
SG24-4989-00

RS/6000 Performance Tools in Focus

May 1997

International Technical Support Organization

RS/6000 Performance Tools in Focus

May 1997

SG24-4989-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 295.

First Edition (May 1997)

This edition applies to IBM RS/6000 for use with the AIX Operating System Version 4.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xi

Preface . xii i
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. Introduction . 1
1.1 AIX Performance Tools . 3
1.2 Baselines . 4
1.3 Permanent Light Monitoring . 4

Chapter 2. Standard (UNIX) Performance Tools 7
2.1 The vmstat Command . 7

2.1.1 CPU Bound . 7
2.1.2 Memory Bound . 10
2.1.3 I/O Bound . 15
2.1.4 Summary Option . 16
2.1.5 Conclusion . 17

2.2 The iostat Command . 17
2.2.1 TTY Report . 19
2.2.2 CPU Report . 20
2.2.3 Drive Report . 20

2.3 The sar Command . 23
2.3.1 Real-Time Sampling and Display . 23
2.3.2 Display of Previously Captured Data . 24
2.3.3 System Activity Accounting via cron . 24
2.3.4 Useful Options . 26
2.3.5 Correlation Between vmstat, iostat, and sar 29
2.3.6 The timex Command . 30

2.4 The ps Command . 30
2.4.1 CPU Information . 30
2.4.2 Memory Information . 31
2.4.3 New ps Options . 32
2.4.4 Useful Shell Scripts . 32

2.5 The pstat Command . 33
2.6 The netstat Command . 35

2.6.1 Using the netstat Command . 35
2.6.2 Additional Rules of Thumb . 41
2.6.3 AIX Version 4.2.1 Improvements . 42

2.7 The nfsstat Command . 42
2.7.1 NFS Server Information . 43
2.7.2 NFS Client Information . 44
2.7.3 AIX Version 4.2.1 Improvements . 45

2.8 The no Command . 46
2.8.1 no Command Parameters . 47
2.8.2 Stream Parameters . 48
2.8.3 AIX Version 4.2.1 Improvements . 49

2.9 The nfso Command . 50
2.9.1 nfso Command Parameters . 51

 Copyright IBM Corp. 1997 iii

2.9.2 AIX Version 4.2.1 Improvements . 53
2.10 The nice Command . 54

2.10.1 Using the nice Command . 55
2.11 The renice Command . 56
2.12 The prof Command . 58

2.12.1 The prof Implementation . 58
2.13 The gprof Command . 59

2.13.1 The gprof Implementation . 59

Chapter 3. Legacy (AIX) Performance Tools . 63
3.1 The tprof Command . 63

3.1.1 The tprof Implementation . 63
3.1.2 The Advantages of tprof . 64
3.1.3 The Limitations of tprof . 64
3.1.4 A Systemwide Example . 65
3.1.5 A Source-Line Example . 67

3.2 The svmon Command . 71
3.2.1 How Much Memory is in Use . 72
3.2.2 Who is Using Memory? . 73
3.2.3 Detailed Information on a Specific Segment ID 74
3.2.4 List of Top Memory Usage of Segments 75
3.2.5 Correlating svmon and vmstat Outputs 75
3.2.6 Correlating svmon and ps Outputs . 76
3.2.7 Finding Memory-Leaking Programs . 77
3.2.8 Calculating the Minimum Memory Requirement of a Program 78

3.3 The rmss Command . 79
3.3.1 Using rmss . 80
3.3.2 Simulating Different Memory Sizes . 80

3.4 The filemon Command . 83
3.4.1 Using filemon . 83
3.4.2 The Global Reports of filemon . 87
3.4.3 The Detailed Reports of filemon . 89
3.4.4 Comparing filemon and vmstat Outputs 92
3.4.5 Things to Keep in Mind . 93

3.5 The fileplace Command . 94
3.5.1 Using fileplace . 95
3.5.2 Space Efficiency and Sequentiality . 96
3.5.3 AIX File System Organization . 97

3.6 The lslv Command . 98
3.6.1 LVM Policies . 99
3.6.2 Logical Volume Fragmentation . 102
3.6.3 Relationship Between Policies and Performance 104

3.7 The netpmon Command . 106
3.7.1 The netpmon Implementation and Functions 106
3.7.2 Using netpmon . 107
3.7.3 The Global Reports of netpmon . 110
3.7.4 The Detailed Reports of netpmon . 111
3.7.5 Limitations of netpmon . 113

3.8 The genld Command . 113
3.9 The genkld Command . 114
3.10 The genkex Command . 115
3.11 The stripnm Command . 116
3.12 The trace and trcrpt Commands . 120

3.12.1 The trace Implementation . 121
3.12.2 Starting and Controlling trace . 121

iv RS/6000 Performance Tools in Focus

3.12.3 Examples of trace . 122
3.12.4 Using trcrpt to View Trace Data . 124
3.12.5 trcrpt Examples . 124
3.12.6 How to Spot Thrashing . 126
3.12.7 Using trace to Identify Other Resource Constraints 127

Chapter 4. Advanced AIX V4 Performance Tools 129
4.1 PDT . 129

4.1.1 Enabling and Configuring PDT . 130
4.1.2 PDT Report . 133
4.1.3 PDT Error Reporting . 139

4.2 The perfpmr Package . 140
4.2.1 Using the perfpmr Command . 140
4.2.2 Output Files . 141

4.3 The bf and bfrpt Commands . 144
4.3.1 How Does BigFoot Work? . 144
4.3.2 Using bf . 144
4.3.3 Generating Reports with bfrpt . 146

4.4 The stem Command . 152
4.4.1 Using stem . 153
4.4.2 Shared-Memory Callgraphs . 154
4.4.3 Stem Map File . 156

4.5 The syscalls Command . 158
4.5.1 Using syscalls . 159
4.5.2 Examples . 160

4.6 The fdpr Command . 162
4.6.1 Using fdpr . 163
4.6.2 Other fdpr Options . 164
4.6.3 Considerations . 164

4.7 The lockstat Command . 164
4.7.1 Locks on SMP Systems . 164
4.7.2 Using lockstat . 166
4.7.3 Improving Lock Performance . 169

4.8 The cpu_state Command . 170
4.8.1 Using cpu_state . 171
4.8.2 Differences in AIX V4.1 . 173

4.9 The bindprocessor Command . 173
4.9.1 Processor Affinity . 173
4.9.2 Using bindprocessor . 175
4.9.3 Considerations . 176

4.10 The schedtune Command . 177
4.10.1 Memory Load Control Parameters 178
4.10.2 fork() Retry Interval Parameter . 182
4.10.3 Priority Calculation Parameters . 183
4.10.4 Time-Slice Increment Parameter . 184
4.10.5 Processor Affinity Parameters . 185

4.11 The vmtune Command . 189
4.11.1 Tuning VMM Page Replacement . 190
4.11.2 Tuning Sequential Read-Ahead . 194
4.11.3 Tuning Write-Behind . 198
4.11.4 Tuning Paging-Space Thresholds . 199
4.11.5 Miscellaneous I/O Tuning Parameters 199

Chapter 5. Performance Toolbox . 201
5.1 Introduction . 201

Contents v

5.2 Performance Toolbox Concepts . 201
5.3 Benefits of Using Performance Toolbox 202
5.4 Manager . 203
5.5 Agent . 204
5.6 Useful Information . 205
5.7 Using Performance Toolbox . 207

5.7.1 Manager Main Window . 208
5.7.2 Creating a New Console . 209
5.7.3 Monitoring a Process . 217
5.7.4 Monitoring an SMP with 3dmon . 220
5.7.5 Monitoring Multiple Hosts with 3dmon 222

5.8 Investigating Performance Problems . 225
5.9 Customizing Performance Toolbox . 230

5.9.1 Data Reduction and Alarms with filtd 230
5.10 Monitoring Exceptions with exmon . 236
5.11 Analyzing Recordings with the azizo Program 240

5.11.1 The azizo Main Window . 243
5.11.2 The azizo Graph Window . 244
5.11.3 Zooming-In on Main Graphs . 247
5.11.4 Other Options . 250

5.12 Conclusion . 250

Chapter 6. Additional Performance Tools . 251
6.1 xgprof . 251
6.2 Program Visualizer . 253

6.2.1 pvtrace . 254
6.2.2 Starting PV . 255
6.2.3 Packaging the Trace . 259
6.2.4 Making a Textual Trace Report Using pvreport 260
6.2.5 PV Tutorial . 261

6.3 utld . 261
6.3.1 Generating a Trace for utld . 262
6.3.2 Using utld . 263

6.4 Sources for Additional Tools . 266

Appendix A. Summary of Rules of Thumb . 267

Appendix B. Summary of Tunable AIX Parameters 269

Appendix C. Performance Tools Paths and Filesets 293

Appendix D. Special Notices . 295

Appendix E. Related Publications . 297
E.1 International Technical Support Organization Publications 297
E.2 Redbooks on CD-ROMs . 297
E.3 Other Publications . 297

How to Get ITSO Redbooks . 299
How IBM Employees Can Get ITSO Redbooks 299
How Customers Can Get ITSO Redbooks . 300
IBM Redbook Order Form . 301

List of Abbreviations . 303

vi RS/6000 Performance Tools in Focus

Index . 305

ITSO Redbook Evaluation . 307

Contents vii

viii RS/6000 Performance Tools in Focus

Figures

 1. Performance-Tuning Flowchart . 2
 2. AIX File System Organization . 98
 3. AIX LVM Policies . 99
 4. The Inter-Disk Policy . 101
 5. Logical Volume Striping . 105
 6. The trace Implementation . 121
 7. Output File __global.ps . 150
 8. Shared-Memory Buffer Structure . 154
 9. Map File Format . 156
10. Map File Example . 157
11. Example of Conditional Branch Re-Coding 162
12. Data Serialization . 165
13. Relationship Between Throughput and Granularity 170
14. Sequential Read Ahead . 195
15. The Performance Toolbox Environment 201
16. AIX Performance Toolbox Initial Screen 208
17. Creating a New Console (Step 1) . 209
18. Creating a New Console (Step 2) . 210
19. Creating a New Console (Step 3) . 211
20. Creating a New Console (Step 4) . 212
21. Creating a New Console (Step 5) . 213
22. Creating a New Console (Step 6) . 214
23. Changing the Properties of a Value . 215
24. Created New Console . 216
25. Monitoring a Process (Step 1) . 217
26. Monitoring a Process (Step 2) . 218
27. Monitoring a Process (Step 3) . 219
28. Monitoring a Process (Step 4) . 220
29. 3-D Monitor Selection Menu . 221
30. 3dmon Output on a Four-Way SMP . 222
31. Configuration and Tiling . 223
32. Host Selection . 224
33. Multiple Hosts 3dmon Graph . 225
34. Local System Monitor Console . 226
35. Select Host Processes . 227
36. Initial 3dmon Graph of CPU-Intensive Processes 228
37. vmstat Output . 229
38. Final 3dmon Graph of CPU-Intensive Processes 230
39. Partial Listing of Statistics . 231
40. Output From Alarm . 233
41. An Instrument Using Filters . 235
42. Pie Chart Using Filters . 236
43. The exmon Main Window . 237
44. Modified exmon Main Window . 238
45. Command Execution Pop-Up . 239
46. Analyzing Recordings Pop-Up . 241
47. The azizo Main Window . 242
48. Recording Files Pop-Up Menu . 242
49. The azizo Main Window . 243
50. Main Window of azizo with Memory-Related Metrics 244
51. The azizo Graph Window . 245

 Copyright IBM Corp. 1997 ix

52. Filtered azizo Main Graph Window . 246
53. Filter Dialog Box . 247
54. Zoom-In Dialog Box . 248
55. Zoomed-In Main Graph . 248
56. Information Window for a Zoomed-In Main Graph 249
57. The xgprof Start Window . 252
58. Zoomed-In Window of the Main Routine 253
59. PV Control Panel . 255
60. Trace Generation Pop-Up Menu . 257
61. Question Pop-Up Menu . 257
62. Partial PV Views (One) . 258
63. Partial PV Views (Two) . 259
64. Trace Report View . 261

x RS/6000 Performance Tools in Focus

Tables

 1. List of the Most Important Performance Tools 3
 2. List of Performance Tools by Resource . 4
 3. Send and Receive Spaces for TCP and UDP 48
 4. Table of Perfagents for Sun SPARCstations 206
 5. Rules of Thumb . 268

 Copyright IBM Corp. 1997 xi

xii RS/6000 Performance Tools in Focus

Preface

This redbook describes and explores the standard, legacy, and advanced
performance tools available on RS/6000 with the AIX operating system.

This redbook was written for RS/6000 users, system administrators, and system
engineers who need to use the performance monitoring and tuning tools to
evaluate system performance and tune the system.

Performance monitoring and system tuning is a vast and complex topic.
Fortunately, due to its UNIX heritage, AIX provides a powerful set of
performance-monitoring and tuning tools. The standard UNIX performance tools
allow you to check the hardware resources of a system. The legacy and
advanced tools go beyond the hardware and investigate logical resources. The
Performance Toolbox for AIX combines all these tools in one Motif-based
toolbox.

All the tools described in this book will help detect and identify a performance
bottleneck. General guidelines are given to narrow down the culprit.
Interpretation of data and rules of thumb are provided on a tools by tools basis.

Several practical examples are presented to demonstrate the use of the tools
and the relevant numbers to look out for in deciding where the performance
bottleneck is.

Some knowledge of UNIX and/or the AIX operating system is assumed.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Austin, Center.

Andreas Hoetzel is an International Technical Support Specialist for RS/6000 and
AIX Performance at the International Technical Support Organization, Austin
Center. He writes extensively and teaches IBM classes worldwide on all areas
of AIX internals, performance, and tuning. Before joining the ITSO, Andreas
Hoetzel worked in the AIX Competence Center in Munich Germany as an AIX
Technical Support Specialist.

Cintia Scovine Barcelos is an AIX Support Professional in Brazil. She has three
years of experience in the field. She holds a degree in Electronic Engineering.
Her areas of expertise include HACMP/6000 performance and tuning and
capacity planning.

Xiong Guan is an AIX Technical Sales Specialist in Beijing, China. He has three
years of experience in RS/6000 and AIX. His areas of expertise focus on AIX
system management and HACMP.

Michael Spornhauer is an AIX Support Professional in Germany. He has three
years of experience in the second-level support for the AIX base operating
system. He holds a degree in Computer Science and his areas of expertise
include AIX internals, TCP/IP, performance and tuning.

 Copyright IBM Corp. 1997 xiii

Gavin Steer is an AIX Support Professional in South Africa. He has been with
IBM for 16 years and has 10 years experience in system performance, with the
last three years specializing in AIX.

Thanks to the following people for their invaluable contributions to this project:

Yves Bex
International Technical Support Organization, Austin Center

Marcus Brewer
International Technical Support Organization, Austin Center

Rebeca Rodriguez
International Technical Support Organization, Austin Center

Steve Gardner
International Technical Support Organization, Austin Center

Heidemarie Hoetzel
IBM Germany

Mathew Accapadi
IBM Austin

Jim Chen
IBM Austin

Rudy Chukran
IBM Austin

Ryan France
IBM Austin

Stephen Nasypany
IBM Austin

Ann Ruth
IBM Austin

Barbara Wang
IBM Austin

Erik Jensen
IBM T.J. Watson Research Center

Comments Welcome
We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the following
address:

 redbook@vnet.ibm.com

Your comments are important to us!

xiv RS/6000 Performance Tools in Focus

Chapter 1. Introduction

Due to its UNIX heritage, AIX provides a powerful set of performance-monitoring
and tuning tools. The available tools give performance information for different
components of the system and on various parameters that affect performance.

Since resources are not infinitely fast, tasks (work being performed on the
system) are always resource-constrained. The trick is knowing which resource
is pacing the system. This is not always as apparent as it seems.

Systems have both real and logical resources. Real resources are physical
devices, such as the CPU, memory, disk drives and other I/O components.
Logical resources are software abstractions for managing storage or I/O, such
as the Logical Volume Manager (LVM), queues, memory buffers, file systems,
and the Virtual Memory Manager (VMM).

Traditional UNIX tools exist to collect and report usage data for real resources.
However, since many logical resources are implementation-specific, traditional
tools do not provide the level of detail required to fully analyze a system, and it
is harder to find tools to measure their utilization. AIX has a suite of
performance tools, the so-called Legacy Tools, that provide fine-grained reports
concerning resource usage. These AIX-specific performance tools are
introduced later in this book to help you analyze logical resource activity.

Before using these tools, a few concepts have to be clarified.

What is a Performance Bottleneck?: A performance bottleneck is the slowest
component in a computer environment. This can either be a system resource
like CPU, memory, or disk, or it could be the network. There is always a
bottleneck because some resource will always be the slowest. The question is
whether this bottleneck is a problem on a daily business.

How to Determine a Performance Bottleneck?: Although there is no cookbook
for performance monitoring, there are some general guidelines that should be
followed. The sequence of measuring system performance is extremely
important. One should always follow the specified path, which is: CPU, Memory,
I/O, Network.

 Copyright IBM Corp. 1997 1

Figure 1. Performance-Tuning Flowchart

Without following this path, you might overlook a bottleneck. For instance, if a
system is paging a lot, you might see a heavy usage of the disks. Not looking at
the memory statistics before looking at the I/O statistics could mislead you to the
assumption that there is an I/O bottleneck.

 Important

Always use the sequence as shown in the flowchart to determine a
performance bottleneck:

• CPU
• Memory
• Disk I/O
• Network

Always consider the whole system and the interdependencies of its resources.

• Memory depends on many different factors including:

− How many users will the system be supporting?

− How many and what type of applications will be running?

− Will the applications be large, computing-intensive or more I/O oriented?

• The CPU power is dependent on the same factors as the memory, but there
are some additional ones to consider:

− Does the system have to meet some performance criteria such as
minimum response time for all users?

− Do batch applications have to complete within a certain time?

− Will the CPU workload grow over time?

2 RS/6000 Performance Tools in Focus

• The I/O subsystem is one of the most important areas of system design.
Improperly configured disks, file systems, or networks can negate any
performance gains that may have been realized by an otherwise properly
configured system.

You should always keep in mind:

• Performance analysis is not always deterministic.

• Performance problems can appear quickly and with little notice.

• Probably the toughest part of performance management is understanding
how all components of the operating system and the various applications
running on it interact.

• Subtle resources may be logical rather than physical.

1.1 AIX Performance Tools
As mentioned above, AIX provides several monitoring tools to determine a
performance bottleneck. Some of them may also be used to tune the system.
Not all of these tools come with the AIX Basic Operating System. Some of them
are part of the AIX Performance Agent or AIX Performance Manager LPP
software as you can see in Table 1.

Table 1. List of the Most Important Performance Tools

Often, specific performance tools can be used to monitor various system
resources. Thus, it is hard to classify tools on the basis of a single system
resource. Table 2 on page 4 offers an overview of the performance tools.

Chapter 1. Introduction 3

Table 2. List of Performance Tools by Resource

1.2 Baselines
Having a high number reported from any performance-monitoring tool in any
domain (CPU, memory, I/O or network) is not enough to say that the problem is
coming from there. Didn’t you get that same number before, while everything
ran OK? The baseline is here to help you find what has changed since the
good-old-times when everybody was happy and now, when the machine seems
so slow.

To get a baseline as a reference point from which to work, collect data on your
system when things are running smoothly. There are different ways to establish
baselines, and different levels at which you can have baselines.

• General-level baseline

This is the usual processes running on the machine, the usual disk activity,
or the file’s fragmentation on disk. This can be done both by standard
accounting processes which keep day-by-day process activity on the
machine and by the new Performance Diagnostic Tool (PDT), discussed later.

• Specific-level baseline

This allows you to check a really specific domain, like the normal (system +
user) CPU usage, the normal pagination rate, the disk activity, and so on.
You can have a sar command running in the background and keep the data
in a file for further analysis, enable system accounting, or use the perfPMR
tool. Another possibility is to have the autonomous logging by the xmservd
daemon coming with the Perfagent LPP, which is the agent part of the IBM
Performance Toolbox for AIX.

1.3 Permanent Light Monitoring
Permanent light monitoring, rather than a fixed baseline snapshot of one day,
can help you determine if the problem has just appeared that day or if it has
been present for days or weeks. It also saves you from having to reproduce the
problem; that is not always as easy as it sounds. This king of monitoring should,
of course, be as transparent and as unintrusive for the machine as possible.

The tool that you may want to run this permanent light monitoring is the sar
command, run in background with a large increment and with its output
redirected to a file (for minimizing the impact of this monitoring). You can also

4 RS/6000 Performance Tools in Focus

enable system accounting via the cron daemon, or use the xmservd daemon to
collect the data, which is probably the best, least-intrusive way.

Manage Exceptions: You may want to check the files created from this
monitoring and try to detect abnormal figures to prevent the appearance of any
problems. For the sar output file, try to find any abnormally high activity on CPU
or disks. With the xmservd daemon, it is even easier because you can run the
filtd daemon to catch these figures, and start any alert you may want to specify.
This should lead directly to the domain to investigate (CPU, memory, I/O, or
network).

Chapter 1. Introduction 5

6 RS/6000 Performance Tools in Focus

Chapter 2. Standard (UNIX) Performance Tools

The standard UNIX performance tools allow you to check the hardware
resources of a system: CPU utilization, memory, I/O throughput, and disks. The
logical resources, such as VMM, LVM, file systems, queues and buffers, are
implementation specific; therefore AIX-specific tools exist, and these are
introduced in Chapter 3, “Legacy (AIX) Performance Tools” on page 63, and in
Chapter 4, “Advanced AIX V4 Performance Tools” on page 129 .

All ″Rules of Thumb″ given in this chapter are only usable as references
because of the variations of hardware, like CPU architecture and speed, disk
subsystems and controllers, real and virtual memory, and so on. Therefore,
statements about good values should be used as a general rule and not as a
law. If the system crosses these rules and, at the same time, there is no
performance problem, then further investigation is at your discretion. If the
given number appears repeatedly within a specific time interval, then you may
have a performance problem. The specific time interval also depends on the
system environment.

2.1 The vmstat Command
The first tool to use is vmstat, which provides very quick and compact
information about various system resources and their related performance
problems. The vmstat command reports statistics about kernel threads in the
run and wait queue, memory, paging, disks, interrupts, system calls, context
switches, and CPU activity. The reported CPU activity is a percentage
breakdown of user mode, system mode, idle time, and waits for disk I/O.

The vmstat command uses between 20 and 30 milliseconds of CPU time for each
periodic report it generates.

 Note

If the vmstat command is used without any options or only with the interval
and optionally, the count parameter, like vmstat 2; then the first line of
numbers is an average since system reboot.

This line should be ignored.

The vmstat command allows to look for three probable performance problems on
the system: CPU bound, memory bound, and I/O bound.

2.1.1 CPU Bound
In the following vmstat output, a CPU-bound program was started.

vmstat 2 10

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 3269 10342 0 0 0 0 0 0 130 36 20 0 0 99 0
0 0 3275 10336 0 0 0 0 0 0 132 40 26 0 1 99 0
0 0 3282 10326 0 0 0 0 0 0 128 6996 27 3 8 90 0

 Copyright IBM Corp. 1997 7

2 0 3282 10326 0 0 0 0 0 0 121 80064 20 15 85 0 0
2 0 3282 10326 0 0 0 0 0 0 126 79579 21 22 78 0 0
2 0 3282 10326 0 0 0 0 0 0 124 79662 19 20 80 0 0
2 0 3282 10326 0 0 0 0 0 0 121 79686 20 16 84 0 0
0 0 3275 10336 0 0 0 0 0 0 128 30305 24 8 30 62 0
0 0 3275 10336 0 0 0 0 0 0 123 36 20 0 0 99 0
0 0 3275 10336 0 0 0 0 0 0 122 36 20 0 0 99 0

In this example the CPU was idle for 99 percent of the interval until, as can be
seen in the third row, a CPU-bound program was started and absorbed the CPU
idle time with no I/O wait time consumed. After the program was stopped the
CPU utilization went back to the initial values.

To check if the CPU is the bottleneck, consider the four cpu columns and the two
kthr (kernel threads) columns:

• cpu

Percentage breakdown of CPU time usage during the interval.

− us

The us column shows the percent of CPU time spent in user mode. A
UNIX process can execute in either user mode or system (kernel) mode.
When in user mode, a process executes within its application code and
does not require kernel resources to perform computations, manage
memory or set variables.

− sy

The sy column details the percentage of time the CPU was executing a
process in system mode. This includes CPU resource consumed by
kernel processes (kprocs) and others that need access to kernel
resources. If a process needs kernel resources, it must execute a
system call and is thereby switched to system mode to make that
resource available. For example, reading and/or writing of a file
requires kernel resources to open the file, seek a specific location, and
read and/or write data.

Optimum use would have the CPU working 100 percent of the time. This
holds true in the case of a single-user system with no need to share the
CPU. Generally, if us + sy time is below 90 percent, a single-user
system is not considered CPU constrained. However, if us + sy time on
a multiuser system exceeds 80 percent, the processes may spend time
waiting in the run queue. Response time and throughput might suffer.

− id

The id column shows the percentage of time which the CPU is idle, or
waiting, without pending local disk I/O. If there are no processes
available for execution (the run queue is empty), the system dispatches a
process called wait. The ps report (with the -k or -g 0 option) identifies
this as kproc with a process ID (PID) usually of 516 (for AIX V3, it was PID
514). If the ps report shows a high aggregate time for this process, it
means there were significant periods of time when no other process was
ready to run or waiting to be executed on the CPU. So the system was
mostly idle and waiting for new tasks.

8 RS/6000 Performance Tools in Focus

SMP Note

On SMP systems a wait process is bound to every CPU. They can be
seen with the pstat -P command. The command displays the PID/TID
in hexadecimal digits. On a four-way system the PIDs for the wait
processes should be 516, 774, 1032, and 1290.

If there are no I/Os pending to a local disk, all time charged to wait is
classified as idle time. An access to remote disks (NFS-mounted disks)
is treated as idle time (with a small amount of sy time to execute the NFS
requests) because there is no pending I/O request to a local disk.

− wa

The wa column details the percentage of time the CPU was idle with
pending local disk I/O. If there is at least one outstanding I/O to a local
disk when wait is running, the time is classified as waiting for I/O.
Unless asynchronous I/O is being used by the process, an I/O request to
disk causes the calling process to block (or sleep) until the request has
been completed. Once a process′s I/O request completes, it is placed
on the run queue.

A wa value over 25 percent could indicate that the disk subsystem may
not be balanced properly, or it may be the result of a disk-intensive
workload.

Important for SMP

For SMP systems the us , sy , id and wa columns are only averages
over the processors. But keep in mind, that the I/O wait statistic per
processor is not really a processor-specific statistic; it is a global
statistic. An I/O wait is distinguished from idle time only by the state
of a pending I/O. If there is any pending disk I/O, and the processor
is not busy, then it is an I/O wait time. Disk I/O is not tracked by
processors; so when there is any I/O wait, all the processors get
charged (assuming they are all equally idle). More details about the
SMP I/O wait time in 2.3, “The sar Command” on page 23.

• kthr

Kernel threads placed on various queues per second over the sampling
interval (state changes).

− r

Average number of kernel threads placed on the run queue per second;
this means the average number of kernel threads which are in the run
queue per second. This field indicates the number of runable threads.
This value should be less than five for non-SMP systems. For SMP
systems, this value should be less than:

5 x (Ntotal - Nbind)

Where Ntotal stands for total number of processors and Nbind for the
number of processors which have been bound to processes, for example,
with the bindprocessor command.

If this number increases rapidly, you should probably look at the
application(s). But systems may be also running fine with 10 to 15
threads on their run queue, depending on the thread tasks and the
amount of time they run.

Chapter 2. Standard (UNIX) Performance Tools 9

− b

Average number of kernel threads placed on the wait queue per second.
These threads are waiting for resources or I/O. Threads are also located
in the wait queue when they are scheduled for execution but waiting for
one of their thread pages to be paged in. This value is usually near
zero. But, if the run-queue value increases, the wait-queue normally
also increases.

• faults

Information about process control, like trap and interrupt rate.

− in

Explained in 2.1.3, “I/O Bound” on page 15.

− sy

The number of system calls per second observed in the interval.
Resources are available to user processes through well-defined system
calls. These calls instruct the kernel to perform operations for the calling
process and exchange data between the kernel and the process. Since
workloads and applications vary widely, and different calls perform
different functions, it is impossible to say how many system calls
per-second are too many. But typically, when the sy column raises over
10000 calls per second, there should be some further investigations. For
this column, it is advisable to have a baseline measurement that gives a
count for a normal sy value.

− cs

Number of kernel thread context switches per second observed in the
interval. The physical CPU resource is subdivided into logical time slices
of 10 milliseconds each. Assuming a thread is scheduled for execution,
it will run until its time-slice expires, until it is preempted, or until it
voluntarily gives up control of the CPU. When another thread is given
control of the CPU, the context or working environment of the previous
thread must be saved and the context of the current thread must be
loaded. AIX has a very efficient context switching procedure, so each
switch is inexpensive in terms of resources. Any significant increase in
context switches should be cause for further investigation.

2.1.2 Memory Bound
The following vmstat output is an example for a memory-bound system.

vmstat 1 8
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 1 17264 127 0 0 14 296 818 0 233 172 120 90 10 0 0
 2 0 17264 121 0 0 10 384 871 0 282 486 282 78 14 0 9
 3 0 17264 117 0 0 38 328 1128 1 290 257 156 83 17 0 0
2 0 17264 119 0 0 67 136 512 0 272 209 94 84 14 0 2
 1 2 17264 115 0 0 69 176 1476 0 300 232 99 85 15 0 0
2 0 17264 121 0 0 18 24 88 0 186 340 132 84 7 2 7
2 0 17264 125 0 0 71 160 682 0 282 137 69 94 6 0 0
2 0 17264 124 0 0 74 160 412 0 262 112 64 85 15 0 0

In this example, the size of the free list (fre) is already low, and pages are being
scanned (sr), freed (fr) and paged out (po). The CPU utilization is around 85

10 RS/6000 Performance Tools in Focus

percent in user mode (us) and the user application continues to allocate
memory. In the third row of numbers, the fre number drops under the minimum
value for this count; therefore the system starts to free up more pages, until the
high water mark for fre is reached. This is the reason for the high numbers of
page outs (po), freed pages (fr), and scanned pages (sr). In the sixth row a
process finished and its memory is freed, requiring fewer page outs.

To see if the system has performance problems with its VMM, look at the
columns of memory and page .

• memory

Provides information about the real and virtual memory.

− avm

There is a lot of misconception about this value. It stands for Active
Virtual Memory. The column gives the average number of 4-K pages that
are allocated to paging space. When a process executes, space for
working storage is allocated on the paging device. The avm value can
be used to calculate the amount of paging space assigned to executing
processes. The number in the avm field divided by 256 will roughly yield
the number of megabytes (MB) allocated to paging space systemwide.
The same information is reflected in the Percent Used column of the lsps
-s command output or by svmon -G under the pg space inuse field.

− fre

The fre column shows the average number of free memory pages. A
page is a 4-KB area of real memory. The system maintains a buffer of
memory pages, called the free list, that will be readily accessible when
the VMM needs space. The minimum number of pages that the VMM
keeps on the free list is determined by the minfree parameter of vmtune
(for details see 4.11, “The vmtune Command” on page 189). By default,
the nominal size of the free list varies depending on the amount of real
memory installed. On systems with 64 MB of memory or more, the
minimum value minfree is 120 pages. For systems with less than 64 MB,
the value is two times the number of MB of real memory, minus eight.
For example, a system with 32 MB would have a minfree value of 56 free
pages.

If the number of pages on the free list drops below minfree, the VMM will
steal pages until the free list has been restored to the maxfree value,
which is defined as minfree plus eight.

When an application terminates, all of its working pages are immediately
returned to the free list. Its persistent pages (files), however, remain in
RAM and are not added back to the free list until they are stolen by the
VMM for other programs. Persistent pages are also freed if the
corresponding file is deleted.

For this reason, the fre value may not indicate all the real memory that
can be readily available for use by processes. If a page frame is
needed, then persistent pages related to terminated applications are
among the first to be handed over to another program.

If the fre value is substantially above the maxfree value, then it is unlikely
that the system is thrashing. Thrashing means that the system is
continuously paging in and out. However, if the system is experiencing
thrashing, you can be assured that the fre value will be small.

Chapter 2. Standard (UNIX) Performance Tools 11

 Thrashing

When memory is severely over-committed, the system spends most
of its time dealing with page faults. It becomes difficult to choose
pages for page out because they will be referenced again by
currently running processes. The result is that pages that will soon
be referenced get paged out anyway and are then paged in again.
This condition is called thrashing. The system spends most of its
time paging in and paging out instead of executing useful
instructions. None of the active processes make any significant
progress. The VMM has a memory load control algorithm (for details
see 4.10, “The schedtune Command” on page 177) that detects when
the system is thrashing and then attempts to correct the condition.

• page

Information about page faults and paging activity. These are averaged over
the interval and given in units per second.

− re

The number of page reclaims per second observed in the sample
interval. If a page fault occurs and this page is currently on the free list
and has not yet been reassigned, this is considered a reclaim since no
new I/O request has to be initiated (the page is still in memory). It also
includes pages previously requested by VMM for which I/O has not yet
been completed or those pre-fetched by VMM’s read-ahead mechanism
but hidden from the faulting segment. This is not to be confused with the
term repage which refers to a page that has already incurred a
page-fault (the page could be currently on the free list, filesystem, or in
paging space).

 Note

In AIX V4 the reclaiming is no longer supported. The algorithm for
reclaims costs performance, and the value delivered does not give
very useful information about the performance of the system.

− pi

The pi column details the number (rate) of pages paged in from paging
space. Paging space is the part of virtual memory that resides on disk.
It is used as an overflow when memory is over-committed. Paging space
consists of logical volumes dedicated to the storage of working set pages
that have been stolen from real memory. When a stolen page is
referenced by the process, a page fault occurs, and the page must be
read into memory from paging space.

Due to the variety of configurations of hardware, software and
applications, there is no absolute number to look out for. But five
page-ins per second should be the upper limit. This theoretical
maximum should not be rigidly adhered to, but used as a reference.
This field is important as a key indicator of paging-space activity. Look
at it this way: If a page-in occurs, then there must have been a previous
page-out for that page. It is also likely in a memory-constrained
environment that each page-in will force a different page to be stolen
and, therefore, paged out. But systems could also work fine when they
have near to 10 pi /s for 1 min and then work without any page-ins.

12 RS/6000 Performance Tools in Focus

 Note

The system slows down when pi and po are consistently non-zero.

− po

The po column shows the number (rate) of pages paged out to paging
space. Whenever a page of working storage is stolen, it is written to
paging space. If not referenced again, it will remain on the paging
device until the process terminates or disclaims the space. Subsequent
references to addresses contained within the faulted-out pages results in
page faults, and the pages are paged in individually by the system.
When a process terminates normally, any paging space allocated to that
process is freed. If the system is reading in a significant number of
persistent pages (files), you may see an increase in po without
corresponding increases in pi . This does not necessarily indicate
thrashing, but may warrant investigation into data access patterns of the
applications.

 Note

The system considers itself to be thrashing when,

po / fr > 1 / h

The h is a system parameter from the schedtune command (see 4.10,
“The schedtune Command” on page 177 for details). The default
value for h in AIX V4 is 6, if less than 128 MB of RAM are in the
system. And it is 0, if the memory is greater than or equal to 128 MB.
For AIX V3, the default value is 6.

− fr

Number of pages that were freed per second by the page-replacement
algorithm during the interval. As the VMM page-replacement routine
scans the Page Frame Table (PFT), it uses criteria to select which pages
are to be stolen to replenish the free list of available memory frames.
The criteria include both kinds of pages, working (computational) and file
(persistent) pages. Just because a page has been freed, it does not
mean that any I/O has taken place. For example, if a persistent storage
(file) page has not been modified, it will not be written back to the disk.
If I/O is not necessary, minimal system resources are required to free a
page.

− sr

Number of pages that were examined per second by the
page-replacement algorithm during the interval. The VMM
page-replacement code scans the PFT and steals pages until the number
of frames on the free list is at least the maxfree value. The
page-replacement code may have to scan many entries in the PFT before
it can steal enough to satisfy the free list requirements. With stable,
unfragmented memory, the scan rate and free rate may be nearly equal.
On systems with multiple processes using many different pages, the
pages are more volatile and disjointed. In this scenario, the scan rate
may greatly exceed the free rate.

Chapter 2. Standard (UNIX) Performance Tools 13

 Note

Memory is over-committed when the ratio of fr to sr (fr:sr) is high.

An fr:sr ratio of 1:4 means that for every page freed, four pages had
to be examined. It is difficult to determine a memory constraint
based on this ratio alone, and what constitutes a high ratio is
workload/application dependent. In this case having taken a baseline
measurement of the system, when all is fine, may help a lot.

− cy

Number of cycles per second of the clock algorithm. The VMM uses a
technique known as the clock algorithm to select pages to be replaced.
This technique takes advantage of a referenced bit for each page as an
indication of what pages have been recently used (referenced). When
the page-stealer routine is called, it cycles through the PFT, examining
each page′s referenced bit.

The cy column shows how many times per second the page-replacement
code has scanned the PFT. Since the free list can be replenished
without a complete scan of the PFT and because all of the vmstat fields
are reported as integers, this field is usually zero. If not, it indicates a
complete scan of the PFT, and the stealer has to scan the PFT again,
because fre is still under the maxfree value.

The Page-Replacement Algorithm: The PFT includes flags to signal which pages
have been referenced and which have been modified. If the page stealer
encounters a page that has been referenced, it does not steal that page, but
instead, resets the reference flag for that page. The next time the clock hand
passes that page and the reference bit is still off, that page is stolen. A page
that was not referenced in the first pass is immediately stolen.

The modify flag indicates that the data on that page has been changed since it
was brought into memory. When a page is to be stolen, with the modify flag set,
a page-out call is made before stealing the page. Pages that are part of working
segments are written to paging space; persistent segments are written to disk.

In addition, the page-replacement algorithm keeps track of both new page faults
(referenced for the first time) and repage faults (referencing pages that have
been paged out) by using a history buffer that contains the IDs of the most recent
page faults. It then tries to balance file (persistent data) page outs with
computational (working storage or program text) page outs. Which kind of pages
are paged out is defined by the vmtune parameters maxperm and minperm. For
details, refer to 4.11, “The vmtune Command” on page 189.

A page fault is considered to be either a new page fault or a repage fault.

A new page fault occurs when there is no record of the page having been
referenced recently.

Considerations: It is recommended to configure enough paging space on the
system so that the paging space used does not approach 100 percent. For
systems up to 256 MB of memory, the paging space should be twice the size of
real memory. For memories larger than 256 MB, the following is recommended:

total paging space = 512 MB + (memory size - 256 MB) * 1.25

14 RS/6000 Performance Tools in Focus

The paging space size can not be less than 16 MB and not greater than 20
percent of total disk space.

