
Pro*FORTRAN®
Supplement to the Oracle Precompilers Guide

11g Release 1 (11.1)

B31229-01

July 2007

Pro*FORTRAN Supplement to the Oracle Precompilers Guide, 11g Release 1 (11.1)

B31229-01

Copyright © 2007, Oracle. All rights reserved.

Primary Author: Deepti Kamal

Contributing Author: Jack Godwin, Tom Portfolio, Shiladitya Guha, Simon Watt

Contributor: Stephen Arnold, Sanford Dreskin, Pierre Dufour, Steve Faris, Radhakrishna Hari, Nancy
Ikeda, Ken Jacobs, Maura Joglekar, Phil Locke, Lee Osborne, Jacqui Pons, Tim Smith, Gael Turk, Scott
Urman, Peter Vasterd

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

1 Writing a Pro*FORTRAN Program

Programming Guidelines ... 1-2
Case-sensitivity... 1-2
Comments ... 1-2
Continuation Lines... 1-2
Delimiters .. 1-3
Embedded SQL Syntax.. 1-3
File Length... 1-3
File Naming Restrictions ... 1-4
FORTRAN Versions... 1-4

Required Declarations and SQL Statements .. 1-4
The Declare Section.. 1-4
Using the INCLUDE Statement ... 1-4
Filename Extensions .. 1-5
Search Paths .. 1-5
Caution .. 1-5
Event and Error Handling .. 1-5

Host Variable Names ... 1-5
Logical and Relational Operators .. 1-6
MAXLITERAL Default .. 1-6
Nulls ... 1-6
Program Units... 1-6

Scope of Host Variables .. 1-7
Statement Labels... 1-7
Statement Terminator .. 1-7

Host Variables ... 1-8
Declaring Host Variables .. 1-8
Example Declarations .. 1-9
Repeating Definitions ... 1-10

iv

Initialization ... 1-10
Constants .. 1-10
COMMON Blocks ... 1-11
EQUIVALENCE Statement ... 1-11
Special Requirements for Subroutines ... 1-11
Restrictions ... 1-12

Referencing Host Variables ... 1-12
Restrictions ... 1-13

Indicator Variables .. 1-13
Declaring Indicator Variables.. 1-13
Referencing Indicator Variables.. 1-13
Restrictions ... 1-14
Oracle Restrictions .. 1-14
ANSI Requirements .. 1-14

Host Arrays ... 1-15
Declaring Host Arrays.. 1-15
Restrictions ... 1-15
Referencing Host Arrays.. 1-16
Using Indicator Arrays ... 1-16

VARCHAR Host Variables .. 1-17
Declaring VARCHAR Variables ... 1-17
Referencing VARCHAR Variables ... 1-18
Overcoming the Length Limit ... 1-18

Handling Character Data ... 1-19
Effects of the MODE Option.. 1-19
CHARACTER*n .. 1-19
On Input ... 1-19
On Output .. 1-20
VARCHAR Variables ... 1-20
On Input ... 1-20
On Output .. 1-21

The Oracle Datatypes ... 1-21
Internal Datatypes... 1-21
External Datatypes .. 1-22

Datatype Conversion .. 1-24
Datatype Equivalencing ... 1-24

Host Variable Equivalencing... 1-24
Embedding PL/SQL .. 1-25

Host Variables.. 1-25
VARCHAR Variables ... 1-26
Indicator Variables .. 1-26
Handling Nulls .. 1-26
Handling Truncated Values .. 1-26
SQLCHECK.. 1-26
Cursor Variables.. 1-26

Declaring a Cursor Variable .. 1-27
Allocating a Cursor Variable ... 1-27

v

Opening a Cursor Variable .. 1-27
Opening Indirectly through a Stored PL/SQL Procedure.. 1-27
Opening Directly from Your Pro*FORTRAN Application ... 1-28
Return Types.. 1-28
Fetching from a Cursor Variable... 1-28
Closing a Cursor Variable .. 1-29
Restrictions... 1-29
Error Conditions.. 1-29
Sample Programs .. 1-29
SAMPLE11.SQL... 1-29
SAMPLE11.PFO... 1-30

Connecting to Oracle .. 1-32
Automatic Logons... 1-33
Concurrent Logons ... 1-33

2 Error Handling and Diagnostics

Error Handling Alternatives... 2-1
SQLCOD and SQLSTA.. 2-2
SQLCA ... 2-2
ORACA.. 2-2

Using Status Variables when MODE={ANSI|ANSI14} ... 2-2
Some Historical Information .. 2-3
Release 1.5 ... 2-3
Release 1.6 ... 2-3
Release 1.7 ... 2-3
Declaring Status Variables .. 2-3
Declaring SQLCOD.. 2-4
Declaring SQLSTA ... 2-4
Status Variable Combinations .. 2-4

Using the SQL Communications Area .. 2-10
What's in the SQLCA? .. 2-10
Declaring the SQLCA ... 2-11
Key Components of Error Reporting ... 2-12
Status Codes... 2-12
Warning Flags.. 2-12
Rows-Processed Count... 2-12
Parse Error Offset .. 2-12
Error Message Text ... 2-12
Getting the Full Text of Error Messages .. 2-13
Using the WHENEVER Statement ... 2-13
Scope ... 2-14
Careless Usage: Examples.. 2-15

Using the Oracle Communications Area .. 2-16
What's in the ORACA?... 2-16
Declaring the ORACA .. 2-16
Enabling the ORACA ... 2-17

vi

3 Sample Programs

Sample Program 1: Simple Query ... 3-2
Sample Program 2: Cursor Operations... 3-3
Sample Program 3: Fetching in Batches ... 3-4
Sample Program 4: Datatype Equivalencing .. 3-5
Sample Program 5: Oracle Forms User Exit... 3-8
Sample Program 6: Dynamic SQL Method 1 ... 3-10
Sample Program 7: Dynamic SQL Method 2 ... 3-10
Sample Program 8: Dynamic SQL Method 3 ... 3-12
Sample Program 9: Calling a Stored Procedure... 3-12

4 Implementing Dynamic SQL Method 4

Meeting the Special Requirements of Method 4 ... 4-1
What Makes Method 4 Special? ... 4-2
What Information Does Oracle Need? .. 4-2
Where Is the Information Stored?.. 4-3
How Is the Information Obtained?.. 4-3

Understanding the SQL Descriptor Area (SQLDA) .. 4-3
Purpose of the SQLDA .. 4-3
Multiple SQLDAs... 4-4
Naming Conventions... 4-4
Declaring a SQLDA.. 4-5

Using the SQLDA Variables and Arrays ... 4-7
The N Variable.. 4-7
The F Variable ... 4-7
The S Array ... 4-8
The M Array.. 4-8
The C Array... 4-8
The L Array ... 4-8
Select Descriptors ... 4-8
Bind Descriptors ... 4-9
The T Array ... 4-9
Select Descriptors ... 4-9
Bind Descriptors ... 4-9
The V Array... 4-9
Select Descriptors ... 4-9
Bind Descriptors .. 4-10
The I Array ... 4-10
Select Descriptors .. 4-10
Bind Descriptors .. 4-10
The X Array.. 4-10
The Y Array.. 4-11
The Z Array.. 4-11

Some Preliminaries ... 4-11
Using SQLADR.. 4-11
Restriction... 4-12
Converting Data .. 4-12

vii

Internal Datatypes... 4-12
External Datatypes .. 4-13
PL/SQL Datatypes.. 4-14
Coercing Datatypes... 4-14
Exceptions .. 4-15
Extracting Precision and Scale... 4-15
Handling Null/Not Null Datatypes .. 4-16

The Basic Steps .. 4-17
A Closer Look at Each Step ... 4-18

Declare a Host String .. 4-19
Declare the SQLDAs ... 4-19
Set the Maximum Number to DESCRIBE ... 4-19
Initialize the Descriptors .. 4-19
Store the Query Text in the Host String... 4-21
PREPARE the Query from the Host String ... 4-22
DECLARE a Cursor .. 4-22
DESCRIBE the Bind Variables... 4-22
Reset Number of Placeholders .. 4-23
Get Values for Bind Variables ... 4-23
OPEN the Cursor... 4-25
DESCRIBE the Select List ... 4-26
Reset Number of Select-List Items.. 4-26
Reset Length/Datatype of Each Select-List Item.. 4-27
FETCH Rows from the Active Set .. 4-28
Get and Process Select-List Values ... 4-29
CLOSE the Cursor... 4-29

Using Host Arrays with Method 4 ... 4-29
Sample Program 10: Dynamic SQL Method 4 ... 4-31

A Operating System Dependencies

System-Specific References for Chapter 1.. A-1
Case-sensitivity.. A-1
Coding Area... A-1
Continuation Lines.. A-1
FORTRAN Versions.. A-2
Declaring .. A-2
Naming ... A-2
INCLUDE Statements... A-2
MAXLITERAL Default ... A-3

System-Specific Reference for Chapter 3 ... A-3
Sample Programs .. A-3

System-Specific Reference for Chapter 4 ... A-3
SQLADR ... A-3

viii

ix

Preface

This companion book to the Oracle Database Programmer's Guide to the Oracle
Precompilers shows you how to write FORTRAN programs that use the powerful
database language SQL to access and manipulate Oracle data. It provides
easy-to-follow examples, instructions, and programming tips, as well as several
full-length programs to aid your understanding of embedded SQL and demonstrate its
usefulness.

An important feature of this manual is its emphasis on getting the most out of
Pro*FORTRAN and embedded SQL. To help you master these tools, this manual,
accompanied by the Oracle Database Programmer's Guide to the Oracle Precompilers,
shows you all the "tricks of the trade" including ways to improve program
performance.

This preface contains these topics:

Audience

Documentation Accessibility

Related Documents

Conventions

Audience
This guide is intended for anyone developing new FORTRAN applications or
converting existing FORTRAN applications to run in the Oracle environment. Though
written specially for programmers, it is also useful to systems analysts, project
managers, and others interested in embedded SQL applications.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

x

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
To use this manual effectively, you need a working knowledge of the following
subjects:

Applications programming in FORTRAN

The concepts, terminology, and methods discussed in the Oracle Database
Programmer's Guide to the Oracle Precompilers

The SQL database language

Oracle database concepts and terminology

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Writing a Pro*FORTRAN Program 1-1

1
Writing a Pro*FORTRAN Program

This chapter contains the following topics:

Programming Guidelines

Required Declarations and SQL Statements

Host Variable Names

Scope of Host Variables

Host Variables

Referencing Host Variables

Indicator Variables

Host Arrays

VARCHAR Host Variables

Handling Character Data

The Oracle Datatypes

Datatype Conversion

Datatype Equivalencing

Embedding PL/SQL

Declaring a Cursor Variable

Connecting to Oracle

This chapter provides the basic information you need for writing a Pro*FORTRAN
program, including:

Programming guidelines

Coding conventions

Language-specific features and restrictions

Declaring and referencing host variables, indicator variables, host arrays, and
variable-length strings

Equivalencing datatypes

Connecting to Oracle

Programming Guidelines

1-2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Programming Guidelines
This section deals with embedded SQL syntax, coding conventions, and
FORTRAN-specific features and restrictions. Topics are arranged alphabetically for
quick reference.

Case-sensitivity
Though the standard FORTRAN character set excludes lowercase alpha characters,
many compilers allow them in identifiers, comments, and quoted literals.

The Pro*FORTRAN Precompiler is not case-sensitive; however, some compilers are. If
your compiler is case-sensitive, you must declare and reference variables in the same
uppercase/lowercase format. Check your FORTRAN compiler user's guide.

You must code EXEC SQL and EXEC ORACLE statements in columns 7 through 72
(columns 73 through 80 are ignored). The other columns are used for the following
purposes:

Column 1 can indicate a comment line or can be part of an optional statement
label.

Columns 2 through 5 can contain an optional statement label.

Column 6 indicates continuation lines.

On some systems, terminal format is supported; that is, entry is not restricted to certain
columns. In this manual, the program fragments and sample programs are in ANSI
format (FORMAT=ANSI).

No more than one statement can appear on a single line.

Comments
You can place FORTRAN comment lines within SQL statements. FORTRAN comment
lines start with the letter C or an asterisk (*) in column 1. You can place ANSI
SQL-style comments (- - ...) in SQL statements at the end of a line, and you can also
place C-style comments (/* ... */) in SQL statements.

The following example shows all three styles of comments:

EXEC SQL SELECT ENAME, SAL
C Assign column values to host variables.
 1 INTO :ENAM, :ESAL -- output host variables
 2 FROM EMP
 3 /* Use input host variable in
 4 search condition */
 5 WHERE DEPTNO = :DNUM

Continuation Lines
You can continue SQL statements from one line to the next, according to the rules of
FORTRAN. To code a continuation line, place a nonzero, non-blank character in
column 6. In this manual, digits are used as continuation characters, as the following
example shows:

Note: You cannot nest comments. Blank lines are treated as
comments, but are not allowed within a continued statement.

Programming Guidelines

Writing a Pro*FORTRAN Program 1-3

* Retrieve employee data.
 EXEC SQL SELECT EMPNO, ENAME, JOB, SAL
 1 INTO :ENUM, :ENAM, :EJOB, :ESAL
 2 FROM EMP
 3 WHERE DEPTNO = :DNUM

To continue a string literal from one line to the next, code the literal through column
72. On the next line, code a continuation character and the rest of the literal. An
example follows:

* Execute dynamic SQL statement.
 EXEC SQL EXECUTE IMMEDIATE 'UPDATE EMP SET COMM = 500 WHERE
 1 DEPTNO=20'

Most FORTRAN implementations allow up to 19 continuation lines. Check your
FORTRAN compiler user's guide.

Delimiters
Though FORTRAN does not require blanks to delimit keywords, you must use blanks
to delimit keywords in SQL statements. FORTRAN uses apostrophes to delimit string
literals, as in

* Display employee name.
 IF (ENAM .LT. 'ZZZZZ') THEN
 PRINT *, ' Employee Name: ', ENAM
 END IF

SQL also uses apostrophes to delimit string literals, as in

* Retrieve employee data.
 EXEC SQL SELECT ENAME, SAL
 1 INTO :ENAM, :ESAL
 2 FROM EMP
 3 WHERE JOB = 'CLERK'

SQL also uses quotation marks to delimit identifiers containing special or lowercase
characters.

Embedded SQL Syntax
To use a SQL statement in your host program, precede the SQL statement with the
EXEC SQL clause. Embedded SQL syntax is described in the Pro*C/C++ Programmer's
Guide. The precompiler translates all EXEC SQL statements into calls to the runtime
library SQLLIB.

File Length
The Pro*FORTRAN Precompiler cannot process arbitrarily long source files. Some of
the variables used internally limit the size of the generated file. There is no absolute
limit to the number of lines allowed, but the following aspects of the source files are
contributing factors to the file-size constraint:

complexity of the embedded SQL statements (for example, the number of bind
and define variables)

whether a database name is used (for example, connecting to a database with an
AT clause)

number of embedded SQL statements

Required Declarations and SQL Statements

1-4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

To prevent problems related to this limitation, use multiple program units to reduce
the size of the source files as required.

File Naming Restrictions
Avoid using filenames starting with "sql," because errors might occur. For example, if
you name a file SQLERROR.PFO, some linkers return name conflicts because there
will be an array named SQLERD and a common block named SQLERD.

FORTRAN Versions
The Pro*FORTRAN Precompiler supports the standard implementation of FORTRAN
for your operating system (usually FORTRAN 77). For more information, see your
Oracle system-specific documentation.

Required Declarations and SQL Statements
Passing data between Oracle and your application program requires host variables
and event handling. This section shows you how to meet these requirements.

The Declare Section
You must declare all program variables to be used in SQL statements in the Declare
Section, which begins with the statement

EXEC SQL BEGIN DECLARE SECTION

and ends with the statement

EXEC SQL END DECLARE SECTION

Between these two statements only the following are allowed:

host variable and indicator variable declarations

EXEC SQL DECLARE statements

EXEC SQL INCLUDE statements

EXEC SQL VAR statements

EXEC ORACLE statements

FORTRAN comments

In a Pro*FORTRAN source file, multiple program units can contain SQL statements.
So, multiple Declare Sections are allowed for each precompiled unit. Furthermore, a
Pro*FORTRAN program can contain multiple files.

Using the INCLUDE Statement
FORTRAN INCLUDEs are processed by the FORTRAN compiler, while EXEC SQL
INCLUDE statements are processed by Pro*FORTRAN to copy files into your host
program, as illustrated in the following example:

* Copy in the SQL Communications Area (SQLCA)
* and the Oracle Communications Area (ORACA).
 EXEC SQL INCLUDE SQLCA
 EXEC SQL INCLUDE ORACA

Host Variable Names

Writing a Pro*FORTRAN Program 1-5

You can INCLUDE any file. When you precompile a Pro*FORTRAN program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the
statement.

Filename Extensions
If your system uses file extensions but you do not specify one, the Pro*FORTRAN
Precompiler assumes the default extension for source files (usually FOR or F). The
default extension is system dependent. For more information, see your Oracle
system-specific documentation.

Search Paths
If your system uses directories, you can set a search path for INCLUDE files using the
INCLUDE precompiler option, as follows:

INCLUDE=path

where path defaults to the current directory.

The precompiler first searches the current directory, then the directory specified by the
INCLUDE option, and finally the directory for standard INCLUDE files. You need not
specify a path for standard files such as the SQLCA and ORACA. However, a path is
required for nonstandard files unless they are stored in the current directory.

You can also specify multiple paths on the command line, as follows:

... INCLUDE=<path1> INCLUDE=<path2> ...

When multiple paths are specified, the precompiler searches the current directory first,
then the path1 directory, then the path2 directory, and so on. The directory containing
standard INCLUDE files is searched last. The path syntax is system specific. Check the
Oracle installation or user's guide for your system.

Caution
Remember, the precompiler searches for a file in the current directory first even if you
specify a search path. If the file you want to INCLUDE is in another directory, make
sure no file with the same name is in the current directory or any other directory that
precedes it in the search path. Also, if your operating system is case-sensitive, you
must specify the same upper or lower case filename under which the file is stored.

Event and Error Handling
Pro*FORTRAN provides forward and backward compatibility when checking the
outcome of executing SQL statements. However, there are restrictions on using
SQLCA, SQLCODE, and SQLSTATE depending on the MODE and DBMS option
settings. For more information, see Chapter 2 of this manual and Chapter 8 of the
Programmer's Guide to the Oracle Precompilers.

Host Variable Names
Host variable names must consist only of letters and digits, and must begin with a
letter. They can be of any length, but only the first 31 characters are significant. Some
compilers prohibit variable names longer than six characters, or ignore characters after
the sixth. Check your FORTRAN compiler user's guide.

Host Variable Names

1-6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Logical and Relational Operators
Logical and relational operators are different for FORTRAN and SQL, as shown in the
following tables, respectively. For example, the SQL operators do not have leading
and trailing periods, as shown in table 1-1 and table 1-2.

Logical and relational FORTRAN operators are not allowed in SQL statements.

MAXLITERAL Default
With the MAXLITERAL precompiler option, you can specify the maximum length of
string literals generated by the precompiler, so that compiler limits are not exceeded.
For Pro*FORTRAN, the default value is 1000, but you might need to specify a lower
value.

For example, if your FORTRAN compiler cannot handle string literals longer than 512
characters, specify MAXLITERAL=512. Check your FORTRAN compiler user's guide.

Nulls
In SQL, a null represents a missing, unknown, or inapplicable column value; it equates
neither to zero nor to a blank. Use the NVL function to convert nulls to non-null
values, use the IS [NOT] NULL comparison operator to search for nulls, and use
indicator variables to insert and test for nulls.

Program Units
In FORTRAN, a program unit is a function, subroutine, or main program. In
Pro*FORTRAN, an input file contains one or more program units.

If a program unit contains SQL statements, it must

define all local host variables in its Declare Section

Table 1–1 Logical Operators

SQL Operators FORTRAN Operators

NOT .NOT.

AND .AND.

OR .OR.

-- .EQV.

-- .NEQV.

Table 1–2 Relational Operator

SQL Operators
FORTRAN
operators

= .EQ.

<>, !=, ^= .NE.

> .GT.

< .LT.

>= .GE.

<= .LE.

Scope of Host Variables

Writing a Pro*FORTRAN Program 1-7

INCLUDE the SQLCA when MODE={ORACLE|ANSI13}

declare a variable named SQLATA or SQLCOD inside or outside the Declare
Section when MODE={ANSI|ANSI14}

INCLUDE the ORACA if you specify ORACA=YES

Multiple program units can contain SQL statements. For example, you can DECLARE
a cursor in one program unit, OPEN it in another, FETCH from it in yet another, and
CLOSE it in still another as long as they are in the same file.

Scope of Host Variables
The scoping rules for FORTRAN identifiers apply to host variables. Host variables
declared in a program unit are local to that unit, and host variables declared in the
main program are not global. So, all host variables used in a program unit must be
declared in that unit in the Declare Section.

Statement Labels
You can associate FORTRAN numeric statement labels (1 - 99999) with SQL
statements, as shown in the following example:

* Insert row into employee table.
 500 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, JOB, DEPTNO)
 1 VALUES (:ENUM, :ENAM, :EJOB, :DNUM)

And, you can reference statement labels in a WHENEVER DO or WHENEVER GOTO
statement, as this example shows:

* Handle SQL execution errors.
 EXEC SQL WHENEVER SQLERROR GOTO 900
 ...
* SQLEMC stores the Oracle error code and message.
 900 WRITE (*, 8500) SQLEMC
 8500 FORMAT (1X, 70A1)
 ...

Statement labels must be coded in columns 1 through 5, and must not appear in
continuation lines. Statement labels may consist of alphanumeric characters, only; the
special characters, underscore (_), hyphen (-), and dollar sign ($) are not allowed.

The Pro*FORTRAN Precompiler does not use statement labels in generated code.
Therefore, the BEGLABEL and ENDLABEL options that were available in earlier
Pro*FORTRAN versions are not supported in this version and will return an
informational message if found.

Statement Terminator
Embedded SQL statements are terminated by an end-of-line, as the following example
shows:

* Delete employee.
 EXEC SQL DELETE FROM EMP WHERE EMPNO = :ENUM

However, a continuation character on the next line overrides an end-of-line.

Host Variables

1-8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Host Variables
Host variables are the key to communication between your host program and Oracle.
Typically, a host program inputs data to Oracle, and Oracle outputs data to the
program. Oracle stores input data in database columns and stores output data in
program host variables.

Declaring Host Variables
Host variables are declared according to FORTRAN rules, using the FORTRAN
datatypes that are supported by Oracle. FORTRAN datatypes must be compatible
with the source/target database column. The supported FORTRAN datatypes are
shown in the following table. One-dimensional arrays of FORTRAN types are also
supported.

Notes:

1. The size of FORTRAN numeric types is implementation-dependent. The sizes
given in the table are typical but not universal. Check your FORTRAN compiler
user's guide.

2. CHARACTER(*) variables have no predetermined length. They are used to specify
dummy arguments in a subroutine declaration. The maximum length of an actual
argument is returned by the LEN intrinsic function.

3. Variables declared with VARCHAR*n (not native to FORTRAN) are assigned the
VARCHAR external datatype. See "Declaring VARCHAR Variables" for more
information.

The following table lists the compatible Oracle internal datatypes.

Variable Declaration Description

BYTE var
CHARACTER var

single character

CHARACTER var*n
CHARACTER*n var

n-byte character
string

CHARACTER(*) var character string

INTEGER var
INTEGER*2 var
INTEGER*4 var

default-length integer
2-byte integer 4-byte
integer

LOGICAL var
LOGICAL*1 var
LOGICAL*2 var
LOGICAL*4 var

single character
2-byte character
string 4-byte
character string

REAL var REAL*4 var
REAL*8 var DOUBLE
PRECISION var

4-byte real number
8-byte real number

VARCHAR*n <= 32765-byte,
variable length
character string (3)

SQLCURSOR cursor variable

Host Variables

Writing a Pro*FORTRAN Program 1-9

Notes:

1. x ranges from 1 to 255, and 1 is the default. y ranges from 1 to 2000.

2. p ranges from 2 to 38. s ranges from -84 to 127.

3. Strings can be converted to NUMBERs only if they consist of convertible
characters -- 0 to 9, period (.), +, -, E, e. The NLS settings for your system might
change the decimal point from a period (.) to a comma (,).

4. When converted to a string type, the default size of a DATE depends on the NLS
settings in effect on your system. When converted to a binary value, the length is 7
bytes.

