ORACLE

Oracle® Database
SQL Language Reference

11gRelease 1 (11.1)
B28286-01

July 2007

Oracle Database SQL Language Reference, 11g Release 1 (11.1)
B28286-01

Copyright © 1996, 2007, Oracle. All rights reserved.

Primary Author: Diana Lorentz

Contributing Author: Special thanks to Bob Jenkins, who has always been willing to answer
questions—some of them more than once.

Contributors: Drew Adams, Nippun Agarwal, Shashaanka Agarwal, David Alpern, Patrick Amor, Rohan,
Angrish, Geeta Arora, Lance Ashdown, David Austin, Thomas Baby, Hermann Baer, Prasad Bagal,
Subhransu Basu, Mark Bauer, Eric Belden, Tugrul Bingol, Allen Brumm, Donna Carver, Sivasankaran
Chandrasekar, Atif Chaudhry, Beethoven Cheng, Timothy Chien, Alan Choi, George Claborn, Benoit
Dageville, Matthew Dombrowski, Jacco Draijjer, George Eadon, William Fisher, Steve Fogel, David
Friedman, Amit Ganesh, Raymond Guzman, John Haydu, Chi Hoang, Pat Huey, Sam Idicula,
Chandrasekharan Iyer, Ken Jacobs, Mark Jaeger, Balaji Krishnan, Ramkumar Krishnan, Vasudha
Krishnaswamy, Ramesh Kumar, Joydip Kundu, Simon Law, Bill Lee, Geoff Lee, Nina Lewis, Zhen Liu, Bryn
Llewellyn, Rich Long, Scott Lynn, Robert McGuirk, Ben Meng, Mughees Minhas, Krishna Mohan, Sheila
Moore, Tony Morales, Ari Mozes, Niloy Mukherjee, Denis Mukhin, Gopal Mulagund, Ravi Murthy, Sujatha
Muthulingam, DheerajPandey, Hanlin Qian, Kevin Quinn, Christopher Racicot, Venkatesh Radhakrishnan,
Ananth Raghavan, Ashish Ray, Kathy Rich, Shrikanth Sankar, Vivian Schupmann, Lei Sheng, Bipul Sinha,
Wayne Smith, Kesavan Srinivasan, Peter Stengard, Gaby Stredie, Sankar Subramanian, Seema Sundara,
Anh-Tuan Tran, Kothanda Umamageswaran, Randy Urbano, Mark van de Wiel, Badhri Varanasi, Srinivas
Vemuri, Radek Vingralek, Guhan Viswanathan, William Waddington, Shaoyu Wang, Wei Wang, Steve
Wertheimer, Charles Wetherell, Rajiv Wickremesinghe, Andrew Witkowski, Brian Wolf, Sergiusz Wolicki,
Daniel Wong, Tsae-Feng Yu, Mohamed Zait, Mohammed Zaiuddin, Fred Zemke, Weiran Zhang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

Preface ... xxi
AUAIEIICE ..o XXi
Documentation Accessibility ... XXi
Related DOCUMENLESc.cvuiiiiiiiiiiiiii e XXii
CONVENLIONS ...ttt XXii

What's New in the SQL Language Reference? ... XXiii
Oracle Database 11g Release 1 New Features in the SQL Language Reference.................c.......... Xxii

1 Introduction to Oracle SQL

History of SQL ..o 1-1
SOL StaANAATASoouiiiiiiiieee ettt ettt e be b b e et et e b e st et ent st e st eseebeebeeaens 1-1

HOW SQL WOTKS ..cevieiiteeeeieteceeete ettt et ettt ettt eeveeteeeveetteeaeeateeseeaeeseessenseessenseesseseenseeseensenseensas 1-2

Common Language for All Relational Databasesccccoeoeueieiiiiiieiiicicicicee 1-3
Recent ENNanCemENtS..........cccoeuiriiiiniiiiniiineenteese ettt sttt bttt s 1-3
LeXical COMVENEIONS........cecviiiiiiieiiieiieeree ettt ettt 1-3
TOOLS SUPPOLL ..ottt ettt a et bbbt en e ne st enen 1-4

2 Basic Elements of Oracle SQL

DatatyPes ..o 2-1
Oracle Built-in Datatypes........cccciiiiiiiiiiiiiiiiiiiiiciic s 2-6
CHAR DatatyPe oot s 2-9
NCHAR DatatyPe ...ccueviiieiiiiciee e 2-9
NVARCHAR2 Datatypecccocoviiiiniiiiiiicics s 2-9
VARCHAR2 Datatypecccoviiiiiiiiiiiiiiciiiics e 2-10
VARCHAR Datatypec.coooiuiiiiii i 2-10
NUMBER Datatypecccoovuiiiiiiiiiiiiiiniiciicrc st 2-10
FLOAT DatatyPe.......cccvviiiiiiiiiiiiiiiiiniic s 2-12
Floating-Point NUMDETScc.coiiiiiiiiiiiic s 2-12
BINARY_FLOAT ..ot 2-13
BINARY_DOUBLEcoceitietieteieeteteeee s 2-13

NUIMETIC PIECEAERIICE ..ottt e et e e e e eaa e e s eaaeeseaseessnneeeenes 2-14

DATE DatatyPe ...cccceciiiiiiciiiiiceiisicieies it 2-17
USINg JUHAN DAYS ..o 2-17
TIMESTAMP DatatyPecccoviiiviiiiriiiniiiicii s 2-18
TIMESTAMP WITH TIME ZONE Datatypeccccccooeiiiiiiiiiiiiicccceeeenens 2-18
TIMESTAMP WITH LOCAL TIME ZONE Datatypeccccoovvvviniiiiniiininiiceennns 2-18
INTERVAL YEAR TO MONTH Datatypecccooevviviiiiiniiiiiniiniiiincssicnennns 2-19
INTERVAL DAY TO SECOND Datatypeccccccevvvviviiiiiiiniiiiiiiniinises 2-19
Datetime/Interval Arithmetic ..o 2-20
Support for Daylight Saving Timesccccoeeieiiiiiiiiiiiicc s 2-22
Datetime and Interval Examplescccouoiiiiiiiiii 2-22
RAW and LONG RAW DatatyPesccccocceueueieieuemeieieieieieeieeeieeeieieneneneeeeeesesesesesenenenenens 2-23
BFILE Datatypeccccoiiiiiiiiiiiiciciiicciiii s 2-25
BLOB DatatyPeccoeueiiiiiiiiiiiiciiriicie it 2-26
CLOB DatatyPe ...ccoviviiiiiiiiiiiiiiicici e 2-26
INCLOB Datatypeccuoiirieieiiieieci it 2-26
ROWid DatatyPesccueiiiuiiiiicice e 2-26
ROWID DatatyPec.cociviiiriiiiiiiiiciiiiiccc e 2-26
UROWID Datatypec.ooieieiiiiieii st 2-27
ANSI, DB2, and SQL /DS DatatyPesccccocoerueiiiinieieieiceie st 2-28
USer-DefiNed TYPES ..c.cuvuiuiuiiiiiiiiiiicceceeceiee et 2-29
ODJECE TYPES .ottt 2-30
REF DatatyPesccceieieiiiiiiiii s 2-30
VAITAYS w.eciiiiiiiiiicc b 2-30
INeSted TabLESc.coviiviiiiiiiiiic s 2-30
Oracle-Supplied TYPEScccueiiiiiicieiie et 2-31
ANY TYPES o 2-31
ANYTYPE ..o 2-31
ANYDATA .o 2-31
ANYDATASET ...t 2-32
XML TYPES .oviitiieieieieteet bbb bbb bbb 2-32
XMLTYPE vttt 2-32
URI DatatyPescoiiiiiiiiiiiiiiiciii e 2-32
URIFactOry PacKagecoovueueiiiiicieiicici s 2-33
SPAtIAl TYPES ... s 2-34
SDO_GEOMETRYcooviiiiiiiiiiiieiiie s 2-34
SDO_TOPO_GEOMETRYcoooiiiiiiiiiiiiiiiis s 2-34
SDO_GEORASTERocotiiriiicieirinicietesttieeiteee sttt 2-34
MEAIA TYPES .ottt 2-35
ORDAUGIO oot 2-35
ORDIIMAEE ...ttt 2-35
ORDVIAEO ...cvviiiieteteteee e 2-35
ORDDIOC ..ottt 2-35
ORDDIACOIN ..ttt 2-35
SI_SHIIMAGE ...vvvviiiieieicieiecceeie ettt et enees 2-35

o) I @e) (o) SRR 2-35
SI_AVEIageCOlOTc.viviiiiiiiiiiicic s 2-35

SI_COIOrHIStOZIAM ...ttt s 2-35

o) I e T:3 R o) o F=1 (@e) [SRRSO 2-36

ST UTEXEULE woevieeeeieee ettt ettt ee e ettt et e s e st e eeseseasaeeesessssaeeessssssseessssssateeesssssseeesssssnseeessssnnres 2-36

o) I St N B) 51 R RTR 2-36
ORDIMAgeSIgNatUureccoccuiueiiiiiiieicicieieiciice s 2-36
Expression Filter TYPe.....cccoiiiiiiiiiiiic s 2-36
EXPI@SSION ...cuiiititttct s 2-36
Datatype Comparison RuUles ..o 2-36
INUIMETIC VAIUES ..vevieiieeieiieiieiietieeteetet et ettt ettt e tesse st e ssesbe s b essessessesaassessasesssnsensesensensas 2-36
DAt VAIUES ...ooveeeietieieeteteeeee ettt ettt et et b e e b e sbeessesseessesbeessasaessasseasseeseessesseensensees 2-37
CRAracter VAIUES ..cc.eoovieeieiieiicie ettt ettt e et e b e s te e b e s te e aesbaessessesbasseensasssessesesensenseas 2-37
ODJECE VALUES ...ttt 2-39
Varrays and Nested Tablescocoiiiiiiiiic 2-39
Datatype PreCedence ...t 2-39
| N =) 4 =3 =3 o) o PR UTR P 2-40
Implicit and Explicit Data CONVeISIONccccoviiiiiiiiiiiiiiiiiiccs 2-40
Implicit Data CONVISIONc.cuoiiiiiiiiiiciei e 2-40
Implicit Data Conversion EXamples.........cccccccccieiiiiiinniiinccereneree e 2-42
Explicit Data CONVEISIONccciuiiiiiiiiiiiiiiiciciicce s 2-42
LIEEIALS ..ottt ettt bbbt e b et et e e raeebeerb e beerbeareebeetaenbeereenteeseenreenes 2-44
TEXE LIEETALS .veoveviieieeieieeieteitette ettt sttt ettt et et et e st e seeseeseesesbesbessessessessessessasessansansensensensn 2-44
INUIMETIC LITETALS ..vevieiiieiieiieiieie sttt ettt ettt et et e sbe e st e be e aesbeess e saessesseessesseensesseessensens 2-45
Integer LAteralscooruiiiiiiieiee s 2-46
NUMBER and Floating-Point Literalscccccoevviiirnniiiiinccnrreeeereeeeeeceeees 2-46
Datetime Literalscceecieeiieieiieieeeetese ettt et e e sve e e s te e aesbe e s e seessesseesseeseessesreensenneas 2-48
INEEIVAL LIEIALS...c.vicviiiieieieceece ettt ettt et s te et et e ae s be e b e baesbesseesseeseesaesseensensnas 2-51
INTERVAL YEAR TO MONTHccoootiiitiiiieieieieiertetes e stes e ssessese e saessesaessesassassessens 2-51
INTERVAL DAY TO SECONDoooiieiieirieieeteeeeeeiet ettt st 2-52
FOrmat IMOAEISccoooviiiiiiciiteceee ettt ettt et e et e st e e aesee e besba e beessesbaessenseessensesssensennes 2-54
Number FOrmat MOAEILSccueviieieiniiieisieseseiet ettt etaeteste st s e s sessessessessessesseseasenses 2-54
Number Format EIEMENESccoccieiiriieieiieicsieiesteteeeee sttt te s sae e sse e eseseeessesseens 2-55
Datetime FOrmat MOAELSccooeieiiiiiiiieieciecteeteeeeete ettt ettt et e be et be et v et eae s e saenanan 2-58
Datetime Format EIBIMENTSc.ccccveieiiiiiriiiisieeieieetee ettt aessesseseesassassessens 2-58
Uppercase Letters in Date Format Elementscccocoeveiiiiiiciiiciccee, 2-58
Punctuation and Character Literals in Datetime Format Modelscccccecveinrnnen. 2-58
Datetime Format Elements and Globalization SUPPOTtc.ccccccueeucicecieiiccieiccenenes 2-62
ISO Standard Date Format EIEMENLtSc.cceeeeiiieieiieieieeeeceeee e 2-62
The RR Datetime Format EIEIMENtc.cccoevviiuieiiiiiiiiicecieeeceeeee et 2-62

RR Datetime Format EXamples........c.cccccccciiiiiiiiniiiieerreceeeeeeeesese s 2-63
Datetime Format Element SUIXeScccceeuieiieiieieiiciesecieeeetese et 2-63
Format Model MOQIfIEIScouiiiieiiciieieciectectecteetee ettt ettt ettt et ettt et veeteeeaeersennesanan 2-64
Format Model EXamples........cccccccuiuiiiiiiiiiiiiiiciceeieeieieieeeeeeeeeeeseene e eeeeneeeaaees 2-65
String-to-Date Conversion RULeSs ..o 2-67
XML FOrmat MOELcuooviiiiiicieeeecteeect ettt ettt be ettt ve b e teeaseeseeaaesnsensennnan 2-67
INULLS oottt ettt et et et e st et e s e e s s e e s e e st e st eenseeseensesseenseeneense st enseeneenseessenseeneenseeneennennes 2-68
Nulls in SQL FUNCHONSvecvieiieieeiieiirieeie sttt etesteetesseessesseessesseessasssessesssessesseessesseessenses 2-69
Nulls with Comparison CONditions ... 2-69

vi

AR TN ST g W @03 sV b o) o 1< R 2-69

COMIMENES ..ottt 2-70
Comments Within SQL StateINeNtsc.cccvevvieiiiiiiiieieeteeteete ettt et ere e eeae e ereesesseersenneas 2-70
Comments on Schema and Nonschema ODbjects ... 2-71
USING HINES .oviiiiii s 2-71
Alphabetical Listing of HINtScccooiiiiiiiiiiiiiiiicccceeee e 2-75

ALL_ROWS HINt oo 2-75
APPEND HiNt ..o 2-76
CACHE HINt oot 2-76
CLUSTER HINt vttt 2-76
CURSOR_SHARING_EXACT HinNt ..cccoovvviiiiiiiiiiiiiniiiininissssenssens 2-77
DRIVING_SITE HINt ooviviiiiiiiiiiiiiic s 2-77
DYNAMIC_SAMPLING Hint ..c.coovviiiiiiiiiiiiiiiiiiciin s 2-77
FACT HINE oot 2-78
FIRST_ROWS HINt «..ooviiiiiiiiiiciiiiniccc s 2-78
FULL HINE oo 2-79
HASH HINE oo 2-79
INDEX HINt oot 2-79
INDEX_ASC HINE oot 2-80
INDEX_COMBINE HiNt ..c.coviiiiiiiiiiiiiiiiiiici s 2-80
INDEX_DESC HiNt ...ocoiuiiiiiiiiiiiiii s 2-80
INDEX_FES HINt ..o sssssss s sss s s 2-81
INDEX_JOIN HINt ..o 2-81
INDEX_SS HiINE vttt 2-82
INDEX_SS_ASC HINt ..oovoviiiiiiiiiiiiceictccc s 2-82
INDEX_SS_DESC HINtcocuoviiiiiiiiiiiiiiiiiiiici s 2-82
LEADING HiNt ..o 2-83
MERGE HINE oo 2-83
MODEL_MIN_ANALYSIS HiIntccccoeviiiiiiiiiiiiiccenns 2-84
MONITOR HINE oot 2-84
NOAPPEND HiNt ..ot 2-84
INOCACHE HINE ..ottt 2-84
NO_EXPAND HINt c.ooviiiiiiiiiiicnisce s 2-85
INO_FACT HiNt oot 2-85
INO_INDEX HINE ..ottt 2-85
NO_INDEX_FES HINt ...coviiiiiiiiiiiiii s s 2-86
NO_INDEX_SS HINt ..oovvviiiiiiiiiiiiiiieicicicc s 2-86
NO_MERGE HINt ..o 2-86
NO_MONITOR HINt c.ooviiiiiiiiiiiiiicc s 2-87
NO_PARALLEL HINt ..ot ssssssssensssnais 2-87
NOPARALLEL HiNtu..oooiiiiiiiiiiiiiiiiiiiice st 2-87
NO_PARALLEL_INDEX HiNt «..ocvviiiiiiiiiiiiiiiccc s 2-87
NOPARALLEL_INDEX HiNt....coooiiiiiiiiiiiiiiiiiiiicesscsnnans 2-87
NO_PUSH_PRED HINt ...ccocoouiiiiiiiiiiiiiiiiiiiccee e 2-87
NO_PUSH_SUBQ HiNtooviviiiiiiiiiieiiiic s 2-88
NO_PX_JOIN_FILTER Hintcccooviiiiiiiiiiiiiiiiic s 2-88
NO_QUERY_TRANSFORMATION Hintcccccceuiiiiiinininiiiiiiiinininnninnnseseseseccas 2-88

NO_RESULT_CACHE HINE coooviiriiirieinicercnencne ettt eene 2-88

NO_REWRITE HINt ..ot 2-88
NOREWRITE HiNt....cocvoiiiiiiiiiiiiicn s 2-89
NO_STAR_TRANSFORMATION Hintcccccecvuviiiiiniiiiiiiiiccnns 2-89
INO_UNNEST HINE oot 2-89
NO_USE_HASH HINt oo 2-89
NO_USE_MERGE HINtcovvviiimiiiiiiiiiiniiiiissess s sssssesssssssnns 2-89
INO_USE_NL HINt ..ooviiiiiiiiiiiieineie st 2-90
NO_XMLINDEX_REWRITE HINt ...ovviviiiiiiiiiiiiiiciiccc e 2-90
NO_XML_QUERY_REWRITE Hint.....cocooovuviiiiiiiiiiiiiiiiiiiincnnes 2-90
OPT_PARAM HINt .oooiiiiiiiiiiii b 2-91
ORDERED HINL .cviiiiiiiiiice s 2-91
PARALLEL HINt oot sssssssaes 2-91
PARALLEL_INDEX HiNt ..c.coooiiiiiiiiiiiiiiiiceiese e 2-92
PQ_DISTRIBUTE HiNtcoovviiiiiiiiiiiiiiicc s 2-92
PUSH_PRED HINL .ot ssssasssnnes 2-94
PUSH_SUBQ HINE ..ot 2-94
PX_JOIN_FILTER HiNtovuiviiiiiiiiiiiiiiiicc st 2-94
QB_NAME HINt ..ot sse s 2-94
RESULT_CACHE HINt ..ot 2-95
REWRITE HINE ..o 2-95
STAR_TRANSFORMATION Hintccccoovviiiiiiiiiiiiicscnscnnes 2-96
UNNEST HiNE oo 2-96
USE_CONCAT HINt oo 2-97
USE_HASH HINE ..o 2-97
USE_MERGE HINt ...oooiiiiiiiiiiiiiiiiicii s 2-97
USE_INL HIN oot 2-98
USE_NL_WITH_INDEX HInNtccccoooiiiiiniiiiiiiiiiiiiiscscnnnnes 2-98
Database ODJECtScccoviviiiiiiiiiiiiiii s 2-99
Schema ODJECSc.cuiuiiiiiiiiieiiciccecc e 2-99
Nonschema ObJECEScccuvviiiiiiiiiiiiiiiii s 2-99
Schema Object Names and Qualifiers ..., 2-100
Schema Object Naming RULEScccccciiiiiiiiiiicccccccceee s 2-100
Schema Object Naming EXamples ... 2-103
Schema Object Naming Guidelinesccccccocuciiiiiiiiiiiiiiiiiiiinccaes 2-103
Syntax for Schema Objects and Parts in SQL Statements...............cccccooviiiiiniiiiniin, 2-104
How Oracle Database Resolves Schema Object Referencesccccoovvivvivininiiniinnninnen. 2-104
References to Objects in Other Schemascooviiiiiiiii 2-105
References to Objects in Remote Databasescccccccecrvviriiinirninnrcrcnreeeee e 2-106
Creating Database Linkscccooooiiiiiiiiiiii s 2-106
Database Link NAMEScccccovirieiininiiiccininieeitneteeteee et es 2-106
Username and Password ..., 2-107
Database Connect StriNg..........coccueieiiiiiiiiic e 2-107
References to Database LInKSccccccecirriieinininieiinininincciseeee st 2-107
References to Partitioned Tables and IndeXesccccovveviiiiiiiiniiiie, 2-108
References to Object Type Attributes and Methods ..., 2-109

vii

viii

Pseudocolumns

Hierarchical Query Pseudocolumns ..o 3-1
CONNECT _BY_ISCYCLE PSEUAOCOIUITIIU ..vveeeeieeeeeeeeeeeeeeeeeee et eeveeseaeeeeeneeseeneesseaeeeens 3-1
CONNECT_BY_ISLEAF PSEUAOCOIUMINovviiiiiiiiieieeieieeeeee et et eerveeeenaee s s esaee e 3-2
LEVEL PSeUAOCOIUMIcviiiiiiiiiiiiicicc e 3-2

Sequence PSeudocolUmnscocooiiiiiiiiiniiiccee e 3-3
Where to Use Sequence ValUes ... 3-3
How to Use Sequence ValUes ... 3-4

Version Query Pseudocolumns ... 3-6

COLUMN_VALUE PS@UAOCOIUINIoouvviiiiiiiiiiiiceeee ettt e e e s saaeseenvesesaneessnnaeeen 3-6

OBJECT_ID PSeUdOCOIUMIN ..ottt ettt sttt ettt ebeebeebe e 3-7

OBJECT_VALUE PS@UAOCOIUINIccceeiiriiiiieieeiieieeeeie sttt e eeeteseessesseessesseessesnsesseensensasssensennes 3-8

ORA_ROWSCN PS@UAOCOIUIMNI ...ttt e eaae e eaeesssaeesessaesessneessnneeean 3-8

ROWID PS@UAOCOIUITIN ...t 3-9

ROWNUM PseudocolUmIccooiiiiiiiiiiiiiii s 3-9

XMLDATA PSeudocolUmIccccocoiiiiiiiiiiiiiiii s 3-10

Operators

ADOUL SQL OPEIALOTSc.ecuiiiiieiiieiirieirtctete ettt ettt ettt st se et ettt st et sae e ete e saeneenenees 4-1
Unary and Binary OPerators ...t 4-2
Operator Precedence ... 4-2

Arithmetic OPerators ... 4-3

Concatenation OPerator ... 4-4

Hierarchical QuUery OPerators............ccocoeiiiiiiiiiiiiiiiiiiiiccc e 4-5
PRIOR .t 4-5
CONNECT_BY_ROOT ...ttt 4-5

St OPETALOLS ...ttt s s e et 4-5

Multiset OPerators ..o 4-6
MULTISET EXCEPT ..ottt 4-6
MULTISET INTERSECT ..ot 4-7
MULTISET UNION ..ot 4-8

User-Defined OPeratorsccccovvviiiiiiiiiiiiiiiiiiininrsi s 4-9

Functions

ADOUt SOL FUNCHONS ...ovviiiieieieieteteteeette ettt ettt et sesseeseebesbestesessessensensensesaeseesesseeseses 5-1
SIngle-ROW FUNCHONSouiuiiiiiiiiiiiiiiciccieectce et 5-3

Numeric FUNCHONS ..o 5-3
Character Functions Returning Character Valuescccccooeiiiiiiiiniiiiiciiicns 5-3
NLS Character FUNCHONSc.cccceuiuiiiiiiiiiiiieicicieieieiceieeeeee e 5-4
Character Functions Returning Number Values ..o 5-4
Datetime FUNCHONScooviiriiiiieieiiieteee ettt ettt ettt saee 5-4
General Comparison FUNCHONScccciiiiiiiiiiiiiiicccceeee e 5-5
Conversion FUNCHONSccociiiiiiiiiiiiic s 5-5
Large Object FUNCHONScccciuiiiiiiiiiiiiiiccs e 5-6
Collection FUNCHONSc.ceuiiiiiiiiiiiiiiiicicicice et 5-6
Hierarchical FUNCHONccccoiiiiiiiiiiiiiiiii s 5-6

Data Mining FUNCHONSccviiiiiiiiiee s 5-6

XML FUNCHONS ..oviiiiiiiiiiiicci bbb s 5-7
Encoding and Decoding FUNCHONSc.ccccciuiiiiiiiiiiiiiiiciccecccccceeeeeeeeeeeeeeenes 5-7
NULL-Related FUNCHONSccoeviiiiiiiiiiiiiiiiiiciic s 5-8
Environment and Identifier FUNCHONScccocouiviiiiiiiiiiis 5-8
Aggregate FUNCHONSc.ccoiviiiiiiiiiiiiiic s 5-8
ANalytic FUNCHONSovviiieii 5-10
Object Reference FUNCHONSc.oouiiiiiiiiic e 5-15
MOl FUNCHONSoocviiiiiiiiiiiciic s 5-15
Alphabetical Listing of SQL FUNCHONSc.oouiiiiiiiiiic e 5-15
ABS o 5-15
ACOS .o s 5-16
ADD_MONTHS ..o s 5-16
APPENDCHILDXMLcocoiiiiiiiiiiiiiiiiii bbb 5-17
ASCIISTR ..o 5-18
ASCII i 5-18
ASTIN s 5-19
ATAN o 5-19
ATANZ i 5-20
AVG s 5-21
BFEILENAMEcoooiiiiiiiii s 5-22
BIN_TO_NUM ...coooiiiiiiiiiii s 5-23
BITAND ..ot s 5-24
CARDINALITY ottt 5-25
CAST oo 5-26
CEIL ..o 5-28
CHARTOROWID ..ot 5-29
CHR ..o 5-29
CLUSTER _ID ..ot 5-31
CLUSTER_PROBABILITYcooviiiiiiiiiiii s 5-32
CLUSTER_SET ..ot 5-33
COALESCE ...ttt ettt 5-36
COLLECT ..ottt 5-37
COMPOSE ...t 5-37
CONC AT ..ottt ettt 5-38
CONVERT ..ot 5-39
CORR ..o 5-40
CORR_F ..ottt 5-42
CORRLS oo 5-43
CORR_K . 5-43
COS et 5-44
COSH ..o e 5-44
COUNT ... bbb 5-45
COVAR _PORP ..ottt 5-46
COVAR_SAMP ..o 5-47
CUBE_TABLE ..ot 5-48
CUMEL_DIST ..ottt 5-50

CURRENT_DATE ..ottt sttt et s b s s 5-51

CURRENT_TIMESTAMP ...ttt ettt ettt ettt et et ste et e sveeaesvaessesssessasssessasssensesssensennes 5-52
Vet ettt s et s e st sttt et e s et e b e b es b esbest e st e Rt e st eR e e Rt R e s e s e b e besbessenbestenteseeseeseateeresrenrens 5-53
DATAOBJ_TO_PARTITION ..ottt ettt sttt ettt et bt bbbt ebe b sbeneen 5-54
DBTIMEZONE ...ttt ettt et te b e et e e b e e te e b e ebeesbeesaesbeebsassasssessasssansaessensesssenseeses 5-54
DECODE ...ttt ettt ettt e st e et e s be st e b es b e st essesbestaseasaes e seesesessessessessassessesaaseaseasensassessens 5-55
DECOMPOSE ...ttt ettt st et e et te st e b e s st e st e e st essesseasseassesseessassasssensanssessaessensesssensenses 5-56
DELETEXML ...ttt ettt ettt e a et e e ta et e st e s beesaesaeesaesaeessasseesbassasssessaessenseessensenses 5-57
DENSE_RANK ..ottt ete e et ste et e ste st essessessessessessasessassassessessessessassessessessessesesseasensessensens 5-58
DEPTH ...ttt ettt e st e e st e e et e e b e et e e st e eseesseeseesseessesseessassaessensanssensaessensesssensenses 5-60
DEREF ...ttt ettt ettt e b e e te et e be et e et e e s s e ere et e e bt e aeera et e ebe e baetb e beers et aessenteeaaenreenes 5-60
DUMP ...ttt ettt et et et e et e et e b e sbessesbassessesbeseaseasaas e se s et essessessessessaseessaseaseaseasessensens 5-61
EMPTY_BLOB, EMPTY_CLOBoooiieeeeeeeeeteteett ettt ettt et sve v e va s va s s e e ssaeneens 5-62
EXISTSINODE ...ttt ettt ettt st te e et e e tsebeese e s b e esaesbeesaesbeessasssessesssessaessensesseensenses 5-63
EXP oottt ettt et ettt b e b e st e st e st e st e st e st e Rt et e R e s e s e b e besbessenbesterteseeseeseeseereerearens 5-64
EXTRACT (dAtetimie)cccooouieiiiieieeiieieeteie et ete ettt et e sseetesseesteesaesseesaesseessesssessasssessesssessesseessenses 5-64
EXTRACGT (XIML) ..ottt ettt st ettt e b e etseteeseesbeesaesseesaesbeessasssensasssessaessensesssensennes 5-66
EXTRACGTVALUE ..ottt ettt ste st et e st et e st e st e st ssassasseesessessesbassessessassessaseaseasessessessens 5-67
FEATURE_ID ...ttt ettt ettt et e a et e st e e st e s st eaesseasaeessessesseessasssassasssassaessensesssensenses 5-68
FEATURE_SET ...ttt ettt te et e te st e e aeestesteesaessaesbeessassasssensasssensaessensesssenseases 5-69
FEATURE_VALUE ...ttt ettt ettt ettt s te st e s e sasbe s esbessessasaessessassasensansensensan 5-71
FIRST ..ottt ettt et et e e st e st e s be et e et e e st e sa e st e eseesseeseesseeseasseaseesseaseessasssassanssassanssansenseensenses 5-73
FIRST_VALUE ...ttt ettt ettt ete st e st e steebeesaeesaesbeebsasbasssensasssensaessensesssensenses 5-74
FLOOR ...ttt ettt ettt e teeteete et e b e b e s s esbessessessessestaseaseasesseas e sassassessessensassessassassasansersensensan 5-76
FROM_TZ ...ttt ettt et et e st e e st e e et et e st e e b e st e e st e e st essesseasseassesseassassasssansanssensaessensesssensenses 5-76
GREATEST ...ttt ettt et s e et e e te et eeta e b e etsesbeeseesbeesaesseesaesbeessessensesssensaessensesseensensns 5-77
GROUPL_ID ..ottt ettt e e e te st e et et e st e s esbessessesbessaseasassassesseasessessassessessessassaseaseasensassessens 5-77
GROUPING ...ttt ettt st et e et e e te s e e b e s st e sessa e s aessesseeseesseesseaseessesseessasssessasssassanssensesssensenses 5-78
GROUPING_ID ..ottt ettt ettt e e e e e beets e beeseesbeesaesseesaesseassasssensasssessasssensesssensenses 5-79
HEXTORAW ..ottt ettt et te ettt be st et es b es s essessesseseaseasessesseasesassassessassessessessassassasensesensensen 5-80
INTTICARP ..ottt ettt et e et e st e st et e st e et e e st e b e es b essaeseesseesseaseessesseessasseensasssassaessensenssensenses 5-80
INSERTCHILDXIMLoooiitiiiiteeieeteeteettete ettt et eeteeteeteeseeeveesaesseesaesssensesssensesssenseessenseessenseenes 5-81
INSERTXMLBEFOREccootiieieieteieeeie ettt estest ettt esestassasse s sessesbassessessessessasesssassasessessens 5-82
INSTR .ottt ettt et e st e b e et e e be s et e be st e e s beesaesseessesseeseenseesseaseeseesseessasssessasssansanssensesssensenses 5-83
ITERATION_NUMBERocoiitiiiiteeteeteete ettt ettt ettt ete et eeteetaeeteeaesbeeseessesesssessaessenseessenseenes 5-84
LAG oottt ettt ettt ettt b e b e s b esber b e st et b et e eRe et e R e R et et e besbessenbestesteseeseeseateesaerenrens 5-86
59 N R SRRPRR 5-87
LAST DAY ..ottt ettt ettt et e e e e teeta e beeta e beessebeeseeebeesseaseessesbsensesssenseessensaessenteessenseenes 5-87
LAST_VALUE ..ottt ettt st ettt e s esae st e st est st assasseesessessessessessessessassaseaseaseasassessens 5-88
| 50 2. N D LTRSS 5-90
LEAST oottt ettt et e e te et e et eebeeta e beeta et e tb e beetteebeeaaeebeeabeebe e b eetsebeeraenteeta e teeaeereenes 5-91
LENGTH ..ottt ettt et et et e et b e st esb e s s esaestessesease et aesasse et e sessessassessessessassaseasessensessensens 5-91
5 RSP RR 5-92
LININVL oottt ettt et eteete e te e beeba e beesaebeessebeess e seesseeseessesbsensesssensesssenseessenseessenseenes 5-92
LOCALTIMESTAMP ...ttt ettt sttt ettt st st s e s e s e s esesbessessesseseessaseaseaseasassensens 5-93
LOG .ottt ettt e st be et e et et e e b e et b et e e Rt e bt e st e bt e st e eh e e s s e st enteereensaestenteeseenseanes 5-94

LTRIM ..ottt sttt bbbttt et s a e bt s b sa s et e sn et e st eneeuesueebebensens 5-96
MAKE_RETFoooiiiiiiii s st 5-97
IMAX et s bbb ettt sa e 5-97
IMEDIAN ..ottt sttt ettt st e b e sa e st b e s bt et ess et eat st et e a e bbb saenen 5-99
IMIIN et b et e 5-101
IMOD ettt e bbb ettt s 5-102
MONTHS_BETWEENc.oociiiiiiiiiiieesestetetet ettt sae v st a ettt sae s 5-103
INANVL Lt s s b s bbbt s be e 5-103
INCHR ettt ettt s ae bbb bbb a s sa et st sae s e besae s 5-104
NEW_TIME ..ottt ettt st et st et b e s bbbt sae bt snesae 5-104
NEXT_DAY ..o s s 5-105
NLS_CHARSET _DECL_LENccoiiiiiiiieieeetctetetet sttt 5-106
NLS_CHARSET _ID ..ottt ettt saesr s b s b s e n et sesae s 5-106
NLS_CHARSET_NAME ... e 5-107
INLS_INTITCAP ...ttt ettt s sae 5-107
INLS_LOWER ..ottt sttt ettt st ettt et b e s b st ese st st saeesesnesae s 5-108
INLSSORT ... 5-109
INLS_UPPER ...ttt s s sttt s sae s 5-110
INTILE ..ottt st s sttt ettt sat bt e b e s bbb et e s e s et suteueenessesaens 5-111
INULLIF ..ottt s s st sae s 5-112
NUMTODSINTERVALoooiiiieeteeet ettt sttt s 5-113
NUMTOYMINTERVAL ..ottt ettt sttt ettt ettt st s e s s a e sae s ne e n 5-114
INV L et a bbbttt n b e 5-115
INVIL2 ettt ettt et et s ae e b b s bbb et et s aeesesbesae s 5-115
ORA _HASH ..ottt ettt ettt st s s a e s st ae b ettt sae b b e 5-116
PATH ..o s sttt 5-117
PERCENT_RANKooiiiii ettt sttt e 5-118
PERCENTILE _CONT ..ottt ettt sttt ettt sae b 5-119
PERCENTILE_DISCoooiiiiiiiicte ettt 5-121
POWER ..ottt e s s sa ettt et sae b 5-122
POWERMULTISET ..ottt ettt ettt ettt st sttt et et sb e b ee 5-123
POWERMULTISET_BY_CARDINALITY ...ccooiiiiiiiiiiiiiiiciiiccrncnee e 5-124
PREDICTION ..ottt s s sttt et sae b 5-125
PREDICTION_BOUNDS ...ttt ettt sbe st s sa ettt et sb e ene e nne 5-127
PREDICTION_COST ..ottt sttt 5-128
PREDICTION_DETAILSooiiiiiiiiiietetete ettt sttt 5-130
PREDICTION_PROBABILITY ..ottt et ese ettt et ss e ene e ne 5-131
PREDICTION_SETcoooiiiiiiite sttt 5-133
PRESENTINNYV Lottt s e sttt sa e 5-136
PRESENTV ...ttt ettt ettt ettt ettt ettt st sb et st ettt e st e beemesbeene b e 5-137
PREVIOUS ..ottt sttt 5-138
RANK ettt et s s st ae ettt sae b sae 5-139
RATIO_TO_REPORT ...ttt ettt ettt ettt ettt sb st et se ettt et sb e b b e 5-141
RAWTOHEX ..ottt sttt 5-141
RAWTONHEX ..ottt s s st 5-142
REF ..ottt ettt bttt ettt s e b et e et et ettt eb e b nee 5-143

xi

Xii

REFTOHEX ..ottt sttt ettt 5-143

REGEXP_COUNT ...ttt ettt et et ste s e e tesaesteeesasbaessesteessasseensesseessesseessesssensesssessesseans 5-144
REGEXP_INSTRoooiiiiiititetetetetetete ettt ettt esb et ess e b e st esaesaesassesseesesassessessessessessessessaseasensenes 5-146
REGEXP_REPLACE ..ottt ettt esteste e e testessaesbaestessaessasssessesseessesseessesseessesssessenseans 5-148
REGEXP_SUBSTR ...ttt ettt e e e s te s e ba e s e s teessasseensesreensesseessesseessesssessesseans 5-150
REGR_ (Linear Regression) FUNCHONSccccccooiiiiiiiiiiii 5-152
REMAINDERoootiiieteteeeteteette et e st e e ste et e steste s e s saesbaessesbaessasseessansaessessaensesseessesseessesssessenseans 5-157
REPLACGE ...ttt ettt ettt e s te et sbe et e s beeaesteessesbeessasseessasseessesseensesseessesssensesssessessnans 5-158
ROUND (NMUIMDBDET) ...eeiieiiiieieeieieeteieetete ettt steste e e te st e s seseessesseensesseensesseensesseessesseensesseesenseens 5-158
ROUND (At@) ...cvoovieviiiieiiiiieieiei ettt ettt ettt ettt ess b e ssasbess e s essesseseebessesbesbessesbessessessassessessesessenns 5-159
ROW_NUDMBERooiiiiiiieeeetteteet ettt ettt e e e aeste e b e baessesteessasseensesseensesseessesseensesssessansnans 5-160
ROWIDTOQCHAR ..ottt ettt et te st et e st e s s e b e st esaesaesassesseesessassassessessessessessassassasensenns 5-161
ROWIDTONG CHAR ...ttt ettt e sttt e st e te s e e aestaessesbaessesseessasseessesseessesseessesssessesssessensenns 5-162
RPAD ..ottt ettt et et b e e a e be b e b e er b e be e st e te et e bt eaeereenteereenaeeteenbeersenseereans 5-162
RTRIM ..ottt ettt et e et et e e e te et e e s e sbesbessessassassassessastasaasaaseeseasensassessensessestessessaseasensensenes 5-163
SCN_TO_TIMESTAMEP ...ttt ettt ettt e e ae e et e st e e s e s seetessaessesseessesseessesssessanseans 5-164
SESSIONTIMEZONEcoooeiititeeteeeeteetete ettt e st e e s e be et e s te s s e seessesraensesseessesssessesssessenseans 5-165
SET oottt ettt e et e ettt ettt ettt e e b e b esbes b esbes b e R b e Rt e Rt e Rt eRt Rt eR et e b e se b enbestententestentaseesenrens 5-165
SIGIN ettt et et et e s b e et e et e et e ae et e b e e s b e b e e st et e essease et e ereenteeseenteeteenseessensenseans 5-166
SIIN ittt ettt et et et a e te e e et e et e e ae e aeeheebebeeaeahae st e abeerteere et eereebeereebeeraeereenseareenteereenrens 5-167
SINH oottt et ettt e e e te et e e s e et e sb e s s es b e s b e s s e s b e st e Rt e st e sttt e st s e b e be st enbestenteneesteneesearaereens 5-167
SOUNDEX ..ottt ettt et et e et este st e stessaesseesaessaessessaessasseassasseensessaessesseessesssessenssessanseans 5-168
SORT ..ottt ettt et e et et e et esbe et e ebeera e beerbe st e ee b e beesbeereeabaabeenteeteenteeteenteeteenteereebaereens 5-169
STATS_BINOMIAL_TEST ..ottt ettt ettt sesse st sessessesbessesaessessessassasansenns 5-169
STATS_CROSSTAB ...ttt ettt ettt e e et e s te et e e et e s s e essasseestesseessesseessesseessesssessansenns 5-170
STATS _F_TEST ..ottt ettt te e e st e e b e be e b e e teeasasseessesreensesseessesssensesssessenseens 5-171
STATS _KS_TEST ...ttt ettt sttt et e st st e saesa et e s s et e ssessessessessessessessaseaseasensenns 5-172
STATS_IMODE ...ttt et s b e s e e s ba e s b e be e st e st e essasseessessaensesseessesssessesssessanseans 5-173
STATS_ MW _TEST ...ttt ettt et e e et e st e s e be e st e st e e b asseessesbeensesseessesssensesssessenseans 5-174
STATS_ONE_WAY_ANOVA ...ttt sttt ettt ettt s s te s s sessessesbessessestessessessaseasansenns 5-175
STATS T TEST ¥ .ottt ettt ettt e s e e te st e et e be et e st e e st asseestesseessesseessesseessesssessanseans 5-177

STATS_T_TEST_ONEootitiiiieeteeeeeetee ettt ettt ettt et eae e eae et esbe e s e beessenbeessenns 5-178

STATS_T_TEST_PAIREDccotiiiieiietiiiieteteteetetettettetese st sessessesaesaesaesssssssessessessessessessassans 5-178

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPUcccccceevirviereeieceeieceeieeeeve e 5-178
STATS_WSR_TEST ...ttt ettt sttt e et e te b e beeaeereesesseesseeseenseessesesseens 5-180
STDDEYV ...ttt ettt ettt et et e st et et e et e e bessessessessassassassastasaassaseessasesessessessessestessessaseaseasensenes 5-180
STDDEV_POP ...ttt ettt ettt et e st et e s e et e st e e s s e baessesseessasseessessaessesseessesseessesssessesseans 5-182
STDDEV_SAMP ...ttt ettt ettt ettt s e e ste s teeaesbe e b e eteeasasseesesreeasesseeseessensesssesesseens 5-183
SUBSTR ..ottt ettt et te et e et e e be s b esbesbesbessassessaseesaassasees et essessessessessentessessaseaseasensenns 5-184
SUM ettt e ettt e e et e s s e et e b e et e sb e e st e be et e b e es b et e es b et e eateast et e eseenteaseeraeeteenseeseensenneans 5-185
SYS_CONNECT_BY_PATHooooiiiiieeeeeeeeteeee ettt et et v et e eee e ve v e reeeaeebeeaeesaeneernens 5-186
SYS_CONTEXT ...ttt ettt ettt et e et e s te st et e e b e s s esaessessesasseaseeseesesassessessessessessessaseaseasensenes 5-187
SYS_DBURIGEN ..ottt ste s te e et e st e e s sesba e st e st e essassaessesseessesseessesssessesssessessenns 5-192
SYS_EXTRACGT_UTC ...ttt ettt ettt s ve et be et e e te e v e eseeseereeaseeseenseessensesssesesseens 5-193
SYS_GUID ..ottt ettt ettt ettt e et e et e s be st e b essessassassessestesaesaaseeseesesesessessessestassessaseaseasensenes 5-193
SYS_TYPEID ...ttt ettt et sttt eteeste e esbesta e seesaessasssessaessansessaensasseessesssasseessessenseans 5-194
SYS_XIMLAGG ..ottt ettt et e te et e s te et e be e b e e teeabaebeeaseeteeaseeseeseersebeeteeseereens 5-195

SYS_XMLGEN ..ottt s sttt b e 5-196

SYSDATE ...ttt ettt et ettt ettt essesbetsetseteeteeteete et et e s et et eaeetsersereeteeteans 5-197
SYSTIMESTAMP ...ttt ettt et e st e st e seeseetesseese b essessesbessestaseesaassaseasensenns 5-197
TAN oottt ettt ettt ettt et e et et e be st e e b e b et e st ert e st ertereeteebeebeebeebeebesbesbesbesbessessersereeseeseerenrens 5-198
TANH ..ottt ettt ettt et e et e et et et et e st esseaseaseteeteebeeteebeete b et enbesbessersersersersetsereeteas 5-198
TIMESTAMP_TO_SCNooiiiiiiieieieieietee ettt e e st et e b essesbessesseseessesaesessessassassessassassessessassessaseas 5-199
TO_BINARY_DOUBLEcoooiititieiieiieteeieeestesteetet sttt eseeteeteeteeve st e s b e b assessessassessassesseseessssessens 5-199
TO_BINARY_FLOAT ..ottt ettt ettt ettt et ee e etsetseteeveeveete b essessessessessessessessessesessens 5-200
TO_CHAR (CRATACEET) .oooeieeeeeieeeeeeeeeeee ettt et e ettt e e e e s eaateeesssneeeeessasasssesssssssseeessssssssesessssnnes 5-201
TO_CHAR (dAt@time)ccovviiieeeiiiiiieeeeeeeeeee ettt ee e ettt e e et e e e eaaeesaaeesaaeesenaeessnneeenn 5-202
TO_CHAR (MMUINDET) ...ttt ettt ettt e e e e st e e e et e e e s aeeesaaseesnaeesnaeeesnneeans 5-204
TO_CLOB ...ttt ettt ettt sttt e st e st e b e s b e st esa e st eseeseaseesesseesaasessessessensassassassessassasensensensens 5-205
TO_DATE ..ottt ettt ettt e st e st et et et e st esserseseesaebeebeesesbesbasbessessessassassassessessessasesaens 5-206
TO_DSINTERVAL ...ttt ettt et et et e et s s eaeeteevseteevaeteetebansessessessessessessessessesessens 5-207
TO_LOB ..ottt ettt ettt ettt e st e st e b e b e st e st e st eseese et e eseeseaseebeesesbesbesbestessesseseaseeseesensenrens 5-208
TO_MULTI_BYTEooiiiiteetetteeettetetee ettt et est et ese st eteeteebeevesb e st e besbesbessassassessessessesassessens 5-209
TO_NCHAR (CRATACEET) ...eeeiieeeeeeeeeeeeeeeee ettt ettt e e e et e sttt e e ettt e s saaeessaaaessseeessnteessnaeeas 5-209
TO_NCHAR (AAtetimie)ccooeeviiieiiiiiieeieeeeeeeeeee ettt eetee ettt e e eaeeeaesesteeeseeeteessesenteesseesnseenseeans 5-210
TO_NCHAR (MUINDE@I) .ottt e et e eaae s s ta e e s eaesesaasesesseesnaessenaeessnnesenn 5-211
TO_NCLOB ...ttt ettt et e et e et et et e st e st eaeetsetseteeteeseetebessessessessessessensessessesesrens 5-211
TO_NUDMBER ..ottt ettt te st e st e st et e st eseeseesesseesessessassessessassassasseseassasensensensens 5-212
TO_SINGLE_BYTE ..ottt sttt ettt st et ettt teeteebeeve e b e sbe b esbessessessassassessessesessesrens 5-212
TO_TIMESTAMP ..ottt e et e ettt easeaseteeteeteeteeteebe b essessessessessessessessessasessens 5-213
TO_TIMESTAMP_TZ ...ttt e sttt e et et et esa st esessessessassessessessessessassessassesessensessens 5-214

TO_YMINTERVAL ..ottt ettt ettt ettt ssetaeve et beebe et e b e b e besbessesteseessassesessanss 5-215
TRANSLATE ..ottt ettt te et e et et e et et at et et easetseteeteeteetesbesbensessessassessessessessessesesaeas 5-216
TRANSLATE ... USINGotiiiiiieieieieietee sttt e ettt e st et e b esteseesaesaesessaesassassessessessessessessesseseas 5-217
TREAT ...ttt ettt ettt ettt et et e et e s beste s b e s b e s be st assessesseseessessebeesaebesbasbassessassessassassassessasassessens 5-218
TRIM .ottt ettt ettt e e e teeteeteete et et e bessessessessessetsessebseteeseetassensessessessessessessessesseresaens 5-219
TRUNC (INUIMDET) ...eoineiiiieiieiieieie ettt ettt et e e st e sseetessaessesseessesseessesseensesssensesssessesssensesnes 5-220
TRUNQC (AA@) ...cveovievieiieiiiiieieti ettt ettt ettt e st et et e b e s esseseeseeseeseeseesesbesessessassassessassessessasseseas 5-220
TZ_OFFSET ...ttt ettt ettt et et eaeeteeteeseereeteess et et esensensessessessereesseseereas 5-221
UID ottt ettt ettt ettt et et e et et e st e s e s e besse s esbessestessesteseaseaseeseeseasees e s essessessassessassaseaseaseasansessens 5-222
UNISTR ..ottt ettt ettt ettt et e b e st e st e st e b e s b e st e st essessessassebeebeesesbesbesbessessessassassassesseseesassessens 5-222
UPDATEXML ..ottt ettt ettt et v et e eaeeveeseeseeteeseeseeseeteeseesensensensensensensenen 5-223
UPPER ...ttt ettt ettt ettt e s te s te et e e se s esbessestestessessaseasaase et e s essensessessanseseaseasansensessens 5-224
USER ...ttt ettt ettt ettt ettt te et e et e e besae s b e s b e s b e st essesseseeseeseebeebeebeebeebesbesbesbesbessessersereeseesearenrens 5-224
USERENY ..ottt et et et e et et et et et easereeseeaeereeteese et et et ensensessersenseseesseseereas 5-225
VALUE ..ottt ettt et e sttt s s e et e besse b e s b esbe st ess e st estaseaseaseaseasaesessassessessassassassaseassasensensensens 5-226
VAR _POP ...ttt ettt ettt ettt e st e st e b et et e st e st esseseeteebeebeebesbesbessessesbassassessassessessesaasessens 5-226
VAR _SAMP ...ttt et et ettt e ettt e e s ereeteeaeereete et e et et et et et ent et et ereereeneeaeas 5-228
VARIANCE ...ttt ettt st et et e s te s b e b e s e st est e st estastaseesessesseasessessessessessassassaseassesensensensens 5-228
VISIZE ..ottt ettt ettt et et e b et e s te e b e s b e st e st e st esb e st esseteebeebeebeeb e b e s b esbesbesbessessereertereesaerenrens 5-230
WIDTH_BUCGKET ...ttt ettt ettt ee e eteeaeeveeveeveeseesesesensenseseenseseesseneeaeas 5-230
XIMLAGG ..ottt ettt ettt ettt e s te st e s b e s s e st e st e st e st ese et e eseese et e b e e b esbesbensestessesaeseaseeseesensenrens 5-232
XIMILCAST ...ttt ettt ettt ettt ettt et e be s te st e b e s b e st essesbestesseseebeebeeseebessessessessessassassassassessasassessens 5-233
XIMLCDATA ...ttt et et e et e et et et et et easeteeseeseereeteeseesesensensensensensenseseesseseereas 5-233

xiii

Xiv

XMLCOLATTVAL ...ttt s s sttt saea 5-234

XMLCOMMENT ..ottt 5-235
XIMLCONCAT ..ottt 5-235
XIMLDIFF ..ot 5-236
XMLELEMENT ..ottt 5-237
XMLEXISTS ..ot s 5-240
XMLEFOREST ..ot 5-240
XIMLPARSE ..o 5-241
XMLPATCH ... bbbt 5-242
XIMLPT .o 5-243
XMLQUERY ...t 5-244
XMLROOT ..ottt s 5-245
XMLSEQUENCE ..ot 5-246
XMLSERIALIZEcoiiiiiiii ettt 5-247
XMLTABLE ..o s 5-248
XMLTRANSFORM ..ottt 5-250
ROUND and TRUNC Date FUNCHONSccocoouiiiiiiiiiiiiicciccrcec e 5-251
About User-Defined FUNCHIONS ... 5-252
PIereqUISITeS.c.oiviieieiieiieect e 5-253
INaAME PIeCEAEINCEoviiiiiiiiii s 5-253
Naming CONVENtiONS ...t 5-253
Expressions
ADbout SQL EXPIESSIONScoecuiriiiiieiiieiiiteiinteteieieteeet ettt eae st se et et sae st sae e sre e saeeenennes 6-1
Simple EXPIeSSIONS ..o 6-3
Compound EXPIressions ... 6-4
CASE EXPI@SSIONSovuiiiiiiiiiieiiieieneee ettt sttt a et a e e e naene 6-5
Column EXPIeSSIONSccccoiiiiiiiiiiiiiiiiiii e 6-6
CURSOR EXPIESSIONS......cocoiiiiitiiiiiitciiietetcicce ettt s ea s 6-7
Datetime EXPIeSSIONSc.cccooviiiiiiriiiinieiieereece ettt 6-8
Function EXPressions ... s 6-10
Interval EXPIeSSIONScccooiiiiiiiiiiiiiiiiiic e 6-10
MOdeE]l EXPIESSIONSc.oeenviiieiiieiirieirieietceetee ettt ettt s et n e nns 6-11
Object Access EXPIeSSIONSccooiiiiiiiiiiiiiiiiiictei sttt 6-13
Placeholder EXPIESSIONSccccoiiuiiiiiiiiiiiiiiiiiiiiccrccice s 6-14
Scalar Subquery EXPressions ... 6-14
Type Constructor EXPressions ... 6-14
EXPIession Lists ... 6-16
Conditions
ADbOout SOL CONAITIONS.....c.ooiiieieieiieieeeeeeee ettt ettt st e tesbe st e st e b e sbestessensenseseeseeseeseesenss 7-1
Condition Precedence........cccoiiiiiiiiiiiiiiicccce e 7-3
Comparison CONAILIONSccoceririirieirieinieinerc ettt 7-4
Simple Comparison CONAItioNScccccvciiiiiiiiiiiiiiii e 7-5
Group Comparison CONditions ... 7-6
Floating-Point CONditionscccoiiiiiiiiiiii e 7-7
Logical CONAItIONSc.c.oiiiiiiiiiii s 7-8

JAY (oY 13 B @ 1 T B a0 o = TR 7-9

IS ANY CONAIHION etiiiiiieiieiietietieieet ettt sttt sttt et et et e st e bt ebe st e et esbesaesententeneeneebesbesaens 7-9
IS PRESENT CONAITION .vivtivieiieeieiieieiieteieiisestestestestestessessestessessesesseasessessessessessessessessessessesessenses 7-10
Multiset CONAILIONSc.cceeiiiiiiieciicieceee ettt ettt e reesaesreebesse e seeseessesssesseeseessesssensenses 7-11
IS A SET CONAITION .utiuiiiieiieiieiieiieitettet ettt sttt ettt et e ettt et sbesee b et e b et enten s et enteseebesaessenean 7-12
IS EMPTY CONAIION 1etviviiiiiieieieteieteietee st este st et stessestesaesseseesessessessessessessessessessessessesessenses 7-12
MEMBER CONAILION 1viutiitiiiiiieiieiietietieteee ettt sttt et et eseessessereeseeseeseesessessessessessessessessessesseseesenses 7-13
SUBMULTISET CONAIHON ettt sttt ettt sttt ettt et es s eaesaeaan 7-13
Pattern-matching Conditions ... 7-14
LIKE CONAITION tottitieiiieiieiieiieieetesteeteteetesteetesteeseesseessesseessessesssesssessessesssanssessesseessesseessesseessenses 7-14
REGEXP_LIKE CONAITION ...utiutiiiriieiietieitsiesiesie ettt ettt sttt st st te et etesteste e eseeseebesaesaenean 7-18
Range Conditions ... 7-19
INULIL CONAILIONSovviniieiiiiicieciceeee ettt ettt e e et e s e et e sseessesseesaesseessesssessasssessasssessenseensesssensenses 7-20
XIML CONAILIONS ...ovviniieiiiiiciiiieteee ettt te et e et et e seeesesbeesaesssesbesssessesssensesssensesssensessaensenses 7-20
EQUALS_PATH CONAIION .tiitiiiiiiiiiciieiiecie ettt ettt saeeveestaeesreesteesveensaeseneensaessneennes 7-20
UNDER_PATH CONAITON 1.ttt et testetet e ste e st sesaesesse e saesesaenessenessesensens 7-21
Compound CONAItIONSccoiiiiiiiiiiii e 7-22
EXISTS CONAILION ..ottt et e saesse s e e s e e ssesseensessaensesseensennnensennns 7-22
IN CONAILION c.ooieiiiicicicceeeeeeee ettt sttt e et e e et e e be st e e s e esaesseessesseessasssessassaessanseensesseensennes 7-22
IS OF type CONAItion ... 7-24

Common SQL DDL Clauses

ALLIOCATE_EXTCHE_CLATSE ...ttt et e et e e ettt e sttt e s et e s e ae e e seaaeesssaeeesaaeeesnaeeean 8-2
COMSEIAINT ..ottt ettt ettt et e bt e st e e st e e e sseessesaeessesseesseassenseassenseansenseensesseansesseensesseensensenns 8-4
AeALIOCATE_UNUSCA_CLAUSE ... et e et e e e et e s st e s saeesentaeeessaeeseaaees 8-26
Sile_SPECIfiCALIONccovviviiiiiiiiiiiii s 8-28
LOQGING CIAUSE ... 8-36
PATALIEL_CLAUSE..............ooiiiiiiiiiiii e 8-39
physical_attribDutes_CLAUSE ...t 8-41
SEZE_CLAMSE .ot e et e e e et e e e e e s et e e e s st eeeeseeesaateesaaaeesaseesasseeesaseeessaseesanseessssaesaans 8-44
SEOTAZE_CLAUSE ... 8-45