When fewer unallocated pages than the npskill value of the vmtune command
(more details in 4.11, “The vmtune Command” on page 189) remain on the
paging device, the system will begin to kill processes to free some paging space.

By default, the npskill value is calculated via:

MAX (64, number of paging space pages/128)

(for AIX V3 the value was 128). The ″Number of paging space pages″ value is
shown in the svmon -G output for the parameter pg space size.

2.1.3 I/O Bound
To prove that the system is I/O bound, it is better to use the iostat command
(for details see 2.2, “The iostat Command” on page 17). However vmstat could
point to that direction by looking at the wa column, as discussed earlier in this
chapter. Other indicators for I/O bound are:

• The disk xfer part of vmstat

To display a statistic about the logical disks (a maximum of four disks is
allowed), use the following command:

vmstat hdisk0 hdisk1 1 8
kthr memory page faults cpu disk xfer
---- ---------- ----------------------- ------------ ----------- ------
r b avm fre re pi po fr sr cy in sy cs us sy id wa 1 2 3 4
0 0 3456 27743 0 0 0 0 0 0 131 149 28 0 1 99 0 0 0
0 0 3456 27743 0 0 0 0 0 0 131 77 30 0 1 99 0 0 0
1 0 3498 27152 0 0 0 0 0 0 153 1088 35 1 10 87 2 0 11
0 1 3499 26543 0 0 0 0 0 0 199 1530 38 1 19 0 80 0 59
0 1 3499 25406 0 0 0 0 0 0 187 2472 38 2 26 0 72 0 53
0 0 3456 24329 0 0 0 0 0 0 178 1301 37 2 12 20 66 0 42
0 0 3456 24329 0 0 0 0 0 0 124 58 19 0 0 99 0 0 0
0 0 3456 24329 0 0 0 0 0 0 123 58 23 0 0 99 0 0 0

The disk xfer part provides the number of transfers per second to the
specified physical volumes that occurred in the sample interval. One to four
physical volume names can be specified. Transfer statistics are given for
each specified drive in the order specified. This count represents requests
to the physical device. It does not imply an amount of data that was read or
written. Several logical requests can be combined into one physical request.

• The in column of the vmstat output

Number of device interrupts per second observed in the interval.

vmstat 1 12
kthr memory page faults cpu
----- ------------ ------------------------ ------------- -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 3544 28065 0 0 0 0 1 0 120 90 21 0 0 99 0
0 0 3544 28065 0 0 0 0 0 0 125 64 26 0 0 99 0
0 1 3586 26866 0 0 0 0 0 0 184 2529 51 5 22 11 62
0 1 3586 26297 0 0 0 0 0 0 186 1257 28 0 16 0 84
0 1 3586 25158 0 0 0 0 0 0 190 2464 35 5 21 0 74
0 1 3586 24590 0 0 0 0 0 0 188 1257 27 0 15 0 85
0 1 3586 23452 0 0 0 0 0 0 195 2480 39 1 29 0 70
0 1 3586 23088 0 0 0 0 0 0 188 1380 105 4 22 0 74

Chapter 2. Standard (UNIX) Performance Tools 15

0 1 3586 23087 0 0 0 0 0 0 168 2593 276 9 57 0 34
1 0 3544 23148 0 0 0 0 0 0 165 2004 269 6 44 25 25
0 0 3544 23148 0 0 0 0 0 0 127 50 23 0 0 99 0
0 0 3544 23148 0 0 0 0 0 0 129 66 22 0 0 99 0

This column shows the number of hardware or device interrupts (per second)
observed over the measurement interval. Examples of interrupts are disk
request completions and the 10 millisecond clock interrupt. Since the latter
occurs 100 times per second, the in field is always greater than 100. But
vmstat also provides a more detailed output about the system interrupts.

• The vmstat -i output

The -i parameter displays the number of interrupts taken by each device
since system startup. But, by adding the interval and optional the count
parameter, the statistic since startup is only displayed in the first stanza;
every trailing stanza is a statistic about the scanned interval.

vmstat -i 1 2
priority level type count module(handler)

0 0 hardware 0 i_misc_pwr(a868c)
0 1 hardware 0 i_scu(a8680)
0 2 hardware 0 i_epow(954e0)
0 2 hardware 0 /etc/drivers/ascsiddpin(189acd4)
1 2 hardware 194 /etc/drivers/rsdd(1941354)
3 10 hardware 10589024 /etc/drivers/mpsdd(1977a88)
3 14 hardware 101947 /etc/drivers/ascsiddpin(189ab8c)
5 62 hardware 61336129 clock(952c4)
10 63 hardware 13769 i_softoff(9527c)

priority level type count module(handler)
0 0 hardware 0 i_misc_pwr(a868c)
0 1 hardware 0 i_scu(a8680)
0 2 hardware 0 i_epow(954e0)
0 2 hardware 0 /etc/drivers/ascsiddpin(189acd4)
1 2 hardware 0 /etc/drivers/rsdd(1941354)
3 10 hardware 25 /etc/drivers/mpsdd(1977a88)
3 14 hardware 0 /etc/drivers/ascsiddpin(189ab8c)
5 62 hardware 105 clock(952c4)

 10 63 hardware 0 i_softoff(9527c)

 Note

The output will differ from system to system, depending on hardware and
software configurations. Check for high numbers in the count column and
investigate why this module has to execute so many interrupts.

2.1.4 Summary Option
The summary (-s) option reports the absolute counts of various events since the
system was booted. The vmstat -s command requires about 90 milliseconds of
CPU time.

vmstat -s
2895207 total address trans. faults
145740 page ins
83203 page outs
3436 paging space page ins
7844 paging space page outs

0 total reclaims
1260991 zero filled pages faults

5360 executable filled pages faults

16 RS/6000 Performance Tools in Focus

1171187 pages examined by clock
35 revolutions of the clock hand

72712 pages freed by the clock
16984 backtracks

0 lock misses
1904 free frame waits

0 extend XPT waits
58771 pending I/O waits
111921 start I/Os
111921 iodones

 12935949 cpu context switches
 74569755 device interrupts

0 software interrupts
0 traps

 54273766 syscalls

The recommended way of using these statistics is to run this command before
and after a workload. Then determine the delta or difference between the two
outputs. An awk script called vmstatit that does this automatically is provided in
the Performance Tuning Guide publication, SC23-2365.

The page ins and page outs numbers in the summary represent virtual memory
activity to page-in or page-out pages from page space and file space. The
paging space page ins and paging space page outs are representative of only
paging space. The four fields above could be used to indicate how much of the
system ′s I/O is for persistent storage. If the value for paging space page ins is
subtracted from the (system-wide) value for page ins , the result will be the
number of pages that were read from persistent storage. Likewise, if the value
for paging space page outs is subtracted from the (system-wide) value for page
outs , the result will be the number of persistent pages that were written to disk.

If the system is paging too much, using vmtune may help. Creating separate
paging spaces on separate volumes may provide some benefit, but increasing
the memory would definitely help.

2.1.5 Conclusion
The vmstat command is only the first step to look for performance problems. It
gives an indication where the performance problem could be located. With this
in mind, choose a resource-specific command and take a deeper look into the
system behavior.

2.2 The iostat Command
The iostat command is the fastest way to get a first impression, whether the
system has an I/O-bound performance problem or not. The tool reports CPU
statistics and I/O statistics for TTY devices, disks, and CD-ROMs. It is used for
monitoring system I/O device utilization by observing the time the physical disks
are active in relation to their average transfer rates. The iostat command is
useful to determine whether a physical volume is becoming a performance
bottleneck and if there is a way to improve the situation. The generated reports
can be used to change system configurations to better balance the I/O load
between physical disks.

Chapter 2. Standard (UNIX) Performance Tools 17

The following example shows a part of an iostat output. The first stanza shows
the summary statistic since system startup. During the report, there was a copy
command started.

iostat 2 2

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 13.3 0.2 0.2 99.4 0.2

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 0.2 2.4 0.2 1192730 706531
hdisk1 0.0 0.3 0.0 60479 190316
cd0 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 208.0 0.0 11.5 0.0 88.5

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 35.5 848.0 76.0 1696 0
hdisk1 74.5 790.0 58.0 4 1576
cd0 0.0 0.0 0.0 0 0

The iostat command works by sampling the kernel ′s address space and
extracting data from various counters that are updated every clock tick (1 clock
tick = 10 mill iseconds). The results (covering TTY, CPU, and I/O subsystem
activity) are reported as per-second rates or as absolute values for the specified
interval.

Since the CPU utilization statistics are also available with the iostat report, the
percentage of time the CPU is in I/O wait can be determined at the same time.

The system maintains a history of disk activity by default. Note that if the history
is disabled, you see this message:

iostat 1 2

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 8.3 0.4 0.9 98.6 0.1

″ Disk history since boot not available. ″

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 411.9 3.0 22.8 0.0 74.3

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 25.7 15.8 3.0 16 0
hdisk1 72.3 2356.4 46.5 4 2376
cd0 0.0 0.0 0.0 0 0

This message is displayed instead of the first stanza, which is normally a
summary since system startup. Disk I/O history must be enabled to get useful
disk I/O information since startup. The interval disk I/O statistics are unaffected
by this.

Disk I/O history should be enabled since the CPU resource used in maintaining it
is insignificant. History keeping can be disabled or enabled in SMIT under the
following path, or use the fastpath smit chgsys:

18 RS/6000 Performance Tools in Focus

-> System Environments
-> Change/Show Characteristics of Operating System
-> Continuously maintain DISK I/O history

Choose true to enable history keeping or false to disable it.

The iostat command adds little overhead to the system. It uses about 20
milliseconds of CPU time for each report generated.

 Note

If the iostat command is used without interval and, optionally, count, then
the output is a summary since startup. If the command is used with an
interval and count parameter, like iostat 2 5, then only the first stanza is an
average since system reboot; the trailing stanzas are interval statistics.
The first stanza should be ignored when doing real-time measurements
because the history is usually not of interest in this case.

2.2.1 TTY Report
The two columns of TTY information (tin and tout) in the iostat output show the
number of characters read and written by all TTY devices. This includes both
real and pseudo TTY devices. Real TTY devices are those connected to an
asynchronous port. Some pseudo TTY devices are shells, telnet sessions, and
aixterms.

During the following example, the lptest command was started, which causes a
higher value for tout .

iostat -t 2 6

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 13.2 0.2 0.2 99.4 0.2
0.0 81.0 0.0 0.5 98.0 1.5
0.5 8153.0 0.5 3.5 95.5 0.5
1.5 8159.5 2.0 2.5 95.5 0.0
0.0 41.0 0.0 0.0 100.0 0.0
0.5 40.5 0.0 2.5 93.5 4.0

• tin

Shows the total characters per second read by all TTY devices.

• tout

Indicates the total characters per second written to all TTY devices.

Since the processing of input and output characters consumes CPU resources,
look for a correlation between increased TTY activity and CPU utilization. If such
a relationship exists, evaluate ways to improve the performance of the TTY
subsystem. Steps that could be taken include changing the application program,
modifying TTY port parameters during file transfer, or perhaps upgrading to a
faster or more efficient asynchronous communications adapter.

In InfoExplorer or in the Performance Tuning Guide, SC23-2365, you can find the
fastport.s script which is intended to condition a TTY port for fast file transfers
in raw mode; for example, when a FAX machine is to be connected. Using the
script may improve CPU performance by a factor of 3 at 38400 baud.

Chapter 2. Standard (UNIX) Performance Tools 19

2.2.2 CPU Report
The CPU statistics columns (% user, % sys, % idle, and % iowait) provide a
breakdown of CPU usage. This information is also reported in the vmstat
command output in the columns labeled us, sy, id, and wa. For a detailed
explanation for the values, see 2.1, “The vmstat Command” on page 7.

In general, a high % iowait indicates that the system has a memory shortage or
an inefficient I/O subsystem configuration. Understanding the I/O bottleneck and
improving the efficiency of the I/O subsystem requires more data than iostat can
provide. Some typical solutions might include:

• Limiting number of active logical volumes and file systems placed on a
particular physical disk. The idea is to balance file I/O evenly across all
physical disk drives.

• Spreading a logical volume across multiple physical disks. This is
particularly useful when a number of different files are being accessed.

• Creating multiple Journaled File Systems (JFS) logs for a volume group and
assigning them to specific file systems. This is beneficial for applications
that create, delete, or modify a large number of files, particularly temporary
files.

• Backing up and restoring file systems to reduce fragmentation.
Fragmentation causes the drive to seek excessively and can be a large
portion of overall response time.

• Adding additional drives and rebalancing the existing I/O subsystem.

On systems running a primary application, high I/O wait percentage may be
related to the workload. On systems with many processes, some will be running
while others wait for I/O. In this case, the % iowait can be small or zero
because running processes ″hide″ some wait time. Although % iowait is low, a
bottleneck may still limit application performance.

If iostat indicates that a CPU-bound situation does not exist, and % iowait time is
greater than 25 percent, you have an I/O or disk-bound situation. Now this may
be caused by excessive paging due to a lack of real memory. It could also be
due to unbalanced disk load, fragmented data or usage patterns. For an
unbalanced disk load, the same iostat report provides the necessary
information. But for information about file systems or logical volumes, which are
logical resources, you have to use an AIX-specific tool like filemon or fileplace.

2.2.3 Drive Report
When suspecting a disk I/O performance problem, the iostat command should
be used. To avoid the information about the TTY and CPU statistics, the option
-d can be used. In addition, the disk statistics can be limited to the important
ones.

A customized, disk-specific iostat output looks like this:

iostat -d hdisk0 hdisk1 2 9

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 0.1 1.4 0.1 767706 240078
hdisk1 0.0 0.3 0.0 58282 137712
hdisk0 3.5 10.0 2.0 12 8
hdisk1 0.0 0.0 0.0 0 0

20 RS/6000 Performance Tools in Focus

hdisk0 0.0 0.0 0.0 0 0
hdisk1 39.8 1277.6 24.4 0 2568
hdisk0 0.0 0.0 0.0 0 0
hdisk1 100.0 3424.0 55.0 0 6848
hdisk0 0.0 0.0 0.0 0 0
hdisk1 100.0 3422.0 53.5 0 6844
hdisk0 0.0 0.0 0.0 0 0
hdisk1 65.0 1704.0 42.5 0 3408
hdisk0 0.0 0.0 0.0 0 0
hdisk1 19.0 72.0 17.5 0 144
hdisk0 0.0 0.0 0.0 0 0
hdisk1 0.0 0.0 0.0 0 0
hdisk0 0.0 0.0 0.0 0 0
hdisk1 0.0 0.0 0.0 0 0

Starting in the third interval set, there was some heavy I/O activity on hdisk1. In
the seventh interval set, the I/O activity goes down and then back to the initial
values.

Remember that the first set of data represents all activity since system startup.

• Disks:

Shows the names of the physical volumes. They are either hdisk or cd
followed by a number. If physical volume names are specified with the
iostat command, only those names specified are displayed.

• % tm_act

Indicates the percentage of time the physical disk was active. A drive is
active during data transfer and command processing, such as seeking to a
new location. The ″disk active time″ percentage is directly proportional to
resource contention and inversely proportional to performance. As disk use
increases, performance decreases and response time increases. In general,
when the utilization exceeds 40 percent, processes are waiting longer than
necessary for I/O to complete because most UNIX processes block (or sleep)
while waiting for their I/O requests to complete.

Look for busy vs. idle drives. Moving data from busy to idle drives may help
alleviate a disk bottleneck. Paging to and from disk will contribute to the I/O
load.

• Kbps

Indicates the amount of data transferred (read or written) to the drive in KB
per second. This is the sum of Kb_read plus Kb_wrtn, divided by the seconds
in the reporting interval.

• tps

Indicates the number of transfers per second that were issued to the
physical disk. A transfer is an I/O request via the device driver level to the
physical disk. Multiple logical requests can be combined into a single I/O
request to the disk. A transfer is of indeterminate size.

• Kb_read

Reports the total data (in KB) read from the physical volume during the
measured interval.

• Kb_wrtn

Chapter 2. Standard (UNIX) Performance Tools 21

Shows the amount of data (in KB) written to the physical volume during the
measured interval.

Taken alone, there is no unacceptable value for any of the above fields because
statistics are too closely related to application characteristics, system
configuration, and type of physical disk drives and adapters. Therefore, when
evaluating data, look for patterns, and relationships. The most common
relationship is between disk utilization (%tm_act) and data transfer rate (tps).

To draw any valid conclusions from this data, you have to understand the
application′s disk data access patterns such as sequential, random, or
combination, and the type of physical disk drives and adapters on the system.

For example, if an application reads/writes sequentially, you should expect a
high disk transfer rate (tps) when you have a high disk busy rate (%tm_act).
Kb_read and Kb_wrtn can confirm an understanding of an application′s read/write
behavior. However, they provide no information on the data access patterns.

Generally you do not need to be concerned about a high disk busy rate (%tm_act)
as long as the disk transfer rate (tps) is also high. However, if you get a high
disk busy rate and a low disk transfer rate, you may have a fragmented logical
volume, file system, or individual file.

An average physical volume utilization greater than 25 percent across all disks
indicates an I/O bottleneck.

Discussions of disk, logical volume and file system performance sometimes lead
to the conclusion that the more drives you have on your system, the better the
disk I/O performance. This is not always true since there is a limit to the amount
of data that can be handled by the SCSI adapter. The SCSI adapter can also
become a bottleneck.

If all your disk drives are on one SCSI, and your hot file systems are on separate
physical volumes, you may benefit from using multiple SCSI adapters.
Performance improvement will depend on the type of access.

To see if a particular adapter is saturated, use the iostat command and add up
all the Kbps amounts for the disks attached to a particular SCSI adapter. For
maximum aggregate performance, the total of the transfer rates (Kbps) must be
below the SCSI adapter throughput rating. In most cases, use 70 percent of the
throughput rate. This results in:

• SCSI-1 rate of 3.5 MB/s (70 percent of 5 MB/s)

• SCSI-2 rate of 7 MB/s (70 percent of 10 MB/s)

The Performance Tuning Guide, SC23-2365, provides in Chapter 8: Monitoring
and Tuning Disk I/O, additional and detailed information, like:

• Sequential Read Ahead
• Disk-I/O Pacing
• Striping
• Asynchronous Disk I/O
• Raw Disk I/O
• Setting SCSI-Adapter and Disk-Device Queue Limits

22 RS/6000 Performance Tools in Focus

 Note

Like vmstat, iostat can only give a first indication about a performance
bottleneck. The system administrator will have to use more complex tools
like filemon to identify the source of the slowdown.

2.3 The sar Command
The sar command is a standard UNIX command used to gather statistical data
about the system. Though it can be used to gather some useful data regarding
system performance, the sar command is somewhat intrusive and can increase
the system load which will exacerbate a pre-existing performance problem.

With its numerous options, sar provides queuing, paging, TTY, and many other
statistics. One important new feature of the sar command on RS/6000 is that it
reports either systemwide (global among all processors) CPU statistics (which
are calculated as averages for values expressed as percentages, and as sums
otherwise), or it reports statistics for each individual processor. Therefore, this
command is particularly important on SMP systems.

 Note

The sar command reports only on local activities; no statistics about network
activities are included. The execution is limited to the root user. All data
types that sar supports are collected; however, only the data types specified
by options are reported.

There are three possibilities to use the sar command:

• Real-time sampling and display
• Display previously captured data
• System activity accounting via cron

Compared to the accounting package, the general use of sar is less intrusive.
The system maintains a series of system activity counters that record various
activities and provide the data that sar reports. The sar command does not
cause these counters to be updated or used; this is done automatically
regardless of whether sar runs or not. The command merely extracts the data in
the counters and saves them based on the sampling rate and number of
samples specified to sar.

The sadc command is intended to be used as a back-end to the sar command.
This data collector samples system data a specified number of times at a
specified interval measured in seconds. It writes in binary format to the
specified outfile or to standard output. The binary file holds all the data sar
could show.

2.3.1 Real-Time Sampling and Display
To collect and display system statistic reports immediately, use:

Chapter 2. Standard (UNIX) Performance Tools 23

sar -u 2 5

AIX ah6000d 2 4 000002583800 02/21/97

17:58:15 %usr %sys %wio %idle
17:58:17 43 9 1 46
17:58:19 35 17 3 45
17:58:21 36 22 20 23
17:58:23 21 17 0 63
17:58:25 85 12 3 0

Average 44 15 5 35

This example is from a single user workstation and shows the CPU utilization.

2.3.2 Display of Previously Captured Data
The -o and -f options (write and read to/from user given data files) allow you to
visualize the behavior of your machine in two independent steps. This is less
resource consuming during the problem-reproduction period. The analysis of
the data can be done on a separate machine by transferring the file because the
collected binary file keeps all data sar needs.

sar -o /tmp/sar.out 2 5 > /dev/null

The redirection of standard output is used to avoid a screen output.

sar -f/tmp/sar.out

AIX ah6000d 2 4 000002583800 02/21/97

18:10:18 %usr %sys %wio %idle
18:10:20 9 2 0 88
18:10:22 13 10 0 76
18:10:24 37 4 0 59
18:10:26 8 2 0 90
18:10:28 20 3 0 77

Average 18 4 0 78

The captured binary data file keeps all information needed for the reports. So
every possible sar report could be investigated. This allows also to display the
processor-specific information of an SMP system on a single processor system.

2.3.3 System Activity Accounting via cron
The sar command calls a process named sadc to access system data. Two shell
scripts (/usr/lib/sa/sa1 and /usr/lib/sa/sa2) are structured to be run by the cron
daemon and provide daily statistics and reports. Sample stanzas are included
(but commented out) in the /var/spool/cron/crontabs/adm crontab file to specify
when the cron daemon should run the shell scripts.

The following lines show a modified crontab for the adm user. Only the
comment characters for the data collections were removed:

24 RS/6000 Performance Tools in Focus

#===
SYSTEM ACTIVITY REPORTS
8am-5pm activity reports every 20 mins during weekdays.
activity reports every an hour on Saturday and Sunday.
6pm-7am activity reports every an hour during weekdays.
Daily summary prepared at 18:05.
#===
0 8-17 * * 1-5 /usr/lib/sa/sa1 1200 3 &
0 * * * 0,6 /usr/lib/sa/sa1 &
0 18-7 * * 1-5 /usr/lib/sa/sa1 &
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -ubcwyaqvm &
#===

Collection of data in this manner is useful to characterize system usage over a
period of time and to determine peak usage hours.

The following example shows how sar tries to access the pre-collected data,
which wasn’t available (sar searches for the /var/adm/sa/sa<nn> f i le, where nn
is the number of the current day). After executing the sa1 script, sar could
display the accounted data from the script that was previously run:

sar
Can′ t open /var/adm/sa/sa19
Try running /usr/lib/sa/sa1 <inc> <num>
date
Wed Feb 19 17:51:14 CST 1997
usr/lib/sa/sa1 1 5
sleep 600
date
Wed Feb 19 18:01:44 CST 1997
sar

AIX ah6000e 2 4 000252195700 02/19/97

17:51:23 %usr %sys %wio %idle
17:51:24 2 4 0 94
17:51:25 0 3 0 97
17:51:26 0 3 0 97
17:51:27 0 3 0 97

Average 0 3 0 96

In this example the first collected interval is missing because it is used as the
start-up dummy record. Instead of the requested five counts, only four samples
are available. But all following sa1 collections will be completely entered into
the /var /adm/sa/sa<nn> f i les .

The /var/adm/sa/sar<nn> f i les, which are generated by the sa2 script, are not
automatically printed, but they keep the ASCII version of the daily sa1 statistic,
which is col lected in the binary f i le /var/adm/sa/sa<nn>. Be aware of the
small difference in the collection file names; it’s only an ″ r″ which makes the
difference.

You will probably want to modify the sampling rate of the sa1 script (in the
crontab of user adm) for prime-time usage. The default rate is every 1200
seconds, that is, every 20 minutes. This is a very small sampling rate to use for
evaluating system activity. Of course, a higher sampling rate will generate
larger data files. An extremely high sampling rate (more than once a minute) is

Chapter 2. Standard (UNIX) Performance Tools 25

probably only useful in special situations and not appropriate for everyday use.
Additional information about the sadc, sa1 and sa2 commands is available in the
AIX Version 4 Commands Reference, SBOF-1851.

 Note

If sar is used without an interval, number, or the -f option, it always tries to
display the pre-collected data of the current day. Any user can display the
pre-collected data, no special user/group permission is needed.

2.3.4 Useful Options
Some of the most useful options for sar are:

sar -P: The -P option reports per-processor statistics for the specified processor
or processors. By specifying the ALL keyword, statistics for each individual
processor and an average for all processors is reported. Of the flags which
specify the statistics to be reported, only the -a, -c, -m, -u, and -w flags are
meaningful with the -P flag.

The following example shows the per-processor statistic while a CPU-bound
program was running on processor number 0:

sar -P ALL 2 3

AIX itsosmp 2 4 00045067A000 02/23/97

17:30:50 cpu %usr %sys %wio %idle
17:30:52 0 8 92 0 0

1 0 4 0 96
2 0 1 0 99
3 0 0 0 100
- 2 24 0 74

17:30:54 0 12 88 0 0
1 0 3 0 97
2 0 1 0 99
3 0 0 0 100
- 3 23 0 74

17:30:56 0 11 89 0 0
1 0 3 0 97
2 0 0 0 100
3 0 0 0 100
- 3 23 0 74

Average 0 10 90 0 0
1 0 4 0 96
2 0 1 0 99
3 0 0 0 100
- 3 24 0 74

The last line of every stanza, which starts with a dash (-) in the cpu column, is
the average for all processors. There is only an average (-) line if the -p ALL
option is used. It is removed if processors are specified. The last stanza,
labeled with the word Average instead of a time stamp, keeps the averages for
the processor specific rows over all stanzas. If the ALL keyword is used, its last
row, starting also with a dash (-), represents the average over all processors for
the investigated period.

26 RS/6000 Performance Tools in Focus

The following example shows the vmstat output during this time:

vmstat 2
kthr memory page faults cpu
----- ----------- ------------------------ ------------ ------------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 5636 16054 0 0 0 0 0 0 116 266 5 0 1 99 0
1 1 5733 15931 0 0 0 0 0 0 476 50781 35 2 27 70 0
1 1 5733 15930 0 0 0 0 0 0 476 49437 27 2 24 74 0
1 1 5733 15930 0 0 0 0 0 0 473 48923 31 3 23 74 0
1 1 5733 15930 0 0 0 0 0 0 466 49383 27 3 23 74 0

The first numbered line is the summary since startup of the system. The second
line reflects the start of the sar command, and with the third row, the reports are
comparable. The sar command was used to report the CPU utilization; this
information is also displayed in the cpu section of the vmstat. As explained in
2.1, “The vmstat Command” on page 7, the vmstat can only display the average
CPU utilization over all processors. This is comparable with the dashed (-) rows
from the CPU utilization output from the sar command.

sar -u: This displays the CPU utilization. It is the default if no other flag is
specified.

During the following example, a copy command was started:

sar -u -P ALL 1 5

AIX itsosmp 2 4 00045067A000 02/20/97

18:24:57 cpu %usr %sys %wio %idle
18:24:58 0 0 9 0 91

1 0 0 0 100
2 0 0 0 100
3 0 0 0 100
- 0 2 0 98

18:24:59 0 0 7 64 28
1 2 65 1 32
2 0 6 58 36
3 0 0 64 36
- 0 20 47 33

18:25:00 0 1 8 92 0
1 3 78 20 0
2 0 1 99 0
3 0 3 97 0
- 1 22 77 0

18:25:02 0 0 7 93 0
1 0 8 92 0
2 0 1 99 0
3 0 0 100 0
- 0 4 96 0

18:25:03 0 0 6 36 58
1 0 0 42 58
2 0 1 41 58
3 0 0 42 58
- 0 2 40 58

Average 0 0 7 57 35
1 1 30 31 38
2 0 2 59 39
3 0 1 61 39

Chapter 2. Standard (UNIX) Performance Tools 27

- 0 10 52 38

As stated in 2.1.1, “CPU Bound” on page 7, the system has no possibility to
specify which processor has a pending local I/O request and which does not.
The system looks for the wait process and if a global variable for local disk
activity is set or not. This results in the following queries for every processor:

• If the wait process is running and there is no local disk I/O, the time is
charged as idle time.

• If the wait process is running and there is a local disk I/O (regardless for
which processor), the time is charged as wait time.

The cp command is working on processor number 1, and the three other
processors should be idle. But since processor number 1 has a pending local
I/O request, all idle processors get charged for wait time.

sar -A: To display all possible statistics, use the -A option. Without the -P flag,
this is equivalent to specifying -a, -b, -c, -k, -m, -q, -r, -u, -v, -w and -y. With the
-P flag, this is equivalent to specifying -a, -c, -m, -u and -w (which are the useful
options for SMP systems).

sar -b: Reports buffer activity for transfers, accesses, and cache (kernel block
buffer cache) hit ratios per second. Access to most files in AIX V3 and AIX V4
bypasses kernel block buffering and therefore does not generate these statistics.
However, if a program opens a block device or a raw character device for I/O,
traditional access mechanisms are used, making the generated statistics
meaningful.

These values are usually zero. If they are not zero, then the ″Maximum number
of pages in block I/O BUFFER CACHE″ (maxbuf) should be tuned. This can be
done under the following path in SMIT or with the fast path smit chgsys:

-> System Environments
-> Change/Show Characteristics of Operating System
-> Maximum number of pages in block I/O BUFFER CACHE

sar -c: A report about system calls is displayed by the -c option. When used
with the -P flag, the information is provided for each specified processor;
otherwise, it provides only systemwide information.

sar -c 1 5

AIX ah6000e 2 4 000252195700 02/20/97

20:45:02 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
20:45:03 203 16 7 0.00 0.00 358749 1810
20:45:04 300 32 26 9.90 1.98 360289 2269
20:45:05 28 13 3 0.00 0.00 362274 1739
20:45:06 28 13 3 0.00 0.00 358687 1722

Average 140 18 10 2.48 0.50 359994 1885

If an application is not well programmed, it may create many forks and/or execs
per second, which slows down the system. So look out for high numbers in
these columns.

28 RS/6000 Performance Tools in Focus

Timing Intervals: Usually an interval and a numeric argument are specified on
the command line when using sar. They specify the time between the readings
and how many readings to take. The interval specified at extraction time can
differ from the one specified at collection time. As a general rule, there is no
harm in collecting more data than you extract. Conversely, if data is collected at
a 20-minute interval (1200 seconds), it would be difficult to extract information for
a 10-minute period; not even one reading may coincide with the desired period
in the collection data file. Also, it is possible to extract data for a shorter time
period than that over which it was collected. This is done using the -s and -e
options:

-s hh:mm start time

-e hh:mm end time

These options also work for the precaptured data (from the sa1 script). The
following example extracts a part of the /var/adm/sa/sa<nn> fi le that the sa1
script had created by collecting data every 20 minutes:

sar -s 14:30 -e 16:30

AIX ah6000d 2 4 000002583800 02/24/97

14:40:01 %usr %sys %wio %idle
15:00:01 14 3 0 83
15:20:01 15 5 1 80
15:40:01 10 1 0 88
16:00:01 17 2 0 80
16:20:01 16 3 0 81

Average 14 3 0 83

For more detailed information about all the sar options and the meaning of their
output, please refer to the AIX Version 4 Commands Reference, SBOF-1851.

2.3.5 Correlation Between vmstat, iostat, and sar
A lot of the data obtained with sar can also be obtained with vmstat and iostat
without any additional strain on the system. Another advantage of vmstat and
iostat over sar is that root permission is not required.

sar -q: Similar info as in the kthr section of the vmstat command.

runq-sz same as r column in vmstat.

swpq-sz same as b column in vmstat.

sar -r: Similar info as parts of the memory and page sections of the vmstat
command, where:

slots stands for size of paging space minus the avm value (or minus the pg
space inuse value of the svmon -G command).

cycle/s is same as the cy column.

odio/s reports the number of non-paging disk I/Os per second. This could
be calculated by the vmstat -s output.

sar -u: Same info as the cpu section of the vmstat and iostat commands.

Chapter 2. Standard (UNIX) Performance Tools 29

sar -w: Same info as the faults section of the vmstat command.

pswch/s same as cs column in vmstat (AIX V3).

cswch/s same as cs column in vmstat (AIX V4).

sar -y: Similar info as that in the tty section of the iostat command.

outch/s is a per-second rate of the tout column.

rawch/s is a per-second rate of the tin column.

tin and tout are averaged over the interval used with iostat.

2.3.6 The timex Command
The timex -s cmd command reports total system activity during the execution of
the cmd command. All the data types listed in the sar command are reported.

While sar collects aggregate data for all the processes running on the system at
a given instant, the timex -s command will limit the data reported to an
individual command, providing most but not all possible sar output.

2.4 The ps Command
The ps command is a very flexible tool for identifying the programs that are
running on the system and the resources they are using. It displays statistics
and status information about processes on the system, such as process or
thread ID, I/O activity, CPU and memory utilization. In this chapter, we only
discuss the options and output fields that are relevant for CPU and memory
consumption. For all other options and columns, see the AIX Version 4
Commands Reference, SBOF-1851.

The CPU time consumed by the ps command varies with the number of
processes to be displayed, but usually does not exceed 0.3 seconds.

2.4.1 CPU Information
The ps command, run periodically, will display the CPU time under the TIME
column and the ratio of CPU time to real time under the %CPU column. Look for
the processes that dominate usage. The au and v options give similar
information on user processes. The options aux and vg display both user and
system processes.

The following example is taken from a four-way SMP system:

ps au
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 19048 24.6 0.0 28 44 pts/1 A 13:53:00 2:16 /tmp/cpubound
root 19388 0.0 0.0 372 460 pts/1 A Feb 20 0:02 -ksh
root 15348 0.0 0.0 372 460 pts/4 A Feb 20 0:01 -ksh
root 20418 0.0 0.0 368 452 pts/3 A Feb 20 0:01 -ksh
root 16178 0.0 0.0 292 364 0 A Feb 19 0:00 /usr/sbin/getty
root 16780 0.0 0.0 364 392 pts/2 A Feb 19 0:00 -ksh
root 18516 0.0 0.0 360 412 pts/0 A Feb 20 0:00 -ksh
root 15746 0.0 0.0 212 268 pts/1 A 13:55:18 0:00 ps au

The %CPU is the percentage of CPU time that has been allocated to that process
since the process was started. It is calculated as follows:

30 RS/6000 Performance Tools in Focus

(process CPU time / process duration) * 100

Just imagine two processes: The first starts and runs five seconds, but does not
finish; then the second starts and runs five seconds but does not finish. The ps
command would now show 50 percent %CPU for the first process (five seconds
CPU for 10 seconds of elapsed time) and 100 percent for the second (five
seconds CPU for five seconds of elapsed time).

On an SMP, this value is divided by the number of available CPUs on the
system. Looking back at the previous example, this is the reason why the %CPU
value for the cpubound process will never cross 25. It is a four-processor system.
The cpubound process uses 100 percent of one processor, but the %CPU value is
divided by the number of available CPUs.

 Note

It is normal to see a process named kproc (PID of 514 in AIX V3 or PID of 516
in AIX V4) using CPU time. When there are no threads that are runable
during a time slice, the scheduler assigns the CPU time for that time slice to
this kernel process (kproc), which is known as the idle or wait kproc. SMP
systems will have an idle kproc for each processor.

2.4.2 Memory Information
The ps command can also be used to monitor memory usage of individual
processes. The ps v <pid> command provides the most comprehensive report
on memory-related statistics for an individual process, such as page faults, size
of working segment that has been touched, size of working segment and code
segment in memory, size of text segment, size of resident set, and percentage of
real memory used by this process.

ps v 12740
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
12740 - A 2:54 873 2052 2144 32768 483 344 0.0 3.0 dtwm

The following information is provided:

PID The process ID of the process.
TTY The controlling workstation for the process.
STAT Contains the state of the process. In AIX V3 the STAT column

showed R for runable; V4 now displays A for active instead.
TIME The total execution time for the process.
PGIN Number of page-ins caused by page faults. Since all AIX I/O is

classified as page faults, this is basically a measure of I/O
volume.

SIZE Size of working segment that has been touched. The virtual size
of the data section of the process (in 1-KB units).

RSS Sum of the size of working segment and code-segment in
memory. The real memory (resident set) size of the process (in
1-KB units).

LIM The soft limit on memory. If no limit has been specified, then
shown as xx. If the limit is set to the system limit (unlimited), a
value of UNLIM is displayed.

TSIZ Size of the text (shared-program) image.
TRS The size of resident-set (real memory) of text.

Chapter 2. Standard (UNIX) Performance Tools 31

%CPU The percentage of time the process has used the CPU since the
process started.

%MEM The percentage of real memory used by this process. The RSS
value divided by the memory size in KB, times 100, rounded to
the nearest full percentage point.

COMMAND Contains the command name.

2.4.3 New ps Options
With AIX V4, new options and suboptions have been added to ps. The -m option
allows you to see information related to threads, and -o THREAD provides extra
columns with thread-specific information. With both options (-mo THREAD), you
can see the thread or threads that belong(s) to each process.

ps -mo THREAD
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 17856 19388 - A 13 66 1 - 200001 pts/1 - ps -mo THREAD
- - - 19657 R 13 66 1 - 0 - - -
root 19048 19388 - A 120 120 0 - 8200011 pts/1 3 /tmp/cpubound
- - - 18801 R 120 120 0 - 0 - 3 -
root 19388 4538 - A 1 60 1 - 240001 pts/1 - -ksh
- - - 19141 S 1 60 1 - 400 - - -
root 19628 19388 - A 120 124 1 - 200001 pts/1 2 /tmp/cpubound
- - - 20661 R 120 124 1 - 0 - 2 -

The TID column shows the thread ID, and the BND column shows the processes
and threads bound to a processor.

On a uniprocessor system, the BND column will always list 0 since all threads
are of course bound to just that one processor. On an SMP system, the value
under BND will be - (dash) if the thread is not explicitly bound. If the value is an
integer, then that indicates the processor number to which the thread is bound.
You can add the options -e and -k to see all the threads on the system. The -e
option lists all processes, except kernel processes, and -k lists the kernel
processes.

 Note

Remember, while the -m flag reports threads associated with processes using
extra lines, you have to use the -o flag with the THREAD keyword to display
these extra thread-related columns.

To display a thread or threads of a particular process, use:

ps -mo THREAD -p 19048
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 19048 19388 - A 99 109 1 - 8200011 pts/1 3 /tmp/cpubound
- - - 18801 R 99 109 1 - 0 - 3 -

2.4.4 Useful Shell Scripts
The top 10 processes that have accumulated the most CPU time:

ps -e|head -n 1;ps -e|egrep -v ″TIME|0:″ | sort +2b -3 -n -r|head -n 10

The top 10 processes that have the most recent CPU usage:

ps -ef|head -n 1;ps -ef|egrep -v ″C|0:00| 0 ″ | sort +3b -4 -n -r|head -n 10

32 RS/6000 Performance Tools in Focus

The top 10 processes that have the most CPU usage:

ps gu|head -n 1;ps gu|egrep -v ″CPU|kproc″ | sort +2b -3 -n -r|head -n 10

The ps command only takes a snapshot. To gather data over a time period, use
the tprof command.

