returned by the corresponding read(2),
write(2), or fsync(3C) function call. If the error status for the operation is equal to
EINPROGRESS, then the return status for the operation is undefined. The
aio_return() function may be called exactly once to retrieve the return status of a
given asynchronous operation; thereafter, if the same aiocb structure is used in a call
to aio_return() or aio_error(3RT), an error may be returned. When the aiocb
structure referred to by aiocbp is used to submit another asynchronous operation, then
aio_return() may be successfully used to retrieve the return status of that
operation.

If the asynchronous I/O operation has completed, then the return status, as described
for read(2), write(2), and fsync(3C), is returned. If the asynchronous I/O operation
has not yet completed, the results of aio_return() are undefined.

The aio_return() function will fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation
whose return status has not yet been retrieved.

ENOSYS The aio_return() function is not supported by the system.

The aio_return() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2), fsync(3C),
aio.h(3HEAD), signal.h(3HEAD), aio_cancel(3RT), aio_fsync(3RT),
aio_read(3RT), lio_listio(3RT), attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_return(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

26 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

aio_suspend – wait for asynchronous I/O request

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_suspend(const struct aiocb * const list[], int nent, const
struct timespec *timeout);

The aio_suspend() function suspends the calling thread until at least one of the
asynchronous I/O operations referenced by the list argument has completed, until a
signal interrupts the function, or, if timeout is not NULL, until the time interval
specified by timeout has passed. If any of the aiocb structures in the list correspond to
completed asynchronous I/O operations (that is, the error status for the operation is
not equal to EINPROGRESS) at the time of the call, the function returns without
suspending the calling thread. The list argument is an array of pointers to
asynchronous I/O control blocks. The nent argument indicates the number of elements
in the array. Each aiocb structure pointed to will have been used in initiating an
asynchronous I/O request via aio_read(3RT), aio_write(3RT), or
lio_listio(3RT). This array may contain null pointers, which are ignored. If this
array contains pointers that refer to aiocb structures that have not been used in
submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes
before any of the I/O operations referenced by list are completed, then
aio_suspend() returns with an error.

If aio_suspend() returns after one or more asynchronous I/O operations have
completed, it returns 0. Otherwise, it returns −1, and sets errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the
associated error and return status using aio_error(3RT) and aio_return(3RT),
respectively.

The aio_suspend() function will fail if:

EAGAIN No asynchronous I/O indicated in the list referenced by list
completed in the time interval indicated by timeout.

EINTR A signal interrupted the aio_suspend() function. Since each
asynchronous I/O operation might provoke a signal when it
completes, this error return can be caused by the completion of
one or more of the very I/O operations being awaited.

EINVAL The nent argument is less than or equal to 0 or the timespec
structure pointed to by timeout is not properly set because tv_sec
is less than 0 or tv_nsec is either less than 0 or greater than 109.

ENOMEM There is currently not enough available memory; the application
can try again later.

ENOSYS The aio_suspend() function is not supported by the system.

aio_suspend(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Realtime Library Functions 27

The aio_suspend() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

aio.h(3HEAD), aio_fsync(3RT), aio_read(3RT), aio_return(3RT),
aio_write(3RT), lio_listio(3RT), signal.h(3HEAD), attributes(5), lf64(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_suspend(3RT)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

28 man pages section 3: Realtime Library Functions • Last Revised 21 Feb 2002

aiowait – wait for completion of asynchronous I/O operation

cc [flag...] file... -laio [library...]
#include <sys/asynch.h>

#include <sys/time.h>

aio_result_t *aiowait(const struct timeval *timeout);

The aiowait() function suspends the calling process until one of its outstanding
asynchronous I/O operations completes, providing a synchronous method of
notification.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the
completion of an asynchronous I/O operation. If timeout is a zero pointer, aiowait()
blocks indefinitely. To effect a poll, the timeout parameter should be non-zero, pointing
to a zero-valued timeval structure.

The timeval structure is defined in <sys/time.h> and contains the following
members:

long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

Upon successful completion, aiowait() returns a pointer to the result structure used
when the completed asynchronous I/O operation was requested. Upon failure,
aiowait() returns −1 and sets errno to indicate the error. aiowait() returns 0 if
the time limit expires.

The aiowait() function will fail if:

EFAULT The timeout argument points to an address outside the address
space of the requesting process. See NOTES.

EINTR The execution of aiowait() was interrupted by a signal.

EINVAL There are no outstanding asynchronous I/O requests.

EINVAL The tv_secs member of the timeval structure pointed to by
timeout is less than 0 or the tv_usecs member is greater than the
number of seconds in a microsecond.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

aiocancel(3AIO), aioread(3AIO), attributes(5)

The aiowait() function is the only way to dequeue an asynchronous notification. It
can be used either inside a SIGIO signal handler or in the main program. One SIGIO
signal can represent several queued events.

aiowait(3AIO)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Realtime Library Functions 29

Passing an illegal address as timeout will result in setting errno to EFAULT only if
detected by the application process.

aiowait(3AIO)

30 man pages section 3: Realtime Library Functions • Last Revised 4 Oct 2004

aio_waitn – wait for completion of asynchronous I/O operations

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_waitn(struct aiocb *list[], uint_t nent, uint_t *nwait, const
struct timespec *timeout);

The aio_waitn() function suspends the calling thread until at least the number of
requests specified by nwait have completed, until a signal interrupts the function, or if
timeout is not NULL, until the time interval specified by timeout has passed.

To effect a poll, the timeout argument should be non-zero, pointing to a zero-valued
timespec structure.

The list argument is an array of uninitialized I/O completion block pointers to be
filled in by the system before aio_waitn() returns. The nent argument indicates the
maximum number of elements that can be placed in list[].

The nwait argument points to the minimum number of requests aio_waitn() should
wait for. Upon returning, the content of nwait is set to the actual number of requests in
the aiocb list, which can be greater than the initial value specified in nwait. The
aio_waitn() function attempts to return as many requests as possible, up to the
number of outstanding asynchronous I/Os but less than or equal to the maximum
specified by the nent argument. As soon as the number of outstanding asynchronous
I/O requests becomes 0, aio_waitn() returns with the current list of completed
requests.

The aiocb structures returned will have been used in initiating an asynchronous I/O
request from any thread in the process with aio_read(3RT), aio_write(3RT), or
lio_listio(3RT).

If the time interval expires before the expected number of I/O operations specified by
nwait are completed, aio_waitn() returns the number of completed requests and the
content of the nwait pointer is updated with that number.

If aio_waitn() is interrupted by a signal, nwait is set to the number of completed
requests.

The application can determine the status of the completed asynchronous I/O by
checking the associated error and return status using aio_error(3RT) and
aio_return(3RT), respectively.

Upon successful completion, aio_waitn() returns 0. Otherwise, it returns -1 and sets
errno to indicate the error.

The aio_waitn() function will fail if:

EAGAIN There are no outstanding asynchronous I/O requests.

aio_waitn(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Realtime Library Functions 31

EFAULT The list[], nwait, or timeout argument points to an address outside
the address space of the process. The errno variable is set to
EFAULT only if this condition is detected by the application
process.

EINTR The execution of aio_waitn() was interrupted by a signal.

EINVAL The timeout element tv_sec or tv_nsec is < 0, nent is set to 0, or
nwait is either set to 0 or is > nent.

ENOMEM There is currently not enough available memory. The application
can try again later.

ETIME The time interval expired before nwait outstanding requests have
completed.

The aio_waitn() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Safe

aio.h(3HEAD), aio_error(3RT), aio_read(3RT), aio_write(3RT),
lio_listio(3RT), aio_return(3RT), attributes(5), lf64(5)

aio_waitn(3RT)

USAGE

ATTRIBUTES

SEE ALSO

32 man pages section 3: Realtime Library Functions • Last Revised 12 Nov 2004

aio_write – asynchronous write to a file

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_write(struct aiocb *aiocbp);

The aio_write() function allows the calling process to write aiocbp->aio_nbytes
to the file associated with aiocbp->aio_fildes from the buffer pointed to by
aiocbp->aio_buf. The function call returns when the write request has been initiated
or, at a minimum, queued to the file or device. If _POSIX_PRIORITIZED_IO is
defined and prioritized I/O is supported for this file, then the asynchronous operation
is submitted at a priority equal to the scheduling priority of the process minus
aiocbp->aio_reqprio. The aiocbp may be used as an argument to aio_error(3RT)
and aio_return(3RT) in order to determine the error status and return status,
respectively, of the asynchronous operation while it is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp->aio_buf or the control block pointed to by aiocbp becomes an illegal address
prior to asynchronous I/O completion, then the behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation
takes place at the absolute position in the file as given by aio_offset, as if lseek(2) were
called immediately prior to the operation with an offset equal to aio_offset and a whence
equal to SEEK_SET. If O_APPEND is set for the file descriptor, write operations
append to the file in the same order as the calls were made. After a successful call to
enqueue an asynchronous I/O operation, the value of the file offset for the file is
unspecified.

The aiocbp->aio_lio_opcode field is ignored by aio_write().

Simultaneous asynchronous operations using the same aiocbp produce undefined
results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronized I/O is enabled on the file
associated with aiocbp->aio_fildes, the behavior of this function shall be according
to the definitions of synchronized I/O data integrity completion and synchronized
I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous
I/O is outstanding to the address range being changed, the result of that action is
undefined.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with aiocbp->aio_fildes.

The aio_write() function returns 0 to the calling process if the I/O operation is
successfully queued; otherwise, the function returns −1 and sets errno to indicate the
error.

The aio_write() function will fail if:

aio_write(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Realtime Library Functions 33

EAGAIN The requested asynchronous I/O operation was not queued due to
system resource limitations.

ENOSYS The aio_write() function is not supported by the system.

Each of the following conditions may be detected synchronously at the time of the call
to aio_write(), or asynchronously. If any of the conditions below are detected
synchronously, the aio_write() function returns −1 and sets errno to the
corresponding value. If any of the conditions below are detected asynchronously, the
return status of the asynchronous operation is set to −1, and the error status of the
asynchronous operation will be set to the corresponding value.

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor
open for writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be
invalid, aiocbp->aio_reqprio is not a valid value, or
aiocbp->aio_nbytes is an invalid value.

In the case that the aio_write() successfully queues the I/O operation, the return
status of the asynchronous operation will be one of the values normally returned by
the write(2) function call. If the operation is successfully queued but is subsequently
canceled or encounters an error, the error status for the asynchronous operation
contains one of the values normally set by the write() function call, or one of the
following:

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor
open for writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be
invalid.

ECANCELED The requested I/O was canceled before the I/O completed due to
an explicit aio_cancel(3RT) request.

The following condition may be detected synchronously or asynchronously:

EFBIG The file is a regular file, aiobcp->aio_nbytes is greater than 0 and
the starting offset in aiobcp->aio_offset is at or beyond the offset
maximum in the open file description associated with
aiocbp->aio_fildes.

The aio_write() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

aio_write(3RT)

USAGE

ATTRIBUTES

34 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

MT-Level MT-Safe

aio_cancel(3RT), aio_error(3RT), aio_read(3RT), aio_return(3RT),
lio_listio(3RT), close(2), _exit(2), fork(2), lseek(2), write(2),
aio.h(3HEAD), signal.h(3HEAD), attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_write(3RT)

SEE ALSO

NOTES

Realtime Library Functions 35

clock_nanosleep – high resolution sleep with specifiable clock

cc [flag...] file... -lrt [library...]

#include <time.h>

int clock_nanosleep(clockid_t clock_id, int flags, const struct
timespec *rqtp, struct timespec *rmtp);

If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep()
function causes the current thread to be suspended from execution until either the
time interval specified by the rqtp argument has elapsed, or a signal is delivered to the
calling thread and its action is to invoke a signal-catching function, or the process is
terminated. The clock used to measure the time is the clock specified by clock_id.

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep()
function causes the current thread to be suspended from execution until either the
time value of the clock specified by clock_id reaches the absolute time specified by the
rqtp argument, or a signal is delivered to the calling thread and its action is to invoke a
signal-catching function, or the process is terminated. If, at the time of the call, the
time value specified by rqtp is less than or equal to the time value of the specified
clock, then clock_nanosleep() returns immediately and the calling process is not
suspended.

The suspension time caused by this function can be longer than requested because the
argument value is rounded up to an integer multiple of the sleep resolution, or
because of the scheduling of other activity by the system. But, except for the case of
being interrupted by a signal, the suspension time for the relative
clock_nanosleep() function (that is, with the TIMER_ABSTIME flag not set) will
not be less than the time interval specified by rqtp, as measured by the corresponding
clock. The suspension for the absolute clock_nanosleep() function (that is, with
the TIMER_ABSTIME flag set) will be in effect at least until the value of the
corresponding clock reaches the absolute time specified by rqtp, except for the case of
being interrupted by a signal.

The use of the clock_nanosleep() function has no effect on the action or blockage
of any signal.

The clock_nanosleep() function fails if the clock_id argument refers to the
CPU-time clock of the calling thread. It is unspecified if clock_id values of other
CPU-time clocks are allowed.

If the clock_nanosleep() function returns because the requested time has elapsed,
its return value is 0.

If the clock_nanosleep() function returns because it has been interrupted by a
signal, it returns the corresponding error value. For the relative clock_nanosleep()
function, if the rmtp argument is non-null, the timespec structure referenced by it is
updated to contain the amount of time remaining in the interval (the requested time
minus the time actually slept). If the rmtp argument is NULL, the remaining time is
not returned. The absolute clock_nanosleep() function has no effect on the
structure referenced by rmtp.

clock_nanosleep(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

36 man pages section 3: Realtime Library Functions • Last Revised 30 Jan 2004

If clock_nanosleep() fails, it shall return the corresponding error value.

The clock_nanosleep() function will fail if:

EINTR The clock_nanosleep() function was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less than zero or
greater than or equal to 1,000 million; or the TIMER_ABSTIME flag
was specified in flags and the rqtp argument is outside the range
for the clock specified by clock_id; or the clock_id argument does
not specify a known clock, or specifies the CPU-time clock of the
calling thread.

ENOTSUP The clock_id argument specifies a clock for which
clock_nanosleep() is not supported, such as a CPU-time clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

clock_getres(3RT), nanosleep(3RT), pthread_cond_timedwait(3C),
sleep(3C), attributes(5), standards(5)

clock_nanosleep(3RT)

ERRORS

ATTRIBUTES

SEE ALSO

Realtime Library Functions 37

clock_settime, clock_gettime, clock_getres – high-resolution clock operations

cc [flag...] file... -lrt [library...]

#include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_getres(clockid_t clock_id, struct timespec *res);

The clock_settime() function sets the specified clock, clock_id, to the value
specified by tp. Time values that are between two consecutive non-negative integer
multiples of the resolution of the specified clock are truncated down to the smaller
multiple of the resolution.

The clock_gettime() function returns the current value tp for the specified clock,
clock_id.

The resolution of any clock can be obtained by calling clock_getres(). Clock
resolutions are system-dependent and cannot be set by a process. If the argument res is
not NULL, the resolution of the specified clock is stored in the location pointed to by
res. If res is NULL, the clock resolution is not returned. If the time argument of
clock_settime() is not a multiple of res, then the value is truncated to a multiple of
res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring
time that is meaningful only within a process).

A clock_id of CLOCK_REALTIME is defined in <time.h>. This clock represents the
realtime clock for the system. For this clock, the values returned by
clock_gettime() and specified by clock_settime() represent the amount of
time (in seconds and nanoseconds) since the Epoch. Additional clocks may also be
supported. The interpretation of time values for these clocks is unspecified.

A clock_id of CLOCK_HIGHRES represents the non-adjustable, high-resolution clock for
the system. For this clock, the value returned by clock_gettime(3RT) represents the
amount of time (in seconds and nanoseconds) since some arbitrary time in the past; it
is not correlated in any way to the time of day, and thus is not subject to resetting or
drifting by way of adjtime(2), ntp_adjtime(2), settimeofday(3C), or
clock_settime(). The time source for this clock is the same as that for
gethrtime(3C).

Additional clocks may also be supported. The interpretation of time values for these
clocks is unspecified.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The clock_settime(), clock_gettime() and clock_getres() functions will
fail if:

EINVAL The clock_id argument does not specify a known clock.

clock_settime(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

38 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

ENOSYS The functions clock_settime(), clock_gettime(), and
clock_getres() are not supported by this implementation.

The clock_settime() function will fail if:

EINVAL The tp argument to clock_settime() is outside the range for
the given clock ID; or the tp argument specified a nanosecond
value less than zero or greater than or equal to 1000 million.

The clock_settime() function may fail if:

EPERM The requesting process does not have the appropriate privilege to
set the specified clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level clock_gettime() is Async-Signal-Safe

time(2), ctime(3C), gethrtime(3C), time.h(3HEAD), timer_gettime(3RT),
attributes(5), standards(5)

clock_settime(3RT)

ATTRIBUTES

SEE ALSO

Realtime Library Functions 39

door_bind, door_unbind – bind or unbind the current thread with the door server
pool

cc -mt [flag...] file... -ldoor [library...]

