
Customization Tips

WARNING!
This document is an in-progress document defining a not-entirely-frozen schema.

Use it to familiarize yourself with the calendar XML schema but recognize that it is:

• Not entirely complete.

• Not written in stone. It is possible we will want to improve upon tag name or

output before freezing this document.

This document provides basic information useful for programmers customizing

the Calendar Express interface for iPlanet Calendar Server 5.0. It includes the

following sections:

• Customization Overview

• XML and XSLT Introduction

• Three Levels of Customization

• Starting the Process: Request for a View

• Calendar Express XML Tags

• Debug Mode

• XML/XSL Links

Customization Overview
The Calendar Express interface for iPlanet Calendar Server 5.0 is written using

XML and XSLT to generate the HTML for each view. This architecture was

selected, in part, in order to provide ease of customization. The XML files and the

corresponding XSL files are what make up the user interface. The customer can

customize the user interface by modifying the existing files, or writing their own

XML and XSL files. The customer cannot change what XML tags the iCS 5.0 XSLT
1

XML and XSLT Introduction
processor understands, but they can change which of those tags the XML files

contain, and they can change how the XSL files use the XML data. Thus, anyone

customizing the user interface will need to understand the XML schema detailed in

this document in the section titled “Calendar Express XML Tags,” on page 7.

The HTML that creates the Calendar Express user interface is a frameset with two

or more frames in it. For example, the main views (overview, weekview, etc.)

consist of a header frame, a toolbar frame and a data frame. While customizing,

you can add frames to the frameset, or just modify those frames that already exist

as part of the frameset. The way that the frameset and frames are established is

explained more fully in this document in the section titled “Calendar Express XML

Tags”.

For customers who want to write their own client, not based on the Calendar

Express XML/XSLT user interface, there is an alternate protocol, WCAP, with

which calendar data may be requested in several output formats. For information

about WCAP please read the iPlanet Calendar Server Programmer’s Reference.

XML and XSLT Introduction
As a general description, XML is not a language, and in fact it doesn’t really do

anything. It provides a way of structuring information and sending it from one

piece of software to another. The definition of XML does not in any way dictate or

limit the type of information that it can describe. It simply provides rules for the

way information can be categorized and related to other information. Each

application using XML defines tags or nodes (in a tree structure) that are

appropriate for its needs. There is no universal definition of tags across

applications. Thus, applications that plan on sharing XML data must agree on a

common tag set and the relationships between the XML nodes. For example, a

banking application might define tags such as <branch> , <customer> and

<account> , while an application that dealt with calendaring would want tags

called <calendar> , <date> , and <user> . The application also defines what

attributes make sense for a given tag and what are reasonable relationships

between tags. In the banking example, it makes sense to have the <customer>

nodes as children of the branch node and the <account> nodes as children of the

<customer> nodes in order to keep track of what customers are at what branches,

but for a different application it might make sense to have a <branch> node as a

child of a <customer> node (when listing all the branches with which that

customer has accounts).
2 December 2000 Customization Tips • December 2000

XML and XSLT Introduction
In a standard XML/XSLT scenario, the XML file that you create is the one used by

the XSLT processor. In the case of the iCS5.0 server, however, the XML files you

create are really a prototype, or generalized description of the data needed. The

server then preprocesses the XML prototype file for a particular view and creates a

specific instance of the XML file depending on the current user, the current time

and other appropriate state information.

Figure 1 illustrates this preprocessing of the XML prototype files.

Figure 1 iCS 5.0 XML Processing

This preprocessing allows a very limited set of XML files to serve the needs many

users, calendars and dates. For example a particular XML file might request user

context information (user name, default calendar, preferences) by using the iCS5.0

XML tag <usrctx/> . The tag does not indicate the name of the user for which it
Customization Tips 3

XML and XSLT Introduction
wants information, nor the current calendar being viewed (a user may have

multiple calendars). The server uses current state information (provided in the

original HTTP command) to expand the simple <usrctx/> tag into the completed

tag set <usrctx>...</usrctx> which now also contains child nodes such as

<user>...</user> (providing basic user information), <userprefs> ,

<calendarList>...</calendarList> and so forth. For the first pass (frameset

pass), the server uses the logged-in user in the usrctx expansion.

XSLT provides a way of parsing an XML file (or tree) and generating a different

type of output. It transforms (hence the T in XSLT) the XML into something else,

based on one or more XSL files associated with the XML file.

In the case of iCS 5.0, the transformed output is HTML, which is best displayed on

either Netscape, or Internet Explorer, 4.x and later browsers with JavaScript 1.2. In

iCS 5.0, the XSLT processor is part of the server.The XSLT transformation (HTML

Generator in Figure 1) will be applied to the filled in XML instance, and it will

assume all the information is there when writing a header. In the earlier example,

that includes the current user’s name.

In summary, then, keep in mind that the XML file you write or modify will only

contain the generic data required for that view. The server will create an internal

copy of that XML file and modify it to contain complete data for that view. The XSL

file will then be used to transform the current instance of the XML file into HTML.

An XSLT transformation requires three things:

• The input XML file that describes the data to be displayed.

• One or more corresponding XSL files that describe how the data is to be

displayed.

• An XSLT processor that knows how to parse the XML file, store it in some

internal structure, and operate on it to create the resulting transformed output

file.

For links to more general information about XML,XSL and XSLT, see the section

“XML/XSL Links”.

The rest of this document assumes that the reader is familiar with the concepts

behind XML and XSLT.

NOTE It can be helpful to view the filled out, preprocessed XML file when

working with XSL. Instructions for doing so are included in this

document in the section titled “Starting the Process: Request for a

View,” on page 6.
4 December 2000 Customization Tips • December 2000

Three Levels of Customization
Three Levels of Customization
There are three levels of customization, progressing from the simplest to the most

complex:

1. Change the look of an existing view without changing the data contained in the

view.

For example:

❍ Adding a new or different banner somewhere on the page.

❍ Changing the position or look of elements on the page.

❍ Removing some of the information on the page.

To achieve this level of customization, you will need to change one or more of

the XSL files, which tell the server how to format the data from the XML file.

You will not need to modify the view’s XML file, since the XML file tells the

server what data is needed for the view.

2. Change the content of an existing view.

For example:

❍ Adding a list of today’s tasks and events to the top of the yearview

calendar.

❍ Changing the one week lookahead view on the overview page to a two

week lookahead.

For this level of customization, you will need to modify the view’s XML file for

the necessary additional data. The corresponding XSL file must also be

modified to add formatting for the new data.

3. Create a new view to provide calendar data in some different way.

For example:

❍ Providing a quarterly view showing three months at a time, with the days

containing a task or event highlighted in red.
Customization Tips 5

Starting the Process: Request for a View
❍ Providing a comparison view with individual calendars lined up

horizontally.

This level of customization requires creation of both a new XML file that

defines the data for the view, and a new XSL file that defines how to format the

new view’s data. You may take advantage of reusable templates available in

other XSL files. Also, you must modify at least one of the other views so that

this view can be reached from somewhere in the user interface, by way of a

link or a tab.

Starting the Process: Request for a View
A server receives a request for a particular view as part of a URL command line.

For example:

http:// servername:port /command.shtml?view=viewname:subview&
id=12345678&......

This command is parsed and the server picks up the view name and the optional

subview . If there is no subview , this is said to be a frameset pass.

View file names must directly correspond to the value of the view parameter. For

example, in the sample command above, the value of view is viewname , thus the

XML file name must be viewname.xml . Once the view XML file is identified, it is

loaded and preprocessed.

Preprocessing expands each of the recognized <calendar> tags (see “Calendar

Express XML Tags,” on page 7) as appropriate according to the following four

criteria:

1. Current date/time (time context).

2. Current user (user context).

3. Any additional arguments that were in the original URL line (attributes).

4. The current subview (group).

Each tag is expanded according to its own unique rules. The rules for each tag are

detailed in the “Calendar Express XML Tags” section that follows. The

preprocessed and expanded XML file is then transformed into formatted HTML

output by the XSLT processor as specified by the viewname . xsl file.