5. When converted to a string type, a ROWID requires from 18 to 256 bytes.

Example Declarations
In the following example, several host variables are declared to be used later in a
Pro*FORTRAN program:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM
 CHARACTER*10 ENAM
 REAL*4 ESAL
 INTEGER*2 DNUM
 CHARACTER*15 DNAM
 EXEC SQL END DECLARE SECTION

You can also declare one-dimensional arrays of FORTRAN types, as the next example
shows:

Internal Type FORTRAN Type Description

CHAR(x)
(1)VARCHAR2(y) (1)

BYTE CHARACTER
CHARACTER*n
VARCHAR*n var1,
var2, var3

single character
variable-length string
variable-length string
variable-length string

NUMBER NUMBER
(p,s) (2)

CHARACTER*nvar
CHARACTER var *n
CHARACTER(*)
DOUBLE
PRECISION
INTEGER
INTEGER*2
INTEGER*4
LOGICAL var
LOGICAL*1 var
LOGICAL*2 var
LOGICAL*4
varREAL REAL*4
REAL*8
VARCHAR*nvar1,
var2, var3

n-byte character
string (3) character
string (as parameter)
8-byte float number
integer (default size)
2-byte integer 4-byte
integer single
character 2-byte
character string
4-byte character
string float number
4-byte float number
8-byte float number
variable-length string

DATE (4)LONG
RAW (1)LONG RAW
ROWID
(5)MLSLABEL (6)

CHARACTER*n var
CHARACTER*n var
VARCHAR*n var1,
var2, var3

n-byte character
string n-byte
variable-length string
variable-length string

CURSOR SQLCURSOR cursor variable

Host Variables

1-10 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* Declare host arrays.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM(100)
 CHARACTER*10 ENAM(100)
 REAL*4 ESAL(100)
 EXEC SQL END DECLARE SECTION

Repeating Definitions
You can use repeating definitions for datatypes, as in the following example:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 REAL*4 ESAL, ECOM, EBON
 EXEC SQL END DECLARE SECTION

which is equivalent to

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 REAL*4 ESAL
 REAL*4 ECOM
 REAL*4 EBON
 EXEC SQL END DECLARE SECTION

Initialization
While it is not necessary to initialize host variables inside the Declare Section, you can
use the FORTRAN DATA statement to initialize host variables, as shown in the
following example:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 REAL*4 MINSAL
 REAL*4 MAXSAL
 DATA MINSAL, MAXSAL /1000.00, 5000.00/
 EXEC SQL END DECLARE SECTION

DATA statements must come before the first executable FORTRAN statement but after
any variable and PARAMETER declarations. Later in your program, you can change
the values of variables initialized by a DATA statement. You cannot, however, reuse a
DATA statement to reset the changed values.

Constants
You can use the FORTRAN PARAMETER statement inside or outside the Declare
Section to assign constant values to host variables, as the following example shows:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 UID
 CHARACTER*5 PWD
 PARAMETER (UID = 'SCOTT', PWD = 'TIGER')
 EXEC SQL END DECLARE SECTION

Host Variables

Writing a Pro*FORTRAN Program 1-11

COMMON Blocks
Using the FORTRAN COMMON statement, you can keep host variables and arrays in
a common storage area as if they were globally defined, so that you can use their
values in different program units. The COMMON statement must appear outside the
Declare Section, and before the first executable FORTRAN statement but after variable
declarations. An example follows:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM
 CHARACTER*10 ENAM
 REAL*4 ESAL
 REAL*4 ECOM
 EXEC SQL END DECLARE SECTION
* Define COMMON block.
 COMMON /EMPBLK/ ENUM, ESAL, ECOM

In this example, EMPBLK is the COMMON block name. The names of COMMON
blocks, subroutines, and functions are the only globally defined identifiers in a
FORTRAN program. You should avoid using blank COMMON blocks.

You can make a COMMON block available to other program units by redefining it in
those units. You must repeat the type declarations for variables in a COMMON block
in all units where the block is used.

Only the order and datatypes of variables in the COMMON block matter, not their
names. Therefore, the variable names can differ from unit to unit. However, it is good
programming practice to use the same names for corresponding variables in each
occurrence of a COMMON block.

The following restrictions apply to COMMON blocks:

You cannot put VARCHAR variables in a COMMON block.

Host arrays cannot be dimensioned in a COMMON statement.

You cannot use a DATA statement to initialize variables in a blank COMMON
block.

With most compilers, CHARACTER variables must appear in their own
COMMON blocks; that is, they cannot be mixed with other variables in a
COMMON block.

EQUIVALENCE Statement
With the FORTRAN EQUIVALENCE statement, you can use two or more host
variable names for the same storage location. The EQUIVALENCE statement must
appear before the first executable FORTRAN statement.

You can equivalence CHARACTER variables only to other CHARACTER variables.
You cannot equivalence VARCHAR variables.

Special Requirements for Subroutines
You must explicitly declare host variables in the Declare Section of the program unit
that uses them in SQL statements. Thus, variables passed to a subroutine and used in
SQL statements within the subroutine must be declared in the subroutine Declare
Section, as illustrated in the following example:

...
 CALL LOGON (UID, PWD)

Referencing Host Variables

1-12 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 ...
 SUBROUTINE LOGON (UID, PWD)
* Declare host variables in subroutine.
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 UID
 CHARACTER*10 PWD
 EXEC SQL END DECLARE SECTION
 ...
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 WRITE(*, 1000) UID
 1000 FORMAT(/,' Connected to Oracle as user: ', A10, /)
 RETURN
 END

Restrictions
The following restrictions apply with respect to Declarations:

Implicit Declarations
FORTRAN allows implicit declaration of INTEGER and REAL variables. Unless
explicitly declared otherwise, identifiers starting with I, J, K, L, M, or N are assumed to
be of type INTEGER, and other identifiers are assumed to be of type REAL.

However, implicit declaration of host variables is not allowed; it triggers an
"undeclared host variable" error message at precompile time. Every variable
referenced in a SQL statement must be defined in the Declare Section.

Complex Numbers
These are numbers including a real and an imaginary part. In FORTRAN, complex
numbers are represented using the datatype COMPLEX. Pro*FORTRAN, however,
does not support the use of COMPLEX host variables in SQL statements.

Referencing Host Variables
You use host variables in SQL data manipulation statements. A host variable must be
prefixed with a colon (:) in SQL statements but must not be prefixed with a colon in
FORTRAN statements, as shown in the following example:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM
 CHARACTER*10 ENAM
 REAL*4 ESAL
 CHARACTER*10 EJOB
 EXEC SQL END DECLARE SECTION
 ...
 WRITE (*, 3100)
 3100 FORMAT (' Enter employee number: ')
 READ (*, 3200) ENUM
 3200 FORMAT (I4)
 EXEC SQL SELECT ENAME, SAL, JOB
 1 INTO :ENAM, :ESAL, :EJOB
 2 FROM EMP
 3 WHERE EMPNO = :ENUM
 BONUS = ESAL / 10
 ...

Indicator Variables

Writing a Pro*FORTRAN Program 1-13

Though it might be confusing, you can provide the same name to a host variable as
that of an Oracle table or column, as the following example shows:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM
 CHARACTER*10 ENAM
 REAL*4 ESAL
 EXEC SQL END DECLARE SECTION
 ...
 EXEC SQL SELECT ENAME, SAL
 1 INTO :ENAM, :ESAL
 2 FROM EMP
 3 WHERE EMPNO = :ENUM

Restrictions
A host variable cannot substitute for a column, table, or other Oracle objects in a SQL
statement and must not be an Oracle reserved word. See Appendix B of the
Programmer's Guide to the Oracle Precompilers for a list of Oracle reserved words and
keywords.

Indicator Variables
You use indicator variables to provide information to Oracle about the status of a host
variable, or to monitor the status of data returned from Oracle. An indicator variable is
always associated with a host variable.

You use indicator variables in the VALUES or SET clauses to assign nulls to input host
variables and in the INTO clause to detect nulls or truncated values in output host
variables.

Declaring Indicator Variables
An indicator variable must be explicitly declared in the Declare Section as a 2-byte
integer (INTEGER*2) and must not be an Oracle reserved word. In the following
example, you declare two indicator variables (the names IESAL and IECOM are
arbitrary):

* Declare host and indicator variables.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM
 CHARACTER*10 ENAM
 REAL*4 ESAL
 REAL*4 ECOM
 INTEGER*2 IESAL
 INTEGER*2 IECOM
 EXEC SQL END DECLARE SECTION

You can define an indicator variable anywhere in the Declare Section. It need not
follow its associated host variable.

Referencing Indicator Variables
In SQL statements, an indicator variable must be prefixed with a colon and appended
to its associated host variable. In FORTRAN statements, an indicator variable must not

Indicator Variables

1-14 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

be prefixed with a colon or appended to its associated host variable. An example
follows:

* Retrieve employee data.
 EXEC SQL SELECT SAL, COMM
 1 INTO :ESAL, :ECOM:IECOM
 2 FROM EMP
 3 WHERE EMPNO = :ENUM
* When an indicator variable equals -1, its associated
* host variable is null.
 IF (IECOM .EQ. -1) THEN
 PAY = ESAL
 ELSE
 PAY = ESAL + ECOM
 END IF

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is

:<host_variable> INDICATOR :<indicator_variable>

, which is equivalent to

:<host_variable>:<indicator_variable>

You can use both forms of the expression in your host program.

Restrictions
Indicator variables cannot be used in the WHERE clause to search for nulls. For
example, the following DELETE statement triggers an Oracle error at run time:

* Set indicator variable.
 IECOM = -1
 EXEC SQL DELETE FROM EMP WHERE COMM = :ECOM:IECOM

The correct syntax follows:

EXEC SQL DELETE FROM EMP WHERE COMM IS NULL

Oracle Restrictions
When DBMS=V6, Oracle does not issue an error if you SELECT or FETCH a null into a
host variable not associated with an indicator variable. However, when DBMS=V7, if
you SELECT or FETCH a null into a host variable that has no indicator, Oracle issues
the following error message:

ORA-01405: fetched column value is NULL

When precompiling with MODE=ORACLE and DBMS=V7, you can disable the
ORA-01405 message by also specifying UNSAFE_NULL=YES on the command line.
For more information, see the Programmer's Guide to the Oracle Precompilers.

ANSI Requirements
When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a
host variable not associated with an indicator variable, Oracle issues the following
error message:

Host Arrays

Writing a Pro*FORTRAN Program 1-15

ORA-01406: fetched column value was truncated

However, when MODE={ANSI|ANSI14|ANSI13}, no error is generated. Values for
indicator variables are discussed in Chapter 3 of the Programmer's Guide to the Oracle
Precompilers.

Host Arrays
Host arrays can boost performance by letting you manipulate an entire collection of
data items with a single SQL statement. With few exceptions, you can use host arrays
wherever scalar host variables are allowed. And, you can associate an indicator array
with any host array.

Declaring Host Arrays
You declare and dimension host arrays in the Declare Section. In the following
example, three host arrays are declared, each with an upper dimension bound of 50
(the lower bound defaults to 1):

* Declare and dimension host arrays.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM(50)
 CHARACTER*10 ENAM(50)
 REAL*4 ESAL(50)
 EXEC SQL END DECLARE SECTION

Restrictions
You cannot specify a lower dimension bound for host arrays. For example, the
following declaration is invalid:

* Invalid dimensioning of host array
 EXEC SQL BEGIN DECLARE SECTION
 ...
 REAL*4 VECTOR(0:10)
 EXEC SQL END DECLARE SECTION

Multi-dimensional host arrays are not allowed. Therefore, the two-dimensional host
array declared in the following example is invalid:

* Invalid declaration of host array
 EXEC SQL BEGIN DECLARE SECTION
 ...
 REAL*4 MATRIX(50, 100)
 EXEC SQL END DECLARE SECTION

You cannot dimension host arrays using the FORTRAN DIMENSION statement. For
example, the following usage is invalid:

* Invalid use of DIMENSION statement
 EXEC SQL BEGIN DECLARE SECTION
 REAL*4 ESAL
 REAL*4 ECOM
 DIMENSION ESAL(50), ECOM(50)
 EXEC SQL END DECLARE SECTION

Also, you cannot dimension a host array in a COMMON statement.

Host Arrays

1-16 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Referencing Host Arrays
If you use multiple host arrays in a single SQL statement, their dimensions should be
the same. However, this is not a requirement because the Pro*FORTRAN Precompiler
always uses the smallest dimension for the SQL operation. In the following example,
only 50 rows are INSERTed:

* Declare host arrays.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM(100)
 CHARACTER*10 ENAM(100)
 INTEGER*4 DNUM(100)
 REAL*4 ECOM(50)
 EXEC SQL END DECLARE SECTION
 ...
* Populate host arrays here.
 ...
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, COMM, DEPTNO)
 1 VALUES (:ENUM, :ENAM, :ECOM, :DNUM)

Host arrays must not be subscripted in SQL statements. For example, the following
INSERT statement is invalid:

* Declare host arrays.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM(50)
 REAL*4 ESAL(50)
 INTEGER*4 DNUM(50)
 EXEC SQL END DECLARE SECTION
 ...
 DO 200 J = 1, 50
* Invalid use of host arrays
 EXEC SQL INSERT INTO EMP (EMPNO, SAL, DEPTNO)
 1 VALUES (:ENUM(J), :ESAL(J), :DNUM(J))
 200 CONTINUE

You need not process host arrays in a loop. Instead, use unsubscripted array names in
your SQL statement. Oracle treats a SQL statement containing host arrays of
dimension n like the same statement executed n times with n different scalar variables.
For more information, see Chapter 8 of the Programmer's Guide to the Oracle
Precompilers.

Using Indicator Arrays
You can use indicator arrays to assign nulls to input host arrays and to detect nulls or
truncated values in output host arrays. The following example shows how to INSERT
with indicator arrays:

* Declare host and indicator arrays.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM(50)
 INTEGER*4 DNUM(50)
 REAL*4 ECOM(50)
 INTEGER*2 IECOM(50) -- indicator array
 EXEC SQL END DECLARE SECTION
 ...
* Populate the host and indicator arrays. To insert
* a null into the COMM column, assign -1 to the
* appropriate element in the indicator array.
 ...

VARCHAR Host Variables

Writing a Pro*FORTRAN Program 1-17

 EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO, COMM)
 1 VALUES (:ENUM, :DNUM, :ECOM:IECOM)

The dimension of the indicator array must be greater than, or equal to, the dimension
of the host array.

VARCHAR Host Variables
FORTRAN string datatypes are of fixed length. However, Pro*FORTRAN lets you
declare a variable-length string pseudotype called VARCHAR.

Declaring VARCHAR Variables
A VARCHAR is a set of three variables declared using the syntax

* Declare a VARCHAR.
 EXEC SQL BEGIN DECLARE SECTION
 VARCHAR*<n> <VARNAM>, <VARLEN>, <VARARR>
 EXEC SQL END DECLARE SECTION

where:

n

Is the maximum length of the VARCHAR; n must be in the range 1 through 32765.

VARNAM

Is the name used to reference the VARCHAR in SQL statements; it is called an
aggregate name because it identifies a set of variables.

VARLEN

Is a 2-byte signed integer variable that stores the actual length of the string variable.

VARARR
Is the string variable used in FORTRAN statements.

The advantage of using VARCHAR variables is that you can explicitly set and
reference VARLEN. With input host variables, Oracle reads the value of VARLEN and
uses the same number of characters of VARARR. With output host variables, Oracle
sets VARLEN to the length of the character string stored in VARARR.

You can declare a VARCHAR only in the Declare Section. In the following example,
you declare a VARCHAR named EJOB with a maximum length of 15 characters:

* Declare a VARCHAR.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 VARCHAR*15 EJOB, EJOBL, EJOBA
 EXEC SQL END DECLARE SECTION

The precompiler expands this declaration to

* Expanded VARCHAR declaration
 INTEGER*2 EJOBL
 LOGICAL*1 EJOBA(15)
 INTEGER*2 SQXXX(2)
 EQUIVALENCE (SQXXX(1), EJOBL), (SQXXX(2), EJOBA(1))

where SQXXX is an array generated by the precompiler and XXX denotes three
arbitrary characters. Notice that the aggregate name EJOB is not declared. The
EQUIVALENCE statement forces the compiler to store EJOBL and EJOBA
contiguously.

VARCHAR Host Variables

1-18 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Referencing VARCHAR Variables
In SQL statements, you can reference a VARCHAR variable by using the aggregate
name prefixed with a colon, as the following example shows:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 INTEGER*4 ENUM
 VARCHAR*15 EJOB, EJOBL, EJOBA
 EXEC SQL END DECLARE SECTION
 ...
 EXEC SQL SELECT JOB
 1 INTO :EJOB
 2 FROM EMP
 3 WHERE EMPNO = :ENUM

After the query executes, EJOBL holds the actual length of the character string
retrieved from the database and stored in EJOBA. In FORTRAN statements, you
reference VARCHAR variables using the length variable and string variable names, as
this example shows:

* Display job title.
 WRITE (*, 5200) (EJOBA(J), J = 1, EJOBL)
 5200 FORMAT (15A1)
 ...

Overcoming the Length Limit
Recall that the length variable of a VARCHAR must be a 2-byte integer. FORTRAN
provides a 2-byte signed integer datatype, which can represent numbers in the range
-32768 through 32767. However, FORTRAN lacks a 2-byte unsigned integer datatype,
which can represent numbers in the range 0 through 65535. Therefore, the maximum
length of a VARCHAR character string is 32765 bytes (32767 minus 2 for the length
variable).

With other host languages, the maximum length of a VARCHAR character string is
65533 bytes. If you want to use 65533-byte VARCHAR variables, try the technique
shown in the following example:

* Declare a VARCHAR.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 VARCHAR*65533 BUF, BUFL, BUFA
 EXEC SQL END DECLARE SECTION
 ...
* Equivalence two 2-byte integers to one 4-byte integer.
 INTEGER*2 INT2(2)
 INTEGER*4 INT4
 EQUIVALENCE (INT2(1), INT4)
 INTEGER*4 I
 ...
 INT4 = 65533
* Set the VARCHAR length variable equal to the
* equivalenced value of INT4.
 BUFL = INT2(1)
 DO 100 I = 1, 65533
 BUFA(I) = 32
 100 CONTINUE
 EXEC SQL INSERT INTO LONG_TABLE VALUES (:BUF)

Handling Character Data

Writing a Pro*FORTRAN Program 1-19

 ...
 BUFL = 0
 EXEC SQL SELECT COL1 INTO :BUF FROM LONG_TABLE
 INT2(1) = BUFL
 ...

Handling Character Data
This section explains how the Pro*FORTRAN Precompiler handles character host
variables. There are two types of character host variables:

CHARACTER*n

VARCHAR

Do not confuse VARCHAR, which is a host variable data structure supplied by the
precompiler, with VARCHAR2, which is an Oracle column datatype for
variable-length character strings.

Effects of the MODE Option
The MODE option has the following effects:

It determines how the Pro*FORTRAN Precompiler treats data in character arrays
and strings. The MODE option allows the program to use ANSI fixed-length
strings or to maintain compatibility with previous versions of the Oracle Server
and the Pro*FORTRAN Precompiler.

With respect to character handling, MODE={ANSI14|ANSI13} is equivalent to
MODE=ORACLE. The MODE option affects character data on input (from host
variables to Oracle) and on output (from Oracle to host variables).

CHARACTER*n
Character variables are declared using the CHARACTER*n datatype. These types of
variables handle character data based on their roles as input or output variables.

On Input
When MODE=ORACLE, the program interface strips trailing blanks before sending
the value to the database. If you insert into a fixed-length CHAR column, Oracle
re-appends trailing blanks up to the length of the database column. However, if you
insert into a variable-length VARCHAR2 column, Oracle never appends blanks.

When MODE=ANSI, trailing blanks are never stripped.

Note: The way integers are stored varies from system to system. On
some systems, the least significant digits are stored at the low address;
on other systems they are stored at the high address. In the last
example, this determines whether the length is stored in INT2(1) or
INT2(2).

Note: The MODE option does not affect the way Pro*FORTRAN
handles VARCHAR host variables.

Handling Character Data

1-20 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Make sure that the input value is not trailed by extraneous characters. For example,
nulls are not stripped and are inserted into the database. Normally, this is not a
problem because when a value is READ into or assigned to a CHARACTER*n
variable, FORTRAN appends blanks up to the length of the variable.

The following example illustrates the point:

* Declare host variables
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER ENAM *10, EJOB *8
 ...
 EXEC SQL END DECLARE SECTION
 ...
 WRITE (*, 300)
 300 FORMAT (/, '$Employee name? ')
* Assume the name 'MILLER' is entered
 READ (*, 400)
 400 FORMAT (A10)
 EJOB = 'SALES'
 EXEC SQL INSERT INTO emp (empno, ename, deptno, job)
 VALUES (1234, :ENAM, 20, :EJOB)

If you precompile the last example with MODE=ORACLE and the target database
columns are VARCHAR2, the program interface strips the trailing blanks on input and
inserts just the 6-character string "MILLER" and the 5-character string "SALES" into the
database. However, if the target database columns are CHAR, the strings are
blank-padded to the width of the columns.

If you precompile the last example with MODE=ANSI and the JOB column is defined
as CHAR(10), the value inserted into that column is "SALES#####" (five trailing
blanks). However, if the JOB column is defined as VARCHAR2(10), the value inserted
is "SALES###" (three trailing blanks) because the host variable is a CHARACTER*8.
This might not be what you want, so be careful.

On Output
The MODE option has no effect on output to character variables. When you use a
CHARACTER*n variable as an output host variable, Oracle blank-pads it. In our
example, when your program fetches the string "MILLER" from the database, ENAM
contains the value "MILLER####" (with four trailing blanks). This character string can
be used without change as input to another SQL statement.

VARCHAR Variables
VARCHAR variables handle character data based on their roles as input or output
variables

On Input
When you use a VARCHAR variable as an input host variable, your program must
assign values to the length and string variables, as shown in the following example:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM
 VARCHAR*15 EJOB, EJOBL, EJOBA
 INTEGER*2 IEJOB
 INTEGER*4 DNUM
 EXEC SQL END DECLARE SECTION

The Oracle Datatypes

Writing a Pro*FORTRAN Program 1-21

 ...
 WRITE (*, 4300)
 4300 FORMAT (/, ' Enter job title: ')
 READ (*, 4400) EJOBA
 4400 FORMAT (15A1)
* Scan backward for last non-blank character, then
* set length to that position. If input is all blank,
* set indicator variable to -1 to indicate a null.
 DO 5000 J = 15, 1, -1
 IF (EJOBA(J) .NE. ' ') GOTO 5100
 5000 CONTINUE
 J = 0
 5100 IF (J .EQ. 0) THEN
 IEJOB = -1
 ELSE
 IEJOB = 0
 END IF
 EJOBL = J
 EXEC SQL INSERT INTO EMP (EMPNO, JOB, DEPTNO)
 1 VALUES (:ENUM, :EJOB:IEJOB, :DNUM)

On Output
When you use a VARCHAR variable as an output host variable, Oracle sets the length
variable. An example follows:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM
 VARCHAR*15 EJOB, EJOBL, EJOBA
 INTEGER*4 ESAL
 EXEC SQL END DECLARE SECTION
 ...
 EXEC SQL SELECT JOB, SAL INTO :EJOB, :ESAL FROM EMP
 1 WHERE EMPNO = :ENUM
 ...
 IF (EJOBL .EQ. 0) GOTO ...
 ...

An advantage of VARCHAR variables over fixed-length strings is that the length of
the value returned by Oracle is available immediately. With fixed-length strings, to get
the length of the value, your program must count the number of characters. (The
intrinsic function LEN returns the length of a string including blanks, not its current
length.)

The Oracle Datatypes
Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudocolumns. An external datatype specifies how
data is stored in a host variable. For descriptions of the Oracle datatypes, see Chapter 3
of the Programmer's Guide to the Oracle Precompilers.

Internal Datatypes
For values stored in database columns, Oracle uses the following internal datatypes:

The Oracle Datatypes

1-22 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Table 1 - 5. Internal Datatypes

These internal datatypes can be quite different from FORTRAN datatypes. For
example, FORTRAN has no equivalent to the NUMBER datatype, which was specially
designed for portability and high precision.

External Datatypes
As the following table shows, the external datatypes include all the internal datatypes
plus several datatypes found in other supported host languages. For example, the
STRING external datatype refers to a C null-terminated string. You use the datatype
names in datatype equivalencing, and you use the datatype codes in dynamic SQL
Method 4.

Name Code Description

CHAR 96 <= 255-byte,
fixed-length string

DATE 12 7-byte, fixed-length
date/time value

LONG 8 <= 2147483647-byte,
variable-length string

LONG RAW 24 <= 2147483647-byte,
variable-length
binary data

MLSLABEL 105 <= 5-byte,
variable-length
binary label

NUMBER 2 fixed or floating
point number

RAW 23 <= 255-byte,
variable-length
binary data

ROWID 11 fixed-length binary
value

VARCHAR2 1 <= 2000-byte,
variable-length string

Name Code Description

CHAR 1 96 <= 65535-byte,
variable-length
character string (1)<=
65535-byte,
fixed-length
character string (1)

CHARF 96 <= 65535-byte,
fixed-length
character string

CHARZ 97 <= 65535-byte,
fixed-length,
null-terminated
string (2)

The Oracle Datatypes

Writing a Pro*FORTRAN Program 1-23

DATE 12 7-byte, fixed-length
date/time value

DECIMAL 7 COBOL packed
decimal

DISPLAY 91 COBOL numeric
character string

FLOAT 4 4-byte or 8-byte
floating-point
number

INTEGER 3 2-byte or 4-byte
signed integer

LONG 8 <= 2147483647-byte,
fixed-length string

LONG RAW 24 <= 217483647-byte,
fixed-length binary
data

LONG VARCHAR 94 <= 217483643-byte,
variable-length string

LONG VARRAW 95 <= 217483643-byte,
variable-length
binary data

MLSLABEL 106 2..5-byte,
variable-length
binary data

NUMBER 2 integer or
floating-point
number

RAW 23 <= 65535-byte,
fixed-length binary
data (2)

ROWID 11 (typically) 13-byte,
fixed-length binary
value

STRING 5 <= 65535-byte,
null-terminated
character string (2)

UNSIGNED 68 2-byte or 4-byte
unsigned integer

VARCHAR 9 <= 65533-byte,
variable-length
character string

VARCHAR2 1 <= 65535-byte,
variable-length
character string (2)

VARNUM 6 variable-length
binary number

VARRAW 15 <= 65533-byte,
variable-length
binary data

Name Code Description

Datatype Conversion

1-24 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Notes:

1. CHAR is datatype 1 when MODE={ORACLE|ANSI13|ANSI14} and datatype 96
when MODE=ANSI.

2. Maximum size is 32767 (32K) on some platforms.

Datatype Conversion
At precompile time, an external datatype is assigned to each host variable in the
Declare Section. For example, the precompiler assigns the FLOAT external datatype to
host variables of type REAL. At run time, the datatype code of every host variable
used in a SQL statement is passed to Oracle. Oracle uses the codes to convert between
internal and external datatypes.

