
Oracle® Database
2 Day + Security Guide

11g Release 1 (11.1)

B28337-01

July 2007

Oracle Database 2 Day + Security Guide, 11g Release 1 (11.1)

B28337-01

Copyright © 2007, Oracle. All rights reserved.

Primary Author: Patricia Huey

Contributors: Nina Lewis, Paul Needham, Deborah Owens, Ashwini Surpur, Kamal Tbeileh, Mark
Townsend, Peter Wahl, Peter M. Wong

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... xi

1 Introduction to Oracle Database Security

About This Guide... 1-1
Before Using This Guide ... 1-1
What This Guide Is and Is Not... 1-2

Common Database Security Tasks .. 1-2
Tools for Securing Your Database ... 1-2
Securing Your Database: A Roadmap... 1-3

2 Securing the Database Installation and Configuration

About Securing the Database Installation and Configuration ... 2-1
Enabling the Default Security Settings ... 2-1
Securing the Oracle Data Dictionary.. 2-3

About the Oracle Data Dictionary ... 2-3
Enabling Data Dictionary Protection .. 2-4

Restricting Operating System Access... 2-5
Restricting Permissions on Run-Time Facilities .. 2-5
Initialization Parameters Used for Installation and Configuration Security 2-6

Modifying the Value of an Initialization Parameter ... 2-6

3 Securing Oracle Database User Accounts

About Securing Oracle Database User Accounts ... 3-1
Predefined User Accounts Provided by Oracle Database .. 3-2

Predefined Administrative Accounts.. 3-2
Predefined Non-Administrative User Accounts ... 3-4
Predefined Sample Schema User Accounts.. 3-6

Expiring and Locking Database Accounts... 3-7
Requirements for Creating Passwords... 3-8
Finding and Changing Default Passwords ... 3-8
Changing the Default Administrative User Passwords... 3-10

iv

Enforcing Password Management ... 3-10
Initialization Parameters Used to Secure User Accounts .. 3-11

4 Managing User Privileges

About Privilege Management .. 4-1
Granting Necessary Privileges Only .. 4-1
Revoking Privileges from the PUBLIC User Group.. 4-2
Granting Roles to Users .. 4-2
Controlling Access to Applications with Secure Application Roles.. 4-3

About Secure Application Roles .. 4-3
Example: Creating a Secure Application Role ... 4-4

Step 1: Create a Security Administrator Account .. 4-4
Step 2: Create User Accounts for This Example ... 4-5
Step 3: Create the Secure Application Role ... 4-6
Step 4: Create a Lookup Table... 4-7
Step 5: Create the PL/SQL Package to Set the Secure Application Role 4-8
Step 6: Grant EXECUTE Privileges for the Procedure to Matthew and Winston 4-10
Step 7: Test the EMPLOYEE_ROLE Secure Application Role... 4-10
Step 8: Optionally, Remove the Components for This Example....................................... 4-11

Initialization Parameters Used for Privilege Security ... 4-12

5 Securing the Network

About Securing the Network ... 5-1
Securing the Client Connection on the Network ... 5-1

Guidelines for Securing Client Connections .. 5-2
Securing the Network Connection .. 5-3
Securing a Secure Sockets Layer Connection... 5-5

Protecting Data on the Network by Using Network Encryption .. 5-7
About Network Encryption.. 5-7
Configuring Network Encryption ... 5-7

Initialization Parameters Used for Network Security.. 5-10

6 Securing Data

About Securing Data ... 6-1
Encrypting Data Transparently with Transparent Data Encryption... 6-1

About Encrypting Sensitive Data .. 6-2
When Should You Encrypt Data? ... 6-2
How Transparent Data Encryption Works .. 6-3
Configuring Data to Use Transparent Data Encryption... 6-4

Step 1: Configure the Wallet Location ... 6-4
Step 2: Create the Wallet .. 6-5
Step 3: Open (or Close) the Wallet.. 6-5
Step 4: Encrypt (or Decrypt) Data... 6-6

Checking Existing Encrypted Data.. 6-9
Checking Whether a Wallet Is Open or Closed.. 6-9
Checking Encrypted Columns of an Individual Table... 6-10

v

Checking All Encrypted Table Columns in the Current Database Instance 6-10
Checking Encrypted Tablespaces in the Current Database Instance 6-11

Controlling Data Access with Oracle Virtual Private Database... 6-11
About Oracle Virtual Private Database ... 6-11
Example: Creating an Oracle Virtual Private Database Policy... 6-13

Step 1: If Necessary, Create the Security Administrator Account 6-14
Step 2: Update the Security Administrator Account .. 6-14
Step 3: Create User Accounts for This Example .. 6-15
Step 4: Create the F_POLICY_ORDERS Policy Function .. 6-16
Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private Database Policy 6-18
Step 6: Test the ACCESSCONTROL_ORDERS Virtual Private Database Policy 6-18
Step 7: Optionally, Remove the Components for This Example....................................... 6-19

Enforcing Row-Level Security with Oracle Label Security .. 6-20
About Oracle Label Security.. 6-20
Guidelines for Planning an Oracle Label Security Policy ... 6-21
Example: Applying Security Labels to the HR.LOCATIONS Table.. 6-22

Step 1: Install Oracle Label Security and Enable User LBACSYS 6-23
Step 2: Create a Role and Three Users for the Oracle Label Security Example 6-27
Step 3: Create the ACCESS_LOCATIONS Oracle Label Security Policy......................... 6-28
Step 4: Define the ACCESS_LOCATIONS Policy-Level Components 6-29
Step 5: Create the ACCESS_LOCATIONS Policy Data Labels.. 6-30
Step 6: Create the ACCESS_LOCATIONS Policy User Authorizations 6-31
Step 7: Apply the ACCESS_LOCATIONS Policy to the HR.LOCATIONS Table 6-34
Step 8: Add the ACCESS_LOCATIONS Labels to the HR.LOCATIONS Data 6-34
Step 9: Test the ACCESS_LOCATIONS Policy.. 6-36
Step 10: Optionally, Remove the Components for This Example 6-38

7 Auditing Database Activity

About Auditing... 7-1
Why Is Auditing Used? ... 7-2
Where Are Standard Audited Activities Recorded? .. 7-2
Auditing General Activities Using Standard Auditing.. 7-3

About Standard Auditing ... 7-3
Enabling or Disabling the Standard Audit Trail ... 7-3
Using Default Auditing for Security-Relevant SQL Statements and Privileges 7-5

About Default Auditing... 7-5
Enabling Default Auditing .. 7-6

Individually Auditing SQL Statements .. 7-7
Individually Auditing Privileges ... 7-7
Using Proxies to Audit SQL Statements and Privileges in a Multitier Environment 7-7
Individually Auditing Schema Objects... 7-8
Auditing Network Activity .. 7-8

Example: Creating a Standard Audit Trail... 7-8
Step 1: Log In and Enable Standard Auditing ... 7-9
Step 2: Enable Auditing for SELECT Statements on the OE.CUSTOMERS Table 7-10
Step 3: Test the Audit Settings... 7-11
Step 4: Optionally, Remove the Components for This Example.. 7-11

vi

Step 5: Remove the SEC_ADMIN Security Administrator Account 7-12
Guidelines for Auditing .. 7-12

Enabling Default Auditing of SQL Statements and Privileges... 7-12
Keeping Audited Information Manageable .. 7-12
Auditing Typical Database Activity... 7-13
Auditing Suspicious Database Activity ... 7-14

Initialization Parameters Used for Auditing ... 7-15

 Index

vii

List of Tables

2–1 Default Security Settings for Initialization Parameters .. 2-2
2–2 Initialization Parameters Used for Installation and Configuration Security 2-6
3–1 Predefined Oracle Database Administrative User Accounts .. 3-2
3–2 Predefined Oracle Database Non-Administrative User Accounts 3-5
3–3 Default Sample Schema User Accounts.. 3-6
3–4 Initialization Parameters Used for User Account Security ... 3-11
4–1 Initialization Parameters Used for Privilege Security ... 4-12
5–1 Initialization Parameters Used for Network Security ... 5-10
6–1 Data Dictionary Views for Encrypted Tablespaces ... 6-11
7–1 Initialization Parameters Used for Auditing .. 7-15

viii

ix

Preface

Welcome to Oracle Database 2 Day + Security Guide. This guide is for anyone who wants
to perform common day-to-day security tasks with Oracle Database.

The contents of this preface are as follows:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database 2 Day + Security Guide expands on the security knowledge that you
learned in Oracle Database 2 Day DBA to manage security in Oracle Database. The
information in this guide applies to all platforms. For platform-specific information,
see the installation guide, configuration guide, and platform guide for your platform.

This guide is intended for the following users:

■ Oracle database administrators who want to acquire database security
administrative skills

■ Database administrators who have some security administrative knowledge but
are new to Oracle Database

This guide is not an exhaustive discussion about security. For detailed information
about security, see the Oracle Database Security documentation set. This guide does
not provide information about security for Oracle E-Business Suite applications. For
information about security in the Oracle E-Business Suite applications, see the
documentation for those products.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

x

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, use the following resources:

Oracle Database Documentation
For more security-related information, see the following documents in the Oracle
Database documentation set:

■ Oracle Database 2 Day DBA

■ Oracle Database Administrator's Guide

■ Oracle Database Security Guide

■ Oracle Database Concepts

■ Oracle Database Reference

■ Oracle Database Vault Administrator's Guide

■ Oracle Audit Vault Administrator's Guide

Many of the examples in this guide use the sample schemas of the seed database,
which is installed by default when you install Oracle. See Oracle Database Sample
Schemas for information about how these schemas were created and how you can use
them.

Oracle Technology Network (OTN)
You can download free release notes, installation documentation, updated versions of
this guide, white papers, or other collateral from the Oracle Technology Network
(OTN). Visit:

http://www.oracle.com/technology/index.html

If you are not already a member, you can register for free at:

http://www.oracle.com/technology/membership/

For security-specific information about OTN, visit:

http://www.oracle.com/technology/deploy/security/index.html

xi

For the latest version of the Oracle documentation, including this guide, visit:

http://www.oracle.com/technology/documentation/index.html

Oracle Documentation Search Engine
To access the database documentation search engine directly, visit:

http://tahiti.oracle.com/

Oracle Store
Printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

OracleMetaLink
You can find information about security patches, certifications, and the support
knowledge base by visiting OracleMetaLink at:

http://metalink.oracle.com/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

Introduction to Oracle Database Security 1-1

1
Introduction to Oracle Database Security

As an Oracle database security administrator, you are responsible for day-to-day
security tasks.

This chapter contains the following topics:

■ About This Guide

■ Common Database Security Tasks

■ Tools for Securing Your Database

■ Securing Your Database: A Roadmap

About This Guide
Oracle Database 2 Day + Security Guide teaches you how to perform day-to-day
database security tasks. Its goal is to help you understand the concepts behind Oracle
Database security. You will learn how to perform common security tasks needed to
secure your database. The knowledge you gain from completing the tasks in Oracle
Database 2 Day + Security Guide helps you to better secure your data and to meet
common regulatory compliance requirements, such as the Sarbanes-Oxley Act.

The primary administrative interface used in this guide is Oracle Enterprise Manager
in Database Console mode, featuring all the self-management capabilities introduced
in Oracle Database.

This section contains the following topics:

■ Before Using This Guide

■ What This Guide Is and Is Not

Before Using This Guide
Before using this guide:

■ Complete Oracle Database 2 Day DBA

■ Obtain the necessary products and tools described in "Tools for Securing Your
Database" on page 1-2

Common Database Security Tasks

1-2 Oracle Database 2 Day + Security Guide

What This Guide Is and Is Not
Oracle Database 2 Day + Security Guide is task oriented. The objective of this guide is to
describe why and when you need to perform security tasks.

Where appropriate, this guide describes the concepts and steps necessary to
understand and complete a task. This guide is not an exhaustive discussion of all
Oracle Database concepts. For this type of information, see Oracle Database Concepts.

Where appropriate, this guide describes the necessary Oracle Database administrative
steps to complete security tasks. This guide does not describe basic Oracle Database
administrative tasks. For this type of information, see Oracle Database 2 Day DBA.
Additionally, for a complete discussion of administrative tasks, see Oracle Database
Administrator's Guide.

In addition, this guide is not an exhaustive discussion of all Oracle Database security
features and does not describe available APIs that provide comparable security
options to those presented in this guide. For this type of information, see Oracle
Database Security Guide.

Common Database Security Tasks
As a database administrator for Oracle Database, you should be involved in the
following security-related tasks:

■ Ensuring that the database installation and configuration is secure

■ Managing the security aspects of user accounts: developing secure password
policies, creating and assigning roles, restricting data access to only the
appropriate users, and so on

■ Ensuring that network connections are secure

■ Encrypting sensitive data

■ Ensuring the database has no security vulnerabilities and is protected against
intruders

■ Deciding what database components to audit and how granular you want this
auditing to be

■ Downloading and installing security patches

In a small to midsize database environment, you might perform these tasks as well
and all database administrator-related tasks, such as installing Oracle software,
creating databases, monitoring performance, and so on. In large, enterprise
environments, the job is often divided among several database administrators—each
with their own specialty—such as database security or database tuning.

Tools for Securing Your Database
To achieve the goals of securing your database, you need the following products, tools,
and utilities:

■ Oracle Database 11g Release 1 (11.1) Enterprise Edition

Oracle Database 11g Release 1 (11.1) Enterprise Edition provides enterprise-class
performance, scalability, and reliability on clustered and single-server
configurations. It includes many security features that are used in this guide.

Securing Your Database: A Roadmap

Introduction to Oracle Database Security 1-3

■ Oracle Enterprise Manager Database Control

Oracle Enterprise Manager is a Web application that you can use to perform
database administrative tasks for a single database instance or a clustered
database.

■ SQL*Plus

SQL*Plus is a development environment that you can use to create and run SQL
and PL/SQL code. It is part of the Oracle Database 11g Release 1 (11.1) installation.

■ Database Configuration Assistant (DBCA)

Database Configuration Assistant enables you to perform general database tasks,
such as creating, configuring, or deleting databases. In this guide, you use DBCA
to enable default auditing.

■ Oracle Net Manager

Oracle Net Manager enables you to perform network-related tasks for Oracle
Database. In this guide, you use Oracle Net Manager to configure network
encryption.

Securing Your Database: A Roadmap
To learn how to secure your database, you follow these general steps:

1. Secure your Oracle Database installation and configuration.

Complete the tasks in Chapter 2, "Securing the Database Installation
and Configuration" to secure access to an Oracle Database installation.

2. Secure user accounts for your site.

Complete the tasks in Chapter 3, "Securing Oracle Database User Accounts",
which builds on Oracle Database 2 Day DBA, where you learned how to create user
accounts. You learn the following:

■ How to expire, lock, and unlock user accounts

■ Guidelines to choose secure passwords

■ How to change a password

■ How to enforce password management

■ Why you need to encrypt passwords in Oracle Database tables

3. Understand how privileges work.

Complete the tasks in Chapter 4, "Managing User Privileges". You learn about the
following:

■ How privileges work

■ Why you must be careful about granting privileges

■ How database roles work

■ How to create secure application roles

4. Secure data as it travels across the network.

Complete the tasks in Chapter 5, "Securing the Network" to learn how to secure
client connections and to configure network encryption.

Securing Your Database: A Roadmap

1-4 Oracle Database 2 Day + Security Guide

5. Encrypt sensitive data.

Complete the tasks in Chapter 6, "Securing Data", in which you learn about the
following:

■ How to use transparent data encryption to automatically encrypt database
table columns and tablespaces

■ How to control data access with Oracle Virtual Private Database

■ How to enforce row-level security with Oracle Label Security

6. Configure auditing so that you can monitor the database activities.

Complete the tasks in Chapter 7, "Auditing Database Activity" to learn about
standard auditing.

Securing the Database Installation and Configuration 2-1

2
Securing the Database Installation

and Configuration

This chapter describes how you can secure your Oracle Database installation and
configuration.

This chapter contains the following topics:

■ About Securing the Database Installation and Configuration

■ Enabling the Default Security Settings

■ Securing the Oracle Data Dictionary

■ Restricting Operating System Access

■ Restricting Permissions on Run-Time Facilities

■ Initialization Parameters Used for Installation and Configuration Security

About Securing the Database Installation and Configuration
After you install Oracle Database, you should secure the database installation and
configuration. The methods in this chapter describe commonly used ways to do this,
all of which involve restricting permissions to specific areas of the database files.

Oracle Database is available on several operating systems. Consult the following
guides for detailed platform-specific information about Oracle Database:

■ Oracle Database Platform Guide for Microsoft Windows

■ Oracle Database Administrator's Reference for Linux and UNIX

■ Oracle Database Installation Guide for your platform

Enabling the Default Security Settings
When you create a new database or modify an existing database, you can use the
Security Settings window in Database Configuration Assistant (DBCA) to enable or
disable the default security settings. Oracle recommends that you enable these
settings. These settings enable the following default security settings:

■ Enables default auditing settings. See "Using Default Auditing for
Security-Relevant SQL Statements and Privileges" on page 7-5 for detailed
information.

■ Creates stronger enforcements for new or changed passwords. "Requirements for
Creating Passwords" on page 3-8 describes the new password requirements.

Enabling the Default Security Settings

2-2 Oracle Database 2 Day + Security Guide

■ Removes the CREATE EXTERNAL JOB privilege from PUBLIC. For greater
security, grant the CREATE EXTERNAL JOB privilege only to SYS, database
administrators, and those users who need it.

■ Modifies initialization parameter settings. Table 2–1 lists the modified
initialization parameter settings.

To enable the default profile security settings using Database Configuration
Assistant:
1. Start Database Configuration Assistant:

■ UNIX: Enter the following command at a terminal window:

dbca

Typically, dbca is in the $ORACLE_HOME/bin directory.

■ Windows: From the Start menu, click All Programs. Then click Oracle -
ORACLE_HOME, then Configuration and Migration Tools, and then
Database Configuration Assistant.

Alternatively, you can start Database Configuration assistant at a command
prompt:

dbca

As with UNIX, typically, dbca is in the ORACLE_BASE\ORACLE_HOME\bin
directory.

2. In the Welcome window, click Next.

The Operations window appears.

3. Select Configure Database Options, and then click Next.

The Database window appears.

4. Select the database that you want to configure, and then click Next.

The Security Settings window appears.

5. Select the Keep the enhanced 11g default security settings (recommended).
These settings include enabling auditing and a new default password profile
option.

6. Click Next.

Table 2–1 Default Security Settings for Initialization Parameters

Setting Previous Setting New Setting

AUDIT_TRAIL NONE DB

07_DICTIONARY_ACCESSIBILITY TRUE FALSE

PASSWORD_GRACE_TIME UNLIMITED 7

PASSWORD_LOCK_TIME UNLIMITED 1

PASSWORD_LOGIN_FAILURES 10 10

PASSWORD_LIFE_TIME UNLIMITED 180

PASSWORD_REUSE_MAX UNLIMITED UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED UNLIMITED

REMOTE_OS_ROLES TRUE FALSE

Securing the Oracle Data Dictionary

Securing the Database Installation and Configuration 2-3

The Database Components window appears.

7. Select any additional options, and then click Next. Answer the remaining
questions as necessary.

8. Click Finish.

Securing the Oracle Data Dictionary
This section describes how you can secure the data dictionary. The data dictionary is a
set of database tables that provide information about the database, such as schema
definitions, default values, and so on.

This section describes the following topics:

■ About the Oracle Data Dictionary

■ Enabling Data Dictionary Protection

About the Oracle Data Dictionary
The Oracle data dictionary is a read-only set of database tables that provides
information about the database. A data dictionary has the following contents:

■ The definitions of all schema objects in the database (tables, views, indexes,
clusters, synonyms, sequences, procedures, functions, packages, triggers, and so
on)

■ The amount of space allocated for, and is currently used by, the schema objects

■ Default values for columns

■ Integrity constraint information

■ The names of Oracle Database users

■ Privileges and roles granted to each user

■ Auditing information, such as who has accessed or updated various schema
objects

■ Other general database information

The data dictionary is structured in tables and views, just like other database data. All
the data dictionary tables and views for a given database are stored in the SYSTEM
tablespace for that database. The data dictionary central to every Oracle database, and
it is an important tool for all users, from end users to application designers and
database administrators.

You can use SQL statements to access the data dictionary. Because the data dictionary
is read only, you can issue only queries (SELECT statements) against its tables and
views. Oracle Database Reference provides a list of database views that you can query to
find information about the data dictionary.

Example 2–1 shows how you can find a list of database views specific to the data
dictionary by querying the DICTIONARY view.

Example 2–1 Finding Views That Pertain to the Data Dictionary

sqlplus system
Enter password: password
Connected.
SQL> SELECT * FROM DICTIONARY;

Securing the Oracle Data Dictionary

2-4 Oracle Database 2 Day + Security Guide

Enabling Data Dictionary Protection
You can protect the data dictionary by enabling the O7_DICTIONARY_
ACCESSIBILITY initialization parameter. This parameter prevents users who have
the ANY system privilege from using those privileges on the data dictionary, that is, on
objects in the SYS schema.

To enable data dictionary protection:
1. Start Oracle Enterprise Manager Database Control (Database Control).

See Oracle Database 2 Day DBA for instructions about how to start Database
Control.

2. Log in as SYS and connect with the SYSDBA privilege.

For example:

The Oracle Enterprise Manager Database Home page (Database Home page)
appears.

3. Click Server to display the Server subpage.

4. In the Database Configuration section, click Initialization Parameters.

The Initialization Parameters page appears.

5. In the list, search for O7_DICTIONARY_ACCESSIBILITY.

In the Name field, enter O7_ (the letter O), and then click Go. You can enter the
first few characters of a parameter name. In this case, O7_ displays the O7_
DICTIONARY_ACCESSIBILTY parameter.

Depending on the parameter, you may have to modify the value from the SPFile
subpage. Click the SFFile tab to display the SPFile subpage.

6. Set the value for O7_DICTIONARY_ACCESSIBILTY to FALSE.

7. Click Apply.

8. Restart the Oracle Database instance.

a. Click the Database Instance link.

b. Click Home to display the Database Control home page.

c. Under General, click Shutdown.

d. In the Startup/Shutdown Credentials page, enter your credentials.

See Oracle Database 2 Day DBA for more information.

e. After the shutdown completes, click Startup.

After you set the O7_DICTIONARY_ACCESSIBILTY parameter to FALSE, only users
who have the SELECT ANY DICTIONARY privilege and those users authorized to
make DBA-privileged (for example CONNECT / AS SYSDBA) connections can use the
ANY system privilege on the data dictionary. If the O7_DICTIONARY_
ACCESSIBILITY parameter is not set to FALSE, then any user with a DROP ANY

Restricting Permissions on Run-Time Facilities

Securing the Database Installation and Configuration 2-5

TABLE (for example) system privilege can drop parts of the data dictionary. However,
if a user needs view access to the data dictionary, then you can grant that user the
SELECT ANY DICTIONARY system privilege.

Restricting Operating System Access
You can secure access to Oracle Database on the operating system level by following
these guidelines:

■ Limit the number of operating system users.

■ Limit the privileges of the operating system accounts (administrative,
root-privileged, or DBA) on the Oracle Database host (physical computer). Only
grant the user the least number of privileges needed to perform his or her tasks.

■ Restrict the ability to modify the default file and directory permissions for the
Oracle Database home (installation) directory or its contents. Even privileged
operating system users and the Oracle owner should not modify these
permissions, unless instructed otherwise by Oracle.

■ Restrict symbolic links. Ensure that when you provide a path or file to the
database, neither the file nor any part of the path is modifiable by an untrusted
user. The file and all components of the path should be owned by the database
administrator or some trusted account, such as root.

This recommendation applies to all types of files: data files, log files, trace files,
external tables, BFILEs, and so on.

Restricting Permissions on Run-Time Facilities
Many Oracle Database products use run-time facilities such as Oracle Java Virtual
Machine (OJVM). Do not assign all permissions to a database run-time facility. Instead,
grant specific permissions to the explicit document root file paths for facilities that
might run files and packages outside the database.

Here is an example of a vulnerable run-time call, in which individual files are
specified:

call dbms_java.grant_permission('wsmith',
'SYS:java.io.FilePermission','filename','read');

Here is an example of a better (more secure) run-time call, which specifies a directory
path instead:

call dbms_java.grant_permission('wsmith', 'SYS:java.io.FilePermission','directory_
path','read');

Note:

■ In a default installation, the O7_DICTIONARY_
ACCESSIBILITY parameter is set to FALSE.

■ The SELECT ANY DICTIONARY privilege is not included in
the GRANT ALL PRIVILEGES statement, but you can grant it
through a role. Roles are described in "Granting Roles to Users"
on page 4-2 and Oracle Database 2 Day DBA.

Initialization Parameters Used for Installation and Configuration Security

2-6 Oracle Database 2 Day + Security Guide

Initialization Parameters Used for Installation and Configuration Security
Table 2–2 lists initialization parameters that you can set to better secure your Oracle
Database installation and configuration.

Modifying the Value of an Initialization Parameter
This section explains how to use Database Control to modify the value of an
initialization parameter. To find detailed information about the initialization
parameters available, see Oracle Database Reference.

To modify the value of an initialization parameter:
1. Start Database Control.

2. Log in as user SYS with the SYSDBA privilege.

■ User Name: SYS

■ Password: Enter your password.

■ Connect As: SYSDBA

3. Click Server to display the Server subpage.

4. In the Database Configuration section, click Initialization Parameters.

The Initialization Parameters page appears.

5. In the Name field, enter the name of the parameter to change, and then click Go.

You can enter the first few letters of the parameter, for example, SEC_RETURN if
you are searching for the SEC_RETURN_SERVER_RELEASE_NUMBER parameter.
Alternatively, you can scroll down the list of parameters to find the parameter you
want to change.

Depending on the parameter, you might have to modify the value from the SPFile
subpage. Click the SFFile tab to display the SPFile subpage.

Table 2–2 Initialization Parameters Used for Installation and Configuration Security

Initialization Parameter Default Setting Description

SEC_RETURN_SERVER_RELEASE_BANNER FALSE Controls the display of the product version
information, such as the release number, in a
client connection. An intruder could use the
database release number to find information
about security vulnerabilities that may be present
in the database software. You can enable or
disable the detailed product version display by
setting this parameter.

See Oracle Database Security Guide for more
information about this and similar parameters.
Oracle Database Reference describes this parameter
in detail.

O7_DICTIONARY_ACCESSIBILITY FALSE Controls restrictions on SYSTEM privileges. See
"Enabling Data Dictionary Protection" on
page 2-4 for more information about this
parameter. Oracle Database Reference describes this
parameter in detail.

