
TruCluster Production Server
Software
MEMORY CHANNEL Application Programming
Interfaces

Part Number: AA-QTN4C-TE

January 1998

Product Version: TruCluster Production Server
Software Version 1.5 and TruCluster
MEMORY CHANNEL Software
Version 1.5

Operating System and Version: DIGITAL UNIX Version 4.0D

This manual describes how to install the MEMORY CHANNEL software,
and how to develop applications that are based on the MEMORY

CHANNEL Application Programming Interface (API) library.

Digital Equipment Corporation
Maynard, Massachusetts

© Digital Equipment Corporation 1998
All rights reserved.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Alpha AXP,
AlphaGeneration, AlphaServer, AltaVista, ATMworks, AXP, Bookreader, CDA, DDIS, DEC, DEC Ada,
DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem, DECterm, DECUS, DECwindows, DTIF,
Massbus, MicroVAX, OpenVMS, POLYCENTER, Q–bus, StorageWorks, TruCluster, ULTRIX, ULTRIX
Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and the
DIGITAL logo.

Prestoserve is a trademark of Legato Systems, Inc.; the trademark and software are licensed to Digital
Equipment Corporation by Legato Systems, Inc. NFS is a registered trademark of Sun Microsystems, Inc.
Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Ltd. MEMORY CHANNEL is a trademark of Encore Computer
Corporation.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from DIGITAL or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety and
health of its employees, customers, and the community.

Contents

About This Manual

1 Software Installation
1.1 Installing the MEMORY CHANNEL Software 1–2
1.1.1 Obtain IP Names and Addresses 1–2
1.1.2 Halt System and Set Console Variables 1–3
1.1.3 Boot to Single-User Mode and Deinstall Software 1–4
1.1.4 Install the DIGITAL UNIX Operating System 1–4
1.1.5 Register the MEMORY CHANNEL Software License 1–5
1.1.6 Load the Kit 1–6
1.1.7 Specify a Network Interface IP Name and Address 1–7
1.1.8 Select a Kernel Configuration File 1–8
1.1.9 Build and Install a New Kernel 1–8
1.1.10 Reboot the System 1–9
1.1.11 Installation Example 1–9
1.1.12 Verify the Installation with the clu_ivp Utility 1–11
1.2 Initializing the MEMORY CHANNEL API Library 1–12
1.3 The MEMORY CHANNEL Multirail Model 1–13
1.3.1 Single-Rail Style 1–13
1.3.2 Failover Pair Style 1–14
1.3.3 Configuring the MEMORY CHANNEL Multirail Model . . 1–15
1.4 Tuning Your MEMORY CHANNEL Configuration 1–16
1.4.1 Extending MEMORY CHANNEL Address Space 1–17
1.4.2 Increasing Wired Memory 1–17
1.4.3 Increasing Virtual Memory Map Entries 1–18
1.5 Troubleshooting 1–18
1.5.1 IMC_NOTINIT Return Code 1–18
1.5.2 MEMORY CHANNEL API Library Initialization Failure 1–19
1.5.3 Fatal MEMORY CHANNEL Errors 1–20
1.5.3.1 Logical Rail Failure 1–20
1.5.3.2 Logical Rail Initialization Failure 1–21
1.5.3.3 MEMORY CHANNEL Cables Crossed 1–21
1.5.4 IMC_MCFULL Return Code 1–22
1.5.5 IMC_RXFULL Return Code 1–22

Contents iii

1.5.6 IMC_WIRED_LIMIT Return Code 1–22
1.5.7 IMC_MAPENTRIES Return Code 1–22
1.5.8 IMC_NOMEM Return Code 1–23
1.5.9 IMC_NORESOURCES Return Code 1–23

2 Application Notes
2.1 Initializing the MEMORY CHANNEL API Library for a User

Program 2–1
2.2 Accessing MEMORY CHANNEL Address Space 2–2
2.2.1 Attaching to MEMORY CHANNEL Address Space 2–3
2.2.1.1 Broadcast Attach 2–4
2.2.1.2 Point-to-Point Attach 2–5
2.2.1.3 Loopback Attach 2–6
2.2.2 Initial Coherency 2–7
2.2.3 Reading and Writing MEMORY CHANNEL Regions 2–8
2.2.4 Address Space Example 2–8
2.2.5 Latency Related Coherency 2–11
2.2.6 Error Management 2–14
2.3 Clusterwide Locks 2–19
2.4 Cluster Signals 2–22
2.5 Cluster Information 2–22
2.5.1 Using MEMORY CHANNEL API Functions to Access

MEMORY CHANNEL API Cluster Information 2–22
2.5.2 Accessing MEMORY CHANNEL Status Information from

the Command Line 2–24
2.6 Comparison of Shared Memory and Message Passing Models 2–24

3 MEMORY CHANNEL API Library Interface
3.1 Header Files 3–1
3.2 Library 3–1
3.3 Compiling Applications that Use the MEMORY CHANNEL

API Library 3–2
3.4 Overview of MEMORY CHANNEL API Library Commands

and Functions 3–2
imc(3) 3–3

3.5 Command Descriptions 3–7
imc_init(1) 3–8
imcs(1) 3–11

3.6 Function Descriptions 3–15
imc_api_init(3) 3–16
imc_asalloc(3) 3–18

iv Contents

imc_asattach(3) 3–23
imc_asattach_ptp(3) 3–29
imc_asdealloc(3) 3–33
imc_asdetach(3) 3–35
imc_bcopy(3) 3–37
imc_ckerrcnt(3) 3–42
imc_ckerrcnt_mr(3) 3–44
imc_getclusterinfo(3) 3–46
imc_kill(3) 3–50
imc_lkacquire(3) 3–52
imc_lkalloc(3) 3–55
imc_lkdealloc(3) 3–59
imc_lkrelease(3) 3–61
imc_perror(3) 3–63
imc_rderrcnt(3) 3–65
imc_rderrcnt_mr(3) 3–67
imc_wait_cluster_event(3) 3–69

A Frequently Asked Questions
A.1 IMC_NOMAPPER Return Code A–1
A.2 Efficient Data Copy A–1
A.3 MEMORY CHANNEL Bandwidth Availability A–2
A.4 MEMORY CHANNEL API Cluster Configuration Change A–2
A.5 Bus Error Message A–2
A.6 Deciding Which TruCluster Product To Use A–2
A.7 Finding Out More About MEMORY CHANNEL A–3

Index

Examples
1–1 MEMORY CHANNEL Software Installation 1–9
2–1 Accessing Regions of MEMORY CHANNEL Address Space . . 2–9
2–2 System V IPC and MEMORY CHANNEL Code Comparison . 2–12
2–3 Error Detection Using the imc_rderrcnt_mr Function 2–16
2–4 Error Detection Using the imc_ckerrcnt_mr Function 2–18
2–5 Locking MEMORY CHANNEL Regions 2–19
2–6 Requesting MEMORY CHANNEL API Cluster Information;

Waiting for MEMORY CHANNEL API Cluster Events 2–23

Figures
1–1 Single-Rail MEMORY CHANNEL Configuration 1–14

Contents v

1–2 Failover Pair MEMORY CHANNEL Configuration 1–15
2–1 Broadcast Address Space Mapping 2–4
2–2 Point-to-Point Address Space Mapping 2–5
2–3 Loopback Address Space Mapping 2–7

vi Contents

About This Manual

This manual describes the TruClusterTM MEMORY CHANNELTM Application
Programming Interface (API) and how to use it to develop programs for
TruCluster systems based on the MEMORY CHANNEL interconnect
technology.

Audience

This manual is for developers who want to directly access the features
provided by the MEMORY CHANNEL API, and for system managers who
want to install the product. The manual assumes that the reader is
experienced with the following:

• UNIX® operating environment

• C programming language

• Shared memory and message-passing programming models

Organization

This manual has three chapters, an appendix, and an index. The manual is
structured as follows:

Chapter 1 Describes the MEMORY CHANNEL software installation procedure,
initialization, and configuration.

Chapter 2 Contains information to help you develop applications based on the
MEMORY CHANNEL API library.

Chapter 3 Provides reference information about each MEMORY CHANNEL API
command and function.

Appendix A Contains answers to questions asked by programmers who use the
MEMORY CHANNEL API library.

About This Manual vii

Related Documents

Consult the following TruCluster Software Products manuals for assistance
in configuring, installing, and administering the software:

• TruCluster Software Products Release Notes—Documents known
restrictions and other important information about the TruCluster
MEMORY CHANNEL Software product.

• TruCluster Software Products Hardware Configuration—Describes how
to set up the processors to utilize the MEMORY CHANNEL hardware.

In addition, you should have available the following manuals from the
DIGITAL UNIX documentation set:

• Installation Guide

• Network Administration

• System Administration

Location of Code Examples

This manual includes code examples that show how to use the MEMORY
CHANNEL API library functions in programs. You will find these code files
in the /usr/examples/cluster/ directory. Each file contains compilation
instructions.

Location of Online Documentation

Each book in the TruCluster Software documentation set is shipped as a
set of Hypertext Markup Language (HTML) and graphics files in the
/TCR/doc/html directory on the Associated Products Volume 2 CD-ROM.
You can use the Netscape Navigator® World Wide Web browsing program to
display these books.

To access the TruCluster Software documentation from the viewer, click on
the Open icon in the Netscape main window and enter the following file
location in the Open Location: text entry field:
file:/ mountpoint /TCR/doc/html/BOOKSHELF.HTM .

Reader’s Comments

DIGITAL welcomes any comments and suggestions you have on this and
other DIGITAL UNIX manuals. A Reader’s Comment form is located on
your system in the following location:

/usr/doc/readers_comment.txt

viii About This Manual

You can send your comments in the following ways:

• Internet electronic mail: comments@ilo.dec.com

• Fax: +353 91 754784 Attn: DIGITAL Information Design

• Mail:

Digital Equipment Corporation
DIGITAL Information Design
Ballybrit Industrial Park
Galway
Ireland

A Reader’s Comment form is located in the back of each printed manual.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of DIGITAL UNIX that you are using.

• If known, the type of processor that is running the DIGITAL UNIX
software.

The DIGITAL UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate DIGITAL technical support office.
Information provided with the software media explains how to send
problem reports to DIGITAL.

Conventions

The following typographical conventions are used in this manual:

%

$ A percent sign represents the C shell system
prompt. A dollar sign represents the system prompt
for the Bourne and Korn shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

About This Manual ix

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{|} In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

... In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat(1) indicates that you can find
information on the cat(1) command in Section 1 of
the reference pages.

Return In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the first
named key while pressing the key or mouse button
that follows the slash. In examples, this key
combination is enclosed in a box (for example,
Ctrl/C).

x About This Manual

1
Software Installation

This chapter describes how to install the TruCluster MEMORY CHANNEL
Software on the DIGITAL UNIX Version 4.0D operating system. It also
describes how to initialize the MEMORY CHANNEL Application Programming
Interface (API) library, and discusses MEMORY CHANNEL configuration.

_______________________ Note _______________________

If you want to install and configure the MEMORY CHANNEL API
in a TruCluster Production Server environment, you must use
the TruCluster Software Products Software Installation manual.

The chapter discusses the following topics:

• Installing the MEMORY CHANNEL software (Section 1.1)

• Initializing the MEMORY CHANNEL API library (Section 1.2)

• The MEMORY CHANNEL multirail model (Section 1.3)

• Tuning your MEMORY CHANNEL configuration (Section 1.4)

• Troubleshooting (Section 1.5)

_______________________ Note _______________________

Throughout this manual, a cluster is defined as a MEMORY
CHANNEL API cluster, not a Production Server cluster. However,
a Production Server cluster may be identical to the MEMORY
CHANNEL API cluster.

Members of a MEMORY CHANNEL API cluster must be connected
by a MEMORY CHANNEL interconnect, and must have executed
the imc_init command. Production Server cluster membership
criteria are not the same as MEMORY CHANNEL API cluster
membership criteria. Production Server cluster membership is
monitored by the connection manager. The connection manager is
not associated with MEMORY CHANNEL API cluster membership.

Software Installation 1–1

1.1 Installing the M EMORY CHANNEL Software

This section and the following subsections describe how to prepare for the
MEMORY CHANNEL software installation, the steps involved in the
installation, and how to test the completed installation to make sure that it
is working correctly.

_______________________ Note _______________________

The procedures described in this section assume that each
system’s hardware and firmware are installed and configured as
described in the TruCluster Software Products Hardware
Configuration manual. Do not begin the software installation
until the hardware and firmware are installed and configured.

Please note the following general installation restrictions and
considerations:

• Do not install the product into a dataless environment.

• It is recommended that you have at least 64 MB of memory available
on each member system.

• You must have superuser (root) privileges for the systems on which you
will install the software.

• Back up all systems before beginning the installation process.

• The installation procedure automatically modifies the
/etc/sysconfigtab file; however, in some cases this manual will tell
you to modify, or add to, certain stanzas in the /etc/sysconfigtab
file. DIGITAL recommends that you use sysconfigdb (8) to do this.

1.1.1 Obtain IP Names and Addresses

You must assign an Internet Protocol (IP) address and corresponding name
to the MEMORY CHANNEL interface on each host.

The network is visible only to the hosts which are directly connected by the
MEMORY CHANNEL interconnect; this means that you can use IP addresses
of the form 10.0.0.x , since this form of IP address is reserved for private
networks. For example, for four hosts, you can assign the following IP
addresses:

10.0.0.1
10.0.0.2
10.0.0.3
10.0.0.4

1–2 Software Installation

_______________________ Note _______________________

Host number 42 (that is, IP address 10.0.0.42) is reserved by
TruCluster software and must not be used. 10.0.0.64 is also a
reserved IP address and must not be used.

See the DIGITAL UNIX Network Administration manual for detailed
guidelines on allocating IP addresses.

You can assign any unique IP name to the MEMORY CHANNEL interface on
each host; for example, you could use the IP name mcclu for a host named
clu . Do not use an underscore (_) in an IP name.

The MEMORY CHANNEL software installation procedure updates the
/etc/hosts and /etc/rc.config file to reflect the IP names and
addresses you supply during installation.

The system’s host name (the one displayed by the hostname program) does
not change as a result of installing the MEMORY CHANNEL software.

1.1.2 Halt System and Set Console Variables

To halt the system and set the console variables, follow these steps:

1. Halt the system. For example, to halt the system from multiuser mode
with no other users on the system, enter the following command:

shutdown -h now

2. If your system supports the bus_probe_algorithm console variable,
set its value to new. This ensures that peripheral component
interconnect (PCI) devices are consistently probed on all member
systems. To check the setting, enter the following command at the
console prompt:

>>> show bus_probe_algorithm

bus_probe_algorithm new

If necessary, enter the following command to set the
bus_probe_algorithm variable to new:

>>> set bus_probe_algorithm new

3. In order to bring the system to a known state at each reboot, set the
boot_reset console variable as follows:

>>> set boot_reset on

Software Installation 1–3

1.1.3 Boot to Single-User Mode and Deinstall Software

If there are MEMORY CHANNEL subsets on the system, boot /genvmunix to
single-user mode and deinstall these subsets by following these steps:

1. From the console prompt, boot /genvmunix to single-user mode; for
example:

>>> boot -fl s -fi /genvmunix

2. Enter the bcheckrc command, which makes the root file system
writable and mounts local file systems:

bcheckrc

3. To make sure that the system’s licenses are loaded and active, run the
following LMF commands:

lmf reset
lmf list

4. Use the setld -i command to determine which MEMORY CHANNEL
software subsets are installed.

5. Use the setld -d command to deinstall the subsets.

To ensure that the subsets are deleted in an order that resolves any
dependencies between subsets, delete all installed subsets with one
setld -d command. The following example shows how to delete
existing subsets:

setld -d TCRCONFnnn TCRMANnnn TCRMCAnnn TCRCOMMONnnn

In the example, nnn represents the version number of the existing
subsets that are to be deleted.

1.1.4 Install the DIGITAL UNIX Operating System

The first step in the MEMORY CHANNEL software installation is to install
DIGITAL UNIX on each computer in the MEMORY CHANNEL API cluster. It
is recommended that you install the same version of DIGITAL UNIX on all
of the computers; this will create a more consistent clusterwide
environment.

_______________________ Note _______________________

You must install DIGITAL UNIX Version 4.0D or greater in
order to run TruCluster MEMORY CHANNEL Software Version 1.5.

Before starting the installation procedures described in the DIGITAL UNIX
Installation Guide, read the following list and incorporate these tasks into
the installation:

1–4 Software Installation

• Before installing the operating system, turn on the power to all member
systems, the MEMORY CHANNEL hub, and external disks.

• Load the following operating system subsets:

OSFBASE Base System

OSFBIN Standard Kernel Objects

OSFBINCOM Kernel Header and Common Files

OSFHWBIN Hardware Kernel Modules

OSFHWBINCOMHardware Kernel Header and Common Files

OSFCLINET Basic Networking Services

OSFCMPLRS Compiler Back End

OSFNFS NFS® Utilities

OSFDCMT Documentation Preparation Tools®

__________________ Important Note __________________

If you install new hardware (for example, new MEMORY
CHANNEL adapters) after you install or update the DIGITAL
UNIX operating system, you must boot /genvmunix and build a
customized kernel. Otherwise, the system’s kernel configuration
file will not contain these hardware options, and the kernel you
build during MEMORY CHANNEL installation will not recognize
the new hardware.

You must also rebuild the kernel if you change a MEMORY
CHANNEL adapter from the PCI slot with which the original
kernel was configured.

See the DIGITAL UNIX System Administration manual for more
information on configuring kernels.

If you are performing an update installation of the DIGITAL UNIX Version
4.0D operating system, boot /genvmunix after installing the DIGITAL
UNIX Version 4.0D operating system and before loading the MEMORY
CHANNEL Version 1.5 software.

1.1.5 Register the M EMORY CHANNEL Software License

Before you install the MEMORY CHANNEL software, you must register its
Product Authorization Key (PAK). The name of the PAK is MCA-UA.

Software Installation 1–5

_______________________ Note _______________________

You must register the PAK before installing the MEMORY
CHANNEL software; if the PAK is not registered, the installation
procedure displays the following message:

There are no TruCluster Software licenses
installed. In order to install a TruCluster
product you must first install the appropriate LMF
PAK (TCR-UA or MCA-UA or ASE-OA).

You can register the PAK using the lmfsetup script or the lmf register
command.

_______________________ Note _______________________

The TCR-UA PAK is associated with TruCluster Production
Server software; the ASE-OA PAK is associated with the
TruCluster Available Server software. These PAKs should not be
present. If you wish to install TruCluster Production Server
software or TruCluster Available Server software, use the
TruCluster Software Products Software Installation manual.

1.1.6 Load the Kit

To load the MEMORY CHANNEL software, follow these steps:

1. Log in as superuser.

2. Change the directory to root (cd /).

3. Mount the device or directory containing the MEMORY CHANNEL kit.

4. Enter the setld -l command and specify the directory where the kit
is located. For example:

setld -l /TCR150/kit

The installation procedure automatically starts and lists the available
mandatory and optional subsets. You can choose one of the following
subset installation options:

• All mandatory subsets only

• All mandatory and selected optional subsets

• All mandatory and all optional subsets
DIGITAL recommends that you choose the "All mandatory and all
optional subsets" option.

1–6 Software Installation

After you select an option, the installation procedure checks that there
is sufficient file system space. After this check completes, the
installation procedure copies the subsets onto your system. (The
following directories are the default locations for the majority of
installed files: /opt/TCR150/ , /usr/opt/TCR150/ , and
/var/opt/TCR150/ . The /usr/opt/TCR150/sbin/clu_install
script controls most of the installation process.)

_____________________ Note _____________________

You cannot install individual product subsets. For example,
the following command results in an error:

setld -l /TCR150/kit/TCRCONF150
TCRCONF150 cannot be installed. Please do not install subsets
individually.

1.1.7 Specify a Network Interface IP Name and Address

The installation procedure prompts you for an Internet Protocol (IP) name
and address to associate with the system’s network interface. (See Section
1.1.1 for information about required IP names and addresses.)

In the following example, the MEMORY CHANNEL IP name is formed by
adding the prefix mc with the current host name (clu14) to identify this IP
name as an interface to the MEMORY CHANNEL subnet:

Configuring "TruCluster Configuration Software" (TCRCONF150)
Enter the IP NAME for the cluster interconnect: mcclu14

_______________________ Note _______________________

If you make a mistake when specifying the IP name for the
MEMORY CHANNEL adapter, press Return when prompted for the
IP address. The installation procedure will prompt you for a new
IP name.

The installation procedure reads the system’s /etc/hosts file to
determine whether an entry exists for the IP name. If an entry for the IP
name exists, the installation procedure displays the entry and asks
whether you want to replace the existing entry with the IP name and
address you just specified. For example:

• If you want to use the existing /etc/hosts entry, answer n; the
information you specified during installation is ignored.

Software Installation 1–7

• If you want to replace the existing /etc/hosts entry, answer y . The
installation procedure then replaces the entry in the /etc/hosts file
with the IP name and address you specified.

The installation procedure automatically configures the network interface.