The current time context only ever refers to one day, defined as no more than 24

hours, from midnight of the day to one second before midnight of the next day. (It

can be limited to a smaller period.).
6 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
Component information, that is, event and task information, is only ever provided

for the current time context. When collecting information for longer time periods,

such as a week, you are really collecting information for a set of days. Tags are

provided to make this convenient for obvious sets of days, such as weeks, and

months. It is more complicated, but possible, to request data one day at a time.

Calendar Express XML Tags
This section lists the iPlanet Calendar Server 5.0 XML tags. iPlanet Calendar

Server’s UI generator code recognizes only these tags. You may not create your

own tags. Any unrecognized tags will be treated as data and passed through to the

file unmodified.

Special Framework Tags
Four of the iCS 5.0 XML tags are special tags that you use to provide a framework

for the other tags:

• <calendar>

The <calendar> tag starts each of the view XML files. This tag sets up general

calendaring information. All of the XSL files start processing nodes that live

below this node. If it is not present, no processing will happen. This is the only

tag that checks the frameset pass.

For a frameset pass, that is, when an entire view, such as the overview, has

been requested, global information is set up under the <calendar> node. Then,

appropriate subview (group) commands are set up which are passed back to

the server. One command is set up for each of the <group> nodes that exist

under the calendar tag. Each subview command is added as a new frame text

node.

For a non-frameset pass, The same general information is set up including the

current view information. In addition if there are any errors those are added to

the file under the <calendar> node.

• <group>

NOTE Keep in mind there may be multiple ways to request the data that

you need.
Customization Tips 7

Calendar Express XML Tags
Use <group> tags within the <calendar></calendar> tag set to indicate all

the subviews that should get processed for this view.

❍ In the frameset pass, a command is set up for each group using the current

view name plus the subview corresponding to the name of the group. For

example:

http:// calendarservername /command.shtml?view=viewname:
groupname&id=12345678&....

The command also maintains any other arguments that may have existed

in the original command except the username and password. Nothing

below the <group> tags will get processed.

❍ On a non-frameset pass, only that group matching the name of the

subview given in the original command will be processed.The only

exception is if the subview being processed is main and we are creating a

printable version of the view.

• <usrctx>

The <usrctx> tag can exist anywhere in the XML file, but it is customarily

placed somewhere after the <calendar> tag, and before the <group> tags. It

contains information specific to this particular user. This information will not

change at any point during the view. Usually only one <usrctx> tag exists in

any given view file.

• <timectx>

The <timectx> tag must occur at least once after the <calendar> tag and

before any other tags, with the exception of the <usrctx> tag. In the course of

processing this tag, the server sets up internal time state information. Other

tags may be dependent on this information. That is why it must be inserted

before these dependent tags. Since the <usrctx> tag is not dependent on any

time state information, its processing is not effected by its placement relative to

the <timectx> tag.
8 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
XML Tags Recognized by Calendar Express
Table 0-1 lists the recognized tags, gives a short description of each, lists otherat.

Table 0-1 XML Tags Recognized by Calendar Express

XML Tag Description Changes
Server
State

Expanded
by Server

Attributes
* = required

Arguments
Read from URL
Line

<button/> Defines the action

attributed to a button

onclick.

No Yes name*

type*

target*

<caldata/> Calendar components such

as events and todos.

Yes e_newCalCalID

newCalCalID

calendarID

<calendar/> Sets up general calendar

framework and

information.

Yes Yes tab

viewname

<calgroup/> Provides information about

calendars within a specified

group, or by default, all

subscribed calendars.

No Yes name*

addr*

editCommand

unsubscribeCommand

viewCommand

group

groupEditor

isAllGroup

<command/> Defines a command to be

executed.

No Yes type*

name*

dialog

prevView

date

width

height

additionalAttributes

dontSetTab

<config/> Used for grouping. No No

<datactx/> Contains the current (or

default) calid or

groupid .

Yes calid

group

<day/> Used for grouping. No No

<disable/> Specifies a view or subview

that should not be

displayed. For

customization. Not used in

the shipped UI.

Yes Yes view*

tab
Customization Tips 9

Calendar Express XML Tags
<errorslist/> Provides errors for current

view.

No Yes calid

group

option

<eventdata/> Contains information about

the event specified by the

command line (or default)

uid .

Yes defaultStartHour

defaultEndHour

includeAvailability

date

uid

rid

<exportdata/> Provides a list of exportable

calendars.

No Yes calid e_ExportCalid_#

<formdata/> Sets up a formdata element.

Information placed in form

comes from both the

command line and is state

dependent.

No Yes type* group

<group/> Sets up control of

processing for tags within

the group.

No No type* group

<invitationslist/> Finds all outstanding

invitations for specified

user.

No Yes Event

Invitation

calid

group

option

<listeventcanvas/> Contains all component

data for the time context.

With the

includeAvailability

attribute, it also expands to

include the Free/Busy time

blocks for all specified

calendars.

No Yes sort

minor

defaultStartHour

defaultEndHour

includeAvailability

date

<minical/> Contains information about

the time context’s current

month, along with

commands that vary

depending on the attributes

used.

No Yes jump_to

Table 0-1 XML Tags Recognized by Calendar Express

XML Tag Description Changes
Server
State

Expanded
by Server

Attributes
* = required

Arguments
Read from URL
Line
10 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
<monthcal/> Contains information about

the time context’s current

month, along with event

and task information for

each day in the month.

No Yea date

<optionsdata/> Contains error information.

Only exists if command line

sets error to a value.

No Yes error

<panel/> Delimiter for setting context

scope. Groups tags within

its boundaries by pushing

the internal state onto a

stack.

Yes No

<pref_group/> Groups and controls access

to separate preferences.

No No

<tab/> Child of tabs tag set. Adds

an attribute to a tabs set.

No Yes view

<tabs/> Creates commands to load

each tab tag within its

boundaries.

No Yes count*

explicit

<taskdata/> Contains information about

the task specified by the

command line uid (or

default).

Yes data

uid

rid

<tasklist/> Contains information about

all incomplete tasks in

chronological order.

Yes count date

<timectx/> Sets a time context state for

the server and contains

information about the

current time context.

Yes Yes add

range

date

<timezone/> Passed through to XSLT

without processing.

No No

Table 0-1 XML Tags Recognized by Calendar Express

XML Tag Description Changes
Server
State

Expanded
by Server

Attributes
* = required

Arguments
Read from URL
Line
Customization Tips 11

Calendar Express XML Tags
Tag Details

<button/>
Use this tag to produce the action that will be used for this button’s onclick .

The attributes tell the server what type of command to set up:

• name, which is used for identification and can be any text.

• type, which indicates the type of command the server should create.

• target, which must either be set to the value “main”, or it will be assumed to be

a URL.

If it is a URL location, the command is set up to point to that target directly if it

begins with “http”, or to the indicated file in the server’s standard http

location.

<userpref/> Sets a default user value for

the specified user

preference; or used to turn

on certain debug flags.

Yes No name*

default_value*

<userprefs/> Groups multiple userpref

tags together.

No No

<usrctx/> Contains information about

the current user.

No Yes

<weekcal/> Contains information about

the time context’s current

week for the specified user.

Optionally includes

component information for

each weekday listed.

Yes option date

<yearcal/> Builds up series of minical

children. Contains

information about the time

context’s current year for

the specified user.

Yes date

Table 0-1 XML Tags Recognized by Calendar Express

XML Tag Description Changes
Server
State

Expanded
by Server

Attributes
* = required

Arguments
Read from URL
Line
12 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
If the target is “main”, the command will be set up as a text node of the original

button. It will have the form:

javascript:x(‘<type>’);

where <type> is replaced by whatever the type attribute value was set to. This

is a function set up in the javascript.xsl .

This tag is used in many of the calendar XML files, such as overview.xml .