SQL Queries and Subqueries

About Queries and SUDQUETIESccccccciiiiiiiiiiiiiii e 9-1
Creating Simple QUETIEScccccoiiiiiiiiiiiii s 9-2
Hierarchical QUETIESccoocciiiiiiieiieiiecieciee ettt et ettt e taeeeveesbeebeesteeesseessessabaassaessse e saessseesaessseenseenes 9-3
Hierarchical Query EXamplesccoooiiiiiiiiii 9-5
The UNION [ALL], INTERSECT, MINUS Operators...........ccoeeueiriruruemeirniereiriseeneneeseseeneneesnenes 9-8
Sorting Query Results ... 9-10
JOIMS ettt et e ettt 9-10
JOIN CONAITIONS ..eeieiieiiiiriesieieee ettt ettt ettt ettt ettt e s eesees e st e bessessenseseneansensesessessensenes 9-11
EQUIJOINS .ottt 9-11
SEIE JOINS ittt ettt ettt h et b e sh e bt b e s bbbt e e a e st b e b b be e aan 9-11
Cartesian PrOAUCEScciveirieirieireiie ettt sttt sttt 9-11
ININET JOINS eieieiieieiieieee ettt ettt ettt et e et e s et e s e sst e sesstesseensenseessenseensenseensenseessesneensennenn 9-12
OULET JOITIS vttt ettt ettt h et b e sttt s bt s bt et et et eseea s et s bt b e besbenaenean 9-12

XV

10

11

12

XVi

ANLHOINS 1vviiietctiee ettt s 9-13

SEMUIJOINS ettt 9-13
USING SUDQUETIES ..o 9-14
Unnesting of Nested Subqueries ... 9-15
Selecting from the DUAL Table ... 9-15
DiStributed QUETIEScccveiiiiiiieiiiceeceeee ettt ettt e st e e s teeebeestaeetseesbaesaseebeessbeesaeseseensaenseeas 9-15

SQL Statements: ALTER CLUSTER to ALTER JAVA

Types of SQL Statements ... 10-1
Data Definition Language (DDL) Statementsc.cccooieieiiiiiiiiiiiiiceceec 10-1
Data Manipulation Language (DML) Statementsc.ccoooeeieiiiiiiiniiceecccec, 10-2
Transaction Control StatemMentsccccvvviiiiiiiiiiiinii e 10-3
Session Control Statementsccceeviiiiiiiiiiiiciiii 10-3
System Control StatemMentcc.oouoiiiiiiii 10-3
Embedded SQL StateIMeNtSc.coieviieuieiiiiieeeecteeteete ettt ettt ettt e ereeveeteeseeveeveereenreereennas 10-3

How the SQL Statement Chapters are Organizedccccoovviiiiiiiiiiii 10-4

ALTER CLUSTERcoiiiiiiiiiiii i 10-5

ALTER DATABASEooiioiiiiee e 10-9

ALTER DIMENSIONcoooiiiiiiiiiiiin s 10-44

ALTER DISKGROUPccoiiiiiiiiiiiiiiiiiic s 10-47

ALTER FLASHBACK ARCHIVEcccooiiiiiiiiic s 10-62

ALTER FUNCTION ..ot 10-65

ALTER INDEX ..ottt 10-68

ALTER INDEXTYPEcoiiiiiiiiii st 10-87

ALTER JAVA Lo s 10-90

SQL Statements: ALTER MATERIALIZED VIEW to ALTER SYSTEM

ALTER MATERIALIZED VIEWccocoiiiiiiiiititiieetettetettete ettt te vt et sse s essessessevsereesassessensas 11-2
ALTER MATERIALIZED VIEW LOGoooiiiiiieeeteeeeeteete ettt ettt esvesvaesve s aeennas 11-17
ALTER OPERATORcoooieieieieitettettet ettt sttt e e beste st et e st estesaesessassessessessessessessassassassassassnsensensens 11-23
ALTER OUTLINEootiiiiietcee sttt ettt et te et ste et sseeaesre e b e sa e baesaessaessessasssessanssessesssessenses 11-26
ALTER PACKAGE ...ttt ettt ettt et et et ebeebe e b e baeteessenbeessenseeasenseeneas 11-28
ALTER PROCEDIUREootiiiieiieieteieteetesteste st be e stestestestestesassassassessassassessessessessessessassesessessensens 11-31
ALTER PROFILEoooiiiiiiiiieiee ettt e e te st steestesseetesraessessaessasseessasssensasssessenssessesssessenses 11-34
ALTER RESOURCE COSTooooiiiiieeteeeeecteetete ettt ettt et eveeteevaebeetaevessaeteessenseessesseensenseeneas 11-37
ALTER ROLE ..ottt ettt ettt ttete e st e st e b e b et e st esaessasessaasesseasassessessassassassassessassasessens 11-40
ALTER ROLLBACK SEGMENTootiieietieteeeteettete ettt st te s e saese s essassaessessnessesnnas 11-42
ALTER SEQUENCEc.oooiiiitiiieeeecteetete ettt ettt et eve ettt sveeabeebs e beetaesbeessenbeessenseessenseeasenseensas 11-45
ALTER SESSIONoiiiiiiieieieieitetetet ettt e e ste st esesaesbesbestestasaesessessessassassessessessassessessassessesensessens 11-47

Initialization Parameters and ALTER SESSION........c.ccccevuirieniiiierieieeceesteeve e eve e eeens 11-52

Session Parameters and ALTER SESSIONcooveoioieiieieeeeeeeeeeeeste e eve e eevee e ene e 11-53
ALTER SYSTEMooiiiiieieietetettettette et te st es e s et esbessestestasessessessessessassessessessassassessessassesensessens 11-60

SQL Statements: ALTER TABLE to ALTER TABLESPACE

ALTER TABLE ...ttt 12-2
ALTER TABLESPACEooooiiiiiiiieetete ettt 12-86

13

14

15

16

SQL Statements: ALTER TRIGGER to COMMIT

ALTER TRIGGERooiiiiiiiiiiies ettt sttt et ettt st ss e sae s
ALTER TYPE .ottt
ALTER USER ..ottt ettt s sttt st s sae s
ALTER VIEW Lottt sttt ettt sttt s et b e s bt ettt bessesae

SQL Statements: CREATE CLUSTER to CREATE JAVA

CREATE CLUSTER ...oooooovooeeieeeeeeeooeseeeeeeeeeeseesseseeeeeeseeeseeoeess s sesse s esessseseesssssesseeesessesesereee
CREATE CONTEXT ...ooooiovvooiioeeeeeeooeoeeeeeeeeoe e seseoeese e sseess e s sesess s sesssmseesessesons e sessesnne oo
CREATE CONTROLFILEooooovvooioooeoeeeeoeeeeeeeeeoeeeeseeeeeooseesesesesonsessesessessseesesesssssesessns s
CREATE DATABASEovoooooeeeeeeeeeeee oo eeesooee s eeeseeesoesseseseseseesesseeseeseseseseseseeesesseeeee
CREATE DATABASE LINKooooiiiiioroooeoeooeeeeeeoeeseeeeeeoosesessesesoeseseseeseeensssseessoossssssessssnsesseeeee
CREATE DIMENSIONoooiiiiiovooeioooseeeeoeeesseeeesooeessseeseoessessesesesesssssesesessesesseessssssssssesessnsesseeeee
CREATE DIRECTORYoooooioooooeeeeeeeseeeeeeeeeseeeeseeeseseseseeseseseseseeoeessseseseeseesseessesesssesesesseesesseseee
CREATE DISKGROUPooooiooooooeiooeeeeeeeeeeseeeeesoeeseeeeeeoessssesesesoessessesesses e seesssoessssesssons e
CREATE FLASHBACK ARCHIVEoooooiiiiovooeooeeeeeeeeoeeseeseeeeoeeseseeseoeoessseesesoesssssssesens e
CREATE FUNCTION ...c.oooooiooeeeeeeeeee oo eeeseesesee s seesees e seeoesesseeesessessseesseessesesesesoeesessereee
CREATE INDEXoooooiooioovooooeoeeeeeeooeeeeseeeeoes e sssoees e eesssess e esssemsseesesessesseseesssosssseessssnsesseeeee
CREATE INDEXTYPEooooooooooooooeeeoeseeeeeoeeeseeeesoeeeeeeeeseeessesssesssonsesssesesseesseesssssssssessssns e
CREATE JAVA ..o eeeoeee e essssee e ssesses e sesoes e eeesessa s eessesesesesesesseeesseeeee

SQL Statements: CREATE SYNONYM to CREATE TRIGGER

CREATE SYNONYM ..ottt ettt ettt st s st sae st ettt et eae st suesue s bessens
CREATE TABLE ...t sttt s sa e
CREATE TABLESPACE ...ttt sttt e
CREATE TRIGGERcoooiiiiiiiiiiieteteiteest ettt sttt ettt s sb et st et et ettt ene b e s b e

SQL Statements: CREATE LIBRARY to CREATE SPFILE

CREATE LIBRARY ..ottt ettt ettt st sa e st ettt e et et ebeesesbesaesn e besens
CREATE MATERIALIZED VIEWccoioiiiiiiiiiiiiieteecee sttt
CREATE MATERIALIZED VIEW LOGcccocoiiiiiiiiiiiiiieitcte ettt
CREATE OPERATORoooiiiiiiiiiieteteteest ettt ettt ettt sttt ettt sb e s b e
CREATE OUTLINE ..ottt
CREATE PACKAGE ...ttt sttt s
CREATE PACKAGE BODY ..ottt ettt ettt et se ettt et ss e en e
CREATE PFILEoooiiiiiii et sttt
CREATE PROCEDUREc.oooiiiiiiiiieetee ettt sttt
CREATE PROFILEooiiiiiiiiiieieteteteest ettt ettt ettt s st st et ettt et sn s n e ee
CREATE RESTORE POINT ..ottt

xvii

17

18

CREATE ROLE ...ttt s sttt 16-64

CREATE ROLLBACK SEGMENToociiiiiiiiiniitiieieteteietetete ettt ettt ene e e 16-67
CREATE SCHEMA ...ttt 16-70
CREATE SEQUENCEc.ooiiiiiiiiiie sttt sttt et 16-72
CREATE SPFILEcoooiiiiiiiiieieetetetetee sttt sttt ettt st s sttt ettt en e e 16-76

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT

CREATE TYPE ...ttt sttt ettt st bttt et et sueene s b sae 17-3
CREATE TYPE BODY ...ttt e 17-20
CREATE USER ...ttt s sttt et et 17-25
CREATE VIEW ..ottt sttt ettt st st a ettt et sae b b e 17-32
DELETE ..o e 17-43
DISASSOCIATE STATISTICSooiiiiieeeeet ettt 17-51
DROP CLUSTERooiiiiiiiiiieietetetet ettt ettt ettt et ettt sae e sa e sa et sae s s ese et eneeneenesnesaens 17-53
DROP CONTEXT ..ottt e 17-55
DROP DATABASE ...ttt s s sttt e 17-56
DROP DATABASE LINK ...oooiiiiiiiiitniiesteteetetetetet ettt s sae s saesaesn et eseeseene e e 17-57
DROP DIMENSION ..ottt e 17-58
DROP DIRECTORY ..ottt ettt 17-59
DROP DISKGROUP ..ottt sttt st sae s s s s et esteseene s saens 17-60
DROP FLASHBACK ARCHIVEcocoiiiiiiiiinee e 17-62
DROP FUNCTION ..ottt sttt saea 17-63
DROP INDEX ...ttt sttt st sttt ettt sttt sae sttt s b st s sse s eneeneeseenesaeas 17-65
DROP INDEXTYPE ..ot e 17-67
DROP JAVA ettt s s sttt 17-68
DROP LIBRARY ..ottt sttt sttt ettt et ettt sae s sae s s sae s e ess et enteseenessesaeas 17-69
DROP MATERIALIZED VIEWcooiiiiiiiiiiiiiiiiiitcieteteieeec e 17-70
DROP MATERIALIZED VIEW LOGccooiiiiiiiiiiiiciniecteeetesestetetet et 17-72
DROP OPERATOR ...ttt ettt st sae s st ae s et ene s b saeas 17-74
DROP OUTLINE ..ot e 17-75
DROP PACKAGE ...ttt sttt 17-77
DROP PROCEDURE ..ottt ettt sre e s sttt et ese et eneeseesesse e 17-79
DROP PROFILEccooiiiiiiiiiiiic e st e 17-80
DROP RESTORE POINTooiiiiiiiiieteetetetetet ettt sttt 17-81
DROP ROLE ...ttt ettt sttt ettt sttt st bbb st et a et ese e st et eneeneesessesaeas 17-82
DROP ROLLBACK SEGMENT ..ottt e 17-83

SQL Statements: DROP SEQUENCE to ROLLBACK

xviii

DROP SEQUENCEcooiiiiieieteec ettt s sttt 18-2
DROP SYNONYM ..ottt sttt sttt ettt ettt sb e s e st et et et est e st esteneebeebesbesaensen 18-3
DROP TABLE ...ttt s sb e s 18-5
DROP TABLESPACE ...ttt st ettt 18-9
DROP TRIGGER ...ttt ettt st sae e s a e et a e e ese et ene st ebessesaeas 18-12
DROP TYPE ...t 18-13
DROP TYPE BODY ..ottt sttt 18-15
DROP USER ..ottt ettt ettt ettt ettt et st bbb sttt et et ese e st eneeseenessesaeas 18-16

19

EXPLAIN PLANoisiiimiiiiriiasesses s ssss st 18-20
FLASHBACK DATABASEoossiviorieeeeeies s esssss s sss st sssse s sss s 18-24
FLASHBACK TABLEoovvvomitiniiiniieee ettt 18-27
GRANT ..ottt 18-33
INSERToooiivimiiesaeisssssssse st ssssesssss sttt 18-53
LOCK TABLEcoevvtoiiieierie ettt 18-70
MERGEooovtomiiiiiene e s 18-73
NOAUDIT ..ottt ettt 18-78
PURGE ..ottt st 18-82
RENAMEccosiottmiieeeie st 18-84
REVOKEoooooomiiioiiesesiesss s ssssesssss s sss sttt 18-86
ROLLBAGCK ..ottt s ss st st 18-94
SQL Statements: SAVEPOINT to UPDATE

SAVEPOINToooivieriiiriessissse st sssessss sttt 19-2
SELECT ..o..oooooeooeveeseee e sse st 19-4
SET CONSTRAINTIST ...coooiieniieniieiis ettt 19-53
SET ROLEcoiioiteiiee ettt 19-55
SET TRANSACTIONoiivoomeioieieciees st ss s 19-57
TRUNCATE CLUSTERoo.coisiivtmiitneeises s sssssesssese s sss s ssss s sss s sssssas 19-60
TRUNCATE TABLEocoosiiiiiiriiiniieee sttt 19-62
UPDATE ..ooooooooeoeee et 19-66
How to Read Syntax Diagrams

Graphic Syntax Diagrams.............cccooiiiiiiiii e A-1
Required Keywords and Parameterscccccccceucieueieiiiicienieeeeeeeieeeeeeeeneeseneeeseneeeeees A-2
Optional Keywords and Parametersccccooiuiiiiiiciiiiccc e A-3
SYNEAX LOOPS ...ttt s A-3
Multipart DIAGTAmScccoeuriiiiiiiriirieiciicieceeeeeeeeeeee et A-4
Database ODJECESccciuiuiiiiiiiiiiiiiicii s A-4

Oracle and Standard SQL

ANSI Standards ... e B-1
ISO SHANAATAS ..ottt ettt ettt bbbttt s B-2
Oracle Compliance To Core SQL:2003............cccoerirmiimmirierinieieeeeeereerreeseeesae e eenes B-3
Oracle Support for Optional Features of SQL/Foundation:2003................ccccceviiinniiinninennnns B-8
Oracle Compliance with SQL/CLI:2003ccccccooiuiiiiimiiiiiiiieeceeeeeeee e B-19
Oracle Compliance with SQL/PSMU:2003cccoeiriiririneireenrceeereeereeesee e e e saenens B-19
Oracle Compliance with SQL/MED:2003ccccoviiiiiiiiiiiiccc s B-19
Oracle Compliance with SQL/OLB:2003............cccccooiuiiiimiiiiiiiceeeeeee e B-19
Oracle Compliance with SQL/XIML:2006cccoceoiriiireireirierieeeeneeeneeesee e saenens B-19
Oracle Compliance with FIPS 127-2cccccoiiiiiniiiiiiiic s B-26
Oracle Extensions to Standard SQLc.ooiiiriiiiieieeeeeceere e sse b sens B-28
Oracle Compliance with Older Standardsc..cccoecireeiriiiniiniineeceeee e B-28
Character Set SUPPOTL.........cccooiiiiiiiii s B-28

Xix

Oracle Regular Expression Support

Multilingual Regular Expression Syntax ... C-1
Regular Expression Operator Multilingual Enhancements..............ccccccccoooonniinnnnn, C-2
Perl-influenced Extensions in Oracle Regular EXpressionsccccooeiiiiniiiiciiiciiennn, C-3
D Oracle Database Reserved Words
E Extended Examples
Using Extensible INAeXingcccocoiiiiiiiiiiiiiiii s E-1
Using XML in SQL Statementsccccooiiiiiiiiicc e E-8
Index

XX

Audience

Preface

This reference contains a complete description of the Structured Query Language
(SQL) used to manage information in an Oracle Database. Oracle SQL is a superset of
the American National Standards Institute (ANSI) and the International Standards
Organization (ISO) SQL:1999 standard.

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

The Oracle Database SQL Language Reference is intended for all users of Oracle SQL.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

XXi

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

For more information, see these Oracle resources:

» Oracle Database PL/SQL Language Reference for information on PL/SQL, the
procedural language extension to Oracle SQL

» Pro*C/C++ Programmer’s Guide, Oracle SQL*Module for Ada Programmer’s Guide, and
the Pro*COBOL Programmer’s Guide for detailed descriptions of Oracle embedded
SQL

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXii

What's New in the SQL Language
Reference?

This section describes new features of Oracle Database 11¢ and provides pointers to
additional information.

For information on features that were new in earlier versions of Oracle Database, refer
to the documentation for the earlier release.

Oracle Database 11g Release 1 New Features in the SQL Language

Reference

The following top-level SQL statements are new or enhanced in this release:

ALTER DATABASE on page 10-9 has been enhanced as follows:

The clause managed_standby_recovery on page 10-22 has been greatly
simplified. A number of subclauses have been deprecated as the database now
handles much of the recovery process automatically.

The supplemental_db_logging on page 10-31 contains new syntax that lets you
enable or disable supplemental logging of PL/SQL calls.

The standby_database_clauses on page 10-33 have new syntax that lets you
convert a physical standby database into a snapshot standby database or
convert a snapshot standby database into a physical standby database.

The clause managed_standby_recovery on page 10-22 has new KEEP IDENTITY
syntax that lets you use the rolling upgrade feature provided by a logical
standby and also revert to the original configuration of a primary database
and a physical standby.

ALTER DISKGROUP on page 10-47 has been enhanced as follows:

The check_diskgroup_clause on page 10-54 has simplified syntax for checking
the consistency of disk groups, disks, and files in an Automatic Storage
Management environment.

The clause diskgroup_availability on page 10-58 offers new options when
mounting a disk group.

New clauses disk_offline_clause on page 10-53 and disk_online_clause on
page 10-53 let you take a disk offline for repair and then bring it back online.

ALTER INDEX on page 10-68 has been enhanced as follows:

A new MIGRATE parameter lets you migrate a domain index from user-
managed storage tables to system-managed storage tables.

xXiii

XXiv

- Anew INVISIBLE parameter lets you modify an index so that it is invisible to
the optimizer.

— The "PARAMETERS Clause" on page 10-79 now lets you rebuild an XMLIndex
index as well as a domain index.

ALTER SYSTEM on page 11-60 has been enhanced as follows:

- New syntax lets you kill a session on another instance in an Oracle Real
Application Clusters (Oracle RAC) environment.

- New rolling_migration_clauses on page 11-67 let you prepare an Automatic
Storage Management cluster for migration and return it to normal operation
after all nodes have migrated to the same software version.

ALTER TABLE on page 12-2 has been enhanced as follows:

- The behavior of the add_column_clause on page 12-40 when you specify a
DEFAULT value has been enhanced for improved performance.

— The syntax for READ ONLY | READ WRITE on page 12-38 lets you put a
table into read-only mode, to prevent DDL or DML changes during table
maintenance, and then back into read /write mode.

— The clause add_table_partition on page 12-61 has expanded syntax to let you
add a system partition.

- The flashback_archive_clause on page 12-37 lets you enable or disable historical
tracking for the table.

— The add_column_clause on page 12-40 now lets you add a virtual column to a
table.

- New syntax lets you modify an XMLType table to add or remove one or more
XMLSchemas.

- Anew clause alter_interval_partitioningalter_interval_partitioning lets you
convert a range-partitioned table to an interval_partitioned table.

- A new dependent_tables_clause on page 12-71 lets you instruct the database to
cascade various partition maintenance operations on a table to reference-
partitioned child tables.

ALTER TABLESPACE on page 12-86 has new syntax that lets you shrink the space
taken by a temporary tablespace or an individual tempfile.

ASSOCIATE STATISTICS on page 13-34 has syntax that lets you specify that the
database should manage storage of statistics collected on a system-managed
domain index.

AUDIT on page 13-38 has new syntax that lets you audit various activities on data
mining models.

CALL on page 13-50 now permits positional, named, and mixed notation in the
argument to the routine being called, if the routine takes any arguments.

COMMENT on page 13-54 has a new MINING MODEL clause lets you provide
descriptive comments for a data mining model.

CREATE DISKGROUP on page 14-45 and ALTER DISKGROUP on page 10-47
have new syntax that lets you set various attributes of a disk group or a qualified
disk group template.

The new statements CREATE FLASHBACK ARCHIVE on page 14-50, ALTER
FLASHBACK ARCHIVE on page 10-62, and DROP FLASHBACK ARCHIVE on

page 17-62 let you create, modify, and drop flashback data archives, which in turn
let you track historical changes to tables.

CREATE INDEX on page 14-63 has been enhanced as follows:

- Anew local_domain_index_clause on page 14-80 lets you create a locally
partitioned domain index.

— The index_attributes on page 14-74 have been modified to let you create an
index that is invisible to the optimizer.

- Anew XMLIndex_clause on page 14-80 lets you create an XMLIndex index for
XML data.

CREATE INDEXTYPE on page 14-88 and ALTER INDEXTYPE on page 10-87 let
you specify that domain indexes built on the subject indextypes can be range
partitioned, and will have their storage tables and partition maintenance
operations managed by the database.

CREATE PFILE on page 16-48 has new syntax that lets you create a parameter file
from current system-wide parameter settings.

CREATE RESTORE POINT on page 16-61 has new syntax that lets you create a
restore point for a specified datetime or SCN in the future, and to preserve a
flashback database.

CREATE SPFILE on page 16-76 has new syntax that lets you create a system
parameter file from current system-wide parameter settings.

CREATE TABLE on page 15-6 has been enhanced as follows:

— The flashback_archive_clause on page 15-59 lets you create the table with
tracking of historical changes enabled

— The clause system_partitioning on page 15-55 lets you partition the table BY
SYSTEM

— A new virtual_column_definition on page 15-27 lets you create a virtual column.
- New syntax for XML storage lets you store XML data in binary XML format.

— A new clause reference_partitioning on page 15-51 lets you partition a table by
reference to another partitioned table.

— The LOB_parameters on page 15-39 now include a SECUREFILE parameter,
which lets you specify a new storage for LOBs that is faster, more efficient, and
allows for new features such as LOB compression, encryption, and
deduplication.

- Anew LOB_compression_clause on page 15-41 lets you enable or disable server-
side LOB compression for LOBs using SecureFile storage.

- Anew LOB_deduplicate_clause on page 15-41 lets you coalesce duplicate data
into a single shared repository, reducing storage consumption and simplifying
storage management for LOBs using SecureFile storage.

— The LOB_parameters on page 15-39 now include ENCRYPT and DECRYPT
clauses to enable and disable encryption of LOB columns for LOBs using
SecureFile storage.

CREATE TABLESPACE on page 15-75 has new syntax which, along with a new
ENCRYPT keyword in the storage_clause on page 8-45, lets you encrypt an entire
tablespace.

CREATE TRIGGER on page 15-90 has the following enhancements:

XXV

XXVi

- Anew compound_dml_trigger on page 15-96 lets you create a compound trigger
by specifying a multipart PL./SQL block.

- A new "FOLLOWS Clause" on page 15-98 lets you order multiple triggers.

- Anew clause ENABLE | DISABLE on page 15-99 lets you create a trigger in
enabled or disabled form.

DROP DISKGROUP on page 17-60 has a new FORCE keyword that lets you drop a
disk group that can no longer be mounted by an Automatic Storage Management
instance.

GRANT on page 18-33 contains several new system and object privileges that
enable the grantee to work with data mining models.

LOCK TABLE on page 18-70 has new syntax that lets you specify the maximum
number of seconds the statement should wait to obtain a DML lock on the table.

MERGE on page 18-73 now supports operations on tables with domain indexes.

SELECT on page 19-4 has new PIVOT syntax that lets you rotate rows into
columns. A new UNPIVOT operation lets you query data to rotate columns into
rows.

The following SQL built-in functions have been added or enhanced:

CUBE_TABLE on page 5-48 is a new built-in function that extracts data from a
cube or dimension and returns it in the two-dimensional format of a relational
table.

REGEXP_INSTR on page 5-146 and REGEXP_SUBSTR on page 5-150 now have an
optional subexpzr parameter that lets you target a particular substring of the
regular expression being evaluated.

REGEXP_COUNT on page 5-144 is a new built-in function that counts the number
of occurrences of a specified regular expression pattern in a source string.

PREDICTION on page 5-125, PREDICTION_COST on page 5-128, and
PREDICTION_SET on page 5-133 have been enhanced. New syntax let you specify
that the stored cost matrix should be used only if it is available, or to specify a cost
matrix inline.

PREDICTION_BOUNDS on page 5-127 is a new function that returns the lower
and upper confidence bounds for a prediction.

XMLCAST on page 5-233 and XMLEXISTS on page 5-240 are two new functions
that let you cast XML data to SQL scalar datatypes and determine whether an
XQuery expression returns a nonempty XQuery sequence, respectively.

XMLDIFF on page 5-236 and XMLPATCH on page 5-242 are two new functions
that provide SQL interfaces to the corresponding XMLDiff and XMLPatch C APIs.
They let you compare two XMLType documents and use the diff file to patch an
XMLType document.

The following miscellaneous changes have been made:

In earlier releases, one form of expression in Chapter 6, "Expressions" was the
variable expression. This form has been renamed to placeholder expression for
consistency with other books in the documentation set. See "Placeholder
Expressions" on page 6-14.

In earlier releases, the TRUNCATE statement was presented as a single statement
with separate syntactic branches for TABLE and CLUSTER. That command has
now been divided into TRUNCATE CLUSTER on page 19-60 and TRUNCATE

TABLE on page 19-62 for consistency with other top-level SQL statements. No
actual syntax or semantic changes have occurred.

Two new hints, "RESULT_CACHE Hint" on page 2-95 and "NO_RESULT_CACHE
Hint" on page 2-88, let you override settings of the RESULT_CACHE_MODE
initialization parameter.

"Function Expressions" on page 6-10 now permit positional, named, and mixed
notation in the argument to a user-defined function being used as an expression.

The index partition_descriptionsyntax of ALTER TABLE on page 12-2
and ALTER INDEX on page 10-68 now lets you specify parameters for a partition
of a domain index.

A new object type object type is supported with Oracle Multimedia. See
ORDDicom on page 2-35

XXVii

XXViii

1

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs
and users access data in an Oracle database. Application programs and Oracle tools
often allow users access to the database without using SQL directly, but these
applications in turn must use SQL when executing the user's request. This chapter
provides background information on SQL as used by most database systems.

This chapter contains these topics:
= History of SQL

s SQL Standards

= Recent Enhancements

= Lexical Conventions

= Tools Support

History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared Data
Banks", in June 1970 in the Association of Computer Machinery (ACM) journal,
Communications of the ACM. Codd's model is now accepted as the definitive model for
relational database management systems (RDBMS). The language, Structured English
Query Language (SEQUEL) was developed by IBM Corporation, Inc., to use Codd's
model. SEQUEL later became SQL (still pronounced "sequel”). In 1979, Relational
Software, Inc. (now Oracle) introduced the first commercially available
implementation of SQL. Today, SQL is accepted as the standard RDBMS language.

SQL Standards

Oracle strives to comply with industry-accepted standards and participates actively in
SQL standards committees. Industry-accepted committees are the American National
Standards Institute (ANSI) and the International Organization for Standardization
(ISO), which is affiliated with the International Electrotechnical Commission (IEC).
Both ANSI and the ISO/IEC have accepted SQL as the standard language for
relational databases. When a new SQL standard is simultaneously published by these
organizations, the names of the standards conform to conventions used by the
organization, but the standards are technically identical.

The latest SQL standard was adopted in July 2003 and is often called SQL:2003. One
part of the SQL standard, Part 14, SQL/XML (ISO/IEC 9075-14) was revised in 2006
and is often referenced as "SQL/XML:2006". The formal names of this standard, with
the exception of SQL /XML, are:

Introduction to Oracle SQL 1-1

SQL Standards

= ANSI/ISO/IEC 9075:2003, "Database Language SQL", Parts 1
("SQL/Framework"), 2 ("SQL/Foundation"), 3 ("SQL/CLI"), 4 ("SQL/PSM"), 9
("SQL/MED"), 10 ("SQL/OLB"), 11("SQL/Schemata"), and 13 ("SQL/JRT")

= ISO/IEC 9075:2003, "Database Language SQL", Parts 1 ("SQL/Framework"), 2
("SQL/Foundation"), 3 ("SQL/CLI"), 4 ("SQL/PSM"), 9 ("SQL/MED"), 10
("SQL/OLB"), 11("SQL/Schemata"), and 13 ("SQL/JRT")

See Also: Appendix B, "Oracle and Standard SQL" for a detailed
description of Oracle Database conformance to the SQL:2003
standards
The formal names of the revised part 14 are:
= ANSI/ISO/IEC 9075-14:2006, "Database Language SQL", Part 14 ("SQL/XML")
s ISO/IEC 9075-14:2006, "Database Language SQL", Part 14 ("SQL/XML")

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface to
a relational database such as Oracle Database, and all SQL statements are instructions
to the database. In this SQL differs from general-purpose programming languages like
C and BASIC. Among the features of SQL are the following:

» It processes sets of data as groups rather than as individual units.
= It provides automatic navigation to the data.

= It uses statements that are complex and powerful individually, and that therefore
stand alone. Flow-control statements were not part of SQL originally, but they are
found in the recently accepted optional part of SQL, ISO/IEC 9075-5: 1996.
Flow-control statements are commonly known as "persistent stored modules"
(PSM), and the PL/SQL extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to
retrieve a set of rows from a table, you define a condition used to filter the rows. All
rows satisfying the condition are retrieved in a single step and can be passed as a unit
to the user, to another SQL statement, or to an application. You need not deal with the
rows one by one, nor do you have to worry about how they are physically stored or
retrieved. All SQL statements use the optimizer, a part of Oracle Database that
determines the most efficient means of accessing the specified data. Oracle also
provides techniques that you can use to make the optimizer perform its job better.

SQL provides statements for a variety of tasks, including:
= Querying data

= Inserting, updating, and deleting rows in a table

s Creating, replacing, altering, and dropping objects

s Controlling access to the database and its objects

= Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

1-2 Oracle Database SQL Language Reference

Lexical Conventions

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can transfer
all skills you have gained with SQL from one database to another. In addition, all
programs written in SQL are portable. They can often be moved from one database to
another with very little modification.

Recent Enhancements

The Oracle Database SQL engine is the underpinning of all Oracle Database
applications. Oracle SQL continually evolves to meet the growing demands of
database applications and to support emerging computing architectures, APIs, and
network protocols.

In addition to traditional structured data, SQL is capable of storing, retrieving, and
processing more complex data:

» Object types, collection types, and REF types provide support for complex
structured data. A number of standard-compliant multiset operators are now
supported for the nested table collection type.

= Large objects (LOBs) provide support for both character and binary unstructured
data. A single LOB can reach a size of 8 to 128 terabytes, depending on database
block size.

s The XMLType datatype provides support for semistructured XML data.
Native support of standards-based capabilities includes the following features:

= Native regular expression support lets you perform pattern searches on and
manipulate loosely formatted, free-form text within the database.

= Native floating-point datatypes based on the IEEE754 standard improve the
floating-point processing common in XML and Java standards and reduce the
storage space required for numeric data.

s Built-in SQL aggregate and analytic functions facilitate access to and manipulation
of data in data warehouses and data marts.

Ongoing enhancements in Oracle SQL will continue to provide comprehensive
support for the development of versatile, scalable, high-performance database
applications.

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to the
Oracle Database implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage returns,
spaces, or comments anywhere a space occurs within the definition of the statement.
Thus, Oracle Database evaluates the following two statements in the same manner:

SELECT last_name,salary*12,MONTHS_BETWEEN (hire_date, SYSDATE)
FROM employees
WHERE department_id = 30
ORDER BY last_name;

SELECT last_name,

salary * 12,
MONTHS_BETWEEN (hire_date, SYSDATE)

Introduction to Oracle SQL 1-3

Tools Support

FROM employees
ORDER BY last_name;

Case is insignificant in reserved words, keywords, identifiers and parameters.
However, case is significant in text literals and quoted names. Refer to "Text Literals"
on page 2-44 for a syntax description of text literals.

Tools Support

Note: SQL statements are terminated differently in different
programming environments. This documentation set uses the default
SQL*Plus character, the semicolon (;).

Oracle provides a number of utilities to facilitate your SQL development process:

Oracle SQL Developer is a graphical tool that lets you browse, create, edit, and
delete (drop) database objects, edit and debug PL/SQL code, run SQL statements
and scripts, manipulate and export data, and create and view reports. With SQL
Developer, you can connect to any target Oracle database schema using standard
Oracle database authentication. Once connected, you can perform operations on
objects in the database. You can also connect to schemas for selected third-party
(non-Oracle) databases, such as MySQL, Microsoft SQL Server, and Microsoft
Access, view metadata and data in these databases, and migrate these databases to
Oracle.

SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface and a
web-based user interface called iSQL*Plus.

Oracle JDeveloper is a multiple-platform integrated development environment
supporting the complete lifecycle of development for Java, Web services, and SQL.
It provides a graphical interface for executing and tuning SQL statements and a
visual schema diagrammer (database modeler). It also supports editing,
compiling, and debugging PL/SQL applications.

Oracle Application Express is a hosted environment for developing and deploying
database-related Web applications. SQL Workshop is a component of Oracle
Application Express that lets you view and manage database objects from a Web
browser. SQL Workshop offers quick access to a SQL command processor and a
SQL script repository.

See Also: SQL*Plus User’s Guide and Reference and Oracle Database
Application Express User’s Guide for more information on these
products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL
statements within a procedure programming language.

The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++
and COBOL compilers, respectively.

1-4 Oracle Database SQL Language Reference

Tools Support

See Also: Oracle C++ Call Interface Programmer’s Guide, Pro*COBOL
Programmer's Guide, and Oracle Call Interface Programmer’s Guide for
additional information on the embedded SQL statements allowed in
each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does
not support this complete functionality, then you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User’s Guide and
Reference.

Introduction to Oracle SQL 1-5

Tools Support

1-6 Oracle Database SQL Language Reference

2

Datatypes

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.
These elements are the simplest building blocks of SQL statements. Therefore, before
using the statements described in Chapter 10 through Chapter 19, you should
familiarize yourself with the concepts covered in this chapter.

This chapter contains these sections:

= Datatypes

= Datatype Comparison Rules

= Literals

= Format Models

= Nulls

s Comments

= Database Objects

= Schema Object Names and Qualifiers

= Syntax for Schema Objects and Parts in SQL Statements

Each value manipulated by Oracle Database has a datatype. The datatype of a value
associates a fixed set of properties with the value. These properties cause Oracle to
treat values of one datatype differently from values of another. For example, you can
add values of NUMBER datatype, but not values of RAW datatype.

When you create a table or cluster, you must specify a datatype for each of its columns.
When you create a procedure or stored function, you must specify a datatype for each
of its arguments. These datatypes define the domain of values that each column can
contain or each argument can have. For example, DATE columns cannot accept the
value February 29 (except for a leap year) or the values 2 or 'SHOE'. Each value
subsequently placed in a column assumes the datatype of the column. For example, if
you insert ' 01-JAN-98"' into a DATE column, then Oracle treats the ' 01-JAN-98"
character string as a DATE value after verifying that it translates to a valid date.

Oracle Database provides a number of built-in datatypes as well as several categories
for user-defined types that can be used as datatypes. The syntax of Oracle datatypes
appears in the diagrams that follow. The text of this section is divided into the
following sections:

s Oracle Built-in Datatypes

Basic Elements of Oracle SQL 2-1

Datatypes

datatypes::=

= ANSI, DB2, and SQL/DS Datatypes
s User-Defined Types

s Oracle-Supplied Types

s Datatype Comparison Rules

= Data Conversion

A datatype is either scalar or nonscalar. A scalar type contains an atomic value,
whereas a nonscalar (sometimes called a "collection") contains a set of values. A large
object (LOB) is a special form of scalar datatype representing a large scalar value of
binary or character data. LOBs are subject to some restrictions that do not affect other
scalar types because of their size. Those restrictions are documented in the context of
the relevant SQL syntax.

See Also: "Restrictions on LOB Columns" on page 2-25

The Oracle precompilers recognize other datatypes in embedded SQL programs. These
datatypes are called external datatypes and are associated with host variables. Do not
confuse built-in datatypes and user-defined types with external datatypes. For
information on external datatypes, including how Oracle converts between them and
built-in datatypes or user-defined types, see Pro*COBOL Programmer’s Guide, and
Pro*C/C++ Programmer’s Guide.

Oracle_built_in_datatypes

ANSI_supported_datatypes

user_defined_types
' Oracle_supplied_types -

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes

I

—(Iong_and_raw_datatypes)—

datetime_datatypes
large_object_datatypes

rowid_datatypes

ll

For descriptions of the Oracle built-in datatypes, refer to "Oracle Built-in Datatypes"
on page 2-6.

2-2 Oracle Database SQL Language Reference

Datatypes

character_datatypes::=

BYTE

| BYTE |
=)

size %
f| CHAR

ey
CHAR

- 0@ Lo
-

NCHAR

number_datatypes::=

NUMBER

“ precision a

BINARY_FLOAT

BINARY_DOUBLE
long_and_raw_datatypes::=
o)
[—
0,0

datetime_datatypes::=

f| DATE
LOCAL

ﬁ@e(fractional_seconds_precision}% WITH H TIME ZONE
—| TIMESTAMP
0 0
H INTERVAL || YEAR | 4 TO |->| MONTH
o o fe®—><fractional_seconds_precisionm
INTERVAL [+ DAY T0 H SECOND

Basic Elements of Oracle SQL 2-3

Datatypes

large_object _datatypes::=

rowid_datatypes::=

ROWID

e SO0 f

The ANSI-supported datatypes appear in the figure that follows. "ANSI, DB2, and
SQL/DS Datatypes" on page 2-28 discusses the mapping of ANSI-supported datatypes
to Oracle built-in datatypes.

ANSI_supported_datatypes::=

-VARYING

| CHARACTER ﬁ-_\
CHAR
il D@
NCHAR

®

scale
—- DECIMAL

DEC

— INT

D@D

-| DOUBLE |_>| PRECISION }

\| REAL

il

L

FLOAT

:

2-4 Oracle Database SQL Language Reference

Datatypes

Oracle_supplied_types::=

spatial_types

For a description of the expression_filter_type, refer to "Expression Filter Type"
on page 2-36. Other Oracle-supplied types follow:

any_types::=

SYS.AnyData
l SYS.AnyType .
l SYS.AnyDataSet '

For descriptions of the Any types, refer to "Any Types" on page 2-31.

XML_types::=
For descriptions of the XML types, refer to "XML Types" on page 2-32.
spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, refer to "Spatial Types" on page 2-34.

media_types::=

\(stillfimage,object,types)/

Basic Elements of Oracle SQL 2-5

Datatypes

still_image_object _types::=

S|_Stilllmage
SI_AverageColor
SI_PositionalColor
——{ SI_ColorHistogram |H—
Sl_Texture

S|_FeatureList

SI_Color

A

For descriptions of the media types, refer to "Media Types" on page 2-35.

Oracle Built-in Datatypes

The table that follows summarizes Oracle built-in datatypes. Refer to the syntax in the
preceding sections for the syntactic elements. The codes listed for the datatypes are
used internally by Oracle Database. The datatype code of a column or object attribute
is returned by the DUMP function.

Table 2-1 Built-in Datatype Summary

Code Datatype Description

1 VARCHAR2(size [BYTE | CHAR]) Variable-length character string having maximum length size
bytes or characters. Maximum s ze is 4000 bytes or characters,
and minimum is 1 byte or 1 character. You must specify size for
VARCHAR?2.

BYTE indicates that the column will have byte length semantics.
CHAR indicates that the column will have character semantics.

1 NVARCHAR2(size) Variable-length Unicode character string having maximum
length size characters. The number of bytes can be up to two
times size for AL16UTF16 encoding and three times size for
UTF8 encoding. Maximum size is determined by the national
character set definition, with an upper limit of 4000 bytes. You
must specify size for NVARCHAR2.

2 NUMBER [(p][, s])] Number having precision p and scale s. The precision p can
range from 1 to 38. The scale s can range from -84 to 127. Both
precision and scale are in decimal digits. A NUMBER value
requires from 1 to 22 bytes.

2 FLOAT [(p)] A subtype of the NUMBER datatype having precision p. A FLOAT
value is represented internally as NUMBER. The precision p can
range from 1 to 126 binary digits. A FLOAT value requires from 1
to 22 bytes.

8 LONG Character data of variable length up to 2 gigabytes, or 2311
bytes. Provided for backward compatibility.

12 DATE Valid date range from January 1, 4712 BC, to December 31, 9999
AD. The default format is determined explicitly by the NLS_
DATE_FORMAT parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 7 bytes. This datatype contains the
datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.
It does not have fractional seconds or a time zone.

21 BINARY_FLOAT 32-bit floating point number. This datatype requires 5 bytes,
including the length byte.

2-6 Oracle Database SQL Language Reference

Datatypes

Table 2-1 (Cont.) Built-in Datatype Summary

Code Datatype Description
22 BINARY_DOUBLE 64-bit floating point number. This datatype requires 9 bytes,
including the length byte.
180 TIMESTAMP [(fractional_ Year, month, and day values of date, as well as hour, minute,
seconds_precision)] and second values of time, where fractional_seconds_

precisionis the number of digits in the fractional part of the
SECOND datetime field. Accepted values of fractional
seconds_precision are 0 to 9. The default is 6. The default
format is determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY parameter. The
sizes varies from 7 to 11 bytes, depending on the precision. This
datatype contains the datetime fields YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND. It contains fractional seconds but does
not have a time zone.

181 TIMESTAMP [(fractional_ All values of TIMESTAMP as well as time zone displacement
seconds)] WITH TIME ZONE value, where fractional_seconds_precisionis the

number of digits in the fractional part of the SECOND datetime
field. Accepted values are 0 to 9. The default is 6. The default
format is determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY parameter. The
size is fixed at 13 bytes. This datatype contains the datetime
fields YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_
HOUR, and TIMEZONE_MINUTE. It has fractional seconds and an
explicit time zone.

231 TIMESTAMP [(fractional_ All values of TIMESTAMP WITH TIME ZONE, with the following
seconds)] WITH LOCAL TIME ZONE exceptions:

= Data is normalized to the database time zone when it is
stored in the database.

s When the data is retrieved, users see the data in the session
time zone.

The default format is determined explicitly by the NLS_DATE_
FORMAT parameter or implicitly by the NLS_TERRITORY
parameter. The sizes varies from 7 to 11 bytes, depending on the

precision.
182 INTERVAL YEAR [(vear_ Stores a period of time in years and months, where year_
precision)] TO MONTH precisionis the number of digits in the YEAR datetime field.
Accepted values are 0 to 9. The default is 2. The size is fixed at 5
bytes.
183 INTERVAL DAY [(day_precision)] Stores a period of time in days, hours, minutes, and seconds,
TO SECOND [(fractional_ where
seconds)] s day_precision is the maximum number of digits in the
DAY datetime field. Accepted values are 0 to 9. The default
is 2.
s fractional_seconds_precision isthe number of
digits in the fractional part of the SECOND field. Accepted
values are 0 to 9. The default is 6.
The size is fixed at 11 bytes.
23 RAW(size) Raw binary data of length size bytes. Maximum si ze is 2000
bytes. You must specify size for a RAW value.
24 LONG RAW Raw binary data of variable length up to 2 gigabytes.
69 ROWID Base 64 string representing the unique address of a row in its

table. This datatype is primarily for values returned by the
ROWID pseudocolumn.

Basic Elements of Oracle SQL 2-7

Datatypes

Table 2-1 (Cont.) Built-in Datatype Summary

Code Datatype

Description

208 UROWID [(size)]

Base 64 string representing the logical address of a row of an
index-organized table. The optional size is the size of a column
of type UROWID. The maximum size and default is 4000 bytes.

96 CHAR [(size [BYTE | CHAR])]

Fixed-length character data of length size bytes or characters.
Maximum size is 2000 bytes or characters. Default and
minimum sizeis 1 byte.

BYTE and CHAR have the same semantics as for VARCHAR2.

96 NCHAR[(size)]

Fixed-length character data of length size characters. The
number of bytes can be up to two times size for AL16UTF16
encoding and three times size for UTF8 encoding. Maximum
sizeis determined by the national character set definition, with
an upper limit of 2000 bytes. Default and minimum sizeis 1
character.

112 CLOB

A character large object containing single-byte or multibyte
characters. Both fixed-width and variable-width character sets
are supported, both using the database character set. Maximum
size is (4 gigabytes - 1) * (database block size).

112 NCLOB

A character large object containing Unicode characters. Both
fixed-width and variable-width character sets are supported,
both using the database national character set. Maximum size is
(4 gigabytes - 1) * (database block size). Stores national character
set data.

113 BLOB

A binary large object. Maximum size is (4 gigabytes - 1) *
(database block size).

114 BFILE

Contains a locator to a large binary file stored outside the
database. Enables byte stream I/0O access to external LOBs
residing on the database server. Maximum size is 4 gigabytes.

The sections that follow de
Database. For information
on page 2-44.

Character Datatypes

scribe the Oracle datatypes as they are stored in Oracle
on specifying these datatypes as literals, refer to "Literals"

Character datatypes store character (alphanumeric) data, which are words and

free-form text, in the datab

ase character set or national character set. They are less

restrictive than other datatypes and consequently have fewer properties. For example,

character columns can stor
only numeric values.

Character data is stored in

e all alphanumeric values, but NUMBER columns can store

strings with byte values corresponding to one of the

character sets, such as 7-bit ASCII or EBCDIC, specified when the database was
created. Oracle Database supports both single-byte and multibyte character sets.

These datatypes are used for character data:

s CHAR Datatype
= NCHAR Datatype

= NVARCHAR?2 Datatype

s VARCHAR?2 Datatype

For information on specifying character datatypes as literals, refer to "Text Literals" on

page 2-44.

2-8 Oracle Database SQL Language Reference

Datatypes

CHAR Datatype

The CHAR datatype specifies a fixed-length character string. Oracle ensures that all
values stored in a CHAR column have the length specified by size. If you insert a
value that is shorter than the column length, then Oracle blank-pads the value to
column length. If you try to insert a value that is too long for the column, then Oracle
returns an error.

The default length for a CHAR column is 1 byte and the maximum allowed is 2000
bytes. A 1-byte string can be inserted into a CHAR (10) column, but the string is
blank-padded to 10 bytes before it is stored.

When you create a table with a CHAR column, by default you supply the column
length in bytes. The BYTE qualifier is the same as the default. If you use the CHAR
qualifier, for example CHAR(10 CHAR), then you supply the column length in
characters. A character is technically a code point of the database character set. Its size
can range from 1 byte to 4 bytes, depending on the database character set. The BYTE
and CHAR qualifiers override the semantics specified by the NLS_LENGTH_
SEMANTICS parameter, which has a default of byte semantics. For performance
reasons, Oracle recommends that you use the NLS_LENGTH_SEMANTICS parameter to
set length semantics and that you use the BYTE and CHAR qualifiers only when
necessary to override the parameter.

To ensure proper data conversion between databases with different character sets, you
must ensure that CHAR data consists of well-formed strings.

See Also: Oracle Database Globalization Support Guide for more
information on character set support and "Datatype Comparison
Rules" on page 2-36 for information on comparison semantics

NCHAR Datatype

The NCHAR datatype is a Unicode-only datatype. When you create a table with an
NCHAR column, you define the column length in characters. You define the national
character set when you create your database.

The maximum length of a column is determined by the national character set
definition. Width specifications of character datatype NCHAR refer to the number of
characters. The maximum column size allowed is 2000 bytes.

If you insert a value that is shorter than the column length, then Oracle blank-pads the
value to column length. You cannot insert a CHAR value into an NCHAR column, nor
can you insert an NCHAR value into a CHAR column.

The following example compares the translated_description column of the
pm.product_descriptions table with a national character set string:

SELECT translated_description FROM product_descriptions
WHERE translated_name = N'LCD Monitor 11/PM';

See Also: Oracle Database Globalization Support Guide for information
on Unicode datatype support

NVARCHAR2 Datatype

The NVARCHAR2 datatype is a Unicode-only datatype. When you create a table with an
NVARCHAR2 column, you supply the maximum number of characters it can hold.
Oracle subsequently stores each value in the column exactly as you specify it,
provided the value does not exceed the maximum length of the column.

Basic Elements of Oracle SQL 2-9

Datatypes

The maximum length of the column is determined by the national character set
definition. Width specifications of character datatype NVARCHAR?2 refer to the number
of characters. The maximum column size allowed is 4000 bytes.

See Also: Oracle Database Globalization Support Guide for information
on Unicode datatype support.

VARCHAR?2 Datatype

The VARCHAR2 datatype specifies a variable-length character string. When you create
a VARCHAR?2 column, you supply the maximum number of bytes or characters of data
that it can hold. Oracle subsequently stores each value in the column exactly as you
specify it, provided the value does not exceed the column's maximum length of the
column. If you try to insert a value that exceeds the specified length, then Oracle
returns an error.

You must specify a maximum length for a VARCHAR2 column. This maximum must be
at least 1 byte, although the actual string stored is permitted to be a zero-length string
("). You can use the CHAR qualifier, for example VARCHAR2(10 CHAR), to give the
maximum length in characters instead of bytes. A character is technically a code point
of the database character set. CHAR and BYTE qualifiers override the setting of the
NLS_LENGTH_SEMANTICS parameter, which has a default of bytes. For performance
reasons, Oracle recommends that you use the NLS_LENGTH_SEMANTICS parameter to
set length semantics and that you use the BYTE and CHAR qualifiers only when
necessary to override the parameter. The maximum length of VARCHAR?2 data is 4000
bytes. Oracle compares VARCHAR?2 values using nonpadded comparison semantics.

To ensure proper data conversion between databases with different character sets, you
must ensure that VARCHAR2 data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-36 for
information on comparison semantics

VARCHAR Datatype

Do not use the VARCHAR datatype. Use the VARCHAR2 datatype instead. Although the
VARCHAR datatype is currently synonymous with VARCHAR2, the VARCHAR datatype is
scheduled to be redefined as a separate datatype used for variable-length character
strings compared with different comparison semantics.

Numeric Datatypes

The Oracle Database numeric datatypes store positive and negative fixed and
floating-point numbers, zero, infinity, and values that are the undefined result of an
operation—"not a number" or NAN. For information on specifying numeric datatypes
as literals, refer to "Numeric Literals" on page 2-45.

NUMBER Datatype

The NUMBER datatype stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10 to but not including 1.0 x 10'%. If you specify an
arithmetic expression whose value has an absolute value greater than or equal to 1.0 x
10", then Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:

NUMBER (p, s)

where:

2-10 Oracle Database SQL Language Reference

Datatypes

= pis the precision, or the maximum number of significant decimal digits, where
the most significant digit is the left-most nonzero digit, and the least significant
digit is the right-most known digit. Oracle guarantees the portability of numbers
with precision of up to 20 base-100 digits, which is equivalent to 39 or 40 decimal
digits depending on the position of the decimal point.

= sisthe scale, or the number of digits from the decimal point to the least
significant digit. The scale can range from -84 to 127.

- Positive scale is the number of significant digits to the right of the decimal
point to and including the least significant digit.

- Negative scale is the number of significant digits to the left of the decimal
point, to but not including the least significant digit. For negative scale the
least significant digit is on the left side of the decimal point, because the actual
data is rounded to the specified number of places to the left of the decimal
point. For example, a specification of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When
scale is greater than precision, the precision specifies the maximum number of
significant digits to the right of the decimal point. For example, a column defined as
NUMBER (4, 5) requires a zero for the first digit after the decimal point and rounds all
values past the fifth digit after the decimal point.

It is good practice to specify the scale and precision of a fixed-point number column
for extra integrity checking on input. Specifying scale and precision does not force all
values to a fixed length. If a value exceeds the precision, then Oracle returns an error. If
a value exceeds the scale, then Oracle rounds it.

Specify an integer using the following form:

NUMBER (p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER (p, 0) .

Specify a floating-point number using the following form:

NUMBER

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

See Also: "Floating-Point Numbers" on page 2-12
Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As

123.89 NUMBER 123.89

123.89 NUMBER (3) 124

123.89 NUMBER (3, 2) exceeds precision
123.89 NUMBER (4, 2) exceeds precision
123.89 NUMBER (5, 2) 123.89

123.89 NUMBER (6, 1) 123.9

123.89 NUMBER (6, -2) 100

Basic Elements of Oracle SQL 2-11

Datatypes

Table 2-2 (Cont.) Storage of Scale and Precision

Actual Data Specified As Stored As
.01234 NUMBER (4, 5) .01234
.00012 NUMBER (4, 5) .00012
.000127 NUMBER (4, 5) .00013
.0000012 NUMBER (2, 7) .0000012
.00000123 NUMBER (2, 7) .0000012
1.2e-4 NUMBER (2, 5) 0.00012
1.2e-5 NUMBER (2, 5) 0.00001
FLOAT Datatype

The FLOAT datatype is a subtype of NUMBER. It can be specified with or without
precision, which has the same definition it has for NUMBER and can range from 1 to
126. Scale cannot be specified, but is interpreted from the data. Each FLOAT value
requires from 1 to 22 bytes.

To convert from binary to decimal precision, multiply n by 0.30103. To convert from
decimal to binary precision, multiply the decimal precision by 3.32193. The maximum
of 126 digits of binary precision is roughly equivalent to 38 digits of decimal precision.

The difference between NUMBER and FLOAT is best illustrated by example. In the
following example the same values are inserted into NUMBER and FLOAT columns:

CREATE TABLE test (coll NUMBER(5,2), col2 FLOAT(5));
INSERT INTO test VALUES (1.23, 1.23);
INSERT INTO test VALUES (7.89, 7.89);

(

(
INSERT INTO test VALUES (12.79, 12.79);
INSERT INTO test VALUES (123.45, 123.45);

SELECT * FROM test;

coLl CoL2
1.23 1.2
7.89 7.9
12.79 13
123.45 120

In this example, the FLOAT value returned cannot exceed 5 binary digits. The largest
decimal number that can be represented by 5 binary digits is 31. The last row contains
decimal values that exceed 31. Therefore, the FLOAT value must be truncated so that
its significant digits do not require more than 5 binary digits. Thus 123.45 is rounded
to 120, which has only two significant decimal digits, requiring only 4 binary digits.

Oracle Database uses the Oracle FLOAT datatype internally when converting ANSI
FLOAT data. Oracle FLOAT is available for you to use, but Oracle recommends that you
use the BINARY_FLOAT and BINARY_DOUBLE datatypes instead, as they are more
robust. Refer to "Floating-Point Numbers" on page 2-12 for more information.

Floating-Point Numbers

Floating-point numbers can have a decimal point anywhere from the first to the last
digit or can have no decimal point at all. An exponent may optionally be used
following the number to increase the range, for example, 1.777 €0 A scale value is not

2-12 Oracle Database SQL Language Reference

Datatypes

applicable to floating-point numbers, because the number of digits that can appear
after the decimal point is not restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored
internally by Oracle Database. Values are stored using decimal precision for NUMBER.
All literals that are within the range and precision supported by NUMBER are stored
exactly as NUMBER. Literals are stored exactly because literals are expressed using
decimal precision (the digits 0 through 9). Binary floating-point numbers are stored
using binary precision (the digits 0 and 1). Such a storage scheme cannot represent all
values using decimal precision exactly. Frequently, the error that occurs when
converting a value from decimal to binary precision is undone when the value is
converted back from binary to decimal precision. The literal 0.1 is such an example.

Oracle Database provides two numeric datatypes exclusively for floating-point
numbers:

BINARY_FLOAT BINARY_FLOAT is a 32-bit, single-precision floating-point number
datatype. Each BINARY_FLOAT value requires 5 bytes, including a length byte.

BINARY_DOUBLE BINARY_ DOUBLE is a 64-bit, double-precision floating-point number
datatype. Each BINARY_DOUBLE value requires 9 bytes, including a length byte.

In a NUMBER column, floating point numbers have decimal precision. In a BINARY_
FLOAT or BINARY_DOUBLE column, floating-point numbers have binary precision.
The binary floating-point numbers support the special values infinity and NaN (not a
number).