1.1.8 Select a Kernel Configuration File

At this point in the installation process, the kernel configuration and build
procedure begins. You are prompted for the name of a kernel configuration
file. You can accept the default or enter the name of another configuration
file. In the following example, the default configuration file, CLU14, is
accepted:

The kernel will now be configured using "doconfig".
Enter the name of the kernel configuration file. [CLU14]: [Return]

After you specify the name of the kernel configuration file, the installation
procedure asks whether you want to edit the file (after first saving the
original configuration file with a .bck extension):

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***
Saving /sys/conf/CLU14 as /sys/conf/CLU14.bck
Do you want to edit the configuration file? (y/n) [n]: [Return]

To edit the kernel configuration file, answer y . Otherwise, accept the
default response (n). If you answer y and the EDITOR shell environment
variable is defined, doconfig starts that editor; otherwise, it starts ed .

1.1.9 Build and Install a New Kernel

The doconfig program names the new kernel /sys/ filename /vmunix ,
where filename is the name of the configuration file you specified when you
configured the MEMORY CHANNEL API cluster kernel components (see
Section 1.1.8).

If the kernel build is successful, the name of the new kernel file is
displayed as follows:

Working....Tue Nov 25 17:15:32 GMT 1997
Working....Tue Nov 25 17:17:33 GMT 1997
Working....Tue Nov 25 17:19:34 GMT 1997

The new kernel is /sys/CLU14/vmunix

When the kernel build is successful, the installation procedure displays a
list of instructions; see Example 1–1 for details.

The installation procedure does not automatically move the new kernel to
the root directory. You can rename the new kernel or save the existing
kernel before manually moving the new kernel to the root directory.

1–8 Software Installation

Before moving the original kernel aside and copying the new one to the
root directory, use the df command to check that there is enough disk
space for both files.

Move the new kernel to the root directory. In the following example, the old
kernel is saved as vmunix.save and the new kernel,
/sys/CLU14/vmunix , is moved to the root directory:

cp /vmunix /vmunix.save
mv /sys/CLU14/vmunix /

After you verify the proper operation of the new kernel, you can remove the
old kernel (called vmunix.save in this example). DIGITAL recommends
that you keep a kernel that does not contain MEMORY CHANNEL API cluster
support (for example, /genvmunix).

1.1.10 Reboot the System

To reboot the system, enter the following command:

shutdown -r now

During the reboot, startup messages are displayed on the console.

To check the version of the installed software, enter the following command:

sysconfig -q clubase cluster_version

1.1.11 Installation Example

Example 1–1 outlines a typical MEMORY CHANNEL software installation.

Example 1–1: M EMORY CHANNEL Software Installation

cd /mnt/TCR150
ls
TCRCOMMON150 TCRMCA150 TCRCONF150 TCRMAN150 instctrl
setld -l .

*** Enter subset selections ***

The following subsets are mandatory and will be installed automatically
unless you choose to exit without installing any subsets:

* TruCluster Common Components
* TruCluster Configuration Software
* TruCluster MEMORY CHANNEL(TM) Software

The subsets listed below are optional:

There may be more optional subsets than can be presented on a single
screen. If this is the case, you can choose subsets screen by screen
or all at once on the last screen. All of the choices you make will

Software Installation 1–9

Example 1–1: MEMORY CHANNEL Software Installation (cont.)

be collected for your confirmation before any subsets are installed.

- TruCluster(TM) Software:
1) TruCluster Reference Pages

Or you may choose one of the following options:

2) ALL mandatory and all optional subsets
3) MANDATORY subsets only
4) CANCEL selections and redisplay menus
5) EXIT without installing any subsets

Enter your choices or press RETURN to redisplay menus.
Choices (for example, 1 2 4-6): 2

You are installing the following mandatory subsets:

TruCluster Common Components
TruCluster Configuration Software
TruCluster MEMORY CHANNEL(TM) Software

You are installing the following optional subsets:

- TruCluster(TM) Software:
TruCluster Reference Pages

Is this correct? (y/n): y

Checking file system space required to install selected subsets:

File system space checked OK.

4 subset(s) will be installed.

Loading 1 of 4 subset(s)....

TruCluster Common Components
Copying from . (disk)
Verifying

Loading 2 of 4 subset(s)....

TruCluster MEMORY CHANNEL(TM) Software
Copying from . (disk)
Verifying

Loading 3 of 4 subset(s)....

TruCluster Reference Pages
Copying from . (disk)
Verifying

Loading 4 of 4 subset(s)....

TruCluster Configuration Software
Copying from . (disk)
Verifying

4 of 4 subset(s) installed successfully.

1–10 Software Installation

Example 1–1: MEMORY CHANNEL Software Installation (cont.)

Configuring "TruCluster Common Components " (TCRCOMMON150)

Configuring "TruCluster MEMORY CHANNEL(TM) Software" (TCRMCA150)

Configuring "TruCluster Reference Pages " (TCRMAN150)

Configuring "TruCluster Configuration Software " (TCRCONF150)

Enter the IP name for the MEMORY CHANNEL adapter: mcclu14

Now you must enter an IP address corresponding to mcclu14.

Enter the IP address for mcclu14 ([Return] to restart): 10.0.0.1

You chose "mcclu14," IP 10.0.0.1 using interface mc0
Is this correct? [y]: y

The kernel will now be configured using "doconfig".

Enter the name of the kernel configuration file. [CLU14]: CLU14

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

Saving /sys/conf/CLU14 as /sys/conf/CLU14.bck

Do you want to edit the configuration file? (y/n) [n]: n

*** PERFORMING KERNEL BUILD ***
Working....Tue Nov 25 17:15:32 GMT 1997
Working....Tue Nov 25 17:17:33 GMT 1997
Working....Tue Nov 25 17:19:34 GMT 1997

The new kernel is /sys/CLU14/vmunix

The kernel build was successful. Please perform the following actions:

o Move the new kernel to /.
o Before rebooting make sure that the MEMORY CHANNEL adapter IP

addresses for all cluster members are recorded in each member’s
/etc/hosts file.

o Reboot the system.

mv /sys/CLU14/vmunix /
reboot

1.1.12 Verify the Installation with the clu_ivp Utility

After the MEMORY CHANNEL software is installed or upgraded, use the
cluster installation verification program, clu_ivp , to detect configuration
errors.

By default, the clu_ivp utility displays error conditions only. When an
error is detected, the clu_ivp utility suggests corrective action. In some
cases, the error reported by the clu_ivp utility is the symptom of another

Software Installation 1–11

problem. Read all the error messages generated by the clu_ivp utility
before attempting to correct problems. When the corrective action
suggested by the clu_ivp utility does not solve the problem, examine the
system’s error log files and console output for additional clues.

For more informative output, use the clu_ivp -v (verbose) option. In
addition to reporting error conditions, the utility displays confirmation of
each verification check as it is performed.

1.2 Initializing the M EMORY CHANNEL API Library

To run applications based on the MEMORY CHANNEL API library, the library
must be initialized on each host in the MEMORY CHANNEL API cluster. The
imc_init command initializes the MEMORY CHANNEL API library and
allows applications to use the API. Initialization of the MEMORY CHANNEL
API library occurs either by automatic execution of the imc_init
command at system boot time, or when the system administrator invokes
the command from the command line after the system boots.

Initialization of the MEMORY CHANNEL API library at system boot time is
controlled by the IMC_AUTO_INIT variable in the /etc/rc.config file. If
the value of this variable is set to 1, the imc_init command is invoked at
system boot time. When the MEMORY CHANNEL API library is initialized at
boot time, the values of the -a maxalloc and -r maxrecv flags are set to
the values specified by the IMC_MAX_ALLOCand IMC_MAX_RECVvariables
in the /etc/rc.config file. The default value for the maxalloc
parameter and the maxrecv parameter is 10 MB.

If the IMC_AUTO_INIT variable is set to zero (0), the MEMORY CHANNEL
API library is not initialized at system boot time. The system administrator
must invoke the imc_init command to initialize the library. The
parameter values in the /etc/rc.config file are not used when the
imc_init command is manually invoked.

The imc_init command initializes the MEMORY CHANNEL API library the
first time it is invoked, whether this happens at system boot time or after
the system has booted. The value of the -a maxalloc flag must be the
same on all hosts in the MEMORY CHANNEL API cluster. If different values
are specified, the maximum value specified for any host determines the
clusterwide value that applies to all hosts.

After the MEMORY CHANNEL API library has initialized on the current host,
the system administrator can invoke the imc_init command again to
reconfigure the values of the maxalloc and maxrecv resource limits,
without forcing a reboot. The system administrator can increase or
decrease either limit, but the new limits cannot be lower than the current
usage of the resources. Reconfiguring the cluster from the command line

1–12 Software Installation

does not read or modify the values specified in the /etc/rc.config file.
The system administrator can use the rcmgr (8) command to modify the
parameters and have them take effect when the system reboots.

You must have root privileges to execute the imc_init command.

1.3 The MEMORY CHANNEL Multirail Model

The MEMORY CHANNEL multirail model supports the concept of physical
rails and logical rails. A physical rail is defined as a MEMORY CHANNEL hub
with its cables and MEMORY CHANNEL adapters and the MEMORY CHANNEL
driver for the adapters on each node. A logical rail is made up of one or two
physical rails.

A cluster can have one or more logical rails, up to a maximum of four.
Logical rails can be configured in the following styles:

• Single-rail

• Failover pair

1.3.1 Single-Rail Style

If a cluster is configured in the single-rail style, there is a one-to-one
relationship between physical rails and logical rails. This configuration has
no failover properties; if the physical rail fails, the logical rail fails.

A benefit of the single-rail configuration is that applications can access the
aggregate address space of all logical rails and utilize their aggregate
bandwidth for maximum performance.

Figure 1–1 shows a single-rail MEMORY CHANNEL configuration with three
logical rails, each of which is also a physical rail.

Software Installation 1–13

Figure 1–1: Single-Rail M EMORY CHANNEL Configuration

Physical Rail 0 Physical Rail 1 Physical Rail 2

Logical Rail 0 Logical Rail 1 Logical Rail 2

GA01007aR

1.3.2 Failover Pair Style

If a cluster is configured in the failover pair style, a logical rail consists of
two physical rails, with one physical rail active and the other inactive. If
the active physical rail fails, a failover takes place and the inactive physical
rail is used, allowing the logical rail to remain active after the failover. This
failover is transparent to the user.

The failover pair style can only exist in a MEMORY CHANNEL configuration
consisting of two physical rails.

The failover pair style is the default for all multirail configurations. (It is
the failover model used in previous TruCluster software releases.)

The order in which physical rails are paired into logical rails in a failover
pair configuration is the order in which they are found at initialization:
physical rails zero (0) and 1 are combined to give logical rail zero (0).

The failover pair configuration provides availability in the event of a
physical rail failure, as the second physical rail is redundant. However,
only the address space and bandwidth of a single physical rail are available
at any given time.

Figure 1–2 shows a multirail MEMORY CHANNEL configuration in the
failover pair style. The illustrated configuration has one logical rail, made
up of two physical rails.

1–14 Software Installation

Figure 1–2: Failover Pair M EMORY CHANNEL Configuration

Physical Rail 0 Physical Rail 1

Logical Rail 0

GA01008bR

1.3.3 Configuring the M EMORY CHANNEL Multirail Model

When you implement the MEMORY CHANNEL multirail model, all nodes in a
cluster must be configured with an equal number of physical rails,
configured into an equal number of logical rails, each with the same
failover style.

The first logical rail is numbered zero (0), the second logical rail is
numbered 1, and so on, up to a maximum of four. This is represented by
the constant IMC_MAXRAILSin the imc.h header file.

The system configuration parameter rm_rail_style , in the
/etc/sysconfigtab file, is used to set multirail styles. The
rm_rail_style parameter can be set to one of the following values:

• Zero (0) for a single-rail style

• 1 for a failover pair style

The default value of the rm_rail_style parameter is 1.

The rm_rail_style parameter must have the same value for all nodes in
a cluster, or configuration errors will occur.

Software Installation 1–15

To change the value of the rm_rail_style parameter to zero (0) for a
single-rail style, change the /etc/sysconfigtab file by adding or
modifying the following stanza for the rm subsystem:

rm:

rm_rail_style=0

_______________________ Note _______________________

DIGITAL recommends that you use sysconfigdb (8) to modify
or add to stanzas in the /etc/sysconfigtab file.

If you change the rm_rail_style parameter, you must halt the entire
cluster, and then reboot each member system.

If the rm_rail_style parameter is set to 1 for a multirail configuration
that has an odd number of physical rails, configuration errors will result.

_______________________ Note _______________________

A cluster will fail if any logical rail fails. See Section 1.5.3 for
more information.

Error handling for the MEMORY CHANNEL multirail model is implemented
for specified logical rails. See Section 2.2.6 for a description of MEMORY
CHANNEL API library error management functions and code examples.

_______________________ Note _______________________

The MEMORY CHANNEL multirail model does not facilitate any
type of cluster reconfiguration, such as the addition of hubs or
MEMORY CHANNEL adapters. For such reconfiguration, you must
first shut down the cluster completely.

1.4 Tuning Your M EMORY CHANNEL Configuration

The imc_init command initializes the MEMORY CHANNEL API library with
certain resource defaults. Depending on your application, you may require
more resources than the defaults allow. In some cases, you can change
certain MEMORY CHANNEL parameters and virtual memory resource
parameters to overcome these limitations. The following subsections
describe these parameters and explain how to change them.

1–16 Software Installation

1.4.1 Extending M EMORY CHANNEL Address Space

The amount of total MEMORY CHANNEL address space that is available to
the MEMORY CHANNEL API library is specified using the maxalloc
parameter of the imc_init command. The maximum amount of MEMORY
CHANNEL address space that can be attached for receive on a host is
specified using the maxrecv parameter of the imc_init command. The
default limit in each case is 10 MB. (Section 1.2 describes how to initialize
the MEMORY CHANNEL API library using the imc_init command.)

You can use the rcmgr (8) command to change the value used during an
automatic initialization by setting the variables IMC_MAX_ALLOCand
IMC_MAX_RECV. For example, you can set the variables to allow a total of
80 MB of MEMORY CHANNEL address space to be made available to the
MEMORY CHANNEL API library clusterwide, and to allow 60 MB of MEMORY
CHANNEL address space to be attached for receive on the current host, as
follows:

rcmgr set IMC_MAX_ALLOC 80
rcmgr set IMC_MAX_RECV 60

If you use the rcmgr (8) command to set new limits, they will take effect
when the system reboots.

The MEMORY CHANNEL API library initialization command, imc_init , can
be used to change both the amount of total MEMORY CHANNEL address
space available and the maximum amount of MEMORY CHANNEL address
space that can be attached for receive, after the MEMORY CHANNEL API
library has been initialized. For example, to allow a total amount of 80 MB
of MEMORY CHANNEL address space to be made available clusterwide, and
to allow 60 MB of MEMORY CHANNEL address space to be attached for
receive on the current host, use the following command:

imc_init -a 80 -r 60

If you use the imc_init command to set new limits, they will be lost when
the system reboots, and the values of the IMC_MAX_ALLOCand
IMC_MAX_RECVvariables will be used as limits.

1.4.2 Increasing Wired Memory

Every page of MEMORY CHANNEL address space that is attached for receive
must be backed by a page of physical memory on your system. This
memory is nonpageable; that is, it is wired memory. The amount of wired
memory on a host cannot be increased infinitely; the system configuration
parameter vm-syswiredpercent will impose a limit. You can change the
vm-syswiredpercent parameter in the /etc/sysconfigtab file.

Software Installation 1–17

For example, if you want to set the vm-syswiredpercent parameter to
80, the vm stanza in the /etc/sysconfigtab file must contain the
following entry:

vm:

vm-syswiredpercent=80

If you change the vm-syswiredpercent parameter, you must reboot the
system.

_______________________ Note _______________________

The default amount of wired memory is sufficient for most
operations; DIGITAL recommends that you exercise caution in
changing this limit.

1.4.3 Increasing Virtual Memory Map Entries

When a MEMORY CHANNEL region is attached or a lock is allocated, a virtual
memory map entry is used. The number of virtual memory map entries is
specified by the vm-mapentries parameter. The default value of the
vm-mapentries parameter is 200 for DIGITAL UNIX Version 4.0D. If you
attempt to attach many small regions, you may exceed the limit of virtual
memory map entries; this is indicated by the IMC_MAPENTRIESerror code.

You can change the vm-mapentries parameter in the
/etc/sysconfigtab file. For example, if you want to set the
vm-mapentries parameter to 300, the the vm stanza in the
/etc/sysconfigtab file must contain the following entry:

vm:

vm-mapentries=300

If you change the vm-mapentries parameter, you must reboot the system.

1.5 Troubleshooting

The following subsections describe error conditions that you may encounter
when using the MEMORY CHANNEL API library functions, and suggest
solutions.

1.5.1 IMC_NOTINIT Return Code

The IMC_NOTINIT status is returned when the imc_init command has
not been run, or when the imc_init command has failed to run correctly.

1–18 Software Installation

The imc_init command must be run on each host in the MEMORY
CHANNEL API cluster before you can use the MEMORY CHANNEL API library
functions. (Section 1.2 describes how to initialize the MEMORY CHANNEL
API library using the imc_init command.)

If the imc_init command does not run successfully, see Section 1.5.2 for
suggested solutions.

1.5.2 MEMORY CHANNEL API Library Initialization Failure

The MEMORY CHANNEL API library may fail to initialize on a host; if this
happens, an error message is displayed on the console, and written to the
messages log file in the /usr/var/adm directory. Use the following list of
error messages and solutions to eliminate the error:

• MEMORY CHANNEL is not initialized for user access

This error message indicates that the current host has not been
initialized to use the MEMORY CHANNEL API.

To solve this problem, ensure that all MEMORY CHANNEL cables are
correctly attached to the MEMORY CHANNEL adapters on this host. See
Section 1.5.3 for more information on fatal errors caused by problems
with the physical MEMORY CHANNEL configuration or interconnect.

• MEMORY CHANNEL API - rm_no_inheritance must be 1

This error message indicates that the configurable attribute
rm_no_inheritance is not set to 1. The installation procedure should
automatically set the value of rm_no_inheritance to 1; however, if
this value is changed after installation, the MEMORY CHANNEL API will
fail to initialize.

To solve this problem, the rm stanza in the /etc/sysconfigtab file
must contain the following entry:

rm:

rm_no_inheritance=1

If you change the rm_no_inheritance attribute, you must reboot the
system.

• MEMORY CHANNEL API - Number of logical rails 1
incompatible with rest of cluster 2

An error message of this form indicates that the number of logical rails
on the booting node (in this example, the booting node has one logical
rail) differs from the number of logical rails on the other nodes in the
MEMORY CHANNEL API cluster (in this example, the other nodes have
two logical rails).

Software Installation 1–19

To solve this problem, ensure that all MEMORY CHANNEL cables are
correctly attached to the MEMORY CHANNEL adapters on this host. If
this is not possible, because of missing or failed hardware, disconnect
cables or power down hubs on other hosts so that they mirror this host.

• MEMORY CHANNEL API - incompatible MEMORY CHANNEL
Software Version 1.4

This error message indicates that a node in the MEMORY CHANNEL API
cluster is running Version 1.4 or Version 1.4a of the TruCluster software.

To solve this problem, upgrade all hosts to run Version 1.5 of the
TruCluster software, and manually invoke the imc_init command.

• MEMORY CHANNEL API - get_RM_information() failed with
status 212

This error message indicates that logical rail zero (0) is inactive.

To solve this problem, ensure that the hub is powered up and that all
cables are connected properly. For more information on how to configure
MEMORY CHANNEL hardware, see Chapter 5 of the TruCluster Software
Products Hardware Configuration manual.

• MEMORY CHANNEL API - insufficient wired memory

This error message indicates that the value of the IMC_MAX_RECV
variable in the /etc/config file or the value of the -r option to the
imc_init command is greater than the wired memory limit specified
by the configuration parameter vm-syswiredpercent .

To solve this problem, invoke the imc_init command with a smaller
value for the maxrecv parameter, or increase the system wired memory
limit as described in Section 1.4.2.

1.5.3 Fatal M EMORY CHANNEL Errors

Sometimes the MEMORY CHANNEL API will fail to initialize because of
problems with the physical MEMORY CHANNEL configuration or
interconnect. Error messages printed on the console in these circumstances
do not mention the MEMORY CHANNEL API. The following subsections
describe some of the more common reasons for such failures.

1.5.3.1 Logical Rail Failure

If any logical rail fails, a system panic occurs on one or more hosts in the
cluster, and the following error message is displayed on the console:

panic (cpu 0): rm_delete_context: fatal MC error

1–20 Software Installation

To solve this problem, ensure that the hub is powered up and that all
cables are connected properly; then halt the entire cluster, and reboot each
member system.

1.5.3.2 Logical Rail Initialization Failure

If the logical rail configuration for a logical rail on this node does not match
that of a logical rail on other cluster members, a system panic occurs on
one or more hosts in the cluster, and error messages of the following form
are displayed on the console:
rm_slave_init
rail configuration does not match cluster expectations for logical rail 0
logical rail 0 has failed initialization
rm_delete_context: lcsr = 0x2a80078, mcerr = 0x20001, mcport = 0x72400001
panic (cpu 0): rm_delete_context: fatal MC error

This error can occur if the configuration parameter rm_rail_style is not
identical on every node.

