Oracle Procedural Gateway® for APPC
User’s Guide

10g Release 2 (10.2) for Microsoft Windows (32-Bit)
B16212-01

August 2005

ORACLE

Oracle Procedural Gateway for APPC User’s Guide, 10g Release 2 (10.2) for Microsoft Windows (32-Bit)
B16212-01

Copyright © 1996, 2005, Oracle. All rights reserved.

Primary Author: Maitreyee Chaliha

Contributing Author: ~ Shahrokh Talmoud

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PPEIACE ...ttt Xi
INtENAEA AUAIENCE.....cceiiiieeiiieeeeee ettt ettt et e e re e be e e e sbeera e beess et e essesseeseessesssansesssessenses Xi
Documentation AcCesSSIDILItYccccciiiiiiiiiiiiiiiii s Xi
Related DOCUIMENTScceiviiiiiieieieieiietetet et te e ste st et et et estesassessessessessessassessassassassesessensessessessensensans Xii
CONVEINTIONS ..vtieitieiieeitieeteettest e et e sttt eteesteesste e saaesaesseesssaesseeasseessasssessseasssessseesssesssessseessseessessssessseenseesnse Xii
Accessing Installed Documentation ... Xiv
Oracle Services and SUPPOTT......cccccuiuiiiuiiiiiiiiiiciieiccceieee et Xiv

1 Introduction to Oracle Procedural Gateway for APPC

1.1 Overview Of the GAtEWAYccceuiiiiiiriririiicrece e 1-2
1.2 Features of the Gatewaycoeiiiii e 1-2
1.3 TETTIIS .t 1-4
1.4 Examples and Sample Files for the Gatewaycccccoccuieueeeiiceicieeeeceeeeeneenenenas 1-6
1.5 Architecture of the GateWay ... 1-7
1.6 Starting the GatEWayccccociiiiiiiiiiiic s 1-8
1.7 Communication With the Gatewaycccccoceviiiiiiiiiiicccceeeeeeeee e 1-8
1.8 Remote Procedural Call FUNCHONSccoiiiiiiiiiiiiiiiiicccccas 1-9
1.8.1 TIP FUNCEION ..ottt 1-9
1.8.1.1 Remote Transaction INItiationocoeeieiiieiiiiiiii 1-9
1.8.1.2 Data EXChange ..o 1-9
1.8.1.3 Remote Transaction Termination............cccoccvieniininniininiceccceeees 1-10
1.9 Overview of a Gateway Using SNAccoooiiiiiiii 1-10
1.9.1 Transaction Types for a Gateway Using SNA ..o 1-10
1.10 Simple Gateway Communication With the Oracle Server (SNA)ccccccccevvvrivinninnne. 1-11
1.10.1 Steps to Communication Between Gateway and Mainframe, Using SNA 1-11
1.11 Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA 1-12
1.11.1 Steps to Writing a TIP on a Gateway Using SNAccccooviviiiinnnicce, 1-12
1.12 Overview of a Gateway Using TCP/IPccccooiiiiiiiiiiiiiic e 1-14
1.12.1 Transaction Types for a Gateway Using TCP/IP ..o 1-14
1.13 Simple Gateway Communication with the Oracle Server (TCP/IP)cccccceeuvururununne. 1-14
1.13.1 Preparing the Gateway to Communicate Using TCP/IPcccccooorrieiiiiiiininne 1-15
1.13.2 Steps to Communication Between the Gateway and IMS, Using TCP/IP............... 1-15
1.14 Writing TIPs to Generate PL/SQL Programs on Gateway Using TCP/IP 1-16
1.14.1 Steps to Writing a TIP on a Gateway Using TCP/IP.........ccccoiiiiniiinniniiinienennn, 1-17

Procedural Gateway Administration Utility

2.1
2.2
2.2.1
222
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9
2.6.10
2.6.11
2.6.12
2.6.13
2.6.14
2.6.15
2.6.16
2.6.17
2.6.18
2.6.19
2.6.20
2.6.21
2.6.22

OVEIVIEW OFf PGAU .ottt ettt ettt ettt et e s beestesbaesaesbeesb e ssensesseensansnenns 2-2
COMMIT /ROLLBACK PIrOCESSING.....cccvreereeiiriririisiiririsesese et 2-3
COMMIT ProCeSSINGccvueveviiiicieteiiscie ittt 2-3
ROLLBACK PTOCESSINEcvovevviiiiiieiicieiteeee s 2-3
INVOKING PGAU ..o 2-3
Definitions and Generation in PGAUc.ooioiiieieiieeieieeieieeeereese e sae s e saesaessesseens 2-4
Process to Define and Test @ TIP.......cc.oociiiiiiiiciicieeceeeeee ettt 2-5
DefiNition NAIMES.......cciiiitirieieieietetee et ereste ettt essesse s esseseeseesessassessessessessessessessesessensenns 2-5
Definition VerSioNing..........ccoooicieieiiiieieieiiicie et 2-5
KOYWOIAS ...t 2-6
PGAU COMIMANAS ...viviienieierieeieteeeeiieteeteeteesesessessessessessessessestesaesessessessessessessessessessessessessessasens 2-7
CONNECT ...ttt ettt ettt et e et ebe e e b et ebe st esessesesenesenessens 2-7
DEFINE CALL...oitetitetiietetee ettt ettt sttt te e ete sttt e e s esassesassesassesessesensesssesesns 2-8
DEFINE DATA ...ttt ettt sttt ettt sttt s e se s e bessessessessessaseesensenns 2-9
DEFINE TRANSACTION.....ccoecteeieteieieieietetesteiestesestesesteesteestesessesessenessesessessesensesennes 2-11
DESCRIBEcoteiteiieieiee ettt ettt ettt ettt aesess s e saesassesassesesseseesesessesessansasansesanens 2-15
DISCONNECT ..ottt ettt sttt et a e e sesses e sessassessessessessessessessesesseasessessessens 2-15
EXECUTE ..ottt ettt ettt ettt se st es et es b esesaesestenessenessanees 2-16
EXIT oottt ettt et ettt ettt teeteete et e teete et e beete b et enbenseaserserserserneteeteerans 2-16
GENERATE ...ttt ettt ettt ettt e et s e bbb e esbestessessessessasassansessens 2-17
GROUP ...ttt ettt ettt et st st ese st e s et es e sesestenestenessanessaneas 2-21
HOST ...ttt ettt ettt ettt ettt et et e st et esa b es e s et e besesaesesseneesaneesanens 2-23
PRINT oottt ettt ettt ettt et e s se et e se s e s essessassessessessessassasasssasessansessens 2-23
REDEFINE DATA ...ttt ettt ettt ettt ae v v e bbb essesbessesseseessessesessassessens 2-24
REM ..ottt ettt ettt ettt ettt ettt teetsetseteeteete et e et et et et et entenseaserserserseteeteeteetan 2-28
REPORT ...ttt ettt ettt ettt et esaesaesassassasassessessessessessessessassessessessassnsensensens 2-29
SET ettt ettt e b e b e b e b e b e b e st e st erbesbereereetaeteereeteereebeetens 2-32
SHOW ...ttt sttt sttt ettt ettt b et e s et e st ese st esesses e sesessesesseneeseneesanens 2-33
SPOOIL .ttt ettt st e et e ettt e st e saese et e e s e et e s e s e s er b e s be st esbenbenteseesaeseaseaseesensenrens 2-35
UNDEFINE CALL ..ottt sttt et et sesae e ste e senessenees 2-36
UNDEFINE DATA ..ottt ettt tes et st sa st sassesassesassessssessssassssassssaneas 2-37
UNDEFINE TRANSACTIONctiiiieieteisisiesesieieteteteesessessessessessessessessessssassessens 2-38
VARIABLE ..ottt ettt ettt bt saessebeebeetesbesba b esbessessassessessesessessessens 2-39

Creating a TIP

3.1
3.2
3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7
3.3
3.4

Granting Privileges for TIP Creators..........cccooiiieiiicieiiiicicieci e 3-2
Evaluating the RHTccccccooiiiiiiiiiiiiiccr e 3-2
Identify the Remote Host TTansaction............cocceiiiiiiiiiiiciicccccecceeeenenenes 3-2
PGAU DEFINE CALL Commandcccccouiiniiiiiiiiesssennnns 3-3
PGAU DEFINE DATA COommandccceuvecueueirinieiemiiceneiiieeseeeeieseeseseeseesessesaenns 3-3
PGAU DEFINE TRANSACTION Command on a Gateway Using SNA.................... 3-4
PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP 3-4
Writing the PGAU Statements...........coovviiiiininiiiiiiiccccccccsnes 3-5
Writing @ PGAU Script FAle ... 3-6
Defining and Generating the TIP............c.ccooooiiiiiiiiiii s 3-7
Compiling the TIP.......cccoiiiiiiiiiiiiii e 3-8

3.5

TIP Content Documentation (tipname.doc)........ccccceiviiiiiininiiiiiniiiccc 3-8

Client Application Development (SNA Only)

41

4.2

4.3
4.3.1
4.3.2
4.3.2.1
4.3.22
4.3.2.3
4.4

4.5

4.6
4.6.1
4.6.2
4.6.2.1
46.2.2
4.6.3
4.7
4.7.1
4.7.2
4.7.21
4722
4.7.2.3
4.8
4.8.1
4.8.2
4.8.3
4.9
4.10
4.10.1
4.10.2
4.10.3
4.10.4
4.10.5
4.10.6
411
412
4.13

Overview of Client ApPLiCAtiONcovuiiiiiiiiiiiiiiiiic e 4-2
Preparing the Client Application.........coououiiiiieieiice e 4-3
Understanding the Remote Host Transaction Requirements...........cccccocecuecucienicicicnnnnns 4-3
TIP Content and PUIPOSEccovvviiviiiiiiiiiiiiiiiii s 4-3
Remote Host Transaction Types.........cccriiiiiiiiiiiiiicicc 4-4
One-Shot Transactions...........c.cceieiiiiniiiiiii e 4-4
Persistent TranSactionscoeeiieieiiiciiiicccc e 4-5
Multi-Conversational Transactions ... 4-6
Customized TIPs for Each Remote Host Transaction.............cccceeviviiiiiincinenincncenencnen 4-7
Client Application ReqUirements............ccocoviriiiiiiiiiiice s 4-8
Ensuring TIP and Remote Transaction Program Correspondenceccccccoueeruriennnes 4-12
DATA COITESPONAEIICE ...ttt 4-12
CALL COITreSpONdencecccoueviuiiiieiiveiiiiiiieiciiiieesssese s 4-13
Flexible Call SEQUENCEccvoiierieiiicici 4-14

Call Correspondence Order Restrictionscccceucueucueucieieicceeeeceeececeee 4-15
TRANSACTION COrreSpondence ..o 4-15
Calling the TIP from the Client Application.........cccooioiiiiiiiiiiiic 4-16
Declaring TIP Variables ... 4-16
Initializing the ConVersation...........c.oocoeueiiiiiiiiiic 4-17
Transaction Instance Parameter ... 4-19
Overriding TIP InitialiZations.........c.cccoceieieiiiiiiciccccceecceceeeeceeeees 4-19
Security Considerations...........cooccueiiiiiiiciiici 4-21
Exchanging Datacceuiieiiioiie s 4-22
Terminating the CONVErsation...........ccccoccciiiiieiiciiicieeeeeeeee e 4-22
Error Handlingccooeeeiiiiiiiiiiiiiccccc s 4-22
Granting Execute AUthOTIitycooooioiiiii 4-23
Executing the AppLiCationc.ccceiiiiiiiiiiiiiiiccccceeee s 4-23
APPC Conversation Sharing ...t 4-23
APPC Conversation Sharing COncepts.........cccccevueviiviririiiiiiininiiiiieceeeeees 4-23
APPC Conversation Sharing USageccccccueueueiiiiieieiieiicncieeceeeeeeneeeneeneeenees 4-24
APPC Conversation Sharing TIP Compatibilitycccocoeeueiiiiieieiiiiicee 4-25
APPC Conversation Sharing for TIPs That Are Too Largeccccccevvvvnnncncnes 4-25
APPC Conversation Sharing Example ... 4-26
APPC Conversation Sharing Overrides and Diagnostics...........ccccevviiviveiiiiniennnnne. 4-28
Application Development with Multi-Byte Character Set Supportcccoevevvirinnnnnes 4-29
Modifying a Terminal-Oriented Transaction to Use APPC..........ccccccevuvvvrvnvrrrnccnes 4-30
Privileges Needed t0 Use TIPS.......cccccoceuiiiiiiiiiiiiiiiiiiiiciccce s 4-31

Implementing Commit-Confirm (SNA Only)

5.1
5.2
5.3
5.4

Overview of Commit-Confirm.......c.cccoiiiiiiiiiiiiiii e 5-2
SUPPOTted OLTPS......coiiiiiiiiiiiii s 5-3
Components Required to Support Commit-Confirm..........cccccoeeueueuieiceiiceeececeenenns 5-4
Application Design ReqUirementsccccoviviiiiiiiiiiiiiiiiiieeeeeeenas 5-6

vi

55 Commit-COonfirm ATCHITECIULEcovvviieeeiieeeeceee et ee e st e e eae e eneeas 5-7

5.5.1 COMPONENLES ...ttt 5-7
5.5.2 INEEIACHIONS ..o.vvrttrtettee s 5-7
5.6 Commit-Confirm FIOWcoiiiiiiiiiiiiiicc s 5-8
5.6.1 Commit-Confirm Logic Flow, Step by Stepccoeiiiiii 5-8
5.6.2 Gateway Server Commit-Confirm Transaction Logcccccoevviivnnninnniincne. 5-9

PG4TCPMAP Commands (TCP/IP Only)

6.1 Preparation for Populating the PGA_TCP_IMSC Tablecccccoevvrrnnnnnrnnreene. 6-2
6.2 OVEIVIEW 1. 6-2
6.3 Populating the PGA_TCP_IMSC Tableccccocoiviviiiiiiniiiiiiiiiiiiecenns 6-3
6.4 Before You Run the pg4tcpmap ToOL.......c.ccccoiiiiiiiiiiiiiiceeccecceeeeeee e 6-4
6.5 pgdtcpmap Tool COMMANAS ... 6-6
6.5.1 Inserting a Row into the PGA_TCP_IMSC Table.........cccccceceriiiiiiniiiniiiiniiciiiinns 6-6
6.5.2 Deleting Rows from the PGA_TCP_IMSC Table........cccccccoeueiiiiiiiiiiiciceeeceeeene 6-6
6.5.3 Querying the PGA_TCP_IMSC Table.........ccccceviiiniiiniiiiiiii, 6-7

Client Application Development (TCP/IP Only)

7.1 Overview of Client APPLiCAtIONccouvviiiiiiiiiiiiiiiin s 7-2
7.2 Preparing the Client Application.........cccouoviiiiiiiiiicic e 7-3
7.2.1 TIP Content and PUIPOSEcovvuviiiiiiriiiicircccr e 7-3
7.2.2 Remote Host Transaction TypPes..........ciiiiiiiiiiiiiiiiicii s 7-4
7.3 Ensuring TIP and Remote Transaction Program Correspondencecccccoovecueueieinnnen. 7-5
7.3.1 DATA COITESPONAEIICE ..ot 7-5
7.3.2 CALL COITeSPONAENCEc.ceveviviiiiiiiiiiiiiiccii s 7-6
7.3.21 Flexible Call SEQUENCEc.cviirieiiic s 7-7
7.3.2.2 Call Correspondence Order Restrictionsc.cocccueucucueieieiiieeieieeececeeeeneenee 7-8
7.3.3 TRANSACTION COrrespondenceccoeeveveiiiiiniiriniininiiiiesssssssssseenns 7-8
7.4 Calling the TIP from the Client Application.........ccccoovoiiiiiiiiiiiic 7-9
7.41 Declaring TIP Variablesccccociiiiiiiiceeeceeeeeeee e 7-9
7.4.2 Initializing the ConVersation.............oocrueiiiiciciiic e 7-10
7.4.2.1 Transaction Instance Parameterccoovviiiniiiiinniiice 7-12
7422 Overriding TIP InitialiZations.........c.cocceiiiiiiiiiicceecceeceecceeeeeeeenes 7-12
7.4.23 Security Considerations...........cooceueiiiciiieiiieicc e, 7-14
7.5 Exchanging Datacccccciiiiiiiiiiiiiiiiiiiiicic s 7-14
7.5.1 Terminating the CONVErsation...........ccccoceiiiiiieiiiieieeeeeeeee s 7-14
7.5.2 Error Handling ..o e 7-14
7.5.3 Granting Exectite AUthOTItYccccooiiiiiiiiiiiiiic e 7-15
7.6 Calling PGATCPMARP ...t 7-15
7.7 Executing the AppLicationcccovuiiiiiiiiii s 7-15
7.8 Application Development with Multi-Byte Character Set Supportcccoevevvirennnnes 7-16
7.9 Privileges Needed t0 Use TIPS........ccccccuiiiiiiiiiiiicccceeceeceeeeee e 7-17

Problem Determination

8.1 TIP Definition EITOTScoovviviiiiiiiiiiciccic s 8-2
8.2 Problem Analysis with PG DD Diagnostic Referencesccccoooiiiiiiiiiiiiincne 8-3

8.3 Problem Analysis with PG DD Select Scripts ... 8-4

8.4 Data Conversion EITOTS........cccoviiiiiiiiciiccc s 8-5
8.5 Problem Analysis of Data Conversion and Truncation Errors ..., 8-6
8.6 Problem Analysis with TIP Runtime Traces........ccocouoimrieieiicieieeccieee e 8-8
8.7 TIP Runtime Trace CONtrols.........ccccocviiiiiiiininiiiiiiiiic s 8-9
8.7.1 Generating Runtime Data Conversion Trace and Warning Support.........c.cccccceueueeee 8-9
8.7.2 Controlling TIP Runtime Conversion Warningscoeceueeeieeieininicieiienceeenee, 8-9
8.7.3 Controlling TIP Runtime Function Entry /Exit Tracing..........ccccccoovreieiiiiciininnne 8-10
8.7.4 Controlling TIP Runtime Data Conversion Tracing..........c.ccceceveverveveverrrerenerererenenes 8-10
8.7.5 Controlling TIP Runtime Gateway Exchange Tracing............cocoooeuevniiiiniiiiciciinne. 8-10
8.8 Suppressing TIP Warnings and Tracing..........cccooecurieiiiicieiiiicieecce e 8-11
8.9 Gateway Server Tracing.........ccocoviiiiiiiiiiii e 8-12
8.9.1 Defining the Gateway Trace Destinationccoceveiiiiiiiiciccc 8-12
8.9.2 Enabling the Gateway Traceccccoovoiiieiiiiicic 8-13
8.9.2.1 Enabling the Gateway Trace Using Initialization Parameters...........cccccccc........ 8-13
8.9.2.2 Enabling the Gateway Trace Dynamically from PL/SQL........cccccccoorininnnin. 8-13
8.10 Sample Gateway Server Initialization and Trace Output Files.........cccocooiriiiiininns 8-14
8.10.1 Sample Trace Output File for Gateway Using SNAccccceevrvvnnnnninrrccnes 8-14
8.10.2 Sample Trace Output File for Gateway Using TCP/IP.........ccccoooeveiniiniiiiiiicine. 8-19
8.10.3 Sample Output Log for pgdtcpmap Tool ..o 8-24

Procedural Gateway for APPC Data Dictionary

AA PG DD Environment DictiOnary........c.ccoeeiiiiiiiiiiiiic A-2
A1 Environment Dictionary Sequence NUMDbeTrs...........cccocovvirvviinnnninrrrccereenes A-2
A1.2 Environment Dictionary Tables.........cccccooiiiiiiiiiiiicc e A-3
A1.21 PEA_INAINT ..ottt s A-3
A122 PEA_ENVITONMENTESciiiiiiiiiiiiiiiiiccc s A-3
A.1.2.3 PEA_CNV_AtT oottt A-4
Al1.24 PEA_ENV_VALUES ..o A-4
A125 PEA_COMPILETS ...t A-4
A1.26 PEA_AAtatYPeS ..o A-5
A1.27 Pga_datatype_attr.........cooiiiiiiiiiiii s A-5
A1.28 Pga_datatyPe_valUues ... A-5
A1.29 PA_USAZE covrvviviviieieiititctsis ittt sttt A-6
A.1.2.10 PEA_INOAES. ...t s A-6
A2 PG DD Active DICtONATYcocoviiiiiiiiiiiiiiiiii e A-7
A2A1 Active Dictionary Versioning ... A-7
A22 Active Dictionary Sequence NUMDETS...........cccccovviviniiiiiininiicnnces A-7
A23 Active Dictionary Tablesc.cccccoiiiiiiiiiirerrr s A-8
A.2.3.1 PEA_TANS ..o A-8
A.2.3.2 PEA_IANS_Attr (oo A-9
A.2.3.3 PEA_IANS_VAlUES ... A-10
A2.34 Pga_trans_Calls ... A-10
A.2.3.5 PEA_CALL .. A-11
A23.6 PEA_CALL_PATIIL. .o A-12
A.2.3.7 PEA_AAtA. s A-13
A.2.3.8 PEAIELAS ..o A-14

vii

viii

A.2.3.9 Pga_data_attr. ... A-15
A.2.3.10 pga_data_values ... A-16

Gateway RPC Interface

B.1 Calling Gateway Functions to Execute Transaction Programs.............ccccoeeviiirieiniinnnne. B-2
B.1.1 PGAINIT and PGAINIT_SEC ..ot B-2
B.1.2 PGAXFER ...ttt B-5
B.1.3 PGATERM ..ottt B-7
B.1.4 PGATCT Lottt B-8
B.1.5 PGATRAC ... e B-9