See Also: Oracle Database Reference for more information about
initialization parameters

Initialization Parameters Used for Installation and Configuration Security

Securing the Database Installation and Configuration 2-7

6. In the Value field, either enter the new value or if a list is presented, select from
the list.

7. Click Apply.

8. If the parameter is static, restart the Oracle Database instance.

To find out if an initialization parameter is static, check its description in Oracle
Database Reference. If the Modifiable setting in its summary table shows No, then
you must restart the database instance.

a. Click the Database Instance link.

b. Click Home to display the Database Control home page.

c. Under General, click Shutdown.

d. In the Startup/Shutdown Credentials page, enter your credentials.

See Oracle Database 2 Day DBA for more information.

e. After the shutdown completes, click Startup.

Initialization Parameters Used for Installation and Configuration Security

2-8 Oracle Database 2 Day + Security Guide

Securing Oracle Database User Accounts 3-1

3
Securing Oracle Database User Accounts

You can use many methods to secure database user accounts. For example, Oracle
Database has a set of built-in protections for passwords. This chapter explains how
you can safeguard default database accounts and passwords, and describes ways to
manage database accounts.

This chapter contains the following topics:

■ About Securing Oracle Database User Accounts

■ Predefined User Accounts Provided by Oracle Database

■ Expiring and Locking Database Accounts

■ Requirements for Creating Passwords

■ Finding and Changing Default Passwords

■ Changing the Default Administrative User Passwords

■ Enforcing Password Management

■ Initialization Parameters Used to Secure User Accounts

About Securing Oracle Database User Accounts
Oracle Database 2 Day DBA describes the fundamentals of creating and administering
user accounts, including how to manage user roles, what the administrative accounts
are, and how to use profiles to establish a password policy.

After you create user accounts for your site, you can use the procedures in this section
to further secure these accounts by following these methods:

■ Safeguarding predefined database accounts. When you install Oracle Database, it
creates a set of predefined accounts. You should secure these accounts as soon as
possible by changing their passwords. You can use the same method to change all
passwords, whether they are with regular user accounts, administrative accounts,
or predefined accounts. This guide also provides guidelines on how to create the
most secure passwords.

■ Managing database accounts. You can expire, lock, and unlock database accounts.

■ Managing passwords. You can manage and protect passwords by using the tools
provided with Oracle Database, such as initialization parameters.

See Also: Oracle Database Security Guide for detailed information
about securing user accounts

Predefined User Accounts Provided by Oracle Database

3-2 Oracle Database 2 Day + Security Guide

Predefined User Accounts Provided by Oracle Database
When you install Oracle Database, the installation process creates a set of predefined
accounts. These accounts are in the following categories:

■ Predefined Administrative Accounts

■ Predefined Non-Administrative User Accounts

■ Predefined Sample Schema User Accounts

Predefined Administrative Accounts
A default Oracle Database installation provides a set of predefined administrative
accounts. These are accounts that have special privileges required to administer areas
of the database, such as the CREATE ANY TABLE or ALTER SESSION privilege, or
EXECUTE privileges on packages owned by the SYS schema. The default tablespace for
administrative accounts is either SYSTEM or SYSAUX.

To protect these accounts from unauthorized access, the installation process locks and
expires most of these accounts, except where noted in Table 3–1. As the database
administrator, you are responsible for unlocking and resetting these accounts, as
described in "Expiring and Locking Database Accounts" on page 3-7.

Table 3–1 lists the administrative user accounts provided by Oracle Database.

See Also:

■ Oracle Database Security Guide for detailed information about
managing user accounts and authentication

■ "Predefined User Accounts Provided by Oracle Database" on
page 3-2 for a description of the predefined user accounts that are
created when you install Oracle Database

Table 3–1 Predefined Oracle Database Administrative User Accounts

User Account Description Status After Installation

ANONYMOUS Account that allows HTTP access to Oracle XML DB. It is
used in place of the APEX_PUBLIC_USER account when
the Embedded PL/SQL Gateway (EPG) is installed in the
database.

EPG is a Web server that can be used with Oracle Database.
It provides the necessary infrastructure to create dynamic
applications.

Locked and expired

CTXSYS The account used to administer Oracle Text. Oracle Text
enables you to build text query applications and document
classification applications. It provides indexing, word and
theme searching, and viewing capabilities for text.

See Oracle Text Application Developer's Guide.

Locked and expired

DBSNMP The account used by the Management Agent component of
Oracle Enterprise Manager to monitor and manage the
database.

See Oracle Enterprise Manager Grid Control Installation and
Basic Configuration.

Locked and expired

Predefined User Accounts Provided by Oracle Database

Securing Oracle Database User Accounts 3-3

EXFSYS The account used internally to access the EXFSYS schema,
which is associated with the Rules Manager and
Expression Filter feature. This feature enables you to build
complex PL/SQL rules and expressions. The EXFSYS
schema contains the Rules Manager and Expression Filter
DDL, DML, and associated metadata.

See Oracle Database Rules Manager and Expression Filter
Developer's Guide.

Locked and expired

LBACSYS The account used to administer Oracle Label Security
(OLS). It is created only when you install the Label Security
custom option.

See "Enforcing Row-Level Security with Oracle Label
Security" on page 6-20 and Oracle Label Security
Administrator's Guide.

Locked and expired

MDSYS The Oracle Spatial and Oracle Multimedia Locator
administrator account.

See Oracle Spatial Developer's Guide.

Locked and expired

MGMT_VIEW An account used by Oracle Enterprise Manager Database
Control.

Open

OWBSYS The account for administrating the Oracle Warehouse
Builder repository.

Access this account during the installation process to
define the base language of the repository and to define
Warehouse Builder workspaces and users. A data
warehouse is a relational or multidimensional database
that is designed for query and analysis.

See Oracle Warehouse Builder Installation and Administration
Guide.

Locked and expired

ORDPLUGINS The Oracle Multimedia user. Plug-ins supplied by Oracle
and third-party, format plug-ins are installed in this
schema.

Oracle Multimedia enables Oracle Database to store,
manage, and retrieve images, audio, video, DICOM format
medical images and other objects, or other heterogeneous
media data integrated with other enterprise information.

See Oracle Multimedia User's Guide and Oracle Multimedia
Reference.

Locked and expired

ORDSYS The Oracle Multimedia administrator account.

See Oracle Multimedia User's Guide, Oracle Multimedia
Reference, and Oracle Multimedia DICOM Developer's Guide.

Locked and expired

OUTLN The account that supports plan stability. Plan stability
prevents certain database environment changes from
affecting the performance characteristics of applications by
preserving execution plans in stored outlines. OUTLN acts
as a role to centrally manage metadata associated with
stored outlines.

See Oracle Database Performance Tuning Guide.

Locked and expired

SI_INFORMTN_SCHEMA The account that stores the information views for the
SQL/MM Still Image Standard.

See Oracle Multimedia User's Guide and Oracle Multimedia
Reference.

Locked and expired

Table 3–1 (Cont.) Predefined Oracle Database Administrative User Accounts

User Account Description Status After Installation

Predefined User Accounts Provided by Oracle Database

3-4 Oracle Database 2 Day + Security Guide

Predefined Non-Administrative User Accounts
Table 3–2 lists default non-administrative user accounts that are created when you
install Oracle Database. Non-administrative user accounts only have the minimum
privileges needed to perform their jobs. Their default tablespace is USERS.

To protect these accounts from unauthorized access, the installation process locks and
expires these accounts immediately after installation, except where noted in Table 3–2.
As the database administrator, you are responsible for unlocking and resetting these
accounts, as described in "Expiring and Locking Database Accounts" on page 3-7.

SYS An account used to perform database administration tasks.

See Oracle Database 2 Day DBA.

Open

SYSMAN The account used to perform Oracle Enterprise Manager
database administration tasks. The SYS and SYSTEM
accounts can also perform these tasks.

See Oracle Enterprise Manager Grid Control Installation and
Basic Configuration.

Open

SYSTEM An account used to perform database administration tasks.

See Oracle Database 2 Day DBA.

Open

WMSYS The account used to store Ultra Search system dictionaries
and PL/SQL packages.

Ultra Search provides uniform search-and-location
capabilities over multiple repositories, such as Oracle
databases, other ODBC compliant databases, IMAP mail
servers, HTML documents managed by a Web server, files
on disk, and more.

See Oracle Ultra Search Administrator's Guide.

Locked and expired

XDB The account used for storing Oracle XML DB data and
metadata.

Oracle XML DB provides high-performance XML storage
and retrieval for Oracle Database data.

See Oracle XML DB Developer's Guide.

Locked and expired

Table 3–1 (Cont.) Predefined Oracle Database Administrative User Accounts

User Account Description Status After Installation

Predefined User Accounts Provided by Oracle Database

Securing Oracle Database User Accounts 3-5

Table 3–2 Predefined Oracle Database Non-Administrative User Accounts

User Account Description Status After Installation

APEX_PUBLIC_USER The Oracle Database Application Express account. Use
this account to specify the Oracle schema used to
connect to the database through the database access
descriptor (DAD).

Oracle Application Express is a rapid, Web application
development tool for Oracle Database.

See Oracle Database Application Express User's Guide.

Locked and expired

DIP The Oracle Directory Integration and Provisioning
(DIP) account that is installed with Oracle Label
Security. This profile is created automatically as part of
the installation process for Oracle Internet
Directory-enabled Oracle Label Security.

See Oracle Label Security Administrator's Guide.

Open

FLOWS_020200 The account that owns most of the database objects
created during the installation of Oracle Database
Application Express. These objects include tables,
views, triggers, indexes, packages, and so on.

See Oracle Database Application Express User's Guide.

Locked and expired

FLOWS_FILES The account that owns the database objects created
during the installation of Oracle Database Application
Express related to modplsql document conveyance, for
example, file uploads and downloads. These objects
include tables, views, triggers, indexes, packages, and
so on.

See Oracle Database Application Express User's Guide.

Locked and expired

MDDATA The schema used by Oracle Spatial for storing
Geocoder and router data.

Oracle Spatial provides a SQL schema and functions
that enable you to store, retrieve, update, and query
collections of spatial features in an Oracle database.

See Oracle Spatial Developer's Guide.

Locked and expired

ORACLE_OCM The account used with Oracle Configuration Manager.
This feature enables you to associate the configuration
information for the current Oracle Database instance
with OracleMetaLink. Then when you log a service
request, it is associated with the database instance
configuration information.

See Oracle Database Installation Guide for your platform.

Locked and expired

PUBLIC Account used for the PUBLIC user group.

Oracle Universal Installer does not lock or expire this
account upon installation. Its status is OPEN.

See Oracle Database Security Guide.

Locked and expired

Predefined User Accounts Provided by Oracle Database

3-6 Oracle Database 2 Day + Security Guide

Predefined Sample Schema User Accounts
If you install the sample schemas, which you must do to complete the examples in this
guide, Oracle Database creates a set of sample user accounts. The sample schema user
accounts are all non-administrative accounts, and their tablespace is USERS.

To protect these accounts from unauthorized access, the installation process locks and
expires these accounts immediately after installation. As the database administrator,
you are responsible for unlocking and resetting these accounts, as described in
"Expiring and Locking Database Accounts" on page 3-7. For more information about
the sample schema accounts, see Oracle Database Sample Schemas.

Table 3–3 lists the sample schema user accounts, which represent different divisions of
a fictional company that manufactures various products.

SPATIAL_CSW_ADMIN_USR The Catalog Services for the Web (CSW) account. It is
used by Oracle Spatial CSW Cache Manager to load all
record-type metadata and record instances from the
database into the main memory for the record types
that are cached.

See Oracle Spatial Developer's Guide.

Locked and expired

SPATIAL_WFS_ADMIN_USR The Web Feature Service (WFS) account. It is used by
Oracle Spatial WFS Cache Manager to load all feature
type metadata and feature instances from the database
into main memory for the feature types that are cached.

See Oracle Spatial Developer's Guide.

Locked and expired

XS$NULL An internal account that represents the absence of a
user in a session. Because XS$NULL is not a user, this
account can only be accessed by the Oracle Database
instance. XS$NULL has no privileges and no one can
authenticate as XS$NULL, nor can authentication
credentials ever be assigned to XS$NULL.

Locked and expired

Table 3–3 Default Sample Schema User Accounts

User Account Description Status After Installation

BI The account that owns the BI (Business Intelligence) schema
included in the Oracle Sample Schemas.

See also Oracle Warehouse Builder User's Guide.

Locked and expired

HR The account used to manage the HR (Human Resources) schema. This
schema stores information about the employees and the facilities of
the company.

Locked and expired

OE The account used to manage the OE (Order Entry) schema. This
schema stores product inventories and sales of the company’s
products through various channels.

Locked and expired

PM The account used to manage the PM (Product Media) schema. This
schema contains descriptions and detailed information about each
product sold by the company.

Locked and expired

IX The account used to manage the IX (Information Exchange) schema.
This schema manages shipping through business-to-business (B2B)
applications.

Locked and expired

SH The account used to manage the SH (Sales) schema. This schema
stores business statistics to facilitate business decisions.

Locked and expired

Table 3–2 (Cont.) Predefined Oracle Database Non-Administrative User Accounts

User Account Description Status After Installation

Expiring and Locking Database Accounts

Securing Oracle Database User Accounts 3-7

In addition to the sample schema accounts, Oracle Database provides another sample
schema account, SCOTT. The SCOTT schema contains the tables EMP, DEPT,
SALGRADE, and BONUS. The SCOTT account is used in examples throughout the Oracle
Database documentation set. When you install Oracle Database, the SCOTT account is
locked and expired.

Expiring and Locking Database Accounts
Oracle Database 2 Day DBA explains how you can use Database Control to unlock
database accounts. You also can use Database Control to expire or lock database
accounts.

When you expire the password of a user, that password no longer exists. If you want
to unexpire the password, you change the password of that account. Locking an
account preserves the user password, as well as other account information, but makes
the account unavailable to anyone who tries to log in to the database using that
account. Unlocking it makes the account available again.

To expire and lock a database account:
1. Start Database Control.

See Oracle Database 2 Day DBA for instructions about how to start Database
Control.

2. Log in with administrative privileges.

For example:

The Database Home page appears.

3. Click Server to display the Server subpage.

4. In the Security section, click Users.

The Users page lists the user accounts created for the current database instance.
The Account Status column indicates whether an account is expired, locked, or
open.

5. In the Select column, select the account you want to expire, and then click Edit.

The Edit User page appears.

6. Do one of the following:

■ To expire a password, click Expire Password now.

To unexpire the password, enter a new password in the Enter Password and
Confirm Password fields. See "Requirements for Creating Passwords" on
page 3-8 for password requirements.

■ To lock the account, select Locked.

7. Click Apply.

Requirements for Creating Passwords

3-8 Oracle Database 2 Day + Security Guide

Requirements for Creating Passwords
When you create a user account, Oracle Database assigns a default password policy for
that user. The password policy defines rules for how the password should be created,
such as a minimum number of characters, when it expires, and so on. You can
strengthen passwords by using password policies.

Oracle Database Security Guide provides guidelines for securing passwords. At a
minimum, passwords must meet the following requirements:

■ The password contains no fewer than eight characters.

■ The password is not the same as the user name, nor is it the user name spelled
backward or with numeric characters appended.

■ The password is not the same as the server name or the server name with the
numbers 1–100 appended.

■ The password is not too simple, for example, welcome1, database1, account1,
user1234, password1, oracle, oracle123, computer1, abcdefg1, or
change_on_install.

■ The password includes at least 1 numeric and 1 alphabetic character.

■ The password differs from the previous password by at least 3 letters.

Finding and Changing Default Passwords
In Oracle Database 11g Release 1 (11.1), database user accounts, including
administrative accounts, are installed without default passwords. During installation,
you either create a password the account (always an administrative account), or Oracle
Database installs the default accounts, such as those in the sample schemas, locked
with their passwords expired.

If you have upgraded from a previous release of Oracle Database, you may have
database accounts that have default passwords. These are default accounts that are
created when you create a database, such as the HR, OE, and SCOTT accounts.

Security is most easily compromised when a default database user account still has a
default password after installation. This is particularly true for the user account SCOTT,
which is a well known account that may be vulnerable to intruders. Find accounts that
use default passwords and then change their passwords.

See Also:

■ "Finding and Changing Default Passwords" on page 3-8 for
information about changing user passwords

■ "Expiring and Locking Database Accounts" on page 3-7 for
information about locking accounts and expiring passwords

■ "Predefined User Accounts Provided by Oracle Database" on
page 3-2 a description of the predefined user accounts that are
created when you install Oracle Database

■ Oracle Database 2 Day DBA for an introduction to password
policies

■ Oracle Database Security Guide for detailed information about
managing passwords

■ Oracle Database Security Guide for additional guidelines on
choosing secure passwords

Finding and Changing Default Passwords

Securing Oracle Database User Accounts 3-9

To find and change default passwords:
1. Log into SQL*Plus with administrative privileges.

sqlplus system
Enter password: password

2. Select from the DBA_USERS_WITH_DEFPWD data dictionary view.

SELECT * FROM DBA_USERS_WTIH_DEFWD;

The DBA_USERS_WITH_DEFPWD lists the accounts that still have user default
passwords. For example:

USERNAME

SCOTT

3. Change the password for the accounts the DBA_USERS_WITH_DEFPWD data
dictionary view lists.

PASSWORD SCOTT
Changing password for SCOTT
New password: password
Retype new password: password
Password changed

Replace password with a password that is secure, according to the guidelines
listed in "Requirements for Creating Passwords" on page 3-8.

Alternatively, you can use the ALTER USER SQL statement to change the
password:

ALTER USER SCOTT IDENTIFIED BY password;

You can use Database Control to change a user account passwords (not just the default
user account passwords) if you have administrative privileges. Individual users can
also use Database Control to change their own passwords.

To use Database Control to change the password of a database account:
1. Start Database Control.

See Oracle Database 2 Day DBA for instructions about how to start Database
Control.

2. Enter an administrator user name and password (for example, SYSTEM), and then
click Login.

3. Click Server to display the Server subpage.

4. In the Security section, click Users.

The Users page lists the user accounts created for the current database instance.
The Account Status column indicates whether an account is expired, locked, or
open.

5. In the Select column, select the account you want to change, and then click Edit.

The Edit User page appears.

6. Enter a new password in the Enter Password and Confirm Password fields.

7. Click Apply.

Changing the Default Administrative User Passwords

3-10 Oracle Database 2 Day + Security Guide

Changing the Default Administrative User Passwords
You can use the same or different passwords for the SYS, SYSTEM, SYSMAN, and
DBSNMP administrative accounts. Oracle recommends that you use different
passwords for each. In any Oracle Database environment (production or test), assign
strong, secure, and distinct passwords to these administrative accounts. If you use
Database Configuration Assistant to create a new database, then it requires you to
create passwords for the SYS and SYSTEM accounts.

Similarly, for production environments, do not use default passwords for any
administrative accounts, including SYSMAN and DBSNMP. Oracle Database 11g Release
1 (11.1) does not install these accounts with default passwords, but if you have
upgraded from an earlier release of Oracle Database, you may still have accounts that
use default passwords. You should find and change these accounts by using the
procedures in "Finding and Changing Default Passwords" on page 3-8.

At the end of database creation, Database Configuration Assistant displays a page that
requires you to enter and confirm new passwords for the SYS and SYSTEM user
accounts.

Enforcing Password Management
Apply basic password management rules (such as password length, history,
complexity, and so forth) to all user passwords. Oracle Database has password policies
enabled for the default profile. "Requirements for Creating Passwords" on page 3-8
provides guidelines for creating password policies. Table 3–4 on page 3-11 lists
initialization parameters that you can set to enforce password management.

You can find information about user accounts by querying the DBA_USERS view. This
view contains a column for passwords, but for stronger security, Oracle Database
encrypts (disguises) the data in this column. The DBA_USERS view provides useful
information such as the user account status, whether or not the account is locked, and
password versions. You can query DBA_USERS as follows:

sqlplus SYSTEM
Enter password: password
Connected.
SQL> SELECT * FROM DBA_USERS;

Oracle also recommends, if possible, using Oracle Advanced Security (an option to
Oracle Database Enterprise Edition) with network authentication services (such as
Kerberos), token cards, smart cards, or X.509 certificates. These services provide strong
authentication of users, and provide better protection against unauthorized access to
Oracle Database.

See Also:

■ Oracle Database Security Guide for additional methods of
configuring password protection

■ "Predefined User Accounts Provided by Oracle Database" on
page 3-2

Initialization Parameters Used to Secure User Accounts

Securing Oracle Database User Accounts 3-11

Initialization Parameters Used to Secure User Accounts
Table 3–4 lists initialization parameters that you can set to better secure user accounts.

To modify an initialization parameter, see "Modifying the Value of an Initialization
Parameter" on page 2-6. For detailed information about initialization parameters, see
Oracle Database Reference andOracle Database Administrator's Guide.

See Also:

■ Oracle Database Security Guide for more information about
password management

■ Oracle Database Security Guide for additional views you can query
to find information about users and profiles

■ Oracle Database Advanced Security Administrator's Guide for more
information about Oracle Database Advanced Security

Table 3–4 Initialization Parameters Used for User Account Security

Initialization Parameter Default Setting Description

SEC_CASE_SENSITIVE_LOGON TRUE Controls case sensitivity in passwords. TRUE
enables case sensitivity; FALSE disables it.

SEC_MAX_FAILED_LOGIN_ATTEMPTS No default setting Sets the maximum number of times a user is
allowed to fail when connecting to an application.

FAILED_LOGIN_ATTEMPTS 10 Sets the maximum times a user login is allowed to
fail before locking the account.

Note: You also can set limits on the number of
times an unauthorized user (possibly an intruder)
attempts to log in to Oracle Call Interface
applications by using the SEC_MAX_FAILED_
LOGIN_ATTEMPTS initialization parameter.

PASSWORD_GRACE_TIME 7 Sets the number of days that a user has to change
his or her password before it expires.

PASSWORD_LIFE_TIME 180 Sets the number of days the user can use his or
her current password.

PASSWORD_LOCK_TIME 1 Sets the number of days an account will be locked
after the specified number of consecutive failed
login attempts.

PASSWORD_REUSE_MAX UNLIMITED Sets the number of days before which a password
cannot be reused.

PASSWORD_REUSE_TIME UNLIMITED Sets the number of password changes required
before the current password can be reused.

Initialization Parameters Used to Secure User Accounts

3-12 Oracle Database 2 Day + Security Guide

Managing User Privileges 4-1

4
Managing User Privileges

A privilege refers to the rights of a user to perform an action. This chapter describes
how to manage user privileges.

This chapter contains the following topics:

■ About Privilege Management

■ Granting Necessary Privileges Only

■ Revoking Privileges from the PUBLIC User Group

■ Granting Roles to Users

■ Controlling Access to Applications with Secure Application Roles

■ Initialization Parameters Used for Privilege Security

About Privilege Management
You can control user privileges in the following ways:

■ Granting and revoking individual privileges. You can grant individual
privileges, for example, the privilege to perform the UPDATE SQL statement, to
individual users or to groups of users.

■ Creating a role and assigning privileges to it. A role is a named group of related
privileges that you grant, as a group, to users or other roles.

■ Creating a secure application role. A secure application role enables you to
authenticate users based on conditions defined in a PL/SQL package. For
example, a secure application role can be used to check the session ID of a user
before being allowed to log in to an application.

Granting Necessary Privileges Only
Because privileges are the rights to perform a specific action, such as updating or
deleting a table, do not provide database users more privileges than are necessary. For
an introduction to managing privileges, see "About User Privileges and Roles" in
Oracle Database 2 Day DBA. Oracle Database 2 Day DBA also provides an example of
how to grant a privilege.

See Also:

■ Oracle Database Security Guide

■ Oracle Label Security Administrator's Guide

Revoking Privileges from the PUBLIC User Group

4-2 Oracle Database 2 Day + Security Guide

In other words, the principle of least privilege is that users be given only those privileges
that are actually required to efficiently perform their jobs. To implement this principle,
restrict the following as much as possible:

■ The number of SYSTEM and OBJECT privileges granted to database users

■ The number of people who are allowed to make SYS-privileged connections to the
database

For example, generally the CREATE ANY TABLE privilege is not granted to a user who
does not have database administrator privileges.

Revoking Privileges from the PUBLIC User Group
You should revoke unnecessary privileges and roles from the database server user
group PUBLIC. PUBLIC acts as a default role granted to every user in an Oracle
database. Any database user can exercise privileges that are granted to PUBLIC. These
privileges include EXECUTE on various PL/SQL packages, potentially enabling
someone with minimal privileges to access and execute functions that this user would
not otherwise be permitted to access directly.

Granting Roles to Users
A role is a named group of related privileges that you grant, as a group, to users or
other roles. To learn the fundamentals of managing roles, see "Administering Roles" in
Oracle Database 2 Day DBA. In addition, see "Example: Creating a Role" in Oracle
Database 2 Day DBA.

Roles are useful for quickly and easily granting permissions to users. Although you
can use Oracle Database-defined roles, you have more control and continuity if you
create your own roles that contain only the privileges pertaining to your requirements.
Oracle may change or remove the privileges in an Oracle Database-defined role, as it
has with the CONNECT role, which now has only the CREATE SESSION privilege.
Formerly, this role had eight other privileges.

Ensure that the roles you define contain only the privileges required for the
responsibility of a particular job. If your application users do not need all the
privileges encompassed by an existing role, then apply a different set of roles that
supply just the correct privileges. Alternatively, create and assign a more restrictive
role.

For example, it is imperative to strictly limit the privileges of user SCOTT, because this
is a well known default user account that may be vulnerable to intruders. Because the
CREATE DBLINK privilege allows access from one database to another, drop its
privilege for SCOTT. Then, drop the entire role for the user, because privileges
acquired through a role cannot be dropped individually. Recreate your own role with
only the privileges needed, and grant that new role to that user. Similarly, for even
better security, drop the CREATE DBLINK privilege from all users who do not require
it.

Controlling Access to Applications with Secure Application Roles

Managing User Privileges 4-3

Controlling Access to Applications with Secure Application Roles
A secure application role is a role that can be enabled only by an authorized PL/SQL
package. The PL/SQL package itself reflects the security policies necessary to control
access to the application.

This section includes the following topics:

■ About Secure Application Roles

■ Example: Creating a Secure Application Role

About Secure Application Roles
A secure application role is a role that can be enabled only by an authorized PL/SQL
package. This package defines one or more security policies that control access to the
application. Both the role and the package are typically created in the schema of the
security administrator.