The following examples illustrate the types the are understood:

<button name="ok" type="store" target="main"/>

<button name="cancel" type="cancel" target="main"/>

<button name="help" type="help" target="main"/>

<button name="delete_calendar_group" type="delete_calendar_group"
target="main" />

<button name="unsubscribe" type="unsubscribe" target="main" />

<button name="ok" type="ok" target="main" />

<button name="find" type="find" target="main" />

<button name="add_user" type="add_user" target="main" />

<button name="remove_user" type="remove_user" target="main" />

<button name="add_owner" type="add_owner" target="main" />

<button name="remove_owner" type="remove_owner" target="main" />

<button name="delete" type="delete" target="main"/>

<button name="add_cal" type="add_cal" target="main" />

<button name="remove_cal" type="remove_cal" target="main" />

<button name="export_add_cal" type="export_add_cal" target="main" />

<button name="export_remove_cal" type="export_remove_cal"
target="main" />

<caldata/>
This tag is expanded to contain all the data pertinent to the calendar indicated in

the URL by either (in this order) e_newCalCalID , newCalCalID , or calendarID .

This tag is used by new_cal.xml

Example of tag usage:

<caldata/>
Customization Tips 13

Calendar Express XML Tags
An example of the expanded tag follows:

<caldata e_writeAccessAllowed="true" shortCalID="jdoe"
newCalCalID="jdoe" viewCommand="http://
calendarservername /?calid=jdoe&security=1" e_isDefaultCalendar=
"true" displayName="John Doe" description=
"Work Calendar for John Doe"
tzid="" freebusy="0" domain=" calendardomainname ">
<OtherOwner name="fred"/>
<privacyEntry type="otherOwners" name="Other Owners"

entryIdentifier="5" grant="0" availability="1"
schedule="1" read="1" delete="1" modify="1"/>

<privacyEntry type="anyone" name="@" entryIdentifier="2"
grant="1" availability="1" schedule="1" read="1" delete="0"
modify="0"/>

</caldata>

If no calid was specified, a new calendar is created. The output is:

<caldata e_isNew=”1” e_writeAccessAllowed=”false”/>

<calendar/>
This is the base tag for all iCS 5.0 XML documents. See general notes regarding the

“Special Framework Tags,” on page 7.

This tag is used in all calendar view XML files, such as overview.xml .

Examples of tag usage:

• <calendar>

• <calendar tab="4">

• <calendar viewname="dayview">

• </calendar>

The following examples show the information added as the XML tag is expanded:

• For a frameset pass:

<calendar viewname="overview" staticBaseURL=
"http:// calendarservername.domain.com:port " commandBaseURL=
"http:// calendarservername.domain.com:port top="true"
(As attributes on the calendar tag)
<GlobalInfo gID="e2nm0b2qb2mr6s6w9" gCurView="overview"

gOldView="overview" gDate=""/>
(As child nodes:The global information that is used by the
JavaScript functions.)

For each named group, a subview command string is set up:
14 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
<frame>
http:// calendarservername.domain.com:port /command.shtml?
view=overview:toolbar&id=e2nm0b2qb2mr6s6w9&date=&
amp;prevView=overview&view=overview&
id=e2nm0b2qb2mr6s6w9&group=&security=1

</frame>

<frame>
http:// calendarservername.domain.com:port /command.shtml?
view=overview:main&id=e2nm0b2qb2mr6s6w9&date=&
prevView=overview&view=overview&id=e2nm0b2qb2mr6s6w9&
amp;group=&security=1

</frame>

• For a subview pass, the information added will be: (As attributes on the

calendar tag)

staticBaseURL="http:// calendarservername.domain.com:port "
commandBaseURL="http:// calendarservername.domain.com:port "
view="toolbar" tab="1">

Note that in this case, the top attribute is missing and the commandBaseURL is

different.

<calgroup/>
The <calgroup> tag is expanded to provide calendar information about a specified

group of calendars, or as a default, all subscribed calendars. If the argument

isAllGroup=true is part of the URL command line, then it takes precedence and

all subscribed calendars will be included. If isAllGroup is not present and the

argument group is present, the server attempts to find that group within the user’s

definitions. If the group is found, then the <calgroup> node will be filled with the

calendars making up that group. If the server can’t find the group, the server will

default to all calendars.

When filling out this tag for a specific group, the server includes an editCommand

and a viewCommand. But if filling it out for all calendars, no edit or view commands

will be included. The URL command line argument groupEditor indicates which

view to set in the editCommand .

Examples of tag usage:

<calgroup groupEditor="new_group"/>

<calgroup groupEditor="new_group" calendarEditor="new_cal"/>

An example of the tag expanded:
Customization Tips 15

Calendar Express XML Tags
<calgroup groupEditor="new_group"
editCommand="http:// calendarservername:port /command.shtml?

view=new_group&id=b8te8vx95ut9o3h5s&date=20010207T161409
&group_index=0&tab=1&prevView=overview&
group=allgroups&security=1"

viewCommand="javascript:parent.jmain.newViewGroupCommand
(’groupview’,’’,’true’,’allgroups’)"

name="allgroups" isGroup="true">

<groupcal name="John Doe" addr="jdoe"
editCommand="http:// calendarservername:port &

newCalCalID=jdoe&tzid=&e_ACL=@@o^a^r^g;@@o^c^
wdeic^g;@^a^sf^g&tab=1&prevView=overview&
group=allgroups&security=1"

unsubscribeCommand="http:// calendarservername:port /
command.shtml?view=calendar_groupview&security=1&
id=b8te8vx95ut9o3h5s&editCommand=unsubscribe&
calID=jdoe"

viewCommand="javascript:parent.jmain.newViewCommand
(’overview’,’’,’true’,’calid=jdoe’)"/>

</calgroup>

<command/>
This tag is used to establish an appropriate command for execution. Each

command must have a defining type. The options are listed below. The

<command> tag and its attributes are left in place for referencing, but the actual

command is added as a text node of this command node. In some cases it will be a

JavaScript command, otherwise it is a URL.

For convenience, these examples are divided by type :

• type="cmd_dialog"

A cmd_dialog will set up a javascript:parent.newPopupCommand() . The

dialog indicates which view to use for the popup. The rest of the arguments are

established in the server, based on the dialog chosen and the current time

context. Other attributes may only have meaning for the particular view, for

example:

❍ width and height will override default width and height settings.

❍ additionalAttributes will be passed along directly to the

newPopupCommand, which in turn adds them blindly in to the command

string being built up.

❍ dontSetTab
16 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
❍ date=from_form or date=from_user specifies where the date should be

set from. from_form means get the date from the form in the same

window. from_user (default behavior when not set) means get the date

from the current time context.

Examples:

❍ <command name="new_event" type="cmd_dialog"
dialog="new_event"/>

❍ <command name="jump_to" type="cmd_dialog" dialog="jump_to"
date="from_form" width="300" height="350"/>

❍ <command name="new_group" type="cmd_dialog"
dialog="new_group" additionalAttributes="e_isNew=1"/>

❍ <command name="new_event" type="cmd_dialog"
dialog="new_event" prevView="dayview"
additionalAttributes="roundtime=1"/>

❍ <command name="recurrence" type="cmd_dialog"
dialog="task_recurrence" date="from_form" dontSetTab=""/>

• type="cmd_event_date"

A cmd_event_date is a way of modifying a form’s local date information

relative to the dtStart of the current event.

This is currently used in the availability popup for new events. The local date

can be reset on the event. The duration attribute is required for this command

type.

<command name="back" type="cmd_event_date" dur="-P1DT"/>

• type="cmd_view"

A cmd_view maintains the current time context, but changes the view as

specified. It does this by creating a newViewCommand JavaScript function.

If the nodata attribute is set then don’t set the indicated value in the command

line. Currently this only works for calid .

The following two commands create the two JavaScript functions, respectively:

<command name="calendar" type="cmd_view" view="overview"/>

<command name="calendars" type="cmd_view" view="calendars"
nodata="calid" />

javascript:parent.jmain.newViewCommand(’overview:main’,
’20010112T105051’,’true’)
Customization Tips 17

Calendar Express XML Tags
javascript:parent.jmain.newViewCommand(’calendars’,
’20010112T105042’,’true’)

• type="cmd_url"

The cmd_url generates a url and sends it in a JavaScript call that opens a new

window. The target indicates which file to open. If the target is not absolute

(starting with "http://") then set it up to pick up out of the local

hostname:port/language_dir .