To solve this problem, follow these steps:

1. Halt the system.

2. Boot /genvmunix .

3. Modify the /etc/sysconfigtab file as described in Section 1.3.3.

4. Reboot the kernel with MEMORY CHANNEL API cluster support
(/vmunix).

1.5.3.3 MEMORY CHANNEL Cables Crossed

If some MEMORY CHANNEL cables are connected incorrectly, a system panic
occurs on one or more hosts in the cluster, and error messages of the
following form are displayed on the console:
rm_slave_init
slave unit boot phase 0: checking cables
rm_check_cables: cables crossed
logical rail 0 has failed initialization
rm_delete_context: lcsr = 0x2a80078, mcerr = 0x20001, mcport = 0x72400001
panic (cpu 0): rm_delete_context: fatal MC error

To solve this problem, connect the first MEMORY CHANNEL adapter installed
in one system to the first adapter installed in the other system, connect the
second adapter installed in one system to the second adapter installed in
the other system, and so on. In standard hub mode, all MEMORY CHANNEL
adapters on a system must be connected to the same slot position in each
hub.

For more information on how to configure MEMORY CHANNEL hardware, see
Chapter 5 of the TruCluster Software Products Hardware Configuration
manual.

Software Installation 1–21

1.5.4 IMC_MCFULL Return Code

The IMC_MCFULLstatus is returned if there is not enough MEMORY
CHANNEL address space to perform an operation.

The amount of total MEMORY CHANNEL address space available to the
MEMORY CHANNEL API library is specified by using the maxalloc
parameter of the imc_init command, as described in Section 1.5.2.

You can use the rcmgr (8) command, or the MEMORY CHANNEL API library
initialization command, imc_init , to increase the amount of MEMORY
CHANNEL address space that is available to the library clusterwide. See
Section 1.4.1 for more details.

1.5.5 IMC_RXFULL Return Code

The IMC_RXFULLstatus is returned by the imc_asattach() function, if
receive mapping space is exhausted when an attempt is made to attach a
region for receive.

_______________________ Note _______________________

The default amount of receive space on the current host is 10
MB.

The maximum amount of MEMORY CHANNEL address space that can be
attached for receive on a host is specified using the maxrecv parameter of
the imc_init command, as described in Section 1.2 .

You can use the rcmgr (8) command or the MEMORY CHANNEL API library
initialization command, imc_init , to extend the maximum amount of
MEMORY CHANNEL address space that can be attached for receive on the
host. See Section 1.4.1 for more details.

1.5.6 IMC_WIRED_LIMIT Return Code

The IMC_WIRED_LIMIT return value indicates that an attempt has been
made to exceed the maximum quantity of wired memory.

The system configuration parameter vm-syswiredpercent specifies the
wired memory limit; see Section 1.4.2 for information on changing this
limit.

1.5.7 IMC_MAPENTRIES Return Code

The IMC_MAPENTRIESreturn value indicates that the maximum number of
virtual memory map entries has been exceeded for the current process.

1–22 Software Installation

The maximum number of virtual memory map entries is specified by the
vm-mapentries parameter; see Section 1.4.3 for information on changing
this limit.

1.5.8 IMC_NOMEM Return Code

The IMC_NOMEMreturn status indicates a malloc function failure while
performing a MEMORY CHANNEL API function call.

This will happen if process virtual memory has been exceeded, and can be
remedied by using the usual techniques for extending process virtual
memory limits; that is, by using the limit command and the unlimit
command for the C shell, and by using the ulimit command for the
Bourne shell and the Korn shell.

1.5.9 IMC_NORESOURCES Return Code

The IMC_NORESOURCESreturn value indicates that there are insufficient
MEMORY CHANNEL data structures available to perform the required
operation. However, the amount of available MEMORY CHANNEL data
structures is fixed, and cannot be increased by changing a parameter. To
solve this problem, amend the application to use fewer regions or locks.

Software Installation 1–23

2
Application Notes

The MEMORY CHANNEL Application Programming Interface (API)
implements highly efficient memory sharing between MEMORY CHANNEL
API cluster members, with automatic error-handling, locking, and UNIX
style protections. This chapter contains information to help you develop
applications based on the MEMORY CHANNEL API library. It explains the
differences between MEMORY CHANNEL address space and traditional
shared memory, and describes how programming using MEMORY CHANNEL
as a transport differs from programming using shared memory as a
transport.

This chapter also contains examples that show how to use the MEMORY
CHANNEL API library functions in programs. You will find these code files
in the /usr/examples/cluster/ directory. Each file contains compilation
instructions.

The chapter discusses the following topics:

• Initializing the MEMORY CHANNEL API library for a user program
(Section 2.1)

• Accessing MEMORY CHANNEL address space (Section 2.2)

• Clusterwide locks (Section 2.3)

• Cluster signals (Section 2.4)

• Cluster information (Section 2.5)

• Comparison of shared memory and message passing models
(Section 2.6)

2.1 Initializing the M EMORY CHANNEL API Library for a User
Program

The imc_api_init() function is used to initialize the MEMORY CHANNEL
API library in a user program. Call the imc_api_init() function in a
process before any of the other MEMORY CHANNEL API functions are called.
If a process forks, the imc_api_init() function must be called before
calling any other API functions in the child process, or an undefined
behavior will result.

Application Notes 2–1

2.2 Accessing M EMORY CHANNEL Address Space

The MEMORY CHANNEL interconnect provides a form of memory sharing
between MEMORY CHANNEL API cluster members. The MEMORY CHANNEL
API library is used to set up the memory sharing, allowing processes on
different members of the cluster to exchange data using direct read and
write operations to addresses in their virtual address space. When the
memory sharing has been set up by the MEMORY CHANNEL API library,
these direct read and write operations take place at hardware speeds
without involving the operating system or the MEMORY CHANNEL API
library software functions.

When a system is configured with MEMORY CHANNEL, part of the physical
address space of the system is assigned to the MEMORY CHANNEL address
space. The size of the MEMORY CHANNEL address space is specified by the
imc_init command. A process accesses this MEMORY CHANNEL address
space by using the MEMORY CHANNEL API to map a region of MEMORY
CHANNEL address space to its own virtual address space.

Applications that wish to access the MEMORY CHANNEL address space on
different cluster members can allocate part of the address space for a
particular purpose by calling the imc_asalloc() function. The key
parameter associates a clusterwide key with the region. Other processes
that allocate the same region also specify this key. This allows processes to
coordinate access to the region.

To use an allocated region of MEMORY CHANNEL address space, a process
maps the region into its own process virtual address space, using the
imc_asattach() function or the imc_asattach_ptp() function. When a
process attaches to a MEMORY CHANNEL region, an area of virtual address
space the same size as the MEMORY CHANNEL region is added to the process
virtual address space. When attaching the region, the process indicates
whether the region is mapped to receive or transmit data, as follows:

• Transmit—Indicates that the region is to be used to transmit data on
MEMORY CHANNEL. When a process writes to addresses in this virtual
address region, the data is transmitted over the MEMORY CHANNEL
interconnect to the other members of the MEMORY CHANNEL API cluster.

To map a region for transmit, specify the value IMC_TRANSMITfor the
dir parameter to the the imc_asattach() function.

• Receive—Indicates that the region is to be used to receive data from
MEMORY CHANNEL. In this case, the address space that is mapped into
the process virtual address space is backed by a region of physical
memory on the system. When data is transmitted on MEMORY
CHANNEL, it is written into the physical memory of any hosts that have
mapped the region for receive, so that processes on that system read

2–2 Application Notes

from the same area of physical memory. The process does not receive
any data that is transmitted before the region is mapped.

To map a region for receive, use the value IMC_RECEIVE as the dir
parameter for the imc_asattach() function.

A process can attach to a MEMORY CHANNEL region in broadcast mode,
point-to-point mode, or loopback mode. These methods of attach are
described in Section 2.2.1.

Memory sharing using the MEMORY CHANNEL interconnect is similar to
conventional shared memory in that, once it is established, simple accesses
to virtual address space allow two different processes to share data.
However, there are two differences between these memory sharing
mechanisms that you must allow for, as follows:

• When conventional shared memory is created it is assigned a virtual
address. In C programming terms, there is a pointer to the memory.
This single pointer can be used both to read and write data to the
shared memory. However, a MEMORY CHANNEL region can have two
different virtual addresses assigned to it: a transmit virtual address
and a receive virtual address. In C programming terms, there are two
different pointers to manage; one pointer can only be used for write
operations, the other pointer is used for read operations.

• In conventional shared memory, write operations are made directly to
memory and are immediately visible to other processes reading from
the same memory. However, when a write operation is made to a
MEMORY CHANNEL region, the write operation is not made directly to
memory but to the I/O system and the MEMORY CHANNEL hardware.
This means that there is a delay before the data appears in memory on
the receiving system. This is described in more detail in Section 2.2.5.

2.2.1 Attaching to M EMORY CHANNEL Address Space

The following subsections describe the ways in which a process can attach
to MEMORY CHANNEL address space. There are three ways in which a
process can attach to MEMORY CHANNEL address space, as follows:

• Broadcast attach

• Point-to-point attach

• Loopback attach

This section also explains initial coherency, reading and writing MEMORY
CHANNEL regions, latency related coherency, and error management, and
includes some code examples.

Application Notes 2–3

2.2.1.1 Broadcast Attach

When one process maps a region for transmit, and other processes map the
same region for receive, the data that the transmit process writes to the
region is transmitted on MEMORY CHANNEL to the receive memory of the
other processes. Figure 2–1 shows a three-host MEMORY CHANNEL
implementation that shows how the address spaces are mapped.

Figure 2–1: Broadcast Address Space Mapping

Process A

Host A

MEMORY CHANNEL

GA01005R
address space

Process B

Host B

Process C

Host C

4

1

2

3 4

2

With the address spaces mapped as shown in Figure 2–1, note the following:

1. Process A allocates a region of MEMORY CHANNEL address space.
Process A then maps the allocated region to its virtual address space
when it attaches the region for transmit using the imc_asattach()
function.

2. Process B and Process C both allocate the same region of MEMORY
CHANNEL address space as Process A. However, unlike Process A,
Process B and Process C both attach the region to receive data.

3. When data is written to the virtual address space of Process A, the
data is transmitted on MEMORY CHANNEL.

4. When the data from Process A appears on MEMORY CHANNEL, it is
written to the physical memory that backs the virtual address spaces
of Process B and Process C.

2–4 Application Notes

2.2.1.2 Point-to-Point Attach

An allocated region of MEMORY CHANNEL address space can be attached for
transmit in point-to-point mode to the virtual address space of a process on
another node. This is done by calling the imc_asattach_ptp() function
with a specified host as a parameter. This means that writes to the region
are sent only to the host specified in the parameter, and not to all hosts in
the cluster.

Regions attached using the imc_asattach_ptp() function are always
attached in transmit mode, and are write-only. Figure 2–2 shows a
two-host MEMORY CHANNEL implementation that shows point-to-point
address space mapping.

Figure 2–2: Point-to-Point Address Space Mapping

MEMORY CHANNEL

GA01007R
address space

Host B

Process 2

2

Process 1

Host A

1

3

4

With the address spaces mapped as shown in Figure 2–2, note the following:

1. Process 1 allocates a region of MEMORY CHANNEL address space.
Process A then maps the allocated region to its virtual address space
when it attaches the region point-to-point to Host B using the
imc_asattach_ptp() function.

2. Process 2 allocates the region and then attaches it for receive, using
the imc_asattach() function.

Application Notes 2–5

3. When data is written to the virtual address space of Process 1, the
data is transmitted on MEMORY CHANNEL.

4. When the data from Process 1 appears on MEMORY CHANNEL, it is
written to the physical memory that backs the virtual address space of
Process 2 on Host B.

2.2.1.3 Loopback Attach

A region can be attached for both transmit and receive by processes on a
host. Data written by the host is written to other hosts that have attached
the region for receive. However, by default, data written by the host is not
also written to the receive memory on that host; it is written only to other
hosts. If you want a host to see data that it writes, you must specify the
IMC_LOOPBACKflag to the imc_asattach() function when attaching for
transmit.

The loopback attribute of a region is set up on a per-host basis, and is
determined by the value of the flag parameter to the first transmit attach
on that host.

If you specify the value IMC_LOOPBACKfor the flag parameter, two
MEMORY CHANNEL transactions occur for every write, one to write the data
and one to loop the data back.

Because of the nature of point-to-point attach mode, looped-back writes are
not permitted.

Figure 2–3 shows a configuration in which a region of MEMORY CHANNEL
address space is attached both for transmit with loopback and for receive.

2–6 Application Notes

Figure 2–3: Loopback Address Space Mapping

Process A

Host A

MEMORY CHANNEL

GA01006R

address space

Mapped
region

Transmit

Receive

2.2.2 Initial Coherency

When a MEMORY CHANNEL region is attached for receive, the initial
contents are undefined. This situation can arise because a process that has
mapped the same MEMORY CHANNEL region for transmit might update the
contents of the region before other processes map the region for receive.
This is referred to as the initial coherency problem. You can overcome this
in two ways:

• Write the application in a way that ensures that all processes attach
the region for receive before any processes write to the region.

• At allocation time, specify that the region is coherent, by specifying the
IMC_COHERENTflag when you allocate the region using the
imc_asalloc() function. This ensures that all processes will see every
update to the region, regardless of when the processes attach the region.

Coherent regions use the loopback feature. This means that two
MEMORY CHANNEL transactions occur for every write, one to write the
data and one to loop the data back; because of this, coherent regions
have less available bandwidth than noncoherent regions.

Application Notes 2–7

2.2.3 Reading and Writing M EMORY CHANNEL Regions

Processes that attach a region of MEMORY CHANNEL address space can only
write to a transmit pointer, and can only read from a receive pointer. Any
attempt to read a transmit pointer will result in a segmentation violation.

Apart from explicit read operations on MEMORY CHANNEL transmit
pointers, segmentation violations will also result from operations that
cause the compiler to generate read-modify-write cycles; for example:

• Postincrement and postdecrement operations.

• Preincrement and predecrement operations.

• Assignment to simple data types that are not an integral multiple of
four bytes.

• Use of the bcopy (3) library function where the length parameter is not
an integral multiple of eight bytes, or where the source or destination
arguments are not eight-byte aligned.

• Assignment to structures that are not quadword-aligned (that is, the
value returned by the sizeof() function is not an integral multiple of
eight). This refers only to unit assignment of the whole structure; for
example, mystruct1 = mystruct2 .

2.2.4 Address Space Example

Example 2–1 shows how to initialize, allocate, and attach to a region of
MEMORY CHANNEL address space, and also shows two of the differences
between MEMORY CHANNEL address space and traditional shared memory:

• Initial coherency, as described in Section 2.2.2

• Asymmetry of receive and transmit regions, as described in Section 2.2.3

The sample program shown in Example 2–1 executes in master or slave
mode, as specified by a command-line parameter. In master mode, the
program writes its own process identifier (PID) to a data structure in the
global MEMORY CHANNEL address space. In slave mode, the program polls a
data structure in the MEMORY CHANNEL address space to determine the
PID of the master process.

_______________________ Note _______________________

Programs should be flexible in their use of keys, to prevent
problems resulting from key clashes. The use of meaningful,
application-specific keys is recommended.

2–8 Application Notes

Example 2–1: Accessing Regions of M EMORY CHANNEL Address Space

/* /usr/examples/cluster/mc_ex1.c */

#include <c_asm.h>
#include <sys/types.h>
#include <sys/imc.h>
#define VALID 756

main (int argc, char *argv[])
{

imc_asid_t glob_id;
typedef struct {

pid_t pid;
volatile int valid; 1
} clust_pid;

clust_pid *global_record;
caddr_t add_rx_ptr = 0, add_tx_ptr = 0;
int status;
int master;
int logical_rail=0;

/* check for correct number of arguments /*

if (argc != 2) {
printf("usage: mcpid 0|1\n");
exit(-1);

}

/* test if process is master or slave */

master = atoi(argv[1]); 2

/* initialize M EMORYCHANNEL API library */

status = imc_api_init(NULL); 3

if (status < 0) {
imc_perror("imc_api_init::",status); 4
exit(-2);

}

imc_asalloc(123, 8192, IMC_URW, 0, &glob_id,
logical_rail); 5

if (master) {
imc_asattach(glob_id, IMC_TRANSMIT, IMC_SHARED,

0, &add_tx_ptr); 6

global_record = (clust_pid*)add_tx_ptr; 7
global_record->pid = getpid();
mb(); 8
global_record->valid = VALID;
mb();

}

else { /* secondary process */

imc_asattach(glob_id, IMC_RECEIVE, IMC_SHARED,
0, &add_rx_ptr); 9

(char*)global_record = add_rx_ptr;

Application Notes 2–9

Example 2–1: Accessing Regions of MEMORY CHANNEL Address Space
(cont.)

while (global_record->valid != VALID)
; /* continue polling */ 10

printf("pid of master process is %d\n",
global_record->pid);

}
imc_asdetach(glob_id);
imc_asdealloc(glob_id); 11

}

1 The valid flag is declared as volatile to prevent the compiler from
performing any optimizations that might prevent the code from
reading the updated PID value from memory.

2 The first argument on the command line indicates whether the process
is a master (argument equal to 1) or a slave process (argument not
equal to 1).

3 The imc_api_init() function initializes the MEMORY CHANNEL API
library, and should be called before calling any of the other MEMORY
CHANNEL API library functions.

4 All MEMORY CHANNEL API library functions return a zero (0) status if
successful. The imc_perror() function decodes error status values.
For brevity, this example ignores the status from all functions other
than the imc_api_init() function.

5 The imc_asalloc() function allocates a region of MEMORY CHANNEL
address space with the following characteristics:

• key=123 —The value identifies the region of MEMORY CHANNEL
address space. Other applications that attach this region will use
the same key value.

• size=8192 —The size of the region is 8192 bytes.

• perm=IMC_URW—The access permission on the region is user read
and write.

• id=glob_id —The imc_asalloc() function returns this value,
which uniquely identifies the allocated region. The program uses
this value in subsequent calls to other MEMORY CHANNEL functions.

• logical_rail=0 —The region is allocated using MEMORY
CHANNEL logical rail zero (0).

6 The master process attaches the region for transmit by calling the
imc_asattach() function and specifying the glob_id identifier,
which was returned by the call to the imc_asalloc() function. The

2–10 Application Notes

imc_asattach() function returns add_tx_ptr , a pointer to the
address of the region in the process virtual address space. The
IMC_SHAREDvalue signifies that the region is shareable, so other
processes on this host can also attach the region.

7 The program overlays the global region with the global record
structure and writes the process PID in the pid field of the global
record. Note that the master process has attached the region for
transmit; therefore, it can only write data in the field. An attempt to
read the field will result in a segmentation violation; for example:

(pid_t)x = global_record->pid;

8 The program uses memory barrier instructions to ensure that the pid
field is forced out of the Alpha CPU write buffer before the VALID flag
is set.

9 The slave process attaches the region for receive by calling the
imc_asattach() function and specifying the glob_id identifier,
which was returned by the call to the imc_asalloc() function. The
imc_asattach() function returns add_rx_ptr , a pointer to the
address of the region in the process virtual address space. On
mapping, the contents of the region may not be consistent on all
processes that map the region. Therefore, start the slave process before
the master to ensure that all writes by the master process appear in
the virtual address space of the slave process.

10 The slave process overlays the region with the global record structure
and polls the valid flag. The earlier declaration of the flag as volatile
ensures that the flag is immune to compiler optimizations, which
might result in the field being stored in a register. This ensures that
the loop will load a new value from memory at each iteration and will
eventually detect the transition to VALID .

11 At termination, the master and slave processes explicitly detach and
deallocate the region by calling the imc_asdetach() function and the
imc_asdealloc() function. In the case of abnormal termination, the
allocated regions are automatically freed when the processes exit.

2.2.5 Latency Related Coherency

As described in Section 2.2.2, the initial coherency problem can be
overcome by retransmitting the data after all mappings of the same region
for receive have been completed, or by specifying at allocation time that the
region is coherent. However, when a process writes to a transmit pointer,
several microseconds can elapse before the update is reflected in the
physical memory that corresponds to the receive pointer. If the process
reads the receive pointer during that interval, the data it reads might be
incorrect. This is known as the latency related coherency problem.

Application Notes 2–11

Latency problems do not arise in conventional shared memory systems.
Memory and cache control ensure that store and load instructions are
synchronized with data transfers.

Example 2–2 shows two versions of a program that decrements a global
process count and detects the count reaching zero (0). The first program
uses System V shared memory and interprocess communication. The
second uses the MEMORY CHANNEL API library.

Example 2–2: System V IPC and M EMORY CHANNEL Code Comparison

/* /usr/examples/cluster/mc_ex2.c */

/**
********* System V IPC example *******
**/

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
main()
{

typedef struct {
int proc_count;
int remainder[2047]

} global_page;
global_page *mypage;
int shmid;

shmid = shmget(123, 8192, IPC_CREAT | SHM_R | SHM_W);

(caddr_t)mypage = shmat(shmid, 0, 0); /* attach the
global region */

mypage->proc_count ++; /* increment process
count */

/* body of program goes here */
.
.
.

/* clean up */

mypage->proc_count --; /* decrement process
count */

if (mypage->proc_count == 0)
printf("The last process is exiting\n");

.

.