The advantage of using a secure application role is you can create additional layers of
security for application access, in addition to the privileges that were granted to the
role itself. Secure application roles strengthen security because passwords are not
embedded in application source code or stored in a table. This way, the decisions the
database makes are based on the implementation of your security policies. Because
these definitions are stored in one place, the database, rather than in your applications,
you modify this policy once instead of modifying the policy in each application. No
matter how many users connect to the database, the result is always the same, because
the policy is bound to the role.

A secure application role has the following components:

■ The secure application role itself. You create the role using the CREATE ROLE
statement with the IDENTIFIED USING clause to associate it with the PL/SQL
package. Then, you grant the role the privileges you typically grant a role.

Do not grant the role directly to the user; the PL/SQL package will do that for you.
However, if the policy for your site is to grant roles to users, you can grant the
secure application role to the user if you alter the user account to not have any
default roles. For example:

ALTER USER psmith DEFAULT ROLE NONE;

■ A PL/SQL package, procedure, or function associated with the secure
application role. The PL/SQL package sets a condition that either grants the role
or denies the role to the person trying to log in to the database. You must create
the PL/SQL package, procedure, or function using invoker’s rights, not definer’s
rights. Invoker’s rights enable the user to have EXECUTE privileges on all objects
that the package accesses. An invoker’s right procedure executes with the
privileges of the current user, that is, the user who invokes the procedure. These
procedures are not bound to a particular schema. They can be run by a variety of
users and enable multiple users to manage their own data by using centralized
application logic. To create the invoker’s rights package, use the AUTHID
CURRENT_USER clause in the declaration section of the procedure code.

The PL/SQL package also must contain a DBMS_SESSION.SET_ROLE call to
enable (or disable) the role for the user.

After you create the PL/SQL package, you need to grant the appropriate users
EXECUTE privileges on the package.

Controlling Access to Applications with Secure Application Roles

4-4 Oracle Database 2 Day + Security Guide

■ A way to execute the PL/SQL package when the user logs on. You can use a
logon trigger to execute the PL/SQL package automatically when the user logs on.

When a user logs in to the application, the policies in the package perform the checks
as needed. If the user passes the checks, then the role is granted, which enables access
to the application. If the user fails the checks, then the user is prevented from accessing
the application. You can include auditing checks in the security policy to record this
information, which is a way to track potential intruders.

Example: Creating a Secure Application Role
This example shows how two employees, Matthew Weiss and Winston Taylor, try to
gain information from the OE.ORDERS table. Access rights to this table are defined in
the EMPLOYEE_ROLE secure application role. Matthew is Winston’s manager, so
Matthew, as opposed to Winston, will be able to access the information in OE.ORDERS.

Follow these steps to complete this example:

■ Step 1: Create a Security Administrator Account

■ Step 2: Create User Accounts for This Example

■ Step 3: Create the Secure Application Role

■ Step 4: Create a Lookup Table

■ Step 5: Create the PL/SQL Package to Set the Secure Application Role

■ Step 6: Grant EXECUTE Privileges for the Procedure to Matthew and Winston

■ Step 7: Test the EMPLOYEE_ROLE Secure Application Role

■ Step 8: Optionally, Remove the Components for This Example

Step 1: Create a Security Administrator Account
For greater security, you should apply separation of duty concepts when you assign
responsibilities to the system administrators on your staff. For the examples used in
this guide, you will create and use a security administrator account called sec_
admin.

To create the sec_admin security administrator account:
1. Start Database Control.

See Oracle Database 2 Day DBA for instructions about how to start Database
Control.

2. Enter an administrator user name (for example, SYSTEM) and password, and then
click Login.

The Database Home page appears.

3. Click Server to display the Server subpage.

4. Under Security, select Users.

The Users page appears.

5. Click Create.

The Create User page appears.

6. Enter the following information:

■ Name: sec_admin

Controlling Access to Applications with Secure Application Roles

Managing User Privileges 4-5

■ Profile: Default

■ Authentication: Password

■ Enter Password and Confirm Password: fussy2all

■ Default Tablespace: SYSTEM

■ Temporary Tablespace: TEMP

■ Status: Unlocked

7. Click System Privileges to display the System Privileges subpage.

8. Click Edit List.

The Modify System Privileges page appears.

9. In the Available System Privileges list, select the following privileges and then
click Move to move each one to the Selected System Privileges list. (Hold down
the Control key to select multiple privileges.)

■ CREATE PROCEDURE

■ CREATE ROLE

■ CREATE SESSION

■ DROP ANY PROCEDURE

■ DROP ANY ROLE

■ SELECT ANY DICTIONARY

10. Click OK.

11. Under Admin Option, do not select the check boxes.

12. Click OK.

Step 2: Create User Accounts for This Example
Matthew and Winston both are sample employees in the HR.EMPLOYEES schema,
which provides columns for the manager ID and e-mail address of the employees,
among other information. You must create user accounts for these two employees so
that they can later test the secure application role.

To create the user accounts:
1. In Database Control, select the Database Instance link to display the Database

Home page.

If you are not logged in to Database Control, see Oracle Database 2 Day DBA for
instructions about how to start Database Control. In the Login page, enter an
administrator user name (for example, SYSTEM) and password, and then click
Login.

2. Click Server to display the Server subpage.

3. Under Security, select Users.

The Users page appears.

4. Click Create.

The Create User page appears.

5. Enter the following information:

Controlling Access to Applications with Secure Application Roles

4-6 Oracle Database 2 Day + Security Guide

■ Name: mweiss (to create the user account for Matthew Weiss)

■ Profile: DEFAULT

■ Authentication: Password

■ Enter Password and Confirm Password: mw2work_now

■ Default Tablespace: USERS

■ Temporary Tablespace: TEMP

■ Status: Unlocked

6. Click System Privileges to display the System Privileges subpage.

7. Click Edit List.

The Modify System Privileges page appears.

8. In the Available System Privileges lists, select the CREATE SESSION privilege,
and then click Move to move it to the Selected System Privileges list.

9. Click OK.

The Create User page appears, with CREATE SESSION listed as the system
privilege for user mweiss.

10. Ensure that the Admin Option for CREATE SESSION is not selected, and then
click OK.

The Users page appears.

11. Select MWEISS from the list of users, and then from the Actions list, select Create
Like. Then, click Go.

12. In the Create User page, enter the following information to create the user account
for Winston, which will be almost identical to the user account for Matthew:

■ Name: wtaylor

■ Enter Password and Confirm Password: wt4today_always

13. Click OK.

You do not need to grant wtaylor the CREATE SESSION privilege, because the
Create Like action has done of this for you.

14. Exit Database Control.

Now both Matthew Weiss and Winston Taylor have user accounts that have identical
privileges.

Step 3: Create the Secure Application Role
Now, you are ready to create the employee_role secure application role. To do so,
you need to log on as the security administrator sec_admin. "Step 1: Create a Security
Administrator Account" on page 4-4 explains how to create the sec_admin account.

To create the secure application role:
1. Start SQL*Plus and log on as the security administrator sec_admin.

SQLPLUS sec_admin
Enter password: fussy2all

SQL*Plus starts, connects to the default database, and then displays a prompt.

SQL>

Controlling Access to Applications with Secure Application Roles

Managing User Privileges 4-7

For detailed information about starting SQL*Plus, see Oracle Database 2 Day DBA.

2. Create the following secure application role:

CREATE ROLE employee_role IDENTIFIED USING sec_roles;

The IDENTIFIED USING clause sets the role to be enabled (or disabled) only
within the associated PL/SQL package, in this case, sec_roles. At this stage, the
sec_roles PL/SQL package does not need to exist.

3. Connect as user OE.

CONNECT oe
Enter password: password

If you receive an error message saying that OE is locked, then you can unlock the
OE account and reset its password by entering the following statements. The
password ready2go is an example, but you can enter any password that is secure,
according to the password guidelines described in "Requirements for Creating
Passwords" on page 3-8.

CONNECT system
Enter password: sys_password
ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY ready2go;
CONNECT oe
Enter password: ready2go

4. Enter the following statement to grant the EMPLOYEE_ROLE role SELECT
privileges on the OE.ORDERS table.

GRANT SELECT ON oe.orders TO employee_role;

Do not grant the role directly to the user. The PL/SQL package will do that for
you, assuming the user passes its security policies. If your site requires that you
directly grant users the role, then you must disable the role for that user. This is
because the role needs to be initially disabled before the security policies in the
package can begin performing their checks. For example, to disable the role for
user wsmith (assuming wsmith was granted the role in the first place), enter the
following statement:

ALTER USER wsmith DEFAULT ROLE NONE;

Step 4: Create a Lookup Table
You are almost ready to create the procedure that determines who is granted the
employee_role role. The procedure will grant the employee_role only to
managers who report to Steven King, whose employee ID is 100. This information is
located in the HR.EMPLOYEES table. However, you should not use that table in this
procedure, because it contains sensitive data such as salary information, and for it to
be used, everyone will need access to it. To get around this problem, you can create a
lookup table that only contains the employee names, employee IDs, and their manager
IDs.

To create the HR.HR_VERIFY lookup table:
1. In SQL*Plus, connect as user HR.

CONNECT hr
Enter password: password

Controlling Access to Applications with Secure Application Roles

4-8 Oracle Database 2 Day + Security Guide

If you receive an error message saying that HR is locked, then you can unlock the
account and reset its password by entering the following statements. Enter any
password that is secure, according to the password guidelines described in
"Requirements for Creating Passwords" on page 3-8.

CONNECT SYSTEM
Enter password: sys_password
ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;
CONNECT hr
Enter password: password

2. Enter the following CREATE TABLE SQL statement to create the lookup table:

CREATE table hr_verify AS
SELECT employee_id, first_name, last_name, email, manager_id
FROM employees;
/

3. Grant EXECUTE privileges for this table to mweiss and wtaylor by entering the
following SQL statements:

GRANT SELECT ON hr.hr_verify TO mweiss;
GRANT SELECT ON hr.hr_verify TO wtaylor;
GRANT SELECT ON hr.hr_verify TO sec_admin;

Step 5: Create the PL/SQL Package to Set the Secure Application Role
Now, you are ready to create the secure application role procedure. In most cases, you
create a package to hold the procedure, but because this is a simple example that
requires only one secure application role test (as defined in the procedure), you will
create a procedure by itself. If you want to have a series of procedures to test for the
role, create them in a package.

A PL/SQL package defines a simple, clear interface to a set of related procedures and
types that can be accessed by SQL statements. Packages also make code more reusable
and easier to maintain. The advantage here for secure application roles is that you can
create a group of security policies that, used together, present a solid security strategy
designed to protect your applications. For users (or potential intruders) who fail the
security policies, you can add auditing checks to the package to record the failure.

To create the secure application role procedure:
1. In SQL*Plus, connect as user sec_admin, whose password is fussy2all.

CONNECT sec_admin
Enter password: fussy2all

2. Enter the following CREATE PROCEDURE statement to create the secure
application role procedure:

SQL> CREATE OR REPLACE procedure sec_roles AUTHID CURRENT_USER
 2 AS
 3 v_user varchar2(50);
 4 v_manager_id number :=1;
 5 BEGIN
 6 v_user := lower((sys_context ('userenv','session_user')));
 7 SELECT manager_id
 8 INTO v_manager_id FROM hr.hr_verify WHERE lower(email)=v_user;
 9 IF v_manager_id = 100
 10 THEN
 11 DBMS_SESSION.SET_ROLE('employee_role');

Controlling Access to Applications with Secure Application Roles

Managing User Privileges 4-9

 12 ELSE NULL;
 13 END IF;
 14 EXCEPTION
 15 WHEN NO_DATA_FOUND THEN v_manager_id:=0;
 16 DBMS_OUTPUT.PUT_LINE(v_manager_id);
 17 END;
 18 /

In this example:

■ Line 1: Appends the AUTHID CURRENT_USER clause to the CREATE
PROCEDURE statement, which creates the procedure using invoker’s rights.
The AUTHID CURRENT_USER clause creates the package using invoker’s
rights, using the privileges of the current user.

You must create the package using invoker’s rights for the package to work.
Invoker’s rights allow the user to have EXECUTE privileges on all objects that
the package accesses.

Roles that are enabled inside an invoker's right procedure remain in effect
even after the procedure exits, but after the user exits the session, he or she no
longer has the privileges associated with the secure application role. In this
case, you can have a dedicated procedure that enables the role for the rest of
the session.

Because users cannot change the security domain inside definer's rights
procedures, secure application roles can only be enabled inside invoker’s
rights procedures.

See "About Secure Application Roles" on page 4-3 for information about the
importance of creating the procedure using invoker’s rights.

■ Line3: Declares the v_user variable, which will store the user session
information.

■ Line 4: Declares the v_manager_id variable, which will store the manager’s
ID of the v_user user.

■ Line 6: Retrieves the user session information for the user logging on, in this
case, Matthew or Winston. To retrieve user session information, use the SYS_
CONTEXT SQL function with the USERENV namespace attributes ('userenv',
session_attribute), and the write this information to the v_user
variable.

The information returned by this function indicates the way in which the user
was authenticated, the IP address of the client, and whether the user
connected through a proxy. See Oracle Database SQL Language Reference for
more information about SYS_CONTEXT.

■ Lines 7–8: Get the manager’s ID of the current user. The SELECT statement
copies the manager ID into the v_manager_id variable, and then checking
the HR.HR_VERIFY table for the manager ID of the current user.

■ Lines 9–13: Use an IF condition to test whether or not the user should be
granted the sec_roles role. In this case, the test condition is whether the
user reports to Matthew’s manager, Steven King, whose employee number is
100. If the user reports to King, as Matthew does, then the secure application
role is granted to the user. Otherwise, the role is not granted.

The result is that the secure application role will grant Matthew Weiss the role
because he is a direct report of Steven King, but will deny the role to Winston,
because he is not a direct report of Steven King.

Controlling Access to Applications with Secure Application Roles

4-10 Oracle Database 2 Day + Security Guide

■ Lines 10–12: Within the IF condition, the THEN condition grants the role by
using DBMS_SESSION.SET_ROLE. Otherwise, its ELSE condition denies the
grant.

■ Lines 14–15: Use an EXCEPTION statement to set v_manager_id to 0 if no
data is found.

■ Line 16: Copies the manager’s ID into a buffer so that it is readily available.

Step 6: Grant EXECUTE Privileges for the Procedure to Matthew and Winston
At this stage, Matthew and Winston can try to access the OE.ORDERS table, but they
are not able to, even if they should. The next step is to grant them EXECUTE privileges
on the sec_roles procedure, so that the sec_roles procedure can execute, and
then grant or deny access, when they try to select from the OE.ORDERS table.

To grant EXECUTE privileges for the sec_roles procedure:
■ In SQL*Plus, as user sec_admin, enter the following GRANT SQL statements:

GRANT EXECUTE ON sec_admin.sec_roles TO mweiss;
GRANT EXECUTE ON sec_admin.sec_roles TO wtaylor;

Step 7: Test the EMPLOYEE_ROLE Secure Application Role
You are ready to test the employee_role secure application role by logging on as
Matthew and Winston and trying to access the OE.ORDERS table. When Matthew and
Winston log on, and before they issue a SELECT statement on the OE.ORDERS table,
the sec_roles procedure must be executed for the role verification to take place.

To test the employee_role secure application role, as user MWEISS:
1. Connect as user mweiss, whose password is mw2work_now.

CONNECT mweiss
Enter password: mw2work_now

2. Enter the following SQL statement to run the sec_roles procedure:

EXEC sec_admin.sec_roles;

This statement executes the sec_roles procedure for the current session.

3. Perform the following SELECT statement on the OE.ORDERS table:

SELECT count(*) FROM oe.orders;

Matthew has access to the OE.ORDERS table:

 COUNT(*)

 105

Now, Winston will try to access the secure application.

To test the employee_role secure application role as user WTAYLOR:
1. In SQL*Plus, connect as user wtaylor, whose password is wt4today_always.

CONNECT wtaylor
Enter password: wt4today_always

2. Enter the following SQL statement to run the sec_roles procedure:

EXEC sec_admin.sec_roles;

Controlling Access to Applications with Secure Application Roles

Managing User Privileges 4-11

This statement executes the sec_roles procedure for the current session.

3. Perform the following SELECT statement on the OE.ORDERS table:

SELECT count(*) FROM oe.orders;

Because Winston does not report directly to Steven King, he does not have access
to the OE.ORDERS table. He will never learn the true number of orders in the
ORDERS table, at least not by performing a SELECT statement on it.

ERROR at line 1:
ORA-00942: table or view does not exist

Step 8: Optionally, Remove the Components for This Example
Remove the components that you created for this example.

To remove the components:
1. In SQL*Plus, connect as SYSTEM.

CONNECT SYSTEM
Enter password: password

2. As user SYSTEM, enter the following DROP statements:

DROP USER mweiss CASCADE;
DROP USER wtaylor CASCADE;

Do not drop user sec_admin. You will need this user for other examples in this
guide.

3. In SQL*Plus, connect as user sec_admin.

CONNECT sec_admin
Enter password: fussy2all

4. Enter the following DROP SQL statements:

DROP ROLE employee_role;
DROP PROCEDURE sec_roles;

5. Connect as user HR, and then drop the HR_VERIFY table.

CONNECT HR
Enter password: hr
DROP TABLE HR_VERIFY;

6. Exit SQL*Plus.

EXIT

Initialization Parameters Used for Privilege Security

4-12 Oracle Database 2 Day + Security Guide

Initialization Parameters Used for Privilege Security
Table 4–1 lists initialization parameters that you can use to secure user privileges.

To modify an initialization parameter, see "Modifying the Value of an Initialization
Parameter" on page 2-6. For detailed information about initialization parameters, see
Oracle Database Reference and Oracle Database Administrator's Guide.

Table 4–1 Initialization Parameters Used for Privilege Security

Initialization Parameter Default Setting Description

O7_DICTIONARY_ACCESSIBILITY FALSE Controls restrictions on SYSTEM privileges. See
"Enabling Data Dictionary Protection" on page 2-4 for
more information about this parameter.

OS_ROLES FALSE Determines whether Oracle or the operating system
identifies and manages the roles of each user name.

MAX_ENABLED_ROLES 30 Specifies the maximum number of database roles that
users can enable, including roles contained within other
roles.

REMOTE_OS_ROLES FALSE Specifies whether or not operating system roles are
allowed for remote clients. The default value, FALSE,
causes Oracle to identify and manage roles for remote
clients.

SQL92_SECURITY FALSE Specifies whether or not users must be granted the
SELECT object privilege to execute UPDATE or DELETE
statements.

Securing the Network 5-1

5
Securing the Network

This chapter describes how you can secure the network for Oracle Database.

This chapter contains the following topics:

■ About Securing the Network

■ Securing the Client Connection on the Network

■ Protecting Data on the Network by Using Network Encryption

■ Initialization Parameters Used for Network Security

About Securing the Network
You can configure the client connection to your Oracle Database installation by
following the procedures in "Configuring the Network Environment" in Oracle
Database 2 Day DBA and the Oracle Database Installation Guide for your platform.
This chapter explains how you can encrypt data as it travels through the network, and
also provides guidelines that you can follow to secure the network connections for
Oracle Database.

Securing the Client Connection on the Network
This section describes how you can improve security for the client connection to
ensure thorough protection. Using SSL is an essential element in these lists, enabling
strict security for authentication and communications.

These guidelines are as follows:

■ Guidelines for Securing Client Connections

■ Securing the Network Connection

■ Securing a Secure Sockets Layer Connection

Securing the Client Connection on the Network

5-2 Oracle Database 2 Day + Security Guide

Guidelines for Securing Client Connections
Because authenticating client computers is problematic over the Internet, typically,
user authentication is performed instead. This approach avoids client system issues
that include falsified IP addresses, compromised operating systems or applications,
and falsified or stolen client system identities. Nevertheless, the following guidelines
improve the security of client connections:

1. Enforce access controls effectively and authenticate clients stringently.

By default, Oracle allows operating system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.
This default restriction prevents a remote user from impersonating another
operating system user over a network connection.

Setting the initialization parameter REMOTE_OS_AUTHENT to TRUE forces the
database to accept the client, operating-system user name received over a
nonsecure connection and use it for account access. (To modify an initialization
parameter, see "Modifying the Value of an Initialization Parameter" on page 2-6.)
Because clients, such as PCs, are not trusted to perform operating system
authentication properly, it is poor security practice to use this feature.

The default setting, REMOTE_OS_AUTHENT = FALSE, creates a more secure
configuration that enforces proper, server-based authentication of clients
connecting to an Oracle database.

Do not alter the default setting of the REMOTE_OS_AUTHENT initialization
parameter, which is FALSE.

Setting this parameter to FALSE does not mean that users cannot connect remotely.
It means that the database will not trust that the client has already authenticated,
and will apply its standard authentication processes.

2. Configure the connection to use Secure Sockets Layer (SSL).

Using SSL communication makes eavesdropping difficult and enables the use of
certificates for user and server authentication. To learn how to configure SSL, see
Oracle Database Advanced Security Administrator's Guide.

3. Set up certificate authentication for clients and servers.

See Oracle Database Advanced Security Administrator's Guide for more information
about ways to manage certificates.

4. Monitor the users who access your systems.

Authenticating client computers over the Internet is problematic. Perform user
authentication instead, which avoids client system issues that include falsified IP
addresses, hacked operating systems or applications, and falsified or stolen client
system identities. The following steps improve client computer security:

a. Configure the connection to use Secure Sockets Layer (SSL). Using SSL
communication makes eavesdropping unfruitful, and enables the use of
certificates for user and server authentication. To learn how to configure SSL,
see Oracle Database Advanced Security Administrator's Guide.

b. Set up certificate authentication for clients and servers so that:

– The organization is identified by unit and certificate issuer, and the user is
identified by distinguished name and certificate issuer.

– Applications test for expired certificates.

– Certificate revocation lists are audited.

Securing the Client Connection on the Network

Securing the Network 5-3

See Oracle Database Advanced Security Administrator's Guide for more
information about ways to manage certificates.

Securing the Network Connection
Protecting the network and its traffic from inappropriate access or modification is the
essence of network security. You should consider all paths the data travels, and assess
the threats that impinge on each path and node. Then, take steps to lessen or eliminate
those threats and the consequences of a breach of security. In addition, monitor and
audit to detect either increased threat levels or successful penetration.

To manage network connections, you can use Oracle Net Manager. For an introduction
to using Oracle Net Manager, see Oracle Database 2 Day DBA. See also Oracle Database
Net Services Administrator's Guide.

 The following practices improve network security:

1. Use Secure Sockets Layer (SSL) when administering the listener.

See "Securing a Secure Sockets Layer Connection" on page 5-5 for more
information.

2. Monitor listener activity.

You can monitor listener activity by using Oracle Enterprise Manager Database
Control. In the Database Control home page, under General, click the link for your
listener. The Listener page appears. This page provides detailed information, such
as the category of alert generated, alert messages, when the alert was triggered,
and so on. This page provides other information, such as performance statistics for
the listener.

3. Prevent online administration by requiring the administrator to have write
privileges on the listener.ora file and the listener password:

a. Add or modify this line in the listener.ora file:

ADMIN_RESTRICTIONS_LISTENER=ON

b. Use RELOAD to reload the configuration.

c. Use SSL when administering the listener, by making the TCPS protocol the
first entry in the address list as follows:

LISTENER=
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=tcps)
 (HOST = ed-pdsun1.us.oracle.com)
 (PORT = 8281)))

To administer the listener remotely, define the listener in the listener.ora
file on the client computer. For example, to access listener USER281 remotely,
use the following configuration:

user281 =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = tcps)
 (HOST = ed-pdsun1.us.oracle.com)
 (PORT = 8281))
)
)

Securing the Client Connection on the Network

5-4 Oracle Database 2 Day + Security Guide

For more information about the parameters in listener.ora, see Oracle Database
Net Services Reference.

4. Do not set the listener password.

Ensure that the password has not been set in the listener.ora file. The local
operating system authentication secures the listener administration. The remote
listener administration is disabled when the password has not been set.

5. When a host has multiple IP addresses associated with multiple NIC cards,
configure the listener to the specific IP address.

This enables the listener to monitor all the IP addresses. You can restrict the
listener to monitor a specific IP address. Oracle recommends that you specify the
specific IP addresses on these types of computers, rather than enabling the listener
to monitor all IP addresses. Restricting the listener to specific IP addresses helps to
prevent an intruder from stealing a TCP end point from the listener process.

6. Restrict the privileges of the listener, so that it cannot read or write files in the
database or the Oracle server address space.

This restriction prevents external procedure agents spawned by the listener (or
procedures executed by an agent) from inheriting the ability to perform read or
write operations. The owner of this separate listener process should not be the
owner that installed Oracle Database or executes the Oracle Database instance
(such as ORACLE, the default owner).

For more information about configuring external procedures in the listener, see
Oracle Database Net Services Administrator's Guide.

7. Because you cannot protect physical addresses when transferring data over the
Internet, use encryption when this data needs to be secure.

See "Protecting Data on the Network by Using Network Encryption" on page 5-7
to learn about how to protect Oracle data over the network. Oracle Database
Advanced Security Administrator's Guide describes network encryption in detail.

8. Use a firewall.

Appropriately placed and configured firewalls can prevent outside access to your
intranet when you allow internal users to have Internet access.

■ Keep the database server behind a firewall. Oracle Database network
infrastructure, Oracle Net (formerly known as Net8 and SQL*Net), provides
support for a variety of firewalls from various vendors. Supported
proxy-enabled firewalls include Gauntlet from Network Associates and
Raptor from Axent. Supported packet-filtering firewalls include PIX Firewall
from Cisco, and supported stateful inspection firewalls (more sophisticated
packet-filtered firewalls) include Firewall-1 from CheckPoint.

■ Ensure that the firewall is placed outside the network to be protected.

■ Configure the firewall to accept only those protocols, applications, or
client/server sources that you know are safe.

■ Use a product such as Oracle Connection Manager to multiplex
multiple-client, network sessions through a single network connection to the
database. It can filter using the source, destination, and host name. This
product enables you to ensure that connections are accepted only from
physically secure terminals or from application Web servers with known IP
addresses. (Filtering using the IP address alone is not enough for
authentication, because it can be falsified.)

Securing the Client Connection on the Network

Securing the Network 5-5

9. Prevent unauthorized administration of the Oracle listener.

Establish a well-formed password for the Oracle listener to prevent remote
configuration of the Oracle listener. See "Requirements for Creating Passwords" on
page 3-8 for advice on the best types of passwords to choose. For more
information about the listener, see Oracle Database Net Services Administrator's
Guide.