Before assigning a SELECTed column value to an output host variable, Oracle must
convert the internal datatype of the source column to the datatype of the host variable.
Likewise, before assigning or comparing the value of an input host variable to a
column, Oracle must convert the external datatype of the host variable to the internal
datatype of the target column.

Conversions between internal and external datatypes follow the usual data conversion
rules. For example, you can convert a CHAR value of "1234" to a INTEGER*2 value.
You cannot, however, convert a CHAR value of "65543" (number too large) or "10F"
(number not decimal) to a INTEGER*2 value. Likewise, you cannot convert a
CHARACTER*n value that contains alphabetic characters to a NUMBER value.

For more information about datatype conversion, see Chapter 3 of the Programmer's
Guide to the Oracle Precompilers.

Datatype Equivalencing
Datatype equivalencing lets you control the way Oracle interprets input data and the
way Oracle formats output data. You can equivalence supported FORTRAN datatypes
to Oracle external datatypes on a variable-by-variable basis.

Host Variable Equivalencing
By default, the Pro*FORTRAN Precompiler assigns a specific external datatype to
every host variable. The default assignments are shown in the following table. For
more information about datatype equivalencing, see Chapter 3 in the Programmer's
Guide to the Oracle Precompilers.

Host Type External Type Code

BYTE var LOGICAL
var LOGICAL*1 var
LOGICAL*2 var
LOGICAL*4 var
CHARACTER var
CHARACTER var*n
CHARACTER*n var
CHARACTER(*) var

VARCHAR2 CHARF 1 (when MODE !=
ANSI) 96 (when
MODE=ANSI)

VARCHAR*n VARCHAR 9

INTEGER var
INTEGER*2 var
INTEGER*4 var

INTEGER 3

Embedding PL/SQL

Writing a Pro*FORTRAN Program 1-25

With the VAR statement, you can override the default assignments by equivalencing
host variables to Oracle external datatypes in the Declare Section. The syntax you use
is

EXEC SQL
 VAR <host_variable>
 IS <ext_type_name> [({<length> | <precision>,<scale>})]

where host_variable is an input or output host variable (or host array) declared earlier
in the Declare Section, ext_type_name is the name of a valid external datatype, and
length is an integer literal specifying a valid length in bytes.

When ext_type_name is FLOAT, use length; when ext_type_name is DECIMAL, you must
specify precision and scale instead of length.

Host variable equivalencing is useful in several ways. For example, you can use it
when you want Oracle to store but not interpret data. Suppose you want to store a
host array of 4-byte integers in a RAW database column. Simply equivalence the host
array to the RAW external datatype, as follows:

EXEC SQL BEGIN DECLARE SECTION
 INTEGER*4 ENUM(50)
 ...
* Reset default datatype (INTEGER) to RAW.
 EXEC SQL VAR ENUM IS RAW (200);
 EXEC SQL END DECLARE SECTION
 ...

With host arrays, the length you specify must match the buffer size required to hold
the array. In the last example, you specified a length of 200, which is the buffer size
required to hold 50 4-byte integers.

For more information about datatype equivalencing, see Chapter 3 in the Programmer's
Guide to the Oracle Precompilers.

Embedding PL/SQL
The Pro*FORTRAN Precompiler treats a PL/SQL block like a single embedded SQL
statement. As a result, you can place a PL/SQL block anywhere in a host program that
you can place a SQL statement.

To embed a PL/SQL block in your host program, declare the variables to be shared
with PL/SQL and bracket the PL/SQL block with the EXEC SQL EXECUTE and
END-EXEC keywords.

Host Variables
Inside a PL/SQL block, host variables are global to the entire block and can be used
anywhere a PL/SQL variable is allowed. Like host variables in a SQL statement, host
variables in a PL/SQL block must be prefixed with a colon. The colon sets host
variables apart from PL/SQL variables and database objects.

REAL var REAL*4 var
REAL*8 var DOUBLE
PRECISION var

FLOAT 4

Host Type External Type Code

Embedding PL/SQL

1-26 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

VARCHAR Variables
When entering a PL/SQL block, Oracle automatically checks the length fields of
VARCHAR host variables. So, you must set the length fields before the block is entered.
For input variables, set the length field to the length of the value stored in the string
field. For output variables, set the length field to the maximum length allowed by the
string field.

Indicator Variables
In a PL/SQL block, you cannot refer to an indicator variable by itself; it must be
appended to its associated host variable. In addition, if you refer to a host variable
with its indicator variable, you must always refer to it the same way within the same
block.

Handling Nulls
When entering a block, if an indicator variable has a value of -1, PL/SQL
automatically assigns a null to the host variable. When exiting the block, if a host
variable is null, PL/SQL automatically assigns a value of -1 to the indicator variable.

Handling Truncated Values
PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string.

SQLCHECK
You must specify SQLCHECK=SEMANTICS when precompiling a program with an
embedded PL/SQL block. You must also use the USERID option. For more
information, see Chapter 6 of the Programmer's Guide to the Oracle Precompilers.

Cursor Variables
Starting with Release 1.7 of the Pro*FORTRAN Precompiler, you can use cursor
variables in your Pro*FORTRAN programs to process multi-row queries using static
embedded SQL. A cursor variable identifies a cursor reference that is defined and
opened on the Oracle Database Server, using PL/SQL. See the Oracle Database PL/SQL
Language Reference for complete information about cursor variables.

The advantages of cursor variables are:

Encapsulation: queries are centralized in the stored procedure that opens the cursor
variable.

Ease of maintenance: only the stored procedure needs to be changed if the table
changes.

Security: the user of the application (the username when the Pro*FORTRAN
application connected to the database) must have execute permission on the stored
procedure that opens the cursor. This user, however, does not need to have read
permission on the tables used in the query. This capability can be used to limit
access to the columns in the table.

Declaring a Cursor Variable

Writing a Pro*FORTRAN Program 1-27

Declaring a Cursor Variable
You declare a Pro*FORTRAN cursor variable using the SQLCURSOR pseudotype. For
example:

EXEC SQL BEGIN DECLARE SECTION
 ...
 SQLCURSOR CURVAR
 ...
 EXEC SQL END DECLARE SECTION

A SQLCURSOR variable is implemented using a FORTRAN INTEGER*4 array in the
code that Pro*FORTRAN generates. A cursor variable is just like any other
Pro*FORTRAN host variable.

Allocating a Cursor Variable
Before you can OPEN or FETCH a cursor variable, you must allocate it by using the
Pro*FORTRAN ALLOCATE command. For example, to allocate the cursor variable
CURVAR that was declared in the previous section, write the following statement:

EXEC SQL ALLOCATE :CURVAR

Allocating a cursor variable does not require a call to the server, either at precompile
time or at run time.

Opening a Cursor Variable
You must use an embedded anonymous PL/SQL block to open a cursor variable on
the Oracle Server. The anonymous PL/SQL block may open the cursor either
indirectly by calling a PL/SQL stored procedure that opens the cursor (and defines it
in the same statement) or directly from the Pro*FORTRAN program.

Opening Indirectly through a Stored PL/SQL Procedure
Consider the following PL/SQL package stored in the database:

CREATE PACKAGE demo_cur_pkg AS
 TYPE EmpName IS RECORD (name VARCHAR2(10));
 TYPE cur_type IS REF CURSOR RETURN EmpName;
 PROCEDURE open_emp_cur (
 curs IN OUT curtype,
 dept_num IN NUMBER);
END;
CREATE PACKAGE BODY demo_cur_pkg AS
 CREATE PROCEDURE open_emp_cur (
 curs IN OUT curtype,
 dept_num IN NUMBER) IS
 BEGIN
 OPEN curs FOR
 SELECT ename FROM emp
 WHERE deptno = dept_num
 ORDER BY ename ASC;
 END;

Caution: Allocating a cursor variable does cause heap memory to be
used. For this reason, avoid allocating a cursor variable in a program
loop.

Declaring a Cursor Variable

1-28 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

END;

After this package has been stored, you can open the variable curs by calling the open_
emp_cur stored procedure from your Pro*FORTRAN program, and FETCH from the
cursor variable ECUR in the program. For example:

EXEC SQL BEGIN DECLARE SECTION
 SQLCURSOR ECUR
 INTEGER*4 DNUM
 VARCHAR*10 ENAM, ENAML, ENAMA
 EXEC SQL END DECLARE SECTION
 ...
* Allocate the cursor variable.
 EXEC SQL ALLOCATE :ECUR
 ...
 DNUM=30
* Open the cursor on the Oracle Database Server.
 EXEC SQL EXECUTE
 1 BEGIN
 2 demo_cur_pkg.open_emp_cur(:ECUR, :DNUM);
 3 END;
 4 END-EXEC
 EXEC SQL WHENEVER NOTFOUND DO CALL SIGNOFF
*
 1000 EXEC SQL FETCH :ECUR INTO :ENAM
 PRINT *, "Employee Name: ", ENAM
 GOTO 1000
 ...

Opening Directly from Your Pro*FORTRAN Application
To open a cursor by using a PL/SQL anonymous block in a Pro*FORTRAN program,
define the cursor in the anonymous block. Consider the following example:

EXEC SQL EXECUTE
 1 BEGIN
 2 OPEN :ECUR FOR SELECT ENAME FROM EMP
 3 WHERE DEPTNO = :DNUM;
 4 END;
 5 END-EXEC
 ...

Return Types
When you define a reference cursor (REF CURSOR) in a PL/SQL stored procedure,
you must declare the type that the cursor returns. The return types allowed for
reference cursors are described in the PL/SQL User's Guide and Reference.

Fetching from a Cursor Variable
Use the embedded SQL FETCH INTO command to retrieve the rows SELECTed
when you opened the cursor variable. For example:

EXEC SQL FETCH :ECUR INTO :EINFO:IEINFO

Before you can FETCH from a cursor variable, the variable must be initialized and
opened. You cannot FETCH from an unopened cursor variable.

Declaring a Cursor Variable

Writing a Pro*FORTRAN Program 1-29

Closing a Cursor Variable
Use the embedded SQL CLOSE command to close a cursor variable. For example:

EXEC SQL BEGIN DECLARE SECTION
* Declare the cursor variable.
 SQLCURSOR ECUR
 ...
 EXEC SQL END DECLARE SECTION
* Allocate and open the cursor variable, then
* fetch one or more rows.
 ...
* Close the cursor variable.
 EXEC SQL CLOSE :ECUR

Restrictions
The following restrictions apply to the use of cursor variables:

You can only use cursor variables with the ALLOCATE, FETCH, and CLOSE
commands. The DECLARE CURSOR command does not apply to cursor variables.

You cannot FETCH from a CLOSEd or unALLOCATEd cursor variable.

If you precompile with MODE=ANSI, it is an error to close a cursor variable that
is already closed.

You cannot use the AT clause with the ALLOCATE command.

Error Conditions
Do not perform any of the following operations:

FETCH from a closed cursor variable

use a cursor variable that is not ALLOCATEd

CLOSE a cursor variable that is not open

These operations on cursor variables result in errors.

Sample Programs
The following sample programs -- a SQL script (SAMPLE11.SQL) and a
Pro*FORTRAN program (SAMPLE11.PFO) -- demonstrate how you can use cursor
variables in Pro*FORTRAN.

SAMPLE11.SQL
Following is the PL/SQL source code for a creating a package that declares and opens
a cursor variable:

CONNECT SCOTT/TIGER
CREATE OR REPLACE PACKAGE emp_demo_pkg AS
 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_cur (
 cursor IN OUT emp_cur_type,
 dept_num IN number);
END emp_demo_pkg;
/
CREATE OR REPLACE PACKAGE BODY emp_demo_pkg AS
 PROCEDURE open_cur (

Declaring a Cursor Variable

1-30 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 cursor IN OUT emp_cur_type,
 dept_num IN number) IS
 BEGIN
 OPEN cursor FOR SELECT * FROM emp
 WHERE deptno = dept_num
 ORDER BY ename ASC;
 END;
END emp_demo_pkg;
/

SAMPLE11.PFO
Following is a Pro*FORTRAN sample program that uses the cursor declared in the
SAMPLE11.SQL example to fetch employee names, salaries, and commissions from
the EMP table.

PROGRAM SAMPLE11
 EXEC SQL BEGIN DECLARE SECTION
* Declare the cursor variable.
 SQLCURSOR ECUR
* EMPINFO
 INTEGER ENUM
 CHARACTER*10 ENAM
 VARCHAR*9 EJOB, EJOBL, EJOBA
 INTEGER EMGR
 VARCHAR*10 EDAT, EDATL, EDATA
 REAL ESAL
 REAL ECOM
 INTEGER EDEP
* EMPINFO INDICATORS
 INTEGER*2 IENUM
 INTEGER*2 IENAM
 INTEGER*2 IEJOB
 INTEGER*2 IEMGR
 INTEGER*2 IEDAT
 INTEGER*2 IESAL
 INTEGER*2 IECOM
 INTEGER*2 IEDEP
 EXEC SQL END DECLARE SECTION
 EXEC SQL INCLUDE SQLCA
 COMMON /CURSOR/ ECUR
 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.
 CALL LOGON

* Initialize the cursor variable.
 EXEC SQL ALLOCATE :ECUR
 TYPE 1000
 1000 FORMAT (/, 'Enter department number (0 to exit): ', $)
 ACCEPT 1100, EDEP
 1100 FORMAT (I10)
 IF (EDEP .LE. 0) THEN
 CALL SIGNOFF
 ENDIF

* Open the cursor by calling a PL/SQL stored procedure.
 EXEC SQL EXECUTE
 1 BEGIN

Declaring a Cursor Variable

Writing a Pro*FORTRAN Program 1-31

 2 emp_demo_pkg.open_cur (:ECUR, :EDEP);
 3 END;
 4 END-EXEC
 PRINT 1200, EDEP
 1200 FORMAT (/, 'For department ', I, ':',/)
 PRINT 1300
 1300 FORMAT (/, 'EMPLOYEE SALARY COMMISSION',
 + /, '---------- ---------- ----------')

* Fetch data from the cursor into the host variables.
 2000 EXEC SQL WHENEVER NOT FOUND DO CALL SIGNOFF
 EXEC SQL FETCH :ECUR
 1 INTO :ENUM:IENUM,
 2 :ENAM:IENAM,
 3 :EJOB:IEJOB,
 4 :EMGR:IEMGR,
 5 :EDAT:IEDAT,
 6 :ESAL:IESAL,
 7 :ECOM:IECOM,
 8 :EDEP:IEDEP

* Check for commission and print results.
 IF (IECOM .EQ. 0) THEN
 PRINT 2100, ENAM, ESAL, ECOM
 2100 FORMAT (A10, 2X, F10.2, 2X, F10.2)
 ELSE
 PRINT 2200, ENAM, ESAL
 2200 FORMAT (A10, 2X, F10.2, 2X, ' N/A')
 ENDIF
 GOTO 2000
 END

* LOG ON TO ORACLE.
 SUBROUTINE LOGON
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 UID
 CHARACTER*10 PWD
 EXEC SQL END DECLARE SECTION
 EXEC SQL INCLUDE SQLCA
 UID = 'SCOTT'
 PWD = 'TIGER'
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 PRINT 3000, UID
 3000 FORMAT (/, 'CONNECTED TO ORACLE AS USER: ', A)
 END
* Close the cursor variable.
 SUBROUTINE SIGNOFF
 EXEC SQL BEGIN DECLARE SECTION
 SQLCURSOR ECUR
 EXEC SQL END DECLARE SECTION
 EXEC SQL INCLUDE SQLCA
 COMMON /CURSOR/ ECUR
 EXEC SQL CLOSE :ECUR
 PRINT 4100
 4100 FORMAT (/, 'HAVE A GOOD DAY.', /)
 EXEC SQL COMMIT WORK RELEASE
 STOP
 END

 SUBROUTINE SQLERR

Connecting to Oracle

1-32 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR CONTINUE
 PRINT*, ' '
 PRINT *, 'ORACLE ERROR DETECTED: '
 PRINT '(70A1)', SQLEMC
 PRINT*, ' '
 EXEC SQL ROLLBACK WORK RELEASE
 STOP
 END

Connecting to Oracle
Your Pro*FORTRAN program must log on to Oracle before querying or manipulating
data. To log on, you use the CONNECT statement, as in

* Log on to Oracle.
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

where UID and PWD are CHARACTER or VARCHAR host variables. Alternatively,
you can use the statement

* Log on to Oracle.
 EXEC SQL CONNECT :UIDPWD

where the host variable UIDPWD contains your username and password separated by
a slash (/).

The CONNECT statement must be the first SQL statement executed by the program.
That is, other executable SQL statements can positionally, but not logically, precede
the CONNECT statement.

To supply the Oracle username and password separately, you define two host
variables in the Declare Section as character strings or VARCHAR variables. If you
supply a userid containing both username and password, only one host variable is
needed.

Make sure to set the username and password variables before the CONNECT is
executed or it will fail. Your program can prompt for the values or you can hard code
them as follows:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 UID
 CHARACTER*5 PWD
 ...
 EXEC SQL END DECLARE SECTION
 UID = 'SCOTT'
 PWD = 'TIGER'
* Handle logon errors.
 EXEC SQL WHENEVER SQLERROR GOTO ...
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

However, you cannot hard code a username and password into the CONNECT
statement or use quoted literals. For example, both of the following statements are
invalid:

* Invalid CONNECT statements
 EXEC SQL CONNECT SCOTT IDENTIFIED BY TIGER
 EXEC SQL CONNECT 'SCOTT' IDENTIFIED BY 'TIGER'

Connecting to Oracle

Writing a Pro*FORTRAN Program 1-33

Automatic Logons
You can automatically log on to the Oracle using the following userid:

<prefix><username>

where prefix is the value of the Oracle initialization parameter OS_AUTHENT_PREFIX
(the default value is OPS$) and username is your operating system user or task name.
For example, if the prefix is OPS$, your user name is TBARNES, and OPS$TBARNES
is a valid Oracle userid, you log on to Oracle as user OPS$TBARNES.

To take advantage of the automatic logon feature, you simply pass a slash (/)
character to the precompiler, as follows:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 CHARACTER*1 ORAID
 EXEC SQL END DECLARE SECTION
 ORAID = '/'
 EXEC SQL CONNECT :ORAID

This automatically connects you as user OPS$username. For example, if your operating
system username is RHILL, and OPS$RHILL is a valid Oracle username, connecting
with a slash (/) automatically logs you on to Oracle as user OPS$RHILL.

You can also pass a character string to the precompiler. However, the string cannot
contain trailing blanks. For example, the following CONNECT statement will fail:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 CHARACTER*5 ORAID
 EXEC SQL END DECLARE SECTION
 ORAID = '/ '
 EXEC SQL CONNECT :ORAID

For more information about operating system authentication, see the Oracle Database
Administrator's Guide.

Concurrent Logons
Your application can use SQL*Net to access any combination of remote and local
databases concurrently or make multiple connections to the same database. In the
following example, you connect to two nondefault databases concurrently:

* Declare host variables.
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 UID
 CHARACTER*5 PWD
 CHARACTER*12 DBSTR1
 CHARACTER*12 DBSTR2
 EXEC SQL END DECLARE SECTION
 UID = 'SCOTT'
 PWD = 'TIGER'
 DBSTR1 = 'NEWYORK'
 DBSTR2 = 'BOSTON'
* Give each database connection a unique name.
 EXEC SQL DECLARE DBNAM1 DATABASE
 EXEC SQL DECLARE DBNAM2 DATABASE
* Connect to the two non-default databases.
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

Connecting to Oracle

1-34 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 1 AT DBNAM1 USING :DBSTR1
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 1 AT DBNAM2 USING :DBSTR2

The string syntax in DBSTR1 and DBSTR2 depends on your network driver and how it
is configured. DBNAM1 and DBNAM2 name the nondefault connections; they can be
undeclared identifiers or host variables.

For step-by-step instructions on connecting to Oracle through SQL*Net, see Chapter 3
in the Programmer's Guide to the Oracle Precompilers

Error Handling and Diagnostics 2-1

2
Error Handling and Diagnostics

This chapter contains the following sections:

Error Handling Alternatives

Using Status Variables when MODE={ANSI|ANSI14}

Using the SQL Communications Area

Using the Oracle Communications Area

This chapter supplements Chapter 8 of the Programmer's Guide to the Oracle
Precompilers. It discusses error reporting and recovery as it applies to Pro*FORTRAN.

You learn how to declare and use the SQLSTA status variable and the SQLCOD status
variable, and how to include the SQL Communications Area (SQLCA). You also learn
how to declare and enable the Oracle Communications Area (ORACA).

Error Handling Alternatives
The Pro*FORTRAN Precompiler supports four status variables that serve as error
handling mechanisms:

SQLCOD

SQLSTA

SQLCA (using the WHENEVER statement)

ORACA

The precompiler MODE option governs ANSI/ISO compliance. The availability of the
SQLCOD, SQLSTA, and SQLCA variables depends on the MODE setting. You can
declare and use the ORACA variable regardless of the MODE setting. For more
information, see "Using the Oracle Communications Area".

When MODE={ORACLE|ANSI13}, you must declare the SQLCA status variable.
SQLCOD and SQLSTA declarations are accepted (not recommended) but are not
recognized as status variables. For more information, see "Using the SQL
Communications Area".

When MODE={ANSI|ANSI14}, you can use any one, two, or all three of the SQLCOD,
SQLSTA, and SQLCA variables. To determine which variable (or variable
combination) is best for your application, see "Using Status Variables when
MODE={ANSI|ANSI14}".

Using Status Variables when MODE={ANSI|ANSI14}

2-2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

SQLCOD and SQLSTA
With Pro*FORTRAN Release 1.5, the SQLCOD status variable was introduced as the
SQL89 standard ANSI/ISO error reporting mechanism. The SQL92 standard listed
SQLCOD as a deprecated feature and defined a new status variable, SQLSTA
(introduced with Pro*FORTRAN, Release 1.6), as the preferred ANSI/ISO error
reporting mechanism.

SQLCOD stores error codes and the "not found" condition. It is retained only for
compatibility with SQL89 and is likely to be removed from future versions of the
standard.

Unlike SQLCOD, SQLSTA stores error and warning codes and uses a standardized
coding scheme. After executing a SQL statement, the Oracle server returns a status
code to the SQLSTA variable currently in scope. The status code indicates whether a
SQL statement executed successfully or raised an exception (error or warning
condition). To promote interoperability (the ability of systems to exchange information
easily), SQL92 predefines all the common SQL exceptions.

SQLCA
The SQLCA is a record-like, host-language data structure. Oracle updates the SQLCA
after every executable SQL statement. (SQLCA values are undefined after a declarative
statement.) By checking Oracle return codes stored in the SQLCA, your program can
determine the outcome of a SQL statement. This can be done in two ways:

implicit checking with the WHENEVER statement

explicit checking of SQLCA variables

You can use WHENEVER statements, code explicit checks on SQLCA variables, or do
both. Generally, using WHENEVER statements is preferable because it is easier, more
portable, and ANSI-compliant.

ORACA
When more information is needed about runtime errors than the SQLCA provides,
you can use the ORACA, which contains cursor statistics, SQL statement data, option
settings, and system statistics.

The ORACA is optional and can be declared regardless of the MODE setting. For more
information about the ORACA status variable, see "Using the Oracle Communications
Area".

Using Status Variables when MODE={ANSI|ANSI14}
When MODE={ANSI|ANSI14}, you must declare at least one -- you may declare two
or all three -- of the following status variables:

SQLCOD

SQLSTA

SQLCA

Your program can retrieve the outcome of the most recent executable SQL statement
by checking SQLCOD and/or SQLSTA explicitly with your own code after checking
executable SQL and PL/SQL statements. Your program can also check SQLCA
implicitly (with the WHENEVER SQLERROR and WHENEVER SQLWARNING
statements) or it can check the SQLCA variables explicitly.

Using Status Variables when MODE={ANSI|ANSI14}

Error Handling and Diagnostics 2-3

Some Historical Information
The treatment of status variables and variable combinations by the Oracle
Pro*FORTRAN Precompiler has evolved beginning with Release 1.5.

Release 1.5
Pro*FORTRAN Release 1.5 presumed that there was a status variable SQLCOD
whether or not it was declared in a Declare Section; in fact, the precompiler never
noted whether SQLCOD was declared or not -- it just presumed it was. SQLCA would
be used as a status variable only if there was an INCLUDE of the SQLCA.

Release 1.6
Beginning with Pro*FORTRAN Release 1.6, the precompiler no longer presumes that
there is a SQLCOD status variable and it is not required. The precompiler requires that
at least one of SQLCA, SQLCOD, or SQLSTA be declared.

SQLCOD is recognized as a status variable if and only if at least one of the following
criteria is satisfied:

It is declared in a Declare Section with exactly the right datatype.

The precompiler finds no other status variable.

If the precompiler finds a SQLSTA declaration (of exactly the right type of course) in a
Declare Section or finds an INCLUDE of the SQLCA, it will not presume SQLCOD is
declared.

Release 1.7
Because Pro*FORTRAN Release 1.5 allowed the SQLCOD variable to be declared
outside of a Declare Section while also declaring SQLCA, Pro*FORTRAN Release 1.6
and greater is presented with a compatibility problem. A new option, ASSUME_
SQLCODE={YES|NO} (default NO), was added to fix this in Release 1.6.7 and is
documented as a new feature in Release 1.7.

