Механика

Ha

НАЦИОНАЛЕН КОМИТЕТ ПО ТЕОРИЯ

 НА МЕХАНИЗМИТЕ И МАШИНИТЕ
МЕХАНИКА НА МАШИНИТЕ

ГОДИНА ХІ, КНИГА 4, 2003

СЪДЪРЖАНИЕ

ПРИЛОЖНА МЕХАНИКА НА ФЛУИДИТЕ, ТОПЛО- И МАСОПРЕНАСЯНЕ

Г. Гужгулов, С. Стоянов, Г. ПоповСилов анализ на ротационна аксиално-бутална машина с наклонен цилиндров блок и схидростатични опори. .3
Д. Бодурова, М. Ангелов
Очиствана на вода чрез хидродинамична кавитация 7
С. Ташева, Г. Вълчев, В. Рашева, Е. Шалапатова
Хидродинамика в експериментална кохобационна колона 11
В. Рашева, Г. Вълчев, С. Ташева
Термодинамична диаграма "енталпия - съдържание на пари на метанол" за смес от влажен въздух и пари на метилов алкохол. 15
Д. Дончев
Анализ на механичното поведение на структури усилени чрез външно прилепване на композитни плочи(усилени с нишки полимерни плочи - УНП плочи) 19
А. Александров, Д. Дончев, Ц. Цолов
Термични ефекти в гумено - метални изделия 23
Т. Тотев, Б. Бонев, С. Симов
Определяне разхода на варовик за сяроочистващите инсталации при работа на енергийните блокове с различно натоварване. 27
С. Симов, Т. Тотев, Б. Бонев
Влияние на разходите за сяроочистващите инсталации върху себестойността на ел. енергията, произвеждана от блок N 7 и N 8 в ТЕЦ "Марица изток 2" 31
П. Иванов, Х. Христов, К. Орманджиев
Синтез на оптимален регулатор на пневматична задвижваща система 34
Х. Христов, К. Орманжиев, П. Иванов
Параметрична оптимизация на електропневматична задвижваща система 38
К. Орманджиев, Х. Христов, П. Иванов
Изследване работата на система турбопомпа резервоар с отчитане влиянието на напорните тръбопроводи. 42
М. Баева, И. Панчев
Кинетични езследвания върху влагозадържащия ефект на хранителни покрития от полизахариди. 46
Т. Чакъров
Центробежни вентилатори с "назад" и "напред" огънати лопатки в един и същи спирални корпуси. 50
В. Камбурова, И. Желева
Числено изследване на влиянието на дебелината на изпичания хлебен продукт върху разпределението на температурата и продължителността на процеса 54
П. Костов, К. Атанасов
Влияние на температурата на въздуха подаван за горене и диаметъра на газовата струя върху ядрото на органичния газов фалел 58
П. Костов
Някои условия за моделиране изгарянето на газово гориво в ограничен факел 61
V. Zimparov, P. Penchev
Performance evaluation of some tube inserts as heat transfer enhacement techniques 64

ОЧИСТВАНЕ НА ВОДА ЧРЕЗ ХИДРОДИНАМИЧНА КАВИТАЦИЯ

Донка БОДУРОВА, Милчо АНГЕЛОВ
bodurova 79@mail.bg mangelov@filibeto.org
катедра МАХВП, УХТ, гр. Пловдив 4002, България бул. Марица 26

Abstract

PE3FME Хидродинамичната кавитация нанася вреда на оборудването поради интензивната кавитачионна ерозия на елементите от хидросистемата. Познавайки механизмите на въздействие, хидродинамичната кавитачия може да се използва за интензифициране на технологичните прочеси в различни отрасли от промишлеността. Целта на настоящата работа е да се изследва експериментално възможността за микробиологично очистване на вода чрез обработка в режим на развита хидродинамична кавитация. Представени са резултатите от проведените експериментални изследвания. Първоначалните опитни изследвания потвърждават идеята за микробиологично очистване на природни и отпадни води чрез въздействие на хидродинамична кавитачия и откриват широки възможности за приложение на този метод в различни отрасли на промишлеността.

Ключови думи: кавитачия, очистване на вода, микробно число

WATER PURIFICATION THROUGH HYDRODYNAMIC CAVITATION

Donka BODUROVA , Milcho ANGELOV
bodurova_79@mail.bg mangelov@filibeto.org
University of Food Technologies-Plovdiv, Bulgaria, 4002,Plovdiv, Maritza Blvd.

Abstract

Hydrodynamic cavitation causes damages over aparatos because of intensive cavitational erosion of the elements in the hydrosystem. Being acquainted with the mechanisms of effect, the hydrodynamic cavitation can be used to intensify technological processes in different industrial areas. The objective of the present work is experimental exploration of the possibility for microbiological water cleaning through processing in conditions of developed hydrodynamic cavitation. Here, we present the results of the conducted experimental studies. The initial trials confirm the idea of microbiological purification of nature and waste waters through having an immediate effect of hydrodynamic cavitation. They open wide opportunities for applying this method in various industrial fields.