The UTL_PG and UTL_RAW Interface

C.1 |81 T S AN A VA AT 4 el 1 o) ¢ TR C-2
C.11 BIT _AND ..ottt ettt ettt tsete et et be et e et e b et et easessessessersessesseteeressessennan C-2
c1.2 BIT_COMPLEMENToooiiiiiisesteteteeetteet ettt ettt saesessassassassennas C-3
C1.3 BIT_OR oottt ettt sttt ettt ets s s ebeeteebaebe et et e besbe b esbesbessessessessesseseasessessansas C4
C.1.4 BIT _XOR.. .ottt ettt ettt ettt ettt et etseteeteetaebe et e et e bessessensessessessessessesseteesessessensan C-5
C.15 CAST_TO_RAW .ottt ettt ettt sttt s bbb esse st esaesaessasessessassessensan C-6
C.1.6 CAST_TO_VARCHARZ ...ttt ettt ettt sse s s ssessessessesseseebesvessenss C-7
C17 COMPARE ...ttt ettt ettt ettt ettt et et e s e b e s easessessessetaetaeseerensan C-8
c.1.8 CONCAT ..ttt ettt ettt e et e et e st et e s e s b e s asbessessassesseseassasaaseaseasensessessensas C-9
C1.9 CONVERT ..ottt sttt ettt ettt ettt et st aeebe b e b e besbessessessessaseassesseseesassessens C-10
C.1.10 COPIES ...ttt ettt ettt ettt te e eteetseasete et e teste s e st esbensensersessensesseseeseesens C-11
C.1.11 LENGTH ...ttt ettt ettt te sttt s s e ssessesseseaseasansasssasessansessens C-11
C.1.12 OVERLALY .ottt ettt sttt ess st taessebeete et e aeebe b e b e bessessessessessessesesssesessassessans C-12
C.1.13 REVERSE ..ottt ettt ettt ettt te et et teete et e te s ae st e sess et ensessessensersesnesserans C-13
C.1.14 SUBSTR ..ottt ettt e sttt et saeaeesesse et e se s e s essessessessessessaseasaasesseasessessessens C-14
C.1.15 TRANSLATE oottt ettt ettt ettt ee et st be s te st e b e b e b essassessessasseseeseasens C-15
C.1.16 TRANSLITERATE ..ottt ettt ettt s et eas s rs s ereeseeseeaens C-16
C.1.17 XRANGE ...ttt ettt ettt ettt st e se s s e et e sesse b esbessessessessessessasassensensens C-17
Cc.2 UTLL PG FUNCHOIS ...e ettt ettt e et s s eatae s sntaesenseesesaesessseesssansssnseessnsesennes C-18
C.21 COoMMON PArameEters........eccuiiiiiieiiieiieciteeee et teeie et e te e vt e s aeebeesseessseessaessseessaesssesnses C-18
C.21.1 Common Input Parameters...........cccoccuccciuiiiiiiiceeeeeeeeeeeeeeneeeeeeneneeeees C-18
cz21.2 Common Output Parameter ... C-19
c.22 RAW_TO_NUMBERcoooiitietieteeteeteeeeeee ettt et e ese s s e es s eveeseeseeneas C-20
c.23 NUMBER_TO_RAW ...ttt ettt e st s e essesaesaesaesasssasassassessens C-21
c24 MAKE_RAW_TO_NUMBER_FORMATc.coveieieieietieieesesreesree e ee et veeve v v C-23
C.25 MAKE_NUMBER_TO_RAW_FORMATcoootiiieirieerieerteesieeesieeeesee s e ssessesessesenens C-25
C.2.6 RAW_TO_NUMBER_FORMATcteoieieieieieieieereettses e ssesessestesse s saesaesassassessens Cc-27
c.27 NUMBER_TO_RAW_FORMATcotiietiieieetereeteeteee et ss e esessese s esa s esessassesnens C-28
c.2.8 TWIMSGONT ...ttt ettt ettt ettt ettt et s b e ebe s b eseebassebessesessesassesansesessesersesensasen C-29
C.2.9 TWIMISG ..ttt ettt ettt st et b et b et b e st et e e s e s e e s et e se s essenbesteneeseeseeseeteesesenrens C-30
C.3 NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values............cccccevvrrrrnnnnn. C-32

Datatype Conversions
DA Length ChecKingcoiiiioiiiei s D-2

D.1.1 Parameters Over 32K in Lengthccocooiiie D-2

D.2 COMVEISION ...ttt b bbb D-3
D.2.1 USAGE(PASS) ..ottt D-3
D.2.2 USAGE(ASIS) ..oviniriiiiniiii s D-8
D.2.3 USAGE(SKIP) ...ttt D-8
D.2.4 PL/SQL Naming AIOTithimsccccccceeiiiiiiiiiiiiiiicicrecereececeeeeeeeeeeeeeee s D-9

E National Language Support

E.1 OVEIVIEW .ottt E-2
E.2 Languages Supported for MeSSagescceueuiiurieiiiiicicicicie e E-2
E.3 Languages Supported for Data CONVerSioN..........cccuoceueieiiecicieiieceie e E-3

F Tip Internals

F.1 Background Readingc.ociiiiiiiiic e F-2
F.2 PL/SQL Package and TIP File Separation.............cccccocccceeueicecccieceeeeeeeceeeeeeeeeeenns F-2
F.2.1 Independent TIP Body Changes...........cccccoeueveiiiiiiiiiiiniiiiiiiiicccccs F-3
F.2.1.1 Determine if a Specification Has Remained Valid..........cccccevviiinnnnnnnnnn F-3
F.2.2 Dependent TIP Body or Specification Changesc.cccccocceieicicneicnrccenene F-4
F.2.2.1 Recompile the TIP BOAYcccocevieiiiiiiiiiiiiiiiiiiccccccs F-5
F.2.3 Inadvertent Alteration of TIP Specification............cccceeiiiiiiiiiiiniiiiiicc F-5

G Administration Utility Samples

G.1 Sample PGAU DEFINE DATA Statements.........cccevuvieueiriniiieininiiciieeseccesesssnenens G-2
G.2 Sample PGAU DEFINE CALL Statements..........c.cccccoeueueieeueueieeeieieieeeeeeeeeeeeeeeeeeeeeeneeeees G-3
G.3 Sample PGAU DEFINE TRANSACTION Statementccccooveveiiiniiiiiciiniciieeiieennens G-3
G.4 Sample PGAU GENERATE Statement.........cccccuviviieuiiiiniiinininiicsiiiceienniceseceneseenns G-3
G.5 Sample Implicit Versioning Definitions ... G-4
G.6 Sample PGAU REDEFINE DATA Statementsccccooveeiniiniiiiiniiiceeceeeeeeeenns G-7
G.7 Sample PGAU UNDEFINE Statements...........c.cccooooeiiiiiiiiiiicieecccce e G-8
G.8 Sample PGAU REPORT OUPUL.....c.cuiiiiiiiiiciiicicicecieccceee e G-9
G.9 Sample TIP Content Documentationccceeeiiiieniiiiiiices G-13
G.10 Sample TIP Trace OULPUL ..o G-16
G171 Sample TIP OULPUL ..o G-18
Index

Preface

The Oracle Procedural Gateway for APPC provides Oracle applications seamless
access to virtually any APPC-enabled system, including IBM mainframe data and
services through Remote Procedure Call (RPC) processing. This document is intended
for Windows users.

Intended Audience
Read this guide if you are responsible for tasks such as:
s determining hardware and software requirements
= installing, configuring, or administering an Oracle Procedural Gateway for APPC

= developing applications that access remote host databases through the Oracle
Procedural Gateway for APPC using the SNA Communication Protocol or the
TCP/IP communication protocol

= determining security requirements
= determining and resolving problems

Before using this guide to administer the gateway, you should understand the
fundamentals of your Microsoft Windows operating system and Procedural Gateways.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xi

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services

within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

The Oracle Procedural Gateway for APPC User’s Guide for Microsoft Windows is included
as part of your product shipment. Also included is:

» Oracle Procedural Gateway for APPC Messages Guide for UNIX and Microsoft Windows
» Oracle Procedural Gateway for APPC Installation and Configuration Guide

You might also need Oracle Database 10g and Oracle Net documentation. The
following is a useful list of the Oracle publications that may be referenced in this book:

» Oracle Database Installation Guide 10g Release 2 (10.2) for Microsoft Windows (32-Bit)

» Oracle Database Administrator’s Guide 10g Release 2 (10.2) for Microsoft Windows
(32-Bit)

» Oracle Database Application Developer’s Guide
» Oracle Database Server Concepts

» Oracle Database Server Distributed Systems

» Oracle Database Error Messages

» Oracle Net Services Administrator’s Guide

Refer to the Oracle Technical Publications Catalog and Price Guide for a complete list of
documentation provided for Oracle products.

Conventions

Xii

Examples of input and output for the gateway and Oracle environment are shown in a
special font:

C:\> mkdir \ORACLE\your name
All output is shown as it appears. For input, refer to the following list of conventions
and their meanings:

= example text: Words or phrases, such as mkdir and ORACLE, must be
entered exactly as spelled and in the letter case shown. In this example, mkdir
must be entered in lowercase letters and ORACLE in uppercase letters.

» ifalic text: Italicized uppercase or lowercase, such as your_name, indicates that
you must substitute a word or phrase, such as the actual directory name.

= BOLD text orbolditalic TEXT: Bold words or phrases refer to a file or
directory structure, such as a directory, path, or file ID.

= .. Ellipsesindicate that the preceding item can be repeated. You can enter an
arbitrary number of similar items.

s {} Curly braces indicate that one of the enclosed arguments is required. Do not
enter the braces themselves.

m | Vertical lines separate choices

s [] Square brackets enclose optional clauses from which you can choose one or
none. Do not enter the brackets themselves.

Other punctuation, such as commas, quotation marks or the pipe symbol () must be
entered as shown unless otherwise specified. Directory names, file IDs and so on
appear in the required letter case in examples. The same convention is used when
these names appear in text, and the names are highlighted in bold. The use of italics
indicates that those portions of a file ID that appear in italics can vary.

Gateway commands, file IDs and reserved words, MS-DOS commands, keywords and
environment variables appear in uppercase in examples and text. Reserved words and
keywords must always be entered as shown; they have reserved meanings within the
Oracle system.

SQL*Plus Prompts

The SQL*Plus prompt, SQL>, appears in SQL statement and SQL*Plus command
examples. Enter your response at the prompt. Do not enter the text of the prompt,
SQL>, in your response.

MS-DOS Prompts

The MS-DOS prompt, C:\>, appears in MS-DOC command examples. Enter your
response at the prompt. Do not enter the text of the prompt, C: \ >, in your response.

PGAU Prompts

The PGAU prompt, PGAU>, appears in PGAU command examples. Enter your
response at the prompt. Do not enter the text of the prompt, PGAU>, in your response.

Directory Names

Throughout this document, there are references to the directories in which
product-related files reside. % ORACLE_HOME% is used to represent the Oracle
home directory. This is the default location for Oracle products. If you have installed
into a location other than %ORACLE_HOME%, replace all references to
%ORACLE_HOME% with the drive and path specification you have used.

Storage Measurements
Storage measurements use the following abbreviations:

» K for kilobyte which equals 1024 bytes
= M, for megabyte which equals 1 048 576 bytes
= G, for gigabyte which equals 1 073 741 824 bytes

xiii

Accessing Installed Documentation

Documentation for Oracle Procedural Gateway for APPC for Windows

Documentation for this product includes this guide and the Oracle Procedural Gateway
for APPC Installation and Configuration Guide 10g Release 2 (10.2) for Microsoft Windows
(32-Bit) and the Oracle Procedural Gateway for APPC Messages Guide 10 Release 2
(10.2) for UNIX and Windows.

To access the documentation in HTML and PDF formats, use a browser to open the top
level of the Gateway Documentation CD-ROM. This level contains links to product
and Windows-specific documentation.

Oracle Product Documentation

Oracle Database 10g product documentation is on the Oracle Database 10g
Platform-Specific Documentation CD-ROM. Instructions for accessing and installing
the documents on the CD-ROM are found in the README file on the top level
directory of the CD-ROM.

Oracle Services and Support

Xiv

Oracle’s corporate web page is at the following address:

http://www.oracle.com

Oracle offers a wide range of services to help facilitate corporate system solutions,
including Oracle Education courses, Oracle Consulting services, and Oracle Support
Services from the Web site. In addition, Oracle provides free trial software, updates on
Oracle products and service, and technical brochures and data sheets.

Oracle Support Services

Technical Support registration and contact information worldwide is available at the
following address:

http://www.oracle.com/support
At Oracle’s support site, you will find templates to help you prepare information
about your problem before you call so that you may be helped more quickly. You will

also need your CSI number (if applicable) or complete contact details, including any
special project information.

Oracle Technology Network

OTN delivers all product documentation, as well as technical papers, code samples,
self-service developer support, and Oracle’s key developer products to enable rapid
development and deployment of applications built on Oracle technology.

Register with the Oracle Technology Network (OTN) at:

http://otn.oracle.com

All Oracle product documentation can be found at:

http://otn.oracle.com/documentation

OracleMetalLink

OracleMetaLink is Oracle’s web service for technical information. Members of
OracleMetaLink can search for updates, alerts, patches, and other information about
products, releases, and operating systems, or set preferences to be notified
automatically of new information. OracleMetaLink offers a variety of services to assist
in setting up and administrating Oracle products, including procedures, scripts,
commentary, and tuning and configuration best-practices bulletins. Please logon to
OracleMetaLink before installing or administrating your product to search for up to
date information about Oracle Database 10g Release 2 (10.2) for Microsoft Windows
(32-Bit).

In addition, OracleMetaLink offers forums for information sharing among Oracle
customers, and direct communication with Oracle Support Services. OracleMetaLink is
available to Product Support Customers at no extra cost. Sign up for free membership
for this service at the following site:

http://www.oracle.com/support/metalink

Use your Support Access Code (SAC) number to register.

Oracle Products and Other Documentation
For U.S.A. customers, the Oracle Store is at:

http://store.oracle.com

Links to Stores in other countries are provided from this site.

Customer Service
Oracle Support Services contacts are listed at:

http://www.oracle.com/support

Support for Hearing and Speech Impaired Customers

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week.

= For technical questions, call:
1.800.446.2398
= For non-technical questions, call:

1.800.464.2330

Education and Training
Training information and worldwide schedules are available from:

http://education.oracle.com

XV

XVi

1

Introduction to Oracle Procedural Gateway
for APPC

This guide is intended for for Microsoft Windows (32-Bit) users.

Refer to the Oracle Database Installation Guide 10g Release 2 (10.2) for Microsoft Windows
(32-Bit) and to the certification matrix on the OracleMetaLink Web site for the most
up-to-date list of certified hardware platforms and operating system versions. The
OracleMetaLink Web site can be found at:

http://metalink.oracle.com

The Oracle Procedural Gateway for APPC (the "gateway") enables users to initiate
transaction program execution on remote online transaction processors (OLTPs). The
Oracle Procedural Gateway for APPC can establish connection with OLTP using the
SNA communication protocol. The gateway can also use TCP/IP for IMS Connect to
establish communication with IMS/TM through TCP/IP. The gateway provides
Oracle applications with seamless access to IBM mainframe data and services through
Remote Procedural Call (RPC) processing.

Read this chapter to learn more about the architecture, uses, and features of the Oracle
Procedural Gateway for APPC.

This chapter contains the following sections:

= "Overview of the Gateway" on page 1-2

s "Peatures of the Gateway" on page 1-2

s "Terms" on page 1-4

= "Examples and Sample Files for the Gateway" on page 1-6
= "Architecture of the Gateway" on page 1-7

= "Starting the Gateway" on page 1-8

s "Communication With the Gateway" on page 1-8

s "Remote Procedural Call Functions" on page 1-9

= "Overview of a Gateway Using SNA" on page 1-10

= 'Simple Gateway Communication With the Oracle Server (SNA)" on page 1-11

= "Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA" on
page 1-12

= "Overview of a Gateway Using TCP/IP" on page 1-14
= "Simple Gateway Communication with the Oracle Server (TCP/IP)" on page 1-14

Introduction to Oracle Procedural Gateway for APPC 1-1

Overview of the Gateway

s 'Preparing the Gateway to Communicate Using TCP/IP" on page 1-15

= "Steps to Communication Between the Gateway and IMS, Using TCP/IP" on
page 1-15

= "Steps to Writing a TIP on a Gateway Using TCP/IP" on page 1-17

1.1 Overview of the Gateway

The Oracle Procedural Gateway for APPC extends the Remote Procedural Call (RPC)
facilities available with the Oracle server. The gateway enables any client application
to use PL/SQL to request execution of a remote transaction program (RTP) residing on
a host. The gateway provides RPC processing to systems using the SNA APPC
(Advanced Program-to-Program Communication) protocol and to IMS/TM systems
using TCP/IP support for IMS Connect. This architecture allows efficient access to
data and transactions available on the IBM mainframe and IMS, respectively.

The gateway requires no Oracle software on the remote host system. Thus, the
gateway uses existing transactions with little or no programming effort on the remote
host.

1 For gateways using SNA only: The use of a generic and standard protocol, APPC,
allows the gateway to access a multitude of systems. The gateway can
communicate with virtually any APPC-enabled system, including IBM
Corporation’s CICS on any platform, IBM Corporation’s IMS and APPC/MVS,
and Computer Associates’ IDMS. These transaction monitors provide access to a
broad range of systems, allowing the gateway to access many datastores,
including VSAM, DB2 (static SQL), IMS, IDMS, ADABAS and others.

The gateway can access any application capable of using the CPI-C AP, either
directly or through a TP monitor such as CICS.

1.2 Features of the Gateway
The Oracle Procedural Gateway for APPC provides the following benefits:
= Fastinterface

The gateway is optimized so that remote execution of a program is achieved with
minimum network traffic. The interface to the gateway is an optimized PL/SQL
stored procedure specification (called the "TIP" or "transaction interface package")
precompiled in the Oracle Integrating Server. Because there are no additional
software layers on the remote host, overhead occurs only when your program
executes.

= Location transparency

Client applications need not be operating system-specific. For example, your
application can call a program in a CICS Transaction Server for z/OS. If you move
the program to a CICS region on AIX, then you need not change the application.

= Application transparency

Users calling applications that execute a remote transaction program are unaware
that a request is sent to a host.

s Flexible interface

You can use the gateway to interface with existing procedural logic or to integrate
new procedural logic into an Oracle Integrating Server environment.

s Oracle server integration

1-2 Oracle Procedural Gateway for APPC User’'s Guide

Features of the Gateway

The integration of the Oracle server with the gateway enables the gateway to
benefit from existing and future Oracle features. For example, the gateway can be
called from an Oracle stored procedure or database trigger.

Transactional support

The gateway and the Oracle Integrating Server allow remote transfer updates and
Oracle server updates to be performed in a coordinated fashion.

Wide selection of tools
The gateway supports any tool or application that supports PL/SQL.
PL/SQL code generator

The Oracle Procedural Gateway for APPC provides a powerful development
environment, including;:

- adata dictionary to store information relevant to the remote transaction
- atool to generate the PL/SQL Transaction Interface Package, or TIP

- areport utility to view the information stored in the gateway dictionary
- acomplete set of tracing and debugging facilities

— awide set of samples to demonstrate the use of the product against datastores
such as DB2, IMS, IDMS, CICS, and ADABAS

Site autonomy and security

The gateway provides site autonomy, allowing you to do such things as
authenticate users. It also provides role-based security compatible with any
security package running on your mainframe computer.

Automatic conversion

Through the TIP, the following conversions are performed:

- ASCII to and from EBCDIC

- remote transaction program datatypes to and from PL/SQL datatypes
- national language support for many languages

TCP/1IP support for IMS Connect

This release of the gateway includes TCP/IP support for IMS Connect, giving
users a choice of whether to use an SNA or TCP/IP communication protocol. IMS
Connect is an IBM product which allows TCP/IP clients to trigger execution of
IMS transactions. The gateway can use a TCP/IP communication protocol to
access IMS Connect, which triggers execution of IMS transactions. There is no
SNA involvement with this configuration.

Related to this new feature of the gateway is:

s The gateway mapping tool. This release of the gateway includes a tool
(pg4tcpmap) whose purpose is to map the information from your SNA Side
Profile Name to the TCP/IP host name and Port Number. For more
information about the pg4tcpmap tool, refer to Chapter 6 of this guide and to
Chapter 10 of the Oracle Procedural Gateway for APPC Installation and
Configuration Guide regarding configuration of the gateway using TCP/IP.

Note: When your communications protocol is TCP/IP, only IMS
is supported as the Online Transaction Processor (OLTP).

Introduction to Oracle Procedural Gateway for APPC 1-3

Terms

1.3 Terms

The following terms and definitions are used throughout this guide:

Gateway Initialization File

This file is known as initsid.ora and it contains parameters that govern the operation
of the gateway. If you are using the SNA protocol, refer to Appendix A, "Gateway
Initialization Parameters for SNA Protocol" in the Oracle Procedural Gateway for APPC
Installation and Configuration Guide for more information. If your protocol is TCP/IP,
refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication
Protocol" in the Oracle Procedural Gateway for APPC Installation and Configuration Guide.

Gateway Remote Procedure

The Oracle Procedural Gateway for APPC provides prebuilt remote procedures. In
general, the following three remote procedures are used:

s PGAINIT, which initializes transactions

s PGAXFER, which transfers data

s PGATERM, which terminates transactions

Refer to Appendix B, "Gateway RPC Interface" in this guide and to "Remote
Procedural Call Functions" in Chapter 1 of the Oracle Procedural Gateway for APPC
Installation and Configuration Guide for more information about gateway remote
procedures.

tg4pwd

tgdpwd is a utility which encrypts passwords that are normally stored in the gateway
initialization file. Passwords are stored in an encrypted form in the password file,
making the information more secure. Refer to "Passwords in the Gateway Initialization
File" in the security requirements chapter of the Oracle Procedural Gateway for APPC
Installation and Configuration Guide for detailed information about how the tgdpwd
utility works.

pgdtcpmap Tool

This tool is applicable only when the gateway is using TCP/IP support for IMS
Connect. Its function is to map SNA parameters (such as Side Profile Name) to TCP/IP
parameters (such as OLTP host name, IMS Connect port number and IMS destination
ID).

PGA (Procedural Gateway Administration)

PGA is a general reference within this guide to all or most components comprising the
Oracle Procedural Gateway for APPC. This term is used when references to a specific
product or component are too narrow.

PGDL (Procedural Gateway Definition Language)
PGDL is the collection of statements used to define transactions and data to the PGAU.

PL/SQL Stored Procedure Specification (PL/SQL package)
This is a precompiled PL/SQL procedure that is stored in Oracle Integrating Server.

1-4 Oracle Procedural Gateway for APPC User’'s Guide

Terms

UTL_RAW PL/SQL Package (the UTL_RAW Functions)

This component of the gateway represents a series of data conversion functions for
PL/SQL RAW variables and remote host data. The types of conversions performed
depend on the language of the remote host data. Refer to Appendix D, "Datatype
Conversions" in this guide for more information.