When ASSUME_SQLCODE=YES, and when SQLSTA and/or SQLCA are declared as
a status variables, the precompiler presumes SQLCOD is declared whether or not it is
declared in a Declare Section or of the proper type. This causes Releases 1.6.7 and later
to act like Release 1.5 in this regard. For information about the precompiler option
ASSUME_SQLCODE, see Chapter 6 in the Programmer's Guide to the Oracle
Precompilers.

Declaring Status Variables
This section describes how to declare SQLCOD and SQLSTA. For information about
declaring the SQLCA status variable, see "Declaring the SQLCA".

Note: When MODE={ORACLE|ANSI13}, you must declare the
SQLCA status variable. For more information, see Using the SQL
Communications Area.

Using Status Variables when MODE={ANSI|ANSI14}

2-4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Declaring SQLCOD
SQLCOD must be declared as a 4-byte integer variable either inside or outside the
Declare Section, In the following example, SQLCOD is declared outside the Declare
Section:

* Declare host and indicator variables.
 EXEC SQL BEGIN DECLARE SECTION
 ...
 EXEC SQL END DECLARE SECTION
* Declare status variable.
 INTEGER*4 SQLCOD

If declared outside the Declare Section, SQLCOD is recognized as a status variable
only if ASSUME_SQLCODE=YES. When MODE={ORACLE|ANSI13|ANSI14},
declarations of the SQLCOD variable are ignored.

Access to a local SQLCOD is limited by its scope within your program. After every
SQL operation, Oracle returns a status code to the SQLCOD currently in scope. So,
your program can learn the outcome of the most recent SQL operation by checking
SQLCOD explicitly, or implicitly with the WHENEVER statement.

When you declare SQLCOD instead of the SQLCA in a particular compilation unit, the
precompiler allocates an internal SQLCA for that unit. Your host program cannot
access the internal SQLCA.

Declaring SQLSTA
SQLSTA must be declared as a five-character alphanumeric string inside the Declare
Section, as shown in the following example:

EXEC SQL BEGIN DECLARE SECTION
 ...
 CHARACTER*5 SQLSTA
 ...
 EXEC SQL END DECLARE SECTION

When MODE={ORACLE|ANSI13}, SQLSTA declarations are ignored. Declaring the
SQLCA is optional.

Status Variable Combinations
When MODE={ANSI|ANSI14}, the behavior of the status variables depends on the
following:

which variables are declared

declaration placement (inside or outside the Declare Section)

ASSUME_SQLCODE setting

The following tables describe the resulting behavior of each status variable
combination when ASSUME_SQLCODE=NO and when ASSUME_SQLCODE=YES,
respectively.

Using Status Variables when MODE={ANSI|ANSI14}

Error Handling and Diagnostics 2-5

Declare Section
(IN/OUT/ --)
SQLCODE SQLSTA
SQLCA Behavior

OUT -- -- SQLCOD is declared
and is presumed to
be a status variable.

OUT -- OUT SQLCA is declared as
a status variable, and
SQLCOD is declared
but is not recognized
as a status variable.

OUT -- IN This status variable
configuration is not
supported.

OUT OUT -- SQLCOD is declared
and is presumed to
be a status variable,
and SQLSTA is
declared but is not
recognized as a status
variable.

OUT OUT OUT SQLCA is declared as
a status variable, and
SQLCOD and
SQLSTA are declared
but are not
recognized as status
variables.

OUT OUT IN This status variable
configuration is not
supported.

OUT IN -- SQLSTA is declared
as a status variable,
and SQLCOD is
declared but is not
recognized as a status
variable.

OUT IN OUT SQLSTA and SQLCA
are declared as status
variables, and
SQLCOD is declared
but is not recognized
as a status variable.

OUT IN IN This status variable
configuration is not
supported.

IN -- -- SQLCOD is declared
as a status variable.

IN -- OUT SQLCOD and
SQLCA are declared
as a status variables.

IN -- IN This status variable
configuration is not
supported.

Using Status Variables when MODE={ANSI|ANSI14}

2-6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

IN OUT -- SQLCOD is declared
as a status variable,
and SQLSTA is
declared but is not
recognized as a status
variable.

IN OUT OUT SQLCOD and
SQLCA are declared
as a status variables,
and SQLSTA is
declared but is not
recognized as a status
variable.

IN OUT IN This status variable
configuration is not
supported.

IN IN -- SQLCOD and
SQLSTA are declared
as a status variables.

IN IN OUT SQLCOD, SQLSTA,
and SQLCA are
declared as a status
variables.

IN IN IN This status variable
configuration is not
supported.

-- -- -- This status variable
configuration is not
supported.

-- -- OUT SQLCA is declared as
a status variable.

-- -- IN This status variable
configuration is not
supported.

-- OUT -- This status variable
configuration is not
supported.

-- OUT OUT SQLCA is declared as
a status variable, and
SQLSTA is declared
but is not recognized
as a status variable.

-- OUT IN This status variable
configuration is not
supported.

-- IN -- SQLSTA is declared
as a status variable.

-- IN OUT SQLSTA and SQLCA
are declared as status
variables.

Declare Section
(IN/OUT/ --)
SQLCODE SQLSTA
SQLCA Behavior

Using Status Variables when MODE={ANSI|ANSI14}

Error Handling and Diagnostics 2-7

-- IN IN This status variable
configuration is not
supported.

Declare Section
(IN/OUT/ --)
SQLCODE SQLSTA
SQLCA Behavior

OUT -- -- SQLCODE is
declared and is
presumed to be a
status variable.

OUT -- OUT SQLCA is declared as
a status variable, and
SQLCODE is
declared and is
presumed to be a
status variable.

OUT -- IN This status variable
configuration is not
supported.

OUT OUT -- SQLCODE is
declared and is
presumed to be a
status variable, and
SQLSTA is declared
but is not recognized
as a status variable.

OUT OUT OUT SQLCA is declared as
a status variable,
SQLCODE is
declared and is
presumed to be a
status variable, and
SQLSTA is declared
but is not recognized
as status variable.

OUT OUT IN This status variable
configuration is not
supported.

OUT IN -- SQLSTA is declared
as a status variable,
and SQLCODE is
declared and is
presumed to be a
status variable.

Declare Section
(IN/OUT/ --)
SQLCODE SQLSTA
SQLCA Behavior

Using Status Variables when MODE={ANSI|ANSI14}

2-8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

OUT IN OUT SQLSTA and SQLCA
are declared as status
variables, and
SQLCODE is
declared and is
presumed to be a
status variable.

OUT IN IN This status variable
configuration is not
supported.

IN -- -- SQLCODE is
declared as a status
variable.

IN -- OUT SQLCODE and
SQLCA are declared
as a status variables.

IN -- IN This status variable
configuration is not
supported.

IN OUT -- SQLCODE is
declared as a status
variable, and
SQLSTA is declared
but not as a status
variable.

IN OUT OUT SQLCODE and
SQLCA are declared
as a status variables,
and SQLSTA is
declared but is not
recognized as a status
variable.

IN OUT IN This status variable
configuration is not
supported.

IN IN -- SQLCODE and
SQLSTA are declared
as a status variables.

IN IN OUT SQLCODE, SQLSTA,
and SQLCA are
declared as a status
variables.

IN IN IN This status variable
configuration is not
supported.

Declare Section
(IN/OUT/ --)
SQLCODE SQLSTA
SQLCA Behavior

Using Status Variables when MODE={ANSI|ANSI14}

Error Handling and Diagnostics 2-9

-- -- -- This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

-- -- OUT This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

-- -- IN This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

-- OUT -- This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

-- OUT OUT This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

-- OUT IN This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

Declare Section
(IN/OUT/ --)
SQLCODE SQLSTA
SQLCA Behavior

Using the SQL Communications Area

2-10 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Using the SQL Communications Area
Oracle uses the SQL Communications Area (SQLCA) to store status information
passed to your program at run time. The SQLCA is a record-like, FORTRAN data
structure that is updated after each executable SQL statement, so it always reflects the
outcome of the most recent SQL operation. To determine that outcome, you can check
variables in the SQLCA explicitly with your own FORTRAN code or implicitly with
the WHENEVER statement.

When MODE={ORACLE|ANSI13}, the SQLCA is required; if the SQLCA is not
declared, compile-time errors will occur. The SQLCA is optional when
MODE={ANSI|ANSI14}, but you cannot use the WHENEVER SQLWARNING
statement without the SQLCA. So, if you want to use the WHENEVER
SQLWARNING statement, you must declare the SQLCA.

When MODE={ANSI|ANSI14}, you must declare either SQLSTA (see "Declaring
SQLSTA") or SQLCOD (see "Declaring SQLCOD") or both. The SQLSTA status
variable supports the SQLSTA status variable specified by the SQL92 standard. You
can use the SQLSTA status variable with or without SQLCOD. For more information
see Chapter 8 of the Programmer's Guide to the Oracle Precompilers.

What's in the SQLCA?
The SQLCA contains runtime information about the execution of SQL statements, such
as Oracle error codes, warning flags, event information, rows-processed count, and
diagnostics.

-- IN -- This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

-- IN OUT This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

-- IN IN This status variable
configuration is not
supported.
SQLCODE must be
declared either inside
or outside the
Declare Section when
ASSUME_
SQLCODE=YES.

Declare Section
(IN/OUT/ --)
SQLCODE SQLSTA
SQLCA Behavior

Using the SQL Communications Area

Error Handling and Diagnostics 2-11

Figure 2–1 shows all the variables in the SQLCA. However, SQLWN2, SQLWN5,
SQLWN6, SQLWN7, and SQLEXT are not currently in use.

Figure 2–1 SQLCA Variable Declarations for Pro*FORTRAN

To ensure portability, LOGICAL variables are used in the SQLCA instead of
CHARACTER variables. For a full description of the SQLCA, its fields, and the values
its fields can store, see Chapter 8 of the Programmer's Guide to the Oracle Precompilers.

Declaring the SQLCA
To declare the SQLCA, simply include it (using an EXEC SQL INCLUDE statement) in
your Pro*FORTRAN source file outside the Declare Section as follows:

* Include the SQL Communications Area (SQLCA).
 EXEC SQL INCLUDE SQLCA

Because it is a COMMON block, the SQLCA must be declared outside the Declare
Section. Furthermore, the SQLCA must come before the CONNECT statement and the
first executable FORTRAN statement.

You must declare the SQLCA in each subroutine and function that contains SQL
statements. Every time a SQL statement in one of the subroutines or functions is
executed, Oracle updates the SQLCA held in the COMMON block.

Ordinarily, only the order and datatypes of variables in a COMMON-list matter, not
their names. However, you cannot rename the SQLCA variables because the
precompiler generates code that refers to them. Thus, all declarations of the SQLCA
must be identical.

Using the SQL Communications Area

2-12 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

When you precompile your program, the INCLUDE SQLCA statement is replaced by
several variable declarations that allow Oracle to communicate with the program.

Key Components of Error Reporting
The key components of Pro*FORTRAN error reporting depend on several fields in the
SQLCA.

Status Codes
Every executable SQL statement returns a status code in the SQLCA variable SQLCDE,
which you can check implicitly with WHENEVER SQLERROR or explicitly with your
own FORTRAN code.

Warning Flags
Warning flags are returned in the SQLCA variables SQLWN0 through SQLWN7,
which you can check with WHENEVER SQLWARNING or with your own FORTRAN
code. These warning flags are useful for detecting runtime conditions that are not
considered errors by Oracle.

Rows-Processed Count
The number of rows processed by the most recently executed SQL statement is
recorded in the SQLCA variable SQLERD(3). For repeated FETCHes on an OPEN
cursor, SQLERD(3) keeps a running total of the number of rows fetched.

Parse Error Offset
Before executing a SQL statement, Oracle must parse it; that is, examine it to make
sure it follows syntax rules and refers to valid database objects. If Oracle finds an
error, an offset is stored in the SQLCA variable SQLERD(5), which you can check
explicitly. The offset specifies the character position in the SQL statement at which the
parse error begins. The first character occupies position zero. For example, if the offset
is 9, the parse error begins at the tenth character.

If your SQL statement does not cause a parse error, Oracle sets SQLERD(5) to zero.
Oracle also sets SQLERD(5) to zero if a parse error begins at the first character, which
occupies position zero. So, check SQLERD(5) only if SQLCDE is negative, which
means that an error has occurred.

Error Message Text
The error code and message for Oracle errors are available in the SQLCA variable
SQLEMC. For example, you might place the following statements in an error-handling
routine:

Handle SQL execution errors.
 WRITE (*, 10000) SQLEMC
10000 FORMAT (1X, 70A1)
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL ROLLBACK WORK RELEASE
 ...

At most, the first 70 characters of message text are stored. For messages longer than 70
characters, you must call the SQLGLM function, which is discussed next.

Using the SQL Communications Area

Error Handling and Diagnostics 2-13

Getting the Full Text of Error Messages
The SQLCA can accommodate error messages of up to 70 characters in length. To get
the full text of longer (or nested) error messages, you need the SQLGLM function. If
connected to Oracle, you can call SQLGLM using the syntax

CALL SQLGLM (MSGBUF, BUFLEN, MSGLEN)

where:

MSGBUF
Is the buffer in which you want Oracle to store the error message. Oracle blank-pads to
the end of this buffer.

BUFLEN
Is an integer variable that specifies the maximum length of MSGBUF in bytes.

MSGLEN

Is an integer variable in which Oracle stores the actual length of the error message.

The maximum length of an Oracle error message is 512 characters including the error
code, nested messages, and message inserts such as table and column names. The
maximum length of an error message returned by SQLGLM depends on the value you
specify for BUFLEN. In the following example, you use SQLGLM to get an error
message of up to 200 characters in length:

* Declare variables for function call.
 LOGICAL*1 MSGBUF(200)
 INTEGER*4 BUFLEN
 INTEGER*4 MSGLEN
 DATA BUFLEN /200/
 EXEC SQL WHENEVER SQLERROR GO TO 9000
 ...
* Handle SQL execution errors.
 9000 WRITE (*,9100)
 9100 FORMAT (1X, ' >>> Oracle error detected', /)
* Get and display the full text of the error message.
 CALL SQLGLM (MSGBUF, BUFLEN, MSGLEN)
 WRITE (*, 9200) (MSGBUF(J), J = 1, MSGLEN)
 9200 FORMAT (1X, 200A1, /)
 ...

In the example, SQLGLM is called only when a SQL error has occurred. Always make
sure SQLCOD is negative before calling SQLGLM. If you call SQLGLM when SQLCOD
is zero, you get the message text associated with a prior SQL statement.

Using the WHENEVER Statement
By default, the Pro*FORTRAN Precompiler ignores Oracle error and warning
conditions and continues processing (if possible). To do automatic condition checking
and error handling, you need the WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken when Oracle
detects an error, warning condition, or "not found" condition. These actions include
continuing with the next statement, calling a subroutine, branching to a labeled
statement, or stopping.

Code the WHENEVER statement using the following syntax:

EXEC SQL WHENEVER <condition> <action>

Using the SQL Communications Area

2-14 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

You can have Oracle automatically check the SQLCA for any of the following
conditions, which are described in the Programmer's Guide to the Oracle Precompilers:

SQLWARNING

SQLERROR

NOT FOUND

When Oracle detects one of the preceding conditions, you can have your program take
any of the following actions:

CONTINUE

DO subroutine_call

GOTO statement_label

STOP

When using the WHENEVER ... DO statement, the usual rules for entering and exiting
a subroutine apply. However, passing parameters to the subroutine is not allowed.
Furthermore, the subroutine must not return a value.

In the following example, WHENEVER SQLERROR DO statements are used to handle
specific errors:

EXEC SQL WHENEVER SQLERROR DO CALL INSERR
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:MYEMPNO, :MYENAME, :MYDEPTNO)
 EXEC SQL WHENEVER SQLERROR DO CALL DELERR
 EXEC SQL DELETE FROM DEPT
 WHERE DEPTNO = :MYDEPTNO
 ...
* Error-handling subroutines
 SUBROUTINE INSERR
* Check for "duplicate key value" Oracle error.
 IF (SQLCDE .EQ. -1) THEN
 ...
* Check for "value too large" Oracle error.
 ELSE IF (SQLCDE .EQ. -1401) THEN
 ...
 ELSE
 ...
 END IF
 ...
 SUBROUTINE DELERR
* Check for the number of rows processed.
 IF (SQLERD(3) .EQ. 0) THEN
 ...
 ELSE
 ...
 END IF
 ...

Notice how the subroutines check variables in the SQLCA to determine a course of
action. For more information about the WHENEVER conditions and actions, see
Chapter 8 of the Programmer's Guide to the Oracle Precompilers.

Scope
Because WHENEVER is a declarative statement, its scope is positional, not logical. It
tests all executable SQL statements that follow it in the source file, not in the flow of

Using the SQL Communications Area

Error Handling and Diagnostics 2-15

program logic. So, code the WHENEVER statement before the first executable SQL
statement you want to test.

A WHENEVER statement stays in effect until superseded by another WHENEVER
statement checking for the same condition.

Careless Usage: Examples
Careless use of the WHENEVER statement can cause problems. For example, the
following code enters an infinite loop if the DELETE statement sets the NOT FOUND
condition, because no rows meet the search condition:

* Improper use of WHENEVER
 EXEC SQL WHENEVER NOT FOUND GOTO 7000
 6000 EXEC SQL FETCH EMPCUR INTO :MYENAME, :MYSAL
 ...
 GOTO 6000
 7000 EXEC SQL DELETE FROM EMP WHERE EMPNO = :MYEMPNO
 ...

In the next example, you handle the NOT FOUND condition properly by resetting the
GOTO target:

* Proper use of WHENEVER
 EXEC SQL WHENEVER NOT FOUND GOTO 7000
 6000 EXEC SQL FETCH EMPCUR INTO :MYENAME, :MYSAL
 ...
 GOTO 6000
 7000 EXEC SQL WHENEVER NOT FOUND GOTO 8000
 EXEC SQL DELETE FROM EMP WHERE EMPNO = :MYEMPNO
 ...
 8000 CONTINUE

Verify that all SQL statements governed by a WHENEVER ... GOTO statement can
branch to the GOTO label. The following code results in a compilation error because
the label 5000 in subroutine DELROW is not within the scope of the INSERT statement
in subroutine INSROW:

SUBROUTINE DELROW
 ...
 EXEC SQL WHENEVER SQLERROR GOTO 5000
 EXEC SQL DELETE FROM EMP WHERE DEPTNO = :MYDEPTNO
 ...
 5000 WRITE (*, 10000) SQLEMC
10000 FORMAT (1X, 70A1)
 RETURN
 END
 SUBROUTINE INSROW
 ...
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:MYEMPNO, :MYENAME, :MYDEPTNO)
 ...

Tip: You might want to place WHENEVER statements at the
beginning of each program unit that contains SQL statements. That
way, SQL statements in one program unit will not reference
WHENEVER actions in another program unit, causing errors at
compile or run time.

Using the Oracle Communications Area

2-16 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Using the Oracle Communications Area
The SQLCA handles standard SQL communications. The Oracle Communications
Area (ORACA) is a similar structure that you can include in your program to handle
Oracle-specific communications. When you need more runtime information than the
SQLCA provides, use the ORACA.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program's use of Oracle resources such as the SQL Statement Executor and the cursor
cache, an area of memory reserved for cursor management.

What's in the ORACA?
The ORACA contains option settings, system statistics, and extended diagnostics.
Figure 2–2 shows all the variables in the ORACA.

Figure 2–2 ORACA Variable Declarations for Pro*FORTRAN

To ensure portability, LOGICAL variables are used in the ORACA instead of
CHARACTER variables. For a full description of the ORACA, its fields, and the values
its fields can store, see Chapter 8 of the Programmer's Guide to the Oracle Precompilers.

Declaring the ORACA
To declare the ORACA, simply include it (using an EXEC SQL INCLUDE statement)
in your Pro*FORTRAN source file outside the Declare Section as follows:

* Include the Oracle Communications Area (ORACA).
 EXEC SQL INCLUDE ORACA

Because it is a COMMON block, the ORACA must be declared outside the Declare
Section. Furthermore, the ORACA must come before the CONNECT statement and
the first executable FORTRAN statement.

You can redeclare the ORACA in any subroutine or function that contains SQL
statements. Every time a SQL statement in the subroutine or function is executed,
Oracle updates the ORACA held in COMMON.

Ordinarily, only the order and datatypes of variables in a COMMON-list matter, not
their names. However, you cannot rename the ORACA variables because the

Using the Oracle Communications Area

Error Handling and Diagnostics 2-17

precompiler generates code that refers to them. Thus, all declarations of the ORACA
must be identical.

Enabling the ORACA
To enable the ORACA, you must set the ORACA precompiler option to YES on the
command line or in a configuration file with

ORACA=YES

or inline with

* Enable the ORACA.
 EXEC ORACLE OPTION (ORACA=YES)

Then, you must choose appropriate runtime options by setting flags in the ORACA.
Enabling the ORACA is optional because it adds to runtime overhead. The default
setting is ORACA=NO.

Using the Oracle Communications Area

2-18 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Programs 3-1

3
Sample Programs

This chapter contains the following sections:

Sample Program 1: Simple Query

Sample Program 2: Cursor Operations

Sample Program 3: Fetching in Batches

Sample Program 4: Datatype Equivalencing

Sample Program 5: Oracle Forms User Exit

Sample Program 6: Dynamic SQL Method 1

Sample Program 7: Dynamic SQL Method 2

Sample Program 8: Dynamic SQL Method 3

Sample Program 9: Calling a Stored Procedure

This chapter provides several embedded SQL programs to guide you in writing your
own. These programs illustrate the key concepts and features of Pro*FORTRAN
programming and demonstrate techniques that let you take full advantage of SQL's
power and flexibility.

Each sample program in this chapter is available online. Table 3–1 shows the usual
filenames of the sample programs. However, the exact filenames are
system-dependent. For specific filenames, see your Oracle system-specific
documentation.

Table 3–1 Pro*FORTAN Sample Programs

Filename Demonstrates...

SAMPLE1.PFO a simple query

SAMPLE2.PFO cursor operations

SAMPLE3.PFO array fetches

SAMPLE4.PFO datatype equivalencing

SAMPLE5.PFO an Oracle Forms user exit

SAMPLE6.PFO dynamic SQL Method 1

SAMPLE7.PFO dynamic SQL Method 2

SAMPLE8.PFO dynamic SQL Method 3

SAMPLE9.PFO calling a stored procedure

Sample Program 1: Simple Query

3-2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 1: Simple Query
This program connects to Oracle, prompts the user for an employee number, queries
the database for the employee's name, salary, and commission, then displays the
result. The program ends when the user enters a zero employee number.

PROGRAM QUERY

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 UID
 CHARACTER*10 PWD
 INTEGER EMPNO
 CHARACTER*10 ENAME
 REAL SAL
 REAL COMM
 INTEGER*2 ICOMM
 EXEC SQL END DECLARE SECTION

 INTEGER TOTAL

 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.
 UID = 'SCOTT'
 PWD = 'TIGER'
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 PRINT *, 'CONNECTED TO ORACLE AS USER: ', UID

* QUERY LOOP REPEATS UNTIL THE USER ENTERS A 0
 TOTAL = 0
2000 CONTINUE

 PRINT *, '\NENTER EMPLOYEE NUMBER (0 TO QUIT): '
 READ '(I10)', EMPNO
 IF (EMPNO .EQ. 0) CALL SIGNOFF (TOTAL)

 EXEC SQL WHENEVER NOT FOUND GOTO 7000
 EXEC SQL SELECT ENAME, SAL, COMM
 1 INTO :ENAME, :SAL, :COMM:ICOMM
 2 FROM EMP
 3 WHERE EMPNO = :EMPNO

 PRINT *, 'EMPLOYEE SALARY COMMISSION\N',
 +'---------- ------- ----------'

IF (ICOMM .EQ. -1) THEN
 PRINT '(A10, 2X, F7.2, A12)', ENAME, SAL, ' NULL'
 ELSE
 PRINT '(A10, 2X, F7.2, 5X, F7.2)', ENAME, SAL, COMM
 END IF

 TOTAL = TOTAL + 1
 GOTO 2000

7000 CONTINUE

 PRINT *, 'NOT A VALID EMPLOYEE NUMBER - TRY AGAIN.'
 GOTO 2000
 END

Sample Program 2: Cursor Operations

Sample Programs 3-3

 SUBROUTINE SIGNOFF (NUMQ)
 INTEGER NUMQ
 EXEC SQL INCLUDE SQLCA
 PRINT *, 'TOTAL NUMBER QUERIED WAS: ', NUMQ
 PRINT *, 'HAVE A GOOD DAY.'
 EXEC SQL COMMIT WORK RELEASE
 STOP
 END

 SUBROUTINE SQLERR
 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR CONTINUE
 PRINT *, 'ORACLE ERROR DETECTED:'
 PRINT '(70A1)', SQLEMC
 EXEC SQL ROLLBACK WORK RELEASE
 STOP
 END

Sample Program 2: Cursor Operations
This program connects to Oracle, declares and opens a cursor, fetches the names,
salaries, and commissions of all salespeople, displays the results, then closes the
cursor.