You can specify floating-point numbers within the limits listed in Table 2-3 on
page 2-13. The format for specifying floating-point numbers is defined in "Numeric
Literals" on page 2-45.

Table 2-3 Floating Point Number Limits

Value BINARY_FLOAT BINARY_DOUBLE
Maximum positive finite value 3.40282E+38F 1.79769313486231E+308
Minimum positive finite value = 1.17549E-38F 2.22507485850720E-308

IEEE754 Conformance The Oracle implementation of floating-point datatypes
conforms substantially with the Institute of Electrical and Electronics Engineers (IEEE)
Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985 (IEEE754). The
floating-point datatypes conform to IEEE754 in the following areas:

s The SQL function SQRT implements square root. See SQRT on page 5-169.

s The SQL function REMAINDER implements remainder. See REMAINDER on
page 5-157.

= Arithmetic operators conform. See "Arithmetic Operators" on page 4-3.

= Comparison operators conform, except for comparisons with NaN. Oracle orders
NaN greatest with respect to all other values, and evaluates NaN equal to NaN. See
"Floating-Point Conditions" on page 7-7.

= Conversion operators conform. See "Conversion Functions" on page 5-5.
s The default rounding mode is supported.
» The default exception handling mode is supported.

» The special values INF, -INF, and NaN are supported. See "Floating-Point
Conditions" on page 7-7.

Basic Elements of Oracle SQL 2-13

Datatypes

= Rounding of BINARY_FLOAT and BINARY_DOUBLE values to integer-valued
BINARY_FLOAT and BINARY_DOUBLE values is provided by the SQL functions
ROUND, TRUNC, CEIL, and FLOOR.

= Rounding of BINARY_ FLOAT/BINARY_DOUBLE to decimal and decimal to
BINARY_FLOAT/BINARY_DOUBLE is provided by the SQL functions TO_CHAR,
TO_NUMBER, TO_NCHAR, TO_BINARY_FLOAT, TO_BINARY_DOUBLE, and CAST.

The floating-point datatypes do not conform to IEEE754 in the following areas:
s -0is coerced to +0.
s Comparison with NaN is not supported.

s All NaN values are coerced to either BINARY_FLOAT_NAN or BINARY_ DOUBLE_
NAN.

= Non-default rounding modes are not supported.

= Non-default exception handling mode are not supported.

Numeric Precedence

Numeric precedence determines, for operations that support numeric datatypes, the
datatype Oracle uses if the arguments to the operation have different datatypes.
BINARY_DOUBLE has the highest numeric precedence, followed by BINARY_FLOAT,
and finally by NUMBER. Therefore, in any operation on multiple numeric values:

= If any of the operands is BINARY_DOUBLE, then Oracle attempts to convert all the
operands implicitly to BINARY_DOUBLE before performing the operation.

= If none of the operands is BINARY_DOUBLE but any of the operands is BINARY__
FLOAT, then Oracle attempts to convert all the operands implicitly to BINARY_
FLOAT before performing the operation.

s Otherwise, Oracle attempts to convert all the operands to NUMBER before
performing the operation.

If any implicit conversion is needed and fails, then the operation fails. Refer to
Table 2-10, " Implicit Type Conversion Matrix" on page 2-40 for more information on
implicit conversion.

In the context of other datatypes, numeric datatypes have lower precedence than the
datetime/interval datatypes and higher precedence than character and all other
datatypes.

LONG Datatype

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, BL.OB)
instead. LONG columns are supported only for backward compatibility.

LONG columns store variable-length character strings containing up to 2 gigabytes -1,
or 2%1-1 bytes. LONG columns have many of the characteristics of VARCHAR2 columns.
You can use LONG columns to store long text strings. The length of LONG values may
be limited by the memory available on your computer. LONG literals are formed as
described for "Text Literals" on page 2-44.

Oracle also recommends that you convert existing LONG columns to LOB columns.
LOB columns are subject to far fewer restrictions than LONG columns. Further, LOB
functionality is enhanced in every release, whereas LONG functionality has been static
for several releases. See the modi fy col_properties clause of ALTER TABLE on
page 12-2 and TO_LOB on page 5-208 for more information on converting LONG
columns to LOB.

2-14 Oracle Database SQL Language Reference

Datatypes

You can reference LONG columns in SQL statements in these places:

SELECT lists
SET clauses of UPDATE statements

VALUES clauses of INSERT statements

The use of LONG values is subject to these restrictions:

A table can contain only one LONG column.
You cannot create an object type with a LONG attribute.

LONG columns cannot appear in WHERE clauses or in integrity constraints (except
that they can appear in NULL and NOT NULL constraints).

LONG columns cannot be indexed.
LONG data cannot be specified in regular expressions.
A stored function cannot return a LONG value.

You can declare a variable or argument of a PL/SQL program unit using the LONG
datatype. However, you cannot then call the program unit from SQL.

Within a single SQL statement, all LONG columns, updated tables, and locked
tables must be located on the same database.

LONG and LONG RAW columns cannot be used in distributed SQL statements and
cannot be replicated.

If a table has both LONG and LOB columns, then you cannot bind more than 4000
bytes of data to both the LONG and LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONG or the LOB
column.

In addition, LONG columns cannot appear in these parts of SQL statements:

GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the
DISTINCT operator in SELECT statements

The UNIQUE operator of a SELECT statement

The column list of a CREATE CLUSTER statement

The CLUSTER clause of a CREATE MATERIALIZED VIEW statement
SQL built-in functions, expressions, or conditions

SELECT lists of queries containing GROUP BY clauses

SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or
MINUS set operators

SELECT lists of CREATE TABLE ... AS SELECT statements
ALTER TABLE ... MOVE statements

SELECT lists in subqueries in INSERT statements

Triggers can use the LONG datatype in the following manner:

A SQL statement within a trigger can insert data into a LONG column.

If data from a LONG column can be converted to a constrained datatype (such as
CHAR and VARCHAR?2), then a LONG column can be referenced in a SQL statement
within a trigger.

Variables in triggers cannot be declared using the LONG datatype.

Basic Elements of Oracle SQL 2-15

Datatypes

s :NEW and :0LD cannot be used with LONG columns.

You can use Oracle Call Interface functions to retrieve a portion of a LONG value from
the database.

See Also: Oracle Call Interface Programmer’s Guide

Datetime and Interval Datatypes

The datetime datatypes are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and
TIMESTAMP WITH LOCAL TIME ZONE. Values of datetime datatypes are sometimes
called datetimes. The interval datatypes are INTERVAL YEAR TO MONTH and
INTERVAL DAY TO SECOND. Values of interval datatypes are sometimes called
intervals. For information on expressing datetime and interval values as literals, refer
to "Datetime Literals" on page 2-48 and "Interval Literals" on page 2-51.

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype. Table 2—4 lists the datetime fields and their
possible values for datetimes and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify
the database and session time zones by querying the built-in SQL functions
DBTIMEZONE and SESSTIONTIMEZONE. If the time zones have not been set manually,
then Oracle Database uses the operating system time zone by default. If the operating
system time zone is not a valid Oracle time zone, then Oracle uses UTC as the default
value.

Table 2-4 Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL
YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 01 to 12 0to 11

DAY 01 to 31 (limited by the values of MONTH and YEAR, = Any positive or negative
according to the rules of the current NLS calendar integer
parameter)

HOUR 00 to 23 0to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the
fractional seconds. The 9(n) portion is not applicable precision of interval
for DATE. fractional seconds

TIMEZONE_HOUR

-12 to 14 (This range accommodates daylight saving Not applicable
time changes.) Not applicable for DATE or

TIMESTAMP.
TIMEZONE_MINUTE 00 to 59. Not applicable for DATE or TIMESTAMP. Not applicable
(See note at end of table)
TIMEZONE_REGION Query the TZNAME column of the VS TIMEZONE_ Not applicable

NAMES data dictionary view. Not applicable for
DATE or TIMESTAMP. For a complete listing of all
timezone regions, refer to Oracle Database
Globalization Support Guide.

TIMEZONE_ABBR

Query the TZABBREV column of the VSTIMEZONE_ Not applicable
NAMES data dictionary view. Not applicable for
DATE or TIMESTAMP.

2-16 Oracle Database SQL Language Reference

Datatypes

Note: TIMEZONE_HOUR and TIMEZONE_MINUTE are specified
together and interpreted as an entity in the format + | - hh:mm, with
values ranging from -12:59 to +14:00. Refer to Oracle Data Provider for
.NET Developer’s Guide for information on specifying time zone values
for that APL

DATE Datatype

The DATE datatype stores date and time information. Although date and time
information can be represented in both character and number datatypes, the DATE
datatype has special associated properties. For each DATE value, Oracle stores the
following information: century, year, month, date, hour, minute, and second.

You can specify a DATE value as a literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. For examples of expressing DATE
values in both these ways, refer to "Datetime Literals" on page 2-48.

Using Julian Days A Julian day number is the number of days since January 1, 4712 BC.
Julian days allow continuous dating from a common reference. You can use the date
format model "J" with date functions TO_DATE and TO_CHAR to convert between
Oracle DATE values and their Julian equivalents.

Note: Oracle Database uses the astronomical system of calculating
Julian days, in which the year 4713 BC is specified as -4712. The
historical system of calculating Julian days, in contrast, specifies 4713
BC as -4713. If you are comparing Oracle Julian days with values
calculated using the historical system, then take care to allow for the
365-day difference in BC dates. For more information, see
http://aa.usno.navy.mil/fag/docs/millennium.html.

The default date values are determined as follows:

» The year is the current year, as returned by SYSDATE.

= The month is the current month, as returned by SYSDATE.
s The dayis 01 (the first day of the month).

s The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date itself
is not specified, as in the following example, which is issued in the month of May:

SELECT TO_DATE('2005', 'YYYY') FROM DUAL;

TO_DATE ('

01-MAY-05
Example This statement returns the Julian equivalent of January 1, 1997:
SELECT TO_CHAR(TO_DATE ('01-01-1997', 'MM-DD-YYYY'),'J"')

FROM DUAL;

TO_CHAR

2450450

Basic Elements of Oracle SQL 2-17

Datatypes

See Also: "Selecting from the DUAL Table" for a description of the
DUAL table

TIMESTAMP Datatype

The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus hour, minute, and second values. This
datatype is useful for storing precise time values. Specify the TIMESTAMP datatype as
follows:

TIMESTAMP [(fractional_seconds_precision)]

where fractional_ seconds_precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

See Also: TO_TIMESTAMP on page 5-213 for information on
converting character data to TIMESTAMP data

TIMESTAMP WITH TIME ZONE Datatype

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone
region name or a a time zone offset in its value. The time zone offset is the difference
(in hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). This datatype is useful for collecting and
evaluating date information across geographic regions.

Specify the TIMESTAMP WITH TIME ZONE datatype as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

where fractional_ seconds_precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

= "Support for Daylight Saving Times" on page 2-22 and Table 2-17,
" Matching Character Data and Format Models with the FX
Format Model Modifier" on page 2-66 for information on daylight
saving support

s TO_TIMESTAMP_TZ on page 5-214 for information on converting
character data to TIMESTAMP WITH TIME ZONE data

= ALTER SESSION on page 11-47 for information on the ERROR_
ON_OVERLAP_TIME session parameter

TIMESTAMP WITH LOCAL TIME ZONE Datatype

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that includes a
time zone offset in its value. It differs from TIMESTAMP WITH TIME ZONE in that data
stored in the database is normalized to the database time zone, and the time zone
offset is not stored as part of the column data. When a user retrieves the data, Oracle

2-18 Oracle Database SQL Language Reference

Datatypes

returns it in the user's local session time zone. The time zone offset is the difference (in
hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). This datatype is useful for displaying date
information in the time zone of the client system in a two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE datatype as follows:
TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE
where fractional_ seconds_precision optionally specifies the number of digits

Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

» Oracle Database Advanced Application Developer’s Guide for
examples of using this datatype and CAST on page 5-26 for
information on converting character data to TIMESTAMP WITH
LOCAL TIME ZONE

INTERVAL YEAR TO MONTH Datatype

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields. This datatype is useful for representing the difference between two
datetime values when only the year and month values are significant.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year. precisionis the number of digits in the YEAR datetime field. The
default value of year precisionis?2.

You have a great deal of flexibility when specifying interval values as literals. Refer to
"Interval Literals" on page 2-51 for detailed information on specifying interval values
as literals. Also see "Datetime and Interval Examples" on page 2-22 for an example
using intervals.

INTERVAL DAY TO SECOND Datatype

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. This datatype is useful for representing the precise difference between
two datetime values.

Specify this datatype as follows:

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_precision)]

where

s day_precisionis the number of digits in the DAY datetime field. Accepted
values are 0 to 9. The default is 2.

» fractional_ seconds_precisionisthe number of digits in the fractional part
of the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

Basic Elements of Oracle SQL 2-19

Datatypes

You have a great deal of flexibility when specifying interval values as literals. Refer to
"Interval Literals" on page 2-51 for detailed information on specify interval values as
literals. Also see "Datetime and Interval Examples" on page 2-22 for an example using
intervals.

Datetime/Interval Arithmetic

You can perform a number of arithmetic operations on date (DATE), timestamp
(TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME
ZONE) and interval (INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH) data.
Oracle calculates the results based on the following rules:

= You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to
date values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE
- 7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the
hire_date column of the sample table employees from SYSDATE returns the
number of days since each employee was hired. You cannot multiply or divide
date or timestamp values.

s Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to
NUMBER.

s Each DATE value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATE data. For example, the MONTHS_
BETWEEN function returns the number of months between two dates. The
fractional portion of the result represents that portion of a 31-day month.

= If one operand is a DATE value or a numeric value, neither of which contains time
zone or fractional seconds components, then:

- Oracle implicitly converts the other operand to DATE data. The exception is
multiplication of a numeric value times an interval, which returns an interval.

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

— If the other operand has a fractional seconds value, then the fractional seconds
value is lost.

= When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATE datatype, Oracle implicitly converts the non-DATE
value to a DATE value. Refer to "Datetime Functions" on page 5-4 for information
on which functions cause implicit conversion to DATE.

s When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error. For example, the next two
statements return errors:

SELECT TO_DATE('31-AUG-2004"', 'DD-MON-YYYY') + TO_YMINTERVAL('O-1') FROM DUAL;
SELECT TO_DATE('29-FEB-2004"', 'DD-MON-YYYY') + TO_YMINTERVAL('1-0') FROM DUAL;

The first fails because adding one month to a 31-day month would result in
September 31, which is not a valid date. The second fails because adding one year
to a date that exists only every four years is not valid. However, the next statement
succeeds, because adding four years to a February 29 date is valid:

SELECT TO_DATE('29-FEB-2004', 'DD-MON-YYYY') + TO_YMINTERVAL('4-0') FROM DUAL;

2-20 Oracle Database SQL Language Reference

Datatypes

TO_DATE ('

29-FEB-08

= Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH
LOCAL TIME ZONE, Oracle converts the datetime value from the database time
zone to UTC and converts back to the database time zone after performing the
arithmetic. For TIMESTAMP WITH TIME ZONE, the datetime value is always in

UTC, so no conversion is necessary.

Table 2-5 is a matrix of datetime arithmetic operations. Dashes represent operations

that are not supported.

Table 2-5 Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric
DATE

+ - - DATE DATE

- NUMBER INTERVAL DATE DATE

* — — — —

/ _ _ —_ _
TIMESTAMP

+ - - TIMESTAMP DATE

- INTERVAL INTERVAL TIMESTAMP DATE

* — — — —

/ — — — —
INTERVAL

+ DATE TIMESTAMP INTERVAL -

- - - INTERVAL -

* - - - INTERVAL
/ — — — INTERVAL
Numeric

+ DATE DATE — NA

- — - — NA

* - — INTERVAL NA

/ - - - NA

Examples You can add an interval value expression to a start time. Consider the
sample table oe . orders with a column order_date. The following statement adds
30 days to the value of the order_date column:

SELECT order_id, order_date + INTERVAL '30' DAY FROM orders

ORDER BY order_id,

"Due Date";

Basic Elements of Oracle SQL 2-21

Datatypes

Support for Daylight Saving Times

Oracle Database automatically determines, for any given time zone region, whether
daylight saving is in effect and returns local time values accordingly. The datetime
value is sufficient for Oracle to determine whether daylight saving time is in effect for
a given region in all cases except boundary cases. A boundary case occurs during the
period when daylight saving goes into or comes out of effect. For example, in the
US-Pacific region, when daylight saving goes into effect, the time changes from 2:00
a.m. to 3:00 a.m. The one hour interval between 2 and 3 a.m. does not exist. When
daylight saving goes out of effect, the time changes from 2:00 a.m. back to 1:00 a.m.,
and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZR and TZD format elements, as
described in Table 2-17. TZR represents the time zone region in datetime input strings.
Examples are 'Australia/North', 'UTC', and 'Singapore'. TZD represents an
abbreviated form of the time zone region with daylight saving information. Examples
are 'PST' for US/Pacific standard time and 'PDT' for US/Pacific daylight time. To see a
listing of valid values for the TZR and TZD format elements, query the TZNAME and
TZABBREV columns of the VSTIMEZONE_NAMES dynamic performance view.

Note: Timezone region names are needed by the daylight saving
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight saving
support until you provide a path to the complete (larger) file by
way of the ORA_TZFILE environment variable.

For a complete listing of the timezone region names in both files, refer to Oracle
Database Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

s "Datetime Format Models" on page 2-58 for information on the
format elements and the session parameter ERROR_ON_
OVERLAP_TIME on page 11-53.

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

s Oracle Database Reference for information on the dynamic
performance views

Datetime and Interval Examples
The following example shows how to specify some datetime and interval datatypes.

CREATE TABLE time_table (

start_time TIMESTAMP,
duration_1 INTERVAL DAY (6) TO SECOND (5),
duration_2 INTERVAL YEAR TO MONTH) ;

The start_time column is of type TIMESTAMP. The implicit fractional seconds
precision of TIMESTAMP is 6.

2-22 Oracle Database SQL Language Reference

Datatypes

The duration_1 column is of type INTERVAL DAY TO SECOND. The maximum
number of digits in field DAY is 6 and the maximum number of digits in the fractional
second is 5. The maximum number of digits in all other datetime fields is 2.

The duration_2 column is of type INTERVAL YEAR TO MONTH. The maximum
number of digits of the value in each field (YEAR and MONTH) is 2.

Interval datatypes do not have format models. Therefore, to adjust their presentation,
you must combine character functions such as EXTRACT and concatenate the
components. For example, the following examples query the hr . employees and
oe.orders tables, respectively, and change interval output from the form "yy-mm" to
"yy years mm months" and from "dd-hh" to "dddd days hh hours":

SELECT last_name, EXTRACT(YEAR FROM (SYSDATE - hire_date) YEAR TO MONTH)

|| ' years '
|| EXTRACT (MONTH FROM (SYSDATE - hire_date) YEAR TO MONTH)
|| * months' *"Interval"

FROM employees ;

LAST_NAME Interval

King 17 years 11 months
Kochhar 15 years 8 months
De Haan 12 years 4 months
Hunold 15 years 4 months
Ernst 14 years 0 months
Austin 7 years 11 months
Pataballa 7 years 3 months
Lorentz 6 years 3 months
Greenberg 10 years 9 months

SELECT order_id,
EXTRACT (DAY FROM (SYSDATE - order_date) DAY TO SECOND)
|| * days '
| | EXTRACT (HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
|| * hours' "Interval"
FROM orders;

ORDER_ID Interval

RAW and LONG RAW Datatypes

The RAW and LONG RAW datatypes store data that is not to be explicitly converted by
Oracle Database when moving data between different systems. These datatypes are
intended for binary data or byte strings. For example, you can use LONG RAW to store
graphics, sound, documents, or arrays of binary data, for which the interpretation is
dependent on the use.

Basic Elements of Oracle SQL 2-23

Datatypes

Oracle strongly recommends that you convert LONG RAW columns to binary LOB
(BLOB) columns. LOB columns are subject to far fewer restrictions than LONG columns.
See TO_LOB on page 5-208 for more information.

RAW is a variable-length datatype like VARCHAR2, except that Oracle Net (which
connects user sessions to the instance) and the Oracle import and export utilities do
not perform character conversion when transmitting RAW or LONG RAW data. In
contrast, Oracle Net and the Oracle import and export utilities automatically convert
CHAR, VARCHAR?2, and LONG data from the database character set to the user session
character set. If the two character sets are different, you can set the user session
character set with the NLS_ LANGUAGE parameter of the ALTER SESSION statement.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR data, the
binary data is represented in hexadecimal form, with one hexadecimal character
representing every four bits of RAW data. For example, one byte of RAW data with bits
11001011 is displayed and entered as CB.

Large Object (LOB) Datatypes
The built-in LOB datatypes BLOB, CLOB, and NCLOB (stored internally) and BFILE
(stored externally) can store large and unstructured data such as text, image, video,
and spatial data. The size of BLOB, CLOB, and NCLOB data can be up to (2%*-1 bytes) *
(the value of the CHUNK parameter of LOB storage). If the tablespaces in your database
are of standard block size, and if you have used the default value of the CHUNK
parameter of LOB storage when creating a LOB column, then this is equivalent to
(2%2-1 bytes) * (database block size). BFILE data can be up to 21 bytes, although your
operating system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

CLOB, NCLOB, and BLOB values up to approximately 4000 bytes are stored inline if you
enable storage in row at the time the LOB column is created. LOBs greater than 4000
bytes are always stored externally. Refer to ENABLE STORAGE IN ROW on

page 15-39 for more information.

LOB columns contain LOB locators that can refer to internal (in the database) or
external (outside the database) LOB values. Selecting a LOB from a table actually
returns the LOB locator and not the entire LOB value. The DBMS_LOB package and
Oracle Call Interface (OCI) operations on LOBs are performed through these locators.

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:
= LOBs can be attributes of an object type (user-defined datatype).

s The LOB locator is stored in the table column, either with or without the actual
LOB value. BLOB, NCLOB, and CLOB values can be stored in separate tablespaces.
BFILE data is stored in an external file on the server.

= When you access a LOB column, the locator is returned.

= A LOB can be up to (2%*-1 bytes)*(database block size) in size. BFILE data can be
up to 2°%-1 bytes, although your operating system may impose restrictions on this
maximum.

= LOBs permit efficient, random, piece-wise access to and manipulation of data.
= You can define more than one LOB column in a table.

= With the exception of NCLOB, you can define one or more LOB attributes in an
object.

2-24 Oracle Database SQL Language Reference

Datatypes

m You can declare LOB bind variables.
m You can select LOB columns and LOB attributes.

= You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you
can set the internal LOB value to NULL, empty, or replace the entire LOB with data.
You can set the BFILE to NULL or make it point to a different file.

= You can update a LOB row-column intersection or a LOB attribute with another
LOB row-column intersection or LOB attribute.

= You can delete a row containing a LOB column or LOB attribute and thereby also
delete the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an inline LOB column (a LOB column stored in
the database) or a LOB attribute (an attribute of an object type column stored in the
database) simply by issuing an INSERT or UPDATE statement.

Restrictions on LOB Columns LOB columns are subject to a number of rules and
restrictions. See Oracle Database SecureFiles and Large Objects Developer’s Guide for a
complete listing.

See Also:

» Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Programmer’s Guide for more information about these
interfaces and LOBs

s themodify col_properties clause of ALTER TABLE on
page 12-2 and TO_LOB on page 5-208 for more information on
converting LONG columns to LOB columns

BFILE Datatype

The BFILE datatype enables access to binary file LOBs that are stored in file systems
outside Oracle Database. A BFILE column or attribute stores a BEILE locator, which
serves as a pointer to a binary file on the server file system. The locator maintains the
directory name and the filename.

You can change the filename and path of a BFILE without affecting the base table by
using the BFILENAME function. Refer to BEILENAME on page 5-22 for more
information on this built-in SQL function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFILE data can be
up to 2%4-1 bytes, although your operating system may impose restrictions on this
maximum.

The database administrator must ensure that the external file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE datatype enables read-only support of large binary files. You cannot
modify or replicate such a file. Oracle provides APIs to access file data. The primary
interfaces that you use to access file data are the DBMS_LOB package and Oracle Call
Interface (OCI).

See Also: Oracle Database SecureFiles and Large Objects Developer’s

Guide and Oracle Call Interface Programmer’s Guide for more
information about LOBs and CREATE DIRECTORY on page 14-43

Basic Elements of Oracle SQL 2-25

Datatypes

BLOB Datatype

The BLOB datatype stores unstructured binary large objects. BLOB objects can be
thought of as bitstreams with no character set semantics. BLOB objects can store binary
data up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage). If the
tablespaces in your database are of standard block size, and if you have used the
default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

BLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or Oracle Call Interface (OCI) participate fully in the transaction. BLOB
value manipulations can be committed and rolled back. However, you cannot save a
BLOB locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

CLOB Datatype

The CLOB datatype stores single-byte and multibyte character data. Both fixed-width
and variable-width character sets are supported, and both use the database character
set. CLOB objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of
LOB storage) of character data. If the tablespaces in your database are of standard
block size, and if you have used the default value of the CHUNK parameter of LOB
storage when creating a LOB column, then this is equivalent to (4 gigabytes - 1) *
(database block size).

CLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or Oracle Call Interface (OCI) participate fully in the transaction. CLOB
value manipulations can be committed and rolled back. However, you cannot save a
CLOB locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

NCLOB Datatype

The NCLOB datatype stores Unicode data. Both fixed-width and variable-width
character sets are supported, and both use the national character set. NCLOB objects
can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of
character text data. If the tablespaces in your database are of standard block size, and if
you have used the default value of the CHUNK parameter of LOB storage when creating
a LOB column, then this is equivalent to (4 gigabytes - 1) * (database block size).

NCLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or OCI participate fully in the transaction. NCLOB value manipulations
can be committed and rolled back. However, you cannot save an NCLOB locator in a
PL/SQL or OCI variable in one transaction and then use it in another transaction or
session.

See Also: Oracle Database Globalization Support Guide for information
on Unicode datatype support

Rowid Datatypes

Each row in the database has an address. The sections that follow describe the two
forms of row address in an Oracle Database.

ROWID Datatype

The rows in heap-organized tables that are native to Oracle Database have row
addresses called rowids. You can examine a rowid row address by querying the
pseudocolumn ROWID. Values of this pseudocolumn are strings representing the

2-26 Oracle Database SQL Language Reference

Datatypes

address of each row. These strings have the datatype ROWID. You can also create tables
and clusters that contain actual columns having the ROWID datatype. Oracle Database
does not guarantee that the values of such columns are valid rowids. Refer to

Chapter 3, "Pseudocolumns" for more information on the ROWID pseudocolumn.

Note: Beginning with Oracle8, Oracle SQL incorporated an extended
format for rowids to efficiently support partitioned tables and indexes
and tablespace-relative data block addresses without ambiguity. If you
are running Version 7 of the database and you intend to upgrade, use
the DBMS_ROWID package to migrate rowids in your data to the
extended format. Refer to Oracle Database PL/SQL Packages and Types
Reference for information on DBMS_ROWID and to Oracle Database
Upgrade Guide for information on upgrading from Oracle?.

Rowids contain the following information:

= The data block of the datafile containing the row. The length of this string
depends on your operating system.

s The row in the data block.

= The database file containing the row. The first datafile has the number 1. The
length of this string depends on your operating system.

= The data object number, which is an identification number assigned to every
database segment. You can retrieve the data object number from the data
dictionary views USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. Objects
that share the same segment (clustered tables in the same cluster, for example)
have the same object number.

Rowids are stored as base 64 values that can contain the characters A-Z, a-z, 0-9, and
the plus sign (+) and forward slash (/). Rowids are not available directly. You can use
the supplied package DBMS_ROWID to interpret rowid contents. The package functions
extract and provide information on the four rowid elements listed above.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information on the functions available with the DBMS_ROWID package
and how to use them

UROWID Datatype

The rows of some tables have addresses that are not physical or permanent or were not
generated by Oracle Database. For example, the row addresses of index-organized
tables are stored in index leaves, which can move. Rowids of foreign tables (such as
DB2 tables accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID pseudocolumn
of an index-organized table has a datatype of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table
(using a SELECT ... ROWID statement). If you want to store the rowids of an
index-organized table, then you can define a column of type UROWID for the table and
retrieve the value of the ROWID pseudocolumn into that column.

Basic Elements of Oracle SQL 2-27

Datatypes

Note: Heap-organized tables have physical rowids. Oracle does not
recommend that you specify a column of datatype UROWID for a
heap-organized table.

See Also: Oracle Database Concepts for more information on universal
rowids

ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name that differs from the Oracle Database datatype name. It converts
the datatype to the equivalent Oracle datatype, records the Oracle datatype as the
name of the column datatype, and stores the column data in the Oracle datatype based
on the conversions shown in the tables that follow.

Table 2-6 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
CHARACTER (n) CHAR (n)

CHAR (n)

CHARACTER VARYING (n) VARCHAR? (n)

CHAR VARYING (n)

NATIONAL CHARACTER (n) NCHAR (n)
NATIONAL CHAR (n)
NCHAR (n)

NATIONAL CHARACTER VARYING (n) NVARCHAR2 (n)

NATIONAL CHAR VARYING(n)

NCHAR VARYING (n)

NUMERICI (p,s)] NUMBER (p, s)

DECIMALI (p,s)] (Notea)

INTEGER NUMBER (38)

INT

SMALLINT

FLOAT (Note b) FLOAT (126)

DOUBLE PRECISION (Note c) FLOAT (126)

REAL (Note d) FLOAT (63)

Notes:
a.

The NUMERIC and DECIMAL datatypes can specify only fixed-point numbers.
For those datatypes, the scale (s) defaults to 0.

The FLOAT datatype is a floating-point number with a binary precision b. The
default precision for this datatype is 126 binary, or 38 decimal.

The DOUBLE PRECISION datatype is a floating-point number with binary
precision 126.

The REAL datatype is a floating-point number with a binary precision of 63, or
18 decimal.

2-28 Oracle Database SQL Language Reference

Datatypes

Do not define columns with the following SQL/DS and DB2 datatypes, because they
have no corresponding Oracle datatype:

= GRAPHIC

s LONG VARGRAPHIC
s VARGRAPHIC

s TIME

Note that data of type TIME can also be expressed as Oracle datetime data.

See Also: Datatypes in Oracle Database SQL Language Reference

Table 2-7 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype
CHARACTER (n) CHAR (n)
VARCHAR (n) VARCHAR (n)
LONG VARCHAR LONG
DECIMAL (p, s) (a) NUMBER (p, s)
INTEGER NUMBER (38)
SMALLINT

FLOAT (b) NUMBER

Notes:

a. The DECIMAL datatype can specify only fixed-point numbers. For this
datatype, s defaults to 0.

b. The FLOAT datatype is a floating-point number with a binary precision b. The
default precision for this datatype is 126 binary or 38 decimal.

User-Defined Types

User-defined datatypes use Oracle built-in datatypes and other user-defined datatypes
as the building blocks of object types that model the structure and behavior of data in
applications. The sections that follow describe the various categories of user-defined

types.
See Also:
» Oracle Database Concepts for information about Oracle built-in
datatypes
s CREATE TYPE on page 17-3 and the CREATE TYPE BODY on
page 17-20 for information about creating user-defined types
» Oracle Database Advanced Application Developer’s Guide for
information about using user-defined types
Object Types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

= A name, which identifies the object type uniquely within that schema.

Basic Elements of Oracle SQL 2-29

Datatypes

= Attributes, which are built-in types or other user-defined types. Attributes model
the structure of the real-world entity.

s Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C or Java and stored externally. Methods
implement operations the application can perform on the real-world entity.

REF Datatypes

An object identifier (represented by the keyword 0ID) uniquely identifies an object
and enables you to reference the object from other objects or from relational tables. A
datatype category called REF represents such references. A REF datatype is a container
for an object identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling". A
dangling REF is different from a null REF. To determine whether a REF is dangling or
not, use the condition IS [NOT] DANGLING. For example, given object view oc_
orders in the sample schema oe, the column customer_ref is of type REF to type
customer_typ, which has an attribute cust_email:

SELECT o.customer_ref.cust_email
FROM oc_orders o
WHERE o.customer_ref IS NOT DANGLING;

Varrays

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
position of the element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of
variable size, which is why they are called varrays. You must specify a maximum size
when you declare the varray.

When you declare a varray, it does not allocate space. It defines a type, which you can
use as:

» The datatype of a column of a relational table
= An object type attribute
= A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (as part of the row data) or out of
line (in a LOB), depending on its size. However, if you specify separate storage
characteristics for a varray, then Oracle stores it out of line, regardless of its size. Refer
to the varray_col_properties of CREATE TABLE on page 15-43 for more information
about varray storage.

Nested Tables

A nested table type models an unordered set of elements. The elements may be
built-in types or user-defined types. You can view a nested table as a single-column
table or, if the nested table is an object type, as a multicolumn table, with a column for
each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can use
to declare:

» The datatype of a column of a relational table

= An object type attribute

2-30 Oracle Database SQL Language Reference

Datatypes

= A PL/SQL variable, parameter, or function return type

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the nested
table data in a single table, which it associates with the enclosing relational or object
table.

Oracle-Supplied Types

Any Types

Oracle provides SQL-based interfaces for defining new types when the built-in or
ANSI-supported types are not sufficient. The behavior for these types can be
implemented in C/C++, Java, or PL/ SQL. Oracle Database automatically provides the
low-level infrastructure services needed for input-output, heterogeneous client-side
access for new datatypes, and optimizations for data transfers between the application
and the database.

These interfaces can be used to build user-defined (or object) types and are also used
by Oracle to create some commonly useful datatypes. Several such datatypes are
supplied with the server, and they serve both broad horizontal application areas (for
example, the Any types) and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

= Any Types

= XML Types

= Spatial Types

= Media Types

The Any types provide highly flexible modeling of procedure parameters and table
columns where the actual type is not known. These datatypes let you dynamically
encapsulate and access type descriptions, data instances, and sets of data instances of
any other SQL type. These types have OCI and PL/SQL interfaces for construction
and access.

ANYTYPE
This type can contain a type description of any named SQL type or unnamed transient
type.

ANYDATA

This type contains an instance of a given type, with data, plus a description of the
type. ANYDATA can be used as a table column datatype and lets you store
heterogeneous values in a single column. The values can be of SQL built-in types as
well as user-defined types.

ANYDATASET

This type contains a description of a given type plus a set of data instances of that
type. ANYDATASET can be used as a procedure parameter datatype where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

Basic Elements of Oracle SQL 2-31

Datatypes

XML Types

See Also: Oracle Database PL/SQL Packages and Types Reference for
information on the ANYTYPE, ANYDATA, and ANYDATASET types

Extensible Markup Language (XML) is a standard format developed by the World
Wide Web Consortium (W3C) for representing structured and unstructured data on
the World Wide Web. Universal resource identifiers (URIs) identify resources such as
Web pages anywhere on the Web. Oracle provides types to handle XML and URI data,
as well as a class of URIs called DBURIRef types to access data stored within the
database itself. It also provides a set of types to store and access both external and
internal URIs from within the database.

XMLType

This Oracle-supplied type can be used to store and query XML data in the database.
XMLType has member functions you can use to access, extract, and query the XML
data using XPath expressions. XPath is another standard developed by the W3C
committee to traverse XML documents. Oracle XMLType functions support many W3C
XPath expressions. Oracle also provides a set of SQL functions and PL/SQL packages
to create XML Type values from existing relational or object-relational data.

XMLType is a system-defined type, so you can use it as an argument of a function or as
the datatype of a table or view column. You can also create tables and views of
XMLType. When you create an XMLType column in a table, you can choose to store the
XML data in a CLOB column, as binary XML (stored internally as a CLOB), or object
relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create a
table or column conforming to the registered schema. In this case Oracle stores the
XML data in underlying object-relational columns by default, but you can specify
storage in a CLOB or binary XML column even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage
mechanism.

See Also: Oracle XML DB Developer’s Guide for information about
using XMLType columns

URI Datatypes

Oracle supplies a family of URI types—URIType, DBURIType, XDBURIType, and
HTTPURIType—which are related by an inheritance hierarchy. URIType is an object
type and the others are subtypes of URIType. Since URIType is the supertype, you
can create columns of this type and store DBURIType or HTTPURIType type instances
in this column.

HTTPURIType You can use HTTPURIType to store URLs to external Web pages or to
files. Oracle accesses these files using HTTP (Hypertext Transfer Protocol).

XDBURIType You can use XDBURIType to expose documents in the XML database
hierarchy as URIs that can be embedded in any URIType column in a table. The
XDBURIType consists of a URL, which comprises the hierarchical name of the XML
document to which it refers and an optional fragment representing the XPath syntax.
The fragment is separated from the URL part by a pound sign (#). The following lines
are examples of XDBURIType:

/home/oe/docl.xml
/home/oe/docl.xml#/orders/order_item

2-32 Oracle Database SQL Language Reference

Datatypes

Spatial Types

DBURIType DBURIType can be used to store DBURIRef values, which reference data
inside the database. Storing DBURIRef values lets you reference data stored inside or
outside the database and access the data consistently.

DBURIRef values use an XPath-like representation to reference data inside the
database. If you imagine the database as an XML tree, then you would see the tables,
rows, and columns as elements in the XML document. For example, the sample
human resources user hr would see the following XML tree:

<HR>
<EMPLOYEES>
<ROW>
<EMPLOYEE_ID>205</EMPLOYEE_ID>
<LAST NAME>Higgins</LAST NAME>
<SALARY>12000</SALARY>

. <!-- other columns -->
</ROW>
. <!-- other rows -->
</EMPLOYEES>
<!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIRef is an XPath expression over this virtual XML document. So to reference
the SALARY value in the EMPLOYEES table for the employee with employee number
205, you can write a DBURIRef as,

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns
and expose them as URLs to the external world.

URIFactory Package

Oracle also provides the URIFactory package, which can create and return instances
of the various subtypes of the URITypes. The package analyzes the URL string,
identifies the type of URL (HTTP, DBURI, and so on), and creates an instance of the
subtype. To create a DBURI instance, the URL must start with the prefix /oradb. For
example, URIFactory.getURI (' /oradb/HR/EMPLOYEES') would create a
DBURIType instance and URIFactory.getUri (' /sys/schema') would create an
XDBURIType instance.

See Also:

» Oracle Database Object-Relational Developer’s Guide for general
information on object types and type inheritance

» Oracle XML DB Developer’s Guide for more information about
these supplied types and their implementation

» Oracle Streams Advanced Queuing User’s Guide for information
about using XMLType with Oracle Advanced Queuing

Oracle Spatial is designed to make spatial data management easier and more natural
to users of location-enabled applications, geographic information system (GIS)
applications, and geoimaging applications. After the spatial data is stored in an Oracle
database, you can easily manipulate, retrieve, and relate it to all the other data stored

Basic Elements of Oracle SQL 2-33

Datatypes

in the database. The following datatypes are available only if you have installed Oracle
Spatial.

SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEOMETRY in a user-defined table. Any table that has a
column of type SDO_GEOMETRY must have another column, or set of columns, that
defines a unique primary key for that table. Tables of this sort are sometimes called
geometry tables.

The SDO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_GEOMETRY AS OBJECT (

sgo_gtype NUMBER,
sdo_srid NUMBER,
sdo_point SDO_POINT_TYPE,

sdo_elem_info SDO_ELEM_INFO_ARRAY,
sdo_ordinates SDO_ORDINATE_ARRAY)

SDO_TOPO_GEOMETRY

This type describes a topology geometry, which is stored in a single row, in a single
column of object type SDO_TOPO_GEOMETRY in a user-defined table.

The SDO_TOPO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_TOPO_GEOMETRY AS OBJECT (

tg_type NUMBER,
tg_id NUMBER,
tg_layer_id NUMBER,
topology_id NUMBER)

SDO_GEORASTER

In the GeoRaster object-relational model, a raster grid or image object is stored in a
single row, in a single column of object type SDO_GEORASTER in a user-defined table.
Tables of this sort are called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT (
rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHAR2 (32),
rasterID NUMBER,
metadata XMLType)

See Also: Oracle Spatial Developer's Guide, Oracle Spatial Topology and
Network Data Models Developer’s Guide, and Oracle Spatial GeoRaster
Developer’s Guide for information on the full implementation of the
spatial datatypes and guidelines for using them

Media Types

Oracle Multimedia uses object types, similar to Java or C++ classes, to describe
multimedia data. An instance of these object types consists of attributes, including
metadata and the media data, and methods. The Multimedia datatypes are created in

2-34 Oracle Database SQL Language Reference

Datatypes

the ORDSYS schema. Public synonyms exist for all the datatypes, so you can access
them without specifying the schema name.

See Also: Oracle Multimedia Reference for information on the
implementation of these types and guidelines for using them

ORDAudio

The ORDAudio object type supports the storage and management of audio data.

ORDImage
The ORDImage object type supports the storage and management of image data.

ORDVideo
The ORDVideo object type supports the storage and management of video data.

ORDDoc

The ORDDoc object type supports storage and management of any type of media data,
including audio, image and video data. Use this type when you want all media to be
stored in a single column.

ORDDicom

The ORDDicom object type supports the storage and management of Digital Imaging
and Communications in Medicine (DICOM), the format universally recognized as the
standard for medical imaging.

The following datatypes provide compliance with the ISO-IEC 13249-5 Still Image
standard, commonly referred to as SQL/MM Stilllmage.

SI_Stilllmage

The ST_StillImage object type represents digital images with inherent image
characteristics such as height, width, and format.

SI_Color

The SI_Color object type encapsulates color values.

SI_AverageColor

The SI_AverageColor object type represents a feature that characterizes an image
by its average color.

SI_ColorHistogram

The SI_ColorHistogram object type represents a feature that characterizes an image
by the relative frequencies of the colors exhibited by samples of the raw image.

Sl_PositionalColor

Given an image divided into n by m rectangles, the SI_PositionalColor object
type represents the feature that characterizes an image by the n by m most significant
colors of the rectangles.

Basic Elements of Oracle SQL 2-35

Datatype Comparison Rules

SI_Texture

The SI_Texture object type represents a feature that characterizes an image by the
size of repeating items (coarseness), brightness variations (contrast), and predominant
direction (directionality).

S|_FeatureList

The SI_FeatureList object type is a list containing up to four of the image features
represented by the preceding object types (SI_AverageColor, SI_
ColorHistogram, SI_PositionalColor, and SI_Texture), where each feature is
associated with a feature weight.

ORDImageSignature

The ORDImageSignature object type has been deprecated and should no longer
been introduced into your code. Existing occurrences of this object type will continue
to function as in the past.

Expression Filter Type

The Oracle Expression Filter allows application developers to manage and evaluate
conditional expressions that describe users' interests in data. The Expression Filter
includes the following datatype:

Expression

Expression Filter uses a virtual datatype called Expression to manage and evaluate
conditional expressions as data in database tables. The Expression Filter creates a
column of Expression datatype from a VARCHAR2 column by assigning an attribute
set to the column. This assignment enables a data constraint that ensures the validity
of expressions stored in the column.

You can define conditions using the EVALUATE operator on an Expression datatype
to evaluate the expressions stored in a column for some data. If you are using
Enterprise Edition, then you can also define an Expression Filter index on a column of
Expression datatype to process queries using the EVALUATE operator.

See Also: Oracle Database Rules Manager and Expression Filter
Developer’s Guide for more information on the Expression Filter

Datatype Comparison Rules

This section describes how Oracle Database compares values of each datatype.

Numeric Values

2-36

A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value
and is equal to itself.

See Also: "Numeric Precedence" on page 2-14 and "Floating-Point
Numbers" on page 2-12 for more information on comparison
semantics

Oracle Database SQL Language Reference

Datatype Comparison Rules

Date Values

A later date is considered greater than an earlier one. For example, the date equivalent
of "29-MAR-2005' is less than that of '05-JAN-2006' and '05-JAN-2006 1:35pm' is greater
than '05-JAN-2005 10:09am'.

Character Values

Character values are compared on the basis of two measures:
= Binary or linguistic sorting
= Blank-padded or nonpadded comparison semantics

The following subsections describe the two measures.

Binary and Linguistic Comparisons

In binary comparison, which is the default, Oracle compares character strings
according to the concatenated value of the numeric codes of the characters in the
database character set. One character is greater than another if it has a greater numeric
value than the other in the character set. Oracle considers blanks to be less than any
character, which is true in most character sets.

These are some common character sets:

s 7-bit ASCII (American Standard Code for Information Interchange)
= EBCDIC Code (Extended Binary Coded Decimal Interchange Code)
= ISO 8859/1 (International Standards Organization)

s JEUC Japan Extended UNIX

Linguistic comparison is useful if the binary sequence of numeric codes does not
match the linguistic sequence of the characters you are comparing. Linguistic
comparison is used if the NLS_SORT parameter has a setting other than BINARY and
the NL.S_COMP parameter is set to LINGUISTIC. In linguistic sorting, all SQL sorting
and comparison are based on the linguistic rule specified by NLS_SORT.

See Also: Oracle Database Globalization Support Guide for more
information about linguistic sorting

Blank-Padded and Nonpadded Comparison Semantics

With blank-padded semantics, if the two values have different lengths, then Oracle
first adds blanks to the end of the shorter one so their lengths are equal. Oracle then
compares the values character by character up to the first character that differs. The
value with the greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered equal. This rule
means that two values are equal if they differ only in the number of trailing blanks.
Oracle uses blank-padded comparison semantics only when both values in the
comparison are either expressions of datatype CHAR, NCHAR, text literals, or values
returned by the USER function.

With nonpadded semantics, Oracle compares two values character by character up to
the first character that differs. The value with the greater character in that position is
considered greater. If two values of different length are identical up to the end of the
shorter one, then the longer value is considered greater. If two values of equal length
have no differing characters, then the values are considered equal. Oracle uses
nonpadded comparison semantics whenever one or both values in the comparison
have the datatype VARCHAR2 or NVARCHAR2.

Basic Elements of Oracle SQL 2-37

Datatype Comparison Rules

The results of comparing two character values using different comparison semantics
may vary. The table that follows shows the results of comparing five pairs of character
values using each comparison semantic. Usually, the results of blank-padded and
nonpadded comparisons are the same. The last comparison in the table illustrates the
differences between the blank-padded and nonpadded comparison semantics.

Blank-Padded Nonpadded
'ac' > 'ab' 'ac' > 'ab'
'ab' > 'a ! 'ab' > 'a !
'ab' > 'a' 'ab' > 'a'
'ab' = 'ab’ 'ab' = 'ab’
'a '=ral 'a '> ral

Portions of the ASCII and EBCDIC character sets appear in Table 2-8 and Table 2-9.
Uppercase and lowercase letters are not equivalent. The numeric values for the
characters of a character set may not match the linguistic sequence for a particular
language.

Table 2-8 ASCII Character Set

Symbol Decimal value Symbol Decimal value

blank 32 ; 59

! 33 < 60

" 34 = 61

35 > 62

$ 36 ? 63

% 37 e 64

& 38 A-7Z 65-90

' 39 [91

(40 \ 92

) 41] 93

* 42 ~ 94

+ 43 _ 95

, 44 ' 96

- 45 a-z 97-122
46 { 123

/ 47 | 124

0-9 48-57 } 125
58 ~ 126

Table 2-9 EBCDIC Character Set

Symbol Decimal value Symbol Decimal value

blank 64

o

108

2-38 Oracle Database SQL Language Reference

Datatype Comparison Rules

Table 2-9 (Cont.) EBCDIC Character Set

Symbol Decimal value Symbol Decimal value

¢ 74 _ 109

75 > 110
< 76 ? 111
(77 : 122
+ 78 # 123
| 79 e 124
& 80 ! 125
! 90 = 126
$ 91 " 127
* 92 a-1i 129-137
) 93 j-r 145-153
; 94 s-z 162-169
A% 95 A-T 193-201
- 96 J-R 209-217
/ 97 S-Z 226-233

Object Values

Object values are compared using one of two comparison functions: MAP and ORDER.
Both functions compare object type instances, but they are quite different from one
another. These functions must be specified as part of any object type that will be
compared with other object types.

See Also: CREATE TYPE on page 17-3 for a description of MAP and
ORDER methods and the values they return

Varrays and Nested Tables

Comparison of nested tables is described in "Comparison Conditions" on page 7-4.

Datatype Precedence

Oracle uses datatype precedence to determine implicit datatype conversion, which is
discussed in the section that follows. Oracle datatypes take the following precedence:

= Datetime and interval datatypes
= BINARY_DOUBLE

s BINARY_FLOAT

= NUMBER

» Character datatypes

= All other built-in datatypes

Basic Elements of Oracle SQL 2-39

Datatype Comparison Rules

Data Conversion

Generally an expression cannot contain values of different datatypes. For example, an
expression cannot multiply 5 by 10 and then add TAMES'. However, Oracle supports
both implicit and explicit conversion of values from one datatype to another.

Implicit and Explicit Data Conversion

Oracle recommends that you specify explicit conversions, rather than rely on implicit
or automatic conversions, for these reasons:

= SQL statements are easier to understand when you use explicit datatype
conversion functions.

= Implicit datatype conversion can have a negative impact on performance,
especially if the datatype of a column value is converted to that of a constant
rather than the other way around.

= Implicit conversion depends on the context in which it occurs and may not work
the same way in every case. For example, implicit conversion from a datetime
value to a VARCHAR2 value may return an unexpected year depending on the
value of the NLS_DATE_FORMAT parameter.

= Algorithms for implicit conversion are subject to change across software releases
and among Oracle products. Behavior of explicit conversions is more predictable.

Implicit Data Conversion

Oracle Database automatically converts a value from one datatype to another when
such a conversion makes sense. Implicit conversion to character datatypes follows
these rules:

Table 2-10 is a matrix of Oracle implicit conversions. The table shows all possible
conversions, without regard to the direction of the conversion or the context in which
it is made. The rules governing these details follow the table.

Table 2-10 Implicit Type Conversion Matrix

4
b)
o [e) 2
o (1 | (@]
= < 22 « 5 9
I oz 3 =S b oz oz o m
i 3] < 0 w w T o [©] = m m o
< T w = g g z a
T E [3) g £ & E = = = o <;t g 9 S [3)
[3) > P4 F4 o o = F4 o o = o 0 [3) [} P4
CHAR - X X X X X X X X X X - X X X
VARCHAR2 X - X X X X X X X X X - X
NCHAR X X - X X X X X X X X - X
NVARCHAR2 X X X - X X X X X X X X X - X
DATE X X X X - - - - - - - - - - -
DATETIME/ X X X X - - - - - X - - - - -
INTERVAL
NUMBER X X X X - - - X X - - - - - -
BINARY_ X X X X - - X - X - - . - — -
FLOAT
BINARY_ X X X X - - X X - - - - - - -
DOUBLE
LONG X X X X - X1 - - - - X - X - X

2-40 Oracle Database SQL Language Reference

Datatype Comparison Rules

Table 2-10 (Cont.) Implicit Type Conversion Matrix

4
b m
[\ o 2
g < i z 8
< g = < i o !
o« 5 E g o o < < 0] a m m 3
< T < P pw = < L =z = = o o |
T < [3) > g 5 & = = = o < o par| pr| [3)
[3) S 4 F4 o o Z P4 o [} ar] o i o [} P4
RAW X X X X - - - - - X - - - X -
ROWID - X X X - - - - - - - - - - -
cLoB X X X X - - - - - X - - - - X
BLOB - - - - - - - - - - X - - - -
NCLOB X X X X - - - - - X - - X - -

Note 1: You cannot convert LONG to INTERVAL directly, but you can convert LONG to VARCHAR2 using TO_CHAR(interval),
and then convert the resulting VARCHAR?2 value to INTERVAL.

The following rules govern the direction in which Oracle Database makes implicit
datatype conversions:

s During INSERT and UPDATE operations, Oracle converts the value to the datatype
of the affected column.

s During SELECT FROM operations, Oracle converts the data from the column to the
type of the target variable.

= When manipulating numeric values, Oracle usually adjusts precision and scale to
allow for maximum capacity. In such cases, the numeric datatype resulting from
such operations can differ from the numeric datatype found in the underlying
tables.

s When comparing a character value with a numeric value, Oracle converts the
character data to a numeric value.

s Conversions between character values or NUMBER values and floating-point
number values can be inexact, because the character types and NUMBER use
decimal precision to represent the numeric value, and the floating-point numbers
use binary precision.

= When converting a CLOB value into a character datatype such as VARCHAR2, or
converting BLOB to RAW data, if the data to be converted is larger than the target
datatype, then the database returns an error.

s Conversions from BINARY_ FLOAT to BINARY DOUBLE are exact.

s Conversions from BINARY_ DOUBLE to BINARY_FLOAT are inexact if the BINARY
DOUBLE value uses more bits of precision that supported by the BINARY_FLOAT.

s When comparing a character value with a DATE value, Oracle converts the
character data to DATE.

= When you use a SQL function or operator with an argument of a datatype other
than the one it accepts, Oracle converts the argument to the accepted datatype.

= When making assignments, Oracle converts the value on the right side of the
equal sign (=) to the datatype of the target of the assignment on the left side.

s During concatenation operations, Oracle converts from noncharacter datatypes to
CHAR or NCHAR.

s During arithmetic operations on and comparisons between character and
noncharacter datatypes, Oracle converts from any character datatype to a numeric,

Basic Elements of Oracle SQL 2-41

Datatype Comparison Rules

date, or rowid, as appropriate. In arithmetic operations between CHAR/VARCHAR2
and NCHAR/NVARCHAR?2, Oracle converts to a NUMBER.

s Comparisons between CHAR and VARCHAR2 and between NCHAR and NVARCHAR?2
types may entail different character sets. The default direction of conversion in
such cases is from the database character set to the national character set.

Table 2-11 shows the direction of implicit conversions between different character

types.

= Most SQL character functions are enabled to accept CLOBs as parameters, and
Oracle performs implicit conversions between CLOB and character types.
Therefore, functions that are not yet enabled for CLOBs can accept CLOBs through
implicit conversion. In such cases, Oracle converts the CLOBs to CHAR or
VARCHAR2 before the function is invoked. If the CLOB is larger than 4000 bytes,
then Oracle converts only the first 4000 bytes to CHAR.

Table 2-11 Conversion Direction of Different Character Types

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
from CHAR - VARCHAR2 NCHAR NVARCHAR2
from VARCHAR2 VARCHAR2 - NVARCHAR2 NVARCHAR2
from NCHAR NCHAR NCHAR -- NVARCHAR2
from NVARCHAR2 NVARCHAR2 NVARCHAR2 NVARCHAR2 -

User-defined types such as collections cannot be implicitly converted, but must be
explicitly converted using CAST ... MULTISET

Implicit Data Conversion Examples

Text Literal Example The text literal '10" has datatype CHAR. Oracle implicitly
converts it to the NUMBER datatype if it appears in a numeric expression as in the
following statement:

SELECT salary + '10'
FROM employees;

Character and Number Values Example When a condition compares a character
value and a NUMBER value, Oracle implicitly converts the character value to a NUMBER
value, rather than converting the NUMBER value to a character value. In the following
statement, Oracle implicitly converts 200" to 200:

SELECT last_name

FROM employees
WHERE employee_id = '200';

Date Example In the following statement, Oracle implicitly converts '03-MAR-97' to
a DATE value using the default date format 'DD-MON-YY":

SELECT last_name
FROM employees
WHERE hire_date = '03-MAR-97';

Explicit Data Conversion

You can explicitly specify datatype conversions using SQL conversion functions.
Table 2-12 shows SQL functions that explicitly convert a value from one datatype to
another.

2-42 Oracle Database SQL Language Reference

Datatype Comparison Rules

You cannot specify LONG and LONG RAW values in cases in which Oracle can perform
implicit datatype conversion. For example, LONG and LONG RAW values cannot appear
in expressions with functions or operators. Refer to "LONG Datatype" on page 2-14 for
information on the limitations on LONG and LONG RAW datatypes.

Table 2-12 Explicit Type Conversions
4
- =
o < o
o o 2
a pur| o
" N - %) [T (a]
o o o [} = =z | |
. < w £ a - - > >
xr < ~ I m = = O [11] oc <
< IO s S = s z o g g
T O < =) T 2 < © o0 ¢ o o = =
o 5 <>t =z Qg o c a2 o 9 m m
222 o o E ° 229 eoq@ 2 °
from CHAR, TO_CHAR TO_ TO_DATE HEXTORAW CHARTO= -- TO_CLOB TO_ TO_
VARCHAR2, (char.) NUMBER TO_ TTMESTAMP TO_ NCLOB BINARY_ BINARY_
NCHAR, TO NCHAR FLOAT DOUBLE
NVARCHAR2 (char.) TO_
: TIMESTAMP_TZ
TO_
YMINTERVAL
TO_
DSINTERVAL
from NUMBER TO_CHAR -— TO_DATE -- -— TO_ TO_
o b
TO_NCHAR INTERVAL
(number) NUMTODS -
INTERVAL
from Datetime/ TO_CHAR -- -— -- -- -- --
Interval (date)
TO_NCHAR
(datetime)
from RAW RAWTOHEX -- -- -- TO_BLOB -- --
RAWTONHEX
from ROWID ROWIDTOCHAR -- - -- -- -- --
from LONG / -- -- -— -- TO_LOB -- --
LONG RAW
from CLOB, TO_CHAR - - - TO_CLOB -- -
NCLOB, BLOB TO_NCHAR TO_NCLOB
from CLOB, TO_CHAR - - - TO_CLOB -- -
NCLOB, BLOB TO_NCHAR TO_NCLOB
from BINARY_ TO_CHAR TO_ -— -— -— TO_ TO_
FLOAT (char.) NUMBER BINARY_ BINARY_
TO_NCHAR FLOAT DOUBLE
(char.)
from BINARY_ TO_CHAR TO_ -— -- -- TO_ TO_
DOUBLE (char.) NUMBER BINARY_ BINARY_
TO_NCHAR FLOAT DOUBLE
(char.)
See Also: "Conversion Functions" on page 5-5 for details on all of

the explicit conversion functions

Basic Elements of Oracle SQL 2-43

Literals

Literals

Text Literals

The terms literal and constant value are synonymous and refer to a fixed data value.
For example, TACK', 'BLUE ISLAND', and 101" are all character literals; 5001 is a
numeric literal. Character literals are enclosed in single quotation marks so that Oracle
can distinguish them from schema object names.