UTL_PG PL/SQL Package (the UTL_PG Functions)

This component of the gateway represents a series of COBOL numeric data conversion
functions. Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values"
in Appendix C of this guide for supported numeric datatype conversions.

Oracle Integrating Server

This is any Oracle server instance that communicates with the gateway for purposes of
performing remote procedural calls to execute remote transaction programs (RTP). The
Oracle Integrating Server can be on the same system as the gateway or on a different
system. If it is on a different system, then Oracle Net is required on both systems. Refer
to Figure 1-2, "Gateway Architecture Featuring SNA or TCP/IP Protocol" for a view of
the gateway architecture.

OLTP (Online Transaction Processor)

OLTP is any of a number of online transaction processors available from other
vendors, including CICS Transaction Server for z/OS, IMS/TM, and IDMS-DC.

Note: When your communications protocol is TCP/IP, only IMS
is supported as the Online Transaction Processor (OLTP).

PGAU (Procedural Gateway Administration Utility)

PGAU is the tool that is used to define and generate PL/SQL transaction interface
packages (TIPs). Refer to Chapter 2, "Procedural Gateway Administration Utility" in
this guide for more information about PGAU.

PG DD (Data Dictionary)

This component of the gateway is a repository of remote host transaction definitions
and data definitions. PGAU accesses definitions in the PG DD when generating TIPs.
The PG DD has datatype dependencies because it supports the PGAU and is not
intended to be directly accessed by the customer. Refer to Appendix A, "Procedural
Gateway for APPC Data Dictionary" in this guide for a list of PG DD tables.

RPC (Remote Procedural Call)

RPC is a programming call that executes program logic on one system in response to a
request from another system. Refer to "Gateway Remote Procedure” in Appendix C of
the Oracle Procedural Gateway for APPC Installation and Configuration Guide, and to
Appendix B, "Gateway RPC Interface" in this guide for more information.

RTP (Remote Transaction Program)

A remote transaction program is a customer-written transaction, running under the
control of an OLTP, which the user invokes remotely using a PL/SQL procedure. To
execute a remote transaction program through the gateway, you must use RPC to
execute a PL/SQL program to call the gateway functions.

Introduction to Oracle Procedural Gateway for APPC 1-5

Examples and Sample Files for the Gateway

TIP (Transaction Interface Package)

A TIP is an Oracle PL/SQL package that exists between your application and the
remote transaction program. The transaction interface package, or TIP, is a set of
PL/SQL stored procedures that invoke the remote transaction program through the
gateway. TIPs perform the conversion and reformatting of remote host data using
PL/SQL and UTL_RAW /UTL_PG functions.

Figure 1-1 illustrates where the terminology discussed in the preceding sections
applies to the gateway’s architecture.

Figure 1-1 Relationship of Gateway and Oracle Integrating Server on Windows

Microsoft Windows

Integrating Oracle

Server Net Gateway
D | ~—— . = Remote
Transaction Procedure Calls

Interface Package

Client

PGDD

Data Dictionary PGAU

¢
o
,QO
R [Mainframe J- - - - - - o g '
; P
g

: OLTP

. Remote :
Transaction '
Program

Figure 1-1 provides an illustration of the relationship between the gateway and the
Oracle Integrating Server on a Windows host. The client is connected to the Oracle
Integrating Server, which is connected to the gateway, which holds the gateway
remote procedure calls and PGAU, via Oracle Net . They are connected to the OLTP in
the Mainframe via TCP/IP or SNA. Figure 1-1 is adequately described in the text
surrounding it.

End of description.

1.4 Examples and Sample Files for the Gateway

The following sample files and examples are referred to for illustration purposes
throughout this guide. There are different example and sample files for a gateway
using the SNA protocol than for a gateway using TCP/IP for IMS Connect.

Examples and Sample Files for Gateway Using SNA

For gateways using the SNA communication protocol, this guide uses a CICS-DB2
inquiry as an example. Transaction Interface Packages (TIPs) pgadb2i.pkb and
pgadb2i.pkh send an employee number, empno, to a DB2 application and receive an
employee record, emprec.

1-6 Oracle Procedural Gateway for APPC User’'s Guide

Architecture of the Gateway

The CICS-DB2 inquiry sample and its associated PGAU commands are also available
in the %ORACLE_HOME%\pg4appc\demo\CICS directory. The sample CICS-DB2
inquiry used as an example in this chapter is in files pgadb2i.pkh and pgadb2i.pkb.
Refer to the README.doc file in the same directory for information about installing
and using the samples. It can be found in the
%ORACLE_HOME%pg4appc\demo\CICS directory.

Examples and Sample Files for Gateway Using TCP/IP

If your gateway is using the TCP/IP communication protocol, this guide uses an IMS
inquiry as an example. Transaction Interface Packages (TIPs) pgtflip.pkh and
pgtflip.pkb send input to IMS, through IMS Connect, and receive the flipped input as
the output.

The IMS inquiry sample (FLIP) and its associated PGAU commands are located in the
%ORACLE_HOME%\pgd4appc\demo\IMS directory. The sample IMS inquiry used
as an example for a gateway using TCP/IP is located in files pgtflip.pkh and
pgtflip.pkb.

Refer to the README.doc file for more information about installing and using other
IMS samples. It can be found in the %ORACLE_HOME% \pgdappc\demo\IMS
directory.

1.5 Architecture of the Gateway

The architecture of Oracle Procedural Gateway for APPC consists of several
components:

1. Oracle Integrating Server

Refer to the configuration chapter appropriate to your communications protocol in
the Oracle Procedural Gateway for APPC Installation and Configuration Guide for a
description of the various methods for establishing the gateway-Oracle Integrating
Server relationship.

The Oracle Integrating Server can also be used for non-gateway applications.
2. The gateway

Oracle Procedural Gateway for APPC must be installed on a server that can run
the required version of the operating system.

3. An OLTP (online transaction processor)

The OLTP must be accessible from the gateway using your SNA or TCP/IP
communication protocol. Multiple Oracle Integrating Servers can access the same

gateway. A single system gateway installation can be configured to access more
than one OLTP.

- For gateway using TCP/IP for IMS Connect: The only OLTP that is supported
through TCP/IP is IMS through IMS Connect.

— The OLTP must be accessible to the system using the TCP/IP protocol.
Multiple Oracle Integrating Servers can access the same gateway. A single
system gateway installation can be configured to access more than one OLTP.
Multiple IMS can be accessed from an IMS Connect. If you have a number of
IMS Connect systems available, any of these may be connected to one or more
IMS systems.

Figure 1-2 illustrates the architecture of the Oracle Procedural Gateway for APPC
using SNA or TCP/IP, as described in the previous section.

Introduction to Oracle Procedural Gateway for APPC 1-7

Starting the Gateway

Figure 1-2 Gateway Architecture Featuring SNA or TCP/IP Protocol

O YSAM
Microsoft 0 DB2
Oracle Server Windows n
S{ % IMS/DB
Oracle Net % z © | ADABAS
% aprc | ~ | €| o[Dms
z ol » | F| &
» T | |3 surma
.| % 3 O
=] U — Z
§ é o DATACOM
9 2|7 % Other
g = % Databases
z |2 |© i
- g8 APPC Other Options:
. —~ 3 — = CIC5/400
Client CICSA/SE
-
o
% —
o — :
TcPP || ol =
ol 8| =
Bl = %
==
_|

Figure 1-2 illustrates the architecture of the gateway when using either the SNA or
TCP/IP communication protocol. It is adequately described in the text surrounding
the figure.

End of description.

1.6 Starting the Gateway

Because the gateway does not have background processes and doesn’t need a
management utility such as Oracle Enterprise Manager, you needn’t "start" the
gateway. Each Oracle Integrating Server user session that accesses a particular
gateway creates an independent process on Windows that runs the gateway server
and executes either the SNA or TCP/IP functions to communicate with an OLTP,
depending upon your protocol.

1.7 Communication With the Gateway

All of the communication between the user or client program and the gateway is
handled through a transaction interface package (TIP) which executes on an Oracle
Integrating Server. The TIP is a standard PL/SQL package that provides the following
functions:

= declares the PL/SQL variables that can be exchanged with a remote transaction
program;

= calls the gateway packages that handle the communications for starting the
conversation, exchanging data and terminating the conversation;

1-8 Oracle Procedural Gateway for APPC User’'s Guide

Remote Procedural Call Functions

= handles all datatype conversions between PL/SQL datatypes and the target
program datatypes.

The Procedural Gateway Administration Utility (PGAU), provided with the gateway,
automatically generates the TIP specification.

The gateway is identified to the Oracle Integrating Server using a database link. The
database link is the same construct used to identify other Oracle server databases. The
functions in the gateway are referenced in PL/SQL as:

function name@dblink name

1.8 Remote Procedural Call Functions

The Oracle Procedural Gateway for APPC provides a set of functions that are invoked
by the client through remote procedural call (RPC). These functions direct the gateway
to initiate, transfer data with, and terminate remote transaction programs running
under an OLTP on another system.

Table 1-1 lists the remote procedural call functions and the correlating commands that
are invoked in the gateway and remote host.

Table 1-1 RPC Functions and Commands in the Gateway and Remote Host

Applications Oracle TIP Gateway Remote Host

call tip_init tip_init PGAINIT Initiate program
call pgainit@gateway

call tip_main tip_main PGAXFER Exchange data
call pgaxfer@gateway

call tip_term tip_term PGATERM Terminate program
call pgaterm@gateway

1.8.1 TIP Function

The following sections describe how a TIP works by first establishing a connection to
the remote host, then exchanging data from the target transaction program and finally,
terminating a conversation.

1.8.1.1 Remote Transaction Initiation

The TIP initiates a connection to the remote host using one of the gateway functions,
PGAINIT.

When the communication protocol is SNA: PGAINIT provides, as input, the required
SNA parameters to start a conversation with the target transaction program. These
parameters are sent across the SNA network, which returns a conversation identifier
to PGAINIT. Any future calls to the target program use the conversation identifier as
an INPUT parameter.

When the communication protocol is TCP/IP: PGAINIT provides, as input, the
required TCP/IP parameters.These parameters are sent across the TCP/IP network to
start the conversation with the target transaction program; the TCP/IP network
returns a socket file descriptor to PGAINIT. Any future calls, such as PGAXFER and
PGATERM, use this same socket file descriptor as an input parameter.

Introduction to Oracle Procedural Gateway for APPC 1-9

Overview of a Gateway Using SNA

1.8.1.2 Data Exchange

After the conversation is established, a procedural gateway function called PGAXFER
can exchange data in the form of input and output variables. PGAXFER sends and
receives buffers to and from the target transaction program. The gateway sees a buffer
as only a RAW stream of bytes. The TIP that is residing in the Oracle Integrating
Server is responsible for converting the application’s PL/SQL datatypes to RAW
before sending the buffer to the gateway. It is also responsible for converting RAW to
the PL/SQL datatypes before returning the results to the application.

1.8.1.3 Remote Transaction Termination

When communication with the remote program is complete, the gateway function
PGATERM terminates the conversation between the gateway and the remote host.

When the communication protocol is SNA: PGATERM uses the conversation
identifier as an INPUT parameter to request conversation termination.

When the communication protocol is TCP/IP: PGATERM uses the socket file
descriptor for TCP/IP as an INPUT parameter to request conversation termination.

1 At this point, if your communication protocol is SNA, then proceed to the
following section, Section 1.9, "Overview of a Gateway Using SNA" on page 1-10.

1 If your gateway communication protocol is TCP/IP, then proceed to Section 1.12,
"Overview of a Gateway Using TCP/IP" on page 1-14.

1.9 Overview of a Gateway Using SNA

If you are using the SNA communication protocol, read the following sections to
develop an understanding of how the gateway communicates with the Oracle
Integrating Server and with the mainframe, as well as transaction types unique to your
gateway and writing TIPs.

1.9.1 Transaction Types for a Gateway Using SNA

The Oracle Procedural Gateway for APPC supports three types of transactions that
read data from and write data to remote host systems:

s one-shot

In a one-shot transaction, the application initializes the connection, exchanges data
and terminates the connection, all in a single call.

= persistent

In a persistent transaction, multiple calls to exchange data with the remote
transaction can be executed before terminating the conversation.

s multi-conversational

In a multi-conversation transaction, the procedural gateway server can be used to
exchange multiple records in one call to the remote transaction program.

Refer to "Remote Host Transaction Types" in Chapter 4, "Client Application
Development (SNA Only)" of this guide for more information about transaction types.

The following list demonstrates examples of the power of the Oracle Procedural
Gateway for APPC:

= You can initiate a CICS transaction on the mainframe to retrieve data from a
VSAM file for a PC application.

1-10 Oracle Procedural Gateway for APPC User’s Guide

Simple Gateway Communication With the Oracle Server (SNA)

= You can modify and monitor the operation of a remote process control computer.
= You can initiate an IMS/TM transaction that executes static SQL in DB2.

= You can initiate a CICS transaction that returns a large number of records in a
single call.

1.10 Simple Gateway Communication With the Oracle Server (SNA)

This section describes simple communication between the mainframe and the Oracle
Integrating Server on a gateway using the SNA communication protocol. The Oracle
Procedural Gateway for APPC lets you write your own procedures to begin
transferring information between the Oracle Integrating Server and a variety of
programs on an IBM mainframe, including IBM CICS, IMS, and APPC/MVS.

For an illustration of the communications function of the Oracle Procedural Gateway
for APPC, refer to %ORACLE_HOME% \pgdappc\demo\CICS\pgacics.sql, which is
a simple sample communication between the Oracle server and CICS Transaction
Server for z/OS. Executing the simple PL/SQL procedure pgacics.sql causes the
Oracle Integrating Server to invoke the procedural gateway, which uses SNA to
converse with the FLIP transaction in CICS. These steps are described in detail in
Section 1.10.1, "Steps to Communication Between Gateway and Mainframe, Using
SNA". Note that you will already have compiled and linked the stored procedure
when you configured the gateway.

1.10.1 Steps to Communication Between Gateway and Mainframe, Using SNA

The following steps describe the Windows-to-mainframe communications process
illustrated in Figure 1-3, "Communication Between the Oracle Server and the
Mainframe, Using SNA" when your communication protocol is SNA to communicate
between the gateway and the mainframe:

1. From SQL*Plus, execute pgacics; this invokes the PL/SQL stored procedure in the
Oracle Integrating Server.

C:\> sqglplus <userid>/<password>@<database specification strings
SQL> execute pgacics(’==< .SCIC htiw gnitacinummoc si yawetag ruoy
,snoitalutargnoC >==');

2. The pgacics PL/SQL stored procedure will start up the gateway. The gateway will
start up communication with CICS Transaction Server for z/OS through SNA and
will call FLIP.

3. FLIP processes the input, generates the output and sends the output back to the
procedural gateway.

4. Finally, the procedural gateway will send the output back to the PL/SQL stored
procedure in the Oracle Integrating Server. The result is displayed in SQL*Plus:

==> Congratulations, your gateway is communicating with CICS. <==
PL/SQL procedure successfully completed.

Figure 1-3, "Communication Between the Oracle Server and the Mainframe, Using
SNA" illustrates the communications process described in steps 1 through 4 in the
previous section.

Introduction to Oracle Procedural Gateway for APPC 1-11

Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA

Figure 1-3 Communication Between the Oracle Server and the Mainframe, Using SNA

S CWindewsD < |

! Cracle Integrating Server

SOl =execute pgacles '(snoitalutargno)’

—— 1| | Congratulations
; FL/AOL procedure successfully completed |
2l Ly . 1 4
|
2 \

Client . Procedural Gateveay \ '

PGAINT@PGAL.. | :
: PCAXFER @ PGAL..); ,
' PGATERM @ PSA (.)

Figure 1-3 describes an illustration of the communication flow between the gateway
and the mainframe, using SNA. This figure is adequately described in the sections
preceding it.

End of description.

1.11 Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA

Most transactions using SNA communication protocol are much larger and more
complex than the simple sample pgacics.sql file referred to in Figure 1-3,
"Communication Between the Oracle Server and the Mainframe, Using SNA".
Additionally, communication with a normal-sized RTP (remote transaction program)
would require you to create an extremely long PL/SQL file. Oracle Procedural
Gateway for APPC’s PGAU function generates the PL/SQL procedure for you.

The following is a brief description of the four steps necessary for you to generate a
TIP. Refer to Chapter 3, "Creating a TIP" for detailed information about this procedure,
and refer to Chapter 2, "Procedural Gateway Administration Utility" for more
information about PGAU.

All parameter names in this section are taken from a file called pgadb2i.ctl in the
%ORACLE_HOME%\pga4appc\demo\CICS directory.

1.11.1 Steps to Writing a TIP on a Gateway Using SNA

Follow these steps to write a TIP.

1-12 Oracle Procedural Gateway for APPC User’s Guide

Writing TIPs to Generate PL/SQL Programs on Gateway Using SNA

Step 1 Create a control file:

The user writes the control files. The control file has four main types of PGAU
commands:

1. DEFINE DATA. This is used to define input and output fields, using COBOL data
definitions.

= Sample define data:

define data empno plsdname (empno) usage (pass) language (ibmvscobolii)
infile("empno.cob") ;

2. DEFINE CALL. This is used to define PL/SQL functions calls to be generated as
part of the package.

= Sample define call:

define call db2imain pkgcall (pgadb2i main)
parms ((empno in), (emprec out));

3. DEFINE TRANSACTION. This is used to group the above functions and specify
other parameters on which the TIP depends.

= Sample define transaction:

define transaction db2i call(db2imain,db2idiag)
sideprofile (CICSPGA)
tpname (DB2I)
logmode (oraplu62)
synclevel (0)
nls language ("american america.we8ebcdic37c");

4. GENERATE. This is used to generate the TIP specification files from the
previously stored transaction, call and data definitions.

= Sample generate transaction:

generate db2i pkgname (pgadb2i) pganode (pga) outfile ("pgadb2i");

Step 2 Execute the control file within PGAU

Running the control file within PGAU will create PG DD entries for the data, call, and
transaction definitions, and will generate the specification files (For example,
pgadb2i.pkh and pgadb2i.pkb):

C:\> pgau
PGAU> CONNECT<userid>/<password>@<database>_ specification_ string>
PGAU> @pgadb2i.ctl

Step 3 Execute the specification files
Running the specification files will create the PL/SQL stored procedures. Note that the
header specification file (for example, pgadb2i.pkh) must be run first:

C:\> sqlplus<userids>/<password>@<database specification string»
SQL> @pgadb2i.pkh;
SQL> @pgadb2i.pkb;

Introduction to Oracle Procedural Gateway for APPC 1-13

Overview of a Gateway Using TCP/IP

Step 4 Create a driver procedure to run the TIP

The TIP is now ready for use. For convenience, it will usually be called using a driver
procedure (for example, db2idriv). This driver will then call the individual stored
procedures in the correct order. Create the driver procedure and run it:

C:\> sqglplus <userid>/<password>@<database specification string>
SQL> @pgadb2id.sqgl
SQL> execute db2idriv(’000320’);

1.12 Overview of a Gateway Using TCP/IP

If you are using the TCP/IP communication protocol, read the following sections to
develop an understanding of how the gateway communicates with the Oracle
Integrating Server and with the mainframe, as well as transaction types unique to your
gateway and writing TIPs.

1.12.1 Transaction Types for a Gateway Using TCP/IP

The Oracle Procedural Gateway for APPC using TCP/IP support for IMS Connect
supports three types of transaction socket connections:

= transaction socket

The socket connection lasts across a single transaction.
= persistent socket

The socket connection lasts across multiple transactions.
= non-persistent socket

The socket connection lasts across a single exchange consisting of one input and
one output.

Note: Do not use the non-persistent socket type if you plan on
implementing conversational transactions because multiple
connects and disconnects will occur.

Refer to the section about pg4tcpmap commands in Chapter 6, "PG4TCPMAP
Commands (TCP/IP Only)" of this guide for more information about the function
and use of these parameters.

You can initiate an IMS/TM transaction that executes static SQL in DB2; this
illustrates the power of the Oracle Procedural Gateway for APPC’s feature
supporting TCP/IP for IMS Connect.

1.13 Simple Gateway Communication with the Oracle Server (TCP/IP)

This section describes simple communication between IMS and the Oracle Integrating
Server whenTCP/IP for IMS Connect is being used as the communication protocol
between the gateway and the remote host (IMS). The Oracle Procedural Gateway for
APPC lets you write your own procedures to begin transferring information between
the Oracle Integrating Server and I/O PCB programs on IMS.

For an illustration of the communications function of the gateway using TCP/IP for
IMS Connect, refer to %ORACLE_HOME% \pgd4appc\demo\IMS\pgaims.sql file.

1-14 Oracle Procedural Gateway for APPC User’s Guide

Simple Gateway Communication with the Oracle Server (TCP/IP)

Executing the simple PL/SQL procedure pgaims.sql causes the Oracle Integrating
Server to invoke the gateway, which uses TCP/IP to converse with the sample
transaction FLIP in IMS. The communication steps that take place when you execute
the PL/SQL procedure are described in detail in Section 1.13.2, "Steps to
Communication Between the Gateway and IMS, Using TCP/IP". Note that you will
already have compiled and linked the stored procedure when you configured the
gateway.

1.13.1 Preparing the Gateway to Communicate Using TCP/IP

If your gateway is using TCP/IP support for IMS Connect, then you must use the
pgétcpmap tool to create the required mapping between PGAINIT parameters and the
target system network address information. The pg4tcpmap tool maps the Side Profile
Name specified in a DEFINE TRANSACTION to TCP/IP and IMS Connect attributes,
such as port number, IP address (host name) and IMS subsystem ID. The TCP/IP
parameters are used to start a conversation with the target transaction program.

The pg4tcpmap tool must be run in order to populate the PGA_TCP_IMSC table
before executing any TIPs which rely on TPC/IP support for IMS Connect.

= Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" in this guide for
complete instructions for setting up and executing pg4tcpmap commands to
populate the PGA_TCP_IMSC table. Chapter 6 also explains the content of the
PGA_TCP_IMSC table and an example of how to use the table.

= For more information about the role of the pg4tcpmap tool in configuring the
gateway, refer to Chapter 10 in the Oracle Procedural Gateway for APPC Installation
and Configuration Guide regarding gateway configuration using the TCP/IP
protocol.

= A trace file from a sample pgdtcpmap execution is located in Chapter 8, "Problem
Determination” in this guide.