#include <door.h>

int door_bind(int did);

int door_unbind(void);

The door_bind() function associates the current thread with a door server pool. A
door server pool is a private pool of server threads that is available to serve door
invocations associated with the door did.

The door_unbind() function breaks the association of door_bind() by removing
any private door pool binding that is associated with the current thread.

Normally, door server threads are placed in a global pool of available threads that
invocations on any door can use to dispatch a door invocation. A door that has been
created with DOOR_PRIVATE only uses server threads that have been associated with
the door by door_bind(). It is therefore necessary to bind at least one server thread
to doors created with DOOR_PRIVATE.

The server thread create function, door_server_create(), is initially called by the
system during a door_create() operation. See door_server_create(3DOOR)
and door_create(3DOOR).

The current thread is added to the private pool of server threads associated with a
door during the next door_return() (that has been issued by the current thread
after an associated door_bind()). See door_return(3DOOR). A server thread
performing a door_bind() on a door that is already bound to a different door
performs an implicit door_unbind() of the previous door.

If a process containing threads that have been bound to a door calls fork(2), the
threads in the child process will be bound to an invalid door, and any calls to
door_return(3DOOR) will result in an error.

Upon successful completion, a 0 is returned. Otherwise, −1 is returned and errno is
set to indicate the error.

The door_bind() and door_unbind() functions fail if:

EBADF The did argument is not a valid door.

EBADF The door_unbind() function was called by a thread that is
currently not bound.

EINVAL did was not created with the DOOR_PRIVATE attribute.

door_bind(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

40 man pages section 3: Realtime Library Functions • Last Revised 23 Apr 2003

EXAMPLE 1 Use door_bind() to create private server pools for two doors.

The following example shows the use of door_bind() to create private server pools
for two doors, d1 and d2. Function my_create() is called when a new server thread
is needed; it creates a thread running function, my_server_create(), which binds
itself to one of the two doors.

#include <door.h>
#include <thread.h>
#include <pthread.h>
thread_key_t door_key;
int d1 = -1;
int d2 = -1;
cond_t cv; /* statically initialized to zero */
mutex_t lock; /* statically initialized to zero */

extern void foo(void *, char *, size_t, door_desc_t *, uint_t);
extern void bar(void *, char *, size_t, door_desc_t *, uint_t);

static void *
my_server_create(void *arg)
{

/* wait for d1 & d2 to be initialized */
mutex_lock(&lock);
while (d1 == -1 || d2 == -1)

cond_wait(&cv, &lock);
mutex_unlock(&lock);

if (arg == (void *)foo){
/* bind thread with pool associated with d1 */
thr_setspecific(door_key, (void *)foo);
if (door_bind(d1) < 0) {

perror("door_bind"); exit (-1);
}

} else if (arg == (void *)bar) {
/* bind thread with pool associated with d2 */
thr_setspecific(door_key, (void *)bar);
if (door_bind(d2) < 0) {
/* bind thread to d2 thread pool */

perror("door_bind"); exit (-1);
}

}
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
door_return(NULL, 0, NULL, 0); /* Wait for door invocation */

}

static void
my_create(door_info_t *dip)
{

/* Pass the door identity information to create function */
thr_create(NULL, 0, my_server_create, (void *)dip->di_proc,

THR_BOUND | THR_DETACHED, NULL);
}

main()
{

door_bind(3DOOR)

EXAMPLES

Realtime Library Functions 41

EXAMPLE 1 Use door_bind() to create private server pools for two doors. (Continued)

(void) door_server_create(my_create);
if (thr_keycreate(&door_key, NULL) != 0) {

perror("thr_keycreate");
exit(1);

}
mutex_lock(&lock);
d1 = door_create(foo, NULL, DOOR_PRIVATE); /* Private pool */
d2 = door_create(bar, NULL, DOOR_PRIVATE); /* Private pool */
cond_signal(&cv);
mutex_unlock(&lock);
while (1)

pause();

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

fork(2),door_create(3DOOR), door_return(3DOOR),
door_server_create(3DOOR), libdoor(3LIB), attributes(5)

door_bind(3DOOR)

ATTRIBUTES

SEE ALSO

42 man pages section 3: Realtime Library Functions • Last Revised 23 Apr 2003

door_call – invoke the function associated with a door descriptor

cc [flag...] file... -ldoor [library...]

#include <door.h>

typedef struct {
char *data_ptr; /* Argument/result buf ptr*/
size_t data_size; /* Argument/result buf size */
door_desc_t *desc_ptr; /* Argument/result descriptors */
uint_t desc_num; /* Argument/result num desc */
char *rbuf; /* Result buffer */
size_t rsize; /* Result buffer size */

} door_arg_t;

int door_call(int d, door_arg_t *params);

The door_call() function invokes the function associated with the door descriptor
d, and passes the arguments (if any) specified in params. All of the params members are
treated as in/out parameters during a door invocation and may be updated upon
returning from a door call. Passing NULL for params indicates there are no arguments
to be passed and no results expected.

Arguments are specified using the data_ptr and desc_ptr members of params. The
size of the argument data in bytes is passed in data_size and the number of
argument descriptors is passed in desc_num.

Results from the door invocation are placed in the buffer, rbuf. See
door_return(3DOOR). The data_ptr and desc_ptr members of params are
updated to reflect the location of the results within the rbuf buffer. The size of the
data results and number of descriptors returned are updated in the data_size and
desc_num members. It is acceptable to use the same buffer for input argument data
and results, so door_call() may be called with data_ptr and desc_ptr pointing
to the buffer rbuf.

If the results of a door invocation exceed the size of the buffer specified by rsize, the
system automatically allocates a new buffer in the caller’s address space and updates
the rbuf and rsize members to reflect this location. In this case, the caller is
responsible for reclaiming this area using munmap(rbuf, rsize) when the buffer is
no longer required. See munmap(2).

Descriptors passed in a door_desc_t structure are identified by the d_attributes
member. The client marks the d_attributes member with the type of object being
passed by logically OR-ing the value of object type. Currently, the only object type that
can be passed or returned is a file descriptor, denoted by the DOOR_DESCRIPTOR
attribute. Additionally, the DOOR_RELEASE attribute can be set, causing the descriptor
to be closed in the caller’s address space after it is passed to the target. The descriptor
will be closed even if door_call() returns an error, unless that error is EFAULT or
EBADF.

The door_desc_t structure includes the following members:

door_call(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

Realtime Library Functions 43

typedef struct {
door_attr_t d_attributes; /* Describes the parameter */
union {

struct {
int d_descriptor; /* Descriptor */
door_id_t d_id; /* Unique door id */
} d_desc;

} d_data;

} door_desc_t;

When file descriptors are passed or returned, a new descriptor is created in the target
address space and the d_descriptor member in the target argument is updated to
reflect the new descriptor. In addition, the system passes a system-wide unique
number associated with each door in the door_id member and marks the
d_attributes member with other attributes associated with a door including the
following:

DOOR_LOCAL The door received was created by this process using
door_create(). See door_create(3DOOR).

DOOR_PRIVATE The door received has a private pool of server threads
associated with the door.

DOOR_UNREF The door received is expecting an unreferenced
notification.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
notifications may be delivered for the same door.

DOOR_REFUSE_DESC This door does not accept argument descriptors.

DOOR_REVOKED The door received has been revoked by the server.

The door_call() function is not a restartable system call. It returns EINTR if a signal
was caught and handled by this thread. If the door invocation is not idempotent the
caller should mask any signals that may be generated during a door_call()
operation. If the client aborts in the middle of a door_call(), the server thread is
notified using the POSIX (see standards(5)) thread cancellation mechanism. See
cancellation(5).

The descriptor returned from door_create() is marked as close on exec
(FD_CLOEXEC). Information about a door is available for all clients of a door using
door_info(). Applications concerned with security should not place secure
information in door data that is accessible by door_info(). In particular, secure data
should not be stored in the data item cookie. See door_info(3DOOR).

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The door_call() function will fail if:

E2BIG Arguments were too big for server thread stack.

EAGAIN Server was out of available resources.

door_call(3DOOR)

RETURN VALUES

ERRORS

44 man pages section 3: Realtime Library Functions • Last Revised 14 Feb 2003

EBADF Invalid door descriptor was passed.

EFAULT Argument pointers pointed outside the allocated address space.

EINTR A signal was caught in the client, the client called fork(2), or the
server exited during invocation.

EINVAL Bad arguments were passed.

EMFILE The client or server has too many open descriptors.

ENOTSUP The desc_num argument is non-zero and the door has the
DOOR_REFUSE_DESC flag set.

EOVERFLOW System could not create overflow area in caller for results.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

munmap(2), door_create(3DOOR), door_info(3DOOR), door_return(3DOOR),
libdoor(3LIB), attributes(5), cancellation(5), standards(5)

door_call(3DOOR)

ATTRIBUTES

SEE ALSO

Realtime Library Functions 45

door_create – create a door descriptor

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_create(void (*server_procedure) (void *cookie, char *argp,
size_t arg_size, door_desc_t *dp, uint_t n_desc), void *cookie,
uint_t attributes);

The door_create() function creates a door descriptor that describes the procedure
specified by the function server_procedure. The data item, cookie, is associated with the
door descriptor, and is passed as an argument to the invoked function server_procedure
during door_call(3DOOR) invocations. Other arguments passed to server_procedure
from an associated door_call() are placed on the stack and include argp and dp.
The argp argument points to arg_size bytes of data and the dp argument points to
n_desc door_desc_t structures. The attributes argument specifies attributes associated
with the newly created door. Valid values for attributes are constructed by OR-ing one
or more of the following values:

DOOR_UNREF Delivers a special invocation on the door when the
number of descriptors that refer to this door drops to
one. In order to trigger this condition, more than one
descriptor must have referred to this door at some
time. DOOR_UNREF_DATA designates an unreferenced
invocation, as the argp argument passed to
server_procedure. In the case of an unreferenced
invocation, the values for arg_size , dp and n_did are 0.
Only one unreferenced invocation is delivered on
behalf of a door.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
invocations can be delivered on the same door if the
number of descriptors referring to the door drops to
one more than once. Since an additional reference may
have been passed by the time an unreferenced
invocation arrives, the DOOR_IS_UNREF attribute
returned by the door_info(3DOOR) call can be used
to determine if the door is still unreferenced.

DOOR_PRIVATE Maintains a separate pool of server threads on behalf of
the door. Server threads are associated with a door’s
private server pool using door_bind(3DOOR).

DOOR_REFUSE_DESC Any attempt to door_call(3DOOR) this door with
argument descriptors will fail with ENOTSUP. When
this flag is set, the door’s server procedure will always
be invoked with an n_desc argument of 0.

door_create(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

46 man pages section 3: Realtime Library Functions • Last Revised 10 Mar 2003

The descriptor returned from door_create() will be marked as close on exec
(FD_CLOEXEC). Information about a door is available for all clients of a door using
door_info(3DOOR). Applications concerned with security should not place secure
information in door data that is accessible by door_info(). In particular, secure data
should not be stored in the data item cookie.

By default, additional threads are created as needed to handle concurrent
door_call(3DOOR) invocations. See door_server_create(3DOOR) for
information on how to change this behavior.

A process can advertise a door in the file system name space using fattach(3C).

Upon successful completion, door_create() returns a non-negative value.
Otherwise, door_create returns −1 and sets errno to indicate the error.

The door_create() function will fail if:

EINVAL Invalid attributes are passed.

EMFILE The process has too many open descriptors.

EXAMPLE 1 Create a door and use fattach() to advertise the door in the file system
namespace.

The following example creates a door and uses fattach() to advertise the door in
the file system namespace.

void
server(void *cookie, char *argp, size_t arg_size, door_desc_t *dp,

uint_t n_desc)
{

door_return(NULL, 0, NULL, 0);
/* NOTREACHED */

}

int
main(int argc, char *argv[])
{

int did;

if ((did = door_create(server, 0, 0)) < 0) {
perror("door_create");
exit(1);

}

/* make sure file system location exists */
if (stat("/tmp/door", &buf) < 0) {

int newfd;
if ((newfd = creat("/tmp/door", 0444)) < 0) {

perror("creat");
exit(1);

}
(void) close(newfd);

}

door_create(3DOOR)

RETURN VALUES

ERRORS

EXAMPLES

Realtime Library Functions 47

EXAMPLE 1 Create a door and use fattach() to advertise the door in the file system
namespace. (Continued)

/* make sure nothing else is attached */
(void) fdetach("/tmp/door");

/* attach to file system */
if (fattach(did, "/tmp/door") < 0) {

perror("fattach");
exit(2);

}
[...]

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

door_bind(3DOOR), door_call(3DOOR), door_info(3DOOR),
door_revoke(3DOOR), door_server_create(3DOOR), fattach(3C),
libdoor(3LIB), attributes(5)

door_create(3DOOR)

ATTRIBUTES

SEE ALSO

48 man pages section 3: Realtime Library Functions • Last Revised 10 Mar 2003

door_cred – return credential information associated with the client

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_cred(door_cred_t *info);

The door_cred() function returns credential information associated with the client
(if any) of the current door invocation.

The contents of the info argument include the following fields:

uid_t dc_euid; /* Effective uid of client */
gid_t dc_egid; /* Effective gid of client */
uid_t dc_ruid; /* Real uid of client */
gid_t dc_rgid; /* Real gid of client */

pid_t dc_pid; /* pid of client */

The credential information associated with the client refers to the information from the
immediate caller; not necessarily from the first thread in a chain of door calls.

Upon successful completion, door_cred() returns 0. Otherwise, door_cred()
returns −1 and sets errno to indicate the error.

The door_cred() function will fail if:

EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

The door_cred() function is obsolete. Applications should use the
door_ucred(3DOOR) function in place of door_cred().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Obsolete

MT-Level Safe

door_call(3DOOR), door_create(3DOOR), door_ucred(3DOOR),
libdoor(3LIB), attributes(5)

door_cred(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Realtime Library Functions 49

door_info – return information associated with a door descriptor

cc [flag ...] file ... -ldoor [library ...]
#include <door.h>

int door_info(int d, struct door_info *info);

The door_info() function returns information associated with a door descriptor. It
obtains information about the door descriptor d and places the information that is
relevant to the door in the structure pointed to by the info argument.

The door_info structure pointed to by the info argument contains the following
members:

pid_t di_target; /* door server pid */
door_ptr_t di_proc; /* server function */
door_ptr_t di_data; /* data cookie for invocation */
door_attr_t di_attributes; /* door attributes */

door_id_t di_uniquifier; /* unique id among all doors */

The di_target member is the process ID of the door server, or −1 if the door server
process has exited.

The values for di_attributes may be composed of the following:

DOOR_LOCAL The door descriptor refers to a service procedure in this
process.

DOOR_UNREF The door has requested notification when all but the
last reference has gone away.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
notifications may be delivered for this door.

DOOR_IS_UNREF There is currently only one descriptor referring to the
door.

DOOR_REFUSE_DESC The door refuses any attempt to door_call(3DOOR)
it with argument descriptors.

DOOR_REVOKED The door descriptor refers to a door that has been
revoked.

DOOR_PRIVATE The door has a separate pool of server threads
associated with it.

The di_proc and di_data members are returned as door_ptr_t objects rather
than void * pointers to allow clients and servers to interoperate in environments
where the pointer sizes may vary in size (for example, 32-bit clients and 64-bit
servers). Each door has a system-wide unique number associated with it that is set
when the door is created by door_create(). This number is returned in
di_uniquifier.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

door_info(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

50 man pages section 3: Realtime Library Functions • Last Revised 14 Feb 2003

The door_info() function will fail if:

EFAULT The address of argument info is an invalid address.

EBADF d is not a door descriptor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

door_bind(3DOOR), door_call(3DOOR), door_create(3DOOR),
door_server_create(3DOOR), libdoor(3LIB), attributes(5)

door_info(3DOOR)

ERRORS

ATTRIBUTES

SEE ALSO

Realtime Library Functions 51

door_return – return from a door invocation

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_return(char *data_ptr, size_t data_size, door_desc_t *desc_ptr,
uint_t num_desc);

The door_return() function returns from a door invocation. It returns control to the
thread that issued the associated door_call() and blocks waiting for the next door
invocation. See door_call(3DOOR). Results, if any, from the door invocation are
passed back to the client in the buffers pointed to by data_ptr and desc_ptr. If there is
not a client associated with the door_return(), the calling thread discards the
results, releases any passed descriptors with the DOOR_RELEASE attribute, and blocks
waiting for the next door invocation.

Upon successful completion, door_return() does not return to the calling process.
Otherwise, door_return() returns −1 to the calling process and sets errno to
indicate the error.

The door_return() function fails and returns to the calling process if:

E2BIG Arguments were too big for client.

EFAULT The address of data_ptr or desc_ptr is invalid.

EINVAL Invalid door_return() arguments were passed or a thread is
bound to a door that no longer exists.