This section contains these topics:
= Text Literals

= Numeric Literals

» Datetime Literals

= Interval Literals

Many SQL statements and functions require you to specify character and numeric
literal values. You can also specify literals as part of expressions and conditions. You
can specify character literals with the 'text' notation, national character literals with
the N' text ' notation, and numeric literals with the integer, or number notation,
depending on the context of the literal. The syntactic forms of these notations appear
in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account any
optional precisions included in the datatypes. Examples of specifying datetime and
interval datatypes as literals are provided in the relevant sections of "Datatypes" on
page 2-1.

Use the text literal notation to specify values whenever 'string' appears in the
syntax of expressions, conditions, SQL functions, and SQL statements in other parts of
this reference. This reference uses the terms text literal, character literal, and string
interchangeably. Text, character, and string literals are always surrounded by single
quotation marks. If the syntax uses the term char, then you can specify either a text
literal or another expression that resolves to character data — for example, the last_
name column of the hr . employees table. When char appears in the syntax, the
single quotation marks are not used.

The syntax of text literals or strings follows:

quote_delimiter

where N or n specifies the literal using the national character set (NCHAR or
NVARCHAR2 data). By default, text entered using this notation is translated into the
national character set by way of the database character set when used by the server. To
avoid potential loss of data during the text literal conversion to the database character
set, set the environment variable ORA_NCHAR_LITERAL_REPLACE to TRUE. Doing so
transparently replaces the n' internally and preserves the text literal for SQL
processing.

2-44 Oracle Database SQL Language Reference

Literals

See Also: Oracle Database Globalization Support Guide for more
information about N-quoted literals

In the top branch of the syntax:

= c isany member of the user's character set. A single quotation mark (') within the
literal must be preceded by an escape character. To represent one single quotation
mark within a literal, enter two single quotation marks.

= ''are two single quotation marks that begin and end text literals.
In the bottom branch of the syntax:

= Qor gindicates that the alternative quoting mechanism will be used. This
mechanism allows a wide range of delimiters for the text string.

» The outermost ' ' are two single quotation marks that precede and follow,
respectively, the opening and closing quote_delimiter.

= cis any member of the user's character set. You can include quotation marks (") in
the text literal made up of ¢ characters. You can also include the quote_
delimiter, as long as it is not immediately followed by a single quotation mark.

s quote_delimiter is any single- or multibyte character except space, tab, and
return. The quote_delimiter can be a single quotation mark. However, if the
quote_delimiter appears in the text literal itself, ensure that it is not
immediately followed by a single quotation mark.

If the opening quote_delimiterisoneof [, {, <, or (, then the closing quote_
delimiter must be the corresponding 1, }, >, or). In all other cases, the opening
and closing quote_delimiter must be the same character.

Text literals have properties of both the CHAR and VARCHAR2 datatypes:

= Within expressions and conditions, Oracle treats text literals as though they have
the datatype CHAR by comparing them using blank-padded comparison semantics.

= A text literal can have a maximum length of 4000 bytes.
Here are some valid text literals:

'Hello'

'ORACLE.dbs'
'Jackie''s raincoat'
'09-MAR-98"

N'nchar literal'

Here are some valid text literals using the alternative quoting mechanism:

q'!'name LIKE '%DBMS_%%'!'

q'<'So,"' she said, 'It's finished.'>'

q'{SELECT * FROM employees WHERE last_name = 'Smith';}"’
ng'i Y1234 i’

q'"name like '['"'

See Also: "Blank-Padded and Nonpadded Comparison Semantics"
on page 2-37

Numeric Literals

Use numeric literal notation to specify fixed and floating-point numbers.

Basic Elements of Oracle SQL 2-45

Literals

Integer Literals

You must use the integer notation to specify an integer whenever integer appears in
expressions, conditions, SQL functions, and SQL statements described in other parts of
this reference.

The syntax of integer follows:

integer::=

where digitisoneof0,1,2,3,4,5,6,7,8,9.
An integer can store a maximum of 38 digits of precision.
Here are some valid integers:

7
+255

NUMBER and Floating-Point Literals

You must use the number or floating-point notation to specify values whenever
number or n appears in expressions, conditions, SQL functions, and SQL statements in
other parts of this reference.

The syntax of number follows:

number::=

= O [(@>]
= —

2N B

where

=+ or-indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

m digitisoneof0,1,2,3,4,56,7,80r9.

= eor Eindicates that the number is specified in scientific notation. The digits after
the E specify the exponent. The exponent can range from -130 to 125.

s for Findicates that the number is a 32-bit binary floating point number of type
BINARY_FLOAT.

s dor Dindicates that the number is a 64-bit binary floating point number of type
BINARY_DOUBLE

If you omit f or F and d or D, then the number is of type NUMBER.

2-46 Oracle Database SQL Language Reference

Literals

The suffixes f (F) and d (D) are supported only in floating-point number literals,
not in character strings that are to be converted to NUMBER. For example, if Oracle
is expecting a NUMBER and it encounters the string ' 9 ', then it converts the string
to the number 9. However, if Oracle encounters the string ' 9£ ', then conversion

fails and an error is returned.

A number of type NUMBER can store a maximum of 38 digits of precision. If the literal
requires more precision than provided by NUMBER, BINARY_FLOAT, or BINARY__
DOUBLE, then Oracle truncates the value. If the range of the literal exceeds the range
supported by NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, then Oracle raises an
error.

If you have established a decimal character other than a period (.) with the
initialization parameter NL.S_NUMERIC_CHARACTERS, then you must specify numeric
literals with ' text ' notation. In these cases, Oracle automatically converts the text
literal to a numeric value.

Note: You cannot use this notation for floating-point number literals.

For example, if the NLS_NUMERIC_CHARACTERS parameter specifies a decimal
character of comma, specify the number 5.123 as follows:

'5,123"

See Also: ALTER SESSION on page 11-47 and Oracle Database
Reference

Here are some valid NUMBER literals:

25
+6.34
0.5
25e-03
-1

Here are some valid floating-point number literals:

25f
+6.34F
0.5d
-1D

You can also use the following supplied floating-point literals in situations where a
value cannot be expressed as a numeric literal:

Literal Meaning Example

binary_float_nan A value of type SELECT COUNT (*)
BINARY_FLOAT for FROM employees

which the condition yuERE TO BINARY FLOAT (commission_ pct)

IS NAN is true I= BINARY FLOAT NAN;
binary_float_ Single-precision SELECT COUNT (*)
infinity positive infinity FROM employees

WHERE salary < BINARY_FLOAT_INFINITY;

Basic Elements of Oracle SQL 2-47

Literals

Literal Meaning Example

binary_double_nan A value of type SELECT COUNT (*)
BINARY_DOUBLE for FROM employees

which the condition yuERE TO BINARY FLOAT (commission_ pct)

IS NAN is true I= BINARY FLOAT NAN;
binary_double_ Double-precision SELECT COUNT (*)
infinity positive infinity FROM employees

WHERE salary < BINARY_FLOAT INFINITY;

Datetime Literals

Oracle Database supports four datetime datatypes: DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE

Date Literals You can specify a DATE value as a string literal, or you can convert a
character or numeric value to a date value with the TO_DATE function. DATE literals
are the only case in which Oracle Database accepts a TO_DATE expression in place of a
string literal.

To specify a DATE value as a literal, you must use the Gregorian calendar. You can
specify an ANSI literal, as shown in this example:

DATE '1998-12-25"'

The ANSI date literal contains no time portion, and must be specified in the format
'YYYY-MM-DD'. Alternatively you can specify an Oracle date value, as in the following
example:

TO_DATE ('98-DEC-25 17:30"', 'YY-MON-DD HH24:MI')

The default date format for an Oracle DATE value is specified by the initialization
parameter NLS_DATE_FORMAT. This example date format includes a two-digit
number for the day of the month, an abbreviation of the month name, the last two
digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default date format into
date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you
specify a date value without a date, then the default date is the first day of the current
month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you
query a DATE column, then you must either specify the time field in your query or
ensure that the time fields in the DATE column are set to midnight. Otherwise, Oracle
may not return the query results you expect. You can use the TRUNC date function to
set the time field to midnight, or you can include a greater-than or less-than condition
in the query instead of an equality or inequality condition.

Here are some examples that assume a table my_table with a number column row_
num and a DATE column datecol:

INSERT INTO my_table VALUES (1, SYSDATE);
INSERT INTO my_table VALUES (2, TRUNC (SYSDATE)) ;

SELECT * FROM my_table;

ROW_NUM DATECOL

2-48 Oracle Database SQL Language Reference

Literals

1 03-0CT-02
2 03-0CT-02

SELECT * FROM my_table
WHERE datecol = TO_DATE('03-0CT-02', 'DD-MON-YY');

ROW_NUM DATECOL

2 03-0CT-02

SELECT * FROM my_table
WHERE datecol > TO_DATE('02-0CT-02', 'DD-MON-YY');

ROW_NUM DATECOL

1 03-0CT-02
2 03-0CT-02

If you know that the time fields of your DATE column are set to midnight, then you
can query your DATE column as shown in the immediately preceding example, or by
using the DATE literal:

SELECT * FROM my_table WHERE datecol = DATE '2002-10-03';

However, if the DATE column contains values other than midnight, then you must
filter out the time fields in the query to get the correct result. For example:

SELECT * FROM my_table WHERE TRUNC(datecol) = DATE '2002-10-03';

Oracle applies the TRUNC function to each row in the query, so performance is better if
you ensure the midnight value of the time fields in your data. To ensure that the time

fields are set to midnight, use one of the following methods during inserts and
updates:

s Use the TO_DATE function to mask out the time fields:
INSERT INTO my_table VALUES
(3, TO_DATE('3-0CT-2002', 'DD-MON-YYYY'));
s Use the DATE literal:

INSERT INTO my_table VALUES (4, '03-0CT-02');

s Use the TRUNC function:

INSERT INTO my_table VALUES (5, TRUNC(SYSDATE));

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the
TO_* datetime functions, and the default date format, see "Datetime Functions" on
page 5-4.

TIMESTAMP Literals The TIMESTAMP datatype stores year, month, day, hour,
minute, and second, and fractional second values. When you specify TIMESTAMP as a
literal, the fractional_ seconds_precision value can be any number of digits up
to 9, as follows:

TIMESTAMP '1997-01-31 09:26:50.124"

Basic Elements of Oracle SQL 2-49

Literals

TIMESTAMP WITH TIME ZONE Literals The TIMESTAMP WITH TIME ZONE
datatype is a variant of TIMESTAMP that includes a time zone region name or time
zone offset. When you specify TIMESTAMP WITH TIME ZONE as a literal, the
fractional_ seconds_precision value can be any number of digits up to 9. For
example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00"
Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent

the same instant in UTC, regardless of the TIME ZONE offsets stored in the data. For
example,

TIMESTAMP '1999-04-15 8:00:00 -8:00"'

is the same as

TIMESTAMP '1999-04-15 11:00:00 -5:00"

8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP '1999-04-15 8:00:00 US/Pacific'

To eliminate the ambiguity of boundary cases when the daylight saving time switches,
use both the TZR and a corresponding TZD format element. The following example
ensures that the preceding example will return a daylight saving time value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT'

You can also express the time zone offset using a datetime expression:

SELECT TIMESTAMP '1999-10-29 01:30:00' AT TIME ZONE 'US/Pacific' FROM DUAL;

See Also: "Datetime Expressions" on page 6-8 for more information

If you do not add the TZD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter
set to TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous
datetime as standard time in the specified region.

TIMESTAMP WITH LOCAL TIME ZONE Literals The TIMESTAMP WITH LOCAL
TIME ZONE datatype differs from TIMESTAMP WITH TIME ZONE in that data stored
in the database is normalized to the database time zone. The time zone offset is not
stored as part of the column data. There is no literal for TIMESTAMP WITH LOCAL
TIME ZONE. Rather, you represent values of this datatype using any of the other valid
datetime literals. The table that follows shows some of the formats you can use to
insert a value into a TIMESTAMP WITH LOCAL TIME ZONE column, along with the
corresponding value returned by a query.

Value Specified in INSERT Statement Value Returned by Query

'19-FEB-2004" 19-FEB-2004.00.00.000000 AM
SYSTIMESTAMP 19-FEB-04 02.54.36.497659 PM
TO_TIMESTAMP ('19-FEB-2004', 'DD-MON-YYYY')); 19-FEB-04 12.00.00.000000 AM
SYSDATE 19-FEB-04 02.55.29.000000 PM

2-50 Oracle Database SQL Language Reference

Literals

Value Specified in INSERT Statement Value Returned by Query
TO_DATE('19-FEB-2004', 'DD-MON-YYYY')); 19-FEB-04 12.00.00.000000 AM
TIMESTAMP'2004-02-19 8:00:00 US/Pacific'); 19-FEB-04 08.00.00.000000 AM

Notice that if the value specified does not include a time component (either explicitly
or implicitly, then the value returned defaults to midnight.

Interval Literals

An interval literal specifies a period of time. You can specify these differences in terms
of years and months, or in terms of days, hours, minutes, and seconds. Oracle
Database supports two types of interval literals, YEAR TO MONTH and DAY TO SECOND.
Each type contains a leading field and may contain a trailing field. The leading field
defines the basic unit of date or time being measured. The trailing field defines the
smallest increment of the basic unit being considered. For example, a YEAR TO MONTH
interval considers an interval of years to the nearest month. A DAY TO MINUTE interval
considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAL or
NUMTODSINTERVAL conversion function to convert the numeric data into interval
values.

Interval literals are used primarily with analytic functions.

See Also: "Analytic Functions" on page 5-10, NUMTODSINTERVAL
on page 5-113, NUMTOYMINTERVAL on page 5-114, and Oracle
Database Data Warehousing Guide

INTERVAL YEAR TO MONTH
Specify YEAR TO MONTH interval literals using the following syntax:

interval_year _to_month::=

.integer
—{ INTERVAL J(")(nteger) S O

OLC=DY0

where

» 'Integer [-integer] ' specifiesinteger values for the leading and optional
trailing field of the literal. If the leading field is YEAR and the trailing field is
MONTH, then the range of integer values for the month field is 0 to 11.

» precisionisthe maximum number of digits in the leading field. The valid range

of the leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field If you specify a trailing field, then it must be less
significant than the leading field. For example, INTERVAL '0-1' MONTH TO YEAR is not
valid.

Basic Elements of Oracle SQL 2-51

Literals

The following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2
months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH Aninterval of 123 years, 2 months. You must
specify the leading field precision if it is
greater than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.
INTERVAL '300' MONTH(3) An interval of 300 months.
INTERVAL '4' YEAR Maps to INTERVAL '4-0' YEAR TO MONTH

and indicates 4 years.

INTERVAL '50' MONTH Maps to INTERVAL '4-2' YEAR TO MONTH
and indicates 50 months or 4 years 2 months.

INTERVAL '123' YEAR Returns an error, because the default precision
is 2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to
yield another INTERVAL YEAR TO MONTH literal. For example:

INTERVAL '5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11' YEAR TO MONTH

INTERVAL DAY TO SECOND
Specify DAY TO SECOND interval literals using the following syntax:

interval_day to_second::=

fa@a(fractional_seconds_precisionh
A }+(leading_precision) %

SECOND

MINUTE

f—>®s(fractional_seconds_precisionm

SECOND

2-52 Oracle Database SQL Language Reference

Literals

where

» Integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

» time_expr specifies a time in the format HH[:MI[:SS[.n]]] orMI[:SS[.n]]
or SS[.n], where n specifies the fractional part of a second. If n contains more
digits than the number specified by fractional_seconds_precision,thenn
is rounded to the number of digits specified by the fractional seconds_
precision value. You can specify time_expr following an integer and a space
only if the leading field is DAY.

s Jeading precisionisthe number of digits in the leading field. Accepted
values are 0 to 9. The default is 2.

m fractional_ seconds_precisionisthe number of digits in the fractional part
of the SECOND datetime field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field: If you specify a trailing field, then it must be less
significant than the leading field. For example, INTERVAL MINUTE TO DAY is not valid.
As a result of this restriction, if SECOND is the leading field, the interval literal cannot
have any trailing field.

The valid range of values for the trailing field are as follows:
= HOUR:0to23

s MINUTE: O to 59

= SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow, including
some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222"' DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND (3) 222 thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL '400 5' DAY (3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY (3) 400 days.

INTERVAL '11:12:10.2222222"' HOUR 11 hours, 12 minutes, and 10.2222222 seconds.
TO SECOND(7)

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2,4) 30.1235 seconds. The fractional second '12345'

is rounded to '1235' because the precision is 4.

Basic Elements of Oracle SQL 2-53

Format Models

You can add or subtract one DAY TO SECOND interval literal from another DAY TO
SECOND literal. For example.

INTERVAL'20' DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Format Models

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database. When you convert a character string into a
date or number, a format model determines how Oracle Database interprets the string.
In SQL statements, you can use a format model as an argument of the TO_CHAR and
TO_DATE functions to specify:

s The format for Oracle to use to return a value from the database

s The format for a value you have specified for Oracle to store in the database
For example:

» The datetime format model for the string '17:45:29"is 'HH24:MI:SS"

s The datetime format model for the string '11-Nov-1999'is 'DD-Mon-YYYY'"
s The number format model for the string '$2,304.25"is '$9,999.99".

For lists of number and datetime format model elements, see Table 2-13, " Number
Format Elements" on page 2-55 and Table 2-15, " Datetime Format Elements" on
page 2-59.

The values of some formats are determined by the value of initialization parameters.
For such formats, you can specify the characters returned by these format elements
implicitly using the initialization parameter NLS_TERRITORY. You can change the
default date format for your session with the ALTER SESSION statement.

See Also:

= ALTER SESSION on page 11-47 for information on changing the
values of these parameters and Format Model Examples on
page 2-65 for examples of using format models

s TO_CHAR (datetime) on page 5-202, TO_CHAR (number) on
page 5-204, and TO_DATE on page 5-206

» Oracle Database Reference and Oracle Database Globalization Support
Guide for information on these parameters
This remainder of this section describes how to use the following format models:
= Number Format Models
= Datetime Format Models

s Format Model Modifiers

Number Format Models

You can use number format models in the following functions:

s In the TO_CHAR function to translate a value of NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE datatype to VARCHAR2 datatype

2-54 Oracle Database SQL Language Reference

Format Models

= In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 datatype to
NUMBER datatype

s Inthe TO_BINARY FLOAT and TO_BINARY DOUBLE functions to translate CHAR
and VARCHAR?2 expressions to BINARY_ FLOAT or BINARY DOUBLE values

All number format models cause the number to be rounded to the specified number of
significant digits. If a value has more significant digits to the left of the decimal place
than are specified in the format, then pound signs (#) replace the value. This event
typically occurs when you are using TO_CHAR with a restrictive number format string,
causing a rounding operation.

= If a positive NUMBER value is extremely large and cannot be represented in the
specified format, then the infinity sign (~) replaces the value. Likewise, if a
negative NUMBER value is extremely small and cannot be represented by the
specified format, then the negative infinity sign replaces the value (-~).

s IfaBINARY FLOAT or BINARY_ DOUBLE value is converted to CHAR or NCHAR,
and the input is either infinity or NaN (not a number), then Oracle always returns
the pound signs to replace the value.

Number Format Elements

A number format model is composed of one or more number format elements. The
tables that follow list the elements of a number format model and provide some
examples.

Negative return values automatically contain a leading negative sign and positive
values automatically contain a leading space unless the format model contains the MT,
S, or PR format element.

Table 2-13 Number Format Elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify multiple commas in a
number format model.

Restrictions:

= A comma element cannot begin a number format model.

= A comma cannot appear to the right of a decimal character or period in a
number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified position.
Restriction: You can specify only one period in a number format model.

$ $9999 Returns value with a leading dollar sign.

0 0999 Returns leading zeros.

9990 Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading space if positive
or with a leading minus if negative. Leading zeros are blank, except for a zero
value, which returns a zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number when the integer part
is zero (regardless of zeros in the format model).

C C999 Returns in the specified position the ISO currency symbol (the current value of the

NLS_ISO_CURRENCY parameter).

Basic Elements of Oracle SQL 2-55

Format Models

Table 2-13 (Cont.) Number Format Elements

Element

Example

Description

D

99D99

Returns in the specified position the decimal character, which is the current value
of the NLS_NUMERIC_CHARACTER parameter. The default is a period (.).

Restriction: You can specify only one decimal character in a number format model.

EEEE

9.9EEEE

Returns a value using in scientific notation.

9G999

Returns in the specified position the group separator (the current value of the
NLS_NUMERIC_CHARACTER parameter). You can specify multiple group
separators in a number format model.

Restriction: A group separator cannot appear to the right of a decimal character or
period in a number format model.

L999

Returns in the specified position the local currency symbol (the current value of
the NLS_CURRENCY parameter).

MI

9999MI

Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last position of a
number format model.

PR

9999PR

Returns negative value in <angle brackets>.
Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last position of a
number format model.

RN

m

RN

rn

Returns a value as Roman numerals in uppercase.
Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

59999

9999s

Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).
Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a
number format model.

™

™

The text minimum number format model returns (in decimal output) the smallest
number of characters possible. This element is case insensitive.

The default is TM9, which returns the number in fixed notation unless the output
exceeds 64 characters. If the output exceeds 64 characters, then Oracle Database
automatically returns the number in scientific notation.

Restrictions:
= You cannot precede this element with any other element.

= You can follow this element only with one 9 or one E (or e), but not with any
combination of these. The following statement returns an error:

SELECT TO_CHAR(1234, ’'TM9e’) FROM DUAL;

2-56 Oracle Database SQL Language Reference

Format Models

Table 2-13 (Cont.) Number Format Elements

Element Example Description

U U9999 Returns in the specified position the Euro (or other) dual currency symbol,
determined by the current value of the NLS_DUAL_CURRENCY parameter.

N4 999v99 Returns a value multiplied by 10" (and if necessary, round it up), where n is the
number of 9’s after the V.

X XXXX Returns the hexadecimal value of the specified number of digits. If the specified

S number is not an integer, then Oracle Database rounds it to an integer.

Restrictions:

s This element accepts only positive values or 0. Negative values return an
error.

= You can precede this element only with 0 (which returns leading zeroes) or
FM. Any other elements return an error. If you specify neither 0 nor FM with
X, then the return always has one leading blank.

Table 2-14 shows the results of the following query for different values of number and
"fmt "

SELECT TO_CHAR (number, 'fmt')
FROM DUAL;

Table 2-14 Results of Number Conversions

number ‘fmt' Result
-1234567890 99999999995 '1234567890-"

0 99.99 ! .00
+0.1 99.99 ! .10
-0.2 99.99 ' =.20"

0 90.99 ' 0.00"
+0.1 90.99 ' 0.10"
-0.2 90.99 ' -0.20"

0 9999 ! 0"

1 9999 ! 1

0 B9999 ! !

1 B9999 ! 1

0 B90.99 !

+123.456 999.999 ' 123.456"
-123.456 999.999 '-123.456"
+123.456 FM999.009 '123.456"
+123.456 9.9EEEE " 1.2E+02'
+1E+123 9.9EEEE " 1.0E+123"
+123.456 FM9 .9EEEE "1.2E+02"
+123.45 FM999.009 '123.45"
+123.0 FM999.009 '123.00"
+123.45 L999.99 ! $123.45"

Basic Elements of Oracle SQL 2-57

Format Models

Table 2-14 (Cont.) Results of Number Conversions

number '‘fmt' Result
+123.45 FML999.99 '$123.45"
+1234567890 9999999999s '1234567890+"

Datetime Format Models

You can use datetime format models in the following functions:

s In the TO_* datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The TO_* datetime functions
are TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ.)

s In the TO_CHAR function to translate a datetime value into a character value that is
in a format other than the default format (for example, to print the date from an
application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the NLS session
parameters NLS_DATE_FORMAT, NL.S_TIMESTAMP_FORMAT, and NLS_TIMESTAMP_
TZ_FORMAT, or implicitly with the NLS session parameter NL.S_ TERRITORY. You can
change the default datetime formats for your session with the ALTER SESSION
statement.

See Also: ALTER SESSION on page 11-47 and Oracle Database
Globalization Support Guide for information on the NLS parameters

Datetime Format Elements

A datetime format model is composed of one or more datetime format elements as
listed in Table 2-15, " Datetime Format Elements" on page 2-59.

= For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use
'SYYYY' and 'BC' in the same format string.

s The second column indicates whether the format element can be used in the TO_ *
datetime functions. All format elements can be used in the TO_CHAR function.

s The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATE format model: FF, TZD, TZH, TZM,
and TZR.

= Many datetime format elements are blank padded to a specific length. Refer to the

format model modifier FM on page 2-64 for more information.

Uppercase Letters in Date Format Elements Capitalization in a spelled-out word,
abbreviation, or Roman numeral follows capitalization in the corresponding format
element. For example, the date format model 'DAY" produces capitalized words like
'MONDAY"; 'Day' produces 'Monday'; and 'day' produces 'monday’.

Punctuation and Character Literals in Datetime Format Models You can include these
characters in a date format model:

= Punctuation such as hyphens, slashes, commas, periods, and colons

» Character literals, enclosed in double quotation marks

2-58 Oracle Database SQL Language Reference

Format Models

These characters appear in the return value in the same location as they appear in the
format model.

Table 2-15 Datetime Format Elements
TO_*
datetime

Element functions? Description

- Yes Punctuation and quoted text is reproduced in the result.

/

"text"

AD Yes AD indicator with or without periods.

A.D.

AM Yes Meridian indicator with or without periods.

A.M.

BC Yes BC indicator with or without periods.

B.C.

cc Century.

sce = If the last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then the

century is one greater than the first 2 digits of that year.

= If the last 2 digits of a 4-digit year are 00, then the century is the same as the first
2 digits of that year.

For example, 2002 returns 21; 2000 returns 20.

D Yes Day of week (1-7).

DAY Yes Name of day, padded with blanks to display width of the widest name of day in the
date language used for this element.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

DL Yes Returns a value in the long date format, which is an extension of Oracle Database’s
DATE format, determined by the current value of the NL.S_DATE_FORMAT
parameter. Makes the appearance of the date components (day name, month
number, and so forth) depend on the NLS_TERRITORY and NLS_LANGUAGE
parameters. For example, in the AMERICAN_AMERICA locale, this is equivalent to
specifying the format ' fmbay, Month dd, yyyy’. In the GERMAN_GERMANY locale,
it is equivalent to specifying the format 'fmbay, dd. Month yyyy'.
Restriction: You can specify this format only with the TS element, separated by
white space.

DS Yes Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the NLS_
TERRITORY and NLS_LANGUAGE parameters. For example, in the AMERICAN_
AMERICA locale, this is equivalent to specifying the format MM/DD/RRRR’. In the
ENGLISH_UNITED_KINGDOM locale, it is equivalent to specifying the format
'DD/MM/RRRR’.

Restriction: You can specify this format only with the TS element, separated by
white space.

DY Yes Abbreviated name of day.

E Yes Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha

calendars).

Basic Elements of Oracle SQL 2-59

Format Models

Table 2-15 (Cont.) Datetime Format Elements

TO_*
datetime

Element functions? Description

EE Yes Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

FF [1..9] Yes Fractional seconds; no radix character is printed. Use the X format element to add
the radix character. Use the numbers 1 to 9 after FF to specify the number of digits in
the fractional second portion of the datetime value returned. If you do not specify a
digit, then Oracle Database uses the precision specified for the datetime datatype or
the datatype’s default precision.
Examples: 'HH:MI:SS.FF’
SELECT TO_CHAR (SYSTIMESTAMP, ’'SS.FF3’) from dual;

FM Yes Returns a value with no leading or trailing blanks.
See Also: Additional discussion on this format model modifier in the Oracle
Database SQL Language Reference

FX Yes Requires exact matching between the character data and the format model.
See Also: Additional discussion on this format model modifier in the Oracle
Database SQL Language Reference

HH Yes Hour of day (1-12).

HH12

HH24 Yes Hour of day (0-23).

Iw Week of year (1-52 or 1-53) based on the ISO standard.

1YY Last 3, 2, or 1 digit(s) of ISO year.

Iy

I

IYYY 4-digit year based on the ISO standard.

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified with J
must be integers.

MI Yes Minute (0-59).

MM Yes Month (01-12; January = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to display width of the widest name of month
in the date language used for this element.

PM Yes Meridian indicator with or without periods.

P.M.

Q Quarter of year (1, 2, 3, 4; January - March = 1).

RM Yes Roman numeral month (I-XI; January = I).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.
See Also: Additional discussion on RR datetime format element in the Oracle
Database SQL Language Reference

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same
return as RR. If you do not want this functionality, then enter the 4-digit year.

SS Yes Second (0-59).

$SSSS Yes Seconds past midnight (0-86399).

2-60 Oracle Database SQL Language Reference

Format Models

Table 2-15 (Cont.) Datetime Format Elements

TO_*
datetime

Element functions? Description

TS Yes Returns a value in the short time format. Makes the appearance of the time
components (hour, minutes, and so forth) depend on the NLS_TERRITORY and
NLS_LANGUAGE initialization parameters.
Restriction: You can specify this format only with the DL or DS element, separated
by white space.

TZD Yes Daylight savings information. The TZD value is an abbreviated time zone string
with daylight saving information. It must correspond with the region specified in
TZR.
Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

TZH Yes Time zone hour. (See TZM format element.)
Example: "HH:MI:SS.FFTZH:TZM'.

TZM Yes Time zone minute. (See TZH format element.)
Example: 'HH:MI:SS.FFTZH: TZM".

TZR Yes Time zone region information. The value must be one of the time zone regions
supported in the database.
Example: US/Pacific

W Week of year (1-53) where week 1 starts on the first day of the year and continues to
the seventh day of the year.

W Week of month (1-5) where week 1 starts on the first day of the month and ends on
the seventh.

X Yes Local radix character.
Example: 'HH:MI: SSXFF'.

Y, YYY Yes Year with comma in this position.

YEAR Year, spelled out; S prefixes BC dates with a minus sign (-).

SYEAR

YYYY Yes 4-digit year; s prefixes BC dates with a minus sign.

SYYYY

YYY Yes Last 3, 2, or 1 digit(s) of year.

YY

Y

Oracle Database converts strings to dates with some flexibility. For example, when the
TO_DATE function is used, a format model containing punctuation characters matches
an input string lacking some or all of these characters, provided each numerical
element in the input string contains the maximum allowed number of digits—for
example, two digits '05' for 'MM' or four digits 2007' for 'YYYY". The following
statement does not return an error:

SELECT TO_CHAR (TO_DATE('0297','MM/YY'), 'MM/YY') FROM DUAL;

However, the following format string does return an error, because the FX (format
exact) format modifier requires an exact match of the expression and the format string;:

Basic Elements of Oracle SQL 2-61

Format Models

SELECT TO_CHAR (TO_DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL;
SELECT TO_CHAR(TO_DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL

*

ERROR at line 1:
ORA-01861: literal does not match format string

See Also: "Format Model Modifiers" on page 2-64 and
"String-to-Date Conversion Rules" on page 2-67 for more information

Datetime Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and
language in which you are using Oracle Database. For example, these datetime format
elements return spelled values:

= MONTH
= MON

= DAY

= DY

s BCorADorB.C.or AD.
s AMorPMor AMor PM.

The language in which these values are returned is specified either explicitly with the
initialization parameter NL.S_DATE_LANGUAGE or implicitly with the initialization
parameter NLS_LANGUAGE. The values returned by the YEAR and SYEAR datetime
format elements are always in English.

The datetime format element D returns the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization
parameter NLS_ TERRITORY.

See Also: Oracle Database Reference and Oracle Database Globalization
Support Guide for information on globalization support initialization
parameters

ISO Standard Date Format Elements

Oracle calculates the values returned by the datetime format elements IYYY, IYY, IY, I,
and IW according to the ISO standard. For information on the differences between
these values and those returned by the datetime format elements YYYY, YYY, YY, Y,
and WW, see the discussion of globalization support in Oracle Database Globalization
Support Guide.

The RR Datetime Format Element

The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR
datetime format element lets you store 20th century dates in the 21st century by
specifying only the last two digits of the year.

If you use the TO_DATE function with the YY datetime format element, then the year
returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies according
to the specified two-digit year and the last two digits of the current year.

That is:
» If the specified two-digit year is 00 to 49, then

2-62 Oracle Database SQL Language Reference

Format Models

- If the last two digits of the current year are 00 to 49, then the returned year has
the same first two digits as the current year.

- If the last two digits of the current year are 50 to 99, then the first 2 digits of
the returned year are 1 greater than the first 2 digits of the current year.

s If the specified two-digit year is 50 to 99, then

- If the last two digits of the current year are 00 to 49, then the first 2 digits of
the returned year are 1 less than the first 2 digits of the current year.

— If the last two digits of the current year are 50 to 99, then the returned year has
the same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format element.

RR Datetime Format Examples
Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE('27-0CT-98', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

1998

SELECT TO_CHAR (TO_DATE('27-0CT-17', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR (TO_DATE('27-0CT-98', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE('27-0CT-17', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

2017

Note that the queries return the same values regardless of whether they are issued
before or after the year 2000. The RR datetime format element lets you write SQL
statements that will return the same values from years whose first two digits are
different.

Datetime Format Element Suffixes
Table 2-16 lists suffixes that can be added to datetime format elements:

Basic Elements of Oracle SQL 2-63

Format Models

Table 2-16 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH 4TH

SpP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes on date format element suffixes:

= When you add one of these suffixes to a datetime format element, the return value
is always in English.

= Datetime suffixes are valid only to format output. You cannot use them to insert a
date into the database.

Format Model Modifiers

The FM and FX modifiers, used in format models in the TO_CHAR function, control
blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each
subsequent occurrence toggles the effects of the modifier. Its effects are enabled for the
portion of the model following its first occurrence, and then disabled for the portion
following its second, and then reenabled for the portion following its third, and so on.

FM Fill mode. Oracle uses blank characters to fill format elements to a constant
width equal to the largest element for the relevant format model in the current session
language. For example, when NLS_ LANGUAGE is AMERICAN, the largest element for
MONTH is SEPTEMBER, so all values of the MONTH format element are padded to 9
display characters. This modifier suppresses blank padding in the return value of the
TO_CHAR function:

= Ina datetime format element of a TO_CHAR function, this modifier suppresses
blanks in subsequent character elements (such as MONTH) and suppresses leading
zeros for subsequent number elements (such as MI) in a date format model.
Without FM, the result of a character element is always right padded with blanks to
a fixed length, and leading zeros are always returned for a number element. With
FM, which suppresses blank padding, the length of the return value may vary.

s In anumber format element of a TO_CHAR function, this modifier suppresses
blanks added to the left of the number, so that the result is left-justified in the
output buffer. Without F, the result is always right-justified in the buffer,
resulting in blank-padding to the left of the number.

FX Format exact. This modifier specifies exact matching for the character argument
and datetime format model of a TO_DATE function:

= Punctuation and quoted text in the character argument must exactly match (except
for case) the corresponding parts of the format model.

» The character argument cannot have extra blanks. Without ¥X, Oracle ignores
extra blanks.

= Numeric data in the character argument must have the same number of digits as
the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeros.

When FX is enabled, you can disable this check for leading zeros by using the FM
modifier as well.

2-64 Oracle Database SQL Language Reference

Format Models

If any portion of the character argument violates any of these conditions, then Oracle
returns an error message.

Format Model Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR (SYSDATE, 'fmDDTH')||' of '||TO_CHAR
(SYSDATE, 'fmMonth')||', '||TO_CHAR(SYSDATE, 'YYYY') "Ides"
FROM DUAL;

Ides

3RD of April, 1998

The preceding statement also uses the FM modifier. If FM is omitted, then the month is
blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, 'DDTH')||' of '||
TO_CHAR (SYSDATE, 'Month')||', '|]
TO_CHAR (SYSDATE, 'YYYY') "Ides"

FROM DUAL;

03RD of April , 1998

The following statement places a single quotation mark in the return value by using a
date format model that includes two consecutive single quotation marks:

SELECT TO_CHAR (SYSDATE, 'fmDay')||'''s Special' "Menu"
FROM DUAL;

Tuesday's Special

Two consecutive single quotation marks can be used for the same purpose within a
character literal in a format model.

Table 2-17 shows whether the following statement meets the matching conditions for
different values of char and 'fmt' using FX (the table named table has a column
date_column of datatype DATE):

UPDATE table
SET date_column = TO_DATE(char, 'fmt');

Table 2-17 Matching Character Data and Format Models with the FX Format Model
Modifier

char ‘fmt’ Match or Error?
"15/ JAN /1998 'DD-MON-YYYY' Match
' 15! JAN % /1998 'DD-MON-YYYY' Error
'15/JAN/1998" ' FXDD-MON-YYYY' Error
"15-JAN-1998" ' FXDD-MON-YYYY' Match
"1-JAN-1998" ' FXDD-MON-YYYY' Error
"01-JAN-1998" ' FXDD-MON-YYYY' Match
"1-JAN-1998" ' FXFMDD-MON-YYYY' Match

Basic Elements of Oracle SQL 2-65

Format Models

Format of Return Values: Examples You can use a format model to specify the
format for Oracle to use to return values from the database to you.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99,990.99"

SELECT last_name employee, TO_CHAR(salary, '$99,990.99')
FROM employees
WHERE department_id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs,
commas every three digits, and two decimal places.

The following statement selects the date on which each employee from Department 20
was hired and uses the TO_CHAR function to convert these dates to character strings
with the format specified by the date format model 'fmMonth DD, YYYY":

SELECT last_name employee,
TO_CHAR (hire_date, 'fmMonth DD, YYYY') hiredate
FROM employees
WHERE department_id = 20;

With this format model, Oracle returns the hire dates without blank padding (as
specified by £m), two digits for the day, and the century included in the year.

See Also: "Format Model Modifiers" on page 2-64 for a description
of the fm format element

Supplying the Correct Format Model: Examples When you insert or update a
column value, the datatype of the value that you specify must correspond to the
column datatype of the column. You can use format models to specify the format of a
value that you are converting from one datatype to another datatype required for a
column.

For example, a value that you insert into a DATE column must be a value of the DATE
datatype or a character string in the default date format (Oracle implicitly converts
character strings in the default date format to the DATE datatype). If the value is in
another format, then you must use the TO_DATE function to convert the value to the
DATE datatype. You must also use a format model to specify the format of the
character string.

The following statement updates Hunold' s hire date using the TO_DATE function
with the format mask YYYY MM DD’ to convert the character string 1998 05 20' to a
DATE value:

UPDATE employees
SET hire_date = TO_DATE('1998 05 20','YYYY MM DD')
WHERE last_name = 'Hunold';

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to date
values (unless you have used the FX or FXFM modifiers in the format model to control
exact format checking):

= You can omit punctuation included in the format string from the date string if all
the digits of the numerical format elements, including leading zeros, are specified.
For example, specify 02 and not 2 for two-digit format elements such as MM, DD,
and YY.

2-66 Oracle Database SQL Language Reference

Format Models

You can omit time fields found at the end of a format string from the date string.

If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in Table 2-18.

Table 2-18 Oracle Format Matching

Original Format Element

Additional Format Elements to Try in Place of the Original

‘MM 'MON' and 'MONTH'
' MON 'MONTH'
'MONTH' 'MON''
'YY! 'YYYY!
'RR' 'RRRR'
XML Format Model

The SYS_XMLGEN function returns an instance of type XMLType containing an XML
document. Oracle provides the XMLFormat object, which lets you format the output of
the SYS_XMLGEN function.

Table 2-19 lists and describes the attributes of the XMLFormat object. The function that
implements this type follows the table.

See Also:

s SYS_XMLGEN on page 5-196 for information on the SYS_XMLGEN
function

» Oracle XML Developer’s Kit Programmer’s Guide for more
information on the implementation of the XMLFormat object and

its use

Table 2-19 Attributes of the XMLFormat Object

Attribute

Datatype

Purpose

enclTag

VARCHAR2 (100)

The name of the enclosing tag for the result of the SYS_XMLGEN
function. If the input to the function is a column name, then the
default is the column name. Otherwise the default is Row. When
schemaType is set to USE_GIVEN_SCHEMA, this attribute also gives
the name of the XMLSchema element.

schemaType

VARCHAR2 (100)

The type of schema generation for the output document. Valid values
are 'NO_SCHEMA' and 'USE_GIVEN_SCHEMA' The default is 'NO_
SCHEMA'.

schemaName

VARCHAR2 (4000)

The name of the target schema Oracle uses if the value of the
schemaType is 'USE_GIVEN_SCHEMA' If you specify schemaName,
then Oracle uses the enclosing tag as the element name.

targetNameSpace

VARCHAR2 (4000)

The target namespace if the schema is specified (that is, schemaType
is GEN_SCHEMA_ *, or USE_GIVEN_SCHEMA)

dburl

VARCHAR2 (2000)

The URL to the database to use if WITH_SCHEMA is specified. If this
attribute is not specified, then Oracle declares the URL to the types as
a relative URL reference.

processinglIns

VARCHAR2 (4000)

User-provided processing instructions, which are appended to the top
of the function output before the element.

Basic Elements of Oracle SQL 2-67

Nulls

The function that implements the XMLFormat object follows:

STATIC FUNCTION createFormat (
enclTag IN varchar2 := 'ROWSET',
schemaType IN varchar2 := 'NO_SCHEMA',
schemaName IN varchar2 := null,
targetNameSpace IN varchar2 := null,
dburlPrefix IN varchar2 := null,
processingIns IN varchar2 := null)
deterministic parallel_enable,
MEMBER PROCEDURE genSchema (spec IN varchar2),
MEMBER PROCEDURE setSchemaName (schemaName IN varchar?),
MEMBER PROCEDURE
MEMBER PROCEDURE
MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar2),
MEMBER PROCEDURE setProcessingIns(pi IN varchar2),
CONSTRUCTOR FUNCTION XMLGenFormatType (

enclTag IN varchar2 := 'ROWSET',
schemaType IN varchar2 := 'NO_SCHEMA',
schemaName IN varchar2 := null,

targetNameSpace IN varchar2 := null,
dbUrlPrefix IN varchar2 := null,
processingIns IN varchar2 := null) RETURN SELF AS RESULT

deterministic parallel_enable,
STATIC function createFormat2 (
enclTag in varchar2 := 'ROWSET',
flags in raw) return sys.xmlgenformattype
deterministic parallel_enable .

Nulls

RETURN XMLGenFormatType

setTargetNameSpace (targetNameSpace IN varchar2),
setEnclosingElementName (enclTag IN varchar2),

If a column in a row has no value, then the column is said to be null, or to contain null.
Nulls can appear in columns of any datatype that are not restricted by NOT NULL or
PRIMARY KEY integrity constraints. Use a null when the actual value is not known or
when a value would not be meaningful.

Oracle Database treats a character value with a length of zero as null. However, do not
use null to represent a numeric value of zero, because they are not equivalent.

Note:

Oracle Database currently treats a character value with a
length of zero as null. However, this may not continue to be true in
future releases, and Oracle recommends that you do not treat empty

strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example,
null added to 10 is null. In fact, all operators (except concatenation) return null when
given a null operand.

Nulls in SQL Functions

All scalar functions (except REPLACE, NVL, and CONCAT) return null when given a null
argument. You can use the NVL function to return a value when a null occurs. For
example, the expression NVL (commission_pct, 0) returns 0 if commission_pct is
null or the value of commission_pct if it is not null.

2-68 Oracle Database SQL Language Reference

Comments

Most aggregate functions ignore nulls. For example, consider a query that averages the
five values 1000, null, null, null, and 2000. Such a query ignores the nulls and
calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison Conditions

To test for nulls, use only the comparison conditions IS NULL and IS NOT NULL. If you
use any other condition with nulls and the result depends on the value of the null,
then the result is UNKNOWN. Because null represents a lack of data, a null cannot be
equal or unequal to any value or to another null. However, Oracle considers two nulls
to be equal when evaluating a DECODE function. Refer to DECODE on page 5-55 for
syntax and additional information.

Oracle also considers two nulls to be equal if they appear in compound keys. That is,
Oracle considers identical two compound keys containing nulls if all the non-null
components of the keys are equal.

Nulls in Conditions

Comments

A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no
rows. However, a condition evaluating to UNKNOWN differs from FALSE in that further
operations on an UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT
FALSE evaluates to TRUE, but NOT UNKNOWN evaluates to UNKNOWN.

Table 2-20 shows examples of various evaluations involving nulls in conditions. If the
conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT
statement, then no rows would be returned for that query.

Table 2-20 Conditions Containing Nulls

Condition Value of A Evaluation
a IS NULL 10 FALSE

a IS NOT NULL 10 TRUE

a IS NULL NULL TRUE

a IS NOT NULL NULL FALSE

a = NULL 10 UNKNOWN
a != NULL 10 UNKNOWN
a = NULL NULL UNKNOWN
a != NULL NULL UNKNOWN
a =10 NULL UNKNOWN
a != 10 NULL UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see
Table 7-5 on page 7-9, Table 7-6 on page 7-9, and Table 7-7 on page 7-9.

You can create two types of comments:

s Comments within SQL statements are stored as part of the application code that
executes the SQL statements.

Basic Elements of Oracle SQL 2-69

Comments

s Comments associated with individual schema or nonschema objects are stored in
the data dictionary along with metadata on the objects themselves.

Comments Within SQL Statements

Comments can make your application easier for you to read and maintain. For
example, you can include a comment in a statement that describes the purpose of the
statement within your application. With the exception of hints, comments within SQL
statements do not affect the statement execution. Refer to "Using Hints" on page 2-71
on using this particular form of comment.

A comment can appear between any keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

= Begin the comment with a slash and an asterisk (/*). Proceed with the text of the
comment. This text can span multiple lines. End the comment with an asterisk and
a slash (*/). The opening and terminating characters need not be separated from
the text by a space or a line break.

= Begin the comment with -- (two hyphens). Proceed with the text of the comment.
This text cannot extend to a new line. End the comment with a line break.

Some of the tools used to enter SQL have additional restrictions. For example, if you
are using SQL*Plus, by default you cannot have a blank line inside a multiline
comment. For more information, refer to the documentation for the tool you use as an
interface to the database.

A SQL statement can contain multiple comments of both styles. The text of a comment
can contain any printable characters in your database character set.

Example These statements contain many comments:

SELECT last_name, salary + NVL(commission_pct, 0),
job_id, e.department_id
/* Select all employees whose compensation is
greater than that of Pataballa.*/
FROM employees e, departments d
/*The DEPARTMENTS table is used to get the department name.*/
WHERE e.department_id = d.department_id
AND salary + NVL(commission_pct,0) > /* Subquery: */
(SELECT salary + NVL(commission_pct,0)
/* total compensation is salar + commission_pct */
FROM employees
WHERE last_name = 'Pataballa');

SELECT last_name, -- select the name
salary + NVL(commission_pct, 0),-- total compensation
job_id, -- job
e.department_id -- and department

FROM employees e, -- of all employees

departments d
WHERE e.department_id = d.department_id

AND salary + NVL(commission_pct, 0) > -- whose compensation
-- 1s greater than
(SELECT salary + NVL(commission_pct,0) -- the compensation
FROM employees
WHERE last_name = 'Pataballa') -- of Pataballa.

2-70 Oracle Database SQL Language Reference

Comments

Comments on Schema and Nonschema Objects

Using Hints

You can use the COMMENT command to associate a comment with a schema object
(table, view, materialized view, operator, indextype, mining model) using the
COMMENT command. You can also create a comment on a column, which is part of a
table schema object. Comments associated with schema and nonschema objects are
stored in the data dictionary. Refer to COMMENT on page 13-54 for a description of
this form of comment.

You can use comments in a SQL statement to pass instructions, or hints, to the Oracle
Database optimizer. The optimizer uses these hints to choose an execution plan for the
statement, unless some condition exists that prevents the optimizer from doing so.

Note: Hints should be used sparingly, and only after you have
collected statistics on the relevant tables and evaluated the optimizer
plan without hints using the EXPLAIN PLAN statement. Changing
database conditions as well as query performance enhancements in
subsequent releases can have significant impact on how hints in your
code affect performance.

A statement block can have only one comment containing hints, and that comment
must follow the SELECT, UPDATE, INSERT, MERGE, or DELETE keyword. Only two
hints are used with INSERT statements: The APPEND hint always follows the INSERT
keyword, and the PARALLEL hint can follow the INSERT keyword.

The following syntax diagram shows hints contained in both styles of comments that
Oracle supports within a statement block. The hint syntax must follow immediately
after an INSERT, UPDATE, DELETE, SELECT, or MERGE keyword that begins the
statement block.

hint::=
RGO
hint
strlng]
hint
where:

= The plus sign (+) causes Oracle to interpret the comment as a list of hints. The plus
sign must follow immediately after the comment delimiter. No space is permitted.

= hintis one of the hints discussed in this section. The space between the plus sign
and the hint is optional. If the comment contains multiple hints, then separate the
hints by at least one space.

= stringis other commenting text that can be interspersed with the hints.
The --+ syntax requires that the entire comment be on a single line.

Oracle Database ignores hints and does not return an error under the following
circumstances:

Basic Elements of Oracle SQL 2-71

Comments

s The hint contains misspellings or syntax errors. However, the database does
consider other correctly specified hints in the same comment.

s The comment containing the hint does not follow a DELETE, INSERT, MERGE,
SELECT, or UPDATE keyword.

s A combination of hints conflict with each other. However, the database does
consider other hints in the same comment.

s The database environment uses PL/SQL version 1, such as Forms version 3
triggers, Oracle Forms 4.5, and Oracle Reports 2.5.

Many hints can apply both to specific tables or indexes and more globally to tables
within a view or to columns that are part of indexes. The syntactic elements
tablespec and indexspec define these global hints.

tablespec::=

%)

(table >

You must specify the table to be accessed exactly as it appears in the statement. If the
statement uses an alias for the table, then use the alias rather than the table name in
the hint. However, do not include the schema name with the table name within the
hint, even if the schema name appears in the statement.

See Also: Oracle Database Performance Tuning Guide for information
on the following topics:

= When to use global hints and how Oracle interprets them

s Using EXPLAIN PLAN to learn how the optimizer is executing a
query

m References in hints to tables within views

indexspec::=

index

[@0

(column

When tablespec is followed by indexspec in the specification of a hint, a comma
separating the table name and index name is permitted but not required. Commas are
also permitted, but not required, to separate multiple occurrences of indexspec.

Specifying a Query Block in a Hint
You can specify an optional query block name in many hints to specify the query block

to which the hint applies. This syntax lets you specify in the outer query a hint that
applies to an inline view.

The syntax of the query block argument is of the form @queryblock, where
queryblockis an identifier that specifies a query block in the query. The
queryblock identifier can either be system-generated or user-specified. When you
specify a hint in the query block itself to which the hint applies, you omit the
@queryblock syntax.

2-72 Oracle Database SQL Language Reference

Comments

s The system-generated identifier can be obtained by using EXPLAIN PLAN for the
query. Pretransformation query block names can be determined by running
EXPLAIN PLAN for the query using the NO_QUERY_TRANSFORMATION hint. See
"NO_QUERY_TRANSFORMATION Hint" on page 2-88.

» The user-specified name can be set with the QB_NAME hint. See "QB_NAME Hint"
on page 2-94.

Table 2-21 lists the hints by functional category and contains cross-references to the
syntax and semantics for each hint. An alphabetical reference of the hints follows the

table.

See Also: Oracle Database Performance Tuning Guide for
information on:

Table 2-21

Using hints to optimize SQL statements and on detailed
information about using the tablespec and indexspec
syntax

Specifying a query block in a hint

Descriptions of hint categories and when to use them

Hints by Functional Category

Hint

Link to Syntax and Semantics

Optimization Goals and ALL_ROWS Hint on page 2-75

Approaches

FIRST_ROWS Hint on page 2-78

Access Path Hints CLUSTER Hint on page 2-76

FULL Hint on page 2-79

HASH Hint on page 2-79

INDEX Hint on page 2-79
NO_INDEX Hint on page 2-85

INDEX_ASC Hint on page 2-80
INDEX_DESC Hint on page 2-80

INDEX_COMBINE Hint on page 2-80

INDEX_JOIN Hint on page 2-81

INDEX_FFS Hint on page 2-81

INDEX_SS Hint on page 2-82

INDEX_SS_ASC Hint on page 2-82

INDEX_SS_DESC Hint on page 2-82

NO_INDEX_FFS Hint on page 2-86

NO_INDEX_SS Hint on page 2-86

Join Order Hints ORDERED Hint on page 2-91

LEADING Hint on page 2-83

Join Operation Hints USE_HASH Hint on page 2-97

NO_USE_HASH Hint on page 2-89

USE_MERGE Hint on page 2-97
NO_USE_MERGE Hint on page 2-89

Basic Elements of Oracle SQL 2-73

Comments

Table 2-21 (Cont.) Hints by Functional Category

Hint Link to Syntax and Semantics

-- USE_NL Hint on page 2-98
USE_NL_WITH_INDEX Hint on page 2-98
NO_USE_NL Hint on page 2-90

Parallel Execution Hints PARALLEL Hint on page 2-91
NO_PARALLEL Hint on page 2-87

- PARALLEL_INDEX Hint on page 2-92
NO_PARALLEL_INDEX Hint on page 2-87

-- PQ_DISTRIBUTE Hint on page 2-92

Query Transformation FACT Hint on page 2-78
Hints NO_FACT Hint on page 2-85

-- MERGE Hint on page 2-83
NO_MERGE Hint on page 2-86

- NO_EXPAND Hint on page 2-85
USE_CONCAT Hint on page 2-97

-- REWRITE Hint on page 2-95
NO_REWRITE Hint on page 2-88

-- UNNEST Hint on page 2-96
NO_UNNEST Hint on page 2-89

- STAR_TRANSFORMATION Hint on page 2-96
NO_STAR_TRANSFORMATION Hint on page 2-89

-- NO_QUERY_TRANSFORMATION Hint on page 2-88

XML Hints NO_XMLINDEX_REWRITE Hint on page 2-90
- NO_XML_QUERY_REWRITE Hint on page 2-90
Other Hints APPEND Hint on page 2-76

NOAPPEND Hint on page 2-84

- CACHE Hint on page 2-76
NOCACHE Hint on page 2-84

-- CURSOR_SHARING_EXACT Hint on page 2-77

- DRIVING_SITE Hint on page 2-77

- DYNAMIC_SAMPLING Hint on page 2-77

-- MODEL_MIN_ANALYSIS Hint on page 2-84

-- MONITOR Hint on page 2-84

- NO_MONITOR Hint on page 2-87

- OPT_PARAM Hint on page 2-91

- PUSH_PRED Hint on page 2-94
NO_PUSH_PRED Hint on page 2-87

-- PUSH_SUBQ Hint on page 2-94
NO_PUSH_SUBQ Hint on page 2-88

2-74 Oracle Database SQL Language Reference

Comments

Table 2-21 (Cont.) Hints by Functional Category

Hint Link to Syntax and Semantics

-- PX_JOIN_FILTER Hint on page 2-94
NO_PX_JOIN_FILTER Hint on page 2-88

- QB_NAME Hint on page 2-94
-- RESULT_CACHE Hint on page 2-95
NO_RESULT_CACHE Hint on page 2-88

Alphabetical Listing of Hints

This section provides syntax and semantics for all hints in alphabetical order.

ALL_ROWS Hint
@ ©

The ALL_ROWS hint instructs the optimizer to optimize a statement block with a goal
of best throughput, which is minimum total resource consumption. For example, the
optimizer uses the query optimization approach to optimize this statement for best
throughput:

SELECT /*+ ALL_ROWS */ employee_id, last_name, salary, job_id
FROM employees
WHERE employee_id = 7566;

If you specify either the ALL_ROWS or the FIRST_ROWS hint in a SQL statement, and if
the data dictionary does not have statistics about tables accessed by the statement,
then the optimizer uses default statistical values, such as allocated storage for such
tables, to estimate the missing statistics and to subsequently choose an execution plan.
These estimates might not be as accurate as those gathered by the DBMS_STATS
package, so you should use the DBMS_STATS package to gather statistics.

If you specify hints for access paths or join operations along with either the ALL_ROWS
or FIRST_ROWS hint, then the optimizer gives precedence to the access paths and join
operations specified by the hints.

APPEND Hint

OILEIO

The APPEND hint instructs the optimizer to use direct-path INSERT if your database is
running in serial mode. Your database is in serial mode if you are not using Enterprise
Edition. Conventional INSERT is the default in serial mode, and direct-path INSERT is
the default in parallel mode.

In direct-path INSERT, data is appended to the end of the table, rather than using
existing space currently allocated to the table. As a result, direct-path INSERT can be
considerably faster than conventional INSERT.

See Also: Oracle Database Administrator’s Guide for information on
direct-path inserts

Basic Elements of Oracle SQL 2-75

Comments

CACHE Hint

queryblock
-0 P T @ oo

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The CACHE hint instructs the optimizer to place the blocks retrieved for the table at the
most recently used end of the LRU list in the buffer cache when a full table scan is
performed. This hint is useful for small lookup tables.

In the following example, the CACHE hint overrides the default caching specification of
the table:

SELECT /*+ FULL (hr_emp) CACHE (hr_emp) */ last_name
FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans (long
tables) and table scans (short tables), as shown in the V$SYSSTAT data
dictionary view.