PROGRAM CURSOR

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 UID
 CHARACTER*10 PWD
 CHARACTER*10 ENAME
 REAL SAL
 REAL COMM
 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.
 UID = 'SCOTT'
 PWD = 'TIGER'
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 PRINT *, 'CONNECTED TO ORACLE AS USER:', UID

* DECLARE THE CURSOR.
 EXEC SQL DECLARE SALESPEOPLE CURSOR FOR
 1 SELECT ENAME, SAL, COMM
 2 FROM EMP
 3 WHERE JOB LIKE 'SALES%'
 EXEC SQL OPEN SALESPEOPLE

 PRINT *, 'SALESPERSON SALARY COMMISSION\N',
 +'----------- ------- ----------'

* LOOP, FETCHING ALL SALESPERSON'S STATISTICS
 EXEC SQL WHENEVER NOT FOUND DO CALL SIGNOFF
3000 EXEC SQL FETCH SALESPEOPLE INTO :ENAME, :SAL, :COMM
 PRINT '(1X, A10, 3X, F7.2, 5X, F7.2)', ENAME, SAL, COMM
 GOTO 3000

Sample Program 3: Fetching in Batches

3-4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 END

 SUBROUTINE SIGNOFF
 EXEC SQL INCLUDE SQLCA
 EXEC SQL CLOSE SALESPEOPLE
 PRINT *, 'HAVE A GOOD DAY.'
 EXEC SQL COMMIT WORK RELEASE
 STOP
 END

 SUBROUTINE SQLERR
 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR CONTINUE
 PRINT *, 'ORACLE ERROR DETECTED:'
 PRINT '(70A1)', SQLEMC
 EXEC SQL ROLLBACK WORK RELEASE
 STOP
 END

Sample Program 3: Fetching in Batches
This program logs on to Oracle, declares and opens a cursor, fetches in batches using
arrays, and prints the results using the subroutine PRTRES.

PROGRAM ARRAYS

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 UID
 CHARACTER*10 PWD
 CHARACTER*10 ENAME(5)
 INTEGER EMPNO(5)
 REAL SAL(5)
 EXEC SQL END DECLARE SECTION

* NUMBER OF ROWS RETURNED, AND NUMBER TO PRINT
 INTEGER NUMRET
 INTEGER NUMP
 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.
 UID = 'SCOTT'
 PWD = 'TIGER'
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 PRINT *, 'CONNECTED TO ORACLE AS USER: ', UID

* DECLARE THE CURSOR, THEN OPEN IT.
 EXEC SQL DECLARE C1 CURSOR FOR
 1 SELECT EMPNO, ENAME, SAL
 2 FROM EMP
 EXEC SQL OPEN C1
 NUMRET = 0

* LOOP, FETCHING AND PRINTING BATCHES,
* UNTIL NOT FOUND BECOMES TRUE.
 EXEC SQL WHENEVER NOT FOUND GOTO 3000
2000 EXEC SQL FETCH C1 INTO :EMPNO, :ENAME, :SAL
 NUMP = SQLERD(3) - NUMRET
 CALL PRTRES (NUMP, EMPNO, ENAME, SAL)

Sample Program 4: Datatype Equivalencing

Sample Programs 3-5

 NUMRET = SQLERD(3)
 GOTO 2000

* PRINT FINAL SET OF ROWS, IF ANY.
3000 NUMP = SQLERD(3) - NUMRET
 IF (NUMP .GT. 0) CALL PRTRES (NUMP, EMPNO, ENAME, SAL)
 CALL SIGNOFF
 END
 SUBROUTINE PRTRES (NUMP, EMPNO, ENAME, SAL)
 INTEGER NUMP
 INTEGER EMPNO(NUMP)
 CHARACTER*10 ENAME(NUMP)
 REAL SAL(NUMP)

* PRINT HEADER.
 PRINT *, 'EMPLOYEE NUMBER EMPLOYEE NAME SALARY\N',
 +'--------------- ------------- -------'

* PRINT BATCH OF ROWS.
 DO 7000 I = 1, NUMP
 PRINT '(1X, I4, 13X, A10, 5X, F7.2)',
 + EMPNO(I), ENAME(I), SAL(I)
7000 CONTINUE
 RETURN
 END

 SUBROUTINE SIGNOFF
 EXEC SQL INCLUDE SQLCA
 EXEC SQL CLOSE C1
 PRINT *, 'HAVE A GOOD DAY.'
 EXEC SQL COMMIT WORK RELEASE
 STOP
 END

 SUBROUTINE SQLERR
 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR CONTINUE
 PRINT *, 'ORACLE ERROR DETECTED:'
 PRINT '(70A1)', SQLEMC
 EXEC SQL ROLLBACK WORK RELEASE
 STOP
 END

Sample Program 4: Datatype Equivalencing
After connecting to Oracle, this program creates a database table named IMAGE in the
SCOTT account, then simulates the insertion of bitmap images of employee numbers
into the table. Datatype equivalencing lets the program use the Oracle external
datatype LONG RAW to represent the images. Later, when the user enters an
employee number, the number's "bitmap" is selected from the IMAGE table and
pseudo-displayed on the terminal screen.

PROGRAM DTYEQV
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 UID
 CHARACTER*10 PWD
 INTEGER EMPNO
 CHARACTER*10 ENAME
 REAL SAL

Sample Program 4: Datatype Equivalencing

3-6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 REAL COMM
 CHARACTER*8192 BUFFER
 EXEC SQL VAR BUFFER IS LONG RAW
 INTEGER SELECTION
 EXEC SQL END DECLARE SECTION

 CHARACTER*10 REPLY

 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

* LOG ON TO ORACLE.
 UID = 'SCOTT'
 PWD = 'TIGER'
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 PRINT *, 'CONNECTED TO ORACLE AS USER: ', UID

 PRINT *, 'PROGRAM IS ABOUT TO DROP THE IMAGE ',
 +'TABLE - OK [Y/N]? '
 READ '(A10)', REPLY
 IF ((REPLY(1:1) .NE. 'Y') .AND. (REPLY(1:1) .NE. 'Y'))
 1 CALL SIGNOFF

 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL DROP TABLE IMAGE
 IF (SQLCDE .EQ. 0) THEN
 PRINT *, 'TABLE IMAGE HAS BEEN DROPPED - ',
 + 'CREATING NEW TABLE.'
 ELSE IF (SQLCDE .EQ. -942) THEN
 PRINT *, 'TABLE IMAGE DOES NOT EXIST - ',
 + 'CREATING NEW TABLE.'

ELSE
 CALL SQLERR
 END IF

 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR
 EXEC SQL CREATE TABLE IMAGE
 1 (EMPNO NUMBER(4) NOT NULL, BITMAP LONG RAW)
 EXEC SQL DECLARE EMPCUR CURSOR FOR
 1 SELECT EMPNO, ENAME FROM EMP
 EXEC SQL OPEN EMPCUR
 PRINT *, 'INSERTING BITMAPS INTO IMAGE FOR ALL EMPLOYEES...'

7000 CONTINUE
 EXEC SQL WHENEVER NOT FOUND GOTO 10000
 EXEC SQL FETCH EMPCUR INTO :EMPNO, :ENAME
 CALL GETIMG (EMPNO, BUFFER)
 EXEC SQL INSERT INTO IMAGE VALUES (:EMPNO, :BUFFER)
 PRINT *, 'EMPLOYEE ', ENAME, '.......... IS DONE!'
 GOTO 7000

10000 EXEC SQL CLOSE EMPCUR
 EXEC SQL COMMIT WORK
 PRINT *, 'DONE INSERTING BITMAPS. NEXT, LETS DISPLAY SOME.'

* BEGINNING OF DISPLAY LOOP
12000 SELECTION = 0
 PRINT *, '\NENTER EMPLOYEE NUMBER (0 TO QUIT):'
 READ '(I10)', SELECTION

Sample Program 4: Datatype Equivalencing

Sample Programs 3-7

 IF (SELECTION .EQ. 0) CALL SIGNOFF
 EXEC SQL WHENEVER NOT FOUND GOTO 16000

 EXEC SQL SELECT EMP.EMPNO, ENAME, SAL, NVL(COMM,0), BITMAP
 1 INTO :EMPNO, :ENAME, :SAL, :COMM, :BUFFER
 2 FROM EMP, IMAGE
 3 WHERE EMP.EMPNO = :SELECTION
 4 AND EMP.EMPNO = IMAGE.EMPNO
 CALL SHWIMG (BUFFER)

 PRINT *, '\NEMPLOYEE ', ENAME, ' HAS SALARY ', SAL,
 + ' AND COMMISSION ', COMM
 GOTO 12000

16000 PRINT *, 'NOT A VALID EMPLOYEE NUMBER - TRY AGAIN.'
 GOTO 12000
 END

 SUBROUTINE GETIMG (ENUM, BUF)
 INTEGER ENUM
 CHARACTER*8192 BUF
 INTEGER I

 DO 18000 I = 1, 8192
 BUF(I:I) = '*'
18000 CONTINUE
 END

 SUBROUTINE SHWIMG (BUF)
 CHARACTER*8192 BUF
 INTEGER I

 PRINT *, ' ***************************'
 DO 22000 I = 1, 9
 PRINT *, ' ***************************'
22000 CONTINUE
 END

 SUBROUTINE SIGNOFF
 EXEC SQL INCLUDE SQLCA
 PRINT *, 'HAVE A GOOD DAY.'
 EXEC SQL COMMIT WORK RELEASE
 STOP
 END

 SUBROUTINE SQLERR
 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR CONTINUE
 PRINT *, 'ORACLE ERROR DETECTED:'
 PRINT '(70A1)', SQLEMC
 EXEC SQL ROLLBACK WORK RELEASE
 STOP
 END

Sample Program 5: Oracle Forms User Exit

3-8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 5: Oracle Forms User Exit
This user exit concatenates form fields. To call the user exit from a Oracle Forms
trigger, use the syntax

<user_exit>('CONCAT <field1>, <field2>, ..., <result_field>');

where user_exit is a packaged procedure supplied with Oracle Forms and CONCAT is
the name of the user exit. A sample CONCAT form invokes the user exit. For more
information about Oracle Forms user exits, see Chapter 11 of the Programmer's Guide to
the Oracle Precompilers.

Note: The sample code listed is for a Oracle*Forms user exit and is not intended to be
compiled in the same manner as the other sample programs listed in this chapter.

INTEGER FUNCTION CONCAT (CMD,CMDL,ERR,ERRL,INQRY)

 EXEC SQL BEGIN DECLARE SECTION
 LOGICAL*1 VALUE(81)
 LOGICAL*1 FINAL(241)
 LOGICAL*1 FIELD(81)
 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR GO TO 999

 LOGICAL*1 CMD(80)
 LOGICAL*1 ERR(80)
 INTEGER*2 CMDL, ERRL, INQRY

* CERR IS A DYNAMICALLY BUILT ERROR MESSAGE RETURNED
* TO SQL*FORMS.

 LOGICAL*1 CERR(80)

* TEMPORARY VARIABLES TO DO STRING MANIPULATIONS.

 INTEGER*2 CMDCNT
 INTEGER*2 FLDCNT
 INTEGER*2 FNLCNT

* INITIALIZE VARIABLES.

 DO 1 I = 1, 81
 FIELD(I) = ' '
1 VALUE(I) = ' '
 DO 2 I = 1, 241
2 FINAL(I) = ' '
 FNLCNT = 0
* STRIP CONCAT FROM COMMAND LINE.

 CMDCNT = 7
 I = 1

* LOOP UNTIL END OF COMMAND LINE.

 DO WHILE (CMDCNT .LE. CMDL)

* PARSE EACH FIELD DELIMITED BY A COMMA.

 FLDCNT = 0

Sample Program 5: Oracle Forms User Exit

Sample Programs 3-9

 DO WHILE ((CMD(CMDCNT) .NE. ',').AND.(CMDCNT .LE. CMDL))
 FLDCNT = FLDCNT + 1
 FIELD(FLDCNT) = CMD(CMDCNT)
 CMDCNT = CMDCNT + 1
 END DO
 IF (CMDCNT .LT. CMDL) THEN

* WE HAVE FIELD1...FIELDN. THESE ARE NAMES OF
* SQL*FORMS FIELDS; GET THE VALUE.

 EXEC TOOLS GET :FIELD INTO :VALUE

* REINITIALIZE FIELD NAME.

 DO 20 K = 1, FLDCNT
20 FIELD(K) = ' '

* MOVE VALUE RETRIEVED FROM FIELD TO A CHARACTER
* TO FIND LENGTH.

 DO WHILE (VALUE(I) .NE. ' ')
 FNLCNT = FNLCNT + 1
 FINAL(FNLCNT) = VALUE(I)
 I = I + 1
 END DO
 I = 1
 CMDCNT = CMDCNT + 1
 ELSE

* WE HAVE RESULT_FIELD; STORE IN SQL*FORMS FIELD.

 EXEC TOOLS SET :FIELD VALUES (:FINAL)
 END IF
 END DO

* ALL OK. RETURN SUCCESS CODE.

 CONCAT = IAPSUC
 RETURN

* ERROR OCCURRED. PREFIX NAME OF USER EXIT TO ORACLE
* ERROR MESSAGE, SET FAILURE RETURN CODE, AND EXIT.

999 CERR(1) = 'C'
 CERR(2) = 'O'
 CERR(3) = 'N'
 CERR(4) = 'C'
 CERR(5) = 'A'
 CERR(6) = 'T'
 CERR(7) = ':'
 CERR(8) = ' '
 DO 1000 J = 1, 70
 CERR(J + 8) = SQLEMC(J)
1000 CONTINUE
 ERRL = 78
 CALL TOOLS MESSAGE (CERR, ERRL)
 CONCAT = IAPFAI
 RETURN
 END

Sample Program 6: Dynamic SQL Method 1

3-10 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 6: Dynamic SQL Method 1
This program uses dynamic SQL Method 1 to create a table, insert a row, commit the
insert, then drop the table.

PROGRAM DYN1

 EXEC SQL INCLUDE SQLCA
 EXEC SQL INCLUDE ORACA
 EXEC ORACLE OPTION (ORACA=YES)
 EXEC ORACLE OPTION (RELEASE_CURSOR=YES)

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 USERNAME
 CHARACTER*10 PASSWORD
 CHARACTER*80 DYNSTM
 EXEC SQL END DECLARE SECTION

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 ORATXF = 1

 USERNAME = 'SCOTT'
 PASSWORD = 'TIGER'
 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
 PRINT *, 'CONNECTED TO ORACLE.'

 PRINT *, 'CREATE TABLE DYN1 (COL1 CHAR(4))'
 EXEC SQL EXECUTE IMMEDIATE
 1 'CREATE TABLE DYN1 (COL1 CHAR(4))'

 DYNSTM = 'INSERT INTO DYN1 VALUES (''TEST'')'
 PRINT *, DYNSTM
 EXEC SQL EXECUTE IMMEDIATE :DYNSTM
 EXEC SQL COMMIT WORK

 DYNSTM = 'DROP TABLE DYN1'
 PRINT *, DYNSTM
 EXEC SQL EXECUTE IMMEDIATE :DYNSTM
 EXEC SQL COMMIT RELEASE

 PRINT *, 'HAVE A GOOD DAY!'
 GOTO 9999

9000 PRINT *, '\N-- ORACLE ERROR:'
 PRINT '(70A)', SQLEMC
 PRINT '(3A, 70A)', 'IN ', ORATXC
 PRINT *, 'ON LINE', ORASLN
 PRINT '(3A, 70A)', 'OF ', ORAFNC
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL ROLLBACK RELEASE

9999 CONTINUE
 END

Sample Program 7: Dynamic SQL Method 2
This program uses dynamic SQL Method 2 to insert two rows into the EMP table, then
delete them.

Sample Program 7: Dynamic SQL Method 2

Sample Programs 3-11

PROGRAM DYN2

 EXEC SQL INCLUDE SQLCA

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 USERNAME
 CHARACTER*10 PASSWORD
 CHARACTER*80 DYNSTM
 INTEGER*2 EMPNO
 INTEGER*2 DEPTNO1
 INTEGER*2 DEPTNO2
 EXEC SQL END DECLARE SECTION

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 USERNAME = 'SCOTT'
 PASSWORD = 'TIGER'
 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
 PRINT *, 'CONNECTED TO ORACLE.'

 DYNSTM = 'INSERT INTO EMP (EMPNO,DEPTNO) VALUES(:V1, :V2)'
 PRINT *, DYNSTM
 EMPNO = 1234
 DEPTNO1 = 97
 PRINT *, 'V1 = ', EMPNO
 PRINT *, 'V2 = ', DEPTNO1
 EXEC SQL PREPARE S FROM :DYNSTM
 EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO1
 PRINT *, 'INSERT STATEMENT EXECUTED.\N'

 EMPNO = EMPNO + 1
 DEPTNO2 = 99
 PRINT *, 'CHANGED BIND VARIABLES V1 AND V2\NV1 = ', EMPNO
 PRINT *, 'V2 = ', DEPTNO2
 PRINT *, 'EXECUTING STATEMENT AGAIN WITH NEW BIND ',
 + 'VARIABLES.'
 EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO2
 PRINT *, 'DONE, NOW DELETING...\N'

 DYNSTM =
 + 'DELETE FROM EMP WHERE DEPTNO = :V1 OR DEPTNO = :V2'

 PRINT *, DYNSTM
 PRINT *, 'V1 = ', DEPTNO1
 PRINT *, 'V2 = ', DEPTNO2
 EXEC SQL PREPARE S FROM :DYNSTM
 EXEC SQL EXECUTE S USING :DEPTNO1, :DEPTNO2

 EXEC SQL COMMIT RELEASE
 PRINT *, 'HAVE A GOOD DAY!'
 GOTO 9999

9000 PRINT '(70A1)', SQLEMC
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL ROLLBACK RELEASE

9999 CONTINUE
 END

Sample Program 8: Dynamic SQL Method 3

3-12 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Sample Program 8: Dynamic SQL Method 3
This program uses dynamic SQL Method 3 to retrieve the names of all employees in a
given department from the EMP table.

PROGRAM DYN3

 EXEC SQL INCLUDE SQLCA
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 USERNAME
 CHARACTER*10 PASSWORD
 CHARACTER*80 DYNSTM
 CHARACTER*10 ENAME
 INTEGER*2 DEPTNO
 EXEC SQL END DECLARE SECTION
 EXEC SQL WHENEVER SQLERROR GOTO 9000

 USERNAME = 'SCOTT'
 PASSWORD = 'TIGER'
 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD
 PRINT *, 'CONNECTED TO ORACLE.\N'

 DYNSTM = 'SELECT ENAME FROM EMP WHERE DEPTNO = :V1'
 PRINT *, DYNSTM
 DEPTNO = 10
 PRINT *, 'V1 = ', DEPTNO
 EXEC SQL PREPARE S FROM :DYNSTM
 EXEC SQL DECLARE C CURSOR FOR S
 EXEC SQL OPEN C USING :DEPTNO
 EXEC SQL WHENEVER NOT FOUND GOTO 110

 PRINT *, '\NEMPLOYEE NAME\N-------------'
100 EXEC SQL FETCH C INTO :ENAME
 PRINT *, ENAME
 GOTO 100

110 PRINT *, '\NQUERY RETURNED', SQLERD(3), ' ROWS.'
 EXEC SQL CLOSE C
 EXEC SQL COMMIT RELEASE
 PRINT *, '\NHAVE A GOOD DAY.'
 GOTO 9999

9000 PRINT '(70A1)', SQLEMC
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL CLOSE C
 EXEC SQL ROLLBACK RELEASE

9999 CONTINUE
 END

Sample Program 9: Calling a Stored Procedure
Before trying the sample program, you must create a PL/SQL package named
calldemo, by running a script named CALLDEMO.SQL, which is supplied with
Pro*FORTRAN and shown in the following example. The script can be found in the
Pro*FORTRAN demo library. Check your Oracle system-specific documentation for
exact spelling of the script.

CREATE OR REPLACE PACKAGE calldemo AS

Sample Program 9: Calling a Stored Procedure

Sample Programs 3-13

 TYPE name_array IS TABLE OF emp.ename%type
 INDEX BY BINARY_INTEGER;
 TYPE job_array IS TABLE OF emp.job%type
 INDEX BY BINARY_INTEGER;
 TYPE sal_array IS TABLE OF emp.sal%type
 INDEX BY BINARY_INTEGER;

 PROCEDURE get_employees(
 dept_number IN number, -- department to query
 batch_size IN INTEGER, -- rows at a time
 found IN OUT INTEGER, -- rows actually returned
 done_fetch OUT INTEGER, -- all done flag
 emp_name OUT name_array,
 job OUT job_array,
 sal OUT sal_array);

END calldemo;
/

CREATE OR REPLACE PACKAGE BODY calldemo AS

 CURSOR get_emp (dept_number IN number) IS
 SELECT ename, job, sal FROM emp
 WHERE deptno = dept_number;

 -- Procedure "get_employees" fetches a batch of employee
 -- rows (batch size is determined by the client/caller
 -- of the procedure). It can be called from other
 -- stored procedures or client application programs.
 -- The procedure opens the cursor if it is not
 -- already open, fetches a batch of rows, and
 -- returns the number of rows actually retrieved. At
 -- end of fetch, the procedure closes the cursor.

 PROCEDURE get_employees(
 dept_number IN number,
 batch_size IN INTEGER,
 found IN OUT INTEGER,
 done_fetch OUT INTEGER,
 emp_name OUT name_array,
 job OUT job_array,
 sal OUT sal_array) IS

 BEGIN
 IF NOT get_emp%ISOPEN THEN -- open the cursor if
 OPEN get_emp(dept_number); -- not already open
 END IF;

 -- Fetch up to "batch_size" rows into PL/SQL table,
 -- tallying rows found as they are retrieved. When all
 -- rows have been fetched, close the cursor and exit
 -- the loop, returning only the last set of rows found.

 done_fetch := 0; -- set the done flag FALSE
 found := 0;

 FOR i IN 1..batch_size LOOP
 FETCH get_emp INTO emp_name(i), job(i), sal(i);
 IF get_emp%NOTFOUND THEN -- if no row was found

Sample Program 9: Calling a Stored Procedure

3-14 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 CLOSE get_emp;
 done_fetch := 1; -- indicate all done
 EXIT;
 ELSE
 found := found + 1; -- count row
 END IF;
 END LOOP;
 END;
END;
/

The following sample program connects to Oracle, prompts the user for a department
number, then calls a PL/SQL procedure named get_employees, which is stored in
package calldemo. The procedure declares three PL/SQL tables as OUT formal
parameters, then fetches a batch of employee data into the PL/SQL tables. The
matching actual parameters are host tables. When the procedure finishes, row values
in the PL/SQL tables are automatically assigned to the corresponding elements in the
host tables. The program calls the procedure repeatedly, displaying each batch of
employee data, until no more data is found.

PROGRAM CALLSP

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*10 UID
 CHARACTER*10 PWD
 INTEGER DEPTNO
 CHARACTER*10 ENAME(10)
 CHARACTER*10 JOB(10)
 REAL SAL(10)
 INTEGER ENDFLG
 INTEGER ARYSIZ
 INTEGER NUMRET
 INTEGER*4 SQLCOD
 EXEC SQL END DECLARE SECTION

 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR DO CALL SQLERR

 UID = 'SCOTT'
 PWD = 'TIGER'
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 PRINT *, 'CONNECTED TO ORACLE AS USER ', UID

 PRINT *, 'ENTER DEPARTMENT NUMBER: '
 READ '(I10)', DEPTNO

* INITIALIZE VARIABLES AND ARRAYS.
 ENDFLG = 0
 ARYSIZ = 10
 NUMRET = 0
 DO 4000 I = 1, ARYSIZ
 ENAME(I) = ' '
 JOB(I) = ' '
 SAL(I) = 0
4000 CONTINUE

* DISPLAY HEADER.
 PRINT *, 'EMPLOYEE NAME JOB TITLE SALARY\N',
 +'------------- --------- ------'

Sample Program 9: Calling a Stored Procedure

Sample Programs 3-15

* LOOP, FETCHING AND PRINTING BATCHES UNTIL END-FLAG IS SET.
6000 EXEC SQL EXECUTE
 1 BEGIN
 2 CALLDEMO.GET_EMPLOYEES (:DEPTNO, :ARYSIZ,
 3 :NUMRET, :ENDFLG, :ENAME, :JOB, :SAL);
 4 END;
 5 END-EXEC

 CALL PBATCH (NUMRET, ENAME, JOB, SAL)
 IF (ENDFLG .EQ. 0) GOTO 6000
 CALL SIGNOFF
 END

*********************** SUBROUTINES *********************
* DISPLAY A BATCH OF ROWS.

 SUBROUTINE PBATCH (ROWS, ENAME, JOB, SAL)
 INTEGER ROWS
 CHARACTER*10 ENAME(ROWS)
 CHARACTER*10 JOB(ROWS)
 REAL SAL(ROWS)

 DO 8000 I = 1, ROWS
 PRINT '(1X, A10, 5X, A10, 1X, F7.2)', ENAME(I), JOB(I), SAL(I)
8000 CONTINUE
 RETURN
 END

* LOG OFF ORACLE.

 SUBROUTINE SIGNOFF
 EXEC SQL INCLUDE SQLCA
 PRINT *, 'HAVE A GOOD DAY.'
 EXEC SQL COMMIT WORK RELEASE
 STOP
 END

* HANDLE SQL ERRORS.