The command below generates the JavaScript call which follows it:

<command name="help" type="cmd_url" dialog="help"
target="calhelp5.htm"/>

javascript:var newWindow=window.open(’http://calendarservername
.domain.com:port/en/calhelp2.htm’);

• type="cmd_action"

Currently cmd_action is only used for logging out and is in fact hardcoded for

that. It generates the command indicated below.

<command name="logout" type="cmd_action" action="logout"
option="$host_address"/>

The following JavaScript call results:

javascript:parent.jmain.newViewCommand(’logout’,’’,’true’)

• type="cmd_window"

The cmd_window is used to create a JavaScript function that opens a new

window (which is different than a dialog in that it has “chrome” meaning it has

a control panel and controls). Three important attributes are:

❍ dialog indicates the view to put in the new window (not optional).

❍ width and height can be used to override default sizing (optional).

❍ date=from_form or date=from_user specifies where the date should be

set from. from_form means get the date from the form in the same

window. from_user (default behavior when not set) means get the date

from the current time context. (optional)

The command below generates the JavaScript call that follows it:

<command name="print" type="cmd_window" dialog="print"
width="800" height="600"/>

javascript:parent.newPopupCommand(’overview:print’,’’,’&
tab=1’,’extraargs’,’979325442’,’600’,’800’,’true’)
18 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
• type="cmd_date"

A cmd_date is used to change the date for the current view by modifying it

using the dur string relative to the current time context. It does this by creating

a newViewCommand JavaScript function with the view maintained and the date

new.

This command:

<command name="back" type="cmd_date" dur="-P1DT"/>

generates:

javascript:parent.jmain.newViewCommand(’overview:main’,
’20010111T000000’,’true’)

• type="cmd_subdialog"

A cmd_subdialog is handled in much the same way as the cmd_dialog .

<command name="add_people" type="cmd_subdialog"
dialog="add_people" width="400" height="200"/>

<config/>
This tag is not expanded. It provides a convenient way to group configuration

choices. This tag is used in ui_config.xml , simple_config.xml , and the

nogroup_config.xml files.

For example:

<config>
<!--<userpref name=”_DebugMode” default_value=”on”/> -->

</config>

<datactx/>
This tag causes the current calid or group id (or default calid if none is specified on

the argument line) to be added as a child. The <datactx> tag is used in the

overview.xml file.

The <datactx/> tag expands to:

<datactx>
<Data calid=”jdoe”/>
</datactx>

<day/>
This tag isn’t expanded by the server, but is a useful way to group information. The

related XSL file knows to look for particular information within this tagset.The

<day> tag is used int he overview.xml file.
Customization Tips 19

Calendar Express XML Tags
Examples of tag usage are:

• <day name=”singleDayView” option=”listview”>

• </day>

<disable/>
This tag is used to turn off certain features so that they are not available in the user

interface. It is specifically for customization and is not used by the shipped product

UI. It specifies either an entire view or a particular tab of a view that should not be

displayed. When parsing this tag, the view and optional tab is added to a blocking

list, which is checked before any particular view processing occurs. The <disable>

tag is shown in two files: simple_config.xml and nogroup_config.xml.

In the first example below, only the specified tab of the new_event view would be

disabled. In the second example, the entire view would be disabled.

<disable view="new_event" tab="4" />

<disable view="groupview_dialog" />

<errorslist/>
This tag is used to report all errors that the server has encountered back to the UI

for display. If the URL command line argument option is set to "count” the server

returns only the number of errors for the current calendars, and not the error

messages. If this option is not set, the server picks up the user’s current calendar

list, either from a calid or group argument, or if neither exists, uses the default

calendar, to retrieve any outstanding error information from the database for these

calendars.

If the calendars specified do not exist, or there is a permission problem for the

calendar, an error will be returned also. Recurring events will not cause multiple

instances of the same error. However, all errors stemming from different causes

will be reported.

This tag is used in most of the main XML files, such as overview.xml . The

count-only option is used in the dayview.xml file.

The following examples show that a count of the errors may optionally be

requested.

<errorslist option="count"/>

<errorslist/>
20 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
<eventdata/>
This tag is used to provide information about a specific event. It causes an event

child to be added to the <eventdata> tag. The event detailed is either specified by

the uid on the URL command line, or if none is specified, a default is built up. This

tag is used by the new_event.xml and reply_event.xml files.

Note that the format of the event data is the same whenever an event is printed. So

when an event is one of many in a <listEventCanvas> tag, or anywhere else, it

will always have the same format as the following example.

If the prototype XML states:

<eventdata defaultStartHour="8" defaultEndHour="16"
includeAvailability=""/>

then the filled out XML looks like:

<eventdata>

<Event>

e_Summary="LaterMeeting" e_Summary_urlencoded="LaterMeeting"
e_writeAccessAllowed="true"

e_deleteAccessAllowed="true" e_Calid="jdoe" e_org_Calid=
"jdoe" e_uid="3a64c0b2000062b80000000500000fd1"

e_rid="0" e_Description=" a description goes here " e_Location=
" a location " e_OrganizerEmail="jdoe@ domain .com"

e_Organizer="jdoe" e_Language="en" e_DtStartTZID=
" timezonename " e_allday="0" e_repeatModifier=""

e_dtCreated="20010116T214418Z" e_dtModified=
"20010116T224600Z" e_dtstart="20010116T233000Z"
e_existingRRule=""

e_rrule_notset="true" e_rruleChanged="false" e_dtend=
"20010117T003000Z" e_durhour="01" e_durmin="00"

e_iSequence="1" partstat="2" rsvp="TRUE" e_attendee_0="jdoe;
PARTSTAT=2;STATUS=2;RSVP=1;CN=John Doe;X-NSCP-CALID=jdoe"
AttendeeList="true">

<StartTime iso="20010116T153000" year="2001" month="01" date=
"16" hour="15" minute="30" seconds="00" dow="3"
weeknum="3"/>

<EndTime iso="20010116T163000" year="2001" month="01" date=
"16" hour="16" minute="30" seconds="00" dow="3"
weeknum="3"/>
Customization Tips 21

Calendar Express XML Tags
<attendee userid="jdoe" partstat="2" CN="John Doe" RSVP="TRUE"
X-NSCP-CALID="jdoe"/>

<edit_command>
javascript:var x=newWindow=window.open

(’http:// calendarservername:port /command.shtml?view=
new_event&tab=1&id=2mhs6bhb2meb&date=
20010116T142225&uid=3a64c0b2000062b80000000500000fd
1&calid=jdoe&i_tab=1&prevView=new_event:
main’,’2mhs6bhb2meb3a64c0b2000062b80000000500000fd1’,
’height=550,width=650’,’false’)

</edit_command>

</Event>

</eventdata>

<exportdata/>
This tag expands to list exportable calendars. The list is created from the argument

e_ExportCalid_# in the URL command line (with the numbers starting at 0). Each

exportcal item has a calid attribute set to the calendar name. There is a

one-to-one correspondence to the number of e_ExportCalid_# argument entries

and the number of exportcal entries in the tag expansion. Thus, if the input

argument listed three calendars (any subscribed-to calendar that you have the

proper permissions for), then there would be the same three calendars in the

expanded tag.

For example:

e_ExportCalid_0=”jdoe”;e_ExportCalid_1=”jdoe:secondaryname1”;
e_ExportCalid_2=”jdoe:secondaryname2”

causes the tag to expand as follows:

<exportdata>
<exportcal calid=”jdoe”/>
<exportcal calid=”jdoe: secondaryname1 ”/>
<exportcal calid=”jdoe: secondaryname2 ”/>

</exportdata>

<formdata/>
This tag causes a formdata element to be created. This element contains the

information required to set up the form, and the context information that the server

will use when processing each action. The information varies according to the

command URL arguments. For example if a group is specified, then group

information will be added as an attribute. This tag is also state dependent. That is,
22 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
if a previous tag caused an event to be set up, then the event data will also be

included. The type attribute will be maintained untouched for subsequent sorting

during form processing. This tag is used by any view that needs form data, such as

new_task.xml .