EMFILE The client has too many open descriptors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

door_call(3DOOR),libdoor(3LIB), attributes(5)

door_return(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

52 man pages section 3: Realtime Library Functions • Last Revised 5 Feb 2001

door_revoke – revoke access to a door descriptor

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_revoke(int d);

The door_revoke() function revokes access to a door descriptor. Door descriptors
are created with door_create(3DOOR). The door_revoke() function performs an
implicit call to close(2), marking the door descriptor d as invalid.

A door descriptor can only be revoked by the process that created it. Door invocations
that are in progress during a door_revoke() invocation are allowed to complete
normally.

Upon successful completion, door_revoke() returns 0. Otherwise,
door_revoke() returns −1 and sets errno to indicate the error.

The door_revoke() function will fail if:

EBADF An invalid door descriptor was passed.

EPERM The door descriptor was not created by this process (with
door_create(3DOOR)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

close(2), door_create(3DOOR), libdoor(3LIB), attributes(5)

door_revoke(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Realtime Library Functions 53

door_server_create – specify an alternative door server thread creation function

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

void (*) () door_server_create(void (*create_proc)(door_info_t*));

Normally, the doors library creates new door server threads in response to incoming
concurrent door invocations automatically. There is no pre-defined upper limit on the
number of server threads that the system creates in response to incoming invocations
(1 server thread for each active door invocation). These threads are created with the
default thread stack size and POSIX (see standards(5)) threads cancellation disabled.
The created threads also have the THR_BOUND | THR_DETACHED attributes for Solaris
threads and the PTHREAD_SCOPE_SYSTEM | PTHREAD_CREATE_DETACHED
attributes for POSIX threads. The signal disposition, and scheduling class of the newly
created thread are inherited from the calling thread (initially from the thread calling
door_create(), and subsequently from the current active door server thread).

The door_server_create() function allows control over the creation of server
threads needed for door invocations. The procedure create_proc is called every time the
available server thread pool is depleted. In the case of private server pools associated
with a door (see the DOOR_PRIVATE attribute in door_create()), information on
which pool is depleted is passed to the create function in the form of a door_info_t
structure. The di_proc and di_data members of the door_info_t structure can be
used as a door identifier associated with the depleted pool. The create_proc procedure
may limit the number of server threads created and may also create server threads
with appropriate attributes (stack size, thread-specific data, POSIX thread cancellation,
signal mask, scheduling attributes, and so forth) for use with door invocations.

The specified server creation function should create user level threads using
thr_create() with the THR_BOUND flag, or in the case of POSIX threads,
pthread_create() with the PTHREAD_SCOPE_SYSTEM attribute. The server
threads make themselves available for incoming door invocations on this process by
issuing a door_return(NULL, 0, NULL, 0). In this case, the door_return()
arguments are ignored. See door_return(3DOOR) and thr_create(3C).

The server threads created by default are enabled for POSIX thread cancellations
which may lead to unexpected thread terminations while holding resources (such as
locks) if the client aborts the associated door_call(). See door_call(3DOOR).
Unless the server code is truly interested in notifications of client aborts during a door
invocation and is prepared to handle such notifications using cancellation handlers,
POSIX thread cancellation should be disabled for server threads using
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL).

The create_proc procedure need not create any additional server threads if there is at
least one server thread currently active in the process (perhaps handling another door
invocation) or it may create as many as seen fit each time it is called. If there are no
available server threads during an incoming door invocation, the associated
door_call() blocks until a server thread becomes available. The create_proc
procedure must be MT-Safe.

door_server_create(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

54 man pages section 3: Realtime Library Functions • Last Revised 20 Aug 1997

Upon successful completion, door_server_create() returns a pointer to the
previous server creation function. This function has no failure mode (it cannot fail).

EXAMPLE 1 Creating door server threads.

The following example creates door server threads with cancellation disabled and an
8k stack instead of the default stack size:

#include <door.h>
#include <pthread.h>
#include <thread.h>

void *
my_thread(void *arg)
{

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
door_return(NULL, 0, NULL, 0);

}
void
my_create(door_info_t *dip)
{

thr_create(NULL, 8192, my_thread, NULL,
THR_BOUND | THR_DETACHED, NULL);

}
main()
{

(void)door_server_create(my_create);
. . .

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

door_bind(3DOOR), door_call(3DOOR), door_create(3DOOR),
door_return(3DOOR), libdoor(3LIB), pthread_create(3C),
pthread_setcancelstate(3C), thr_create(3C), attributes(5),
cancellation(5), standards(5)

door_server_create(3DOOR)

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

Realtime Library Functions 55

door_ucred – return credential information associated with the client

cc -mt [flag ...] file... -ldoor [library...]

#include <door.h>

int door_ucred(ucred_t **info);

The door_ucred() function returns credential information associated with the client,
if any, of the current door invocation.

When successful, door_ucred() writes a pointer to a user credential to the location
pointed to by info if that location was previously NULL. If that location was non-null,
door_ucred() assumes that info points to a previously allocated ucred_t which is
then reused. The location pointed to by info can be used multiple times before being
freed. The value returned in info must be freed using ucred_free(3C).

The resulting user credential includes information about the effective user and group
ID, the real user and group ID, all privilege sets and the calling PID.

The credential information associated with the client refers to the information from the
immediate caller, not necessarily from the first thread in a chain of door calls.

Upon successful completion, door_ucred() returns 0. Otherwise, -1 is returned and
errno is set to indicate the error, in which case the memory location pointed to by the
info argument is unchanged.

The door_ucred() function will fail if:

EAGAIN The location pointed to by info was NULL and allocating memory
sufficient to hold a ucred failed.

EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

ENOMEM The location pointed to by info was NULL and allocating memory
sufficient to hold a ucred failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

door_call(3DOOR), door_create(3DOOR), ucred_get(3C), attributes(5)

door_ucred(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

56 man pages section 3: Realtime Library Functions • Last Revised 27 Feb 2004

fdatasync – synchronize a file’s data

cc [flag...] file... -lrt [library...]

#include <unistd.h>

int fdatasync(int fildes);

The fdatasync() function forces all currently queued I/O operations associated
with the file indicated by file descriptor fildes to the synchronized I/O completion
state.

The functionality is as described for fsync(3C) (with the symbol _XOPEN_REALTIME
defined), with the exception that all I/O operations are completed as defined for
synchronised I/O data integrity completion.

If successful, the fdatasync() function returns 0. Otherwise, the function returns −1
and sets errno to indicate the error. If the fdatasync() function fails, outstanding
I/O operations are not guaranteed to have been completed.

The fdatasync() function will fail if:

EBADF The fildes argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

ENOSYS The function fdatasync() is not supported by the system.

In the event that any of the queued I/O operations fail, fdatasync() returns the
error conditions defined for read(2) and write(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

fcntl(2), open(2), read(2), write(2), fsync(3C), aio_fsync(3RT),
fcntl.h(3HEAD), attributes(5), standards(5)

fdatasync(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Realtime Library Functions 57

lio_listio – list directed I/O

cc [flag...] file... -lrt [library...]

#include <aio.h>

int lio_listio(int mode, struct aiocb *restrict const list[], int
nent, struct sigevent *restrict sig);

The lio_listio() function allows the calling process, LWP, or thread, to initiate a
list of I/O requests within a single function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in
<aio.h> and determines whether the function returns when the I/O operations have
been completed, or as soon as the operations have been queued. If the mode argument
is LIO_WAIT, the function waits until all I/O is complete and the sig argument is
ignored.

If the mode argument is LIO_NOWAIT, the function returns immediately, and
asynchronous notification occurs, according to the sig argument, when all the I/O
operations complete. If sig is NULL, or the sigev_signo member of the sigevent
structure referenced by sig is zero, then no asynchronous notification occurs. If sig is
not NULL, asynchronous notification occurs when all the requests in list have
completed. If sig–>sigev_notify is SIGEV_NONE, then no signal will be posted
upon I/O completion, but the error status and the return status for the operation will
be set appropriately. If sig–>sigev_notify is SIGEV_SIGNAL, then the signal
specified in sig–>sigev_signo will be sent to the process. If the SA_SIGINFO flag is
set for that signal number, then the signal will be queued to the process and the value
specified in sig–>sigev_value will be the si_value component of the generated
signal (see siginfo.h(3HEAD)). If sig–>sigev_notify is SIGEV_PORT, then upon
I/O completion an event notification will be sent to the event port determined in the
port_notify_t structure addressed by the sival_ptr (see signal.h(3HEAD)).

The I/O requests enumerated by list are submitted in an unspecified order.

The list argument is an array of pointers to aiocb structures. The array contains nent
elements. The array may contain null elements, which are ignored.

The aio_lio_opcode field of each aiocb structure specifies the operation to be
performed. The supported operations are LIO_READ, LIO_WRITE, and LIO_NOP;
these symbols are defined in <aio.h>. The LIO_NOP operation causes the list entry to
be ignored. If the aio_lio_opcode element is equal to LIO_READ, then an I/O operation
is submitted as if by a call to aio_read(3RT) with the aiocbp equal to the address of
the aiocb structure. If the aio_lio_opcode element is equal to LIO_WRITE, then an I/O
operation is submitted as if by a call to aio_write(3RT) with the aiocbp equal to the
address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be
performed.

The aio_buf member specifies the address of the buffer to or from which the data is to
be transferred.

lio_listio(3RT)

NAME

SYNOPSIS

DESCRIPTION

58 man pages section 3: Realtime Library Functions • Last Revised 20 Oct 2003

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be
performed, in a manner identical to that of the corresponding aiocb structure when
used by the aio_read(3RT) and aio_write(3RT) functions.

The nent argument specifies how many elements are members of the list, that is, the
length of the array.

The behavior of this function is altered according to the definitions of synchronized
I/O data integrity completion and synchronized I/O file integrity completion if
synchronized I/O is enabled on the file associated with aio_fildes. (see
fcntl.h(3HEAD) definitions of O_DSYNC and O_SYNC.)

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with aiocbp->aio_fildes.

If the mode argument has the value LIO_NOWAIT, and the I/O operations are
successfully queued, lio_listio() returns 0; otherwise, it returns −1, and sets
errno to indicate the error.

If the mode argument has the value LIO_WAIT, and all the indicated I/O has
completed successfully, lio_listio() returns 0; otherwise, it returns −1, and sets
errno to indicate the error.

In either case, the return value only indicates the success or failure of the
lio_listio() call itself, not the status of the individual I/O requests. In some cases,
one or more of the I/O requests contained in the list may fail. Failure of an individual
request does not prevent completion of any other individual request. To determine the
outcome of each I/O request, the application must examine the error status associated
with each aiocb control block. Each error status so returned is identical to that returned
as a result of an aio_read(3RT) or aio_write(3RT) function.

The lio_listio() function will fail if:

EAGAIN The resources necessary to queue all the I/O requests were not
available. The error status for each request is recorded in the
aio_error member of the corresponding aiocb structure, and
can be retrieved using aio_error(3RT).

EAGAIN The number of entries indicated by nent would cause the
system-wide limit AIO_MAX to be exceeded.

EINVAL The mode argument is an improper value, or the value of nent is
greater than AIO_LISTIO_MAX.

EINTR A signal was delivered while waiting for all I/O requests to
complete during an LIO_WAIT operation. Note that, since each
I/O operation invoked by lio_listio() may possibly provoke
a signal when it completes, this error return may be caused by the
completion of one (or more) of the very I/O operations being
awaited. Outstanding I/O requests are not canceled, and the

lio_listio(3RT)

RETURN VALUES

ERRORS

Realtime Library Functions 59

application can use aio_fsync(3RT) to determine if any request
was initiated; aio_return(3RT) to determine if any request has
completed; or aio_error(3RT) to determine if any request was
canceled.

EIO One or more of the individual I/O operations failed. The
application can use aio_error(3RT) to check the error status for
each aiocb structure to determine the individual request(s) that
failed.

ENOSYS The lio_listio() function is not supported by the system.

In addition to the errors returned by the lio_listio() function, if the
lio_listio() function succeeds or fails with errors of EAGAIN, EINTR, or EIO, then
some of the I/O specified by the list may have been initiated. If the lio_listio()
function fails with an error code other than EAGAIN, EINTR, or EIO, no operations
from the list have been initiated. The I/O operation indicated by each list element can
encounter errors specific to the individual read or write function being performed. In
this event, the error status for each aiocb control block contains the associated error
code. The error codes that can be set are the same as would be set by a read(2) or
write(2) function, with the following additional error codes possible:

EAGAIN The requested I/O operation was not queued due to resource
limitations.

ECANCELED The requested I/O was canceled before the I/O completed due to
an explicit aio_cancel(3RT) request.

EFBIG The aiocbp->aio_lio_opcode is LIO_WRITE, the file is a regular
file, aiocbp->aio_nbytes is greater than 0, and the
aiocbp->aio_offset is greater than or equal to the offset
maximum in the open file description associated with
aiocbp->aio_fildes.

EINPROGRESS The requested I/O is in progress.

EOVERFLOW The aiocbp->aio_lio_opcode is LIO_READ, the file is a regular
file, aiocbp->aio_nbytes is greater than 0, and the
aiocbp->aio_offset is before the end-of-file and is greater than or
equal to the offset maximum in the open file description associated
with aiocbp->aio_fildes.

The lio_listio() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

lio_listio(3RT)

USAGE

ATTRIBUTES

60 man pages section 3: Realtime Library Functions • Last Revised 20 Oct 2003

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2),
aio_cancel(3RT), aio_error(3RT), aio_fsync(3RT), aio_read(3RT),
aio_return(3RT), aio_write(3RT), aio.h(3HEAD), fcntl.h(3HEAD),
siginfo.h(3HEAD), signal.h(3HEAD), attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

lio_listio(3RT)

SEE ALSO

NOTES

Realtime Library Functions 61

mq_close – close a message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_close(mqd_t mqdes);

The mq_close() function removes the association between the message queue
descriptor, mqdes, and its message queue. The results of using this message queue
descriptor after successful return from this mq_close(), and until the return of this
message queue descriptor from a subsequent mq_open(3RT), are undefined.

If the process (or thread) has successfully attached a notification request to the
message queue via this mqdes, this attachment is removed and the message queue is
available for another process to attach for notification.

Upon successful completion, mq_close() returns 0; otherwise, the function returns
−1 and sets errno to indicate the error condition.

The mq_close() function will fail if:

EBADF The mqdes argument is an invalid message queue descriptor.

ENOSYS The mq_open() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

mqueue.h(3HEAD), mq_notify(3RT), mq_open(3RT), mq_unlink(3RT),
attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_close(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

62 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

mq_getattr – get message queue attributes

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

The mqdes argument specifies a message queue descriptor. The mq_getattr()
function is used to get status information and attributes of the message queue and the
open message queue description associated with the message queue descriptor. The
results are returned in the mq_attr structure referenced by the mqstat argument.

Upon return, the following members will have the values associated with the open
message queue description as set when the message queue was opened and as
modified by subsequent mq_setattr(3RT) calls:

mq_flags message queue flags

The following attributes of the message queue are returned as set at message queue
creation:

mq_maxmsg maximum number of messages

mq_msgsize maximum message size

mq_curmsgs number of messages currently on the queue.

Upon successful completion, the mq_getattr() function returns 0. Otherwise, the
function returns −1 and sets errno to indicate the error.

The mq_getattr() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

ENOSYS The mq_getattr() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

msgctl(2), msgget(2), msgrcv(2), msgsnd(2), mqueue.h(3HEAD), mq_open(3RT),
mq_send(3RT), mq_setattr(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_getattr(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Realtime Library Functions 63

mq_notify – notify process (or thread) that a message is available on a queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

The mq_notify() function provides an asynchronous mechanism for processes to
receive notice that messages are available in a message queue, rather than
synchronously blocking (waiting) in mq_receive(3RT).

If notification is not NULL, this function registers the calling process to be notified of
message arrival at an empty message queue associated with the message queue
descriptor, mqdes. The notification specified by notification will be sent to the process
when the message queue transitions from empty to non-empty. At any time, only one
process may be registered for notification by a specific message queue. If the calling
process or any other process has already registered for notification of message arrival
at the specified message queue, subsequent attempts to register for that message
queue will fail.

The notification argument points to a structure that defines both the signal to be
generated and how the calling process will be notified upon I/O completion. If
notification->sigev_notify is SIGEV_NONE, then no signal will be posted upon I/O
completion, but the error status and the return status for the operation will be set
appropriately. If notification->sigev_notify is SIGEV_SIGNAL, then the signal
specified in notification->sigev_signo will be sent to the process. If the SA_SIGINFO
flag is set for that signal number, then the signal will be queued to the process and the
value specified in notification->sigev_value will be the si_value component of the
generated signal (see siginfo.h(3HEAD)).

If notification is NULL and the process is currently registered for notification by the
specified message queue, the existing registration is removed. The message queue is
then available for future registration.

When the notification is sent to the registered process, its registration is removed. The
message queue is then be available for registration.