= A screen output file is located in Appendix B, "Gateway Initialization Parameter
File Using TCP/IP" in the Oracle Procedural Gateway for APPC Installation and
Configuration Guide.

1.13.2 Steps to Communication Between the Gateway and IMS, Using TCP/IP

The following steps describe the Windows-to-IMS on a mainframe communications
process, as illustrated in Figure 1-4 when your communication protocol is TCP/IP:

1. From SQL*Plus, execute pgaims.sql; this invokes the PL/SQL stored procedure in
the Oracle Integrating Server.

C:\> sqglplus <userid>/<password>@<database specification strings
SQL> execute pgaims ‘snoitalutargnoC’;
The pgaims.sql stored procedure will start up the gateway.

2. The gateway which has the APPC information will call the mapping table
(PGA_TCP_IMSC). The mapping table will map the information so that it will
have the host name (TCP/IP address) and the port number.

Note: Rather than insert, delete or update the PGA_TCP_IMSC
mapping table manually, you should use the pg4tcpmap tool to do
so. You may use the select statement to query the rows.

Introduction to Oracle Procedural Gateway for APPC 1-15

Simple Gateway Communication with the Oracle Server (TCP/IP)

3. When the gateway has the port number and host name, it will initiate
communication with IMS through TCP/IP, and will call FLIP through IMS
Connect.

4. FLIP processes the input, generates the output and sends the output back to the
gateway.

5. Finally, the gateway will send the output back to the PL/SQL stored procedure in
the Oracle Integrating Server. The result is displayed in SQL*Plus:

Congratulations
PL/SQL procedure successfully completed.

Figure 14, "Communication Between Oracle Server and Mainframe, Using TCP /IP"
illustrates the communications process described in the previous Steps 1 through 5.

Figure 1-4 Communication Between Oracle Server and Mainframe, Using TCP/IP

' C_ Windows

! Oracle Integrating Server ,

SOl =execUte pgaims ('snoitalutargnoC')
'Congratulations’ I
1 PL/SCAL procedure successiully completed

. ' 1 PAl TCP IMSG s |
Client . '\ :
1

Gateway 3 ;

PGAINIT GPGA () !
PGAXFER @ PGA) !
PGATERM @ PGA .} !

Tcpap
1 4 |
| |
; IMS Conngct ;
: MS f
FLIP :

1-16 Oracle Procedural Gateway for APPC User’s Guide

Writing TIPs to Generate PL/SQL Programs on Gateway Using TCP/IP

Figure 1-4 illustrates the communication flow between the gateway and the
mainframe, when using the TCP/IP communication protocol. This figure is adequately
described in the section preceding it.

End of description.

1.14 Writing TIPs to Generate PL/SQL Programs on Gateway Using

TCP/IP

Most transactions are much larger and more complex than the simple sample
pgaims.sql file referred to in Figure 1-4, "Communication Between Oracle Server and
Mainframe, Using TCP/IP". Additionally, communication with a normal-sized RTP
(remote transaction program) would require you to create an extremely long PL/SQL
file. Oracle Procedural Gateway for APPC’s TIP function generates the PL/SQL
procedure for you.

The following is a brief description of the four steps necessary for you to generate a
TIP. Refer to Chapter 3, "Creating a TIP" for detailed information about this procedure,
and refer to Chapter 2, "Procedural Gateway Administration Utility" for more
information about PGAU.

All parameter names in this section are taken from a file called pgtflip.ctlin the
%ORACLE_HOME% \pga4appc\demo\IMS directory.

1.14.1 Steps to Writing a TIP on a Gateway Using TCP/IP

Follow these steps to write a TIP.

Step 1 Create a control file:

The user writes the control files. The control file has four main types of PGAU
commands:

1. DEFINE DATA. This is used to define input and output fields, using COBOL data
definitions.

= Sample define data:

define data flipin plsdname (flipin) usage(pass) language (ibmvscobolii)
(

01 msgin pic x(20).
)

define data flipout plsdname (flipout) usage (pass) language (ibmvscobolii)
(

01 msgout pic x(20).
)

2. DEFINE CALL. This is used to define PL/SQL functions calls to be generated as
part of the package.

= Sample define call:

define call flipmain pkgcall (pgtflip main)
parms ((flipin in), (flipout out));

3. DEFINE TRANSACTION. This is used to group the above functions and specify
other parameters on which the TIP depends.

Introduction to Oracle Procedural Gateway for APPC 1-17

Writing TIPs to Generate PL/SQL Programs on Gateway Using TCP/IP

= Sample define transaction:

define transaction imsflip call(flipmain)
sideprofile (pgatcp)
tpname (f1lip)
nls language ("american america.us7ascii');

Note: On a gateway using TCP/IP, the side profile name value is
actually the TCP/IP unique name that was defined when the user
specified the value, hostname, port number and many other IMS
Connect values during configuration of the network.

Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" in
this guide and to Chapter 10 of the Oracle Procedural Gateway for
APPC Installation and Configuration Guide for detailed information
about the pg4tcpmap tool.

4. GENERATE. This is used to generate the TIP specification files from the
previously stored transaction, call and data definitions.

= Sample generate transaction:

generate imsflip pkgname (pgtflip) pganode (pgalOia) outfile("pgtflip")
diagnose (pkgex(dc,dr)) ;

Step 2 Execute the control file within PGAU

Running the control file within PGAU will create PG DD entries for the data, call, and
transaction definitions, and will generate the specification files (For example,
pgtflip.pkh and pgtflip.pkb):

C:\> cd %ORACLE HOMES%\pg4appc\demo\IMS

C:\> pgau

PGAU> CONNECT userid/passwordedatabase specification string
PGAU> @pgtflip.ctl

Step 3 Execute the specification files

Running the specification files will create the PL/SQL stored procedures. Note that the
header specification file (for example, pgtflip.pkh) must be run first:

C:\> sqlplus userid/passwordedatabase specification string
SQL> @pgtflip.pkh;
SQL> @pgtflip.pkb;

Step 4 Create a driver procedure to run the TIP

The TIP is now ready for use. For convenience, it will usually be called using a driver
procedure (for example, pgtflipd). This driver will then call the individual stored
procedures in the correct order. Create the driver procedure and run it:

C:\> sqglplus <userid>/<password>@<database specification string>
SQL> @pgtflip.sql
SQL> execute pgtflipd(’hello’);

1-18 Oracle Procedural Gateway for APPC User’s Guide

2

Procedural Gateway Administration Utility

The Procedural Gateway Administration Utility (PGAU) is a utility that assists the
PGA administrator or user to define the data which is to be exchanged with remote
transaction programs. It generates the PL/SQL Transaction Interface Packages (TIPs)
discussed in Chapter 3, "Creating a TIP", Appendix F, "Tip Internals" and, depending
upon your communication protocol, either Chapter 4, "Client Application
Development (SNA Only)" or Chapter 7, "Client Application Development (TCP/IP
Only)".

This chapter contains the following sections:

"Overview of PGAU" on page 2-2

"COMMIT /ROLLBACK Processing" on page 2-3
"Invoking PGAU" on page 2-3

"Definitions and Generation in PGAU" on page 2-4
"Process to Define and Test a TIP" on page 2-5
"PGAU Commands" on page 2-7

Procedural Gateway Administration Utility 2-1

Overview of PGAU

2.1 Overview of PGAU

Note: If you have existing TIPs that were generated previously on
a gateway using the SNA protocol and you want to utilize the new
TCP/IP feature, then the TIPs will have to be regenerated by PGAU
with mandatory NLS_LANGUAGE and Side Profile Settings.
Specify the appropriate ASCII character set in the DEFINE
TRANSACTION command.

This is due to the fact that the gateway assumes that the
appropriate "user exit" in IMS Connect is being used, which would
translate between the appropriate ASCII and EBCDIC character
sets.

PGAU maintains a data dictionary, PG DD, which is a collection of tables in an Oracle
database. These tables hold the definitions of the remote transaction data and how that
data is to be exchanged with the remote transaction program. Refer to "Ensuring TIP
and Remote Transaction Program Correspondence” on page 4-12 for a discussion of
the correlation between TIPs and their respective remote transaction programs. The
PG DD contents define this correlation.

The PGA administrator or user defines the correlation between TIPs and the remote
transaction program using the following PGAU commands (also called "statements"):

» PGAU DEFINE DATA statements, which describe the data to be exchanged.
= PGAU DEFINE CALL statements, which describe the exchange sequences.

= PGAU DEFINE TRANSACTION statements, which group the preceding CALL
and DATA commands together and describe certain aspects unique to the remote
transaction program, such as its network name or location.

s PGAU GENERATE statement, which the PGA administrator or user uses to
specify and create the TIP specifications, after the TIP/transaction correlation has
been defined in the PG DD. Additional PGAU commands needed to alter and
delete definitions in the PG DD are described in "PGAU Commands" later in this
chapter.

The PGAU commands are known collectively as Procedural Gateway Definition
Language (PGDL). Any references to PGDL are to the collection of PGAU commands
defined in this chapter.

PGAU provides editing and spooling facilities and the ability to issue SQL commands.

Caution: Do not use PGAU instead of SQL*Plus for general
database administration.

Alternatively, PGAU commands can be supplied in a control file. The control file
contains one or more PGAU commands for manipulating the PG DD or generating TIP
specifications.

PGAU issues status messages on each operation. The message text is provided
through Oracle NLS message support. PGAU processes each command in sequence.
An error on a single command causes PGAU to skip that command.

2-2 Oracle Procedural Gateway for APPC User’s Guide

Invoking PGAU

To run PGAU, the PG Data Dictionary tables must already have been created. Refer to
the gateway configuration chapters pertinent to your communications protocol in the
Oracle Procedural Gateway for APPC Installation and Configuration Guide.

2.2 COMMIT/ROLLBACK Processing

The following sections provide information on COMMIT /ROLLBACK processing.

2.2.1 COMMIT Processing

PGAU never issues COMMIT commands. As the user, it is your responsibility to
COMMIIT PG DD changes when all the changes are implemented. Otherwise Oracle
issues a COMMIT command by default when you exit the PGAU session. If PG DD
changes are not to be committed, you must run a ROLLBACK command before
exiting.

2.2.2 ROLLBACK Processing

PGAU sets a savepoint at the beginning of each PGAU command that alters the
PG DD and at the beginning of a PGAU GROUP. PGAU rolls back to the savepoint
upon any PGAU command or group failure.

You can code COMMIT or ROLLBACK commands within PGAU scripts, or
interactively in PGAU, but not within a GROUP.

Neither COMMIT nor ROLLBACK is issued for PGAU GENERATE or REPORT
commands.

For information about grouping PGAU commands together to roll back changes in
case of failure, refer to the discussion of the PGAU "GROUP" command on page 2-21
later in this chapter.

2.3 Invoking PGAU

Before you can invoke PGAU, your Oracle Integrating Server should already be set up.
If it is not, refer to the chapter on configuring your Oracle Procedural Gateway for
APPC, in the Oracle Procedural Gateway for APPC Installation and Configuration Guide.

Before executing PGAU, you must set the ORACLE_HOME environment variable to
the directory into which the gateway server was installed.

If you want to receive PGAU messages in a language other than English, set the
LANGUAGE environment variable to the appropriate value. For a list of supported
languages and the syntax for the LANGUAGE setting, refer to Appendix E, "National
Language Support".

PGAU is invoked by entering the pgau command. You can run prepared scripts of
PGAU commands directly from the operating system prompt by specifying a
command string on the command line using the following syntax:

C:\> pgau @command_ file
C:\> pgau command=@command file
C:\> pgau command="@command file"

The default extension is .sql. Use the last form if the command filename contains
non-alphanumeric characters.

To perform PG DD maintenance and PL/SQL package generation, you must connect
to the Oracle Integrating Server from PGAU as user PGAADMIN, using the

Procedural Gateway Administration Utility 2-3

Definitions and Generation in PGAU

CONNECT command. The "PGAU Commands" section on page 2-7 discusses how to
use the "CONNECT" command.

2.4 Definitions and Generation in PGAU

This version of PGAU supports the definition of remote transaction data in COBOL,
entered interactively or in a file. File input is supported for the DEFINE and
REDEFINE DATA commands, and standard COBOL data division macros or
"copybooks" can be supplied.

PGAU and the PG DD support different versions of user data and remote transaction
definitions. This facilitates alteration and testing of data formats and transactions
without affecting production usage.

Multiple versions of any data or transaction definitions might exist. You must ensure
that versions stored and used in the PG DD are synchronized with the remote
transactions. Neither the gateway, PGAU, nor generated TIPs provide this
synchronization, but they will issue messages as error conditions are detected.

Data definitions must exist before being referenced by call definitions. Call definitions
must exist before being referenced by transaction definitions.

Note: It is your responsibility to ensure that the data transaction
definition versions that are stored and used in the PG DD are
synchronized with the remote transactions. The gateway, PGAU
and generated TIPs do not provide this synchronization, but issue
messages as error conditions are detected.

2-4 Oracle Procedural Gateway for APPC User’s Guide

Process to Define and Test a TIP

2.5 Process to Define and Test a TIP
The general process for defining and testing a TIP for a given transaction is as follows:
1. Define input and output using COBOL data definitions.

2. Redefine the default datanames and PL/SQL variable names created by the above
process (optional).

3. Define PL/SQL FUNCTION calls to be generated as part of the PL/SQL package.
4. Define a transaction that groups the above functions.

5. Generate the TIP specifications from the previously stored transaction, call, and
data definitions.

6. Generate the TIP PL/SQL stored procedures.
7. Test the TIP by calling it from a high-level application.

Refer to Chapter 3, "Creating a TIP" for more information about TIPs.

2.5.1 Definition Names

Definition names are unique identifiers that you designate through PGAU. The name
is a string of 1 to 30 bytes. If punctuation or white space is included, the name must be
specified within double quotes.

Names are assumed to be unique within the PG DD, except when duplicate names are
intentionally distinguished by a unique version number. It is your responsibility to
ensure name uniqueness.

Valid characters for PG DD definition names are:
s AthroughZ

= athroughz

s (through9

s #
= $
= _ (underscore)

Note that unless defaults are overridden, transaction definition names might be
PL/SQL package names, and transaction call names might be PL/SQL procedure
names. Therefore, choose names that are syntactically correct for PL/SQL, making
certain that they are also unique names within that system. As the user, it is your
responsibility to ensure PL/SQL name compatibility.

2.5.2 Definition Versioning

The PG Data Dictionary tables contain the descriptions of transactions and data
structures. There might be more than one version of a definition. Old versions are
retained indefinitely.

In all PG DD operations, a definition or package is referred to by its name. That name
can be qualified by a specific version number.

Procedural Gateway Administration Utility 2-5

Process to Define and Test a TIP

All version numbers:

= are supplied by Oracle Sequence Objects

= are purely numeric

= must be free from user alteration, suffixing, or prefixing

Refer to Appendix A, "Procedural Gateway for APPC Data Dictionary" and the
pgddcr8.sql file in the %ORACLE_HOME% \pg4appc\admindirectory for the
specific names of the Oracle Sequence Objects used for version number generation.

If an explicit version number is specified, it is presumed to be the version number of
an existing definition, not a new definition. Such explicit references are used when:

= generating a TIP from a specific remote transaction version
= defining a remote transaction based on a specific data version
If no explicit version is specified:

s The latest (highest number) is assumed when a definition is being referenced. This
is the MAX value selected from the VERSION column for all rows with the same
definition name, not the CURRVAL number.

s The next (NEXTVAL number) is assumed when a definition is being added.

Version numbers might not be contiguous. Although version numbers are always
increasing, multiple versions of a given definition might skip numbers. This is because
the sequence object is shared for all definitions of the same type (Transaction, Call, or
Data), and sequence object NEXTVAL is not restored in event of an Oracle database
transaction ROLLBACK. Thus, NEXTVAL might be assigned to a different definition
before the next version of the same definition.

Examples of valid definition names:

DEFINE TRANSACTION |CALL|DATA

payroll (new or latest definition)
payroll xaction (new or latest definition)
payroll xaction VERSION(3)...(an existing definition)

No attempt is made by PGAU to synchronize versions. Although the existence of
dependent items is assured at definition time, deletion is done without reference to
dependencies. For example, generating a TIP requires prior definition of the
transaction, which requires prior definition of the calls, which require prior definition
of the data. But nothing prevents PGAU from deleting an active data definition while a
call definition still references it.

2.5.3 Keywords

All PGAU keywords can be specified in upper or lower case and are not reserved
words. Reservation is not necessary because all keywords have known spelling and
appear in predictable places, and because all data is delimited by parentheses,
apostrophes, quotes, or blanks.

Note that all unquoted values specified by keywords are stored in the PG Data
Dictionary in uppercase unless otherwise specified in the keyword description.

2-6 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6 PGAU Commands

PGAU allows you to enter Procedural Gateway Administration commands
(commands), such as DEFINE, UNDEFINE, REDEFINE, and GENERATE, in addition
to normal SQL commands. The SET and SHOW commands are also implemented. In
addition, the PGAU commands listed in the following section are available to you.

2.6.1 CONNECT

Purpose

This command enables you to make a connection to PGAU. Use the CONNECT
command to log on to an Oracle database, optionally specifying the user ID and
password in addition to the Oracle instance. The CONNECT command has the
following syntax:

Syntax

CONNECT [username / username/password/username@connect —string/ username\password@connect-string

Parameters
username/password is the username and password used to connect to PGAU,

and
connect -string specifies the service name of the remote database.

Refer to the Oracle Net Services Administrator’s Guide for more information about
specifying remote databases.

Examples

CONNECT
CONNECT SCOTT/TIGER
CONNECT SCOTT@OTHERSYS

CONNECT Usage Notes
= Before connecting, you must set ORACLE_SID to the database SIDname.

= If you want to connect to a remote database, you must set TNS_ADMIN to the full
pathname of the directory in which the file tnsnames. ora is stored.

= You do not need to place a semi colon (;) at the end of the command.

Procedural Gateway Administration Utility 2-7

PGAU Commands

2.6.2 DEFINE CALL

Purpose

This command creates a new version of the PL/SQL call definition in the PG Data
Dictionary.

Syntax

DEFINE CALL cname
[PKGCALL (pcname)]
[PARMS ((dname
{in | our | 1IN OUT}
[VERSion(datavers)l), ...)1;

Where Table 2-1 describes the parameters in this syntax:

Table 2-1 DEFINE CALL Parameter Descriptions

Parameter Definition

CALL cname is a mandatory parameter. It is the name of
the call definition to be created.

PKGCALL (pcname) is an optional parameter. It specifies the
name of the PL/SQL package procedure or
function by which the application might
invoke the call. The default value, cname, is
assumed if this operand is omitted, in
which case cname must also be valid in
PL/SQL syntax and unique within the
transactions and TIPs referencing this call.

PARMS((dname is an optional parameter. It specifies a list of
{Ti| 0UT | IN OUT) [previously defined data input to and output
from this PL/SQL function call, and the

VERSION (datavers)1), . . .) type of each parameter (input to the call,
output from, or both). The order in which
the parameters are specified determines the
order in which they must appear in
subsequent calls to the TIP from an
application.

Each dname specifies a previously defined
data item, and is mandatory.

{IN | OUT | IN OUT} specifies the PL/SQL
call mode of the parameter and indicates
whether the dname data is sent, received, or
both in the exchange with the remote
transaction program. One must be chosen.
VERS(datavers) is an optional specific
version number of the dname data
definition, if not the latest. If this operand is
omitted, it is assumed that the call takes no
parameters.

Examples

Refer to "Sample PGAU DEFINE CALL Statements" on page G-3 in Appendix G for
examples of DEFINE CALL commands.

DEFINE CALL Usage Notes

= Version of the CALL definition is not specified and defaults to NEXTVAL of the
Oracle Sequence Object for CALL.

2-8 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

s PKGCALL and PARMS can be specified in either order.

= You need to place a semi colon (;) at the end of the command.

2.6.3 DEFINE DATA

Purpose
This command creates a new version of the data definition in the PG Data Dictionary.

Syntax

DEFINE DATA dname
[PLSDNAME (pIlsdvar)]
[USAGE ({PASS|ASIS|SKIP})]
[COMPOPTS (’'options’)]
LANGUAGE (Ianguage)
{ (definition) |INFILE("filespec")};

Parameters
Table 2-2 describes the DEFINE DATA parameters:

Table 2-2 DEFINE DATA Parameter Descriptions

Parameter Description

DATA dname is a mandatory parameter. It is the name of the data definition
to be created.

PLSDNAME (plsdvar) is an optional parameter. It is the name of the PL/SQL variable
associated with dname. It becomes the name of a PL/SQL
variable if the dname item is atomic data, or a PL/SQL record
variable if the dname item is aggregate data (such as a record
or structure), when the TIP is generated.

USAGE ({PASS|ASIS| is an optional parameter. It specifies the way the TIP handles
SKTP}) the data items when exchanged in calls with the remote
transaction.

PASS indicates that the item should be translated and
exchanged with the transaction.

ASIS indicates the item is binary and, though exchanged,
should not be translated.

SKIP indicates the item should be deleted from all exchanges.

The default value, PASS, is assumed if this parameter is
omitted.

The USAGE(NULL) keyword on DEFINE or REDEFINE DATA
PGAU statements is not supported.

COMPOPTS is an optional parameter. It specifies the compiler options used
when compiling the data definition on the remote host. The
only option currently supported is TRUNC(BIN)'. Note that
the options must be enclosed in apostrophes (’) or quotes ().
TRUNC(BIN) is a COBOL option that affects the way halfword
and fullword binary values are handled.

Refer to "DEFINE DATA Usage Notes" on page 2-10 for further
information on this option.

("options’)

LANGUAGE is a mandatory parameter. It specifies the name of the
programming language in the supplied definition. PGAU

(language) presently supports only COBOL.

Procedural Gateway Administration Utility 2-9

PGAU Commands

Table 2-2 (Cont.) DEFINE DATA Parameter Descriptions

Parameter Description

(definition) is mutually exclusive with the INFILE parameter. It is an inline
description of the data. The description must be provided in
COBOL syntax, as indicated above. This inline description
must begin with an opening parenthesis and end with a
closing parenthesis. The opening parenthesis must be the last
non-blank character on the line and the COBOL data definition
must start on a new line, following the standard COBOL rules
for column usage and continuations. The closing parenthesis
and terminating semicolon must be on a separate line
following the last line of the COBOL data definition. In
COBOL, the specification is a COBOL data item or structure,
defined in accordance with COBOL. Margins are assumed to
be standard, and explicit or implicit continuation is supported.
Datanames containing invalid characters (for example, "-") for
PL/SQL use are translated to their closest equivalent and
truncated as required.