CLUSTER Hint

queryblock
oL 2N o0

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The CLUSTER hint instructs the optimizer to use a cluster scan to access the specified
table. This hint applies only to clustered tables.

CURSOR_SHARING_EXACT Hint

—(7'+)| CURSOR_SHARING_EXACT b("/)>

Oracle can replace literals in SQL statements with bind variables, when it is safe to do
so. This replacement is controlled with the CURSOR_SHARING initialization parameter.
The CURSOR_SHARING_EXACT hint instructs the optimizer to switch this behavior off.
When you specify this hint, Oracle executes the SQL statement without any attempt to
replace literals with bind variables.

DRIVING_SITE Hint

@ queryblock
(- {oe STE @) DD

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The DRIVING_SITE hint instructs the optimizer to execute the query at a different site
than that selected by the database. This hint is useful if you are using distributed
query optimization.

For example:

SELECT /*+ DRIVING_SITE (departments) */ *
FROM employees, departments@rsite
WHERE employees.department_id = departments.department_id;

2-76 Oracle Database SQL Language Reference

Comments

If this query is executed without the hint, then rows from departments are sent to
the local site, and the join is executed there. With the hint, the rows from employees
are sent to the remote site, and the query is executed there and the result set is
returned to the local site.

DYNAMIC_SAMPLING Hint

@ DYNAMIC_SAMPLING |->® @@@

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The DYNAMIC_SAMPLING hint instructs the optimizer how to control dynamic
sampling to improve server performance by determining more accurate predicate
selectivity and statistics for tables and indexes.

You can set the value of DYNAMIC_SAMPLING to a value from 0 to 10. The higher the
level, the more effort the compiler puts into dynamic sampling and the more broadly it
is applied. Sampling defaults to cursor level unless you specify tablespec.

The integer valueis 0 to 10, indicating the degree of sampling.

If a cardinality statistic already exists for the table, then the optimizer uses it.
Otherwise, the optimizer enables dynamic sampling to estimate the cardinality
statistic.

If you specify tablespec and the cardinality statistic already exists, then:

» If there is no single-table predicate (a WHERE clause that evaluates only one table),
then the optimizer trusts the existing statistics and ignores this hint. For example,
the following query will not result in any dynamic sampling if employees is
analyzed:

SELECT /*+ dynamic_sampling(e 1) */ count(*)
FROM employees e;
» If there is a single-table predicate, then the optimizer uses the existing cardinality
statistic and estimates the selectivity of the predicate using the existing statistics.
To apply dynamic sampling to a specific table, use the following form of the hint:

SELECT /*+ dynamic_sampling(employees 1) */ *
FROM employees
WHERE ...

See Also: Oracle Database Performance Tuning Guide for

information about dynamic sampling and the sampling levels that
you can set

FACT Hint

queryblock
O w00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The FACT hint is used in the context of the star transformation. It instructs the
optimizer that the table specified in tablespec should be considered as a fact table.

Basic Elements of Oracle SQL 2-77

Comments

FIRST_ROWS Hint

=) FIRST_ROWS B ()(integer 5() (7>

The FIRST_ROWS hint instructs Oracle to optimize an individual SQL statement for
fast response, choosing the plan that returns the first n rows most efficiently. For
integer, specify the number of rows to return.

For example, the optimizer uses the query optimization approach to optimize the
following statement for best response time:

SELECT /*+ FIRST_ROWS(10) */ employee_id, last_name, salary, job_id
FROM employees
WHERE department_id = 20;

In this example each department contains many employees. The user wants the first 10
employees of department 20 to be displayed as quickly as possible.

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in
SELECT statement blocks that include any blocking operations, such as sorts or
groupings. Such statements cannot be optimized for best response time, because
Oracle Database must retrieve all rows accessed by the statement before returning the
first row. If you specify this hint in any such statement, then the database optimizes for
best throughput.

See Also: "ALL_ROWS Hint" on page 2-75 for additional
information on the FIRST_ROWS hint and statistics

FULL Hint

queryblock
OO 00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The FULL hint instructs the optimizer to perform a full table scan for the specified
table. For example:

SELECT /*+ FULL(e) */ employee_id, last_name
FROM hr.employees e
WHERE last_name LIKE :bl;

Oracle Database performs a full table scan on the employees table to execute this
statement, even if there is an index on the 1ast_name column that is made available
by the condition in the WHERE clause.

The employees table has alias e in the FROM clause, so the hint must refer to the table
by its alias rather than by its name. Do not specify schema names in the hint even if
they are specified in the FROM clause.

HASH Hint

queryblock
-0 T G 00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The HASH hint instructs the optimizer to use a hash scan to access the specified table.
This hint applies only to tables stored in a table cluster.

2-78 Oracle Database SQL Language Reference

Comments

INDEX Hint

queryblock ﬁw\
DN @ L2

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX hint instructs the optimizer to use an index scan for the specified table. You
can use the INDEX hint for function-based, domain, B-tree, bitmap, and bitmap join
indexes.

The behavior of the hint depends on the indexspec specification:

» If the INDEX hint specifies a single available index, then the database performs a
scan on this index. The optimizer does not consider a full table scan or a scan of
another index on the table.

= For a hint on a combination of multiple indexes, Oracle recommends using
INDEX_COMBINE rather than INDEX, because it is a more versatile hint. If the
INDEX hint specifies a list of available indexes, then the optimizer considers the
cost of a scan on each index in the list and then performs the index scan with the
lowest cost. The database can also choose to scan multiple indexes from this list
and merge the results, if such an access path has the lowest cost. The database
does not consider a full table scan or a scan on an index not listed in the hint.

» If the INDEX hint specifies no indexes, then the optimizer considers the cost of a
scan on each available index on the table and then performs the index scan with
the lowest cost. The database can also choose to scan multiple indexes and merge
the results, if such an access path has the lowest cost. The optimizer does not
consider a full table scan.

For example:

SELECT /*+ INDEX (employees emp_department_ix)*/
employee_id, department_id
FROM employees
WHERE department_id > 50;

INDEX_ASC Hint

queryblock I—)M
N, @ L 50

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_ASC hint instructs the optimizer to use an index scan for the specified
table. If the statement uses an index range scan, then Oracle Database scans the index
entries in ascending order of their indexed values. Each parameter serves the same
purpose as in "INDEX Hint" on page 2-79.

The default behavior for a range scan is to scan index entries in ascending order of
their indexed values, or in descending order for a descending index. This hint does not
change the default order of the index, and therefore does not specify anything more
than the INDEX hint. However, you can use the INDEX_ASC hint to specify ascending
range scans explicitly should the default behavior change.

Basic Elements of Oracle SQL 2-79

Comments

INDEX_COMBINE Hint

® o)

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_COMBINE hint instructs the optimizer to use a bitmap access path for the
table. If indexspec is omitted from the INDEX_COMBINE hint, then the optimizer
uses whatever Boolean combination of indexes has the best cost estimate for the table.
If you specify indexspec, then the optimizer tries to use some Boolean combination
of the specified indexes. Each parameter serves the same purpose as in "INDEX Hint"
on page 2-79. For example:

SELECT /*+ INDEX_COMBINE (e emp_manager_ix emp_department_ix) */ *
FROM employees e
WHERE manager_id = 108
OR department_id = 110;

INDEX_DESC Hint

® e

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_DESC hint instructs the optimizer to use a descending index scan for the
specified table. If the statement uses an index range scan and the index is ascending,
then Oracle scans the index entries in descending order of their indexed values. In a
partitioned index, the results are in descending order within each partition. For a
descending index, this hint effectively cancels out the descending order, resulting in a
scan of the index entries in ascending order. Each parameter serves the same purpose
as in "INDEX Hint" on page 2-79. For example:

SELECT /*+ INDEX_DESC (e emp_name_ix) */ *
FROM employees e;

See Also: Oracle Database Performance Tuning Guide for information
on full scans

INDEX_FFS Hint

queryblock ﬁw\
AN - L2 (0

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_FFS hint instructs the optimizer to perform a fast full index scan rather
than a full table scan.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-79. For
example:

SELECT /*+ INDEX_FFS(e emp_name_ix) */ first_name

2-80 Oracle Database SQL Language Reference

Comments

FROM employees e;

INDEX_JOIN Hint

queryblock I—)—W—\
e @ L G0,

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_JOIN hint instructs the optimizer to use an index join as an access path.
For the hint to have a positive effect, a sufficiently small number of indexes must exist
that contain all the columns required to resolve the query.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-79. For
example, the following query uses an index join to access the manager_id and
department_id columns, both of which are indexed in the employees table.

SELECT /*+ INDEX JOIN(e emp_manager_ ix emp_department_ix) */ department_id
FROM employees e
WHERE manager_id < 110
AND department_id < 50;

INDEX_SS Hint

queryblock fw\
AN G- L (o

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_SS hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan, then Oracle scans the index
entries in ascending order of their indexed values. In a partitioned index, the results
are in ascending order within each partition.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-79. For
example:

SELECT /*+ INDEX_SS(e emp_name_ix) */ last_name
FROM employees e
WHERE first_name = 'Steven';

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

INDEX_SS_ASC Hint

@)

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_SS_ASC hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan, then Oracle Database scans
the index entries in ascending order of their indexed values. In a partitioned indeXx, the

Basic Elements of Oracle SQL 2-81

Comments

results are in ascending order within each partition. Each parameter serves the same
purpose as in "INDEX Hint" on page 2-79.

The default behavior for a range scan is to scan index entries in ascending order of
their indexed values, or in descending order for a descending index. This hint does not
change the default order of the index, and therefore does not specify anything more
than the INDEX_SS hint. However, you can use the INDEX_SS_ASC hint to specify
ascending range scans explicitly should the default behavior change.

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

INDEX_SS_DESC Hint

® o)

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_SS_DESC hint instructs the optimizer to perform an index skip scan for
the specified table. If the statement uses an index range scan and the index is
ascending, then Oracle scans the index entries in descending order of their indexed
values. In a partitioned index, the results are in descending order within each
partition. For a descending indeX, this hint effectively cancels out the descending
order, resulting in a scan of the index entries in ascending order.

Each parameter serves the same purpose as in the "INDEX Hint" on page 2-79. For
example:

SELECT /*+ INDEX_SS_DESC(e emp_name_ix) */ last_name
FROM employees e
WHERE first_name = 'Steven';

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

LEADING Hint

queryblock
- @EE - PN (@) 00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The LEADING hint instructs the optimizer to use the specified set of tables as the prefix
in the execution plan. This hint is more versatile than the ORDERED hint. For example:

SELECT /*+ LEADING(e j) */ *
FROM employees e, departments d, job_history j
WHERE e.department_id = d.department_id
AND e.hire_date = j.start_date;

The LEADING hint is ignored if the tables specified cannot be joined first in the order
specified because of dependencies in the join graph. If you specify two or more
conflicting LEADING hints, then all of them are ignored. If you specify the ORDERED
hint, it overrides all LEADING hints.

2-82 Oracle Database SQL Language Reference

Comments

MERGE Hint

queryblock

(oo

tablespec

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)
The MERGE hint lets you merge views in a query.

If a view's query block contains a GROUP BY clause or DISTINCT operator in the
SELECT list, then the optimizer can merge the view into the accessing statement only if
complex view merging is enabled. Complex merging can also be used to merge an IN
subquery into the accessing statement if the subquery is uncorrelated.

For example:

SELECT /*+ MERGE(v) */ el.last_name, el.salary, v.avg_salary
FROM employees el,
(SELECT department_id, avg(salary) avg_salary
FROM employees e2
GROUP BY department_id) v
WHERE el.department_id = v.department_id AND el.salary > v.avg_salary;

When the MERGE hint is used without an argument, it should be placed in the view
query block. When MERGE is used with the view name as an argument, it should be
placed in the surrounding query.

MODEL_MIN_ANALYSIS Hint

—(+){ MODEL_MIN_ANALYSIS ("7

The MODEL_MIN_ANALYSIS hint instructs the optimizer to omit some compile-time
optimizations of spreadsheet rules—primarily detailed dependency graph analysis.
Other spreadsheet optimizations, such as creating filters to selectively populate
spreadsheet access structures and limited rule pruning, are still used by the optimizer.

This hint reduces compilation time because spreadsheet analysis can be lengthy if the
number of spreadsheet rules is more than several hundreds.

MONITOR Hint
@ @

The MONITOR hint forces real-time SQL monitoring for the query, even if the statement
is not long running. This hint is valid only when the parameter CONTROL_
MANAGEMENT_PACK_ACCESS is set to DIAGNOSTIC+TUNING.

See Also: Oracle Database Performance Tuning Guide for more
information about real-time SQL monitoring

NOAPPEND Hint
@ Q

Basic Elements of Oracle SQL 2-83

Comments

The NOAPPEND hint instructs the optimizer to use conventional INSERT by disabling
parallel mode for the duration of the INSERT statement. Conventional INSERT is the
default in serial mode, and direct-path INSERT is the default in parallel mode.

NOCACHE Hint

-queryblock
[OTEN @m0

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NOCACHE hint instructs the optimizer to place the blocks retrieved for the table at
the least recently used end of the LRU list in the buffer cache when a full table scan is
performed. This is the normal behavior of blocks in the buffer cache. For example:

SELECT /*+ FULL(hr_emp) NOCACHE (hr_emp) */ last_name
FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans (long tables)
and table scans (short tables), as shown in the V$SSYSSTAT view.

See Also: Oracle Database Performance Tuning Guide for information
on automatic caching of tables, depending on their size

NO_EXPAND Hint

ololCEDT0

(See "Specifying a Query Block in a Hint" on page 2-73)

The NO_EXPAND hint instructs the optimizer not to consider OR-expansion for queries
having OR conditions or IN-lists in the WHERE clause. Usually, the optimizer considers
using OR expansion and uses this method if it decides that the cost is lower than not
using it. For example:

SELECT /*+ NO_EXPAND */ *
FROM employees e, departments d
WHERE e.manager_id = 108
OR d.department_id = 110;

See Also: The "USE_CONCAT Hint" on page 2-97, which is the
opposite of this hint

NO_FACT Hint

queryblock
@0 LN o0

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_FACT hint is used in the context of the star transformation. It instruct the
optimizer that the queried table should not be considered as a fact table.

2-84 Oracle Database SQL Language Reference

Comments

NO_INDEX Hint

queryblock ﬁw\
AN w2 50

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The NO_INDEX hint instructs the optimizer not to use one or more indexes for the
specified table. For example:

SELECT /*+ NO_INDEX (employees emp_empid) */ employee_id
FROM employees
WHERE employee_id > 200;

Each parameter serves the same purpose as in "INDEX Hint" on page 2-79 with the
following modifications:

s If this hint specifies a single available index, then the optimizer does not consider a
scan on this index. Other indexes not specified are still considered.

= If this hint specifies a list of available indexes, then the optimizer does not consider
a scan on any of the specified indexes. Other indexes not specified in the list are
still considered.

s If this hint specifies no indexes, then the optimizer does not consider a scan on any
index on the table. This behavior is the same as a NO_INDEX hint that specifies a
list of all available indexes for the table.

The NO_INDEX hint applies to function-based, B-tree, bitmap, cluster, or domain
indexes. If a NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC,
INDEX_COMBINE, or INDEX_FFS) both specify the same indexes, then the database
ignores both the NO_INDEX hint and the index hint for the specified indexes and
considers those indexes for use during execution of the statement.

NO_INDEX_FFS Hint

® @@

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)
The NO_INDEX_FFS hint instructs the optimizer to exclude a fast full index scan of the

specified indexes on the specified table. Each parameter serves the same purpose as in
the "INDEX Hint" on page 2-79. For example:

SELECT /*+ NO_INDEX_ FFS(items item order_ix) */ order_id
FROM order_items items;

NO_INDEX_SS Hint

® e

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

Basic Elements of Oracle SQL 2-85

Comments

The NO_INDEX_SS hint instructs the optimizer to exclude a skip scan of the specified
indexes on the specified table. Each parameter serves the same purpose as in the
"INDEX Hint" on page 2-79.

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

NO_MERGE Hint

queryblock

(@ waons)

tablespec

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_MERGE hint instructs the optimizer not to combine the outer query and any
inline view queries into a single query.

This hint lets you have more influence over the way in which the view is accessed. For
example, the following statement causes view seattle_dept not to be merged.:

SELECT /*+NO_MERGE (seattle_dept)*/ el.last_name, seattle_dept.department_name
FROM employees el,
(SELECT location_id, department_id, department_name
FROM departments
WHERE location_id = 1700) seattle_dept
WHERE el.department_id = seattle_dept.department_id;

When you use the NO_MERGE hint in the view query block, specify it without an

argument. When you specify NO_MERGE in the surrounding query, specify it with the
view name as an argument.

NO_MONITOR Hint
@ @

The NO_MONITOR hint disables real-time SQL monitoring for the query, even if the
query is long running.

NO_PARALLEL Hint

@ queryblock
(o PR I (@) (DD

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_PARALLEL hint overrides a PARALLEL parameter in the DDL that created or
altered the table. For example:

SELECT /*+ NO_PARALLEL (hr_emp) */ last_name
FROM employees hr_emp;

NOPARALLEL Hint
The NOPARALLEL hint has been deprecated. Use the NO_PARALLEL hint instead.

2-86 Oracle Database SQL Language Reference

Comments

NO_PARALLEL_INDEX Hint

®)
@ NO_PARALLEL_INDEX @ s tablespec) @@

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The NO_PARALLEL_INDEX hint overrides a PARALLEL parameter in the DDL that
created or altered the index, thus avoiding a parallel index scan operation.

NOPARALLEL_INDEX Hint

The NOPARALLEL_INDEX hint has been deprecated. Use the NO_PARALLEL_INDEX
hint instead.

NO_PUSH_PRED Hint

queryblock

oD

tablespec

—(7"+) No_PUSH_PRED)y

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_PUSH_PRED hint instructs the optimizer not to push a join predicate into the
view. For example:

SELECT /*+ NO_MERGE(v) NO_PUSH_PRED(v) */ *
FROM employees e,
(SELECT manager_id
FROM employees
) v
WHERE e.manager_id = v.manager_id(+)
AND e.employee_id = 100;

NO_PUSH_SUBQ Hint

O® O
— :)->| NO_PUSH_SUBQ @

(See "Specifying a Query Block in a Hint" on page 2-73)

The NO_PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries as
the last step in the execution plan. Doing so can improve performance if the subquery
is relatively expensive or does not reduce the number of rows significantly.

NO_PX_JOIN_FILTER Hint

—{(+) NO_PX_JOIN_FILTER tablespec }5() (1)

This hint prevents the optimizer from using parallel join bitmap filtering.

Basic Elements of Oracle SQL 2-87

Comments

NO_QUERY_TRANSFORMATION Hint

—(7"+){ NO_QUERY_TRANSFORMATION |5("/)>

The NO_QUERY_TRANSFORMATION hint instructs the optimizer to skip all query
transformations, including but not limited to OR-expansion, view merging, subquery
unnesting, star transformation, and materialized view rewrite. For example:

SELECT /*+ NO_QUERY_TRANSFORMATION */ employee_id, last_name
FROM (SELECT *
FROM employees e) v
WHERE v.last_name = 'Smith';

NO_RESULT_CACHE Hint

—(7+)3{ NO_RESULT_CACHE |5(*/)>

The optimizer caches query results in the result cache if the RESULT_CACHE_MODE
initialization parameter is set to FORCE. In this case, the NO_RESULT_CACHE hint
disables such caching for the current query.

If the query is executed from OCI client and OCI client result cache is enabled, then the
NO_RESULT_CACHE hint disables caching for the current query.

NO_REWRITE Hint

ololcio

(See "Specifying a Query Block in a Hint" on page 2-73)

The NO_REWRITE hint instructs the optimizer to disable query rewrite for the query
block, overriding the setting of the parameter QUERY_REWRITE_ENABLED. For
example:

SELECT /*+ NO_REWRITE */ sum(s.amount_sold) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

NOREWRITE Hint
The NOREWRITE hint has been deprecated. Use the NO_REWRITE hint instead.

NO_STAR_TRANSFORMATION Hint

lﬂﬁﬂﬁﬁﬁi
@ NO_STAR_TRANSFORMATION | O© 0 C/}

(See "Specifying a Query Block in a Hint" on page 2-73)

The NO_STAR_TRANSFORMATION hint instructs the optimizer not to perform star
query transformation.

2-88 Oracle Database SQL Language Reference

Comments

NO_UNNEST Hint

ololczDT0

(See "Specifying a Query Block in a Hint" on page 2-73)

Use of the NO_UNNEST hint turns off unnesting .

NO_USE_HASH Hint

@ queryblock
TR (@D

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_USE_HASH hint instructs the optimizer to exclude hash joins when joining
each specified table to another row source using the specified table as the inner table.
For example:

SELECT /*+ NO_USE_HASH(e d) */ *
FROM employees e, departments d
WHERE e.department_id = d.department_id;

NO_USE_MERGE Hint

@ queryblock
O [T (@ -

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_USE_MERGE hint instructs the optimizer to exclude sort-merge joins when
joining each specified table to another row source using the specified table as the inner
table. For example:

SELECT /*+ NO_USE_MERGE(e d) */ *
FROM employees e, departments d
WHERE e.department_id = d.department_id
ORDER BY d.department_id;

NO_USE_NL Hint

queryblock
[OEEN (@ 0@

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_USE_NL hint instructs the optimizer to exclude nested loops joins when
joining each specified table to another row source using the specified table as the inner
table. For example:

SELECT /*+ NO_USE_NL(1 h) */ *
FROM orders h, order_items 1
WHERE 1l.order_id = h.order_id

AND 1.order_id > 3500;

Basic Elements of Oracle SQL 2-89

Comments

When this hint is specified, only hash join and sort-merge joins are considered for the
specified tables. However, in some cases tables can be joined only by using nested
loops. In such cases, the optimizer ignores the hint for those tables.

NO_XMLINDEX_REWRITE Hint

—(7"+) NO_XMLINDEX_REWRITE |5(*/)>

The NO_XMLINDEX_REWRITE hint instructs the optimizer not to use any XMLIndex
indexes for the current query. For example:

SELECT /*+NO_XMLINDEX REWRITE*/ count (*)
FROM table WHERE existsNode (OBJECT_VALUE, '/*') = 1;

See Also: "NO_XML_QUERY_REWRITE Hint" on page 2-90 for
another way to disable the use of XMLIndexes

NO_XML_QUERY_REWRITE Hint

—(+)H{ No_XML_QUERY_REWRITE (/)

The NO_XML_QUERY_REWRITE hint instructs the optimizer to prohibit the rewriting of
XPath expressions in SQL statements. By prohibiting the rewriting of XPath
expressions, this hint also prohibits the use of any XMLIndexes for the current query.
For example:

SELECT /*+NO_XML_QUERY_REWRITE*/ XMLQUERY ('<A/>")
FROM dual;

See Also: "NO_XMLINDEX_REWRITE Hint" on page 2-90

OPT_PARAM Hint

() OPT_PARAM (D) parameter_rams N 070

The OPT_PARAM hint lets you set an initialization parameter for the duration of the
current query only. This hint is valid only for the following parameters: OPTIMIZER_
DYNAMIC_SAMPLING, OPTIMIZER_INDEX_ CACHING, OPTIMIZER_INDEX_COST__
ADJ, OPTIMIZER_SECURE_VIEW_MERGING, and STAR_TRANSFORMATION_
ENABLED. For example, the following hint sets the parameter STAR_
TRANSFORMATION_ENABLED to TRUE for the statement to which it is added:

SELECT /*+ OPT_PARAM('star_transformation_enabled' 'true') */ * FROM ... ;

Parameter values that are strings are enclosed in single quotation marks. Numeric
parameter values are specified without quotation marks.

ORDERED Hint

(F{omERED ()

The ORDERED hint instructs Oracle to join tables in the order in which they appear in
the FROM clause. Oracle recommends that you use the LEADING hint, which is more
versatile than the ORDERED hint.

2-90 Oracle Database SQL Language Reference

Comments

When you omit the ORDERED hint from a SQL statement requiring a join, the optimizer
chooses the order in which to join the tables. You might want to use the ORDERED hint
to specify a join order if you know something that the optimizer does not know about
the number of rows selected from each table. Such information lets you choose an
inner and outer table better than the optimizer could.

The following query is an example of the use of the ORDERED hint:

SELECT /*+ORDERED */ o.order_id, c.customer_id, l.unit_price * l.quantity
FROM customers ¢, order_items 1, orders o
WHERE c.cust_last_name = :bl
AND o.customer_id = c.customer_id
AND o.order_id = l.order_id;

PARALLEL Hint
@, [@)
PARALLEL (tablespec)
Y

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The PARALLEL hint instructs the optimizer to use the specified number of concurrent
servers for a parallel operation. The hint applies to the SELECT, INSERT, MERGE,
UPDATE, and DELETE portions of a statement, as well as to the table scan portion.

Note: The number of servers that can be used is twice the value in
the PARALLEL hint, if sorting or grouping operations also take
place.

If any parallel restrictions are violated, then the hint is ignored.

The integer value specifies the degree of parallelism for the specified table.
Specifying DEFAULT or no value signifies that the query coordinator should examine
the settings of the initialization parameters to determine the default degree of
parallelism. In the following example, the PARALLEL hint overrides the degree of
parallelism specified in the employees table definition:

SELECT /*+ FULL (hr_emp) PARALLEL (hr_emp, 5) */ last_name
FROM employees hr_emp;

In the next example, the PARALLEL hint overrides the degree of parallelism specified
in the employees table definition and instructs the optimizer to use the default
degree of parallelism determined by the initialization parameters.

SELECT /*+ FULL(hr_emp) PARALLEL (hr_emp, DEFAULT) */ last_name
FROM employees hr_emp;

Oracle ignores parallel hints on temporary tables. Refer to CREATE TABLE on
page 15-6 and Oracle Database Concepts for more information on parallel execution.

Basic Elements of Oracle SQL 2-91

Comments

PARALLEL_INDEX Hint

®)

)

O

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The PARALLEL_INDEX hint instructs the optimizer to use the specified number of
concurrent servers to parallelize index range scans for partitioned indexes.

The integer value indicates the degree of parallelism for the specified index.
Specifying DEFAULT or no value signifies that the query coordinator should examine
the settings of the initialization parameters to determine the default degree of
parallelism. For example, the following hint indicates three parallel execution
processes are to be used:

SELECT /*+ PARALLEL_INDEX (tablel, indexl, 3) */

PQ_DISTRIBUTE Hint

“ queryblock
@ PQ_DISTRIBUTE ({tabIespec)»(outer_distribution)»(inner_distribution}@e@»

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The PQ_DISTRIBUTE hint instructs the optimizer how to distribute rows of joined
tables among producer and consumer query servers. Such distribution can improve
the performance of parallel join operations.

m outer_distributionis the distribution for the outer table.
s Inner distributionis the distribution for the inner table.
The values of the distributions are HASH, BROADCAST, PARTITION, and NONE. Only

six combinations table distributions are valid, as described in Table 2-22:

Table 2-22 Distribution Hint Combinations

Distribution Description

HASH, HASH The rows of each table are mapped to consumer query servers,
using a hash function on the join keys. When mapping is
complete, each query server performs the join between a pair of
resulting partitions. This distribution is recommended when the
tables are comparable in size and the join operation is
implemented by hash-join or sort merge join.

BROADCAST, NONE All rows of the outer table are broadcast to each query server.
The inner table rows are randomly partitioned. This distribution
is recommended when the outer table is very small compared
with the inner table. As a general rule, use this distribution
when the inner table size multiplied by the number of query
servers is greater than the outer table size.

2-92 Oracle Database SQL Language Reference

Comments

Table 2-22 (Cont.) Distribution Hint Combinations

Distribution Description

NONE, BROADCAST All rows of the inner table are broadcast to each consumer query
server. The outer table rows are randomly partitioned. This
distribution is recommended when the inner table is very small
compared with the outer table. As a general rule, use this
distribution when the inner table size multiplied by the number
of query servers is less than the outer table size.

PARTITION, NONE The rows of the outer table are mapped using the partitioning of
the inner table. The inner table must be partitioned on the join
keys. This distribution is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers; for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

NONE, PARTITION The rows of the inner table are mapped using the partitioning of
the outer table. The outer table must be partitioned on the join
keys. This distribution is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers; for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

NONE, NONE Each query server performs the join operation between a pair of
matching partitions, one from each table. Both tables must be
equipartitioned on the join keys.

For example, given two tables r and s that are joined using a hash join, the following
query contains a hint to use hash distribution:

SELECT /*+ORDERED PQ_DISTRIBUTE(s HASH, HASH) USE_HASH (s)*/ column_list
FROM r,s
WHERE r.c=s.c;

To broadcast the outer table r, the query is:

SELECT /*+ORDERED PQ DISTRIBUTE (s BROADCAST, NONE) USE_HASH (s) */ column_list
FROM r,s
WHERE r.c=s.c;

See Also: Oracle Database Concepts for more information on how
Oracle parallelizes join operations

PUSH_PRED Hint

queryblock

(oo

tablespec

— : b—>| PUSH_PRED @_)

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The PUSH_PRED hint instructs the optimizer to push a join predicate into the view. For
example:

SELECT /*+ NO_MERGE (v) PUSH_PRED(v) */ *

Basic Elements of Oracle SQL 2-93

Comments

FROM employees e,
(SELECT manager_id
FROM employees
) v
WHERE e.manager_id = v.manager_id(+)
AND e.employee_id = 100;

PUSH_SUBQ Hint

0O GO

(See "Specifying a Query Block in a Hint" on page 2-73)

The PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries at the
earliest possible step in the execution plan. Generally, subqueries that are not merged
are executed as the last step in the execution plan. If the subquery is relatively
inexpensive and reduces the number of rows significantly, then evaluating the
subquery earlier can improve performance.

This hint has no effect if the subquery is applied to a remote table or one that is joined
using a merge join.

PX_JOIN_FILTER Hint

—>@a| PX_JOIN_FILTER tablespec)@@

This hint forces the optimizer to use parallel join bitmap filtering.

QB_NAME Hint
® ® 010

(See "Specifying a Query Block in a Hint" on page 2-73)

Use the QB_NAME hint to define a name for a query block. This name can then be used
in a hint in the outer query or even in a hint in an inline view to affect query execution
on the tables appearing in the named query block.

If two or more query blocks have the same name, or if the same query block is hinted
twice with different names, then the optimizer ignores all the names and the hints
referencing that query block. Query blocks that are not named using this hint have
unique system-generated names. These names can be displayed in the plan table and
can also be used in hints within the query block, or in query block hints. For example:

SELECT /*+ QB_NAME (gb) FULL(@gb e) */ employee_id, last_name
FROM employees e
WHERE last_name = 'Smith';

RESULT_CACHE Hint
@ @

The RESULT_CACHE hint instructs the database to cache the results of the current
query or query fragment in memory and then to use the cached results in future
executions of the query or query fragment. The hint is recognized in the top-level

2-94 Oracle Database SQL Language Reference

Comments

query, the subquery_ factoring clause, or FROM clause inline view. The cached
results reside in the result cache memory portion of the shared pool.

A cached result is automatically invalidated whenever a database object used in its
creation is successfully modified. This hint takes precedence over settings of the
RESULT_CACHE_MODE initialization parameter.

The query is eligible for result caching only if all functions entailed in the query—for
example, built-in or user-defined functions or virtual columns—are deterministic.

If the query is executed from OCI client and OCI client result cache is enabled, then
RESULT_CACHE hint enables client caching for the current query.

See Also: Oracle Database Performance Tuning Guide for information
about using this hint, Oracle Database Reference for information about
the RESULT_CACHE_MODE initialization parameter, and Oracle Call
Interface Programmer’s Guide for more information about the OCI
result cache and usage guidelines

REWRITE Hint

| (@0
@Y @

(See "Specifying a Query Block in a Hint" on page 2-73)

The REWRITE hint instructs the optimizer to rewrite a query in terms of materialized
views, when possible, without cost consideration. Use the REWRITE hint with or
without a view list. If you use REWRITE with a view list and the list contains an
eligible materialized view, then Oracle uses that view regardless of its cost.

Oracle does not consider views outside of the list. If you do not specify a view list,
then Oracle searches for an eligible materialized view and always uses it regardless of
the cost of the final plan.

See Also:

» Oracle Database Concepts and Oracle Database Advanced
Replication for more information on materialized views

» Oracle Database Data Warehousing Guide for more information on
using REWRITE with materialized views

STAR_TRANSFORMATION Hint

O® ®
@ STAR_TRANSFORMATION | @

(See "Specifying a Query Block in a Hint" on page 2-73)

The STAR_TRANSFORMATION hint instructs the optimizer to use the best plan in
which the transformation has been used. Without the hint, the optimizer could make a
query optimization decision to use the best plan generated without the transformation,
instead of the best plan for the transformed query. For example:

SELECT /*+ STAR_TRANSFORMATION */ *
FROM sales s, times t, products p, channels c
WHERE s.time_id = t.time_id
AND s.prod_id = p.product_id

Basic Elements of Oracle SQL 2-95

Comments

AND s.channel_id = c.channel_id
AND p.product_status = 'obsolete';

Even if the hint is specified, there is no guarantee that the transformation will take
place. The optimizer generates the subqueries only if it seems reasonable to do so. If no
subqueries are generated, then there is no transformed query, and the best plan for the
untransformed query is used, regardless of the hint.

See Also:

» Oracle Database Data Warehousing Guide for a full discussion of
star transformation.

» Oracle Database Reference for more information on the STAR_
TRANSFORMATION_ENABLED initialization parameter.

UNNEST Hint

0l0ICEDY0

(See "Specifying a Query Block in a Hint" on page 2-73)

The UNNEST hint instructs the optimizer to unnest and merge the body of the
subquery into the body of the query block that contains it, allowing the optimizer to
consider them together when evaluating access paths and joins.

Before a subquery is unnested, the optimizer first verifies whether the statement is
valid. The statement must then must pass heuristic and query optimization tests. The
UNNEST hint instructs the optimizer to check the subquery block for validity only. If
the subquery block is valid, then subquery unnesting is enabled without checking the
heuristics or costs.

See Also:

n "Collection Unnesting: Examples” on page 19-49 for more
information on unnesting nested subqueries and the conditions
that make a subquery block valid

» Oracle Database Performance Tuning Guide for additional
information on subquery unnesting

USE_CONCAT Hint

0lOICIDI0

(See "Specifying a Query Block in a Hint" on page 2-73)

The USE_CONCAT hint instructs the optimizer to transform combined OR-conditions in
the WHERE clause of a query into a compound query using the UNION ALL set operator.
Without this hint, this transformation occurs only if the cost of the query using the
concatenations is cheaper than the cost without them. The USE_CONCAT hint overrides
the cost consideration. For example:

SELECT /*+ USE_CONCAT */ *
FROM employees e
WHERE manager_id = 108
OR department_id = 110;

2-96 Oracle Database SQL Language Reference

Comments

See Also: The "NO_EXPAND Hint" on page 2-85, which is the
opposite of this hint and Oracle Database Performance Tuning Guide for a
discussion of OR-expansion

USE_HASH Hint

queryblock
oL 2N G 00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The USE_HASH hint instructs the optimizer to join each specified table with another
row source using a hash join. For example:

SELECT /*+ USE_HASH(1 h) */ *
FROM orders h, order_items 1
WHERE l.order_id = h.order_id

AND 1.order_id > 3500;

USE_MERGE Hint

@ queryblock
@3 (@)D

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The USE_MERGE hint instructs the optimizer to join each specified table with another
row source using a sort-merge join. For example:

SELECT /*+ USE_MERGE (employees departments) */ *
FROM employees, departments
WHERE employees.department_id = departments.department_id;

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and
ORDERED hints. The optimizer uses those hints when the referenced table is forced to
be the inner table of a join. The hints are ignored if the referenced table is the outer
table.

USE_NL Hint

The USE_NL hint instructs the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

queryblock
- EEDO YN @) 0o

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The USE_NL hint instructs the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and
ORDERED hints. The optimizer uses those hints when the referenced table is forced to
be the inner table of a join. The hints are ignored if the referenced table is the outer
table.

In the following example, where a nested loop is forced through a hint, orders is
accessed through a full table scan and the filter condition 1.order_id = h.order_

Basic Elements of Oracle SQL 2-97

Database Objects

idis applied to every row. For every row that meets the filter condition, order_
items is accessed through the index order_id.

SELECT /*+ USE_NL(1 h) */ h.customer_id, l.unit_price * l.quantity
FROM orders h ,order_items 1
WHERE 1l.order_id = h.order_id;

Adding an INDEX hint to the query could avoid the full table scan on orders,

resulting in an execution plan similar to one used on larger systems, even though it
might not be particularly efficient here.

USE_NL_WITH_INDEX Hint

A.'-queryblock A M
@ USE_NL_WITH_INDEX @ © s tablespec) @@

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The USE_NL_WITH_INDEX hint instructs the optimizer to join the specified table to
another row source with a nested loops join using the specified table as the inner table.
For example:

SELECT /*+ USE_NL_WITH_INDEX (1l item_product_ix) */ *
FROM orders h, order_items 1
WHERE 1l.order_id = h.order_id
AND 1l.order_id > 3500;

The following conditions apply:

» Ifnoindex is specified, then the optimizer must be able to use some index with at
least one join predicate as the index key.

» If an index is specified, then the optimizer must be able to use that index with at
least one join predicate as the index key.

Database Objects

Oracle Database recognizes objects that are associated with a particular schema and
objects that are not associated with any particular schema, as described in the sections
that follow.

Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a single
schema. Schema objects can be created and manipulated with SQL and include the
following types of objects:

Clusters

Constraints

Database links

Database triggers
Dimensions

External procedure libraries
Index-organized tables
Indexes

Indextypes

2-98 Oracle Database SQL Language Reference

Schema Object Names and Qualifiers

Java classes, Java resources, Java sources
Materialized views

Materialized view logs

Mining models

Object tables

Object types

Object views

Operators

Packages

Sequences

Stored functions, stored procedures
Synonyms

Tables

Views

Nonschema Objects

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

Contexts

Directories

Parameter files (PFILESs) and server parameter files (SPFILES)
Profiles

Restore points

Roles

Rollback segments

Tablespaces

Users

In this reference, each type of object is described in Chapter 10 through Chapter 19, in
the section devoted to the statement that creates the database object. These statements
begin with the keyword CREATE. For example, for the definition of a cluster, see
CREATE CLUSTER on page 14-2.

See Also: Oracle Database Concepts for an overview of database
objects

You must provide names for most types of database objects when you create them.
These names must follow the rules listed in the following sections.

Schema Object Names and Qualifiers

Some schema objects are made up of parts that you can or must name, such as the
columns in a table or view, index and table partitions and subpartitions, integrity
constraints on a table, and objects that are stored within a package, including
procedures and stored functions. This section provides:

= Rules for naming schema objects and schema object location qualifiers

= Guidelines for naming schema objects and qualifiers

Basic Elements of Oracle SQL 2-99

Schema Object Names and Qualifiers

Note: Oracle uses system-generated names beginning with "sys_"
for implicitly generated schema objects and subobjects, and names
beginning with "ORA_" for some Oracle-supplied objects. Oracle
discourages you from using these prefixes in the names you explicitly
provide to your schema objects and subobjects to avoid possible
conflict in name resolution.

Schema Object Naming Rules

Every database object has a name. In a SQL statement, you represent the name of an
object with a quoted identifier or a nonquoted identifier.

A quoted identifier begins and ends with double quotation marks ("). If you name
a schema object using a quoted identifier, then you must use the double quotation
marks whenever you refer to that object.

A nonquoted identifier is not surrounded by any punctuation.

You can use either quoted or nonquoted identifiers to name any database object.
However, database names, global database names, and database link names are
always case insensitive and are stored as uppercase. If you specify such names as
quoted identifiers, then the quotation marks are silently ignored. Refer to CREATE
USER on page 17-25 for additional rules for naming users and passwords.

The following list of rules applies to both quoted and nonquoted identifiers unless
otherwise indicated:

1.

Names must be from 1 to 30 bytes long with these exceptions:
= Names of databases are limited to 8 bytes.
= Names of database links can be as long as 128 bytes.

If an identifier includes multiple parts separated by periods, then each attribute
can be up to 30 bytes long. Each period separator, as well as any surrounding
double quotation marks, counts as one byte. For example, suppose you identify a
column like this:

"schema"."table"."column"
The schema name can be 30 bytes, the table name can by 30 bytes, and the column

name can be 30 bytes. Each of the quotation marks and periods is a single-byte
character, so the total length of the identifier in this example can be up to 98 bytes.

Nonquoted identifiers cannot be Oracle Database reserved words. Quoted
identifiers can be reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object,
names might be further restricted by other product-specific reserved words.

Note: The reserved word ROWID is an exception to this rule. You
cannot use the uppercase word ROWID, either quoted or nonquoted, as
a column name. However, you can use the uppercase word as a
quoted identifier that is not a column name, and you can use the word
with one or more lowercase letters (for example, "Rowid" or "rowid")
as any quoted identifier, including a column name.

2-100 Oracle Database SQL Language Reference

Schema Object Names and Qualifiers

See Also:

s Appendix D, "Oracle Database Reserved Words" for a listing of all
Oracle Database reserved words

s The manual for a specific product, such as Oracle Database PL/SQL
Language Reference, for a list of the reserved words of that product

The Oracle SQL language contains other words that have special meanings. These
words include datatypes, schema names, function names, the dummy system table
DUAL, and keywords (the uppercase words in SQL statements, such as
DIMENSION, SEGMENT, ALLOCATE, DISABLE, and so forth). These words are not
reserved. However, Oracle uses them internally in specific ways. Therefore, if you
use these words as names for objects and object parts, then your SQL statements
may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with SYS_ or ORA_ as schema object
names, and do not use the names of SQL built-in functions for the names of
schema objects or user-defined functions.

See Also: "Datatypes" on page 2-1, "About SQL Functions" on
page 5-1, and "Selecting from the DUAL Table" on page 9-15

You should use ASCII characters in database names, global database names, and
database link names, because ASCII characters provide optimal compatibility
across different platforms and operating systems.

Nonquoted identifiers must begin with an alphabetic character from your
database character set. Quoted identifiers can begin with any character.

Nonquoted identifiers can contain only alphanumeric characters from your
database character set and the underscore (_), dollar sign ($), and pound sign (#).
Database links can also contain periods (.) and "at" signs (@). Oracle strongly
discourages you from using $ and # in nonquoted identifiers.

Quoted identifiers can contain any characters and punctuations marks as well as
spaces. However, neither quoted nor nonquoted identifiers can contain double
quotation marks or the null character (\0).

Within a namespace, no two objects can have the same name.
The following schema objects share one namespace:

= Tables

s Views

= Sequences

»s Private synonyms

= Stand-alone procedures

= Stand-alone stored functions

= Packages

= Materialized views

» User-defined types

Each of the following schema objects has its own namespace:

s Indexes

Basic Elements of Oracle SQL 2-101

Schema Object Names and Qualifiers

s Constraints

n Clusters

= Database triggers

» Private database links
s Dimensions

Because tables and views are in the same namespace, a table and a view in the
same schema cannot have the same name. However, tables and indexes are in
different namespaces. Therefore, a table and an index in the same schema can have
the same name.

Each schema in the database has its own namespaces for the objects it contains.
This means, for example, that two tables in different schemas are in different
namespaces and can have the same name.

Each of the following nonschema objects also has its own namespace:
= User roles

= Public synonyms

» Public database links

n Tablespaces

» Profiles

» Parameter files (PFILEs) and server parameter files (SPFILES)

Because the objects in these namespaces are not contained in schemas, these
namespaces span the entire database.

8. Nonquoted identifiers are not case sensitive. Oracle interprets them as uppercase.
Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following names
to different objects in the same namespace:

employees

"employees"
"Employees"
"EMPLOYEES"

Note that Oracle interprets the following names the same, so they cannot be used
for different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

9. Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

10. Procedures or functions contained in the same package can have the same name, if
their arguments are not of the same number and datatypes. Creating multiple
procedures or functions with the same name in the same package with different
arguments is called overloading the procedure or function.

Schema Object Naming Examples

The following examples are valid schema object names:

2-102 Oracle Database SQL Language Reference

Syntax for Schema Objects and Parts in SQL Statements

last_name

horse

hr.hire_date

"EVEN THIS & THAT!"
a_very_long_and_valid_name

All of these examples adhere to the rules listed in "Schema Object Naming Rules" on
page 2-100. The following example is not valid, because it exceeds 30 characters:
a_very_very_long_and_valid_name

Although column aliases, table aliases, usernames, and passwords are not objects or

parts of objects, they must also follow these naming rules unless otherwise specified in
the rules themselves.

Schema Object Naming Guidelines

Here are several helpful guidelines for naming objects and their parts:

= Use full, descriptive, pronounceable names (or well-known abbreviations).
= Use consistent naming rules.

= Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt, choose
the more descriptive name, because the objects in the database may be used by many
people over a period of time. Your counterpart ten years from now may have difficulty
understanding a table column with a name like pmdd instead of payment_due_date.

Using consistent naming rules helps users understand the part that each table plays in
your application. One such rule might be to begin the names of all tables belonging to
the FINANCE application with fin_.

Use the same names to describe the same things across tables. For example, the
department number columns of the sample employees and departments tables are
both named department_id.

Syntax for Schema Objects and Parts in SQL Statements

This section tells you how to refer to schema objects and their parts in the context of a
SQL statement. This section shows you:

= The general syntax for referring to an object

s How Oracle resolves a reference to an object

= How to refer to objects in schemas other than your own

= How to refer to objects in remote databases

= How to refer to table and index partitions and subpartitions

The following diagram shows the general syntax for referring to an object or a part:

database_object or_part.:=
.
(object)

where:

Basic Elements of Oracle SQL 2-103

Syntax for Schema Objects and Parts in SQL Statements

m object is the name of the object.

»s schema is the schema containing the object. The schema qualifier lets you refer to
an object in a schema other than your own. You must be granted privileges to refer
to objects in other schemas. If you omit schema, then Oracle assumes that you are
referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown
with list item 7 on page 2-101. Nonschema objects, also shown with list item 7,
cannot be qualified with schema because they are not schema objects. An
exception is public synonyms, which can optionally be qualified with "PUBLIC".
The quotation marks are required.

» part isa part of the object. This identifier lets you refer to a part of a schema
object, such as a column or a partition of a table. Not all types of objects have
parts.

= dblink applies only when you are using the Oracle Database distributed
functionality. This is the name of the database containing the object. The dblink
qualifier lets you refer to an object in a database other than your local database. If
you omit dblink, then Oracle assumes that you are referring to an object in your
local database. Not all SQL statements allow you to access objects on remote
databases.

You can include spaces around the periods separating the components of the reference
to the object, but it is conventional to omit them.

How Oracle Database Resolves Schema Object References

When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating the
object, Oracle performs the operation specified by the statement on the object. If the
named object cannot be found in the appropriate namespace, then Oracle returns an
error.

The following example illustrates how Oracle resolves references to objects within SQL
statements. Consider this statement that adds a row of data to a table identified by the
name departments:

INSERT INTO departments VALUES (
280, 'ENTERTAINMENT CLERK', 206, 1700);

Based on the context of the statement, Oracle determines that departments can be:
= A table in your own schema

= A view in your own schema

= A private synonym for a table or view

= A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering namespaces outside your schema. In this example,
Oracle attempts to resolve the name departments as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonymes. If the object is a private synonym,
then Oracle locates the object for which the synonym stands. This object could be
in your own schema, another schema, or on another database. The object could
also be another synonym, in which case Oracle locates the object for which this
synonym stands.

2-104 Oracle Database SQL Language Reference

Syntax for Schema Objects and Parts in SQL Statements

2, If the object is in the namespace, then Oracle attempts to perform the statement on
the object. In this example, Oracle attempts to add the row of data to
departments. If the object is not of the correct type for the statement, then Oracle
returns an error. In this example, departments must be a table, view, or a private
synonym resolving to a table or view. If departments is a sequence, then Oracle
returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches the
namespace containing public synonyms. If the object is in that namespace, then
Oracle attempts to perform the statement on it. If the object is not of the correct
type for the statement, then Oracle returns an error. In this example, if
departments is a public synonym for a sequence, then Oracle returns an error.

If a public synonym has any dependent tables or user-defined types, then you cannot
create an object with the same name as the synonym in the same schema as the
dependent objects.

If a synonym does not have any dependent tables or user-defined types, then you can
create an object with the same name in the same schema as the dependent objects.
Oracle invalidates any dependent objects and attempts to revalidate them when they
are next accessed.

See Also: Oracle Database PL/SQL Language Reference for information
about how PL/SQL resolves identifier names

References to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the
schema name:

schema.object

For example, this statement drops the employees table in the sample schema hr:

DROP TABLE hr.employees;

References to Objects in Remote Databases

To refer to objects in databases other than your local database, follow the object name
with the name of the database link to that database. A database link is a schema object
that causes Oracle to connect to a remote database to access an object there. This
section tells you:

s How to create database links

= How to use database links in your SQL statements

Creating Database Links

You create a database link with the statement CREATE DATABASE LINK on
page 14-32. The statement lets you specify this information about the database link:

s The name of the database link
= The database connect string to access the remote database
s The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Basic Elements of Oracle SQL 2-105

Syntax for Schema Objects and Parts in SQL Statements

Database Link Names When you create a database link, you must specify its name.
Database link names are different from names of other types of objects. They can be as
long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the
database to which the database link refers and the location of that database in the
hierarchy of database names. The following syntax diagram shows the form of the
name of a database link:

dblink::=

.] @ connect_descriptor
—(database)

where:

» database should specify the name portion of the global name of the remote
database to which the database link connects. This global name is stored in the
data dictionary of the remote database. You can see this name in the GLOBAL_
NAME data dictionary view.

» domainshould specify the domain portion of the global name of the remote
database to which the database link connects. If you omit domain from the name
of a database link, then Oracle qualifies the database link name with the domain of
your local database as it currently exists in the data dictionary.

» connect_descriptor lets you further qualify a database link. Using connect
descriptors, you can create multiple database links to the same database. For
example, you can use connect descriptors to create multiple database links to
different instances of the Oracle Real Application Clusters that access the same
database.

The combination database. domain is sometimes called the service name.

See Also: Oracle Database Net Services Administrator’s Guide

Username and Password Oracle uses the username and password to connect to the
remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by Oracle
Net to access the remote database. For information on writing database connect
strings, see the Oracle Net documentation for your specific network protocol. The
database string for a database link is optional.

References to Database Links

Database links are available only if you are using Oracle distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

s The complete database link name as stored in the data dictionary, including the
database, domain, and optional connect_descriptor components.

» The partial database link name is the database and optional connect_
descriptor components, but not the domain component.

Oracle performs these tasks before connecting to the remote database:

2-106 Oracle Database SQL Language Reference

Syntax for Schema Objects and Parts in SQL Statements

1. If the database link name specified in the statement is partial, then Oracle expands
the name to contain the domain of the local database as found in the global
database name stored in the data dictionary. (You can see the current global
database name in the GLOBAL_NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the same
name as the database link in the statement. Then, if necessary, it searches for a
public database link with the same name.

s Oracle always determines the username and password from the first matching
database link (either private or public). If the first matching database link has
an associated username and password, then Oracle uses it. If it does not have
an associated username and password, then Oracle uses your current
username and password.

s If the first matching database link has an associated database string, then
Oracle uses it. Otherwise Oracle searches for the next matching (public)
database link. If no matching database link is found, or if no matching link has
an associated database string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing the
remote database, if the value of the GLOBAL_NAMES parameter is true, then
Oracle verifies that the database. domain portion of the database link name
matches the complete global name of the remote database. If this condition is true,
then Oracle proceeds with the connection, using the username and password
chosen in Step 2. If not, Oracle returns an error.

4. If the connection using the database string, username, and password is successful,
then Oracle attempts to access the specified object on the remote database using
the rules for resolving object references and referring to objects in other schemas
discussed earlier in this section.

You can disable the requirement that the database. domain portion of the database
link name must match the complete global name of the remote database by setting to
FALSE the initialization parameter GLOBAL_NAMES or the GLOBAL_NAMES parameter
of the ALTER SYSTEM or ALTER SESSION statement.

See Also: Oracle Database Administrator’s Guide for more information
on remote name resolution

References to Partitioned Tables and Indexes

Tables and indexes can be partitioned. When partitioned, these schema objects consist
of a number of parts called partitions, all of which have the same logical attributes.
For example, all partitions in a table share the same column and constraint definitions,
and all partitions in an index share the same index columns.

Partition-extended and subpartition-extended names let you perform some
partition-level and subpartition-level operations, such as deleting all rows from a
partition or subpartition, on only one partition or subpartition. Without extended
names, such operations would require that you specify a predicate (WHERE clause). For
range- and list-partitioned tables, trying to phrase a partition-level operation with a
predicate can be cumbersome, especially when the range partitioning key uses more
than one column. For hash partitions and subpartitions, using a predicate is more
difficult still, because these partitions and subpartitions are based on a system-defined
hash function.

Partition-extended names let you use partitions as if they were tables. An advantage of
this method, which is most useful for range-partitioned tables, is that you can build
partition-level access control mechanisms by granting (or revoking) privileges on these

Basic Elements of Oracle SQL 2-107

Syntax for Schema Objects and Parts in SQL Statements

views to (or from) other users or roles. To use a partition as a table, create a view by
selecting data from a single partition, and then use the view as a table.

Syntax You can specify partition-extended or subpartition-extended table names in

any SQL statements in which the partition extended name or subpartition_
extended_name element appears in the syntax.

partition_extended_name::=

PARTITION |->(panition)

PARTITION |—>| FOR artition_key_value

p

subpartition_extended_name::=

SUBPARTITION |->(subpanition)

M

N
subpartition_key_value

The DML statements INSERT, UPDATE, and DELETE and the ANALYZE statement
requires parentheses around the partition or subpartition name. This small distinction
is reflected in the partition_extension_clause:

SUBPARTITION |—>| FOR

partition_extension_clause::=

PARTITION

SUBPARTITION

In partition extended name, subpartition_extended_name, and
partition_extension_clause, the PARTITION FOR and SUBPARTITION FOR
clauses let you refer to a partition without using its name. They are valid with any
type of partitioning and are especially useful for interval partitions. Interval partitions
are created automatically as needed when data is inserted into a table.

For the respective partition_value, specify one value for each partitioning key
column. For multicolumn partitioning keys, specify one value for each partitioning
key. For composite partitions, specify one value for each partitioning key, followed by
one value for each subpartitioning key. All partitioning key values are comma
separated. For interval partitions, you can specify only one partition value, and it
must be a valid NUMBER or datetime value. Your SQL statement will operate on the
partition or subpartitions that contain the values you specify.

See Also: The CREATE TABLE "INTERVAL Clause" on page 15-47 for
more information on interval partitions

2-108 Oracle Database SQL Language Reference

Syntax for Schema Objects and Parts in SQL Statements

Restrictions on Extended Names Currently, the use of partition-extended and
subpartition-extended table names has the following restrictions:

= No remote tables: A partition-extended or subpartition-extended table name
cannot contain a database link (dblink) or a synonym that translates to a table with
a dblink. To use remote partitions and subpartitions, create a view at the remote
site that uses the extended table name syntax and then refer to the remote view.

= No synonyms: A partition or subpartition extension must be specified with a base
table. You cannot use synonyms, views, or any other objects.

s The PARTITION FOR and SUBPARTITION FOR clauses are not valid for DDL
operations on views.

Example In the following statement, sales is a partitioned table with partition
sales_gl_2000. You can create a view of the single partition sales_gl_ 2000, and
then use it as if it were a table. This example deletes rows from the partition.

CREATE VIEW Q1_2000_sales AS
SELECT * FROM sales PARTITION (SALES_Q1_2000);

DELETE FROM Q1_2000_sales WHERE amount_sold < 0;

References to Object Type Attributes and Methods

To refer to object type attributes or methods in a SQL statement, you must fully qualify
the reference with a table alias. Consider the following example from the sample
schema oe, which contains a type cust_address_typ and a table customers with
a cust_address column based on the cust_address_typ:

CREATE TYPE cust_address_typ
OID '82A4AF6A4CD1656DE034080020E0EE3D"

AS OBJECT

(street_address VARCHAR2 (40)
, postal_code VARCHAR2 (10)
, city VARCHAR2 (30)
, state_province VARCHAR2 (10)
, country_id CHAR(2)
)

/

CREATE TABLE customers
(customer_id NUMBER (6)
, cust_first_name VARCHAR2 (20) CONSTRAINT cust_fname_nn NOT NULL
, cust_last_name VARCHAR2 (20) CONSTRAINT cust_lname_nn NOT NULL
, cust_address cust_address_typ

In a SQL statement, reference to the postal_code attribute must be fully qualified
using a table alias, as illustrated in the following example:

SELECT c.cust_address.postal_code FROM customers c;

UPDATE customers ¢ SET c.cust_address.postal_code = 'GU13 BE5'
WHERE c.cust_address.city = 'Fleet';

To reference a member method that does not accept arguments, you must provide

empty parentheses. For example, the sample schema oe contains an object table
categories_tab, based on catalog_typ, which contains the member function

Basic Elements of Oracle SQL 2-109

Syntax for Schema Objects and Parts in SQL Statements

getCatalogName. In order to call this method in a SQL statement, you must provide
empty parentheses as shown in this example:

SELECT TREAT (VALUE (c) AS catalog_typ) .getCatalogName() "Catalog Type"
FROM categories_tab c
WHERE category_id = 90;

Catalog Type

online catalog

2-110 Oracle Database SQL Language Reference

3

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table.
You can select from pseudocolumns, but you cannot insert, update, or delete their
values. A pseudocolumn is also similar to a function without arguments (refer to
Chapter 5, "Functions". However, functions without arguments typically return the
same value for every row in the result set, whereas pseudocolumns typically return a
different value for each row.