 SUBROUTINE SQLERR
 EXEC SQL INCLUDE SQLCA
 EXEC SQL WHENEVER SQLERROR CONTINUE
 PRINT *, 'ORACLE ERROR DETECTED:'
 PRINT '(70A1)', SQLEMC
 EXEC SQL ROLLBACK WORK RELEASE
 STOP
 END

Sample Program 9: Calling a Stored Procedure

3-16 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Implementing Dynamic SQL Method 4 4-1

4
Implementing Dynamic SQL Method 4

This chapter contains the following sections:

Meeting the Special Requirements of Method 4

Understanding the SQL Descriptor Area (SQLDA)

Using the SQLDA Variables and Arrays

Some Preliminaries

The Basic Steps

A Closer Look at Each Step

Using Host Arrays with Method 4

Sample Program 10: Dynamic SQL Method 4

This chapter shows you how to implement dynamic SQL Method 4, which lets your
program accept or build dynamic SQL statements that contain a varying number of
host variables. Subjects discussed include the following:

meeting the special requirements of Method 4

declaring the SQL Descriptor Area (SQLDA)

using the SQLDA variables

converting data

coercing datatypes

handling null/not null datatypes

initializing and using descriptors

Meeting the Special Requirements of Method 4
Before looking into the requirements of Method 4, you should feel comfortable with
the terms select-list item and placeholder. Select-list items are the columns or expressions
following the keyword SELECT in a query. For example, the following dynamic query
contains three select-list items:

SELECT ENAME, JOB, SAL + COMM FROM EMP WHERE DEPTNO = 20

Note: For a discussion of dynamic SQL Methods 1, 2, and 3, and an
overview of Method 4, see Chapter 10 of the Programmer's Guide to the
Oracle Precompilers.

Meeting the Special Requirements of Method 4

4-2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Placeholders are dummy bind (input) variables that hold places in a SQL statement for
actual bind variables. You do not declare placeholders and can name them anything
you like. Placeholders for bind variables are most often used in the SET, VALUES, and
WHERE clauses. For example, the following dynamic SQL statements each contain
two placeholders:

INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:E, :D)
DELETE FROM DEPT WHERE DEPTNO = :DNUM AND LOC = :DLOC

What Makes Method 4 Special?
Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program

accept or build dynamic SQL statements that contain an unknown number of
select-list items or placeholders

take explicit control over datatype conversion between Oracle and FORTRAN
types

To add this flexibility to your program, you must give the Oracle runtime library
additional information.

What Information Does Oracle Need?
The Pro*FORTRAN Precompiler generates calls to Oracle for all executable dynamic
SQL statements. If a dynamic SQL statement contains no select-list items or
placeholders, Oracle needs no additional information to execute the statement. The
following DELETE statement falls into this category:

* Dynamic SQL statement
 STMT = 'DELETE FROM EMP WHERE DEPTNO = 30'

However, most dynamic SQL statements contain select-list items or placeholders for
bind variables, as shown in the following UPDATE statement:

* Dynamic SQL statement with placeholders
 STMT = 'UPDATE EMP SET COMM = :C WHERE EMPNO = :E'

To execute a dynamic SQL statement that contains select-list items and/or
placeholders for bind variables, Oracle needs information about the program variables
that will hold output or input values. Specifically, Oracle needs the following
information:

the number of select-list items and the number of bind variables

the length of each select-list item and bind variable

the datatype of each select-list item and bind variable

the memory address of each output variable that will store the value of a select-list
item, and the address of each bind variable

For example, to write the value of a select-list item, Oracle needs the address of the
corresponding output variable.

Note: Placeholders cannot reference table or column names.

Understanding the SQL Descriptor Area (SQLDA)

Implementing Dynamic SQL Method 4 4-3

Where Is the Information Stored?
All the information Oracle needs about select-list items or placeholders for bind
variables, except their values, is stored in a program data structure called the SQL
Descriptor Area (SQLDA).

Descriptions of select-list items are stored in a select SQLDA, and descriptions of
placeholders for bind variables are stored in a bind SQLDA.

The values of select-list items are stored in output buffers; the values of bind variables
are stored in input buffers. You use the library routine SQLADR to store the addresses
of these data buffers in a select or bind SQLDA, so that Oracle knows where to write
output values and read input values.

How do values get stored in these data buffers? Output values are FETCHed using a
cursor, and input values are filled in by your program, typically from information
entered interactively by the user.

How Is the Information Obtained?
You use the DESCRIBE statement to help get the information Oracle needs. The
DESCRIBE SELECT LIST statement examines each select-list item to determine its
name, datatype, constraints, length, scale, and precision, then stores this information
in the select SQLDA for your use. For example, you might use select-list names as
column headings in a printout. DESCRIBE also stores the total number of select-list
items in the SQLDA.

The DESCRIBE BIND VARIABLES statement examines each placeholder to determine
its name and length, then stores this information in an input buffer and bind SQLDA
for your use. For example, you might use placeholder names to prompt the user for
the values of bind variables.

Understanding the SQL Descriptor Area (SQLDA)
This section describes the SQLDA data structure in detail. You learn how to declare it,
what variables it contains, how to initialize them, and how to use them in your
program.

Purpose of the SQLDA
Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or placeholders for bind variables. To process this kind of dynamic
SQL statement, your program must explicitly declare SQLDAs, also called descriptors
(not to be confused with the CHARACTER variable descriptors generated by some
FORTRAN compilers). Each descriptor is a named COMMON block, which you must
copy or hard code into your program.

A select descriptor holds descriptions of select-list items and the addresses of output
buffers where the names and values of select-list items are stored.

A bind descriptor holds descriptions of bind variables and indicator variables and the
addresses of input buffers where the names and values of bind variables and indicator
variables are stored.

Note: The name of a select-list item can be a column name, a column
alias, or the text of an expression such as SAL + COMM.

Understanding the SQL Descriptor Area (SQLDA)

4-4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Remember, some descriptor variables contain addresses, not values. So, you must
declare data buffers to hold the values. You decide the sizes of the required input and
output buffers. Because FORTRAN does not support pointers, you must use the
library subroutine SQLADR to get the addresses of input and output buffers. You
learn how to call SQLADR in the section "Using SQLADR".

Multiple SQLDAs
If your program has more than one active dynamic SQL statement, each statement
must have its own SQLDA(s). You can declare any number of SQLDAs with different
names. For example, you might declare three select SQLDAs named SEL1, SEL2, and
SEL3, so that you can FETCH from three concurrently open cursors. However,
non-concurrent cursors can reuse SQLDAs.

Naming Conventions
You can name select and bind descriptors anything you like. Typically, the names SEL
and BND are used. The precompiler references descriptor variables by appending
single-character suffixes to the descriptor name (see Table 4 - 1). You use the
descriptor name in the DESCRIBE, OPEN, and FETCH statements.

For example, the statement

* Open a cursor.
 EXEC SQL OPEN CUR1 USING DESCRIPTOR BND
* Fetch select-list values.
 EXEC SQL FETCH CUR1 USING DESCRIPTOR SEL

fetches select-list values into output data buffers.

You decide the names and sizes of the required data buffers. The variable and buffer
names shown in the following tables, respectively, are used in the following
discussion. For example, the elements of descriptor array SELS address the elements of
data buffer array SELSB.

Suffix Host Datatype Description

N INTEGER var maximum number of
select-list items or
placeholders

F INTEGER var actual number of
select-list items or
placeholders

S INTEGER*4 var(n) addresses of
select-list or
placeholder names

M INTEGER*2 var(n) maximum lengths of
select-list or
placeholder names

C INTEGER*2 var(n) actual lengths of
select-list or
placeholder names

L INTEGER*4 var(n) lengths of select-list
or bind-variable
values

Understanding the SQL Descriptor Area (SQLDA)

Implementing Dynamic SQL Method 4 4-5

Declaring a SQLDA
To declare select and bind SQLDAs, you can hardcode them into your program using
the sample SQLDA shown in Figure 4–1.

T INTEGER*2 var(n) datatypes of
select-list or
bind-variable values

V INTEGER*4 var(n) addresses of
select-list or
bind-variable values

I INTEGER*4 var(n) addresses of
indicator-variable
values (1)

X (2) INTEGER*4 var(n) addresses of
indicator-variable
names (1)

Y (2) INTEGER*2 var(n) maximum lengths of
indicator-variable
names (1)

Z (2) INTEGER*2 var(n) actual lengths of
indicator-variable
names (1)

Note: 1. Indicator-variable names apply only in a bind SQLDA.

2. These suffixes apply only to bind variables.

Buffer Host Datatype Description

SELSB LOGICAL*1 var(m,n) select-list names

SELVB LOGICAL*1 var(m,n) select-list names

SELIV INTEGER*2 var(n) indicator-variable
values

BNDSB LOGICAL*1 var(m,n) placeholder names

BNDVB LOGICAL*1 var(m,n) bind-variable values

BNDXB LOGICAL*1 var(m,n) indicator-variable
names

BNDIV INTEGER*2 var(n) indicator-variable
names

Note: There is no SELXB buffer because indicator-variable names
cannot be associated with select-list items.

Suffix Host Datatype Description

Understanding the SQL Descriptor Area (SQLDA)

4-6 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Figure 4–1 Sample Pro*FORTRAN SQLDA Variables and Data Buffers

You can modify the array dimensions to suit your needs. The following example uses
a parameter to specify array dimensions; which makes changing the dimensions easy:

INTEGER SIZE
* Set dimension of descriptor arrays.
 PARAMETER (SIZE = 25)
* Declare select descriptor.
 INTEGER SELN
 INTEGER SELF
 INTEGER*4 SELV(SIZE)
 INTEGER*4 SELL(SIZE)
 ...

You might want to store the SQLDAs in files (named SELDSC and BNDDSC, for
example), revise them as needed, then copy the files into your program with the
INCLUDE statement as follows:

* Declare select and bind SQLDAs.
 EXEC SQL INCLUDE SELDSC
 EXEC SQL INCLUDE BNDDSC

Because they are COMMON blocks, SQLDAs must be declared outside the Declare
Section. How the data buffers are declared is up to you. You need not include them in

Using the SQLDA Variables and Arrays

Implementing Dynamic SQL Method 4 4-7

the SQLDA COMMON blocks. For example, you might want to declare one large data
buffer to store all names and values, then access them using byte offsets.

Figure 4–2 shows whether variables are set by SQLADR calls, DESCRIBE commands,
FETCH commands, or program assignments.

Figure 4–2 How Variables Are Set

Using the SQLDA Variables and Arrays
This section explains the purpose and use of each SQLDA variable. In examples, the
arbitrary SQLDA file names, descriptor names, and data buffer names given earlier are
used.

The N Variable
This variable specifies the maximum number of select-list items or placeholders that
can be DESCRIBEd. For example, SELN determines the number of elements in the
select descriptor arrays.

Before issuing a DESCRIBE command, you must set this variable to the dimension of
the descriptor arrays. After the DESCRIBE, you must reset it to the actual number of
variables DESCRIBEd, which is stored in the F variable.

The F Variable
This is the actual number of select-list items or placeholders found by the DESCRIBE
command.

The F variable is set by DESCRIBE. If the F variable is negative, the DESCRIBE
command found too many select-list items or placeholders for the size of the
descriptor. For example, if you set SELN to 10 but DESCRIBE finds 11 select-list items,

Using the SQLDA Variables and Arrays

4-8 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

SELF is set to -11. If this happens, you cannot process the SQL statement without
reallocating the descriptor.

After the DESCRIBE command, you must set the N variable equal to the F variable.

The S Array
This array contains the addresses of data buffers that store select-list or placeholder
names as they appear in dynamic SQL statements.

You must set the elements of the S array using SQLADR before issuing the DESCRIBE
command.

DESCRIBE directs Oracle to store the name of the Jth select-list item or placeholder in
the buffer addressed by SELS(J) or BNDS(J). If the elements of SELS and BNDS
address elements of data buffer arrays named SELSB and BNDSB, Oracle stores the Jth
select-list or placeholder name in SELSB(J) or BNDSB(J).

The M Array
This array contains the lengths of the data buffers that store select-list or placeholder
names. The buffers are addressed by elements of the S array.

You must set the elements of the M array before issuing the DESCRIBE command.
Each select-list or placeholder name buffer can have a different length.

The C Array
This array contains the actual lengths of select-list or placeholder names. DESCRIBE
sets the array of actual lengths to the number of characters in each select-list or
placeholder name.

The L Array
This array contains the lengths of select-list or bind-variable values stored in the data
buffers.

Select Descriptors
DESCRIBE sets the array of lengths to the maximum expected for each select-list item.
However, you might want to reset some lengths before issuing a FETCH command.
FETCH returns at most n characters, where n is the value of SELL(J) before the FETCH.

The format of the length differs among Oracle datatypes. For character select-list
items, DESCRIBE sets SELL(J) to the maximum length in bytes of the select-list item.
For NUMBER select-list items, scale and precision are returned respectively in the low
and next-higher bytes of the variable. You can use the library subroutine SQLPRC to
extract precision and scale values from SELL. See the section Extracting Precision and
Scale.

You must reset SELL(J) to the required length of the data buffer before the FETCH. For
example, when coercing a NUMBER to a FORTRAN CHARACTER string, set SELL(J)
to the precision of the number plus two for the sign and decimal point. When coercing
a NUMBER to a FORTRAN REAL, set SELL(J) to the length of REALs on your system.
For more information about the lengths of coerced datatypes, see the section
"Converting Data".

Using the SQLDA Variables and Arrays

Implementing Dynamic SQL Method 4 4-9

Bind Descriptors
You must set the array of lengths before issuing the OPEN command.

Because Oracle accesses a data buffer indirectly, using the address in SELV(J) or
BNDV(J), it does not know the length of the value in that buffer. If you want to change
the length Oracle uses for the Jth select-list or bind-variable value, reset SELL(J) or
BNDL(J) to the length you need. Each input or output buffer can have a different
length.

The T Array
This array contains the datatype codes of select-list or bind-variable values. These
codes determine how Oracle data is converted when stored in the data buffers
addressed by elements of SELV. This topic is covered in the section "Converting Data".

Select Descriptors
DESCRIBE sets the array of datatype codes to the internal datatype (for example,
VARCHAR2, CHAR, NUMBER, or DATE) of the items in the select list.

Before FETCHing, you might want to reset some datatypes because the internal format
of Oracle datatypes can be difficult to handle. For display purposes, it is usually a
good idea to coerce the datatype of select-list values to VARCHAR2. For calculations,
you might want to coerce numbers from Oracle to FORTRAN format. See the section
"Coercing Datatypes".

The high bit of SELT(J) is set to indicate the null/not null status of the Jth select-list
column. You must always clear this bit before issuing an OPEN or FETCH command.
You use the library subroutine SQLNUL to retrieve the datatype code and clear the
null/not null bit. See the section "Handling Null/Not Null Datatypes".

You should change the Oracle NUMBER internal datatype to an external datatype
compatible with that of the FORTRAN data buffer addressed by SELV(J).

Bind Descriptors
DESCRIBE sets the array of datatype codes to zeros. You must reset the datatype code
stored in each element before issuing the OPEN command. The code represents the
external (FORTRAN) datatype of the data buffer addressed by BNDV(J). Often,
bind-variable values are stored in character strings, so the datatype array elements are
set to 1 (the VARCHAR2 datatype code).

To change the datatype of the Jth select-list or bind-variable value, reset SELT(J) or
BNDT(J) to the datatype you want.

The V Array
This array contains the addresses of data buffers that store select-list or bind-variable
values. You must set the elements of the V array using SQLADR.

Select Descriptors
You must set this array before issuing the FETCH command. The following statement

* Fetch select-list values.
 EXEC SQL FETCH ... USING DESCRIPTOR SEL

Using the SQLDA Variables and Arrays

4-10 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

directs Oracle to store FETCHed select-list values in the data buffers addressed by
SELV(1) through SELV(SELN). If the elements of SELV address elements of a data
buffer array named SELVB, Oracle stores the Jth select-list value in SELVB(J).

Bind Descriptors
You must set this array before issuing the OPEN command. The following statement

* Open cursor.
 EXEC SQL OPEN ... USING DESCRIPTOR BND

directs Oracle to execute the dynamic SQL statement using the bind-variable values
addressed by BNDV(1) through BNDV(BNDN). If the elements of BNDV address
elements of a data buffer array named BNDVB, Oracle finds the Jth bind-variable
value in data buffer BNDVB(J).

The I Array
This array contains the addresses of data buffers that store indicator-variable values.

You must set the elements of the I array using SQLADR.

Select Descriptors
You must set this array before issuing the FETCH command. When Oracle executes
the statement

* Fetch select-list values.
 EXEC SQL FETCH ... USING DESCRIPTOR SEL

if the Jth returned select-list value is null, the buffer addressed by SELI(J) is set to -1.
Otherwise, it is set to zero (the value is not null) or a positive integer (the value was
truncated). For example, if the elements of SELI address elements of a data buffer
array named SELIV, and the Jth returned select-list value is null, SELIV(J) is set to -1.

Bind Descriptors
You must initialize this array and set the associated indicator variables before issuing
the OPEN command. When Oracle executes the following statement

* Open cursor.
 EXEC SQL OPEN ... USING DESCRIPTOR BND

the buffer addressed by BNDI(J) determines whether the Jth bind variable is a null. If
the value of an indicator variable is -1, its associated host variable is null. For example,
if the elements of BNDI address elements of a data buffer array named BNDIV, and
the value of BNDIV(J) is -1, the value of the Jth bind variable is set to NULL.

The X Array
This array contains the addresses of data buffers that store indicator-variable names.
You can associate indicator-variable values with select-list items and bind variables.
However, you can associate indicator-variable names only with bind variables. So, you
can use the X array only with bind descriptors.

You must set the elements of the X array using SQLADR before issuing the DESCRIBE
command.

Some Preliminaries

Implementing Dynamic SQL Method 4 4-11

DESCRIBE directs Oracle to store any indicator-variable names in the buffers
addressed by BNDX(1) through BNDX(BNDN). If the elements of BNDX address
elements of a data buffer array named BNDXB, Oracle stores the Jth indicator-variable
name in BNDXB(J).

The Y Array
This array contains the maximum lengths of the data buffers that store
indicator-variable names. The buffers are addressed by elements of the X array. Like
the X array, you can use the Y array only with bind descriptors.

You must set the elements BNDY(1) through BNDY(BNDN) before issuing the
DESCRIBE command. Each indicator-variable name buffer can have a different length.

The Z Array
This array contains the actual lengths of indicator-variable names. Like the X and Y
arrays, you can use the Z array only with bind descriptors.

DESCRIBE sets the array of actual lengths to the number of characters in each
indicator-variable name.

Some Preliminaries
You need a working knowledge of the following subjects to implement dynamic SQL
Method 4:

using the library subroutine SQLADR

converting data

coercing datatypes

handling null/not null datatypes

Using SQLADR
You must call the library subroutine SQLADR to get the addresses of data buffers that
store input and output values. You store the addresses in a select or bind SQLDA so
that Oracle knows where to read bind-variable values or write select-list values.

Call SQLADR using the syntax

CALL SQLADR (BUFF, ADDR)

where:

BUFF

Is a data buffer that stores the value or name of a select-list item, bind variable, or
indicator variable.

ADDR

Is an integer variable that returns the address of the data buffer.

A call to SQLADR stores the address of BUFF in ADDR. In the following example, you
use SQLADR to initialize the select descriptor arrays SELV, SELS, and SELI. Their
elements address data buffers for select-list values, select-list names, and indicator
values.

* Initialize select descriptor arrays.

Some Preliminaries

4-12 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 DO 100 J = 1, SELN
 CALL SQLADR (SELVB(1, J), SELV(J))
 CALL SQLADR (SELSB(1, J), SELS(J))
 CALL SQLADR (SELIV(J), SELI(J))
100 CONTINUE

Restriction
You cannot use CHARACTER variables with SQLADR if your FORTRAN compiler
generates descriptors for CHARACTER variables and passes the descriptor address
(rather than the data address) to SQLADR. Check your FORTRAN compiler user's
guide. In such cases, SQLADR gets the wrong address. Instead, use LOGICAL*1
variables, because they always have simple addresses.

However, you can (cautiously) use SQLADR with CHARACTER variables if your
compiler provides a built-in function to access the data address. For example, if your
compiler provides a function named %REF, and X is a CHARACTER variable, you call
SQLADR as follows:

* Use %REF built-in function.
 CALL SQLADR (%REF(X), ...)

Converting Data
This section provides more detail about the datatype descriptor array. In host
programs that use neither datatype equivalencing nor dynamic SQL Method 4, the
conversion between Oracle internal and external datatypes is determined at
precompile time. By default, the precompiler assigns a specific external datatype to
each host variable in the Declare Section. For example, the precompiler assigns the
FLOAT external datatype to host variables of type REAL.

However, Method 4 lets you control data conversion and formatting. You specify
conversions by setting datatype codes in the datatype descriptor array.

Internal Datatypes
Internal datatypes specify the formats used by Oracle to store column values in
database tables and the formats to represent pseudocolumn values.

When you issue a DESCRIBE SELECT LIST command, Oracle returns the internal
datatype code for each select-list item to the SELT (datatype) descriptor array. For
example, the datatype code for the Jth select-list item is returned to SELT(J).

The following table shows the Oracle internal datatypes and their codes.

Oracle Internal
Datatype Code

VARCHAR2 1

NUMBER 2

LONG 8

ROWID 11

DATE 12

RAW 23

Some Preliminaries

Implementing Dynamic SQL Method 4 4-13

External Datatypes
External datatypes specify the formats used to store values in input and output host
variables.

The DESCRIBE BIND VARIABLES command sets the BNDT array of datatype codes
to zeros. So, you must reset the codes before issuing the OPEN command. The codes
tell Oracle which external datatypes to expect for the various bind variables. For the
Jth bind variable, reset BNDT(J) to the external datatype you want.

The following table shows the Oracle external datatypes and their codes, as well as the
corresponding FORTRAN datatypes:

LONG RAW 24

CHAR 96

MLSLABEL 105

Name Code FORTRAN Datatype

VARCHAR2 1 CHARACTER*n
when MODE !=
ANSI

NUMBER 2 CHARACTER*n

INTEGER 3 INTEGER

FLOAT 4 REAL

STRING (1) 5 CHARACTER*(n+1)

VARNUM 6 CHARACTER*n

DECIMAL 7 CHARACTER*n

LONG 8 CHARACTER*n

VARCHAR (2) 9 CHARACTER*n

ROWID 11 CHARACTER*n

DATE 12 CHARACTER*n

VARRAW (2) 15 CHARACTER*n

RAW 23 CHARACTER*n

LONG RAW 24 CHARACTER*n

UNSIGNED 68 INTEGER

DISPLAY 91 CHARACTER*n

LONG VARCHAR
(2)

94 CHARACTER*n

LONG VARRAW (2) 95 CHARACTER*n

CHARF 96 CHARACTER*n
when MODE = ANSI

CHARZ (1) 97 CHARACTER*(n+1)

CURSOR 102 SQLCURSOR

MLSLABEL 106 CHARACTER*n

Oracle Internal
Datatype Code

Some Preliminaries

4-14 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

For more information about the Oracle datatypes and their formats, see Chapter 3 of
the Programmer's Guide to the Oracle Precompilers.

PL/SQL Datatypes
PL/SQL provides a variety of predefined scalar and composite datatypes. A scalar
type has no internal components. A composite type has internal components that can be
manipulated individually. The following table shows the predefined PL/SQL scalar
datatypes and their Oracle internal datatype equivalences.

Coercing Datatypes
For a select descriptor, DESCRIBE SELECT LIST can return any of the Oracle internal
datatypes. Often, as in the case of character data, the internal datatype corresponds
exactly to the external datatype you want to use. However, a few internal datatypes
map to external datatypes that can be difficult to handle. So, you might want to reset
some elements in the SELT descriptor array.

For example, you might want to reset NUMBER values to FLOAT values, which
correspond to REAL values in FORTRAN. Oracle does any necessary conversion
between internal and external datatypes at FETCH time. So, be sure to reset the
datatypes after the DESCRIBE SELECT LIST but before the FETCH.

For a bind descriptor, DESCRIBE BIND VARIABLES does not return the datatypes of
bind variables, only their number and names. Therefore, you must explicitly set the
BNDT array of datatype codes to tell Oracle the external datatype of each bind

Note: 1. For use in an EXEC SQL VAR statement only.

2. Include the n-byte length field.

PL/SQL Datatype
Oracle Internal
Datatype

VARCHAR
VARCHAR2

VARCHAR2

BINARY_INTEGER
DEC DECIMAL
DOUBLE
PRECISION FLOAT
INT INTEGER
NATURAL
NUMBER NUMERIC
POSITIVE REAL
SMALLINT

NUMBER

LONG LONG

ROWID ROWID

DATE DATE

RAW RAW

LONG RAW LONG RAW

CHAR CHARACTER
STRING

CHAR

MLSLABEL MLSLABEL

Some Preliminaries

Implementing Dynamic SQL Method 4 4-15

variable. Oracle does any necessary conversion between external and internal
datatypes at OPEN time.

When you reset datatype codes in the SELT or BNDT descriptor array, you are
"coercing datatypes." For example, to coerce the Jth select-list value to VARCHAR2,
use the following statement:

* Coerce select-list value to VARCHAR2.
 SELT(J) = 1

When coercing a NUMBER select-list value to VARCHAR2 for display purposes, you
must also extract the precision and scale bytes of the value and use them to compute a
maximum display length. Then, before the FETCH, you must reset the appropriate
element of the SELL (length) descriptor array to tell Oracle the buffer length to use. To
specify the length of the Jth select-list value, set SELL(J) to the length you need.

For example, if DESCRIBE SELECT LIST finds that the Jth select-list item is of type
NUMBER, and you want to store the returned value in a FORTRAN variable declared
as REAL, simply set SELT(J) to 4 and SELL(J) to the length of REAL numbers on your
system.

Exceptions
In some cases, the internal datatypes that DESCRIBE SELECT LIST returns might not
suit your purposes. Two examples of this are DATE and NUMBER. When you
DESCRIBE a DATE select-list item, Oracle returns the datatype code 12 to the SELT
array. Unless you reset the code before the FETCH, the date value is returned in its
7-byte internal format. To get the date in its default character format, you must change
the datatype code from 12 to 1 (VARCHAR2), and increase the SELL value from 7 to 9.