INFILE ("filespec”) is mutually exclusive with the (definition) parameter. It
indicates that the definition is to be read from the user disk file
described by filespec, instead of an inline definition
described by (definition).

Note that £ilespec must be enclosed in double quotes.

Examples

Refer to "Sample PGAU DEFINE DATA Statements" in Appendix G for examples of
DEFINE DATA commands.

DEFINE DATA Usage Notes

= Version of the DATA definition is not specified and defaults to NEXTVAL of the
Oracle Sequence Object for DATA.

s PLSDNAME, USAGE, and LANGUAGE can be specified in any order.
» INFILE ("filespec")is a platform-specific designation of a disk file.

s COMPOPTS ('TRUNC(BIN)’) should be used only when the remote host
transaction was compiled using COBOL with the TRUNC(BIN) compiler option
specified. When this option is used, binary data items defined as PIC 9(4) or PIC
S9(4) can actually contain values with 5 digits, and binary data items defined as
PIC 9(9) or PIC S9(9) can actually contain values with 10 digits. Without
COMPOPTS ('TRUNC(BIN)’), PGAU generates NUMBER(4,0) or NUMBER(9,0)
fields for these data items, resulting in possible truncation of the values.

When COMPOPTS ("TRUNC(BINY’) is specified, PGAU generates NUMBER(5,0)
or NUMBER(10, 0) fields for these data items, avoiding any truncation of the
values. Care must be taken when writing the client application to ensure that
invalid values are not sent to the remote host transaction.

For a PIC 9(4) the value must be within the range 0 to 32767, for a PIC S9(4) the
value must be within the range -32767 to +32767, for a PIC 9(9) the value must be
within the range 0 to 2,147,483,647, and for a PIC 59(9) the value must be within
the range -2,147,483,647 to +2,147,483,647. COBOL always reserves the high-order
bit of binary fields for a sign, so the value ranges for unsigned fields are limited to
the absolute values of the value ranges for signed fields. For further information,
refer to the appropriate IBM COBOL programming manuals.

= Refer to "USAGE(PASS)" in Appendix D, "Datatype Conversions" for information
about how PGAU converts COBOL statements.

2-10 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

= You need to place a semi colon (;) at the end of the command.

2.6.4 DEFINE TRANSACTION

Purpose

This command creates a new version of the transaction definition in the PG Data
Dictionary.

Syntax

DEFINE TRANSACTION tname
CALL (cname [VERS(callvers)],
[ENVIRONMENT (name)]
{SIDEPROFILE (name) [LUNAME (name)] [TPNAME (name)]
[LOGMODE (name)] |
LUNAME (name) TPNAME (name) LOGMODE (name) }
[SYNCLEVEL (0]1]2)]
[NLS LANGUAGE ("nlsname")] ;
[REMOTE_MBCS ("nlsname")]
[LOCAL MBCS("nlsname")];

Parameters
Table 2-3 describes the DEFINE TRANSACTION parameters:

Table 2-3 DEFINE TRANSACTION Parameter Descriptions

Parameter Description

TRANSACTION tname A mandatory parameter. It is the name of the transaction
definition to be created. If you do not specify a package name
(TIP name) in the GENERATE statement, the transaction name
specified here will become the package name, by default. In
that case, the tname must be unique and must be in valid
PL/SQL syntax within the database containing the PL/SQL

packages.
CALL (cname A mandatory parameter. It specifies a list of previously defined
[VERS (callvers)], ...) calls (created with DEFINE CALL) which, taken together,

comprise this transaction. The order in which the calls are
specified here determines the order in which they are created
by GENERATE, but not necessarily the order in which they
might be called by an application. VERS(callvers) is an
optional specific version number of the call definition, if not
the latest.

The relative position of each cname in its left-to-right sequence
is the seq# column in pga_trans_calls. For example:

CALL (cnamel, cname2,cname3)
pga_trans calls(seq#) =1
2 3

ENVIRONMENT (name) Specifies the name of the host environment for this transaction,
for example, "IBM370". If this parameter is omitted, IBM370 is
assumed. IBM370 is the only environment supported by this
version of PGAU.

Procedural Gateway Administration Utility 2-11

PGAU Commands

Table 2-3 (Cont.) DEFINE TRANSACTION Parameter Descriptions

Parameter Description

SIDEPROFILE (name) This parameter is optional for a gateway using SNA, but if
omitted, the user must specify the parameters for LUNAME,
TPNAME, and LOGMODE. It specifies the name of an SNA
Side Information Profile which directs the APPC connection to
the transaction manager. This name can be 1 to 8 characters in
length. Name values can be alphanumeric with’@’, ‘#, and '$’
characters only if unquoted. Quoted values can contain any
character, and delimited by quotes ("), or apostrophes (’). Case
is preserved for all values.

This parameter is mandatory for a gateway using the TCP/IP
connection. It has no comparable SNA meaning.

You need to run the pg4tcpmap tool to map this name to the
hostname, port number, subsystem ID and any other desired
attribute of IMS Connect.

This name represents a group of IMS transactions with similar
IMS Connect attributes. You can re-use the same name as long
as they share the same IMS Connect attributes, such as
subsystem ID, TIME delay or socket type. Refer to Chapter 6,
"PG4TCPMAP Commands (TCP/IP Only)" for details.

LUNAME(name) This parameter is optional on a gateway using SNA:
Overrides the LUNAME within the Side Information Profile, if
the Side Information Profile was specified. It specifies the SNA
Logical Unit name of the transaction manager (OLTP).

This is either the fully-qualified LU name, 3 to 17 characters in
length, or an LU alias 1 to 8 characters in length (when the
SNA software on your gateway system supports LU aliases).

Name values can be alphanumeric with’@’, '#, and’$’
characters and a single period ’.’, to delimit the network from
the LU, as in netname.luname, if fully qualified. Quoted values
can contain any character, and delimited by quotes ("), or
apostrophes (’). Case is preserved for all values.

This parameter is not applicable when using the TCP/IP
communication protocol.

TPNAME (name) This parameter is optional on a gateway using SNA:
Overrides the TPNAME within the Side Profile, if the Side
profile was specified. It specifies the partner Transaction
Program name to be invoked.

s For CICS, this must be the CICS Transaction ID and is 1 to
4 characters in length.

s For IDMS, this must be the IDMS Task Code and is 1 to 8
characters in length.

s For IMS, this must be the IMS Transaction Name and is 1
to 8 characters in length.

= For AS/400, this must be specified as "library/program"
and cannot exceed 21 bytes.

Name values can be alphanumeric with’@’, "#, and’'$’
characters only if unquoted. Quoted values can contain any
character, and delimited by quotes ("), or apostrophes (’). Case
is preserved for all values.

This parameter is required for a gateway using TCP/IP
support for IMS Connect. It must be the IMS Transaction
Name.

s The IMS Transaction Name must be 1 to 8 characters in
length.

2-12 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

Table 2-3 (Cont.) DEFINE TRANSACTION Parameter Descriptions

Parameter

Description

LOGMODE (name)

SYNCLEVEL (0|1)

NLS_LANGUAGE
("nlsname')

REMOTE_MBCS
("nlsname')

LOCAL_MBCS

("nlsname")

This parameter is optional on a gateway using SNA:
Overrides the LOGMODE within the Side Information Profile,
if the Side Information Profile was specified. It specifies the
name of a VTAM logmode table entry to be used to
communicate with this transaction, and is 1-8 characters in
length.

Name values can be alphanumeric with '@, ‘#, and '$’
characters only. Values cannot be quoted. Case is not preserved
and always translated to upper case.

This parameter is not applicable when using the TCP/IP
communication protocol.

This parameter is optional on a gateway using SNA: It
specifies the APPC sync level of this transaction ('0” or ‘1"). The
default value of 0 is assumed if this operand is omitted,
indicating the remote transaction program does not support
synchronization. A value of 1" indicates that CONFIRM is
supported.

On a gateway using TCP/IP: The default of this parameter is
’0’, which is the only accepted value.

This is an optional parameter. The default value is
"american_america.we8ebcdic37¢". It is an Oracle NLS name in
the language_territory.charset format. It specifies the Oracle
NLS name in which the remote host data for all single-byte
character set fields in the transaction are encoded. Refer to
Appendix E, "National Language Support" for more
information.

Note that if you are using TCP/IP, make sure that you set this
parameter to "american_america.us7ascii".

This is an optional parameter. The default value is
"japanese_japan.jalédbcs". It is an Oracle NLS name in the
language_territory.charset format. It specifies the Oracle NLS
name in which the remote host data for all multi-byte character
set fields in the transaction are encoded.

Refer to Appendix E, "National Language Support" for more
information.

This is an optional parameter. The default value is
"japanese_japan.jalédbcs". It is an Oracle NLS name in the
language_territory.charset format. It specifies the Oracle NLS
name in which the local host data for all multi-byte character
set fields in the transaction are encoded.

Refer to Appendix E, "National Language Support" for more
information.

Examples

Refer to "Sample PGAU DEFINE TRANSACTION Statement” in Appendix G for
examples of DEFINE TRANSACTIONS commands.

DEFINE TRANSACTION Usage Notes:
= NLS_LANGUAGE and the Oracle Integrating Server’s LANGUAGE specify
default character sets to be used for conversion of all single-byte character fields

for the entire transaction. These defaults can be overridden for each SBCS field by
the REDEFINE DATA REMOTE_LANGUAGE or LOCAL_LANGUAGE

parameters.

Procedural Gateway Administration Utility 2-13

PGAU Commands

s The version of the TRANSACTION definition is not specified and defaults to
NEXTVAL of the Oracle Sequence Object for TRANS.

= REMOTE_MBCS and LOCAL_MBCS specify the default multi-byte character sets
to be used for conversion of all DBCS or MBCS fields for the entire transaction.
This default can be overridden for each DBCS or MBCS field by the REDEFINE
DATA REMOTE_LANGUAGE or LOCAL_LANGUAGE parameters.

"on

= You must place ";" at the end of the command.

2-14 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.5 DESCRIBE

Purpose

Use this command to describe a table, view, stored procedure, or function. If neither
TABLE, VIEW, nor PROCEDURE are explicitly specified, the table or view with the
specified name is described.

Syntax
The DESCRIBE command has the following syntax:

DESCRIBE [TABLE table|VIEW view|PROCEDURE proc|some_name]

Parameters
Table 2—4 describes the DESCRIBE parameter:

Table 2-4 DESCRIBE Parameter Descriptions

Parameter Description

table is the tablename
view is the viewname

proc is the procedurename
Examples

DESCRIBE PROCEDURE SCOTT.ADDEMP
DESCRIBE SYS.DUAL

DESCRIBE TABLE SCOTT.PERSONNEL
DESCRIBE VIEW SCOTT.PVIEW

DESCRIBE Usage Notes

"o

= You do not need to place ";" at the end of the command.

2.6.6 DISCONNECT

Purpose
Use this command to disconnect from an Oracle database.

Syntax
The DISCONNECT command has the following syntax:

DISCONNECT

Parameters
None

Examples
None

DISCONNECT Usage Notes

"o

= You do not need to place ";" at the end of the command.

Procedural Gateway Administration Utility 2-15

PGAU Commands

2.6.7 EXECUTE

Purpose
Use this command to execute a one-line PL/SQL statement.

Syntax
The EXECUTE command has the following syntax:

EXECUTE pl/sql block

Parameters

pl/sql blockis any valid pl/sql block. Refer to the PL/SQL User’s Guide and
Reference for more information.

Examples
EXECUTE :balance := get balance(333)

EXECUTE Usage Notes

= You do not need to place ";" at the end of the command

2.6.8 EXIT

Purpose
Use this command to terminate PGAU.

Syntax
The EXIT command has the syntax:

EXIT

Parameters
None

Examples
None

EXIT Usage Notes
= You do not need to place ";" at the end of the command.

s The "quit" command is not a valid statement in PGAU.

2-16 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.9 GENERATE

Purpose

A PL/SQL package is built and written to the indicated output files. The PG Data
Dictionary is not updated by this command.

Syntax

GENERATE tname
[VERSion (tranvers)]
[PKGNAME (pname)]
[PGANODE (dblink name)]
[OUTFILE (" [specpath] { specname} [. {spectype}]")]
[, " [bodypath] {bodyname} [.{bodytype}11")
[DIAGNOSE ({ [TRACE({[SE] [,IT] [,oM] [,I0] [,oc] [,DD] [,TG] })]
[PKGEX ({ [DC] [, DRI }) 1) };

Parameters
Table 2-5 describes the GENERATE parameters:

Table 2-5 GENERATE Parameter Descriptions

Parameter Description

tname is a mandatory parameter. It is the transaction name
defined in a DEFINE TRANSACTION statement.

VERSion (transvers) is an optional parameter. It specifies which transaction
definition is to be used. The VERsion parameter defaults to
highest numbered transaction if not specified.

PKGNAME (pname) is an optional parameter. It specifies the name of the
PL/SQL package to be created. If this operand is omitted,
the package name is assumed to be the same as the
transaction name.

PGANODE (dblink_name) is an optional parameter. It specifies the Oracle database
link name to the gateway server. If this operand is omitted,
"PGA" is assumed to be the dblink name.

OUTFILE is an optional parameter. If this parameter is specified,
specname must also be specified.

specpath is the optional directory path of the TIP specification and
the TIP content documentation. It defaults to the current
directory. The value must end with a backward slash (\).

specname is the filename of the TIP specification and the TIP content
documentation. It defaults to pname, if specified, or else
pgau.

spectype is the optional file extension of the TIP specification and
defaults to pkh.

bodypath is the optional directory path of the TIP body. It defaults to

specpath, if specified, or else the current directory. The
value must end with a backward slash (\).

bodyname is the optional file name of the TIP body. It defaults to
specname, if specified, or else pname, if specified, or else
pgau. If bodyname defaults to specname, the leftmost
period of specname is used to extract bodyname when
specname contains multiple qualifiers.

Procedural Gateway Administration Utility 2-17

PGAU Commands

Table 2-5 (Cont.) GENERATE Parameter Descriptions

Parameter Description
bodytype is the optional file extension of the TIP body and defaults to
pkb.

The TIP Content output path defaults to specpath or else
the current directory. The file id defaults to specname, if
specified, or else pname, if specified, or else pgau, and
always has an extension of doc.

Refer to the "GENERATE Usage Notes:" on page 2-20 for
more examples, and Appendix F, "Tip Internals" for more
information.

DIAGNOSE is an optional parameter with two options, TRACE and
PKGEX.

TRACE specifies that an internal trace of the execution of PGAU is
written to output file pgau.trc in the user’s current
directory.

TRACE suboptions are delimited by commas.

Trace messages are provided as a diagnostic tool to Oracle
Support Services and other Oracle representatives to assist
them in diagnosing customer problems when generating
TIPs. They are part of an Oracle reserved function for
which the usage, interface, and documentation might
change without notice at Oracle’s sole discretion. This
information is provided so customers might document
problem symptoms.

= SE - Subroutine Entry/Exit

Messages are written tracing subroutine name and
arguments upon entry, and subroutine name and
conditions at exit.

s IT - Initialization/Termination

Messages are written tracing PGAU initialization and
termination functions.

s QM - Queue Management

Messages are written tracing control block allocation,
queuing, searching, dequeuing, and deletion.

= IO -Input/Output

Messages are written tracing input, output, and control
operations for .dat input files and .wrk and package output
files.

s DD - PG DD Definitions

Messages are written tracing the loading of transaction,
call, data parameter, field, attribute, environment and
compiler information from the PG DD.

s OC -Oracle Calls

Messages are written tracing the Oracle UPI call results for
SQL statement processing and SELECTs from the PG DD.

s TG - TIP Generation

Messages are written tracing steps completed in TIP
Generation, typically a record for each call, parameter, and
data field for which a PL/SQL code segment has been
generated.

2-18 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

Table 2-5 (Cont.) GENERATE Parameter Descriptions

Parameter Description

PKGEX causes additional TIP execution time diagnostic logic to be
included within the generated PL/SQL package.

PKGEX suboptions are delimited by commas.
s DC - Data Conversion

Enables runtime checking of repeating group limits and the
raising of exceptions when such limits are exceeded.

Enables warning messages to be passed from the UTL_PG
data conversion functions:

= NUMBER_TO_RAW
= RAW_TO_NUMBER
» MAKE_NUMBER_TO_RAW_FORMAT
= MAKE_RAW_TO_NUMBER_FORMAT

The additional logic checks for the existence of warnings
and, if present, causes them to be displayed using
DBMS_OUTPUT calls.

The TIP generation default is to suppress such warnings on
the presumption that a TIP has been tested with production
data and that data conversion anomalies either do not exist,
or are known and to be ignored.

If errors occur which might be due to data conversion
problems, regeneration of the TIP with PKGEX(DC)
enabled might provide additional information.

Note: A runtime switch is also required to execute the
warning logic. PKGEX(DC) only causes the warning logic
to be included in the TIP. Refer to "Controlling TIP
Runtime Conversion Warnings" on page 8-9 in Chapter 8,
"Problem Determination".

Additional messages are written to a named pipe for
tracing the data conversion steps performed by the TIP as it
executes.

This option only causes the trace logic to be generated in
the TIP. It must be enabled when the TIP is initialized.

Refer to"Controlling TIP Runtime Conversion Warnings" in
Chapter 8, "Problem Determination" for more information.

= DR - Dictionary Reference

PL/SQL single line Comments are included in TIPs which
reference the PG DD id numbers for the definitions causing
the TIP function calls and conversions.

Examples

Refer to "Sample PGAU GENERATE Statement" in Appendix G for examples of
GENERATE commands.

The following list describes the TIP output file ids resulting from various combinations
of GENERATE parameters:

GENERATE tran
GENERATE tran OUTFILE ("dirpa th\")
dirpath\pgau.pkh - TIP specification
dirpath\pgau.doc - TIP Content
dirpath\pgau.pkb - TIP body

GENERATE tran PKGNAME tipname OUTFILE ("dirpath\")

Procedural Gateway Administration Utility 2-19

PGAU Commands

dirpath\tipname.pkh - TIP specification
dirpath\tipname.doc - TIP Content
dirpath\tipname.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE ("sdirpath\”,
"bdir\path\")
sdirpath\pgau.pkh - TIP specification
sdirpath\pgau.doc - TIP Content
bdir\path\pgau.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE ("spath\sname", "bpath\bname")
spath\sname.pkh - TIP specification
spath\sname.doc - TIP Content
bpath\bname.pkb - TIP body
GENERATE tran PKGNAME tipname
tipname.pkh - TIP specification
tipname.doc - TIP Content
tipname.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE ("fileid")
fileid.pkh - TIP specification
fileid.doc - TIP Content
fileid.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE ("specname', "bodyname")
specname.pkh - TIP specification
specname.doc - TIP Content
bodyname.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE ("specname.spectype')
specname. spectype - TIP specification
specname.doc - TIP Content
specname.pkb - TIP body
GENERATE tran PKGNAME tipname OUTFILE ("sname.stype', "bname")
sname.stype - TIP specification
sname.doc - TIP Content
bname .pkb - TIP body
GENERATE tran PKGNAME tipname
OUTFILE ("sname.stype", "bname.btype")
sname.stype - TIP specification
sname.doc - TIP Content
bname.btype - TIP body
GENERATE tran PKGNAME tipname
OUTFILE ("spath\sname.sext", "bpath\bname.bext")
spath\sname.sext - TIP specification
spath\sname.doc - TIP Content
bpath\bname.bext - TIP body

GENERATE Usage Notes:

= All PGAU GENERATE trace messages are designated PGU-39nnn. Refer to the
%ORACLE_HOME%\pgdappc\mesg\pguus.msg file for further information on
any given trace message.

s The pgau.trc trace message output file is overwritten by the next invocation of
GENERATE, regardless of the TRACE specification. A trace header record is
always written to the pgau.trc file. If a particular trace file is to be saved, it must be
copied to another file before the next invocation of GENERATE.

= TRACE options can be specified in any order or combination, and can also be
specified with PKGEX operand on the same GENERATE statement.

non

= You must place ";" at the end of the command.

2-20 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.10 GROUP

Purpose

Multiple PGAU commands can be grouped together for purposes of updating the PG
DD, and for rolling back all changes resulting from the commands in the group, if any
one statement fails.

No COMMIT processing is performed, even if all commands within the group
succeed. You perform the COMMIT either by coding COMMIT commands in the
PGAU script, outside of GROUPs, or by issuing COMMIT interactively to PGAU.

PGAU issues a savepoint ROLLBACK to conditions before processing the group if any
statement within the group fails.

Syntax
GROUP (pgaustmtl; pgaustmt2; ... pgaustmtN);

Parameters
pgaustmtN: is a PGAU DEFINE, REDEFINE, or UNDEFINE statement

Examples

GROUP (

DEFINE DATA EMPNO
PLSDNAME (EMPNO)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
(
01 EMP-NO PIC X(6).
)i

DEFINE CALL DB2IMAIN
PKGCALL (PGADB2I_MAIN)
PARMS ((EMPNO IN),
(EMPREC ouT));

DEFINE TRANSACTION DB2I
CALL (DB2IMAIN,
DB2IDIAG)
SIDEPROFILE (CICSPROD)
TPNAME (DB21)
LOGMODE (ORAPLU62)
SYNCLEVEL (0)
NLS_LANGUAGE ("AMERICAN AMERICA.WESEBCDIC37C");

GENERATE DB2I
PKGNAME (PGADB2T)
OUTFILE ("pgadb2i") ;) ;

GROUP Usage Notes:
= Nonon-PGAU commands, such as ORACLE or SQL, can be placed inside the
parentheses delimiting the group.

s A PGAU script can contain multiple GROUPs. Each GROUP can be interspersed
with SQL commands, such as COMMIT or SELECT or with PGAU commands,
such as GENERATE or REPORT.

Procedural Gateway Administration Utility 2-21

PGAU Commands

s The first failing PGAU statement within the group causes a savepoint ROLLBACK
to conditions at the beginning of the group. All subsequent commands within the
group are flushed and not examined. PGAU execution resumes with the statement
following the group. If that statement is a COMMIT, all PG DD changes made
before the failing group are committed.