If a process has registered for notification of message arrival at a message queue and
some processes is blocked in mq_receive(3RT) waiting to receive a message when a
message arrives at the queue, the arriving message will be received by the appropriate
mq_receive(3RT), and no notification will be sent to the registered process. The
resulting behavior is as if the message queue remains empty, and this notification will
not be sent until the next arrival of a message at this queue.

Any notification registration is removed if the calling process either closes the message
queue or exits.

Upon successful completion, mq_notify() returns 0; otherwise, it returns −1 and
sets errno to indicate the error.

The mq_notify() function will fail if:

mq_notify(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

64 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

EBADF The mqdes argument is not a valid message queue descriptor.

EBUSY A process is already registered for notification by the message
queue.

ENOSYS The mq_notify() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

mqueue.h(3HEAD), siginfo.h(3HEAD), signal.h(3HEAD), mq_close(3RT),
mq_open(3RT), mq_receive(3RT), mq_send(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_notify(3RT)

ATTRIBUTES

SEE ALSO

NOTES

Realtime Library Functions 65

mq_open – open a message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, /* unsigned long mode,
mq_attr attr */ ...);

The mq_open() function establishes the connection between a process and a message
queue with a message queue descriptor. It creates a open message queue description
that refers to the message queue, and a message queue descriptor that refers to that
open message queue description. The message queue descriptor is used by other
functions to refer to that message queue.

The name argument points to a string naming a message queue. The name argument
must conform to the construction rules for a path-name. If name is not the name of an
existing message queue and its creation is not requested, mq_open() fails and returns
an error. The first character of name must be a slash (/) character and the remaining
characters of name cannot include any slash characters. For maximum portability, name
should include no more than 14 characters, but this limit is not enforced.

The oflag argument requests the desired receive and/or send access to the message
queue. The requested access permission to receive messages or send messages is
granted if the calling process would be granted read or write access, respectively, to a
file with the equivalent permissions.

The value of oflag is the bitwise inclusive OR of values from the following list.
Applications must specify exactly one of the first three values (access modes) below in
the value of oflag:

O_RDONLY Open the message queue for receiving messages. The process can
use the returned message queue descriptor with
mq_receive(3RT), but not mq_send(3RT). A message queue may
be open multiple times in the same or different processes for
receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the
returned message queue descriptor with mq_send(3RT) but not
mq_receive(3RT). A message queue may be open multiple times
in the same or different processes for sending messages.

O_RDWR Open the queue for both receiving and sending messages. The
process can use any of the functions allowed for O_RDONLY and
O_WRONLY. A message queue may be open multiple times in the
same or different processes for sending messages.

Any combination of the remaining flags may additionally be specified in the value of
oflag:

O_CREAT This option is used to create a message queue, and it requires two
additional arguments: mode, which is of type mode_t, and attr,
which is pointer to a mq_attr structure. If the pathname, name,

mq_open(3RT)

NAME

SYNOPSIS

DESCRIPTION

66 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

has already been used to create a message queue that still exists,
then this flag has no effect, except as noted under O_EXCL (see
below). Otherwise, a message queue is created without any
messages in it.

The user ID of the message queue is set to the effective user ID of
process, and the group ID of the message queue is set to the
effective group ID of the process. The file permission bits are set to
the value of mode, and modified by clearing all bits set in the file
mode creation mask of the process (see umask(2)).

If attr is non-NULL and the calling process has the appropriate
privilege on name, the message queue mq_maxmsg and mq_msgsize
attributes are set to the values of the corresponding members in
the mq_attr structure referred to by attr. If attr is non-NULL, but
the calling process does not have the appropriate privilege on
name, the mq_open() function fails and returns an error without
creating the message queue.

O_EXCL If both O_EXCL and O_CREAT are set, mq_open() will fail if the
message queue name exists. The check for the existence of the
message queue and the creation of the message queue if it does not
exist are atomic with respect to other processes executing
mq_open() naming the same name with both O_EXCL and
O_CREAT set. If O_EXCL and O_CREAT are not set, the result is
undefined.

O_NONBLOCK The setting of this flag is associated with the open message queue
description and determines whether a mq_send(3RT) or
mq_receive(3RT) waits for resources or messages that are not
currently available, or fails with errno set to EAGAIN. See
mq_send(3RT) and mq_receive(3RT) for details.

Upon successful completion, mq_open() returns a message queue descriptor;
otherwise the function returns (mqd_t)−1 and sets errno to indicate the error
condition.

The mq_open() function will fail if:

EACCESS The message queue exists and the permissions
specified by oflag are denied, or the message queue
does not exist and permission to create the message
queue is denied.

EEXIST O_CREAT and O_EXCL are set and the named message
queue already exists.

EINTR The mq_open() operation was interrupted by a signal.

mq_open(3RT)

RETURN VALUES

ERRORS

Realtime Library Functions 67

EINVAL The mq_open() operation is not supported for the
given name, or O_CREAT was specified in oflag, the
value of attr is not NULL, and either mq_maxmsg or
mq_msgsize was less than or equal to zero.

EMFILE The number of open message queue descriptors in this
process exceeds MQ_OPEN_MAX, of the number of open
file descriptors in this process exceeds OPEN_MAX.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENFILE Too many message queues are currently open in the
system.

ENOENT O_CREAT is not set and the named message queue does
not exist.

ENOSPC There is insufficient space for the creation of the new
message queue.

ENOSYS The mq_open() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exec(2), exit(2), umask(2), sysconf(3C), mqueue.h(3HEAD), mq_close(3RT),
mq_receive(3RT), mq_send(3RT), mq_setattr(3RT), mq_unlink(3RT),
attributes(5), standards(5)

Due to the manner in which message queues are implemented, they should not be
considered secure and should not be used in security-sensitive applications.

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_open(3RT)

ATTRIBUTES

SEE ALSO

NOTES

68 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

mq_receive, mq_timedreceive, mq_reltimedreceive_np – receive a message from a
message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio);

#include <mqueue.h>

#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr, size_t
msg_len, unsigned *restrict msg_prio, const struct timespec
*restrict abs_timeout);

ssize_t mq_reltimedreceive_np(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio, const struct
timespec *restrict rel_timeout);

The mq_receive() function receives the oldest of the highest priority message(s)
from the message queue specified by mqdes. If the size of the buffer in bytes, specified
by msg_len, is less than the mq_msgsize member of the message queue, the function
fails and returns an error. Otherwise, the selected message is removed from the queue
and copied to the buffer pointed to by msg_ptr.

If the value of msg_len is greater than {SSIZE_MAX}, the result is
implementation-defined.

If msg_prio is not NULL, the priority of the selected message is stored in the location
referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message
queue description associated with mqdes, (see mq_open(3RT) and mq_setattr(3RT)),
mq_receive() blocks, waiting until a message is enqueued on the message queue, or
until mq_receive() is interrupted by a signal. If more than one process (or thread) is
waiting to receive a message when a message arrives at an empty queue, then the
process of highest priority that has been waiting the longest is selected to receive the
message. If the specified message queue is empty and O_NONBLOCK is set in the
message queue description associated with mqdes, no message is removed from the
queue, and mq_receive() returns an error.

The mq_timedreceive() function receives the oldest of the highest priority
messages from the message queue specified by mqdes as described for the
mq_receive() function. However, if O_NONBLOCK was not specified when the
message queue was opened with the mq_open(3RT) function, and no message exists
on the queue to satisfy the receive, the wait for such a message is terminated when the
specified timeout expires. If O_NONBLOCK is set, this function is equivalent to
mq_receive().

The mq_reltimedreceive_np() function is identical to the mq_timedreceive()
function, except that the timeout is specified as a relative time interval.

mq_receive(3RT)

NAME

SYNOPSIS

DESCRIPTION

Realtime Library Functions 69

For mq_timedreceive(), the timeout expires when the absolute time specified by
abs_timeout passes, as measured by the CLOCK_REALTIME clock (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by
abs_timeout has already been passed at the time of the call.

For mq_reltimedreceive_np(), the timeout expires when the time interval
specified by rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the
time interval specified by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The
timespec argument is defined in the <time.h> header.

Under no circumstance does the operation fail with a timeout if a message can be
removed from the message queue immediately. The validity of the timeout parameter
need not be checked if a message can be removed from the message queue
immediately.

Upon successful completion, mq_receive(), mq_timedreceive(), and
mq_reltimedreceive_np() return the length of the selected message in bytes and
the message is removed from the queue. Otherwise, no message is removed from the
queue, the functions return a value of −1, and sets errno to indicate the error
condition.

The mq_receive(), mq_timedreceive(), and mq_reltimedreceive_np()
functions will fail if:

EAGAIN O_NONBLOCK was set in the message description associated with
mqdes, and the specified message queue is empty.

EBADF The mqdes argument is not a valid message queue descriptor open
for reading.

EINTR The function was interrupted by a signal.

EINVAL The process or thread would have blocked, and the timeout
parameter specified a nanoseconds field value less than zero or
greater than or equal to 1,000 million.

EMSGSIZE The specified message buffer size, msg_len, is less than the message
size member of the message queue.

ETIMEDOUT The O_NONBLOCK flag was not set when the message queue was
opened, but no message arrived on the queue before the specified
timeout expired.

The mq_receive(), mq_timedreceive(), and mq_reltimedreceive_np()
functions may fail if:

EBADMSG A data corruption problem with the message has been detected.

mq_receive(3RT)

RETURN VALUES

ERRORS

70 man pages section 3: Realtime Library Functions • Last Revised 30 Jan 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The mq_receive() and mq_timedreceive() functions are Standard. The
mq_reltimedreceive_np() function is Stable.

mqueue.h(3HEAD), mq_open(3RT), mq_send(3RT), mq_setattr(3RT),
attributes(5), standards(5)

mq_receive(3RT)

ATTRIBUTES

SEE ALSO

Realtime Library Functions 71

mq_send, mq_timedsend, mq_reltimedsend_np – send a message to a message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio);

#include <mqueue.h>

#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio, const struct timespec *restrict abs_timeout);

int mq_reltimedsend_np(mqd_t mqdes, const char *msg_ptr, size_t
msg_len, unsigned msg_prio, const struct timespec *restrict
rel_timeout);

The mq_send() function adds the message pointed to by the argument msg_ptr to the
message queue specified by mqdes. The msg_len argument specifies the length of the
message in bytes pointed to by msg_ptr. The value of msg_len is less than or equal to
the mq_msgsize attribute of the message queue, or mq_send() fails.

If the specified message queue is not full, mq_send() behaves as if the message is
inserted into the message queue at the position indicated by the msg_prio argument. A
message with a larger numeric value of msg_prio is inserted before messages with
lower values of msg_prio. A message will be inserted after other messages in the
queue, if any, with equal msg_prio. The value of msg_prio must be greater than zero
and less than or equal to MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue
description associated with mqdes (see mq_open(3RT) and mq_setattr(3RT)),
mq_send() blocks until space becomes available to enqueue the message, or until
mq_send() is interrupted by a signal. If more than one thread is waiting to send
when space becomes available in the message queue, then the thread of the highest
priority which has been waiting the longest is unblocked to send its message.
Otherwise, it is unspecified which waiting thread is unblocked. If the specified
message queue is full and O_NONBLOCK is set in the message queue description
associated with mqdes, the message is not queued and mq_send() returns an error.

The mq_timedsend() function adds a message to the message queue specified by
mqdes in the manner defined for the mq_send() function. However, if the specified
message queue is full and O_NONBLOCK is not set in the message queue description
associated with mqdes, the wait for sufficient room in the queue is terminated when the
specified timeout expires. If O_NONBLOCK is set in the message queue description, this
function is equivalent to mq_send().

The mq_reltimedsend_np() function is identical to the mq_timedsend()
function, except that the timeout is specified as a relative time interval.

mq_send(3RT)

NAME

SYNOPSIS

DESCRIPTION

72 man pages section 3: Realtime Library Functions • Last Revised 30 Jan 2004

For mq_timedsend(), the timeout expires when the absolute time specified by
abs_timeout passes, as measured by the CLOCK_REALTIME clock (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by
abs_timeout has already been passed at the time of the call.

For mq_reltimedsend_np(), the timeout expires when the time interval specified
by rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time
interval specified by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The
timespec argument is defined in the <time.h> header.

Under no circumstance does the operation fail with a timeout if there is sufficient room
in the queue to add the message immediately. The validity of the timeout parameter
need not be checked when there is sufficient room in the queue.

Upon successful completion, mq_send(), mq_timedsend(), and
mq_reltimedsend_np() return 0. Otherwise, no message is enqueued, the
functions return −1, and errno is set to indicate the error.

The mq_send(), mq_timedsend(), and mq_reltimedsend_np() functions will
fail if:

EAGAIN The O_NONBLOCK flag is set in the message queue description
associated with mqdes, and the specified message queue is full.

EBADF The mqdes argument is not a valid message queue descriptor open
for writing.

EINTR A signal interrupted the function call.

EINVAL The value of msg_prio was outside the valid range.

EINVAL The process or thread would have blocked, and the timeout
parameter specified a nanoseconds field value less than zero or
greater than or equal to 1,000 million.

EMSGSIZE The specified message length, msg_len, exceeds the message size
attribute of the message queue.

ETIMEDOUT The O_NONBLOCK flag was not set when the message queue was
opened, but the timeout expired before the message could be
added to the queue.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

mq_send(3RT)

RETURN VALUES

ERRORS

ATTRIBUTES

Realtime Library Functions 73

The mq_send() and mq_timedsend() functions are Standard. The
mq_reltimedsend_np() function is Stable.

sysconf(3C), mqueue.h(3HEAD), mq_open(3RT), mq_receive(3RT),
mq_setattr(3RT), attributes(5), standards(5)

mq_send(3RT)

SEE ALSO

74 man pages section 3: Realtime Library Functions • Last Revised 30 Jan 2004

mq_setattr – set/get message queue attributes

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *mqstat, struct
mq_attr *omqstat);

The mq_setattr() function is used to set attributes associated with the open
message queue description referenced by the message queue descriptor specified by
mqdes.

The message queue attributes corresponding to the following members defined in the
mq_attr structure are set to the specified values upon successful completion of
mq_setattr():

mq_flags The value of this member is either 0 or O_NONBLOCK.

The values of mq_maxmsg, mq_msgsize, and mq_curmsgs are ignored by
mq_setattr().

If omqstat is non-NULL, mq_setattr() stores, in the location referenced by omqstat,
the previous message queue attributes and the current queue status. These values are
the same as would be returned by a call to mq_getattr() at that point.

Upon successful completion, mq_setattr() returns 0 and the attributes of the
message queue will have been changed as specified. Otherwise, the message queue
attributes are unchanged, and the function returns −1 and sets errno to indicate the
error.

The mq_setattr() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

ENOSYS The mq_setattr() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

msgctl(2), msgget(2), msgrcv(2), msgsnd(2), mq_getattr(3RT), mq_open(3RT),
mq_receive(3RT), mq_send(3RT), mqueue.h(3HEAD), attributes(5),
standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_setattr(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Realtime Library Functions 75

mq_unlink – remove a message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_unlink(const char *name);

The mq_unlink() function removes the message queue named by the pathname
name. After a successful call to mq_unlink() with name, a call to mq_open(3RT) with
name fails if the flag O_CREAT is not set in flags. If one or more processes have the
message queue open when mq_unlink() is called, destruction of the message queue
is postponed until all references to the message queue have been closed. Calls to
mq_open(3RT) to re-create the message queue may fail until the message queue is
actually removed. However, the mq_unlink() call need not block until all references
have been closed; it may return immediately.

Upon successful completion, mq_unlink() returns 0; otherwise, the named message
queue is not changed by this function call, the function returns −1 and sets errno to
indicate the error.

The mq_unlink() function will fail if:

EACCESS Permission is denied to unlink the named message
queue.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The named message queue, name, does not exist.

ENOSYS mq_unlink() is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

mqueue.h(3HEAD), mq_close(3RT), mq_open(3RT), attributes(5),
standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_unlink(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

76 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

nanosleep – high resolution sleep

cc [flag...] file... -lrt [library...]

#include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

The nanosleep() function causes the current thread to be suspended from execution
until either the time interval specified by the rqtp argument has elapsed or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function or
to terminate the process. The suspension time may be longer than requested because
the argument value is rounded up to an integer multiple of the sleep resolution or
because of the scheduling of other activity by the system. But, except for the case of
being interrupted by a signal, the suspension time will not be less than the time
specified by rqtp, as measured by the system clock, CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any
signal.

If the nanosleep() function returns because the requested time has elapsed, its
return value is 0.

If the nanosleep() function returns because it has been interrupted by a signal, the
function returns a value of −1 and sets errno to indicate the interruption. If the rmtp
argument is non-NULL, the timespec structure referenced by it is updated to contain
the amount of time remaining in the interval (the requested time minus the time
actually slept). If the rmtp argument is NULL, the remaining time is not returned.

If nanosleep() fails, it returns −1 and sets errno to indicate the error.

The nanosleep() function will fail if:

EINTR The nanosleep() function was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less than zero or
greater than or equal to 1000 million.