2.5 The pstat Command
The pstat command is a non-interactive form of the crash command. It
interprets the contents of the various system tables and writes it to standard
output. You must have root user or system group authority to run the pstat
command. Because it has a number of new options, pstat is useful for looking
at threads, especially on SMP systems.

pstat -S: Shows processor status, which thread is running on which processor
at the time of the command. A repetition of this command would allow you to
determine the relative affinity of the threads with each processor.

Processor affinity is the dispatching of a thread to a processor that was
previously executing it. The degree of emphasis on processor affinity should
vary directly with the size of the thread’s cache working set and inversely with
the length of time since it was last dispatched.

The AIX V4 dispatcher has been modified to enforce affinity with the processors;
so affinity is done implicitly by the operating system. More is said about
processor affinity in 4.9, “The bindprocessor Command” on page 173.

The information displayed from pstat -S includes the processor number, kernel
thread identifier, kernel thread table slot, process identifier, process table slot,
and process name.

pstat -S
STATUS OF PROCESSORS:

CPU TID TSLOT PID PSLOT PROC_NAME
0 46fd 70 40f4 64 eatmem
1 4701 71 49f8 73 crash
2 4973 73 4b6a 75 cpubound
3 4df5 77 4eec 78 telnetd

 Note

The thread ID and process ID are displayed in hexadecimal.

It is pretty hard to see processor affinity with the pstat -S command, but it could
be done by picking a thread ID of a running thread and checking every second
on which process this thread is running. This script would do it:

while true
do

pstat -S | grep <TID>
sleep 1

done

pstat -P: Shows runable kernel threads only.

Chapter 2. Standard (UNIX) Performance Tools 33

pstat -P
THREAD TABLE:

SLT ST TID PID CPUID POLICY PRI CPU EVENT PROCNAME FLAGS
2 r 205 204 0 FIFO 7f 78 wait

t_flags: sigslih kthread
3 r 307 306 1 FIFO 7f 78 wait

t_flags: sigslih kthread
4 r 409 408 2 FIFO 7f 78 wait

t_flags: sigslih kthread
5 r 50b 50a 3 FIFO 7f 78 wait

t_flags: sigslih kthread
 69 r 4579 4a70 2 other 62 44 cpubound

t_flags:
 72 r 4837 492e unbound other 61 4a crash

t_flags:
 73 r 4973 4b6a 3 other 62 44 cpubound

t_flags:
 76 r 4cd7 4dce unbound other 62 45 cpubound

t_flags:

This example is taken from a four-way SMP system. The first four threads are
the wait kproc, which is scheduled on a processor, if no other process wants to
run. And the last four threads are the running threads. Explanation about the
columns:

SLT Shows the slot number in the thread table.
ST Shows the status of the thread as to whether it is runable,

sleeping or otherwise.
TID The thread ID (in hexadecimal) of the kernel thread.
PID The process ID (in hexadecimal) to which the thread belongs.
CPUID The ID of the processor on which the process is bound. If the

thread is not bound, then the word unbound is displayed in this
field.

POLICY The thread’s scheduling policy.
PRI The priority in hexadecimal.
CPU Shows the short-term CPU usage of the thread (in

hexadecimal). The maximum value for this field is 78 ticks
(which is 120 in decimal).

EVENT The type of system event, if one is happening.
PROCNAME Process name.
FLAGS/t_flags Displays the signal that the process is currently waiting on if

the thread is waiting. An additional line (t_flags) is added.
The t_flags line displays in English what signal the process is
currently waiting on. If the thread is not waiting, the field is
empty.

In AIX V4, there are three possible values for thread-scheduling policy:

• FIFO: Once a thread with this policy is scheduled, it runs to completion
unless it is blocked. It voluntarily yields control of the CPU when a
higher-priority thread becomes dispatchable. Only fixed-priority threads can
have an FIFO scheduling policy.

• RR: This is similar to the AIX V3 scheduler Round-Robin scheme based on 10
ms time slices. When an RR thread has control at the end of its time slice, it

34 RS/6000 Performance Tools in Focus

moves to the tail of the queue of dispatchable threads of its priority. Only
fixed-priority threads can have an RR scheduling policy.

• OTHER: This policy is defined by POSIX1003.4a as implementation-defined.
In AIX V4, this policy is defined to be equivalent to RR, except that it applies
to threads with non-fixed priority. The recalculation of the running thread′s
priority value at each clock interrupt means that a thread may lose control
because its priority value has risen above that of another dispatchable
thread. In AIX V3, this is the only scheduling policy, and it is the default
scheduling policy in AIX V4.

pstat -A: Shows all entries in the kernel thread table. The output is similar to
pstat -P.

2.6 The netstat Command
The netstat command is used to show network status. It gives a good indication
of the reliability of the local network interface. Traditionally, it is used more for
problem determination than for performance measurement. However, it is useful
in determining the amount of traffic on the network to ascertain whether
performance problems are due to network congestion.

The netstat command displays information regarding traffic on the configured
network interfaces, such as:

• The address of any protocol control blocks associated with the sockets and
the state of all sockets

• The number of packets received, transmitted, and dropped in the
communications subsystem

• Cumulative statistics for Error Collisions Packets transferred
• Routes and their status

Most of the variations of this command use less than 0.2 seconds of CPU time.

2.6.1 Using the netstat Command
The netstat command displays the contents of various network-related data
structures for active connections. In this chapter we will only discuss the options
and output fields that are relevant for network performance determinations. For
all other options and columns, see the AIX Version 4 Commands Reference,
SBOF-1851.

netstat -i: Shows the state of all configured interfaces.

The following example shows the statistics for a workstation with an integrated
Ethernet and a token-ring adapter:

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 <Link> 144834 0 144946 0 0
lo0 16896 127 localhost 144834 0 144946 0 0
tr0 1492 <Link>10.0.5a.4f.3f.61 658339 0 247355 0 0
tr0 1492 9.3.1 ah6000d 658339 0 247355 0 0
en0 1500 <Link>8.0.5a.d.a2.d5 0 0 112 0 0
en0 1500 1.2.3 1.2.3.4 0 0 112 0 0

The count values are summarized since system startup.

Chapter 2. Standard (UNIX) Performance Tools 35

Name Interface name.
Mtu Maximum transmission unit. The maximum size of packets in bytes

that are transmitted using the interface. In special cases, it could be
changed to increase performance.

Ipkts Total number of packets received.
Ierrs Total number of input errors. For example, packets without header,

checksum errors.
Opkts Total number of packets transmitted.
Oerrs Total number of output errors.
Coll Number of packet collisions detected.

 Note

The netstat -i command does not support the collision count for Ethernet
interfaces.

netstat -i -Z: This is an undocumented function of the netstat command. It
clears all the statistic counters for the netstat -i command to zero.

netstat -I <interface> <interval>: Displays the statistics for the specified
interface. It offers information similar to netstat -i for the specified interface
and reports it for a given time interval.

netstat -I en0 1
input (en0) output input (Total) output
packets errs packets errs colls packets errs packets errs colls

0 0 27 0 0 799655 0 390669 0 0
0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 78 0 254 0 0
0 0 0 0 0 200 0 62 0 0
0 0 1 0 0 0 0 2 0 0

The previous example shows the netstat -I output for the ent0 interface. Two
reports are generated side by side, one for the specified interface and one for all
available interfaces (Total). The fields are similar to the ones in the netstat -i
example, input packets = Ipkts, input errs = Ierrs and so on.

netstat -m: Displays the statistics recorded by the ″mbuf″ memory-management
routines. The following example shows the first part of the netstat -m output:

netstat -m
32 mbufs in use:
16 mbuf cluster pages in use
71 Kbytes allocated to mbufs
297 requests for mbufs denied
0 calls to protocol drain routines
...
...

If the netstat -m command indicates that requests for mbufs or clusters have
failed or been denied, then you may want to increase the value of thewall by
using no -o thewall=<newvalue>. (More information about the no command in 2.8,
“The no Command” on page 46.) The new value should be in KB. If buffers are
not available when a request is received, the request is lost.

36 RS/6000 Performance Tools in Focus

netstat -v: The netstat -v command displays the statistics for each Common
Data Link Interface (CDLI)-based device driver that is up. Interface-specific
reports could be requested via the commands tokstat, entstat or fddistat (for
details, see the AIX Version 4 Commands Reference, SBOF-1851).

Every interface has its own specific information and some general information.
The following example shows the token-ring and Ethernet part of the netstat -v
command; other interface parts are similar. It shows the statistics for the kind of
adapter we had. With a different adapter, the statistics will differ somewhat.
(The most important output fields are highlighted.):

TOKEN-RING STATISTICS (tok0) :
Device Type: Token-Ring High-Performance Adapter (8fc8)
Hardware Address: 10:00:5a:4f:3f:61
Elapsed Time: 0 days 2 hours 21 minutes 0 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 31568 Packets: 138066
Bytes: 3017565 Bytes: 23156284
Interrupts: 30965 Interrupts: 139310
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 1384
Max Packets on S/W Transmit Queue: 13 Bad Packets: 0
S/W Transmit Queue Overflow: 0

Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 50 Broadcast Packets: 101305
Multicast Packets: 0 Multicast Packets: 0
Timeout Errors: 0 Receive Congestion Errors: 0

Current SW Transmit Queue Length: 0
Current HW Transmit Queue Length: 0

General Statistics:

No mbuf Errors: 1384 Lobe Wire Faults: 0
Abort Errors: 0 AC Errors: 0
Burst Errors: 3 Frame Copy Errors: 0
Frequency Errors: 0 Hard Errors: 0
Internal Errors: 0 Line Errors: 0
Lost Frame Errors: 0 Only Station: 0
Token Errors: 0 Remove Received: 0
Ring Recovered: 0 Signal Loss Errors: 0
Soft Errors: 0 Transmit Beacon Errors: 0

Driver Flags: Up Broadcast Running
AlternateAddress ReceiveFunctionalAddr 16 Mbps

Token-Ring High-Performance Adapter (8fc8) Specific Statistics
--
DMA Bus Errors: 0 DMA Parity Errors: 0
ARI/FCI Errors: 0

ETHERNET STATISTICS (ent1) :
Device Type: Ethernet High Performance LAN Adapter

Chapter 2. Standard (UNIX) Performance Tools 37

Hardware Address: 02:60:8c:2d:a7:fc
Elapsed Time: 0 days 1 hours 49 minutes 10 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 295741 Packets: 295048
Bytes: 23051459 Bytes: 22541375
Interrupts: 295736 Interrupts: 294744
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 2260
Max Packets on S/W Transmit Queue: 64 Bad Packets: 0
S/W Transmit Queue Overflow: 690

Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 5 Broadcast Packets: 2
Multicast Packets: 0 Multicast Packets: 0
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 0
Late Collision Errors: 0 Receive Collision Errors: 0
Deferred: 0 Packet Too Short Errors: 0
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter:

0
Single Collision Count: 9 Receiver Start Count: 1
Multiple Collision Count: 0

Current HW Transmit Queue Length: 0

General Statistics:

No mbuf Errors: 2260

Adapter Reset Count: 0
Driver Flags: Up Broadcast Running

Simplex AlternateAddress

Ethernet High Performance LAN Adapter Specific Statistics:
--
Receive Buffer Pool Size: 37
Transmit Buffer Pool Size: 37
In Promiscuous Mode for IP Multicast: No
Packets Uploaded from Adapter: 295048
Host End-of-List Encountered: 0
82586 End-of-List Encountered: 0
Receive DMA Timeouts: 0
Adapter Internal Data: 0x0 0x0 0x0 0x1 0x10

The highlighted fields are the ones to look for, and their meaning is:

• Transmit and Receive Errors

The number of output/input errors encountered on this device. This is a
counter for unsuccessful transmissions due to hardware/network errors.

This could also slow down the performance of the system.

38 RS/6000 Performance Tools in Focus

• Max Packets on S/W Transmit Queue

The maximum number of outgoing packets ever queued to the software
transmit queue.

An indication of an inadequate queue size is if the maximal transmits queued
equals the current queue size (xmt_que_size). This says that the queue was
full at some point.

To check the current size of the queue, use lsattr -El <adapter> (where
adapter is tok0 or ent0). Since the queue is associated with the device
driver and adapter for the interface, we must use the adapter name, not the
interface name. The queue size can be changed via SMIT or with the chdev
command.

• S/W Transmit Queue Overflow

The number of outgoing packets that have overflowed the software transmit
queue.

A value other than zero requires the same actions as would be needed if the
″Max Packets on S/W Transmit Queue″ reaches the xmt_que_size. The
transmit queue size has to be increased.

• Received Broadcast Packets

The number of broadcast packets received without any error.

If the value for broadcast packets is high, compare it with the total received
packets. The received broadcast packets should be less than 20 percent of
the total received packets. If it is high, this could be an indication for a high
network load; then multi-casting should be used.

• Max Collision Errors

The number of unsuccessful transmissions due to too many collisions. The
number of collisions encountered exceeded the number of retries on the
adapter.

• Late Collision Errors

The number of unsuccessful transmissions due to the late collision error.

• Timeout Errors

The number of unsuccessful transmissions due to adapter reported timeout
errors.

• Single Collision Count

The number of outgoing packets with single (only one) collision encountered
during transmission.

• Multiple Collision Count

The number of outgoing packets with multiple (2 - 15) collisions encountered
during transmission.

• Receive Collision Errors

The number of incoming packets with collision errors during reception.

• No mbuf Errors

The number of times that mbufs were not available to the device driver. This
usually occurs during receive operations when the driver must obtain
memory buffers to process inbound packets. If the mbuf pool for the
requested size is empty, the packet will be discarded. The netstat -m

Chapter 2. Standard (UNIX) Performance Tools 39

command could be used to confirm this, and the parameter thewall should
be increased.

This value is interface specific and not identical with the ″requests for mbufs
denied″ from the netstat -m output. Compare the values of the example for
netstat -m and netstat -v (Ethernet and token-ring part).

To determine network performance problems check for any Error counts in the
netstat -v output.

netstat -p <protocol>: Shows statistics about the value specified for the
protocol variable (udp, tcp, ip, icmp), which is either a well-known name for a
protocol or an alias for it. Some protocol names and aliases are listed in the
/etc/protocols file. A null response means that there are no numbers to report.
If there is no statistics routine for it, then the program report of the value
specified for the protocol variable is unknown.

The following example shows the output for the ip protocol:

netstat -p ip
ip:
:

491351 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
0 with bad options
0 with incorrect version number
25930 fragments received
0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
12965 packets reassembled ok
475054 packets for this host
0 packets for unknown/unsupported protocol
0 packets forwarded
3332 packets not forwardable
0 redirects sent
405650 packets sent from this host
0 packets sent with fabricated ip header
0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
5498 output datagrams fragmented
10996 fragments created
0 datagrams that can′ t be fragmented
0 IP Multicast packets dropped due to no receiver
0 ipintrq overflows

The highlighted fields are the ones to look for, and their meaning is:

• Bad Header Checksum or Fragments Dropped

If the output shows bad header checksum or fragments dropped due to dup or
out of space, then this indicates either a network that is corrupting packets
or device driver receive queues that are not large enough.

• Dropped after Timeout

If the fragments dropped after timeout is other than zero, then the ″time to
life counter″ of the ip fragments expired due to a busy network before all

40 RS/6000 Performance Tools in Focus

fragments of the datagram arrived. To avoid this, increase the value of the
ipfragttl network parameter with the no command. Another reason could
be a lack of mbufs; so increase thewall.

The following example shows the output for the udp protocol:

netstat -p udp
udp:

11521194 datagrams received
0 incomplete headers
0 bad data length fields
0 bad checksums
16532 dropped due to no socket
232850 broadcast/multicast datagrams dropped due to no socket
77 dropped due to full socket buffers
11271735 delivered
796547 datagrams output

Statistics of interest are:

• Bad Checksums

This could happen due to hardware card or cable failure.

• Dropped due to full Socket Buffers

This could be due to insufficient transmit and receive UDP sockets, too few
nfsd daemons, and/or too small nfs_socketsize, udp_recvspace and sb_max
values.

If the netstat -p udp command indicates socket overflows, then you may need to
increase the number of the nfsd daemons on the server. But first, check the
affected system for CPU or I/O saturation and verify the recommended setting for
the other communication layers by using no -a. If the system is saturated, you
need to reduce its load or increase its resources.

netstat -s -s: The netstat -s command shows statistics for each protocol (while
netstat -p shows the statistics for the specified protocol). The undocumented -s
-s option shows only those lines of the netstat -s output that are not zero. This
makes it easier to look for error counts.

2.6.2 Additional Rules of Thumb
In general there is no reason not to increase the transmit and receive queues.
This requires a few bytes in memory, but avoids some problems.

Host problems

• If the number of errors during input packets is greater than 1 percent of the
total number of input packets (from netstat -i):

Ierrs > 0.01 x Ipkts

Then execute netstat -m to check for a lack of memory.

• If the number of errors during output packets is greater than 1 percent of the
total number of output packets (from netstat -i):

Oerrs > 0.01 x Opkts

Then the send queue size (xmt_que_size) for that interface should be
increased. The size of the xmt_que_size could be checked with the
command:

Chapter 2. Standard (UNIX) Performance Tools 41

lsattr -El <adapter>

Overloaded Network

• To check for an overloaded Ethernet network, calculate (from netstat -v):

(Max Collision Errors + Timeouts Errors) / Transmit Packets

If the answer is greater than 5 percent, then the network should be
reorganized to balance the load.

• Another indication for a high network load is (from netstat -v):

If the total number of collisions from netstat -v (for Ethernet) is greater than
10 percent of the total transmitted packets.

Number of collisions / Number of Transmit Packets > 0.1

2.6.3 AIX Version 4.2.1 Improvements
There will be some changes to the netstat command. The one relevant to
performance is the display of the discovered Path Maximum Transmission Unit
(PMTU).

For two hosts communicating across a path of multiple networks, a transmitted
packet will become fragmented if its size is greater than the smallest MTU of any
network in the path. Since packet fragmentation can result in reduced network
performance, it is desirable to avoid fragmentation by transmitting packets with a
size no greater than the smallest MTU in the network path. This size is called
the path MTU.

This value could be displayed via the netstat -r command. In this example the
netstat -r -f inet command is used to display only the routing tables:

netstat -r -f inet
Routing tables
Destination Gateway Flags Refs Use PMTU If Exp Groups

Route Tree for Protocol Family 2:
default itsorusi UGc 1 348 - tr0 -
9.3.1 sv2019e Uc 25 12504 - tr0 -
itsonv sv2019e UHW 0 235 - tr0 -
itsorusi sv2019e UHW 1 883 1492 tr0 -
ah6000d sv2019e UHW 1 184 1492 tr0 -
ah6000e sv2019e UHW 0 209 - tr0 -
sv2019e sv2019e UHW 4 11718 1492 tr0 -
coyote.ncs.mainz itsorusi UGHW 1 45 1492 tr0 -
kresna.id.ibm.co itsorusi UGHW 0 14 1492 tr0 -
9.184.104.111 kresna.id.ibm.com UGc 0 5 - tr0 -
127 localhost U 3 96 - lo0 -

2.7 The nfsstat Command
The nfsstat command displays statistical information about the Network File
System (NFS) and the Remote Procedure Calls (RPC) interface to the kernel for
clients and servers. This command could also be used to re-initialize the
counters for these statistics. For performance issues, the RPC statistics (-r
option) are the first place to look. The NFS statistics show you how the
applications use NFS.

42 RS/6000 Performance Tools in Focus

RPC Statistics: The nfsstat command displays statistical information pertaining
to the ability of a client or server to receive calls like:

• Total number of RPC calls received or rejected
• Number of times no RPC packet was available when trying to receive
• Number of packets that were too short or had malformed headers
• Total number of RPC calls sent or rejected by a server
• Number of times a call had to be transmitted again
• Number of times a reply did not match the call
• Number of times a call timed out
• Number of times a call had to wait on a busy client handle
• Number of times authentication information had to be refreshed

2.7.1 NFS Server Information
The NFS server displays the number of NFS calls received (calls) and rejected
badcalls) due to authentication, as well as the counts and percentages for the
various kinds of calls made.

The following example shows the server part of the nfsstat command, specified
by the -s option:

nfsstat -s

Server rpc:
calls badcalls nullrecv badlen xdrcall
44124083 0 9902 0 0

Server nfs:
calls badcalls
34841553 733
null getattr setattr root lookup readlink read
73697 0% 11221849 32% 57209 0% 0 0% 11892420 34% 122697 0% 7609895 21%
wrcache write create remove rename link symlink
0 0% 1296536 3% 86924 0% 84555 0% 2328 0% 470 0% 169 0%
mkdir rmdir readdir fsstat
387 0% 374 0% 1607749 4% 784294 2%

RPC output for server (-s):

calls The total number of RPC calls received from clients.
badcalls The total number of calls rejected by the RPC layer.
nullrecv The number of times an RPC call was not available when it was

thought to be received.
badlen Packets truncated or damaged. The number of RPC calls with a

length shorter than a minimum-sized RPC call.
xdrcall The number of RPC calls whose header could not be External Data

Representation (XDR) decoded.

It also displays a count of the various kinds of calls and their respective
percentages.

The NFS performance could be increased by adding additional nfsd daemons.
But watch the nullrecv column in the nfsstat -s output. If the number starts to
grow, it may mean there are too many nfsd daemons. However, this is usually
not the case on AIX NFS servers as much as it could be the case on other
platforms. The reason for that is that all nfsd daemons are not awakened at the
same time when an NFS request comes into the server. Instead, the first nfsd

Chapter 2. Standard (UNIX) Performance Tools 43

wakes up, and if there is more work to do, this daemon will wake up the second
nfsd, and so on.

2.7.2 NFS Client Information
The NFS client displays the number of calls sent and rejected, as well as the
number of times a client handle was received (nclget), the number of times a
call had to sleep while awaiting a handle (nclsleep), and a count of the various
kinds of calls and their respective percentages.

The following example shows the nfsstat output specified for clients via the -c
option:

nfsstat -c

Client rpc:
calls badcalls retrans badxid timeout wait newcred
73365 424 1 10 425 0 0

Client nfs:
calls badcalls nclget nclsleep
72952 0 72952 0
null getattr setattr root lookup readlink read
0 0% 8043 11% 1507 2% 0 0% 24696 33% 0 0% 11330 15%
wrcache write create remove rename link symlink
0 0% 21292 29% 1637 2% 1216 1% 791 1% 0 0% 0 0%
mkdir rmdir readdir fsstat
0 0% 0 0% 1387 1% 1053 1%

RPC output for the client (-c):

calls The total number of RPC calls made to NFS.
badcalls The total number of calls rejected by the RPC layer.
retrans The number of times a call had to be retransmitted due to a timeout

while waiting for a reply from the server. This is applicable only to
RPC over connection-less transports.

badxid The number of times a reply from a server was received that did not
correspond to any outstanding call. This means the server is taking
too long to reply.

timeout The number of times a call timed-out while waiting for a reply from
the server.

wait The number of calls waiting on busy client.
newcred The number of times authentication information had to be refreshed.

It also displays a count of the various kinds of calls and their respective
percentages.

For performance monitoring, nfsstat -c will give information on whether the
network is dropping packets. A network may drop a packet if it cannot handle it.
Dropped packets may be the result of the response time of the network
hardware or software or an overloaded CPU on the server. Dropped packets are
not actually lost since a replacement request is issued for them.

The retrans column in the RPC section displays the number of times requests
were retransmitted due to a timeout in waiting for a response. This is related to
dropped packets. If the retrans number consistently exceeds five percent of the
total calls in column one, then it indicates a problem with the server keeping up

44 RS/6000 Performance Tools in Focus

with demand. Use vmstat, netpmon, and iostat on the server machine to check
the load.

The high badxid count implies that requests are reaching the various NFS
servers, but the servers are too loaded to send replies before the client’s RPC
calls time out and are retransmitted. The badxid value is incremented each time
a duplicate reply is received for a transmitted request (an RPC request retains
its XID through all transmission cycles). Excessive retransmissions place an
additional strain on the server, further degrading response time. If badxid and
timeout are greater then five percent of the total calls, increase the timeo
parameter of the NFS-Mount options via smit chnfsmnt.

If the server is CPU-bound, it will affect NFS and its daemons. To improve the
situation, the server must be tuned or upgraded, or the user can localize the
application files. If the server is I/O-bound, the server file systems can be
reorganized, or localized files can be used.

If the number of retransmits and timeouts are close to the same value, then it’s
almost definite that packets are being dropped. Packets are rarely dropped on
the client.

Usually, packets are dropped on either the network or on the server. The server
could drop packets if it overflows its interface driver’s transmit queue or if the
server’s User Datagram Protocol (UDP) socket buffer was overflown
(nfs_socketsize). If there are no socket buffer overflows or Oerrs on the server,
and the client is getting lots of retransmits and timeouts, then the chances are
that packets are being dropped on the network. This could include such things
as media and network devices such as routers, bridges, concentrators.

Network sniffers and other tools can be used to debug such problems.

2.7.3 AIX Version 4.2.1 Improvements
AIX V4.2.1 will include the NFS Version 3 networking commands. Following is a
short description of the performance-related changes in the nfsstat command.

The NFS part of the nfsstat command is divided into Version 2 and Version 3
statistics of NFS, and the RPC part is divided into Connection oriented and
Connectionless statistics.

• The following two fields are added to the nfsstat -s command:

dupchecks The number of RPC calls that looked up in the duplicate request
cache.

dupreqs The number of duplicate RPC calls found.

• The following fields are added to the nfsstat -c command:

badverfs The number of times a call failed due to a bad verifier in the
response.

timers The number of times the calculated timeout value was greater than
or equal to the minimum specified timeout value for a call.

cantconn The number of times a call failed due to a failure to make a
connection to the server.

nomem The number of times a call failed due to a failure to allocate
memory.

interrupts The number of times a call was interrupted by a signal before
completing.

Chapter 2. Standard (UNIX) Performance Tools 45

cantsend The number of times a send failed due to a failure to make a
connection to the client.

The wait field has been removed.

In addition, the nfsstat -m command now displays the mount options of the
mounted filesystems, which could also be changed to increase the performance.

2.8 The no Command
The no command can be used to configure network attributes. It sets or displays
current network attributes in the currently running kernel. Therefore the
command must be run again after each startup or after the network has been
configured. For more information on how the network attributes interact with
each other, refer to the AIX Version 4 System Management Guide:
Communications and Networks, SC23-2526.

 Note

The no command performs no range checking. If used incorrectly, the no
command can cause your system to become inoperable.

The no parameters and their values can be displayed by using no -a:

thewall = 8192
sb_max = 65536
somaxconn = 1024
net_malloc_police = 0
rto_low = 1
rto_high = 6 4
rto_limit = 7
rto_length = 1 3
arptab_bsiz = 7
arptab_nb = 2 5
tcp_ndebug = 100
ifsize = 8
strmsgsz = 0
strctlsz = 1024
nstrpush = 8
strthresh = 8 5
psetimers = 2 0
psebufcalls = 2 0
strturncnt = 1 5
pseintrstack = 12288
lowthresh = 9 0
medthresh = 9 5
subnetsarelocal = 1
maxttl = 255
ipfragttl = 6 0
ipsendredirects = 1
ipforwarding = 0
udp_ttl = 3 0
tcp_ttl = 6 0
arpt_killc = 2 0
tcp_sendspace = 16384

46 RS/6000 Performance Tools in Focus

tcp_recvspace = 16384
udp_sendspace = 9216
udp_recvspace = 41600
rfc1122addrchk = 0
nonlocsrcroute = 0
tcp_keepintvl = 150
tcp_keepidle = 14400
bcastping = 0
udpcksum = 1
tcp_mssdflt = 512
icmpaddressmask = 0
tcp_keepinit = 150
ie5_old_multicast_mapping = 0
rfc1323 = 0
ipqmaxlen = 100
directed_broadcast = 1

Some network attributes are runtime attributes that can be changed at any time;
others are load-time attributes that must be set before the netinet kernel
extension is loaded. They need to be placed near the top of the /etc/rc.net file.
If your system uses Berkeley-style network configuration, set the attributes near
the top of the /etc/rc.bsdnet file.

To display or change a specific parameter, use the no -o command:

no -o thewall
thewall = 8192
no -o thewall=16384

The parameters can be reset to their default value by using the -d option:

no -d thewall
no -o thewall
thewall = 8192

2.8.1 no Command Parameters
You can choose to tune either for maximum throughput or for minimum memory
use. Some recommendations apply to one or the other; some apply to both. All
no parameters are listed in Appendix B, “Summary of Tunable AIX Parameters”
on page 269. In this section only some performance relevant parameters are
described:

thewall: This is one of the most important parameters because it limits the
memory that is assigned to the networking subsystem.

 Note

Before AIX V4.2, the thewall value was usually set in the /etc/rc.net file,
and any value specified by the Object Database Manager (ODM) was
overwritten. But in AIX V4.2, the highest instance for setting the thewall
value after system start-up is the ODM. The value set in the /etc/rc.net
file is overwritten. So if there are any problems with the value of the
thewall parameter after start-up, check the /etc/rc.net file, and also check
the ODM by using lsattr -El sys0 and look for the maxmbuf parameter.

Chapter 2. Standard (UNIX) Performance Tools 47

After expanding the mbuf pools, verify using the vmstat command that paging
rates have not increased. If you cannot expand the pools to necessary levels
without adversely affecting the paging rates, additional physical memory may be
required.

sb_max: The sb_max value sets the absolute upper bound on the size of TCP and
UDP socket buffers, like setsockopt(), udp_sendspace, udp_recvspace,
tcp_sendspace, and tcp_recvspace. The recommended size for this parameter is
twice the size of the largest socket buffer. Remember to set rfc1323 to one, if
the buffer size crosses 64 KB.

TCP and UDP Buffer Sizes: The TCP/UDP send space buffers and TCP/UDP
receive space buffers have to be set to less or equal the sb_max size. Remember
to set rfc1323 to one, if the buffer size crosses 64 KB.

The following table shows the default sizes for TCP/UDP send and receive
spaces along with their recommended values.

Table 3. Send and Receive Spaces for TCP and UDP

rfc1323: Enables Transmission Control Protocol (TCP) enhancements as
specified by Request for Comments (RFC) 1323, TCP Extensions for High
Performance. If the TCP socket buffers sizes should cross the 64-KB limit, this
parameter has to be set to 1 to allow the TCP window to slide or pan.

ipfragttl: This value has to be tuned, if the netstat -s shows fragments dropped
after timeout.

2.8.2 Stream Parameters
Since AIX V4 stream parameters can also be set via the no command. For more
details about the streams parameters refer to Appendix B, “Summary of Tunable
AIX Parameters” on page 269. Following is a list of the no streams parameters:

• lowthresh
• medthresh
• nstrpush
• psebufcalls
• pseintrstack

48 RS/6000 Performance Tools in Focus

• psetimers
• strctlsz
• strmsgsz
• strthresh
• strturncnt

2.8.3 AIX Version 4.2.1 Improvements
The following parameters are added to the no command, but not all are really
performance related:

• clean_partial_conns

Allows the system to keep on working if another system is sending SYN
Flood Attack.

• arpqsize

Specifies the maximum number of packets to queue while waiting for
address resolution protocol (ARP) responses. The default value is 1, and it
is increased to a minimum value of 5 when path MTU discovery is enabled.
The value will not automatically decrease if path MTU discovery is
subsequently disabled. This attribute is supported by Ethernet, 802.3,
token-ring, and FDDI interfaces. This attribute applies to AIX V4.1.5, V4.2.1,
and later.

• route_expire

Specifies whether the route expires. A value of zero allows no route
expiration, which is the default. Negative values are not allowed for this
option.

• psecache

This is a streams-related parameter used for debugging.

• pmtu_default_age

Specifies the default amount of time (in minutes) before the path MTU value
for UDP paths is checked for a lower value. A value of 0 allows no aging.
The default value is 10 minutes. The pmtu_default_age value can be
overridden by UDP applications.

Since routes can change dynamically, the path MTU value for a path may
also change over time. Decreases in the path MTU value will result in
packet fragmentation. Path MTU values that are discovered in this way are
periodically checked for decreases. By default, decreases are checked for
every 10 minutes, and this value can be changed by modifying the value of
the pmtu_default_age option of the no command.

• pmtu_rediscover_interval

Specifies the default amount of time (in minutes) before the path MTU value
for UDP and TCP paths are checked for a higher value. A value of 0 allows
no path MTU rediscovery.

Increases in the path MTU value can result in a potential increase in network
performance; so discovered path MTU values are periodically checked for
increases. By default, increases are checked for every 30 minutes, and this
value can be changed by modifying the value of the pmtu_rediscover_interval
option of the no command.

• udp_pmtu_discover

Chapter 2. Standard (UNIX) Performance Tools 49

Enables or disables path MTU discovery for UDP applications. UDP
applications must be specifically written to utilize path MTU discovery. A
value of 0 disables the feature, while a value of 1 enables it. The default
value is 0.

• tcp_pmtu_discover

Enables or disables path MTU discovery for TCP applications. A value of
0disables path MTU discovery for TCP applications, while a value of 1
enables it. The default value is 0.

• ipignoreredirects

Specifies whether or not to process redirects that are received. The default
value of 0 processes redirects as usual. A value of 1 ignores redirects.

• ipsrcroutesend

Specifies whether applications can send source-routed packets. The default
value of 1 allows source-routed packets to be sent. A value of 0 causes
setsockopt() to return an error if an application attempts to set the
source-routing option, and removes any source-routing options from
outgoing packets.

• ipsrcrouterecv

Specifies whether the system accepts source-routed packets. The default
value of 0 causes all source-routed packets destined for this system to be
discarded. A value of 1 allows source-routed packets to be received.

• ipsrcrouteforward

Specifies whether the system forwards source-routed packets. The default
value of 1 allows the forwarding of source-routed packets. A value of 0
causes all source-routed packets that are not at their destinations to be
discarded.

2.9 The nfso Command
The nfso command can be used to configure Network File System attributes. It
sets or displays network options in the currently running kernel. Therefore the
command must run after each system startup or network configuration.

 Note

The nfso command performs no range checking. If used incorrectly, the nfso
command can make your system inoperable.

The nfso parameters and their values can be displayed by using nfso -a:

nfso -a
portcheck= 0
udpchecksum= 1
nfs_socketsize= 60000
nfs_setattr_error= 0
nfs_gather_threshold= 4096
nfs_repeat_messages= 0
nfs_duplicate_cache_size= 0
nfs_server_base_priority= 0
nfs_dynamic_retrans= 1
nfs_iopace_pages= 32

50 RS/6000 Performance Tools in Focus

Most NFS attributes are runtime attributes that can be changed at any time, with
the exception of nfs_socketsize, which needs NFS to be stopped first and
restarted afterwards.

To display or change a specific parameter, use the nfso -o command:

nfso -o portcheck
portcheck= 0
nfso -o portcheck=1

The parameters can be reset to their default value by using the -d option:

nfso -d portcheck
nfso -o portcheck
portcheck= 0

2.9.1 nfso Command Parameters
portcheck: Checks whether an NFS request originated from a privileged port.
The default value of 0 disables the port checking that is done by the NFS server.
A value of 1 directs the NFS server to do port checking on the incoming NFS
requests.

This is a configuration decision with minimal performance consequences.

udpchecksum: Performs the checksum of NFS UDP packets. The default value
of 1 directs the NFS server or client to build UDP checksums for the packets that
it sends to the NFS clients or servers. A value of 0 disables the checksum on
UDP packets from the NFS server or client.

Turning this off is not recommended. Make sure this value is set to 1 in any
network where packet corruption may occur. Slight performance gains can be
realized by turning it off, but this increases the chance of data corruption.

nfs_socketsize: Sets the queue size of the NFS server UDP socket. This socket
is used for receiving the NFS client requests and can be adjusted so that the
NFS server is less likely to drop packets under heavy load. The value of the
nfs_socketsize variable must be less than the sb_max option, which can be
manipulated by the no command.

Increase the size of the nfs_socketsize variable when netstat reports packets
dropped due to full socket buffers for UDP and increasing the number of nfsd
daemons has not helped.

nfs_setattr_error: When set to a value of 1, the NFS server ignores invalid
setattr requests. This is provided for certain Personal Computer applications.
The default value is 0.

Tuning this parameter should not increase the performance.

nfs_gather_threshold: Determines when to attempt to gather write requests to a
file. If the size of the NFS write request is less than the value of the
nfs_gather_threshold option, the NFS server writes the data and immediately
responds to the NFS client. If the size of the NFS write request is equal to or
greater than the value of this option, the NFS server writes the data and waits for
a small amount of time before responding to the NFS client.

Chapter 2. Standard (UNIX) Performance Tools 51

The write gathering can be a performance advantage for sequential writes, but
can produce slight performance decreases for random writes. Look at the
following two scenarios:

 1. Delays are observed in responding to RPC requests, particularly those where
the client is exclusively doing non-sequential writes or the files being written
are being written with file locks held on the client.

 2. Clients are writ ing with write sizes smaller than 4096 KB and write gather is
not working.

If write gather is to be disabled, change the nfs_gather_threshold to a value
greater than the largest possible write. For AIX V4 running NFS Version 2, that
would be 8192. So changing the value to 8193 disables write gather. Use this for
the situation described above in the first scenario. If write gather is being
bypassed due to a small write size, say 1024 KB (described in second scenario),
change the write gather parameter to gather smaller writes. For example, set it
to 1024.

nfs_repeat_messages: Checks for duplicate NFS messages. This option is used
to avoid displaying duplicate NFS messages. When set to a value of 1, all NFS
messages are printed to the screen. If set to a value of 0, duplicate messages
appearing one after the other are not printed to the screen. Only the first
message of such a sequence is displayed. When a different message appears, a
message similar to the following will be displayed:

Last NFS message repeated n times

Tuning this parameter does not increase the performance.

nfs_duplicate_cache_size: The nfso command cannot be used to decrease the
nfs_duplicate_cache_size value. Any attempt will fail; the system has to be
rebooted. The duplicate cache size should be increased for very fast or busy
servers that have a high throughput capability. The duplicate cache is used to
allow the server to correctly respond to NFS client retransmissions. If the server
flushes this cache before the client is able to retransmit, then the server may
respond incorrectly, and the client can observe anomalous NFS behavior.
Therefore, if the server can process 1000 operations before a client retransmits,
then the duplicate cache size will need to be increased.