"on

= You must place ";" at the end of the command.

2-22 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.11 HOST

Purpose

Use this command to execute an operating system command without exiting PGAU.

Syntax

The HOST command has the syntax:

HOST host command

Parameters

host_command is any valid MS-DOS command.

Examples

HOST vi log.out

HOST 1s -la

HOST pwd

HOST Usage Notes

s Using the HOST command starts a new command shell under which to execute
the specified operating system command. This means that any environment
changes caused by the executed command affect only the new command shell
started by PGAU, and not the command shell under which PGAU itself is
executing. For example, a "cd" command executed by the HOST command does
not change the current directory in the PGAU execution environment.

= You do not need to place ";" at the end of the command.

2.6.12 PRINT

Purpose

Use this command to print the value of a variable defined with the VARIABLE

command.

Syntax

The PRINT command has the syntax:

PRINT varname

Parameters
varname is a variable name which is defined by a variable command.

Examples

PRINT ename
PRINT balance

PRINT Usage Notes

= You do not need to place ";" at the end of the command.

Procedural Gateway Administration Utility 2-23

PGAU Commands

2.6.13 REDEFINE DATA

Purpose

The existing data definition in the PG Data Dictionary is modified. PG DD column
values for DATA#, FLD#, and POS remain the same for redefined data items. This
permits existing CALL and DATA definitions to utilize the redefined data. REDEFINE
does not create a different version of a data definition and the version number is not
updated.

Syntax

REDEFINE DATA dname

[VERSion (datavers)]
PLSDNAME (plsdvar)]
FIELD (fname) [PLSFNAME (plsfvar)]]
USAGE ({PASS |ASIS|SKIP})]
COMPOPTS (’options’)]
REMOTE_LANGUAGE ("nlsname")]
LOCAL LANGUAGE ("nlsname")]
LANGUAGE (language)
<(definition) | INFILE("filespec")>

[
[
[
[
[
[

Parameters
Table 2—6 describes the REDEFINE DATA parameters:

Table 2-6 REDEFINE DATA Parameter Descriptions

Parameter Description

DATA dname is a mandatory parameter. It is the name of the data definition
to be modified.

VERS1ion (datavers) is an optional parameter. It specifies which version of dname is
to be modified, and if specified, the updated dname
information retains the same version number; a new version is
not created. It defaults to the highest version if omitted.

PLSDNAME(plsdvar) is an optional parameter. It is the name of the PL/SQL variable
associated with the dname above. It becomes the name of a
PL/SQL variable if the dname item is atomic data, or a
PL/SQL record variable if the dname item is aggregate data
(such as a record or structure), when the TIP is generated. This
name replaces any plsdvar name previously specified by
DEFINE DATA into pga_data(plsdvar) of the PG DD.

FIELD(fname) is an optional parameter. It is the name of a field or group
within the dname item, if aggregate data is being redefined
(such as changing a field within a record).

PLSFNAME (plsfvar) is an optional parameter if FIELD is specified. It is the name of
the PL/SQL variable associated with the fname above. It
becomes the name of a PL/SQL field variable within a PL/SQL
record variable when the TIP is generated. This name replaces
any plsfvar name previously specified by REDEFINE DATA
into pga_data(plsfvar) of the PG DD.

2-24 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

Table 2-6 (Cont.) REDEFINE DATA Parameter Descriptions

Parameter Description

USAGE ({PASS|ASIS is optional. If omitted, the last usage specified is retained. It
|SKIP}) specifies the way the TIP handles the data items when
exchanged in calls with the remote transaction:

s PASS indicates that the item should be translated and
exchanged with the transaction.

= ASISindicates the item is binary and, though exchanged,
should not be translated.

. SKIP indicates the item should be deleted from all
exchanges.

If specified, all affected fields are updated with the same
USAGE value. (Refer to the notes pertaining to single or
multiple field redefinition, under FIELD).

The USAGE(NULL) keyword on DEFINE or REDEFINE DATA
PGAU statements is not supported.

COMPOPTS (’options’) isoptional. If omitted, the last options specified are retained. If
specified as a null string (") then the last options specified are
removed. If a non-null value is specified, then the last options
specified are all replaced with the new options. The only
option currently supported is "TRUNC(BIN)'. Note that the
options must be enclosed in apostrophes (’) or quotes (").
TRUNC(BIN) is a COBOL option that affects the way halfword
and fullword binary values are handled. Refer to "REDEFINE
DATA Usage Notes:" on page 2-26 for further information on

this option.
REMOTE _LANGUAGE is an optional parameter. The default value is
("nlsname™) "american_america.we8ebcdic37c" or as overridden by the

NLS_LANGUAGE parameter of DEFINE TRANSACTION. It
is an Oracle NLS name in the language_territory.charset
format. It specifies the Oracle NLS name in which the remote
host data for the specific character field being redefined is
encoded. The field can be single byte or multi-byte character
data. Refer to Appendix E, "National Language Support" for
more information.

LOCAL_LANGUAGE is an optional parameter. The default value is initialized from

("nlsname") the LANGUAGE variable of the local Oracle server when the
TIP executes. It is an Oracle NLS name in the
language_territory.charset format. It specifies the Oracle NLS
name in which the local Oracle data for the specific character
field being redefined is encoded. The field can be single byte or
multi-byte character data. Refer to Appendix E, "National
Language Support" for more information.

LANGUAGE is a mandatory parameter if definition input is specified. It
("language™) specifies the name of the programming language in the
supplied definition. PGAU presently supports only COBOL.

Procedural Gateway Administration Utility 2-25

PGAU Commands

Table 2-6 (Cont.) REDEFINE DATA Parameter Descriptions

Parameter Description

(definition) is mutually exclusive with the INFILE parameter. It is an inline

description of the data. The description must be provided in
COBOL syntax. This inline description must begin with an
opening parenthesis and end with a closing parenthesis. The
opening parenthesis must be the last non-blank character on
the line and the COBOL data definition must start on a new
line, following the standard COBOL rules for column usage
and continuations. The closing parenthesis and terminating
semicolon must be on a separate line following the last line of
the COBOL data definition. If in COBOL, the specification is a
COBOL data item or structure, defined according to the rules
for COBOL. Margins are assumed to be standard, explicit or
implicit continuation is supported. Datanames containing
invalid characters (for example, "-") for PL/SQL use are
translated to their closest equivalent and truncated as required.

INFILE ("filespec”) is mutually exclusive with the (definition) parameter. It

indicates that the definition is to be read from the operating
system file described by filespec, instead of an inline
definition described by (definition).

Note that "filespec" must be enclosed in double quotes.

Examples

Refer to "Sample PGAU REDEFINE DATA Statements" in Appendix G for examples of
REDEFINE commands.

REDEFINE DATA Usage Notes:

Specification of either PLSDNAME, FIELD, or PLSFNAME allows redefinition of a
single data item’s names while the (definition) parameter redefines the
named data item’s content.

The presence of FIELD denotes only a single data field (single PG DD row
uniquely identified by dname, fname, and version) is updated. The absence of
FIELD denotes that multiple data fields (multiple PG DD rows identified by
dname and version) are updated or replaced by the definition input.

REMOTE_LANGUAGE and LOCAL_LANGUAGE override the character sets
used for conversion of any individual SBCS, DBCS, or MBCS character data field.

LANGUAGE (language) and (definition) [INFILE ("filespec") are
mandatory as a group. If data definitions are to be supplied, then a LANGUAGE
parameter must be specified and then either the inline definition or INFILE must
also be specified.

The presence of (definition) | INFILE ("filespec") denotes that multiple
data fields (those PG DD rows identified by dname and version) are updated or
replaced by the definition input. Fewer, equal, or greater numbers of fields might
result from the replacement.

INFILE ("filespec™) is a platform-specific designation of a disk file.

COMPOPTS ('TRUNC(BIN)’) should be used only when the remote host
transaction was compiled using COBOL with the TRUNC(BIN) compiler option
specified. When this option is used, binary data items defined as PIC 9(4) or PIC
S9(4) can actually contain values with 5 digits, and binary data items defined as
PIC 9(9) or PIC S9(9) can actually contain values with 10 digits. Without
COMPOPTS ('TRUNC(BIN)’), PGAU generates NUMBER(4,0) or NUMBER(9,0)

2-26 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

fields for these data items, resulting in possible truncation of the values. When
COMPOPTS ("TRUNC(BINY’) is specified, PGAU generates NUMBER(5,0) or
NUMBER(10, 0) fields for these data items, avoiding any truncation of the values.
Care must be taken when writing the client application to ensure that invalid
values are not sent to the remote host transaction. For a PIC 9(4) the value must be
within the range 0 to 32767, for a PIC 59(4) the value must be within the range
-32767 to +32767, for a PIC 9(9) the value must be within the range 0 to
2,147,483,647, and for a PIC S9(9) the value must be within the range -2,147,483,647
to +2,147,483,647. COBOL always reserves the high-order bit of binary fields for a
sign, so the value ranges for unsigned fields are limited to the absolute values of
the value ranges for signed fields. For further information, refer to the appropriate
IBM COBOL programming manuals.

Refer to "USAGE(PASS)" in Appendix D, "Datatype Conversions" for information
about how PGAU converts COBOL statements.

"on

You must place ";" at the end of the command.

Procedural Gateway Administration Utility 2-27

PGAU Commands

2.6.14 REM

Purpose

Comments can either be introduced by the REM command or started with the
two-character sequence /* and terminated with the two-character sequence */.

Use the REM command to start a Comment line.

Syntax
The REM command has the syntax:

REM Comment

Parameters
Comment is any strings.

Examples

REM This is a Comment....

REM Usage Notes

You do not need to place ";" at the end of the command.

2-28 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.15 REPORT

Purpose

This command produces a report of selected data from the PG Data Dictionary.
Selection criteria might determine that:

= asingle TRANSACTION, CALL, or DATA entity (with or without an explicit
version) is reported, or

= thatall TRANSACTION, CALL, or DATA entities with a given name be reported
or that all entities in the PG DD be reported, or

s that all invalid TRANSACTIONSs or CALLSs and all unreferenced CALLs, or DATA
entities be reported.

Syntax
REPORT { { TRANSACTION tname | CALL cname | DATA dname } [VERSION(verl...)]

| ALL { TRANSACTIONS [tname] | CALLS [cname] | DATA [dname] } }
[WITH { CALLS | DATA | DEBUG } ...]

| ISOLATED;

Parameters

Table 2-7 describes the REPORT parameter:

Table 2-7 REPORT Parameters Descriptions

Parameter

Description

TRANSACTION tname
CALL cname
DATA dname
VERSION (verl, [ver2

1)

ALL TRANSACTIONS
[tname]

ALL CALLS [cname]

ALL DATA [dname]

WITH CALLS

WITH DATA

WITH DEBUG

Reports the PG DD contents for the latest or selected versions
of the transaction tname.

Reports the PG DD contents for the latest or selected versions
of the call cname.

Reports the PG DD contents for the latest or selected versions
of the data dname.

Reports selected versions of the indicated entry and is
mutually exclusive with ALL.

Reports the PG DD contents for all existing versions of every
transaction entry or optionally a specific transaction tname,
and is mutually exclusive with TRANSACTION.

Reports the PG DD contents for all existing versions of every
call entry or optionally a specific call cname, and is mutually
exclusive with CALL.

Reports the PG DD contents for all existing versions of every
data entry or optionally a specific data dname, and is mutually
exclusive with DATA.

Reports call entries associated with the specified transactions.

Reports data entries associated with the specified calls, and
when specified for transactions, implies WITH CALLS.

Reports PG DD column values for tran#, call#, parm#, data#,
and attr# as appropriate, depending on the type of items being
reported.

This report is useful with TIPs generated with PG DD
Diagnostic references. Refer to the GENERATE DIAGNOSE
PGEX(OR) option for more information.

Procedural Gateway Administration Utility 2-29

PGAU Commands

Table 2-7 (Cont.) REPORT Parameters Descriptions

Parameter Description

ISOLATED Mutually exclusive with all other parameters. All unreferenced

CALL and DATA entries are reported along with
TRANSACTION:S that reference missing CALLs and DATA
and CALLs that reference missing DATA.

Examples

Refer to "Sample PGAU REPORT Output" in Appendix G for sample REPORT
commands.

REPORT Usage Notes:

Report output is to the terminal and can be spooled, saved, and printed.

Data reports are formatted according to their original compiler language, and
preceded by a PGAU DEFINE DATA command which defines the data to the PG
DD.

Call and Transaction reports are formatted as PGAU DEFINE CALL or
TRANSACTION commands (also called "statements"), which effectively define the
entry to the PG DD.

The following command reports the single most recent data definition specified by
data name dname, or optionally, for those specific versions given.

REPORT DATA dname;

REPORT DATA dname VERSION (version#l,version#2);

This command reports all data definitions specified by data name dname:

REPORT ALL DATA dname;

The following command reports the single most recent call definitions specified by
call name cname, or optionally for those specific versions given.

REPORT CALL cname;

REPORT CALL cname VERSION (version#l,version#2) WITH DATA;

This command reports all call definitions specified by call name cname:

REPORT ALL CALLS cname WITH DATA;

This command reports all call definitions in the PG DD:

REPORT ALL CALLS WITH DATA;

When WITH DATA is specified, all the data definitions associated with each
selected call are also reported. The data definitions precede each corresponding
selected call in the report output.

The following command reports the single most recent transaction definitions
specified by transaction name tname, or optionally for those specific versions
given.

REPORT TRANSACTION tname
REPORT TRANSACTION tname VERSION (version#l,version#2)
WITH DATA WITH CALLS;

2-30 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

This command reports all transaction definitions specified by transaction name
tname:

REPORT ALL TRANSACTIONS tname WITH DATA WITH CALLS;

This command reports all transaction definitions in the PG DD:
REPORT ALL TRANSACTIONS WITH DATA WITH CALLS;
When WITH CALLS option is specified, all call definitions associated with each

selected transaction are also reported (the call definitions precede each
corresponding selected transaction in the report output).

When WITH DATA is specified, all the data definitions associated with each
selected call are also reported (the data definitions precede each corresponding
selected call in the report output).

For transaction reports, specification of WITH DATA implies specification of
WITH CALL.

The following command reports any unreferenced CALL or DATA definitions. It
also reports any TRANSACTION or CALL definitions that reference missing
CALL or DATA definitions respectively.

REPORT ISOLATED;

The following command reports all definitions in the PG DD.

REPORT ALL;

Data definitions are reported, followed by their associated call definitions,
followed by the associated transaction definition.

This sequence is repeated for every defined call and transaction in the PG DD.

non

You must place ";" at the end of the command.

Procedural Gateway Administration Utility 2-31

PGAU Commands

2.6.16 SET

Parameters

Table 2-8 describes the SET parameters:

Table 2-8 SET Parameter Descriptions

Parameter Description

ARRAYSIZE [n] Sets the number of rows fetched at a time from the database.
The default is 20.

CHARWIDTH [n] Sets the column display width for CHAR data. If entered with
no argument, it returns the setting to 9, which is the default.

DATEWIDTH Sets the column display width for DATE data. If entered with

ECHO {ON | OFF}

FETCHROWS [n]

LONGWIDTH [n]

MAXDATA [n]

NUMWIDTH [n]

SERVEROUTPUT
{OFF | ON [SIZE | n]}

STOPONERROR
{ON | OFF}

TERMOUT {ON | OFF}

TIMING {ON | OFF}

no argument, it returns the setting to 9, which is the default.

Sets echoing of commands entered from command files to ON
or OFF. The default is OFF.

Sets the number of rows returned by a query. This is useful
with ordered queries for finding a certain number of items in a
category, the top ten items for example. It is also useful with
unordered queries for finding the first n records that satisfy a
certain criteria.

Sets the column display width for LONG data. If entered with
no argument, it returns the setting to 80, which is the default.

Sets the maximum data size. It indicates the maximum data
that can be received in a single fetch during a SELECT
command. The default is 20480 bytes (20K).

Sets the column display width for NUMBER data. If entered
with no argument, it returns the setting to 10, which is the
default.

Sets debugging output from stored procedures that use
DBMS_OUTPUT PUT and PUT_LINE commands to ON or
OFF. You can specify the size in bytes of the message buffer
using SIZE n. The size specified is the total number of bytes of
all messages sent that can be accumulated at one time. The
minimum is 2000 bytes. If the buffer fills before calls to the
get-message routines make room for additional message bytes,
an error is returned to the program sending the message.
SERVEROUTPUT with no parameters is the same as
SERVEROUTPUT ON.

Indicates whether execution of a command file should stop if
an error occurs. Specifying OFF disables STOPONERROR.

Enables or disables terminal output for SQL commands. It is
useful for preventing output to the terminal when spooling
output to files. The default is OFF, which disables terminal
output.

Enables or disables display of parse, execute, and fetch times
(both CPU and elapsed) for each executed SQL statement. The
default is OFF, which disables the TIMING display.

Examples

PGAU> set arraysize 30

PGAU> set CHARWIDTH

2-32 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.17 SHOW

SET Usage Notes

"

= You do not need to place ";" at the end of the command.

Parameters

Table 2-9 describes the SHOW parameters:

Table 2-9 SHOW Parameter Descriptions

Parameters Description

ALL Shows all valid SET parameters

ARRAYSIZE Shows the number of rows fetched at a time from the database.

CHARWIDTH Shows the column display width for CHAR data.

DATEWIDTH Shows the column display width for DATE data.

ECHO Shows echoing of commands entered from command files to
ON or OFE.

FETCHROWS Shows the number of rows returned by a query.

LONGWIDTH Shows the column display width for LONG data.

MAXDATA Shows the maximum data size.

NUMWIDTH Shows the column display width for NUMBER data.

SERVEROUTPUT Shows debugging output from stored procedures that use
DBMS_OUTPUT PUT and PUT_LINE commands.

STOPONERROR Indicates whether execution of a command file should stop if
an error occurs.

TERMOUT Shows whether the terminal output for SQL commands is
enabled or disabled.

TIMING Shows whether display of parse, execute, and fetch times (both
CPU and elapsed) for each executed SQL statement is enabled
or disabled.

VAR Is the same as the PRINT command; in addition, it shows all
variables and their datatypes.

Examples

Note that when you issue a SET command, there will be no output if it is successful. If
you want to check whether your statement was executed successfully, issue a SHOW
command like the following;:

PGAU> show arraysize
Arraysize 30

PGAU> show CHARWIDTH
Charwidth 80

PGAU> show all

Instance local
Spool OFF
Timing OFF
Termout ON
Echo OFF
Stoponerror OFF

Procedural Gateway Administration Utility 2-33

PGAU Commands

Maxdata 20480
Arraysize 20
Fetchrows 100
Numwidth 10
Charwidth 80
Longwidth 80
Datewidth 9
ServerOutput OFF
SHOW Usage Notes

"o

= You do not need to place ";" at the end of the command.

2-34 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.18 SPOOL

Purpose

Use this command to specify a filename that captures PGAU output. All output is
directed to the terminal unless TERMOUT is off.

Syntax
The SPOOL command has the syntax:

SPOOL [filename|OFF]

Parameters

If a simple filename is specified, with no periods, then .log is appended to the
filename.

filename is where the output of your executed commands is placed.

Examples

SPOOL log.outfile
SPOOL out
SPOOL OFF

SPOOL Usage Notes

= You do not need to place ";" at the end of the command.

Procedural Gateway Administration Utility 2-35

PGAU Commands

2.6.19 UNDEFINE CALL

Purpose
Use this command to remove an occurrence of the CALL definition from PG DD.

Syntax

UNDEFINE CALL cname [VERSion(callvers|ALL)];

Parameters
Table 2-10 describes the UNDEFINE CALL parameters:

Table 2-10 UNDEFINE CALL Parameter Descriptions

Parameter Description

CALL cname| A mandatory parameter. It specifies the name associated with

the item to be dropped; if no version is specified only the latest
(highest numbered) version is removed.

VERSion ({datavers]| An optional parameter. It specifies which singular version of a

definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed
if VERSION is omitted.

callversl|

transvers|ALL})

Examples

Refer to "Sample PGAU UNDEFINE Statements" in Appendix G for examples of
UNDEFINE CALL commands.

UNDEFINE CALL Usage Notes:

Removing definitions only prevents PL/SQL packages from being subsequently
generated. TIPs can still be recreated if the .pkh and .pkb specification files exist
and those previous TIPS can be invoked if they remain in the database of the
Oracle Integrating Server. Whether such TIPs execute successfully depends on
whether the corresponding remote transaction programs are still active.

Remove a CALL definition only after all TRANSACTIONSs which reference it are
removed. No integrity checking is done.

"on

You must place ";" at the end of the command.

2-36 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.20 UNDEFINE DATA

Purpose

Use this command to remove an occurrence of the DATA definition in the PG Data
Dictionary.

Syntax

UNDEFINE DATA dname [VERSion(datavers|ALL)];

Parameters
Table 2-11 describes the UNDEFINE DATA parameters:

Table 2-11 UNDEFINE DATA Parameter Descriptions

Parameter Description

DATA dname | A mandatory parameter. It specifies the name associated with

the item to be dropped. If no version is specified, only the
latest (highest numbered) version is removed.

VERSion ({datavers | An optional parameter. It specifies which singular version of a

definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
transvers[ALL}) highest numbered version of the named definition is assumed
if VERSION is omitted.

callvers|

Examples

Refer to "Sample PGAU UNDEFINE Statements" in Appendix G for examples of
UNDEFINE DATA commands.

UNDEFINE DATA Usage Notes

Removing definitions only prevents PL/SQL packages (TIPs) from being
subsequently generated. Previously generated TIPs can still be recreated if the
.pkh and .pkb specification files remain in existence. Previously created TIPs can
still be invoked if they remain in the database of the Oracle Integrating Server.
Whether such TIPs execute successfully depends on whether the corresponding
remote transaction programs are still active.

Remove a DATA definition only after all CALLs and all TRANSACTIONSs which
reference it are removed. No integrity checking is done.

"on

You must place ";" at the end of the command.

Procedural Gateway Administration Utility 2-37

PGAU Commands

2.6.21 UNDEFINE TRANSACTION

Purpose

This command removes an occurrence of the TRANSACTION definition in the PG
Data Dictionary.