10. Check network IP addresses.

Use the Oracle Net valid node checking security feature to allow or deny access to
Oracle server processes from network clients with specified IP addresses. To use
this feature, set the following sqlnet.ora configuration file parameters:

tcp.validnode_checking = YES

tcp.excluded_nodes = {list of IP addresses}

tcp.invited_nodes = {list of IP addresses}

The tcp.validnode_checking parameter enables the feature. The
tcp.excluded_nodes and tcp.invited_nodes parameters deny and enable
specific client IP addresses from making connections to the Oracle listener. This
helps to prevent potential Denial of Service attacks.

You can use Oracle Net Manager to configure these parameters. See Oracle
Database Net Services Administrator's Guide for more information.

11. Encrypt network traffic.

If possible, use Oracle Advanced Security to encrypt network traffic among clients,
databases, and application servers. For an introduction to Oracle network
encryption, see "Protecting Data on the Network by Using Network Encryption"
on page 5-7. For detailed information about network encryption, see Oracle
Database Advanced Security Administrator's Guide.

12. Secure the host operating system (the system on which Oracle Database
resides).

Secure the host operating system by disabling all unnecessary operating system
services. Both UNIX and Windows platforms provide a variety of operating
system services, most of which are not necessary for typical deployments. These
services include FTP, TFTP, TELNET, and so forth. Be sure to close both the UDP
and TCP ports for each service that is being disabled. Disabling one type of port
and not the other does not make the operating system more secure.

Securing a Secure Sockets Layer Connection
Secure Sockets Layer (SSL) is the Internet standard protocol for secure communication,
providing mechanisms for data integrity and data encryption. These mechanisms can
protect the messages sent and received by you or by applications and servers,
supporting secure authentication, authorization, and messaging through certificates
and, if necessary, encryption. Good security practices maximize protection and
minimize gaps or disclosures that threaten security. The following list illustrates the
cautious attention to detail necessary for the successful use of SSL. For detailed
information about Oracle SSL configuration, see Oracle Database Advanced Security
Administrator's Guide.

Securing the Client Connection on the Network

5-6 Oracle Database 2 Day + Security Guide

1. Ensure that configuration files (for example, as for clients and listeners) use the
correct port for SSL, which is the port configured upon installation.

You can run HTTPS on any port, but the standards specify port 443, where any
HTTPS-compliant browser looks by default. The port can also be specified in the
URL, for example,

https://secure.server.com:4445/

If a firewall is in use, then it too must use the same ports for secure (SSL)
communication.

2. Ensure that TCPS is specified as the PROTOCOL in the ADDRESS parameter
in the tnsnames.ora file (typically on the client or in the LDAP directory).

An identical specification must appear in the listener.ora file (typically in the
$ORACLE_HOME/network/admin directory).

3. Ensure that the SSL mode is consistent for both ends of every communication.
For example, the database (on one side) and the user or application (on the
other) must have the same SSL mode.

The mode can specify either client or server authentication (one-way), both client
and server authentication (two-way), or no authentication.

4. Ensure that the server supports the client cipher suites and the certificate key
algorithm in use.

5. Enable DN matching for both the server and client. This prevents the server
from falsifying its identity to the client during connections.

This setting ensures that the server identity is correct by matching its global
database name against the DN from the server certificate.

You can enable DN matching in the tnsnames.ora file. For example:

set:SSL_SERVER_CERT_DN="cn=finance,cn=OracleContext,c=us,o=acme"

Otherwise, a client application would not check the server certificate, which could
allow the server to falsify its identity.

6. Do not remove the encryption from your RSA private key inside your server.key
file, which requires that you enter your pass phrase to read and parse this file.

If you decide your server is secure enough, you can remove the encryption from
the RSA private key while preserving the original file. This enables system startup
scripts to start the database server, because no pass phrase is needed. Ideally,
restrict permissions to the root user only, and have the Web server start as root,
but then run as another user. Otherwise, anyone who gets this key can
impersonate you on the Internet or decrypt the data that was sent to the server.

Note: A server without SSL does not require a pass phrase.

See Also:

■ Oracle Database Advanced Security Administrator's Guide for
general SSL information, including configuration

■ Oracle Database Net Services Reference for TCP-related
parameters in sqlnet.ora

Protecting Data on the Network by Using Network Encryption

Securing the Network 5-7

Protecting Data on the Network by Using Network Encryption
In addition to protecting information by encrypting it at the database level, you need
to protect it as it travels across the network.

This section explores the following topics:

■ About Network Encryption

■ Configuring Network Encryption

About Network Encryption
Network encryption refers to encrypting data as it travels across the network between
the client and server. The reason you should encrypt data at the network level, and not
just the database level, is because data can be exposed on the network level even
though you have carefully encrypted it in the database. For example, an intruder can
use a network packet sniffer to capture information as it travels on the network, and
then spool it to a file for malicious use. Encrypting data on the network prevents this
sort of activity.

To encrypt data on the network, you need the following components:

■ An encryption seed. The encryption seed is a random string of up to 256
characters. It generates the cryptographic keys that disguise data as it travels
across the network.

■ An encryption algorithm. You can specify any of the supported algorithm types:
AES, RC4, DES, or 3DES.

■ Whether the settings apply to a client or server. You need to configure the server
and each client to which it connects.

■ How the client or server should processes the encrypted data. The settings you
select (you have four options) must complement both server and client.

■ A mechanism for configuring the encryption. You can use Oracle Net Manager to
configure the encryption. Alternatively, you can edit the sqlnet.ora
configuration file. Both Oracle Net Manager and the sqlnet.ora file are
available in a default Oracle Database installation.

Configuring Network Encryption
You can configure network encryption by using either Oracle Net Manager or by
editing the sqlnet.ora file. This guide explains how to use Oracle Net Manager to
configure network encryption.

To configure network encryption:
1. On the server computer, start Oracle Net Manager.

■ UNIX: From $ORACLE_HOME/bin, enter the following at the command line:

netmgr

■ Windows: From the Start menu, click All Programs. Then, click Oracle -
HOME_NAME, Configuration and Migration Tools, and then Net Manager

2. From the Oracle Net Configuration navigation tree, expand Local, and then select
Profile.

See Also: Oracle Database Advanced Security Administrator's Guide for
detailed information about network encryption

Protecting Data on the Network by Using Network Encryption

5-8 Oracle Database 2 Day + Security Guide

3. From the list, select Oracle Advanced Security.

4. Under Oracle Advanced Security, select the Encryption tab.

The Encryption settings pane appears.

5. Enter the following settings:

■ Encryption: From the list, select SERVER to configure the network encryption
for the server. (For the client computer, you select CLIENT.)

■ Encryption Type: Select from the following values to specify the actions of the
server (or client) when negotiating encryption and integrity:

– accepted: Service will be active if the other side of the connection specifies
either required or requested, and there is a compatible algorithm available
on the other side; it will otherwise be inactive.

– rejected: Service must not be active, and the connection will fail if the
other side requires.

– requested: Service will be active if the other side of the connection
specifies either accepted, required, or requested, and there is a compatible
algorithm available on the other side; it will otherwise be inactive.

Protecting Data on the Network by Using Network Encryption

Securing the Network 5-9

– required: Service must be active, and the connection will fail if the other
side specifies rejected, or if there is no compatible algorithm on the other
side.

■ Encryption Seed: Enter a random string of up to 256 characters. Oracle
Database uses the encryption seed to generate cryptographic keys. This is
required when either encryption or integrity is enabled.

If you choose to use special characters such as a comma [,] or a right
parenthesis [)] as a part of the Encryption Seed parameter, enclose the value
within single quotation marks.

■ Available Methods: Select one or more of the following algorithms, and use
the move button (>) to move them to the Selected Methods list. The order in
which they appear in the Selected Methods list determines the preferred order
for negotiation. That is, the first algorithm listed is selected first, and so on.

– AES256: Advanced Encryption Standard (AES). AES was approved by the
National Institute of Standards and Technology (NIST) to replace Data
Encryption Standard (DES). AES256 enables you to encrypt a block size of
256 bits.

– RC4_256: Rivest Cipher 4 (RC4), which is the most commonly used stream
cipher that protects protocols such as Secure Sockets Layer (SSL). RC4_256
enables you to encrypt up to 256 bits of data.

– AES192: Enables you to use AES to encrypt a block size of 192 bits.

– 3DES168: Triple Data Encryption Standard (TDES) with a three-key
option. 3DES168 enables you to encrypt up to 168 bits of data.

– AES128: Enables you to use AES to encrypt a block size of 128 bits.

– RC4_128: Enables you to use RC4 to encrypt up to 128 bits of data.

– 3DES112: Enables you to use Triple DES with a two-key (112 bit) option.

– DES: Data Encryption Standard (DES) 56-bit key. Note that National
Institute of Standards and Technology (NIST) no longer recommends DES.

– RC4_40: Enables you to use RC4 to encrypt up to 40 bits of data.

– DES40: Enables you to use DES to encrypt up to 40 bits of data.

6. From the File menu, select Save Network Configuration, and then select Exit to
exit Oracle Net Manager.

7. Repeat these steps for each client computer that connects to the server.

See Also:

■ Oracle Database Net Services Reference for information about editing
the sqlnet.ora file parameters to configure network encryption

■ Oracle Database Advanced Security Administrator's Guide for more
information about network data encryption

Initialization Parameters Used for Network Security

5-10 Oracle Database 2 Day + Security Guide

Initialization Parameters Used for Network Security
Table 5–1 lists initialization parameters that you can set to better secure user accounts.

To modify an initialization parameter, see "Modifying the Value of an Initialization
Parameter" on page 2-6. For detailed information about initialization parameters, see
Oracle Database Reference andOracle Database Administrator's Guide.

Table 5–1 Initialization Parameters Used for Network Security

Initialization Parameter Default Setting Description

OS_AUTHENT_PREFIX OPS$ Specifies a prefix that Oracle Database uses to authenticate users
attempting to connect to the database. Oracle Database
concatenates the value of this parameter to the beginning of the
user operating system account name and password. When a user
attempts a connection request, Oracle Database compares the
prefixed username with user names in the database.

The default value of this parameter is OPS$ for backward
compatibility with previous versions. However, you can set the
prefix value to "" (a null string), thereby eliminating the addition
of any prefix to operating system account names.

REMOTE_LISTENER No default setting Specifies a network name that resolves to an address or address
list of Oracle Net remote listeners (that is, listeners that are not
running on the same computer as this instance). The address or
address list is specified in the tnsnames.ora file or other
address repository as configured for your system.

REMOTE_OS_AUTHENT FALSE Specifies whether remote clients will be authenticated with the
value of the OS_AUTHENT_PREFIX parameter.

REMOTE_OS_ROLES FALSE Specifies whether operating system roles are allowed for remote
clients. The default value, FALSE, causes Oracle Database to
identify and manage roles for remote clients.

Securing Data 6-1

6
Securing Data

This chapter describes three ways that you can secure data: by using transparent data
encryption, Oracle Virtual Private Database, and Oracle Label Security.

This chapter contains the following topics:

■ About Securing Data

■ Encrypting Data Transparently with Transparent Data Encryption

■ Controlling Data Access with Oracle Virtual Private Database

■ Enforcing Row-Level Security with Oracle Label Security

About Securing Data
Oracle Database provides many ways to secure data. This chapter describes the
following methods that you can use to secure data on your site:

■ Transparent data encryption. Transparent data encryption encrypts (disguises)
data in one or more database table columns, or it can encrypt an entire tablespace.
This method is the quickest and easiest way to encrypt data. Transparent data
encryption supports the Advanced Encryption Standard (AES) and Triple Data
Encryption Standard (3DES) algorithms.

You can also encrypt data on the network. "Protecting Data on the Network by
Using Network Encryption" on page 5-7 explains how.

■ Oracle Virtual Private Database (VPD). This feature restricts data access by
creating a policy that enforces a predicate WHERE clause for all SQL statements that
query the database. You create and manage the VPD policy at the database table or
view level, which means that you do not modify the applications that access the
database.

■ Oracle Label Security (OLS). This feature secures your database tables at the row
level, and assigns these rows different levels of security based on the needs of your
site. You then create a security authorization for users based on the OLS labels.

Encrypting Data Transparently with Transparent Data Encryption
Transparent data encryption enables you to quickly encrypt one or more table columns
or a tablespace. It is easy to implement and has many advantages over other types of
database encryption.

This section explores the following topics:

■ About Encrypting Sensitive Data

Encrypting Data Transparently with Transparent Data Encryption

6-2 Oracle Database 2 Day + Security Guide

■ When Should You Encrypt Data?

■ How Transparent Data Encryption Works

■ Configuring Data to Use Transparent Data Encryption

■ Checking Existing Encrypted Data

About Encrypting Sensitive Data
Encryption is the practice of disguising (encrypting) data in a way that only its
recipient can undisguise (decrypt) and read. You use encryption to protect data in a
potentially unprotected environment, such as the network.

Encrypted data has the following components:

■ An algorithm to encrypt the data. The encryption algorithm is a formula that
Oracle Database uses to disguise data. It translates the clear text (that is,
human-readable) version of the data into a format that only can be undisguised by
another algorithm to decrypt the data. Oracle Database supports several
industry-standard encryption and hashing algorithms, including the Advanced
Encryption Standard (AES) encryption algorithm. AES has been approved by the
National Institute of Standards and Technology (NIST) to replace the Data
Encryption Standard (DES).

■ An algorithm to decrypt the data. The decryption algorithm performs the task of
the encryption algorithm in reverse: it takes the disguised data and translates it
back into clear text.

■ A key to encrypt the data for the sender and to decrypt the data for the receiver.
The encryption key determines whether encrypted data is decrypted. When you
encrypt data, Oracle Database uses the encryption key to apply the encryption
algorithm to the data. Conversely, when you decrypt data, the encryption key
applies the decryption algorithm to the data. Oracle Database uses a symmetric
encryption key to perform this task, in which the same key is used to both encrypt
and decrypt the data. The encryption key is stored in the data dictionary.

When Should You Encrypt Data?
In most cases, you encrypt sensitive data on your site to meet a regulatory compliance.
For example, sensitive data such as credit card numbers, social security numbers, or
patient health information must be encrypted.

Historically, users have wanted to encrypt data because they want to restrict data
access from their database administrators. However, this problem is more of an access
control problem, not an encryption problem. You can address this problem by using
Oracle Database Vault to control the access to your applications from database
administrators. You can get around this problem, and address it more efficiently, by
using Oracle Database Vault to control the access your database administrators have to
sensitive data.

Be aware that encrypted data needs more storage space than clear text data. On
average, encrypting a single column requires between 32 and 48 bytes of additional
storage for each row. When you encrypt an entire tablespace, the amount of storage
space increases significantly.

See Also: Oracle Database Security Guide for common misconceptions
about encrypting stored data

Encrypting Data Transparently with Transparent Data Encryption

Securing Data 6-3

How Transparent Data Encryption Works
Transparent data encryption enables you to encrypt individual table columns or an
entire tablespace. When a user inserts data into an encrypted column, transparent data
encryption automatically encrypts the data. When users select the column, the data is
automatically decrypted. After the selection, the data is reencrypted.

Transparent data encryption helps protect data stored on media in case the storage
media or data file gets stolen, because it stores the encryption keys in a security
module (that is, a wallet) external to the database. Protecting data from this type of
theft is required for most compliance regulations. The benefit to using transparent data
encryption is that it requires little coding and is quick and easy to implement.

To encrypt data by using transparent data encryption, you create the following
components:

■ A wallet to store the encryption key. The wallet is a storage space in the form of a
binary file. This file is created outside the database and is accessible only to the
security administrator. For this external security module, Oracle Database uses an
Oracle wallet as described in this section. Storing the master encryption key in this
way prevents unauthorized use. To create the wallet, you can use the ALTER
SYSTEM SQL statement, which enables you to specify the wallet password. The
encryption key to open the wallet has an associated password and encryption
algorithm. After you create the wallet, you need to open the wallet, which you can
do in Database Control or in SQL*Plus.

■ A location for the wallet. You can specify the wallet location by modifying the
sqlnet.ora file.

■ A mechanism for encrypting the data. You can use SQL*Plus to designate one or
more columns or the tablespace to encrypt. If you decide that the data does not
need to be encrypted, you can decrypt it in SQL*Plus.

Afterward, when a user enters data into an encrypted column, Oracle Database
performs the following steps:

1. Retrieves the master key from the wallet.

2. Decrypts the encryption key of the table from the data dictionary.

3. Uses the encryption key to encrypt the data the user entered into the encrypted
column.

4. Stores the data in encrypted format in the database.

If the user is selecting data, the process is similar: Oracle Database decrypts the data,
displays it in clear text format, and then reencrypts it afterward.

Transparent data encryption has the following advantages:

■ As a security administrator, you can be sure that sensitive data is safe if the storage
media or data file gets stolen.

■ Implementing transparent data encryption helps you address security-related
regulatory compliance issues.

■ You do not need to create triggers or views to decrypt data. Data from tables is
transparently decrypted for the database user.

■ Database users need not be aware of the fact that the data they are accessing is
stored in encrypted form. Data is transparently decrypted for the database users
and does not require any action on their part.

Encrypting Data Transparently with Transparent Data Encryption

6-4 Oracle Database 2 Day + Security Guide

■ Applications need not be modified to handle encrypted data. Data encryption and
decryption is managed by the database.

Transparent data encryption affects performance only when data is retrieved from or
inserted into an encrypted column. No reduction in performance occurs for operations
involving unencrypted columns, even if these columns are in a table containing
encrypted columns. However, be aware that encrypted data needs more storage space
than clear text data. On average, encrypting a single column requires between 32 and
48 bytes of additional storage for each row.

Configuring Data to Use Transparent Data Encryption
To start using transparent data encryption, you must create a wallet and set a master
key. The wallet can be the default database wallet shared with other Oracle Database
components, or a separate wallet specifically used by transparent data encryption.
Oracle recommends that you use a separate wallet to store the master encryption key.
This wallet will be used for all data that is being encrypted through transparent data
encryption.

You follow these steps to configure table columns to use transparent data encryption:

■ Step 1: Configure the Wallet Location

■ Step 2: Create the Wallet

■ Step 3: Open (or Close) the Wallet

■ Step 4: Encrypt (or Decrypt) Data

Step 1: Configure the Wallet Location
You designate the directory location for the wallet in the sqlnet.ora file. You
perform this step once.

To configure the wallet location:
1. Create a backup copy of the sqlnet.ora file, which by default is located in the

$ORACLE_HOME/network/admin directory.

2. Create a directory in the $ORACLE_HOME directory in which to store the wallet.

For example, create a directory called ORA_WALLETS in the
C:\oracle\product\11.1.0\db_1 directory.

3. At the end of the sqlnet.ora file, add code similar to the following, where ORA_
WALLETS is the name of the directory where you plan to store the wallet:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=
 (DIRECTORY=C:\oracle\product\11.1.0\db_1\ORA_WALLETS)))

4. Save and close the sqlnet.ora file.

5. Start SQL*Plus and then log on as SYS, connecting AS SYSOPER.

SQLPLUS "SYS/AS SYSOPER"

See Also: Oracle Database Advanced Security Administrator's Guide for
detailed information about using transparent data encryption

See Also: Oracle Database Advanced Security Administrator's Guide for
detailed information about using tablespace encryption

Encrypting Data Transparently with Transparent Data Encryption

Securing Data 6-5

Enter password: password

SQL*Plus starts, connects to the default database, and then displays a SQL>
prompt.

For detailed information about starting SQL*Plus, see Oracle Database 2 Day DBA.

6. Enter the following SQL statements to shut down and then restart the database:

SHUTDOWN IMMEDIATE
STARTUP

Step 2: Create the Wallet
To create the wallet, use the ALTER SYSTEM SQL statement. By default, the Oracle
wallet stores a history of retired master keys, which enables you to change them and
still be able to decrypt data that was encrypted under an old master key. A
case-sensitive wallet password that might be unknown to the database administrator
provides separation of duty: The database administrator might be able to restart the
database, but the wallet is closed and must be manually opened by a security
administrator who knows the wallet password.

To create the wallet:
1. In SQL*Plus, connect as a user with administrative privileges, such as SYSTEM, or

as a security administrator.

For example:

CONNECT SYSTEM
Enter password: password

2. Enter the following ALTER SYSTEM statement, where password is the password
you want to assign to the encryption key:

ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "password";

Enclose the password in double quotation marks. As with other passwords that
you create in Oracle Database, the password will not appear in clear text or in any
dynamic views or logs.

This statement generates the wallet with a new encryption key and sets it as the
current transparent data encryption master key. If you plan to use public key
infrastructure (PKI) to configure the master encryption key, then specify a
certificate ID, which is an optional string that contains the unique identifier of a
certificate stored in the Oracle wallet. Use the following syntax:

ALTER SYSTEM SET ENCRYPTION KEY certificate_ID IDENTIFIED BY "password";

Step 3: Open (or Close) the Wallet
Immediately after you create the wallet key, the wallet is open, and you are ready to
start encrypting data. However, if you have restarted the database after you created
the wallet, you must manually open the wallet before you can use transparent data
encryption.

To open the wallet:
■ In SQL*Plus, enter the following ALTER SYSTEM statement, where password is

the password you assigned to the encryption key:

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password";

Encrypting Data Transparently with Transparent Data Encryption

6-6 Oracle Database 2 Day + Security Guide

In most cases, leave the wallet open unless you have a reason for closing it. You can
close the wallet to disable access to the master key and prevent access to the encrypted
columns. However, the unencrypted data is still available. The wallet must be open for
transparent data encryption to work. To reopen the wallet, use the ALTER SYSTEM
SET WALLET OPEN IDENTIFIED BY password statement.

To close the wallet:
■ In SQL*Plus, enter the following statement:

ALTER SYSTEM SET ENCRYPTION WALLET CLOSE;

Step 4: Encrypt (or Decrypt) Data
After you have created a directory location for the wallet in the sqlnet.ora file and
created the wallet itself, you are ready to encrypt either individual table columns or an
entire tablespace.

This section contains the following topics:

■ Encrypting Individual Table Columns

■ Encrypting a Tablespace

Encrypting Individual Table Columns The decisions that you make when you identify
columns to be encrypted are determined by governmental security regulations, such as
California Senate Bill 1386, or by private standards used by companies such as
MasterCard or VISA. Credit card numbers, social security numbers, and other
personally identifiable information (PII) fall under this category. Another need for
encryption is defined by your own internal security policies — trade secrets, research
results, or employee salaries and bonuses. See "When Should You Encrypt Data?" on
page 6-2 for guidelines about when and when not to encrypt data.

Follow these guidelines when you select columns to encrypt:

■ Check the data types of the columns you plan to encrypt. Transparent data
encryption supports the following data types:

■ Ensure that the columns you select are not part of a foreign key. With transparent
data encryption, each table has its own encryption key, which is stored in the
database data dictionary and encrypted with the external master key. Encrypted
columns cannot be used as foreign keys.

To encrypt a column in a table:
1. Ensure that you have created and opened a wallet key.

"Step 2: Create the Wallet" on page 6-5 explains how to create a wallet key. To open
an existing wallet key, see "Step 3: Open (or Close) the Wallet" on page 6-5.

2. Start Database Control.

BINARY_FLOAT NUMBER

BINARY_DOUBLE NVARCHAR2

CHAR RAW

DATE TIMESTAMP

NCHAR VARCHAR2

Encrypting Data Transparently with Transparent Data Encryption

Securing Data 6-7

See Oracle Database 2 Day DBA for instructions about how to start Database
Control.

3. Enter an administrator user name (for example, SYSTEM, or the name of a security
administrator) and password, and then click Login.

The Database Home page appears.

4. Click Schema to display the Schema subpage.

5. Under Database Objects, select Tables.

The Tables page appears.

6. Do one of the following:

■ To create a new table, click Create, and then answer the questions in the
subsequent page to start creating the table.

■ To modify an existing table, search for the table name by entering its schema
name into the Schema field and the table name in the Object Name field. (You
can use the percent sign (%) wildcard character to search for a group of tables,
for example O% to find all tables beginning with the letter O.) When the table is
listed in the Tables page, select the table, and then click Edit.

In the Create Table or Edit Table page, you can set its encryption options.

For example, to encrypt columns in the OE.ORDERS table, the Edit Table page
appears as follows:

7. In the Create Table (or Edit Table) page, do the following:

a. Select the column that you want to encrypt.

Do not select any indexed columns or columns that use a foreign key restraint
(primary or unique key columns). You cannot encrypt these columns. These
columns are indicated with a key or check mark icon to the left of their names.

b. Click Encryption Options to display the Encryption Options for the Table
page.

c. From the Encryption Algorithm list, select from the following options:

– AES192: Sets the key length to 192 bits. AES is the abbreviation for
Advanced Encryption Standard.

– 3DES168: Sets the key length to 168 bits. 3DES is the abbreviation for
Triple Data Encryption Standard.

Encrypting Data Transparently with Transparent Data Encryption

6-8 Oracle Database 2 Day + Security Guide

– AES128: Sets the key length to 128 bits. This option is the default.

– AES256: Sets the key length to 256 bits.

d. Under Key Generation, select either Generate Key Randomly or Specify Key.
If you select Specify Key, enter characters for the seed values in the Enter Key
and Confirm Key fields.

The Generate Key Randomly setting enables salt. Salt is a way to strengthen
the security of encrypted data. It is a random string added to the data before it
is encrypted, causing repetition of text in the clear to appear different when
encrypted. Salt removes one method attackers use to steal data, namely,
matching patterns of encrypted text.

e. Click Continue to return to the Create Table (or Edit Table) page.

f. Enable encryption for the column by selecting its check box under Encrypted.

8. Click Continue.

The Create Table (or Edit Table) page appears.

Afterward, existing and future data in the column is encrypted when it is written to
the database file, and it is decrypted when an authorized user selects it. When a table
is updated, read access is still possible. If data manipulation language (DML)
statements are needed, you can use online redefinition statements.

Encrypting a Tablespace You can encrypt a new tablespace while you are creating it, but
you cannot encrypt an existing tablespace. As a workaround, you can use the CREATE
TABLE AS SELECT, ALTER TABLE MOVE, or use Oracle Data Pump import to get
data from an existing tablespace into an encrypted tablespace. For details about
creating a tablespace, see Oracle Database 2 Day DBA.

To encrypt a tablespace:
1. Ensure that you have created and opened a wallet key.

"Step 2: Create the Wallet" on page 6-5 explains how to create a wallet key. To open
an existing wallet key, see "Step 3: Open (or Close) the Wallet" on page 6-5.

2. Start Database Control.

See Oracle Database 2 Day DBA for instructions about how to start Database
Control.

3. Enter an administrator user name (for example, SYSTEM, or the name of a security
administrator) and password, and then click Login.

The Database Home page appears.