.
}

/**
******* M EMORYCHANNEL example *******
**/

#include <sys/types.h>
#include <sys/imc.h>
main()
{

2–12 Application Notes

Example 2–2: System V IPC and MEMORY CHANNEL Code Comparison
(cont.)

typedef struct {
int proc_count;
int remainder[2047]

} global_page;
global_page *mypage_rx, *mypage_tx; 1
imc_asid_t glob_id;
int logical_rail=0;
int temp;

imc_api_init(NULL);

imc_asalloc(123, 8192, IMC_URW | IMC_GRW, 0, &glob_id,
logical_rail); 2

imc_asattach(glob_id, IMC_TRANSMIT, IMC_SHARED,
IMC_LOOPBACK, &(caddr_t)mypage_tx); 3

imc_asattach(glob_id, IMC_RECEIVE, IMC_SHARED,
0, &(caddr_t)mypage_rx); 4

/* increment process count */

mypage_tx->proc_count = mypage_rx->proc_count + 1; 5

/* body of program goes here */
.
.
.

/* clean up */

/* decrement process count

temp = mypage_rx->proc_count - 1 6

mypage_tx->proc_count = temp;

/* wait for MEMORY CHANNEL update to occur */

while (mypage_rx->proc_count != temp)
;

if (mypage_rx->proc_count == 0)
printf("The last process is exiting\n");

.

.

.
}

1 The process must be able to read the data that it writes to the
MEMORY CHANNEL global address space. Therefore, it declares two
addresses, one for transmit and one for receive.

2 The imc_asalloc() function allocates a region of MEMORY CHANNEL
address space. The characteristics of the region are as follows:

Application Notes 2–13

• key=123 —This value identifies the region of MEMORY CHANNEL
address space. Other applications that attach this region will use
the same key value.

• size=8192 —The size of the region is 8192 bytes.

• perm=IMC_URW | IMC_GRW—The region is allocated with user and
group read and write permission.

• id=glob_id —The imc_asalloc() function returns this value,
which uniquely identifies the allocated region. The program uses
this value in subsequent calls to other MEMORY CHANNEL API
library functions.

• logical_rail=0 —The region is allocated using MEMORY
CHANNEL logical rail zero (0).

3 This call to the imc_asattach() function attaches the region for
transmit at the address pointed to by the mypage_tx variable. The
value of the flag parameter is set to IMC_LOOPBACK, so that any time
the process writes data to the region, the data is looped back to the
receive memory.

4 This call to the imc_asattach() function attaches the region for
receive at the address pointed to by the mypage_rx variable.

5 The program increments the global process count by adding 1 to the
value in the receive pointer, and by assigning the result into the
transmit pointer. When the program writes to the transmit pointer, it
does not wait to ensure that the write instruction completes.

6 After the body of the program completes, the program decrements the
process count and tests that the decremented value was transmitted to
the other hosts in the cluster. To ensure that it examines the
decremented count (rather than some transient value), the program
stores the decremented count in a local variable, temp . It writes the
decremented count to the transmit region, and then waits for the value
in the receive region to match the value in temp . When the match
occurs, the program knows that the decremented process count has
been written to the MEMORY CHANNEL address space.

In this example, the use of the local variable ensures that the program
compares the value in the receive memory with the value that was
transmitted. An attempt to use the value in the receive memory before
ensuring that the value had been updated may result in erroneous data
being read.

2.2.6 Error Management

In a shared memory system, the process of reading and writing to memory
is assumed to be error-free. In a MEMORY CHANNEL system, the error rate

2–14 Application Notes

is of the order of three errors per year. This is much lower than the error
rates of standard networks and I/O subsystems.

The MEMORY CHANNEL hardware reports detected errors to the MEMORY
CHANNEL software. The MEMORY CHANNEL hardware provides two
guarantees that make it possible to develop applications that can cope with
errors:

• It does not write corrupt data to host systems.

• It delivers data to the host systems in the sequence in which the data is
written to the MEMORY CHANNEL hardware.

These guarantees simplify the process of developing reliable and efficient
messaging systems.

The MEMORY CHANNEL API library provides the following functions to help
applications implement error management:

• imc_ckerrcnt_mr() —The imc_ckerrcnt_mr() function checks for
the existence of errors on a specified logical rail on MEMORY CHANNEL
hosts. This allows transmitting processes to check whether or not errors
occur when they send messages.

• imc_rderrcnt_mr() —The imc_rderrcnt_mr() function reads the
clusterwide error count for the specified logical rail and returns the
value to the calling program. This allows receiving processes to check
the error status of messages that they receive.

The operating system maintains a count of the number of errors that occur
on the cluster. The system increments the value whenever it detects a
MEMORY CHANNEL hardware error in the cluster, and when a host joins or
leaves the cluster.

The task of detecting and processing an error takes a small, but finite,
amount of time. This means that the count returned by the
imc_rderrcnt_mr() function might not be up to date with respect to an
error that has just occurred on another host in the cluster. On the local
host, the count is always up to date.

Use the imc_rderrcnt_mr() function to implement a simple and effective
error-detection mechanism by reading the error count before transmitting a
message, and including the count in the message. The receiving process
compares the error count in the message body with the local value
determined after the message arrives. The local value is guaranteed to be
up to date, so if this value is the same as the transmitted value, then it is
certain that no intervening errors occurred. Example 2–3 shows this
technique.

Application Notes 2–15

Example 2–3: Error Detection Using the imc_rderrcnt_mr Function

/* /usr/examples/cluster/mc_ex3.c */

/***
********* Transmitting Process *********
**/

#include <sys/imc.h>
#include <c_asm.h>
main()
{

typedef struct {
volatile int msg_arrived;
int send_count;
int remainder[2046];

} global_page;
global_page *mypage_rx, *mypage_tx;
imc_asid_t glob_id;
int i;
volatile int err_count;

imc_api_init(NULL);

imc_asalloc (1234, 8192, IMC_URW, 0, &glob_id,0);
imc_asattach (glob_id, IMC_TRANSMIT, IMC_SHARED, IMC_LOOPBACK,

&(caddr_t)mypage_tx);
imc_asattach (glob_id, IMC_RECEIVE, IMC_SHARED, 0,

&(caddr_t)mypage_rx);

/* save the error count */
while ((err_count = imc_rderrcnt_mr(0)) < 0)

;

mypage_tx->send_count = err_count;

/* store message data */
for (i = 0; i < 2046; i++)

mypage_tx->remainder[i] = i;

/* now mark as valid */
mb();

do {
mypage_tx->msg_arrived = 1;

} while (mypage_rx->msg_arrived != 1); /* ensure no error on
valid flag */

}

/***
*********** Receiving Process **********
**/

#include <sys/imc.h>
main()
{

typedef struct {
volatile int msg_arrived;
int send_count;
int remainder[2046];

2–16 Application Notes

Example 2–3: Error Detection Using the imc_rderrcnt_mr Function (cont.)

} global_page;
global_page *mypage_rx, *mypage_tx;
imc_asid_t glob_id;
int i;
volatile int err_count;

imc_api_init(NULL);

imc_asalloc (1234, 8192, IMC_URW, 0, &glob_id,0);
imc_asattach (glob_id, IMC_RECEIVE, IMC_SHARED, 0,

&(caddr_t)mypage_rx);

/* wait for message arrival */
while (mypage_rx->msg_arrived == 0)

;

/* get this systems error count */
while ((err_count = imc_rderrcnt_mr(0)) < 0)

;

if (err_count == mypage_rx->send_count) {
/* no error, process the body */

.....
}
else {

/* do error processing */
......

}
}

As shown in Example 2–3, the imc_rderrcnt_mr() function can be safely
used to detect errors at the receiving end of a message. However, it cannot
be guaranteed to detect errors at the transmitting end. This is because
there is a small, but finite, possibility that the transmitting process will
read the error count before the transmitting host has been notified of an
error occurring on the receiving host. In Example 2–3, the program must
rely on a higher-level protocol informing the transmitting host of the error.

The imc_ckerrcnt_mr() function provides guaranteed error detection for
a specified logical rail. This function takes a user-supplied local error count
and a logical rail number as parameters, and returns an error in the
following circumstances:

• An outstanding error is detected on the specified logical rail

• Error processing is in progress

• The error count is higher than the supplied parameter

If the function returns successfully, no errors have been detected between
when the local error count was stored and the imc_ckerrcnt_mr()
function was called.

Application Notes 2–17

The imc_ckerrcnt_mr() function reads the MEMORY CHANNEL adapter
hardware error status for the specified logical rail; this is a hardware
operation that takes several microseconds. Therefore, the
imc_ckerrcnt_mr() function takes longer to execute than the
imc_rderrcnt_mr() function, which reads only a memory location.

Example 2–4 shows an amended version of the send sequence shown in
Example 2–3. In Example 2–4, the transmitting process performs error
detection.

Example 2–4: Error Detection Using the imc_ckerrcnt_mr Function

/* /usr/examples/cluster/mc_ex4.c */

/**/
/* Transmitting Process With Error Detection */
/**/

#include <c_asm.h>
#define mb() asm("mb")

#include <sys/imc.h>
main()
{

typedef struct {
volatile int msg_arrived;
int send_count;
int remainder[2046];

} global_page;
global_page *mypage_rx, *mypage_tx;
imc_asid_t glob_id;
int i, status;
volatile int err_count;

imc_api_init(NULL);

imc_asalloc (1234, 8192, IMC_URW, 0, &glob_id,0);
imc_asattach (glob_id, IMC_TRANSMIT, IMC_SHARED, IMC_LOOPBACK,

&(caddr_t)mypage_tx);
imc_asattach (glob_id, IMC_RECEIVE, IMC_SHARED, 0,

&(caddr_t)mypage_rx);

/* save the error count */
while ((err_count = imc_rderrcnt_mr(0)) < 0)

;

do {
mypage_tx->send_count = err_count;

/* store message data */
for (i = 0; i < 2046; i++)

mypage_tx->remainder[i] = i;

/* now mark as valid */
mb();

mypage_tx->msg_arrived = 1;

/* if error occurs, retransmit */

2–18 Application Notes

Example 2–4: Error Detection Using the imc_ckerrcnt_mr Function (cont.)

} while ((status = imc_ckerrcnt_mr(&err_count,0)) != IMC_SUCCESS);
}

2.3 Clusterwide Locks

In a MEMORY CHANNEL system, the processes communicate by reading and
writing regions of the MEMORY CHANNEL address space. The preceding
sections contain sample programs that show arbitrary reading and writing
of regions. In practice, however, a locking mechanism is sometimes needed
to provide controlled access to regions and to other clusterwide resources.
The MEMORY CHANNEL API library provides a set of lock functions that
enable applications to implement access control on resources.

The MEMORY CHANNEL API library implements locks by using mapped
pages of the global MEMORY CHANNEL address space. For efficiency reasons,
locks are allocated in sets rather than individually. The imc_lkalloc()
function allows you to allocate a lock set. For example, if you want to use
20 locks, it is more efficient to create one set with 20 locks than five sets
with four locks each, and so on.

To facilitate the initial coordination of distributed applications, the
imc_lkalloc() function allows a process to atomically (that is, in a single
operation) allocate the lock set and acquire the first lock in the set. This
feature allows the process to determine whether or not it is the first process
to allocate the lock set. If it is, the process is guaranteed access to the lock
and can safely initialize the resource.

Instead of allocating the lock set and acquiring the first lock atomically, a
process could call the imc_lkalloc() function and then the
imc_lkacquire() function. In that case, however, there is a risk that
another process might acquire the lock between the two function calls, and
the first process would not be guaranteed access to the lock.

Example 2–5 shows a program in which the first process to lock a region of
MEMORY CHANNEL address space initializes the region, and the processes
that subsequently access the region simply update the process count.

Example 2–5: Locking M EMORY CHANNEL Regions

/* /usr/examples/cluster/mc_ex5.c */

#include <sys/types.h>
#include <sys/imc.h>

Application Notes 2–19

Example 2–5: Locking MEMORY CHANNEL Regions (cont.)

main ()
{

imc_asid_t glob_id;
imc_lkid_t lock_id;
int locks = 4;
int status;

typedef struct {
int proc_count;
int pattern[2047];

} clust_rec;

clust_rec *global_record_tx, *global_record_rx; 1
caddr_t add_rx_ptr = 0, add_tx_ptr = 0;
int j;

status = imc_api_init(NULL);

imc_asalloc(123, 8192, IMC_URW, 0, &glob_id, 0);

imc_asattach(glob_id, IMC_TRANSMIT, IMC_SHARED,
IMC_LOOPBACK, &add_tx_ptr);

imc_asattach(glob_id, IMC_RECEIVE, IMC_SHARED,
0, &add_rx_ptr);

global_record_tx = (clust_rec*) add_tx_ptr; 2
global_record_rx = (clust_rec*) add_rx_ptr;

status = imc_lkalloc(456, &locks, IMC_LKU, IMC_CREATOR,
&lock_id); 3

if (status == IMC_SUCCESS)
{

/* This is the first process. Initialize the global region */

global_record_tx->proc_count = 0; 4
for (j = 0; j < 2047; j++)

global_record_tx->pattern[j] = j;

/* release the lock */
imc_lkrelease(lock_id, 0); 5

}

/* This is a secondary process */

else if (status == IMC_EXISTS)
{

imc_lkalloc(456, &locks, IMC_LKU, 0, &lock_id); 6

imc_lkacquire(lock_id, 0, 0, IMC_LOCKWAIT); 7

/* wait for access to region */

global_record_tx->proc_count = global_record_rx->proc_count+1; 8

/* release the lock */

2–20 Application Notes

Example 2–5: Locking MEMORY CHANNEL Regions (cont.)

imc_lkrelease(lock_id, 0);

}

/* body of program goes here */
.
.
.

/* clean up */

imc_lkdealloc(lock_id); 9
imc_asdetach(glob_id);
imc_asdealloc(glob_id);

}

1 The process, in order to read the data that it writes to the MEMORY
CHANNEL global address space, maps the region for transmit and for
receive. See Example 2–2 for a detailed description of this procedure.

2 The program overlays the transmit and receive pointers with the
global record structure.

3 The process tries to create a lock set that contains four locks and a key
value of 456 . The call to the imc_lkalloc() function also specifies
the IMC_CREATORflag. Therefore, if the lock set is not already
allocated, the function will automatically acquire lock zero (0). If the
lock set already exists, the imc_lkalloc() function fails to allocate
the lock set and returns the value IMC_EXISTS.

4 The process that creates the lock set (and consequently holds lock zero
(0)) initializes the global region.

5 When the process finishes initializing the region, it calls the
imc_lkrelease() function to release the lock.

6 Secondary processes that execute after the region has been initialized,
having failed in the first call to the imc_lkalloc() function, now call
the function again, without the IMC_CREATORflag. Because the value
of the key parameter is the same (456), this call allocates the same
lock set.

7 The secondary process calls the imc_lkacquire() function to acquire
lock zero (0) from the lock set.

8 The secondary process updates the process count and writes it to the
transmit region.

9 At the end of the program, the processes release all MEMORY CHANNEL
resources.

When a process acquires a lock, other processes executing on the cluster
cannot acquire that lock.

Application Notes 2–21

Waiting for locks to become free entails busy spinning and has a significant
effect on performance. Therefore, in the interest of overall system
performance, applications should acquire locks only as they are needed and
release them promptly.

2.4 Cluster Signals

The MEMORY CHANNEL API library provides the imc_kill() function to
allow processes to send signals to specified processes executing on a remote
host in a cluster. This function is similar to the UNIX kill (2) function. The
main difference is that the imc_kill() function does not support the
sending of signals to multiple processes.

2.5 Cluster Information

The following sections discuss how to use the MEMORY CHANNEL API
functions to access cluster information, and how to access status
information from the command line.

2.5.1 Using M EMORY CHANNEL API Functions to Access M EMORY
CHANNEL API Cluster Information

The MEMORY CHANNEL API library provides the imc_getclusterinfo()
function, which allows processes to get information about the hosts in a
MEMORY CHANNEL API cluster. The function returns one or more of the
following:

• A count of the number of hosts in the cluster, and the name of each host.

• The number of logical rails in the cluster.

• The active MEMORY CHANNEL logical rails bitmask, with a bit set for
each active logical rail.

The function does not return information about a host unless the MEMORY
CHANNEL API library is initialized on the host.

The MEMORY CHANNEL API library provides the
imc_wait_cluster_event() function to block a calling thread until a
specified cluster event occurs. The following MEMORY CHANNEL API cluster
events are valid:

• A host joins or leaves the cluster.

• The logical rail configuration of the cluster changes.

The imc_wait_cluster_event() function checks the current
representation of the MEMORY CHANNEL API cluster configuration item

2–22 Application Notes

being monitored and returns the new MEMORY CHANNEL API cluster
configuration.

Example 2–6 shows how you can use the imc_getclusterinfo() function
with the imc_wait_cluster_event() function to request the names of
the members of the MEMORY CHANNEL API cluster and the active MEMORY
CHANNEL logical rails bitmask, and then wait for an event change on either.

Example 2–6: Requesting M EMORY CHANNEL API Cluster Information;
Waiting for M EMORY CHANNEL API Cluster Events

/* /usr/examples/cluster/mc_ex6.c */

#include <sys/imc.h>

main ()
{

imc_railinfo mask;
imc_hostinfo hostinfo;

int status;
imc_infoType items[3];
imc_eventType events[3];

items[0] = IMC_GET_ACTIVERAILS;
items[1] = IMC_GET_HOSTS;
items[2] = 0;

events[0] = IMC_CC_EVENT_RAIL;
events[1] = IMC_CC_EVENT_HOST;
events[2] = 0;

imc_api_init(NULL);

status = imc_getclusterinfo(items,2,mask,sizeof(imc_railinfo),
&hostinfo,sizeof(imc_hostinfo));

if (status != IMC_SUCCESS)
imc_perror("imc_getclusterinfo:",status);

status = imc_wait_cluster_event(events, 2, 0,
mask, sizeof(imc_railinfo),
&hostinfo, sizeof(imc_hostinfo));

if ((status != IMC_HOST_CHANGE) && (status != IMC_RAIL_CHANGE))
imc_perror("imc_wait_cluster_event didn’t complete:",status);

} /*main*/

Application Notes 2–23

2.5.2 Accessing M EMORY CHANNEL Status Information from the
Command Line

The MEMORY CHANNEL API library provides the imcs command to report
on MEMORY CHANNEL status. The imcs command writes information to the
standard output about currently active MEMORY CHANNEL facilities. The
output is displayed as a list of regions or lock sets, and includes the
following information:

• The type of subsystem that created the region or lock set (possible
values are IMC or PVM)

• An identifier for the MEMORY CHANNEL region

• An application-specific key that refers to the MEMORY CHANNEL region
or lock set

• The size, in bytes, of the region

• The access mode of the region or lock set

• The username of the owner of the region or lock set

• The group of the owner of the region or lock set

• The MEMORY CHANNEL logical rail used for the region

• A flag specifying the coherency of the region

• The number of locks available in the lock set

2.6 Comparison of Shared Memory and Message Passing
Models

There are two models that you can use to develop applications based on the
MEMORY CHANNEL API library:

• Shared memory

• Message passing

At first, the shared memory approach might seem more suited to the
MEMORY CHANNEL features. However, developers who use this model must
deal with the latency, coherency, and error-detection problems described in
this chapter. In some cases, it might be more appropriate to develop a
simple message-passing library that hides these problems from
applications. The data transfer functions in such a library could be
implemented completely in user space. Therefore, they would operate as
efficiently as implementations based on the shared memory model.

2–24 Application Notes

3
MEMORY CHANNEL API Library Interface

This chapter describes the functions that are provided by the MEMORY
CHANNEL API library application programming interface (API). It discusses
the following topics:

• Header files (Section 3.1)

• Library (Section 3.2)

• Compiling applications that use the MEMORY CHANNEL API library
(Section 3.3)

• Overview of MEMORY CHANNEL API library commands and functions
(Section 3.4)

• Command descriptions (Section 3.5)

• Function descriptions (Section 3.6)

The descriptions of the MEMORY CHANNEL API library functions are
presented in alphabetical order and in reference page style.

3.1 Header Files

The MEMORY CHANNEL API library includes the imc.h header file. This file
defines the data structures, data types, and constants associated with the
MEMORY CHANNEL API library, including a definition for the version of
MEMORY CHANNEL software. The header file is called imc.h and is located
in the /usr/include/sys directory. Use the following line to include the
header file in programs that use the MEMORY CHANNEL API library:

#include <sys/imc.h>

3.2 Library

The MEMORY CHANNEL API library functions are located in the system
library. The shared version is located in the /usr/shlib directory; it is
called libimc.so . The nonshared version is located in the /usr/ccs/lib
directory; it is called libimc.a .

MEMORY CHANNEL API Library Interface 3–1

3.3 Compiling Applications that Use the M EMORY CHANNEL
API Library

Use the cc command to compile applications based on the MEMORY
CHANNEL API library, making sure that you include the library. The
following example shows how to compile a program called program.c:

cc -o program program.c -limc

3.4 Overview of M EMORY CHANNEL API Library Commands
and Functions

This section contains reference information that introduces the MEMORY
CHANNEL API library commands and functions.