Syntax
UNDEFINE TRANSACTION tname [VERSion(tranvers|ALL)];

Parameters
Table 2-12 describes the UNDEFINE TRANSACTION parameters:

Table 2-12 UNDEFINE TRANSACTION Parameter Descriptions

Parameter Description

TRANSACTION tname} Mandatory parameter. It specifies the name associated with the
item to be dropped. If no version is specified, only the latest
(highest numbered) version is removed.

VERS1ion ({datavers | Optional parameter. It specifies which singular version of a
callvers | definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
transvers | ALL}) highest numbered version of the named definition is assumed
if VERSION is omitted.
Examples

Refer to "Sample PGAU UNDEFINE Statements" in Appendix G for examples of
UNDEFINE TRANSACTION commands.

UNDEFINE TRANSACTION Usage Notes

= Removing definitions only prevents PL/SQL packages from being subsequently
generated. TIPs can still be recreated if the .pkh and .pkb specification files remain
in existence. Previously created TIPs can be invoked if they remain in the database
of the Oracle Integrating Server. Whether such TIPs execute successfully depends
on whether the corresponding remote transaction programs are still active.

= ATRANSACTION definition can be removed at any time.

"on

= You must place ";" at the end of the command.

2-38 Oracle Procedural Gateway for APPC User’s Guide

PGAU Commands

2.6.22 VARIABLE

Purpose

Use this command to declare a bind variable for use in the current session with the
EXECUTE or PRINT command, or for use with a PL/SQL block.

Syntax
The VARIABLE command has the syntax:

VARIABLE name type

Parameters
Table 2-13 describes the VARIABLE parameters.

Table 2-13 VARIABLE Parameter Descriptions

Parameter Description

name Is a variable name.
type Is the variable datatype
Examples

VARIABLE balance NUMBER
VARIABLE emp name VARCHAR2

VARIABLE Usage Notes

"

= You do not need to place ";" at the end of the command.

Procedural Gateway Administration Utility 2-39

PGAU Commands

2-40 Oracle Procedural Gateway for APPC User’s Guide

3

Creating a TIP

This chapter shows in detail how you can define, generate and compile a Transaction
Interface Package (TIP). It assumes that a remote host transaction program (RTP)
already exists. This transaction program has operational characteristics that dictate
how the TIP is defined and how the TIP is used by the client application.

This chapter contains the following sections:

s "Granting Privileges for TIP Creators" on page 3-2
s "Evaluating the RHT" on page 3-2

s '"Defining and Generating the TIP" on page 3-7

s "Compiling the TIP" on page 3-8

= "TIP Content Documentation (tipname.doc)" on page 3-8

Creatinga TIP 3-1

Granting Privileges for TIP Creators

The following steps create a TIP for use with a remote host transaction (RHT):
= evaluating the RHT

= preparing the PGAU statements

s defining and generating the TIP

= compiling the TIP

This chapter also discusses the generated TIP content file.

3.1 Granting Privileges for TIP Creators

Every TIP developer requires access to the following PL/SQL packages, which are
shipped with the Oracle server:

s DBMS_PIPE in %ORACLE_HOME% \rdbms\admin
s UTL_RAW in %ORACLE_HOME%\rdbms\admin
s UTL_PG in %ORACLE_HOME% \rdbms\admin

If anyone other than user PGAADMIN will be developing TIPs, they will need explicit
grants to perform these operations. Refer to the "Optional Configuration Steps" section
in the configuration chapter appropriate to your communication protocol in the Oracle
Procedural Gateway for APPC Installation and Configuration Guide for more information
about private and public grants.

3.2 Evaluating the RHT

Follow the steps below to identify and become familiar with your remote host
transaction data exchanges.

3.2.1 Identify the Remote Host Transaction

You must first identify the RHT data exchange steps. These are the send and receive
calls embedded within the RHT program.

If your gateway is using the SNA communication protocol:
The RHT data exchange steps are identified under the following languages:

= You may use COBOL for:
- CICS
- IMS
= You may use IBM 370 Assembler for:
- CICS
- IDMS
- IMS
= You may use IBM REXX for:
- CICS
- IDMS
- IMS
- z/05

3-2 Oracle Procedural Gateway for APPC User’s Guide

Evaluating the RHT

If your gateway is using the TCP/IP communication protocol:

IMS is the only OLTP that is supported when the gateway is using TCP/IP support for
IMS Connect. The RHT programs must use embedded I/O PCB function calls. The
function is identified only under the COBOL and Assembler languages.

3.2.2 PGAU DEFINE CALL Command

Make a call list of every data exchange. This list dictates a series of PGAU DEFINE
CALL statements. Refer to "DEFINE CALL" in Chapter 2, "Procedural Gateway
Administration Utility" for more information about this PGAU command.

The three important parameters that you will use for each call are:

= cname: the name of the call definition to be created;

= dname: the name of the data structure to be exchanged; and

= whether it is send (OUT) or receive (IN)

RHT send corresponds to a TIP OUT and RHT receive corresponds to a TIP IN.

If your communication protocol is SNA: Refer to Section 4.6.2.1, "Flexible Call
Sequence" on page 4-14 for more information about PGAU DEFINE CALL commands.

If your communication protocol is TCP/IP: Refer to Section 7.3.2.1, "Flexible Call
Sequence" on page 7-7 for more information about PGAU DEFINE CALL commands.

PGAU call entries are only defined once, so eliminate any duplicates.

This call list defines the TIP function calls, not the order in which they are used. Note
that the order in which each call is made is a behavior of the transaction and dictates
the order of calls made by the high-level application to the TIP, which then calls the
RHT through the Procedural Gateway server. While this calling sequence is critical to
maintaining the synchronization between the application and the RHT, the TIP is only
an access method for the application and has no knowledge of higher level sequencing
of calls.

3.2.3 PGAU DEFINE DATA Command

For each call in the RHT call list, identify the RHT data structures being sent or
received in the call buffers.

Make a data list of every such structure. This list dictates a series of PGAU DEFINE
DATA statements.

The two important parameters that you will use for DEFINE DATA are:
s dname: the name of the data definition to be created; and
s dname.ext: the file in which the data definition is stored.

PGAU data entries are only defined once, so eliminate any duplicates.

Creatinga TIP 3-3

Evaluating the RHT

Note: Move COBOL record layouts (copybooks) to the gateway
system.

PGAU can use copybooks as input when defining the data items.
Once you have identified the data items to be exchanged, use a file
transfer program to download the copybooks to the gateway
system. The copybooks are later used to define the data items. The
sample copybook used in the example is documented in
Appendix G, "Administration Utility Samples".

3.2.4 PGAU DEFINE TRANSACTION Command on a Gateway Using SNA

Determine the network address information for the RHT program. Your network or
OLTP system programmer can provide you with this information.

The five important parameters that you will use for PGAU DEFINE TRANSACTION
are:

= Side Profile name
s TP name

= LUname

= LOGMODE

= SYNCLEVEL

You must also identify the Oracle NLS character set (charset) for the language in
which the OLTP expects the data.

[d At this point, if your gateway is using SNA, then proceed to Section 3.2.6, "Writing
the PGAU Statements".

3.2.5 PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP

Before you use this command, you will need to know the IMS Connect hostname (or
TCP/IP address), port number and the other IMS Connect parameters that are defined
as columns within the PGA_TCP_IMSC table. Refer to Chapter 6, "PG4ATCPMAP
Commands (TCP/IP Only)" for complete information about preparation for mapping
parameters to TCP/IP using the pg4tcpmap tool.

When you run the pg4tcpmap tool you need to specify a unique name (Side Profile
Name). That name must be the same name that you are using here to create your TIP.

If you are converting your gateway from the SNA to a TCP/IP communications
protocol to invoke IMS transactions: You need to regenerate the TIPs. Refer to
Chapter 2, "Procedural Gateway Administration Utility" for details.

3-4 Oracle Procedural Gateway for APPC User’s Guide

Evaluating the RHT

3.2.6 Writing the PGAU Statements
After evaluating the RHT, define the TIP to PGAU for placement in the PG DD.

1.

3.

Write a DEFINE DATA statement for each entry in your data list. If, for example,
your RHT had three different data structures, your data definitions might be:

DEFINE DATA dnamel LANGUAGE (IBMVSCOBOLII)
DEFINE DATA dname2 LANGUAGE (IBMVSCOBOLII)
DEFINE DATA dname3 LANGUAGE (IBMVSCOBOLII)

INFILE (dnamel.ext) ;
INFILE (dname2.ext) ;
INFILE (dname3.ext) ;

Then you must copy or transfer the source file containing these data definitions to
the directory where PGAU can read them as input.

Write a DEFINE CALL statement for each entry in your call list. If, for example,
your RHT had a receive send receive send sequence, your call definitions would
be:

DEFINE CALL cnamel PARMS (
DEFINE CALL cname2 PARMS (
(
(

dnamel IN));

dname2 OUT)) ;

dname3 IN)
T

dname2 OU'

DEFINE CALL cname3 PARMS

(
(
(
DEFINE CALL cname4 PARMS ((

)
)
)i

))

Note: Optionally, you can rewrite your call definitions to
consolidate the data transmission into fewer exchanges, as long as
you do not alter the data transmission sequence. For example:

DEFINE CALL cnamel PARMS ((dnamel IN),
(dname2 OUT)) ;

DEFINE CALL cname3 PARMS ((dname3 IN),
(dname2 OUT)) ;

This reduces the calls between the application and the TIP from
four calls to two calls passing an IN and OUT parameter on each
call. Because TIPs always process IN parameters before OUT
parameters, the data transmission sequence is unchanged.
However, this consolidation is not always possible.

If your communication protocol is SNA: Refer to Section 4.6.2.1,
"Flexible Call Sequence" on page 4-14 for more information about
PGAU DEFINE CALL commands.

If your communication protocol is TCP/IP: Refer to Section 7.3.2.1,
"Flexible Call Sequence" on page 7-7 for more information about
PGAU DEFINE CALL commands.

Write a DEFINE TRANSACTION statement that contains every call, specifying the
network address and NLS information:

DEFINE TRANSACTION tname CALLS (cnamel
cname2,
cnameN)
ENVIRONMENT (IBM370)
SIDEPROF (profname) |
TPNAME (tpid) LUNAME (luname) LOGMODE (mode)
SYNCLEVEL (n)
NLS_LANGUAGE (charset) ;

Creatinga TIP 3-5

Evaluating the RHT

4. You can add a GENERATE statement to create the TIP specification:

GENERATE tname

Note: You can also add a REPORT statement to list the PG DD
entries for tname:

REPORT TRANSACTION tname with CALLS with DATA;
Also annotate the script with Comments:

REM this is a Comment

3.2.7 Writing a PGAU Script File

The previous section describes the steps you need to follow in order to execute PGAU
statements via your PGAU command line processor. As a time saving measure, you
can choose to write all of the statements (DEFINE DATA, DEFINE CALL and DEFINE
TRANSACTION) into a single PGAU script file named tname.ctl, in the following
order:

m define data
s define call
m define transaction

= generate

Caution: Because you will probably run this script more than
once, you should include UNDEFINE statements first to remove
any previous entries in the PG DD.

This is an example of a tname.ctl PGAU script file:

UNDEFINE TRANSACTION tname Version(all);
UNDEFINE CALL cnamel Version(all);
UNDEFINE CALL cname2 Version(all);
UNDEFINE DATA dnamel Version(all);
UNDEFINE DATA dname2 Version(all);
UNDEFINE DATA dname3 Version(all);
DEFINE DATA dnamel LANGUAGE (IBMVSCOBOLII) INFILE (dnamel.ext);
DEFINE DATA dname2 LANGUAGE (IBMVSCOBOLII) INFILE (dname2.ext);
DEFINE DATA dname3 LANGUAGE (IBMVSCOBOLII) INFILE (dname3.ext);
DEFINE CALL cnamel PARMS (dnamel IN),
(dname2 OUT)) ;
DEFINE CALL cname2 PARMS (dname3 IN),
(dname2 OUT)) ;
DEFINE TRANSACTION tname CALLS (cnamel,
cnamez2,
cnameN)
ENVIRONMENT (IBM370)
SIDEPROF (profname) |
TPNAME (tpid) LUNAME (luname) LOGMODE (mode)
SYNCLEVEL (n)
NLS_LANGUAGE (charset) ;
Generate tname

3-6 Oracle Procedural Gateway for APPC User’s Guide

Defining and Generating the TIP

3.3 Defining and Generating the TIP

After you have created your control file, use PGAU to create the PG DD entries and
the TIP specification files.

Note: The user ID under which you run PGAU must have:

= write access to output the specification files (pgau.pkh,
pgau.pkb, and pgau.doc), where pgau is the default name; and

= read access to the data definition source files (dname . ext),
where dname . ext will be specified in PGAU DEFINE DATA
statement(s).

Invoke PGAU against your PG DD stored in the Oracle Procedural Gateway for APPC
Administrator’s user ID:

C:\> pgau
PGAU> connect pgaadmin\pwedatabase specification string

Issue the following commands:

PGAU> set echo on
PGAU> spool tname.def
PGAU> @tname.ctl
PGAU> spool off

The TIP is now ready to be compiled. By default, the GENERATE statement writes
your TIP specifications to the following output files in your current directory:

pgau.pkh (TIP Header)
pgau.pkb (TIP Body)
pgau.doc (TIP content documentation)

Note: You can optionally add spool and echo to your script
(tname. ctl) or make other enhancements, such as using PG DD
roles and the PGAU GROUP statement for shared PG DDs.

s If your gateway is using SNA: Refer to Chapter 4, "Client
Application Development (SNA Only)" for more information.

» If your gateway is using TCP/IP support for IMS Connect:
Refer to Chapter 7, "Client Application Development (TCP/IP
Only)" for more information.

Creatinga TIP 3-7

Compiling the TIP

3.4 Compiling the TIP

Exit PGAU. Remain in your current directory and invoke SQL*Plus.

C:\> sqlplus userid/pwedatabase specification string
SQL> set echo on

SQL> @pgau.pkh

SQL> @pgau.pkb

The last two commands compile the TIP specification and body, respectively.

You have now compiled a TIP which can be called by your client application. If your
client application is already written you can begin testing.

For more information about designing your client application and compiling a TIP,
refer to Chapter 1, "Introduction to Oracle Procedural Gateway for APPC" and
Appendix F, "Tip Internals".

If your gateway is using SNA: Refer to Chapter 4, "Client Application Development
(SNA Only)" for information about PGAU statement syntax and usage.

If your gateway is using TCP/IP support for IMS Connect: Refer to Chapter 7, "Client
Application Development (TCP/IP Only)" for information about PGAU statement
syntax and usage.

3.5 TIP Content Documentation (tipname.doc)

This section discusses the TIP documentation file that is produced when the user
issues a PGAU GENERATE command. This TIP content file describes the function
calls and PL/SQL variables and datatypes available in the TIP.

PGAU GENERATE always produces a TIP content file named tipname.doc. The
filename is the name of the transaction that was specified in the PGAU GENERATE
command, and the filetype is always .doc. This TIP content file contains the following
sections:

= GENERATION Status
This section contains the status under which the TIP is generated.
n TIP Transaction

This section identifies the defined transaction attributes. These result from the
PGAU DEFINE TRANSACTION definition.

s TIP Default Calls

This section identifies the syntax of the calls made by the user’s application to
initialize and terminate the transaction. PGAU generates these calls into every TIP
regardless of how the TIP or transaction is defined.

m TIP User Calls

This section identifies the syntax of the calls which the user defines for the
application to interact with the transaction.

m TIP User Declarations

This section identifies the TIP package public datatype declarations, implied by
the user’s data definition specified in each call parameter.

s TIP User Variables

This section contains TIP variables that can be referred to by applications or
referenced by applications.

3-8 Oracle Procedural Gateway for APPC User’s Guide

4

Client Application Development (SNA Only)

This chapter discusses how you will call a TIP and control a remote host transaction. It
also provides you with the steps for preparing and executing a gateway transaction.
This chapter assumes:

a remote host transaction (RHT) has already been written;

a TIP corresponding to the RHT has already been defined using the steps
described in Chapter 3, "Creating a TIP".

Note: If your gateway uses the TCP/IP support for IMS Connect,
refer to Chapter 7, "Client Application Development (TCP/IP
Only)" for information about calling a TIP and controlling a remote
host transaction.

This chapter contains the following sections:

"Overview of Client Application" on page 4-2

"Preparing the Client Application" on page 4-3

"Understanding the Remote Host Transaction Requirements" on page 4-3
"Customized TIPs for Each Remote Host Transaction" on page 4-7

"Client Application Requirements" on page 4-8

"Ensuring TIP and Remote Transaction Program Correspondence” on page 4-12
"Calling the TIP from the Client Application” on page 4-16

"Exchanging Data" on page 4-22

"Executing the Application" on page 4-23

"APPC Conversation Sharing" on page 4-23

"Application Development with Multi-Byte Character Set Support” on page 4-29
"Modifying a Terminal-Oriented Transaction to Use APPC" on page 4-30
"Privileges Needed to Use TIPs" on page 4-31

Client Application Development (SNA Only) 4-1

Overview of Client Application

4.1 Overview of Client Application

The Procedural Gateway Administration Utility (PGAU) generates a complete TIP
using definitions you provide. The client application can then call the TIP to access the
remote host transaction. Chapter 2, "Procedural Gateway Administration Utility",
discusses the use of PGAU in detail.

This overview explains what you must do in order to call a TIP and control a remote
host transaction.

The gateway receives PL/SQL calls from the Oracle Integrating Server and issues
APPC calls to communicate with a remote transaction program. The following three
application programs make this possible:

1. an APPC-enabled remote host transaction program

2. a Transaction Interface Package, or TIP. A TIP is a PL/SQL package that handles
communication between the client and the gateway and performs datatype
conversions between COBOL and PL/SQL.

PGAU generates the TIP specification for you. In the shipped samples, the
PGAU-generated package is called pgadb2i.pkb. This generated TIP includes at
least three function calls that map to the remote transaction program:

- pgadb2i_init initializes the conversation with the remote transaction program

- pgadb2i_main exchanges application data with the remote transaction
program

— pgadb2i_term terminates the conversation with the remote transaction
program

Refer to Appendix F, "Tip Internals" for more information about TIPs, if you are
writing your own TIP or debugging.

3. aclient application that calls the TIP.

The client application calls the three TIP functions with input and output
arguments. In the example, the client application passes empno, an employee
number to the remote transaction and the remote transaction sends back emprec
an employee record.

Table 4-1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the
gateway using the example CICS-DB2 transaction.

Table 4-1 Logic Flow of CICS-DB2 Example

Procedures Established Between the

Client Gateway and the Remote Transaction
Application Oracle TIP (mainframe)
calls tip_init Calls PGAINIT Gateway sets up control blocks and

issues APPC ALLOCATE. Mainframe
program initiates.

calls tip_main Calls PGAXFER to send Gateway issues APPC SEND to the
empno and receive mainframe. Mainframe RECEIVE
emprec completes. Mainframe performs
application logic and issues APPC SEND
back to gateway. The gateway- issues
APPC RECEIVE,; receive completes.
Mainframe issues APPC TERM.

calls tip_term Call PGATERM Gateway cleans up control blocks.

4-2 Oracle Procedural Gateway for APPC User’s Guide

Understanding the Remote Host Transaction Requirements

A client application which utilizes the gateway to exchange data with a remote host
transaction performs some tasks for itself and instructs the TIP to perform other tasks
on its behalf. The client application designer must consequently know the behavior of
the remote transaction and how the TIP facilitates the exchange.

The following sections provide an overview of remote host transaction behavior, how
this behavior is controlled by the client application and how TIP function calls and
data declarations support the client application to control the remote host transaction.
These sections also provide background information about what the TIP does for the
client application and how the TIP calls exchange data with the remote host
transaction.

4.2 Preparing the Client Application

To prepare the client application for execution you must understand the remote host
transaction requirements and then perform these steps:

1. Move relevant COBOL records layout (copybooks) to the gateway system for
input to PGAU.

2. Describe the remote host transaction data and calls to the PG Data Dictionary
(PG DD) with DEFINE DATA, DEFINE CALL, and DEFINE TRANSACTION
statements.

3. Generate the TIP in the Oracle Integrating Server, using GENERATE.
4. Create the client application that calls the TIP public functions.

5. Grant privileges on the newly created package.

4.3 Understanding the Remote Host Transaction Requirements
Browse through the remote host transaction program (RTP) to determine:
= the PL/SQL parameters required on the various client application to TIP calls
= the order in which the calls are made

Identify the remote host transaction program (RTP) facilities to be called and the data
to be exchanged on each call. You will then define the following, and store them in the
PG DD:

= DEFINE DATA
= DEFINE CALL
= DEFINE TRANSACTION

Refer to Chapter 3, "Creating a TIP" for specific definition steps and for the actual
creation and generation of a TIP.

4.3.1 TIP Content and Purpose

The content of a PGAU-generated TIP reflects the calls available to the remote host
transaction and the data that has been exchanged. Understanding this content helps
when designing and debugging client applications that call the TIP.

A TIP is a PL/SQL package, and accordingly has two sections:
1. A Package Specification containing:

= Public function prototypes and parameters, and

Client Application Development (SNA Only) 4-3

Understanding the Remote Host Transaction Requirements

2. A Package Body containing:
= Private functions and internal control variables
s Public functions
= Package initialization following the last public function.

The purpose of the TIP is to provide a PL/SQL callable public function for every
allowed remote transaction program interaction. A remote transaction program
interaction is a logically related group of data exchanges through one or more
PGAXFER RPC calls. This is conceptually similar to a screen or menu interaction in
which several fields are filled in, the enter key is pressed, and several fields are
returned to the user. Carrying the analogy further:

s the user might be likened to the TIP or client application

= fields to be filled in are IN parameters on the TIP function call

» fields returned are OUT parameters on the TIP function call

= screen or menu is the group of IN and OUT parameters combined

= apressed enter key is likened to the PGAXFER remote procedural call (RPC)

The actual grouping of parameters that constitute a transaction call is defined by the
user. The gateway places no restrictions on how a remote transaction program might
correspond to a collection of TIP function calls, each call having many IN and OUT
parameters.

PGA users typically have one TIP per remote transaction program. How the TIP
function calls are grouped and what data parameters are exchanged on each call
depends on the size, complexity and behavior of the remote transaction program.

Refer to Oracle’s PL/SQL User’s Guide and Reference for a discussion of how PL/SQL
packages work. The following discussion covers the logic that must be performed
within a TIP. Refer to the sample TIP and driver supplied in the
%ORACLE_HOME%\pgdappc\demo\CICS directory in files pgadb2i.pkh,
pgadb2i.pkb, and pgadb2id.sql.