Calculate the number of NFS operations that are being received per second at
the NFS server and multiply this by 4. This will produce a duplicate cache size
that should be sufficient to allow correct response from the NFS server. The
operations that are affected by the duplicate cache are the following: setattr,
write, create, remove, rename, link, symlink, mkdir, and rmdir.

nfs_server_base_priority: If this value is set, the nfsd processes will use this as
their base priority. Acceptable values are from 31 to 126. The default value is 0,
which means that the nfsd processes will have a regular, floating priority.
Therefore as they increase their cumulative CPU time, their priority will change.
This parameter can be used to set a static priority for the nfsd daemons. Other
values within the acceptable range will be used to set the priority of the nfsd
daemon when an NFS request is received at the server. This option can be used
if the NFS server is overloading the system (lowering or making the nfsd daemon
less favored). It can also be used if it is desired that the nfsd daemons be one of
the most favored processes on the server. Care must be taken when setting the
parameter in that it may render the system almost unusable by other processes.

52 RS/6000 Performance Tools in Focus

This can occur if the NFS server is very busy and will essentially lock out other
processes from having run time on the server.

nfs_dynamic_retrans: With this parameter set to 1, the NFS client will attempt to
adjust its timeout behavior based on past NFS server response. It allows the
NFS client to automatically decrease the size of NFS read/write packets to
attempt to respond to network or server load problems. This also allows the
NFS client the ability to vary the timeout value used for the retransmission. All
of this is done based on an accumulative history of the NFS server’s response
time. In most cases this parameter does not need to be adjusted. There are
some instances where the straightforward timeout behavior is desired for the
NFS client. In these cases, the value should be set to 1 before mounting file
systems.

nfs_iopace_pages: This is the maximum number of dirty pages that the NFS
client will flush to the NFS server at one time. This is often useful when, for
instance, large compilations of images are flushed by the binder and interactive
performance suffers or when an application writes a large file to an
NFS-mounted filesystem. That file data is written to the NFS server when the file
is closed. In some cases, the resource it takes to write that file to the server
may prevent other NFS file I/O from occurring. The default value for this
parameter limits the number of 4-K pages written to the server to 32. The NFS
client will schedule 32 pages for writing to the server and then will wait for these
to complete before scheduling the next 32. The default value will usually be
sufficient for most environments. The value should be decreased if there are
large amounts of contention for NFS client resources. If there is low contention,
then the value can be increased. As a practical matter, the value should not be
set above a value of 128 and should not be lower than two.

2.9.2 AIX Version 4.2.1 Improvements
With AIX V4.2.1, the NFS subsystem will be updated to Version 3. Because of
this, the nfso command has some changes:

• nfs_duplicate_cache_size

The old parameter nfs_duplicate_cache_size is now divided into a TCP and a
UDP parameter:

− nfs_tcp_duplicate_cache_size specifies the number of entries to store in
the NFS server′s duplicate cache for the TCP network transport.

− nfs_udp_duplicate_cache_size specifies the number of entries to store in
the NFS server′s duplicate cache for the UDP network transport.

The following parameters are added to the nfso command:

• nfs_max_connections

Specifies the maximum number of TCP connections the NFS server allows to
be opened at any one time. If new TCP connections are requested from NFS
clients and the new connection increases the total beyond this amount, the
existing TCP connection will close because of the new connection.

• nfs_max_threads

Specifies the maximum number of NFS server threads that are created to
service incoming NFS requests. The maximum number may also be
specified as a parameter to the nfsd daemon.

• nfs_use_reserved_ports

Chapter 2. Standard (UNIX) Performance Tools 53

Specifies using non reserved IP port number. The default value of 0 will use
a non-reserved IP port number when the NFS client communicates with the
NFS server.

• nfs_tcp_socketsize

Sets the queue size of the NFS server TCP socket. This parameter is similar
to the nfs_socketsize parameter.

• nfs_device_specific_bufs

This option allows the NFS server to use memory allocations from network
devices if the network device supports such a feature. The NFS server′s use
of these special memory allocations can positively affect the overall
performance of the NFS server. Valid settings for this option are 0 or 1. The
default is 1, which means the NFS server is allowed to use the special
network device memory allocations. If the value of 0 is used, then the NFS
server will use the traditional memory allocations for its processing of NFS
client requests.

• nfs_server_clread

This option allows the NFS server to be very aggressive about the reading of
a file. The NFS server can only respond to the specific NFS read request
from the NFS client. However, the NFS server can read data in the file that
exists immediately after the current read request. This is normally referred
to as read-ahead. The NFS server does read-ahead by default. However,
when the nfs_server_clread option is enabled, it tells the NFS server to be
very aggressive about doing read-ahead for the NFS client. Valid settings for
this option are 0 or 1. The default value is 1 or enabled. If the value of 0 is
used, then the normal system default read-ahead methods are used.

2.10 The nice Command
With the nice command, the user can specify a value to be added to or
subtracted from the current priority of a process. By using nice, the priority of
the process does not get fixed; only its nice value is changed. The priority value
is still recalculated periodically based on the CPU usage, the nice value, and the
default user-process-priority value. The nice command can only set the nice
value for a process at the creation time of the process.

 Note

Any user can run a command at a lower priority than normal by using nice.
Only the root user can use nice to run commands at higher than normal
priority.

Priority Calculation: The priority of most user processes varies with the amount
of CPU time the process has used recently. The formula for calculating the
priority of a process or thread is:

priority value =base value + nice value + (CPU penalty based on recent CPU usage)

The base value is also called the user-process-priority value and is 40. The
default nice value of a foreground process is 20, of a background process 24, if
started from the ksh shell.

54 RS/6000 Performance Tools in Focus

 Note

Some shells (such as ksh) will automatically add a nice value of 4 to the
default nice value if a process is started in the background (using &). For
example, if you execute program & from a ksh, this program will automatically
be started with a nice value of 24. In this case, if this program was preceded
by a nice command (nice -10 program &), then this program would be started
with a nice value of 34.

The scheduler′s CPU penalty calculations are based on two parameters that can
be set with the schedtune command: -r and -d. For more details about the
schedtune command, please refer to 4.10, “The schedtune Command” on
page 177.

The formula used by the scheduler to calculate the amount to be added to the
priority of a process or thread as a penalty for recent CPU use is:

CPU penalty = (recent CPU use value) * (r value / 32)

The default value for r is 16.

The once-per-second recalculation of the recently used CPU value of each
process/thread is:

(old recent CPU use value) * (d value / 32)

The default value for d is 16.

The recent CPU usage value is displayed as the ″C″ column in the ps command
output. The maximum value of recent CPU usage is 120. You can view the
current nice value (NI), priority (PRI) and CPU usage value (C) for user
processes by running the ps -el command.

2.10.1 Using the nice Command
There are several ways to change the nice value, when creating a thread:

Favoring Processes: The following two commands execute a program with
higher priority:

nice --15 program

or better:

nice -n -15 program

The nice command subtracts 15 from the default nice value (20) and the program
will start with a priority of 45 because the user-priority-level is 40.

Disfavoring Threads: The following two commands execute a program with
lower priority:

nice -10 program

or better:

nice -n 10 program

The nice command adds 10 to the default nice value (20) and the program will
start with a priority of 70 because the user-priority-level is 40.

Chapter 2. Standard (UNIX) Performance Tools 55

 Note

The csh command contains a built-in command named nice. The
/usr/bin/nice command and the csh command ′s nice command do not
necessarily work the same way. For information on the built-in csh command
nice, see the csh command in the AIX Version 4 Commands Reference,
SBOF-1851.

The following example shows the execution of four sleep commands, with
different nice values:

nice -10 sleep 100000 & # Adds 10 to the nice value of 24 (& in ksh shell)

nice -n -15 sleep 100000 & # Subtracts 15 from the nice value 24 (& in ksh)

nice -n -10 sleep 100000 & # Subtracts 10 from the nice value 24 (& in ksh)

nice -n -10 sleep 100000 # Subtracts 10 from the default (20) nice value

The header line is added to the ps command output:

ps -el |grep sleep
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

 200001 A 0 18112 2492 0 74 34 35fa 44 9ef72d8 pts/3 0:00 sleep
 200001 A 0 9666 2492 0 49 9 2bf5 44 9ef7658 pts/3 0:00 sleep
 200001 A 0 16068 2492 0 54 14 21f0 44 9ef7698 pts/3 0:00 sleep
 200001 A 0 10182 2492 0 50 10 fe7 44 9ef76d8 pts/3 0:00 sleep

The NI column shows the modified nice value for each process. And the PRI
column is the modified process priority.

2.11 The renice Command
With the renice command, the user can specify a value to be added to or
subtracted from the priority of one or more running processes. The modification
is done to the nice values of the processes. The priority of these processes is
still non-fixed. For more information about processes and their priority, refer to
2.10, “The nice Command” on page 54.

 Note

If you do not have root user authority, you can only change the priority of
processes you own and can only increase their priority value within the
range of 0 to 20, with 20 giving the worst priority. If you have root user
authority, you can alter the priority of any process and change the priority
value within the range of -20 to 20.

The renice command modifies the nice value of one or more processes that are
already running. The processes are identified either by process ID, process
group ID, or the name of the user who owns the processes. It cannot be used on
fixed-priority processes.

For AIX V4, the syntax of renice has been changed to complement the alternative
syntax of nice, which uses the -n flag to identify the nice-value increment.

The following four examples show the different usages of the renice command.
The xclock command is started by a staff user in background:

56 RS/6000 Performance Tools in Focus

ps -lu mike
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

 8200011 A 201 7746 20540 0 64 24 6898 192 pts/5 0:00 xclock
200001 A 201 20540 22352 0 60 20 5a0 360 5a9b844 pts/5 0:00 ksh

renice -8 7746
ps -lu mike

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 8200011 A 201 7746 20540 0 52 12 6898 192 pts/5 0:00 xclock
200001 A 201 20540 22352 0 60 20 5a0 360 5a9b844 pts/5 0:00 ksh

In the previous example, the renice command is used without the -n option.
This alters the nice value from the default value of 20. The renice -<Increment>
command always uses the default nice value (20) for the calculation, not the
current value. If you want to use the current value for the calculation, you need
to use the following commands:

ps -lu mike
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

200001 A 201 7778 20540 0 64 24 6898 192 pts/5 0:00 xclock
200001 A 201 20540 22352 0 60 20 5a0 360 5a9b844 pts/5 0:00 ksh

renice -n -8 7778
ps -lu mike

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
200001 A 201 7778 20540 0 56 16 6898 192 pts/5 0:00 xclock
200001 A 201 20540 22352 0 60 20 5a0 360 5a9b844 pts/5 0:00 ksh

In the previous example the renice command subtracts eight from the current
nice value.

ps -lu mike
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

200001 A 201 7786 20540 0 64 24 6898 192 pts/5 0:00 xclock
200001 A 201 20540 22352 0 60 20 5a0 360 5a9b844 pts/5 0:00 ksh

renice -n 8 7786
ps -lu mike

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
200001 A 201 7786 20540 0 72 32 6898 192 pts/5 0:00 xclock
200001 A 201 20540 22352 0 60 20 5a0 360 5a9b844 pts/5 0:00 ksh

In the previous example the renice command adds eight to the current nice
value.

ps -lu mike
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

200001 A 201 7798 20540 0 64 24 5874 192 pts/5 0:00 xclock
200001 A 201 20540 22352 0 60 20 5a0 360 5a9b844 pts/5 0:00 ksh

renice -n +8 7798
ps -lu mike

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
200001 A 201 7798 20540 0 72 32 5874 192 pts/5 0:00 xclock
200001 A 201 20540 22352 0 60 20 5a0 360 5a9b844 pts/5 0:00 ksh

The last example is similar to the third one, the renice command uses the
current nice value for its modification and adds eight to it.

Chapter 2. Standard (UNIX) Performance Tools 57

2.12 The prof Command
The prof command displays a profile of CPU usage for each external symbol
(routine) of a specified program. In detail, it displays the percentage of
execution time spent between the address of that symbol and the address of the
next, the number of times that function was called, and the average number of
milliseconds per call. It interprets the profile data collected by the monitor
subroutine for the object file (a.out by default), reads the symbol table in the
object file, and correlates it with the profile file (mon.out by default) generated by
monitor. A usage report is sent to the terminal, or may be redirected to a file.

To use the prof command, a source program in C, FORTRAN, PASCAL, or
COBOL must be compiled with the -p option to put a special profiling startup
function that calls the monitor subroutine to track function calls, into the object
file. When the program is executed, the monitor subroutine creates a mon.out
file to track execution time. Therefore, only programs that explicitly exit or
return from the main program cause the mon.out file to be produced. Also the
-p flag causes the compiler to insert a call to the mcount subroutine into the
object code generated for each recompiled function of your program. While the
program runs, each time a parent calls a child function, the child calls the mcount
subroutine to increment a distinct counter for that parent-child pair. This counts
the number of calls to a function.

 Note

Currently, you cannot use the prof command for profiling optimized code.

By default, the displayed report is sorted by decreasing percentage of CPU time.
This is the same as when specifying the -t option. The options -c and -n sort
the output differently. If the -s option is used, a summary file mon.sum is
produced. This is useful when more than one profile file is specified with the -m
option. The -m option specifies files containing monitor data. The -z option will
include all symbols, even if there are zero calls and time associated.

2.12.1 The prof Implementation
The monitor routine calls the moncontrol routine to start the data gathering. The
moncontrol routine calls a profile subroutine to start the address sampling that is
used to determine what routine is executing at a particular time. The mcount
routine provides the counter for the number of calls to each routine. All of these
routines are needed, and are inserted for profiling when you compile with the -p
flag.

The following example shows the first part of the prof output for a modified
version of the Whetstone benchmark (Double Precision) program. It is well
described in A Synthetic Benchmark by H.J. Curnow and B.A. Wichman in
Computer Journal, Vol. 19 #1, February 1976:

cc -o cwhet -p -lm cwhet.c
cwhet > cwhet.out
prof
Name %Time Seconds Cumsecs #Calls msec/call
.main 33.0 21.54 21.54 1 21540.
.__mcount 27.2 17.74 39.28
.mod8 16.6 10.83 50.11 8990000 0.0012
.mod9 10.3 6.74 56.85 6160000 0.0011

58 RS/6000 Performance Tools in Focus

.cos 3.0 1.96 58.81 1920000 0.0010

.log 2.4 1.57 60.38 930000 0.0017

.exp 2.3 1.50 61.88 930000 0.0016

.mod3 1.9 1.22 63.10 140000 0.0087

.sqrt 1.4 0.90 64.00

.atan 1.1 0.74 64.74 640000 0.0012

.sin 0.9 0.59 65.33 640000 0.0009

._doprnt 0.0 0.01 65.34 10 1.0

.pout 0.0 0.00 65.34 10 0.0

.exit 0.0 0.00 65.34 1 0.

.free 0.0 0.00 65.34 2 0.

In this example, we see a lot of calls to the mod8 and mod9 routines. As a starting
point, check in the source code why they are used so much. Another starting
point could be to investigate why a routine needs so much time.

 Note

If the program you want to monitor uses a fork, you have to be careful
because the parent and the child will create the same file (mon.out). To
avoid this, you have to change the current directory of the child process.

2.13 The gprof Command
The gprof command produces an execution profile of C, PASCAL, FORTRAN, or
COBOL programs. The statistics of called subroutines are included in the profile
of the calling program. The gprof command is useful in identifying how a
program consumes CPU resources. It is roughly a superset of the prof
command, giving additional information and providing more visibility to active
sections of code.

2.13.1 The gprof Implementation
The source code must be compiled with the -pg option. This links in versions of
library routines compiled for profiling and reads the symbol table in the named
object file (a.out by default), correlating it with the call graph profile file
(gmon.out by default). This means that the compiler inserts a call to the mcount
function into the object code generated for each recompiled function of your
program. The mcount function maintains counters for each time a parent calls a
child function. Also the monitor function is enabled to estimate the time spent in
each routine.

The gprof command generates two useful reports:

• The call-graph profile, which shows the routines in descending order by CPU
time plus their descendants. It allows you to understand which parent
routines called a particular routine most frequently and which child routines
were called by a particular routine most frequently.

• The flat profile of CPU usage, which shows the usage by routine and number
of calls, similar to the prof output.

Each part starts with explanatory pages describing the output columns. These
pages could be suppressed by using the -b option.

Chapter 2. Standard (UNIX) Performance Tools 59

The following example shows the profiling for the cwhet benchmark program. It
is also used in 2.12.1, “The prof Implementation” on page 58:

cc -o cwhet -pg -lm cwhet.c
cwhet > cwhet.out
gprof cwhet > cwhet.gprof

The Call-Graph Profile: The call-graph profile is the first part of the cwhet.gprof
file.

granularity: Each sample hit covers 4 bytes. Time: 75.92 seconds

called/total parents
index %time self descendents called+self name index

called/total children

21.70 25.24 1/1 .__start [2]
[1] 61.8 21.70 25.24 1 .main [1]

10.50 0.00 8990000/8990000 .mod8 [4]
7.01 0.00 6160000/6160000 .mod9 [5]
1.70 0.00 930000/930000 .log [7]
1.70 0.00 930000/930000 .exp [6]
1.54 0.00 1920000/1920000 .cos [8]
1.24 0.00 140000/140000 .mod3 [10]
0.93 0.00 640000/640000 .atan [12]
0.62 0.00 640000/640000 .sin [15]
0.00 0.00 10/10 .pout [28]

6.6s <spontaneous>
[2] 61.8 0.00 46.94 .__start [2]

21.70 25.24 1/1 .main [1]
0.00 0.00 1/1 .exit [38]

To read this report, look at the first index [1] in the left-hand column. The .main
function is the current function. It was started by .__start (the parent function is
on top of the current function), and it, in turn, calls .mod8 and .mod9 (the child
functions are beneath the current function). All time of .main is propagated to
.__start. The self and descendents columns of the children of the current
function should add up to the descendents entry for the current function.

The Flat Profile: The flat profile sample is the second part of the cwhet.gprof
file.

granularity: Each sample hit covers 4 bytes. Time: 75.92 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
32.8 24.88 24.88 .__mcount [3]
 28.6 46.58 21.70 1 21700.00 46940.00 .main [1]
13.8 57.08 10.50 8990000 0.00 0.00 .mod8 [4]
9.2 64.09 7.01 6160000 0.00 0.00 .mod9 [5]
2.2 65.79 1.70 930000 0.00 0.00 .exp [6]
2.2 67.49 1.70 930000 0.00 0.00 .log [7]
2.0 69.03 1.54 1920000 0.00 0.00 .cos [8]
2.0 70.52 1.49 .qincrement [9]
1.6 71.76 1.24 140000 0.01 0.01 .mod3 [10]

60 RS/6000 Performance Tools in Focus

1.3 72.78 1.02 .__stack_pointer [11]
1.2 73.71 0.93 640000 0.00 0.00 .atan [12]
1.1 74.51 0.80 .qincrement1 [13]
1.0 75.29 0.78 .sqrt [14]
0.8 75.91 0.62 640000 0.00 0.00 .sin [15]
0.0 75.92 0.01 .__mcount [16]
0.0 75.92 0.00 180 0.00 0.00 .fwrite [17]
0.0 75.92 0.00 180 0.00 0.00 .memchr [18]
0.0 75.92 0.00 90 0.00 0.00 .__flsbuf [19]
0.0 75.92 0.00 90 0.00 0.00 ._flsbuf [20]

The flat profile is much less complex than the call-graph profile and very similar
to the output of prof. The primary columns of interest are the self seconds and
the calls columns. These reflect the CPU seconds spent in each function and
the number of times each function was called. The next columns to look at are
self ms/call, meaning CPU time used by the body of the function itself, and
total ms/call, meaning time in the body of the function plus any descendent
functions called.

Normally, the top functions on the list are targets for optimization, but you should
also consider how many calls are made to the function. Sometimes it may be
easier to make slight improvements to a frequently called function than to make
extensive changes to a piece of code called once. A cross reference index is
the last item produced:

Index by function name

[19] .__flsbuf [38] .exit [5] .mod9
[34] .__ioctl [6] .exp [43] .moncontrol
[16] .__mcount [39] .expand_catname [44] .monitor
[3] .__mcount [32] .free [22] .myecvt
[23] .__nl_langinfo_std [33] .free_y [27] .nl_langinfo
[11] .__stack_pointer [17] .fwrite [28] .pout
[24] ._doprnt [40] .getenv [29] .printf
[35] ._findbuf [41] .ioctl [9] .qincrement
[20] ._flsbuf [42] .isatty [13] .qincrement1
[36] ._wrtchk [7] .log [45] .saved_category_nam
[25] ._xflsbuf [1] .main [46] .setlocale
[26] ._xwrite [18] .memchr [15] .sin
[12] .atan [21] .mf2x2 [31] .splay
[37] .catopen [10] .mod3 [14] .sqrt
[8] .cos [4] .mod8 [30] .write

 Note

If the program you want to monitor uses a fork, you have to be careful
because the parent and the child will create the same file (gmon.out). To
avoid this, you have to change the current directory of the child process.

Chapter 2. Standard (UNIX) Performance Tools 61

62 RS/6000 Performance Tools in Focus

Chapter 3. Legacy (AIX) Performance Tools

This chapter describes some advanced, detailed commands AIX provides that
usually are used to check system-performance issues. Some of them come with
the AIX Basic Operating System; some of them are part of the AIX Performance
Toolbox LPP software.

These tools were originally created as development tools with the intention to
gather more detailed data than the standard UNIX tools are able to provide. The
data gathered is unique to AIX and helps to solve more complex problems.
These tools were the original advanced performance tools for AIX, but have now
been expanded with even more tools. Some people have adopted the name
legacy tools for this original set.

The purpose of this chapter is to provide information on when to use the legacy
tools, what their output means, and how to interpret it. For detailed information
on the syntax of the commands, refer to the AIX Version 4 Command Reference,
SBOF-1851 and to InfoExplorer.

3.1 The tprof Command
Profilers are tools that allow you to get information about processes running on
a system. There are two different types of profilers. The first type includes prof
and gprof. These are is standard UNIX tools and need a program compiled with
specific options to get the information. The second type includes tprof. It is an
AIX-specific profiler and is based on the trace facility. By using these profilers,
one can identify the heaviest processes on the machine, the heaviest
subroutines in your programs, and the time spent in each subroutine.

The tprof command is a very versatile AIX profiler that provides a detailed
profile of CPU usage for every AIX process ID and name. The tprof command is
a trace-driven profiler and provides a global and a detailed view. It profiles at
the application level, routine level, and even at the source-statement level. It
can profile any program produced by one of the following compilers: C for AIX, C
Set++ for AIX, and XL FORTRAN, but does not work with COBOL or PASCAL
programs at the statement level.

3.1.1 The tprof Implementation
The raw data for tprof is obtained via the trace facility. When a program is
profiled, the trace facility is activated and instructed to collect data from the
trace hook (hook ID 234) that records the contents of the instruction address
register when a system-clock interrupt occurs (100 times per second). Several
other trace hooks are also activated to allow tprof to track process and dispatch
activity. The trace records are not written to a disk file. They are written to a
pipe that is read by a program that builds a table of the unique program
addresses that have been encountered and the number of times each one
occurred. When the trace is stopped, the table of addresses and their
occurrence counts are written to disk. The data-reduction component of tprof
then correlates the instruction addresses that were encountered with the ranges
of addresses occupied by the various programs and reports the distribution of
address occurrences (ticks) across the programs involved in the workload.

 Copyright IBM Corp. 1997 63

The distribution of ticks is roughly proportional to the CPU time spent in each
program (10 milliseconds per tick). Once the programs that use a lot of CPU
time have been identified, the programmer can take action to restructure the hot
spots in the program or minimize their use.

The tprof command has been enhanced to provide the capability to profile
kernel extensions, stripped executables, and stripped libraries. If the user
program being profiled was compiled with the -g option, profiling is possible
down to the source-line level. This is known as micro-profiling.

3.1.2 The Advantages of tprof
• It is a sophisticated tool. Standard UNIX performance tools often do not

capture enough information to fully describe the enhanced performance and
functionality of AIX. They cannot profile optimized code, need to have source
code for recompilation, and there is sometimes an excessive overhead.

• There is little or no overhead. Unlike most profilers, CPU time is not
increased as with prof and gprof. The operation of keeping track of the
running process and the active instruction is really not CPU consuming, so
that the process can run at normal speed, and the results are close to
reality.

• It accepts optimized code. Since this profiler is AIX specific, it handles
optimized code. However, compiling without the -O option makes the line
number tprof uses more precise. The results will also be more complete if
the program has been compiled with the -g option (debug). When the C
compiler is optimizing, it sometimes does enough rearrangement of code to
make tprof output harder to interpret.

• The trace tool allows the user to see a broader spectrum of CPU usage, from
the global view of all processes down to the individual source-code level.

• It can use executable programs for profiling. The tprof command can be run
using the executable program for routine-level profiling. There is no need to
recompile with special flags.

• It allows subroutine-level analysis. If your program is not stripped, tprof will
give you the time spent in each subroutine.

3.1.3 The Limitations of tprof
• There is some inaccuracy when profiling short-running programs. Since

activity is recorded at 100 samples per second, estimates for short-running
programs may not be sufficiently accurate. Programs of less than 1 second
duration are not shown in the report. Averaging multiple runs will help
generate a more accurate picture.

• Only one user at a time can run tprof. The tprof command uses the system
trace facility. Only one user can execute trace at a time; therefore, only one
tprof can be running, and it cannot execute in parallel with other
trace-based tools like filemon or netpmon.

• It only profiles CPU activity. There is no profiling of other system resources
like memory, disks, and network.

• It accepts only C, C++, and FORTRAN for statement-level profiling. The
tprof command will do subroutine-level profiling for any executable on which
the stripnm command will produce a symbol table.

64 RS/6000 Performance Tools in Focus

• You cannot profile routines when interrupts are disabled. The tprof
command cannot determine the address of a routine when interrupts are
disabled. Therefore, it charges any ticks that occur while interrupts are
disabled to the i_enable (for AIX V3.2) or unlock_enable (AIX V4) routines.

 Note

Since the tprof command uses the trace facility, it causes little system
overhead. The tprof command enables only a few trace hooks; so its
overhead is less than that of a full trace. For example, tprof degraded the
performance of a large compile by less than two percent.

3.1.4 A Systemwide Example
The tprof command can be used to profile the entire system by specifying the
sleep command as the command to execute. So if you want to profile the system
for 10 minutes, run “tprof -x sleep 600”. This will gather tprof statistics for all
processes running on the system for the duration of the next 600 seconds. After
the data is collected, more post processing can be done with the -s, -k, and -p
flags.

tprof -x sleep 600
Starting Trace now
Starting sleep 600
Tue Feb 25 13:20:48 1997
System: AIX itsosmp Node: 4 Machine: 00045067A000
Trace is done now
601.939 secs in measured interval
 * Samples from __trc_rpt2
 * Reached second section of __trc_rpt2

cat __prof.all
Process PID TID Total Kernel User Shared Other
======= === === ===== ====== ==== ====== =====

wait 516 517 86486 86486 0 0 0
cpubound 19918 19671 61766 59996 347 1423 0
cpubound 19306 18803 59915 58250 301 1364 0
cpubound 19056 17785 59905 58111 263 1531 0

wait 774 775 3267 3267 0 0 0
tprof 19576 19329 274 96 178 0 0
trace 21106 20859 132 132 0 0 0
gil 2064 2581 120 120 0 0 0
gil 2064 2323 117 117 0 0 0
gil 2064 2839 115 115 0 0 0
gil 2064 3097 115 115 0 0 0

syncd 3854 4631 98 98 0 0 0
pstat 21628 21381 94 63 0 31 0
pstat 21630 21383 83 52 3 28 0
wait 1032 1033 80 80 0 0 0

swapper 0 3 66 66 0 0 0
init 1 459 47 5 42 0 0

telnetd 4610 15115 6 5 0 1 0
pciconsvr.ip 15080 16369 6 5 1 0 0

netm 1806 1807 5 5 0 0 0
ksh 6916 7181 5 4 1 0 0

bootpd 8520 8785 5 4 0 1 0
afsd 9296 9561 4 4 0 0 0
sh 18810 18563 4 4 0 0 0

Chapter 3. Legacy (AIX) Performance Tools 65

wait 1290 1291 3 3 0 0 0
pcimapsvr.ip 16870 14831 3 2 1 0 0

cron 13988 3501 2 1 1 0 0
sendmail 5610 5107 2 2 0 0 0

tprof 15466 20595 2 2 0 0 0
sendmail 21632 21385 2 2 0 0 0

sleep 18810 18563 2 2 0 0 0
syslogd 5348 5613 1 1 0 0 0
portmap 5878 6143 1 1 0 0 0
tprof 18796 18549 1 1 0 0 0
ksh 21628 21381 1 1 0 0
ksh 21630 21383 1 1 0 0 0

======= === === ===== ====== ==== ====== =====
Total 272736 267219 1138 4379 0

Process FREQ Total Kernel User Shared Other
======= === ===== ====== ==== ====== =====
cpubound 3 181586 176357 911 4318 0

wait 4 89836 89836 0 0 0
gil 4 467 467 0 0 0

tprof 3 277 99 178 0 0
pstat 2 177 115 3 59 0
trace 1 132 132 0 0 0
syncd 1 98 98 0 0 0

swapper 1 66 66 0 0 0
init 1 47 5 42 0 0
ksh 3 7 6 1 0 0

telnetd 1 6 5 0 1 0
pciconsvr.ip 1 6 5 1 0 0

netm 1 5 5 0 0 0
bootpd 1 5 4 0 1 0

sendmail 2 4 4 0 0 0
afsd 1 4 4 0 0 0
sh 1 4 4 0 0 0

pcimapsvr.ip 1 3 2 1 0 0
cron 1 2 1 1 0 0
sleep 1 2 2 0 0 0

syslogd 1 1 1 0 0 0
portmap 1 1 1 0 0 0
======= === ===== ====== ==== ====== =====
Total 36 272736 267219 1138 4379 0

The first part of the report shows the number of ticks consumed by, or on behalf
of, each process. The PID is the process ID. The TID is thread ID. The Total
column is the total ticks consumed by the process. The Kernel is ticks consumed
in kernel mode. The User is ticks consumed in user mode, and the Shared is
ticks consumed in shared library. The Other column is a catch-all category that
is normally 0. A tick is 1/100 of a second. The Total at the bottom is the total
ticks consumed by all processes. The processes are listed in descending order
on Total ticks consumed.

The second part of the report summarizes the results by program, regardless of
process ID. It shows the number (FREQ) of different occurrences for each
program during the measured interval.

66 RS/6000 Performance Tools in Focus

3.1.5 A Source-Line Example
The source-line example shows the profiling of the cwhet benchmark program.
This program was also used as an example for the prof and gprof commands in
Chapter 2, “Standard (UNIX) Performance Tools” on page 7.

To get a source-statement-level profiling, you need to compile with the -g option:

cc -g -lm cwhet.c -o cwhet

Profile the program with the following command:

tprof -k -p cwhet -x cwhet
Starting Trace now
Starting cwhet
Tue Mar 11 16:51:52 1997
System: AIX ah6000d Node: 4 Machine: 000002583800

0 0 0 1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00
120000 140000 120000 -7.139009e-05 7.538388e-04 -2.949938e-04 5.302094e-04
140000 120000 120000 -9.301742e-11 1.171939e-10 1.476543e-10 3.578717e-10
3450000 1 1 1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00
2100000 1 2 6.000000e+00 6.000000e+00 1.476543e-10 3.578717e-10
320000 1 2 5.059279e-08 5.059279e-08 5.059152e-08 5.059152e-08
8990000 1 2 9.999000e-01 1.000000e+00 9.999000e-01 9.999000e-01
6160000 1 2 6.000000e+00 3.000000e+00 2.000000e+00 3.000000e+00

0 2 3 1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00
930000 2 3 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

Trace is done now
62.755 secs in measured interval
* Samples from __trc_rpt2
* Reached second section of __trc_rpt2

The output shows tprof statements giving information about the status and the
program execution time and the output of the compiled program. The cwhet
output starts after the System: line and ends before the Trace is done now line.
The line 62.755 secs in measured interval indicates that the profiling was active
during this amount of time.

If the -x Command flag is used, tprof allows the execution of an arbitrary
command. Subprograms of the program specified by the -p flag are profiled if
this flag is specified. In our example the program cwhet will be profiled like this.
The -k option will profile the kernel.

Additional options for tprof are: -e to profile kernel extensions, -v to get
additional information and to keep intermediate files, -s to profile shared
libraries, and -t Process_Id to profile a specific process. At least one of -s, -k,
-e or -p needs to be specified to get a detailed profile, instead of just a
summary.

If the -x Command flag is omitted, the tprof command uses the __trc_rpt2 trace
report file in the current directory to produce its output.

For the previous example, a summary report named __cwhet.all is produced.
This report contains an estimate of the amount of CPU time spent in each
process that was executing while the tprof program was monitoring the system.
It also contains an estimate of the amount of CPU time spent in each
subprogram of the sample program. The summary report shows the amount of

Chapter 3. Legacy (AIX) Performance Tools 67

time the CPU spends in kernel and user mode. The tprof command reports CPU
time in ticks, where 100 ticks equals one second.

If source-statement-level profiling is indicated, additional files are created and
placed in the current directory. For example, the __t.<routine>_cwhet.c f i les
have a profiled source listing for each routine. This means they show each
source line with line numbers and tick counts, in order by line number. The
__h.cwhet.c shows the hottest source lines in the source file, and it is ordered by
tick count. This makes it easy to find hot spots in the program.

 Note

When the -p program flag is used, you should make sure that the PATH
environment variable includes the current directory; otherwise the files
__h.xxxx.c and __t.xxx_yyy.c will not be created.

The following example of the file __cwhet.all shows the reports of how many CPU
ticks each routine involved in the execution consumed. All values are in ticks
(1/100) of a second (the section lines are inserted for readability):

---------------------- First section --

Process PID TID Total Kernel User Shared Other
======= === === ===== ====== ===== ====== =====

 cwhet 48144 57113 5037 3 5034 0 0
netscape 3318 51967 407 40 367 0 0

X 2756 3533 45 38 7 0 0
wait 516 517 11 11 0 0 0
init 1 441 8 0 8 0 0

 tprof 17678 46615 8 1 7 0 0
sh 48144 57113 8 5 3 0 0

syncd 2074 2595 5 5 0 0 0
xdaliclock 33426 29339 5 5 0 0 0

gil 1032 1291 2 2 0 0 0
gil 1032 1549 2 2 0 0 0
gil 1032 2065 2 2 0 0 0
afsd 11602 12123 2 2 0 0 0
gil 1032 1807 1 1 0 0 0
xant 35934 3943 1 0 1 0 0

 trace 17668 46605 1 1 0 0 0
 tprof 54272 54793 1 1 0 0 0

======= === === ===== ====== ==== ====== =====
Total 5546 119 5427 0 0

---------------------- Second section ---------------------------------------

Process FREQ Total Kernel User Shared Other
======= ==== ===== ====== ==== ====== =====
cwhet 1 5037 3 5034 0 0
netscape 1 407 40 367 0 0

X 1 45 38 7 0 0
 wait 1 11 11 0 0 0

tprof 2 9 2 7 0 0
init 1 8 0 8 0 0
sh 1 8 5 3 0 0

 gil 4 7 7 0 0 0
syncd 1 5 5 0 0 0

xdaliclock 1 5 5 0 0 0

68 RS/6000 Performance Tools in Focus

afsd 1 2 2 0 0 0
xant 1 1 0 1 0 0

trace 1 1 1 0 0 0
======= === ===== ====== ==== ====== =====
Total 17 5546 119 5427 0 0

--------------------------- Third section ----------------------------------

Total Ticks For cwhet(USER) = 5034

 Subroutine Ticks % Source Address Bytes
============= ====== ====== ======= ======= =====

.main 2811 50.7 cwhet.c 268436748 3428

.mod8 933 16.8 cwhet.c 268436088 140

.mod9 417 7.5 cwhet.c 268435968 120

.mod3 197 3.6 cwhet.c 268436228 344
.exp 157 2.8

../../../../../../../src/bos/usr/ccs/lib/libm/POWER/exp.c 268442908 592
.cos 150 2.7

../../../../../../../src/bos/usr/ccs/lib/libm/POWER/cos.c 268440884 608
.log 140 2.5

../../../../../../../src/bos/usr/ccs/lib/libm/POWER/log.c 268442116 792
.atan 101 1.8

../../../../../../../src/bos/usr/ccs/lib/libm/POWER/atan.c 268441492 624
.sqrt 85 1.5 sqrt.s 268443500 356
.sin 43 0.8

../../../../../../../src/bos/usr/ccs/lib/libm/POWER/sin.c 268440324 560

---------------------------- Fourth section --------------------------------

Total Ticks For cwhet(KERNEL) = 3

Subroutine Ticks % Source Address Bytes
============= ====== ====== ======= ======= =====
.unlock_enable 2 0.0 low.s 37636 508

.ld_findfp 1 0.0 ../../../../../src/bos/kernel/ldr/ld_libld.c
1120300 232

The first part of the report shows the number of ticks consumed by, or on behalf
of, each process. The columns give tick counts for kernel code, user code, and
shared code. The Other column is a catch-all category that is normally 0.

The second part of the report summarizes the results by program, regardless of
process ID. It shows the number (FREQ) of different occurrences for each
program during the measured interval.

The third part breaks down the user ticks associated with the executable
program (user mode) being profiled. It reports the number of ticks used by each
function in the executable (Ticks column) and the percentage of the total CPU
ticks (5034) that each function′s ticks represent (% column). The Source column
shows where the corresponding subroutine comes from. The Address column is
the virtual address where the subroutine resides. The Byte column contains the
size of the subroutine. From an application-tuning perspective, the developer
has control over the code that executes in user mode, but has no control over
the code contained in system calls (system mode). The third part is omitted if
there are no user-code ticks observed.

Chapter 3. Legacy (AIX) Performance Tools 69

The fourth part breaks down the kernel ticks associated with the kernel functions
(system mode) being profiled. There will be another part showing the shared
library consumption if shared libraries were used and the -s flag was specified.
System mode time can sometimes be reduced by using a more efficient
subroutine or by reducing the number of times the system call is requested.

From the report above, we can see that 50 percent of the total CPU consumption
in user mode is in the main subroutine. This is the majority of the user mode
CPU time. From the second part, we can see that 9 ticks are spent for the tprof
command and 1 tick for the trace command, which is started by the tprof
command. This is a small usage compared to the total CPU time (5546); it is
less than one percent.

 Note

Remember that process names and identification numbers are not
necessarily unique. The program associated with a given numerical
process ID changes with each exec call. If one application program
execs another, both program names will appear in the tprof output
associated with the same process ID. When a process forks another
process, the forked process inherits the process name of the original
process, but it has a different process ID.