3–2 MEMORY CHANNEL API Library Interface

imc(3)

NAME

imc – Introduction to the MEMORY CHANNEL Application Programming
Interface (API)

DESCRIPTION

The MEMORY CHANNEL Application Programming Interface (API) library
provides user space access to the MEMORY CHANNEL services available in
the TruCluster environment.

MEMORY CHANNEL API library functions provide the following services:

• MEMORY CHANNEL API cluster information

• Access to MEMORY CHANNEL address space

• A clusterwide lock system

• MEMORY CHANNEL API cluster signals

• MEMORY CHANNEL API library management

Commands

The following MEMORY CHANNEL API library commands are available:

imc_init (1) Initializes and configures the MEMORY CHANNEL
API library on the current host.

imcs (1) Reports on MEMORY CHANNEL status.

Functions

MEMORY CHANNEL API functions can be grouped into categories. An
introduction to each category and a brief description of each function
follows.

MEMORY CHANNEL API Cluster Information

A MEMORY CHANNEL API cluster is formed when a number of hosts are
physically connected by a MEMORY CHANNEL interconnect, and when each
host has invoked the imc_init (1) command.

MEMORY CHANNEL API Library Interface 3–3

imc(3)

Independent MEMORY CHANNEL interconnects, or physical rails, can be
configured as logical rails, in one of the following styles:

• Single-rail

This configuration has a one-to-one relationship between a physical rail
and a logical rail, with no failover properties.

• Failover pair

In this configuration, a logical rail consists of two physical rails, with
one physical rail inactive and available on standby in case the active
physical rail fails. Failover is transparent to the user.

The following functions provide information about the MEMORY CHANNEL
API cluster:

imc_getclusterinfo (3)

Gets information about the hosts and the logical
rails that form a MEMORY CHANNEL API cluster.

imc_wait_cluster_event (3)

Blocks the caller until a MEMORY CHANNEL API
cluster event occurs. MEMORY CHANNEL API cluster
events include hosts entering the MEMORY
CHANNEL API cluster or leaving the MEMORY
CHANNEL API cluster, and logical rails coming on
line or going off line.

Accessing M EMORY CHANNEL Address Space

A process accesses MEMORY CHANNEL address space by mapping a region of
the address space into its own process virtual address space. This is done
by allocating a region and then attaching the allocated region to the virtual
address space of a process.

By attaching the same region to the virtual address space of two different
processes, it is possible for one process to write data into the virtual address
space of the other process using standard store and load instructions.

The following functions are available to allow access to MEMORY CHANNEL
address space:

3–4 MEMORY CHANNEL API Library Interface

imc(3)

imc_asalloc (3) Allocates a region of MEMORY CHANNEL address
space on a specified logical rail.

imc_asattach (3) Attaches a region of MEMORY CHANNEL address
space to the virtual address space of a process.

imc_asattach_ptp (3) Attaches in point-to-point mode a region of MEMORY
CHANNEL address space to the virtual address space
of a process.

imc_bcopy (3) Provides an efficient way of copying data into
MEMORY CHANNEL address space.

imc_asdetach (3) Detaches a region of MEMORY CHANNEL address
space from the virtual address space of the calling
process.

imc_dealloc (3) Deallocates a region of MEMORY CHANNEL address
space.

The MEMORY CHANNEL hardware takes care of all error detection. The
MEMORY CHANNEL API provides the following routines to access the error
state of the hardware:

imc_ckerrcnt_mr (3) Checks for the existence of outstanding errors on a
specified logical rail on MEMORY CHANNEL hosts.

imc_rderrcnt_mr (3) Reads the clusterwide error count for a specified
logical rail.

Clusterwide Lock System

The MEMORY CHANNEL API provides a clusterwide lock facility. Locks are
allocated in sets; they are not allocated individually. Clusterwide locks are
managed using the following functions:

imc_lkalloc (3) Creates a lock set.

imc_lkacquire (3) Acquires a lock from a lock set.

MEMORY CHANNEL API Library Interface 3–5

imc(3)

imc_lkrelease (3) Releases a lock from a lock set.

imc_lkdealloc (3) Deallocates a lock set.

MEMORY CHANNEL API Cluster Signals

The MEMORY CHANNEL API allows processes to send signals to processes
executing on other hosts in the MEMORY CHANNEL API cluster, using the
following function:

imc_kill (3) Sends a signal to a running process.

MEMORY CHANNEL API Management

The following MEMORY CHANNEL API management functions are available:

imc_api_init (3) Initializes the MEMORY CHANNEL API library.

_____________ Note _____________

The imc_api_init function must be
called before any other MEMORY
CHANNEL API function is called.

imc_perror (3) Prints a message that explains a MEMORY CHANNEL
function error.

3–6 MEMORY CHANNEL API Library Interface

3.5 Command Descriptions

This section contains reference information for the MEMORY CHANNEL API
library initialization command, and the MEMORY CHANNEL API library
status report command.

MEMORY CHANNEL API Library Interface 3–7

imc_init(1)

NAME

imc_init – Initializes and configures the MEMORY CHANNEL API library
on the current host

SYNOPSIS

/usr/sbin/imc_init [-a maxalloc] [-r maxrecv]

OPTIONS

-a maxalloc Specifies, in MB, the total amount of MEMORY
CHANNEL address space to be made available to the
MEMORY CHANNEL API library. The default amount
of address space is 10 MB. This is a clusterwide
limit.

-r maxrecv Specifies, in MB, the maximum amount of MEMORY
CHANNEL address space that can be attached for
receive on the host. The default amount of receive
space is 10 MB. This limit applies only to the
current host.

DESCRIPTION

The imc_init command, available in a Production Server or MEMORY
CHANNEL software configuration, initializes and configures the MEMORY
CHANNEL API library on the current host. Initialization of the MEMORY
CHANNEL API library occurs either by automatic execution of the
imc_init command at system boot time, or by the system administrator
invoking the command from the command line after the system boots.

Initialization of the MEMORY CHANNEL API library at system boot time is
controlled by the IMC_AUTO_INIT variable in the /etc/rc.config file. If
the value of this variable is set to 1, the imc_init command is invoked at
system boot time. When the MEMORY CHANNEL API library is initialized at
boot time, the values of the -a maxalloc and -a maxrecv flags are set to
the values specified by the IMC_MAX_ALLOCand IMC_MAX_RECVvariables
in the /etc/rc.config file.

3–8 MEMORY CHANNEL API Library Interface

imc_init(1)

If the IMC_AUTO_INIT variable is set to zero (0), the MEMORY CHANNEL
API library is not initialized at system boot time. The system administrator
must invoke the imc_init command to initialize the library. The
parameter values in the /etc/rc.config file are not used when the
imc_init command is manually invoked.

The imc_init command initializes the MEMORY CHANNEL API library the
first time it is invoked, whether this happens at system boot time or after
the system has booted. The value of the -a maxalloc flag must be the
same on all hosts in the MEMORY CHANNEL API cluster. If different values
are specified, the maximum value specified for any host determines the
clusterwide value that applies to all hosts.

After the MEMORY CHANNEL API library has initialized on the current host,
the system administrator can invoke the imc_init command again to
reconfigure the values of the maxalloc and maxrecv resource limits,
without forcing a reboot. The system administrator can increase or
decrease either limit, but the new limits cannot be lower than the current
usage of the resources. Reconfiguring the MEMORY CHANNEL API cluster
from the command line does not read or modify the values specified in the
/etc/rc.config file. The system administrator can use the rcmgr (8)
command to modify the parameters and have them take effect when the
system reboots.

You must have root privileges to execute the imc_init command.

ERROR MESSAGES

The imc_init command prints the following error messages:

• Receive area is bigger than the maximum allocation

The receive size is larger than the maximum allocation size.

• No MEMORY CHANNEL memory available

There is not enough MEMORY CHANNEL address space to initialize the
MEMORY CHANNEL API library.

• No MEMORY CHANNEL resources available

There are insufficient MEMORY CHANNEL data structures available to
initialize the MEMORY CHANNEL API library.

• MEMORY CHANNEL is not initialized for user access

MEMORY CHANNEL API Library Interface 3–9

imc_init(1)

This host has not been initialized to use the MEMORY CHANNEL API.
Ensure that the MEMORY CHANNEL cables are properly connected.

• Privileged command

You do not have root privileges. You must have root privileges to
execute the imc_init command.

• System wired memory limit cannot be exceeded. See kernel
vm parameter vm-syswiredpercent

An attempt has been made to exceed the maximum quantity of system
wired memory. The amount of MEMORY CHANNEL address space that
can be attached for receive on the host cannot be increased beyond the
limit imposed by the system parameter vm-syswiredpercent .

• Invalid parameter specification

An attempt has been made to set the maxalloc parameter or the
maxrecv parameter to zero (0), or to a non-numeric or a negative value.

FILES

/usr/sbin/imc_init Specifies the command path.

/etc/rc.config Contains the variables that control whether or not
the MEMORY CHANNEL API library is initialized at
system boot time, and specifies the parameter
values to be applied on initialization.

SEE ALSO

Introduction: imc (3)

Commands: rcmgr (8), imcs (1)

3–10 MEMORY CHANNEL API Library Interface

imcs(1)

NAME

imcs – Reports on MEMORY CHANNEL status

SYNOPSIS

/usr/sbin/imcs [-m] [-l] [-r] [-f] [-h]

OPTIONS

-m Displays the names of all hosts that have initialized
the MEMORY CHANNEL API.

-l Displays information about all lock sets in use in
the MEMORY CHANNEL API cluster.

-r Displays information about all allocated regions in
the MEMORY CHANNEL API cluster.

-f Displays full MEMORY CHANNEL status information.

-h Displays a user help message on the imcs
command.

DESCRIPTION

The imcs command writes information to the standard output about
currently active MEMORY CHANNEL facilities. The details displayed vary
according to the flags used with the command. If no flags are specified, the
imcs command displays the names of all MEMORY CHANNEL API cluster
members, and information about active MEMORY CHANNEL regions and
MEMORY CHANNEL lock sets.

The information is displayed as a list of regions or lock sets under the
following headings:

MEMORY CHANNEL API Library Interface 3–11

imcs(1)

Type The type of the subsystem that created the region.
Possible values are:

IMC Region was created using
MEMORY CHANNEL API.

PVM Region was created using
DIGITAL Parallel Virtual
Machine (PVM).

ID An identifier that uniquely identifies the MEMORY
CHANNEL region.

KEY An application-specific key that refers to the
MEMORY CHANNEL region.

SIZE The size, in bytes, of the MEMORY CHANNEL address
space region allocated.

MODE The access mode of the region or lock set. The
access mode consists of nine bits and is similar to
the UNIX permission convention, except that there
is no execute bit. There are three sets of three bits
each. The first set of three bits refers to the owner’s
permissions; the next set refers to permissions of
others in the user group of the region; and the last
set refers to all other permissions.

Within each set of three bits, the first character
indicates permission to read the region, the second
character indicates permission to write to the
region, and the last character is currently unused.
The permissions are indicated as follows:

r Read permission is granted

w Write permission is granted

3–12 MEMORY CHANNEL API Library Interface

imcs(1)

- This character is not used at
present

OWNER The username of the owner of the region or lock set.

GROUP The group of the owner of the region or lock set.

RAIL Specifies the MEMORY CHANNEL logical rail used for
the region. The first logical rail is numbered zero
(0), the second logical rail is numbered 1, and so on,
up to a maximum defined by a constant,
IMC_MAXRAILS.

FLAG Specifies whether an allocated region was created
as coherent, point-to-point, point-to-point coherent,
or non-coherent. Flags apply only to MEMORY
CHANNEL regions, not to locks.

NLOCKS The number of locks available in the lock set.

EXAMPLES

When the /usr/sbin/imcs command is entered with no flags specified,
details of MEMORY CHANNEL API cluster members, active MEMORY
CHANNEL regions, and MEMORY CHANNEL lock sets are displayed, as shown
in the following example:

MEMORY CHANNEL Cluster Members:
member1.mydmn.myorg
member2.mydmn.myorg
member3.mydmn.myorg

MEMORY CHANNEL Regions:

Type ID KEY SIZE MODE OWNER GROUP
IMC 1740 5634309 204800 rw-rw-rw- user1 users
IMC 1686 5634307 204800 rw-rw-rw- user2 users
IMC 1627 5634306 483228 rw-rw-rw- user2 users
IMC 1626 5634305 8192 rw-rw-rw- user3 users
PVM 1576 17231442411520 393216 rw-rw-rw- user4 users
IMC 612 611 4382720 r-------- user5 users

MEMORY CHANNEL Lock Sets:

MEMORY CHANNEL API Library Interface 3–13

imcs(1)

Type KEY MODE OWNER GROUP NLOCKS
IMC 37231 rw-rw-rw- user1 users 110
PVM 17231442345984 rw-rw-rw- user2 users 2
IMC 612 ------rw- root users 4

When the -f flag is used with the /usr/sbin/imcs command, the logical
rail used is displayed under the RAIL heading, and the coherency of each
allocated region is displayed under the FLAGheading, in addition to the
details displayed in the previous example. Possible values under the FLAG
heading are:

• Coherent

• Point-to-point

• Point-to-point coherent

• Non-coherent

SEE ALSO

Introduction: imc (3)

Command: imc_init (1)

Functions: imc_api_init (3), imc_asalloc (3), imc_asattach (3),
imc_asattach_ptp (3), imc_lkacquire (3), imc_lkalloc (3)

3–14 MEMORY CHANNEL API Library Interface

3.6 Function Descriptions

This section contains reference information for each of the MEMORY
CHANNEL API library functions.

MEMORY CHANNEL API Library Interface 3–15

imc_api_init(3)

NAME
imc_api_init() – Initializes the MEMORY CHANNEL API library

SYNOPSIS
#include <sys/imc.h>

int imc_api_init (
unsigned long * i_param);

PARAMETERS

i_param This parameter is reserved for future use by
DIGITAL. You must set the value of this parameter
to NULL.

DESCRIPTION

The imc_api_init() function initializes the MEMORY CHANNEL API
library. A process must call the imc_api_init() function before calling
any of the other MEMORY CHANNEL API functions.

If a process forks, the imc_api_init() function must be called before
calling any other API functions in the child process, or undefined behavior
will result.

RETURN VALUES

The imc_api_init function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

IMC_NORESOURCES There are insufficient MEMORY CHANNEL data
structures available to initialize the MEMORY
CHANNEL API library.

IMC_INITERR An error occurred while initializing the MEMORY
CHANNEL API environment.

3–16 MEMORY CHANNEL API Library Interface

imc_api_init(3)

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

MEMORY CHANNEL API Library Interface 3–17

imc_asalloc(3)

NAME

imc_asalloc() – Allocates a region of MEMORY CHANNEL address space
on a specified logical rail

SYNOPSIS
#include <sys/imc.h>

int imc_asalloc (
imc_key_t key,
imc_size_t size,
imc_perm_t perm,
int flag,
imc_asid_t* id,
int logical_rail);

PARAMETERS

key Specifies an application-specific key that refers to
the region. Other processes that allocate the region
also specify this key. This ensures that access to the
region is coordinated on a clusterwide basis.

size Specifies the size, in bytes, of the MEMORY
CHANNEL address space region to be allocated. The
imc_asalloc() function allocates address space, in
pages, and it rounds up the value specified by the
size parameter accordingly.

perm Specifies the read and write permissions for the
allocated region. The permission code is similar to
the UNIX permission convention, except that there
is no execute flag. The value of the perm parameter
is obtained by carrying out a logical OR operation
on the following values:

IMC_URW User read and write

IMC_UR User read

IMC_UW User write

IMC_GRW Group read and write

3–18 MEMORY CHANNEL API Library Interface

imc_asalloc(3)

IMC_GR Group read

IMC_GW Group write

IMC_ORW Other read and write

IMC_OR Other read

IMC_OW Other write

flag Specifies whether or not the region is to be mapped
into all hosts on the MEMORY CHANNEL API cluster
at the time of allocation. The flag parameter has
the following values:

IMC_COHERENT Allocate a coherent region.
When other processes
allocate and attach this
region, they will see all
updates to the region since
the region was created.
When the IMC_COHERENT
flag is specified, the physical
pages that underlie the
region are nonpageable on
all hosts.

ZERO(0) Do not allocate a coherent
region. When processes on
other hosts allocate and
attach the region, they will
see all updates to the region
from then on. However, the
initial contents of the region
are indeterminate.

id Returns an identifier that uniquely identifies the
allocated MEMORY CHANNEL region.

logical_rail Specifies the MEMORY CHANNEL logical rail to use.
The first logical rail is numbered zero (0), the

MEMORY CHANNEL API Library Interface 3–19

imc_asalloc(3)

second logical rail is numbered 1, and so on, up to a
maximum defined by a constant, IMC_MAXRAILS.

DESCRIPTION

The imc_asalloc() function allocates a region of MEMORY CHANNEL
address space on a specified logical rail. If the function successfully
allocates the region, it returns the region identifier in the id parameter. If
the function call is unsuccessful, the value of the id parameter is undefined.
If a region with the key specified in the key parameter has already been
allocated on the MEMORY CHANNEL API cluster, then the imc_asalloc()
function returns the identifier of that region, and does not allocate a new
region. Individual applications should define their own naming scheme for
keys. The use of meaningful application-specific keys is recommended.

It is possible for multiple processes on a given host to allocate the same
region of MEMORY CHANNEL address space. When multiple processes
allocate a region, the permissions specified by each process must be
compatible clusterwide; otherwise, an error condition will result.

The permissions associated with a region are determined by the first
process to allocate the region.

When processes on multiple hosts allocate a region, the initial contents of
the region might not be the same on all hosts. This situation can arise
because a process that has mapped the same MEMORY CHANNEL region for
transmit might update the contents of the region before other processes
map the region for receive. To ensure that the region is coherent on all
hosts in the MEMORY CHANNEL API cluster, specify the IMC_COHERENTflag
when allocating the region.

The MEMORY CHANNEL API library maintains the total amount of available
MEMORY CHANNEL address space as a clusterwide resource. If the
imc_asalloc() function tries to allocate a region that exceeds the amount
of address space available, an error condition will result.

RETURN VALUES

The imc_asalloc function returns one of the following values:

IMC_SUCCESS Normal successful completion.

3–20 MEMORY CHANNEL API Library Interface

imc_asalloc(3)

IMC_BADPARM An invalid parameter was specified in the call to
the imc_asalloc() function.

IMC_BADRAIL The logical rail number specified in the call to the
imc_asalloc() function is invalid, or the logical
rail is inactive.

IMC_BADSIZE The specified region is already allocated, and the
size of the region as specified in this call to the
imc_asalloc() function does not match the size
specified in the previous call.

IMC_COHERENCYERRThe specified region is already allocated, and the
value of the flag parameter IMC_COHERENT
specified in this call to the imc_asalloc()
function does not match the value specified in the
previous call.

IMC_MCFULL There is not enough MEMORY CHANNEL address
space to allocate the amount specified by the size
parameter.

IMC_NOMEM There is insufficient local memory available to
allocate the region.

IMC_NORESOURCES There are insufficient MEMORY CHANNEL data
structures available to allocate the region.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

IMC_PERMIT The specified region is already allocated, with a
permission code that is incompatible with the code
specified in the perm parameter.

IMC_PRIOR The region has already been allocated by this
process.

MEMORY CHANNEL API Library Interface 3–21

imc_asalloc(3)

IMC_WRONGRAIL The specified region has already been allocated by a
process on the MEMORY CHANNEL API cluster, using
the same key, on a specific logical rail; the specified
region cannot now be allocated on a different logical
rail.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_asattach (3), imc_asattach_ptp (3),
imc_asdealloc (3), imc_asdetach (3), imc_bcopy (3)

3–22 MEMORY CHANNEL API Library Interface

imc_asattach(3)

NAME

imc_asattach – Attaches an allocated region of MEMORY CHANNEL
address space to the virtual address space of a process

SYNOPSIS
#include <sys/imc.h>

int imc_asattach (
imc_asid_t id,
imc_dir_t dir,
int mode,
int flag,
caddr_t* address);

PARAMETERS

id Identifies the region of MEMORY CHANNEL address
space to be attached. The identifier specified by the
id parameter must have previously been generated
by a call to the imc_asalloc function.

dir Specifies whether the region is attached to transfer
data to the MEMORY CHANNEL address space or to
receive data from it. The dir parameter contains
one of the following values:

IMC_TRANSMIT Attach the region as a transmit area.

IMC_RECEIVE Attach the region as a receive area.

mode Specifies the sharing mode, shared or nonshared,
for the region. If the region is designated as shared,
multiple processes executing on a given host can
attach the region to their process virtual address
space. The sharing mode is specified by the first
process on the host to attach the region. The
sharing mode is host-specific. Other processes that
subsequently attach the region cannot change the
sharing mode. If a calling process tries to attach a
region that has an incompatible sharing mode, an
error condition will result.

MEMORY CHANNEL API Library Interface 3–23

imc_asattach(3)

The mode parameter has the following values:

IMC_SHARED The region is shared.

IMC_NONSHARED The region is not shared.

flag Specifies, for a transmit region, that all writes to the
region are looped back to the host that writes the
data; or, for a receive region, that a user-supplied
address will be specified in the address parameter.

If this flag is not set for a transmit region,
processes on this host that attach the region for
receive will not see the data that is transmitted
from the host. The flag to enable the loopback
feature is set by the first process on the host to
attach the transmit region. Subsequent calls to the
imc_asattach() function on the same host must
adhere to the convention established by the first
call to the function.