This chapter contains the following sections:
» Hierarchical Query Pseudocolumns
= Sequence Pseudocolumns

= Version Query Pseudocolumns

» COLUMN_VALUE Pseudocolumn
s OBJECT_ID Pseudocolumn

s OBJECT_VALUE Pseudocolumn

= ORA_ROWSCN Pseudocolumn

= ROWID Pseudocolumn

= ROWNUM Pseudocolumn

s XMLDATA Pseudocolumn

Hierarchical Query Pseudocolumns

The hierarchical query pseudocolumns are valid only in hierarchical queries. The
hierarchical query pseudocolumns are:

s CONNECT_BY_ISCYCLE Pseudocolumn
s CONNECT_BY_ISLEAF Pseudocolumn
s LEVEL Pseudocolumn

To define a hierarchical relationship in a query, you must use the START WITH and
CONNECT BY clauses.

CONNECT BY ISCYCLE Pseudocolumn

The CONNECT_BY_ISCYCLE pseudocolumn returns 1 if the current row has a child
which is also its ancestor. Otherwise it returns 0.

Pseudocolumns 3-1

Hierarchical Query Pseudocolumns

You can specify CONNECT_BY_ISCYCLE only if you have specified the NOCYCLE
parameter of the CONNECT BY clause. NOCYCLE enables Oracle to return the results of
a query that would otherwise fail because of a CONNECT BY loop in the data.

See Also: "Hierarchical Queries" on page 9-3 for more information
about the NOCYCLE parameter and "Hierarchical Query Examples" on
page 9-5 for an example that uses the CONNECT_BY_ISCYCLE
pseudocolumn

CONNECT BY_ISLEAF Pseudocolumn

The CONNECT_BY_ ISLEAF pseudocolumn returns 1 if the current row is a leaf of the
tree defined by the CONNECT BY condition. Otherwise it returns 0. This information
indicates whether a given row can be further expanded to show more of the hierarchy.

CONNECT_BY_ISLEAF Example The following example shows the first three levels
of the hr . employees table, indicating for each row whether it is a leaf row (indicated
by 1 in the IsLeaf column) or whether it has child rows (indicated by 0 in the
IsLeaf column):

SELECT last_name "Employee", CONNECT_BY_ISLEAF "IsLeaf",
LEVEL, SYS CONNECT BY PATH(last_name, '/') "Path"
FROM employees
WHERE LEVEL <= 3 AND department_id = 80
START WITH employee_id = 100
CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 4;

Employee IsLeaf LEVEL Path

Abel 1 3 /King/Zlotkey/Abel

Ande 1 3 /King/Errazuriz/Ande

Banda 1 3 /King/Errazuriz/Banda

Bates 1 3 /King/Cambrault/Bates

Bernstein 1 3 /King/Russell/Bernstein

Bloom 1 3 /King/Cambrault/Bloom

Cambrault 0 2 /King/Cambrault

Cambrault 1 3 /King/Russell/Cambrault

Doran 1 3 /King/Partners/Doran

Errazuriz 0 2 /King/Errazuriz

Fox 1 3 /King/Cambrault/Fox
See Also: "Hierarchical Queries" on page 9-3 and SYS_CONNECT_
BY_PATH on page 5-186

LEVEL Pseudocolumn

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for
a root row, 2 for a child of a root, and so on. A root row is the highest row within an
inverted tree. A child row is any nonroot row. A parent row is any row that has
children. A leaf row is any row without children. Figure 3-1 shows the nodes of an
inverted tree with their LEVEL values.

3-2 Oracle Database SQL Language Reference

Sequence Pseudocolumns

Figure 3—1 Hierarchical Tree

Level 1 pfgr%té X

Level 2 pa::rﬁ?é/ p%rﬁ?dt/

Lovets | it || i

Level 4 child/ child/ child/
leaf leaf leaf

See Also: "Hierarchical Queries" on page 9-3 for information on
hierarchical queries in general and "IN Condition" on page 7-22 for
restrictions on using the LEVEL pseudocolumn

Sequence Pseudocolumns

A sequence is a schema object that can generate unique sequential values. These
values are often used for primary and unique keys. You can refer to sequence values in
SQL statements with these pseudocolumns:

= CURRVAL: Returns the current value of a sequence
= NEXTVAL: Increments the sequence and returns the next value
You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence .NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you
must have been granted either SELECT object privilege on the sequence or SELECT
ANY SEQUENCE system privilege, and you must qualify the sequence with the schema
containing it:

schema . sequence.CURRVAL
schema . sequence .NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the
sequence with a complete or partial name of a database link:

schema . sequence.CURRVAL@dAblink
schema . sequence .NEXTVAL@dAblink

A sequence can be accessed by many users concurrently with no waiting or locking.

See Also: "References to Objects in Remote Databases" on page 2-106
for more information on referring to database links

Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in the following locations:

» The select list of a SELECT statement that is not contained in a subquery,
materialized view, or view

Pseudocolumns 3-3

Sequence Pseudocolumns

s The select list of a subquery in an INSERT statement

s The VALUES clause of an INSERT statement

s The SET clause of an UPDATE statement

Restrictions on Sequence Values You cannot use CURRVAL and NEXTVAL in the
following constructs:

s A subquery in a DELETE, SELECT, or UPDATE statement

= A query of a view or of a materialized view

= A SELECT statement with the DISTINCT operator

s A SELECT statement with a GROUP BY clause or ORDER BY clause

m A SELECT statement that is combined with another SELECT statement with the
UNION, INTERSECT, or MINUS set operator

s The WHERE clause of a SELECT statement
s The DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement
s The condition of a CHECK constraint

Within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced LONG
columns, updated tables, and locked tables must be located on the same database.

How to Use Sequence Values

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVAL returns the initial value of the
sequence. Subsequent references to NEXTVAL increment the sequence value by the
defined increment and return the new value. Any reference to CURRVAL always
returns the current value of the sequence, which is the value returned by the last
reference to NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the
sequence with NEXTVAL. Refer to CREATE SEQUENCE on page 16-72 for information
on sequences.

Within a single SQL statement containing a reference to NEXTVAL, Oracle increments
the sequence once:

= For each row returned by the outer query block of a SELECT statement. Such a
query block can appear in the following places:

- A top-level SELECT statement

- An INSERT .. SELECT statement (either single-table or multitable). For a
multitable insert, the reference to NEXTVAL must appear in the VALUES clause,
and the sequence is updated once for each row returned by the subquery, even
though NEXTVAL may be referenced in multiple branches of the multitable
insert.

— A CREATE TABLE ... AS SELECT statement

— A CREATEMATERIALIZED VIEW ... AS SELECT statement
» For each row updated in an UPDATE statement
» For each INSERT statement containing a VALUES clause

s For each INSERT ... [ALL | FIRST] statement (multitable insert). A multitable
insert is considered a single SQL statement. Therefore, a reference to the NEXTVAL

3-4 Oracle Database SQL Language Reference

Sequence Pseudocolumns

of a sequence will increase the sequence only once for each input record coming
from the SELECT portion of the statement. If NEXTVAL is specified more than once
in any part of the INSERT ... [ALL | FIRST | statement, then the value will be the
same for all insert branches, regardless of how often a given record might be
inserted.

= For each row merged by a MERGE statement. The reference to NEXTVAL can
appear in the merge_insert_clause or the merge_update_clause or both.
The NEXTVALUE value is incremented for each row updated and for each row
inserted, even if the sequence number is not actually used in the update or insert
operation. If NEXTVAL is specified more than once in any of these locations, then
the sequence is incremented once for each row and returns the same value for all
occurrences of NEXTVAL for that row.

s For each input row in a multitable INSERT ALL statement. NEXTVAL is
incremented once for each row returned by the subquery, regardless of how many
occurrences of the insert_into_clause map to each row.

If any of these locations contains more than one reference to NEXTVAL, then Oracle
increments the sequence once and returns the same value for all occurrences of
NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then
Oracle increments the sequence and returns the same value for both CURRVAL and
NEXTVAL.

Finding the next value of a sequence: Example This example selects the next value
of the employee sequence in the sample schema hr:

SELECT employees_seq.nextval
FROM DUAL;

Inserting sequence values into a table: Example This example increments the
employee sequence and uses its value for a new employee inserted into the sample
table hr . employees:

INSERT INTO employees
VALUES (employees_seq.nextval, 'John', 'Doe', 'jdoe',
'555-1212"', TO_DATE (SYSDATE), 'PU_CLERK', 2500, null, null,
30);

Reusing the current value of a sequence: Example This example adds a new order
with the next order number to the master order table. It then adds suborders with this
number to the detail order table:

INSERT INTO orders (order_id, order_date, customer_id)
VALUES (orders_seqg.nextval, TO_DATE(SYSDATE), 106);

INSERT INTO order_items (order_id, line_item_id, product_id)
VALUES (orders_seq.currval, 1, 2359);

INSERT INTO order_items (order_id, line_item id, product_id)
VALUES (orders_seq.currval, 2, 3290);

INSERT INTO order_items (order_id, line_item_id, product_id)
VALUES (orders_seq.currval, 3, 2381);

Pseudocolumns 3-5

Version Query Pseudocolumns

Version Query Pseudocolumns

The version query pseudocolumns are valid only in Oracle Flashback Version Query,
which is a form of Oracle Flashback Query. The version query pseudocolumns are:

= VERSIONS_STARTTIME: Returns the timestamp of the first version of the rows
returned by the query.

m VERSIONS_STARTSCN: Returns the SCN of the first version of the rows returned
by the query.

= VERSIONS_ENDTIME: Returns the timestamp of the last version of the rows
returned by the query.

= VERSIONS_ENDSCN: Returns the SCN of the last version of the rows returned by
the query.

m VERSIONS_XID: For each version of each row, returns the transaction ID (a RAW
number) of the transaction that created that row version.

= VERSIONS_OPERATION: For each version of each row, returns a single character
representing the operation that caused that row version. The values returned are I
(for an insert operation), U (for an update operation) or D (for a delete operation).

See Also: flashback_query_clause on page 19-15 for more information
on version queries

COLUMN_VALUE Pseudocolumn

When you refer to an XMLTable construct without the COLUMNS clause, or when you
use the TABLE function to refer to a scalar nested table type, the database returns a
virtual table with a single column. This name of this pseudocolumn is COLUMN_
VALUE.

In the context of XML Table, the value returned is of datatype XMLType. For example,
the following two statements are equivalent, and the output for both shows COLUMN_
VALUE as the name of the column being returned:

SELECT * FROM XMLTABLE('<a>123");

COLUMN_VALUE

<a>123
SELECT COLUMN_VALUE FROM (XMLTable('<a>123'));

COLUMN_VALUE

<a>123

In the context of a TABLE function, the value returned is the datatype of the collection
element. The following statements create the two levels of nested tables illustrated in
"Multi-level Collection Example" on page 15-65 to show the uses of COLUMN_VALUE in
this context:

CREATE TYPE phone AS TABLE OF NUMBER;

/

CREATE TYPE phone_list AS TABLE OF phone;

/

The next statement uses COLUMN_VALUE to select from the phone type:

SELECT t.COLUMN_VALUE from table(phone(l,2,3)) t;

3-6 Oracle Database SQL Language Reference

OBJECT_ID Pseudocolumn

COLUMN_VALUE

In a nested type, you can use the COLUMN_VALUE pseudocolumn in both the select list
and the TABLE function:

SELECT t.COLUMN_VALUE FROM
TABLE (phone_list (phone(1,2,3))) p, TABLE(p.COLUMN_VALUE) t;
COLUMN_VALUE

The keyword COLUMN_VALUE is also the name that Oracle Database generates for the
scalar value of an inner nested table without a column or attribute name, as shown in
the example that follows. In this context, COLUMN_VALUE is not a pseudocolumn, but
an actual column name.

CREATE TABLE my_customers (
cust_id NUMBER,
name VARCHAR2 (25),
phone_numbers phone_list,
credit_limit NUMBER)
NESTED TABLE phone_numbers STORE AS outer_ntab
(NESTED TABLE COLUMN_VALUE STORE AS inner_ntab);

See Also:

= XMLTABLE on page 5-248 for information on that function

» table_collection_expression::= on page 18-56 for information on the
TABLE function

= ALTER TABLE examples in "Nested Tables: Examples" on
page 12-84

OBJECT ID Pseudocolumn

The OBJECT_ID pseudocolumn returns the object identifier of a column of an object
table or view. Oracle uses this pseudocolumn as the primary key of an object table.
OBJECT_ID is useful in INSTEAD OF triggers on views and for identifying the ID of a
substitutable row in an object table.

Note: In earlier releases, this pseudocolumn was called SYS_NC_
0IDs. That name is still supported for backward compatibility.
However, Oracle recommends that you use the more intuitive name
OBJECT_ID.

See Also: Oracle Database Object-Relational Developer’s Guide for
examples of the use of this pseudocolumn

Pseudocolumns 3-7

OBJECT_VALUE Pseudocolumn

OBJECT VALUE Pseudocolumn

The OBJECT_VALUE pseudocolumn returns system-generated names for the columns
of an object table, XMLType table, object view, or XMLType view. This pseudocolumn is
useful for identifying the value of a substitutable row in an object table and for
creating object views with the WITH OBJECT IDENTIFIER clause.

Note: In earlier releases, this pseudocolumn was called SYS_NC_
ROWINFOS. That name is still supported for backward compatibility.
However, Oracle recommends that you use the more intuitive name
OBJECT_VALUE.

See Also:

m object_table on page 15-60 and object_view_clause on page 17-35 for
more information on the use of this pseudocolumn

» Oracle Database Object-Relational Developer’s Guide for examples of
the use of this pseudocolumn

ORA_ROWSCN Pseudocolumn

For each row, ORA_ROWSCN returns the conservative upper bound system change
number (SCN) of the most recent change to the row. This pseudocolumn is useful for
determining approximately when a row was last updated. It is not absolutely precise,
because Oracle tracks SCNs by transaction committed for the block in which the row
resides. You can obtain a more fine-grained approximation of the SCN by creating
your tables with row-level dependency tracking. Refer to CREATE TABLE ...
NOROWDEPENDENCIES | ROWDEPENDENCIES on page 15-57 for more
information on row-level dependency tracking.

You cannot use this pseudocolumn in a query to a view. However, you can use it to
refer to the underlying table when creating a view. You can also use this
pseudocolumn in the WHERE clause of an UPDATE or DELETE statement.

ORA_ROWSCN is not supported for Flashback Query. Instead, use the version query
pseudocolumns, which are provided explicitly for Flashback Query. Refer to the
SELECT ... flashback_query_clause on page 19-15 for information on Flashback Query
and "Version Query Pseudocolumns" on page 3-6 for additional information on those
pseudocolumns.

Restriction on ORA_ROWSCN: This pseudocolumn is not supported for external
tables.

Example The first statement below uses the ORA_ROWSCN pseudocolumn to get the
system change number of the last operation on the employees table. The second
statement uses the pseudocolumn with the SCN_TO_TIMESTAMP function to
determine the timestamp of the operation:

SELECT ORA_ROWSCN, last_name FROM employees WHERE employee_id = 188;

SELECT SCN_TO_TIMESTAMP (ORA_ROWSCN), last_name FROM employees
WHERE employee_id = 188;

See Also: SCN_TO_TIMESTAMP on page 5-164

3-8 Oracle Database SQL Language Reference

ROWNUM Pseudocolumn

ROWID Pseudocolumn

For each row in the database, the ROWID pseudocolumn returns the address of the row.
Oracle Database rowid values contain information necessary to locate a row:

» The data object number of the object
s The data block in the datafile in which the row resides
= The position of the row in the data block (first row is 0)

» The datafile in which the row resides (first file is 1). The file number is relative to
the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in
different tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the datatype ROWID or UROWID. Refer to
"Rowid Datatypes" on page 2-26 and "UROWID Datatype" on page 2-27 for more
information.

Rowid values have several important uses:

» They are the fastest way to access a single row.

s They can show you how the rows in a table are stored.
= They are unique identifiers for rows in a table.

You should not use ROWID as the primary key of a table. If you delete and reinsert a
row with the Import and Export utilities, for example, then its rowid may change. If
you delete a row, then Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause of a
query, these pseudocolumn values are not actually stored in the database. You cannot
insert, update, or delete a value of the ROWID pseudocolumn.

Example This statement selects the address of all rows that contain data for
employees in department 20:

SELECT ROWID, last_name
FROM employees
WHERE department_id = 20;

ROWNUM Pseudocolumn

Note: The ROW_NUMBER built-in SQL function provides superior
support for ordering the results of a query. Refer to ROW_NUMBER
on page 5-160 for more information.

For each row returned by a query, the ROWNUM pseudocolumn returns a number
indicating the order in which Oracle selects the row from a table or set of joined rows.
The first row selected has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this
example:

SELECT * FROM employees WHERE ROWNUM < 11;

If an ORDER BY clause follows ROWNUM in the same query, then the rows will be
reordered by the ORDER BY clause. The results can vary depending on the way the

Pseudocolumns 3-9

XMLDATA Pseudocolumn

rows are accessed. For example, if the ORDER BY clause causes Oracle to use an index
to access the data, then Oracle may retrieve the rows in a different order than without
the index. Therefore, the following statement does not necessarily return the same
rows as the preceding example:

SELECT * FROM employees WHERE ROWNUM < 11 ORDER BY last_name;

If you embed the ORDER BY clause in a subquery and place the ROWNUM condition in
the top-level query, then you can force the ROWNUM condition to be applied after the
ordering of the rows. For example, the following query returns the employees with the
10 smallest employee numbers. This is sometimes referred to as top-N reporting:

SELECT * FROM
(SELECT * FROM employees ORDER BY employee_id)
WHERE ROWNUM < 11;

In the preceding example, the ROWNUM values are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
employee_id in the subquery.

Conditions testing for ROWNUM values greater than a positive integer are always false.
For example, this query returns no rows:

SELECT * FROM employees
WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUM of 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROWNUM of 1 and
makes the condition false. All rows subsequently fail to satisfy the condition, so no
rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in this
example:

UPDATE my_table
SET columnl = ROWNUM;

Refer to the function ROW_NUMBER on page 5-160 for an alternative method of
assigning unique numbers to rows.

Note: Using ROWNUM in a query can affect view optimization. For
more information, see Oracle Database Concepts.

XMLDATA Pseudocolumn

Oracle stores XMLType data either in LOB or object-relational columns, based on
XMLSchema information and how you specify the storage clause. The XMLDATA
pseudocolumn lets you access the underlying LOB or object relational column to
specify additional storage clause parameters, constraints, indexes, and so forth.

Example The following statements illustrate the use of this pseudocolumn. Suppose
you create a simple table of XMLType:

CREATE TABLE xml_lob_tab of XMLTYPE;

The default storage is in a CLOB column. To change the storage characteristics of the

underlying LOB column, you can use the following statement:

ALTER TABLE xml_lob_tab MODIFY LOB (XMLDATA)

3-10 Oracle Database SQL Language Reference

XMLDATA Pseudocolumn

(STORAGE (BUFFER_POOL DEFAULT) CACHE) ;

Now suppose you have created an XMLSchema-based table like the xwarehouses
table created in "Using XML in SQL Statements" on page E-8. You could then use the
XMLDATA column to set the properties of the underlying columns, as shown in the
following statement:

ALTER TABLE xwarehouses ADD (UNIQUE (XMLDATA."WarehouseId"));

Pseudocolumns 3-11

XMLDATA Pseudocolumn

3-12 Oracle Database SQL Language Reference

4

Operators

An operator manipulates data items and returns a result. Syntactically, an operator
appears before or after an operand or between two operands.

This chapter contains these sections:
= About SQL Operators

= Arithmetic Operators

= Concatenation Operator

s Hierarchical Query Operators

= Set Operators

= Multiset Operators

» User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot by
themselves serve as the condition of a WHERE or HAVING clause in queries or
subqueries. For information on logical operators, which serve as conditions, refer to
Chapter 7, "Conditions".

About SQL Operators

Operators manipulate individual data items called operands or arguments. Operators
are represented by special characters or by keywords. For example, the multiplication
operator is represented by an asterisk (¥).

If you have installed Oracle Text, then you can use the SCORE operator, which is part
of that product, in Oracle Text queries. You can also create conditions with the built-in
Text operators, including CONTAINS, CATSEARCH, and MATCHES. For more
information on these Oracle Text elements, refer to Oracle Text Reference.

If you are using Oracle Expression Filter, then you can create conditions with the
built-in EVALUATE operator that is part of that product. For more information, refer to
Oracle Database Rules Manager and Expression Filter Developer’s Guide.

Operators 4-1

About SQL Operators

Note: The combined values of the NLLS_COMP and NL.S_ SORT
settings determine the rules by which characters are sorted and
compared. If NLS_COMP is set to LINGUISTIC for your database, then
all entities in this chapter will be interpreted according to the rules
specified by the NLS_SORT parameter. If NL.S_COMP is not set to
LINGUISTIC, then the functions are interpreted without regard to the
NLS_SORT setting. NLS_SORT can be explicitly set. If it is not set
explicitly, it is derived from NLS_LANGUAGE. Please refer to Oracle
Database Globalization Support Guide for more information on these
settings.

Unary and Binary Operators

The two general classes of operators are:

= unary: A unary operator operates on only one operand. A unary operator typically
appears with its operand in this format:

operator operand

= binary: A binary operator operates on two operands. A binary operator appears
with its operands in this format:
operandl operator operand2

Other operators with special formats accept more than two operands. If an operator is

given a null operand, then the result is always null. The only operator that does not
follow this rule is concatenation (| I).

Operator Precedence

Precedence is the order in which Oracle Database evaluates different operators in the
same expression. When evaluating an expression containing multiple operators,
Oracle evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle evaluates operators with equal precedence from left to right within
an expression.

Table 4-1 lists the levels of precedence among SQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 4-1 SQL Operator Precedence

Operator Operation

+, - (asunary operators), PRIOR, CONNECT_ Identity, negation, location in hierarchy
BY ROOT

*,/ Multiplication, division

+, - (asbinary operators), | | Addition, subtraction, concatenation
SQL conditions are evaluated after SQL See "Condition Precedence" on page 7-3
operators

Precedence Example In the following expression, multiplication has a higher
precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result to
1.

1+2%*3

4-2 Oracle Database SQL Language Reference

Arithmetic Operators

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS), which
combine sets of rows returned by queries, rather than individual data items. All set
operators have equal precedence.

See Also: "Hierarchical Query Operators" on page 4-5 and
"Hierarchical Queries" on page 9-3 for information on the PRIOR
operator, which is used only in hierarchical queries

Arithmetic Operators

You can use an arithmetic operator with one or two arguments to negate, add,
subtract, multiply, and divide numeric values. Some of these operators are also used in
datetime and interval arithmetic. The arguments to the operator must resolve to
numeric datatypes or to any datatype that can be implicitly converted to a numeric
datatype.

Unary arithmetic operators return the same datatype as the numeric datatype of the
argument. For binary arithmetic operators, Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that
datatype, and returns that datatype. Table 4-2 lists arithmetic operators.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on

page 2-40 for more information on implicit conversion, "Numeric
Precedence" on page 2-14 for information on numeric precedence, and
"Datetime/Interval Arithmetic" on page 2-20

Table 4-2 Arithmetic Operators

Operator Purpose Example

+- When these denote a positive or SELECT * FROM order_items
negative expression, they are unary WHERE quantity = -1
operators. ORDER BY order_id,

line_item id, product_id;
SELECT * FROM employees
WHERE -salary < 0
ORDER BY employee_id;

+- When they add or subtract, they are SELECT hire_date
binary operators. FROM employees

WHERE SYSDATE - hire_date

> 365 ORDER BY hire_date;

*/ Multiply, divide. These are binary UPDATE employees
operators. SET salary = salary * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate
double negation or the subtraction of a negative value. The characters -- are used to
begin comments within SQL statements. You should separate consecutive minus signs
with a space or parentheses. Refer to "Comments" on page 2-70 for more information
on comments within SQL statements.

Operators 4-3

Concatenation Operator

Concatenation Operator

The concatenation operator manipulates character strings and CLOB data. Table 4-3
describes the concatenation operator.

Table 4-3 Concatenation Operator

Operator Purpose Example
I Concatenates character strings SELECT 'Name is ' || last_name
and CLOB data. FROM employees

ORDER BY last_name;

The result of concatenating two character strings is another character string. If both
character strings are of datatype CHAR, then the result has datatype CHAR and is
limited to 2000 characters. If either string is of datatype VARCHAR2, the result has
datatype VARCHAR?2 and is limited to 4000 characters. If either argument is a CLOB, the
result is a temporary CLOB. Trailing blanks in character strings are preserved by
concatenation, regardless of the datatypes of the string or CLOB.

On most platforms, the concatenation operator is two solid vertical bars, as shown in
Table 4-3. However, some IBM platforms use broken vertical bars for this operator.
When moving SQL script files between systems having different character sets, such as
between ASCII and EBCDIC, vertical bars might not be translated into the vertical bar
required by the target Oracle Database environment. Oracle provides the CONCAT
character function as an alternative to the vertical bar operator for cases when it is
difficult or impossible to control translation performed by operating system or
network utilities. Use this function in applications that will be moved between
environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a
zero-length character string with another operand always results in the other operand,
so null can result only from the concatenation of two null strings. However, this may
not continue to be true in future versions of Oracle Database. To concatenate an
expression that might be null, use the NVL function to explicitly convert the expression
to a zero-length string.

See Also:

= "Character Datatypes" on page 2-8 for more information on the
differences between the CHAR and VARCHAR?2 datatypes

s The functions CONCAT on page 5-38 and NVL on page 5-115

» Oracle Database SecureFiles and Large Objects Developer’s Guide for
more information about CLOBs

Concatenation Example This example creates a table with both CHAR and VARCHAR2
columns, inserts values both with and without trailing blanks, and then selects these
values and concatenates them. Note that for both CHAR and VARCHAR2 columns, the
trailing blanks are preserved.

CREATE TABLE tabl (coll VARCHAR2(6), col2 CHAR(6),
col3 VARCHAR2(6), col4 CHAR(6));

INSERT INTO tabl (coll, col2, col3, cold)
VALUES (rabc', 'def ', 'ghi ', 'gklv);

SELECT coll]|col2]||col3]||cold "Concatenation"
FROM tabl;

4-4 Oracle Database SQL Language Reference

Set Operators

Concatenation

Hierarchical Query Operators

PRIOR

Two operators, PRIOR and CONNECT_BY_ROOT, are valid only in hierarchical queries.

In a hierarchical query, one expression in the CONNECT BY condi tion must be
qualified by the PRIOR operator. If the CONNECT BY conditionis compound, then
only one condition requires the PRIOR operator, although you can have multiple
PRIOR conditions. PRIOR evaluates the immediately following expression for the
parent row of the current row in a hierarchical query.

PRIOR is most commonly used when comparing column values with the equality
operator. (The PRIOR keyword can be on either side of the operator.) PRIOR causes
Oracle to use the value of the parent row in the column. Operators other than the
equal sign (=) are theoretically possible in CONNECT BY clauses. However, the
conditions created by these other operators can result in an infinite loop through the
possible combinations. In this case Oracle detects the loop at run time and returns an
error. Refer to "Hierarchical Queries" on page 9-3 for more information on this
operator, including examples.

CONNECT_BY_ROOT

CONNECT_BY_ROOT is a unary operator that is valid only in hierarchical queries.
When you qualify a column with this operator, Oracle returns the column value using
data from the root row. This operator extends the functionality of the CONNECT BY
[PRIOR] condition of hierarchical queries.

Restriction on CONNECT_BY_ROOT You cannot specify this operator in the START
WITH condition or the CONNECT BY condition.

See Also: "CONNECT_BY_ROOT Examples" on page 9-7

Set Operators

Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 4—4 lists SQL set
operators. They are fully described, including examples and restrictions on these
operators, in "The UNION [ALL], INTERSECT, MINUS Operators" on page 9-8.

Table 4-4 Set Operators

Operator Returns

UNION All distinct rows selected by either query

UNION ALL All rows selected by either query, including all duplicates
INTERSECT All distinct rows selected by both queries

MINUS All distinct rows selected by the first query but not the second

Operators 4-5

Multiset Operators

Multiset Operators
Multiset operators combine the results of two nested tables into a single nested table.

The examples related to multiset operators require that two nested tables be created
and loaded with data as follows:

First, make a copy of the oe.customers table called customers_demo:

CREATE TABLE customers_demo AS
SELECT * FROM customers;

Next, create a table type called cust_address_tab_typ. This type will be used
when creating the nested table columns.

CREATE TYPE cust_address_tab_typ AS
TABLE OF cust_address_typ
/

Now, create two nested table columns in the customers_demo table:

ALTER TABLE customers_demo
ADD (cust_address_ntab cust_address_tab_typ,
cust_address2_ntab cust_address_tab_typ)
NESTED TABLE cust_address_ntab STORE AS cust_address_ntab_store
NESTED TABLE cust_address2_ntab STORE AS cust_address2_ntab_store;

Finally, load data into the two new nested table columns using data from the cust_
address column of the oe . customers table:

UPDATE CUSTOMERS_DEMO cd
SET cust_address_ntab =
CAST (MULTISET (SELECT cust_address
FROM customers c
WHERE c.customer_id =
cd.customer_id) as cust_address_tab_typ);

UPDATE CUSTOMERS_DEMO cd
SET cust_address2_ntab =
CAST (MULTISET (SELECT cust_address
FROM customers c
WHERE c.customer_id =
cd.customer_id) as cust_address_tab_typ);

MULTISET EXCEPT

MULTISET EXCEPT takes as arguments two nested tables and returns a nested table
whose elements are in the first nested table but not in the second nested table. The two
input nested tables must be of the same type, and the returned nested table is of the
same type as well.

ALL

)

—>(nested,tab|e1)e| MULTISET |->| EXCEPT }

(nested_table2 }»

s The ALL keyword instructs Oracle to return all elements in nested_tablel that
are not in nested_table2. For example, if a particular element occurs m times in
nested_tablel and n times in nested_table2, then the result will have

(m-n) occurrences of the element if m >n and 0 occurrences if m<=n. ALL is the
default.

4-6 Oracle Database SQL Language Reference

Multiset Operators

s The DISTINCT keyword instructs Oracle to eliminate any element in nested_
tablel whichis also in nested_table2, regardless of the number of
occurrences.

= The element types of the nested tables must be comparable. Refer to "Comparison
Conditions" on page 7-4 for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of those
elements found in the first nested table but not in the second nested table:

SELECT customer_id, cust_address_ntab
MULTISET EXCEPT DISTINCT cust_address2_ntab multiset_except
FROM customers_demo;

CUSTOMER_ID MULTISET_ EXCEPT (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
101 CUST_ADDRESS_TAB_TYP (
102 CUST_ADDRESS_TAB_TYP (
103 CUST_ADDRESS_TAB_TYP (
104 CUST_ADDRESS_TAB_TYP (
105 CUST_ADDRESS_TAB_TYP (

The preceding example requires the table customers_demo and two nested table
columns containing data. Refer to "Multiset Operators" on page 4-6 to create this table
and nested table columns.

MULTISET INTERSECT

MULTISET INTERSECT takes as arguments two nested tables and returns a nested
table whose values are common in the two input nested tables. The two input nested
tables must be of the same type, and the returned nested table is of the same type as
well.

ALL

l DISTINCT l
—>(nested_table1>a| MULTISET |->| INTERSECT } 5 nested_table2)>

s The ALL keyword instructs Oracle to return all common occurrences of elements
that are in the two input nested tables, including duplicate common values and
duplicate common NULL occurrences. For example, if a particular value occurs m
times in nested_tablel and n times in nested_table2, then the result would
contain the element min (m, n) times. ALL is the default.

s The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

s The element types of the nested tables must be comparable. Refer to "Comparison
Conditions" on page 7-4 for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of those
elements found in both input nested tables:

SELECT customer_id, cust_address_ntab
MULTISET INTERSECT DISTINCT cust_address2_ntab multiset_intersect
FROM customers_demo
ORDER BY customer_id;

Operators 4-7

Multiset Operators

CUSTOMER_ID MULTISET INTERSECT (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID

CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))
CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and two nested table
columns containing data. Refer to "Multiset Operators" on page 4-6 to create this table
and nested table columns.

MULTISET UNION

MULTISET UNION takes as arguments two nested tables and returns a nested table
whose values are those of the two input nested tables. The two input nested tables
must be of the same type, and the returned nested table is of the same type as well.

ALL

)

—><nested_table1>a| MULTISET |->| UNION } 5 nested_table2)>

s The ALL keyword instructs Oracle to return all elements that are in the two input
nested tables, including duplicate values and duplicate NULL occurrences. This is
the default.

s The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

= The element types of the nested tables must be comparable. Refer to "Comparison
Conditions" on page 7-4 for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
elements from both input nested tables:

SELECT customer_id, cust_address_ntab
MULTISET UNION cust_address2_ntab multiset_union
FROM customers_demo
ORDER BY customer_id;

CUSTOMER_ID MULTISET_UNION (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)

101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'),
CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))

102 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'),
CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN',6'US'))

103 CUST_ADDRESS_TAB_TYP(CUST ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'),
CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))

104 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'),
CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))

105 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'),
CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and two nested table
columns containing data. Refer to "Multiset Operators" on page 4-6 to create this table

and nested table columns.

4-8 Oracle Database SQL Language Reference

User-Defined Operators

User-Defined Operators

Like built-in operators, user-defined operators take a set of operands as input and
return a result. However, you create them with the CREATE OPERATOR statement, and
they are identified by user-defined names. They reside in the same namespace as
tables, views, types, and standalone functions.

After you have defined a new operator, you can use it in SQL statements like any other
built-in operator. For example, you can use user-defined operators in the select list of a
SELECT statement, the condition of a WHERE clause, or in ORDER BY clauses and
GROUP BY clauses. However, you must have EXECUTE privilege on the operator to do
so, because it is a user-defined object.

See Also: CREATE OPERATOR on page 16-33 for an example of
creating an operator and Oracle Database Data Cartridge Developer’s
Guide for more information on user-defined operators

Operators 4-9

User-Defined Operators

4-10 Oracle Database SQL Language Reference

O

Functions

Functions are similar to operators in that they manipulate data items and return a
result. Functions differ from operators in the format of their arguments. This format
enables them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)
A function without any arguments is similar to a pseudocolumn (refer to Chapter 3,
"Pseudocolumns"). However, a pseudocolumn typically returns a different value for

each row in the result set, whereas a function without any arguments typically returns
the same value for each row.

This chapter contains these sections:
s About SQL Functions

s About User-Defined Functions

About SQL Functions

SQL functions are built into Oracle Database and are available for use in various
appropriate SQL statements. Do not confuse SQL functions with user-defined
functions written in PL/SQL.

If you call a SQL function with an argument of a datatype other than the datatype
expected by the SQL function, then Oracle attempts to convert the argument to the
expected datatype before performing the SQL function.

Note: The combined values of the NLLS_COMP and NL.S_ SORT
settings determine the rules by which characters are sorted and
compared. If NLS_COMP is set to LINGUISTIC for your database, then
all entities in this chapter will be interpreted according to the rules
specified by the NLS_SORT parameter. If NL.S_COMP is not set to
LINGUISTIC, then the functions are interpreted without regard to the
NLS_SORT setting. NLS_SORT can be explicitly set. If it is not set
explicitly, it is derived from NLS_LANGUAGE. Please refer to Oracle
Database Globalization Support Guide for more information on these
settings.

In the syntax diagrams for SQL functions, arguments are indicated by their datatypes.
When the parameter function appears in SQL syntax, replace it with one of the
functions described in this section. Functions are grouped by the datatypes of their
arguments and their return values.

Functions 5-1

About SQL Functions

Note: When you apply SQL functions to LOB columns, Oracle
Database creates temporary LOBs during SQL and PL/SQL
processing. You should ensure that temporary tablespace quota is
sufficient for storing these temporary LOBs for your application.

See Also:

= "About User-Defined Functions" on page 5-252 for information on
user functions and "Data Conversion" on page 2-40 for implicit
conversion of datatypes

» Oracle Text Reference for information on functions used with Oracle
Text

» Oracle Data Mining Application Developer’s Guide for information
on frequent itemset functions used with Oracle Data Mining

The syntax showing the categories of functions follows:

function::=

single_row_function

aggregate_function

i

analytic_function

—Cobject_reference_function)—

model_function

user_defined_function

|

single_row_function::=
numeric_function
character_function
data_mining_function
datetime_function
conversion_function
collection_function

XML_function

m

\(miscellaneous_single_row_function)/

The sections that follow list the built-in SQL functions in each of the groups illustrated
in the preceding diagrams except user-defined functions. All of the built-in SQL
functions are then described in alphabetical order.

See Also: "About User-Defined Functions" on page 5-252 and
CREATE FUNCTION on page 14-53

5-2 Oracle Database SQL Language Reference

About SQL Functions

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. These functions can appear in select lists, WHERE clauses, START WITH and
CONNECT BY clauses, and HAVING clauses.

Numeric Functions

Numeric functions accept numeric input and return numeric values. Most numeric
functions that return NUMBER values that are accurate to 38 decimal digits. The
transcendental functions COS, COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, and TANH
are accurate to 36 decimal digits. The transcendental functions ACOS, ASIN, ATAN, and
ATAN2 are accurate to 30 decimal digits. The numeric functions are:

ABS

ACOS

ASIN

ATAN

ATAN2

BITAND

CEIL

COS

COSH

EXP

FLOOR

LN

LOG

MOD

NANVL

POWER
REMAINDER
ROUND (number)
SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC (number)
WIDTH_BUCKET

Character Functions Returning Character Values

Character functions that return character values return values of the following
datatypes unless otherwise documented:

= If the input argument is CHAR or VARCHAR?2, then the value returned is VARCHAR2.

= If the input argument is NCHAR or NVARCHARZ2, then the value returned is
NVARCHAR2.

The length of the value returned by the function is limited by the maximum length of
the datatype returned.

= For functions that return CHAR or VARCHAR?2, if the length of the return value
exceeds the limit, then Oracle Database truncates it and returns the result without
an error message.

» For functions that return CLOB values, if the length of the return values exceeds
the limit, then Oracle raises an error and returns no data.

Functions 5-3

About SQL Functions

The character functions that return character values are:

CHR
CONCAT
INITCAP
LOWER

LPAD

LTRIM
NLS_INITCAP
NLS_LOWER
NLSSORT
NLS_UPPER
REGEXP_REPLACE
REGEXP_SUBSTR
REPLACE
RPAD

RTRIM
SOUNDEX
SUBSTR
TRANSLATE
TREAT

TRIM

UPPER

NLS Character Functions

The NLS character functions return information about the character set. The NLS
character functions are:

NLS_CHARSET_DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET_NAME

Character Functions Returning Number Values

Character functions that return number values can take as their argument any
character datatype.

The character functions that return number values are:

ASCII

INSTR
LENGTH
REGEXP_INSTR

Datetime Functions

Datetime functions operate on date (DATE), timestamp (TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE), and interval (INTERVAL
DAY TO SECOND, INTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle DATE datatype (ADD_
MONTHS, CURRENT_DATE, LAST_DAY, NEW_TIME, and NEXT_DAY). If you provide a
timestamp value as their argument, then Oracle Database internally converts the input
type to a DATE value and returns a DATE value. The exceptions are the MONTHS_
BETWEEN function, which returns a number, and the ROUND and TRUNC functions,
which do not accept timestamp or interval values at all.

The remaining datetime functions were designed to accept any of the three types of
data (date, timestamp, and interval) and to return a value of one of these types.

5-4 Oracle Database SQL Language Reference

About SQL Functions

All of the datetime functions that return current system datetime information, such as
SYSDATE, SYSTIMESTAMP, CURRENT TIMESTAMP, and so forth, are evaluated once
for each SQL statement, regardless how many times they are referenced in that
statement.

The datetime functions are:

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FROM_TZ

LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
NEXT_DAY
NUMTODSINTERVAL
NUMTOYMINTERVAL
ROUND (date)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_CHAR (datetime)
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_DSINTERVAL
TO_YMINTERVAL
TRUNC (date)
TZ_OFFSET

General Comparison Functions

The general comparison functions determine the greatest and or least value from a set
of values. The general comparison functions are:

GREATEST
LEAST

Conversion Functions

Conversion functions convert a value from one datatype to another. Generally, the
form of the function names follows the convention datatype TO datatype. The first
datatype is the input datatype. The second datatype is the output datatype. The SQL
conversion functions are:

ASCIISTR
BIN_TO_NUM

CAST
CHARTOROWID
COMPOSE

CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL

Functions 5-5

About SQL Functions

RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR
SCN_TO_TIMESTAMP
TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB

TO_DATE
TO_DSINTERVAL
TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NCLOB
TO_NUMBER
TO_DSINTERVAL
TO_SINGLE_BYTE
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TO_YMINTERVAL
TRANSLATE ... USING
UNISTR

Large Object Functions
The large object functions operate on LOBs. The large object functions are:

BFILENAME
EMPTY_BLOB, EMPTY_CLOB

Collection Functions
The collection functions operate on nested tables and varrays. The SQL collection
functions are:

CARDINALITY

COLLECT

POWERMULTISET
POWERMULTISET_BY_CARDINALITY
SET

Hierarchical Function
The hierarchical function applies hierarchical path information to a result set.

SYS_CONNECT_BY_PATH

Data Mining Functions

The data mining functions operate on models that have been built using the DBMS_
DATA_MINING package or the Oracle Data Mining Java API. The SQL data mining
functions are:

5-6 Oracle Database SQL Language Reference

About SQL Functions

CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
FEATURE_ID
FEATURE_SET
FEATURE_VALUE
PREDICTION
PREDICTION_BOUNDS
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET

XML Functions

The XML functions operate on or return XML documents or fragments. For more
information about selecting and querying XML data using these functions, including
information on formatting output, refer to Oracle XML DB Developer’s Guide. The SQL
XML functions are:

APPENDCHILDXML
DELETEXML
DEPTH

EXTRACT (XML)
EXISTSNODE
EXTRACTVALUE
INSERTCHILDXML
INSERTXMLBEFORE
PATH
SYS_DBURIGEN
SYS_XMLAGG
SYS_XMLGEN
UPDATEXML
XMLAGG
XMLCAST
XMLCDATA
XMLCOLATTVAL
XMLCOMMENT
XMLCONCAT
XMLDIFF
XMLELEMENT
XMLEXISTS
XMLFOREST
XMLPARSE
XMLPATCH
XMLPI
XMLQUERY
XMLROOT
XMLSEQUENCE
XMLSERIALIZE
XMLTABLE
XMLTRANSFORM

Encoding and Decoding Functions
The encoding and decoding functions let you inspect and decode data in the database.

Functions 5-7

About SQL Functions

DECODE
DUMP
ORA_HASH
VSIZE

NULL-Related Functions
The NULL-related functions facilitate null handling. The NULL-related functions are:

COALESCE
LNNVL
NULLIF
NVL

NVL2

Environment and Identifier Functions

The environment and identifier functions provide information about the instance and
session. These functions are:

SYS_CONTEXT
SYS_GUID
SYS_TYPEID
UID

USER
USERENV

Aggregate Functions

Aggregate functions return a single result row based on groups of rows, rather than on
single rows. Aggregate functions can appear in select lists and in ORDER BY and
HAVING clauses. They are commonly used with the GROUP BY clause in a SELECT
statement, where Oracle Database divides the rows of a queried table or view into
groups. In a query containing a GROUP BY clause, the elements of the select list can be
aggregate functions, GROUP BY expressions, constants, or expressions involving one of
these. Oracle applies the aggregate functions to each group of rows and returns a
single result row for each group.

If you omit the GROUP BY clause, then Oracle applies aggregate functions in the select
list to all the rows in the queried table or view. You use aggregate functions in the
HAVING clause to eliminate groups from the output based on the results of the
aggregate functions, rather than on the values of the individual rows of the queried
table or view.

See Also: "Using the GROUP BY Clause: Examples" on page 19-36
and the "HAVING Clause" on page 19-26 for more information on the
GROUP BY clause and HAVING clauses in queries and subqueries

Many (but not all) aggregate functions that take a single argument accept these
clauses:

s DISTINCT causes an aggregate function to consider only distinct values of the
argument expression.

= ALL causes an aggregate function to consider all values, including all duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If you
specify neither, then the default is ALL.

5-8 Oracle Database SQL Language Reference

About SQL Functions

Some aggregate functions allow the windowing_ clause, which is part of the syntax
of analytic functions. Refer to windowing_clause on page 5-13 for information about this
clause. In the listing of aggregate functions at the end of this section, the functions that
allow the windowing_clause are followed by an asterisk (*)

All aggregate functions except COUNT(*) and GROUPING ignore nulls. You can use the
NVL function in the argument to an aggregate function to substitute a value for a null.
COUNT never returns null, but returns either a number or zero. For all the remaining
aggregate functions, if the data set contains no rows, or contains only rows with nulls
as arguments to the aggregate function, then the function returns null.

The aggregate functions MIN, MAX, SUM, AVG, COUNT, VARIANCE, and STDDEV, when
followed by the KEEP keyword, can be used in conjunction with the FIRST or LAST
function to operate on a set of values from a set of rows that rank as the FIRST or
LAST with respect to a given sorting specification. Refer to FIRST on page 5-73 for
more information.

You can nest aggregate functions. For example, the following example calculates the
average of the maximum salaries of all the departments in the sample schema hr:

SELECT AVG (MAX (salary)) FROM employees GROUP BY department_id;

AVG (MAX (SALARY))

This calculation evaluates the inner aggregate (MAX(salary)) for each group defined
by the GROUP BY clause (department_id), and aggregates the results again.

The aggregate functions are:

AVG

COLLECT

CORR

CORR_*

COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST

GROUP_ID
GROUPING
GROUPING_ID
LAST

MAX

MEDIAN

MIN
PERCENTILE_CONT
PERCENTILE_DISC
PERCENT_RANK
RANK

REGR_ (Linear Regression) Functions
STATS_BINOMIAL_TEST
STATS_CROSSTAB
STATS_F_TEST
STATS_KS_TEST
STATS_MODE
STATS_MW_TEST

Functions 5-9

About SQL Functions

STATS_ONE_WAY_ANOVA
STATS_T_TEST_*
STATS_WSR_TEST
STDDEV

STDDEV_POP
STDDEV_SAMP

SUM

VAR_POP

VAR_SAMP

VARIANCE

Analytic Functions

Analytic functions compute an aggregate value based on a group of rows. They differ
from aggregate functions in that they return multiple rows for each group. The group
of rows is called a window and is defined by the analytic_clause. For each row, a
sliding window of rows is defined. The window determines the range of rows used to
perform the calculations for the current row. Window sizes can be based on either a
physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the
final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are
completed before the analytic functions are processed. Therefore, analytic functions
can appear only in the select list or ORDER BY clause.

Analytic functions are commonly used to compute cumulative, moving, centered, and
reporting aggregates.

analytic_function::=

)
< O L O D Y0

analytic_clause::=

query_partition_clause —(order_by_clause) 1

query_partition_clause::=

PARTITION

5-10 Oracle Database SQL Language Reference

About SQL Functions

order_by_clause::=

(T
.-SIBLINGS m -NULLS -LAST
—>| ORDER J BY (position }

windowing_clause::=

UNBOUNDED |—>| PRECEDING UNBOUNDED |—>| FOLLOWING

CURRENT |_>| ROW

PRECEDING
(em—
FOLLOWING

CURRENT |_>| ROW
PRECEDING

(r—
FOLLOWING

UNBOUNDED |->| PRECEDING h

|
CURRENT |->| ROW |
value_expr)->| PRECEDING

The semantics of this syntax are discussed in the sections that follow.

analytic_function

Specify the name of an analytic function (see the listing of analytic functions following
this discussion of semantics).

arguments

Analytic functions take 0 to 3 arguments. The arguments can be any numeric datatype
or any nonnumeric datatype that can be implicitly converted to a numeric datatype.
Oracle determines the argument with the highest numeric precedence and implicitly
converts the remaining arguments to that datatype. The return type is also that
datatype, unless otherwise noted for an individual function.

See Also: "Numeric Precedence" on page 2-14 for information on
numeric precedence and Table 2-10, " Implicit Type Conversion
Matrix" on page 2-40 for more information on implicit conversion

analytic_clause

Use OVER analytic_clause to indicate that the function operates on a query result
set. This clause is computed after the FROM, WHERE, GROUP BY, and HAVING clauses.
You can specify analytic functions with this clause in the select list or ORDER BY clause.
To filter the results of a query based on an analytic function, nest these functions
within the parent query, and then filter the results of the nested subquery.

Notes on the analytic_clause: The following notes apply to the analytic_clause:

= You cannot nest analytic functions by specifying any analytic function in any part
of the analytic_clause. However, you can specify an analytic function in a
subquery and compute another analytic function over it.

= You can specify OVER analytic_clause with user-defined analytic functions as
well as built-in analytic functions. See CREATE FUNCTION on page 14-53.

Functions 5-11

About SQL Functions

query_partition_clause

Use the PARTITION BY clause to partition the query result set into groups based on
one or more value_expr. If you omit this clause, then the function treats all rows of
the query result set as a single group.

To use the query partition clausein an analytic function, use the upper branch
of the syntax (without parentheses). To use this clause in a model query (in the
model_column_clauses) or a partitioned outer join (in the outer_join clause),
use the lower branch of the syntax (with parentheses).

You can specify multiple analytic functions in the same query, each with the same or
different PARTITION BY keys.

If the objects being queried have the parallel attribute, and if you specify an analytic
function with the query_partition_clause, then the function computations are
parallelized as well.

Valid values of value expr are constants, columns, nonanalytic functions, function
expressions, or expressions involving any of these.

order_by_clause

Use the order_by. clause to specify how data is ordered within a partition. For all
analytic functions except PERCENTILE_CONT and PERCENTILE_DISC (which take
only a single key), you can order the values in a partition on multiple keys, each
defined by a value_expr and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is
especially useful when using functions that rank values, because the second
expression can resolve ties between identical values for the first expression.

Whenever the order_by_clause results in identical values for multiple rows, the
function returns the same result for each of those rows. Refer to the analytic example
for SUM on page 5-185 for an illustration of this behavior.

Restrictions on the ORDER BY Clause The following restrictions apply to the ORDER
BY clause:

= When used in an analytic function, the order_by_clause must take an
expression (expr). The SIBLINGS keyword is not valid (it is relevant only in
hierarchical queries). Position (position) and column aliases (c_alias) are also
invalid. Otherwise this order_by_clauseis the same as that used to order the
overall query or subquery.

= Ananalytic function that uses the RANGE keyword can use multiple sort keys in its
ORDER BY clause if it specifies either of these two windows:

— RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. The short form
of this is RANGE UNBOUNDED PRECEDING.

— RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING.

Window boundaries other than these two can have only one sort key in the ORDER
BY clause of the analytic function. This restriction does not apply to window
boundaries specified by the ROW keyword.

ASC I DESC Specify the ordering sequence (ascending or descending). ASC is the
default.

NULLS FIRST | NULLS LAST Specify whether returned rows containing nulls should
appear first or last in the ordering sequence.

5-12 Oracle Database SQL Language Reference

About SQL Functions

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for
descending order.

Analytic functions always operate on rows in the order specified in the order._ by
clause of the function. However, the order_by. clause of the function does not
guarantee the order of the result. Use the order._by. clause of the query to
guarantee the final result ordering.

See Also: order_by_clause of SELECT on page 19-31 for more
information on this clause

windowing_clause

Some analytic functions allow the windowing_clause. In the listing of analytic
functions at the end of this section, the functions that allow the windowing clause
are followed by an asterisk (*).

ROWS | RANGE These keywords define for each row a window (a physical or logical
set of rows) used for calculating the function result. The function is then applied to all
the rows in the window. The window moves through the query result set or partition
from top to bottom.

= ROWS specifies the window in physical units (rows).
= RANGE specifies the window as a logical offset.

You cannot specify this clause unless you have specified the order_by. clause.
Some window boundaries defined by the RANGE clause let you specify only one
expression in the order_by._clause. Refer to "Restrictions on the ORDER BY
Clause" on page 5-12.

The value returned by an analytic function with a logical offset is always deterministic.
However, the value returned by an analytic function with a physical offset may
produce nondeterministic results unless the ordering expression results in a unique
ordering. You may have to specify multiple columns in the order_by._clauseto
achieve this unique ordering.

BETWEEN ... AND Use the BETWEEN ... AND clause to specify a start point and end
point for the window. The first expression (before AND) defines the start point and the
second expression (after AND) defines the end point.

If you omit BETWEEN and specify only one end point, then Oracle considers it the start
point, and the end point defaults to the current row.

UNBOUNDED PRECEDING Specify UNBOUNDED PRECEDING to indicate that the
window starts at the first row of the partition. This is the start point specification and
cannot be used as an end point specification.

UNBOUNDED FOLLOWING Specify UNBOUNDED FOLLOWING to indicate that the
window ends at the last row of the partition. This is the end point specification and
cannot be used as a start point specification.

CURRENT ROW As a start point, CURRENT ROW specifies that the window begins at
the current row or value (depending on whether you have specified ROW or RANGE,
respectively). In this case the end point cannot be value_expr PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at the current row or
value (depending on whether you have specified ROW or RANGE, respectively). In this
case the start point cannot be value_expr FOLLOWING.

Functions 5-13

About SQL Functions

value_expr PRECEDING or value_expr FOLLOWING For RANGE or ROW:

s If value expr FOLLOWING is the start point, then the end point must be value_
expr FOLLOWING.

s If value expr PRECEDING is the end point, then the start point must be value_
expr PRECEDING.

If you are defining a logical window defined by an interval of time in numeric format,
then you may need to use conversion functions.

See Also: NUMTOYMINTERVAL on page 5-114 and
NUMTODSINTERVAL on page 5-113 for information on converting
numeric times into intervals

If you specified ROWS:

» value_expr isa physical offset. It must be a constant or expression and must
evaluate to a positive numeric value.

» If value_expris part of the start point, then it must evaluate to a row before the
end point.

If you specified RANGE:

» value_expris alogical offset. It must be a constant or expression that evaluates
to a positive numeric value or an interval literal. Refer to "Literals" on page 2-44
for information on interval literals.

= You can specify only one expression in the order._by_clause

s If value expr evaluates to a numeric value, then the ORDER BY expr must be a
numeric or DATE datatype.

s If value expr evaluates to an interval value, then the ORDER BY expr must be a
DATE datatype.

If you omit the windowing clause entirely, then the default is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW.

Analytic functions are commonly used in data warehousing environments. In the list
of analytic functions that follows, functions followed by an asterisk (*) allow the full
syntax, including the windowing_clause.

AVG*

CORR *
COVAR_POP *
COVAR_SAMP *
COUNT *
CUME_DIST
DENSE_RANK
FIRST
FIRST_VALUE *
LAG

LAST
LAST_VALUE *
LEAD

MAX *

MIN *

NTILE
PERCENT_RANK
PERCENTILE_CONT

5-14 Oracle Database SQL Language Reference

ABS

PERCENTILE_DISC
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
STDDEV *
STDDEV_POP *
STDDEV_SAMP *
SUM *

VAR_POP *
VAR_SAMP *
VARIANCE *

See Also: Oracle Database Data Warehousing Guide for more
information on these functions and for scenarios illustrating their use

Object Reference Functions

Object reference functions manipulate REF values, which are references to objects of
specified object types. The object reference functions are:

DEREF
MAKE_REF
REF
REFTOHEX
VALUE

See Also: Oracle Database Object-Relational Developer’s Guide for more
information about REF datatypes

Model Functions

Model functions can be used only in the model_clause of the SELECT statement.
The model functions are:

Ccv
ITERATION_NUMBER
PRESENTNNV
PRESENTV

PREVIOUS

Alphabetical Listing of SQL Functions

ABS

The SQL functions are described in alphabetical order.

Syntax
E3L0,0:0

Purpose
ABS returns the absolute value of n.

Functions 5-15

ACOS

ACOS

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the absolute value of -15:

SELECT ABS(-15) "Absolute" FROM DUAL;

Absolute

Syntax
K000

Purpose
ACOS returns the arc cosine of n. The argument n must be in the range of -1 to 1, and
the function returns a value in the range of 0 to pi, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__
FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

Arc_Cosine

1.26610367

ADD_MONTHS

Syntax
0:CDI0I L0
Purpose

ADD_MONTHS returns the date date plus integer months. The date argument can be
a datetime value or any value that can be implicitly converted to DATE. The integer
argument can be an integer or any value that can be implicitly converted to an integer.

5-16 Oracle Database SQL Language Reference

APPENDCHILDXML

The return type is always DATE, regardless of the datatype of date. If dateis the last
day of the month or if the resulting month has fewer days than the day component of
date, then the result is the last day of the resulting month. Otherwise, the result has
the same day component as date.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples

The following example returns the month after the hire date in the sample table
employees:

SELECT TO_CHAR (
ADD_MONTHS (hire_date, 1),
'DD-MON-YYYY') "Next month"
FROM employees
WHERE last_name = 'Baer';

Next Month

07-JUL-1994

APPENDCHILDXML

Syntax
O
—{ APPENDCHILDXML |—>®{XMLTypefinstance)»@—(XPathfstring)»@{valuefexpr) @
Purpose

APPENDCHILDXML appends a user-supplied value onto the target XML as the child of
the node indicated by an XPath expression.

m XMLType_ instanceis an instance of XMLType.

s The XPath stringis an Xpath expression indicating one or more nodes onto
which one or more child nodes are to be appended. You can specify an absolute
XPath_string with an initial slash or a relative XPath_stringby omitting the
initial slash. If you omit the initial slash, then the context of the relative path
defaults to the root node.

s The value_expr specifies one or more nodes of XMLType. It must resolve to a
string.