If you have access to the source code and want to know what lines of codes are
being executed most frequently, you can look at the hottest lines file produced
by tprof. The first column indicates the line number in the source file, and the
second column is the number of ticks charged to that line. From top to bottom, it
is listed in descending order. So the top one is the busiest line that has a
significant effect on CPU performance of the application. One point to note is
that no call counts are displayed; so you do not know how many times that line
is called. The gprof output can give you this information. Following is an
abbreviated example of the __h.cwhet.c file:

 Hot Line Profile for cwhet.c

Line Ticks

125 670
124 629
193 261
194 230
192 212
201 188
143 180
142 159
100 150

 85 144
202 123
103 120
104 105
200 91
101 84

From the annotated version of the routine main in the source file cwhet.c, called
__t.main_cwhet.c, we can see the following: (The example shows the parts,
which are marked as hot spots)

Ticks Profile for main in cwhet.c

 Line Ticks Source

... skip ...
100 150 j = j * (k - j) * (l - k);

70 RS/6000 Performance Tools in Focus

101 84 k = l * k - (l - j) * k;
102 66 l = (l - k) * (k + j);
103 120 e1[l - 2] = j + k + l;
104 105 e1[k - 2] = j * k * l;
105 - }
106 - #ifdef POUT
107 - pout(n6, j, k, e1[0], e1[1], e1[2], e1[3]);
108 - #endif
109 -
110 - /**** Module 7 : Trigonometric functions ****/
111 -
112 - x = y = 0.5;
113 8 for (i = 1; i <= n7; i++) {
114 36 x = t * atan(t2 * sin(x) * cos(x) / (cos(x + y) + cos(x
115 14 y = t * atan(t2 * sin(y) * cos(y) / (cos(x + y) + cos(x
116 - }
117 - #ifdef POUT
118 - pout(n7, j, k, x, x, y, y);
119 - #endif
120 -
121 - /**** Module 8 Procedure Call ****/
122 -
123 - x = y = z = 1.0;
124 629 for (i = 1; i <= n8; i++) {
125 670 mod8(x, y, &z);
126 - #ifdef HARD
127 18 x = z;
128 - #endif
129 - }

... skip...
173 - } /* End of Main */

 2811 Total Ticks for main in cwhet.c

This shows that the largest numbers of ticks are associated with calling the
subroutine mod8 and the for loop into which the subroutine is imbedded.

3.2 The svmon Command
The svmon command is an AIX-specific tool that provides global, process-level,
and segment-level reporting of memory use. The svmon command gives a more
in-depth analysis of memory usage. It is more informative but also more
intrusive than the vmstat and ps commands. The svmon command captures a
snapshot of the current state of memory. The displayed information can be
analyzed using four different reports:

Global (-G) Displays statistics describing the real memory and
paging space in use for the whole system

Process (-P) Displays memory usage statistics for active processes

Segment (-S) Displays memory usage for a specified number of
segments or the top ten

Detailed Segment (-D) Displays detailed information on specified segments

The svmon command can be run in intervals with the -i option. The -G and -P
options are the most useful.

The svmon command is not a true snapshot because it runs at the user level with
interrupts enabled. If no command line argument is present, the -G is taken as
the default. If an interval is used, statistics will be displayed until the command
is killed or until the number of intervals, which can be specified right after the
interval, is reached.The overhead to run svmon is substantial, but the information
is very valuable.

Chapter 3. Legacy (AIX) Performance Tools 71

 Note

The svmon-G command uses about 3.2 seconds of CPU time. A svmon
command for a single process (svmon-P <PID>), takes about .7 seconds of CPU
time.

The svmon command can only be executed by the root user.

3.2.1 How Much Memory is in Use
To print out global statistics, use the -G flag. In this example, we will repeat it
five times at two-second intervals.

svmon -G -i 2 5
m e m o r y i n u s e p i n p g s p a c e

size inuse free pin work pers clnt work pers clnt size inuse
 16384 16250 134 2006 10675 2939 2636 2006 0 0 40960 12674
 16384 16254 130 2006 10679 2939 2636 2006 0 0 40960 12676
 16384 16254 130 2006 10679 2939 2636 2006 0 0 40960 12676
 16384 16254 130 2006 10679 2939 2636 2006 0 0 40960 12676
 16384 16254 130 2006 10679 2939 2636 2006 0 0 40960 12676

Explanation of the svmon output

memory

size Total size of memory in 4K pages.
inuse Number of pages in RAM that are in use by a process plus

the number of persistent pages that belonged to a
terminated process and are still resident in RAM. This
value is the total size of memory minus the number of
pages on the free list.

free Number of pages on the free list.
pin Number of pages pinned in RAM (a pinned page is a page

that is always resident in RAM and cannot be paged out).

in use

work Number of working pages in RAM.
pers Number of persistent pages in RAM.
clnt Number of client pages in RAM (client page is a remote

file page).

pin

work Number of working pages pinned in RAM.
pers Number of persistent pages pinned in RAM.
clnt Number of client pages pinned in RAM.

pg space

size Total size of paging space in 4 K pages.
inuse Total number of allocated pages.

In our example, there are 16384 pages of total size of memory. One has to
multiply this number by four to see the total real memory size (64 MB). While
16250 pages are in use, there are 134 pages on the free list and 2006 pages are
pinned in RAM. Of the total pages in use, there are 10675 working pages in
RAM, 2939 persistent pages in RAM, and 2636 client pages in RAM. The sum of
these three parts is equal to the inuse column of the memory part. The pin part

72 RS/6000 Performance Tools in Focus

divides the pinned memory size into working, persistent and client categories.
The sum of them is equal to the pin column of the memory part. There are 40960
pages (160 MB) of total paging space, and 12676 pages are in use. The inuse
column of memory is usually greater than the inuse column of pg spage because
memory for file pages is not freed when a program completes while paging
space allocation is.

If the -r flag is set, it reports real memory frames that have been recently
referenced during the interval instead of the paging-space statistics.

svmon -G -i 2 5 -r
m e m o r y i n u s e p i n r e f

size inuse free pin work pers clnt work pers clnt inuse pin
 16384 16010 374 2007 10701 2785 2524 2007 0 0 9532 1336
 16384 16014 370 2007 10704 2786 2524 2007 0 0 724 510
 16384 16014 370 2007 10704 2786 2524 2007 0 0 675 481
 16384 16216 168 2007 10704 2890 2622 2007 0 0 2129 957
 16384 16216 168 2007 10704 2890 2622 2007 0 0 756 485

This example shows that there are 9532 inuse memory frames and 1336 pinned
memory frames that are referenced during the first two seconds.

3.2.2 Who is Using Memory?
The following command displays the memory usage statistics for the top 10
processes. If you do not specify a number, it will display all the processes
currently running in this system.

svmon -Pau 10

Pid Command Inuse Pin Pgspace
15012 maker4X.exe 4783 1174 4781
2750 X 4353 1178 5544
15706 dtwm 3257 1174 4003
17172 dtsession 2986 1174 3827
21150 dtterm 2941 1174 3697
17764 aixterm 2862 1174 3644
2910 dtterm 2813 1174 3705
19334 dtterm 2813 1174 3704
13664 dtterm 2804 1174 3706
17520 aixterm 2801 1174 3619

Pid: 15012
Command: maker4X.exe

Segid Type Description Inuse Pin Pgspace Address Range
1572 pers /dev/hd3:62 0 0 0 0..-1
 142 pers /dev/hd3:51 0 0 0 0..-1
1bde pers /dev/hd3:50 0 0 0 0..-1
 2c1 pers /dev/hd3:49 1 0 0 0..7
 9ab pers /dev/hd2:53289 1 0 0 0..0
 404 work kernel extension 27 27 0 0..24580
1d9b work lib data 39 0 23 0..607
 909 work shared library text 864 0 7 0..65535
 5a3 work sreg[4] 9 0 12 0..32768
1096 work sreg[3] 32 0 32 0..32783
1b9d work private 1057 1 1219 0..1306 : 65307..65535
1af8 clnt 961 0 0 0..1716

0 work kernel 1792 1146 3488 0..32767 : 32768..65535
...

Chapter 3. Legacy (AIX) Performance Tools 73

The output is divided into summary and detail sections. The summary section
lists the top 10 highest memory-usage processes in descending order.

Pid 15012 is the process ID that has the highest memory usage. The Command
indicates the command name, in this case maker4X.exe. The Inuse column (total
number of pages in real memory from segments that are used by the process)
shows 4783 pages (each page is 4 KB). The Pin column (total number of pages
pinned from segments that are used by the process) shows 1174 pages. The
Pgspace column (total number of paging space pages that are used by the
process) shows 4781 pages.

The detailed section displays information about each segment for each process
that is shown in the summary section. This includes the segment ID, the type of
the segment, description (a textual description of the segment, including the
volume name and inode of the file for persistent segments), number of pages in
RAM, number of pinned pages in RAM, number of pages in paging space, and
address range.

The Address Range specifies one range for a persistent or client segment and two
ranges for a working segment. The range for a persistent or a client segment
takes the form ’0..x,’ where x is the maximum number of virtual pages that have
been used. The range field for a working segment can be ’0..x : y..65535’, where
0..x contains global data and grows upward, and y..65535 contains stack area
and grows downward. For the address range, in a working segment, space is
allocated starting from both ends and working towards the middle. If the
working segment is non-private (kernel or shared library), space is allocated
differently. In this example, the segment ID 1b9d is a private working segment;
its address range is 0..1306 : 65307..65535. The segment ID 909 is a shared
library text working segment; its address range is 0..65535.

A segment may be used by multiple processes. Each page in real memory from
such a segment is accounted for in the Inuse field for each process using that
segment. Thus, the total for Inuse may exceed the total number of pages in real
memory. The same is true for the Pgspace and Pin fields. The sum of Inuse, Pin,
and Pgspace of all segments of a process is equal to the numbers in the
summary section.

3.2.3 Detailed Information on a Specific Segment ID
The -D option displays detailed memory-usage statistics for segments.

svmon -D 404
Segid: 404
Type: working
Description: kernel extension
Address Range: 0..24580
Size of page space allocation: 0 pages (0.0 Mb)
Inuse: 28 frames (0.1 Mb)

Page Frame Pin Ref Mod
12294 3320 pin ref mod
24580 1052 pin ref mod

 12293 52774 pin ref mod
 24579 20109 pin ref mod
 12292 19494 pin ref mod
 12291 52108 pin ref mod
 24578 50685 pin ref mod
 12290 51024 pin ref mod

24577 1598 pin ref mod
 12289 35007 pin ref mod

24576 204 pin ref mod
12288 206 pin ref mod
4112 53007 pin mod

74 RS/6000 Performance Tools in Focus

4111 53006 pin mod
4110 53005 pin mod
4109 53004 pin mod
4108 53003 pin mod
4107 53002 pin mod
4106 53001 pin mod
4105 53000 pin mod
4104 52999 pin mod
4103 52998 pin mod
4102 52997 pin mod
4101 52996 pin mod
4100 52995 pin mod
4099 52994 pin mod
4098 52993 pin mod
4097 52992 pin ref mod

We already explained the Segid, Type, Description, Address Range, Size of page
space allocation, and Inuse fields. Let’s look at the detailed part:

Page Specifies the index of the page within the segment
Frame Specifies the index of the real memory frame that the page resides in
Pin Specifies a flag indicating whether the page is pinned
Ref Specifies a flag indicating whether the page ′s reference bit is on
Mod Specifies a flag indicating whether the page is modified

The size of page space allocation is 0 because all the pages are pinned in real
memory.

3.2.4 List of Top Memory Usage of Segments
The -S option is used to sort segments by memory usage and to display the
memory-usage statistics for the top memory-usage segments. If count is not
specified, then a count of 10 is implicit. The following command sorts system
and non-system segments by the number of pages in real memory and prints out
the top 10 segments of the resulting list.

svmon -Sau

Segid Type Description Inuse Pin Pgspace Address Range
0 work kernel 1990 1408 3722 0..32767 : 32768..65535
1 work private, pid=4042 1553 1 1497 0..1907 : 65307..65535

1435 work private, pid=3006 1391 3 1800 0..4565 : 65309..65535
11f5 work private, pid=14248 1049 1 1081 0..1104 : 65307..65535
11f3 clnt 991 0 0 0..1716
 681 clnt 960 0 0 0..1880
 909 work shared library text 900 0 8 0..65535
 101 work vmm data 497 496 1 0..27115 : 43464..65535
 a0a work shared library data 247 0 718 0..65535
1bf9 work private, pid=21094 221 1 320 0..290 : 65277..65535

All output fields have been described in the previous examples.

3.2.5 Correlating svmon and vmstat Outputs
There are some relationships between the svmon and vmstat outputs.

svmon -G
m e m o r y i n u s e p i n p g s p a c e

size inuse free pin work pers clnt work pers clnt size inuse
 16384 16254 130 2016 11198 2537 2519 2016 0 0 40960 13392

The vmstat command was run in a separate window while the svmon command
was running.

Chapter 3. Legacy (AIX) Performance Tools 75

vmstat 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 13392 130 0 0 0 0 2 0 125 140 36 2 1 97 0
0 0 13336 199 0 0 0 0 0 0 145 14028 38 11 22 67 0
0 0 13336 199 0 0 0 0 0 0 141 49 31 1 1 98 0
0 0 13336 199 0 0 0 0 0 0 142 49 32 1 1 98 0
0 0 13336 199 0 0 0 0 0 0 145 49 32 1 1 99 0
0 0 13336 199 0 0 0 0 0 0 163 49 33 1 1 92 6
0 0 13336 199 0 0 0 0 0 0 142 49 32 0 1 98 0

The global svmon report shows related numbers. The number that vmstat reports
as Active Virtual Memory (avm) is reported by svmon as pg space inuse (13392).
The number of page frames on the free list (130) is identical in both reports.

3.2.6 Correlating svmon and ps Outputs
There are some relationships between the svmon and ps outputs.

svmon -P 7226

Pid Command Inuse Pin Pgspace
7226 telnetd 936 1 69

Pid: 7226
Command: telnetd

Segid Type Description Inuse Pin Pgspace Address Range
 828 pers /dev/hd2:15333 0 0 0 0..0
1d3e work lib data 0 0 28 0..559
 909 work shared library text 930 0 8 0..65535
1cbb work sreg[3] 0 0 1 0..0
1694 work private 6 1 32 0..24 : 65310..65535
12f6 pers code,/dev/hd2:69914 0 0 0 0..11

Compare with:

ps v 7226
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
7226 - A 0:00 51 240 24 32768 33 0 0.0 0.0 telnetd

SIZE refers to the virtual size in KB of the data section of the process (in paging
space). This number is equal to the number of working-segment pages of the
process that have been touched (that is, the number of paging-space pages that
have been allocated) times four. It needs to be multiplied with four since pages
are in 4 KB units and SIZE is in 1 KB units. If some working-segment pages are
currently paged out, this number is larger than the amount of real memory being
used. The SIZE value (240) correlates with the Pgspace number from svmon for
private (32) plus lib data (28) in 1 KB units. The library data is new in AIX V4 (it
was part of the shared library sreg [13] in AIX V3). Hence, the output from AIX
V3 is different from that shown here, so is the translation formula.

RSS refers to the real memory (resident set) size in KB of the process. This
number is equal to the sum of the number of working-segment and
code-segment pages in memory times four. Remember that code-segment
pages are shared among all of the currently running instances of the program. If
26 ksh processes are running, only one copy of any given page of the ksh
executable would be in memory, but ps would report that code-segment size as

76 RS/6000 Performance Tools in Focus

part of the RSS of each instance of ksh. The RSS value (24) correlates with the
Inuse numbers from svmon for private (6) working-storage segments, for code (0)
segments, and for lib data (0) of the process in 1 KB units.

TRS refers to the size of the resident set (real memory) of text. This is the
number of code-segment pages times four. As was noted earlier, this number
exaggerates memory use for programs of which multiple instances are running.
This does not include the shared text of the process. The TRS value (0)
correlates with the number of the svmon pages in the code segment (0) of the
Inuse column in 1 KB units. The TRS value can be higher than the TSIZ value
because other pages, such as the XCOFF header and the loader section, may be
included in the code segment.

SIZE = 4 * Pgspace of (work lib data + work private)
RSS = 4 * Inuse of (work l ib data + work private + pers code)
TRS = 4 * Inuse of (pers code)

TSIZ refers to the size of the text section of the executable file. Pages of the text
section of the executable are only brought into memory when they are touched,
that is, branched to or loaded from. The TSIZ value does not reflect actual
memory usage so it is not shown by svmon. The TSIZ value can also be seen by
executing dump -ov against an executable (for example, dump -ov /usr/bin/ls).

3.2.7 Finding Memory-Leaking Programs
A memory leak is a program bug that consists of repeatedly allocating memory,
using it, and then neglecting to free it. A memory leak in a long-running
program, such as an interactive application, is a serious problem because it can
result in memory fragmentation and the accumulation of large numbers of mostly
garbage-filled pages in real memory and page space. Systems have been
known to run out of page space because of a memory leak in a single program.

A memory leak can be detected with svmon or with the ps v command by looking
for processes whose private plus lib data working segments continually grow.
Identifying the offending subroutine or line of code is more difficult, especially in
AIX Windows applications, which generate large numbers of malloc() and free()
calls. Some third-party programs exist for analyzing memory leaks, but they
usually require access to the program source code.

Some uses of realloc(), while not actually programming errors, can have the
same effect as a memory leak. If a program frequently uses realloc() to
increase the size of a data area, the working segment of the process can
become increasingly fragmented if the storage released by realloc() cannot be
reused for anything else.

In general, memory that is no longer required should be released with the
free() and disclaim() system calls. On the other hand, it wastes CPU time to
free memory after the last malloc(), if the program will finish soon. When the
program terminates, its working segment is destroyed and the real memory
page frames that contained working-segment data are added to the free list.
Following is a memory-leaking program example; its Inuse, Pgspace, and Address
Range of the private working segment are continually growing.

Chapter 3. Legacy (AIX) Performance Tools 77

svmon -P 19556 -i 1 10
Pid Command Inuse Pin Pgspace

19556 pacman 3085 1 1580
Pid: 19556
Command: pacman
Segid Type Description Inuse Pin Pgspace Address Range
 9c8 pers /dev/hd2:53289 1 0 0 0..0
 aaf work lib data 12 0 6 0..1081
 909 work shared library text 1502 0 7 0..65535
1eba work private 1568 1 1567 0..1562 : 65313..65535
16f3 pers code,/dev/lv01:12302 2 0 0 0..1

Pid Command Inuse Pin Pgspace
19556 pacman 3114 1 1609
Pid: 19556
Command: pacman
Segid Type Description Inuse Pin Pgspace Address Range
 9c8 pers /dev/hd2:53289 1 0 0 0..0
 aaf work lib data 12 0 6 0..1081
 909 work shared library text 1502 0 7 0..65535
1eba work private 1597 1 1596 0..1591 : 65313..65535
16f3 pers code,/dev/lv01:12302 2 0 0 0..1

Pid Command Inuse Pin Pgspace
19556 pacman 3149 1 1644
Pid: 19556
Command: pacman
Segid Type Description Inuse Pin Pgspace Address Range
 9c8 pers /dev/hd2:53289 1 0 0 0..0
 aaf work lib data 12 0 6 0..1081
 909 work shared library text 1502 0 7 0..65535
1eba work private 1632 1 1631 0..1626 : 65313..65535
16f3 pers code,/dev/lv01:12302 2 0 0 0..1
...

3.2.8 Calculating the Minimum Memory Requirement of a Program
To calculate the minimum memory requirement of a program, use:

 Total memory pages (4 KB units) = T + (N * (PD + LD)) + F

where:

T = # of pages for text (shared by all users)
N = # of copies of this program running simultaneously
PD = # of working segment pages in process private segment
LD = # of shared library data pages used by the process
F = # of file pages (shared by all users)

Multiplying the result by four gives the number of KB required. You may want to
add the kernel, kernel extension, and shared library text-segment requirements
to this as well.

If we estimate the minimum memory requirement for the above program pacman,
the formula would be:

T = 2 (Inuse of code,/dev/lv01:12302 of pers)
PD = 1632 (Inuse of private of work)
LD = 12 (Inuse of lib data of work)
F = 1 (Inuse of /dev/hd2:53289 of pers.

That is 2 + (N * (1632+ 12)) + 1, equal to 1644 * N + 3 in 4 KB units.

78 RS/6000 Performance Tools in Focus

3.3 The rmss Command
The command name rmss is an acronym for Reduced-Memory System Simulator.
The rmss command provides you with a means to simulate IBM RS/6000 systems
with different sizes of real memory that are smaller than your actual machine,
without having to extract and replace memory boards. Moreover, rmss provides
a facility to run an application over a range of memory sizes, displaying, for each
memory size, performance statistics such as the response time of the application
and the amount of paging. In short, rmss is designed to help you answer the
question: ″How many megabytes of real memory does an RS/6000 need to run
AIX and a given application with an acceptable level of performance? ″ or, in the
multiuse context, ″How many users can run this application simultaneously in a
machine with X MB of real memory?″

It is important to keep in mind that the memory size simulated by rmss is the
total size of the machine’s real memory size, including the memory used by AIX
and any other programs that may be running. It is not the amount of memory
used specifically by the application itself. Because of the performance
degradation it can cause, rmss can be used only by root or a member of the
system group.

Important note

Before using rmss, it is a good idea to use the command schedtune -h 0 to
turn off VMM memory-load control. Otherwise, VMM memory-load control
may interfere with your measurements at small memory sizes. When your
experiments are complete, reset the memory load control parameters to the
values that are normally in effect on your system. (If you normally use the
default parameters, use schedtune -D.)

The rmss command reduces the effective memory size of an RS/6000 by stealing
free page frames from the list of free frames that is maintained by the VMM.
The stolen frames are kept in a pool of unusable frames and are returned to the
free frame list when the effective memory size is to be increased. Also, rmss
dynamically adjusts certain system variables and data structures that must be
kept proportional to the effective size of memory.

It is also important to run the application multiple times at each memory size.
There are two good reasons for doing so. First, when changing memory size,
rmss often clears out a lot of memory. Thus, the first time you run your
application after changing memory sizes it is possible that a substantial part of
the run time may be due to your application reading files into real memory. But,
since the files may remain in memory after your application terminates,
subsequent executions of your application may result in substantially shorter
elapsed times. Another reason to run multiple executions at each memory size
is to get a feel for the average performance of the application at that memory
size. The RS/6000 and AIX are complex systems, and it is impossible to
duplicate the system state each time your application runs. Because of this, the
performance of your application may vary significantly from run to run.

Chapter 3. Legacy (AIX) Performance Tools 79

3.3.1 Using rmss
• To display the current memory size, use:

rmss -p
Simulated memory size is 64 Mb.

This command shows that the current memory size is 64 MB. If you have
used the rmss command to reduce the memory size, it will display the
current memory size setting, not real memory size.

• To restore the memory to actual value, use:

rmss -r
Simulated memory size changed to 64 Mb.

This command restores the memory size to real memory size. The rmss
command reports usable real memory. On some machines that contain bad
memory or memory that is in use, rmss reports the amount of real memory
as the amount of physical real memory minus the memory that is bad or in
use by the system.

• To reduce memory size, use:

rmss -c 11.5
Simulated memory size changed to 11.5 Mb.

This command reduces the usable memory size to 11.5 MB. The memory
size is an integer or decimal number in units of megabytes (for example,
12.25). It must be between 4 MB and the amount of physical real memory in
your machine. Sometimes the rmss command may not be able to change the
memory size to less than 8 MB because of the size of inherent system
structures such as the kernel.

 Note

Never forget to reset the system memory size after you use the rmss
command to reduce it.

3.3.2 Simulating Different Memory Sizes
Let’s run rmss with a program ″eatmem.c″ that is a memory-eating program.

rmss -s 64 -f 8 -d 8 -n 1 -o eatmem1.out eatmem

This command starts simulating memory sizes from 64 MB (-s 64) and ends at 8
MB (-f 8), with an 8 MB difference (-d 8) each time it runs the eatmem program.
The program (eatmem) is executed and measured once at each memory size (-n
1). The output is written to file eatmem1.out (-o).

cat eatmem1.out
Hostname: itsosmp.itsc.austin.ibm.com
Real memory size: 127.40625 Mb
Time of day: Mon Mar 10 08:21:54 1997
Command: eatmem
Simulated memory size initialized to 64 Mb.
Number of iterations per memory size = 1 warmup + 1 measured = 2.
Memory size Avg. Pageins Avg. Response Time Avg. Pagein Rate
(megabytes) (sec.) (pageins / sec.)
--
64 1.0 4.9 0.2
56 0.0 4.7 0.0

80 RS/6000 Performance Tools in Focus

48 10.0 4.6 4.5
40 0.0 4.6 0.0
32 0.0 4.6 0.0
24 56.0 4.7 10.0
16 116.0 10.8 12.8
Unable to simulate 8 Mb because of excess of pinned pages.
The results are valid, but you may want to try a larger final memory size
next time.

The report displays the real memory size to be 127.40625 MB, starting simulated
memory size at 64 MB, running program eatmem, and running two times at each
simulated memory size.

We can see a ’warmup’ word in the output. The rmss always runs the command
once at each memory size as a warmup before running and actually measuring
the command. The warmup is needed to avoid the I/O that occurs when the
application is not already in memory. Although such I/O does affect
performance, it is not necessarily due to a lack of real memory. The warmup
run is not included in the number of iterations specified by the -n flag. In order
to better control the number of iterations, you should specify the -n value;
otherwise the system will determine during initialization how many times your
application must be run in order to accumulate a total run time of 10 seconds.

The report consists of four columns. The left-most column gives the memory
size, while the Avg. Pageins column gives the average number of page-ins that
occurred when the application was run at that memory size. The Avg. Response
Time column gives the average amount of time it took the application to
complete, while the Avg. Pagein Rate column gives the average rate of page-ins
per second. It is important to note that the Avg. Pageins and Avg. Pagein Rate
columns refer to all page-in operations that occurred while the program was run,
not only those initiated by the program.

From 64 MB to 32 MB, the Avg. Pagein Rate is relative small; from 24 MB to 16
MB, the Avg.Pagein Rate grows gradually. While the Avg.Pageins actually
decrease when the memory size changes from 48 MB (10.0 pageins) to 40 MB
(0.0 pageins), it should not be viewed with alarm. In a real-life system it is
impossible to expect the results to be perfectly smooth. The important point is
that the Avg.Pagein Rate is relatively low at both 48 MB and 40 MB.

Finally, there are a couple of deductions that we can make from the report. First
of all, if the performance of the application is deemed unacceptable at 24 MB (as
it probably would be), then adding memory would improve performance
significantly. Note that the response time rises from approximately 4.6 seconds
at 48 MB to 10.8 seconds at 16 MB, an increase of 135 percent. On the other
hand, if the performance is deemed unacceptable at 48 MB, adding memory will
not improve performance much because page-ins do not slow the program
appreciably at 48 MB.

Now let’s look at a test with an interval value of 2 and focus on the range from
32 MB to 8 MB.

rmss -s 32 -f 8 -d 2 -n 1 -o eatmem2.out eatmem
cat eatmem2.out

Hostname: itsosmp.itsc.austin.ibm.com
Real memory size: 127.40625 Mb
Time of day: Mon Mar 10 08:28:14 1997

Chapter 3. Legacy (AIX) Performance Tools 81

Command: eatmem
Simulated memory size initialized to 32 Mb.
Number of iterations per memory size = 1 warmup + 1 measured = 2.
Memory size Avg. Pageins Avg. Response Time Avg. Pagein Rate
(megabytes) (sec.) (pageins / sec.)
--
32 1.0 4.7 0.2
30 5.0 4.7 1.6
28 10.0 4.6 3.0
26 0.0 4.7 0.0
24 363.0 6.0 50.9
22 484.0 8.6 56.4
20 481.0 8.2 58.4
18 589.0 11.0 67.3
16 600.0 13.6 74.0
Unable to simulate 14 Mb because of excess of pinned pages.
The results are valid, but you may want to try a larger final memory size
next time.

By reducing the interval value, you could find out what memory size can
accommodate the application without a lot of page-ins. When it is at 28 MB, its
Avg. Pagein Rate is relatively high (3.0 page-ins/sec); and decreasing to 0.0
page-ins/sec when going from 28 MB to 26 MB. It finally goes up to 74.0
page-ins/sec when it is 16 MB. But what does it mean? According to the figures
in the last example, it could be some kind of daemon running during the test run
at 28 MB, or some other outside influences. Take a look at the Avg. Response
Time, it grows gradually when memory changes in the 26 MB to 16 MB range.
Therefore, you should concentrate on that range.

The two examples tell us the importance of choosing an interval so that the
paging-rate measurements can be clearly interpreted. If you choose too large
an interval, it will be hard to tell what the precise amount of memory should be;
conversely, an interval too small will take a long time to test. From a larger to
smaller interval may be a good way to simulate more precisely.

The final smallest memory size that is attainable by using rmss varies with the
size of real memory. When rmss is unable to change to a given memory size, it
displays an informative error message.

As mentioned earlier, rmss reduces the effective memory size of an RS/6000 by
stealing free page frames from the list of free frames that is maintained by the
VMM. Please refer to 2.1.2, “Memory Bound” on page 10.

 Note

It may take a short while (up to 15 to 20 seconds) to change the memory size.
In general, the more you wish to reduce the memory size, the longer time the
rmss command takes to complete.

82 RS/6000 Performance Tools in Focus

3.4 The filemon Command
The filemon command collects and presents trace data on the various layers of
file system utilization, including the logical file system, virtual memory segments,
LVM, and physical disk layers. Data can be collected on all the layers, or on
specific layers by specifying the -O layer option. The default is to collect data on
the VM segments, LVM, and physical layers. Both summary and detailed reports
are generated.

Important Note

The filemon command will only collect data for those files opened after
filemon was started unless you specify the -u flag.

The filemon command uses the trace facility to obtain a detailed picture of I/O
activity during a time interval. Since it uses the trace facility, filemon can be run
only by root or by a member of the system group, and it cannot be executed in
parallel with other trace-based commands like tprof and netpmon. Tracing is
started by the filemon command, optionally suspended with trcoff, resumed
with trcon, and terminated with trcstop. As soon as tracing is terminated,
filemon writes its report to stdout.

3.4.1 Using filemon
The following commands give a simple example of filemon usage measuring a
copy of a large file from one disk to another disk. The output is customized for
easy reading.

filemon -o fmon.out -O all ; cp /large_file/bigfile /temp_dir/big.sav;trcstop

Fri Mar 14 10:25:36 1997
System: AIX itsosmp Node: 4 Machine: 00045067A000

33.431 secs in measured interval
Cpu utilization: 25.8%

The 33.431 secs is the elapsed time in seconds while the trace was active. The
CPU utilization is 25.8 percent during the 33.431 seconds elapsed time.

Most Active Files
--
 #MBs #opns #rds #wrs file volume:inode
--
 98.7 1 25271 0 bigfile /dev/test_lv:18
98.7 1 0 25270 big.sav /dev/templv:17
0.0 2 4 0 ksh.cat /dev/hd2:10613
0.0 1 2 0 cmdtrace.cat /dev/hd2:10484

Most Active Segments
--
 #MBs #rpgs #wpgs segid segtype volume:inode
--
 98.7 25270 0 1629 ???
 98.7 0 25268 34fb ???

0.1 14 18 0241 .inodes /dev/hd2:3
0.1 26 0 26f2 .indirect /dev/test_lv:4
0.0 1 3 196d .diskmap /dev/test_lv:6
0.0 3 0 0c66 persistent /dev/hd2:2061
0.0 0 2 19cd page table

...

Most Active Logical Volumes
--

Chapter 3. Legacy (AIX) Performance Tools 83

 util #rblk #wblk KB/s volume description
--
0.99 24 202256 3025.4 /dev/templv /temp_dir
0.96 202376 64 3027.8 /dev/test_lv /large_file
0.02 88 144 3.5 /dev/hd4 /
0.02 176 144 4.8 /dev/hd2 /usr
0.00 0 48 0.7 /dev/hd8 jfslog
0.00 0 8 0.1 /dev/loglv01 jfslog
0.00 0 8 0.1 /dev/loglv00 jfslog

Most Active Physical Volumes
--
 util #rblk #wblk KB/s volume description
--
0.95 24 202264 3025.5 /dev/hdisk2
0.82 202376 72 3027.9 /dev/hdisk1
0.04 264 336 9.0 /dev/hdisk0

--
Detailed File Stats
--

FILE: bigfile volume: /dev/test_lv (/large_file) inode: 18
opens:1
total bytes xfrd:103510016
reads:25271(0 errs)
read sizes (bytes):avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec):avg 0.921 min 0.020 max 85.137 sdev 2.578

FILE: /temp_dir/big.sav volume: /dev/templv inode: 17
opens:1
total bytes xfrd:103505920
writes:25270(0 errs)
write sizes (bytes):avg 4096.0 min 4096 max 4096 sdev 0.0
write times (msec):avg 0.372 min 0.233 max 60.513 sdev 0.521

FILE: /usr/lib/nls/msg/en_US/ksh.cat volume: /dev/hd2 (/usr) inode: 10613
opens:2
total bytes xfrd:16384
reads:4(0 errs)
read sizes (bytes):avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec):avg 4.998 min 0.059 max 19.612 sdev 8.438

lseeks:10

FILE: /usr/lib/nls/msg/en_US/cmdtrace.cat volume: /dev/hd2 (/usr) inode: 10484
opens:1
total bytes xfrd:8192
reads:2(0 errs)
read sizes (bytes):avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec):avg 4.130 min 0.175 max 8.085 sdev 3.955

lseeks:8

--
Detailed VM Segment Stats (4096 byte pages)
--

SEGMENT: 1629 segtype: ???
segment flags:
reads:25270(0 errs)
read times (msec):avg 15.089 min 2.673 max 92.985 sdev 7.207
read sequences: 1
read seq. lengths:avg 25270.0 min 25270 max 25270 sdev 0.0

SEGMENT: 34fb segtype: ???
segment flags:
writes:25268(0 errs)
write times (msec):avg 59.685 min 9.728 max 116.388 sdev 17.883
write sequences: 29
write seq. lengths:avg 871.3 min 1 max 25240 sdev 4605.2

SEGMENT: 0241 segtype: .inodes volume: /dev/hd2 inode: 3
segment flags:pers defer
reads:14(0 errs)
read times (msec):avg 17.543 min 4.416 max 36.813 sdev 8.921

84 RS/6000 Performance Tools in Focus

read sequences: 13
read seq. lengths:avg 1.1 min 1 max 2 sdev 0.3

writes:18(0 errs)
write times (msec):avg 142.172 min 44.010 max 288.454 sdev 70.872
write sequences: 18
write seq. lengths:avg 1.0 min 1 max 1 sdev 0.0

SEGMENT: 26f2 segtype: .indirect volume: /dev/test_lv inode: 4
segment flags:pers defer
reads:26(0 errs)
read times (msec):avg 9.553 min 2.351 max 18.087 sdev 4.232
read sequences: 1
read seq. lengths:avg 26.0 min 26 max 26 sdev 0.0

SEGMENT: 196d segtype: .diskmap volume: /dev/test_lv inode: 6
segment flags:pers defer
reads:1(0 errs)
read times (msec):avg 36.281 min 36.281 max 36.281 sdev 0.000
read sequences: 1
read seq. lengths:avg 1.0 min 1 max 1 sdev 0.0

writes:3(0 errs)
write times (msec):avg 47.309 min 29.471 max 56.260 sdev 12.613
write sequences: 3
write seq. lengths:avg 1.0 min 1 max 1 sdev 0.0

SEGMENT: 0c66 segtype: persistent volume: /dev/hd2 inode: 2061
segment flags:pers
reads:3(0 errs)
read times (msec):avg 13.528 min 9.769 max 17.950 sdev 3.373
read sequences: 1
read seq. lengths:avg 3.0 min 3 max 3 sdev 0.0

SEGMENT: 19cd segtype: page table
segment flags:pgtbl
writes:2(0 errs)
write times (msec):avg 17.206 min 14.558 max 19.854 sdev 2.648
write sequences: 2
write seq. lengths:avg 1.0 min 1 max 1 sdev 0.0

--
Detailed Logical Volume Stats (512 byte blocks)
--

VOLUME: /dev/templv description: /temp_dir
reads:3(0 errs)
read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec):avg 37.823 min 3.526 max 59.813 sdev 24.572
read sequences: 3
read seq. lengths:avg 8.0 min 8 max 8 sdev 0.0

writes:6548(0 errs)
write sizes (blks): avg 30.9 min 8 max 32 sdev 4.5
write times (msec):avg 58.943 min 9.254 max 251.050 sdev 17.853
write sequences: 54
write seq. lengths:avg 3745.5 min 8 max 10528 sdev 3668.5

seeks:56(0.9%)
seek dist (blks):init 120,

avg 96615.0 min 8 max 231320 sdev 81102.0
time to next req(msec): avg 5.085 min 0.015 max 87.129 sdev 4.884
throughput:3025.4 KB/sec
utilization:0.99

VOLUME: /dev/test_lv description: /large_file
reads:4829(0 errs)
read sizes (blks): avg 41.9 min 8 max 64 sdev 21.4
read times (msec):avg 15.698 min 2.302 max 92.701 sdev 7.984
read sequences: 1384
read seq. lengths:avg 146.2 min 8 max 11424 sdev 475.7

writes:6(0 errs)
write sizes (blks): avg 10.7 min 8 max 16 sdev 3.8
write times (msec):avg 40.992 min 21.197 max 69.583 sdev 16.724
write sequences: 6
write seq. lengths:avg 10.7 min 8 max 16 sdev 3.8

seeks:1390(28.7%)
seek dist (blks):init 112,

avg 1045.6 min 8 max 188496 sdev 12273.7

Chapter 3. Legacy (AIX) Performance Tools 85

time to next req(msec): avg 6.883 min 0.003 max 89.506 sdev 6.925
throughput:3027.8 KB/sec
utilization:0.96

VOLUME: /dev/hd4 description: /
reads:11(0 errs)
read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec):avg 19.621 min 5.972 max 52.266 sdev 13.585
read sequences: 9
read seq. lengths:avg 9.8 min 8 max 16 sdev 3.3

writes:15(0 errs)
write sizes (blks): avg 9.6 min 8 max 16 sdev 3.2
write times (msec):avg 253.726 min 13.597 max 468.711 sdev 190.812
write sequences: 15
write seq. lengths:avg 9.6 min 8 max 16 sdev 3.2

seeks:24(92.3%)
seek dist (blks):init 24,

avg 2099.8 min 8 max 8280 sdev 3202.3
time to next req(msec): avg 1159.166 min 0.004 max 26973.092 sdev 5183.380
throughput:3.5 KB/sec
utilization:0.02

VOLUME: /dev/hd2 description: /usr
reads:22(0 errs)
read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec):avg 16.680 min 4.328 max 36.748 sdev 7.826
read sequences: 21
read seq. lengths:avg 8.4 min 8 max 16 sdev 1.7

writes:17(0 errs)
write sizes (blks): avg 8.5 min 8 max 16 sdev 1.9
write times (msec):avg 141.758 min 43.854 max 288.311 sdev 72.614
write sequences: 17
write seq. lengths:avg 8.5 min 8 max 16 sdev 1.9

seeks:38(97.4%)
seek dist (blks):init 1158600,

avg 84743.1 min 8 max 1158240 sdev 216114.9
time to next req(msec): avg 856.714 min 0.004 max 29161.273 sdev 4618.851
throughput:4.8 KB/sec
utilization:0.02

VOLUME: /dev/hd8 description: jfslog
writes:6(0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec):avg 24.956 min 18.328 max 31.755 sdev 4.736
write sequences: 5
write seq. lengths:avg 9.6 min 8 max 16 sdev 3.2

seeks:5(83.3%)
seek dist (blks):init 2120,

avg 12.0 min 8 max 16 sdev 4.0
time to next req(msec): avg 4989.772 min 32.874 max 29395.709 sdev 10915.003
throughput:0.7 KB/sec
utilization:0.00

VOLUME: /dev/loglv01 description: jfslog
writes:1(0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec):avg 26.221 min 26.221 max 26.221 sdev 0.000
write sequences: 1
write seq. lengths:avg 8.0 min 8 max 8 sdev 0.0

seeks:1(100.0%)
seek dist (blks):init 792

time to next req(msec): avg 29583.572 min 29583.572 max 29583.572 sdev 0.000
throughput:0.1 KB/sec
utilization:0.00

VOLUME: /dev/loglv00 description: jfslog
writes:1(0 errs)
write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
write times (msec):avg 9.103 min 9.103 max 9.103 sdev 0.000
write sequences: 1
write seq. lengths:avg 8.0 min 8 max 8 sdev 0.0

seeks:1(100.0%)
seek dist (blks):init 32

time to next req(msec): avg 69.104 min 69.104 max 69.104 sdev 0.000

86 RS/6000 Performance Tools in Focus

throughput:0.1 KB/sec
utilization:0.00

--
Detailed Physical Volume Stats (512 byte blocks)
--

VOLUME: /dev/hdisk2 description:
reads:3(0 errs)
read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec):avg 11.693 min 3.257 max 17.883 sdev 6.179
read sequences: 3
read seq. lengths:avg 8.0 min 8 max 8 sdev 0.0

writes:2346(0 errs)
write sizes (blks): avg 86.2 min 8 max 128 sdev 41.8
write times (msec):avg 14.798 min 0.190 max 187.811 sdev 10.655
write sequences: 55
write seq. lengths:avg 3677.5 min 8 max 10528 sdev 3653.0

seeks:58(2.5%)
seek dist (blks):init 1028472,

avg 103083.6 min 8 max 278624 sdev 86519.1
time to next req(msec): avg 5.259 min 0.063 max 87.148 sdev 4.855
throughput:3025.5 KB/sec
utilization:0.95

VOLUME: /dev/hdisk1 description:
reads:3982(0 errs)
read sizes (blks): avg 50.8 min 8 max 112 sdev 19.4
read times (msec):avg 11.136 min 0.023 max 164.865 sdev 12.216
read sequences: 1184
read seq. lengths:avg 170.9 min 8 max 11424 sdev 554.8

writes:7(0 errs)
write sizes (blks): avg 10.3 min 8 max 16 sdev 3.6
write times (msec):avg 15.665 min 0.692 max 36.422 sdev 13.568
write sequences: 7
write seq. lengths:avg 10.3 min 8 max 16 sdev 3.6

seeks:1191(29.9%)
seek dist (blks):init 1094000,

avg 2272.3 min 8 max 577504 sdev 27157.6
time to next req(msec): avg 10.415 min 0.137 max 89.506 sdev 5.994
throughput:3027.9 KB/sec
utilization:0.82

VOLUME: /dev/hdisk0 description:
reads:33(0 errs)
read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec):avg 16.124 min 4.137 max 31.980 sdev 7.568
read sequences: 31
read seq. lengths:avg 8.5 min 8 max 16 sdev 2.0

writes:36(0 errs)
write sizes (blks): avg 9.3 min 8 max 24 sdev 3.5
write times (msec):avg 36.717 min 1.945 max 447.324 sdev 72.864
write sequences: 36
write seq. lengths:avg 9.3 min 8 max 24 sdev 3.5

seeks:67(97.1%)
seek dist (blks):init 1498824,

avg 145586.2 min 8 max 1417280 sdev 328426.9
time to next req(msec): avg 726.347 min 0.886 max 26794.065 sdev 3927.114
throughput:9.0 KB/sec
utilization:0.04

The output is composed of two different types of reports: global and detailed.