ENOSYS The nanosleep() function is not supported by this
implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

sleep(3C), time.h(3HEAD), attributes(5), standards(5)

nanosleep(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Realtime Library Functions 77

proc_service – process service interfaces

#include <proc_service.h>

ps_err_e ps_pdmodel(struct ps_prochandle *ph, int *data_model);

ps_err_e ps_pglobal_lookup(struct ps_prochandle *ph, const char
*object_name, const char *sym_name, psaddr_t *sym_addr);

ps_err_e ps_pglobal_sym(struct ps_prochandle *ph, const char
*object_name, const char *sym_name, ps_sym_t *sym);

ps_err_e ps_pread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_pwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_pdread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_pdwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_ptread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_ptwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_pstop(struct ps_prochandle *ph);

ps_err_e ps_pcontinue(struct ps_prochandle *ph);

ps_err_e ps_lstop(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lcontinue(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lgetregs(struct ps_prochandle *ph, lwpid_t lwpid,
prgregset_t gregset);

ps_err_e ps_lsetregs(struct ps_prochandle *ph, lwpid_t lwpid,
const prgregset_t gregset);

ps_err_e ps_lgetfpregs(struct ps_prochandle *ph, lwpid_t lwpid,
prfpregset_t *fpregset);

ps_err_e ps_lsetfpregs(struct ps_prochandle *ph, lwpid_t lwpid,
const prfpregset_t *fpregset);

ps_err_e ps_pauxv(struct ps_prochandle *ph, const auxv_t **auxp);

ps_err_e ps_kill(struct ps_prochandle *ph, int sig);

ps_err_e ps_lrolltoaddr(struct ps_prochandle *ph, lwpid_t lwpid,
psaddr_t go_addr, psaddr_t stop_addr);

void ps_plog(const char *fmt);

proc_service(3PROC)

NAME

SYNOPSIS

78 man pages section 3: Realtime Library Functions • Last Revised 16 Jan 1998

ps_err_e ps_lgetxregsize(struct ps_prochandle *ph, lwpid_t lwpid,
int *xregsize);

ps_err_e ps_lgetxregs(struct ps_prochandle *ph, lwpid_t lwpid,
caddr_t xregset);

ps_err_e ps_lsetxregs(struct ps_prochandle *ph, lwpid_t lwpid,
caddr_t xregset);

ps_err_e ps_lgetLDT(struct ps_prochandle *ph, lwpid_t lwpid,
struct ssd *ldt);

Every program that links libthread_db or librtld_db must provide a set of
process control primitives that allow libthread_db and librtld_db to access
memory and registers in the target process, to start and to stop the target process, and
to look up symbols in the target process. See libc_db(3LIB). For information on
librtld_db, refer to the Linker and Libraries Guide.

Refer to the individual reference manual pages that describe these routines for a
functional specification that clients of libthread_db and librtld_db can use to
implement this required interface. The <proc_service.h> header lists the C
declarations of these routines.

ps_pdmodel() Returns the data model of the target
process.

ps_pglobal_lookup() Looks up the symbol in the symbol table of
the load object in the target process and
returns its address.

ps_pglobal_sym() Looks up the symbol in the symbol table of
the load object in the target process and
returns its symbol table entry.

ps_pread() Copies size bytes from the target process to
the controlling process.

ps_pwrite() Copies size bytes from the controlling
process to the target process.

ps_pdread() Identical to ps_pread().

ps_pdwrite() Identical to ps_pwrite().

ps_ptread() Identical to ps_pread().

ps_ptwrite() Identical to ps_pwrite().

ps_pstop() Stops the target process.

ps_pcontinue() Resumes target process.

ps_lstop() Stops a single lightweight process (LWP)
within the target process.

proc_service(3PROC)

SPARC

x86

DESCRIPTION

FUNCTIONS

Realtime Library Functions 79

ps_lcontinue() Resumes a single LWP within the target
process.

ps_lgetregs() Gets the general registers of the LWP.

ps_lsetregs() Sets the general registers of the LWP.

ps_lgetfpregs() Gets the LWP‘s floating point register set.

ps_lsetfpregs() Sets the LWP‘s floating point register set.

ps_pauxv() Returns a pointer to a read-only copy of the
target process’s auxiliary vector.

ps_kill() Sends signal to target process.

ps_lrolltoaddr() Rolls the LWP out of a critical section when
the process is stopped.

ps_plog() Logs a message.

ps_lgetxregsize() Returns the size of the
architecture-dependent extra state registers.

ps_lgetxregs() Gets the extra state registers of the LWP.

ps_lsetxregs() Sets the extra state registers of the LWP.

ps_lgetLDT() Reads the local descriptor table of the LWP.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libc_db(3LIB), attributes(5)

Linker and Libraries Guide

proc_service(3PROC)

SPARC

x86

ATTRIBUTES

SEE ALSO

80 man pages section 3: Realtime Library Functions • Last Revised 16 Jan 1998

ps_lgetregs, ps_lsetregs, ps_lgetfpregs, ps_lsetfpregs, ps_lgetxregsize, ps_lgetxregs,
ps_lsetxregs – routines that access the target process register in libthread_db

#include <proc_service.h>

ps_err_e ps_lgetregs(struct ps_prochandle *ph, lwpid_t lid,
prgregset_t gregset);

ps_err_e ps_lsetregs(struct ps_prochandle *ph, lwpid_t lid, static
prgregset_t gregset);

ps_err_e ps_lgetfpregs(struct ps_prochandle *ph, lwpid_t lid,
prfpregset_t *fpregs);

ps_err_e ps_lsetfpregs(struct ps_prochandle *ph, lwpid_t lid,
static prfpregset_t *fpregs);

ps_err_e ps_lgetxregsize(struct ps_prochandle *ph, lwpid_t lid,
int *xregsize);

ps_err_e ps_lgetxregs(struct ps_prochandle *ph, lwpid_t lid,
caddr_t xregset);

ps_err_e ps_lsetxregs(struct ps_prochandle *ph, lwpid_t lid,
caddr_t xregset);

ps_lgetregs(), ps_lsetregs(), ps_lgetfpregs(), ps_lsetfpregs(),
ps_lgetxregsize(), ps_lgetxregs(), ps_lsetxregs() read and write register
sets from lightweight processes (LWPs) within the target process identified by ph.
ps_lgetregs() gets the general registers of the LWP identified by lid, and
ps_lsetregs() sets them. ps_lgetfpregs() gets the LWP’s floating point register
set, while ps_lsetfpregs() sets it.

ps_lgetxregsize(),ps_lgetxregs(), andps_lsetxregs() are SPARC-specific.
They do not need to be defined by a controlling process on non-SPARC architecture.
ps_lgetxregsize() returns in *xregsize the size of the architecture-dependent extra
state registers. ps_lgetxregs() gets the extra state registers, and ps_lsetxregs()
sets them.

PS_OK The call returned successfully.

PS_NOFPREGS Floating point registers are neither available for this architecture
nor for this process.

PS_NOXREGS Extra state registers are not available on this architecture.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ps_lgetregs(3PROC)

NAME

SYNOPSIS

DESCRIPTION

SPARC Only

RETURN VALUES

ATTRIBUTES

Realtime Library Functions 81

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libc_db(3LIB), proc_service(3PROC), attributes(5), threads(5)

ps_lgetregs(3PROC)

SEE ALSO

82 man pages section 3: Realtime Library Functions • Last Revised 30 Jan 1998

ps_pglobal_lookup, ps_pglobal_sym – look up a symbol in the symbol table of the
load object in the target process

#include <proc_service.h>

ps_err_e ps_pglobal_lookup(struct ps_prochandle *ph, const char
*object_name, const char *sym_name, psaddr_t *sym_addr);

ps_err_e ps_pglobal_sym(struct ps_prochandle *ph, const char
*object_name, const char *sym_name, ps_sym_t *sym);

ps_pglobal_lookup() looks up the symbol sym_name in the symbol table of the
load object object_name in the target process identified by ph. It returns the symbol’s
value as an address in the target process in *sym_addr.

ps_pglobal_sym() looks up the symbol sym_name in the symbol table of the load
object object_name in the target process identified by ph. It returns the symbol table
entry in *sym. The value in the symbol table entry is the symbol’s value as an address
in the target process.

PS_OK The call completed successfully.

PS_NOSYM The specified symbol was not found.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

kill(2), libc_db(3LIB), proc_service(3PROC), attributes(5), threads(5)

ps_pglobal_lookup(3PROC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Realtime Library Functions 83

ps_pread, ps_pwrite, ps_pdread, ps_pdwrite, ps_ptread, ps_ptwrite – interfaces in
libthread_db that target process memory access

#include <proc_service.h>

ps_err_e ps_pread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_pwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_pdread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_pdwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_ptread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_ptwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

These routines copy data between the target process’s address space and the
controlling process. ps_pread() copies size bytes from address addr in the target
process into buf in the controlling process. pr_pwrite() is like ps_pread() except
that the direction of the copy is reversed; data is copied from the controlling process to
the target process.

ps_pdread() and ps_ptread() behave identically to ps_pread().
ps_pdwrite() and ps_ptwrite() behave identically to ps_pwrite(). These
functions can be implemented as simple aliases for the corresponding primary
functions. They are artifacts of history that must be maintained.

PS_OK The call returned successfully. size bytes were copied.

PS_BADADDR Some part of the address range from addr through addr+size−1 is
not part of the target process’s address space.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libc_db(3LIB), proc_service(3PROC), attributes(5), threads(5)

ps_pread(3PROC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

84 man pages section 3: Realtime Library Functions • Last Revised 16 Jan 1998

ps_pstop, ps_pcontinue, ps_lstop, ps_lcontinue, ps_lrolltoaddr, ps_kill – process and
LWP control in libthread_db

#include <proc_service.h>

ps_err_e ps_pstop(struct ps_prochandle *ph);

ps_err_e ps_pcontinue(struct ps_prochandle *ph);

ps_err_e ps_lstop(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lcontinue(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lrolltoaddr(struct ps_prochandle *ph, lwpid_t lwpid,
psaddr_t go_addr, psaddr_t stop_addr);

ps_err_e ps_kill(struct ps_prochandle *ph, int signum);

The ps_pstop() function stops the target process identified by ph, while the
ps_pcontinue() function allows it to resume.

The libthread_db() function uses ps_pstop() to freeze the target process while it
is under inspection. Within the scope of any single call from outside libthread_db
to a libthread_db routine, libthread_db will call ps_pstop(), at most once. If it
does, it will call ps_pcontinue() within the scope of the same routine.

The controlling process may already have stopped the target process when it calls
libthread_db. In that case, it is not obligated to resume the target process when
libthread_db calls ps_pcontinue(). In other words, ps_pstop() is mandatory,
while ps_pcontinue() is advisory. After ps_pstop(), the target process must be
stopped; after ps_pcontinue(), the target process may be running.

The ps_lstop() and ps_lcontinue() functions stop and resume a single
lightweight process (LWP) within the target process ph.

The ps_lrolltoaddr() function is used to roll an LWP forward out of a critical
section when the process is stopped. It is also used to run the libthread_db agent
thread on behalf of libthread. The ps_lrolltoaddr() function is always called
with the target process stopped, that is, there has been a preceding call to
ps_pstop(). The specified LWP must be continued at the address go_addr, or at its
current address if go_addr is NULL. It should then be stopped when its execution
reaches stop_addr. This routine does not return until the LWP has stopped at stop_addr.

The ps_kill() function directs the signal signum to the target process for which the
handle is ph. It has the same semantics as kill(2).

PS_OK The call completed successfully. In the case of ps_pstop(), the
target process is stopped.

PS_BADLID For ps_lstop(), ps_lcontinue() and ps_lrolltoaddr();
there is no LWP with id lwipd in the target process.

PS_ERR The function did not return successfully.

ps_pstop(3PROC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Realtime Library Functions 85

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

kill(2), libc_db(3LIB), proc_service(3PROC), attributes(5), threads(5)

ps_pstop(3PROC)

ATTRIBUTES

SEE ALSO

86 man pages section 3: Realtime Library Functions • Last Revised 22 Mar 2001

sched_getparam – get scheduling parameters

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *param);

The sched_getparam() function returns the scheduling parameters of a process
specified by pid in the sched_param structure pointed to by param.

If a process specified by pid exists and if the calling process has permission, the
scheduling parameters for the process whose process ID is equal to pid will be
returned.

If pid is 0, the scheduling parameters for the calling process will be returned. The
behavior of the sched_getparam() function is unspecified if the value of pid is
negative.

Upon successful completion, the sched_getparam() function returns 0. If the call to
sched_getparam() is unsuccessful, the function returns −1 and sets errno to
indicate the error.

The sched_getparam() function will fail if:

ENOSYS The sched_getparam() function is not supported by the system.

EPERM The requesting process does not have permission to obtain the
scheduling parameters of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), sched_getscheduler(3RT),
sched_setparam(3RT), sched_setscheduler(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release,
this function always returned −1 and set errno to ENOSYS.

sched_getparam(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Realtime Library Functions 87

sched_get_priority_max, sched_get_priority_min – get scheduling parameter limits

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

The sched_get_priority_max() and sched_get_priority_min() functions
return the appropriate maximum or minimum, respectfully, for the scheduling policy
specified by policy.

The value of policy is one of the scheduling policy values defined in <sched.h>.

If successful, the sched_get_priority_max() and sched_get_priority_min
() functions return the appropriate maximum or minimum values, respectively. If
unsuccessful, they return −1 and set errno to indicate the error.

The sched_get_priority_max() and sched_get_priority_min() functions
will fail if:

EINVAL The value of the policy parameter does not represent a defined
scheduling policy.

ENOSYS The sched_get_priority_max(),
sched_get_priority_min() and
sched_rr_get_interval(3RT) functions are not supported by
the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), sched_getparam(3RT), sched_setparam(3RT),
sched_getscheduler(3RT), sched_rr_get_interval(3RT),
sched_setscheduler(3RT), time.h(3HEAD), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release,
this function always returned −1 and set errno to ENOSYS.

sched_get_priority_max(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

88 man pages section 3: Realtime Library Functions • Last Revised 5 Oct 2001

sched_getscheduler – get scheduling policy

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_getscheduler(pid_t pid);

The sched_getscheduler() function returns the scheduling policy of the process
specified by pid. If the value of pid is negative, the behavior of the
sched_getscheduler() function is unspecified.

The values that can be returned by sched_getscheduler() are defined in the
header <sched.h> and described on the sched_setscheduler(3RT) manual page.

If a process specified by pid exists and if the calling process has permission, the
scheduling policy will be returned for the process whose process ID is equal to pid.

If pid is 0, the scheduling policy will be returned for the calling process.

Upon successful completion, the sched_getscheduler() function returns the
scheduling policy of the specified process. If unsuccessful, the function returns −1 and
sets errno to indicate the error.

The sched_getscheduler() function will fail if:

ENOSYS The sched_getscheduler() function is not supported by the
system.

EPERM The requesting process does not have permission to determine the
scheduling policy of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), sched_getparam(3RT), sched_setparam(3RT),
sched_setscheduler(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release,
this function always returned −1 and set errno to ENOSYS.

sched_getscheduler(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Realtime Library Functions 89

sched_rr_get_interval – get execution time limits

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *interval);

The sched_rr_get_interval() function updates the timespec structure
referenced by the interval argument to contain the current execution time limit (that is,
time quantum) for the process specified by pid. If pid is 0, the current execution time
limit for the calling process will be returned.

If successful, the sched_rr_get_interval() function returns 0. Otherwise, it
returns −1 and sets errno to indicate the error.

The sched_rr_get_interval() function will fail if:

ENOSYS The sched_get_priority_max(3RT),
sched_get_priority_min(3RT), and
sched_rr_get_interval() functions are not supported by the
system.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), sched_getparam(3RT), sched_setparam(3RT),
sched_get_priority_max(3RT), sched_getscheduler(3RT),
sched_setscheduler(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release,
this function always returned −1 and set errno to ENOSYS.

sched_rr_get_interval(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

90 man pages section 3: Realtime Library Functions • Last Revised 5 Oct 2001

sched_setparam – set scheduling parameters

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

The sched_setparam() function sets the scheduling parameters of the process
specified by pid to the values specified by the sched_param structure pointed to by
param. The value of the sched_priority member in the sched_param structure is any
integer within the inclusive priority range for the current scheduling policy of the
process specified by pid. Higher numerical values for the priority represent higher
priorities. If the value of pid is negative, the behavior of the sched_setparam()
function is unspecified.

If a process specified by pid exists and if the calling process has permission, the
scheduling parameters will be set for the process whose process ID is equal to pid. The
real or effective user ID of the calling process must match the real or saved (from
exec(2)) user ID of the target process unless the effective user ID of the calling process
is 0. See intro(2).

If pid is zero, the scheduling parameters will be set for the calling process.

The target process, whether it is running or not running, resumes execution after all
other runnable processes of equal or greater priority have been scheduled to run.