» The optional namespace_string provides namespace information for the
XPath_string. This parameter must be of type VARCHAR2.

See Also: Oracle XML DB Developer’s Guide for more information
about this function

Examples

The following example adds an /Owner node to the /Warehouse/Building node of
warehouse_spec in the oe.warehouses table if the value of the /Building node
is "Rented":

UPDATE warehouses SET warehouse_spec =
APPENDCHILDXML (warehouse_spec,

Functions 5-17

ASCIISTR

'Warehouse/Building',
XMLType (' <Owner>Grandco</Owner>"'))
WHERE EXTRACTVALUE (warehouse_spec, '/Warehouse/Building') = 'Rented';

SELECT warehouse_id, warehouse_name,
EXTRACTVALUE (warehouse_spec, '/Warehouse/Building/Owner') "Prop.Owner"
FROM warehouses
WHERE EXISTSNODE (warehouse_spec, '/Warehouse/Building/Owner') = 1;

WAREHOUSE_ID WAREHOUSE_NAME Prop.Owner

2 San Francisco Grandco
3 New Jersey Grandco

ASCIISTR

Syntax
D@0

Purpose

ASCIISTR takes as its argument a string, or an expression that resolves to a string, in
any character set and returns an ASCII version of the string in the database character
set. Non-ASCII characters are converted to the form \xxxx, where xxxx represents a
UTF-16 code unit.

See Also: Oracle Database Globalization Support Guide for information
on Unicode character sets and character semantics

Examples
The following example returns the ASCII string equivalent of the text string "ABACDE":

SELECT ASCIISTR('ABACDE') FROM DUAL;

ASCIISTR('

AB\00C4CDE

ASCII

Syntax
O

Purpose

ASCII returns the decimal representation in the database character set of the first
character of char.

char can be of datatype CHAR, VARCHAR2, NCHAR, or NVARCHAR?2. The value returned
is of datatype NUMBER. If your database character set is 7-bit ASCII, then this function
returns an ASCII value. If your database character set is EBCDIC Code, then this
function returns an EBCDIC value. There is no corresponding EBCDIC character
function.

5-18 Oracle Database SQL Language Reference

ATAN

ASIN

ATAN

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-36 for more
information

Examples

The following example returns employees whose last names begin with the letter L,
whose ASCII equivalent is 76:

SELECT last_name FROM employees
WHERE ASCII(SUBSTR(last_name, 1, 1,)) = 76;

LAST NAME

Ladwig
Landry

Lee
Livingston

Syntax
0,00

Purpose

ASIN returns the arc sine of n. The argument n must be in the range of -1 to 1, and the
function returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__
FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the arc sine of .3:

SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

.304692654

Syntax

ATAN O

Functions 5-19

ATAN2

Purpose
ATAN returns the arc tangent of n. The argument n can be in an unbounded range and
returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__
FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;
Arc_Tangent

.291456794

ATAN2

Purpose

ATAN?2 returns the arc tangent of n1 and n2. The argument n1 can be in an unbounded
range and returns a value in the range of -pi to pi, depending on the signs of n1 and
n2, expressed in radians. ATAN2(n1, n2) is the same as ATAN2(n1/n2).

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If any argument is BINARY_
FLOAT or BINARY_DOUBLE, then the function returns BINARY_DOUBLE. Otherwise
the function returns NUMBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the arc tangent of .3 and .2:

SELECT ATAN2 (.3, .2) "Arc_Tangent2" FROM DUAL;
Arc_Tangent?2

.982793723

5-20 Oracle Database SQL Language Reference

AVG

AVG

Syntax

DISTINCT

AVG |((

ﬂ OVER P@»{analytic,clausem
(expr ())

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions

Purpose
AVG returns average value of expr.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

If you specify DISTINCT, then you can specify only the query partition_clause
of the analytic_clause. The order_ by clauseand windowing clause are not
allowed.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example

The following example calculates the average salary of all employees in the
hr.employees table:

SELECT AVG(salary) "Average" FROM employees;

Average

6461.68224

Analytic Example

The following example calculates, for each employee in the employees table, the
average salary of the employees reporting to the same manager who were hired in the
range just before through just after the employee:

SELECT manager_id, last_name, hire_date, salary,
AVG (salary) OVER (PARTITION BY manager_id ORDER BY hire_date
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
FROM employees
ORDER BY manager_id, last_name, hire_date, salary, AVG(salary);

MANAGER_ID LAST NAME HIRE_DATE SALARY C_MAVG
100 Kochhar 21-SEP-89 17000 17000
100 De Haan 13-JAN-93 17000 15000
100 Raphaely 07-DEC-94 11000 11966.6667
100 Kaufling 01-MAY-95 7900 10633.3333
100 Hartstein 17-FEB-96 13000 9633.33333

Functions 5-21

BFILENAME

BFILENAME

100 Weiss 18-JUL-96 8000 11666.6667
100 Russell 01-0CT-96 14000 11833.3333
100 Partners 05-JAN-97 13500 13166.6667
Syntax
SFLENAVE] DA oo H O D DpTemame) (D)
Purpose

BFILENAME returns a BFILE locator that is associated with a physical LOB binary file
on the server file system.

= 'directory'is a database object that serves as an alias for a full path name on the
server file system where the files are actually located.

» 'filename'is the name of the file in the server file system.

You must create the directory object and associate a BFILE value with a physical file
before you can use them as arguments to BFILENAME in a SQL or PL/SQL statement,
DBMS_LOB package, or OCI operation.

You can use this function in two ways:
s Ina DML statement to initialize a BFILE column

» Ina programmatic interface to access BFILE data by assigning a value to the
BFILE locator.

The directory argument is case sensitive. You must ensure that you specify the
directory object name exactly as it exists in the data dictionary. For example, if an
"Admin" directory object was created using mixed case and a quoted identifier in the
CREATE DIRECTORY statement, then when using the BFILENAME function you must
refer to the directory object as ' Admin'. You must specify the filename argument
according to the case and punctuation conventions for your operating system.

See Also:

» Oracle Database SecureFiles and Large Objects Developer’s Guide and
Oracle Call Interface Programmer’s Guide for more information on
LOBs and for examples of retrieving BFILE data

s CREATE DIRECTORY on page 14-43

Examples

The following example inserts a row into the sample table pm.print_media. The
example uses the BFILENAME function to identify a binary file on the server file
system in the directory SORACLE_HOME/demo/schema/product_media. The
example shows how the directory database object media_dir was created in the PM
schema.

CREATE DIRECTORY media_dir AS '/demo/schema/product_media';
INSERT INTO print_media (product_id, ad_id, ad_graphic)

VALUES (3000, 31001,
BFILENAME ('MEDIA_DIR', 'modem_comp_ad.gif'));

5-22 Oracle Database SQL Language Reference

BIN_TO_NUM

BIN_TO_NUM

Syntax

BIN_TO_NUM

Purpose

BIN_TO_NUM converts a bit vector to its equivalent number. Each argument to this
function represents a bit in the bit vector. This function takes as arguments any
numeric datatype, or any nonnumeric datatype that can be implicitly converted to
NUMBER. Each expr must evaluate to 0 or 1. This function returns Oracle NUMBER.

BIN_TO_NUM is useful in data warehousing applications for selecting groups of
interest from a materialized view using grouping sets.

See Also:

» group_by_clause on page 19-25 for information on GROUPING SETS
syntax

s Table 2-10, " Implicit Type Conversion Matrix" on page 2-40 for
more information on implicit conversion

» Oracle Database Data Warehousing Guide for information on data
aggregation in general

Examples
The following example converts a binary value to a number:

SELECT BIN_TO_NUM(1,0,1,0) FROM DUAL;

BIN_TO_NUM(1,0,1,0)

The next example converts three values into a single binary value and uses BIN_TO_
NUM to convert that binary into a number. The example uses a PL/SQL declaration to
specify the original values. These would normally be derived from actual data sources.

SELECT order_status FROM orders WHERE order_id = 2441;

ORDER_STATUS

DECLARE
warehouse NUMBER := 1;
ground NUMBER := 1;
insured NUMBER := 1;
result NUMBER;
BEGIN
SELECT BIN_TO_NUM (warehouse, ground, insured) INTO result FROM DUAL;
UPDATE orders SET order_status = result WHERE order_id = 2441;
end;
/
PL/SQL procedure successfully completed.

SELECT order_status FROM orders WHERE order_id = 2441;

Functions 5-23

BITAND

BITAND

ORDER_STATUS

Refer to the examples for BITAND on page 5-24 for information on reversing this
process, extracting multiple values from a single column value.

Syntax
0lCHI6CDI0

Purpose

The BITAND function treats its inputs and its output as vectors of bits; the output is the
bitwise AND of the inputs.

The types of exprl and expr2 are NUMBER, and the result is of type NUMBER. If either
argument to BITAND is NULL, the result is NULL.

The arguments must be in the range -2®D) .. (2®D)-1). If an argument is out of this
range, the result is undefined.

The result is computed in several steps. First, each argument A is replaced with the
value SIGN (A) *FLOOR (ABS (A)) . This conversion has the effect of truncating each
argument towards zero. Next, each argument A (which must now be an integer value)
is converted to an n-bit two's complement binary integer value. The two bit values are
combined using a bitwise AND operation. Finally, the resulting n-bit two's complement
value is converted back to NUMBER.

Notes on the BITAND Function
s The current implementation of BITAND defines n = 128.

s PL/SQL supports an overload of BITAND for which the types of the inputs and of
the result are all BINARY_INTEGER and for which n = 32.

Examples
The following example performs an AND operation on the numbers 6 (binary 1,1,0) and
3 (binary 0,1,1):

SELECT BITAND(6,3) FROM DUAL;

BITAND(6,3)

This is the same as the following example, which shows the binary values of 6 and 3.
The BITAND function operates only on the significant digits of the binary values:

SELECT BITAND (
BIN_TO_NUM(1,1,0),
BIN_TO_NUM(0,1,1)) "Binary"

FROM DUAL;

Binary

5-24 Oracle Database SQL Language Reference

CARDINALITY

Refer to the example for BIN_TO_NUM on page 5-23 for information on encoding
multiple values in a single column value.

The following example supposes that the order._status column of the sample table
oe.orders encodes several choices as individual bits within a single numeric value.
For example, an order still in the warehouse is represented by a binary value 001
(decimal 1). An order being sent by ground transportation is represented by a binary
value 010 (decimal 2). An insured package is represented by a binary value 100
(decimal 4). The example uses the DECODE function to provide two values for each of
the three bits in the order_status value, one value if the bit is turned on and one if
it is turned off.

SELECT order_id, customer_id, order_status,
DECODE (BITAND (order_status, 1), 1, 'Warehouse', 'PostOffice')
"Location",
DECODE (BITAND (order_status, 2), 2, 'Ground', 'Air') "Method",
DECODE (BITAND (order_status, 4), 4, 'Insured', 'Certified') "Receipt"
FROM orders
WHERE sales_rep_id = 160
ORDER BY order_id;

ORDER_ID CUSTOMER_ID ORDER_STATUS Location Method Receipt

2455 145 7 Warehouse Ground Insured
2416 104 6 PostOffice Ground Insured
2419 107 3 Warehouse Ground Certified
2420 108 2 PostOffice Ground Certified
2423 145 3 Warehouse Ground Certified
2441 106 5 Warehouse Air Insured

For the Location column, BITAND first compares order_status with 1 (binary
001). Only significant bit values are compared, so any binary value with a 1 in its
rightmost bit (any odd number) will evaluate positively and return 1. Even numbers
will return 0. The DECODE function compares the value returned by BITAND with 1. If
they are both 1, then the location is "Warehouse". If they are different, then the location
is "PostOffice".

The Method and Receipt columns are calculated similarly. For Method, BITAND
performs the AND operation on order_status and 2 (binary 010). For Receipt,
BITAND performs the AND operation on order._status and 4 (binary 100).

CARDINALITY

Syntax
—]{ CARDINALITY F@»{nested,table)»@»

Purpose

CARDINALITY returns the number of elements in a nested table. The return type is
NUMBER. If the nested table is empty, or is a null collection, then CARDINALITY returns
NULL.

Examples

The following example shows the number of elements in the nested table column ad_
textdocs_ntab of the sample table pm.print_media:

Functions 5-25

CAST

CAST

SELECT product_id, CARDINALITY (ad_textdocs_ntab) Cardinality
FROM print_media
ORDER BY product_id, cardinality;

PRODUCT_ID CARDINALITY

Syntax

expr

E=1i0 B CGEDY0

MULTISET subquery a

Purpose

CAST converts one built-in datatype or collection-typed value into another built-in
datatype or collection-typed value.

CAST lets you convert built-in datatypes or collection-typed values of one type into
another built-in datatype or collection type. You can cast an unnamed operand (such
as a date or the result set of a subquery) or a named collection (such as a varray or a
nested table) into a type-compatible datatype or named collection. The type name
must be the name of a built-in datatype or collection type and the operand must be a
built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype, a collection type, or an
instance of an ANYDATA type. If expr is an instance of an ANYDATA type, then CAST
tries to extract the value of the ANYDATA instance and return it if it matches the cast
target type, otherwise, null will be returned. MULTISET informs Oracle Database to
take the result set of the subquery and return a collection value. Table 5-1 shows
which built-in datatypes can be cast into which other built-in datatypes. (CAST does
not support LONG, LONG RAW, or the Oracle-supplied types.)

CAST does not directly support any of the LOB datatypes. When you use CAST to
convert a CLOB value into a character datatype or a BLOB value into the RAW datatype,
the database implicitly converts the LOB value to character or raw data and then
explicitly casts the resulting value into the target datatype. If the resulting value is
larger than the target type, then the database returns an error.

When you use CAST ... MULTISET to get a collection value, each select list item in the
query passed to the CAST function is converted to the corresponding attribute type of
the target collection element type.

5-26 Oracle Database SQL Language Reference

CAST

Table 5-1 Casting Built-In Datatypes
from
BINARY_ from
FLOAT, from from DATETIME / from from ROWID, from
BINARY_ CHAR, INTERVAL UROWID NCHAR,
DOUBLE VARCHAR2 NUMBER (Note 1) RAW (Note 2) NVARCHAR2
to BINARY_FLOAT, x X X - _— __ x
BINARY_DOUBLE
to CHAR, X X X X X X -—
VARCHAR2
to NUMBER X X X - -- - X
to DATE, - X - X - - -
TIMESTAMP,
INTERVAL
to RAW - X - - X __ __
to ROWID, UROWID -- X - - - Xa __
to NCHAR, X - X X X X X
NVARCHAR2

Note 1: Datetime/interval includes DATE, TIMESTAMP, TIMESTAMP WITH
TIMEZONE, INTERVAL DAY TO SECOND, and INTERVAL YEAR TO MONTH.

Note 2: You cannot cast a UROWID to a ROWID if the UROWID contains the value of a
ROWID of an index-organized table.

If you want to cast a named collection type into another named collection type, then
the elements of both collections must be of the same type.

See Also: "Implicit Data Conversion" on page 2-40 for information
on how Oracle Database implicitly converts collection type data into
character data

If the result set of subgquery can evaluate to multiple rows, then you must specify the
MULTISET keyword. The rows resulting from the subquery form the elements of the
collection value into which they are cast. Without the MULTISET keyword, the
subquery is treated as a scalar subquery.

Built-In Datatype Examples
The following examples use the CAST function with scalar datatypes:

SELECT CAST('22-0CT-1997' AS TIMESTAMP WITH LOCAL TIME ZONE)
FROM dual;

SELECT product_id,
CAST (ad_sourcetext AS VARCHAR2 (30)
FROM print_media
ORDER BY product_id, text;

Text

Collection Examples

The CAST examples that follow build on the cust_address_typ found in the sample
order entry schema, oe.

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;

/

CREATE TYPE address_array_t AS VARRAY(3) OF cust_address_typ;
/

CREATE TABLE cust_address (

Functions 5-27

CEIL

custno NUMBER,
street_address VARCHAR2 (40) ,
postal_code VARCHAR2 (10)
city VARCHAR2 (30),
state_province VARCHAR2 (10),
country_id CHAR(2));

CREATE TABLE cust_short (custno NUMBER, name VARCHAR2 (31));
CREATE TABLE states (state_id NUMBER, addresses address_array_t);

This example casts a subquery:

SELECT s.custno, s.name,

CAST (MULTISET (SELECT ca.street_address,
ca.postal_code,
ca.city,
ca.state_province,
ca.country_id

FROM cust_address ca
WHERE s.custno = ca.custno)
AS address_book_t)
FROM cust_short s
ORDER BY s.custno, s.name;

CAST converts a varray type column into a nested table:

SELECT CAST(s.addresses AS address_book_t)
FROM states s
WHERE s.state_id = 111;

The following objects create the basis of the example that follows:

CREATE TABLE projects
(employee_id NUMBER, project_name VARCHAR2 (10));

CREATE TABLE emps_short
(employee_id NUMBER, last_name VARCHAR2(10));

CREATE TYPE project_table_typ AS TABLE OF VARCHAR2(10);
/
The following example of a MULTISET expression uses these objects:

SELECT e.last_name,
CAST (MULTISET (SELECT p.project_name
FROM projects p
WHERE p.employee_id = e.employee_id
ORDER BY p.project_name)
AS project_table_typ)

FROM emps_short e

ORDER BY e.last_name;

CEIL

Syntax

E 000,

5-28 Oracle Database SQL Language Reference

CHR

Purpose
CEIL returns smallest integer greater than or equal to n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples

The following example returns the smallest integer greater than or equal to the order
total of a specified order:

SELECT order_total, CEIL(order_total) FROM orders
WHERE order_id = 2434;

ORDER_TOTAL CEIL (ORDER_TOTAL)

268651.8 268652

CHARTOROWID

CHR

Syntax
0CDI0
Purpose

CHARTOROWID converts a value from CHAR, VARCHAR2, NCHAR, or NVARCHAR?2
datatype to ROWID datatype.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-36 for more
information.

Examples
The following example converts a character rowid representation to a rowid. (The
actual rowid is different for each database instance.)

SELECT last_name FROM employees
WHERE ROWID = CHARTOROWID ('AAAFd1AAFAAAABSAA/');

LAST NAME

Greene

Syntax

USING |5 NCHAR_CS |—\
a o

Functions 5-29

CHR

Purpose

CHR returns the character having the binary equivalent to n as a VARCHAR2 value in
either the database character set or, if you specify USING NCHAR_CS, the national
character set.

For single-byte character sets, if n > 256, then Oracle Database returns the binary
equivalent of n mod 256. For multibyte character sets, n must resolve to one entire
code point. Invalid code points are not validated, and the result of specifying invalid
code points is indeterminate.

This function takes as an argument a NUMBER value, or any value that can be implicitly
converted to NUMBER, and returns a character.

Note: Use of the CHR function (either with or without the optional
USING NCHAR_CS clause) results in code that is not portable between
ASCII- and EBCDIC-based machine architectures.

See Also: NCHR on page 5-104 and Table 2-10, " Implicit Type
Conversion Matrix" on page 2-40 for more information on implicit
conversion

Examples
The following example is run on an ASCII-based machine with the database character
set defined as WESISO8859P1:

SELECT CHR(67) | |CHR(65) | |CHR(84) "Dog" FROM DUAL;

Dog

CAT

To produce the same results on an EBCDIC-based machine with the WESEBCDIC1047
character set, the preceding example would have to be modified as follows:

SELECT CHR(195) | |CHR(193) | |CHR(227) "Dog"
FROM DUAL;

Dog

CAT

For multibyte character sets, this sort of concatenation gives different results. For
example, given a multibyte character whose hexadecimal value is ala2 (al
representing the first byte and a2 the second byte), you must specify for n the decimal
equivalent of 'ala2’, or 41378:

SELECT CHR(41378) FROM DUAL;

You cannot specify the decimal equivalent of al concatenated with the decimal
equivalent of a2, as in the following example:

SELECT CHR(161) | |CHR(162) FROM DUAL;

However, you can concatenate whole multibyte code points, as in the following

example, which concatenates the multibyte characters whose hexadecimal values are
ala2and ala3:

SELECT CHR(41378) | |CHR(41379) FROM DUAL;

5-30 Oracle Database SQL Language Reference

CLUSTER_ID

The following example assumes that the national character set is UTF16:

SELECT CHR (196 USING NCHAR_CS) FROM DUAL;

CH

i

CLUSTER_ID

Syntax

CLUSTER_ID |(((modeD_(mining,attribute,clause)@»

mining_attribute_clause::=

*

M)
N
table

expr

Purpose

This function is for use with clustering models that have been created using the DBMS_
DATA_MINING package or with the Oracle Data Mining Java API. It returns the cluster
identifier of the predicted cluster with the highest probability for the set of predictors
specified in the mining attribute_clause. The value returned is an Oracle
NUMBER.

The mining attribute clause behaves as described for the PREDICTION
function. Refer to mining_attribute_clause on page 5-126.
See Also:

» Oracle Data Mining Concepts for detailed information about Oracle
Data Mining

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for detailed
information about real-time scoring with the Data Mining SQL
functions

= PREDICTION on page 5-125

Examples

The following example lists the clusters into which customers of a given dataset have
been grouped.

This example, and the prerequisite data mining operations, including the creation of
the dm_sh_clus_sample model and the dm_sh_sample_apply_prepared view,

Functions 5-31

CLUSTER_PROBABILITY

can be found in the demo file SORACLE_HOME/rdbms /demo/dmkmdemo . sgl.
General information on data mining demo files is available in Oracle Data Mining
Administrator’s Guide. The example is presented here to illustrate the syntactic use of
the function.

SELECT CLUSTER_ID(km_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
FROM km_sh_sample_apply_prepared

GROUP BY CLUSTER_ID(km_sh_clus_sample USING *)

ORDER BY cnt DESC;

CLUS CNT
2 580
10 199
6 185
8 115
12 98
16 82
19 81
15 68
18 65
14 27

10 rows selected.

CLUSTER_PROBABILITY

Syntax

O O
—J{ CLUSTER_PROBABILITY @ (‘model) (‘mining_attribute_clause)()>

mining_attribute_clause::=

*

o
table
allas
expr

Purpose

This function is for use with clustering models that have been created with the DBMS_
DATA_MINING package or with the Oracle Data Mining Java API. It returns a measure
of the degree of confidence of membership of an input row in a cluster associated with
the specified model.

» For cluster_id, specify the identifier of the cluster in the model. The function
returns the probability for the specified cluster. If you omit this clause, then the
function returns the probability associated with the best predicted cluster. You can
use the form without cIuster_idin conjunction with the CLUSTER_ID function
to obtain the best predicted pair of cluster ID and probability.

» Themining attribute clause behaves as described for the PREDICTION
function. Refer to mining_attribute_clause on page 5-126

5-32 Oracle Database SQL Language Reference

CLUSTER_SET

See Also:

» Oracle Data Mining Concepts for detailed information about Oracle
Data Mining

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for detailed
information about real-time scoring with the Data Mining SQL
functions

s CLUSTER_ID on page 5-31 and PREDICTION on page 5-125 for
information on related data mining functions

Examples

The following example determines the ten most representative customers, based on
likelihood, in cluster 2.

This example, and the prerequisite data mining operations, including the creation of
the dm_sh_clus_sample model and the dm_sh_sample_apply_ prepared view,
can be found in the demo file $ORACLE_HOME/rdbms /demo /dmkmdemo . sqgl.
General information on data mining demo files is available in Oracle Data Mining
Administrator’s Guide. The example is presented here to illustrate the syntactic use of
the function.

SELECT *
FROM (SELECT cust_id, CLUSTER_PROBABILITY (km_sh_clus_sample, 2 USING *) prob
FROM km_sh_sample_apply_prepared
ORDER BY prob DESC)
WHERE ROWNUM < 11;

CUST_ID PROB
100052 .9993
100962 .9993
101208 .9993
100281 .9993
100012 .9993
101009 .9992
100173 .9992
101176 .9991
100672 .9991
101420 .9991

10 rows selected.

CLUSTER_SET

Syntax

cutoff
O\ o@L 2N

\ mining_attribute_clause }(b

Functions 5-33

CLUSTER_SET

mining_attribute_clause::=

*

(M)
O
table

expr

Purpose

This function is for use with clustering models that have been created with the DBMS_
DATA_MINING package or with the Oracle Data Mining Java API. It returns a varray of
objects containing all possible clusters that a given row belongs to. Each object in the
varray is a pair of scalar values containing the cluster ID and the cluster probability.
The object fields are named CLUSTER_ID and PROBABILITY, and both are Oracle
NUMBER.

= For the optional topN argument, specify a positive integer. Doing so restricts the
set of predicted clusters to those that have one of the top N probability values. If
you omit topN or set it to NULL, then all clusters are returned in the collection. If
multiple clusters are tied for the Nth value, the database still returns only N
values.

» For the optional cutoff argument, specify a positive integer to restrict the
returned clusters to those with a probability greater than or equal to the specified
cutoff. You can filter only by cutoff by specifying NULL for topN and the desired
cutoff value for cutofft.

You can specify topNand cutoff together to restrict the returned clusters to those
that are in the top N and have a probability that passes the threshold.

The mining attribute_clause behaves as described for the PREDICTION
function. Refer to mining_attribute_clause on page 5-126.

See Also:

» Oracle Data Mining Concepts for detailed information about Oracle
Data Mining

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for detailed
information about real-time scoring with the Data Mining SQL
functions

Examples

The following example lists the most relevant attributes (with confidence > 55%) of
each cluster to which customer 101362 belongs with > 20% likelihood.

This example, and the prerequisite data mining operations, including the creation of
the dm_sh_clus_sample model and the views and type, can be found in the demo
file SORACLE_HOME/rdbms /demo/dmkmdemo . sgl. General information on data
mining demo files is available in Oracle Data Mining Administrator’s Guide. The
example is presented here to illustrate the syntactic use of the function.

WITH

5-34 Oracle Database SQL Language Reference

CLUSTER_SET

clus_tab AS (
SELECT id,
A.attribute_name aname,
A.conditional_operator op,
NVL (A.attribute_str_value,
ROUND (DECODE (A.attribute_name, N.col,
A.attribute_num_value * N.scale + N.shift,
A.attribute_num value),4)) val,
A.attribute_support support,
A.attribute_confidence confidence
FROM TABLE (DBMS_DATA_MINING.GET_MODEL_DETAILS_KM('km_sh clus_sample')) T,
TABLE (T.rule.antecedent) A,
km_sh_sample_norm N
WHERE A.attribute_name = N.col (+) AND A.attribute_confidence > 0.55
),
clust AS (
SELECT id,
CAST (COLLECT (Cattr (aname, op, TO_CHAR(val), support, confidence))
AS Cattrs) cl_attrs
FROM clus_tab
GROUP BY id
)
custclus AS (
SELECT T.cust_id, S.cluster_id, S.probability
FROM (SELECT cust_id, CLUSTER_SET (km_sh_clus_sample, NULL, 0.2 USING *) pset
FROM km_sh_sample_apply_prepared
WHERE cust_id = 101362) T,
TABLE (T.pset) S
)
SELECT A.probability prob, A.cluster_id cl_id,
B.attr, B.op, B.val, B.supp, B.conf
FROM custclus A,
(SELECT T.id, C.*
FROM clust T,
TABLE(T.cl_attrs) C) B
WHERE A.cluster_id = B.id
ORDER BY prob DESC, cl_id ASC, conf DESC, attr ASC, val ASC;

PROB CL_ID ATTR OP VAL SUPP CONF

L1873 8 HOUSEHOLD_SIZE IN 9+ 126 .7500

L7873 8 CUST_MARITAL_ST IN Divorc. 118 .6000
ATUS

L7873 8 CUST_MARITAL_ST IN NeverM 118 .6000
ATUS

L1873 8 CUST_MARITAL_ST IN Separ. 118 .6000
ATUS

L7873 8 CUST_MARITAL_ST IN Widowed 118 .6000
ATUS

.2016 6 AGE >= 17 152 .6667

.2016 6 AGE <= 31.6 152 .6667

.2016 6 CUST_MARITAL_ST IN NeverM 168 .6667
ATUS

8 rows selected.

Functions 5-35

COALESCE

COALESCE

Syntax

Purpose

COALESCE returns the first non-null expr in the expression list. At least one expr
must not be the literal NULL. If all occurrences of expr evaluate to null, then the
function returns null.

Oracle Database uses short-circuit evaluation. The database evaluates each expr
value and determines whether it is NULL, rather than evaluating all of the expr values
before determining whether any of them is NULL.

If all occurrences of expr are numeric datatype or any nonnumeric datatype that can
be implicitly converted to a numeric datatype, then Oracle Database determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-14 for information on numeric precedence

This function is a generalization of the NVL function.
You can also use COALESCE as a variety of the CASE expression. For example,

COALESCE (exprl, expr2)

is equivalent to:

CASE WHEN exprl IS NOT NULL THEN exprl ELSE expr2 END

Similarly,

COALESCE (exprl, expr2, ..., exprn), for n>=3

is equivalent to:

CASE WHEN exprl IS NOT NULL THEN exprl
ELSE COALESCE (expr2, ..., exprn) END

See Also: NVL on page 5-115 and "CASE Expressions" on page 6-5

Examples

The following example uses the sample oe.product_information table to
organize a clearance sale of products. It gives a 10% discount to all products with a list
price. If there is no list price, then the sale price is the minimum price. If there is no
minimum price, then the sale price is "5":

SELECT product_id, list_price, min_price,
COALESCE(0.9*1ist_price, min_price, 5) "Sale"
FROM product_information
WHERE supplier_id = 102050
ORDER BY product_id, list_price, min_price, "Sale";

5-36 Oracle Database SQL Language Reference

COMPOSE

COLLECT

COMPOSE

PRODUCT_ID LIST_PRICE MIN_PRICE Sale
1769 48 43.2
1770 73 73
2378 305 247 274.5
2382 850 731 765
3355 5

Syntax

—J{ coLLecT F@{column)»@s

Purpose

COLLECT takes as its argument a column of any type and creates a nested table of the
input type out of the rows selected. To get the results of this function you must use it
within a CAST function.

If column is itself a collection, then the output of COLLECT is a nested table of
collections.

See Also: CAST on page 5-26

Examples

The following example creates a nested table from the varray column of phone
numbers in the sample table ce. customers:

CREATE TYPE phone_book_t AS TABLE OF phone_list_typ;

/

SELECT CAST (COLLECT (phone_numbers) AS phone_book_t) Phone_Book
FROM customers
ORDER BY phone_book;

Syntax
OCDI0
Purpose

COMPOSE takes as its argument a string, or an expression that resolves to a string, in
any datatype, and returns a Unicode string in the same character set as the input.
char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. For example, an o code point qualified by an umlaut code point will be
returned as the o-umlaut code point.

COMPOSE returns the string in NFC normal form. For a more exclusive setting, you can
first call DECOMPOSE with the CANONICAL setting and then COMPOSE. This
combination returns the string in NFKC normal form.

CLOB and NCLOB values are supported through implicit conversion. If charis a
character LOB value, then it is converted to a VARCHAR value before the COMPOSE

Functions 5-37

CONCAT

CONCAT

operation. The operation will fail if the size of the LOB value exceeds the supported
length of the VARCHAR in the particular development environment.

See Also:

» Oracle Database Globalization Support Guide for information on
Unicode character sets and character semantics

s DECOMPOSE on page 5-56

Examples

The following example returns the o-umlaut code point:
SELECT COMPOSE ('o' || UNISTR('\0308')) FROM DUAL;
co

5

See Also: UNISTR on page 5-222

Syntax
D@D

Purpose

CONCAT returns charl concatenated with char2. Both charl and char2 can be any
of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The string
returned is in the same character set as charl. Its datatype depends on the datatypes
of the arguments.

In concatenations of two different datatypes, Oracle Database returns the datatype that
results in a lossless conversion. Therefore, if one of the arguments is a LOB, then the
returned value is a LOB. If one of the arguments is a national datatype, then the
returned value is a national datatype. For example:

s CONCAT(CLOB, NCLOB) returns NCLOB
s CONCAT(NCLOB, NCHAR) returns NCLOB
s CONCAT(NCLOB, CHAR) returns NCLOB
s CONCAT(NCHAR, CLOB) returns NCLOB

This function is equivalent to the concatenation operator (I I).

See Also: "Concatenation Operator" on page 4-4 for information on
the CONCAT operator

Examples

This example uses nesting to concatenate three character strings:

SELECT CONCAT (CONCAT (last_name, '''s job category is '),
job_id) "Job"

FROM employees
WHERE employee_id = 152
ORDER BY "Job";

5-38 Oracle Database SQL Language Reference

CONVERT

CONVERT

Hall's job category is SA_REP

Syntax
ollolcr o
Purpose

CONVERT converts a character string from one character set to another.

» The char argument is the value to be converted. It can be any of the datatypes
CHAR, VARCHAR?2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

» The dest_char_set argument is the name of the character set to which char is
converted.

s The source_char_set argument is the name of the character set in which char
is stored in the database. The default value is the database character set.

The return value for CHAR and VARCHAR?2 is VARCHAR?2. For NCHAR and NVARCHAR?2,
it is NVARCHAR2. For CLOB, it is CLOB, and for NCLOB, it is NCLOB.

Both the destination and source character set arguments can be either literals or
columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that the
destination character set contains a representation of all the characters defined in the
source character set. Where a character does not exist in the destination character set, a
replacement character appears. Replacement characters can be defined as part of a
character set definition.

Note: Oracle discourages the use of the CONVERT function in the
current Oracle Database release. The return value of CONVERT has a
character datatype, so it should be either in the database character set
or in the national character set, depending on the datatype. Any
dest_char_set that is not one of these two character sets is
unsupported. The char argument and the source_char_set have
the same requirements. Therefore, the only practical use of the
function is to correct data that has been stored in a wrong character
set.

Values that are in neither the database nor the national character set
should be processed and stored as RAW or BLOB. Procedures in the
PL/SQL packages UTL_RAW and UTL_I18N—for example, UTL_
RAW . CONVERT—allow limited processing of such values. Procedures
accepting RAW argument in the packages UTL_FILE, UTL_TCP, UTL_
HTTP, and UTL_SMTP can be used to output the processed data.

Functions 5-39

CORR

CORR

Examples

The following example illustrates character set conversion by converting a Latin-1
string to ASCII. The result is the same as importing the same string from a
WESISO8859P1 database to a US7ASCII database.

SELECT CONVERT ('A £ T 6 ¢ ABCDE ', 'USTASCII', 'WE8ISO8859P1')
FROM DUAL;

CONVERT (' AEIO@ABCDE"

AEI??ABCDE?

Common character sets include:

» US7ASCII: US 7-bit ASCII character set

s WESISO8859P1: ISO 8859-1 West European 8-bit character set

» EESMSWIN1250: Microsoft Windows East European Code Page 1250

s WESMSWIN1252: Microsoft Windows West European Code Page 1252
= WESEBCDIC1047: IBM West European EBCDIC Code Page 1047

= JA16SJISTILDE: Japanese Shift-JIS Character Set, compatible with MS Code Page
932

s ZHT16MSWIN950: Microsoft Windows Traditional Chinese Code Page 950
s UTES8: Unicode 3.0 Universal character set CESU-8 encoding form
s AL32UTES: Unicode 5.0 Universal character set UTF-8 encoding form

You can query the V$NLS_VALID_VALUES view to get a listing of valid character sets,
as follows:

SELECT * FROM VSNLS_VALID_VALUES WHERE parameter = 'CHARACTERSET’

See Also: Oracle Database Globalization Support Guide for information
on supported character sets and Oracle Database Reference for
information on the VSNLS_VALID_ VALUES view

Syntax

[—>| OVER P@»Canalytic_clausem
OO

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions

Purpose

CORR returns the coefficient of correlation of a set of number pairs. You can use it as an
aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

5-40 Oracle Database SQL Language Reference

CORR

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-14 for information on numeric precedence

Oracle Database applies the function to the set of (exprl, expr2) after eliminating the
pairs for which either expril or expr2 is null. Then Oracle makes the following
computation:

COVAR_POP (exprl, expr2) / (STDDEV_POP (exprl) * STDDEV_POP (expr2))

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

Note: The CORR function calculates the Pearson's correlation
coefficient, which requires numeric expressions as arguments. Oracle
also provides the CORR_S (Spearman's rho coefficient) and CORR_K
(Kendall's tau-b coefficient) to support nonparametric or rank
correlation.

See Also: "Aggregate Functions" on page 5-8, "About SQL
Expressions" on page 6-1 for information on valid forms of expr, and
CORR_* on page 5-42 and CORR_S on page 5-43

Aggregate Example

The following example calculates the coefficient of correlation between the list prices
and minimum prices of products by weight class in the sample table oe.product_
information:

SELECT weight_class, CORR(list_price, min_price) "Correlation"
FROM product_information
GROUP BY weight_class
ORDER BY weight_class, "Correlation";

WEIGHT_CLASS Correlation

1 .999149795
2 .999022941
3 .998484472
4 .999359909
5 .999536087

Analytic Example

The following example shows the correlation between duration at the company and
salary by the employee's position. The result set shows the same correlation for each
employee in a given job:

SELECT employee_id, job_id,
TO_CHAR((SYSDATE - hire_date) YEAR TO MONTH) "Yrs-Mns", salary,
CORR (SYSDATE-hire_date, salary)
OVER (PARTITION BY job_id) AS "Correlation"

FROM employees

WHERE department_id in (50, 80)

ORDER BY job_id, employee_id;

EMPLOYEE_ID JOB_ID Yrs-Mns SALARY Correlation

Functions 5-41

CORR_*

145 SA_MAN +08-07 14000 .912385598
146 SA_MAN +08-04 13500 .912385598
147 SA_MAN +08-02 12000 .912385598
148 SA_MAN +05-07 11000 .912385598
149 SA_MAN +05-03 10500 .912385598
150 SA_REP +08-03 10000 .80436755
151 SA_REP +08-02 9500 .80436755
152 SA_REP +07-09 9000 .80436755
153 SA_REP +07-01 8000 .80436755
154 SA_REP +06-05 7500 .80436755
155 SA_REP +05-06 7000 .80436755

CORR _*
The CORR_* functions are:
] CORR_S

s CORR_K
Syntax
correlation::=

COEFFICIENT
I ONE_SIDED_SIG -

ONE_SIDED_SIG_POS

ONE_SIDED_SIG_NEG

TWO_SIDED_SIG

Purpose

The CORR function (see CORR on page 5-40) calculates the Pearson's correlation
coefficient and requires numeric expressions as input. The CORR_* functions support
nonparametric or rank correlation. They let you find correlations between expressions
that are ordinal scaled (where ranking of the values is possible). Correlation
coefficients take on a value ranging from -1 to 1, where 1 indicates a perfect
relationship, -1 a perfect inverse relationship (when one variable increases as the other
decreases), and a value close to 0 means no relationship.

These functions takes as arguments any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle Database
determines the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, makes the calculation, and returns NUMBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-14 for information on numeric precedence

exprl and expr2 are the two variables being analyzed. The third argument is a

return value of type VARCHAR2. If you omit the third argument, then the default is
COEFFICIENT. The meaning of the return values is shown in the table that follows:

5-42 Oracle Database SQL Language Reference

CORR_*

Table 5-2 CORR_* Return Values

Return Value Meaning

COEFFICIENT Coefficient of correlation

ONE_SIDED_SIG Positive one-tailed significance of the correlation
ONE_SIDED_SIG_POS Same as ONE_SIDED_SIG
ONE_SIDED_SIG_NEG Negative one-tailed significance of the correlation
TWO_SIDED_SIG Two-tailed significance of the correlation

CORR_S

CORR_S calculates the Spearman's rho correlation coefficient. The input expressions
should be a set of (x;, y;) pairs of observations. The function first replaces each value
with a rank. Each value of x; is replaced with its rank among all the other x;s in the
sample, and each value of y; is replaced with its rank among all the other y;s. Thus,
each x; and y; take on a value from 1 to n, where n is the total number of pairs of
values. Ties are assigned the average of the ranks they would have had if their values
had been slightly different. Then the function calculates the linear correlation
coefficient of the ranks.

CORR_S Example Using Spearman's rho correlation coefficient, the following
example derives a coefficient of correlation for each of two different comparisons --
salary and commission_pct,and salary and employee_id:

SELECT COUNT(*) count,
CORR_S (salary, commission_pct) commission,
CORR_S (salary, employee_id) empid

FROM employees;

COUNT COMMISSION EMPID

107 .735837022 -.04482358

CORR_K

CORR_K calculates the Kendall's tau-b correlation coefficient. As for CORR_S, the input
expressions are a set of (x;, y;) pairs of observations. To calculate the coefficient, the
function counts the number of concordant and discordant pairs. A pair of observations
is concordant if the observation with the larger x also has a larger value of y. A pair of
observations is discordant if the observation with the larger x has a smaller y.

The significance of tau-b is the probability that the correlation indicated by tau-b was
due to chance--a value of 0 to 1. A small value indicates a significant correlation for
positive values of tau-b (or anticorrelation for negative values of tau-b).

CORR_K Example Using Kendall's tau-b correlation coefficient, the following
example determines whether a correlation exists between an employee's salary and
commission percent:

SELECT CORR_K(salary, commission_pct, 'COEFFICIENT') coefficient,
CORR_K (salary, commission_pct, 'TWO_SIDED_SIG') two_sided p_value
FROM hr.employees;

COEFFICIENT TWO_SIDED_P_VALUE

.603079768 3.4702E-07

Functions 5-43

COS

COS

COSH

Syntax
1000

Purpose
COS returns the cosine of n (an angle expressed in radians).

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY_
FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the cosine of 180 degrees:

SELECT COS(180 * 3.14159265359/180)
"Cosine of 180 degrees" FROM DUAL;

Cosine of 180 degrees

Syntax
EZ1 00,0

Purpose

COSH returns the hyperbolic cosine of n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__

FLOAT, then the function returns BINARY_ DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the hyperbolic cosine of zero:

SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

5-44 Oracle Database SQL Language Reference

COUNT

COUNT

Syntax

DISTINCT
U 02 N(EEIEE)
ALL

CEIO D Y0
)
expr

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions

Purpose

COUNT returns the number of rows returned by the query. You can use it as an
aggregate or analytic function.

If you specify DISTINCT, then you can specify only the query. partition_clause
of the analytic _clause. The order by clauseand windowing clause are not
allowed.

If you specify expr, then COUNT returns the number of rows where expr is not null.
You can count either all rows, or only distinct values of expz.

If you specify the asterisk (*), then this function returns all rows, including duplicates
and nulls. COUNT never returns null.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Examples
The following examples use COUNT as an aggregate function:

SELECT COUNT(*) "Total" FROM employees;

SELECT COUNT(*) "Allstars" FROM employees
WHERE commission_pct > 0;

Allstars

SELECT COUNT (commission_pct) "Count" FROM employees;

SELECT COUNT (DISTINCT manager_id) "Managers" FROM employees;

Managers

Functions 5-45

COVAR_POP

COVAR_POP

Analytic Example

The following example calculates, for each employee in the employees table, the
moving count of employees earning salaries in the range 50 less than through 150
greater than the employee's salary.

SELECT last_name, salary,
COUNT (*) OVER (ORDER BY salary RANGE BETWEEN 50 PRECEDING
AND 150 FOLLOWING) AS mov_count FROM employees
ORDER BY last_name, salary, COUNT(*);

LAST NAME SALARY MOV_COUNT
Olson 2100 3
Markle 2200 2
Philtanker 2200 2
Landry 2400 8
Gee 2400 8
Colmenares 2500 10
Marlow 2500 10
Patel 2500 10
Syntax

OVER analytic_clause
oA PO (AR)

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions

Purpose

COVAR_POP returns the population covariance of a set of number pairs. You can use it
as an aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-14 for information on numeric precedence

Oracle Database applies the function to the set of (expri, expr?2) pairs after
eliminating all pairs for which either expr1 or expr2 is null. Then Oracle makes the
following computation:

(SUM (exprl * expr2) - SUM(expr2) * SUM(exprl) / n) / n
where n is the number of (expri, expr2) pairs where neither exprl nor expr2is
null.

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

5-46 Oracle Database SQL Language Reference

COVAR_SAMP

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example

The following example calculates the population covariance and sample covariance for
time employed (SYSDATE - hire_date) and salary using the sample table
hr.employees:

SELECT job_id,
COVAR_POP (SYSDATE-hire_date, salary) AS covar_pop,
COVAR_SAMP (SYSDATE-hire_date, salary) AS covar_samp
FROM employees
WHERE department_id in (50, 80)
GROUP BY job_id
ORDER BY job_id, covar_pop, covar_samp;

JOB_ID COVAR_POP COVAR_SAMP
SA_MAN 660700 825875
SA_REP 579988.466 600702.34
SH_CLERK 212432.5 223613.158
ST _CLERK 176577.25 185870.789
ST_MAN 436092 545115

Analytic Example

The following example calculates cumulative sample covariance of the list price and
minimum price of the products in the sample schema oe:

SELECT product_id, supplier_id,
COVAR_POP(list_price, min_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM_COVP,
COVAR_SAMP (list_price, min_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM_COVS
FROM product_information p
WHERE category_id = 29
ORDER BY product_id, supplier_id;

PRODUCT ID SUPPLIER_ID CUM_COVP CUM_COVS

1774 103088 0
1775 103087 1473.25 2946.5
1794 103096 1702.77778 2554.16667
1825 103093 1926.25 2568.33333
2004 103086 1591.4 1989.25
2005 103086 1512.5 1815
2416 103088 1475.97959 1721.97619

COVAR_SAMP

Syntax

[e| OVER F@{analytic_clausem
OO

Functions 5-47

CUBE_TABLE

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions

Purpose

COVAR_SAMP returns the sample covariance of a set of number pairs. You can use it as
an aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-14 for information on numeric precedence

Oracle Database applies the function to the set of (expril, expr2) pairs after
eliminating all pairs for which either expr1 or expr2 is null. Then Oracle makes the
following computation:

(SUM (exprl * expr2) - SUM(exprl) * SUM(expr2) / n) / (n-1)

where n is the number of (expri, expr?2) pairs where neither exprl nor expr2 is
null.

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example
Refer to the aggregate example for COVAR_POP on page 5-46.

Analytic Example
Refer to the analytic example for COVAR_POP on page 5-46.

CUBE_TABLE

Syntax

CUBE_TABLE

HIERARCHY

HIERARCHY

dimension)—(hierarchyﬁ |
(hierarchy }—~

5-48 Oracle Database SQL Language Reference

CUBE_TABLE

Purpose

CUBE_TABLE extracts data from a cube or dimension and returns it in the
two-dimensional format of a relational table, which can be used by SQL-based
applications.

The function takes a single VARCHAR2 argument. The optional hierarchy clause
enables you to specify a dimension hierarchy. A cube can have multiple hierarchy
clauses, one for each dimension.

You can generate these different types of tables:

= A cube table contains a key column for each dimension and a column for each
measure and calculated measure in the cube. To create a cube table, you can
specify the cube with or without a cube hierarchy clause. For a dimension with
multiple hierarchies, this clause limits the return values to the dimension members
and levels in the specified hierarchy. Without a hierarchy clause, all dimension
members and all levels are included.

= A dimension table contains a key column, and a column for each level and each
attribute. All dimension members and all levels are included in the table. To create
a dimension table, specify the dimension without a dimension hierarchy clause.

= A hierarchy table contains all the columns of a dimension table plus a column for
the parent member and a column for each source level. Any dimension members
and levels that are not part of the named hierarchy are excluded from the table. To
create a hierarchy table, specify the dimension with a dimension hierarchy clause.

CUBE_TABLE is a table function and is always used in the context of a SELECT
statement with this syntax:

SELECT ... FROM TABLE(CUBE_TABLE('arg'));

See Also: Oracle OLAP User’s Guide for information about
dimensional objects and about the tables generated by CUBE_TABLE.

Examples

The following SELECT statement generates a dimension table of CHANNEL in the
GLOBAL schema.

SELECT * FROM TABLE (CUBE_TABLE('global.channel'));

DIM_KEY LEVEL_NAME LONG_DESCRIP SHORT_DESCRI TOTAL_CHANNEL_ID CHANNEL_ID
1 TOTAL_CHANNEL All Channels All Channels 1
2 CHANNEL Direct Sales Direct Sales 1
3 CHANNEL Catalog Catalog 1 3
4 CHANNEL Internet Internet 1

The next statement generates a cube table of UNITS_CUBE. It restricts the table to the
MARKET_ROLLUP and CALENDAR hierarchies.

SELECT * FROM TABLE (CUBE_TABLE (
'global.units_cube HIERARCHY customer market_rollup HIERARCHY time calendar'));

SALES UNITS COST TIME CUSTOMER PRODUCT CHANNEL
134109248 330425 124918967 2 7 1 1
32275009.5 77425 30255208 10 7 1 1
10768750.7 25780 10058324.5 36 7 1 1
109261.64 278 101798.32 36 5 1 1
22371.47 53 20887.54 36 36 1 1

Functions 5-49

CUME_DIST

CUME_DIST

Aggregate Syntax

cume_dist_aggregate::=

a WITHIN |->| GROUP |->

Analytic Syntax

cume_dist_analytic::=
query_partition_clause
CUME_DIST o 0 OVER (((order_by_clause)»(:)e

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions

Purpose

CUME_DIST calculates the cumulative distribution of a value in a group of values. The
range of values returned by CUME_DIST is >0 to <=1. Tie values always evaluate to the
same cumulative distribution value.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle Database determines
the argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, makes the calculation, and returns NUMBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-14 for information on numeric precedence

= Asan aggregate function, CUME_DIST calculates, for a hypothetical row r
identified by the arguments of the function and a corresponding sort specification,
the relative position of row r among the rows in the aggregation group. Oracle
makes this calculation as if the hypothetical row r were inserted into the group of
rows to be aggregated over. The arguments of the function identify a single
hypothetical row within each aggregate group. Therefore, they must all evaluate to
constant expressions within each aggregate group. The constant argument
expressions and the expressions in the ORDER BY clause of the aggregate match by

5-50 Oracle Database SQL Language Reference

CURRENT_DATE

position. Therefore, the number of arguments must be the same and their types
must be compatible.

= Asan analytic function, CUME_DIST computes the relative position of a specified
value in a group of values. For a row r, assuming ascending ordering, the CUME_
DIST of ris the number of rows with values lower than or equal to the value of r,
divided by the number of rows being evaluated (the entire query result set or a
partition).

Aggregate Example

The following example calculates the cumulative distribution of a hypothetical
employee with a salary of $15,500 and commission rate of 5% among the employees in
the sample table oe . employees:

SELECT CUME_DIST (15500, .05) WITHIN GROUP
(ORDER BY salary, commission_pct) "Cume-Dist of 15500"
FROM employees;

Cume-Dist of 15500

.972222222

Analytic Example

The following example calculates the salary percentile for each employee in the
purchasing division. For example, 40% of clerks have salaries less than or equal to
Himuro.

SELECT job_id, last_name, salary, CUME_DIST()
OVER (PARTITION BY job_id ORDER BY salary) AS cume_dist
FROM employees
WHERE job_id LIKE 'PU%'
ORDER BY job_id, last_name, salary, cume_dist;

JOB_1ID LAST_NAME SALARY CUME_DIST
PU_CLERK Baida 2900 .8
PU_CLERK Colmenares 2500 .2
PU_CLERK Himuro 2600 .4
PU_CLERK Khoo 3100 1
PU_CLERK Tobias 2800 .6
PU_MAN Raphaely 11000 1

CURRENT_DATE

Syntax
CURRENT_DATE

Purpose

CURRENT_DATE returns the current date in the session time zone, in a value in the
Gregorian calendar of datatype DATE.

Examples

The following example illustrates that CURRENT_DATE is sensitive to the session time
zone:

Functions 5-51

CURRENT_TIMESTAMP

ALTER SESSION SET TIME_ZONE = '-5:0';
ALTER SESSION SET NLS_DATE FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE

-05:00 29-MAY-2000 13:14:03

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE

-08:00 29-MAY-2000 10:14:33

CURRENT_TIMESTAMP

Syntax

o precision o

—>| CURRENT_TIMESTAMP }

Purpose

CURRENT_TIMESTAMP returns the current date and time in the session time zone, in a
value of datatype TIMESTAMP WITH TIME ZONE. The time zone offset reflects the
current local time of the SQL session. If you omit precision, then the default is 6. The
difference between this function and LOCALTIMESTAMP is that CURRENT_TIMESTAMP
returns a TIMESTAMP WITH TIME ZONE value while LOCALTIMESTAMP returns a
TIMESTAMP value.

In the optional argument, precision specifies the fractional second precision of the
time value returned.

See Also: LOCALTIMESTAMP on page 5-93

Examples

The following example illustrates that CURRENT_TIMESTAMP is sensitive to the
session time zone:

ALTER SESSION SET TIME_ZONE = '-5:0';

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP

-05:00 04-APR-00 01.17.56.917550 PM -05:00

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP

-08:00 04-APR-00 10.18.21.366065 AM -08:00

When you use the CURRENT_TIMESTAMP with a format mask, take care that the
format mask matches the value returned by the function. For example, consider the
following table:

5-52 Oracle Database SQL Language Reference

cv

CvV

CREATE TABLE current_test (coll TIMESTAMP WITH TIME ZONE);
The following statement fails because the mask does not include the TIME ZONE
portion of the type returned by the function:
INSERT INTO current_test VALUES

(TO_TIMESTAMP_TZ (CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM'));
The following statement uses the correct format mask to match the return type of
CURRENT_TIMESTAMP:

INSERT INTO current_test VALUES (TO_TIMESTAMP_TZ
(CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM TZH:TZM'));

Syntax
OF
Purpose

The CV function can be used only in the model_clause of a SELECT statement and
then only on the right-hand side of a model rule. It returns the current value of a
dimension column carried from the left-hand side to the right-hand side of a rule. This
function is used in the model_clause to provide relative indexing with respect to the
dimension column. The return type is that of the datatype of the dimension column. If
you omit the argument, then it defaults to the dimension column associated with the
relative position of the function within the cell reference.

The CV function may be used outside a cell reference. In this case, dimension_
columnis required.

See Also: model_clause on page 19-27 and "Model Expressions" on
page 6-11 for the syntax and semantics

Example

The following example assigns the sum of the sales of the product represented by the
current value of the dimension column (Mouse Pad or Standard Mouse) for years 1999
and 2000 to the sales of that product for year 2001:

SELECT country, prod, year, s

FROM sales_view_ref

MODEL
PARTITION BY (country)
DIMENSION BY (prod, year)
MEASURES (sale s)
IGNORE NAV
UNIQUE DIMENSION
RULES UPSERT SEQUENTIAL ORDER
(

s[FOR prod IN ('Mouse Pad', 'Standard Mouse'), 2001] =
s[CV(), 1999] + s[CV(), 2000]

)

ORDER BY country, prod, year;

COUNTRY PROD YEAR S

Functions 5-53

DATAOBJ_TO_PARTITION

France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 6679.41
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 3554.76
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 15721.9
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 8900.45

16 rows selected.

The preceding example requires the view sales_view_ref. Refer to "The MODEL
clause: Examples" on page 19-39 to create this view.

DATAOBJ_TO_PARTITION

Syntax
—>| DATAOBJ_TO_PARTITION o @ o o
Purpose

DATAOBJ_TO_PARTITION is useful only to Data Cartridge developers who are
performing data maintenance or query operations on system-partitioned tables that
are used to store domain index data. The DML or query operations are triggered by
corresponding operations on the base table of the domain index.

This function takes as arguments the name of the base table and the partition ID of the
base table partition, both of which are passed to the function by the appropriate
ODClIIndex method. The function returns the partition ID of the corresponding
system-partitioned table, which can be used to perform the operation (DML or query)
on that partition of the system-partitioned table.

See Also: Oracle Database Data Cartridge Developer's Guide for
information on the use of this function, including examples

DBTIMEZONE

Syntax
DBTIMEZONE

Purpose

DBTIMEZONE returns the value of the database time zone. The return type is a time
zone offset (a character type in the format ' [+|-]TZH:TZM'") or a time zone region

5-54 Oracle Database SQL Language Reference

DECODE

DECODE

name, depending on how the user specified the database time zone value in the most
recent CREATE DATABASE or ALTER DATABASE statement.

Examples
The following example assumes that the database time zone is set to UTC time zone:

SELECT DBTIMEZONE FROM DUAL;

DBTIME
+00:00
Syntax
© AO@E
default
] @O @D O OF
Purpose

DECODE compares expr to each search value one by one. If expris equal to a
search, then Oracle Database returns the corresponding result. If no match is
found, then Oracle returns default. If default is omitted, then Oracle returns null.

The arguments can be any of the numeric types (NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE) or character types.

» If exprand search are character data, then Oracle compares them using
nonpadded comparison semantics. expr, search, and result can be any of the
datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The string returned is of
VARCHAR2 datatype and is in the same character set as the first result parameter.

n If the first search-result pair are numeric, then Oracle compares all
search-result expressions and the first expr to determine the argument with
the highest numeric precedence, implicitly converts the remaining arguments to
that datatype, and returns that datatype.

The search, result, and default values can be derived from expressions. Oracle
Database uses short-circuit evaluation. The database evaluates each search value
only before comparing it to expr, rather than evaluating all search values before
comparing any of them with expr. Consequently, Oracle never evaluates a search if
a previous searchis equal to expr.

Oracle automatically converts expr and each search value to the datatype of the first
search value before comparing. Oracle automatically converts the return value to the
same datatype as the first result. If the first result has the datatype CHAR or if the
tirst result is null, then Oracle converts the return value to the datatype VARCHAR2.

In a DECODE function, Oracle considers two nulls to be equivalent. If expzr is null, then
Oracle returns the result of the first search that is also null.