Similarly, when you DESCRIBE a NUMBER select-list item, Oracle returns the
datatype code 2 to the SELT array. Unless you reset the code before the FETCH, the
numeric value is returned in its internal format, which is probably not what you want.
So, change the code from 2 to 1 (VARCHAR2), 3 (INTEGER), 4 (FLOAT), or some
other appropriate datatype.

Extracting Precision and Scale
The library subroutine SQLPRC extracts precision and scale. Normally, it is used after
the DESCRIBE SELECT LIST, and its first argument is SELL(J). You call SQLPRC using
the syntax

CALL SQLPRC (LENGTH, PREC, SCALE)

where:

LENGTH

Is an integer variable that stores the length of an Oracle NUMBER value. The scale and
precision of the value are stored in the low and next-higher bytes, respectively.

PREC

Is an integer variable that returns the precision of the NUMBER value. Precision is the
number of significant digits. It is set to zero if the select-list item refers to a NUMBER
of unspecified size. In this case, because the size is unspecified, you might want to
assume the maximum precision, 38.

SCALE

Some Preliminaries

4-16 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Is an integer variable that returns the scale of the NUMBER value. Scale specifies
where rounding will occur. For example, a scale of 2 means the value is rounded to the
nearest hundredth (3.456 becomes 3.46); a scale of -3 means the number is rounded to
the nearest thousand (3456 becomes 3000).

The following example shows how SQLPRC is used to compute maximum display
lengths for NUMBER values that will be coerced to VARCHAR2:

* Declare variables for function call.
 INTEGER PREC
 INTEGER SCALE
 EXEC SQL DESCRIBE SELECT LIST FOR S INTO SEL
 DO 1300 J = 1, SELN
 IF (SELT(J) .NE. 2) GOTO 1300
* If datatype is NUMBER, extract precision and scale.
 CALL SQLPRC (SELL(J), PREC, SCALE)
* If no precision was specified, assign a maximum.
 IF (PREC .NE. 0) GOTO 1100
 SELL(J) = 10
 GOTO 1300
 1100 CONTINUE
 SELL(J) = PREC
* Allow for possible sign and decimal point.
 SELL(J) = SELL(J) + 2
 1300 CONTINUE
 ...

The SQLPRC subroutine returns zero as the precision and scale values for certain SQL
datatypes. The SQLPR2 subroutine is similar to SQLPRC in that it has the same syntax
and returns the same binary values, except for the datatypes shown in the following
table.

Handling Null/Not Null Datatypes
For every select-list column (not expression), DESCRIBE SELECT LIST returns a
null/not null indication in the datatype array (SELT) of the select descriptor. If the Jth
select-list column is constrained to be not null, the high-order bit of SELT(J) is clear;
otherwise, it is set.

Before using the datatype in an OPEN or FETCH statement, if the null status bit is set,
you must clear it. Never set the bit.

You can use the library subroutine SQLNUL to find out if a column allows nulls, and
to clear the datatype's null status bit. You call SQLNUL using the syntax

CALL SQLNUL (VALTYP, TYPCODE, NULSTAT)

where:

VALTYP

Is a 2-byte integer variable that stores the datatype code of a select-list column.

SQL Datatype Binary Precision Binary Scale

FLOAT 126 -127

FLOAT(n) n (range is 1 .. 126) -127

REAL 63 -127

DOUBLE
PRECISION

126 -127

The Basic Steps

Implementing Dynamic SQL Method 4 4-17

TYPCODE

Is a 2-byte integer variable that returns the datatype code of the select-list column with
the high-order bit cleared.

NULSTAT

Is an integer variable that returns the null status of the select-list column. 1 means the
column allows nulls; 0 means it does not.

The following example shows how to use SQLNUL:

* Declare variable for subroutine call.
 INTEGER*2 DATYPE
 INTEGER NULLOK
 DO 1500 J = 1, SELN
* Find out if column is NOT NULL, and
* clear high-order bit.
 CALL SQLNUL (SELT(J), DATYPE, NULLOK)
 SELT(J) = DATYPE
* If NULLOK equals 1, nulls are allowed.
 ...
 1500 CONTINUE
 ...

The first argument in the subroutine is the Jth element of the SELT datatype array
before its null/not null bit is cleared. Though some systems let you use SELT(J) as the
second argument too, it is poor programming practice to use the same variable as
multiple arguments.

The Basic Steps
Method 4 can be used to process any dynamic SQL statement. In the example, a query
is processed so that you can see how both input and output host variables are handled.
Again, the arbitrary SQLDA file names, descriptor names, and data buffer names
given earlier are used.

To process the dynamic query, our sample program performs the following:

1. Declare a host string in the Declare Section to hold the query text.

2. Declare select and bind descriptors.

3. Set the maximum number of select-list items and placeholders that can be
DESCRIBEd.

4. Initialize the select and bind descriptors.

5. Store the query text in the host string.

6. PREPARE the query from the host string.

7. DECLARE a cursor FOR the query.

8. DESCRIBE the bind variables INTO the bind descriptor.

9. Reset the number of placeholders to the number actually found by the DESCRIBE
command.

10. Get values for the bind variables found by DESCRIBE.

11. OPEN the cursor USING the bind descriptor.

12. DESCRIBE the select list INTO the select descriptor.

A Closer Look at Each Step

4-18 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

13. Reset the number of select-list items to the number actually found by the
DESCRIBE command.

14. Reset the length and datatype of each select-list item for display purposes.

15. FETCH a row from the database INTO data buffers using the select descriptor.

16. Process the select-list values returned by FETCH.

17. CLOSE the cursor when there are no more rows to FETCH.

A Closer Look at Each Step
This section discusses each step in more detail. Also, at the end of this chapter is a
full-length program illustrating Method 4.

With Method 4, you use the following sequence of embedded SQL statements:

EXEC SQL
 PREPARE <statement_name>
 FROM {:<host_string>|<string_literal>}
EXEC SQL DECLARE <cursor_name> CURSOR FOR <statement_name>
EXEC SQL
 DESCRIBE BIND VARIABLES FOR <statement_name>
 INTO <bind_descriptor_name>
EXEC SQL
 OPEN <cursor_name>
 [USING DESCRIPTOR <bind_descriptor_name>]
EXEC SQL
 DESCRIBE [SELECT LIST FOR] <statement_name>
 INTO <select_descriptor_name>
EXEC SQL
 FETCH <cursor_name>
 USING DESCRIPTOR <select_descriptor_name>
EXEC SQL CLOSE <cursor_name>

If the number of select-list items in a dynamic query is known, you can omit
DESCRIBE SELECT LIST and use the following Method 3 FETCH statement:

EXEC SQL FETCH <cursor_name> INTO <host_variable_list>

If the number of placeholders for bind variables in a dynamic SQL statement is
known, you can omit DESCRIBE BIND VARIABLES and use the following Method 3
OPEN statement:

EXEC SQL OPEN <cursor_name> [USING <host_variable_list>]

Next, you see how these statements allow your host program to accept and process a
dynamic SQL statement using descriptors.

Note: If the dynamic SQL statement is not a query or contains a
known number of select-list items or placeholders, then some of the
steps are unnecessary.

Note: Several figures accompany the following discussion. To avoid
cluttering the figures, it was necessary to confine descriptor arrays to 3
elements and to limit the maximum length of names and values to 5
and 10 characters, respectively.

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 4-19

Declare a Host String
Your program needs a host variable to store the text of the dynamic SQL statement.
The host variable (SELSTM in our example) must be declared as a character string.

EXEC SQL BEGIN DECLARE SECTION
 ...
 CHARACTER*120 SELSTM
 EXEC SQL END DECLARE SECTION

Declare the SQLDAs
Because the query in our example might contain an unknown number of select-list
items or placeholders, you must declare select and bind descriptors. Instead of hard
coding the SQLDAs, you use the INCLUDE statement to copy them into your
program, as follows:

EXEC SQL INCLUDE SELDSC
 EXEC SQL INCLUDE BNDDSC

Set the Maximum Number to DESCRIBE
Next, you set the maximum number of select-list items or placeholders that can be
DESCRIBEd, as follows:

SELN = 3
BNDN = 3

Initialize the Descriptors
You must initialize several descriptor variables; some require the library subroutine
SQLADR. In our example, you store the maximum lengths of name buffers in the M
and Y arrays, and use SQLADR to store the addresses of value and name buffers in the
V, S, I, and X arrays:

* Initialize select descriptor arrays.
* Store addresses of select-list value and name
* buffers in SELV and SELS, addresses of indicator
* value buffers in SELI, and maximum length of
* select-list name buffers in SELM.
 DO 100 J = 1, SELN
 CALL SQLADR (SELVB(1, J), SELV(J))
 CALL SQLADR (SELSB(1, J), SELS(J))
 CALL SQLADR (SELIV(J), SELI(J))
 SELM(J) = 5
 100 CONTINUE
* Initialize bind descriptor arrays.
* Store addresses of bind-variable value and name
* buffers in BNDV and BNDS, addresses of indicator
* value and name buffers in BNDI and BNDX, and maximum
* lengths of placeholder and indicator name buffers in
* BNDM and BNDY.
 DO 200 J = 1, BNDN
 CALL SQLADR (BNDVB(1, J), BNDV(J))
 CALL SQLADR (BNDSB(1, J), BNDS(J))
 CALL SQLADR (BNDIV(J), BNDI(J))
 CALL SQLADR (BNDXB(1, J), BNDX(J))
 BNDM(J) = 5

A Closer Look at Each Step

4-20 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 BNDY(J) = 5
 200 CONTINUE
 ...

Figure 4–3 and Figure 4–4represent the resulting descriptors.

Figure 4–3 Initialized Select Descriptor

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 4-21

Figure 4–4 Initialized Bind Descriptor

Store the Query Text in the Host String
Continuing our example, you prompt the user for a SQL statement, then store the
input string in SELSTM as follows:

WRITE (*, 1900)
 1900 FORMAT (' Enter query: ')
 READ (*, 2000) SELSTM
 2000 FORMAT (A120)

We assume the user entered the following string:

SELECT ENAME, EMPNO, COMM FROM EMP WHERE COMM < :BONUS

A Closer Look at Each Step

4-22 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

PREPARE the Query from the Host String
PREPARE parses the SQL statement and gives it a name. In our example, PREPARE
parses the host string SELSTM and gives it the name DYNSTMT, as follows:

EXEC SQL PREPARE DYNSTMT FROM :SELSTM

DECLARE a Cursor
DECLARE CURSOR defines a cursor by giving it a name and associating it with a
specific SELECT statement.

To declare a cursor for static queries, you use the following syntax:

EXEC SQL DECLARE cursor_name CURSOR FOR SELECT ...

To declare a cursor for dynamic queries, you substitute the statement name given to the
dynamic query by PREPARE for the static query. In our example, DECLARE CURSOR
defines a cursor named EMPCUR and associates it with DYNSTMT, as follows:

EXEC SQL DECLARE EMPCUR CURSOR FOR DYNSTMT

Note: You must declare a cursor for all dynamic SQL statements, not just queries. With
non-queries, OPENing the cursor executes the dynamic SQL statement.

DESCRIBE the Bind Variables
DESCRIBE BIND VARIABLES puts descriptions of bind variables into a bind
descriptor. In our example, DESCRIBE readies BND as follows:

EXEC SQL DESCRIBE BIND VARIABLES FOR DYNSTMT INTO BND

The DESCRIBE BIND VARIABLES statement must follow the PREPARE statement but
precede the OPEN statement.

Figure 4–5 shows the bind descriptor in our example after the DESCRIBE. Notice that
DESCRIBE has set BNDF to the actual number of placeholders found in the processed
SQL statement.

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 4-23

Figure 4–5 Bind Descriptor after the DESCRIBE

Reset Number of Placeholders
Next, you must reset the maximum number of placeholders to the number actually
found by DESCRIBE, as follows:

BNDN = BNDF

Get Values for Bind Variables
Your program must get values for the bind variables in the SQL statement. How the
program gets the values is up to you. For example, they can be hard coded, read from
a file, or entered interactively.

A Closer Look at Each Step

4-24 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

In our example, a value must be assigned to the bind variable that replaces the
placeholder BONUS in the query's WHERE clause. Prompt the user for the value, then
process it as follows:

CHARACTER*1 COLON
 COLON = ':'
* BNDN was set equal to BNDF after the DESCRIBE.
 DO 500 J = 1, BNDN
* Prompt user for value of bind variable.
 WRITE (*, 10200) (BNDSB(K,J), K = 1, BNDC(J)), COLON
10200 FORMAT (1X, 'Enter value for ', 6A1)
* Get value for bind variable.
 READ (*, 10300) (BNDVB(K,J), K = 1, 10)
10300 FORMAT (10A1)
* Find length of value by scanning backward for first
* non-blank character.
 DO 200 K = 1, 10
 IF (BNDVB(BNDL(J),J) .NE. ' ') GOTO 300
 BNDL(J) = BNDL(J) - 1
 200 CONTINUE
* Set datatype of bind variable to VARCHAR2 (code 1), and set
* indicator variable to NOT NULL.
 300 BNDT(J) = 1
 BNDIV(J) = 0
 500 CONTINUE

Assuming that the user supplied a value of 625 for BONUS, Figure 4–6 shows the
resulting bind descriptor.

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 4-25

Figure 4–6 Bind Descriptor After Assigning Values

OPEN the Cursor
The OPEN statement for dynamic queries is similar to the one for static queries, except
the cursor is associated with a bind descriptor. Values determined at run time and
stored in buffers addressed by elements of the bind descriptor arrays are used to
evaluate the SQL statement. With queries, the values are also used to identify the
active set.

In our example, OPEN associates EMPCUR with BND as follows:

EXEC SQL OPEN EMPCUR USING DESCRIPTOR BND

Remember, BND must not be prefixed with a colon.

Then, OPEN executes the SQL statement. With queries, OPEN also identifies the active
set and positions the cursor at the first row.

A Closer Look at Each Step

4-26 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

DESCRIBE the Select List
If the dynamic SQL statement is a query, the DESCRIBE SELECT LIST statement must
follow the OPEN statement and must precede the FETCH statement.

DESCRIBE SELECT LIST puts descriptions of select-list items into a select descriptor.
In our example, DESCRIBE readies SEL as follows:

EXEC SQL DESCRIBE SELECT LIST FOR DYNSTMT INTO SEL

Accessing the Oracle data dictionary, DESCRIBE sets the length and datatype of each
select-list value.

Figure 4–7 shows the select descriptor in our example after the DESCRIBE. Notice that
DESCRIBE has set SELF to the actual number of items found in the query select list. If
the SQL statement is not a query, SELF is set to zero.

Also notice that the NUMBER lengths are not usable yet. For columns defined as
NUMBER, you must use the library subroutine SQLPRC to extract precision and scale.
See the section "Coercing Datatypes".

Figure 4–7 Select Descriptor after the DESCRIBE

Reset Number of Select-List Items
Next, you must reset the maximum number of select-list items to the number actually
found by DESCRIBE, as follows:

A Closer Look at Each Step

Implementing Dynamic SQL Method 4 4-27

SELN = SELF

Reset Length/Datatype of Each Select-List Item
In our example, before fetching the select-list values, you reset some elements in the
length and datatype arrays for display purposes.

DO 500 J = 1, SELN
* Clear null/not null bit.
 CALL SQLNUL (SELT(J), DATYPE, NULLOK)
 SELT(J) = DATYPE
* If datatype is NUMBER, extract precision and scale.
 IF (SELT(J) .NE. 2) GOTO 400
 CALL SQLPRC (SELL(J), PREC, SCALE)
* Allow for maximum precision.
 IF (PREC .NE. 0) GOTO 200
* Although maximum precision is 38, we use 10 because
* that is our buffer size.
 SELL(J) = 10
 GOTO 400
 200 CONTINUE
 SELL(J) = PREC
* Allow for possible sign and decimal point.
 SELL(J) = SELL(J) + 2
* Adjust length if it exceeds size of buffer. This
* applies to character as well as numeric data.
 400 IF (SELL(J) .GT. 10) SELL(J) = 10
* Coerce datatype to VARCHAR2.
 SELT(J) = 1
 500 CONTINUE

Figure 4–8 shows the resulting select descriptor. Notice that the NUMBER lengths are
now usable and that all the datatypes are VARCHAR2. The lengths in SELL(2) and
SELL(3) are 6 and 9 because we increased the DESCRIBEd lengths of 4 and 7 by two to
allow for a possible sign and decimal point.

Note: When the datatype code returned by DESCRIBE is 2
(NUMBER), it must be coerced to a compatible FORTRAN type. The
FORTRAN type need not be CHARACTER. For example, you can
coerce a NUMBER to a REAL by setting SELT(J) to 4, and SELL(J) to
the length of REALs on your system.

A Closer Look at Each Step

4-28 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Figure 4–8 Select Descriptor before the FETCH

FETCH Rows from the Active Set
FETCH returns a row from the active set, stores select-list values in the data buffers,
and advances the cursor to the next row in the active set. If there are no more rows,
FETCH sets SQLCDE in the SQLCA, the SQLCODE variable, or the SQLSTATE
variable to the "no data found" Oracle error code. In the following example, FETCH
returns the values of columns ENAME, EMPNO, and COMM to SEL:

EXEC SQL FETCH EMPCUR USING DESCRIPTOR SEL

Figure 4–9 shows the select descriptor in our example after the FETCH. Notice that
Oracle has stored the select-list and indicator values in the data buffers addressed by
the elements of SELV and SELI.

For output buffers of datatype 1, Oracle, using the lengths stored in SELL, left-justifies
CHAR or VARCHAR2 data, and right-justifies NUMBER data.

The value 'MARTIN' was retrieved from a VARCHAR2(10) column in the EMP table.
Using the length in SELL(1), Oracle left-justifies the value in a 10-byte field, filling the
buffer.

The value 7654 was retrieved from a NUMBER(4) column and coerced to "7654."
However, the length in SELL(2) was increased by two to allow for a possible sign and
decimal point, so Oracle right-justifies the value in a 6-byte field.

Using Host Arrays with Method 4

Implementing Dynamic SQL Method 4 4-29

The value 482.50 was retrieved from a NUMBER(7,2) column and coerced to "482.50."
Again, the length in SELL(3) was increased by two, so Oracle right-justifies the value
in a 9-byte field.

Get and Process Select-List Values
After the FETCH, your program can process the select-list values returned by FETCH.
In our example, values for columns ENAME, EMPNO, and COMM are processed.

CLOSE the Cursor
CLOSE disables the cursor. In our example, CLOSE disables EMPCUR as follows:

EXEC SQL CLOSE EMPCUR

Figure 4–9 Select Descriptor after the FETCH

Using Host Arrays with Method 4
To use input or output host arrays with Method 4, you must use the optional FOR
clause to tell Oracle the size of your host array. For more information about the FOR
clause, see Chapter 9 of the Programmer's Guide to the Oracle Precompilers.

Set descriptor entries for the Jth select-list item or bind variable, but instead of
addressing a single data buffer, SELV(J) or BNDV(J) addresses the first element of a

Using Host Arrays with Method 4

4-30 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

data buffer array. Then use a FOR clause in the EXECUTE or FETCH statement, as
appropriate, to tell Oracle the number of table elements you want to process.

This procedure is necessary, because Oracle has no other way of knowing the size of
your host ARRAY.

In the following example, an input host array is used to DELETE rows from the EMP
table. Note that EXECUTE can be used for non-queries with Method 4.

* Use host arrays with Method 4.
 PROGRAM DYN4HA
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*20 UID
 CHARACTER*20 PWD
 CHARACTER*60 STMT
 INTEGER*4 SIZE
 EXEC SQL END DECLARE SECTION
 EXEC SQL INCLUDE SQLCA
 CHARACTER*10 NAMES(5)
 INTEGER*2 NUMBERS(5)
 INTEGER*2 DEPTS(5)
 EXEC SQL INCLUDE BNDDSC
 EXEC SQL WHENEVER SQLERROR GOTO 9000
 UID = 'SCOTT'
 PWD = 'TIGER'
* Log on to Oracle.
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD
 WRITE (*, 10000)
10000 FORMAT (' Connected to Oracle')
 SIZE = 5
 STMT = 'INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 1 VALUES (:E, :N, :D)'
* Prepare and describe the SQL statement.
 EXEC SQL PREPARE S FROM :STMT
 BNDN = 3
 EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO BND
* Initialize bind descriptor items.
 BNDN = BNDF
 CALL SQLADR(NUMBERS(1), BNDV(1))
 BNDL(1) = 2
 BNDT(1) = 3
 BNDI(1) = 0
* %REF is used to pass the address of the data, not
* of the FORTRAN compiler-generated descriptor of
* CHARACTER variable NAMES. (See the section "Using
* SQLADR" earlier in this chapter.)
 CALL SQLADR(%REF(NAMES(1)), BNDV(2))
 BNDL(2) = 10
 BNDT(2) = 1
 BNDI(2) = 0
 CALL SQLADR(DEPTS(1), BNDV(3))
 BNDL(3) = 2
 BNDT(3) = 3
 BNDI(3) = 0
 DO 110 I = 1, SIZE
 BNDM(I) = 0
 BNDY(I) = 0
 BNDX(I) = 0
 110 CONTINUE
* Fill the data buffers. Normally, this data would
* be entered interactively by the user, or read from

Sample Program 10: Dynamic SQL Method 4

Implementing Dynamic SQL Method 4 4-31

* a file.
 NAMES(1) = 'TRUSDALE'
 NUMBERS(1) = 1014
 DEPTS(1) = 30
 NAMES(2) = 'WILKES'
 NUMBERS(2) = 1015
 DEPTS(2) = 30
 NAMES(3) = 'BERNSTEIN'
 NUMBERS(3) = 1016
 DEPTS(3) = 30
 NAMES(4) = 'FRAZIER'
 NUMBERS(4) = 1017
 DEPTS(4) = 30
 NAMES(5) = 'MCCOMB'
 NUMBERS(5) = 1018
 DEPTS(5) = 30
* Do the INSERT.
 WRITE (*, 10020)
10020 FORMAT(1X, 'Adding to Sales force ...')
 EXEC SQL FOR :SIZE EXECUTE S USING DESCRIPTOR BND
 EXEC SQL COMMIT RELEASE
 GOTO 150
* Here if SQLERROR occurred.
 9000 CONTINUE
 WRITE (*, 10030) SQLEMC
10030 FORMAT (1X, 70A1)
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL ROLLBACK RELEASE
* Here when ready to exit the program.
 150 CONTINUE
 STOP
 END

Sample Program 10: Dynamic SQL Method 4
This program shows the basic steps required to use dynamic SQL Method 4. After
logging on to Oracle, the program prompts the user for a SQL statement, PREPAREs
the statement, DECLAREs a cursor, checks for any bind variables using DESCRIBE
BIND, OPENs the cursor, and DESCRIBEs any select-list items. If the input SQL
statement is a query, the program FETCHes each row of data, then CLOSEs the cursor.
Notice that a VARCHAR is used to store the dynamic SQL statement.

PROGRAM DYN4
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*20 UID
 CHARACTER*20 PWD
 VARCHAR *1024 STMT, STMTL, STMTA
 EXEC SQL END DECLARE SECTION
 CHARACTER*1 ANS
 EXEC SQL INCLUDE SQLCA
 EXEC SQL INCLUDE BNDDSC
 EXEC SQL INCLUDE SELDSC

* INITIALIZE.
 CALL INIT

* LOG ON TO ORACLE.
10 PRINT *, 'ENTER USERNAME:'
 READ '(20A)', UID

Sample Program 10: Dynamic SQL Method 4

4-32 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 PRINT *, 'ENTER PASSWORD:'
 READ '(20A)', PWD
 EXEC SQL WHENEVER SQLERROR GOTO 8500
 EXEC SQL CONNECT :UID IDENTIFIED BY :PWD

 EXEC SQL WHENEVER SQLERROR GOTO 9000
 PRINT *,
 1'TO EXIT, TYPE NULL SQL STATEMENT (;) AT DSQL PROMPT.'