4.3.2 Remote Host Transaction Types

From a procedural gateway application perspective, there are three main types of
remote host transactions:

= one-shot
m persistent

s multi-conversational

4.3.2.1 One-Shot Transactions

A simple remote transaction program which receives one employee number and
returns the employee record could have a TIP which provides one call, passing the
employee number as an IN parameter and returning the employee record as an OUT
parameter. An additional two function calls must be provided by this and every TIP:

= aremote transaction program init function call
= aremote transaction program terminate function call

The most simple TIP has three public functions, such as tip_init, tip_main, and
tip_term.

4-4 Oracle Procedural Gateway for APPC User’s Guide

Understanding the Remote Host Transaction Requirements

The client application calls tip_init, tip_main, and tip_term in succession. The
corresponding activity at the remote site is remote transaction program start, data
exchange, and remote transaction program end.

The remote transaction program might even terminate itself before receiving a
terminate signal from the gateway. This sequence is usual and is handled normally by
gateway logic. This kind of remote transaction program is termed one-shot.

4.3.2.2 Persistent Transactions

A more complex remote transaction program has two modes of behavior: an INQUIRY
or reporting mode, and an UPDATE mode. These modes can have two TIP data
transfer function calls: one for INQUIRY and one for UPDATE. Such a TIP might have
five public functions. For example:

m tip_init
This initializes communications with the remote transaction program.
= tip_mode

This accepts a mode selection parameter and puts the transaction program into
either inquiry or update mode.

s tip_ingr
This returns an employee record for a given employee number.
n tip_updt
This accepts an employee record for a given employee number.
s tip_term
This terminates communications with the remote transaction program.

The client application calls tip_init and then tip_mode to place the remote transaction
program in inquiry mode which then scans employee records, searching for some
combination of attributes (known to the client application and end-user). Some
parameter on an inquiry call is then set to signal a change to update mode and the
client application calls tip_updt to update some record. The client application finally
calls tip_term to terminate the remote transaction program.

The corresponding activity at the remote site is:
= remote transaction program start

= mode selection exchange

= loop reading records

= switch to update mode

= update one record

= remote transaction program end

Such a remote transaction program is called persistent because it interacts until it is
signalled to terminate.

The remote transaction program can be written to permit a return to inquiry mode and
repeat the entire process indefinitely.

Client Application Development (SNA Only) 4-5

Understanding the Remote Host Transaction Requirements

4.3.2.3 Multi-Conversational Transactions

A client application might need to get information from one transaction, tran_A, and
subsequently write or lookup information from another, tran_B. This is possible with a
properly written client application and TIPs for tran_A and tran_B. In fact, any
number of transactions might be concurrently controlled by a single client application.
All transactions could be read-only, with the client application retrieving data from
each and consolidating it into a local Oracle database or displaying it in an Oracle
Form.

Alternatively, a transaction could be capable of operating in different modes or
performing different services depending on what input selections were supplied by
the client application. For example, one instance of tran_C can perform one service
while a second instance of tran_C performs a second service. Each instance of

tran_C would have its own unique conversation with the client application and each
instance could have its own behavior (one-shot or persistent) depending on the nature
of the service being performed.

4-6 Oracle Procedural Gateway for APPC User’s Guide

Customized TIPs for Each Remote Host Transaction

4.4 Customized TIPs for Each Remote Host Transaction

Each remote host system might have hundreds of remote transaction programs (RTPs)
which a user might want to call. Each remote transaction program is different, passes
different data, and performs different functions. The interface between the user and
each remote transaction program must consequently be specialized and customized to
the user’s requirements for each remote transaction program. The Transaction
Interface Package provides this customized interface.

Example

Assume that the remote site has a transaction program which manages employee
information in an employee database or other file system. The remote transaction
program’s name, in the remote host, is EMPT for EMPloyee Tracking. EMPT provides
both inquiry and update facilities, and different Oracle users are required to access and
use these EMPT facilities.

Some users might be restricted to inquiry-only use of EMPT, while others might have
update requirements. In support of the Oracle users’ client applications, at least three
possible TIPs could exist:

1. EMP_MGMT to provide access to all facilities of the EMPT remote transaction
program.

2. EMP_UPDT to access only the update functions of the EMPT remote transaction
program.

3. EMP_INQR to access only the lookup functions of the EMPT remote transaction
program.

End-user access to these TIPs is controlled by Oracle privileges. Additional security
might be imposed on the end-user by the remote host.

Each TIP also has encoded within it the name of the remote transaction program
(EMPT) and network information sufficient to establish an APPC conversation with
EMPT.

Client Application Development (SNA Only) 4-7

Client Application Requirements

4.5 Client Application Requirements

Using the TIP, the client application must correspond with and control the remote host
transaction. This involves:

1.
2.
3.

4
5
6.
7

client application initialization
user input and output

remote host transaction initialization using the TIP initialization functions (with
and without overrides)

remote host transaction control and data exchange using the TIP user functions
remote host transaction termination using the TIP termination function
exception handling

client application termination

Steps 3, 4 and 5 vary, based on the requirements of the remote host transaction.

One-shot remote host transaction client applications must:

Declare RHT/TIP datatypes to be exchanged. All client applications must declare
variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT and the
client application need only reference the TIP datatype in its declaration. Refer
also to "Declaring TIP Variables" on page 4-16 for more information. Also refer to
the TIP content documentation file for the specific TIP/RHT for more information
about the exact usage of these variables.

Initialize the RHT using the TIP initialization function. The TIP directs the
gateway server to initialize a conversation with the desired RHT, specifying either
default RHT identifying parameters (supplied when the RHT was defined in the
PG DD and encoded within the TIP when it was generated) or override RHT
identifying parameters supplied by the user or client application when the TIP
initialization function is called. Refer to "Initializing the Conversation" on

page 4-17 and "Overriding TIP Initializations" on page 4-19 for more details.

Exchange data with the RHT using the TIP user function (one call). As previously
discussed, a one-shot remote host transaction only accommodates a single data
exchange and upon completion of that exchange, the RHT terminates on its own.
The client application consequently needs only to execute a single call to the
user-defined TIP function to cause the data exchange.

Refer to the TIP content documentation file in
%ORACLE_HOME%\pg4appc\demo\CICS\ for the specific TIP/RHT for the
exact syntax of this call.

The client application should initialize values into IN or IN OUT parameter values
before calling the TIP function call. These are the same variables that were
declared above, when you declared the RHT/TIP datatypes to be exchanged.

All TIP function calls return a 0 return code value and all returned user gateway
data values are exchanged in the function parameters. Any exception conditions
are raised as required and can be intercepted in an exception handler.

Upon return from the TIP function call, the client application can analyze and
operate on the IN OUT or OUT parameter values. These are the same variables
that were declared above, when you declared the RHT/TIP datatypes to be
exchanged.

4-8 Oracle Procedural Gateway for APPC User’s Guide

Client Application Requirements

Refer to Appendix D, "Datatype Conversions" for details about how TIPs convert
the various types and formats of remote host data.

Terminate the RHT using the TIP termination function. Regardless of the type of
RHT being accessed, the TIP terminate function should be called to clean up and
terminate the conversation with the RHT. Conversations with one-shot RHTs can
be terminated from the gateway server before the RHT terminates. The TIP must
perform its cleanup as well. Cleanup is only performed at the termination request
of the client application.

The client application can request a normal or an aborted termination.

Refer to "Terminating the Conversation" on page 4-22 for more information.

Persistent remote host transaction client applications must:

Declare RHT/TIP datatypes to be exchanged. All client applications must
declare variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes
for such variables have already been defined in the TIP corresponding to each
RHT; the client application need only reference the TIP datatype in its declaration.
Refer to "Declaring TIP Variables" on page 4-16 for more information. Refer also to
the TIP content documentation file for the specific TIP/RHT for more information
about the exact usage of these variables.

Initialize the RHT using the TIP initialization function. The TIP directs the
gateway server to initialize a conversation with the desired RHT, specifying either
default RHT identifying parameters (supplied when the RHT was defined in the
PG DD and encoded within the TIP when it was generated) or override RHT
identifying parameters supplied by the user or client application when the TIP
initialization function is called. Refer to "Initializing the Conversation” on

page 4-17 and "Overriding TIP Initializations" on page 4-19 for more details.

Repetitively exchange data with RHT using the TIP user function(s). Remote host
transactions that provide or require ongoing or repetitive control sequences should
be controlled by the client application in the same manner that the RHT would be
operated by an interactive user or other control program. The intercession of the
TIP and gateway server does not alter the RHT behavior; instead, it extends
control of that behavior to the client application using the various function calls
defined in the TIP.

A persistent RHT can be controlled with one or more TIP function calls. The RHT
might be designed, for example, to loop and return output for every input until
the conversation is explicitly terminated. Or it could have been designed to accept
as input a count or list of operations to perform and return the results in multiple
exchanges for which the TIP function has only OUT parameters.

A persistent RHT can also be interactive, each output being specified by a
previous input selection and ending only when the conversation has been
explicitly terminated by the client application.

The TIP function calls available to the client applications and their specific syntax
is documented in the TIP Content documentation file for the specific TIP/RHT.

The manner in which the RHT interprets the TIP IN parameters and returns TIP
OUT parameters must be determined from the RHT or explained by the RHT
programmer. The TIP provides the function calls and the exchanged parameter
datatypes to facilitate the client application’s control of the RHT and imposes no
limitations or preconditions on the sequence of operations the RHT is directed to
perform. The TIP provides the client application with the calls and data
parameters the RHT was defined to accept in the PG DD.

Client Application Development (SNA Only) 4-9

Client Application Requirements

s Terminate the RHT using the TIP termination function. Regardless of the type of
RHT being accessed, the TIP terminate function should be called to clean up and
terminate the conversation with the RHT. Conversations with persistent RHTs can
be terminated from the gateway server before the RHT terminates, or the RHT
might have already terminated. The TIP must perform its cleanup as well and this
cleanup is only performed at the termination request of the client application.

The client application can request a normal or an aborted termination.

Refer to "Terminating the Conversation" on page 4-22 for more information.

Multi-conversational remote host transaction client applications must:

s Declare RHT/TIP datatypes to be exchanged. All client applications must declare
variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT, and
the client application need only reference the TIP datatype in its declaration. Refer
to "Declaring TIP Variables" on page 4-16 for more information. Also refer to the
TIP content documentation file for the specific TIP/RHT for more information
about the exact usage of these variables.

» Initialize each RHT involved, using the TIP initializing function. A specific
customized TIP exists for each RHT as defined in the PG DD. Client applications
that control multiple RHTs are multi-conversational and must start each RHT and
its associated conversation. This is done by calling each TIP initialization function
as before; but multiple TIPs are initialized.

If a single RHT is designed to perform multiple services for one or more callers
and if the client application is designed to use this RHT, the TIP corresponding to
that RHT can be initialized multiple times by the client application.

The client application subsequently distinguishes from active RHTs under its
control using:

- TIP schema tipname . callname when multiple TIP/RHTs are being
controlled. By encoding the same TIP schema name on TIP user calls, the client
application specifies to which RHT the call is being made.

- tranuse IN OUT parameter value when multiple instances of the same
TIP/RHT are being controlled. This is the value returned on the TIP
initialization function call and subsequently passed as an IN parameter on the
user-defined TIP function calls. The returned tranuse value corresponds to
that conversation connected to a given instance of an RHT. By supplying the
same tranuse value on TIP user calls, the client application specifies to
which RHT instance the given RHT call is being made.

Client application logic must keep track of which RHTs have been started and
which TIPs and tranuse values correspond to started RHTs.

= Exchange data with each RHT, using the TIP user function(s), either once or
repetitively if the RHT is one-shot or persistent. Client application logic must
sequence the RHTs though their allowed steps in accordance with proper RHT
operation, as does a user operating the RHTs interactively.

Client application logic must also perform any cross-RHT result analysis or data
transfer that might be required. All TIPs execute in isolation from each other.

Output from one RHT intended as input to another RHT must be received in the
client application as an IN or IN OUT parameter from the first RHT and sent as an
IN or IN OUT parameter from the client application to the second RHT. All
TIP-to-RHT function calls must be performed by the client application and data

4-10 Oracle Procedural Gateway for APPC User’s Guide

Client Application Requirements

parameters exchanged must have been declared as variables by the client
application. The TIPs provide both the required datatype definitions and the RHT
function calls for the client application.

Refer to the TIP content documentation file for each specific TIP/RHT for the exact
syntax of the TIP function calls and definitions of the parameter datatypes
exchanged.

Terminate each initialized RHT, using the TIP termination function. To terminate
an RHT, its corresponding TIP termination function must be called to terminate
the RHT and its conversation and to initiate TIP cleanup. The RHT to be
terminated is specified by its TIP schema name (the same schema as for its data
exchange function calls) and the t ranuse value when multiple instances of the
same RHT are being terminated.

RHTs and their corresponding TIPs can be terminated in any sequence desired by
the client application and do not have to be terminated in the same order in which
they are initialized.

Note: The specific syntax of the various TIP data exchange
variables function calls is the same as was previously defined in the
PG DD for the particular RHT and can be researched by examining
the TIP content documentation file (tipname.doc) or the TIP
specification file produced when the TIP was generated. If a TIP
has not yet been generated for the RHT being accessed, refer to
Chapter 3, "Creating a TIP", and "DATA Correspondence” on

page 4-12, "CALL Correspondence” on page 4-13, and
"TRANSACTION Correspondence” on page 4-15 for more
information. It is preferable to define and generate the TIP first,
however, so that the client application reference documentation is
available to you when needed.

Client Application Development (SNA Only) 4-11

Ensuring TIP and Remote Transaction Program Correspondence

4.6 Ensuring TIP and Remote Transaction Program Correspondence

A remote host transaction program and its related TIP with client application must
correspond on two key requirements:

» Parameter datatype conversion, which results from the way in which transaction
DATA is defined. Refer to Appendix D, "Datatype Conversions" for a discussion
of how PGAU-generated TIPs convert data based on the data definitions.

s APPC send/receive synchronization, which results from the way in which
transaction CALLs are defined

These DATA and CALL definitions are then included by reference in a
TRANSACTION definition.

4.6.1 DATA Correspondence

Using data definitions programmed in the language of the remote host transaction, the
PGAU DEFINE DATA command stores in the PG DD the information needed for
PGAU GENERATE to create the TIP function logic to perform:

= all data conversion from PL/SQL IN parameters supplied by the receiving remote
host transaction

= all buffering into the format expected by the receiving remote host transaction

= all data unbuffering from the format supplied by the sending remote host
transaction

= all data conversion to PL/SQL OUT parameters supplied by the sending remote
host transaction

PGAU determines the information needed to generate the conversion and buffering
logic from the data definitions included in the remote host transaction program.
PGAU DEFINE DATA reads this information from files, such as COBOL copy books,
or in-stream from scripts and saves it in the PG DD for repeated use. The gateway
Administrator needs to transfer these definition files from the remote host to the
Oracle host where PGAU runs.

From the data definitions stored in the PG DD, PGAU GENERATE determines the
remote host datatype and matches it to an appropriate PL/SQL datatype. It also
determines data lengths and offsets within records and buffers and generates the
needed PL/SQL logic into the TIP. Refer to the PGAU "DEFINE DATA" statement on
page 2-2 in Chapter 2, "Procedural Gateway Administration Utility" and "Sample
PGAU DEFINE DATA Statements" in Appendix G, "Administration Utility Samples"
for more information.

All data that are referenced as parameters by subsequent calls must first be defined
using PGAU DEFINE DATA. Simple data items, such as single numbers or character
strings, and complex multi-field data aggregates, such as records or structures, can be
defined. PGAU automatically generates equivalent PL/SQL variables and records of
fields or tables for the client application to reference in its calls to the generated TIP.

As discussed, a parameter might be a simple data item, such as an employee number,
or a complex item, such as an employee record. PGAU DEFINE DATA automatically
extracts the datatype information it needs from the input program data definition files.

In this example, empno and emprec are the arguments to be exchanged.

pgadb2i main (trannum, empno, emprec)

4-12 Oracle Procedural Gateway for APPC User’s Guide

Ensuring TIP and Remote Transaction Program Correspondence

A PGAU DEFINE DATA statement must therefore be issued for each of these
parameters:

DEFINE DATA EMPNO
PLSDNAME (EMPNO)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
(
01 EMP-NO PIC X(6).

)

DEFINE DATA EMPREC
PLSDNAME (DCLEMP)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
INFILE ("emp.cob") ;

Note that a definition is not required for the t rannum argument. This is the APPC
conversation identifier and does not require a definition in PGAU.

4.6.2 CALL Correspondence

The requirement to synchronize APPC SENDs and RECEIVEs means that when the
remote transaction program expects data parameters to be input, it issues APPC
RECEIVEs to read the data parameters. Accordingly, the TIP must cause the gateway
to issue APPC SENDs to write the data parameters to the remote transaction program.
The TIP must also cause the gateway to issue APPC RECEIVEs when the remote
transaction program issues APPC SENDs.

The PGAU DEFINE CALL statement specifies how the generated TIP is to be called by
the client application and which data parameters are to be exchanged with the remote
host transaction for that call. Each PGAU DEFINE CALL statement might specify the
name of the TIP function, one or more data parameters, and the IN/OUT mode of each
data parameter. Data parameters must have been previously defined with PGAU
DEFINE DATA statements. Refer to "DEFINE CALL" on page 2-2 in Chapter 2,
"Procedural Gateway Administration Utility" and "Sample PGAU DEFINE CALL
Statements” in Appendix G, "Administration Utility Samples" for more information.

PGAU DEFINE CALL processing stores the specified information in the PG DD for
later use by PGAU GENERATE. PGAU GENERATE then creates the following in the
TIP package specification:

= declarations of public PL/SQL functions for each CALL defined with PL/SQL
parameters for each DATA definition specified on the CALL

= declarations of the public PL/SQL data parameters

The client application calls the TIP public function as a PL/SQL function call, using
the function name and parameter list specified in the PGAU DEFINE CALL statement.
The client application might also declare, by reference, private variables of the same
datatype as the TIP public data parameters to facilitate data passing and handling
within the client application, thus sharing the declarations created by PGAU
GENERATE.

In this example, the following PGAU DEFINE CALL statement must be issued to
define the TIP public function:

DEFINE CALL DB2IMAIN
PKGCALL (pgadb2i main)
PARMS ((empno IN), (emprec OUT)) ;

Client Application Development (SNA Only) 4-13

Ensuring TIP and Remote Transaction Program Correspondence

4.6.2.1 Flexible Call Sequence

The number of data parameters exchanged between the TIP and the gateway on each
call can vary at the user’s discretion, as long as the remote transaction program’s
SEND/RECEIVE requests are satisfied. For example, the remote transaction program
data exchange sequence might be:

APPC SEND 5 fields
APPC RECEIVE 1 fields
APPC SEND 1 field
APPC RECEIVE 3 fields

(fieldl-field5)
(fieldé)

(field7)

(fields - fieldlo0)

The resulting TIP /application call sequence could be:

tip calll(parml OUT, <-- APPC SEND fieldl from remote TP
parm2 OUT, <-- APPC SEND field2 from remote TP
parm3 OUT); <-- APPC SEND field3 from remote TP

tip call2(parm4 OUT, <-- APPC SEND field4 from remote TP
parm5 OUT); <-- APPC SEND field5 from remote TP
tip call3(parmé IN OUT); --> APPC RECEIVE fieldé in remote TP
<-- APPC SEND field7 from remote TP

tip_call4 (parm8 IN, --> APPC RECEIVE field8 into remote TP
parm9 IN, --> APPC RECEIVE field9 into remote TP
parml0 IN); --> APPC RECEIVE fieldl0 into remote TP

To define these four public functions to the TIP, four PGAU DEFINE CALL statements
must be issued, each specifying its unique public function name (tip_callx) and the
data parameter list to be exchanged. Once a data item is defined using DEFINE DATA,
it can be referenced in multiple calls in any mode (IN, OUT, or IN OUT). For example,
parm5 could be used a second time in place of parmé. This implies the same data is
being exchanged in both instances, received into the TIP and application on

tip_ call2 and returned, possibly updated, to the remote hostin tip call4.

Notice also that the remote transaction program’s first five written fields are read by
two separate TIP function calls, tip_calll and tip call2. This could also have
been equivalently accomplished with five TIP function calls of one OUT parameter
each or a single TIP function call with five OUT parameters. Then the remote
transaction program’s first read field (E1e1d6) and subsequent written field (£ield?7)
correspond to a single TIP function call (tip call3) with a single IN OUT parameter
(parms).

This use of a single IN OUT parameter implies that the remote transaction program’s
datatype for £iel1d6 and £ield?7 are both the same and correspond to the conversion
performed for the datatype of parmé. If £ieldé and £ield7 were of different
datatypes, then they have to correspond to different PL/SQL parameters (for example,
parmé IN and parm7 OUT). They could still be exchanged as two parameters on a
single TIP call or one parameter each on two TIP calls, however.

Lastly, the remote transaction program’s remaining three RECEIVE fields are supplied
by tip call4 parameters 8-10. They also could have been done with three TIP calls
passing one parameter each or two TIP calls passing one parameter on one call and
two parameters on the other, in either order. This flexibility permits the user to define
the correspondence between the remote transaction program’s operation and the TIP
function calls in whatever manner best suits the user.

4-14 Oracle Procedural Gateway for APPC User’s Guide

Ensuring TIP and Remote Transaction Program Correspondence

4.6.2.2 Call Correspondence Order Restrictions

Each TIP public function first sends all IN parameters, before it receives any OUT
parameters. Thus, a remote transaction program expecting to send one field and then
receive one field must correspond to separate TIP calls.

For example:

tip callO(parmO OUT); <-- APPC SEND outfield from remote TP

PGAXFER RPC checks first for parameters to send, but finds none and proceeds to
receive parameters:

tip_callI(parmI IN); --> APPC RECEIVE infield to remote TP

PGAXFER RPC processes parameters to send and then checks for parameters to
receive, but finds none and completes; therefore, a single TIP public function with an

OUT parameter followed by an IN parameter does not work, because the IN
parameter is processed first--regardless of its position in the parameter list.

4.6.3 TRANSACTION Correspondence

The remote host transaction is defined with the PGAU DEFINE TRANSACTION
statement with additional references to prior defi