3.4.2 The Global Reports of filemon
The global reports list the most active files, segments, logical volumes, and
physical volumes during the measured interval. They are shown at the
beginning of the filemon report. By default, the logical file and virtual memory
reports are limited to the 20 most active files and segments, respectively, as
measured by the total amount of data transferred. If the -v flag has been

Chapter 3. Legacy (AIX) Performance Tools 87

specified, activity for all files and segments is reported. All information in the
reports is listed from top to bottom as most active to least active.

Most Active Files

#MBs Total number of MBs transferred over measured interval for
this file. The rows are sorted by this field in decreasing order.

#opns Number of opens for files during measurement period.
#rds Number of read calls to file.
#wrs Number of write calls to file.
file File name (full path name is in detailed report).
volume:inode The logical volume that the file resides in and the inode

number of the file in the associated file system. This field can
be used to associate a file with its corresponding persistent
segment shown in the detailed VM segment reports. This field
may be blank for temporary files created and deleted during
execution.

It is clear that the most active files are bigfile on logical volume test_lv and
big.sav on logical volume templv. Both have 98.7 MB transferred during 33.431
seconds, have 25271 read calls, and 25270 write calls, respectively.

The application utilizes the terminfo database for screen management; so the
ksh.cat and cmdtrace.cat are also busy. Any time the shell needs to post a
message to the screen, it uses the catalogs for the source of the data.

To identify unknown files

Translate the logical volume name to the mount point of the file system, and
use the find command:

find /filesystem_name -inum <inode number> -print

Or use the ncheck command:

ncheck -i <inode number> <volume name>

Most Active Segments

#MBs Total number of MBs transferred over measured interval for
this segment. The rows are sorted by this field in decreasing
order.

#rpgs Number of 4-KB pages read into segment from disk.
#wpgs Number of 4-KB pages written from segment to disk (page out).
#segid VMM ID of memory segment.
segtype Type of segment: working segment, persistent segment (local

file), client segment (remote file), page table segment, system
segment, or special persistent segments containing file system
data (log, root directory, .inode, .inodemap, .inodex,
.inodexmap, .indirect, .diskmap).

volume:inode For persistent segments, name of logical volume that contains
the associated file and the file′s inode number. This field can
be used to associate a persistent segment with its
corresponding file, shown in the detailed file stats reports.
This field will be blank for non-persistent segments.

88 RS/6000 Performance Tools in Focus

 Note

If the filemon command is still active, the virtual memory analysis tool svmon
can be used to display more information about a segment, given its segment
ID (segid), as follows: svmon -D <segid>.

In our example, the segtype ??? means the system cannot identify the
segment type, and you have to use svmon to get more information.

Most Active Logical Volumes

util Utilization of logical volume
#rblk Number of 512 byte blocks read from logical volume
#wblk Number of 512 byte blocks written to logical volume
KB/s Average transfer data rate in KB per second
volume Logical volume name
description Either the file system mount point or the LV type (paging, jfslog,

boot, or sysdump). For example, the LV /dev/hd2 is /usr; /dev/hd6
is paging, and /dev/hd8 is jfslog. There may also be the word
compressed. This means all data is compressed automatically
using LZ compression before being written to disk, and all data is
uncompressed automatically when read from disk.

The utilization is presented in percentage, 0.99 means 99 percent busy during
measured interval. The logical volume templv has 202256 blocks written and has
an average data transfer rate of 3025.4 KB/s. The logical volume test_lv has
202376 blocks read and has an average data transfer rate of 3027.8 KB/s. The
other five LVs have little utilization and transfer rate.

Most Active Physical Volumes

util Utilization of physical volume. Note: logical volume I/O requests
start before and end after physical volume I/O requests. For that
reason, total logical volume utilization will appear to be higher
than total physical volume utilization.

#rblk Number of 512-byte blocks read from physical volume.
#wblk Number of 512-byte blocks written to physical volume.
KB/s Average transfer data rate in KB per second.
volume Physical volume name.
description Simple description of the physical volume type, for example,

CD-ROM SCSI, 2.0 GB SCSI disk.

Similar meaning for physical volume as for logical volume. We can see that
hdisk2 and hdisk1 are very busy (95 percent and 82 percent), but hdisk0 has a
utilization of only four percent. Therefore, spreading the file and logical volume
activities over all the three hard disks probably results in better performance.

3.4.3 The Detailed Reports of filemon
The detailed reports give additional information for the global reports. There is
one entry for each reported file, segment, or volume in the detailed reports. The
fields in each entry are described below for the four detailed reports. Some of
the fields report a single value; others report statistics that characterize a
distribution of many values. For example, response-time statistics are kept for
all read or write requests that were monitored. The average, minimum, and
maximum response times are reported as well as the standard deviation of the

Chapter 3. Legacy (AIX) Performance Tools 89

response times. The standard deviation is used to show how much the
individual response times deviated from the average. Roughly two-thirds of the
sampled response times are between average minus standard deviation and
average plus standard deviation. If the distribution of response times is
scattered over a large range, the standard deviation will be large compared to
the average response time.

Detailed File Stats: Detailed file statistics are provided for each file listed in the
Most Active Files report. These stanzas can be used to determine what access
has been made to the file. In addition to the number of total bytes transferred,
opens, reads, writes, and lseeks, the user can also determine the read/write size
and times.

FILE Name of the file. The full path name is given, if possible.
volume Name of the logical volume/file system containing the file.
inode Inode number for the file within its file system.
opens Number of times the file was opened while monitored.
total bytes xfrd Total number of bytes read/written from/to the file.
reads Number of read calls against the file.
read sizes (bytes) Read transfer-size statistics (avg/min/max/sdev), in bytes.
read times (msec) Read response-time statistics (avg/min/max/sdev), in

mill iseconds.
writes Number of write calls against the file.
write sizes (bytes) Write transfer-size statistics.
write times (msec) Write response-time statistics.
lseeks Number of lseek subroutine calls.

The file bigfile on LV test_lv has an inode number of 18; it was opened once, and
has been read 25271 times with no error. The average read size is 4096.0 bytes,
4096 bytes in minimum, 4096 bytes in maximum, and 0.0 bytes is the standard
deviation (SDEV). The average read time is 0.921 milliseconds; 0.020
milliseconds was the fastest read; 85.137 milliseconds was the slowest read, and
2.578 milliseconds was the statistical standard deviation.

 Note

The read sizes and write sizes will give you an idea of how efficiently your
application is reading and/or writing information. Using a multiple of 4 KB
pages is best.

Detailed VM Segment Stats: Each element listed in the Most Active Segments
report will have a corresponding stanza that shows detailed information about
real I/O to and from memory.

SEGMENT Internal AIX segment ID.
segtype Type of segment contents.
segment flags Various segment attributes.
volume For persistent segments, the name of the logical volume

containing the corresponding file.
inode For persistent segments, the inode number for the

corresponding file.
reads Number of 4096-byte pages read into the segment (that is,

paged in).
read times (msec) Read response-time statistics (avg/min/max/sdev), in

mill iseconds.

90 RS/6000 Performance Tools in Focus

read sequences Number of read sequences. A sequence is a string of
pages that are read (paged in) consecutively. The
number of read sequences is an indicator of the amount
of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences, in
pages.

writes Number of pages written from the segment to disk (that
is, paged out).

write times (msec) Write response-time statistics.
write sequences Number of write sequences. A sequence is a string of

pages that are written (paged out) consecutively.
write seq. lengths Statistics describing the lengths of the write sequences,

in pages.

By examining the reads and read-sequence counts, you can determine if the
access is sequential or random. For example, if the read-sequence count
approaches the reads count, the file access is more random. On the other side,
if the read-sequence count is significantly smaller than the read count and the
read-sequence length is a high value, the file access is more sequential. The
same logic applies for the writes and write sequence. In the example, segment
IDs 0241, 196d and 19cd have same write as write-sequence counts; so these
corresponding files accesses are more random.

Detailed Logical/Physical Volume Stats: Each element listed in the Most Active
Logical/Physical Volumes reports will have a corresponding stanza that shows
detailed information about the logical/physical volume. In addition to the
number of reads and writes, the user can also determine read and write times
and sizes and the initial and average seek distances for the logical / physical
volume.

VOLUME Name of the volume.
description Description of the volume. (Describes contents, if dealing

with a logical volume; describes type, if dealing with a
physical volume.)

reads Number of read requests made against the volume.
read sizes (blks) Read transfer-size statistics (avg/min/max/sdev), in units

of 512-byte blocks.
read times (msec) Read response-time statistics (avg/min/max/sdev), in

mill iseconds.
read sequences Number of read sequences. A sequence is a string of

512-byte blocks that are read consecutively. It indicates
the amount of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences, in
blocks.

writes Number of write requests made against the volume.
write sizes (blks) Write transfer-size statistics.
write times (msec) Write-response time statistics.
write sequences Number of write sequences. A sequence is a string of

512-byte blocks that are written consecutively.
write seq. lengths Statistics describing the lengths of the write sequences,

in blocks.
seeks Number of seeks that preceded a read or write request;

also expressed as a percentage of the total reads and
writes that required seeks.

Chapter 3. Legacy (AIX) Performance Tools 91

seek dist (blks) Seek-distance statistics in units of 512-byte blocks. In
addition to the usual statistics (avg/min/max/sdev), the
distance of the initial seek operation (assuming block 0
was the starting position) is reported separately. This
seek distance is sometimes very large; so it is reported
separately to avoid skewing the other statistics.

seek dist (cyls) (Physical volume only) Seek-distance statistics in units of
disk cylinders.

time to next req Statistics (avg/min/max/sdev) describing the length of
time, in milliseconds, between consecutive read or write
requests to the volume. This column indicates the rate at
which the volume is being accessed.

throughput Total volume throughput in KB per second.
utilization Fraction of time the volume was busy. The entries in this

report are sorted by this field in decreasing order.

A long seek time may increase I/O response time and result in decreased
application performance. In the example, the logical volume templv has 6548
writes, but there are only 54 write sequences and 56 seeks. This means that the
logical volume is sequential; the utilization is 99 percent, and average
throughput is 3025.4 KB/s during the measured interval. By examining the reads
and read sequence counts, you can determine if the access is sequential or
random. The same logic applies to the writes and write sequence. In the
example, hdisk2 and hdisk1 have 2.5 (58/2349) percentage seeks and 29.9
(1191/3989) percentage seeks compared to writes and reads, respectively; so the
files are more sequential, and there is a higher throughput (3025.5 KB/s and
3027.9 KB/s). The physical volume utilization is 95 percent and 82 percent, and
hdisk0 has 97.1 (67/69) percentage seeks compared to reads and writes.
Therefore, the file is random, and there is a lower throughput (9.0 KB/s). The
physical volume utilization is four percent.

 Attention

Although filemon reports average, minimum, maximum, and standard
deviation in its detailed-statistics sections, the results should not be used to
develop confidence intervals or other formal statistical inferences. In
general, the distribution of data points is neither random nor symmetrical.

3.4.4 Comparing filemon and vmstat Outputs
During the filemon execution, we also ran the vmstat command shown below.
From the example above, we know the CPU utilization is 25.8 percent; the two
disks utilizations are 95 percent and 82 percent, and the throughput is about the
maximum data rate (3027.8 KB/s), almost 70 percent of SCSI-1’s 5 MB/s. Since
there are no paging-space page-ins and page-outs, the workload is not a
memory bottleneck. The sum of us and sy (user and system) CPU-utilization is
not higher than 27 percent; so the workload is not approaching the CPU limits of
the system during that interval. But the wa (I/O wait) percentage is 61 - 90
percent; a significant amount of time is being spent waiting on non-overlapped
file I/O, and the workload is I/O-bound.

92 RS/6000 Performance Tools in Focus

kthr memory page faults cpu disk xfer
----- ----------- ------------------------ ------------ ----------------------
r b avm fre re pi po fr sr cy in sy cs us sy id wa 1 2 3 4
0 0 5114 23170 0 0 0 0 6 0 117 2 7 0 0 98 1 0 0 0
0 3 5228 22940 0 11 0 0 0 0 516 5910 150 2 14 45 38 37 2 0
0 3 5255 21764 0 0 0 0 0 0 663 1291 269 1 14 2 83 3 133 92
0 3 5257 20521 0 0 0 0 0 0 672 1402 292 2 16 0 82 0 137 90
1 2 5260 19244 0 0 0 0 0 0 677 1406 282 2 14 0 84 0 136 91
0 3 5262 17940 0 0 0 0 0 0 658 1451 273 2 18 0 80 0 131 84
0 3 5265 16753 0 0 0 0 0 0 661 1342 273 2 16 0 82 0 130 92
0 3 5267 15647 0 0 0 0 0 0 669 1232 279 2 12 0 86 0 129 102
2 2 5269 14205 0 0 0 0 0 0 658 1649 252 3 16 0 81 0 122 82
1 2 5271 12779 0 0 0 0 0 0 633 1575 239 2 17 0 81 0 118 69
1 2 5273 11735 0 0 0 0 0 0 673 1182 267 1 12 0 87 0 130 101
0 3 5275 10291 0 0 0 0 0 0 647 1574 232 1 16 0 82 0 118 74
1 2 5278 9040 0 0 0 0 0 0 667 1377 274 2 14 0 84 0 129 89
2 2 5280 7404 0 0 0 0 0 0 628 1792 237 2 19 0 79 0 120 63
1 3 5282 5763 0 0 0 0 0 0 626 1787 236 2 16 0 82 0 112 62
1 2 5285 4035 0 0 0 0 0 0 628 1846 224 3 19 0 78 0 112 59
1 2 5287 2439 0 0 0 0 0 0 631 1766 216 1 17 0 81 0 120 67
1 2 5289 749 0 0 0 0 0 0 633 1845 217 3 16 0 81 0 117 60
2 1 5291 125 0 0 0 890 2131 0 632 1645 339 2 18 0 80 0 115 70
1 2 5295 133 0 0 0 1652 3366 0 620 1796 437 1 22 0 77 0 117 61
2 2 5299 127 0 0 0 1690 4448 0 627 1841 445 2 22 0 76 0 121 62
1 2 5302 127 0 0 0 1618 3781 0 626 1759 437 3 22 0 76 0 121 64
1 2 5305 134 0 0 0 1672 4557 0 624 1792 420 2 22 0 76 0 121 64
1 2 5309 134 0 0 0 1735 5498 0 610 1873 435 3 24 0 73 0 116 57
1 2 5312 134 0 0 0 1700 5956 1 617 1825 427 3 24 0 73 0 115 62
0 3 5316 124 0 0 0 1761 3972 0 613 1943 434 3 22 0 75 0 111 57
1 3 5319 125 0 0 0 1652 2277 0 605 1777 406 1 24 0 75 0 116 58
1 2 5323 127 0 0 0 1705 2296 0 619 1833 422 2 22 0 76 0 111 60
1 3 5326 127 0 0 0 1717 2770 0 616 1873 441 2 25 0 73 1 112 57
0 3 5329 133 0 0 0 1672 2406 0 626 1804 427 2 25 0 72 0 116 59
0 3 5333 132 0 0 0 1636 2329 0 615 1792 419 3 24 0 73 0 114 64
3 3 5337 128 0 0 0 1645 2464 0 642 1753 486 2 23 0 75 32 112 62
0 3 5341 128 0 0 0 1491 2326 0 630 1634 417 2 21 0 76 28 113 68
1 2 5344 127 0 0 0 1690 3322 0 634 1833 442 1 23 0 76 0 122 66
1 2 5348 128 0 0 0 1653 3114 0 629 1792 450 2 21 0 77 0 119 68
0 3 5325 120 0 0 0 432 656 0 570 4750 268 2 13 24 61 62 23 13
0 3 5296 162 0 0 0 282 430 0 583 795 279 3 6 17 73 108 0 0
2 2 5303 161 0 0 0 9 15 0 480 2862 109 9 16 68 7 2 1 1
1 2 5146 329 0 0 0 0 0 0 483 2425 88 7 13 71 8 2 2 1

3.4.5 Things to Keep in Mind
• The /etc/inittab file is always very active. Daemons specified in /etc/inittab

are checked regularly to determine whether they are required to be
respawned.

• The /etc/passwd file is also always very active. Because files and
directories access permissions are checked.

• A long seek time increases I/O response time and decreases performance.

• If the majority of the reads and writes require seeks, you may have
fragmented files and/or overly active file systems on the same physical disk.

• If the number of reads and writes approaches the number of sequences,
physical disk access is more random than sequential. Sequences are
strings of pages that are read (paged in) or written (paged out)
consecutively. The seq. lengths is the length, in pages, of the sequences.

Chapter 3. Legacy (AIX) Performance Tools 93

A random file access can also involve many seeks. In this case, you cannot
distinguish from the filemon output if the file access is random or if the file is
fragmented. You have to further investigate with the fileplace command.

 Note

Remote files show up in the volume:inode column with the remote system
name.

Because filemon can potentially consume some CPU power, use this tool with
discretion, and analyze the system performance while taking into consideration
the overhead involved in running the tool.

• In a CPU-saturated environment with little I/O, filemon slowed a large
compile by about one percent.

• In a CPU-saturated environment with a high disk-output rate, filemon slowed
the writing program by about five percent.

How to Solve Disk-Limited Programs: Disk sensitivity can come in a number of
forms, with different resolutions:

• If large, I/O-intensive background jobs are interfering with interactive
response time, you may want to activate I/O pacing.

• If it appears that a small number of files are being read over and over again,
you should consider whether additional real memory would allow those files
to be buffered more effectively.

• If iostat indicates that your workload I/O activity is not evenly distributed
among the system disk drives, and the utilization of one or more disk drives
is often 40-50 percent or more, consider reorganizing file systems.

• If the workload′s access pattern is predominantly random, you may want to
consider adding disks and distributing the randomly accessed files across
more drives.

• If the workload′s access pattern is predominantly sequential and involves
multiple disk drives, you may want to consider adding one or more disk
adapters. It may also be appropriate to consider building a striped logical
volume to accommodate large, performance-critical sequential files.

3.5 The fileplace Command
Since files can be very dynamic, file system performance tends to follow the
theory of progressive chaos. A system may start out perfect, but through time, it
progresses to a state of total chaos. Access to fragmented files may result in a
large number of seeks and longer I/O response time. At some point, the system
administrator may choose to reorganize the placement of files within logical
volumes, and the placement of logical volumes within physical volumes, to
reduce fragmentation and to more evenly distribute the total I/O load.

There are some factors that affect file system performance:

• Dynamic allocation of resources may cause:

− Logically contiguous files to be fragmented
− Logically contiguous LVs to be fragmented
− File blocks to be scattered

• Effects when files are accessed from disk:

94 RS/6000 Performance Tools in Focus

− Sequential access no longer sequential.
− Random access affected.
− Access time dominated by longer seek time.
− Once the file is in memory, these effects diminish.

3.5.1 Using fileplace
The fileplace command displays the placement of a file’s blocks within a logical
volume or within one or more physical volumes. The fileplace command
expects an argument containing the name of the file to examine.

 Attention

Most variations of this command use fewer than 0.3 seconds of CPU time.

By default, the fileplace command sends its output to the display, but the output
can be redirected to a file via normal shell redirection. Its usage is:

fileplace [-l] [-p] [-i] [-v] <filename>

-l: display logical blocks

-p: display physical blocks

-i: display indirect blocks

-v: verbose mode (show efficiency and sequentiality)

Here is a short example:

fileplace -pvi /unix

File: /unix Size: 2326373 bytes Vol: /dev/hd2
Blk Size: 4096 Frag Size: 4096 Nfrags: 562 Compress: no
Inode: 47570 Mode: -r-xr-xr-x Owner: root Group: system

INDIRECT BLOCK: 147794

Physical Addresses (mirror copy 1) Logical Fragment
---------------------------------- ----------------

 0147788-0147793 hdisk0 6 frags 24576 Bytes, 1.1% 0047916-0047921
 unallocated 4 frags 16384 Bytes, 0.0% unallocated
 0147795-0147930 hdisk0 136 frags 557056 Bytes, 24.2% 0047923-0048058
 unallocated 1 frags 4096 Bytes, 0.0% unallocated
 0147931-0148131 hdisk0 201 frags 823296 Bytes, 35.8% 0048059-0048259
 unallocated 1 frags 4096 Bytes, 0.0% unallocated
 0148132-0148350 hdisk0 219 frags 897024 Bytes, 39.0% 0048260-0048478

562 frags over space of 563 frags: space efficiency = 99.8%
4 fragments out of 562 possible: sequentiality = 99.5%

A physical block is a contiguous allocated disk space, and the block size is equal
the size of the logical blocks used for the logical division of files and directories.
In this example, the Blk Size is 4096 bytes. The Frag Size is a 4096-byte block.
File system fragmentation sizes are used for better space utilization by
subdividing 4-KB blocks. In AIX V4, it is now possible to create a JFS with an
allocation unit or fragment of 512-KB, 1-KB, 2-KB, or 4-KB blocks. Although
there is an advantage for space utilization, fragmentation can impact
performance due to free space fragmentation. With a smaller fragment size,
there may also be an increase in disk I/O operations. The Nfrags is the number

Chapter 3. Legacy (AIX) Performance Tools 95

of fragments this file has. The Compress is no, meaning this file is not
compressed. If a file system is compressed, all data is compressed
automatically using LZ compression before being written to disk, and all data is
uncompressed automatically when read from disk. In addition to increased disk
I/O activity and free space fragmentation problems, there are the following
performance considerations:

• Degradation in file system usability arising as a direct result of the data
compression/decompression activity.

• All logical blocks in a compressed file system, when modified for the first
time, will be allocated 4096 bytes of disk space, and this space will
subsequently be reallocated when the logical block is written to disk.

• In order to perform data compression, approximately 50 CPU cycles per byte
are required, and about 10 CPU cycles per byte are required for
decompression.

The column under Physical Addresses shows the physical block numbers and
physical volume where part of the file resides. The column under Logical
Fragment shows the logical block numbers where part of the file resides. The
columns in the middle show the number of fragments that are contiguous, the
number of bytes in these contiguous fragments, and the percentage of the block
range compared to the total size.

The report generated by the -piv options displays the indirect block 147794,
which is in use due to the file being larger than 32 KB.

 Attention

The fileplace command will not display NFS remote files. If a remote file is
specified, the fileplace command returns an error message.

The fileplace command reads the file’s list of blocks directly from the logical
volume on disk. If the file is newly created, extended, or truncated, the
information may not be on disk yet. Use the sync command to flush the
information to the logical volume.

3.5.2 Space Efficiency and Sequentiality
Higher space efficiency means files are less fragmented and will probably
provide better sequential file access; a higher sequentiality indicates that the
files are more contiguously allocated, and this will probably be better for
sequential file access.

Space efficiency = Total number of fragments used for file storage /
(Largest fragment physical address -
Smallest fragment physical address + 1).

Sequentiality = (Total number of fragments -
Number of grouped fragments + 1) /
Total number of fragments.

If you find that your sequentiality or space efficiency values become low, you
may want to use the reorgvg command to improve disk utilization and efficiency.

96 RS/6000 Performance Tools in Focus

In this example, the Largest fragment physical address - Smallest fragment
physical address + 1 is: 148350 - 147788 + 1 = 563 fragments; total used
fragments is: 6 + 136 + 201 + 219 = 562; the space efficiency is 562 / 563 (99.8
percent); the sequentiality is (562 - 4 + 1) / 562 = 99.5 percent.

As the total number of fragments used for file storage does not include the
indirect blocks location, but the physical address does, the space efficiency can
never be 100 percent for files larger than 32 KB, even if the file is located on
contiguous fragments. The AIX file system structure is illustrated on Figure 2 on
page 98.

3.5.3 AIX File System Organization
If a file is too large to be contained in just eight data blocks (> 32 KB), a 4-KB
block is used to store more pointers. This 4-KB block is called an indirect block.
It can point to up to 1024 data blocks. This is called single indirection. Once a
file grows to the size that it must be referenced via an indirect block, the array of
eight addresses within the inode are no longer used. If the file shrinks down to
a size that no longer requires indirection, the eight inode pointers are once
again used.

If a file is so large that there are not enough pointers in a single indirect block to
point to all of the data blocks of that file, double indirection is invoked. In double
indirection, a 4-KB block is used to point to 512 indirect blocks which, in turn,
each point to 1024 data blocks. This means that in a default JFS, a file can
theoretically grow to a size of 512 * 1024 * 4096 bytes (2 GB). In AIX V4, the
maximum file system size is 256 GB. AIX V 4.2 added support for files greater
than 2 GB. If a JFS is created with the option b f=t rue, indicating that the file
system supports files greater than 2 GB, then the size of the data blocks are 128
KB rather than 4 KB. Theoretically, the maximum file size in AIX 4.2 is now 64
GB. The first indirect block will still point to 1024 4-KB blocks; however, the
other 511 indirect blocks point to 1024 128 KB blocks. Therefore, the real
maximum file size is just under 64 GB.

Chapter 3. Legacy (AIX) Performance Tools 97

Figure 2. AIX File System Organization

When you have a file system performance issue, try to answer the following
questions, and use the proper tool to identify it.

• Look for most active file systems and logical volumes:

− Can “hot” file systems be better located on physical drive or be spread
across multiple physical drives? (lslv)

− Are “hot” files local or remote? (filemon)
− Does paging space dominate disk utilization? (filemon)
− Is there enough memory to cache the file pages being used by running

processes? (svmon)
− Does the application perform a lot of synchronous (non-cached) file I/O?

• Look for file fragmentation:

− Are “hot” files heavily fragmented? (fileplace)

• Look for heavy physical volume utilization:

− Is the “type of drive” (SCSI-1, SCSI-2, tape, and so on) or SCSI adapter
causing a bottleneck? (filemon).

3.6 The lslv Command
The lslv command shows, among other information, the logical volume
fragmentation. Before we start to discuss it, let’s look at the logical volume
concept. Figure 3 on page 99 shows the logical volume manager (LVM)
policies.

There are various factors that affect a logical volume performance:

• Position on PV (Intra-policy)
• Range of PVs (Inter-policy)
• Maximum number of PVs to use
• Number of copies of each LP (Mirroring)

98 RS/6000 Performance Tools in Focus

• Mirror Write consistency (for mirrors)
• Allocate each LP copy on separate PV (Strictness)
• Relocate LV during reorganization (reorgvg)
• Scheduling policy (parallel or sequential writes)
• Write verify (read after a write)
• Striping

 Note

This command uses mainly CPU time. As an example, the command:

#lslv -p hdisk0 hd1

consumes about 0.5 seconds of CPU time.

3.6.1 LVM Policies

Figure 3. AIX LVM Policies

To view policies, use the lslv command or smitty lslv.

$ lslv hd2
LOGICAL VOLUME: hd2 VOLUME GROUP: rootvg
LV IDENTIFIER: 00012729dd72205e.5 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 4 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 114 PPs: 114
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: center UPPER BOUND: 32
MOUNT POINT: /usr LABEL: /usr
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes

Chapter 3. Legacy (AIX) Performance Tools 99

Intra-physical Volume Allocation Policy: The intra-physical volume allocation
policy specifies what strategy should be used for choosing physical partitions on
a physical volume. The five general strategies are outer edge, inner edge, outer
middle, inner middle, and center.

• The outer edge and inner edge strategies have the slowest average seek
times.

• The outer middle and inner middle strategies allocate reasonably good
locations for partitions with reasonably good average seek times.

• The center strategy has the fastest average seek times.

Inter-Physical Volume Allocation Policy: The inter-physical volume allocation
policy specifies which strategy should be used for choosing physical devices to
allocate the physical partitions of a logical volume. The choices are the
MINIMUM and MAXIMUM options.

• The MINIMUM option indicates that as little as possible physical volumes
should be used to allocate the required physical partitions. This option
provides the greatest reliability, without having copies, for a logical volume.
There are two choices available when using the MINIMUM option: without
copies and with copies.

− Without copies: The MINIMUM option indicates one physical volume
should contain all the physical partitions of this logical volume. If the
allocation program must use two or more physical volumes, it uses the
minimum number possible, remaining consistent with the other
parameters.

− With copies: The MINIMUM option indicates that as many physical
volumes as there are copies should be used. Otherwise, the minimum
number of physical volumes possible are used to hold all the physical
partitions.

• The MAXIMUM option intends, considering other constraints, to spread the
physical partitions of this logical volume over as many physical volumes as
possible. This is a performance-oriented option and should be used with
copies to improve availability. If an un-copied logical volume is spread
across multiple physical volumes, the loss of any physical volume containing
a physical partition from that logical volume is enough to cause the logical
volume to be incomplete. Compared to the parallel write copies option of
the scheduling policies, this parameter is more important for obtaining better
performance. To read and write from/to different physical volumes probably
needs shorter time than from/to the same physical volume. Figure 4 on
page 101 shows these concepts.

100 RS/6000 Performance Tools in Focus

Figure 4. The Inter-Disk Policy

Scheduling Policies: Two different types of scheduling policies can be used for
logical volumes with multiple copies:

• Sequential Write Copies: This policy performs copied write procedures in
order: primary, secondary, tertiary. This policy waits for the write operation
to complete for the previous physical partition before starting the write
operation to the next one.

• Parallel Write Copies: This policy starts the write operation for all the
physical partitions of a logical partition at the same time. When the write
operation to the physical partition that takes the longest to complete finishes,
the write operation returns.

 Note

Specifying logical volume copies may increase I/O read operation
performance. The multiple copies allow the system to direct the read
operation to the copy that can be most quickly accessed.

Mirror Write Consistency: The LVM always ensures data consistency among
mirrored copies of a logical volume during normal I/O processing. For every
write to a logical volume, the LVM generates a write request for every mirror
copy. A problem arises if the system crashes in the middle of processing a
mirrored write (before all copies are written). If mirror write consistency
recovery is requested for a logical volume, the LVM keeps additional information
to allow recovery of these inconsistent mirrors. Mirror write consistency
recovery should be performed for most mirrored logical volumes. Logical
volumes, such as the page space, that do not use the existing data when the
volume group is re-varied on do not need this protection.

Other Attributes

WRITE VERIFY Specifies whether to verify all writes to the logical volume
with a follow-up read. This option enhances availability, but
decreases performance.

LV IDENTIFIER Consists of two parts. The first part (00012729dd72205e)
indicates the volume group identifier that this logical volume
belongs to, and the second part (5) is the sequential number
of the logical volume created on this volume group.

Chapter 3. Legacy (AIX) Performance Tools 101

BB POLICY Specifies whether to use Bad Block Relocation. Bad Block
Relocation redirects read/write requests from a disk block
that can no longer retain data to one that can. The process
is transparent; the application does not receive notice that
requests directed to a physical block are actually serviced by
a different block.

RELOCATABLE Specifies whether to allow the relocation of the logical
volume during volume group reorganization.

UPPER BOUND Specifies the maximum number of physical volumes for
allocation.

In the example above, the logical volume hd2 has center for INTRA-POLICY,
minimum for INTER-POLICY, on for MIRROR WRITE CONSISTENCY, parallel for
SCHED POLICY, and off for WRITE VERIFY. It has one copy; therefore, the yes for
EACH LP COPY ON A SEPARATE PV has no meaning. Also MIRROR WRITE
CONSISTENCY and SCHED POLICY have no meaning with copies= 1 . The /usr
file system is frequently used; these policies have the fastest seek time and
achieve higher performance.

Striping: There is no item relevant to striping in lslv output, but you can specify
striping when creating a logical volume. Striping is designed to increase the
read/write performance of frequently accessed, large sequential files. However,
there are some constraints imposed by implementing striping. Primarily, when a
logical volume is created as striped, it must use at least two physical volumes,
and mirroring is not possible. Thus, availability is less than optimal, but
performance will increase. Stripe size can be any power of 2 from 4 KB to 128
KB, but it is often set to 64 KB to get the highest levels of sequential I/O
throughput. The number of logical partitions in a striped logical volume must be
a multiple of the number of disk drives used. The logical volume cannot be
mirrored; therefore, copies=1.

3.6.2 Logical Volume Fragmentation
To check fragmentation, use the command lslv -l lvname.

$ lslv -l hd2
hd2:/usr
PV COPIES IN BAND DISTRIBUTION
hdisk0 114:000:000 22% 000:042:026:000:046

The output of COPIES shows the logical volume hd2 has only one copy. The IN
BAND shows how well the intra-policy is followed. The higher the percentage, the
better the allocation efficiency. Each logical volume has its own intra-policy. If
the operating system cannot meet this requirement, it chooses a best way to
meet the requirements. There are a total of 114 logical partitions (LP); 42 LPs
are located on outer middle, 26 LPs on center, and 46 LPs on inner edge. Since
the logical volume intra-policy is center, the in-band is 22 percent (26 /
(42+26+46) . The DISTRIBUTION shows how the physical partitions are placed in
each part of the intra-policy. That is:

outer edge : outer middle : center : inner middle : inner edge

To see the placement on the physical volume, use the command:

102 RS/6000 Performance Tools in Focus

$ lslv -p hdisk0 hd2
hdisk0:hd2:/usr
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-10
FREE FREE FREE FREE FREE USED FREE FREE FREE FREE 11-20
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 21-30
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 31-40
FREE FREE FREE FREE FREE FREE FREE USED USED USED 41-50
USED USED FREE FREE FREE FREE FREE FREE FREE FREE 51-60
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 61-70
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 71-80
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 81-90
FREE FREE STALE STALE FREE FREE 91-96

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 97-106
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 107-116
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 117-126
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 127-136
FREE FREE FREE FREE FREE FREE FREE 0047 0048 0049 137-146
0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 147-156
0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 157-166
0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 167-176
0080 0081 0082 0083 0084 USED USED 0085 0086 0087 177-186
USED USED USED USED USED 0088 187-192

0089 0090 0091 0092 0093 0094 0095 0096 0097 USED 193-202
USED USED USED USED USED USED USED USED USED USED 203-212
USED USED USED USED USED USED USED USED USED USED 213-222
USED USED USED USED USED USED USED USED USED USED 223-232
USED USED USED USED USED USED USED USED USED USED 233-242
USED USED USED USED USED USED USED USED USED USED 243-252
USED USED 0098 0099 0100 0101 USED USED USED USED 253-262
USED 0102 0103 0104 0105 0106 0107 0108 0109 0110 263-272
0111 0112 0113 0114 USED USED USED USED USED USED 273-282
USED USED USED USED USED 283-287

USED USED USED USED USED USED USED USED USED USED 288-297
USED USED USED USED USED USED USED USED USED USED 298-307
USED USED USED USED USED USED USED USED USED USED 308-317
USED USED USED USED USED USED USED USED USED USED 318-327
USED USED USED USED USED USED USED USED FREE FREE 328-337
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 338-347
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 348-357
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 358-367
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 368-377
FREE FREE FREE FREE FREE FREE 378-383

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 384-393
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 394-403
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 404-413
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 414-423
FREE FREE FREE FREE FREE FREE FREE FREE 0001 0002 424-433
0003 0004 0005 USED 0006 0007 0008 0009 0010 0011 434-443
0012 0013 0014 0015 USED 0016 0017 0018 0019 0020 444-453
0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 454-463
0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 464-473
0041 0042 0043 0044 0045 0046 474-479

From top to bottom, there are five blocks, they represent outer edge, outer
middle, center, inner middle, and inner edge, respectively. A USED indicates that

Chapter 3. Legacy (AIX) Performance Tools 103

the physical partition at this location is used by a logical volume other than the
one specified. A number indicates the logical partition number of the logical
volume specified with the lslv -p command. A FREE indicates that this physical
partition is not used by any logical volume. Logical volume fragmentation
occurs if logical partitions are not contiguous across the disk. A STALE physical
partition is a physical partition that contains data you cannot use. You can also
see the STALE physical partitions with the lspv -m command. Physical partitions
marked as STALE must be updated to contain the same information as valid
physical partitions. This process, called resynchronization, can be done at
vary-on time, or can be started any time the system is running. Until the STALE
partitions have been rewritten with valid data, they are not used to satisfy read
requests, nor are they written to on write requests.