If the priority of the process specified by the pid argument is set higher than that of the
lowest priority running process and if the specified process is ready to run, the process
specified by the pid argument preempts a lowest priority running process. Similarly, if
the process calling sched_setparam() sets its own priority lower than that of one or
more other non-empty process lists, then the process that is the head of the highest
priority list also preempts the calling process. Thus, in either case, the originating
process might not receive notification of the completion of the requested priority
change until the higher priority process has executed.

If the current scheduling policy for the process specified by pid is not SCHED_FIFO or
SCHED_RR, including SCHED_OTHER, the result is equal to priocntl(P_PID, pid,
PC_SETPARMS, &pcparam), where pcparam is an image of *param.

The effect of this function on individual threads is dependent on the scheduling
contention scope of the threads:

� For threads with system scheduling contention scope, these functions have no
effect on their scheduling.

� For threads with process scheduling contention scope, the threads’ scheduling
parameters will not be affected. However, the scheduling of these threads with
respect to threads in other processes may be dependent on the scheduling
parameters of their process, which are governed using these functions.

sched_setparam(3RT)

NAME

SYNOPSIS

DESCRIPTION

Realtime Library Functions 91

If an implementation supports a two-level scheduling model in which library threads
are multiplexed on top of several kernel scheduled entities, then the underlying kernel
scheduled entities for the system contention scope threads will not be affected by these
functions.

The underlying kernel scheduled entities for the process contention scope threads will
have their scheduling parameters changed to the value specified in param. Kernel
scheduled entities for use by process contention scope threads that are created after
this call completes inherit their scheduling policy and associated scheduling
parameters from the process.

This function is not atomic with respect to other threads in the process. Threads are
allowed to continue to execute while this function call is in the process of changing the
scheduling policy for the underlying kernel scheduled entities used by the process
contention scope threads.

If successful, the sched_setparam() function returns 0.

If the call to sched_setparam() is unsuccessful, the priority remains unchanged,
and the function returns −1 and sets errno to indicate the error.

The sched_setparam() function will fail if:

EINVAL One or more of the requested scheduling parameters is outside the
range defined for the scheduling policy of the specified pid.

ENOSYS The sched_setparam() function is not supported by the system.

EPERM The requesting process does not have permission to set the
scheduling parameters for the specified process, or does not have
the appropriate privilege to invoke sched_setparam().

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

intro(2), exec(2), librt(3LIB), sched.h(3HEAD), sched_getparam(3RT),
sched_getscheduler(3RT), sched_setscheduler(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release,
this function always returned −1 and set errno to ENOSYS.

sched_setparam(3RT)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

92 man pages section 3: Realtime Library Functions • Last Revised 5 Oct 2001

sched_setscheduler – set scheduling policy and scheduling parameters

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct
sched_param *param);

The sched_setscheduler() function sets the scheduling policy and scheduling
parameters of the process specified by pid to policy and the parameters specified in the
sched_param structure pointed to by param, respectively. The value of the
sched_priority member in the sched_param structure is any integer within the
inclusive priority range for the scheduling policy specified by policy. The
sched_setscheduler() function ignores the other members of the sched_param
structure. If the value of pid is negative, the behavior of the sched_setscheduler()
function is unspecified.

The possible values for the policy parameter are defined in the header <sched.h> (see
sched.h(3HEAD)):

If a process specified by pid exists and if the calling process has permission, the
scheduling policy and scheduling parameters are set for the process whose process ID
is equal to pid. The real or effective user ID of the calling process must match the real
or saved (from exec(2)) user ID of the target process unless the effective user ID of the
calling process is 0. See intro(2).

If pid is 0, the scheduling policy and scheduling parameters are set for the calling
process.

To change the policy of any process to either of the real time policies SCHED_FIFO or
SCHED_RR, the calling process must either have the SCHED_FIFO or SCHED_RR policy
or have an effective user ID of 0.

The sched_setscheduler() function is considered successful if it succeeds in
setting the scheduling policy and scheduling parameters of the process specified by
pid to the values specified by policy and the structure pointed to by param, respectively.

The effect of this function on individual threads is dependent on the scheduling
contention scope of the threads:

� For threads with system scheduling contention scope, these functions have no
effect on their scheduling.

� For threads with process scheduling contention scope, the threads’ scheduling
policy and associated parameters will not be affected. However, the scheduling of
these threads with respect to threads in other processes may be dependent on the
scheduling parameters of their process, which are governed using these functions.

The system supports a two-level scheduling model in which library threads are
multiplexed on top of several kernel scheduled entities. The underlying kernel
scheduled entities for the system contention scope threads will not be affected by these
functions.

sched_setscheduler(3RT)

NAME

SYNOPSIS

DESCRIPTION

Realtime Library Functions 93

The underlying kernel scheduled entities for the process contention scope threads will
have their scheduling policy and associated scheduling parameters changed to the
values specified in policy and param, respectively. Kernel scheduled entities for use by
process contention scope threads that are created after this call completes inherit their
scheduling policy and associated scheduling parameters from the process.

This function is not atomic with respect to other threads in the process. Threads are
allowed to continue to execute while this function call is in the process of changing the
scheduling policy and associated scheduling parameters for the underlying kernel
scheduled entities used by the process contention scope threads.

Upon successful completion, the function returns the former scheduling policy of the
specified process. If the sched_setscheduler() function fails to complete
successfully, the policy and scheduling paramenters remain unchanged, and the
function returns −1 and sets errno to indicate the error.

The sched_setscheduler() function will fail if:

EINVAL The value of policy is invalid, or one or more of the parameters
contained in param is outside the valid range for the specified
scheduling policy.

ENOSYS The sched_setscheduler() function is not supported by the
system.

EPERM The requesting process does not have permission to set either or
both of the scheduling parameters or the scheduling policy of the
specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

priocntl(1), intro(2), exec(2), priocntl(2), librt(3LIB), sched.h(3HEAD),
sched_get_priority_max(3RT), sched_getparam(3RT),
sched_getscheduler(3RT), sched_setparam(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release,
this function always returned −1 and set errno to ENOSYS.

sched_setscheduler(3RT)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

94 man pages section 3: Realtime Library Functions • Last Revised 5 Oct 2001

sched_yield – yield processor

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_yield(void);

The sched_yield() function forces the running thread to relinquish the processor
until the process again becomes the head of its process list. It takes no arguments.

If successful, sched_yield() returns 0, otherwise, it returns −1, and sets errno to
indicate the error condition.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), attributes(5)

sched_yield(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Realtime Library Functions 95

sem_close – close a named semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_close(sem_t *sem);

The sem_close() function is used to indicate that the calling process is finished
using the named semaphore indicated by sem. The effects of calling sem_close() for
an unnamed semaphore (one created by sem_init(3RT)) are undefined. The
sem_close() function deallocates (that is, make available for reuse by a subsequent
sem_open(3RT) by this process) any system resources allocated by the system for use
by this process for this semaphore. The effect of subsequent use of the semaphore
indicated by sem by this process is undefined. If the semaphore has not been removed
with a successful call to sem_unlink(3RT), then sem_close() has no effect on the
state of the semaphore. If the sem_unlink(3RT) function has been successfully
invoked for name after the most recent call to sem_open(3RT) with O_CREAT for this
semaphore, then when all processes that have opened the semaphore close it, the
semaphore is no longer be accessible.

If successful, sem_close() returns 0, otherwise it returns −1 and sets errno to
indicate the error.

The sem_close() function will fail if:

EINVAL The sem argument is not a valid semaphore descriptor.

ENOSYS The sem_close() function is not supported by the system.

The sem_close() function should not be called for an unnamed semaphore
initialized by sem_init(3RT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

sem_init(3RT), sem_open(3RT), sem_unlink(3RT), attributes(5),
standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sem_close(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

96 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

sem_destroy – destroy an unnamed semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_destroy(sem_t *sem);

The sem_destroy() function is used to destroy the unnamed semaphore indicated
by sem. Only a semaphore that was created using sem_init(3RT) may be destroyed
using sem_destroy(); the effect of calling sem_destroy() with a named
semaphore is undefined. The effect of subsequent use of the semaphore sem is
undefined until sem is re-initialized by another call to sem_init(3RT).

It is safe to destroy an initialised semaphore upon which no threads are currently
blocked. The effect of destroying a semaphore upon which other threads are currently
blocked is undefined.

If successful, sem_destroy() returns 0, otherwise it returns −1 and sets errno to
indicate the error.

The sem_destroy() function will fail if:

EINVAL The sem argument is not a valid semaphore.

The sem_destroy() function may fail if:

EBUSY There are currently processes (or LWPs or threads) blocked on the
semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

sem_init(3RT), sem_open(3RT), attributes(5), standards(5)

sem_destroy(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Realtime Library Functions 97

sem_getvalue – get the value of a semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

The sem_getvalue() function updates the location referenced by the sval argument
to have the value of the semaphore referenced by sem without affecting the state of the
semaphore. The updated value represents an actual semaphore value that occurred at
some unspecified time during the call, but it need not be the actual value of the
semaphore when it is returned to the calling process.

If sem is locked, then the value returned by sem_getvalue() is either zero or a
negative number whose absolute value represents the number of processes waiting for
the semaphore at some unspecified time during the call.

The value set in sval may be 0 or positive. If sval is 0, there may be other processes (or
LWPs or threads) waiting for the semaphore; if sval is positive, no process is waiting.

Upon successful completion, sem_getvalue() returns 0. Otherwise, it returns −1
and sets errno to indicate the error.

The sem_getvalue() function will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

ENOSYS The sem_getvalue() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

semctl(2), semget(2), semop(2), sem_post(3RT), sem_wait(3RT), attributes(5),
standards(5)

sem_getvalue(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

98 man pages section 3: Realtime Library Functions • Last Revised 1 Nov 2003

sem_init – initialize an unnamed semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

The sem_init() function is used to initialize the unnamed semaphore referred to by
sem. The value of the initialized semaphore is value. Following a successful call to
sem_init(), the semaphore may be used in subsequent calls to sem_wait(3RT),
sem_trywait(3RT), sem_post(3RT), and sem_destroy(3RT). This semaphore
remains usable until the semaphore is destroyed.

If the pshared argument has a non-zero value, then the semaphore is shared between
processes; in this case, any process that can access the semaphore sem can use sem for
performing sem_wait(3RT), sem_trywait(3RT), sem_post(3RT), and
sem_destroy(3RT) operations.

Only sem itself may be used for performing synchronization. The result of referring to
copies of sem in calls to sem_wait(3RT), sem_trywait(3RT), sem_post(3RT), and
sem_destroy(3RT), is undefined.

If the pshared argument is zero, then the semaphore is shared between threads of the
process; any thread in this process can use sem for performing sem_wait(3RT),
sem_trywait(3RT), sem_post(3RT), and sem_destroy(3RT) operations. The use of
the semaphore by threads other than those created in the same process is undefined.

Attempting to initialize an already initialized semaphore results in undefined
behavior.

Upon successful completion, the function initializes the semaphore in sem. Otherwise,
it returns −1 and sets errno to indicate the error.

The sem_init() function will fail if:

EINVAL The value argument exceeds SEM_VALUE_MAX.

ENOSPC A resource required to initialize the semaphore has been
exhausted, or the resources have reached the limit on semaphores
(SEM_NSEMS_MAX).

ENOSYS The sem_init() function is not supported by the system.

EPERM The process lacks the appropriate privileges to initialize the
semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

sem_init(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Realtime Library Functions 99

MT-Level MT-Safe

sem_destroy(3RT), sem_post(3RT), sem_wait(3RT), attributes(5),
standards(5)

sem_init(3RT)

SEE ALSO

100 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

sem_open – initialize/open a named semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, /* unsigned long mode,
unsigned int value */ ...);

The sem_open() function establishes a connection between a named semaphore and
a process (or LWP or thread). Following a call to sem_open() with semaphore name
name, the process may reference the semaphore associated with name using the address
returned from the call. This semaphore may be used in subsequent calls to
sem_wait(3RT), sem_trywait(3RT), sem_post(3RT), and sem_close(3RT). The
semaphore remains usable by this process until the semaphore is closed by a
successful call to sem_close(3RT), _exit(2), or one of the exec functions.

The oflag argument controls whether the semaphore is created or merely accessed by
the call to sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist.
If O_CREAT is set and the semaphore already exists, then O_CREAT
has no effect, except as noted under O_EXCL. Otherwise,
sem_open() creates a named semaphore. The O_CREAT flag
requires a third and a fourth argument: mode, which is of type
mode_t, and value, which is of type unsigned int. The
semaphore is created with an initial value of value. Valid initial
values for semaphores are less than or equal to SEM_VALUE_MAX.

The user ID of the semaphore is set to the effective user ID of the
process; the group ID of the semaphore is set to a system default
group ID or to the effective group ID of the process. The
permission bits of the semaphore are set to the value of the mode
argument except those set in the file mode creation mask of the
process (see umask(2)). When bits in mode other than the file
permission bits are specified, the effect is unspecified.

After the semaphore named name has been created by
sem_open() with the O_CREAT flag, other processes can connect
to the semaphore by calling sem_open() with the same value of
name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the
semaphore name exists. The check for the existence of the
semaphore and the creation of the semaphore if it does not exist
are atomic with respect to other processes executing sem_open()
with O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is
not set, the effect is undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the effect
is unspecified.

sem_open(3RT)

NAME

SYNOPSIS

DESCRIPTION

Realtime Library Functions 101

The name argument points to a string naming a semaphore object. It is unspecified
whether the name appears in the file system and is visible to functions that take
pathnames as arguments. The name argument conforms to the construction rules for a
pathname. The first character of name must be a slash (/) character and the remaining
characters of name cannot include any slash characters. For maximum portability, name
should include no more than 14 characters, but this limit is not enforced.

If a process makes multiple successful calls to sem_open() with the same value for
name, the same semaphore address is returned for each such successful call, provided
that there have been no calls to sem_unlink(3RT) for this semaphore.

References to copies of the semaphore produce undefined results.

Upon successful completion, the function returns the address of the semaphore.
Otherwise, it will return a value of SEM_FAILED and set errno to indicate the error.
The symbol SEM_FAILED is defined in the header <semaphore.h>. No successful
return from sem_open() will return the value SEM_FAILED.

If any of the following conditions occur, the sem_open() function will return
SEM_FAILED and set errno to the corresponding value:

EACCES The named semaphore exists and the O_RDWR
permissions are denied, or the named semaphore does
not exist and permission to create the named
semaphore is denied.

EEXIST O_CREAT and O_EXCL are set and the named
semaphore already exists.

EINTR The sem_open() function was interrupted by a signal.

EINVAL The sem_open() operation is not supported for the
given name, or O_CREAT was set in oflag and value is
greater than SEM_VALUE_MAX.

EMFILE The number of open semaphore descriptors in this
process exceeds SEM_NSEMS_MAX, or the number of
open file descriptors in this process exceeds OPEN_MAX.

ENAMETOOLONG The length of name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENFILE Too many semaphores are currently open in the
system.

ENOENT O_CREAT is not set and the named semaphore does not
exist.

ENOSPC There is insufficient space for the creation of the new
named semaphore.

sem_open(3RT)

RETURN VALUES

ERRORS

102 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

ENOSYS The sem_open() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exec(2), exit(2), umask(2), sem_close(3RT), sem_post(3RT), sem_unlink(3RT),
sem_wait(3RT), sysconf(3C), attributes(5), standards(5)

sem_open(3RT)

ATTRIBUTES

SEE ALSO

Realtime Library Functions 103

sem_post – increment the count of a semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_post(sem_t *sem);

The sem_post() function unlocks the semaphore referenced by sem by performing a
semaphore unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were
blocked waiting for the semaphore to become unlocked; the semaphore value is
simply incremented.

If the value of the semaphore resulting from this operation is 0, then one of the threads
blocked waiting for the semaphore will be allowed to return successfully from its call
to sem_wait(3RT). If the symbol _POSIX_PRIORITY_SCHEDULING is defined, the
thread to be unblocked will be chosen in a manner appropriate to the scheduling
policies and parameters in effect for the blocked threads. In the case of the schedulers
SCHED_FIFO and SCHED_RR, the highest priority waiting thread will be unblocked,
and if there is more than one highest priority thread blocked waiting for the
semaphore, then the highest priority thread that has been waiting the longest will be
unblocked. If the symbol _POSIX_PRIORITY_SCHEDULING is not defined, the choice
of a thread to unblock is unspecified.

If successful, sem_post() returns 0; otherwise it returns −1 and sets errno to
indicate the error.

The sem_post() function will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

ENOSYS The sem_post() function is not supported by the system.

EOVERFLOW The semaphore value exceeds SEM_VALUE_MAX.

The sem_post() function is reentrant with respect to signals and may be invoked
from a signal-catching function. The semaphore functionality described on this
manual page is for the POSIX (see standards(5)) threads implementation. For the
documentation of the Solaris threads interface, see semaphore(3C)).