The following examples show the different types of forms available:

<formdata type="add_calendar"/>

<formdata type="add_people"/>

<formdata type="new_event"/>

<formdata type="calendars"/>

<formdata type="change_timezone"/>

<formdata type="errors_list"/>

<formdata type="event_recurrence"/>

<formdata type="search_for_cals"/>

<formdata type="groupview_dialog"/>

<formdata type="invitations_list"/>

<formdata type="new_cal"/>

<formdata type="new_event"/>

<formdata type="new_group"/>

<formdata type="new_task"/>

<formdata type="options"/>

<formdata type="reply_event"/>

<formdata type="search_for_components"/>

<formdata type="task_list"/>

<formdata type="task_recurrence"/>

The following is an example of the expanded tag after processing:

<formdata type="new_event" id="2mhs6bhb2meb" view="formstuff"
calid="jdoe" date="20010116T144622"

prevView="groupview" myaction="" action=
"http:// calendarservername:port /command.shtml" e_Summary=""

e_Summary_urlencoded="" e_isNewEvent="true"
e_writeAccessAllowed="true" e_deleteAccessAllowed="true"

e_Calid="jdoe" e_org_Calid="jdoe" e_rid="0" e_Organizer="jdoe"
e_DtStartTZID=" timezonename "
Customization Tips 23

Calendar Express XML Tags
e_allday="0" e_repeatModifier="" e_dtstart="20010116T230000Z"
e_existingRRule="" e_rrule_notset="true"

e_rruleChanged="false" e_dtend="20010117T000000Z" e_durhour="01"
e_durmin="00" e_iSequence="0"

e_attendee_0="jdoe;PARTSTAT=2;STATUS=2;RSVP=1;CN=John Doe;
X-NSCP-CALID=jdoe"

partstat="2" AttendeeList="true" e_alarm_on="0" i_tab="1"
i_tabswitch="0" i_mainview="main" i_subview="main">

<group/>
This tag is used to indicate all the subviews that should be processed for this view,

and to define what frames are used in the HTML file. This tag is not expanded

during processing.

The following is an example of the listing of subviews in a view using the <group>

tag:

<group name="main">

<group name="main" view="dayview">

</group>

<invitationslist/>
This tag causes the server to output the count and a list of all outstanding

invitations (those to which the user has not replied). The server picks up the user’s

current calendar list either from the calid or group arguments in the URL

command line. If neither exists, it uses the default calendar. The server then

retrieves all outstanding (unanswered) invitations from the database for these

calendars. Each invitation generates an <Event> tag, which is expanded and

output in the same form used for <eventdata> .Optionally, only the count of the

outstanding invitations may be output.

This tag is used in the invitations_list.xml file and, as the count only, in most

main views.

In the example below, both the count and the list of outstanding invitations will be

output between the <invitationslist> tag delimiters:

<invitationslist/>

In the example below, only the count will be output:

<invitationslist option=”count”/>
24 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
<listeventcanvas/>
This poorly named tag expands to show all the components, task and event data,

pertinent to the day specified in the time context. If the includeavailability

option is set, the freebusy status for all the included calendars for that day is also

included in the expansion. It can request the data in several formats. The output

format is the same as that described by the <eventdata> and <taskdata> tags.

The following examples show various permutations in the use of this tag:

<listEventCanvas/>

<listEventCanvas sort="group" defaultStartHour="8"
defaultEndHour="18"/>

<listEventCanvas sort="group" defaultStartHour="8"
defaultEndHour="18" includeAvailability="" option="minor"/>

<listEventCanvas sort="overlap"/>

<listEventCanvas sort="overlap" option="minor"/>

Table 2 explains the attributes for this tag.

The three sort types cause the listed components to be ordered differently:

• Time Order

The components are listed as individual children of the <listEventCanva>

tag, but in this order:

❍ Overdue incomplete tasks.

Table 2 Attributes for <listEventCanvas>

attribute Purpose

option=minor Optional attribute. Tells the processor not to include overdue

tasks. Used for displaying small views.

defaultStartHour Used to override the user’s setting for start of day. Only used

when attribute sort is set to the value “group ”

defaultEndHour Used to override the user’s setting for end of day. Only used

when attribute sort is set to the value “group” .

includeAvailability Sets freebusy information as an outer layer around the

component group information. Used in the comparison view.

Only used when attribute sort is set to the value “group ”.

sort={time, overlap,

group}

Default is “time ” and need not be explicitly specified.

Determines how the data will be listed.
Customization Tips 25

Calendar Express XML Tags
❍ Today’s all day events.

❍ Chronological listing of tasks and events due today.

❍ Today’s tasks with no time assigned to them.

❍ Upcoming incomplete tasks.

• Overlap Order

Components are listed in the same order as with the “time ” setting, but

components of like type, or those sharing an overlapping time block, are listed

as children of a specific component group. For example, all overdue tasks are

children of a component group of type “overdue_tasks ”, which is itself a

child of <listEventCanvas> . Components that do no overlap still exist as

children of a component group of type “overlap ”; they are just the only child

of that group. This type of <listEventCanvas> is used in the overview view.

The following is an example of the processed XML for overlap order:

<listEventCanvas sort="overlap">

<ComponentGroup ComponentGroupType="overdue_tasks">
<Task>... task data goes here...</Task>

</ComponentGroup>

<ComponentGroup ComponentGroupType="allday_events">
<Event> ...event data goes here ...</Event>

</ComponentGroup>

<ComponentGroup ComponentGroupType="overlap">
<StartTime iso="20010116T103000" year="2001" month="01"

date="16"
hour="10" minute="30" seconds="00" dow="3" weeknum="3"/>

<EndTime iso="20010116T113000" year="2001" month="01"
date="16"

hour="11" minute="30" seconds="00" dow="3" weeknum="3"/>
<Event ...event data...</Event>

</ComponentGroup>

<ComponentGroup ComponentGroupType="overlap">
<StartTime iso="20010116T153000" year="2001" month="01"

date="16"
hour="15" minute="30" seconds="00" dow="3" weeknum="3"/>

<EndTime iso="20010116T163000" year="2001" month="01"
date="16"

hour="16" minute="30" seconds="00" dow="3" weeknum="3"/>
<ComponentGroup ComponentGroupType="overlap">
26 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
<Event>....data ...</Event>
<Task> ...data...</Task>

</ComponentGroup>
</ComponentGroup>

</listEventCanvas>

• Group Order

This mode groups the component data into consistent blocks of time, such as

one hour increments. Overdue and all day tasks precede the time blocks. Tasks

with no time associated with them follow the time blocks. In addition, there is

a <timeblockset>, which indicate the first and last time blocks that have data.

This helps make the XSLT processing of the blocks more efficient. When a

component group spans multiple time blocks, it is indicated in the value of

“numIntervals”. The dayview.xml and groupview.xml (comparison view) use

this sort ordering.

The following examples demonstrate “group ” ordering:

<ComponentGroup ComponentGroupType="group" numIntervals="1">
<StartTime iso="20010116T090000" year="2001" month="01" date="16"

hour="09" minute="00" seconds="00" dow="3" weeknum="3"/>

<EndTime iso="20010116T100000" year="2001" month="01" date="16"
hour="10" minute="00" seconds="00" dow="3" weeknum="3"/>

</ComponentGroup>

....

<ComponentGroup ComponentGroupType="group" numIntervals="2">
<ComponentGroup ComponentGroupType="group"

<StartTime iso="20010116T103000" year="2001" month="01"
date="16" hour="10" minute="30" seconds="00" dow="3"
weeknum="3"/>

<EndTime iso="20010116T113000" year="2001" month="01"
date="16" hour="11" minute="30" seconds="00" dow="3"
weeknum="3"/>

<Event> ...data...</Event>
</ComponentGroup>
<StartTime iso="20010116T100000" year="2001" month="01" date="16"

hour="10" minute="00" seconds="00" dow="3" weeknum="3"/>
<EndTime iso="20010116T120000" year="2001" month="01" date="16"

hour="12" minute="00" seconds="00" dow="3" weeknum="3"/>
</ComponentGroup>
Customization Tips 27

Calendar Express XML Tags
<ComponentGroup ComponentGroupType="group" numIntervals="0">
<StartTime iso="20010116T110000" year="2001" month="01" date="16"

hour="11" minute="00" seconds="00" dow="3" weeknum="3"/>
<EndTime iso="20010116T120000" year="2001" month="01" date="16"

hour="12" minute="00" seconds="00" dow="3" weeknum="3"/>
</ComponentGroup>

....