For transmit attaches, you must enable the
loopback feature when attaching to coherent
regions. (A coherent region is one for which the
IMC_COHERENTflag is specified in the
imc_asalloc() function call that allocates the
region.)

The flag parameter has one of the following values
for a transmit attach:

IMC_LOOPBACK Enable the loopback feature.

ZERO(0) Disable the loopback
feature.

For receive attaches, use the flag parameter to
attach to a user-supplied address. The flag
parameter has one of the following values for attach
to a user-supplied address:

3–24 MEMORY CHANNEL API Library Interface

imc_asattach(3)

IMC_USE_ADDR Attach to the address
specified by the user in the
address parameter.

ZERO(0) Attach to an address in the
process virtual address
space assigned by the
kernel, and return that
address in the address
parameter.

address For transmit attaches, returns the address in the
process virtual address space that is mapped to the
attached region of MEMORY CHANNEL address
space. This address is assigned by the kernel. This
also applies to receive attaches where the flag
parameter has the value ZERO(0).

For receive attaches, if the flag parameter has the
value IMC_USE_ADDR, the address must be
user-specified in the address parameter. The
address must be page-aligned, and must represent
a hole in the process virtual address space. Also,
the extent of the hole must be enough to contain
the region.

DESCRIPTION
The imc_asattach() function attaches a region of MEMORY CHANNEL
address space to an address in the virtual address space of the calling
process. The region must first have been allocated by means of a call to the
imc_asalloc() function.

The calling process uses the dir parameter to attach the region for receive
or transmit. Transmit regions are attached as write-only. Any attempt to
read a transmit region will result in a segmentation violation. Therefore,
some C operations, such as postincrement and predecrement, will cause a
segmentation violation. Accesses to storage locations that are not integral
multiples of four bytes will generate read-modify-write cycles that will also
cause segmentation violations. Library functions such as bcopy (3) will
induce this behavior when the length parameter is not an integral

MEMORY CHANNEL API Library Interface 3–25

imc_asattach(3)

number of eight bytes, or when the source or destination arguments are not
eight-byte aligned. The imc_bcopy() function is designed to be used
instead of the bcopy (3) function in such cases, as its src parameter and its
dest parameter can both have an arbitrary alignment.

Attaching a region to receive data does not guarantee that the contents of
the region are the same as for other processes attached to the region. Any
previous writes to the region are not reflected in the process address space,
but subsequent writes do appear. To ensure that the contents of the region
are the same for all processes, specify the IMC_COHERENTflag in the
imc_asalloc() function when allocating the region. Otherwise, the
process must use application-specific mechanisms to transmit any existing
memory content to the new region.

RETURN VALUES

The imc_asattach function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_BADADDR In the case of a receive attach, the flag parameter
has the value IMC_USE_ADDR, and an invalid
address was specified in the address parameter.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_asattach() function.

IMC_BADREGION The region specified in the call to the
imc_asattach() function is invalid.

IMC_LATEJOIN This host joined the MEMORY CHANNEL API cluster
after the region was allocated.

IMC_LOOPBACKERR Another process on this host has already attached
the region, specifying a different value for the flag
parameter than the value specified in this call to
the imc_asattach() function; or the value of the
flag parameter is incorrect. (If the IMC_COHERENT
flag is specified when the imc_asalloc() function
allocates the region, the IMC_LOOPBACKflag must

3–26 MEMORY CHANNEL API Library Interface

imc_asattach(3)

be specified in the call to the imc_asattach()
function.)

IMC_MAPENTRIES An attempt has been made to exceed the maximum
number of process map entries. This maximum is
set by the vm_mapentries parameter

IMC_MCFULL There is not enough MEMORY CHANNEL address
space to attach to a coherent region.

IMC_NOMAPPER Attach to a coherent region could not be completed
because the imc_mapper daemon was not found on
a host in the MEMORY CHANNEL API cluster.

IMC_NONSHARERR The region has already been mapped as nonshared;
it cannot now be mapped as shared.

IMC_NORESOURCES There are insufficient MEMORY CHANNEL data
structures available to attach the region.

IMC_NOTALLOC The region is not allocated.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

IMC_PERMIT The process is not permitted to attach the region.

IMC_PTPERR An attempt was made to attach for transmit to a
region already in use as a point-to-point attach
region; or an attempt was made to attach for
receive, on a host other than the targeted host, to a
point-to-point attach region.

IMC_RECMAPPED The region has already been mapped by the process
to receive data.

MEMORY CHANNEL API Library Interface 3–27

imc_asattach(3)

IMC_RXFULL There are no more pages of physical memory
available to the MEMORY CHANNEL API library.

IMC_SHARERR The region has already been mapped as shared; it
cannot now be mapped as nonshared.

IMC_XMITMAPPED The region has already been mapped by the process
to transmit data.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_asalloc (3), imc_asattach_ptp (3),
imc_asdealloc (3), imc_asdetach (3), imc_bcopy (3)

3–28 MEMORY CHANNEL API Library Interface

imc_asattach_ptp(3)

NAME

imc_asattach_ptp – Attaches in point-to-point mode an allocated region
of MEMORY CHANNEL address space to the virtual address space of a process

SYNOPSIS
#include <sys/imc.h>

int imc_asattach_ptp (
imc_asid_t id,
int mode,
int flag,
char* hostname,
caddr_t* address);

PARAMETERS

id Identifies the region of MEMORY CHANNEL address
space to be attached. The identifier specified by the
id parameter must have previously been generated
by a call to the imc_asalloc function.

mode Specifies the sharing mode, shared or nonshared,
for the region. If the region is designated as shared,
multiple processes executing on a given host can
attach the region to their process virtual address
space. The sharing mode is specified by the first
process on the host to attach the region. The
sharing mode is host-specific. Other processes that
subsequently attach the region cannot change the
sharing mode. If a calling process tries to attach a
region that has an incompatible sharing mode, an
error condition will result.

The mode parameter has the following values:

IMC_SHARED The region is shared.

IMC_NONSHARED The region is not shared.

flag The loopback feature is not permitted for
point-to-point regions.

MEMORY CHANNEL API Library Interface 3–29

imc_asattach_ptp(3)

The flag parameter has the following value for a
transmit attach:

ZERO(0) Disable the loopback
feature.

hostname Specifies the name of the host to which the region is
attached for point-to-point transmission.

address Returns the address in the process virtual address
space that is mapped to the attached region of
MEMORY CHANNEL address space. This address is
assigned by the kernel.

DESCRIPTION

The imc_asattach_ptp() function attaches a region of MEMORY
CHANNEL address space to an address in the virtual address space of the
calling process. The region must first have been allocated by means of a
call to the imc_asalloc() function.

The imc_asattach_ptp() function attaches the region in point-to-point
mode. This means that writes to the region are sent only to the host
specified in the hostname parameter. In contrast, writes to regions
attached by means of a call to the imc_asattach() function are broadcast
to all hosts in the MEMORY CHANNEL API cluster.

Regions attached using the imc_asattach_ptp() function are always
attached in transmit mode.

Because of the nature of point-to-point attach mode, looped-back writes are
not permitted.

RETURN VALUES

The imc_asattach_ptp function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_asattach_ptp() function.

3–30 MEMORY CHANNEL API Library Interface

imc_asattach_ptp(3)

IMC_BADREGION The region specified in the call to the
imc_asattach_ptp() function is invalid.

IMC_LOOPBACKERR Another process on this host has already attached
the region, specifying a different value for the flag
parameter than the value specified in this call to
the imc_asattach_ptp() function; or the value of
the flag parameter is incorrect. You cannot enable
the loopback feature when calling the
imc_asattach_ptp() function.

IMC_LATEJOIN This host joined the MEMORY CHANNEL API cluster
after the region was allocated.

IMC_MAPENTRIES An attempt has been made to exceed the maximum
number of process map entries. This maximum is
set by the vm_mapentries parameter.

IMC_MCFULL There is not enough MEMORY CHANNEL address
space to attach to a coherent region.

IMC_NOMAPPER Attach to a coherent region could not be completed
because the imc_mapper daemon was not found on
a host in the MEMORY CHANNEL API cluster.

IMC_NONSHARERR The region has already been mapped as nonshared;
it cannot now be mapped as shared.

IMC_NORESOURCES There are insufficient MEMORY CHANNEL data
structures available to attach the region.

IMC_NOTALLOC The region is not allocated.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

MEMORY CHANNEL API Library Interface 3–31

imc_asattach_ptp(3)

IMC_PERMIT The process is not permitted to attach the region.

IMC_PTPERR This value is returned if one of the following events
occurs:

• An attempt is made to attach a region already
attached in point-to-point mode to a different
target host.

• An attempt is made to point-to-point attach a
region that is already broadcast attached
(attached for read on more than one host).

• An attempt is made to point-to-point attach a
region that is already broadcast transmit
attached.

• An attempt is made to point-to-point attach a
region that is already attached for read on the
local host.

IMC_SHARERR The region has already been mapped as shared; it
cannot now be mapped as nonshared.

IMC_XMITMAPPED The region has already been mapped by the process
to transmit data.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_asalloc (3), imc_asattach (3),
imc_asdealloc (3), imc_asdetach (3), imc_bcopy (3),
imc_getclusterinfo (3)

3–32 MEMORY CHANNEL API Library Interface

imc_asdealloc(3)

NAME

imc_asdealloc – Deallocates a region of MEMORY CHANNEL address space

SYNOPSIS
#include <sys/imc.h>

int imc_asdealloc (
imc_asid_t id);

PARAMETER

id Identifies the region of MEMORY CHANNEL address
space to be deallocated. The identifier specified by
the id parameter must have previously been
generated by a call to the imc_asalloc() function.

DESCRIPTION

The imc_asdealloc() function deallocates a region of MEMORY CHANNEL
address space. Mapped regions must be detached by means of a call to the
imc_asdetach() function before being deallocated; otherwise, an error
condition will result.

Deallocating a region will not necessarily free the region of MEMORY
CHANNEL address space. This is because multiple processes can allocate a
given region; the space is freed only when the last process on the MEMORY
CHANNEL API cluster deallocates the region.

All MEMORY CHANNEL regions allocated by a process are automatically
deallocated when the process exits.

RETURN VALUES

The imc_asdealloc function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_ATTACHED The specified region of MEMORY CHANNEL address
space is attached by the process. The region must
be detached before it can be deallocated.

MEMORY CHANNEL API Library Interface 3–33

imc_asdealloc(3)

IMC_BADPARM An invalid parameter was specified in the call to
the imc_asdealloc() function.

IMC_BADREGION The region specified by the id parameter was not
found.

IMC_NOTALLOC The region is not allocated.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_asalloc (3), imc_asattach (3),
imc_asattach_ptp (3), imc_asdetach (3)

3–34 MEMORY CHANNEL API Library Interface

imc_asdetach(3)

NAME

imc_asdetach – Detaches a region of MEMORY CHANNEL address space
from the virtual address space of the calling process

SYNOPSIS
#include <sys/imc.h>

int imc_asdetach (
imc_asid_t id);

PARAMETER

id Identifies the region of MEMORY CHANNEL address
space to be detached. The identifier specified by the
id parameter must be the one generated by the call
to the imc_asalloc() function that allocated the
region.

DESCRIPTION

The imc_asdetach() function detaches a region of MEMORY CHANNEL
address space. When the function is called, it detaches all transmit and
receive regions associated with the identifier specified by the id parameter.
After a region is detached, all addresses associated with the region become
invalid.

All MEMORY CHANNEL regions attached by a process are automatically
detached when the process exits.

RETURN VALUES

The imc_asdetach function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_asdetach() function.

IMC_BADREGION The region specified in the call to the
imc_asdetach() function is invalid.

MEMORY CHANNEL API Library Interface 3–35

imc_asdetach(3)

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_asalloc (3), imc_asattach (3),
imc_asattach_ptp (3), imc_asdealloc (3)

3–36 MEMORY CHANNEL API Library Interface

imc_bcopy(3)

NAME

imc_bcopy – Efficient data copy to a MEMORY CHANNEL transmit region

SYNOPSIS
#include <sys/imc.h>

long imc_bcopy (
void * src,
void * dest,
long length,
long dest_write_only,
long first_dest_quad);

PARAMETERS

src Points to the source data buffer for the imc_bcopy
function.

dest Points to the destination data buffer for the
imc_bcopy function.

length Specifies the length, in bytes, of the original data
buffer.

dest_write_only Specifies whether the destination is a write-only
pointer.

first_dest_quad Specifies the contents of the first quadword of the
destination.

DESCRIPTION

The imc_bcopy() function copies length bytes from the buffer pointed to
by the src parameter into the buffer pointed to by the dest parameter.

The imc_bcopy() function is highly optimized for the Alpha architecture
and implements an extremely efficient copy operation. You can use the
imc_bcopy() function for a high-bandwidth copy between two buffers in
normal memory, as well as for copying to MEMORY CHANNEL transmit
addresses, regardless of buffer alignment or data length.

MEMORY CHANNEL API Library Interface 3–37

imc_bcopy(3)

A MEMORY CHANNEL region may be attached for transmit (that is, for
write) using the imc_asattach() function or the imc_asattach_ptp()
function. The address for such a region is write-only, and any attempt to
read from a transmit address will result in a segmentation violation. In
addition, segmentation violations will result from any operation that causes
the compiler to generate read-modify-write cycles. For example:

• Assignment to simple data types that are not an integral multiple of
four bytes.

• Use of the bcopy (3) function where the length parameter is not an
integral multiple of eight bytes, or where the source or destination
arguments are not eight-byte aligned.

The imc_bcopy() function is designed to be used instead of the bcopy (3)
function in such cases, as its src parameter and its dest parameter can
both have an arbitrary alignment.

If the value of the dest_write_only parameter is zero (0), unaligned
writes to the dest address can cause the quadwords containing the first
and last destination bytes to be read.

If the value of the dest_write_only parameter is nonzero, as it would be
for MEMORY CHANNEL transmit addresses, the first_dest_quad
parameter value is used as the contents of the first quadword of the
destination, and zero (0) is used as the contents of the last quadword of the
destination. If the caller does not know the contents of the first quadword
of the destination, use zero (0) as the value of the first_dest_quad
parameter. This will result in up to three bytes of zeros before the start of
the copied data, and up to three bytes of zeros after the end of the copied
data.

The imc_bcopy() function returns the last quadword written to the
destination. You can use this capability to concatenate several
noncontiguous buffers to a contiguous write-only destination. To perform
this operation, known as a gather operation, use the return value from one
call to the imc_bcopy() function as the first_dest_quad parameter for
the next call to the imc_bcopy() function. If you are not performing a
gather operation, that is, if the start of the dest parameter is not in the
same quadword as the end of the previous dest parameter, then the value
of the first_dest_quad parameter should be zero.

3–38 MEMORY CHANNEL API Library Interface

imc_bcopy(3)

RESTRICTIONS

If the source and destination buffers overlap, the result of the copy
operation is undefined.

EXAMPLES

1. This example shows how to use the imc_bcopy() function to copy
between two buffers that have arbitrary alignment. The destination
buffer is not a MEMORY CHANNEL transmit address. In this example,
25 bytes are copied from an aligned source to a destination that is not
aligned on a quadword boundary.

int source[256];
char destination[1024];
long last_quad;

/* fill in source buffer */

/* copy part of source buffer */

last_quad = imc_bcopy(source,destination+3,25,0,0);

2. This example shows how to use the imc_bcopy() function to copy
data to a MEMORY CHANNEL transmit address. In the example, 18
bytes are copied to a MEMORY CHANNEL transmit address at an offset
of 12 bytes from the beginning of the region.

int source[256];
caddr_t tx_addr;
imc_asid_t id;
int status;
int prev_err;
long last_quad;

/* allocate and attach destination buffer */

status = imc_api_init(NULL);
if (status != IMC_SUCCESS)

imc_perror("imc_api_init",status);

/* allocate a region of size 8K using key 678 on logical rail zero */
status = imc_asalloc(678,8192,IMC_URW,0,&id,0);
if (status != IMC_SUCCESS)

imc_perror("imc_asalloc",status);

/* attach for transmit without LOOPBACK */

MEMORY CHANNEL API Library Interface 3–39

imc_bcopy(3)

status = imc_asattach(id,IMC_TRANSMIT,IMC_SHARED,0,&tx_addr);
if (status != IMC_SUCCESS)

imc_perror("imc_asattach",status);

/* fill in source buffer */

/* copy part of the source buffer and check for errors */

do {
prev_err = imc_rderrcnt_mr(0);
last_quad = imc_bcopy(source,tx_addr+12,18,1,0);

} while ((status = imc_ckerrcnt_mr(&prev_err,0)) != IMC_SUCCESS);

3. This example shows how to use the imc_bcopy() function to copy
data to a MEMORY CHANNEL transmit address from several sources.
The sources may be noncontiguous.

int *src1;
long *src2;
char *src3;
long len1,len2,len3;
caddr_t tx_addr;
int status;
int prev_err;
long last_quad;

/* allocate and attach destination buffer */

/* assign and fill source buffers and their lengths */

/* append the source buffers at their destination */

do {
prev_err = imc_rderrcnt_mr(0);
last_quad = imc_bcopy(src1,tx_addr,len1,1,0);
last_quad = imc_bcopy(src2,tx_addr+len1,len2,1,last_quad);
last_quad = imc_bcopy(src3,tx_addr+len1+len2,len3,1,

last_quad);
} while ((status = imc_ckerrcnt_mr(&prev_err,0)) != IMC_SUCCESS);

RETURN VALUES

The imc_bcopy() function returns the last quadword written to the
destination buffer.

SEE ALSO
Introduction: imc (3)

Commands: imc_init (1), imcs (1)

3–40 MEMORY CHANNEL API Library Interface

imc_bcopy(3)

Functions: imc_asalloc (3), imc_asattach (3), imc_asattach_ptp (3)

MEMORY CHANNEL API Library Interface 3–41

imc_ckerrcnt(3)

NAME

imc_ckerrcnt – Checks for the existence of outstanding errors on
MEMORY CHANNEL hosts in a MEMORY CHANNEL API cluster

SYNOPSIS
#include <sys/imc.h>

int imc_ckerrcnt (
int * errcnt);

PARAMETER

errcnt Specifies the current process error count across all
logical rails, and returns the updated error count.

DESCRIPTION

_______________________ Note _______________________

DIGITAL recommends using the imc_ckerrcnt_mr() function
rather than the imc_ckerrcnt() function.

The imc_ckerrcnt() function checks for the existence of outstanding
errors across all logical rails on the other MEMORY CHANNEL hosts in a
MEMORY CHANNEL API cluster. It returns the IMC_MC_ERRORvalue if any
of the following conditions apply:

• The function detects an outstanding error on another host in the
MEMORY CHANNEL API cluster.

• The function detects that error handling is in progress.

• The total error count on all logical rails is greater than the value
supplied in the errcnt parameter.

If an error count is being updated at the time the imc_ckerrcnt()
function is called, the function returns a negative value in the errcnt
parameter. Programs should check for this eventuality and call the function
again to ensure that the error has been handled.

3–42 MEMORY CHANNEL API Library Interface

imc_ckerrcnt(3)

You can use the imc_ckerrcnt() function along with the
imc_rderrcnt() function to construct application-specific error-detection
protocols.

RETURN VALUES

The imc_ckerrcnt function returns one of the following values:

IMC_SUCCESS Normal successful completion: no MEMORY
CHANNEL errors detected.

IMC_MC_ERROR A MEMORY CHANNEL error was detected.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_ckerrcnt function.

IMC_INITERR A fatal error occurred while initializing the
error-checking mechanism.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

IMC_NORESOURCES There are insufficient MEMORY CHANNEL data
structures available to perform the operation.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_ckerrcnt_mr (3), imc_perror (3),
imc_rderrcnt (3), imc_rderrcnt_mr (3)

MEMORY CHANNEL API Library Interface 3–43

imc_ckerrcnt_mr(3)

NAME

imc_ckerrcnt_mr – Checks for the existence of outstanding errors on a
specified logical rail on MEMORY CHANNEL hosts in a MEMORY CHANNEL
API cluster

SYNOPSIS
#include <sys/imc.h>

int imc_ckerrcnt_mr (
int * errcnt,
int logical_rail);

PARAMETER

errcnt Specifies the current process error count on the
specified logical rail, and returns the updated error
count.

logical_rail Specifies the MEMORY CHANNEL logical rail that is
to be checked for errors. The first logical rail is
numbered zero (0), the second logical rail is
numbered 1, and so on, up to a maximum defined
by a constant, IMC_MAXRAILS.

DESCRIPTION

The imc_ckerrcnt_mr() function checks for the existence of outstanding
errors on the specified MEMORY CHANNEL logical rail. It returns the
IMC_MC_ERRORvalue if any of the following conditions apply:

• The function detects an outstanding error on the specified logical rail.

• The function detects that error handling is in progress.

• The error count is greater than the value supplied in the errcnt
parameter.

If an error count is being updated at the time the imc_ckerrcnt_mr()
function is called, the function returns a negative value in the errcnt
parameter. Programs should check for this eventuality and call the function
again to ensure that the error has been handled.

3–44 MEMORY CHANNEL API Library Interface

imc_ckerrcnt_mr(3)

You can use the imc_ckerrcnt_mr() function along with the
imc_rderrcnt_mr() function to construct application-specific error
detection protocols.