See sem_wait(3RT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

sem_post(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

EXAMPLES

ATTRIBUTES

104 man pages section 3: Realtime Library Functions • Last Revised 12 Feb 2003

sched_setscheduler(3RT), sem_wait(3RT), semaphore(3C), attributes(5),
standards(5)

sem_post(3RT)

SEE ALSO

Realtime Library Functions 105

sem_timedwait, sem_reltimedwait_np – lock a semaphore

cc [flag...] file... -lrt [library...]
#include <semaphore.h>

#include <time.h>

int sem_timedwait(sem_t *restrict sem, const struct timespec
*restrict abs_timeout);

int sem_reltimedwait_np(sem_t *restrict sem, const struct
timespec *restrict rel_timeout);

The sem_timedwait() function locks the semaphore referenced by sem as in the
sem_wait(3RT) function. However, if the semaphore cannot be locked without
waiting for another process or thread to unlock the semaphore by performing a
sem_post(3RT) function, this wait is terminated when the specified timeout expires.

The sem_reltimedwait_np() function is identical to the sem_timedwait()
function, except that the timeout is specified as a relative time interval.

For sem_timedwait(), the timeout expires when the absolute time specified by
abs_timeout passes, as measured by the CLOCK_REALTIME clock (that is, when the
value of that clock equals or exceeds abs_timeout), or if the absolute time specified by
abs_timeout has already been passed at the time of the call.

For sem_reltimedwait_np(), the timeout expires when the time interval specified
by rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time
interval specified by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The
timespec data type is defined as a structure in the <time.h> header.

Under no circumstance does the function fail with a timeout if the semaphore can be
locked immediately. The validity of the abs_timeout need not be checked if the
semaphore can be locked immediately.

The sem_timedwait() and sem_reltimedwait_np() functions return 0 if the
calling process successfully performed the semaphore lock operation on the
semaphore designated by sem. If the call was unsuccessful, the state of the semaphore
is be unchanged and the function returns -1 and sets errno to indicate the error.

The sem_timedwait() and sem_reltimedwait_np() functions will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

EINVAL The process or thread would have blocked, and the timeout
parameter specified a nanoseconds field value less than zero or
greater than or equal to 1,000 million.

ETIMEDOUT The semaphore could not be locked before the specified timeout
expired.

The sem_timedwait() and sem_reltimedwait_np() functions may fail if:

sem_timedwait(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

106 man pages section 3: Realtime Library Functions • Last Revised 30 Jan 2004

EDEADLK A deadlock condition was detected.

EINTR A signal interrupted this function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The sem_timedwait() is function Standard. The sem_reltimedwait_np()
function is Stable.

semctl(2), semget(2), semop(2), time(2), sem_post(3RT),
sem_trywait(3RT)sem_wait(3RT), attributes(5), standards(5)

sem_timedwait(3RT)

ATTRIBUTES

SEE ALSO

Realtime Library Functions 107

sem_unlink – remove a named semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_unlink(const char *name);

The sem_unlink() function removes the semaphore named by the string name. If the
semaphore named by name is currently referenced by other processes, then
sem_unlink() has no effect on the state of the semaphore. If one or more processes
have the semaphore open when sem_unlink() is called, destruction of the
semaphore is postponed until all references to the semaphore have been destroyed by
calls to sem_close(3RT), _exit(2), or one of the exec functions (see exec(2)) . Calls
to sem_open(3RT) to re-create or re-connect to the semaphore refer to a new
semaphore after sem_unlink() is called. The sem_unlink() call does not block
until all references have been destroyed; it returns immediately.

Upon successful completion, sem_unlink() returns 0. Otherwise, the semaphore is
not changed and the function returns a value of −1 and sets errno to indicate the
error.

The sem_unlink() function will fail if:

EACCES Permission is denied to unlink the named semaphore.

ENAMETOOLONG The length of name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The named semaphore does not exist.

ENOSYS The sem_unlink() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exec(2), exit(2), sem_close(3RT), sem_open(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sem_unlink(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

108 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

sem_wait, sem_trywait – acquire or wait for a semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

The sem_wait() function locks the semaphore referenced by sem by performing a
semaphore lock operation on that semaphore. If the semaphore value is currently zero,
then the calling thread will not return from the call to sem_wait() until it either
locks the semaphore or the call is interrupted by a signal. The sem_trywait()
function locks the semaphore referenced by sem only if the semaphore is currently not
locked; that is, if the semaphore value is currently positive. Otherwise, it does not lock
the semaphore.

Upon successful return, the state of the semaphore is locked and remains locked until
the sem_post(3RT) function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

The sem_wait() and sem_trywait() functions return 0 if the calling process
successfully performed the semaphore lock operation on the semaphore designated by
sem. If the call was unsuccessful, the state of the semaphore is unchanged, and the
function returns −1 and sets errno to indicate the error.

The sem_wait() and sem_trywait() functions will fail if:

EINVAL The sem function does not refer to a valid semaphore.

ENOSYS The sem_wait() and sem_trywait() functions are not
supported by the system.

The sem_trywait() function will fail if:

EAGAIN The semaphore was already locked, so it cannot be immediately
locked by the sem_trywait() operation.

The sem_wait() and sem_trywait() functions may fail if:

EDEADLK A deadlock condition was detected; that is, two separate processes
are waiting for an available resource to be released via a
semaphore "held" by the other process.

EINTR A signal interrupted this function.

Realtime applications may encounter priority inversion when using semaphores. The
problem occurs when a high priority thread “locks” (that is, waits on) a semaphore
that is about to be “unlocked” (that is, posted) by a low priority thread, but the low
priority thread is preempted by a medium priority thread. This scenario leads to
priority inversion; a high priority thread is blocked by lower priority threads for an

sem_wait(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Realtime Library Functions 109

unlimited period of time. During system design, realtime programmers must take into
account the possibility of this kind of priority inversion. They can deal with it in a
number of ways, such as by having critical sections that are guarded by semaphores
execute at a high priority, so that a thread cannot be preempted while executing in its
critical section.

EXAMPLE 1 The customer waiting-line in a bank may be analogous to the synchronization
scheme of a semaphore utilizing sem_wait() and sem_trywait():

/* cc [flag . . .] file . . . –lrt –lthread [library . . .] */

#include <errno.h>
#define TELLERS 10
sem_t bank_line; /* semaphore */
int banking_hours(), deposit_withdrawal;
void *customer(), do_business(), skip_banking_today();
thread_t tid;
. . .

sem_init(&bank_line,TRUE,TELLERS); /* 10 tellers available */
while(banking_hours())

thr_create(NULL, NULL, customer, (void *)deposit_withdrawal,
THREAD_NEW_LWP, &tid);

. . .

void *
customer(deposit_withdrawal)
void *deposit_withdrawal;
{

int this_customer, in_a_hurry = 50;
this_customer = rand() % 100;
if (this_customer == in_a_hurry) {

if (sem_trywait(&bank_line) != 0)
if (errno == EAGAIN) { /* no teller available */

skip_banking_today(this_customer);
return;

} /*else go immediately to available teller
& decrement bank_line*/

}
else

sem_wait(&bank_line); /* wait for next teller,
then proceed, and decrement bank_line */

do_business((int *)deposit_withdrawal);
sem_getvalue(&bank_line,&num_tellers);
sem_post(&bank_line); /* increment bank_line;

this_customer’s teller is now available */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

sem_wait(3RT)

EXAMPLES

ATTRIBUTES

110 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

MT-Level MT-Safe

sem_post(3RT), attributes(5), standards(5)

sem_wait(3RT)

SEE ALSO

Realtime Library Functions 111

shm_open – open a shared memory object

cc [flag...] file... -lrt [library...]

#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

The shm_open() function establishes a connection between a shared memory object
and a file descriptor. It creates an open file description that refers to the shared
memory object and a file descriptor that refers to that open file description. The file
descriptor is used by other functions to refer to that shared memory object. The name
argument points to a string naming a shared memory object. It is unspecified whether
the name appears in the file system and is visible to other functions that take
pathnames as arguments. The name argument conforms to the construction rules for a
pathname. The first character of name must be a slash (/) character and the remaining
characters of name cannot include any slash characters. For maximum portability, name
should include no more than 14 characters, but this limit is not enforced.

If successful, shm_open() returns a file descriptor for the shared memory object that
is the lowest numbered file descriptor not currently open for that process. The open
file description is new, and therefore the file descriptor does not share it with any
other processes. It is unspecified whether the file offset is set. The FD_CLOEXEC file
descriptor flag associated with the new file descriptor is set.

The file status flags and file access modes of the open file description are according to
the value of oflag. The oflag argument is the bitwise inclusive OR of the following flags
defined in the header <fcntl.h>. Applications specify exactly one of the first two
values (access modes) below in the value of oflag:

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT If the shared memory object exists, this flag has no effect, except as
noted under O_EXCL below. Otherwise the shared memory object
is created; the user ID of the shared memory object will be set to
the effective user ID of the process; the group ID of the shared
memory object will be set to a system default group ID or to the
effective group ID of the process. The permission bits of the shared
memory object will be set to the value of the mode argument except
those set in the file mode creation mask of the process. When bits
in mode other than the file permission bits are set, the effect is
unspecified. The mode argument does not affect whether the shared
memory object is opened for reading, for writing, or for both. The
shared memory object has a size of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared
memory object exists. The check for the existence of the shared
memory object and the creation of the object if it does not exist is
atomic with respect to other processes executing shm_open()

shm_open(3RT)

NAME

SYNOPSIS

DESCRIPTION

112 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

naming the same shared memory object with O_EXCL and
O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is
undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened
O_RDWR, the object will be truncated to zero length and the mode
and owner will be unchanged by this function call. The result of
using O_TRUNC with O_RDONLY is undefined.

When a shared memory object is created, the state of the shared memory object,
including all data associated with the shared memory object, persists until the shared
memory object is unlinked and all other references are gone. It is unspecified whether
the name and shared memory object state remain valid after a system reboot.

Upon successful completion, the shm_open() function returns a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, it returns −1 and
sets errno to indicate the error condition.

The shm_open() function will fail if:

EACCES The shared memory object exists and the permissions
specified by oflag are denied, or the shared memory
object does not exist and permission to create the
shared memory object is denied, or O_TRUNC is
specified and write permission is denied.

EEXIST O_CREAT and O_EXCL are set and the named shared
memory object already exists.

EINTR The shm_open() operation was interrupted by a
signal.

EINVAL The shm_open() operation is not supported for the
given name.

EMFILE Too many file descriptors are currently in use by this
process.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENFILE Too many shared memory objects are currently open in
the system.

ENOENT O_CREAT is not set and the named shared memory
object does not exist.

ENOSPC There is insufficient space for the creation of the new
shared memory object.

ENOSYS The shm_open() function is not supported by the
system.

shm_open(3RT)

RETURN VALUES

ERRORS

Realtime Library Functions 113

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

close(2), dup(2), exec(2), fcntl(2), mmap(2), umask(2), shm_unlink(3RT),
sysconf(3C), fcntl.h(3HEAD), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

shm_open(3RT)

ATTRIBUTES

SEE ALSO

NOTES

114 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

shm_unlink – remove a shared memory object

cc [flag...] file... -lrt [library...]

#include <sys/mman.h>

int shm_unlink(const char *name);

The shm_unlink() function removes the name of the shared memory object named
by the string pointed to by name. If one or more references to the shared memory
object exists when the object is unlinked, the name is removed before shm_unlink()
returns, but the removal of the memory object contents will be postponed until all
open and mapped references to the shared memory object have been removed.

Upon successful completion, shm_unlink() returns 0. Otherwise it returns −1 and
sets errno to indicate the error condition, and the named shared memory object is not
affected by this function call.

The shm_unlink() function will fail if:

EACCES Permission is denied to unlink the named shared
memory object.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The named shared memory object does not exist.

ENOSYS The shm_unlink() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

close(2), mmap(2), mlock(3C), shm_open(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

shm_unlink(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Realtime Library Functions 115

sigqueue – queue a signal to a process

cc [flag...] file... -lrt [library...]
#include <sys/types.h>

#include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval value);

The sigqueue() function causes the signal specified by signo to be sent with the
value specified by value to the process specified by pid. If signo is 0 (the null signal),
error checking is performed but no signal is actually sent. The null signal can be used
to check the validity of pid.

The conditions required for a process to have permission to queue a signal to another
process are the same as for the kill(2) function.

The sigqueue() function returns immediately. If SA_SIGINFO is set for signo and if
the resources were available to queue the signal, the signal is queued and sent to the
receiving process. If SA_SIGINFO is not set for signo, then signo is sent at least once to
the receiving process; it is unspecified whether value will be sent to the receiving
process as a result of this call.

If the value of pid causes signo to be generated for the sending process, and if signo is
not blocked for the calling thread and if no other thread has signo unblocked or is
waiting in a sigwait(2) function for signo, either signo or at least the pending,
unblocked signal will be delivered to the calling thread before the sigqueue()
function returns. Should any of multiple pending signals in the range SIGRTMIN to
SIGRTMAX be selected for delivery, it will be the lowest numbered one. The selection
order between realtime and non-realtime signals, or between multiple pending
non-realtime signals, is unspecified.

Upon successful completion, the specified signal will have been queued, and the
sigqueue() function returns 0. Otherwise, the function returns −1 and sets errno to
indicate the error.

The sigqueue() function will fail if:

EAGAIN No resources are available to queue the signal. The process has
already queued SIGQUEUE_MAX signals that are still pending at
the receiver(s), or a system wide resource limit has been exceeded.

EINVAL The value of signo is an invalid or unsupported signal number.

ENOSYS The sigqueue() function is not supported by the system.

EPERM The process does not have the appropriate privilege to send the
signal to the receiving process.

ESRCH The process pid does not exist.

sigqueue(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

116 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

kill(2), siginfo.h(3HEAD), signal.h(3HEAD), sigwaitinfo(3RT),
attributes(5), standards(5)

sigqueue(3RT)

ATTRIBUTES

SEE ALSO

Realtime Library Functions 117

sigwaitinfo, sigtimedwait – wait for queued signals

cc [flag...] file... -lrt [library...]

#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set, siginfo_t *restrict
info);

int sigtimedwait(const sigset_t *restrict set, siginfo_t *restrict
info, const struct timespec *restrict timeout);

The sigwaitinfo() function selects the pending signal from the set specified by
set. Should any of multiple pending signals in the range SIGRTMIN to SIGRTMAX be
selected, it will be the lowest numbered one. The selection order between realtime and
non-realtime signals, or between multiple pending non-realtime signals, is
unspecified. If no signal in set is pending at the time of the call, the calling thread is
suspended until one or more signals in set become pending or until it is interrupted
by an unblocked, caught signal.

The sigwaitinfo() function behaves the same as the sigwait(2) function if the
info argument is NULL. If the info argument is non-NULL, the sigwaitinfo()
function behaves the same as sigwait(2), except that the selected signal number is
stored in the si_signo member, and the cause of the signal is stored in the si_code
member. If any value is queued to the selected signal, the first such queued value is
dequeued and, if the info argument is non-NULL, the value is stored in the si_value
member of info. The system resource used to queue the signal will be released and
made available to queue other signals. If no value is queued, the content of the si_value
member is undefined. If no further signals are queued for the selected signal, the
pending indication for that signal will be reset. If the value of the si_code member is
SI_NOINFO, only the si_signo member of siginfo_t is meaningful, and the value
of all other members is unspecified.

The sigtimedwait() function behaves the same as sigwaitinfo() except that if
none of the signals specified by set are pending, sigtimedwait() waits for the
time interval specified in the timespec structure referenced by timeout. If the
timespec structure pointed to by timeout is zero-valued and if none of the signals
specified by set are pending, then sigtimedwait() returns immediately with an
error. If timeout is the NULL pointer, the behavior is unspecified.

If, while sigwaitinfo() or sigtimedwait() is waiting, a signal occurs which is
eligible for delivery (that is, not blocked by the process signal mask), that signal is
handled asynchronously and the wait is interrupted.

Upon successful completion (that is, one of the signals specified by set is pending or is
generated) sigwaitinfo() and sigtimedwait() will return the selected signal
number. Otherwise, the function returns −1 and sets errno to indicate the error.

The sigwaitinfo() and sigtimedwait() functions will fail if:

EINTR The wait was interrupted by an unblocked, caught signal.

sigwaitinfo(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

118 man pages section 3: Realtime Library Functions • Last Revised 1 Nov 2003

ENOSYS The sigwaitinfo() and sigtimedwait() functions are not
supported.

The sigtimedwait() function will also fail if:

EAGAIN No signal specified by set was generated within the specified
timeout period.