<timeblockset>
<timeblock number="9"/>
<timeblock number="10"/>
<timeblock number="11"/>
<timeblock number="12"/>
<timeblock number="13"/>
<timeblock number="14"/>
<timeblock number="15"/>
<timeblock number="16"/>
<timeblock number="17"/>
<timeblock number="18"/>
<timeblock number="19"/>

</timeblockset>

<minical/>
This tag expands to provide information about the month that the current time

context is in. The basic month information is the same regardless of the option

used, but the commands provided in the expanded tag vary depending on the

option. The expanded tag contains the information necessary to create the

miniature month calendar residing on the side of the main views. This tag is used

in most main views, such as the overview.xml .

A <minical> tag consists of three JavaScript newViewCommands, one for previous

month, the next month, and one to go back to “today”. It also has four or five

<row> children, each one containing seven (one week’s worth) <Time> children.

These children contain the information for the specific day along with a JavaScript

newViewCommand to go to the overview for that day.

The following are examples of the <minical> tag:

<minical/>

<minical jump_to=””/>

If the “jump_to” option is used, the commands are set up to stay in the “jump_to”

view. In addition, there are many more commands set up before the individual day

information.

<Time> children have the following format:
28 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
<Time iso="20010107T000000" year="2001" month="01" date="7"
hour="00" minute="00" seconds="00" dow="1" weeknum="2">
<command>javascript:parent.jmain.newViewCommand

(’overview:main’,’20010107T000000’,’true’,’calid=jdoe’)
</command>

</Time>

<monthcal/>
This tag is very similar to the minical tag. It provides information about the month

the current time context is in. The tag expands with a hierarchy of children, each

mapping to a day in the month. The children also include any days in the previous

month and the next month that are needed to fill out the start and end weeks. A

week is defined by the user’s first-day-of-the-week settings choice. This tag is used

by the monthview.xml file.

An example of the tag use:

<monthcal/>

Figure 2 Monthcal

Figure 2, above, shows the month calendar output by this tag. To get this output,

data in the expanded tag is structured in this order:

1. monthcal

2. command for previous month

3. command for next month

4. row (one for each week - 5 or 6 of these)

a. monthDay (one for each day of week)
Customization Tips 29

Calendar Express XML Tags
I. time element for this day

II. listEventCanvas information in overlap format

b. monthDay

...etc.

5. row

...etc.

<optionsdata/>
This tag is only expanded if there is an argument in the command URL that sets

“error” to a value. It is used in the options.xml file.

An example of the tag:

<optionsdata/>

Table 3 shows the attributes set for various values of “error”. Note that all

attributes are set to a value of “1”.

<panel/>
This tag is not expanded, but its use helps improve XSLT processing.

An example of this tag:

<panel name=”availability”> ... </panel>

<pref_group/>
This tag controls access to a series of separate preferences to be treated as a group.

Each preference group has a name attribute to identify it. When processing, if the

pref_group name matches a preference the user has chosen (for example, the large

font size family), then the individual preferences within that preference group will

be processed. Otherwise the server skips over the pref_group without doing

anything.

Table 3 Attributes Set by Various Values for “error”

error= Value Attribute Set

error=”1” sessionExpired

error=”2” noValidcalendar

error=”3” dateRangeError

error=”4” sourceFileError
30 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
This tag is used in the default_user_prefs.xml file.

An example of this tag’s usage:

<pref_group name=”pref_font_size_group_1”> ... </pref_group>

<tab/>
This tag can be used to name specific tags within an explicit tabs set. It is used only

as a child of a <tabs> tag set, and only if the <tabs> tag has a type=”explicit”

attribute. Generally, the <tab> tags are inserted by the server as children of the

<tabs> pair. It is possible to define your own individual <tab> tags in order to give

them a name attribute. The additional information (command to load) will then be

added by the server during processing of the <tabs> tag. This tag is used by the

task_list.xml file.

For example:

<tab view=”new_event”/>

<tabs/>
This tag is expanded to create URL commands that will load the individual tabs

within a given view. The individual tabs within the tabs set can be named explicitly

or referred to according to their position within the <tabs> set. The count indicates

how many tabs there are. If type=”explicit” is set, then the tabs to create are

picked up as child text nodes of the <tabs> parent (and must therefore must exist

as such). Using the explicit attribute is a way to give specific names to individual

tabs in order. This tag is used in many files such as task_list.xml .

The following are examples of the unexpanded tag:

<tabs count=”6” type=”explicit”> ... </tabs>

<tabs count=”3”/>

To load two explicit tabs:

<tabs count=”2” type=”explicit”>
<tab view=”new_event”/>
<tab view=”new_event”/>

</tabs>

The URL command built to load these explicit tabs is:

<tab view="new_event">
javascript:loadtab(1,’http:// calendarservername:port /

command.shtml?view=new_event:tabs&id=2mhs6bhb2meb&
tab=1&date=20010116T144622&prevView=groupview&
calid=jdoe&security=1’,’new_event’);

</tab>
Customization Tips 31

Calendar Express XML Tags
To load two generic tabs:

<tabs count=”2”/>

The URL command built to load the generic tab is:

<tab>
javascript:loadtab(1,’http:// calendarservername:port /

command.shtml?view=new_task:tabs&id=2mhs6bhb2meb&
tab=1&date=20010116T150454&prevView=overview:main
&calid=jdoe&security=1’,’new_task’);

</tab>

<taskdata/>
This tag is used to provide information about a specific event. It causes a task child

to be added to the <taskdata> tag. The task detailed is either the one specified by

the uid on the URL command line, or a default is built up. This tag is used by

new_task.xml .

The following is an example of the tag:

<taskdata/>

The format of the task data is the same whenever a task is printed. An example of

the format of the expanded tag follows:

<taskdata>
<Task e_Summary="DueLaterTodayTask" e_writeAccessAllowed="true"

e_Calid="jdoe"
e_uid="3a64c021000031600000000200000fd1" e_repeatModifier=""
e_rid="0" e_Description="This is a task due later today"
e_OrganizerEmail="jdoe@ domain.com " e_Organizer="jdoe"
e_Language="en" e_dtCreated="20010116T134153"
e_dtModified="20010116T134153" e_existingRRule=""
e_rrule_notset="true" e_rruleChanged="false"
e_dtdue="20010116T160000" e_notdue="0" e_allday="0"
e_iSequence="0">
<DueTime iso="20010116T160000" year="2001" month="01"

date="16" hour="16" minute="00" seconds="00" dow="3"
weeknum="3"/>

<edit_command>javascript:var newWindow=window.open
(’http:// calendarservername:port /command.shtml?
view=new_task&id=2mhs6bhb2meb&date=20010116T142225
&uid=3a64c021000031600000000200000fd1&calid=jdoe
&i_tab=1&prevView=new_task:main’,
’2mhs6bhb2meb3a64c021000031600000000200000fd1’,
32 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
’height=550,width=650’,’false’)
</edit_command>

</Task>
</taskdata>

<tasklist/>
This tag is expanded to provide information about all incomplete tasks in

chronological order by due date. In addition, the task count and overdue task

count are added as attributes. They are added as children of the tasklist. This tab is

used in the task_list.xml file.

The following are examples of the tag:

<tasklist option=”count”/>

<tasklist/>

If the option=”count” attribute is used, no task data is listed, and only attributes

for the total task count and overdue task count are added.

For example:

<tasklist option="count" taskcount="3" overduetaskcount="1"/>

<timectx/>
This is one of the special tags described in “Special Framework Tags,” on page 7.

This tag is used to set a time state for the server. This tag must exist at least once

after the <calendar> tag. Other tags may depend on being able to use the

information from this tag. It may exist more than once in an XML view. This tag is

used in most view XML files, such as overview.xml .