Key words: cavitation, water purification, microbe number.

1. YBOA

Дори и най-чнстите и бедни на замърсявания природни и отпадни води не могат да бъдат излолзвани повторно в бита и редица важни технологични процеси без предварнтелна обработка, с която да се корнгнрат качествата на потребяваната вода. Водата за най-обикновените парогенератори трябва да бьде омекотена, докато водата, използвана в съвременните ТЕЦ с високи параметри и в АЕЦ, трябва да бъде практнческж напълно обезсолена. Очжстването на питейните и отпадни води също е много голям проблем на съвремието с цел тяхното повторно нзползване в техниката и бита. Познавайки механизмите на въздействие, хидродинамигната кавитация може да се нзползва за интензифициране на технологичните процеси в различни отрасли от промищленоста. През последните години се наблюдава интерес към положителното нзползване на кавитацията за очистване на спирт, в захарната промишленост, за очистване на тръбопроводи, за фино смилане на лекарствени и био продукти и др. [Ангелов M. и др., 1986, Angelov M. At all 1997, Kavitationsblasenfeldern Dissertation Gottingen, Univ., Diss., 2000].

2. МАТЕРИАЛИ И МЕТОДИ

Целта на ексгерименталните изследвания е да се изследват възможностите за микроб́иологично очистване на вода чрез въздсиствие на хидродинамична кавитация. Кате микробнологичен критерий за преценяване на годността на водата служи общият брой на микроорганизмите в 1 ml от нея. Тозн критерии дава възможност да се оцени степента и качеството на пречистване и обеззаразяване на природните и отпадните битови води и водите от различните сфери на хранителната и други промишлености.
Наматенито съдържание на свободна вода в микробната клетка на микроорганизмите прави колондните белтьчни разтвори поустойчнви и повншава термоустойчивостта на микроорганнзмите. Поради това спорите на Бацилите, конто съдържат много по-малко свободна вода, понасят значително по-високи температури. Затова механичното въздействие от кавитацюята може да доведе до по-бързото им уницожаване. Установено e, че ултразвукът, който съпровожда кавитацията, действа разрушаващо спрямо всички групи

микроорганизми (бактерии, гьби, актиномицети, дрожди, вируси). Наблюдава се обаче изразена избирателност на бактерицидното действие на кавитацията и ултразвука, която се дължи на морфологичните особености и физиологичното състояние на микроорганизмите. Важна роля играе на първо място формата и дебелината на клетъчната обвивка, а след това - формата и размерът на клетките. Най-висока чувствителност към ултразвук притежават нишковидните бактерии, по-малка пръчковидните, а най-устойчиви са коковидните форми. Светещите бактерии (Photobacterium) загубват способността си към луминесценция под действието на този фактор [Митов, Г. 1990]. Разрушаващото действие на ултразвука се проявява само тогава, когато интензивността на ултразвуковите вълни възлиза на $0,3-0,5 \mathrm{~W} / \mathrm{cm}^{2}$ от активната повърхност. При явлението кавитация, "ударите" върху бактерийната клетка идва отвън. В случая, наред с физичните сили и физико-химичните процеси, се извършват и определени химични реакции. Всички тсзи фактори действат съвместно и обуславят разрушителния и бактерициден ефект на кавитацията.

Хидродинамичната кавитация може да намери бъдеще приложение в микробиологията, имунологията и ензимологията за студено стерилизиране на природни и отпадни води, като дезинфекционно средство срещу редица болести, за получаване на ензимни препарати и др. Методът за очистване на вода, посредством който се постига намаляване на микробното число и пълното унищожаване на микробите от сем. Enterobacteriaceae се състои в това, че водата, преминава през зона на развита хидродинамична кавитация.

Микробното число е основен критерий за качеството на питейни и отпадни води. То обединява всички мезофилни хетеротрофни микроорганизми. Семейство Enterobacteriaceae са коли-форми свидетелстващи за фекални замърсявания във водите. Те всички са изолирани от околната среда чрез клетьчна стена (обвивка)

Получените при затварянето на кавитационните каверни локални нагрявания, микроударни въздействия и акустични вълни, върху повърхността на клетъчната стена на горепосочените микроорганизми я разкъсват и ги убиват. Разрушаващото действие на хидродинамичната кавитация се изразява в

образуването на кавитационни мехурчета (празни пространства) в течната среда в резултат на разреждането (отрицателното налягане), което се получава при преминаване през кавитатора.