RETURN VALUES

The imc_ckerrcnt_mr function returns one of the following values:

IMC_SUCCESS Normal successful completion: no MEMORY
CHANNEL errors detected.

IMC_MC_ERROR A MEMORY CHANNEL error was detected on the
specified logical rail; or error handling is in
progress; or the error count is greater than the
value supplied in the errcnt parameter.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_ckerrcnt_mr function.

IMC_BADRAIL The logical rail number specified in the call to the
imc_ckerrcnt_mr function is invalid; or the
logical rail is inactive.

IMC_INITERR A fatal error occurred while initializing the
error-checking mechanism.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

IMC_NORESOURCES There are insufficient MEMORY CHANNEL data
structures available to complete the operation.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_perror (3), imc_rderrcnt_mr (3)

MEMORY CHANNEL API Library Interface 3–45

imc_getclusterinfo(3)

NAME

imc_getclusterinfo – Gets information about the hosts participating in
a MEMORY CHANNEL API cluster

SYNOPSIS
#include <sys/imc.h>

int imc_getclusterinfo (
imc_infotype * i_items,
int i_nitems,
[,char * io_data,
int i_datalen] ...);

PARAMETERS

i_items Points to an array that contains the enumerated
type of each item to be returned. The last element
of the array must be zero (0). Valid types are:

IMC_GET_HOSTS Returns information on the
number of hosts in a
MEMORY CHANNEL API
cluster and the name of each
host, in a data structure of
type imc_hostinfo .

IMC_GET_NRAILS Returns the number of
logical rails in the MEMORY
CHANNEL API cluster, in a
variable of type unsigned
int .

IMC_GET_ACTIVERAILS Returns the logical rail
numbers of the active logical
rails in the MEMORY
CHANNEL API cluster, in a
variable of type
imc_railinfo .

i_nitems Specifies the number of items in the array i_items .

3–46 MEMORY CHANNEL API Library Interface

imc_getclusterinfo(3)

io_data Points to a buffer that contains the item of MEMORY
CHANNEL API cluster information requested.

i_datalen Specifies the length of the buffer identified by the
io_data parameter.

DESCRIPTION

The imc_getclusterinfo() function returns information on items in a
MEMORY CHANNEL API cluster. One or more of the following items may be
requested:

• A count of the number of hosts participating in the MEMORY CHANNEL
API cluster, and the name of each host.

• The number of logical rails in the MEMORY CHANNEL API cluster.

• The active MEMORY CHANNEL logical rails bitmask, which contains the
numbers of the active logical rails.

A request of zero (0) items is valid and will return nothing.

The request items are returned in data structures, as follows:

imc_hostinfo The data structure of type imc_hostinfo contains
the following fields:

name[IMC_MAXHOSTS][MAXHOSTNAMELEN]

The host names are
returned in the
two-dimensional name array.
The string containing the
host name is
zero-terminated. The
elements in the array are
numbered zero (0) to
(num-1).

num The number of hosts in the
MEMORY CHANNEL API
cluster is returned in the
num field.

MEMORY CHANNEL API Library Interface 3–47

imc_getclusterinfo(3)

imc_railinfo The active MEMORY CHANNEL logical rails bitmask
is returned in the imc_railinfo array (with bit
zero (0) representing logical rail number zero (0),
bit 1 representing logical rail number 1, and so on).

_______________________ Note _______________________

The imc_getclusterinfo() function lists only those hosts
that have initialized the MEMORY CHANNEL API library.

EXAMPLES

1. The following program extract requests the names of the members of
the MEMORY CHANNEL API cluster (functionality that was previously
provided by the imc_gethosts function, which is now obsolete):

imc_hostinfo hostinfo;
int status,i;
imc_infoType items[2];

items[0] = IMC_GET_HOSTS;
items[1] = 0;

status =
imc_getclusterinfo(items,1,&hostinfo,sizeof(imc_hostinfo));

if (status != IMC_SUCCESS)
imc_perror("imc_getclusterinfo:",status);

else
for (i=0; i<hostinfo.num; i++)

printf("Member: %s\n",hostinfo.name[i]);

2. The following program extract requests the active MEMORY CHANNEL
logical rails bitmask and prints out the numbers of the active logical
rails:

imc_railinfo mask;
int status,i;
imc_infoType items[2];

items[0] = IMC_GET_ACTIVERAILS;
items[1] = 0;

status = imc_getclusterinfo(items,1,mask,sizeof(imc_railinfo));

3–48 MEMORY CHANNEL API Library Interface

imc_getclusterinfo(3)

if (status != IMC_SUCCESS)
imc_perror("imc_getclusterinfo:",status);

else
for (i=0; i<IMC_MAXRAILS;i++)

if (IMC_IS_RAIL_ACTIVE(mask,i))
printf("Rail %d is ACTIVE\n",i);

3. The following program extract requests the names of the members of
the MEMORY CHANNEL API cluster, the number of logical rails, and the
active MEMORY CHANNEL logical rails bitmask.

imc_railinfo mask;
imc_hostinfo hostinfo;
unsigned nrails;

int status;
imc_infoType items[4];

items[0] = IMC_GET_ACTIVERAILS;
items[1] = IMC_GET_HOSTS;
items[2] = IMC_GET_NRAILS;
items[3] = 0;

status = imc_getclusterinfo(items,3,mask,sizeof(imc_railinfo),\
&hostinfo,sizeof(imc_hostinfo),&nrails,sizeof(unsigned));

RETURN VALUES

The imc_getclusterinfo() function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_getclusterinfo() function.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_kill (3), imc_wait_cluster_event (3)

MEMORY CHANNEL API Library Interface 3–49

imc_kill(3)

NAME

imc_kill – Sends a signal to a running process

SYNOPSIS
#include <sys/imc.h>

int imc_kill (
char * hostname,
pid_t pid,
int signal);

PARAMETERS

hostname Specifies the host on which the target process is
executing.

pid Specifies the process identifier (PID) of the target
process.

signal Specifies the signal to be sent to the target process.

DESCRIPTION

The imc_kill() function sends a signal to a target process that is
executing on the MEMORY CHANNEL API cluster member specified by the
hostname parameter. A list of valid host names can be obtained by calling
the imc_getclusterinfo() function. The PID for the target process is
specified by the pid parameter and it must be a valid PID. Zero and
negative PID values are not valid.

Processes that are executing with root privileges are not allowed to send
signals across the MEMORY CHANNEL API cluster.

The imc_kill() function is similar to the UNIX kill (2) function;
however, it does not support the sending of signals to multiple processes.

RETURN VALUES

The imc_kill function returns one of the following values:

IMC_SUCCESS Normal successful completion.

3–50 MEMORY CHANNEL API Library Interface

imc_kill(3)

IMC_BADHOST The host name specified in the hostname
parameter is invalid.

IMC_BADPARM The value specified in the pid parameter is invalid.

IMC_EINVAL The signal specified in the signal parameter is not
a valid signal number. Zero and negative PID
values are not permitted.

IMC_EINVAL The signal parameter is SIGKILL, SIGSTOP,
SIGTSTP, or SIGCONT and the PID specified in the
pid parameter is 1 (proc1).

IMC_EPERM The real or saved user ID does not match the real
or effective user ID of the receiving process, the
calling process does not have appropriate privilege,
and the process is not sending a SIGCONT signal to
one of its session’s processes.

IMC_ESRCH No process can be found corresponding to that
specified by the pid parameter.

IMC_NOROOT Superuser signalling across the MEMORY CHANNEL
API cluster is not permitted.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Function: imc_api_init (3), imc_getclusterinfo (3), kill (2)

MEMORY CHANNEL API Library Interface 3–51

imc_lkacquire(3)

NAME

imc_lkacquire – Acquires a lock from an existing set of locks

SYNOPSIS
#include <sys/imc.h>

int imc_lkacquire (
imc_lkid_t lock,
int index,
int flag,
int trylock);

PARAMETERS

lock Identifies the lock set from which the lock is to be
acquired. The lock set specified by the lock
parameter must previously have been allocated by a
call to the imc_lkalloc() function.

index Specifies the lock to be acquired. The value of the
index parameter is in the range zero (0) to
(count-1), where count is the value returned by the
imc_lkalloc() function when it created the lock
set.

flag This parameter is reserved for future use by
DIGITAL. You must set the value of this parameter
to zero (0).

trylock Specifies whether the imc_lkacquire function
should return immediately if the lock is busy or
wait until it can acquire the lock. The trylock
parameter contains one of the following values:

IMC_LOCKWAIT Wait until the lock becomes
free and then acquire the
lock before returning.

IMC_LOCKNOWAIT Return immediately if the
lock is in use.

3–52 MEMORY CHANNEL API Library Interface

imc_lkacquire(3)

DESCRIPTION

The imc_lkacquire() function tries to acquire the lock specified by the
index parameter from the lock set specified in the lock parameter. If the
lock is in use, the function can wait until the lock becomes free, or it can
return immediately without acquiring the lock. The return values for the
function indicate whether or not the lock was successfully acquired.

When a process acquires a lock, no other process executing on the MEMORY
CHANNEL API cluster can acquire that lock.

Waiting for busy locks to become free entails busy spinning and has a
significant effect on performance. Therefore, in the interest of overall
system performance, applications should acquire locks only as they are
needed and release them promptly.

If a system failure occurs on a host on which a process that holds a lock is
executing, all locks associated with the host are automatically released.

All locks acquired by a process are automatically released when the process
exits.

It is illegal for a process to acquire locks recursively. If a process acquires a
lock that it has already acquired and not released, an error will occur. The
correct sequence is for the process to acquire the lock, release it, and then
acquire it again.

RETURN VALUES

The imc_lkacquire function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_BADLOCK Either the lock set specified by the lock parameter
or the lock specified by the index parameter is out
of range.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_lkacquire() function.

IMC_CORRUPTLOCK An attempt was made to acquire a lock from an
invalid or corrupted lock set.

MEMORY CHANNEL API Library Interface 3–53

imc_lkacquire(3)

IMC_LOCKPRIOR The process attempted to acquire a lock that it
already holds.

IMC_NOLOCKGOT The imc_lkacquire() function returned without
gaining ownership of the lock.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_lkalloc (3), imc_lkdealloc (3),
imc_lkrelease (3)

3–54 MEMORY CHANNEL API Library Interface

imc_lkalloc(3)

NAME

imc_lkalloc – Creates a lock set

SYNOPSIS
#include<sys/imc.h>

int imc_lkalloc (
imc_key_t key,
int * count,
imc_perm_t perm,
int flag,
imc_lkid_t * lock);

PARAMETERS

key Identifies the lock set to be allocated.

count Specifies the number of locks created in the lock set,
and returns the number of locks actually created.

perm Specifies the access permission for the lock set. The
permission code is similar to the UNIX permission
convention, except that there is no execute flag. The
value of the perm parameter is obtained by carrying
out a logical OR operation on the following values:

IMC_LKU User access to locks

IMC_LKG Group access to locks

IMC_LKO Other access to locks

flag Specifies the creation flag for the lock set. The flag
parameter has one of the following values:

IMC_CREATOR If the lock set does not
already exist on the
MEMORY CHANNEL API
cluster, allocate the lock set
and atomically acquire the

MEMORY CHANNEL API Library Interface 3–55

imc_lkalloc(3)

first lock (that is, lock zero
(0)) in the set. If the
IMC_CREATORflag is
specified for a lock set that
already exists, an error
condition will result.

ZERO(0) Allocate the lock set without
attempting to acquire the
first lock in the set.

lock Returns a value that uniquely identifies the
allocated lock set. If the imc_lkalloc() function
fails to allocate a lock set, the value of the lock
parameter is set to NULL.

DESCRIPTION

The imc_lkalloc() function creates a set of locks that enable
applications to coordinate access to clusterwide resources. The number of
locks in the lock set is specified by the count parameter. The maximum
number of locks that a set can contain is specified by the
IMC_MAXNUMLOCKSvalue in the MEMORY CHANNEL API library header file.

The imc_lkalloc() function provides a feature that allows a process to
atomically (that is, in a single operation) allocate a lock set and acquire the
first lock in the set. This feature can be used to coordinate application
initialization in a MEMORY CHANNEL API cluster. To atomically allocate the
lock set and acquire the first lock, specify the value IMC_CREATORfor the
flag parameter.

The method for establishing a relationship between a lock and a resource is
application-specific, and is beyond the scope of the MEMORY CHANNEL API
library.

All lock sets allocated by a process are automatically deallocated when the
process exits.

RETURN VALUES

The imc_lkalloc function returns one of the following values:

3–56 MEMORY CHANNEL API Library Interface

imc_lkalloc(3)

IMC_SUCCESS Normal successful completion.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_lkalloc() function.

IMC_BADSIZE The lock set is already allocated on the MEMORY
CHANNEL API cluster, and the size of the set as
specified in this call to the imc_lkalloc() function
does not match the size specified in the previous
call.

IMC_EXISTS The lock set already exists on the MEMORY
CHANNEL API cluster.

IMC_MAPENTRIES An attempt has been made to exceed the maximum
number of process map entries. This maximum is
set by the vm_mapentries parameter.

IMC_MCFULL There is not enough MEMORY CHANNEL address
space available to allocate the lock set.

IMC_NOMEM There is insufficient local memory available to
allocate the lock set.

IMC_NORESOURCES There are insufficient MEMORY CHANNEL data
structures available to allocate the lock set.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

IMC_PERMIT The lock set is already allocated, with a permission
code that is incompatible with the code specified in
the perm parameter.

IMC_PRIOR The lock set has already been allocated by the
calling process.

MEMORY CHANNEL API Library Interface 3–57

imc_lkalloc(3)

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_lkacquire (3), imc_lkdealloc (3),
imc_lkrelease (3)

3–58 MEMORY CHANNEL API Library Interface

imc_lkdealloc(3)

NAME

imc_lkdealloc – Deallocates a lock set

SYNOPSIS
#include <sys/imc.h>

int imc_lkdealloc (
imc_lkid_t * lock);

PARAMETER

lock Identifies the lock set to be deallocated. The lock set
specified by the lock parameter must previously
have been allocated by a call to the
imc_lkalloc() function.

DESCRIPTION

The imc_lkdealloc() function deallocates the lock set specified by the
lock parameter. An attempt to deallocate a lock set that contains active
locks will result in an error condition.

All lock sets allocated by a process are automatically deallocated when the
process exits.

RETURN VALUES

The imc_lkdealloc function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_BADLOCK The lock set specified by the lock parameter does
not exist.

IMC_BADPARM An invalid parameter was specified in the call to
the imc_lkdealloc() function.

IMC_CORRUPTLOCK An attempt was made to deallocate an invalid or
corrupted lock set.

MEMORY CHANNEL API Library Interface 3–59

imc_lkdealloc(3)

IMC_LOCKACTIVE The lock set has active locks.

IMC_NOTALLOC The lock set is not allocated.

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_lkacquire (3), imc_lkalloc (3),
imc_lkrelease (3)

3–60 MEMORY CHANNEL API Library Interface

imc_lkrelease(3)

NAME

imc_lkrelease – Releases a lock in a lock set

SYNOPSIS
#include <sys/imc.h>

int imc_lkrelease (
imc_lkid_t lock,
int index);

PARAMETERS

lock Identifies the lock set that contains the lock to be
released. The lock set specified by the lock
parameter must previously have been allocated by a
call to the imc_lkalloc() function.

index Specifies the lock to be released. The value of the
index parameter is in the range zero (0) to
(count-1), where count is the value returned by the
imc_lkalloc() function when it created the lock
set.

DESCRIPTION

The imc_lkrelease() function releases a lock that is being held as a
result of a call to the imc_lkacquire() function or the imc_lkalloc()
function.

If the lock specified by the lock and index parameters is not being held,
an error condition will result.

If a system failure occurs on a host on which a process that holds a lock is
executing, all locks associated with the host are automatically released.

All locks acquired by a process are automatically released when the process
exits.

MEMORY CHANNEL API Library Interface 3–61

imc_lkrelease(3)

RETURN VALUES

The imc_lkrelease function returns one of the following values:

IMC_SUCCESS Normal successful completion.

IMC_BADLOCK Either the lock set specified by the lock parameter
or the lock specified by the index parameter does
not exist.

IMC_CORRUPTLOCK An attempt was made to release a lock in an invalid
or corrupted lock set.

IMC_LOCKNOTHELD The lock that the imc_lkrelease() function tried
to release was not being held.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_lkacquire (3), imc_lkalloc (3),
imc_lkdealloc (3)

3–62 MEMORY CHANNEL API Library Interface

imc_perror(3)

NAME

imc_perror – Prints a message that explains a MEMORY CHANNEL
function error

SYNOPSIS
#include <sys/imc.h>

void imc_perror (
char * userstring,
int code);

PARAMETERS

userstring Specifies a string to be prefixed to the error
message.

code Specifies the return status from the MEMORY
CHANNEL API library function that failed.

DESCRIPTION

The imc_perror() function prints a message to standard error output
that gives an explanation of the error status specified in the code
parameter. The message is made up of the following:

• The prefix specified in the userstring parameter

• A colon (:)

• A blank space

• The error message

• A newline character

RETURN VALUES

The imc_perror function does not return any values.

SEE ALSO

Introduction: imc (3)

MEMORY CHANNEL API Library Interface 3–63

imc_perror(3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_ckerrcnt_mr (3)

3–64 MEMORY CHANNEL API Library Interface

imc_rderrcnt(3)

NAME

imc_rderrcnt – Reads the total error count across all logical rails

SYNOPSIS
#include <sys/imc.h>

int imc_rderrcnt (void);

PARAMETERS

The imc_rderrcnt() function does not take any parameters.

DESCRIPTION

_______________________ Note _______________________

DIGITAL recommends that you use the imc_rderrcnt_mr()
function rather than the imc_rderrcnt() function.

The imc_rderrcnt() function reads the total error count across all
logical rails and returns the value to the calling program. The total error
count is updated whenever a MEMORY CHANNEL error occurs. The count is
not guaranteed to be up to date with the most recent MEMORY CHANNEL
transfer. However, you can use it with the imc_ckerrcnt() function to
determine whether any errors occurred since the last time the count was
updated.

The MEMORY CHANNEL hardware guarantees that no corrupt data will be
written to host systems, and that all data will be delivered to the host
systems in the sequence in which the data is written to the MEMORY
CHANNEL hardware. The atomic unit of transfer on MEMORY CHANNEL is 32
bits. Statistically, the error rate of the MEMORY CHANNEL hardware is of
the order of three errors per year.

If an error count is being updated at the time the imc_rderrcnt()
function is called, the function returns a negative value. Programs should
check for this eventuality and call the function again to ensure that it
reads the correct error count.

MEMORY CHANNEL API Library Interface 3–65

imc_rderrcnt(3)

You can use the imc_rderrcnt() function along with the
imc_ckerrcnt() function to construct application-specific error-detection
protocols.

RETURN VALUES

On successful completion, the imc_rderrcnt() function returns a positive
integer that contains the total error count.

The imc_rderrcnt() function returns a negative value if the error count
is being updated when the function is called.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_ckerrcnt (3), imc_ckerrcnt_mr (3),
imc_perror (3), imc_rderrcnt_mr (3)

3–66 MEMORY CHANNEL API Library Interface

imc_rderrcnt_mr(3)

NAME

imc_rderrcnt_mr – Reads the clusterwide error count for the specified
logical rail

SYNOPSIS

#include <sys/imc.h>

int imc_rderrcnt (
int logical_rail);

PARAMETER

logical_rail Specifies the MEMORY CHANNEL logical rail for
which the error count is to be read. The first logical
rail is numbered zero (0), the second logical rail is
numbered 1, and so on, up to a maximum defined
by a constant, IMC_MAXRAILS.

DESCRIPTION

The imc_rderrcnt_mr() function reads the total error count for the
specified logical rail and returns the value to the calling program. The error
count is updated whenever a MEMORY CHANNEL error occurs. The count is
not guaranteed to be up to date with the most recent MEMORY CHANNEL
transfer. However, you can use it with the imc_ckerrcnt_mr() function
to determine whether any errors occurred since the last time the count was
updated.

The MEMORY CHANNEL hardware guarantees that no corrupt data will be
written to host systems, and that all data will be delivered to the host
systems in the sequence in which the data is written to the MEMORY
CHANNEL hardware. The atomic unit of transfer on MEMORY CHANNEL is 32
bits. Statistically, the error rate of the MEMORY CHANNEL hardware is of
the order of three errors per year.

If the error count is being updated at the time the imc_rderrcnt_mr()
function is called, the function returns a negative value. Programs should
check for this eventuality and call the function again to ensure that it
reads the correct error count.

MEMORY CHANNEL API Library Interface 3–67

imc_rderrcnt_mr(3)

You can use the imc_rderrcnt_mr() function along with the
imc_ckerrcnt_mr() function to construct application-specific
error-detection protocols.

RETURN VALUES

On successful completion, the imc_rderrcnt_mr function returns a
positive integer that contains the error count for the specified logical rail.