4. Click Server to display the Server subpage.

5. Under Storage, click Tablespaces.

The Tablespaces page appears.

6. Click Create, and then answer the questions in the subsequent page to start
creating the tablespace and its required data file.

7. In the Create Tablespace page, do the following:

a. Under Type, select the Encryption check box, under Permanent.

b. Select Encryption options to display the Encryption Options page.

c. From the Encryption Algorithm list, select from the following options:

Encrypting Data Transparently with Transparent Data Encryption

Securing Data 6-9

– AES192: Sets the key length to 192 bits. AES is the abbreviation for
Advanced Encryption Standard.

– 3DES168: Sets the key length to 168 bits. 3DES is the abbreviation for
Triple Data Encryption Standard.

– AES128: Sets the key length to 128 bits. This option is the default.

– AES256: Sets the key length to 256 bits.

See "Available Methods" under Step 5 in "Configuring Network Encryption"
on page 5-7 for more information about these encryption algorithms.

d. Click Continue.

The Create Tablespace page appears.

8. Click OK.

The new tablespace appears in the list of existing tablespaces. Remember that you
cannot encrypt an existing tablespace.

Checking Existing Encrypted Data
You can query the database for the data that you have encrypted. You can check for
individually encrypted columns, all tables in the current database instance that have
encrypted columns, or all tablespaces that are encrypted.

This section contains the following topics:

■ Checking Whether a Wallet Is Open or Closed

■ Checking Encrypted Columns of an Individual Table

■ Checking All Encrypted Table Columns in the Current Database Instance

■ Checking Encrypted Tablespaces in the Current Database Instance

Checking Whether a Wallet Is Open or Closed
You can find out if a wallet is open or closed by running the V$ENCRYPTION_WALLET
view.

To check whether a wallet is open or closed:
■ In SQL*Plus, run the V$ENCRYPTION_VIEW view as follows:

SELECT * FROM V$ENCRYPTION_WALLET;

The wallet status appears, similar to the following:

WRL_TYPE WRL_PARAMETER STATUS
-------- -- -------
file C:\oracle\product\11.1.0\db_1\wallets OPEN

See Also:

■ "Checking Encrypted Tablespaces in the Current Database
Instance" on page 6-11 to query the database for existing
encrypted tablespaces

■ Oracle Database Advanced Security Administrator's Guide for detailed
information about tablespace encryption

■ Oracle Database SQL Language Reference for more information about
the CREATE TABLESPACE statement

Encrypting Data Transparently with Transparent Data Encryption

6-10 Oracle Database 2 Day + Security Guide

Checking Encrypted Columns of an Individual Table
You use the DESC (for DESCRIBE) statement in SQL*Plus to check the encrypted
columns in a database table.

To check the encrypted columns of an individual table:
■ In SQL*Plus, run the DESC statement using the following syntax.

DESC tablename;

For example:

DESC OE.ORDER_ITEMS;

A description of the table schema appears. For example:

Name Null? Type
-- -------- --------------------------
ORDER_ID NOT NULL NUMBER(12)
LINE_ITEM_ID NOT NULL NUMBER(3)
PRODUCT_ID NOT NULL NUMBER(6)
UNIT_PRICE NUMBER(8,2)
QUANTITY NUMBER(8) ENCRYPT

Checking All Encrypted Table Columns in the Current Database Instance
To check all encrypted table columns, you use the DBA_ENCRYPTED_COLUMNS view.

To check all encrypted table columns in the current database instance:
■ In SQL*Plus, select from the DBA_ENCRYPTED_COLUMNS view:

For example:

SELECT * FROM DBA_ENCRYPTED_COLUMNS;

The tables in the current database instance that contain encrypted columns are
listed. For example:

OWNER TABLE_NAME COLUMN_NAME ENCRYPTION_ALG SALT
----------- ---------- ----------- ---------------- ----
OE CUSTOMERS INCOME_LEVEL AES 128 bits key YES
OE UNIT_PRICE ORADER_ITEMS AES 128 bits key YES
HR EMPLOYEES SALARY AES 192 bits key YES

See Also: Oracle Database Reference for more information about the
DBA_ENCRYPTED_COLUMNS view

Controlling Data Access with Oracle Virtual Private Database

Securing Data 6-11

Checking Encrypted Tablespaces in the Current Database Instance
Table 6–1 lists data dictionary views that you can use to check encrypted tablespaces.

Controlling Data Access with Oracle Virtual Private Database
Oracle Virtual Private Database (VPD) enables you to dynamically embed a WHERE
clause in any SQL statement that a user executes. The WHERE clause filters the data the
user is allowed to access, based on the credentials of a user.

This section contains the following topics:

■ About Oracle Virtual Private Database

■ Example: Creating an Oracle Virtual Private Database Policy

About Oracle Virtual Private Database
Oracle Virtual Private Database (VPD) provides row-level security at the database
table or view level. You can extend it to provide column-level security as well.
Essentially, Virtual Private Database inserts an additional WHERE clause to any SQL
statement that is used on any table or view to which a Virtual Private Database

Table 6–1 Data Dictionary Views for Encrypted Tablespaces

Data Dictionary View Description

DBA_TABLESPACES Describes all tablespaces in the database. For example, find out
if the tablespace has been encrypted, enter the following:

SELECT TABLESPACE_NAME, ENCRYPTED FROM DBA_TABLESPACES

TABLESPACE_NAME ENC
---------------------------- ----
SYSTEM NO
SYSAUX NO
UNCOTBS1 NO
TEMP NO
USERS NO
EXAMPLE NO
SECURESPACE YES

USER_TABLESPACES Describes the tablespaces accessible to the current user. It has
the same columns as DBA_TABLESPACES, except for the
PLUGGED_IN column.

V$ENCRYPTED_TABLESPACE Displays information about the tablespaces that are encrypted.
For example:

SELECT * FROM V$ENCRYPTED_TABLESPACES;

 TS# ENCRYPTIONALG ENCRYPTEDTS
----------- -------------- -----------
 6 AES128 YES

The list includes the tablespace number, its encryption
algorithm, and whether its encryption is enabled or disabled.

See Also: Oracle Database Reference for more information about data
dictionary views

See Also: Oracle Database Security Guide for detailed information
about how Oracle Virtual Private Database works

Controlling Data Access with Oracle Virtual Private Database

6-12 Oracle Database 2 Day + Security Guide

security policy has been applied. (A security policy is a function that allows or
prevents access to data.) The WHERE clause allows only users whose credentials pass
the security policy, and hence, have access to the data that you want to protect.

An Oracle Virtual Private Database policy has the following components, which are
typically created in the schema of the security administrator:

■ A PL/SQL function to append the dynamic WHERE clause to SQL statements
that affect the Virtual Private Database tables. For example, a PL/SQL function
translates the following SELECT statement:

SELECT * FROM orders;

to the following:

SELECT * FROM orders
 WHERE SALES_REP_ID = 159;

In this example, the user can only view orders by Sales Representative 159. The
PL/SQL function used to generate this WHERE clause is as follows:

 1 CREATE OR REPLACE FUNCTION auth_orders(
 2 schema_var IN VARCHAR2,
 3 table_var IN VARCHAR2
 4)
 5 RETURN VARCHAR2
 6 IS
 7 return_val VARCHAR2 (400);
 8 BEGIN
 9 return_val := 'SALES_REP_ID = 159';
 10 RETURN return_val;
 11 END auth_orders;
 12 /

In this example:

– Lines 2–3: Create parameters to store the schema name, OE, and table name,
ORDERS. (The second parameter, table_var, for the table, can also be used
for views and synonyms.) Always create these two parameters in this order:
create the parameter for the schema first, followed by the parameter for the
table, view, or synonym object. Note that the function itself does not specify
the OE schema or its ORDERS table. The Virtual Private Database policy you
create uses these parameters to specify the OE.ORDERS table.

– Line 5: Returns the string that will be used for the WHERE predicate clause.

– Lines 6–10: Encompass the creation of the WHERE SALES_REP_ID = 159
predicate.

You can design the WHERE clause to filter the user information based on the
session information of that user, such as the user ID. To do so, you create an
application context. An application context is a name-value pair. For example:

SELECT * FROM oe.orders
 WHERE sales_rep_id = SYS_CONTEXT('userenv','session_user');

In this example, the WHERE clause uses the SYS_CONTEXT PL/SQL function to
retrieve the user session ID (session_user) designated by the userenv context.
See Oracle Database Security Guide for detailed information about application
contexts.

Controlling Data Access with Oracle Virtual Private Database

Securing Data 6-13

■ A way to attach the policy the package. Use Database Control or the DBMS_
RLS.ADD_POLICY function to attach the policy to the package. Before you can use
the DBMS_RLS PL/SQL package, you must be granted EXECUTE privileges on it.
User SYS owns the DBMS_RLS package.

The advantages of enforcing row-level security at the database level rather than at the
application program level are enormous. Because the security policy is implemented in
the database itself, where the data to be protected is, this data is less likely to be
vulnerable to attacks by different data access methods. This layer of security is present
and enforced no matter how users (or intruders) try to access the data it protects. The
maintenance overhead is low because you maintain the policy in one place, the
database, rather than having to maintain it in the applications that connect to this
database. The policies that you create provide a great deal of flexibility because you
can write them for specific DML operations.

Example: Creating an Oracle Virtual Private Database Policy
The ORDERS table in the Order Entry database, OE, contains the following information:

Name Null? Type
-------------------------------------- -------- -------------
ORDER_ID NOTNULL NUMBER(12)
ORDER_DATE NOTNULL TIMESTAMP(6) WITH LOCAL TIME ZONE
ORDER_MODE VARCHAR2(8)
CUSTOMER_ID NOTNULL NUMBER(6)
ORDER_STATUS NUMBER(2)
ORDER_TOTAL NUMBER(8,2)
SALES_REP_ID NUMBER(6)
PROMOTION_ID NUMBER(6)

Suppose you want to limit access to this table based on the person who is querying the
table. For example, a sales representative should only see the orders that have been
created, but other employees should not. In this example, you create a sales
representative user account and an account for a finance manager. Then, you create an
Oracle Virtual Private Database policy that will limit the data access to these users
based on their roles.

The Virtual Private Database policy that you will create is associated with a PL/SQL
function. Because VPD policies are controlled by PL/SQL functions or procedures, you
can design the policy to restrict access in many different ways. For this example, the
function you create will restrict access by the employees based on to whom they
report. The function will restrict the customer access based on the ID of the customer.

You may want to store VPD policies in a database account separate from the database
administrator and from application accounts. In this example, you will use the sec_
admin account, which was created in "Example: Creating a Secure Application Role"
on page 4-4, to create the VPD policy. This provides better security by separating the
VPD policy from the applications tables.

To restrict access based on the sensitivity of row data, you can use Oracle Label
Security (OLS). OLS lets you categorize data into different levels of security, with each
level determining who can access the data in that row. This way, the data access
restriction is focused on the data itself, rather than on user privileges. See "Enforcing
Row-Level Security with Oracle Label Security" on page 6-20 for more information.

Follow these steps to complete this example:

■ Step 1: If Necessary, Create the Security Administrator Account

■ Step 2: Update the Security Administrator Account

Controlling Data Access with Oracle Virtual Private Database

6-14 Oracle Database 2 Day + Security Guide

■ Step 3: Create User Accounts for This Example

■ Step 4: Create the F_POLICY_ORDERS Policy Function

■ Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private Database Policy

■ Step 6: Test the ACCESSCONTROL_ORDERS Virtual Private Database Policy

■ Step 7: Optionally, Remove the Components for This Example

Step 1: If Necessary, Create the Security Administrator Account
In "Example: Creating a Secure Application Role" on page 4-4, you created a security
administrator account called sec_admin for that example. You can use that account
for this example. If you have not yet created this account, follow the steps in "Step 1:
Create a Security Administrator Account" on page 4-4 to create sec_admin.

Step 2: Update the Security Administrator Account
The sec_admin account user must have privileges to use the DBMS_RLS packages.
User SYS owns this package, so you must log on as SYS to grant these package
privileges to sec_admin. The user sec_admin also needs to have SELECT privileges
on the CUSTOMERS table in the OE schema and the EMPLOYEES table in the HR schema.

To grant sec_admin privileges to use the DBMS_RLS package:
1. Start Database Control.

See Oracle Database 2 Day DBA for instructions about how to start Database
Control.

2. Log in as user SYS and connect with the SYSDBA privilege:

■ User Name: SYS

■ Password: Enter the password for SYS.

■ Connect As: SYSDBA

3. Click Server to display the Server subpage.

4. Under Security, select Users.

The Users Page appears.

5. Select SEC_ADMIN and then click Edit.

The Edit User page appears.

6. Click Object Privileges to display the Object Privileges page.

7. From the Select Object Type list, select Package, and then click Add.

The Add Package Object Privileges page appears.

8. Under Select Package Objects, enter SYS.DBMS_RLS so that sec_admin will have
access to the DBMS_RLS package.

9. Under Available Privileges, select EXECUTE, and then click Move to move it to
the Selected Privileges list.

10. Click OK.

The Edit User page appears.

11. From the Select Object Type list, select Table, and then click Add.

The Add Table Object Privileges page appears.

Controlling Data Access with Oracle Virtual Private Database

Securing Data 6-15

12. Select Table Objects, and then enter HR.EMPLOYEES so that sec_admin will have
access to the HR.EMPLOYEES table.

13. Under Available Privileges, select SELECT, and then click Move to move it to the
Selected Privileges list.

14. Click OK.

The Edit User page appears.

15. Click Apply.

Step 3: Create User Accounts for This Example
You are ready to create accounts for the employees who need to access the OE.ORDERS
table.

To create the employee user accounts:
1. In Database Control, click Users in the Database Instance link to return to the

Users page.

The Users page appears.

2. Click Create.

The Create User page appears.

3. Enter the following information:

■ Name: LDORAN (to create the user account Louise Doran)

■ Profile: DEFAULT

■ Authentication: Password

■ Enter Password and Confirm Password: too_much2do

■ Default Tablespace: USERS

■ Temporary Tablespace: TEMP

■ Status: Unlocked

4. Click OK.

The Users page appears, with LDORAN listed as a new user.

5. Select LDORAN from the Users page.

The Edit User page appears.

6. Select Object Privileges to display the Object Privileges subpage.

7. From the Select Object Type list, select Table, and then click Add.

The Add Table Object Privileges page appears.

8. In the Select Table Objects field, enter the following text:

OE.ORDERS

Do not include spaces in this text.

9. In the Available Privileges list, select SELECT, and then click Move to move it to
the Selected Privileges list. Click OK.

The Create User page appears, with SELECT privileges for OE.ORDERS listed.

10. Click Apply.

Controlling Data Access with Oracle Virtual Private Database

6-16 Oracle Database 2 Day + Security Guide

11. Select LDORAN, and from the Actions list, select Create Like. Then, click Go.

The Create User page appears.

12. Enter the following information:

■ Name: LPOPP (to create the user account for Finance Manager Luis Popp.)

■ Enter Password and Confirm Password: shop2drop

13. Click OK.

Both employee accounts have been created, and they have identical privileges. If either
performs a SELECT statement on the OE.ORDERS table, he or she will be able to see all
of its data.

Step 4: Create the F_POLICY_ORDERS Policy Function
The f_policy_orders policy is a PL/SQL function that defines the policy used to
filter users who query the ORDERS table. To filter the users, the policy function uses the
SYS_CONTEXT PL/SQL function to retrieve session information about users who are
logging in to the database.

To create the application context and its package:
1. In Database Control, click Logout and then Login.

2. Log in as user sec_admin, whose password is fussy2all.

3. Click Schema to display the Schema subpage.

4. Under Programs, select Functions.

The Functions page appears.

5. Click Create.

The Create Function page appears.

6. Enter the following information:

■ Name: F_POLICY_ORDERS

■ Schema: SEC_ADMIN

■ Source: Enter the following code (but not the line numbers on the left side of
the code) to create a function that checks whether the user who has logged on
is a sales representative.

The f_policy_orders function accomplishes this by using the SYS_
CONTEXT PL/SQL function to get the session information of the user, and then
it compares this information with the job ID of that user in the
HR.EMPLOYEES table, for which sec_admin has SELECT privileges.

 1 (schema in varchar2,
 2 tab in varchar2)
 3 return varchar2
 4 as
 5 v_job_id varchar2(20);
 6 v_user varchar2(100);
 7 predicate varchar2(400);
 8
 9 begin
 10 v_job_id := null;
 11 v_user := null;
 12 predicate := '1=2';

Controlling Data Access with Oracle Virtual Private Database

Securing Data 6-17

 13
 14 v_user := lower(sys_context('userenv','session_user'));
 15
 16 select lower(job_id) into v_job_id from hr.employees
 17 where lower(email) = v_user;
 18
 19 if v_job_id='sa_rep' then
 20 predicate := '1=1';
 21 else
 22 null;
 23 end if;
 24
 25 return predicate;
 26
 27 exception
 28 when no_data_found then
 29 null;
 30 end;

In this example:

– Lines 1–2: Define parameters for the schema (schema) and table (tab)
that need to be protected. Notice that the function does not mention the
OE.ORDERS table. The ACCESSCONTROL_ORDERS policy that you create
in Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private
Database Policy uses these parameters to specify the OE schema and
ORDERS table. Ensure that you create the schema parameter first,
followed by the tab parameter.

– Line 3: Returns the string that will be used for the WHERE predicate clause.
Always use VARCHAR2 as the data type for this return value.

– Lines 4–7: Define variables to store the job ID, user name of the user who
has logged on, and predicate values.

– Lines 9–25: Encompass the creation of the WHERE predicate, starting the
with the BEGIN clause at Line 9.

– Lines 10–12: Sets the v_job_id and v_user variables to null, and the
predicate variable to 1=2, that is, to a false value. At this stage, no
WHERE predicate can be generated until these variables pass the tests
starting with Line 16.

– Line 14: Uses the SYS_CONTEXT function to retrieve the session
information of the user and write it to the v_user variable.

– Lines 16–23: Checks if the user is a sales representative by comparing the
job ID with the user who has logged on. If the job ID of the user who has
logged on is sa_rep (sales representative), then the predicate variable
is set to 1=1. In other words, the user, by being a sales representative, has
passed the test.

– Line 25: Returns the WHERE predicate, which translates to WHERE role_
of_user_logging_on IS "sa_rep". Oracle Database appends this
WHERE predicate onto any SELECT statement that users LDORAN and
LPOPP issue on the OE.ORDERS table.

– Lines 27–29: Provide an EXCEPTION clause for cases where a user without
the correct privileges has logged on.

7. Click OK.

Controlling Data Access with Oracle Virtual Private Database

6-18 Oracle Database 2 Day + Security Guide

Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private Database Policy
Now that you have created the Virtual Private Database policy function, you can
create the Virtual Private Database policy, accesscontrol_orders, and then attach
it to the ORDERS table. To increase performance, add the CONTEXT_SENSITIVE
parameter to the policy, so that Oracle Database only executes the f_policy_orders
function when the content of the application context changes, in this case, when a new
user logs on. Oracle Database only activates the policy when a user performs a SQL
SELECT statement on the ORDERS table. The INSERT, UPDATE, and DELETE
statements are impossible to use, because the user was not granted permissions.

To create the ACCESSCONTROL_ORDERS Virtual Private Database policy:
1. In Database Control, click the Database Instance link to display the Database

Home page.

2. Click Server to display the Server subpage.

3. In the Security section, click Virtual Private Database Policies.

The Virtual Private Database Policies page appears.

4. Click Create.

The Create Policy page appears.

5. Under General, enter the following:

■ Policy Name: ACCESSCONTROL_ORDERS

■ Object Name: OE.ORDERS

■ Policy Type: Select CONTEXT_SENSITIVE.

This type reevaluates the policy function at statement run-time if it detects
context changes since the last use of the cursor. For session pooling, where
multiple clients share a database session, the middle tier must reset the context
during client switches. Note that Oracle Database does not cache the value the
function returns for this policy type; it always runs the policy function during
statement parsing. The CONTEXT_SENSITIVE policy type applies to only one
object.

To enable the Policy Type, select the Enabled check box.

6. Under Policy Function, enter the following:

– Policy Function: Enter the name of the function that generates a predicate for
the policy, in this case, SEC_ADMIN.F_POLICY_ORDERS.

– Long Predicate: Do not select this box.

Typically, you select this check box to return a predicate with a length of up to
32K bytes. By not selecting this check box, Oracle Database limits the predicate
to 4000 bytes.

7. Under Enforcement, select SELECT.

8. Click OK.

Step 6: Test the ACCESSCONTROL_ORDERS Virtual Private Database Policy
At this stage, you are ready to test the accesscontrol_orders policy by logging on
as each user and attempting to select data from the ORDERS table.

Controlling Data Access with Oracle Virtual Private Database

Securing Data 6-19

To test the ACCESSCONTROL_ORDERS policy:
1. Start SQL*Plus.

From a command prompt, enter the following command to start SQL*Plus, and
log in as Sales Representative Louise Doran, whose user name is LDORAN:

SQLPLUS LDORAN
Enter password: too_much2do

SQL*Plus starts, connects to the default database, and then displays a prompt.

For detailed information about starting SQL*Plus, see Oracle Database 2 Day DBA.

2. Enter the following SELECT statement:

SELECT COUNT(*) FROM OE.ORDERS;

The following results should appear for Louise. As you can see, Louise is able to
access all the orders in the OE.ORDERS table.

COUNT(*)

 105

3. Connect as Finance Manager Luis Popp.

CONNECT LPOPP
Enter password: shop2drop

4. Enter the following SELECT statement:

SELECT COUNT(*) FROM OE.ORDERS;

The following results should appear, because Mr. Popp, who is not a sales
representative, does not have access to the data in the OE.ORDERS table.

COUNT(*)

 0

5. Exit SQL*Plus:

EXIT

Step 7: Optionally, Remove the Components for This Example
After completing this example, you can remove the data structures that you used if
you no longer need them.

To remove the data structures created by sec_admin:
1. In Database Control, log in as user sec_admin, whose password is fussy2all.

2. Click Server to display the Server subpage.

3. Under Security, select Virtual Private Database Policies.

The Virtual Private Database Policies page appears.

4. Under Search, enter the following information, and then click Go:

■ Schema Name: OE

■ Object Name: ORDERS

Enforcing Row-Level Security with Oracle Label Security

6-20 Oracle Database 2 Day + Security Guide

■ Policy Name: %

The policy you created, ACCESSCONTROL_ORDERS, is listed.

5. Select ACCESSCONTROL_ORDERS, and then click Delete.

6. In the Confirmation page, click Yes.

To remove the user accounts and roles:
1. In Database Control, click Logout, and then Login.

2. Log in as the administrative user who created the user accounts and roles used in
this example.

3. Click Server to display the Server subpage.

4. Under Security, select Users.

The Users page appears.

5. Select each of the following users, and then click Delete to remove them:

■ LDORAN

■ LPOPP

Do not remove sec_admin because you will need this account for later examples
in this guide.

6. Exit Database Control.

Enforcing Row-Level Security with Oracle Label Security
Oracle Label Security (OLS) provides row-level security for your database tables. You
can accomplish this by assigning one or more security labels that define the level of
security you want for the data rows of the table.

This section includes the following topics:

■ About Oracle Label Security

■ Guidelines for Planning an Oracle Label Security Policy

■ Example: Applying Security Labels to the HR.LOCATIONS Table

About Oracle Label Security
You use Oracle Label Security to secure your database tables at the row level, and
assign these rows different levels of security based on the needs of your site. For
example, rows that contain highly sensitive data can be assigned a label entitled
HIGHLY SENSITIVE; rows that are less sensitive can be labeled as SENSITIVE, and
so on. Rows that all users can have access to can be labeled PUBLIC. You can create as
many labels as you need, to fit your site’s security requirements.

After you create and assign the labels, you can use Oracle Label Security to assign
specific users authorization for specific rows, based on these labels. Afterward, Oracle
Label Security automatically compares the label of the data row with the security
clearance of the user to determine whether or not the user is allowed access to the data
in the row.

An Oracle Label Security policy has the following components:

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-21

■ Labels. Labels for data and users, along with authorizations for users and
program units, govern access to specified protected objects. Labels are composed
of the following:

– Levels. Levels indicate the type of sensitivity that you want to assign to the
row, for example, SENSITIVE or HIGHLY SENSITIVE.

– Compartments. (Optional) Data can have the same level (Public, Confidential
and Secret), but can belong to different projects inside a company, for example
ACME Merger and IT Security. Compartments represent the projects in this
example, that help to define more precise access controls. They are most often
used in government environments.

– Groups. (Optional) Groups identify organizations owning or accessing the
data, for example, UK, US, Asia, Europe. Groups are used both in commercial
and government environments, and frequently used in place of compartments
due to their flexibility.

■ Policy. A policy is a name associated with these labels, rules, and authorizations.

You can create Oracle Label Security labels and policies in Database Control, or you
can create them using the SA_SYSDBA, SA_COMPONENTS, and SA_LABEL_ADMIN
PL/SQL packages. For information about using the PL/SQL packages, see Oracle Label
Security Administrator's Guide. This guide explains how to create Oracle Label Security
labels and policies by using Database Control.

For example, assume that a user has the SELECT privilege on an application table. As
illustrated in the following figure, when the user runs a SELECT statement, Oracle
Label Security evaluates each row selected to determine whether or not the user can
access it. The decision is based on the privileges and access labels assigned to the user
by the security administrator. You can also configure Oracle Label Security to perform
security checks on UPDATE, DELETE, and INSERT statements.

Guidelines for Planning an Oracle Label Security Policy
Before you create an Oracle Label Security policy, you must determine where and how
to apply the labels to the application schema.

To determine where and how to apply Oracle Label Security policies for
application data, follow these guidelines:
1. Analyze the application schema.

Identify the tables that require an Oracle Label Security policy. In most cases, only
a small number of the application tables will require an Oracle Label Security
policy. For example, tables that store lookup values or constants usually do not
need to be protected with a security policy. However, tables that contain sensitive
data, such as patient medical histories or employee salaries, do.

2. Analyze the use of data levels.

After you identify the candidate tables, evaluate the data in the tables to determine
the level of security for the table. Someone who has broad familiarity with
business operations can provide valuable assistance with this stage of the analysis.

Enforcing Row-Level Security with Oracle Label Security

6-22 Oracle Database 2 Day + Security Guide

Data levels refer to the sensitivity of the data. PUBLIC, SENSITIVE, and HIGHLY
SENSITIVE are examples of data levels. You should also consider future
sensitivities. Doing so creates a robust set of label definitions.

Remember that if a data record is assigned a sensitivity label whose level
component is lower than the clearance of the user, then a user attempting to read
the record is granted access to that row.