The following are examples of the tag:

<timectx/>

<timectx add="+P7DT"/>

<timectx add="-P3MT" range="P6MT"/>

<timectx add="P1D"/>

The following example shows the expanded time context:

NOTE If the task were overdue, there would be an additional attribute on

the <Task> of overdue=”TRUE” .
Customization Tips 33

Calendar Express XML Tags
<timectx tzid="America/Los_Angeles">
<CurrTime iso="20010112T105031" year="2001" month="01" date="12"

hour="10" minute="50" seconds="31" dow="6" weeknum="2"/>
<SelectedTime iso="20010112T105031" year="2001" month="01"

date="12" hour="10" minute="50" seconds="31" dow="6
weeknum="2"/>

<StartTime iso="20010112T000000" year="2001" month="01" date="12"
hour="00" minute="00" seconds="00" dow="6" weeknum="2"/>

<EndTime iso="20010112T235959" year="2001" month="01" date="12"
hour="23" minute="59" seconds="59" dow="6" weeknum="2"/>

</timectx>

The CurrTime is always the current time picked up when processing the tag. The

SelectedTime can be set either with or without the add attribute.

With the add attribute, the SelectedTime can be changed relative only to the

previous time context. Therefore a <timectx> tag with an add attribute can not be

the first instance of the <timectx> tag in an XML file. The value of the add

attribute follows the standard duration format.

When there is no add attribute on the <timectx> tag, and if there is a “&date=...”

argument on the URL command line, then the date indicated is the SelectedTime. If

there is no date indicated, then the SelectedTime is the CurrTime.

The StartTime and EndTime provide the range around the SelectedTime. Currently

these are always the midnight previous to one second before midnight of the

following day indicated by SelectedTime.

Only one day is specified by the <timectx> tag.

<timezone/>
<timezone type="americas" displayName="America/Adak"
tzid="America/Adak" offset="-10:00" daylightOffset="-09:00"/>

<timezone type="asiaPacific" displayName="Pacific/Kiritimati"

tzid="Pacific/Kiritimati" offset="+14:00"/>

<userpref/>
This tag is used to preset default user preference values. This tag is not expanded.

It is used in default_user_prefs.xml . In addition, there are four preferences that

can set up debugging runtime values.

Table 4 shows the four user preferences used to set debugging runtime values.

Table 4 Preferences Used to Set Debugging Runtime Values

User Preferences Debugging Runtime Values

_DebugMode gDebug_Mode
34 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
The following are examples of the tag use:

<userpref name="icsFirstDay" default_value="1" type="number"
min_value="1" max_value="7"/>

<userpref name="icsTimeZone" default_value="America/New_York" />

<userpref name="ceDefaultAgenda" default_value="" />

<userpref name="ceToolText" default_value="1" />

<userpref name="ceToolImage" default_value="1" />

<userprefs/>
This tag is used as a delimiter around <userpref> tags. It is not expanded. It

facilitates processing of the <userpref> tags. This tag is used in the

default_user_prefs.xml file.

The following is an example of the tag:

<userprefs>

<usrctx/>
This is one of the special tags described in “Special Framework Tags,” on page 7.

This tag is expanded with information about the current user. The tag is used in

most XML files, such as the overview.xml file. The following is an example of the

tag:

<usrctx/>

When the tag is processed, an attribute is added to the <usrctx> node to indicate

the selectedCalendar or selectedGroup to display, but not both. In addition

four other nodes are added.

Table 5 shows the nodes added between the <usrctx> tag set.

_TimingMode gTiming_Mode

_DetailTimingMode gTimingMode and gDetailTiming_Mode

_SimulateOutputDataMode gSimulateOutputData_Mode and gSimulateOutputDataMax

Table 5 Nodes Added Between the <usrctx> Tag Set.

Nodes Node Attributes

<user> name, firstName, lastName, fullName, mail

Table 4 Preferences Used to Set Debugging Runtime Values

User Preferences Debugging Runtime Values
Customization Tips 35

Calendar Express XML Tags
<weekcal/>
This tag is used to provide information about the tasks and events for the week that

includes the current time context. The weekview tag is used int he weekview.xml

file. If no option attribute exists on the tag, then it provides the appropriate

component information for each day of the week. This information is the same as

would be added for a listEventCanvas in group order format with time blocks. In

addition each day gets two commands, one for the dayview for each weekday and

one for an arbitrary new_event for the day in question.

The following is an example of the tag use:

<weekcal option=”dates”/>

<weekcal/>

If the option=”dates” attribute occurs on the tag, then no actual component data is

added; only the information about the week that includes the current time context

is added. An example of the information this includes follows:

<weekcal option="dates" iso="20010116T080000Z" year="2001"
month="01" date="16" hour="08" minute="00" seconds="00" dow="3"
weeknum="3">

<userprefs> Attributes as key-value pairs representing the user

preferences settings, such as ceDayHead=8

<calendarList> A list of all calendars for this user. List items take the form of a

<calID> node for each of the user’s subscribed calendars.

An example of the <calID> node is:

<callID name=”jdoe” printableName= “John Doe”

<usergroup> Contains a command within the tag itself. For example:

<usergroup name="test" description="testgroup"

editCommand="http://calendarservername:port/
command.shtml?view=new_group&id=

e2nm0b2qb2mr6s6w9&date=&e_originalDisplayName=

test&displayName=test&description=testgroup&

e_calDisplayName_0=&e_calAddress_0=jdoe:num2&

e_tzid=&tab=1&prevView=overview&security=1"

viewCommand="javascript:

parent.jmain.newViewGroupCommand(’groupview’,’’,

’true’,’test’)"/>

Table 5 Nodes Added Between the <usrctx> Tag Set.

Nodes Node Attributes
36 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
<weekday iso="20010114T080000Z" year="2001" month="01"
date="14" hour="08" minute="00" seconds="00" dow="1"
weeknum="3"/>

<weekday iso="20010115T080000Z" year="2001" month="01"
date="15" hour="08" minute="00" seconds="00" dow="2"
weeknum="3"/>

<weekday iso="20010116T080000Z" year="2001" month="01"
date="16" hour="08" minute="00" seconds="00" dow="3"
weeknum="3"/>

<weekday iso="20010117T080000Z" year="2001" month="01"
date="17" hour="08" minute="00" seconds="00" dow="4"
weeknum="3"/>

<weekday iso="20010118T080000Z" year="2001" month="01"
date="18" hour="08" minute="00" seconds="00" dow="5"
weeknum="3"/>

<weekday iso="20010119T080000Z" year="2001" month="01"
date="19" hour="08" minute="00" seconds="00" dow="6"
weeknum="3"/>

<weekday iso="20010120T080000Z" year="2001" month="01"
date="20" hour="08" minute="00" seconds="00" dow="7"
weeknum="4"/>

<timeblockset/>
</weekcal>

<yearcal/>
This tag causes a series of minicalendars to be built as children of this node. The

difference between the <minical> output and the <yearcal> output if that there is

only one initial command in the yearcal. It is a command to go to the monthview

for that minical month. No component data is output for the days in each minical,

just the time and date information.

The following is an example of this tag’s use:

<yearcal/>

Figure 5 on page 39 shows the year calendar produced by this tag. Compare

Figure 3 and Figure 4 below and note that the year version of the minical and the

month version of the minical differ. The month version appears on most of the

other calendar views. The year version is produced only with this tag.
Customization Tips 37

Calendar Express XML Tags
Figure 3 Year Minical

Figure 4 Month Minical
38 December 2000 Customization Tips • December 2000

Calendar Express XML Tags
Figure 5 Year Calendar Produced by <yearcal> Tag

To produce this year calendar, data in the expanded tag is structured in this order:

6. row of year minicals (3 of these)

a. year minical (4 of these)

I. command for current month

II. week row (one for each week position in month calendar - 5 or 6)

-Day (one for each day of the week)

+Time for this context

+Command for this time context dayview
Customization Tips 39

Debug Mode
-Day

...etc. through 7 days

III. week row

...etc. through 5 or 6 weeks

b. year minical

...etc. through 4 months

7. row of year minicals

...etc. through 3 rows

Debug Mode
A runtime option is available to help you debug. This option causes the server to

reload all of the XML and XSL on each hit to the server. (The files are normally

cached.) It also writes a file to the directory where the server is running (bin

directory) for each processed XML file. These files contain the exact code that is

being displayed on the client.