The maximum number of components in the DECODE function, including expr,
searches, results, and default, is 255.

Functions 5-55

DECOMPOSE

See Also:

s "Datatype Comparison Rules" on page 2-36 for information on
comparison semantics

= "Data Conversion" on page 2-40 for information on datatype
conversion in general

= "Floating-Point Numbers" on page 2-12 for information on
floating-point comparison semantics

s 'Implicit and Explicit Data Conversion" on page 2-40 for
information on the drawbacks of implicit conversion

Examples

This example decodes the value warehouse_id. If warehouse_idis 1, then the
function returns 'Southlake'; if warehouse_id is 2, then it returns 'San
Francisco'; and so forth. If warehouse_idis not 1, 2, 3, or 4, then the function
returns 'Non domestic'.

SELECT product_id,

DECODE (warehouse_id, 1, 'Southlake',

2, 'San Francisco',

3, 'New Jersey',

4, 'Seattle',

'Non domestic') "Location"

FROM inventories
WHERE product_id < 1775
ORDER BY product_id, "Location";

DECOMPOSE

Syntax

| CANONICAL q
COMPATIBILITY

ol 0

Purpose

DECOMPOSE is valid only for Unicode characters. DECOMPOSE takes as its argument a
string in any datatype and returns a Unicode string after decomposition in the same
character set as the input. For example, an o-umlaut code point will be returned as the
"0" code point followed by an umlaut code point.

» stringcan be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB.

= CANONICAL causes canonical decomposition, which allows recomposition (for
example, with the COMPOSE function) to the original string. This is the default and
returns the string in NFD normal form.

= COMPATIBILITY causes decomposition in compatibility mode. In this mode,
recomposition is not possible. This mode is useful, for example, when
decomposing half-width and full-width katakana characters, where recomposition
might not be desirable without external formatting or style information. It returns
the string in NFKD normal form.

5-56 Oracle Database SQL Language Reference

DELETEXML

CLOB and NCLOB values are supported through implicit conversion. If charis a
character LOB value, then it is converted to a VARCHAR value before the COMPOSE
operation. The operation will fail if the size of the LOB value exceeds the supported
length of the VARCHAR in the particular development environment.

See Also:

» Oracle Database Globalization Support Guide for information on
Unicode character sets and character semantics

s COMPOSE on page 5-37

Examples
The following example ss the string "Chateaux" into its component code points:

SELECT DECOMPOSE ('Chéteaux') FROM DUAL;

DECOMPOSE

Cha”teaux

Note: The results of this example can vary depending on the
character set of your operating system.

DELETEXML

Syntax

O
—J{ DELETEXML |—>®{XMLType_instance XPath_string @

Purpose

DELETEXML deletes the node or nodes matched by the XPath expression in the target
XML.

m XMLType_ instanceis an instance of XMLType.

s The XPath_ stringis an Xpath expression indicating one or more nodes that are
to be deleted. You can specify an absolute XPath_string with an initial slash or
a relative XPath_stringby omitting the initial slash. If you omit the initial slash,
then the context of the relative path defaults to the root node. Any child nodes of
the nodes specified by XxPath_string are also deleted.

s The optional namespace_string provides namespace information for the
XPath_string. This parameter must be of type VARCHAR2.

See Also: Oracle XML DB Developer’s Guide for more information
about this function

Examples

The following example removes the /Owner node from the warehouse_spec of one
of the warehouses modified in the example for APPENDCHILDXML on page 5-17:

UPDATE warehouses SET warehouse_spec =
DELETEXML (warehouse_spec,
' /Warehouse/Building/Owner"')
WHERE warehouse_id = 2;

Functions 5-57

DENSE_RANK

SELECT warehouse_id, warehouse_spec FROM warehouses
WHERE warehouse_id in (2,3);

ID WAREHOUSE_SPEC
2 <?xml version="1.0"?>
<Warehouse>
<Building>Rented</Building>
<Area>50000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Lot</Parking>
<VClearance>12 ft</VClearance>
</Warehouse>

3 <?xml version="1.0"?>
<Warehouse>
<Building>Rented
<Owner>Grandco</Owner>
<Owner>ThirdOwner</Owner>
<Owner>LesserCo</Owner>
</Building>
<Area>85700</Area>
<DockType/>
<WaterAccess>N</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Street</Parking>
<VClearance>11.5 ft</VClearance>
</Warehouse>

DENSE_RANK

Aggregate Syntax

dense_rank_aggregate::=

o WITHIN |->| GROUP |->

F

=)

Analytic Syntax

dense_rank_analytic::=

query_partition_clause
DENSE_RANK o o oVER b(({order_by_clause)a(:)»

5-58 Oracle Database SQL Language Reference

DENSE_RANK

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions

Purpose

DENSE_RANK computes the rank of a row in an ordered group of rows and returns the
rank as a NUMBER. The ranks are consecutive integers beginning with 1. The largest
rank value is the number of unique values returned by the query. Rank values are not
skipped in the event of ties. Rows with equal values for the ranking criteria receive the
same rank. This function is useful for top-N and bottom-N reporting.

This function accepts as arguments any numeric datatype and returns NUMBER.

= Asanaggregate function, DENSE_RANK calculates the dense rank of a hypothetical
row identified by the arguments of the function with respect to a given sort
specification. The arguments of the function must all evaluate to constant
expressions within each aggregate group, because they identify a single row
within each group. The constant argument expressions and the expressions in the
order_by_clause of the aggregate match by position. Therefore, the number of
arguments must be the same and types must be compatible.

= As an analytic function, DENSE_RANK computes the rank of each row returned
from a query with respect to the other rows, based on the values of the value_
exprsin the order_by clause.

Aggregate Example

The following example computes the ranking of a hypothetical employee with the
salary $15,500 and a commission of 5% in the sample table oe . employees:

SELECT DENSE_RANK (15500, .05) WITHIN GROUP
(ORDER BY salary DESC, commission_pct) "Dense Rank"
FROM employees;

Dense Rank

Analytic Example

The following statement selects the department name, employee name, and salary of
all employees who work in the human resources or purchasing department, and then
computes a rank for each unique salary in each of the two departments. The salaries
that are equal receive the same rank. Compare this example with the example for
RANK on page 5-139.

SELECT d.department_name, e.last_name, e.salary, DENSE_RANK()
OVER (PARTITION BY e.department_id ORDER BY e.salary) AS drank
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND d.department_id IN ('30', '40'")

ORDER BY e.last_name, e.salary, d.department_name, drank;

DEPARTMENT_NAME LAST_NAME SALARY DRANK
Cm o o
Purchasing Baida 2900 4
Purchasing Colmenares 2500 1
Purchasing Himuro 2600 2
Purchasing Khoo 3100 5
Human Resources Mavris 6500 1
Purchasing Raphaely 11000 6

Functions 5-59

DEPTH

Purchasing Tobias 2800 3
DEPTH

Syntax

—>| DEPTH P@»{correlationfinteger)e@»

Purpose

DEPTH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH
conditions. It returns the number of levels in the path specified by the UNDER_PATH
condition with the same correlation variable.

The correlation_integer can be any NUMBER integer. Use it to correlate this
ancillary function with its primary condition if the statement contains multiple
primary conditions. Values less than 1 are treated as 1.

See Also: EQUALS_PATH Condition on page 7-20, UNDER_PATH
Condition on page 7-21, and the related function PATH on page 5-117

Examples

The EQUALS_PATH and UNDER_PATH conditions can take two ancillary functions,
DEPTH and PATH. The following example shows the use of both ancillary functions.
The example assumes the existence of the XMLSchema warehouses.xsd (created in
"Using XML in SQL Statements" on page E-8).

SELECT PATH(1), DEPTH(2)
FROM RESOURCE_VIEW
WHERE UNDER_PATH(res, '/sys/schemas/OE', 1)=1
AND UNDER_PATH (res, '/sys/schemas/OE', 2)=1;

/www.oracle.com 1

/www.oracle.com/xwarehouses.xsd 2

DEREF

Syntax
0:CHI0

Purpose

DEREF returns the object reference of argument expr, where expr must return a REF
to an object. If you do not use this function in a query, then Oracle Database returns
the object ID of the REF instead, as shown in the example that follows.

See Also: MAKE_REF on page 5-97
Examples

The sample schema oe contains an object type cust_address_typ. The "REF
Constraint Examples" on page 8-24 create a similar type, cust_address_typ_new,

5-60 Oracle Database SQL Language Reference

DUMP

DUMP

and a table with one column that is a REF to the type. The following example shows
how to insert into such a column and how to use DEREF to extract information from
the column:

INSERT INTO address_table VALUES
('l First', 'G45 EU8', 'Paris', 'CA', 'US');

INSERT INTO customer_addresses
SELECT 999, REF(a) FROM address_table a;

SELECT address FROM customer_addresses
ORDER BY address;

ADDRESS
00002202087652245DBE325CS FE03400400B40DCE1 6E2245DBE305C5FE03400400B40DCBL
SELECT DEREF (address) FROM customer_addresses;

DEREF (ADDRESS) (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)

CUST_ADDRESS_TYP('l First',6 'G45 EU8', 'Paris', 'CA', 'US')

Syntax

length
O G LN
L0

Purpose

DUMP returns a VARCHAR2 value containing the datatype code, length in bytes, and
internal representation of expr. The returned result is always in the database character
set. For the datatype corresponding to each code, see Table 2-1, " Built-in Datatype
Summary" on page 2-6.

The argument return_ fmt specifies the format of the return value and can have any
of the following values:

= 8 returns result in octal notation.

s 10 returns result in decimal notation.

» 16 returns result in hexadecimal notation.
» 17 returns result as single characters.

By default, the return value contains no character set information. To retrieve the
character set name of expr, add 1000 to any of the preceding format values. For
example, a return_fmt of 1008 returns the result in octal and provides the character
set name of expr.

The arguments start_positionand Iength combine to determine which portion
of the internal representation to return. The default is to return the entire internal
representation in decimal notation.

If expris null, then this function returns NULL.

Functions 5-61

EMPTY_BLOB, EMPTY_CLOB

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-36 for more
information

Examples

The following examples show how to extract dump information from a string
expression and a column:

SELECT DUMP('abc', 1016)
FROM DUAL;

DUMP ('ABC',1016)

Typ=96 Len=3 CharacterSet=WE8DEC: 61,62,63

SELECT DUMP (last_name, 8, 3, 2) "OCTAL"
FROM employees
WHERE last_name = 'Hunold'
ORDER BY employee_id;

Typ=1 Len=6: 156,157
SELECT DUMP (last_name, 10, 3, 2) "ASCII"
FROM employees

WHERE last_name = 'Hunold'
ORDER BY employee_id;

Typ=1 Len=6: 110,111

EMPTY_BLOB, EMPTY_CLOB

Syntax

empty LOB::=

E

| MPTY_BLOB I
EMPTY_CLOB

Purpose

EMPTY_BLOB and EMPTY_CLOB return an empty LOB locator that can be used to
initialize a LOB variable or, in an INSERT or UPDATE statement, to initialize a LOB
column or attribute to EMPTY. EMPTY means that the LOB is initialized, but not
populated with data.

5-62 Oracle Database SQL Language Reference

EXISTSNODE

Note: An empty LOB is not the same as a null LOB, and an empty
CLOB is not the same as a LOB containing a string of 0 length. For
more information, see Oracle Database SecureFiles and Large Objects
Developer’s Guide.

Restriction on LOB Locators You cannot use the locator returned from this function
as a parameter to the DBMS_LOB package or the OCL

Examples

The following example initializes the ad_photo column of the sample pm.print_
media table to EMPTY:

UPDATE print_media SET ad_photo = EMPTY_BLOB() ;

EXISTSNODE

Syntax

O
—] EXISTSNODE @{XMLType_instance XPath_string @
Purpose

EXISTSNODE determines whether traversal of an XML document using a specified
path results in any nodes. It takes as arguments the XML Type instance containing an
XML document and a VARCHAR2 XPath string designating a path. The optional
namespace_string must resolve to a VARCHAR2 value that specifies a default
mapping or namespace mapping for prefixes, which Oracle Database uses when
evaluating the XPath expression(s).

The namespace_stringargument defaults to the namespace of the root element. If
you refer to any subelement in Xpath_string, then you must specify namespace
string, and you must specify the "who" prefix in both of these arguments.

See Also: "Using XML in SQL Statements" on page E-8 for examples
that specify namespace_string and use the "who" prefix.

The return value is NUMBER:
= 0if nonodes remain after applying the XPath traversal on the document

= 1if any nodes remain

Examples

The following example tests for the existence of the /Warehouse/Dock node in the
XML path of the warehouse_spec column of the sample table oe.warehouses:

SELECT warehouse_id, warehouse_name
FROM warehouses
WHERE EXISTSNODE (warehouse_spec, '/Warehouse/Docks') = 1
ORDER BY warehouse_id, warehouse_name;

WAREHOUSE_ID WAREHOUSE_NAME

1 Southlake, Texas

Functions 5-63

EXP

EXP

2 San Francisco
4 Seattle, Washington

Syntax
(O

Purpose
EXP returns e raised to the nth power, where e = 2.71828183 ... The function returns a
value of the same type as the argument.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__
FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power" FROM DUAL;

e to the 4th power

54.59815

EXTRACT (datetime)

Syntax

extract_datetime::=

YEAR

MONTH

i

DAY

HOUR

MINUTE
SECOND datetime_value_expression

o TIMEZONE_HOUR nterval_value_expression)ﬁﬁ@—)

TIMEZONE_MINUTE

G

TIMEZONE_REGION

TIMEZONE_ABBR

5-64 Oracle Database SQL Language Reference

EXTRACT (datetime)

Purpose

EXTRACT extracts and returns the value of a specified datetime field from a datetime
or interval value expression. When you extract a TIMEZONE_REGION or TIMEZONE_
ABBR (abbreviation), the value returned is a string containing the appropriate time
zone name or abbreviation. When you extract any of the other values, the value
returned is in the Gregorian calendar. When extracting from a datetime with a time
zone value, the value returned is in UTC. For a listing of time zone names and their
corresponding abbreviations, query the VSTIMEZONE_NAMES dynamic performance
view.

This function can be very useful for manipulating datetime field values in very large
tables, as shown in the first example below.

Note: Timezone region names are needed by the daylight saving
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight saving
support until you provide a path to the complete (larger) file by
way of the ORA_TZFILE environment variable.

Some combinations of datetime field and datetime or interval value expression result
in ambiguity. In these cases, Oracle Database returns UNKNOWN (see the examples that
follow for additional information).

The field you are extracting must be a field of the datetime value_expr or
interval_ value_expr. For example, you can extract only YEAR, MONTH, and DAY
from a DATE value. Likewise, you can extract TIMEZONE_HOUR and TIMEZONE_
MINUTE only from the TIMESTAMP WITH TIME ZONE datatype.

See Also:

» Oracle Database Globalization Support Guide. for a complete listing
of the timezone region names in both files

» "Datetime/Interval Arithmetic" on page 2-20 for a description of
datetime value_exprand interval_ value expr

» Oracle Database Reference for information on the dynamic
performance views

Examples
The following example returns from the oe. orders table the number of orders
placed in each month:

SELECT EXTRACT (month FROM order_date) "Month",
COUNT (order_date) "No. of Orders"
FROM orders
GROUP BY EXTRACT (month FROM order_ date)
ORDER BY "No. of Orders" DESC;

Month No. of Orders

11 15
7 14
6 14
3 11

Functions 5-65

EXTRACT (XML)

oo N O Ul

10

12

= &> U1 oy J W Ww o

12 rows selected.

The following example returns the year 1998.

SELECT EXTRACT (YEAR FROM DATE '1998-03-07') FROM DUAL;

EXTRACT (YEARFROMDATE '1998-03-07")

The following example selects from the sample table hr . employees all employees
who were hired after 1998:

SELECT last_name, employee_id, hire_date
FROM employees
WHERE EXTRACT (YEAR FROM
TO_DATE (hire_date, 'DD-MON-RR')) > 1998
ORDER BY hire_date;

LAST_NAME EMPLOYEE_ID HIRE_DATE
Landry 127 14-JAN-99
Lorentz 107 07-FEB-99
Cabrio 187 07-FEB-99

The following example results in ambiguity, so Oracle returns UNKNOWN:

SELECT EXTRACT (TIMEZONE_REGION
FROM TIMESTAMP '1999-01-01 10:00:00 -08:00")
FROM DUAL;

EXTRACT (TIMEZONE_REGIONFROMTIMESTAMP'1999-01-0110:00:00-08:00")

The ambiguity arises because the time zone numerical offset is provided in the
expression, and that numerical offset may map to more than one time zone region.

EXTRACT (XML)

Syntax

extract xml.:=

0
—J{ EXTRACT |—>®{XMLTypefinstance)»@—(XPathfstring) @

5-66 Oracle Database SQL Language Reference

EXTRACTVALUE

Purpose

EXTRACT (XML) is similar to the EXISTSNODE function. It applies a VARCHAR2 XPath
string and returns an XMLType instance containing an XML fragment. You can specify
an absolute XPath_string with an initial slash or a relative XPath_string by
omitting the initial slash. If you omit the initial slash, then the context of the relative
path defaults to the root node. The optional namespace_string must resolve to a
VARCHAR2 value that specifies a default mapping or namespace mapping for prefixes,
which Oracle Database uses when evaluating the XPath expression(s).

Examples

The following example extracts the value of the /Warehouse/Dock node of the XML
path of the warehouse_spec column in the sample table oe .warehouses:

SELECT warehouse_name, EXTRACT (warehouse_spec, '/Warehouse/Docks')
"Number of Docks"
FROM warehouses
WHERE warehouse_spec IS NOT NULL
ORDER BY warehouse_name, "Number of Docks";

WAREHOUSE_NAME Number of Docks

New Jersey

San Francisco <Docks>1</Docks>
Seattle, Washington <Docks>3</Docks>
Southlake, Texas <Docks>2</Docks>

Compare this example with the example for EXTRACTVALUE on page 5-67, which
returns the scalar value of the XML fragment.

EXTRACTVALUE

Syntax

O
—{ EXTRACTVALUE |(()(XMLType.instance),)»(XPath_sring) O

The EXTRACTVALUE function takes as arguments an XMLType instance and an XPath
expression and returns a scalar value of the resultant node. The result must be a single
node and be either a text node, attribute, or element. If the result is an element, then
the element must have a single text node as its child, and it is this value that the
function returns. You can specify an absolute XPath_string with an initial slash or a
relative XPath_string by omitting the initial slash. If you omit the initial slash, the
context of the relative path defaults to the root node.

If the specified XPath points to a node with more than one child, or if the node pointed
to has a non-text node child, then Oracle returns an error. The optional namespace_
string must resolve to a VARCHAR?2 value that specifies a default mapping or
namespace mapping for prefixes, which Oracle uses when evaluating the XPath
expression(s).

For documents based on XML schemas, if Oracle can infer the type of the return value,
then a scalar value of the appropriate type is returned. Otherwise, the result is of type
VARCHAR2. For documents that are not based on XML schemas, the return type is
always VARCHAR?2.

Functions 5-67

FEATURE_ID

FEATURE_ID

Examples

The following example takes as input the same arguments as the example for
EXTRACT (XML) on page 5-66. Instead of returning an XML fragment, as does the
EXTRACT function, it returns the scalar value of the XML fragment:

SELECT warehouse_name,
EXTRACTVALUE (e.warehouse_spec, '/Warehouse/Docks')
"Docks"
FROM warehouses e
WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Docks
Southlake, Texas 2
San Francisco 1

New Jersey
Seattle, Washington 3

Syntax

FEATURE_ID ((model)—(mining_attribute_clause)»@»

mining_attribute_clause:=

*

M
O
table

expr

Purpose

This function is for use with feature extraction models that have been created using the
DBMS_DATA_MINING package or with the Oracle Data Mining Java APL It returns an
Oracle NUMBER that is the identifier of the feature with the highest value in the row.

The mining attribute_clause behaves as described for the PREDICTION
function. Refer to mining_attribute_clause on page 5-126.
See Also:

» Oracle Data Mining Concepts for detailed information about Oracle
Data Mining

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for detailed
information about real-time scoring with the Data Mining SQL
functions

5-68 Oracle Database SQL Language Reference

FEATURE_SET

Examples

The following example lists the features and corresponding count of customers in a
dataset.

This example and the prerequisite data mining operations, including creation of the
nmf_sh_sample model and nmf_sh_sample_apply prepared view, can be found
in the demo file $SORACLE_HOME /rdbms /demo/dmnmdemo . sgl. General information
on data mining demo files is available in Oracle Data Mining Administrator’s Guide. The
example is presented here to illustrate the syntactic use of the function.

SELECT FEATURE_ID(nmf_sh_sample USING *) AS feat, COUNT(*) AS cnt
FROM nmf_sh_sample_apply_prepared

GROUP BY FEATURE_ID(nmf_sh sample USING *)

ORDER BY cnt DESC;

FEATURE_SET

Syntax

m
_ \
FEATURE_SET (model s mining_attribute_clause)(>

mining_attribute_clause:=

*

table
allas
expr

Purpose

This function is for use with feature extraction models that have been created using the
DBMS_DATA_MINING package or with the Oracle Data Mining Java APL. It returns a
varray of objects containing all possible features. Each object in the varray is a pair of
scalar values containing the feature ID and the feature value. The object fields are
named FEATURE_ID and VALUE, and both are Oracle NUMBER.

The optional topN argument is a positive integer that restricts the set of features to
those that have one of the top N values. If there is a tie at the Nth value, then the
database still returns only N values. If you omit this argument, then the function
returns all features.

Functions 5-69

FEATURE_SET

The optional cutoff argument restricts the returned features to only those that have a
feature value greater than or equal to the specified cutoff. To filter only by cutoff,
specify NULL for topNand the desired cutoff for cutoff.

The mining attribute clause behaves as described for the PREDICTION
function. Refer to mining_attribute_clause on page 5-126.

See Also:

» Oracle Data Mining Concepts for detailed information about Oracle
Data Mining

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for detailed
information about real-time scoring with the Data Mining SQL
functions

Examples

The following example lists the top features corresponding to a given customer record
(based on match quality), and determines the top attributes for each feature (based on
coefficient > 0.25).

This example and the prerequisite data mining operations, including the creation of
the model, views, and type, can be found in the demo file SORACLE_

HOME/rdbms /demo/dmnmdemo . sgl. General information on data mining demo files
is available in Oracle Data Mining Administrator’s Guide. The example is presented here
to illustrate the syntactic use of the function.

WITH
feat_tab AS (
SELECT F.feature_id fid,
A.attribute_name attr,
TO_CHAR (A.attribute_value) val,
A.coefficient coeff
FROM TABLE (DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF ('nmf_sh_sample')) F,
TABLE (F.attribute_set) A
WHERE A.coefficient > 0.25
)
feat AS (
SELECT fid,
CAST (COLLECT (Featattr (attr, val, coeff))
AS Featattrs) f_attrs
FROM feat_tab
GROUP BY fid
)
cust_10_features AS (
SELECT T.cust_id, S.feature_id, S.value
FROM (SELECT cust_id, FEATURE_SET (nmf_sh_sample, 10 USING *) pset
FROM nmf_sh_sample_apply_prepared
WHERE cust_id = 100002) T,
TABLE(T.pset) S
)
SELECT A.value, A.feature_id fid,
B.attr, B.val, B.coeff
FROM cust_10_features A,
(SELECT T.fid, F.*
FROM feat T,
TABLE(T.f_attrs) F) B
WHERE A.feature_id = B.fid

5-70 Oracle Database SQL Language Reference

FEATURE_VALUE

ORDER BY A.value DESC, A.feature_id ASC, coeff DESC, attr ASC, val ASC;

VALUE FID ATTR VAL COEFF
6.8409 7 YRS_RESIDENCE 1.3879
6.8409 7 BOOKKEEPING_APPLICATION .4388
6.8409 7 CUST_GENDER M .2956
6.8409 7 COUNTRY_NAME United States of Ame .2848

rica
6.4975 3 YRS_RESIDENCE 1.2668
6.4975 3 BOOKKEEPING_APPLICATION .3465
6.4975 3 COUNTRY_NAME United States of Ame .2927

rica
6.4886 2 YRS_RESIDENCE 1.3285
6.4886 2 CUST_GENDER M .2819
6.4886 2 PRINTER_SUPPLIES .2704
6.3953 4 YRS_RESIDENCE 1.2931
5.9640 6 YRS_RESIDENCE 1.1585
5.9640 6 HOME_THEATER_PACKAGE .2576
5.2424 5 YRS_RESIDENCE 1.0067
2.4714 8 YRS_RESIDENCE .3297
2.3559 1 YRS_RESIDENCE .2768
2.3559 1 FLAT_PANEL_MONITOR .2593

17 rows selected.

FEATURE_VALUE

Syntax

O~ O
FEATURE_VALUE ((model) { mining_attribute_clause)(}>

mining_attribute_clause:=

*

table
mms
expr

Purpose

This function is for use with feature extraction models that have been created using the
DBMS_DATA_MINING package or with the Oracle Data Mining Java APL. It returns the
value of a given feature. If you omit the feature_id argument, then the function
returns the highest feature value. You can use this form in conjunction with the
FEATURE_ID function to obtain the largest feature/value combination.

The mining attribute_clause behaves as described for the PREDICTION
function. Refer to mining_attribute_clause on page 5-126.

Functions 5-71

FEATURE_VALUE

See Also:

» Oracle Data Mining Concepts for detailed information about Oracle

Data Mining

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for detailed
information about real-time scoring with the Data Mining SQL

functions

Examples

The following example lists the customers that correspond to feature 3, ordered by

match quality.

This example and

is available in Ora
to illustrate the sy

SELECT *
FROM (SELECT cu
FROM nm

WHERE ROWNUM < 1
CUST_ID MATCH_|
100210 19
100962 15.
101151 14.
101499 14.
100363 14.
100372 14.
100982 14.
101039 14.
100759 14.
100953 14.

10 rows selected.

5-72 Oracle Database SQL Language

the prerequisite data mining operations, including the creation of
the model and view, can be found in the demo file $SORACLE__

HOME/rdbms /demo/dmnmdemo . sgl. General information on data mining demo files
cle Data Mining Administrator’s Guide. The example is presented here
ntactic use of the function.

st_id, FEATURE_VALUE (nmf_sh_sample, 3 USING *) match_quality
f_sh_sample_apply prepared
ORDER BY match_quality DESC)

1;

QUALITY

.4101627

2482251
5685197
4186292
4037396
3335148
1716545
1079914
0913761
0799737

Reference

FIRST

FIRST

Syntax

first.:=

{aggregate_functionH KEEP |—>

=)
ASC

—>®->| DENSE_RANK |->| FIRST |->| ORDER |->| BY expr
ﬂ OVER Kquew_panition_clauseh

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions of the ORDER BY clause and OVER
clause

Purpose

FIRST and LAST are very similar functions. Both are aggregate and analytic functions
that operate on a set of values from a set of rows that rank as the FIRST or LAST with
respect to a given sorting specification. If only one row ranks as FIRST or LAST, then

the aggregate operates on the set with only one element.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

When you need a value from the first or last row of a sorted group, but the needed
value is not the sort key, the FIRST and LAST functions eliminate the need for
self-joins or views and enable better performance.

s The aggregate_functionis any one of the MIN, MAX, SUM, AVG, COUNT,
VARIANCE, or STDDEV functions. It operates on values from the rows that rank
either FIRST or LAST. If only one row ranks as FIRST or LAST, then the aggregate
operates on a singleton (nonaggregate) set.

= The KEEP keyword is for semantic clarity. It qualifies aggregate_function,
indicating that only the FIRST or LAST values of aggregate_function will be
returned.

= DENSE_RANK FIRST or DENSE_RANK LAST indicates that Oracle Database will
aggregate over only those rows with the minimum (FIRST) or the maximum
(LAST) dense rank (also called olympic rank).

You can use the FIRST and LAST functions as analytic functions by specifying the
OVER clause. The query_partitioning clauseis the only part of the OVER clause
valid with these functions.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and LAST on
page 5-87

Functions 5-73

FIRST_VALUE

Aggregate Example

The following example returns, within each department of the sample table
hr.employees, the minimum salary among the employees who make the lowest
commission and the maximum salary among the employees who make the highest
commission:

SELECT department_id,
MIN (salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct) "Worst",
MAX (salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct) "Best"
FROM employees
GROUP BY department_id
ORDER BY department_id, "Worst", "Best";

DEPARTMENT_TID Worst Best
10 4400 4400
20 6000 13000
30 2500 11000
40 6500 6500
50 2100 8200
60 4200 9000
70 10000 10000
80 6100 14000
90 17000 24000

100 6900 12000
110 8300 12000
7000 7000

Analytic Example

The next example makes the same calculation as the previous example but returns the
result for each employee within the department:

SELECT last_name, department_id, salary,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Worst",
MAX (salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Best"
FROM employees
ORDER BY department_id, salary;

LAST_NAME DEPARTMENT_ID SALARY Worst Best
Whalen 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
Gietz 110 8300 8300 12000
Higgins 110 12000 8300 12000
Grant 7000 7000 7000

FIRST_VALUE

Syntax

f_)| IGNORE H NULLS h

5-74 Oracle Database SQL Language Reference

FIRST_VALUE

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions, including valid forms of expr

Purpose

FIRST_VALUE is an analytic function. It returns the first value in an ordered set of
values. If the first value in the set is null, then the function returns NULL unless you
specify IGNORE NULLS. This setting is useful for data densification. If you specify
IGNORE NULLS, then FIRST_VALUE returns the fist non-null value in the set, or NULL
if all values are null. Refer to "Using Partitioned Outer Joins: Examples"
on page 19-46 for an example of data densification.

You cannot nest analytic functions by using FIRST_VALUE or any other analytic
function for expr. However, you can use other built-in function expressions for expr.
Refer to "About SQL Expressions" on page 6-1 for information on valid forms of expr.

Examples

The following example selects, for each employee in Department 90, the name of the
employee with the lowest salary.

SELECT department_id, last_name, salary, FIRST_VALUE (last_name)
OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS lowest_sal
FROM (SELECT * FROM employees WHERE department_id = 90

ORDER BY employee_id)
ORDER BY department_id, last_name, salary, lowest_sal;

DEPARTMENT_ID LAST_NAME SALARY LOWEST_ SAL
90 De Haan 17000 Kochhar
90 King 24000 Kochhar
90 Kochhar 17000 Kochhar

The example illustrates the nondeterministic nature of the FIRST_VALUE function.
Kochhar and DeHaan have the same salary, so are in adjacent rows. Kochhar appears
tirst because the rows returned by the subquery are ordered by employee_id.
However, if the rows returned by the subquery are ordered by employee_idin
descending order, as in the next example, then the function returns a different value:

SELECT department_id, last_name, salary, FIRST_VALUE (last_name)
OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) as fv
FROM (SELECT * FROM employees WHERE department_id = 90
ORDER by employee_id DESC)
ORDER BY department_id, last_name, salary, fv;

DEPARTMENT_ID LAST_NAME SALARY FV
90 De Haan 17000 De Haan
90 King 24000 De Haan
90 Kochhar 17000 De Haan

The following example shows how to make the FIRST_VALUE function deterministic
by ordering on a unique key.

SELECT department_id, last_name, salary, hire_date,
FIRST _VALUE (last_name) OVER
(ORDER BY salary ASC, hire_date ROWS UNBOUNDED PRECEDING) AS fv
FROM (SELECT * FROM employees
WHERE department_id = 90 ORDER BY employee_id DESC)
ORDER BY department_id, last_name, salary, hire_date;

Functions 5-75

FLOOR

DEPARTMENT_ID LAST_NAME SALARY HIRE_DATE FV
90 De Haan 17000 13-JAN-93 Kochhar
90 King 24000 17-JUN-87 Kochhar
90 Kochhar 17000 21-SEP-89 Kochhar
Syntax
FLOOR b(((n ()
Purpose

FLOOR returns largest integer equal to or less than n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the largest integer equal to or less than 15.7:

SELECT FLOOR(15.7) "Floor" FROM DUAL;

Floor
15
FROM_TZ
Syntax
® e ®
Purpose

FROM_TZ converts a timestamp value and a time zone to a TIMESTAMP WITH TIME
ZONE value. time_zone_valueis a character string in the format ' TZH: TZM' or a
character expression that returns a string in TZR with optional TZD format.

Examples
The following example returns a timestamp value to TIMESTAMP WITH TIME ZONE:

SELECT FROM_TZ (TIMESTAMP '2000-03-28 08:00:00', '3:00")
FROM DUAL;

FROM_TZ (TIMESTAMP'2000-03-2808:00:00"','3:00")

28-MAR-00 08.00.00 AM +03:00

5-76 Oracle Database SQL Language Reference

GROUP_ID

GREATEST

GROUP_ID

Syntax

Purpose

GREATEST returns the greatest of the list of one or more expressions. Oracle Database
uses the first expr to determine the return type. If the first expr is numeric, then
Oracle determines the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that datatype before the comparison, and returns
that datatype. If the first expr is not numeric, then each expr after the first is
implicitly converted to the datatype of the first expr before the comparison.

Oracle Database compares each expr using nonpadded comparison semantics. The
comparison is binary by default and is linguistic if the NL.S_COMP parameter is set to
LINGUISTIC and the NLS_SORT parameter has a setting other than BINARY.
Character comparison is based on the numerical codes of the characters in the
database character set and is performed on whole strings treated as one sequence of
bytes, rather than character by character. If the value returned by this function is
character data, then its datatype is always VARCHAR?2.

See Also:

= "Datatype Comparison Rules" on page 2-36 for more information
on character comparison

s Table 2-10, " Implicit Type Conversion Matrix" on page 2-40 for
more information on implicit conversion and "Floating-Point
Numbers" on page 2-12 for information on binary-float
comparison semantics

Examples
The following statement selects the string with the greatest value:

SELECT GREATEST ('HARRY', 'HARRIOT', 'HAROLD')
"Greatest" FROM DUAL;

Greatest

Syntax
050

Purpose

GROUP_ID distinguishes duplicate groups resulting from a GROUP BY specification. It
is useful in filtering out duplicate groupings from the query result. It returns an Oracle
NUMBER to uniquely identify duplicate groups. This function is applicable only in a
SELECT statement that contains a GROUP BY clause.

Functions 5-77

GROUPING

If n duplicates exist for a particular grouping, then GROUP_ID returns numbers in the
range 0 to n-1.

Examples

The following example assigns the value 1 to the duplicate co.country_region
grouping from a query on the sample tables sh.countries and sh.sales:

SELECT co.country region, co.country_ subregion,

SUM (s.amount_sold) "Revenue",

GROUP_ID() g
FROM sales s, customers c, countries co
WHERE s.cust_id = c.cust_id AND

c.country_id = co.country_id AND

s.time_id = '1-JAN-00' AND

co.country_region IN ('Americas', 'Europe')
GROUP BY co.country_region,

ROLLUP (co.country region, co.country_ subregion)
ORDER BY co.country_region, co.country subregion, "Revenue", g;

COUNTRY_REGION COUNTRY_SUBREGION Revenue G
Americas Northern America 944.6 0
Americas 944.6 0
Americas 944 .6 1
Europe Western Europe 566.39 0
Europe 566.39 0
Europe 566.39 1

To ensure that only rows with GROUP_ID < 1 are returned, add the following HAVING
clause to the end of the statement :

HAVING GROUP_ID() < 1

GROUPING

Syntax
0:CD0
Purpose

GROUPING distinguishes superaggregate rows from regular grouped rows. GROUP BY
extensions such as ROLLUP and CUBE produce superaggregate rows where the set of
all values is represented by null. Using the GROUPING function, you can distinguish a
null representing the set of all values in a superaggregate row from a null in a regular
row.

The expr in the GROUPING function must match one of the expressions in the GROUP
BY clause. The function returns a value of 1 if the value of expr in the row is a null
representing the set of all values. Otherwise, it returns zero. The datatype of the value
returned by the GROUPING function is Oracle NUMBER. Refer to the SELECT group_by_
clause on page 19-25 for a discussion of these terms.

Examples

In the following example, which uses the sample tables hr . departments and
hr.employees, if the GROUPING function returns 1 (indicating a superaggregate row

5-78 Oracle Database SQL Language Reference

GROUPING_ID

rather than a regular row from the table), then the string "All Jobs" appears in the
"JOB" column instead of the null that would otherwise appear:

SELECT
DECODE (GROUPING (department_name), 1, 'All Departments', department_name) AS department,
DECODE (GROUPING (job_id), 1, 'All Jobs', job_id) AS job,
COUNT (*) "Total Empl",
AVG(salary) * 12 "Average Sal"
FROM employees e, departments d
WHERE d.department_id = e.department_id
GROUP BY ROLLUP (department_name, job_id)
ORDER BY department, job, "Total Empl", "Average Sal";

DEPARTMENT JOB Total Empl Average Sal
Accounting AC_ACCOUNT 1 99600
Accounting AC_MGR 1 144000
Accounting All Jobs 2 121800
Administration AD_ASST 1 52800
Administration All Jobs 1 52800
All Departments All Jobs 106 77479.2453
Executive AD_PRES 1 288000
Executive AD_VP 2 204000
Executive All Jobs 3 232000
Finance All Jobs 6 103200
Finance FI_ACCOUNT 5 95040

GROUPING_ID

Syntax

GROUPING_ID

Purpose

GROUPING_ID returns a number corresponding to the GROUPING bit vector associated
with a row. GROUPING_ID is applicable only in a SELECT statement that contains a
GROUP BY extension, such as ROLLUP or CUBE, and a GROUPING function. In queries
with many GROUP BY expressions, determining the GROUP BY level of a particular row
requires many GROUPING functions, which leads to cumbersome SQL. GROUPING_ID
is useful in these cases.

GROUPING_ID is functionally equivalent to taking the results of multiple GROUPING
functions and concatenating them into a bit vector (a string of ones and zeros). By
using GROUPING_ID you can avoid the need for multiple GROUPING functions and
make row filtering conditions easier to express. Row filtering is easier with
GROUPING_ID because the desired rows can be identified with a single condition of
GROUPING_ID = n. The function is especially useful when storing multiple levels of
aggregation in a single table.

Examples

The following example shows how to extract grouping IDs from a query of the sample
table sh.sales:

SELECT channel_id, promo_id, sum(amount_sold) s_sales,

Functions 5-79

HEXTORAW

GROUPING (channel_id) gc,

GROUPING (promo_id) gp,
GROUPING_ID(channel_id, promo_id) gcp,
GROUPING_ID(promo_id, channel_id) gpc

FROM sales

WHERE promo_id > 496

GROUP BY CUBE (channel_id, promo_id)

ORDER BY channel_id, promo_id, s_sales, gc;

CHANNEL_ID PROMO_ID S_SALES GC GP GCP GPC
2 999 25797563.2 0 0 0 0
2 25797563 .2 0 1 1 2
3 999 55336945.1 0 0 0 0
3 55336945.1 0 1 1 2
4 999 13370012.5 0 0 0 0
4 13370012.5 0 1 1 2
999 94504520.8 1 0 2 1
94504520.8 1 1 3 3
Syntax
HEXTORAW o Q
Purpose

HEXTORAW converts char containing hexadecimal digits in the CHAR, VARCHAR?2,
NCHAR, or NVARCHAR? character set to a raw value.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-36 for more
information.

Examples

The following example creates a simple table with a raw column, and inserts a
hexadecimal value that has been converted to RAW:

CREATE TABLE test (raw_col RAW(10));
INSERT INTO test VALUES (HEXTORAW('7D'));

See Also: "RAW and LONG RAW Datatypes" on page 2-23 and
RAWTOHEX on page 5-141

INITCAP

Syntax

[WTcRe (D@D

5-80 Oracle Database SQL Language Reference

INSERTCHILDXML

Purpose

INITCAP returns char, with the first letter of each word in uppercase, all other letters
in lowercase. Words are delimited by white space or characters that are not
alphanumeric.

char can be of any of the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The
return value is the same datatype as char. The database sets the case of the initial
characters based on the binary mapping defined for the underlying character set. For
linguistic-sensitive uppercase and lowercase, refer to NLS_INITCAP on page 5-107.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-36 for more
information.

Examples
The following example capitalizes each word in the string:

SELECT INITCAP('the soap') "Capitals" FROM DUAL;

Capitals

INSERTCHILDXML

Syntax

INSERTCHILDXML

0
—>®{XMLType_instance}@{XPath_string)»@{child_expr)—)@@ @

Purpose

INSERTCHILDXML inserts a user-supplied value into the target XML at the node
indicated by the XPath expression. Compare this function with INSERTXMLBEFORE
on page 5-82.

See Also: Oracle XML DB Developer’s Guide for more information
about this function

s XMLType_ instanceis an instance of XMLType.

s The XPath_stringis an Xpath expression indicating one or more nodes into
which the one or more child nodes are to be inserted. You can specify an absolute
XPath_string with an initial slash or a relative XPath_stringby omitting the
initial slash. If you omit the initial slash, then the context of the relative path
defaults to the root node.

s The child_expr specifies the one or more element or attribute nodes to be
inserted.

s The value_ expris an fragment of XMLType that specifies one or more notes
being inserted. It must resolve to a string.

Functions 5-81

INSERTXMLBEFORE

s The optional namespace_string provides namespace information for the
XPath_string. This parameter must be of type VARCHAR2.

Examples

The following example adds a second /Owner node to the warehouse_spec of one
of the warehouses updated in the example for APPENDCHILDXML on page 5-17:

UPDATE warehouses SET warehouse_spec =
INSERTCHILDXML (warehouse_spec,
' /Warehouse/Building', 'Owner',
XMLType (' <Owner>LesserCo</Owner>"'))
WHERE warehouse_id = 3;

SELECT warehouse_spec FROM warehouses
WHERE warehouse_id = 3;

WAREHOUSE_SPEC
<?xml version="1.0"?>
<Warehouse>
<Building>Rented
<Owner>Grandco</Owner>
<Owner>LesserCo</Owner>
</Building>
<Area>85700</Area>
<DockType/>
<WaterAccess>N</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Street</Parking>
<VClearance>11.5 ft</VClearance>
</Warehouse>

INSERTXMLBEFORE

Syntax
O
—J| INSERTXMLBEFORE P@»CXMLType_instance}s@{XPath_string}a@{value_expr} @
Purpose

INSERTXMLBEFORE inserts a user-supplied value into the target XML before the node

indicated by the XPath expression. Compare this function with INSERTCHILDXML on

page 5-81.

s XMLType instanceis an instance of XMLType.

s The XPath_stringis an Xpath expression indicating one or more nodes into
which one or more child nodes are to be inserted. You can specify an absolute
XPath_string with an initial slash or a relative XPath_stringby omitting the

initial slash. If you omit the initial slash, then the context of the relative path
defaults to the root node.

s The value_expris a fragment of XMLType that defines one or more nodes being
inserted and their position within the parent node. It must resolve to a string.

» The optional namespace_string provides namespace information for the
XPath_string. This parameter must be of type VARCHAR2.

5-82 Oracle Database SQL Language Reference

INSTR

See Also: Oracle XML DB Developer’s Guide for more information
about this function

Examples

The following example is similar to that for INSERTCHILDXML on page 5-81, but it
adds a third /Owner node before the /Owner node added in the other example. The
output of the query has been formatted for readability.

UPDATE warehouses SET warehouse_spec =
INSERTXMLBEFORE (warehouse_spec,
' /Warehouse/Building/Owner[2] "',
XMLType (' <Owner>ThirdOwner</Owner>"))
WHERE warehouse_id = 3;

SELECT warehouse_name, EXTRACT (warehouse_spec,
' /Warehouse/Building/Owner') "Owners"
FROM warehouses
WHERE warehouse_id = 3;

New Jersey <Owner>Grandco</Owner>
<Owner>ThirdOwner</Owner>
<Owner>LesserCo</Owner>

INSTR

Syntax

O (Gren)
0%

substring

Purpose

The INSTR functions search string for substring. The function returns an integer
indicating the position of the character in string that is the first character of this
occurrence. INSTR calculates strings using characters as defined by the input character
set. INSTRB uses bytes instead of characters. INSTRC uses Unicode complete
characters. INSTR2 uses UCS2 code points. INSTR4 uses UCS4 code points.

» positionisan nonzero integer indicating the character of string where Oracle
Database begins the search. If positionis negative, then Oracle counts backward
from the end of string and then searches backward from the resulting position.

s occurrenceis an integer indicating which occurrence of string Oracle should
search for. The value of occurrence must be positive. If occurrence is greater
than 1, then the database searches for the second occurrence beginning with the
second character in the first occurrence of string, and so forth.

Both stringand substring can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The value returned is of NUMBER datatype.

Functions 5-83

ITERATION_NUMBER

Both positionand occurrence must be of datatype NUMBER, or any datatype that
can be implicitly converted to NUMBER, and must resolve to an integer. The default
values of both positionand occurrence are 1, meaning Oracle begins searching at
the first character of string for the first occurrence of substring. The return value
is relative to the beginning of string, regardless of the value of position, and is
expressed in characters. If the search is unsuccessful (if substring does not appear
occurrence times after the position character of string), then the return value is

0.
See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion
Examples

The following example searches the string CORPORATE FLOOR, beginning with the
third character, for the string "OR". It returns the position in CORPORATE FLOOR at
which the second occurrence of "OR" begins:

SELECT INSTR('CORPORATE FLOOR','OR', 3, 2)
"Instring" FROM DUAL;

Instring

In the next example, Oracle counts backward from the last character to the third
character from the end, which is the first 0 in FLOOR. Oracle then searches backward
for the second occurrence of OR, and finds that this second occurrence begins with the
second character in the search string :

SELECT INSTR('CORPORATE FLOOR', 'OR', -3, 2)
"Reversed Instring"
FROM DUAL;

Reversed Instring

The next example assumes a double-byte database character set.

SELECT INSTRB('CORPORATE FLOOR', 'OR',5,2) "Instring in bytes"
FROM DUAL;

Instring in bytes

ITERATION_NUMBER

Syntax

—>| ITERATION_NUMBER |->

Purpose

The ITERATION_NUMBER function can be used only in the model_clause of the

SELECT statement and then only when ITERATE (number) is specified in the model_
rules_clause. It returns an integer representing the completed iteration through the
model rules. The ITERATION_NUMBER function returns 0 during the first iteration. For

5-84 Oracle Database SQL Language Reference

ITERATION_NUMBER

each subsequent iteration, the ITERATION_NUMBER function returns the equivalent of
iteration_number plus one.

See Also: model_clause on page 19-27 and "Model Expressions" on
page 6-11 for the syntax and semantics

Examples

The following example assigns the sales of the Mouse Pad for the years 1998 and 1999
to the sales of the Mouse Pad for the years 2001 and 2002 respectively:

SELECT country, prod, year, s
FROM sales_view_ref
MODEL
PARTITION BY (country)
DIMENSION BY (prod, year)
MEASURES (sale s)
IGNORE NAV
UNIQUE DIMENSION
RULES UPSERT SEQUENTIAL ORDER ITERATE(2)
(
s['Mouse Pad', 2001 + ITERATION_NUMBER] =
s['Mouse Pad', 1998 + ITERATION_NUMBER]
)
ORDER BY country, prod, year;

COUNTRY PROD YEAR S
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 2509.42
France Mouse Pad 2002 3678.69
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 5827.87
Germany Mouse Pad 2002 8346.44
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

18 rows selected.

The preceding example requires the view sales_view_ref. Refer to "The MODEL
clause: Examples" on page 19-39 to create this view.

Functions 5-85

LAG

LAG

Syntax

—>| LAG P@a(value_expr) o - @9

query_partition_clause
OVER (order_by_clause)(b

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions, including valid forms of value_
expr

Purpose

LAG is an analytic function. It provides access to more than one row of a table at the
same time without a self join. Given a series of rows returned from a query and a
position of the cursor, LAG provides access to a row at a given physical offset prior to
that position.

If you do not specify offset, then its default is 1. The optional default value is
returned if the offset goes beyond the scope of the window. If you do not specify
default, then its default is null.

You cannot nest analytic functions by using LAG or any other analytic function for
value_expr. However, you can use other built-in function expressions for value
expr.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and LEAD on page 5-90

Examples

The following example provides, for each salesperson in the employees table, the
salary of the employee hired just before:

SELECT last_name, hire_date, salary,
LAG(salary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
FROM employees
WHERE job_id = 'PU_CLERK'
ORDER BY last_name, hire_date, salary, prev_sal;

LAST NAME HIRE_DATE SALARY PREV_SAL
Baida 24-DEC-97 2900 2800
Colmenares 10-AUG-99 2500 2600
Himuro 15-NOvV-98 2600 2900
Khoo 18-MAY-95 3100 0
Tobias 24-JUL-97 2800 3100

5-86 Oracle Database SQL Language Reference

LAST_DAY

LAST

Syntax

last::=

{aggregate_functionH KEEP |—>

(=)
ASC

—9<:>% DENSE_RANK|4 LAST|4 ORDER|4 BY expr

ﬂ OVER Kquew_panition_clauseh

LAST_DAY

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions of the query partitioning
clause

Purpose

FIRST and LAST are very similar functions. Both are aggregate and analytic functions
that operate on a set of values from a set of rows that rank as the FIRST or LAST with
respect to a given sorting specification. If only one row ranks as FIRST or LAST, then

the aggregate operates on the set with only one element.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Refer to FIRST on page 5-73 for complete information on this function and for
examples of its use.

Syntax
D@D
Purpose

LAST_DAY returns the date of the last day of the month that contains date. The return
type is always DATE, regardless of the datatype of date.

Examples
The following statement determines how many days are left in the current month.

SELECT SYSDATE,
LAST_DAY (SYSDATE) "Last",

Functions 5-87

LAST_VALUE

LAST_DAY (SYSDATE) - SYSDATE "Days Left"

FROM DUAL;
SYSDATE Last Days Left
30-MAY-01 31-MAY-01 1

The following example adds 5 months to the hire date of each employee to give an
evaluation date:

SELECT last_name, hire_date, TO_CHAR(
ADD_MONTHS (LAST DAY (hire_date), 5)) "Eval Date"
FROM employees;

LAST NAME HIRE_DATE Eval Date
King 17-JUN-87 30-NOV-87
Kochhar 21-SEP-89 28-FEB-90
De Haan 13-JAN-93 30-JUN-93
Hunold 03-JAN-90 30-JUN-90
Ernst 21-MAY-91 31-0CT-91
Austin 25-JUN-97 30-NOV-97
Pataballa 05-FEB-98 31-JUL-98
Lorentz 07-FEB-99 31-JUL-99

LAST_VALUE

Syntax

[->| IGNORE |->| NULLS |—\

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions, including valid forms of expr

Purpose

LAST_VALUE is an analytic function. It returns the last value in an ordered set of
values. If the last value in the set is null, then the function returns NULL unless you
specify IGNORE NULLS. This setting is useful for data densification. If you specify
IGNORE NULLS, then LAST_VALUE returns the fist non-null value in the set, or NULL
if all values are null. Refer to "Using Partitioned Outer Joins: Examples"
on page 19-46 for an example of data densification.

You cannot nest analytic functions by using LAST_VALUE or any other analytic
function for expr. However, you can use other built-in function expressions for expr.
Refer to "About SQL Expressions" on page 6-1 for information on valid forms of expr.

If you omit the windowing clause of the analytic_clause, it defaults to RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. This default sometimes returns
an unexpected value, because the last value in the window is at the bottom of the
window, which is not fixed. It keeps changing as the current row changes. For
expected results, specify the windowing clause as RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING. Alternatively, you can specify the
windowing clause as RANGE BETWEEN CURRENT ROW AND UNBOUNDED
FOLLOWING.

5-88 Oracle Database SQL Language Reference

LAST_VALUE

Examples

The following example returns, for each row, the hire date of the employee earning the
highest salary:

SELECT last_name, salary, hire_date, LAST VALUE (hire_date) OVER
(ORDER BY salary
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS 1lv
FROM (SELECT * FROM employees WHERE department_id = 90
ORDER BY hire_date)
ORDER BY last_name, salary, hire_date, 1lv;

LAST_NAME SALARY HIRE_DATE LV

De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87
Kochhar 17000 21-SEP-89 17-JUN-87

This example illustrates the nondeterministic nature of the LAST_VALUE function.
Kochhar and De Haan have the same salary, so they are in adjacent rows. Kochhar
appears first because the rows in the subquery are ordered by hire_date. However,
if the rows are ordered by hire_date in descending order, as in the next example,
then the function returns a different value:

SELECT last_name, salary, hire_date, LAST VALUE (hire_date) OVER
(ORDER BY salary
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS 1lv
FROM (SELECT * FROM employees WHERE department_id = 90
ORDER BY hire_date DESC)
ORDER BY last_name, salary, hire_datea, 1lv;

LAST NAME SALARY HIRE_DATE LV

De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87
Kochhar 17000 21-SEP-89 17-JUN-87

The following two examples show how to make the LAST VALUE function
deterministic by ordering on a unique key. By ordering within the function by both
salary and hire_date, you can ensure the same result regardless of the ordering in
the subquery.

SELECT last_name, salary, hire_date, LAST VALUE (hire_date) OVER
(ORDER BY salary, hire_date

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS 1v
FROM (SELECT * FROM employees WHERE department_id = 90

ORDER BY hire_date)
ORDER BY last_name, salary, hire_date, 1lv;

LAST NAME SALARY HIRE_DATE LV

De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87
Kochhar 17000 21-SEP-89 17-JUN-87

SELECT last_name, salary, hire_date, LAST_VALUE (hire_date) OVER
(ORDER BY salary, hire_date
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS 1v
FROM (SELECT * FROM employees WHERE department_id = 90
ORDER BY hire_date DESC)
ORDER BY last_name, salary, hire_date, 1lv;

Functions 5-89

LEAD

LAST NAME SALARY HIRE_DATE LV

De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87
Kochhar 17000 21-SEP-89 17-JUN-87
Syntax

“.offset M (default)
—{ EAD (0)(value_exr) S S O

query_partition_clause
OVER (A order_by_clause) b

See Also: "Analytic Functions" on page 5-10 for information on
syntax, semantics, and restrictions, including valid forms of value_
expr

Purpose

LEAD is an analytic function. It provides access to more than one row of a table at the
same time without a self join. Given a series of rows returned from a query and a
position of the cursor, LEAD provides access to a row at a given physical offset beyond
that position.

If you do not specify offset, then its default is 1. The optional default value is
returned if the offset goes beyond the scope of the table. If you do not specify
default, then its default value is null.

You cannot nest analytic functions by using LEAD or any other analytic function for
value_expr. However, you can use other built-in function expressions for value

expr.
See Also: "About SQL Expressions” on page 6-1 for information on
valid forms of expr and LAG on page 5-86

Examples

The following example provides, for each employee in the employees table, the hire
date of the employee hired just after:

SELECT last_name, hire_date,
LEAD (hire_date, 1) OVER (ORDER BY hire_date) AS "NextHired"
FROM employees WHERE department_id = 30
ORDER BY last_name, hire_date, "NextHired";

LAST NAME HIRE_DATE NextHired
Baida 24-DEC-97 15-NOV-98
Colmenares 10-AUG-99

Himuro 15-NOV-98 10-AUG-99
Khoo 18-MAY-95 24-JUL-97
Raphaely 07-DEC-94 18-MAY-95
Tobias 24-JUL-97 24-DEC-97

5-90 Oracle Database SQL Language Reference

LENGTH

LEAST

LENGTH

Syntax

'~
| LEAST (O—(eo) ()

Purpose

LEAST returns the least of the list of expzrs. All exprs after the first are implicitly
converted to the datatype of the first expr before the comparison. Oracle Database
compares the exprs using nonpadded comparison semantics. If the value returned by
this function is character data, then its datatype is always VARCHAR2.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on

page 2-40 for more information on implicit conversion, "Floating-Point
Numbers" on page 2-12 for information on binary-float comparison
semantics, and "Datatype Comparison Rules" on page 2-36

Examples
The following statement selects the string with the least value:

SELECT LEAST('HARRY', 'HARRIOT', 'HAROLD') "LEAST"
FROM DUAL;

Syntax

length::=

Purpose

The LENGTH functions return the length of char. LENGTH calculates length using
characters as defined by the input character set. LENGTHB uses bytes instead of
characters. LENGTHC uses Unicode complete characters. LENGTH2 uses UCS2 code
points. LENGTH4 uses UCS4 code points.

char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. The return value is of datatype NUMBER. If char has datatype CHAR, then the
length includes all trailing blanks. If char is null, then this function returns null.

Functions 5-91

LN

Restriction on LENGTHB The LENGTHB function is supported for single-byte LOBs
only. It cannot be used with CLOB and NCLOB data in a multibyte character set.

Examples

The following example uses the LENGTH function using a single-byte database
character set:

SELECT LENGTH('CANDIDE') "Length in characters"
FROM DUAL;

Length in characters

The next example assumes a double-byte database character set.

SELECT LENGTHB ('CANDIDE') "Length in bytes"
FROM DUAL;

Length in bytes

LN

Syntax
0,0:0

Purpose
LN returns the natural logarithm of n, where n is greater than 0.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__
FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural log of 95" FROM DUAL;

Natural log of 95

4.55387689

LNNVL

Syntax

— LNNVL @{condition}@

5-92 Oracle Database SQL Language Reference

LOCALTIMESTAMP

Purpose

LNNVL provides a concise way to evaluate a condition when one or both operands of
the condition may be null. The function can be used only in the WHERE clause of a
query. It takes as an argument a condition and returns TRUE if the condition is FALSE
or UNKNOWN and FALSE if the condition is TRUE. LNNVL can be used anywhere a scalar
expression can appear, even in contexts where the IS [NOT] NULL, AND, or OR
conditions are not valid but would otherwise be required to account for potential