3. Analyze the use of data compartments.

Data compartments are used primarily in government environments. If your
application is a commercial application, in most cases, you will not create data
compartments.

4. Analyze the data groups.

Data groups and data compartments are typically used to control access to data by
organization, region, or data ownership. For example, if the application is a sales
application, access to the sales data can be controlled by country or region.

When a data record is assigned a sensitivity label with compartments and groups,
a user attempting to read the record must have a user clearance that contains a
level that is equal to or greater than the level of the data label, all of its
compartments, and at least one of the groups in the sensitivity label. Because
groups are hierarchical, a user could have the parent of one of the groups in the
sensitivity label assigned to the data label and still be able to access that record.

5. Analyze the user population.

Separate the users into one or more designated user types. For example, a user
might be designated as a typical user, privileged user, or administrative user. After
you create these categories of users, compare the categories with the data levels
you created in Step 2. They need to correspond correctly for each table identified
during the schema analysis you performed in Step 1. Then, compare the
organizational structure of the user population with the data groups that you
identified in Step 4.

6. Examine the highly privileged and administrative users to determine which
Oracle Label Security authorizations should be assigned to the user.

Oracle Label Security has several special authorizations that can be assigned to
users. In general, typical users do not require any special authorizations. See
Oracle Label Security Administrator's Guide for a complete list of these
authorizations.

7. Review and document the data you gathered.

This step is crucial for continuity across the enterprise, and the resulting document
should become part of the enterprise security policy. For example, this document
should contain a list of protected application tables and corresponding
justifications.

Example: Applying Security Labels to the HR.LOCATIONS Table
This example demonstrates the general concepts of using Oracle Label Security. In it,
you will apply security labels to the HR.LOCATIONS table. Three users, sking,
kpartner, and ldoran will have access to specific rows within this table, based on
the cities listed in the LOCATIONS table.

With Oracle Label Security, you restrict user access to data by focusing on row data,
and designing different levels of access based on the sensitivity of your data. If you
need to restrict user access by focusing on user privileges, or some other method such

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-23

as the job title the user has in your organization, you can create a PL/SQL function or
procedure to use with a Virtual Private Database policy. See "Controlling Data Access
with Oracle Virtual Private Database" on page 6-11 for more information.

The schema for HR.LOCATIONS is as follows:

Name Null? Type
--- -------- -------------
LOCATION_ID NOT NULL NUMBER(4)
STREET_ADDRESS VARCHAR2(40)
POSTAL_CODE VARCHAR2(12)
CITY NOT NULL VARCHAR2(30)
STATE_PROVINCE VARCHAR2(25)
COUNTRY_ID CHAR(2)

You will apply the following labels:

Follow these steps to complete this example:

■ Step 1: Install Oracle Label Security and Enable User LBACSYS

■ Step 2: Create a Role and Three Users for the Oracle Label Security Example

■ Step 3: Create the ACCESS_LOCATIONS Oracle Label Security Policy

■ Step 4: Define the ACCESS_LOCATIONS Policy-Level Components

■ Step 5: Create the ACCESS_LOCATIONS Policy Data Labels

■ Step 6: Create the ACCESS_LOCATIONS Policy User Authorizations

■ Step 7: Apply the ACCESS_LOCATIONS Policy to the HR.LOCATIONS Table

■ Step 8: Add the ACCESS_LOCATIONS Labels to the HR.LOCATIONS Data

■ Step 9: Test the ACCESS_LOCATIONS Policy

■ Step 10: Optionally, Remove the Components for This Example

Step 1: Install Oracle Label Security and Enable User LBACSYS
In a default Oracle Database installation, Oracle Label Security is not installed, but it is
part of the products available in Oracle Database. You can install it in an existing
database by using Oracle Universal Installer, and then Database Configuration
Assistant (DBCA) to register it. Oracle Label Security provides its own user account,
LBACSYS, which you will need to enable after the installation.

■ Installing Oracle Label Security

■ Registering Oracle Label Security with Oracle Database

■ Enabling the Default Oracle Label Security User Account LBACSYS

Installing Oracle Label Security
This procedure explains how to install Oracle Label Security in an existing database.

Label Privileges

CONFIDENTIAL Read access to the cities Munich, Oxford, and Roma

SENSITIVE Read access to the cities Beijing, Tokyo, and Singapore

PUBLIC Read access to all other cities listed in HR.LOCATIONS

Enforcing Row-Level Security with Oracle Label Security

6-24 Oracle Database 2 Day + Security Guide

To install Oracle Label Security:
1. Shut down the database instance in which you plan to install Oracle Label

Security.

Log in to SQL*Plus as SYS, connecting with the SYSDBA privilege. At the SQL
prompt, enter the following command:

SHUTDOWN IMMEDIATE

2. Exit SQL*Plus.

EXIT

3. Stop the Oracle Database processes.

■ UNIX: Go to the $ORACLE_HOME/bin directory and run the following
commands to stop the Database Console and the listener:

./emctl stop dbconsole

./lsnrctl stop

■ Windows: In the Windows Services tool, right-click the Oracle listener,
console, and database service services, and then from the menu, select Stop.
The names of these services begin with Oracle and include the name of the
database instance. For example, assuming the database instance is orcl, the
names would be similar to the following:

– OracleDBConsoleorcl

– OracleJobSchedulerORCL

– OracleOraDB1g-home1TNSListener

– OracleServiceORCL

4. Run Oracle Universal Installer from the installation media.

■ UNIX: Use the following command:

/mnt/cdrom/runInstaller

■ Windows: Double-click the file, setup.exe, on the installation media.

5. Select Advanced Installation, and then click Next.

The Select Installation Type window appears.

6. Select Custom, and then click Next.

The Specify Home Details screen appears.

7. Select the Oracle base directory and the Oracle home directory in which you want
to install Oracle Label Security. Click Next.

(By default, Oracle Universal Installer offers to create a new Oracle home for you,
so ensure that you select the correct existing Oracle home.) Oracle Universal
Installer verifies that your system meets the minimum requirements. Next, the
Available Product Components window is displayed.

8. Select the check box corresponding to Oracle Label Security.

You can find this option under Oracle Database 11g, Enterprise Edition Options.
Click Next.

The Summary window is displayed.

9. Review your choices and then click Install.

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-25

The progress window is displayed. When the installation completes, Oracle
Universal Installer displays the End of Installation window.

10. Click Exit, and then click Yes to confirm the exit.

11. Restart the services and the database instance in which you installed Oracle Label
Security.

■ UNIX: Go to the $ORACLE_HOME/bin directory and run the following
commands to start the Database Console and the listener:

./emctl start dbconsole

./lsnrctl start

Start SQL*Plus and then restart the database instance:

sqlplus "sys/as sysoper"
Enter password: password
Connected to an idle instance
SQL> STARTUP

■ Windows: In the Windows Services tool, right-click the Oracle listener,
console, and database service services, and then from the menu, select Start.
The names of these services begin with Oracle and include the name of the
database instance. For example, assuming the database instance is orcl, the
names would be similar to the following:

– OracleDBConsoleorcl

– OracleJobSchedulerORCL (Optional; you do not need to start it for the
examples in this guide.)

– OracleOraDB1g-home1TNSListener

– OracleServiceORCL (This service starts when you start OracleDBConsole.)

Registering Oracle Label Security with Oracle Database
After you complete the installation, you must register Oracle Label Security with
Oracle Database.

To register Oracle Label Security with Oracle Database:
1. Start Database Configuration Assistant.

■ UNIX: Enter the following command at a terminal window:

dbca

Typically, dbca is in the $ORACLE_HOME/bin directory.

■ Windows: From the Start menu, click All Programs. Then, click Oracle -
ORACLE_HOME, Configuration and Migration Tools, and then Database
Configuration Assistant.

Alternatively, you can start Database Configuration Assistant at a command
prompt:

dbca

As with UNIX, typically, dbca is in the ORACLE_BASE\ORACLE_HOME\bin
directory.

2. In the Welcome page, click Next.

The Operations page appears.

Enforcing Row-Level Security with Oracle Label Security

6-26 Oracle Database 2 Day + Security Guide

3. Select Configure Database Options, and then click Next.

The Database page appears.

4. From the list, select the database where you installed Oracle Label Security and
then click Next.

The Management Options page appears.

5. Select Keep the database configured with Database Control.

The Security Settings page appears.

6. Select the security option you prefer, and then click Next.

Oracle recommends that you take advantage of the enhanced security settings for
this release.

The Database Components page appears.

7. Select Oracle Label Security, and then click Next.

The Connection Mode page appears.

8. Select either Dedicated Server Mode or Shared Server Mode (depending on the
selection you made when you created this database), click Finish, and then click
OK in the confirmation prompts.

Database Configuration Assistant registers Oracle Label Security, and then restarts
the database instance.

9. Exit Database Configuration Assistant.

Enabling the Default Oracle Label Security User Account LBACSYS
The Oracle Label Security installation process creates a default user account, LBACSYS,
who manages the Oracle Label Security features. An administrator can create a user
who has the same privileges as this user, that is, EXECUTE privileges on the SA_
SYSDBA, SA_COMPONENTS, and SA_LABEL_ADMIN PL/SQL packages. By default,
LBACYS is created as a locked account with its password expired. Your next step is to
unlock LBACYS and create a new password. Because user LBACSYS is using Database
Control to create the Oracle Label Security policy, you must grant the SELECT ANY
DICTIONARY privilege to LBACSYS.

To unlock LBACSYS, create a new password, and grant it SELECT ANY
DICTIONARY privileges:
1. Log in to Database Control as the user SYSTEM.

In the Login page, enter SYSTEM and the password assigned to SYSTEM. Set
Connect As to Normal. Select Login to log in.

2. Click Schema to display the Schema subpage.

3. Under Users & Privileges, select Users.

The Users page appears.

4. Select user LBACSYS.

To quickly find LBACSYS, enter lba in the Object Name field, and then click Go.

5. With LBACSYS selected, click Edit.

The Edit User page appears.

6. Next to Status, select Unlocked.

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-27

7. In the Enter Password and Confirm Password fields, enter steplively2day to
create the password.

8. Click System Privileges to display the Edit User: LBACSYS page.

9. Click Edit List.

The Modify System Privileges page appears.

10. In the Available System Privileges list, select SELECT ANY DICTIONARY, and
then click Move to move it to the Selected System Privileges list. Then click OK.

11. Click Apply.

Step 2: Create a Role and Three Users for the Oracle Label Security Example
You are ready to create a role and three users, and then grant these users the role.

■ Creating a Role

■ Creating the Users

Creating a Role
The emp_role role provides the necessary privileges for the three users you will
create.

To create the role emp_role:
1. Ensure that you are logged in to Database Control as SYSTEM.

If you are not already logged in as SYSTEM, then select Logout, and then select
Login. In the Login page, enter SYSTEM and the password assigned to that
account. Set Connect As to Normal. Select Login to log in.

If you are logged in as SYSTEM, click the Database Instance link to display the
home page.

2. Click Schema to display the Schema subpage.

3. In the Users & Privileges section, click Roles.

The Roles page appears.

4. Click Create.

The Create Role page appears.

5. In the Name field, enter EMP_ROLE and leave Authentication set to None.

6. Select the Object Privileges subpage.

7. From the Select Object Type list, select Table, and then click Add.

The Add Table Object Privileges page appears.

8. Under Select Table Objects, enter HR.LOCATIONS to select the LOCATIONS table in
the HR schema, and then under Available Privileges, move SELECT to the Selected
Privileges list.

9. Click OK to return to the Create Role page, and then click OK to return to the
Roles page.

Creating the Users
The three users you create will have different levels of access to the HR.LOCATIONS
table, depending on their position. Steven King (sking) is the advertising president,
so he has full read access to the HR.LOCATIONS table. Karen Partners (kpartner) is a

Enforcing Row-Level Security with Oracle Label Security

6-28 Oracle Database 2 Day + Security Guide

sales manager who has less access, and Louise Doran (ldoran) is a sales
representative who has the least access.

To create the users:
1. Ensure that you are logged in to Database Control as SYSTEM.

If you are not already logged in as SYSTEM, then select Logout, and then select
Login. In the Login page, enter SYSTEM and the password assigned to that
account. Set Connect As to Normal. Select Login to log in.

If you are logged in as SYSTEM, click the Database Instance link to display the
home page.

2. Click Server to display the Server subpage.

3. In the Security section, click Users.

The Users page appears.

4. Click Create.

The Create User page appears.

5. Enter the following information:

■ Name: SKING

■ Profile: DEFAULT

■ Authentication: Password

■ Enter Password and Confirm Password: kingpin2all

■ Default Tablespace: USERS

■ Temporary Tablespace: TEMP

■ Roles: Select the Roles subpage, and then grant the emp_role role to sking
by selecting Edit List. From the Available Roles list, select emp_role, and
then click Move to move it to the Selected Roles list. Click OK. In the Create
User page, ensure that the Default check box is selected for both the CONNECT
and emp_role roles.

■ System Privileges: Select the System Privileges subpage and then click Edit
List to grant the CREATE SESSION privileges. Do not grant sking the ADMIN
OPTION option.

6. Click OK.

7. In the Users page, select SKING, set Actions to Create Like, and then click Go.

The Create User page appears.

8. Create accounts for kpartner and ldoran, with eager2please as the
password for kpartner and too_much2do as the password for ldoran.

Create their names and passwords. You do not need to grant roles or system
privileges to them. Their roles and system privileges, defined in the sking
account, are automatically created.

At this stage, you have created three users who have identical privileges. All of these
users have SELECT privileges on the HR.LOCATIONS table.

Step 3: Create the ACCESS_LOCATIONS Oracle Label Security Policy
Next, you are ready to create the ACCESS_LOCATIONS policy.

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-29

To create the ACCESS_LOCATIONS policy:
1. Log in to Database Control as user LBACSYS.

Select Logout, and then select Login. In the Login page, enter LBACSYS and
steplively2day for the password. Set Connect As to Normal. Select Login to
log in.

2. Click Server to display the Server subpage.

3. In the Security section, click Oracle Label Security.

The Label Security Policies page appears.

4. Click Create.

5. In the Create Label Security Policy page, enter the following information:

■ Name: ACCESS_LOCATIONS

■ Label Column: OLS_COLUMN

Later on, when you apply the policy to a table, the label column is added to
that table. By default, the data type of the policy label column is NUMBER(10).

■ Hide Label Column: Deselect this check box so that the label column will not
be hidden. (It should be deselected by default.)

Usually, the label column is hidden, but during the development phase, you
may want to have it visible so that you can check it. After the policy is created
and working, hide this column so that it is transparent to applications.

■ Enabled: Select this check box to enable the policy. (It should be enabled by
default.)

■ Enforcement Options: Select Apply Policy Enforcements, and then select the
following options:

For all queries (READ_CONTROL)

To use session's default label for label column update (LABEL_DEFAULT)

6. Click OK.

The ACCESS_LOCATIONS policy appears in the Label Security Policies page.

Step 4: Define the ACCESS_LOCATIONS Policy-Level Components
At this stage, you have the policy and have set enforcement options for it. Next, you
are ready to create label components for the policy.

Enforcing Row-Level Security with Oracle Label Security

6-30 Oracle Database 2 Day + Security Guide

At a minimum, you must create one or more levels, such as PUBLIC or SENSITIVE;
and define a long name, a short name, and a number indicating the sensitivity level.
Compartments and groups are optional.

The level numbers indicate the level of sensitivity needed for their corresponding
labels. Select a numeric range that can be expanded later on, in case your security
policy needs more levels. For example, to create the additional levels LOW_
SENSITIVITY and HIGH_SENSITIVITY, you can assign them numbers 7300 (for
LOW_SENSITIVITY) and 7600 (for HIGH_SENSITIVITY), so that they fit in the scale
of security your policy creates. Generally, the higher the number, the more sensitive
the data.

Compartments identify areas that describe the sensitivity of the labeled data,
providing a finer level of granularity within a level. Compartments are optional.

Groups identify organizations owning or accessing the data. Groups are useful for the
controlled dissemination of data and for timely reaction to organizational change.
Groups are optional.

In this step, you define the level components, which reflect the names and
relationships of the SENSITIVE, CONFIDENTIAL, and PUBLIC labels that you need to
create for the ACCESS_LOCATIONS policy.

To define the label components for the ACCESS_LOCATIONS policy:
1. In the Label Security policies page, select the ACCESS_LOCATIONS

policy, and then select Edit.

The Edit Label Security Policy page appears.

2. Select the Label Components subpage.

3. Under Levels, click Add 5 Rows, and then enter a long name, short name, and a
numeric tag as follows. (To move from one field to the next, press the Tab key.)

4. Click Apply.

Step 5: Create the ACCESS_LOCATIONS Policy Data Labels
In this step, you create data labels for the policy you created in Step 4: Define the
ACCESS_LOCATIONS Policy-Level Components. To create the data label, you need to
assign a numeric tag to each level. Later on, the tag number will be stored in the
security column when you apply the policy to a table. It has nothing to do with the
sensitivity of the label; it is only used to identify the labels for the policy.

To create the data labels:
1. Return to the Label Security policies page by selecting the Label Security

Policies link.

2. Select the ACCESS_LOCATIONS policy.

3. In the Actions list, select Data Labels, and then click Go.

The Data Labels page appears.

4. Click Add.

Long Name Short Name Numeric Tag

SENSITIVE SENS 3000

CONFIDENTIAL CONF 2000

PUBLIC PUB 1000

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-31

The Create Data Label page appears.

5. Enter the following information:

■ Numeric Tag: Enter 1000.

■ Level: From the list, select PUB. (To use the keyboard to select an item, enter
the first letter of its name. For example, enter P to select PUB.)

6. Click OK.

The data label appears in the Data Labels page.

7. Click Add again, and then create a data label for the CONF level. For the numeric
tag, enter 2000.

8. Click OK.

9. Click Add again, and then create a data label for the SENS level. For the numeric
tag, enter 3000.

10. Click OK.

At this stage, the CONF, PUB, and SENS labels appear in the Data Labels page.

Later, the tag number will be stored in the security column when you apply the
policy to the HR.LOCATIONS table. It has nothing to do with the sensitivity of the
label; it is only used to identify the labels for the policy.

Step 6: Create the ACCESS_LOCATIONS Policy User Authorizations
Next, you are ready to create user authorizations for the policy.

To create user authorizations for the policy:
1. Return to the Label Security policies page by selecting the Label Security

Policies link.

2. Select the ACCESS_LOCATIONS policy.

3. In the Actions list, select Authorization, and then click Go.

The Authorization page appears.

4. Click Add Users.

The Add User: Users page appears.

5. Under Database Users, click Add.

The Search and Select: Userpage appears. Enter SKING, and then click Go.

Enforcing Row-Level Security with Oracle Label Security

6-32 Oracle Database 2 Day + Security Guide

Typically, a database user account already has been created in the database, for
example, by using the CREATE USER SQL statement.

The other option is Non Database Users. Most application users are considered
nondatabase users. A nondatabase user does not exist in the database. This can be
any user name that meets the Oracle Label Security naming standards and can fit
into the VARCHAR2(30) length field. However, be aware that Oracle Database
does not automatically configure the associated security information for the
nondatabase user when the application connects to the database. In this case, the
application needs to call an Oracle Label Security function to assume the label
authorizations of the specified user who is not a database user.

6. Select the check box for user SKING, and then click Select.

The Create User page lists user SKING.

7. Click Next.

8. In the Privileges page, select Next.

Oracle Label Security enforces the policy through the label authorizations. The
Privileges page enables the user to override the policy label authorization, so do
not select any of its options.

9. In the Labels, Compartments and Groups page, use the flashlight icon to select
data to enter for the following fields, so that user SKING will be able to read
sensitive and confidential data in HR.LOCATIONS:

■ Maximum Level: SENS (for SENSITIVE)

■ Minimum Level: CONF (for CONFIDENTIAL)

■ Default Level: SENS

■ Row Level: SENS

10. Click Next.

11. In the Audit pane of the Add Users: Audit page, ensure that all of the audit
operations are set to None, and then click Next.

The Review page appears.

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-33

12. Ensure that the settings are correct, and then click Finish.

The Review page lists all the authorization settings you have selected.

13. Repeat Step 4 through Step 12 to create the following authorizations for user
KPARTNER, so that she can read confidential and public data in HR.LOCATIONS.

■ Privileges: Select no privileges.

■ Labels, Compartments And Groups: Set all four levels to the following:

– Maximum Level: CONF (for CONFIDENTIAL)

– Minimum Level: PUB (for PUBLIC)

– Default Level: CONF

– Row Level: CONF

■ Audit: Set all to None.

14. Create the following authorizations for user LDORAN, who is only allowed to read
public data from HR.LOCATIONS:

■ Privileges: Select no privileges.

■ Labels, Compartments And Groups: Set all four levels to PUB.

■ Audit: Set all to None.

Enforcing Row-Level Security with Oracle Label Security

6-34 Oracle Database 2 Day + Security Guide

Step 7: Apply the ACCESS_LOCATIONS Policy to the HR.LOCATIONS Table
Next, you are ready to apply the policy to the HR.LOCATIONS table.

To apply the ACCESS_LOCATIONS policy to the HR.LOCATIONS table:
1. Return to the Label Security policies page by selecting the Label Security

Policies link.

2. Select the ACCESS_LOCATIONS policy.

3. In the Actions list, select Apply, and then click Go.

The Apply page appears.

4. Click Create.

The Add Table page appears.

5. In the Table field, enter HR.LOCATIONS.

6. Ensure that the Hide Policy Column check box is not selected.

7. Ensure that the Enabled check box is selected.

8. Under Policy Enforcement Options, select Use Default Policy Enforcement.

The default policy enforcement options for ACCESS_LOCATIONS are:

■ For all queries (READ_CONTROL)

■ Use session's default label for label column update (LABEL_DEFAULT)

9. Click OK.

The ACCESS_LOCATIONS policy is applied to the HR.LOCATIONS table.

Step 8: Add the ACCESS_LOCATIONS Labels to the HR.LOCATIONS Data
After you have applied the ACCESS_LOCATIONS policy to the HR.LOCATIONS table,
you apply the labels of the policy to the OLS_COLUMN in LOCATIONS. For the user HR
(the owner of that table) to accomplish this, the user must have FULL access to
locations before being able to add the data labels to the hidden OLS_COLUMN column
in LOCATIONS.

■ Granting HR FULL Policy Privilege for the HR.LOCATIONS Table

■ Updating the OLS_COLUMN Table in HR.LOCATIONS

Granting HR FULL Policy Privilege for the HR.LOCATIONS Table
The label security administrative user, LBACSYS, can grant HR the necessary privilege.

To grant HR full access to the ACCESS_LOCATIONS policy:
1. Return to the Label Security policies page by selecting the Label Security

Policies link.

2. Select the ACCESS_LOCATIONS policy.

3. Select Authorization from the Actions list, and then click Go.

The Authorization page appears.

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-35

4. Click Add Users.

The Add User page appears.

5. Under Database Users, click Add.

The Search and Select window appears.

6. Select the check box for user HR, and then click Select.

The Create User page lists user HR.

7. Click Next.

The Privileges step appears.

8. Select the Bypass all Label Security checks (FULL) privilege, and then click Next.

The Labels, Compartments, and Groups page appears.

9. Click Next.

The Audit step appears.

10. Click Next.

The Review step appears.

11. Click Finish.

At this stage, HR is listed in the Authorization page with the other users.

12. Exit Database Control.

Updating the OLS_COLUMN Table in HR.LOCATIONS
The user HR now can update the OLS_COLUMN column in the HR.LOCATIONS table to
include data labels that will be assigned to specific rows in the table, based on the
cities listed in the CITY column.

To update the OLS_COLUMN table in HR.LOCATIONS:
1. In SQL*Plus, connect as user HR, whose default password is hr.

CONNECT HR
Enter password: hr

If you cannot log in as HR because this account locked and expired, log in as
SYSTEM and then enter the following statement. Replace password with an
appropriate password for the HR account, for example, 2_much_fun.

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password

2. Enter the following UPDATE statement to apply the SENS label to the cities Beijing,
Tokyo, and Singapore:

UPDATE LOCATIONS
SET ols_column = CHAR_TO_LABEL('ACCESS_LOCATIONS','SENS')
WHERE UPPER(city) IN ('BEIJING', 'TOKYO', 'SINGAPORE');

Enforcing Row-Level Security with Oracle Label Security

6-36 Oracle Database 2 Day + Security Guide

3. Enter the following UPDATE statement to apply the CONF label to the cities
Munich, Oxford, and Roma:

UPDATE LOCATIONS
SET ols_column = CHAR_TO_LABEL('ACCESS_LOCATIONS','CONF')
WHERE UPPER(city) IN ('MUNICH', 'OXFORD', 'ROMA');

4. Enter the following UPDATE statement to apply the PUB label to the remaining
cities:

UPDATE LOCATIONS
SET ols_column = CHAR_TO_LABEL('ACCESS_LOCATIONS','PUB')
WHERE ols_column IS NULL;

5. To check that the columns were updated, enter the following statement:

SELECT LABEL_TO_CHAR (OLS_COLUMN) FROM LOCATIONS;

Step 9: Test the ACCESS_LOCATIONS Policy
The ACCESS_LOCATIONS policy is complete and ready to be tested. You can test it by
logging in to SQL*Plus as each of the three users and performing a SELECT on the
HR.LOCATIONS table.

To test the ACCESS_LOCATIONS policy:
1. In SQL*Plus, connect as user sking, whose password is kingpin2all.

CONNECT sking
Enter password: kingpin2all

2. Enter the following statement:

COL city HEADING City FORMAT a25
COL country_id HEADING Country FORMAT a11
COL Label format a10
SELECT city, country_id, LABEL_TO_CHAR (OLS_COLUMN)
 AS Label FROM hr.locations ORDER BY ols_column;

User sking is able to access all 23 rows of the HR.LOCATIONS table. Even though
he is only authorized to access rows that are labeled CONF and SENS, he can still
read (but not write to) rows labeled PUB.

City Country LABEL
------------------------- ----------- ----------
Venice IT PUB
Utrecht NL PUB

Note: Using the label column name (OLS_COLUMN) explicitly in the
preceding query enables you to see the label column, even if it was
hidden.

If the label column is hidden, and you do not specify the label column
name explicitly, then the label column is not displayed in the query
results. For example, using the SELECT * FROM LOCATIONS query
does not show the label column if it is hidden. This feature enables the
label column to remain transparent to applications. An application
that was designed before the label column was added does not know
about the label column and will never see it.