The format of the name of the post-processed XML file is: _icsDebug_current user_

view_ subview.xml. Subview is the frame being processed, such as main, toolbar, or

buttons. In general, the main frame is usually the most data-rich. When the

post-processed file name has the same name as the view, then it resulted from the

frameset pass.

For example, when debug mode is on, it creates the following three post-processed

files from the overview.xml file:

bin/_icsDebug_ currentuser _overview_main.xml (generated from the main

frame)

bin/_icsDebug_ currentuser _overview_overview.xml (generated from the

frameset pass)

bin/_icsDebug_ currentuser _overview_toolbar.xml (generated from the

toolbar frame)

NOTE The server slows down noticeably in this mode.
40 December 2000 Customization Tips • December 2000

Debug Mode
Turning Debug Mode On
To put the server in debug mode for XML and XSL:

1. Remove the comment markers from this line in the file ui_config.xml :

<!-- <config="_DebugMode" default_value="on"/> -->

2. Then, in ics.conf , point the ui.config.file preference to ui_config.xml :

ui.config.file = "ui_config.xml"

Turning Debug Mode Off
To turn off debug mode and return to normal function:

1. Choose one of the following methods for changing the preference back:

❍ Turn off the _DebugMode user preference by changing it to read:

default_value=”off” .

❍ Turn off the _DebugMode user preference by commenting it out.

❍ Remove the preference ui.config.file from the ics.conf file.

❍ Change the value of the ui.config.file to ““.

2. Restart the server.

Example of Pre- and Post-Processed XML Files

From Pre-processed overview.xml:
<panel name="overview-panel">

<timectx/>

<panel name="singleDayTimeHeader">

<timectx/>

<command name="back" type="cmd_date" dur="-P1DT"/>

From _icsDebug-JoeUser_overview_main.xml:
<panel name="overview-panel">

<timectx tzid="America/Los_Angeles">
Customization Tips 41

XML/XSL Links
<CurrTime iso="20001128T105624" year="2000" month="11"
date="28" hour="10" minute="56" seconds="24" dow="3"
weeknum="48"/>

<SelectedTime iso="20001128T105624" year="2000" month="11"
date="28" hour="10" minute="56" seconds="24" dow="3"
weeknum="48"/>

<StartTime iso="20001128T000000" year="2000" month="11"
date="28" hour="00" minute="00" seconds="00" dow="3"
weeknum="48"/>

<EndTime iso="20001128T235959" year="2000" month="11"
date="28" hour="23" minute="59" seconds="59" dow="3"
weeknum="48"/>

</timectx>

<panel name="singleDayTimeHeader">

<timectx tzid="America/Los_Angeles">

<CurrTime iso="20001128T105624" year="2000" month="11"
date="28" hour="10" minute="56" seconds="24" dow="3"
weeknum="48"/>

<SelectedTime iso="20001128T105624" year="2000"
month="11" date="28" hour="10" minute="56" seconds="24"
dow="3" weeknum="48"/>

<StartTime iso="20001128T000000" year="2000"
month="11"date="28" hour="00" minute="00" seconds="00"
dow="3" weeknum="48"/>

<EndTime iso="20001128T235959" year="2000" month="11"
date="28" hour="23" minute="59" seconds="59" dow="3"
weeknum="48"/>

</timectx>

<command name="back" type="cmd_date"
dur="-P1DT">javascript:parent.jmain.newViewCommand
(’overview:main’,’20001127T000000’,’true’)</command>

XML/XSL Links
The primary source of information on the internet for XML and XSL is the World

Wide Web Consortium found at: www.w3.org .
42 December 2000 Customization Tips • December 2000

XML/XSL Links
W3 Related links
• General information on XSL is at: http://www.w3.org/Style/XSL .

• The XSL Working Draft is at: http://www.w3.org/TR/xsl .

• The XSLT Recommendation is at: http://www.w3.org/TR/xslt .

• The XPath Recommendation is at: http://www.w3.org/TR/xpath .

• The original XSL note is at: http://www.w3.org/TR/NOTE-XSL .

Other Links
• An excellent source of information about XSL is the XSL page of Robin Cover’s

“the XML Cover Pages” found at: http://www.oasis-open.org/cover .

• Dave Pawson’s XSL FAQ is at:

http://www.dpawson.freeserve.co.uk/xsl/xslfaq.html.

• Mulberry Technologies hosts the XSL-List, an open forum for discussion of

XSL, at: http://www.mulberrytech.com/xsl/xsl-list.

• Zvon, a web organization dedicated to free information exchange centered on

XML, has several tutorials, and an XSLT reference. Their web URL is:

http://www.zvon.org .

• “XML for the absolute beginner” is an excellent overview found at:

http://www.javaworld.com/javaworld/jw-04-1999/jw-04-xml.html .This

site also contains valuable links to other XML/XSL resources.

Tutorial Links
Finding a web tutorial on XML/XSL should not be difficult, but here are two sites

to get you started:

• Click on the TUTORIALS link at: http://www.zvon.org.

• Several are offered at: http://www.w3schools.com .
Customization Tips 43

XML/XSL Links
44 December 2000 Customization Tips • December 2000

	Customization Tips
	WARNING!
	Customization Overview
	XML and XSLT Introduction
	Figure 1 iCS 5.0 XML Processing

	Three Levels of Customization
	1. Change the look of an existing view without changing the data contained in the view.
	2. Change the content of an existing view.
	3. Create a new view to provide calendar data in some different way.

	Starting the Process: Request for a View
	1. Current date/time (time context).
	2. Current user (user context).
	3. Any additional arguments that were in the original URL line (attributes).
	4. The current subview (group).

	Calendar Express XML Tags
	Special Framework Tags
	XML Tags Recognized by Calendar Express
	Tag Details
	<button/>
	<caldata/>
	<calendar/>
	<calgroup/>
	<command/>
	<config/>
	<datactx/>
	<day/>
	<disable/>
	<errorslist/>
	<eventdata/>
	<exportdata/>
	<formdata/>
	<group/>
	<invitationslist/>
	<listeventcanvas/>
	Table 2 Attributes for <listEventCanvas>

	<minical/>
	<monthcal/>
	Figure 2 Monthcal
	1. monthcal
	2. command for previous month
	3. command for next month
	4. row (one for each week - 5 or 6 of these)
	a. monthDay (one for each day of week)
	I. time element for this day
	II. listEventCanvas information in overlap format

	b. monthDay

	5. row
	<optionsdata/>
	Table 3 Attributes Set by Various Values for “error”

	<panel/>
	<pref_group/>
	<tab/>
	<tabs/>
	<taskdata/>
	<tasklist/>
	<timectx/>
	<timezone/>
	<userpref/>
	Table 4 Preferences Used to Set Debugging Runtime Values

	<userprefs/>
	<usrctx/>
	Table 5 Nodes Added Between the <usrctx> Tag Set.

	<weekcal/>
	<yearcal/>

	Figure 3 Year Minical
	Figure 4 Month Minical
	Figure 5 Year Calendar Produced by <yearcal> Tag
	6. row of year minicals (3 of these)
	a. year minical (4 of these)
	I. command for current month
	II. week row (one for each week position in month calendar - 5 or 6)
	III. week row ...etc. through 5 or 6 weeks

	b. year minical ...etc. through 4 months

	7. row of year minicals ...etc. through 3 rows

	Debug Mode
	Turning Debug Mode On
	1. Remove the comment markers from this line in the file ui_config.xml:
	2. Then, in ics.conf, point the ui.config.file preference to ui_config.xml:

	Turning Debug Mode Off
	1. Choose one of the following methods for changing the preference back:
	2. Restart the server.

	Example of Pre- and Post-Processed XML Files
	From Pre-processed overview.xml:
	From _icsDebug-JoeUser_overview_main.xml:

	XML/XSL Links
	W3 Related links
	Other Links
	Tutorial Links