* GET SQL STATEMENT FROM USER.
100 CONTINUE
 CALL GETSQL (STMTA, STMTL)
 IF (STMTL .EQ. 0) GOTO 9500

* PREPARE THE SQL STATEMENT, AND DECLARE A CURSOR FOR IT.
 EXEC SQL PREPARE S FROM :STMT
 EXEC SQL DECLARE C CURSOR FOR S

* DESCRIBE THE BIND VARIABLES. FIRST, INITIALIZE BNDN TO
* THE MAXIMUM NUMBER OF VARIABLES THAT CAN BE DESCRIBED.
 BNDN = 20
 EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO BND
 IF (BNDF .GE. 0) GOTO 125
 PRINT *, 'TOO MANY BIND VARIABLE - TRY AGAIN...'
 GOTO 300

* HAVE DESCRIBED BIND VARIABLES. GET VALUES FOR ANY
* BIND VARIABLES.
125 BNDN = BNDF
 IF (BNDN .GT. 0) CALL GETBND

* OPEN CURSOR TO EXECUTE THE SQL STATEMENT.
 EXEC SQL OPEN C USING DESCRIPTOR BND

* DESCRIBE THE SELECT-LIST ITEMS. FIRST, INITIALIZE SELN TO
* THE MAXIMUM NUMBER OF ITEMS THAT CAN BE DESCRIBED.
 SELN = 20
 EXEC SQL DESCRIBE SELECT LIST FOR S INTO SEL
 IF (SELF .GE. 0) GOTO 150
 PRINT *, 'TOO MANY SELECT-LIST ITEMS. TRY AGAIN...'
 GOTO 300

* HAVE DESCRIBED SELECT LIST. IF THIS IS A SELECT STATEMENT,
* RESET LENGTHS AND DATATYPES OF FETCHED VALUES, AND OUTPUT
* COLUMN HEADINGS.
150 SELN = SELF
 IF (SELN .EQ. 0) GO TO 300
 CALL PRCOLH

* FETCH EACH ROW, AND PRINT IT.
 EXEC SQL WHENEVER NOT FOUND GOTO 300
200 EXEC SQL FETCH C USING DESCRIPTOR SEL
 CALL PRROW
 GOTO 200

* THERE ARE NO MORE ROWS (ROW NOT FOUND), OR NON-SELECT
* STATEMENT COMPLETED.
300 EXEC SQL CLOSE C
 IF (SELN .EQ. 0) GOTO 310

Sample Program 10: Dynamic SQL Method 4

Implementing Dynamic SQL Method 4 4-33

* THERE WERE SOME SELECT-LIST ITEMS, SO SQL STATEMENT
* MUST BE A SELECT.
 PRINT *, SQLERD(3), ' ROW(S) SELECTED.'
 GOTO 100

* THERE WERE NO SELECT-LIST ITEMS, SO SQL STATEMENT
* CANNOT BE A SELECT.
310 PRINT *, SQLERD(3), ' ROW(S) PROCESSED.'
 GOTO 100

* A SQL EXECUTION ERROR (SQLERROR) OCCURRED.
* CONNECT ERROR
8500 PRINT '(70A1)', SQLEMC
 PRINT *, 'TRY AGAIN (Y OR N)?'
 READ '(A1)', ANS
 IF ((ANS .EQ. 'Y') .OR. (ANS .EQ. 'Y')) GOTO 10
 GOTO 9500

* OTHER SQL ERRORS
9000 PRINT '(70A1)', SQLEMC
 GOTO 100

* NOW READY TO EXIT PROGRAM.
9500 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL COMMIT WORK RELEASE
 PRINT *, 'HAVE A GOOD DAY.'
9600 CONTINUE
 END

* NAME: INIT (INITIALIZE)
* FUNCTION: INITIALIZES THE BIND AND SELECT DESCRIPTORS.
* RETURNS: NONE

 SUBROUTINE INIT

 EXEC SQL INCLUDE BNDDSC
 EXEC SQL INCLUDE SELDSC

* INITIALIZE BIND DESCRIPTOR ITEMS.
 DO 100 I = 1, 20
 CALL SQLADR (BNDSB(1,I), BNDS(I))
 CALL SQLADR (BNDVB(1,I), BNDV(I))
 CALL SQLADR (BNDXB(1,I), BNDX(I))
 CALL SQLADR (BNDIV(I), BNDI(I))
 BNDM(I) = 30
 BNDY(I) = 30
100 CONTINUE

* INITIALIZE SELECT DESCRIPTOR ITEMS.
 DO 200 I = 1, 20
 CALL SQLADR (SELSB(1,I), SELS(I))
 CALL SQLADR (SELVB(1,I), SELV(I))
 CALL SQLADR (SELIV(I), SELI(I))
 SELM(I) = 30
200 CONTINUE
 RETURN
 END

Sample Program 10: Dynamic SQL Method 4

4-34 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* NAME: GETSQL (GET SQL STATEMENT FROM TERMINAL)
* FUNCTION: ASKS THE USER TO TYPE IN A SQL STATEMENT.
* RETURNS: SARR IS A STRING (LOGICAL*1) CONTAINING
* THE SQL STATEMENT. SLEN IS THE NUMBER OF
* CHARACTERS IN SARR. IF SLEN IS 0, THEN NO
* SQL STATEMENT WAS ENTERED (DSQL USES THIS
* TO INDICATE THAT USER WANTS TO LOG OFF).

 SUBROUTINE GETSQL (SARR, SLEN)

 LOGICAL*1 SARR(1)
 INTEGER*2 SLEN
 LOGICAL*1 INP(80)
 INTEGER INPL
 INTEGER CNTLIN

 CNTLIN = 0
 SLEN = 0
 PRINT *, 'DSQL>'
50 READ '(80A1)', (INP(I), I = 1, 80)

* FIND LENGTH OF SQL STATEMENT BY SCANNING BACKWARD FOR
* FIRST NON-BLANK CHARACTER.
 INPL = 80
 DO 100 I = 1, 80
 IF (INP(INPL) .NE. ' ') GOTO 150
 INPL = INPL - 1
100 CONTINUE

* MOVE THIS PIECE OF THE SQL STATEMENT TO SQL STATEMENT
* BUFFER.
150 CONTINUE
 DO 200 I = 1, INPL
 SLEN = SLEN + 1
 IF (SLEN .GT. 1024) GOTO 1000
 SARR(SLEN) = INP(I)
200 CONTINUE
 IF (SARR(SLEN) .EQ. ';') GOTO 1000
* LINE NOT TERMINATED BY ';'. REQUEST CONTINUED LINE.
 CNTLIN = CNTLIN + 1
 WRITE (*, 10300) CNTLIN
10300 FORMAT ('$', I5, ':')

 SLEN = SLEN + 1
 IF (SLEN .GT. 1024) GOTO 1000
 SARR(SLEN) = ' '
 GOTO 50
1000 CONTINUE
 SLEN = SLEN - 1
 RETURN
 END

* NAME: PRCOLH (PRINT COLUMN HEADINGS)
* FUNCTION: RESETS LENGTH AND DATATYPE ARRAYS IN SELECT
* DESCRIPTOR, AND PRINTS COLUMN HEADINGS FOR
* SELECT-LIST ITEMS.
* NOTES: FOR EXAMPLE, GIVEN THE STATEMENT
*
* SELECT TNAME, TABTYPE FROM TAB

Sample Program 10: Dynamic SQL Method 4

Implementing Dynamic SQL Method 4 4-35

*
* AND ASSUMING TNAME COLUMN IS 30 CHARACTERS
* WIDE AND TABTYPE COLUMN IS 7 CHARACTERS WIDE,
* PRCOLH PRINTS:
*
* TNAME TABTYPE
* ----------------------------- -------

 SUBROUTINE PRCOLH

 EXEC SQL INCLUDE SELDSC
 LOGICAL*1 LINE(132)
 INTEGER LINESZ
 INTEGER PREC, SCALE, NULLOK
 INTEGER*2 DATYPE

 PREC = 26
 SCALE = 0
 LINESZ = 132
 L = 0

 DO 500 I = 1, SELN

* SQLPRC IS USED TO EXTRACT PRECISION AND SCALE FROM THE
* LENGTH (SELL(I)).

* SQLNUL IS USED TO RESET HIGH ORDER BIT OF THE DATATYPE
* AND TO CHECK IF THE COLUMN IS NOT NULL.

* CHAR DATATYPES HAVE LENGTH, BUT ZERO PRECISION AND
* SCALE. THE LENGTH IS THAT DEFINED AT CREATE TIME.

* NUMBER DATATYPES HAVE PRECISION AND SCALE IF DEFINED
* AT CREATE TIME. HOWEVER, IF THE COLUMN DEFINITION
* WAS JUST NUMBER, THE PRECISION AND SCALE ARE ZERO,
* SO WE DEFAULT THE COLUMN WIDTH TO 10.

* RIGHT JUSTIFY COLUMN HEADING FOR NUMBERS.

 CALL SQLNUL (SELT(I), DATYPE, NULLOK)
 SELT(I) = DATYPE
 IF (SELT(I) .NE. 2) GOTO 150
 CALL SQLPRC (SELL(I), PREC, SCALE)

* IF NO PRECISION, USE DEFAULT.
 IF (PREC .EQ. 0) PREC = 10
 SELL(I) = PREC

* ADD 2 FOR POSSIBLE SIGN AND DECIMAL POINT.
 SELL(I) = SELL(I) + 2

* BLANK-PAD COLUMN NAME TO RIGHT-JUSTIFY COLUMN HEADING.
 NBLANKS = SELL(I) - SELC(I)
 DO 130 J = 1, NBLANKS
 L = L + 1
 IF (L .GT. LINESZ - 1) GOTO 450
 LINE(L) = ' '
130 CONTINUE
 GOTO 190

Sample Program 10: Dynamic SQL Method 4

4-36 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* CHECK FOR LONG COLUMN, AND SET DATA BUFFER
* LENGTH TO 240.
150 IF (SELT(I) .NE. 8) GOTO 153
 SELL(I) = 240
 GOTO 190

* CHECK FOR LONG RAW COLUMN, AND SET DATA BUFFER
* LENGTH TO 240.
153 IF (SELT(I) .NE. 24) GOTO 155
 SELL(I) = 240
 GOTO 190
* CHECK FOR ROWID COLUMN, AND SET DATA BUFFER
* LENGTH TO 18 (DISPLAY LENGTH).
155 IF (SELT(I) .NE. 11) GOTO 160
 SELL(I) = 18
 GOTO 190

* CHECK FOR DATE COLUMN, AND SET DATA BUFFER LENGTH
* TO 9 (DEFAULT FORMAT IS DD-MON-YY).
160 IF (SELT(I) .NE. 12) GOTO 165
 SELL(I) = 9
 GOTO 190

* CHECK FOR RAW COLUMN, AND ADD 1 TO DATA BUFFER LENGTH.
165 IF (SELT(I) .NE. 23) GOTO 190
 SELL(I) = SELL(I) + 1

* COPY COLUMN NAME TO OUTPUT LINE.
190 DO 200 J = 1, MIN (SELC(I), SELL(I))
 L = L + 1
 IF (L .GT. LINESZ - 1) GOTO 450
 LINE(L) = SELSB(J, I)
200 CONTINUE

* PAD COLUMN NAME WITH BLANKS PLUS 1 FOR INTER-COLUMN
* SPACING. NOTE THAT NUMBER COLUMNS ARE RIGHT-JUSTIFIED
* SO JUST ONE BLANK IS NEEDED FOR INTER-COLUMN SPACING.
 NBLANKS = 1
 IF (SELT(I) .EQ. 2) GOTO 210
 NBLANKS = MAX (SELL(I) - SELC(I) + 1, 1)
210 DO 300 J = 1, NBLANKS
 L = L + 1
 IF (L .GT. LINESZ - 1) GOTO 450
 LINE(L) = ' '
300 CONTINUE

* EXCEPT FOR LONG RAW COLUMNS, COERCE COLUMN
* DATATYPE TO VARCHAR2 TO SIMPLIFY PRINTING ROW.
450 IF (SELT(I) .NE. 24) SELT(I) = 1
500 CONTINUE

* NOW READY TO PRINT THE HEADING LINE.
1000 WRITE (*, 10100) (LINE(I), I = 1, L)
10100 FORMAT (/, 1X, 132A1)

* UNDERLINE THE COLUMN HEADINGS.
 L = 0
 DO 1500 I = 1, SELN
 NUNDER = SELL(I)
 DO 1250 J = 1, NUNDER

Sample Program 10: Dynamic SQL Method 4

Implementing Dynamic SQL Method 4 4-37

 L = L + 1
 IF (L .GT. LINESZ - 1) GOTO 2000
 LINE(L) = '-'
1250 CONTINUE
 L = L + 1
 IF (L .GT. LINESZ - 1) GOTO 2000
 LINE(L) = ' '
1500 CONTINUE

* NOW READY TO PRINT THE UNDERLINE.
2000 WRITE (*, 10200) (LINE(I), I = 1, L)
10200 FORMAT (1X, 132A1)
 RETURN
 END

* NAME: PRROW (PRINT ROW)
* FUNCTION: PRINTS A SINGLE FETCHED ROW.

 SUBROUTINE PRROW
 EXEC SQL INCLUDE SELDSC
 LOGICAL*1 LINE(132)
 INTEGER LINESZ

 LINESZ = 132
 L = 0
 DO 500 I = 1, SELN

* CHECK FOR NULL COLUMN. IF NULL, BLANK-PAD COLUMN.
 IF (SELIV(I) .GE. 0) GOTO 100
 DO 90 J = 1, SELL(I)
 L = L + 1
 IF (L .GT. LINESZ - 1) GOTO 1000
 LINE(L) = ' '
90 CONTINUE
 GOTO 250

* COLUMN DATATYPE IS VARCHAR2. COPY COLUMN VALUE TO
* OUTPUT LINE.
100 CONTINUE
 DO 200 J = 1, SELL(I)
 L = L + 1
 IF (L .GT. LINESZ - 1) GOTO 1000
 LINE(L) = SELVB(J, I)
200 CONTINUE

* APPEND ONE BLANK FOR INTER-COLUMN SPACING.
250 CONTINUE
 L = L + 1
 IF (L .GT. LINESZ - 1) GOTO 1000
 LINE(L) = ' '
500 CONTINUE

* NOW READY TO PRINT THE LINE.
1000 WRITE (*, 10100) (LINE(I), I = 1, L)
10100 FORMAT (1X, 132A1)
 RETURN
 END

Sample Program 10: Dynamic SQL Method 4

4-38 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

* NAME: GETBND (GET BIND VARIABLES)
* FUNCTION: USING THE DESCRIPTOR BND, SET UP BY
* THE DESCRIBE BIND VARIABLES STATEMENT,
* GETBND PROMPTS THE USER FOR VALUES OF BIND
* VARIABLES.
* RETURNS: BNDVB AND BNDL ARRAYS SET UP WITH VALUES
* FOR BIND VARIABLES.

 SUBROUTINE GETBND
 EXEC SQL INCLUDE BNDDSC
 CHARACTER*1 CLN, SPC

 CLN = ':'
 SPC = ' '
 WRITE (*, 10100)
10100 FORMAT (/, 'PLEASE ENTER VALUES OF BIND VARIABLES.', /)
 DO 500 I = 1, BNDN
 WRITE (*, 10200)(BNDSB(J, I), J = 1, BNDC(I)), CLN, SPC
10200 FORMAT ('ENTER VALUE FOR ', 32A1)

* GET VALUE FOR BIND VARIABLE.

 READ '(80A1)', (BNDVB(J, I), J = 1, 80)

* FIND LENGTH OF VALUE BY SCANNING BACKWARD
* FOR FIRST NON-BLANK CHARACTER.
 BNDL(I) = 80
 DO 200 J = 1, 80
 IF (BNDVB(BNDL(I), I) .NE. ' ') GOTO 300
 BNDL(I) = BNDL(I) - 1
200 CONTINUE

* SET DATATYPE OF BIND VARIABLE TO VARCHAR2, AND SET
* INDICATOR VARIABLE TO NOT NULL.
300 CONTINUE
 BNDT(I) = 1
 BNDIV(I) = 0
500 CONTINUE
 RETURN
 END

Operating System Dependencies A-1

A
Operating System Dependencies

This appendix contains the following sections:

System-Specific References for Chapter 1

System-Specific Reference for Chapter 3

System-Specific Reference for Chapter 4

Some details of Pro*FORTRAN programming vary from one system to another. This
appendix is a collection all system-specific issues regarding Pro*FORTRAN.
References are provided, where applicable, to other sources in your document set.

System-Specific References for Chapter 1
For more information, refer to Chapter 1, "Writing a Pro*FORTRAN Program".

Case-sensitivity
Though the standard FORTRAN character set excludes lowercase alpha characters,
many compilers allow them in identifiers, comments, and quoted literals.

The Pro*FORTRAN Precompiler is not case-sensitive; however, some compilers are. If
your compiler is case-sensitive, you must declare and reference variables in the same
uppercase/lowercase format. Check your FORTRAN compiler user's guide.

Coding Area
You must code EXEC SQL and EXEC ORACLE statements in columns 7 through 72
(columns 73 through 80 are ignored). The other columns are used for the following
purposes: column 1 indicates comment lines, columns 1 through 5 contain an optional
statement label, and column 6 indicates continuation lines.

On some systems, terminal format is supported; that is, entry is not restricted to certain
columns. Check your Oracle system-specific documentation.

No more than one statement can appear on a single line.

Continuation Lines
You can continue SQL statements from one line to the next according to the rules of
FORTRAN. To code a continuation line, place a nonzero, non-blank character in
column 6. In this manual, digits are used as continuation characters, as the following
example shows:

* Retrieve employee data.
 EXEC SQL SELECT EMPNO, ENAME, JOB, SAL

System-Specific References for Chapter 1

A-2 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

 1 INTO :MYEMPNO, :MYENAME, :MYJOB, :MYSAL
 2 FROM EMP
 3 WHERE DEPTNO = :MYDEPTNO

You can also continue string literals from one line to the next. Code the literal through
column 72, then, on the next line, code a continuation character and the rest of the
literal. An example follows:

* Execute dynamic SQL statement.
 EXEC SQL EXECUTE IMMEDIATE 'UPDATE EMP SET COMM = 500 WHERE
 1 DEPTNO=20'

Most FORTRAN implementations allow up to 19 continuation lines. Check your
FORTRAN language user's guide.

FORTRAN Versions
The Pro*FORTRAN Precompiler supports the standard implementation of FORTRAN
for your operating system (usually FORTRAN 77). Check your Oracle system-specific
documentation.

How you declare and name host variables depends on which FORTRAN compiler you
use. Check your FORTRAN user's guide for details about declaring and naming host
variables.

Declaring
Declare host variables in the Declare Section according to FORTRAN rules, specifying
a FORTRAN datatype supported by Oracle. Table 1 - 3 shows the FORTRAN
datatypes and pseudotypes you can specify in the Declare Section. However, your
FORTRAN implementation might not include all of them.

The host datatypes and pseudotypes you can specify in the Declare Section are shown
in the table on page 1-10. However, your implementation might not include all of
them. Check your FORTRAN language user's guide.

The size of FORTRAN numeric types is implementation-dependent. The sizes given in
the table are typical but not universal. Check your FORTRAN language user's guide.

Naming
Host variable names must consist only of letters and digits, and must begin with a
letter. They can be any length, but only the first 31 characters are significant. Some
compilers prohibit variable names longer than six characters, or ignore characters after
the sixth. Check your FORTRAN compiler user's guide.

INCLUDE Statements
You can INCLUDE any file. When you precompile your Pro*FORTRAN program,
each EXEC SQL INCLUDE statement is replaced by a copy of the file named in the
statement.

If your system uses file extensions but you do not specify one, the Pro*FORTRAN
Precompiler assumes the default extension for source files (usually FOR or F). The
default extension is system-dependent. Check your Oracle system-specific
documentation.

If your system uses directories, you can set a directory path for INCLUDEd files by
specifying the precompiler option INCLUDE=path. You must use INCLUDE to specify

System-Specific Reference for Chapter 4

Operating System Dependencies A-3

a directory path for nonstandard files unless they are stored in the current directory.
The syntax for specifying a directory path is system-specific. Check your Oracle
system-specific documentation.

MAXLITERAL Default
With the MAXLITERAL precompiler option you can specify the maximum length of
string literals generated by the precompiler, so that compiler limits are not exceeded.
The MAXLITERAL default value is 1000, but you might have to specify a lower value.

For example, if your FORTRAN compiler cannot handle string literals longer than 512
characters, specify "MAXLITERAL=512." Check your FORTRAN compiler user's
guide. For more information about the MAXLITERAL option, see the Programmer's
Guide to the Oracle Precompilers.

System-Specific Reference for Chapter 3
For more information, refer to Chapter 3, "Sample Programs".

Sample Programs
All the sample programs in this chapter are available online. The names of the online
files are shown. However, the exact filenames are system-dependent. For more
information, check your Oracle system-specific documentation.

System-Specific Reference for Chapter 4
For more information, refer to Chapter 4, "Implementing Dynamic SQL Method 4".

SQLADR
You cannot use CHARACTER variables with SQLADR if your FORTRAN compiler
generates descriptors of CHARACTER variables and passes the descriptor address
(rather than the data address) to SQLADR. Check your FORTRAN compiler user's
guide. In such cases, SQLADR gets the wrong address. Instead, use LOGICAL*1
variables, because they always have simple addresses.

You can, however, use (cautiously) SQLADR with CHARACTER variables if your
compiler provides a built-in function to access the data address. For example, if the
compiler provides a function named %REF, and X is a CHARACTER variable, you call
SQLADR as follows:

* Use %REF built-in function.
 CALL SQLADR (%REF(X), ...)

System-Specific Reference for Chapter 4

A-4 Pro*FORTRAN Supplement to the Oracle Precompilers Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Writing a Pro*FORTRAN Program
	Programming Guidelines
	Case-sensitivity
	Comments
	Continuation Lines
	Delimiters
	Embedded SQL Syntax
	File Length
	File Naming Restrictions
	FORTRAN Versions

	Required Declarations and SQL Statements
	The Declare Section
	Using the INCLUDE Statement
	Filename Extensions
	Search Paths
	Caution
	Event and Error Handling

	Host Variable Names
	Logical and Relational Operators
	MAXLITERAL Default
	Nulls
	Program Units

	Scope of Host Variables
	Statement Labels
	Statement Terminator

	Host Variables
	Declaring Host Variables
	Example Declarations
	Repeating Definitions
	Initialization
	Constants
	COMMON Blocks
	EQUIVALENCE Statement
	Special Requirements for Subroutines
	Restrictions

	Referencing Host Variables
	Restrictions

	Indicator Variables
	Declaring Indicator Variables
	Referencing Indicator Variables
	Restrictions
	Oracle Restrictions
	ANSI Requirements

	Host Arrays
	Declaring Host Arrays
	Restrictions
	Referencing Host Arrays
	Using Indicator Arrays

	VARCHAR Host Variables
	Declaring VARCHAR Variables
	Referencing VARCHAR Variables
	Overcoming the Length Limit

	Handling Character Data
	Effects of the MODE Option
	CHARACTER*n
	On Input
	On Output
	VARCHAR Variables
	On Input
	On Output

	The Oracle Datatypes
	Internal Datatypes
	External Datatypes

	Datatype Conversion
	Datatype Equivalencing
	Host Variable Equivalencing

	Embedding PL/SQL
	Host Variables
	VARCHAR Variables
	Indicator Variables
	Handling Nulls
	Handling Truncated Values
	SQLCHECK
	Cursor Variables

	Declaring a Cursor Variable
	Allocating a Cursor Variable
	Opening a Cursor Variable
	Opening Indirectly through a Stored PL/SQL Procedure
	Opening Directly from Your Pro*FORTRAN Application
	Return Types
	Fetching from a Cursor Variable
	Closing a Cursor Variable
	Restrictions
	Error Conditions
	Sample Programs
	SAMPLE11.SQL
	SAMPLE11.PFO

	Connecting to Oracle
	Automatic Logons
	Concurrent Logons

	2 Error Handling and Diagnostics
	Error Handling Alternatives
	SQLCOD and SQLSTA
	SQLCA
	ORACA

	Using Status Variables when MODE={ANSI|ANSI14}
	Some Historical Information
	Release 1.5
	Release 1.6
	Release 1.7
	Declaring Status Variables
	Declaring SQLCOD
	Declaring SQLSTA
	Status Variable Combinations

	Using the SQL Communications Area
	What's in the SQLCA?
	Declaring the SQLCA
	Key Components of Error Reporting
	Status Codes
	Warning Flags
	Rows-Processed Count
	Parse Error Offset
	Error Message Text
	Getting the Full Text of Error Messages
	Using the WHENEVER Statement
	Scope
	Careless Usage: Examples

	Using the Oracle Communications Area
	What's in the ORACA?
	Declaring the ORACA
	Enabling the ORACA

	3 Sample Programs
	Sample Program 1: Simple Query
	Sample Program 2: Cursor Operations
	Sample Program 3: Fetching in Batches
	Sample Program 4: Datatype Equivalencing
	Sample Program 5: Oracle Forms User Exit
	Sample Program 6: Dynamic SQL Method 1
	Sample Program 7: Dynamic SQL Method 2
	Sample Program 8: Dynamic SQL Method 3
	Sample Program 9: Calling a Stored Procedure

	4 Implementing Dynamic SQL Method 4
	Meeting the Special Requirements of Method 4
	What Makes Method 4 Special?
	What Information Does Oracle Need?
	Where Is the Information Stored?
	How Is the Information Obtained?

	Understanding the SQL Descriptor Area (SQLDA)
	Purpose of the SQLDA
	Multiple SQLDAs
	Naming Conventions
	Declaring a SQLDA

	Using the SQLDA Variables and Arrays
	The N Variable
	The F Variable
	The S Array
	The M Array
	The C Array
	The L Array
	Select Descriptors
	Bind Descriptors
	The T Array
	Select Descriptors
	Bind Descriptors
	The V Array
	Select Descriptors
	Bind Descriptors
	The I Array
	Select Descriptors
	Bind Descriptors
	The X Array
	The Y Array
	The Z Array

	Some Preliminaries
	Using SQLADR
	Restriction
	Converting Data
	Internal Datatypes
	External Datatypes
	PL/SQL Datatypes
	Coercing Datatypes
	Exceptions
	Extracting Precision and Scale
	Handling Null/Not Null Datatypes

	The Basic Steps
	A Closer Look at Each Step
	Declare a Host String
	Declare the SQLDAs
	Set the Maximum Number to DESCRIBE
	Initialize the Descriptors
	Store the Query Text in the Host String
	PREPARE the Query from the Host String
	DECLARE a Cursor
	DESCRIBE the Bind Variables
	Reset Number of Placeholders
	Get Values for Bind Variables
	OPEN the Cursor
	DESCRIBE the Select List
	Reset Number of Select-List Items
	Reset Length/Datatype of Each Select-List Item
	FETCH Rows from the Active Set
	Get and Process Select-List Values
	CLOSE the Cursor

	Using Host Arrays with Method 4
	Sample Program 10: Dynamic SQL Method 4

	A Operating System Dependencies
	System-Specific References for Chapter 1
	Case-sensitivity
	Coding Area
	Continuation Lines
	FORTRAN Versions
	Declaring
	Naming
	INCLUDE Statements
	MAXLITERAL Default

	System-Specific Reference for Chapter 3
	Sample Programs

	System-Specific Reference for Chapter 4
	SQLADR