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-37

Bern CH PUB
Geneva CH PUB
Sao Paulo BR PUB
Stretford UK PUB
Mexico City MX PUB
Hiroshima JP PUB
Southlake US PUB
South San Francisco US PUB
South Brunswick US PUB
Seattle US PUB
Toronto CA PUB
Whitehorse CA PUB
Bombay IN PUB
Sydney AU PUB
London UK PUB
Oxford UK CONF
Munich DE CONF
Roma IT CONF
Singapore SG SENS
Tokyo JP SENS
Beijing CN SENS

23 rows selected.

3. Repeat these steps for users kpartner and ldoran.

The password for kpartner is eager2please. She can access the rows labeled
CONF and PUB.

City Country LABEL
------------------------- ----------- ----------
Venice IT PUB
Utrecht NL PUB
Bern CH PUB
Mexico City MX PUB
Hiroshima JP PUB
Southlake US PUB
South San Francisco US PUB
South Brunswick US PUB
Seattle US PUB
Toronto CA PUB
Whitehorse CA PUB
Bombay IN PUB
Sydney AU PUB
London UK PUB
Stretford UK PUB
Sao Paulo BR PUB
Geneva CH PUB
Oxford UK CONF
Munich DE CONF
Roma IT CONF

20 rows selected.

The password for ldoran is too_much2do. She can access the rows labeled PUB.

City Country LABEL
------------------------- ----------- ----------
Venice IT PUB
Hiroshima JP PUB
Southlake US PUB

Enforcing Row-Level Security with Oracle Label Security

6-38 Oracle Database 2 Day + Security Guide

South San Francisco US PUB
South Brunswick US PUB
Seattle US PUB
Toronto CA PUB
Whitehorse CA PUB
Bombay IN PUB
Sydney AU PUB
London UK PUB
Stretford UK PUB
Sao Paulo BR PUB
Geneva CH PUB
Bern CH PUB
Utrecht NL PUB
Mexico City MX PUB

17 rows selected.

Step 10: Optionally, Remove the Components for This Example
Remove the components that you created for this example.

To remove the components for this example:
1. In Database Control, connect as user SYSTEM.

2. Click Server to display the Server subpage.

3. In the Security section, click Users.

4. Select user kpartner, and then click Delete.

5. In the Confirmation page, click Yes.

6. Repeat Step 4 and Step 5 for users ldoran and sking.

7. Click Server to display the Server subpage.

8. Click the Datebase Instance link to return to the Database Home page.

9. In the Security section, click Roles.

10. Select the role emp_role, and then click Delete.

11. In the Confirmation dialog box, click Yes.

12. Log out of Database Control, and then log back in as LABCSYS, whose password is
steplively2day.

13. Click Server to display the Server subpage.

14. In the Security section, click Oracle Label Security.

15. In the Label Security Policies page, in the Name field, enter ACCESS% and then
click Go.

Enforcing Row-Level Security with Oracle Label Security

Securing Data 6-39

16. Ensure that ACCESS_LOCATIONS is selected, and then click Delete.

Deleting the ACCESS_LOCATIONS policy also drops the OLS_COLUMN column
from the HR.LOCATIONS table.

17. In the Confirmation page, click Yes.

Enforcing Row-Level Security with Oracle Label Security

6-40 Oracle Database 2 Day + Security Guide

Auditing Database Activity 7-1

7
Auditing Database Activity

You can audit user and database activity by using standard auditing. Standard
auditing enables you to audit an entire component, such as a particular SQL statement.

This chapter contains the following topics:

■ About Auditing

■ Why Is Auditing Used?

■ Where Are Standard Audited Activities Recorded?

■ Auditing General Activities Using Standard Auditing

■ Example: Creating a Standard Audit Trail

■ Guidelines for Auditing

■ Initialization Parameters Used for Auditing

About Auditing
Auditing is the monitoring and recording of selected user database actions. You can
use standard auditing to audit SQL statements, privileges, schemas, objects, and
network and multitier activity. In standard auditing, you use initialization parameters
and the AUDIT and NOAUDIT SQL statements to audit SQL statements, privileges, and
schema objects, as well as network and multitier activities.

There are also activities that Oracle Database always audits, regardless of whether or
not auditing is enabled. These activities are administrative privilege connections,
database startups, and database shutdowns. See Oracle Database Security Guide for
more information.

Another type of auditing is fine-grained auditing. Fine-grained auditing enables you
to audit at the most granular level, data access, and actions based on content, using
Boolean measurement, such as value > 1000. You can use fine-grained auditing to
audit activities based on access to or changes in a column. You can create security
policies to trigger auditing when someone accesses or alters specified elements in an
Oracle database, including the contents within a specified object. You can create
policies that define specific conditions that must take place for the audit to occur. For
example, you can audit a particular table column to find out when and who tried to
access it during a specified period of time. Furthermore, you can create alerts that are
triggered when the policy is violated, and write this data to a separate audit file. Oracle
Database Security Guide explains how to perform fine-grained auditing.

See Also: Oracle Database Security Guide for detailed information
about how auditing works

Why Is Auditing Used?

7-2 Oracle Database 2 Day + Security Guide

Why Is Auditing Used?
You typically use auditing to perform the following activities:

■ Enable future accountability for current actions.

These include actions taken in a particular schema, table, or row, or affecting
specific content.

■ Deter users (or others, such as intruders) from inappropriate actions based on
that accountability.

■ Investigate suspicious activity.

For example, if a user is deleting data from tables, then a security administrator
might decide to audit all connections to the database and all successful and
unsuccessful deletions of rows from all tables in the database.

■ Notify an auditor of actions by an unauthorized user.

For example, an unauthorized user could change or delete data, or a user has more
privileges than expected, which can lead to reassessing user authorizations

■ Monitor and gather data about specific database activities.

For example, the database administrator can gather statistics about which tables
are being updated, how many logical I/O operations are performed, or how many
concurrent users connect at peak times.

■ Detect problems with an authorization or access control implementation.

For example, you can create audit policies that you expect will never generate an
audit record because the data is protected in other ways. However, if these policies
do generate audit records, then you will know the other security controls are not
properly implemented.

■ Address auditing requirements for compliance.

Regulations such as the following have common auditing-related requirements:

– Sarbanes-Oxley Act

– Health Insurance Portability and Accountability Act (HIPAA)

– International Convergence of Capital Measurement and Capital Standards: a
Revised Framework (Basel II)

– Japan Privacy Law

– European Union Directive on Privacy and Electronic Communications

Where Are Standard Audited Activities Recorded?
Oracle Database records audit activities in audit records. Audit records provide
information about the operation that was audited, the user performing the operation,
and the date and time of the operation. Audit records can be stored in either a data
dictionary table, called the database audit trail, or in operating system files, called an
operating system audit trail. Oracle Database also provides a set of data dictionary
views that you can use to track suspicious activities. See Oracle Database Security Guide
for more information about these views.

When you use standard auditing, Oracle Database writes the audit records to either to
DBA_AUDIT_TRAIL (the sys.aud$ table), the operating system audit trail, or to the
DBA_COMMON_AUDIT_TRAIL view, which combines standard and fine-grained audit
log records.

Auditing General Activities Using Standard Auditing

Auditing Database Activity 7-3

In addition, the actions performed by administrators are recorded in the syslog audit
trail.

Auditing General Activities Using Standard Auditing
This section explains how to use standard auditing to audit activities performed on
SQL statements, privileges, schema objects, and network or multitier activities.

This section explores the following topics:

■ About Standard Auditing

■ Enabling or Disabling the Standard Audit Trail

■ Using Default Auditing for Security-Relevant SQL Statements and Privileges

■ Individually Auditing SQL Statements

■ Individually Auditing Privileges

■ Using Proxies to Audit SQL Statements and Privileges in a Multitier Environment

■ Individually Auditing Schema Objects

■ Auditing Network Activity

■ Using Proxies to Audit SQL Statements and Privileges in a Multitier Environment

■ Example: Creating a Standard Audit Trail

About Standard Auditing
In standard auditing, you enable auditing of SQL statements, privileges, schema
objects, and network or multitier activities. You can direct the audit for a specific
schema table if you want. To perform this type of audit, you use Database Control.

Standard audit records can be written either to DBA_AUDIT_TRAIL (the sys.aud$
table), the operating system audit trail, or to the DBA_COMMON_AUDIT_TRAIL view,
which combines standard and fine-grained audit log records.

Enabling or Disabling the Standard Audit Trail
Before you perform the standard auditing procedures described in this section, you
must enable standard auditing. When you enable standard auditing, you can create
the audit trail in the database audit trail or write the audit activities to an operating
system file. If you write to an operating system file, you can create the audit record in
text or XML format.

To enable or disable the standard audit trail:
1. Start Database Control.

2. Log in as SYS and connect with the SYSDBA privilege.

■ User Name: SYS

■ Password: Enter your password.

■ Connect As: SYSDBA

3. Click Server to display the Server subpage.

See Also: Oracle Database Security Guide for detailed information
about managing the standard audit trail

Auditing General Activities Using Standard Auditing

7-4 Oracle Database 2 Day + Security Guide

4. In the Database Configuration section, click Initialization Parameters.

The Initialization Parameters page appears.

5. Click SPFile to display the SPFile subpage.

If the SPFile tab does not display in your installation, then you did not install
Oracle Database using a server parameters file. Go to the next step.

6. In the Name field, enter audit_trail to find the AUDIT_TRAIL parameter, and
then click Go.

You can enter the first few characters of the parameter, for example, AUDIT_.
Alternatively, you can scroll down the list of parameters to find the AUDIT_TRAIL
parameter.

7. In the Value field, select one of the following values:

■ DB: Enables database auditing and directs all audit records to the database
audit trail (SYS.AUD$), except for records that are always written to the
operating system audit trail. (This value is the default.)

■ OS: Enables database auditing and directs all audit records to an operating
system file. If you are using a highly secure database configuration, Oracle
recommends that you use this setting because it reduces the likelihood of a
Denial of Service (DoS) attack. This setting also makes it easier to secure the
audit trail. If the auditor is distinct from the database administrator, you must
use the operating system setting. Any auditing information stored in the
database is viewable and modifiable by the database administrator.

To specify the location of the operating system audit record file, set the
AUDIT_FILE_DEST initialization parameter. The default directory is
$ORACLE_HOME/rdbms/audit.

■ NONE: Disables standard auditing.

■ DB, EXTENDED: Performs all actions of the AUDIT_TRAIL=DB setting and
also populates the SQL bind and SQL text CLOB-type columns of the
SYS.AUD$ table, when available. (These two columns are populated only
when this parameter is specified.)

■ XML: Writes to the operating system audit record file in XML format. Prints all
elements of the AuditRecord node except Sql_Text and Sql_Bind to the
operating system XML audit file.

■ EXTENDED: Specifies XML, EXTENDED, which performs all actions of XML and
also populates the SQL bind and SQL text CLOB-type columns of the
SYS.AUD$ table, wherever possible. (These columns are populated only when
this parameter is specified.)

8. Click Apply.

9. Restart the Oracle Database instance:

a. Click the Database Instance link.

b. Click Home to display the Database Control home page.

c. Under General, click Shutdown.

d. In the Startup/Shutdown Credentials page, enter your credentials.

See Oracle Database 2 Day DBA for more information.

e. After the shutdown completes, click Startup.

Auditing General Activities Using Standard Auditing

Auditing Database Activity 7-5

Note the following:

■ You do not need to restart the database if you change the auditing of objects. You
only need to restart the database if you made a universal change, such as turning
on or off all auditing.

■ You do not need to set AUDIT_TRAIL to enable either fine-grained auditing or
SYS auditing. (SYS auditing enables you to monitor the activities of a system
administrator. See Oracle Database Security Guide for more information.) For
fine-grained auditing, you add and remove fine-grained auditing policies as
necessary, applying them to the specific operations or objects you want to monitor.
You can use the AUDIT_SYS_OPERATIONS parameter to enable and disable SYS
auditing.

Using Default Auditing for Security-Relevant SQL Statements and Privileges
This section explains how you can enable the Oracle-recommended audit parameters.
It covers the following topics:

■ About Default Auditing

■ Enabling Default Auditing

About Default Auditing
When you create a new database or modify an existing database, you use the Security
Settings window in Database Configuration Assistant (DBCA) to enable or disable its
default security settings. This section explains how to start DBCA and enable the
default security settings. Oracle recommends that you enable these settings. When
these settings are enabled, Oracle Database audits some of the security-relevant SQL
statements and privileges. It also sets the AUDIT_TRAIL initialization parameter to DB.

Oracle Database audits the AUDIT ROLE SQL statement by default. The privileges that
are audited by default are as follows:

Oracle Database also audits all privileges and statements that have the BY ACCESS
clause.

If you are concerned that auditing these statements and privileges will adversely affect
your applications, you can disable auditing by using Database Configuration Assistant
(DBCA). When you modify your applications to use auditing, you can reenable the
default auditing of these statements and privileges.

Oracle strongly recommends that you enable auditing by default. Auditing is an
effective method of enforcing strong internal controls so that your site can meet its
regulatory compliance requirements, as defined in the Sarbanes-Oxley Act. This
enables you to monitor business operations and catch any activities that may deviate
from company policy. Doing so translates into tightly controlled access to your

ALTER ANY PROCEDURE CREATE ANY LIBRARY DROP ANY TABLE

ALTER ANY TABLE CREATE ANY PROCEDURE DROP PROFILE

ALTER DATABASE CREATE ANY TABLE DROP USER

ALTER PROFILE CREATE EXTERNAL JOB EXEMPT ACCESS POLICY

ALTER SYSTEM CREATE PUBLIC DB LINK GRANT ANY OBJECT PRIVILEGE

ALTER USER CREATE SESSION GRANT ANY PRIVILEGE

AUDIT SYSTEM CREATE USER GRANT ANY ROLE

CREATE ANY JOB DROP ANY PROCEDURE

Auditing General Activities Using Standard Auditing

7-6 Oracle Database 2 Day + Security Guide

database and the application software, ensuring that patches are applied on schedule,
and preventing ad hoc changes. By enabling auditing by default, you can generate an
audit record for audit and compliance personnel. However, be aware that auditing
may affect database performance.

Enabling Default Auditing
This section explains how to use Database Configuration Assistant to enable default
auditing.

To enable the default profile security settings using Database Configuration
Assistant:
1. Start Database Configuration Assistant:

■ UNIX: Enter the following command at a terminal window:

dbca

Typically, dbca is in the $ORACLE_HOME/bin directory.

■ Windows: From the Start menu, click All Programs. Then click Oracle -
ORACLE_HOME, Configuration and Migration Tools, and then Database
Configuration Assistant.

Alternatively, you can start Database Configuration assistant at a command
prompt:

dbca

As with UNIX, typically, dbca is in the ORACLE_BASE\ORACLE_HOME\bin
directory.

2. In the Welcome window, click Next.

The Operations window appears.

3. From the list, select the current database instance, and then click Next.

The Management Options page appears.

4. Select Keep the database configured with Database Control.

The Security Settings page appears.

5. Select the security option you prefer, and then click Next.

Oracle recommends that you take advantage of the enhanced security settings for
this release.

The Database Components page appears.

6. Click Next.

The Connection Mode page appears.

7. Select either Dedicated Server Mode or Shared Server Mode (depending on the
selection you made when you created this database), click Finish, and then click
OK in the confirmation prompts.

See Also: Oracle Database SQL Language Reference for detailed
information about the SQL statements described in this section and
the AUDIT_TRAIL initialization parameter

Auditing General Activities Using Standard Auditing

Auditing Database Activity 7-7

Individually Auditing SQL Statements
The SQL statements that you can audit are in the following categories:

■ DDL statements. For example, enabling the auditing of tables (AUDIT TABLE)
audits all CREATE and DROP TABLE statements

■ DML statements. For example, enabling the auditing of SELECT TABLE audits all
SELECT ... FROM TABLE/VIEW statements, regardless of the table or view

Statement auditing can be broad or focused, for example, by auditing the activities of
all database users or of only a select list of users.

Individually Auditing Privileges
Privilege auditing is a way to audit statements that can use a system privilege, such as
the SELECT ANY TABLE statement. You can audit the use of any system privilege.
Similar to statement auditing, privilege auditing can audit the activities of all database
users or of only a specified list. As with SQL statement auditing, you use the AUDIT
and NOAUDIT statements to enable and disable privilege auditing. In addition, you
must have the AUDIT SYSTEM system privilege before you can enable auditing.

Privilege audit options match the corresponding system privileges. For example, the
option to audit use of the DELETE ANY TABLE privilege is DELETE ANY TABLE. For
example:

AUDIT DELETE ANY TABLE BY ACCESS WHENEVER NOT SUCCESSFUL;

To audit all successful and unsuccessful uses of the DELETE ANY TABLE system
privilege, enter the following statement:

AUDIT DELETE ANY TABLE;

To audit all unsuccessful SELECT, INSERT, and DELETE statements on all tables and
unsuccessful uses of the EXECUTE PROCEDURE system privilege, by all database
users, and by individual audited statement, issue the following statement:

AUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE BY ACCESS
WHENEVER NOT SUCCESSFUL;

Using Proxies to Audit SQL Statements and Privileges in a Multitier Environment
You can audit the activities of a client in a multitier environment by specifying a proxy
in the Add Audited Statements or Add Audited Privileges page in Database Control.
In a multitier environment, Oracle Database preserves the identity of the client
through all tiers. Thus, you can audit actions performed on behalf of the client by a
middle-tier application.

The middle tier can also set the user client identity in a database session, enabling the
auditing of user actions through the middle-tier application. The user client identity
then shows up in the audit trail.

You can use the SQL AUDIT statement to audit the activities of a client in a multitier
environment. To do so, use the BY PROXY clause in the AUDIT statement.

See Also: Oracle Database Security Guide for detailed information
about auditing SQL statements

See Also: Oracle Database Security Guide for detailed information
about auditing privileges

Example: Creating a Standard Audit Trail

7-8 Oracle Database 2 Day + Security Guide

For example, to audit SELECT TABLE statements issued on behalf of client jackson
by the proxy application server appserve:

AUDIT SELECT TABLE BY appserve ON BEHALF OF jackson;

Individually Auditing Schema Objects
Schema object auditing can audit all SELECT and DML statements permitted by
schema object privileges, such as SELECT or DELETE statements on a particular table.
The GRANT and REVOKE statements that control those privileges are also audited.

Auditing Network Activity
You can use the AUDIT statement to audit unexpected errors in network protocol or
internal errors in the network layer. The types of errors uncovered by network
auditing are not connection failures, but can have several other possible causes. One
possible cause is an internal event set by a database engineer for testing purposes.
Other causes include conflicting configuration settings for encryption, such as the
network not finding the information required to create or process expected encryption.

To enable network auditing:
1. Start SQL*Plus and log on with administrative privileges, such as SYSTEM, or as a

security administrator. For example:

SQLPLUS SYSTEM
Enter password: password

SQL*Plus starts, connects to the default database, and then displays a prompt.

For detailed information about starting SQL*Plus, see Oracle Database 2 Day DBA.

2. Enter the following statement:

AUDIT NETWORK;

To disable network auditing, enter the following:

NOAUDIT NETWORK;

3. Exit SQL*Plus:

EXIT

Example: Creating a Standard Audit Trail
Suppose you wanted to audit SELECT statements on the OE.CUSTOMERS table. In this
example, you enable standard auditing, enable auditing for the SELECT SQL
statement, run the SELECT SQL statement on the OE.CUSTOMERS table, and then
check its audit file.

See Also: Oracle Database Security Guide for detailed information
about auditing in a multitier environment

See Also: Oracle Database Security Guide for detailed information
about auditing schema objects

See Also: Oracle Database Security Guide for detailed information
about auditing network activity

Example: Creating a Standard Audit Trail

Auditing Database Activity 7-9

Follow these steps to complete this example:

■ Step 1: Log In and Enable Standard Auditing

■ Step 2: Enable Auditing for SELECT Statements on the OE.CUSTOMERS Table

■ Step 3: Test the Audit Settings

■ Step 4: Optionally, Remove the Components for This Example

■ Step 5: Remove the SEC_ADMIN Security Administrator Account

Step 1: Log In and Enable Standard Auditing
First, log in, and, if necessary, enable standard auditing.

To enable standard auditing:
1. Start Database Control.

2. Log in as SYS and connect with the SYSDBA privilege.

■ User Name: SYS

■ Password: Enter your password.

■ Connect As: SYSDBA

3. Click Server to display the Server subpage.

4. In the Database Configuration section, click Initialization Parameters.

The Initialization Parameters page appears.

5. Click SPFile to display the SPFile subpage.

If the SPFile tab does not display in your installation, then you did not install
Oracle Database using a server parameters file. Go to the next step.

6. In the Name field, enter AUDIT_TRAIL to find the AUDIT_TRAIL parameter, and
then click Go.

You can enter the first few characters of the parameter, for example, AUDIT.
Alternatively, you can scroll down the list of parameters to find the AUDIT_TRAIL
parameter.

7. In the Value field, select the DB (Database) option.

The DB option enables database auditing and directs all audit records to the
database audit trail (SYS.AUD$), except for records that are always written to the
operating system audit trail.

8. Click Apply.

9. Restart the Oracle Database instance.

a. Click the Database Instance link.

b. Click Home to display the Database Control home page.

c. Under General, click Shutdown.

d. In the Startup/Shutdown Credentials page, enter your credentials.

See Oracle Database 2 Day DBA for more information.

e. After the shutdown completes, click Startup.

Example: Creating a Standard Audit Trail

7-10 Oracle Database 2 Day + Security Guide

Step 2: Enable Auditing for SELECT Statements on the OE.CUSTOMERS Table
Next, enable auditing for SELECT statements on the OE.CUSTOMERS table.

To enable auditing of SELECT statements for the OE.CUSTOMERS table:
1. Ensure that the sample user sec_admin exists.

Log on as SYSTEM, and then from the Database Control home page, click Server to
display the Server subpage. Select Users under Security, and check the list of
accounts for sec_admin. "Step 1: Create a Security Administrator Account" on
page 4-4 explains how to create the sec_admin security administrator account.

2. Grant sec_admin SELECT privileges on the OE.CUSTOMERS table.

3. Log in to Database Control as user sec_admin, whose password is fussy2all.

4. Click Server to display the Server subpage.

5. In the Security section, click Audit Settings.

The Audit Settings page appears.

6. Select the Audited Objects subpage.

7. Click Add.

The Add Audited Object page appears.

8. Enter the following information:

■ Object Type: Select Table.

■ Table: Enter OE.CUSTOMERS.

■ Available Statements: Select SELECT, and then click Move to move it to the
Selected Statements list.

9. Click OK.

10. Shut down the database instance and then restart it.

a. In the upper, right corner of the Database Control page, select Logout.

b. Click Login.

c. In the Login page, enter the following login information:

User Name: SYS

Password: The password of the system administrator

Connect As: SYSDBA

Use the SYSDBA system privilege to shut down and restart the database.

d. Under General, click Shutdown.

e. In the Startup/Shutdown Credentials page, enter your credentials.

See Oracle Database 2 Day DBA for more information.

f. After the shutdown completes, click Startup.

g. Exit Database Control.

Example: Creating a Standard Audit Trail

Auditing Database Activity 7-11

Step 3: Test the Audit Settings
At this stage, auditing is enabled and any SELECT statements performed on the
OE.CUSTOMERS table are written to the to DBA_AUDIT_TRAIL view. Now, you are
ready to test the audit settings.

To test the audit settings:
1. Start SQL*Plus, and connect as user sec_admin, whose password is fussy2all.

SQLPLUS sec_admin
Enter password: fussy2all

2. Enter the following SELECT statement to create an alert in the audit trail:

SELECT COUNT(*) FROM oe.customers;

3. Enter the following statement to view the DBA_AUDIT_TRAIL view:

SELECT USERNAME, TIMESTAMP FROM DBA_AUDIT_TRAIL;

Oracle Database displays information similar to the following:

USERNAME TIMESTAMP

SEC_ADMIN 07-MAY-07

4. Exit SQL*Plus:

EXIT

Step 4: Optionally, Remove the Components for This Example
Optionally, remove the audit settings you created earlier.

To remove the audit settings in Database Control:
1. Log in to Database Control using administrative privileges.

2. Go to the Database Control home page.

3. Click Server to display the Server subpage.

4. In the Security section, click Audit Settings.

The Audit Settings page appears.

5. Select the Audited Objects subpage.

6. Under Schema, enter OE.

7. Under Object Name, enter CUSTOMERS.

8. Click Search.

9. Select the check box next to the OE.CUSTOMERS audited schema, and then click
Remove.

A Confirmation dialog box appears.

10. Select Yes.

11. Exit Database Control.

Guidelines for Auditing

7-12 Oracle Database 2 Day + Security Guide

To set AUDIT_TRAIL to its original value:
■ Follow the procedure in "Step 1: Log In and Enable Standard Auditing" on

page 7-9 to log in to SQL*Plus and set the AUDIT_TRAIL parameter back to its
original value. Afterward, shut down and then restart the database.

Step 5: Remove the SEC_ADMIN Security Administrator Account
This is the last example in this guide. If you no longer need the sec_admin
administrator account, you should remove it.

To remove the sec_admin security administrator account:
1. Log in to Database Control using administrative privileges.

2. Go to the Database Control home page.

3. Click Server to display the Server subpage.

4. In the Security section, click Users.

The Users page appears.

5. In the Name field, enter sec_admin.

6. Click Search.

7. Select the check box next to the sec_admin user account, and then click Remove.

A Confirmation dialog box appears.

8. Select Yes.

9. Exit Database Control.

Guidelines for Auditing
This section contains the following topics:

■ Enabling Default Auditing of SQL Statements and Privileges

■ Keeping Audited Information Manageable

■ Auditing Typical Database Activity

■ Auditing Suspicious Database Activity

Enabling Default Auditing of SQL Statements and Privileges
When you create a new database, you can enable the auditing of a select set of SQL
statements and privileges. Oracle recommends that you enable default auditing.
Auditing is an effective method of enforcing strong internal controls so that your site
meets its regulatory compliance requirements, as defined in the Sarbanes-Oxley Act.
See "Using Default Auditing for Security-Relevant SQL Statements and Privileges" on
page 7-5 for more information about default auditing.

Keeping Audited Information Manageable
Although auditing does not severely affect database performance, limit the number of
audited events as much as possible. This minimizes the performance impact on the
execution of audited statements and the size of the audit trail, making it easier to
analyze and understand.

Follow these guidelines when devising an auditing strategy:

Guidelines for Auditing

Auditing Database Activity 7-13

1. Evaluate your reason for auditing.

After you understand of the reasons for auditing, you can devise an appropriate
auditing strategy and avoid unnecessary auditing.