Предимството на този метод за очистване се състои в това, че за кратко време се убиват вредните микроорганизми, благодарение на положителната роля на микроакустичните вълни и хидродинамичните удари, при преминаването на водата през кавитационното поле. Освен това кавитационната ерозия непрекъснато разкрива нови активни повърхности по повърхността на бактериите и ускорява процеса на разрушаване на клетьчната обвивка. Заедно с голямата разлика в наляганията в течността (зоната преди, в и след кавитацията) се появяват водороден прекис (перхидрол - $\mathrm{H}_{2} \mathrm{O}_{2}$) и азотен двуокис като резултат от окислителните процеси, които ускоряват процеса на унищожаване на определени видове микроорганизми.

Методът се реализира в поток, високопроизводителен е и не е енергоемък. Той осигурява намаляване на микробното число и пълното унищожаване на сем. Enterobacteriaceae съдържащи се във водата при различни кавитационни числа и време за обработка в циркулационен режим.

3. АНАЛИЗ НА РЕЗУЛТАТИТЕ

При фиксирани начални условия (кавитационно число: $\sigma=6,28$) се изследва влиянието на кавитационната обработка върху понижаването на най-важният микробиологичен показател "микробно число". Сьгласно изискванията на ХЕИ за качеството на питейната вода то е до $50 ~ б \mathrm{p} / \mathrm{ml}$. [Наредба №9, 2001]. За експерименталните изследвания беше използвана вода от p. Марица, която е пълна с бактерии от всички видове.

От фиг 1 може да се проследи интензивността на пълното унищожение на микроорганизми от сем. Enterobacteriaceae (това са коли форми свидетелстващи за фекални замърсявания във водите), след различно време на обработка с хидродинамична кавитация. Резултатите дават право да наречем процеса на кавитационна обработка "студена стерилизация". Найсилното доказателство за кавитационното въздействие върху жизнеспособността на микроорганизмите, съдържащи се във речната вода е пълното унищожаване на

микроорганизмите от сем. Enterobacteriaceae. Вижда се, че след 12 min кавитационна обработка липсват микроорганизми от този вид.
На фиг. 2 и фиг. 4 е показано изменението на микробното число след различно време на кавитационна обработка при кавитационно число $\sigma=3,4$.
От фиг 3, се вижда изменението на микробното число при $\sigma=6,28$ и различна продължителност на обработка.
Бързото намаление на микробното число свидетелства, че хидродинимачната кавитация може да бъде използвана за очистване на води. Микробното число на кавитационно обработена вода от река Марица се понижи значително в сравнение с контролната проба (фиг $2,3,4$,). Градиентьт на намаление е найголям в началното време за обработка и при по-голямото число на кавитация. При промяна на кавитационното число характерът на изменение на кривите се запазва, като след определено време за обработка изменението асимптотически клони към постоянна стойност.

При повторение на опитите при други начални условия, резултатите потвърждават характера на намаляне на микробното число.

4. ИЗВОДИ:

1. Обработката на вода чрез кавитация води до пълното унищожаване на микробите от фекалните замърсявания на водите.
2. Микробното число намаля чувствително при обработка на вода чрез интензивна кавитация.
3. При по-високи стойности на кавитационното число градиента на намаляне на микробното число е по-голям.
4. Кавитационната обработка може да се използва за микробиологично очистване (студена стерилизация) на повърхностни, промишлени и отпадни води.

ЛИТЕРАТУРА

Ангелов, М., и др. Изследване възможностите за кавитационна обработка на високоалкохолни разтвори. - Национална научно-техническа конференция с международно участие "Хидродинамика, хидравлични машини, помпи и съоръжения", Варна, 1986.
Добревски, И., В. Мавров, В. Ненов, В. Ганев. Технология на водата (ч. II, Основни процеси в пречистването на отпадъчните води), С., Техника, 1987.

Митов, Г. Ръководство за практически упражнения по микробиология. С. , Медицина и физкултура, 1990
Наредба за водата № 9., Държавен вестник, 28.03.2001г./бр. 30 .

Angelov, M., At. Lambrev, I. Antonov, Aplikation of hydrodynamie cavitation, for purifikation of water-alcochol solution, Leaven, Belgium, 1997.

Фиг 1. Влияние на кавитационната обработка върху броя на бактериите от типа

Enterobactericea при $\sigma=6,28$

Фиг.2. Промяна на микробното число под въздействие на кавитационна обработка при onит $1-\sigma=3,4$

Theoretische Beschreibung und experimentelle Untersuchung raum-zeitlicher Strukturbildung in akustischen Kavitationsblasenfeldern Dissertation Gottingen, Univ., Diss., 2000
http://deposit.ddb.de/cgibin/dokserv?idn $=961894121$

Фиг 3. Промяна на микробното число под въздействие на кавитационна обработка при onum $3-\sigma=6,28$

Фиг 4. Промяна на микробното число под өъздействие на кавитационна обработка при onит $4-\sigma=3,4$