The imc_rderrcnt_mr() function returns a negative value if the error
count is being updated when the function is called.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_ckerrcnt_mr (3), imc_perror (3)

3–68 MEMORY CHANNEL API Library Interface

imc_wait_cluster_event(3)

NAME

imc_wait_cluster_event – Blocks the caller until a MEMORY CHANNEL
API cluster event occurs

SYNOPSIS

#include <sys/imc.h>

int imc_wait_cluster_event (
imc_eventType * i_eventType,
unsigned long i_numEvents,
unsigned long i_unused,
[void * io_current_config,
unsigned long i_current_config_length]...);

PARAMETERS

i_eventType Points to a data structure that contains information
about valid MEMORY CHANNEL API cluster events
for which to wait. The i_eventType parameter has
the following values:

IMC_CC_EVENT_HOSTA host has joined the
MEMORY CHANNEL API
cluster, or a host has been
removed from the MEMORY
CHANNEL API cluster.

IMC_CC_EVENT_RAIL The logical rail
configuration of the MEMORY
CHANNEL API cluster has
changed; a logical rail has
come on line, or a logical
rail has gone off line.

_____________ Note _____________

A MEMORY CHANNEL API cluster is
formed when a number of hosts are
physically connected by a MEMORY
CHANNEL interconnect, and when each

MEMORY CHANNEL API Library Interface 3–69

imc_wait_cluster_event(3)

host has invoked the imc_init (1)
command.

i_numEvents Specifies the number of events in the data structure
identified by the i_eventType parameter. This
parameter must have a value of 1 or greater.

i_unused This parameter is currently unused. You must set
the value of this parameter to zero (0).

io_current_config Points to a data structure that contains information
about the MEMORY CHANNEL API cluster
configuration item being monitored. There are two
valid data structure types, as follows:

imc_hostinfo If the i_eventType
parameter has the value
IMC_CC_EVENT_HOST, the
io_current_config
parameter points to a
structure of type
imc_hostinfo , which is
returned by the
imc_getclusterinfo()
function.

imc_railinfo If the i_eventType
parameter has the value
IMC_CC_EVENT_RAIL, the
io_current_config
parameter points to a
structure of type
imc_railinfo , which is
returned by the
imc_getclusterinfo()
function.

If a value of NULL is specified for the
io_current_config parameter, the

3–70 MEMORY CHANNEL API Library Interface

imc_wait_cluster_event(3)

imc_wait_cluster_event() function will use
the current internal value of the MEMORY CHANNEL
API cluster configuration item being monitored. On
return, the user must access this value using the
imc_getclusterinfo() function.

i_current_config_length

Specifies the length of the io_current_config
parameter. If the io_current_config parameter
has a value of NULL, the
i_current_config_length parameter is ignored.

DESCRIPTION

The imc_wait_cluster_event() function blocks the calling entity until
a specified MEMORY CHANNEL API cluster event occurs.

_______________________ Note _______________________

The imc_wait_cluster_event() function waits for MEMORY
CHANNEL API cluster events, not Production Server cluster
events.

Two MEMORY CHANNEL API cluster events are valid:

• A host joins or leaves the MEMORY CHANNEL API cluster.

• The logical rail configuration of the MEMORY CHANNEL API cluster
changes.

At least one MEMORY CHANNEL API cluster event must be specified in the
call to the imc_wait_cluster_event() function; more than one MEMORY
CHANNEL API cluster event may be specified.

The imc_wait_cluster_event() function initially checks the current
representation of the MEMORY CHANNEL API cluster configuration event
being monitored.

On return, the io_current_config parameter points to the new MEMORY
CHANNEL API cluster configuration.

MEMORY CHANNEL API Library Interface 3–71

imc_wait_cluster_event(3)

If the io_current_config parameter has been set to a value of NULL,
the imc_wait_cluster_event() function will use the current internal
value of the MEMORY CHANNEL API cluster configuration item being
monitored; and the i_current_config_length parameter will be
ignored. If this is the case, the user must access the value of the MEMORY
CHANNEL API cluster configuration item on return, using the
imc_getclusterinfo() function.

EXAMPLES

1. The following program extract requests the names of the members of
the MEMORY CHANNEL API cluster using the imc_getclusterinfo()
function, and then calls the imc_wait_cluster_event function to
wait for a configuration change to be notified:

imc_hostinfo hostinfo;
int status;
imc_infotype items[2];
imc_eventType events[2];

items[0] = IMC_GET_HOSTS;
items[1] = 0;

events[0] = IMC_CC_EVENT_HOSTS;
events[1] = 0;

status =
imc_getclusterinfo(items,1,&hostinfo,sizeof(imc_hostinfo));

if (status != IMC_SUCCESS)
imc_perror("imc_getclusterinfo:",status);

status =
imc_wait_cluster_event(events,1,0,&hostinfo,sizeof(imc_hostinfo));

if (status != IMC_HOST_CHANGE)
imc_perror("imc_wait_cluster_event didn’t complete:",status);

2. The following program extract requests the names of the members of
the MEMORY CHANNEL API cluster and the active MEMORY CHANNEL
logical rails bitmask, and then waits for an event change on either:

imc_railinfo mask;
imc_hostinfo hostinfo;

int status;
imc_infoType items[3];
imc_eventType events[3];

3–72 MEMORY CHANNEL API Library Interface

imc_wait_cluster_event(3)

items[0] = IMC_GET_ACTIVERAILS;
items[1] = IMC_GET_HOSTS;
items[2] = 0;

events[0] = IMC_CC_EVENT_RAILS;
events[1] = IMC_CC_EVENT_HOSTS;
events[2] = 0;

status = imc_getclusterinfo(items,2,mask,sizeof(imc_railinfo),
&hostinfo,sizeof(imc_hostinfo));

if (status != IMC_SUCCESS)
imc_perror("imc_getclusterinfo:",status);

status = imc_wait_cluster_event(events, 2, 0, \\
mask, sizeof(imc_railinfo),
&hostinfo, sizeof(imc_hostinfo));

if ((status != IMC_HOST_CHANGE) && (status != IMC_RAIL_CHANGE))
imc_perror("imc_wait_cluster_event didn’t complete:",status);

3. The following program extract waits for an event change on either the
members of the MEMORY CHANNEL API cluster or the active MEMORY
CHANNEL logical rails:

int status;
imc_eventType events[3];

events[0] = IMC_CC_EVENT_HOSTS;
events[1] = IMC_CC_EVENT_RAILS;
events[2] = 0;

status = imc_wait_cluster_event(events, 2, 0, NULL, 0, NULL, 0);

if ((status != IMC_HOST_CHANGE) && (status != IMC_RAIL_CHANGE))
imc_perror("imc_wait_cluster_event didn’t complete:",status);

RETURN VALUES

The imc_wait_cluster_event function returns one of the following
values:

IMC_NOTINIT This host has not been initialized to use the
MEMORY CHANNEL API library.

MEMORY CHANNEL API Library Interface 3–73

imc_wait_cluster_event(3)

IMC_BADPARM An invalid parameter was specified in the call to
the imc_wait_cluster_event() function.

IMC_INTR The imc_wait_cluster_event() function was
interrupted by a signal.

IMC_HOST_CHANGE The host configuration has changed.

IMC_RAIL_CHANGE The logical rail configuration has changed.

IMC_MULTIPLE_CHANGE

More than one of the monitored configuration items
has changed.

SEE ALSO

Introduction: imc (3)

Commands: imc_init (1), imcs (1)

Functions: imc_api_init (3), imc_getclusterinfo (3)

3–74 MEMORY CHANNEL API Library Interface

A
Frequently Asked Questions

This appendix contains answers to questions asked by programmers who
use the MEMORY CHANNEL API to develop programs for TruCluster systems.

A.1 IMC_NOMAPPER Return Code

Question: An attempt was made to do an attach to a coherent region using
the imc_asattach function. The function returned the value
IMC_NOMAPPER. What does this mean?

Answer: This return value indicates that the imc_mapper process is
missing from a system in your MEMORY CHANNEL API cluster.

The imc_mapper process is started automatically in the following cases:

• On system initialization, when the configuration variable
IMC_AUTO_INIT has a value of 1. (See Chapter 1 for more information
about the IMC_AUTO_INIT variable.)

• When you execute the imc_init command for the first time.

To solve this problem, reboot the system from which the imc_mapper
process is missing.

This error may occur if you shut down a system to single-user mode from
init level 3, and then return the system to multi-user mode without doing
a complete reboot. If you want to reboot a system that runs TruCluster
MEMORY CHANNEL software, you must do a full reboot of that system.

A.2 Efficient Data Copy

Question: How can data be copied to a MEMORY CHANNEL transmit region
in order to obtain maximum MEMORY CHANNEL bandwidth?

Answer: The MEMORY CHANNEL API imc_bcopy function provides an
efficient way of copying aligned or unaligned data to MEMORY CHANNEL.
The imc_bcopy function has been optimized to make maximum use of the
buffering capability of a DIGITAL Alpha CPU.

You can also use the imc_bcopy function to copy data efficiently between
two buffers in standard memory.

Frequently Asked Questions A–1

A.3 MEMORY CHANNEL Bandwidth Availability

Question: Is maximum MEMORY CHANNEL bandwidth available when
using coherent MEMORY CHANNEL regions?

Answer: No. Coherent regions use the loopback feature to ensure local
coherency. Therefore, every write data cycle has a corresponding cycle to
loop the data back; this halves the available bandwidth. See Section 2.2.1.3
for more information about the loopback feature.

A.4 MEMORY CHANNEL API Cluster Configuration Change

Question: How can a program determine whether a MEMORY CHANNEL
API cluster configuration change has occurred?

Answer: The new imc_wait_cluster_event() function can be used to
monitor hosts joining or leaving the MEMORY CHANNEL API cluster, or to
monitor changes in the state of the active logical rails. You can write a
program that calls the imc_wait_cluster_event() function in a
separate thread; this blocks the caller until a state change occurs.

A.5 Bus Error Message

Question: When a program tries to set a value in an attached transmit
region, it crashes with the following message:

Bus error (core dumped)

Why does this happen?

Answer: The data type of the value may be smaller than 32 bits (in C, an
int is a 32–bit data item, and a short is a 16–bit data item). The DIGITAL
Alpha processor, like other RISC processors, reads and writes data in
64–bit units or 32–bit units. When you assign a value to a data item that is
smaller than 32 bits, the compiler generates code that loads a 32–bit unit,
changes the bytes that are to be modified, and then stores the entire 32–bit
unit. If such a data item is in a MEMORY CHANNEL region attached for
transmit, the assignment causes a read operation to occur in the attached
area. Because transmit areas are write-only, a bus error is reported.

You can prevent this problem by ensuring that all accesses are done on
32–bit data items. See Section 2.2.3 for more information.

A.6 Deciding Which TruCluster Product To Use

Question: There are three TruCluster products. Which product should I
use?

A–2 Frequently Asked Questions

Answer: If your application requires high availability and access to disks
on shared SCSI buses, and uses the Distributed Lock Manager (DLM) or
Distributed Raw Disk (DRD) services, you should use the TruCluster
Production Server product. You need MEMORY CHANNEL interconnect
hardware and shared SCSI buses. Applications which require these features
include certain database management systems. (The TruCluster Production
Server product combines the features of the TruCluster Available Server
product and the TruCluster MEMORY CHANNEL Software product.)

If your application requires high availability with management of failover
of critical services to a backup system, you need the TruCluster Available
Server product. You need shared SCSI buses, but the MEMORY CHANNEL
interconnect is not supported. NFS is an example of a highly available
service managed by TruCluster Available Server.

If your application requires a high bandwidth, low latency interconnect,
you need the TruCluster MEMORY CHANNEL Software product. You need
MEMORY CHANNEL interconnect hardware, but shared SCSI buses are not
supported. The DIGITAL Parallel Software Environment (PSE) product is
an example of an application that requires these features.

A.7 Finding Out More About M EMORY CHANNEL

Question: Where can I get more information about MEMORY CHANNEL?

Answer: You can find out more about MEMORY CHANNEL from the DIGITAL
High Performance Technical Computing Web server, at the following URL:

http://www.digital.com/info/hpc

You may also mail your questions to: high-performance@digital.com

Frequently Asked Questions A–3

Index

A
accessing MEMORY CHANNEL

addresses, 2–2
address mapping

defined, 2–2
how to implement, 2–2

application development models,
2–24

attach
broadcast mode, 2–3, 2–4
loopback mode, 2–3, 2–6, A–2
point-to-point mode, 2–3, 2–5

B
broadcast attach, 2–4
building applications

compiling, 3–2
header files, 3–1
library, 3–1

C
clu_install script, 1–7
clu_ivp utility

using to detect configuration
errors, 1–11

cluster information functions, 2–22
cluster signals, 2–22
clusterwide address space, 2–2
clusterwide locks

allocating, 2–21
defined, 2–19
example, 2–19e
performance impact, 2–22
single-threaded access, 2–21

coherency

initial, 2–7, 2–8
latency related, 2–11

compiling applications, 3–2
console

boot_reset variable, 1–3
bus_probe_algorithm variable,

1–3
error messages, 1–19

D
deinstalling MEMORY CHANNEL

subsets, 1–4
doconfig program

kernel configuration file, 1–8

E
error management, 2–14

using imc_ckerrcnt_mr, 2–17
example, 2–18e

using imc_rderrcnt_mr, 2–17
example, 2–16e

/etc/hosts
entry for IP name, 1–7
updated by installation, 1–3

/etc/rc.config
IMC_AUTO_INIT variable, 1–12
updated by installation, 1–3

/etc/sysconfigtab
rm_no_inheritance attribute,

1–19
setting rm_rail_style

parameter, 1–15
using sysconfigdb(8) to amend,

1–2, 1–16
vm-mapentries parameter, 1–18

Index–1

vm-syswiredpercent parameter,
1–17, 1–20

F
fatal error

rm_check_cables, 1–21
rm_delete_context, 1–20
rm_slave_init, 1–21

G
/genvmunix

booting after installing new
hardware, 1–5n

booting to single-user mode
before deinstalling subsets,
1–4

booting when upgrading
DIGITAL UNIX Version
4.0, 1–5

H
handling errors, 2–14

using imc_ckerrcnt_mr, 2–17
example, 2–18e

using imc_rderrcnt_mr, 2–17
example, 2–16e

hardware configuration, 1–2
header files, 3–1

I
imc introduction, 3–3
imc_api_init function, 2–1, 2–10,

3–16
imc_asalloc function, 2–10, 2–13,

3–18
key parameter, 2–2

imc_asattach function, 2–10,
2–11, 2–14, 3–23, A–1

dir parameter, 2–2

imc_asattach_ptp function, 2–2,
3–29

imc_asdealloc function, 2–11, 3–33
imc_asdetach function, 2–11, 3–35
IMC_AUTO_INIT variable, 1–12,

A–1
imc_bcopy function, 2–8, 3–37, A–1
imc_ckerrcnt function, 3–42
imc_ckerrcnt_mr function, 2–15,

3–44
IMC_EXISTS

return status, 2–21
imc_getclusterinfo

example, 2–23e
imc_getclusterinfo function, 2–22,

3–46
imc_init command, 1–12, 1–22,

2–2, 3–8, A–1
IMC_NOTINIT return status,

1–18
maxalloc parameter, 1–17
maxrecv parameter, 1–17

imc_kill function, 2–22, 3–50
imc_lkacquire function, 2–19,

2–21, 3–52
imc_lkalloc function, 2–19, 3–55
imc_lkdealloc function, 3–59
imc_lkrelease function, 2–21, 3–61
IMC_MAPENTRIES return

status, 1–18, 1–22
imc_mapper process

not present, A–1
IMC_MAX_ALLOC variable, 1–17
IMC_MAX_RECV variable, 1–17,

1–20
IMC_MCFULL return status, 1–22
IMC_NOMAPPER return status,

A–1
IMC_NOMEM return status, 1–23
IMC_NORESOURCES return

status, 1–23
IMC_NOTINIT return status, 1–18
imc_perror function, 2–10, 3–63
imc_rderrcnt function, 3–65

Index–2

imc_rderrcnt_mr function, 2–15,
3–67

IMC_RXFULL return status,
1–17, 1–22

imc_wait_cluster_event
example, 2–23e

imc_wait_cluster_event function,
2–22, 3–69, A–2

IMC_WIRED_LIMIT return
status, 1–17, 1–22

imcs command, 2–24, 3–11
initial coherency, 2–7, 2–8
initialization failure

cables not attached, 1–19
check hardware configuration,

1–20
node running software Version

1.4, 1–20
rm_no_inheritance not set to 1,

1–19
vm-syswiredpercent parameter,

1–20
initializing MEMORY CHANNEL

API library, 1–12, 2–1
installation

restrictions, 1–2
installation verification procedure

(See clu_ivp utility)
IP name and address

assigning during installation,
1–2

Host number 42 reserved, 1–3n
overriding existing, 1–7
specifying IP name for

MEMORY CHANNEL
adapter, 1–7

K
kernel

building after changing
adapter, 1–5n

building after installing new
hardware, 1–5n

building new, 1–8

editing kernel configuration file,
1–8

moving to root directory, 1–9
specifying kernel configuration

file, 1–8

L
latency related coherency, 2–11
library, 3–1
license

registering, 1–5
lmf command

list, 1–4
register, 1–6
reset, 1–4

locks
allocating, 2–21
defined, 2–19
example, 2–19e
performance impact, 2–22
single-threaded access, 2–21

logical rail failure, 1–16n
loopback attach, 2–6, A–2

M
malloc

failure, 1–23
MEMORY CHANNEL

configuration tuning, 1–16
error rates, 2–14
multirail model, 1–13
troubleshooting, 1–18

MEMORY CHANNEL address
space

extending, 1–22
MEMORY CHANNEL API cluster,

1–1n
MEMORY CHANNEL API library

compiling, 3–2
developing applications, 2–1
header files, 3–1
initializing, 1–12, 2–1

Index–3

library, 3–1
MEMORY CHANNEL API library

commands
imc_init, 1–12, 1–18, 2–2, A–1
imcs, 2–24

MEMORY CHANNEL API library
functions

imc_api_init, 2–1, 2–10
imc_asalloc, 2–2, 2–10, 2–13
imc_asattach, 2–2, 2–10, 2–11,

2–14, A–1
imc_asattach_ptp, 2–2
imc_asdealloc, 2–11
imc_asdetach, 2–11
imc_bcopy, 2–8, A–1
imc_ckerrcnt_mr, 2–15
imc_getclusterinfo, 2–22
imc_kill, 2–22
imc_lkacquire, 2–19, 2–21
imc_lkalloc, 2–19
imc_lkrelease, 2–21
imc_perror, 2–10
imc_rderrcnt_mr, 2–15
imc_wait_cluster_event, 2–22,

A–2
MEMORY CHANNEL region

allocating, 2–10, 2–13
attaching for transmit, 2–10, 2–14
detaching, 2–11

message passing and shared
memory

comparison, 2–24
multirail model, 1–13

default style, 1–14
failover pair, 1–14
logical rail, 1–13
physical rail, 1–13
rm_rail_style parameter, 1–15
single-rail, 1–13

O
operating system

subsets, 1–4

P
PAK, 1–5
point-to-point attach, 2–5
process virtual memory

extending, 1–23
Product Authorization Key

(See PAK)
Production Server cluster, 1–1n

R
reading from transmit area

segmentation violation, A–2
reading from transmit pointer

segmentation violation, 2–8
rebooting

after installation, 1–9
receive address space

extending, 1–22
resource limitations

IMC_MAPENTRIES return
status, 1–18, 1–22

IMC_MCFULL return status,
1–22

IMC_NOMEM return status,
1–23

IMC_NORESOURCES return
status, 1–23

IMC_RXFULL return status,
1–17, 1–22

IMC_WIRED_LIMIT return
status, 1–17, 1–22

rm_check_cables
fatal error, 1–21

rm_delete_context
fatal error, 1–20

rm_no_inheritance attribute
not set to 1, 1–19

rm_rail_style parameter
possible values, 1–15

rm_slave_init
fatal error, 1–21

Index–4

S
segmentation violation

caused by reading from
transmit area, A–2

caused by reading from
transmit pointer, 2–8

setld command
deleting subsets, 1–4
loading MEMORY CHANNEL

kit, 1–6
shared memory and message

passing
comparison, 2–24

signals, 2–22
subsets

installing, 1–6
operating system, 1–4

T
troubleshooting

initialization failure, 1–19
tuning MEMORY CHANNEL, 1–16

U
/usr/var/adm

messages file, 1–19

V
virtual memory map entries

extending, 1–22
vm-mapentries parameter, 1–22
vm-syswiredpercent parameter,

1–20, 1–22

W
wired memory limit

extending, 1–22

Index–5

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a modem from anywhere in the USA,
Canada, or Puerto Rico. If you need assistance using the Electronic Store, call 800-DIGITAL
(800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

Continental USA,
Alaska, or Hawaii

800-DIGITAL Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International — Local Digital subsidiary or approved distributor

Internal
(submit an
Internal Software
Order Form,
EN-01740-07)

— SSB Order Processing – NQO/V19
or
U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

Reader’s Comments

TruCluster Production Server Software
MEMORY CHANNEL Application Programming Interfaces
AA-QTN4C-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______________________

Name, title, department __
Mailing address __
Electronic mail ___
Telephone __
Date ___

UBPG PUBLICATIONS MANAGER

 Do Not Cut or Tear - Fold Here

 Do Not Cut or Tear - Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3 3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062 9987

C
ut on D

otted L
ine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