For example, suppose you are auditing to investigate suspicious database activity.
This information by itself is not specific enough. What types of suspicious
database activity do you suspect or have you noticed? A more focused auditing
purpose might be to audit unauthorized deletions from arbitrary tables in the
database. This purpose narrows the type of action being audited and the type of
object being affected by the suspicious activity.

2. Audit knowledgeably.

Audit the minimum number of statements, users, or objects required to get the
targeted information. This prevents unnecessary audit information from cluttering
the meaningful information and using valuable space in the SYSTEM tablespace.
Balance your need to gather sufficient security information with your ability to
store and process it.

For example, if you are auditing to gather information about database activity,
then determine exactly what types of activities you want to track, audit only the
activities of interest, and audit only for the amount of time necessary to gather the
information that you want. As another example, do not audit objects if you are
only interested in logical I/O information for each session.

Auditing Typical Database Activity
When your purpose for auditing is to gather historical information about particular
database activities, follow these guidelines:

1. Audit only pertinent actions.

To avoid cluttering meaningful information with useless audit records and to
reduce the amount of audit trail administration, audit only the targeted database
activities. You can audit specific actions by using fine-grained auditing. Oracle
Database Security Guide describes fine-grained auditing in detail.

2. Archive audit records and purge the audit trail.

After you collect the required information, archive the audit records of interest,
and purge the audit trail of this information.

To archive audit records, you copy the relevant records to a database table, for
example, using INSERT INTO table SELECT ... FROM SYS.AUD$... for
the standard audit trail. (Fine-grained audit records are in the SYS.FGA_LOG$
table.) Alternatively, you can export the audit trail table to an operating system
file. Oracle Database Utilities explains how to export tables by using Oracle Data
Pump.

To purge audit records, you delete standard audit records from the SYS.AUD$
table and fine-grained audit records from the SYS.FGA_LOG$ table. For example,
to delete all audit records from the standard audit trail, enter the following
statement:

DELETE FROM SYS.AUD$;

Alternatively, to delete all audit records from the standard audit trail generated as
a result of auditing the table emp, enter the following statement:

DELETE FROM SYS.AUD$
 WHERE obj$name='EMP';

Guidelines for Auditing

7-14 Oracle Database 2 Day + Security Guide

3. Remember the privacy considerations of your company.

Privacy regulations often lead to additional business privacy policies. Most
privacy laws require businesses to monitor access to personally identifiable
information (PII), and this type of monitoring is implemented by auditing. A
business-level privacy policy should address all relevant aspects of data access
and user accountability, including technical, legal, and company policy concerns.

Auditing Suspicious Database Activity
When you audit to monitor suspicious database activity, follow these guidelines:

1. Audit general information, and then audit specific information.

When you start to audit for suspicious database activity, often not much
information is available to target specific users or schema objects. Therefore, set
audit options more generally at first, that is, by using the standard audit options
described in "Auditing General Activities Using Standard Auditing" on page 7-3.

After you have recorded and analyzed the preliminary audit information, disable
general auditing, and then audit specific actions. You can use fine-grained
auditing, described in Oracle Database Security Guide, to audit specific actions.
Continue this process until you gather enough evidence to draw conclusions about
the origin of the suspicious database activity.

2. Protect the audit trail.

When auditing for suspicious database activity, protect the audit trail so that audit
information cannot be added, changed, or deleted without being audited. You
audit the standard audit trail by using the AUDIT SQL statement. For example:

sqlplus "sys/as sysdba"
Enter password: password
SQL> AUDIT SELECT ON SYS.AUD$ BY ACCESS;

Initialization Parameters Used for Auditing

Auditing Database Activity 7-15

Initialization Parameters Used for Auditing
Table 7–1 lists initialization parameters that you can use to secure auditing.

To modify an initialization parameter, see "Modifying the Value of an Initialization
Parameter" on page 2-6. For detailed information about initialization parameters, see
Oracle Database Reference and Oracle Database Administrator's Guide.

Table 7–1 Initialization Parameters Used for Auditing

Initialization Parameter Default Setting Description

AUDIT_TRAIL DB Enables or disables auditing. See "Enabling or Disabling
the Standard Audit Trail" on page 7-3 for detailed
information.

AUDIT_FILE_DEST ORACLE_
BASE/admin/ORACLE_
SID/adump

or

ORACLE_
HOME/rdbms/audit

Specifies the operating system directory into which the
audit trail is written when the AUDIT_TRAIL
initialization parameter is set to OS, XML, or
XML,EXTENDED. Oracle Database writes the audit records
in XML format if the AUDIT_TRAIL initialization
parameter is set to XML.

Oracle Database also writes mandatory auditing
information to this location, and if the AUDIT_SYS_
OPERATIONS initialization parameter, writes audit
records for user SYS.

AUDIT_SYS_OPERATIONS FALSE Enables or disables the auditing of operations issued by
user SYS, and users connecting with SYSDBA or SYSOPER
privileges. Oracle Database writes the audit records to the
audit trail of the operating system. Furthermore, it writes
the audit records in XML format if the AUDIT_TRAIL
initialization parameter is set to XML or XML, EXTENDED.

On UNIX systems, if you have also set the AUDIT_
SYSLOG_LEVEL parameter, then it overrides the AUDIT_
TRAIL parameter, which writes the SYS audit records to
the system audit log using the SYSLOG utility.

AUDIT_SYSLOG_LEVEL No default setting On UNIX systems, writes the SYS and standard OS audit
records to the system audit log using the SYSLOG utility.

Initialization Parameters Used for Auditing

7-16 Oracle Database 2 Day + Security Guide

 Index-1

 Index

A
access control

data encryption, 6-2
enforcing, 5-2
Oracle Label Security, 6-21

administrative
accounts

about, 3-2
predefined, listed, 3-2

administrator access, 5-3
passwords, 3-10

administrative user passwords, 3-10
administrator privileges

write, on listener.ora file, 5-3
ANONYMOUS user, 3-2
ANY system privilege

protecting data dictionary, 2-4
APEX_PUBLIC_USER user, 3-5
application contexts, used in Oracle Virtual Private

Database, 6-12
attacks

Denial of Service, 5-5
audit files, 7-4, 7-13
audit records, 7-2

viewing, 7-2
audit trail

DB setting, 7-4
XML file output, 7-4

auditing
about, 7-1
DDL statements, 7-7
default security setting, modified by, 7-5
DML statements, 7-7
fine-grained auditing, 7-1
guidelines, security, 7-12
historical information, 7-13
keeping information manageable, 7-12
monitoring user actions, 7-1
privilege audit options, 7-7
reasons to audit, 7-2
Sarbanes-Oxley Act

default auditing, 7-12
requirements, 7-5

suspicious activity, 7-14
viewing audit records, 7-2

where recorded, 7-2
authentication

certificate, 5-2
client, 5-2
remote, 5-2
strong, 3-10
user, 5-2

AUTHID CURRENT USER invoker’s rights
clause, 4-9

Axent firewall, 5-4

B
BFILEs, 2-5
BI user, 3-6

C
certificate authentication, 5-2
certificate key algorithm

Secure Sockets Layer, 5-6
certificates for user and server authentication, 5-2
CheckPoint firewall, 5-4
cipher suites

Secure Sockets Layer, 5-6
Cisco firewall, 5-4
client connection

stolen, 5-2
client guidelines, 5-2
compromised operating systems or applications, 5-2
configuration files, 5-6

listener.ora
administering listener remotely, 5-3
sample, 5-3

tnsnames.ora, 5-6
typical directory, 5-6

CONNECT role
privilege available to, 4-2

CONNECT statement
AS SYSDBA privilege, connecting with, 2-4

connections
AS SYSDBA privilege, 2-4
SYS privilege, 4-2

CREATE ANY TABLE statement, 4-2
CREATE DBLINK statement, 4-2
CREATE EXTERNAL JOB privilege

 Index-2

default security setting, modified by, 2-2
CREATE SESSION statement, 4-2
CREATE TABLE statement

auditing, 7-7
CTXSYS user, 3-2

D
data definition language

auditing, 7-7
data dictionary

about, 2-3
securing, 2-4
See also views

data files, 2-5
data manipulation language

auditing, 7-7
database accounts

See user accounts
Database Configuration Assistant

auditing by default, 7-5
default passwords, changing, 3-10
Oracle Label Security, installing, 6-23

Database Control
See Oracle Enterprise Manager Database Control

databases
restarting, 7-10

DBA_USERS view
about, 3-10

DBA_USERS_WITH_DEFPWD view, 3-9
DBCA

See Database Configuration Assistant
DBSNMP user

about, 3-2
passwords, default, 3-10

default passwords, 3-10
importance of changing, 3-8

default permissions, 2-5
default security settings

about, 2-1
enabling, 2-2

Denial of Service (DoS) attacks
audit trail, writing to operating system file, 7-4
networks, addressing, 5-5

DIP user, 3-5
disabling unnecessary services

FTP, TFTP, TELNET, 5-5
DROP ANY TABLE statement, 2-4
DROP TABLE statement

auditing, 7-7

E
eavesdropping, 5-2
encryption, 5-4

about, 6-2
algorithms, described, 5-9
components, 6-2
network traffic, 5-5
reasons not to encrypt, 6-2

reasons to encrypt, 6-2
Enterprise Edition, 3-10
examples

Oracle Label Security, 6-22 to 6-39
Oracle Virtual Private Database, 6-13 to 6-20
secure application roles, 4-4 to 4-11
standard auditing, 7-8 to 7-12
user session information, retrieving with SYS_

CONTEXT, 6-16
EXECUTE privilege, 4-2
EXFSYS user, 3-3
external tables, 2-5

F
falsified IP addresses, 5-2
falsified or stolen client system identities, 5-2
files

audit, 7-4, 7-13
BFILEs, 2-5
configuration, 5-3
data, 2-5
external tables, 2-5
listener.ora, 5-3, 5-6
log, 2-5
restrict listener access, 5-4
server.key, 5-6
symbolic links, restricting, 2-5
trace, 2-5
tsnames.ora, 5-6

fine-grained auditing, 7-1
Firewall-1 firewall, 5-4
firewalls, 5-4

guidelines, 5-4
ports, 5-6
supported

packet-filtered, 5-4
proxy-enabled, 5-4

FLOWS_020200 user, 3-5
FLOWS_FILES user, 3-5
FTP service

disabling, 5-5

G
Gauntlet firewall, 5-4
GRANT ALL PRIVILEGES

SELECT ANY DICTIONARY, 2-5
guidelines

auditing, security, 7-12
operating system accounts, limiting

privileges, 2-5
operating system users, limiting number of, 2-5
Oracle home default permissions, disallowing

modifying of, 2-5
passwords, 3-8
Secure Sockets Layer

mode, 5-6
TCPS protocol, 5-6

symbolic links, restricting, 2-5

 Index-3

H
HR user, 3-6
HTTPS port, 5-6

I
initialization parameters

AUDIT_FILE_DESTINATION, 7-15
AUDIT_SYS_OPERATIONS, 7-15
AUDIT_SYSLOG_LEVEL, 7-15
AUDIT_TRAIL, 7-15
configuration related, 2-6
default security, modified by, 2-2
FAILED_LOGIN_ATTEMPTS, 3-11
installation related, 2-6
MAX_ENABLED_ROLES, 4-12
modifying, 2-6
O7_DICTIONARY_ACCESSIBILITY

about, 2-6
data dictionary, protecting, 2-4
default setting, 2-5
setting in Database Control, 2-4

OS_AUTHENT_PREFIX, 5-10
OS_ROLES, 4-12
PASSWORD_GRACE_TIME, 3-11
PASSWORD_LIFE_TIME, 3-11
PASSWORD_LOCK_TIME, 3-11
PASSWORD_REUSE_MAX, 3-11
PASSWORD_REUSE_TIME, 3-11
REMOTE_LISTENER, 5-10
REMOTE_OS_AUTHENT, 5-2, 5-10
REMOTE_OS_ROLES, 4-12, 5-10
SEC_CASE_SENSITIVE_LOGIN, 3-11
SEC_MAX_FAILED_LOGIN_ATTEMPTS, 3-11
SEC_RETURN_SERVER_RELEASE_

BANNER, 2-6
SQL92_SECURITY, 4-12

intruders
client connections, attacking, 5-2

invoker’s rights, 4-9
IP addresses

falsifying, 5-4
guidelines, 5-2

IX user, 3-6

K
Kerberos authentication

password management, 3-10

L
LBACSYS user, 3-3
least privilege principle, 4-2
listener

establishing a password, 5-5
not an Oracle owner, 5-4
preventing online administration, 5-3
restrict privileges, 5-4
secure administration, 5-5

listener.ora file
administering remotely, 5-3
default location, 5-6
online administration, preventing, 5-3
TCPS, securing, 5-6

log files, 2-5

M
MDDATA user, 3-5
MDSYS user, 3-3
MGMT_VIEW user, 3-3
modes

Secure Sockets Layer, 5-6
monitoring

See auditing
multiplex multiple-client network sessions, 5-4
multitier environments, auditing, 7-7

N
Net8 network utility

See Oracle Net
network activity

auditing, 7-8
Network Associates firewall, 5-4
network authentication services, 3-10

smart cards, 3-10
token cards, 3-10
X.509 certificates, 3-10

network encryption
about, 5-7
components, 5-7
configuring, 5-7

network IP addresses, 5-5
networking security

Denial of Service attacks, addressing, 5-5
guidelines for clients, 5-2
Secure Sockets Layer guidelines, 5-5

O
object privileges, 4-2
OE user, 3-6
operating system access, restricting, 2-5
operating system account privileges, limiting, 2-5
operating system users

limiting number of, 2-5
operating systems

default permissions, 2-5
Oracle Advanced Security

authentication protection, 3-10
network traffic encryption, 5-5

Oracle Connection Manager
firewall configuration, 5-4

Oracle Enterprise Manager Database Control
about, 1-3

Oracle home
default permissions, disallowing modifying

of, 2-5
Oracle Java Virtual Machine (OJVM), 2-5

 Index-4

Oracle Label Security
about, 6-20
components, 6-20
example, 6-22 to 6-39
guidelines in planning, 6-21
how it works, 6-21
installing, 6-23

Oracle Net
encrypting network traffic, 5-7
firewall support, 5-4

Oracle Virtual Private Database
about, 6-11
advantages, 6-13
application contexts, 6-12
components, 6-12
example, 6-13 to 6-20

Oracle Wallet Manager
with transparent data encryption, 6-5

ORACLE_OCM user, 3-5
ORDPLUGINS user, 3-3
ORDSYS user, 3-3
OUTLN user, 3-3
OWBSYS user, 3-3

P
pass phrase

read and parse server.key file, 5-6
passwords

administrative, 3-10
administrative user, 3-10
changing, 3-9
complexity, 3-10
default security setting, modified by, 2-1
default user account, 3-8
history, 3-10
length, 3-10
listener, establishing for, 5-5
management, 3-10
management rules, 3-10
profiles

enabling default settings, 7-6
requirements, 3-8
SYS user, 3-10
SYSTEM user, 3-10

permissions
default, 2-5
run-time facilities, 2-5

PIX Firewall firewall, 5-4
PM user, 3-6
principle of least privilege, 4-2
privileges

about, 4-1
auditing, 7-7
CREATE DBLINK statement, 4-2
system

ANY, 2-4
DROP ANY TABLE, 2-4
SELECT ANY DICTIONARY, 2-5

SYSTEM and OBJECT, 4-2

using proxies to audit, 7-7
PUBLIC user, 3-5
PUBLIC user group

revoking unnecessary privileges and roles, 4-2

R
Raptor firewall, 5-4
remote authentication, 5-2
REMOTE_OS_AUTHENT initialization

parameter, 5-2
restarting a database, 7-10
roles

CONNECT, 4-2
create your own, 4-2
job responsibility privileges only, 4-2

root file paths
for files and packages outside the database, 2-5

RSA private key, 5-6
run-time facilities

restricting permissions, 2-5

S
Sarbanes-Oxley Act

auditing requirements, 7-5
default auditing, 7-12

schema objects
auditing, 7-8

SCOTT user
about, 3-7
restricting privileges of, 4-2

sec_admin example security administrator
creating, 4-4
removing, 7-12

secure application roles
about, 4-3
advantages, 4-3
components, 4-3
example, 4-4 to 4-11
invoker’s rights, 4-9
user environment information from SYS_

CONTEXT SQL function, 4-9
Secure Sockets Layer

administering listener remotely, 5-3
certificate key algorithm, 5-6
certificates, enabling for user and server, 5-2
cipher suites, 5-6
configuration files, securing, 5-6
guidelines, 5-5
mode, 5-6
pass phrase, 5-6
RSA private key, 5-6
server.key file, 5-6
TCPS, 5-6

security administrator
example of creating, 4-4
removing sec_admin, 7-12

security tasks, common, 1-2
SELECT ANY DICTIONARY, 2-5

 Index-5

SELECT ANY DICTIONARY privilege
data dictionary, accessing, 2-4

sensitive data
Oracle Label Security, 6-20
Oracle Virtual Private Database, 6-11
secure application roles, 4-3

separation of duty concepts, 4-4
server.key file

pass phrase to read and parse, 5-6
session information, retrieving, 6-12
SH user, 3-6
shutting down a database, 7-10
SI_INFORMTN_SCHEMA user, 3-3
smart cards, 3-10
SPATIAL_CSW_ADMIN_USR user, 3-6
SPATIAL_WFS_ADMIN_USR user, 3-6
SQL statements

auditing, 7-7
using proxies to audit, 7-7

SQL*Net network utility, 5-4
SSL

See Secure Sockets Layer
standard auditing

about, 7-3
auditing by default, 7-5
enabling or disabling audit trail, 7-3
example, 7-8 to 7-12
in multitier environment, 7-7
network activity, 7-8
privileges, 7-7
proxies, 7-7
schema objects, 7-8
SQL statements, 7-7

starting a database, 7-10
strong authentication

guideline, 3-10
symbolic links

restricting, 2-5
SYS user

about, 3-4
password use, 3-10

SYS_CONTEXT function
example, 6-16

SYS_CONTEXT SQL function
validating users, 4-9

SYS.AUD$ database audit trail table
about, 7-4
DB (database) option, 7-9
DB, EXTENDED option, 7-4
XML, EXTENDED option, 7-4

SYSDBA system privilege, 7-10
SYSMAN user

about, 3-4
password use, 3-10
passwords, default, 3-10

SYS-privileged connections, 4-2
system identities, stolen, 5-2
system privileges, 4-2

ANY, 2-4
DROP ANY TABLE statement, 2-4

SELECT ANY DICTIONARY, 2-5
SYSTEM user

about, 3-4
password use, 3-10

T
tablespaces

encrypting, 6-8
TCPS protocol

Secure Sockets Layer, used with, 5-3
tnsnames.ora file, used in, 5-6

TDE
See transparent data encryption

TELNET service
disabling, 5-5

TFTP service
disabling, 5-5

token cards, 3-10
trace files, 2-5
transparent data encryption

about, 6-3
advantages, 6-3
components, 6-3
configuring, 6-4
how it works, 6-3
performance effects, 6-4
storage space, 6-4
table columns

checking in database instances, 6-10
checking individual tables, 6-10
encrypting, 6-6

tablespaces
checking, 6-11
encrypting, 6-8

wallets, 6-5
tsnames.ora, 5-6

typical directory, 5-6

U
UDP and TCP ports

closing for ALL disabled services, 5-5
user accounts

about, 3-1
administrative user passwords, 3-10
default

changing password, importance of, 3-8
expiring, 3-7
finding information on, 3-10
locking, 3-7
password requirements, 3-8
predefined

administrative, 3-2
non-administrative, 3-4
sample schema, 3-6

securing, 3-1 to 3-11
unlocking, 3-7

user session information
retrieving, 6-12

 Index-6

users
ANONYMOUS, 3-2
APEX_PUBLIC_USER, 3-5
BI, 3-6
CTXSYS, 3-2
DBSNMP, 3-2
DIP, 3-5
EXFSYS, 3-3
FLOWS_020200, 3-5
FLOWS_FILES, 3-5
HR, 3-6
IX, 3-6
LBACSYS, 3-3
MDDATA, 3-5
MDSYS, 3-3
MGMT_VIEW, 3-3
OE, 3-6
ORACLE_OCM, 3-5
ORDPLUGINS, 3-3
ORDSYS, 3-3
OUTLN, 3-3
OWBSYS, 3-3
PM, 3-6
PUBLIC, 3-5
SCOTT, 3-7, 4-2
SH, 3-6
SI_INFORMTN_SCHEMA, 3-3
SPATIAL_CSW_ADMIN_USR, 3-6
SPATIAL_WFS_ADMIN_USR, 3-6
SYS, 3-4
SYSMAN, 3-4
SYSTEM, 3-4
WMSYS, 3-4
XDB, 3-4
XS$NULL, 3-6

V
valid node checking, 5-5
views

DBA_USERS, 3-10
DBA_USERS_WITH_DEFPWD, 3-9

Virtual Private Database
See Oracle Virtual Private Database

VPD
See Oracle Virtual Private Database

vulnerable run-time call, 2-5
made more secure, 2-5

W
WMSYS user, 3-4

X
X.509 certificates, 3-10
XDB user, 3-4
XS$NULL user, 3-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Oracle Database Security
	About This Guide
	Before Using This Guide
	What This Guide Is and Is Not

	Common Database Security Tasks
	Tools for Securing Your Database
	Securing Your Database: A Roadmap

	2 Securing the Database Installation and Configuration
	About Securing the Database Installation and Configuration
	Enabling the Default Security Settings
	Securing the Oracle Data Dictionary
	About the Oracle Data Dictionary
	Enabling Data Dictionary Protection

	Restricting Operating System Access
	Restricting Permissions on Run-Time Facilities
	Initialization Parameters Used for Installation and Configuration Security
	Modifying the Value of an Initialization Parameter

	3 Securing Oracle Database User Accounts
	About Securing Oracle Database User Accounts
	Predefined User Accounts Provided by Oracle Database
	Predefined Administrative Accounts
	Predefined Non-Administrative User Accounts
	Predefined Sample Schema User Accounts

	Expiring and Locking Database Accounts
	Requirements for Creating Passwords
	Finding and Changing Default Passwords
	Changing the Default Administrative User Passwords
	Enforcing Password Management
	Initialization Parameters Used to Secure User Accounts

	4 Managing User Privileges
	About Privilege Management
	Granting Necessary Privileges Only
	Revoking Privileges from the PUBLIC User Group
	Granting Roles to Users
	Controlling Access to Applications with Secure Application Roles
	About Secure Application Roles
	Example: Creating a Secure Application Role
	Step 1: Create a Security Administrator Account
	Step 2: Create User Accounts for This Example
	Step 3: Create the Secure Application Role
	Step 4: Create a Lookup Table
	Step 5: Create the PL/SQL Package to Set the Secure Application Role
	Step 6: Grant EXECUTE Privileges for the Procedure to Matthew and Winston
	Step 7: Test the EMPLOYEE_ROLE Secure Application Role
	Step 8: Optionally, Remove the Components for This Example

	Initialization Parameters Used for Privilege Security

	5 Securing the Network
	About Securing the Network
	Securing the Client Connection on the Network
	Guidelines for Securing Client Connections
	Securing the Network Connection
	Securing a Secure Sockets Layer Connection

	Protecting Data on the Network by Using Network Encryption
	About Network Encryption
	Configuring Network Encryption

	Initialization Parameters Used for Network Security

	6 Securing Data
	About Securing Data
	Encrypting Data Transparently with Transparent Data Encryption
	About Encrypting Sensitive Data
	When Should You Encrypt Data?
	How Transparent Data Encryption Works
	Configuring Data to Use Transparent Data Encryption
	Step 1: Configure the Wallet Location
	Step 2: Create the Wallet
	Step 3: Open (or Close) the Wallet
	Step 4: Encrypt (or Decrypt) Data

	Checking Existing Encrypted Data
	Checking Whether a Wallet Is Open or Closed
	Checking Encrypted Columns of an Individual Table
	Checking All Encrypted Table Columns in the Current Database Instance
	Checking Encrypted Tablespaces in the Current Database Instance

	Controlling Data Access with Oracle Virtual Private Database
	About Oracle Virtual Private Database
	Example: Creating an Oracle Virtual Private Database Policy
	Step 1: If Necessary, Create the Security Administrator Account
	Step 2: Update the Security Administrator Account
	Step 3: Create User Accounts for This Example
	Step 4: Create the F_POLICY_ORDERS Policy Function
	Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private Database Policy
	Step 6: Test the ACCESSCONTROL_ORDERS Virtual Private Database Policy
	Step 7: Optionally, Remove the Components for This Example

	Enforcing Row-Level Security with Oracle Label Security
	About Oracle Label Security
	Guidelines for Planning an Oracle Label Security Policy
	Example: Applying Security Labels to the HR.LOCATIONS Table
	Step 1: Install Oracle Label Security and Enable User LBACSYS
	Step 2: Create a Role and Three Users for the Oracle Label Security Example
	Step 3: Create the ACCESS_LOCATIONS Oracle Label Security Policy
	Step 4: Define the ACCESS_LOCATIONS Policy-Level Components
	Step 5: Create the ACCESS_LOCATIONS Policy Data Labels
	Step 6: Create the ACCESS_LOCATIONS Policy User Authorizations
	Step 7: Apply the ACCESS_LOCATIONS Policy to the HR.LOCATIONS Table
	Step 8: Add the ACCESS_LOCATIONS Labels to the HR.LOCATIONS Data
	Step 9: Test the ACCESS_LOCATIONS Policy
	Step 10: Optionally, Remove the Components for This Example

	7 Auditing Database Activity
	About Auditing
	Why Is Auditing Used?
	Where Are Standard Audited Activities Recorded?
	Auditing General Activities Using Standard Auditing
	About Standard Auditing
	Enabling or Disabling the Standard Audit Trail
	Using Default Auditing for Security-Relevant SQL Statements and Privileges
	About Default Auditing
	Enabling Default Auditing

	Individually Auditing SQL Statements
	Individually Auditing Privileges
	Using Proxies to Audit SQL Statements and Privileges in a Multitier Environment
	Individually Auditing Schema Objects
	Auditing Network Activity

	Example: Creating a Standard Audit Trail
	Step 1: Log In and Enable Standard Auditing
	Step 2: Enable Auditing for SELECT Statements on the OE.CUSTOMERS Table
	Step 3: Test the Audit Settings
	Step 4: Optionally, Remove the Components for This Example
	Step 5: Remove the SEC_ADMIN Security Administrator Account

	Guidelines for Auditing
	Enabling Default Auditing of SQL Statements and Privileges
	Keeping Audited Information Manageable
	Auditing Typical Database Activity
	Auditing Suspicious Database Activity

	Initialization Parameters Used for Auditing

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