The sigtimedwait() function may also fail if:

EINVAL The timeout argument specified a tv_nsec value less than zero or
greater than or equal to 1000 million. The system only checks for
this error if no signal is pending in set and it is necessary to wait.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Safe

time(2), sigqueue(3RT), siginfo.h(3HEAD), signal.h(3HEAD),
time.h(3HEAD), attributes(5), standards(5)

sigwaitinfo(3RT)

ATTRIBUTES

SEE ALSO

Realtime Library Functions 119

timer_create – create a timer

cc [flag...] file... -lrt [library...]
#include <signal.h>

#include <time.h>

int timer_create(clockid_t clock_id, struct sigevent *restrict evp,
timer_t *restrict timerid);

The timer_create() function creates a timer using the specified clock, clock_id, as
the timing base. The timer_create() function returns, in the location referenced by
timerid, a timer ID of type timer_t used to identify the timer in timer requests. This
timer ID will be unique within the calling process until the timer is deleted. The
particular clock, clock_id, is defined in <time.h>. The timer whose ID is returned will
be in a disarmed state upon return from timer_create().

The evp argument, if non-null, points to a sigevent structure. This structure,
allocated by the application, defines the asynchronous notification that will occur
when the timer expires (see signal.h(3HEAD) for event notification details). If the
evp argument is NULL, the effect is as if the evp argument pointed to a sigevent
structure with the sigev_notify member having the value SIGEV_SIGNAL, the
sigev_signo having a default signal number, and the sigev_value member
having the value of the timer ID, timerid.

The system defines a set of clocks that can be used as timing bases for per-process
timers. The following values for clock_id are supported:

CLOCK_REALTIME wall clock

CLOCK_VIRTUAL user CPU usage clock

CLOCK_PROF user and system CPU usage clock

CLOCK_HIGHRES non-adjustable, high-resolution clock

For timers created with a clock_id of CLOCK_HIGHRES, the system will attempt to use
an optimal hardware source. This may include, but is not limited to, per-CPU timer
sources. The actual hardware source used is transparent to the user and may change
over the lifetime of the timer. For example, if the caller that created the timer were to
change its processor binding or its processor set, the system may elect to drive the
timer with a hardware source that better reflects the new binding. Timers based on a
clock_id of CLOCK_HIGHRES are ideally suited for interval timers that have minimal
jitter tolerence.

Timers are not inherited by a child process across a fork(2) and are disarmed and
deleted by a call to one of the exec functions (see exec(2)).

Upon successful completion, timer_create() returns 0 and updates the location
referenced by timerid to a timer_t, which can be passed to the per-process timer calls.
If an error occurs, the function returns −1 and sets errno to indicate the error. The
value of timerid is undefined if an error occurs.

timer_create(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

120 man pages section 3: Realtime Library Functions • Last Revised 20 Oct 2003

The timer_create() function will fail if:

EAGAIN The system lacks sufficient signal queuing resources to honor the
request, or the calling process has already created all of the timers
it is allowed by the system.

EINVAL The specified clock ID, clock_id, is not defined.

ENOSYS The timer_create() function is not supported by the system.

EPERM The specified clock ID, clock_id, is CLOCK_HIGHRES and the
{PRIV_PROC_CLOCK_HIGHRES} is not asserted in the effective set
of the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe with exceptions

exec(2), fork(2), time(2), clock_settime(3RT), signal(3C), signal.h(3HEAD),
timer_delete(3RT), timer_settime(3RT), attributes(5), privileges(5),
standards(5)

timer_create(3RT)

ERRORS

ATTRIBUTES

SEE ALSO

Realtime Library Functions 121

timer_delete – delete a timer

cc [flag...] file... -lrt [library...]

#include <time.h>

int timer_delete(timer_t timerid);

The timer_delete() function deletes the specified timer, timerid, previously created
by the timer_create(3RT) function. If the timer is armed when timer_delete()
is called, the behavior will be as if the timer is automatically disarmed before removal.
The disposition of pending signals for the deleted timer is unspecified.

If successful, the function returns 0. Otherwise, the function returns −1 and sets
errno to indicate the error.

The timer_delete() function will fail if:

EINVAL The timer ID specified by timerid is not a valid timer ID.

ENOSYS The timer_delete() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe with exceptions

timer_create(3RT), attributes(5), standards(5)

timer_delete(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

122 man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002

timer_settime, timer_gettime, timer_getoverrun – per-process timers

cc [flag...] file... -lrt [library...]

#include <time.h>

int timer_settime(timer_t timerid, int flags, const struct itimerspec
*restrict value, struct itimerspec *restrict ovalue);

int timer_gettime(timer_t timerid, struct itimerspec *value);

int timer_getoverrun(timer_t timerid);

The timer_settime() function sets the time until the next expiration of the timer
specified by timerid from the it_value member of the value argument and arm the
timer if the it_value member of value is non-zero. If the specified timer was already
armed when timer_settime() is called, this call resets the time until next
expiration to the value specified. If the it_value member of value is 0, the timer is
disarmed. The effect of disarming or resetting a timer on pending expiration
notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime()
behaves as if the time until next expiration is set to be equal to the interval specified
by the it_value member of value. That is, the timer expires in it_value
nanoseconds from when the call is made. If the flag TIMER_ABSTIME is set in the
argument flags, timer_settime() behaves as if the time until next expiration is set
to be equal to the difference between the absolute time specified by the it_value
member of value and the current value of the clock associated with timerid. That is, the
timer expires when the clock reaches the value specified by the it_value member of
value. If the specified time has already passed, the function succeeds and the
expiration notification is made.

The reload value of the timer is set to the value specified by the it_interval
member of value. When a timer is armed with a non-zero it_interval, a periodic
(or repetitive) timer is specified.

Time values that are between two consecutive non-negative integer multiples of the
resolution of the specified timer will be rounded up to the larger multiple of the
resolution. Quantization error will not cause the timer to expire earlier than the
rounded time value.

If the argument ovalue is not NULL, the function timer_settime() stores, in the
location referenced by ovalue, a value representing the previous amount of time before
the timer would have expired or 0 if the timer was disarmed, together with the
previous timer reload value. The members of ovalue are subject to the resolution of the
timer, and they are the same values that would be returned by a timer_gettime()
call at that point in time.

timer_settime(3RT)

NAME

SYNOPSIS

DESCRIPTION

Realtime Library Functions 123

The timer_gettime() function stores the amount of time until the specified timer,
timerid, expires and the reload value of the timer into the space pointed to by the value
argument. The it_value member of this structure contains the amount of time before
the timer expires, or 0 if the timer is disarmed. This value is returned as the interval
until timer expiration, even if the timer was armed with absolute time. The
it_interval member of value contains the reload value last set by
timer_settime().

Only a single signal will be queued to the process for a given timer at any point in
time. When a timer for which a signal is still pending expires, no signal will be
queued, and a timer overrun occurs. When a timer expiration signal is delivered to or
accepted by a process, the timer_getoverrun() function returns the timer
expiration overrun count for the specified timer. The overrun count returned contains
the number of extra timer expirations that occurred between the time the signal was
generated (queued) and when it was delivered or accepted, up to but not including an
implementation-dependent maximum of DELAYTIMER_MAX. If the number of such
extra expirations is greater than or equal to DELAYTIMER_MAX, then the overrun count
will be set to DELAYTIMER_MAX. The value returned by timer_getoverrun()
applies to the most recent expiration signal delivery or acceptance for the timer. If no
expiration signal has been delivered for the timer, the meaning of the overrun count
returned is undefined.

If the timer_settime() or timer_gettime() functions succeed, 0 is returned. If
an error occurs for either of these functions, −1 is returned, and errno is set to
indicate the error. If the timer_getoverrun() function succeeds, it returns the timer
expiration overrun count as explained above.

The timer_settime(), timer_gettime() and timer_getoverrun() functions
will fail if:

EINVAL The timerid argument does not correspond to a timer returned by
timer_create(3RT) but not yet deleted by timer_delete(3RT).

ENOSYS The timer_settime(), timer_gettime(), and
timer_getoverrun() functions are not supported by the
system. The timer_settime() function will fail if:

EINVAL A value structure specified a nanosecond value less than zero or
greater than or equal to 1000 million.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

time.h(3HEAD), clock_settime(3RT), timer_create(3RT),
timer_delete(3RT), attributes(5), standards(5)

timer_settime(3RT)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

124 man pages section 3: Realtime Library Functions • Last Revised 1 Nov 2003

Index

A
aio_cancel — cancel asynchronous I/O

request, 15
aio_fsync — asynchronous file

synchronization, 19
aio_read — asynchronous read and write

operations, 23
aio_return — retrieve return status of

asynchronous I/O operation, 26
aio_suspend — wait for asynchronous I/O

request, 27
aio_waitn — wait for completion of

asynchronous I/O operations, 31
aio_write — asynchronous write to a file, 33
aiocancel — cancel an asynchronous

operation, 14
aioread — read or write asynchronous I/O

operations, 21
aiowait — wait for completion of asynchronous

I/O operation, 29
aiowrite — read or write asynchronous I/O

operations, 21
asynchronous file synchronization, —

aio_sync, 19
asynchronous I/O

— aio_cancel, 15
— aiocancel, 14
— aiowait, 29
retrieve return status — aio_return, 26

asynchronous read and write operations, —
aio_read, aio_write, 23

asynchronous write to a file — aio_write, 33

B
bind or unbind the current thread with the door

server pool
— door_bind, 40
— door_unbind, 40

C
clock_getres — high-resolution clock

operations, 38
clock_gettime — high-resolution clock

operations, 38
clock_nanosleep — high resolution sleep with

specifiable clock, 36
clock_settime — high-resolution clock

operations, 38
create a door descriptor — door_create, 46

D
door_bind — bind or unbind the current thread

with the door server pool, 40
door_call — invoke the function associated with

a door descriptor, 43
door_create — create a door descriptor, 46
door_cred — return credential information

associated with the client, 49
door_info — return information associated with

a door descriptor, 50
door_return — return from a door

invocation, 52

125

door_revoke — revoke access to a door
descriptor, 53

door_server_create — specify an alternative
door server thread creation function, 54

door_ucred — return credential information
associated with the client, 56

door_unbind — bind or unbind the current
thread with the door server pool, 40

F
fdatasync — synchronize a file’s data, 57

G
get execution time limits —

sched_rr_get_interval, 90
get message queue attributes — mq_getattr, 63
get scheduling parameter limits

— sched_get_priority_max, 88
— sched_get_priority_min, 88

get scheduling parameters —
sched_getparam, 87

get scheduling policy —
sched_getscheduler, 89

H
high resolution sleep with specifiable clock —

clock_nanosleep, 36

I
I/O, asynchronous

cancel request — aio_cancel, 15
file synchronization — aio_sync, 19
retrieve return status — aio_return, 26

I/O, requests, list — lio_listio, 58
interfaces in libthread_db that target process

memory access
— ps_pdread, 84
— ps_pdwrite, 84
— ps_ptread, 84
— ps_ptwrite, 84

invoke the function associated with a door
descriptor — door_call, 43

L
lio_listio — list directed I/O, 58
list directed I/O — lio_listio, 58
lock a semaphore — sem_reltimedwait_np, 106
lock a semaphore — sem_timedwait, 106
looks up the symbol in the symbol table of the

load object in the target process —
ps_pglobal_lookup, 83

looks up the symbol in the symbol table of the
load object in the target process —
ps_pglobal_sym, 83

M
memory object, shared

open — shm_open, 112
remove — shm_unlink, 115

message queue
close — mq_close, 62
notify process (or thread) — mq_notify, 64
open — mq_open, 66
remove — mq_unlink, 76
set attributes — mq_setattr, 75

mq_close — close a message queue, 62
mq_getattr — get message queue attributes, 63
mq_notify — notify process (or thread) that a

message is available on a queue, 64
mq_open — open a message queue, 66
mq_receive — receive a message from a

message queue, 69
mq_reltimedreceive_np — receive a message

from a message queue, 69
mq_reltimedsend_np — send a message to a

message queue, 72
mq_send — send a message to a message

queue, 72
mq_setattr — set/get message queue

attributes, 75
mq_timedreceive — receive a message from a

message queue, 69
mq_timedsend — send a message to a message

queue, 72

126 man pages section 3: Realtime Library Functions • January 2005

mq_unlink — remove a message queue, 76

N
nanosleep — high resolution sleep, 77

P
proc_service — process service interfaces, 79

SPARC, 78
x86, 78

process and LWP control in libthread_db
— ps_kill, 85
— ps_lcontinue, 85
— ps_lrolltoaddr, 85
— ps_lstop, 85
— ps_pcontinue, 85
— ps_pstop, 85

process service interfaces — proc_service, 79
ps_kill — process and LWP control in

libthread_db, 85
ps_lcontinue — process and LWP control in

libthread_db, 85
ps_lgetfpregs — routines that access the target

process register in libthread_db, 81
ps_lgetregs — routines that access the target

process register in libthread_db, 81
ps_lgetxregs — routines that access the target

process register in libthread_db, 81
ps_lgetxregsize — routines that access the target

process register in libthread_db, 81
ps_lrolltoaddr — process and LWP control in

libthread_db, 85
ps_lsetfpregs — routines that access the target

process register in libthread_db, 81
ps_lsetregs — routines that access the target

process register in libthread_db, 81
ps_lsetxregs — routines that access the target

process register in libthread_db, 81
ps_lstop — process and LWP control in

libthread_db, 85
ps_pcontinue — process and LWP control in

libthread_db, 85
ps_pdread — interfaces in libthread_db that

target process memory access, 84

ps_pdwrite — interfaces in libthread_db that
target process memory access, 84

ps_pglobal_lookup — look up a symbol in the
symbol table of the load object in the target
process, 83

ps_pglobal_sym — look up a symbol in the
symbol table of the load object in the target
process, 83

ps_pstop — process and LWP control in
libthread_db, 85

ps_ptread — interfaces in libthread_db that
target process memory access, 84

ps_ptwrite — interfaces in libthread_db that
target process memory access, 84

R
read or write asynchronous I/O operations

— aioread, 21
— aiowrite, 21

receive a message from a message queue —
mq_receive, 69

receive a message from a message queue —
mq_reltimedreceive_np, 69

receive a message from a message queue —
mq_timedreceive, 69

return credential information associated with
the client — door_cred, 49

return credential information associated with
the client — door_ucred, 56

return from a door invocation —
door_return, 52

return information associated with a door
descriptor — door_info, 50

revoke access to a door descriptor —
door_revoke, 53

routines that access the target process register in
libthread_db
— ps_lgetfpregs, 81
— ps_lgetregs, 81
— ps_lgetxregs, 81
— ps_lgetxregsize, 81
— ps_lsetfpregs, 81
— ps_lsetregs, 81
— ps_lsetxregs, 81

127

S
sched_get_priority_max — get scheduling

parameter limits, 88
sched_get_priority_min — get scheduling

parameter limits, 88
sched_getparam — get scheduling

parameters, 87
sched_getparam — set/get scheduling

parameters, 91
sched_getscheduler — get scheduling

policy, 89
sched_rr_get_interval — get execution time

limits, 90
sched_setparam — set/get scheduling

parameters, 91
sched_setscheduler — set scheduling policy and

scheduling parameters, 93
sched_yield — yield processor, 95
sem_close — close a named semaphore, 96
sem_destroy — destroy an unnamed

semaphore, 97
sem_getvalue — get the value of a

semaphore, 98
sem_init — initialize an unnamed

semaphore, 99
sem_open — initialize/open a named

semaphore, 101
sem_post — increment the count of a

semaphore, 104
sem_reltimedwait_np — lock a semaphore, 106
sem_timedwait — lock a semaphore, 106
sem_trywait — acquire or wait for a

semaphore, 109
sem_unlink — remove a named

semaphore, 108
sem_wait — acquire or wait for a

semaphore, 109
semaphore

acquire or wait for — sem_wait,
sem_trywait, 109

close a named one — sem_close, 96
destroy an unnamed one — sem_destroy, 97
get the value — sem_getvalue, 98
increment the count — sem_post, 104
initialize an unnamed one — sem_init, 99
initialize/open a named one —

sem_open, 101
remove a named one — sem_unlink, 108

send a message to a message queue —
mq_reltimedsend_np, 72

send a message to a message queue —
mq_send, 72

send a message to a message queue —
mq_timedsend, 72

set/get scheduling parameters
— sched_getparam, 91
— sched_setparam, 91

set scheduling policy and scheduling
parameters — sched_setscheduler, 93

shared memory object
open — shm_open, 112
remove — shm_unlink, 115

shm_open — open a shared memory
object, 112

shm_unlink — remove a shared memory
object, 115

signal
queue one to a process — sigqueue, 116
wait for queued signals — sigwaitinfo,

sigtimedwait, 118
sigqueue — queue a signal to a process, 116
sigtimedwait — wait for queued signals, 118
sigwaitinfo — wait for queued signals, 118
sleep, high resolution — nanosleep, 77
specify an alternative door server thread

creation function — door_server_create, 54
synchronize a file’s data, — fdatasync, 57

T
timer_getoverrun — per-process timers, 123
timer_gettime — per-process timers, 123
timer_settime — per-process timers, 123

W
wait for completion of asynchronous I/O

operations — aio_waitn, 31

Y
yield processor — sched_yield, 95

128 man pages section 3: Realtime Library Functions • January 2005

	man pages section 3: Realtime Library Functions
	Preface
	Overview

	Index