This example shows that the logical volume hd2 (mounted on /usr) is fragmented
into eight segments. There are 42 LPs placed on outer middle, 26 LPs on center,
and 46 LPs locate on inner edge. The same results as the lslv -l command
above. There are two STALE PPs on the physical partitions 93 and 94. There is
no free physical partition on center of this physical volume. If you want to
improve the performance of hd2, you can use the reorgvg command after you
change the policies for hd2.

3.6.3 Relationship Between Policies and Performance
By using lslv, fileplace, filemon, and iostat, you can find I/O, volume group,
and logical volume problems. There are some ways to prevent these problems
from happening by better utilizing the physical and logical volume structure.

• Logical volume reorganization for highest performance:

− Allocate hot LVs to different PVs to reduce disk contention.
− Spread hot LV across multiple PVs so that parallel access is possible.
− Place hottest LVs in center of PVs, moderate LVs in the middle of PVs,

and place coldest LVs on edges of PVs so that the hottest logical
volumes have the fastest access time.

− Do not use mirroring if possible since mirroring performs multiple writes
that will affect performance in writing, and it only provides marginal
improvement in reading. However, if mirroring is needed, set scheduling
policy to parallel and allocation policy to strict. Parallel scheduling
policy will enable reading from closest disk, and strict allocation policy
allocates each copy on separate PVs.

− Make LV contiguous to reduce access time.
− Set inter-policy to maximum. This will spread each logical volume

across as many physical volumes as possible, allowing reads and writes
to be shared among several physical volumes.

− Place frequently used logical volumes close together to reduce seek
time.

− Set write verify to no so that there is no follow-up read (similar to parity
check) performed following a write.

• Implement logical volume striping:

− Spread the logical volume across as many physical volumes as possible.
− Use as many adapters as possible for the physical volumes.
− Create a separate volume group for striped logical volumes.
− Striping Recommendations:

- The stripe unit size should be equal to the max_coalesce, which is by
default 64 KB. The max_coalesce value is the largest request size (in
terms of data transmitted) that the SCSI device driver will build.

104 RS/6000 Performance Tools in Focus

- Use a minpghead value of 2: This will give the number of minimum
pages with which sequential read-ahead starts.

- Using a maxpgahead of 16 times the number of disk drives causes the
maximum pages to be read ahead to be done in units of the stripe
size (64 KB) times the number of disk drives, resulting in the reading
of one stripe unit from each disk for each read ahead. If possible,
modify applications that use striped logical volumes to perform I/O in
units of 64 KB. Figure 5 depicts a striped logical volume.

− Limitations of striping
- Mirroring is not possible. Disk striping can increase performance,

but does not allow mirroring.
- Disk striping is mostly effective for sequential disk I/Os. With

randomly accessed files, it is not as effective.
- More than one disk should be used. Disk striping only takes effect

when using more than one disk.

Figure 5. Logical Volume Striping

• Create an additional log logical volume to separate the log of the most active
file system from the default log. This will increase parallel resource usage.
Try to create a log logical volume for a hot file system on a fast drive.
Follow these steps:

− Backup the file system.
− Create the log LV: mklv -t jfslog -y LVname VGname 1 PVname or smitty

mklv.
− Format the log: /usr/sbin/logform /dev/LVname.
− Modify the affected file system and logical volume control block (LVCB):

chfs -a log=/dev/LVname /filesystemname
− Unmount and then mount the affected file system.

• Reorganize or add paging space:

− The general recommendation is that the sum of the size of the paging
spaces should be equal to at least twice the size of the real memory of
the machine, up to a memory size of 256 MB (512 MB paging space). For
memory larger than 256 MB, we recommend:

Chapter 3. Legacy (AIX) Performance Tools 105

Total paging space = 512 MB + (memory size - 256 MB) * 1.25

− As paging spaces are being accessed in round-robin fashion, creating
unequal paging space sizes on different physical volumes will lead to an
unequal use of these paging spaces when one or more are full and
therefore eliminate the advantage of having more than one paging
space.

3.7 The netpmon Command
Understanding network performance is difficult. An easy way to tell if the
network is affecting overall performance is to compare those operations that
involve the network with those that do not. If you are running a program that
does a considerable amount of remote reads and writes and it is running slowly,
but everything else seems to be running normally, then it is probably a network
problem. Some of the potential network bottlenecks may be caused by:

• Client-network interface
• Network bandwidth
• Server network interface
• Server CPU load
• Server memory usage
• Server bandwidth
• Inefficient configuration

There are several tools that measure network statistics and give a variety of
information. For the standard tools, netstat and nfsstat, refer to Chapter 2,
“Standard (UNIX) Performance Tools” on page 7. The netpmon command is an
AIX performance tool used to measure network device-driver I/O, CPU usage,
Internet socket calls, and NFS I/O. To improve performance, one can use the no
(network options), nfso, chdev, and ifconfig commands.

3.7.1 The netpmon Implementation and Functions
The netpmon command uses the trace facility to obtain a detailed picture of
network activity during a time interval. Since it uses the trace facility, the
netpmon command can only be run by root or by a member of the system group.
Also, the netpmon command cannot run together with any of the other
trace-based performance commands like tprof and filemon. In its normal mode,
netpmon runs in the background while one or more application programs or
system commands are being executed and monitored. Tracing is started by the
netpmon command, optionally suspended with trcoff, resumed with trcon, and
terminated with trcstop. As soon as tracing is terminated, the netpmon writes its
report to stdout.

The netpmon command focuses on the following system activities:

• CPU usage

− By processes and interrupt handlers.
− How much is network-related.
− What causes idle time.

• Network device driver I/O

− Monitors I/O operations through all Ethernet, token-ring, and
Fiber-Distributed Data Interface (FDDI) network device drivers.

106 RS/6000 Performance Tools in Focus

− In the case of transmission I/O, the command monitors utilizations,
queue lengths, and destination hosts. For receive ID, the command also
monitors time in the demux layer.

• Internet socket calls

− Monitors send, recv, sendto, recvfrom, sendmsg, read, and write
subroutines on Internet sockets.

− Reports statistics on a per-process basis for the Internet Control
Message Protocol (ICMP), Transmission Control Protocol (TCP), and the
User Datagram Protocol (UDP).

• NFS I/O

− On client: RPC requests, NFS read/write requests.
− On server: Per-client, per-file, read/write requests.

3.7.2 Using netpmon
The following netpmon command running on an NFS server executes the sleep
command and creates a report after 400 seconds. During the measured interval,
a copy to an NFS-mounted file system /nfs_mnt is taking place.

netpmon -o netpmon.out -O all; sleep 400; trcstop

With the -O option, you can specify the report type you wish to be generated.
Valid report type values are:

cpu CPU usage.
dd Network device-driver I/O.
so Internet socket call I/O.
nfs NFS I/O.
all All reports are produced. This is the default value.

cat netpmon.out

Thu Feb 27 15:02:45 1997
System: AIX itsosmp Node: 4 Machine: 00045067A000
401.053 secs in measured interval
==
Process CPU Usage Statistics:

Network
Process (top 20) PID CPU Time CPU % CPU %
--
nfsd 12370 42.2210 2.632 2.632
nfsd 12628 42.0056 2.618 2.618
nfsd 13144 41.9540 2.615 2.615
nfsd 12886 41.8680 2.610 2.610
nfsd 12112 41.4114 2.581 2.581
nfsd 11078 40.9443 2.552 2.552
nfsd 11854 40.6198 2.532 2.532
nfsd 13402 40.3445 2.515 2.515
lrud 1548 16.6294 1.037 0.000
netpmon 15218 5.2780 0.329 0.000
gil 2064 2.0766 0.129 0.129
trace 18284 1.8820 0.117 0.000
syncd 3602 0.3757 0.023 0.000
swapper 0 0.2718 0.017 0.000
init 1 0.2201 0.014 0.000
afsd 8758 0.0244 0.002 0.000
bootpd 7128 0.0220 0.001 0.000
ksh 4322 0.0213 0.001 0.000
pcimapsvr.ip 16844 0.0204 0.001 0.000
netm 1806 0.0186 0.001 0.001
--
Total (all processes) 358.3152 22.336 20.787
Idle time 1221.0235 76.114

Chapter 3. Legacy (AIX) Performance Tools 107

==
First Level Interrupt Handler CPU Usage Statistics:

Network
FLIH CPU Time CPU % CPU %
--
PPC decrementer 9.9419 0.620 0.000
external device 4.5849 0.286 0.099
UNKNOWN 0.1716 0.011 0.000
data page fault 0.1080 0.007 0.000
floating point 0.0012 0.000 0.000
instruction page fault 0.0007 0.000 0.000
--
Total (all FLIHs) 14.8083 0.923 0.099

==
Second Level Interrupt Handler CPU Usage Statistics:
--

Network
SLIH CPU Time CPU % CPU %
--
tokdd 12.4312 0.775 0.775
ascsiddpin 0.5178 0.032 0.000
--
Total (all SLIHs) 12.9490 0.807 0.775

==
Network Device-Driver Statistics (by Device):

----------- Xmit ----------- -------- Recv ---------
Device Pkts/s Bytes/s Util QLen Pkts/s Bytes/s Demux
--
token ring 0 31.61 4800 1.7% 0.046 200.93 273994 0.0080

==

Network Device-Driver Transmit Statistics (by Destination Host):
--
Host Pkts/s Bytes/s
--
ah6000c 31.57 4796
9.3.1.255 0.03 4
itsorusi 0.00 0

==

TCP Socket Call Statistics (by Process):
--

------ Read ----- ----- Write -----
Process (top 20) PID Calls/s Bytes/s Calls/s Bytes/s
--
telnetd 18144 0.03 123 0.06 0
--
Total (all processes) 0.03 123 0.06 0

==

NFS Server Statistics (by Client):

------ Read ----- ----- Write ----- Other
Client Calls/s Bytes/s Calls/s Bytes/s Calls/s
--
ah6000c 0.00 0 31.54 258208 0.01
--
Total (all clients) 0.00 0 31.54 258208 0.01

==
Detailed Second Level Interrupt Handler CPU Usage Statistics:

SLIH: tokdd
count: 93039
cpu time (msec): avg 0.134 min 0.026 max 0.541 sdev 0.051

SLIH: ascsiddpin
count: 8136

108 RS/6000 Performance Tools in Focus

cpu time (msec): avg 0.064 min 0.012 max 0.147 sdev 0.018
COMBINED (All SLIHs)
count: 101175
cpu time (msec): avg 0.128 min 0.012 max 0.541 sdev 0.053

==
Detailed Network Device-Driver Statistics:
--
DEVICE: token ring 0
recv packets: 80584
recv sizes (bytes): avg 1363.6 min 50 max 1520 sdev 356.3
recv times (msec): avg 0.081 min 0.010 max 0.166 sdev 0.020
demux times (msec): avg 0.040 min 0.008 max 0.375 sdev 0.040

xmit packets: 12678
xmit sizes (bytes): avg 151.8 min 52 max 184 sdev 3.3
xmit times (msec): avg 1.447 min 0.509 max 4.514 sdev 0.374

==
Detailed Network Device-Driver Transmit Statistics (by Host):

HOST: ah6000c
xmit packets: 12662
xmit sizes (bytes): avg 151.9 min 52 max 184 sdev 2.9
xmit times (msec): avg 1.448 min 0.509 max 4.514 sdev 0.373

HOST: 9.3.1.255
xmit packets: 14
xmit sizes (bytes): avg 117.0 min 117 max 117 sdev 0.0
xmit times (msec): avg 1.133 min 0.884 max 1.730 sdev 0.253

HOST: itsorusi
xmit packets: 1
xmit sizes (bytes): avg 84.0 min 84 max 84 sdev 0.0
xmit times (msec): avg 0.522 min 0.522 max 0.522 sdev 0.000

==
Detailed TCP Socket Call Statistics (by Process):

PROCESS: telnetd PID: 18144
reads: 12
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.085 min 0.053 max 0.164 sdev 0.027

writes: 23
write sizes (bytes): avg 3.5 min 1 max 26 sdev 7.0
write times (msec): avg 0.143 min 0.067 max 0.269 sdev 0.064

PROTOCOL: TCP (All Processes)
reads: 12
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 0.085 min 0.053 max 0.164 sdev 0.027

writes: 23
write sizes (bytes): avg 3.5 min 1 max 26 sdev 7.0
write times (msec): avg 0.143 min 0.067 max 0.269 sdev 0.064

==
Detailed NFS Server Statistics (by Client):

CLIENT: ah6000c
writes: 12648
write sizes (bytes): avg 8187.5 min 4096 max 8192 sdev 136.2
write times (msec): avg 138.646 min 0.147 max 1802.067 sdev 58.853

other calls: 5
other times (msec): avg 1.928 min 0.371 max 8.065 sdev 3.068

COMBINED (All Clients)
writes: 12648
write sizes (bytes): avg 8187.5 min 4096 max 8192 sdev 136.2
write times (msec): avg 138.646 min 0.147 max 1802.067 sdev 58.853

other calls: 5
other times (msec): avg 1.928 min 0.371 max 8.065 sdev 3.068

Like the filemon command, the output of netpmon is composed of two different
types of reports: global and detailed. The global reports list statistics for the
most active processes, first-level interrupt handlers, second level interrupt
handlers, network device drivers, network device-driver transmits, TCP socket

Chapter 3. Legacy (AIX) Performance Tools 109

calls, and NFS server or client statistics during the measured interval. The
global reports are shown at the beginning of the netpmon output. The detailed
reports give additional information for the global reports. By default, the reports
are limited to the top 20 most active statistics measured. All information in the
reports are listed from top to bottom as most active to least active.

3.7.3 The Global Reports of netpmon
The reports generated by the netpmon command begin with a header, which
identifies the date, the machine ID, and the length of the monitoring period in
seconds. This is followed by a set of global and detailed reports for all specified
report types.

Process CPU Usage Statistics: Each row describes the CPU usage associated
with a process. Unless the verbose (-v) option is specified, only the top 20 most
active processes are included in the list. At the bottom of the report, CPU usage
for all processes is totaled, and CPU idle time is reported. The Network CPU % is
the percentage of total time that this process spent executing network-related
code.

If the -t flag is used, there is also a thread CPU usage statistic present. Each
process row described above is immediately followed by rows describing the
CPU usage of each thread owned by that process. The fields in these rows are
identical to those for the process, except for the name field. (Threads are not
named.)

In our example report, the idle time percentage number (76.114 percent) shown
in the global CPU usage report is calculated from the idle time (1221.0235)
divided by the measured interval times 4 (401.053 X 4), because there are 4
CPUs in this server, therefore the results look somewhat strange. If you want to
look at each CPU’s activity, you can use sar, ps, or any other SMP-specific
command. Similar calculation applies to the total CPU percentage that is
occupied by all processes. The idle time is due to network I/O. The difference
between the CPU time totals (1221.0235 + 358.315) and the measured interval is
due to interrupt handlers and the multiple CPUs. It appears that in this report,
the majority of the CPU usage was network-related: (20.787 / 22.336) = 93.07
percent. About 77.664 percent of CPU usage are either idle or wait time.

 Note

If the result of total network CPU percentage divided by total CPU
percentage is greater than 0.5 from Process CPU Usage Statistics for NFS
server, then the majority of CPU usage is network-related.

First Level Interrupt Handler CPU Usage Statistics: Each row describes the CPU
usage associated with a first-level interrupt handler (FLIH). At the bottom of the
report, CPU usage for all FLIHs is totaled.

CPU Time Total amount of CPU time used by this FLIH.
CPU % CPU usage for this interrupt handler as a percentage of total

time.
Network CPU % Percentage of total time that this interrupt handler executed

on behalf of network-related events.

110 RS/6000 Performance Tools in Focus

Second Level Interrupt Handler CPU Usage Statistics: Each row describes the
CPU usage associated with a second-level interrupt handler (SLIH). At the
bottom of the report, CPU usage for all SLIHs is totaled.

Network Device-Driver Statistics (by Device): Each row describes the statistics
associated with a network device.

Device Name of special file associated with device.
Xmit Pkts/s Packets per second transmitted through this device.
Xmit Bytes/s Bytes per second transmitted through this device.
Xmit Util Busy time for this device, as a percent of total time.
Xmit Qlen Number of requests waiting to be transmitted through this

device, averaged over time, including any transaction currently
being transmitted.

Recv Pkts/s Packets per second received through this device.
Recv Bytes/s Bytes per second received through this device.
Recv Demux Time spent in demux layer as a fraction of total time.

In this example, the Xmit QLen is only 0.046, it is very small compared to its
default size (30). Its Recv Bytes/s is 273994, much smaller than the token ring
transmit speed (16 Mb/s). Therefore in this case the network is not saturated.

Network Device-Driver Transmit Statistics (by Destination Host): Each row
describes the amount of transmit traffic associated with a particular destination
host, at the device-driver level.

Host Destination host name. An * (asterisk) is used for transmissions for
which no host name can be determined.

Pkts/s Packets per second transmitted to this host.
Bytes/s Bytes per second transmitted to this host.

TCP Socket Call Statistics for Each Internet Protocol (by Process): These
statistics are shown for each used Internet protocol. Each row describes the
amount of read/write subroutine activity on sockets of this protocol type
associated with a particular process. At the bottom of the report, all socket calls
for this protocol are totaled.

NFS Server Statistics (by Client): Each row describes the amount of NFS activity
handled by this server on behalf of a particular client. At the bottom of the
report, calls for all clients are totaled.

On a client machine, the NFS server statistics are replaced by the NFS client
statistics (NFS Client Statistics for each Server (by File), NFS Client RPC
Statistics (by Server), NFS Client Statistics (by Process)).

3.7.4 The Detailed Reports of netpmon
Detailed reports are generated for all requested (-O) report types. For these
report types, a detailed report is produced in addition to the global reports. The
detailed reports contain an entry for each entry in the global reports with
statistics for each type of transaction associated with the entry.

Transaction statistics consist of a count of the number of transactions for that
type, followed by response time and size distribution data (where applicable).
The distribution data consists of average, minimum, and maximum values, as
well as standard deviations. Roughly two-thirds of the values are between

Chapter 3. Legacy (AIX) Performance Tools 111

average minus standard deviation and average plus standard deviation. Sizes
are reported in bytes. Response times are reported in milliseconds.

Detailed Second-Level Interrupt Handler CPU-Usage Statistics

SLIH Name of second-level interrupt handler.
count Number of interrupts of this type.
cpu time (msec) CPU usage statistics for handling interrupts of this type.

Detailed Network Device-Driver Statistics (by Device)

DEVICE Path name of special file associated with device.
recv packets Number of packets received through this device.
recv sizes (bytes) Size statistics for received packets.
recv times (msec) Response time statistics for processing received packets.
demux times (msec) Time statistics for processing received packets in the

demux layer.
xmit packets Number of packets transmitted through this device.
xmit sizes (bytes) Size statistics for transmitted packets.
xmit times (msec) Response time statistics for processing transmitted

packets.

There are other detailed reports, such as Detailed Network Device-Driver
Transmit Statistics (by Host) and Detailed TCP Socket Call Statistics for Each
Internet Protocol (by Process). For an NFS client, there are the Detailed NFS
Client Statistics for Each Server (by File), Detailed NFS Client RPC Statistics (by
Server) and Detailed NFS Client Statistics (by Process) reports. For an NFS
server, there is the Detailed NFS Server Statistics (by Client) report. They have
similar output fields as explained above.

In our example, the results from the Detailed Network Device-Driver Statistics
lead to:

recv bytes = 80584 packets * 1364 bytes/packet = 109,916,576 bytes

xmit bytes = 12678 packets * 152 bytes/packet = 1,927,056 bytes

total bytes exchanged = 109,916,576 + 1,927,056 = 111,843,632 bytes

total bits exchanged = 111,843,632 * 8 bits/byte = 894,749,056 bits

transmit speed = 894,749,056 / 401.053 = 2.23 Mb/s (assuming that the copy
took the whole monitoring period)

As in the global device driver report, we come to the conclusion that this case is
not network-saturated. The average receive size is 1363.6 bytes, near to the
default MTU (maximum transmission unit) value, which is 1492 when the device
is a token-ring card. If this value is larger than the MTU (from lsattr -E -l
interface, replacing interface with Ethernet (en0) or token-ring (tr0)), you could
change the MTU or adapter transmit-queue length value to get better
performance with ifconfig tr0 mtu 8500 or chdev -l ’tok0’ -a
xmt_que_size=’150’. But if the network is congested already, it will probably be
worse if you change the MTU or queue value.

112 RS/6000 Performance Tools in Focus

 Note

• If transmit and receive packet sizes are small from the device driver
statistics report, then increasing the current MTU size will probably result
in better network performance.

• If system wait time due to network calls is high from the network wait
time statistics for the NFS client report, the poor performance is due to
the network.

3.7.5 Limitations of netpmon
The netpmon command uses the trace facility to collect the statistics; therefore it
has an impact on the system workload.

• In a moderate, network-oriented workload, the netpmon command increases
overall CPU utilization by 3-5 percent.

• In a CPU-saturated environment with little I/O of any kind, netpmon slowed a
large compile by about 3.5 percent.

• This command reports at the adapter level.

3.8 The genld Command
The genld command extracts a list of loaded objects for each process currently
running on the system.

For each process currently running, the genld command will print a report
consisting of the process ID and name, followed by the list of objects loaded for
that process. The object′s address and path name are displayed. For members
of libraries, the path name of the library is shown as a directory, with the name
of the loaded member shown as a file in that directory; for example,
/usr/lib/libc.a/shr.o, is the library where shr.o is a loaded member of libc.a. Path
names ending with a / are executables or object modules.

Example: To obtain the list of loaded objects for each running process, enter:

genld

Proc_pid: 0 Proc_name: swapper

Proc_pid: 1 Proc_name: init
d00fe0c0 /usr/lib/libs.a/shr.o
d012f350 /usr/lib/libc.a/meth.o
d00004e0 /usr/lib/libc.a/shr.o
10000000 init

Proc_pid: 516 Proc_name: wait

Proc_pid: 774 Proc_name: netm

Proc_pid: 1032 Proc_name: gil

Proc_pid: 1874 Proc_name: lvmb

Proc_pid: 2156 Proc_name: srcmstr
d0131000 /usr/lib/nls/loc/en_US/
d00fe0c0 /usr/lib/libs.a/shr.o
d01370c0 /usr/lib/libodm.a/shr.o
d01980c0 /usr/lib/libsrc.a/shr.o
d012f350 /usr/lib/libc.a/meth.o
d00004e0 /usr/lib/libc.a/shr.o
10000000 srcmstr

Chapter 3. Legacy (AIX) Performance Tools 113

Proc_pid: 2488 Proc_name: dtlogin
d01a7000 /usr/lib/netsvc/libbind/
d00fe0c0 /usr/lib/libs.a/shr.o
d025ac30 /usr/lib/libX11.a/shr4net.o
d02550c0 /usr/lib/libIM.a/shr.o
d02450c0 /usr/lib/libiconv.a/shr4.o
d01a90c0 /usr/lib/libX11.a/shr4.o
d012f350 /usr/lib/libc.a/meth.o
d00004e0 /usr/lib/libc.a/shr.o
10000000 dtlogin

Proc_pid: 2656 Proc_name: dtsession
d01a7000 /usr/lib/netsvc/libbind/
d0131000 /usr/lib/nls/loc/en_US/
d06f90c0 /usr/lib/libDtWidget.a/shr.o
d09080c0 /usr/lib/libDtHelp.a/shr.o
d01900c0 /usr/lib/libbsd.a/shr.o
d00fe0c0 /usr/lib/libs.a/shr.o
d07370c0 /usr/lib/libtt.a/shr.o
d06690c0 /usr/lib/libi18n.a/shr.o
d04b00c0 /usr/lib/libXm.a/shr4.o
d06840c0 /usr/lib/libDtSvc.a/shr.o
d01370c0 /usr/lib/libodm.a/shr.o
d02ad0c0 /usr/lib/libgair4.a/shr.o
d01530c0 /usr/lib/libXext.a/shr.o
d025ac30 /usr/lib/libX11.a/shr4net.o
d02550c0 /usr/lib/libIM.a/shr.o
d02450c0 /usr/lib/libiconv.a/shr4.o
d01a90c0 /usr/lib/libX11.a/shr4.o
d0460d00 /usr/lib/libXt.a/shr4.o
d012f350 /usr/lib/libc.a/meth.o

You can also find the virtual address in the genkld output. For example, process
dtlogin has a load object /usr/lib/libc.a/meth.o, whose virtual address is
d012f350. This object is also used by the process srcmstr.

3.9 The genkld Command
The genkld command extracts the list of shared libraries and shared objects
currently loaded onto the system and displays the address, size, and path name
for each object on the list.

For shared objects loaded onto the system, the kernel maintains a linked list
consisting of data structures called loader entries. A loader entry contains the
name of the object, its starting address, and its size. This information is
gathered and reported by the genkld command.

Example: To obtain a list of loaded shared objects, enter:

genkld
Virtual Address Size File

d025d000 4f71f /usr/lpp/gai/60x00004001/loadddx/
d025c0c0 e4f /usr/lib/libdbm.a/shr.o
d025c0c0 e4f /usr/lib/libdbm.a/shr.o
d025ac30 6b5 /usr/lib/libX11.a/shr4net.o
d02550c0 4a83 /usr/lib/libIM.a/shr.o
d02450c0 f754 /usr/lib/libiconv.a/shr4.o
d01a90c0 9bb57 /usr/lib/libX11.a/shr4.o
d025ac30 6b5 /usr/lib/libX11.a/shr4net.o
d02550c0 4a83 /usr/lib/libIM.a/shr.o
d02450c0 f754 /usr/lib/libiconv.a/shr4.o
d01a90c0 9bb57 /usr/lib/libX11.a/shr4.o
d01a7000 17ec /usr/lib/netsvc/libbind/
d00fe0c0 3079c /usr/lib/libs.a/shr.o
d01900c0 75e7 /usr/lib/libbsd.a/shr.o
d01470c0 b296 /usr/lib/libcfg.a/shr.o

114 RS/6000 Performance Tools in Focus

d01370c0 f35e /usr/lib/libodm.a/shr.o
d01980c0 e0c2 /usr/lib/libsrc.a/shr.o
d012f350 12a5 /usr/lib/libc.a/meth.o
d00004e0 fccc0 /usr/lib/libc.a/shr.o
d01980c0 e0c2 /usr/lib/libsrc.a/shr.o
d01900c0 75e7 /usr/lib/libbsd.a/shr.o
d01470c0 b296 /usr/lib/libcfg.a/shr.o
d01370c0 f35e /usr/lib/libodm.a/shr.o
d0131000 2c41 /usr/lib/nls/loc/en_US/
d0131000 2c41 /usr/lib/nls/loc/en_US/
d00fe0c0 3079c /usr/lib/libs.a/shr.o
d012f350 12a5 /usr/lib/libc.a/meth.o
d00004e0 fccc0 /usr/lib/libc.a/shr.o
d012f350 12a5 /usr/lib/libc.a/meth.o
d00fe0c0 3079c /usr/lib/libs.a/shr.o
d00004e0 fccc0 /usr/lib/libc.a/shr.o

If path names end with /, they are shared objects (see the output of the file
command). If path names end without /, they are modules of shared libraries.
For example, shr.o is a module out of the libs.a library.

file /usr/lib/nls/loc/en_US/
/usr/lib/nls/loc/en_US/: executable (RISC System/6000) or object module not
stripped

If some shared libraries and shared objects are loaded more than once, there is
an entry for each of them. For example, /usr/lib/libdbm.a/shr.o has two entries
with the same virtual address (d025c0c0) and same size (e4f).

3.10 The genkex Command
The genkex command extracts the list of kernel extensions and device drivers
currently loaded onto the system and displays the address, size, and path name
for each kernel extension and device driver in the list.

For kernel extensions loaded onto the system, the kernel maintains a linked list
consisting of data structures called loader entries. A loader entry contains the
name of the extension, its starting address, and its size. This information is
gathered and reported by the genkex command.

Example

To generate the list of loaded kernel extensions and device drivers, enter:

genkex

Virtual Address Size File

1a19598 156c /usr/lib/drivers/rmss.ext
8020000 e34 /unix
7e59000 5bd90 ./dkload/afs.ext
7dcf000 dbc /unix
1a182a0 12ec ./dkload/export
7dca000 d38 /unix
19ff940 18954 /usr/lib/drivers/nfs_clnt.ext
7dcc000 d14 /unix
19f1de0 db54 /usr/lib/drivers/nfs_krpc.ext
7dcd000 cf0 /unix
19f1a98 32c /usr/lib/drivers/nfs_kdes.ext
7dcb000 cf0 /unix
19edac0 3fd0 /etc/drivers/smt_load
7db1000 cf0 /unix
19ed8d0 1e8 /etc/drivers/smt_loadpin
7d9a000 c30 /unix
19d8840 15084 /usr/lib/drivers/rcm_loadpin
19d7ac0 d64 /etc/drivers/rcm_load
7d83000 c30 /unix

Chapter 3. Legacy (AIX) Performance Tools 115

19d56a0 2418 /etc/drivers/gxmedd
19c7840 de58 /etc/drivers/lft_loadpin
7d5c000 c24 /unix
19bc740 b0dc /etc/drivers/ptydd
19b8b00 3c1c /usr/lib/drivers/if_tr
7d37000 c24 /unix
199ffa0 18b50 /usr/lib/drivers/netinet
7cd5000 c24 /unix
198df60 12034 /etc/drivers/ldterm
7d0d000 c24 /unix
198b1c0 2d90 /etc/drivers/tok_demux
5533000 c24 /unix
1979180 12038 /etc/drivers/tokdd
19768e0 2888 /etc/drivers/eth_demux
1964b40 11d88 /etc/drivers/ethdd
1950260 148cc /etc/drivers/rsdd
1942fa0 d2b8 /etc/drivers/ttydbg
5544000 c24 /unix
1941b00 1480 /etc/drivers/ppddpin
193e360 3790 /etc/drivers/ppdd
1939640 4d18 /etc/drivers/mousedd
1934be0 4a50 /etc/drivers/tabletdd
192db20 70a0 /etc/drivers/kbddd
1921f00 bbfc /etc/drivers/fd
19131c0 ed1c /etc/drivers/bblddpin
190b3c0 7de8 /usr/lib/drivers/bbldd
5535000 c24 /unix
190a260 113c /usr/lib/drivers/pse/stdmod
1908f30 131c /usr/lib/drivers/pse/sc
1907d60 11c8 /usr/lib/drivers/pse/spx
1906980 13d8 /usr/lib/drivers/pse/stddev
18d90a0 2d8c4 /usr/lib/drivers/pse/pse
5524000 c24 /unix
18be840 1a850 /etc/drivers/hd_pin_bot
18b4460 a3bc /etc/drivers/hd_pin
54b9000 bdc /unix
18aaca0 979c /etc/drivers/scdiskpin
18a4340 693c /etc/drivers/scdisk
1895b40 e7ec /etc/drivers/pscsi720ddpin
188e2c0 786c /etc/drivers/pscsi720dd
188d008 12a0 /etc/drivers/mca_ppc_busdd
15b080 0 /unix
549d000 bdc /unix

If some kernel extensions or device drivers are loaded more than once, there is
an entry for each of them. Like /unix, they have many entries, which have
different virtual addresses and the same or different sizes.

3.11 The stripnm Command
The stripnm command prints the symbol table of a specified object file to
standard output. The file can be a single object file or an archive library of
object files. If the file is an archive, a listing for each object file in the archive is
produced. If the symbol table has been stripped from the object file, the stripnm
command extracts symbol names from the traceback tables. If the traceback
tables do not exist, an error message is displayed.

When run using the -s flag, the stripnm command extracts routine names first
from the traceback tables and then from the symbol table, if it exists. Traceback
tables are found at the end of routines, and contain the symbolic names of these
routines. Routines defined as static do not appear in the symbol table, but may
have traceback tables.

The stripnm command can also search for the glue code. The glue code is a set
of executable instructions in the object file. In the text section of the object file,
the glue code is composed of the following sequence of instructions:

116 RS/6000 Performance Tools in Focus

8182xxxx xxxx is offset in the table of contents (TOC) and can be any string.
90410014 /* st r2, 14(r1) */
800c0000 /* 1 r0, 0(r12) 8*/
804c004 /* 1 r2, 4(r12) */
7c0903a6 /* mtctr r0 */
4e800420 /* bctr */

The stripnm command searches the text section from beginning to end for this
sequence. If the command finds a sequence of instructions that matches, it is
reported as glue code.

The stripnm command can also be used to search for symbol information in the
/unix file. If the /unix file does not correspond to the currently running kernel, a
warning message is displayed.

Examples: We will use a program child.c as example. This program does a
while execution until the end condition is met.

#include <stdio.h>
void eatcpu()
{
#define limite 10e7*5

double f;

f=0.0;
while (f < limite)
f++;

}

main(int argc, char ** argv)
{

int opt;

mkdir(argv[1]);
chdir(argv[1]);
opt=atoi(argv[1]);

if (opt == 3) {
eatcpu();
exit(0);

}
sleep(60);
exit(0);

}

 1. To list the symbols of the child object file, enter:

stripnm child

Symbols from child

errno | 0|extern| | | |
chdir | 0|extern| | | |
mkdir | 0|extern| | | |
exit | 0|extern| | | |
fflush | 0|extern| | | |
atoi | 0|extern| | | |
sleep | 0|extern| | | |
TOC | 536872640|unamex| | | |.data
_adata | 536872640|unamex| | | |.data
errno | 536872644|unamex| | | |.data
mkdir | 536872648|unamex| | | |.data
chdir | 536872652|unamex| | | |.data
atoi | 536872656|unamex| | | |.data
exit | 536872660|unamex| | | |.data
sleep | 536872664|unamex| | | |.data
** no name ** | 536872668|unamex| | | |.data
fflush | 536872672|unamex| | | |.data

Chapter 3. Legacy (AIX) Performance Tools 117

| | file | | | |
crt0main.s | | file | | | |
.__start | 268435912|extern| | | |.text
__start | 536872608|extern| | | |.data
_adata | 536872036|unamex| | | |.data
p_xargc | 536872676|extern| | | |.bss
p_xargv | 536872680|extern| | | |.bss
p_xrcfg | 536872684|extern| | | |.bss
p_xrc | 536872688|extern| | | |.bss
child.c | | file | | | |
** no name ** | 268436032|unamex| | | |.text
.main | 268436032|extern| | | |.text
.eatcpu | 268436204|extern| | | |.text
** no name ** | 268436568|unamex| | | |.text
dbxxx.s | | file | | | |
.__dbsubc | 268436492|extern| | | |.text
.__dbsubg | 268436504|extern| | | |.text
.__dbsubn | 268436512|extern| | | |.text
dbxxx | 536872052|unamex| | | |.data
__dbargs | 536872096|extern| | | |.data
__dbsubc | 536872616|extern| | | |.data
__dbsubg | 536872624|extern| | | |.data
__dbsubn | 536872632|extern| | | |.data
glink.s | | file | | | |
.exit | 268436420|unamex| | | |.text
.exit | 268436420|extern| | | |.text
glink.s | | file | | | |
.mkdir | 268436312|unamex| | | |.text
.mkdir | 268436312|extern| | | |.text
glink.s | | file | | | |
.chdir | 268436348|unamex| | | |.text
.chdir | 268436348|extern| | | |.text
glink.s | | file | | | |
.atoi | 268436384|unamex| | | |.text
.atoi | 268436384|extern| | | |.text
glink.s | | file | | | |
.sleep | 268436456|unamex| | | |.text
.sleep | 268436456|extern| | | |.text
glink.s | | file | | | |
.fflush | 268436528|unamex| | | |.text
.fflush | 268436528|extern| | | |.text

Each symbol name, which is **no name** if the system cannot determine the
symbol name, is followed by its address (a series of blanks if the address is
undefined), the type of class (unamex means unnamed external symbol), and
section type. The address field can be displayed as a decimal (the default value)
or hexadecimal (if the -x flag is specified).

 Note

The stripnm command does not list all symbols from the symbol table. Only
file names and named and unnamed external symbols are reported. When
used with the -s flag, the stripnm command will also suppress printing of
some duplicated symbols in the symbol table.

 1. To list the symbols address values of the child object file in hexadecimal
mode, enter:

stripnm -x child

Symbols from child

errno |0x00000000|extern| | | |
chdir |0x00000000|extern| | | |
mkdir |0x00000000|extern| | | |
exit |0x00000000|extern| | | |
fflush |0x00000000|extern| | | |
atoi |0x00000000|extern| | | |
sleep |0x00000000|extern| | | |

118 RS/6000 Performance Tools in Focus

TOC |0x200006c0|unamex| | | |.data
_adata |0x200006c0|unamex| | | |.data
errno |0x200006c4|unamex| | | |.data
mkdir |0x200006c8|unamex| | | |.data
chdir |0x200006cc|unamex| | | |.data
atoi |0x200006d0|unamex| | | |.data
exit |0x200006d4|unamex| | | |.data
sleep |0x200006d8|unamex| | | |.data
** no name ** |0x200006dc|unamex| | | |.data
fflush |0x200006e0|unamex| | | |.data

| | file | | | |
crt0main.s | | file | | | |
.__start |0x100001c8|extern| | | |.text
__start |0x200006a0|extern| | | |.data
_adata |0x20000464|unamex| | | |.data
p_xargc |0x200006e4|extern| | | |.bss
p_xargv |0x200006e8|extern| | | |.bss
p_xrcfg |0x200006ec|extern| | | |.bss
p_xrc |0x200006f0|extern| | | |.bss
child.c | | file | | | |
** no name ** |0x10000240|unamex| | | |.text
.main |0x10000240|extern| | | |.text
.eatcpu |0x100002ec|extern| | | |.text
** no name ** |0x10000458|unamex| | | |.text
dbxxx.s | | file | | | |
.__dbsubc |0x1000040c|extern| | | |.text
.__dbsubg |0x10000418|extern| | | |.text
.__dbsubn |0x10000420|extern| | | |.text
dbxxx |0x20000474|unamex| | | |.data
__dbargs |0x200004a0|extern| | | |.data
__dbsubc |0x200006a8|extern| | | |.data
__dbsubg |0x200006b0|extern| | | |.data
__dbsubn |0x200006b8|extern| | | |.data
glink.s | | file | | | |
.exit |0x100003c4|unamex| | | |.text
.exit |0x100003c4|extern| | | |.text
glink.s | | file | | | |
.mkdir |0x10000358|unamex| | | |.text
.mkdir |0x10000358|extern| | | |.text
glink.s | | file | | | |
.chdir |0x1000037c|unamex| | | |.text
.chdir |0x1000037c|extern| | | |.text
glink.s | | file | | | |
.atoi |0x100003a0|unamex| | | |.text
.atoi |0x100003a0|extern| | | |.text
glink.s | | file | | | |
.sleep |0x100003e8|unamex| | | |.text
.sleep |0x100003e8|extern| | | |.text
glink.s | | file | | | |
.fflush |0x10000430|unamex| | | |.text
.fflush |0x10000430|extern| | | |.text

 2. To list symbols from the traceback tables and symbol table (if it exists) of the
child object file, enter:

stripnm -s child

Symbols from child

.main | 268436032|extern| | | |.text

.eatcpu | 268436204|extern| | | |.text
glink.s | | file | | | |
.mkdir | 268436312|extern| | | |.text
.chdir | 268436348|extern| | | |.text
.atoi | 268436384|extern| | | |.text
.exit | 268436420|extern| | | |.text
.sleep | 268436456|extern| | | |.text
.fflush | 268436528|extern| | | |.text
errno | 0|extern| | | |
TOC | 536872640|unamex| | | |.data
errno | 536872644|unamex| | | |.data
mkdir | 536872648|unamex| | | |.data
chdir | 536872652|unamex| | | |.data
atoi | 536872656|unamex| | | |.data

Chapter 3. Legacy (AIX) Performance Tools 119

exit | 536872660|unamex| | | |.data
sleep | 536872664|unamex| | | |.data
** no name ** | 536872668|unamex| | | |.data
fflush | 536872672|unamex| | | |.data

| | file | | | |
crt0main.s | | file | | | |
.__start | 268435912|extern| | | |.text
__start | 536872608|extern| | | |.data
_adata | 536872036|unamex| | | |.data
p_xargc | 536872676|extern| | | |.bss
p_xargv | 536872680|extern| | | |.bss
p_xrcfg | 536872684|extern| | | |.bss
p_xrc | 536872688|extern| | | |.bss
child.c | | file | | | |
** no name ** | 268436568|unamex| | | |.text
dbxxx.s | | file | | | |
.__dbsubc | 268436492|extern| | | |.text
.__dbsubg | 268436504|extern| | | |.text
.__dbsubn | 268436512|extern| | | |.text
dbxxx | 536872052|unamex| | | |.data
__dbargs | 536872096|extern| | | |.data
__dbsubc | 536872616|extern| | | |.data
__dbsubg | 536872624|extern| | | |.data
__dbsubn | 536872632|extern| | | |.data
glink.s | | file | | | |
glink.s | | file | | | |
glink.s | | file | | | |
glink.s | | file | | | |
glink.s | | file | | | |
glink.s | | file | | | |

3.12 The trace and trcrpt Commands
The AIX trace facility is a powerful system observation tool. The trace facility
captures a sequential flow of time-stamped system events that can be
monitored. This includes entry and exit to selected subroutines, kernel routines,
kernel extension routines, and interrupt handlers, thereby providing a fine level
of detail on system activity. Events are shown in time sequence and in the
context of other events. The trace command is a valuable tool for observing
system and application execution. Where other tools provide high-level
statistics, such as CPU utilization or I/O-wait time, the trace facility is useful in
expanding the information to understand what events are happening, who is
responsible, when the events are taking place, how they are affecting the
system, and why.

The operating system is instrumented to provide general visibility to system
execution. Users can extend visibility into their applications by inserting
additional events and providing formatting rules.

Care was taken in the design and implementation of this facility to make the
collection of trace data efficient so that system performance and flow would be
minimally altered by activating trace. Because of this, the trace facility is
extremely useful as a performance-analysis tool and as a problem-determination
tool.

The overhead added by trace varies widely, depending on the workload and the
number of hook IDs being collected. As an extreme case, a long-running,
CPU-intensive job in an otherwise idle system took 3.2 percent longer when
trace was running with all hooks enabled. When the trace data fills the buffers
and must be written to the log, additional CPU is required for file I/O. Usually
this is less than five percent. Since trace claims and pins buffer space, it may
be slowing down the execution times of programs if the environment is memory
constrained. Be aware that the trace log and report files can become very large.

120 RS/6000 Performance Tools in Focus

When using trace, the classic trade-off of time versus resource exists. On a fast,
busy system with all trace hooks collected (the default), trace will produce
megabytes of trace output for each second of real time. This necessitates
zeroing in on the phenomenon you wish to study.

3.12.1 The trace Implementation

Figure 6. The trace Implementation

The trace command will generate statistics on user processes and kernel
subsystems. The binary information is written to two buffers in memory. A is
the first, and B is the second; their default size is 131072. The trace process
then transfers the information to the trace log file on disk. The default is
/var/adm/ras/trcfile, default size is 1310720. This file grows very rapidly. The
trace program runs as a process that may be seen by the ps command. The
trace acts as a daemon, similar to accounting.

The data recorded for each traced event consists of a word containing the trace
hook identifier and the hook type followed by a variable number of words of
trace data optionally followed by a time stamp. The word containing the trace
hook identifier and the hook type is called the hook word. The remaining two
bytes of the hook word are called hook data and are available for recording
event data. A trace hook is a specific event that is to be monitored. A unique
number is assigned to that event and called a hook ID, which is a three-digit
hexadecimal number. Trace monitors these hooks.

3.12.2 Starting and Controlling trace
The trace facility provides three distinct modes of use:

• Subcommand or Interactive Mode:

Trace is started with a shell command (trace) and carries on a dialog with
the user via subcommands (look for the ’->’ prompt). The subcommands
are:

trcon Start collection of data
trcoff Stop collection of data
q , quit Stop collection of data and exit trace
! command Run ′command ′
? Display summary of trace commands

Chapter 3. Legacy (AIX) Performance Tools 121

• Command or Non-Interactive Mode:

Trace is started with a shell command (trace -a) that includes a flag that
specifies that the trace facility is to run asynchronously. The original shell
process is free to run ordinary commands interspersed with the trace-control
commands trcon to start data collection, trcoff to stop data collection, and
trcstop to exit trace.

• Application-Controlled Mode:

Trace is started (with trcstart()) and controlled by subroutine calls (such as
trcon(), trcoff()) from an application program.

3.12.3 Examples of trace
 1. Trace system events during execution of anycmd:

#trace
-> !anycmd
-> q
#

 2. Trace system events until the trace buffer is full (-f) or until trace is stopped,
and include a message in the trace log header. Trace system events during
execution of mycmd.

#trace -f -m ″Trace of events during mycmd″
-> !mycmd
-> q

Because the -f flag is included, the trace will end if the buffer is full, so the
trcoff command may fail with an error message indicating that the trace is
not currently running.

 3. Trace system events during execution of mycmd1 and later during execution of
mycmd2.

trace
-> !mycmd1
-> trcoff
-> trcon
-> !mycmd2
-> q

 4. Trace the activity generated by a copy command by starting the trace in
asynchronous mode, setting the trace buffer to 1000000 bytes (-T), the log file
size to 2000000 (-L), and writing the trace log to trace.out. The default log
file is /var/adm/ras/trcfile.

trace -a -L 2000000 -T 1000000 -o trace.out
cp /a20kfile /b
trcstop

 5. With the -d option, trace is not immediately started but delayed until the first
trcon occurs. So a trace collection for the find command might be done as
follows:

trace -a -d -f -T 80000000 -L 80000000 -o ./trace.out
trcon ; find / -name munga.out -print ; trcoff
trcstop

The trace command will collect 80 MB of trace data (-T) and stop collecting
trace data when the buffer is full (-f). It is important that the system has
sufficient free memory (> 80 MB) that can be dedicated to the trace

122 RS/6000 Performance Tools in Focus

command, or the command will fail or the workload will be perturbed
(perhaps by excessive paging).

 6. If the workload is more complex, or is running in the background (for
example, a database engine), the same basic technique as in the example
above is used. When the workload exhibits interesting behavior, the trace
may be started as follows:

trace -a -d -f -T 80000000 -L 80000000 -o ./trace.out
trcon ; sleep 60 ; trcoff
trcstop

It is unlikely, in the example above, that a full 60-second trace will be
collected due to the use of the -f flag. You will actually get a trace
corresponding to one full trace buffer (that is, 80 MB). Please bear in mind
that trace adds considerable path length in system time; so using trace will
distort the user/system time mix.

 7. The trace data accumulates very rapidly. A technique to reduce the volume
and bracket the data collection around an area of interest is to issue several
commands on the same line.

trace -a -o trace.out; cp /usr/lib/boot/unix /dev/null; ps; trcstop

Another possibility to reduce the trace output is collecting only specific
events using -k or -j options.

 Note

Do not forget to stop the trace by using trcstop once you have collected your
data.

You can also use smit or smitty to start trace:

smitty -> Problem Determination
-> Trace

-> START Trace

Or use the smit fastpath (another is smitty trace):

smitty trcstart

START Trace

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
EVENT GROUPS to trace (default is kernel trace) [] +
ADDITIONAL event IDs to trace [] +X
Event IDs to EXCLUDE from trace [] +X
Trace MODE [alternate] +
STOP when log file full? [no] +
LOG FILE [/var/adm/ras/trcfile]
SAVE PREVIOUS log file? [no] +
Omit PS/NM/LOCK HEADER to log file? [yes] +
Omit DATE-SYSTEM HEADER to log file? [no] +
Run in INTERACTIVE mode? [no] +
Trace BUFFER SIZE in bytes [131072] #
LOG FILE SIZE in bytes [1310720] #

Chapter 3. Legacy (AIX) Performance Tools 123

As shown above, you can specify the event groups to trace. For example, group
proc contains EXECS, EXITS, and FORKS with trace hook IDs 134, 135, and 139.
These hook IDs correspond to the appropriate system calls. You can specify
additional event IDs to trace, the trace mode (alternate means trace events are
captured in the trace log file), the trace log file, the running mode, the trace
buffer size, and the log file size.

3.12.4 Using trcrpt to View Trace Data
A general-purpose trace report facility is provided by the trcrpt command. The
report facility provides little data reduction, but converts the binary trace output
to a readable ASCII listing. Data can be visually extracted by the reader, or
tools can be developed to further reduce the data.

The report facility displays text and data for each event according to rules
provided in the trace format file. The default trace format file is /etc/trcfmt. It
contains a stanza for each event ID. The stanza for the event provides the
report
facility with formatting rules for that event. This technique allows users to add
their own events to programs and insert corresponding event stanzas in the
format file to specify how the new events should be formatted.

When trace data is formatted, all data for a given event is usually placed on a
single line. The header of the trace report tells you when and where the trace
was taken, as well as the command that was used to produce it. Additional lines
may contain explanatory information. Depending on the fields included, the
formatted lines can easily exceed 80 characters. It is best to view the reports on
an output device that supports 132 columns.

The trcrpt facility does not produce any summary reports, but simple
summaries could be created through further processing of the trcrpt output
using awk.

If trcrpt is run on a machine different from the one where the trace output was
collected, then the output of the trcnm command is also needed as input to the
trcrpt command (-n trcnm_file). It is also preferable to use a copy of /etc/trcfmt
from the source machine and use this with the -t trcfmt_file option of trcrpt.

3.12.5 trcrpt Examples
 1. To produce a report from the trace.out file generated in example 7 above,

including the execution name and PID and writing the output to trcrpt.out,
you could use:

trcrpt -O exec=on,pid=on trace.out > trcrpt.out

 2. To get a list of all events with event ID and name:

trcrpt -j | more
004 TRACEID IS ZERO
355 DIAGEX
709 INPUTDD:
...
001 TRACE ON
002 TRACE OFF
003 TRACE HEADER
005 LOGFILE WRAPAROUND
006 TRACEBUFFER WRAPAROUND
007 UNDEFINED TRACE ID
...
12E CLOSE SYSTEM CALL
130 CREAT SYSTEM CALL

124 RS/6000 Performance Tools in Focus

134 EXEC SYSTEM CALL
135 EXIT SYSTEM CALL
137 FCNTL SYSTEM CALL
139 FORK SYSTEM CALL
13A FSTAT SYSTEM CALL
13E FULLSTAT SYSTEM CALL
14C IOCTL SYSTEM CALL
14E KILL SYSTEM CALL
152 LOCKF SYSTEM CALL
154 LSEEK SYSTEM CALL
15B OPEN SYSTEM CALL
15F PIPE SYSTEM CALL
...

 3. To get only the open system calls (event 15b) out of trace.out:

trcrpt -d 15b -O exec=on,pid=on trace.out > trcrpt.out
more trcrpt.out

ID PROCESS NAME PID I ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL
INTERRUPT

15B cp 9666 0.012020224 12.020224 open /usr/lib/boot/unix
fd=3 RDONLY
15B cp 9666 0.012117504 0.097280 open /dev/null fd=4
WRONLY TRUNC
15B ps 9668 0.676786432 664.668928 open /dev fd=3 RDONLY
15B ps 9668 0.680534016 3.747584 open /dev/pts fd=4
RDONLY
15B ps 9668 0.718295296 37.761280 open /dev/.SRC-unix
fd=4 RDONLY
15B trcstop 9670 0.747842816 29.547520 open /dev/systrctl
fd=3 RDONLY

The ID column shows the hook identifier. The PROCESS NAME column shows
the running command or program name. The PID shows the corresponding
process ID of the running command or program. The ELAPSED_SEC column
shows the elapsed time in seconds after the trace is started. The DELTA_MSEC
is the time in milliseconds between the previous event and this event. The
APPL SYSCALL KERNEL INTERRUPT are actually indention based. The indention
gives the level at which the event occurred (application (APPL), system call
(SYSCALL), kernel level (KERNEL), or interrupt level (INTERRUPT)). For example,
the system call function open() begins under SYSCALL and is followed by the
parameters being passed. In our example, ps, with a PID 9668, was invoked
0.676786432 seconds after the trace was started; the time between the last cp
event and this event was 0.664668928 seconds.

 4. To get just the opens performed by ‘cp’:

trcrpt -d 15b -p <pid_of_cp> -O exec=on trace.out > cp.out

When using trace to determine system problems or CPU idle time, you should
monitor the system under a full workload. Review the various calls and
interrupts and the time incurred for each. This should give you a better handle
on what areas are creating problems.

If it appears that the system is waiting on remote requests, there may be a
network problem. Or, if there is idle time waiting on an adapter, that also should
be evident. Logical resources may also be a problem. The buffer pool for
communications may be in contention. Additional information can be gained
through the netstat, nfsstat, or netpmon commands.

Chapter 3. Legacy (AIX) Performance Tools 125

3.12.6 How to Spot Thrashing
The operating system determines whether a memory over-commitment is likely.
This over-commitment can cause thrashing and severe degradation in system
performance. Without the trace facility, it is difficult to determine when the
operating system has detected thrashing and subsequently invoked the memory
load control mechanism.

The thrash condition is reached when the system spends more time paging
rather than performing work. When this occurs, selected processes may be
suspended temporarily, and the system can be noticeably slower.

The only reliable way to determine when the system has detected that it is
thrashing is to run trace, capturing only trace hook IDs 207 (swapper sched
stats) and 208 (swapper process stats).

trace -aj207,208 ; sleep 200 ; trcstop
trcrpt -O exec=on,pid=on > trcrpt.out
more trcrpt.out

Wed Mar 5 09:06:05 1997
System: AIX ah6000c Node: 4
Machine: 000127294600
Internet Address: 09030173 9.3.1.115

trace -aj207,208

ID PROCESS NAME PID I ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 trace 21078 0.000000000 0.000000 TRACE ON channel
0 Wed Mar 5 09:06:06 1997
208 scheduler 0 0.851751296 851.751296 sched proc stats:
nrun=0 nsusp=0 npageio=
0 nevents=73 nstarting=0
207 scheduler 0 0.851764096 0.012800 sched sys stats:
thrashing=0 v_repage_hi=
6 sysrepage=0 pgflts=426348 pgstls=181894
208 scheduler 0 1.851817472 1000.053376 sched proc stats:
nrun=0 nsusp=0 npageio=
0 nevents=73 nstarting=0
207 scheduler 0 1.851832064 0.014592 sched sys stats:
thrashing=1 v_repage_hi=
6 sysrepage=0 pgflts=426358 pgstls=181894
208 scheduler 0 2.851917056 1000.084992 sched proc stats:
nrun=2 nsusp=0 npageio=
0 nevents=71 nstarting=0
207 scheduler 0 2.851931520 0.014464 sched sys stats:
thrashing=2 v_repage_hi=
6 sysrepage=0 pgflts=426367 pgstls=181894
208 scheduler 0 3.851999104 1000.067584 sched proc stats:
nrun=1 nsusp=0 npageio=
0 nevents=72 nstarting=0
207 scheduler 0 3.852013312 0.014208 sched sys stats:
thrashing=3 v_repage_hi=
6 sysrepage=0 pgflts=426377 pgstls=181894
208 scheduler 0 4.852001408 999.988096 sched proc stats:
nrun=0 nsusp=0 npageio=
0 nevents=73 nstarting=0
207 scheduler 0 4.852015360 0.013952 sched sys stats:
thrashing=4 v_repage_hi=
6 sysrepage=0 pgflts=426386 pgstls=181894
208 scheduler 0 5.852055424 1000.040064 sched proc stats:
nrun=0 nsusp=0 npageio=
0 nevents=73 nstarting=0
207 scheduler 0 5.852069632 0.014208 sched sys stats:
thrashing=5 v_repage_hi=
6 sysrepage=0 pgflts=426396 pgstls=181894
208 scheduler 0 6.852113792 1000.044160 sched proc stats:
nrun=0 nsusp=0 npageio=
0 nevents=73 nstarting=0
207 scheduler 0 6.852127616 0.013824 sched sys stats:

126 RS/6000 Performance Tools in Focus

thrashing=6 v_repage_hi=
6 sysrepage=0 pgflts=426405 pgstls=181894
208 scheduler 0 7.852273792 1000.146176 sched proc stats:
nrun=0 nsusp=0 npageio=
0 nevents=73 nstarting=0
207 scheduler 0 7.852287104 0.013312 sched sys stats:
thrashing=-1 v_repage_hi
=6 sysrepage=0 pgflts=426415 pgstls=181902
208 scheduler 0 8.852322944 1000.035840 sched proc stats:
nrun=0 nsusp=0 npageio=
0 nevents=73 nstarting=0

The output field thrashing indicates the number of seconds the system has been
free of thrashing. This value is not incremented beyond 100. A value of -1
indicates the system was currently thrashing.

The output field nsusp indicates the number of processes that were suspended
when thrashing was detected.

3.12.7 Using trace to Identify Other Resource Constraints
Following is a trcrpt report showing that the memory allocation is probably
constrained. You can see every activity going out to VMM pagefault, VMM disk
allocation, and VMM page assign. We go into a page-in/page-out state until we
get a VMM zero filled page. After this event, process ID 5572 is eventually
resumed.

more trcrpt.out

ID PROCESS NAME PID I ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT
...
104 -5572- 5572 0.203864448 0.003584 return from sbrk [46 usec]
100 -5572- 5572 0.203915520 0.051072 DATA
ACCESS PAGE FAULT
1B2 -5572- 5572 0.203937280 0.021760 VMM pagefault:
V.S=3A00.183C client_segment
100 -5572- 5572 0.203988352 0.051072 DATA
ACCESS PAGE FAULT
1B2 -5572- 5572 0.203999232 0.010880 VMM pagefault:
V.S=019E.0202 deferred_update system_segment commit_in_progress
1BD -5572- 5572 0.204056320 0.057088 VMM disk
allocation: V.S=019E.0202 dbl k=893C deferred_update system_segment commit_in_progress
pdtx/devid=0000
1B0 -5572- 5572 0.204132864 0.076544 VMM page assign:
V.S=019E.0202 ppa ge=09AC deferred_update system_segment commit_in_progress
1B9 -5572- 5572 0.204140032 0.007168 VMM zero filled
page: V.S=019E.0202 ppage=09AC deferred_update system_segment commit_in_progress
200 -5572- 5572 0.204151936 0.011904 resume -5572-
100 -5572- 5572 0.204176896 0.024960 DATA
ACCESS PAGE FAULT
1B2 -5572- 5572 0.204183296 0.006400 VMM pagefault:
V.S=3A00.183C client_segment
1BD -5572- 5572 0.204226944 0.043648 VMM disk
allocation: V.S=3A00.183C dbl k=893D client_segment pdtx/devid=0000
1B0 -5572- 5572 0.204273024 0.046080 VMM page assign:
V.S=3A00.183C ppage=09A1client_segment
1B9 -5572- 5572 0.204276352 0.003328 VMM zero filled
page: V.S=3A00.183C ppage=09A1 client_segment
200 -5572- 5572 0.204281472 0.005120 resume -5572-

Chapter 3. Legacy (AIX) Performance Tools 127

128 RS/6000 Performance Tools in Focus

Chapter 4. Advanced AIX V4 Performance Tools

This chapter describes some advanced, detailed commands that were introduced
with AIX V4. Some of them come with the AIX basic operating system; some of
them are part of the AIX Performance Toolbox LPP software.

These advanced, AIX-specific tools exist because logical resources like VMM,
LVM, file systems, queues, and buffers are implementation-specific, and
standard tools do not provide enough detailed information or do not allow fine
tuning.

4.1 PDT
The performance diagnostic tool (PDT) collects information concerning system
configuration and tracks changes in the workload and performance. It attempts
to identify potential problems that could impact the overall performance of the
system. Based on the configuration and the historical record of performance
measurements, PDT tries to identify:

• Unbalanced use of the resources or asymmetrical aspects of configuration or
device utilization. In general, if there are several resources of the same
type, a better performance can be achieved by meeting the following goals:

− Comparable numbers of physical volumes (disks) on each disk adapter
− Paging space equally distributed across multiple physical volumes
− Roughly equal measured load on different physical volumes

• Reaching the limit of resource utilization. Trends that would attempt to
exceed those limits should be detected and reported. Performance suffers
when a disk or a file system is 100 percent full.

• New consumers of resource-expensive processes that have not been
observed before. Trends can indicate a change in the nature of the workload
as well as increases in the amount of resources used:

− Number of users logged on
− Total number of processes
− CPU-idle percentage

• Hardware and software errors that can lead to performance problems. PDT
checks hardware and software logs and reports bad VMM pages.

• Inappropriate setting of system parameters. AIX allows system
administrators to change system parameters in order to enhance the
performance. However, if parameters are improperly set, it can greatly
degrade performance.

PDT uses normally less than 30 seconds of CPU time. Daily data collection takes
several elapsed minutes, but most of that time is spent sleeping.

This tool is only available in AIX V4.

 Copyright IBM Corp. 1997 129

4.1.1 Enabling and Configuring PDT
PDT must be enabled in order to begin data collection and report writing. PDT
can be enabled by executing as root the script
/usr/sbin/perf/diag_tool/pdt_config. When executed the following output is
displayed:

� �
_____________________________PDT customization menu__________________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:� �

Selecting option 4 enables PDT default data collection and reporting. PDT
entries are added to the user adm crontab (/var/spool/cron/crontabs/adm), as
shown bellow:

0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly

Daily and weekly reports are mailed to user adm. The default time for data
collection is 9 a.m. and for report generation is 10 a.m. These can be changed
by altering the crontab for user adm. It would be interesting to change those
times to the peek utilization hours; so the reports would reflect the worst case in
the environment. PDT also maintains a copy of the last report in
/var/perf/tmp/PDT_REPORT. Before a new report is written, the previous report
is renamed /var/perf/tmp/PDT_REPORT.last.

The recipient as well as the severity-level of the reports can be changed with
option 2:

� �
_____________________________PDT customization menu__________________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number: 2

enter id@host for recipient of report: root
enter severity level for report (1-3):3

report recipient and severity level
root 3� �

The above configuration changed the recipient of the reports to root and the
severity-level to 3. This means that the PDT report will be mailed to the root
user, and severity-level 1, 2 and 3 messages will be included.

130 RS/6000 Performance Tools in Focus

 Hint

Set the severity level of the PDT report to 3 so you always get the most
information without having to generate higher-level reports.

Remember that selecting severity-level x results in the reporting of all problems
of severity less than or equal to x. Note the use of option 1 to determine the
current PDT report recipient and report severity level. In order to disable PDT
reporting, use option 3, and to disable collection, use option 5.

Changes in the configuration can be done by altering directly the customization
files located in /var/perf/cfg/diag_tool:

• .collection.control

List of scripts that are executed to generate the report.

• .files

List of files and directories that are analyzed for systematic growth in size.

By default, the following files are monitored:

/usr/adm/wtmp
/var/spool/qdaemon
/var/adm/ras/
/tmp/

It is a good policy to append the user and data areas to .files. In this way
the system administrator can forecast possible problems.

• .reporting.list

Contains the information about the recipient and severity-level of the reports.
The default is to mail the report to user adm and severity-level of 1. These
settings can be altered by directly editing this file or with the pdt_config
command as shown in the previous example.

• .retention.list

Number of days for data retention. PDT periodically reviews the collected
data and discards data that is out of date. The reports are based on the
current set of historical data. The default is 35 days. In order to generate
reports based on a larger interval of time, this number should be increased.

• .nodes

List of nodes that PDT tries to reach in order to check if they are still up or if
the network is working properly. This file does not exist by default and
should be created if the system administrator wants to monitor a set of
nodes. For example, to monitor nodes ah6000a and itsosmp, the file .nodes
would be:

ah6000a
itsosmp

Nodes that are normally accessed by the users should be added to this file.

• .thresholds

Contains the thresholds used in analysis and reporting. These thresholds
have an effect on PDT report organization and content.

− DISK_STORAGE_BALANCE

Chapter 4. Advanced AIX V4 Performance Tools 131

The SCSI controllers having the largest and the smallest disk storage are
identified. If the difference (in MB) between these two exceeds
DISK_STORAGE_BALANCE, a message is reported. The default value is
800. Any integer value between 0 and 10000 is valid.

− PAGING_SPACE_BALANCE

The paging spaces having the largest and the smallest areas are
identified. If the difference (in MB) between these two exceeds
PAGING_SPACE_BALANCE a message is reported. The default value is
4. Any integer value between 0 and 100 is accepted.

− NUMBER_OF_BALANCE

The SCSI controllers having the largest and the least number of disks
attached are identified. If the difference between these two counts
exceeds NUMBER_OF_BALANCE, a message is reported. The default
value is 1. It can be set to any integer value in the range of 0 to 10000.

− MIN_UTIL

Applies to process utilization. Changes in the top three CPU or memory
consumers are only reported if the new process had a utilization in
excess of MIN_UTIL. The default value is 3. Any integer value from 0 to
100 is valid.

− FS_UTIL_LIMIT

Applies to journaled file system utilization. If the file system has a
percentage use above FS_UTIL_LIMIT, a message is reported. The
default value is 90 percent. Any integer value between 0 and 100 is
accepted.

Special attention should be given to /, /var, and /tmp file systems. The
operating system uses these areas for normal operation. If there is no
space left in one of these, the behavior of the system is unpredictable.
Error messages are given when the execution of commands fails, but
most of the times they don’t lead to the real problem. A convenient
procedure would be to decrease FS_UTIL_LIMIT to 70 or 80 percent; so
problems involving these file systems would be detected earlier.

− MEMORY_FACTOR

The objective is to determine if the total amount of memory is adequately
backed up by paging space. If real memory is close to the amount of
used paging space, then the system is likely paging and would benefit
from the addition of memory.

The formula is based on experience and actually compares
MEMORY_FACTOR * memory with the average used paging space.

The current default is .9; by decreasing this number, a warning will be
produced more frequently (and perhaps, unnecessarily). Increasing this
number will eliminate the message altogether. It can be set anywhere
between .001 and 100.

− TREND_THRESHOLD

Used in all trending assessments. It is applied after a linear regression
is performed on all available historical data. This technique basically
draws the best line among the points. The slope of the fitted line must
exceed the last_value * TREND_THRESHOLD. The objective is to try to

132 RS/6000 Performance Tools in Focus

ensure that a trend, however strong its statistical significance, actually
has some practical significance.

For example, if we determine that a file system is growing at X MB a
day, and the last_value for the file system size is 100 MB, we require that
X exceeds 100 MB * TREND_THRESHOLD to be reported as a trend of
practical significance. The default value is 0.01; so a growth rate of 1 MB
per day would be required for reporting. The threshold can be set
anywhere between 0.00001 and 100000.

This assessment applies to trends associated with:

 1. CPU use by a top-three process
 2. Memory use by a top-three process
 3. Size of files indicated in the .files file
 4. Journaled file systems
 5. Paging spaces
 6. Hardware and software errors
 7. Workload indicators
 8. Processes per user
 9. Ping delay to nodes in the .nodes file
10. Percentage of packet loss to nodes in the .nodes file

− EVENT_HORIZON

Used also in trending assessments. For example, in the case of file
systems, if there is a significant (both statistical and practical) trend, the
time until the file system is 100 percent full is estimated. If this time is
within EVENT_HORIZON, a message is reported. The default value is 30,
and it can be any integer value between 0 and 100000.

4.1.2 PDT Report
By default, PDT reports are generated with severity-level 1 and mailed to user
adm. The severity level may vary from 1 to 3, and as the severity level
increases, more detailed information is added to the report.

Reports based on existing data can also be generated on demand by any user
executing the script /usr/sbin/perf/diag_tool/pdt_report [SeverityNum]. If no
severity number is given, 1 is assumed. The report is written to stdout; so it
does not affect /var/perf/tmp/PDT_REPORT or /var/perf/tmp/PDT_REPORT.last
files.

Immediately after PDT is installed and enabled, it is not able to generate a
report. If a report is requested, the following error is returned:

awk: 0602-533 Cannot find or open file /var/perf/tmp/.SM.

This happens because no data has been collected. Data can be collected on
demand by executing /usr/sbin/perf/diag_tool/Driver_ daily (as root or adm
user) or by changing the collection data time in the user adm crontab. This
command generates the file /var/perf/tmp/.SM, which is the database that PDT
uses to generate the reports.

Chapter 4. Advanced AIX V4 Performance Tools 133

A PDT report consists of several sections:

• Header

Provides information on the time and date of the report, the host name, and
the time period for which data was analyzed. The content of this section
does not differ with other severity levels.

Example of a report header:

Performance Diagnostic Facility 1.0

 Report printed: Thu Feb 6 17:47:20 1997

 Host name: itsosmp.itsc.austin.ibm.com
 Range of analysis includes measurements
 from: Hour 12 on Tuesday, February 4th, 1997
 to: Hour 17 on Wednesday, February 12th, 1997

 Notice: To disable/modify/enable collection or reporting
execute the pdt_config script as root

• Alerts

Focuses on identified violations of applied concepts and thresholds. The
following subsystems may have problems when they appear in the alerts
section: file systems, I/O configuration, paging configuration, I/O balance,
paging space, virtual memory, real memory, processes and network.

For severity 1 levels, alerts focus on file systems, physical volumes, paging
and memory. If severity 2 or 3 is selected, information on configuration and
processes are added.

Example of an Alerts section:

------------------------ Alerts ---------------------

I/O CONFIGURATION
- Note: volume hdisk1 has 872 MB available for allocation

while volume hdisk0 has 148 MB available
- Physical volume hdisk2 is unavailable; (in no volume group)

PAGING CONFIGURATION
- Physical Volume hdisk2 (type: SCSI) has no paging space defined
- Paging space paging00 on volume group rootvg is fragmented
- Paging space paging01 on volume group uservg is fragmented

I/O BALANCE
- Phys. volume hdisk2 is not busy

volume hdisk2, mean util. = 0.00 %

PROCESSES
- First appearance of 20642 (cpubound) on top-3 cpu list

(cpu % = 24.10)
- First appearance of 20106 (eatmem) on top-3 memory list

(memory % = 8.00)

FILE SYSTEMS
- File system hd2 (/usr) is nearly full at 100 %

NETWORK
- Host ah6000e appears to be unreachable.

134 RS/6000 Performance Tools in Focus

(ping loss % = 100) and has been for the past 4 days

The I/O configuration indicates that the data is not well-distributed through
the disks and that hdisk2 is not used at all. This disk should be added to a
volume group and have a paging space defined on it. The existing paging
areas are fragmented and should be reorganized, for example with the
command reorgvg. The I/O balance section shows that hdisk2 is not busy.
This happens because hdisk2 has not been assigned to a volume group.

In most systems /usr file system use is nearly 100 percent. Usually this is
not a problem, but system administrators should check if there is any
application writing data to this file system.

• Upward and Downward Trends

PDT employs a statistical technique to determine whether there is a trend in
a series of measurements. If a trend is detected, the slope of the trend is
evaluated for its practical significance. For upward trends, the following
items are evaluated: files, file systems, hardware and software errors,
paging space, processes, and network. For downward trends, the following
can be reported: files, file systems and processes.

Example of an Upward Trends and Downward Trends section:

---------------------- Upward Trends ----------------

FILES
- File (or directory) /usr/adm/wtmp SIZE is increasing

now, 20 KB and increasing an avg. of 2163 bytes/day
- File (or directory) /var/adm/ras/ SIZE is increasing

now, 677 KB and increasing an avg. of 11909 bytes/day
FILE SYSTEMS
- File system hd9var (/var) is growing

now, 17.00 % full, and growing an avg. of 0.38 %/day
- File system lv00 (/usr/vice/cache) is growing

now, 51.00 % full, and growing an avg. of 4.64 %/day
At this rate, lv00 will be full in about 9 days

PAGE SPACE
- Page space hd6 USE is growing

now, 81.60 MB and growing an avg. of 2.69 MB/day
At this rate, hd6 will be full in about 29 days

ERRORS
- Software ERRORS; time to next error is 0.958 days

---------------------- Downward Trends --------------
PROCESSES
- Process 13906 (maker4X.e) CPU use is declining

now 1.20 % and declining an avg. of 0.68 % per day
- Process 13906 (maker4X.e) MEMORY use is declining

now 13.00 and declining an avg. of 0.98 % per day
FILES
- File (or directory) /tmp/ SIZE is declining
FILE SYSTEMS
- File system hd3 (/tmp) is shrinking

The /usr/adm/wtmp is liable to grow unbounded. If it gets too large, login
times can increase. In some cases, the solution is to delete the file. In most
cases, it is important to identify the user causing the growth and work with
that user to correct the problem.

The errorlog file is located in the directory /var/adm/ras. The ERRORS section
shows that the number of software errors is increasing. This is probably the

Chapter 4. Advanced AIX V4 Performance Tools 135

reason why the directory size increased. You should also check the
errorlog, verify which application is in error, and correct the problem.

The increase in the paging space use may be due to a process with a
memory leak. That process should be identified and the application fixed.
However, the paging space might not be well dimensioned and may need to
be enlarged. Later on in this section, a rule of thumb will be given to size
the paging space.

• System Health

Gives an assessment of the average number of processes in each process
state on the system. Additionally, workload indicators are noted for any
upward trends.

Example of a System Health section:

----------------------- System Health ---------------

SYSTEM HEALTH
- Current process state breakdown:

75.00 [100.0 %] : active
0.40 [0.5 %] : swapped
75.00 = TOTAL
[based on 1 measurement consisting of 10 2-second samples]

• Summary

The severity level of the current report is listed. There is also an indication
given as to whether more details are available at higher severity levels.

Example of a Summary section:

-------------------- Summary -------------------------
This is a severity level 3 report
No further details available at severity levels > 3

Severity 1 Problems

• Journaled file system becomes unavailable

The file system could have been removed. Use the lsfs command to verify.

• Journaled file system nearly full

This problem could be caused by large or core files within the file system.
The process or user that generated those files should be identified. The
system administrator should also verify if PDT report indicates a long term
growth trend for this file system.

• Physical volume not allocated to a volume group

If a physical volume is not allocated to a volume group, AIX has no access to
this disk, and its space is being wasted. The lspv command could be used
to ensure that the disk is not allocated to any volume group, and if not, the
command extendvg should be used to add the disk to a volume group.

• All paging spaces defined on one physical volume

A better I/O throughput could be achieved if the paging space is split equally
among all physical volumes. Only one paging space should be defined per
physical volume because the system will only have access to one at a time.
SMIT can be used to create, modify, activate, or deactivate the paging areas.

• System appears to have too little memory for current workload

136 RS/6000 Performance Tools in Focus

The vmstat or svmon commands can give further details about the paging
activity. Please refer to 2.1, “The vmstat Command” on page 7, and to 3.2,
“The svmon Command” on page 71, for more information on those
commands.

• Page space nearly full

The paging space might not be well dimensioned and may need to be
enlarged. For systems up to 256 MB of memory, the paging space should be
twice the size of real memory. For memories larger than 256 MB, the
following is recommended:

total paging space = 512 MB + (memory size - 256 MB) * 1.25

The paging space size cannot be less than 16 MB and not greater than 20
percent of total disk space.

The problem may also occur due to a process with a memory leak, in which
case that process should be identified and the application fixed.

• Possible problems in the settings of load control parameters

This may be due to inappropriate load-control parameters settings. Use
schedtune command to view or alter the configuration. Refer to 4.10, “The
schedtune Command” on page 177, for further details.

• VMM-detected bad memory frames

It may be necessary to have the memory analyzed. The amount of installed
memory should be compared to the accessible memory. If the latter is less
than the former, then bad memory has been identified. The command
/usr/sbin/perf/diag_tool/getvmparms could be used to check valid memory
pages.

• Any host in .nodes becomes unreachable

This problem may be due to name resolution. Domain Name Service (DNS)
configuration files or /etc/hosts should be checked depending on the type of
name resolution being used at the environment.

The command ping could be used to check if the machine has access to
other nodes in the same network. Maybe the remote node is down. If it
cannot access any other node, cables and connections should be veryfied as
well as the routing table of the current machine. This can be accomplished
by executing the command netstat -r.

Severity 2 Problems

• Imbalance in the I/O configuration (disks per adapter)

The number of disks per adapter should be equal whenever possible. This
prevents one adapter from being overloaded. A rule of thumb is not to have
more than four devices per adapter, especially if the access to the disks is
mostly sequential.

• Imbalance in allocation of paging space on physical volumes with paging
space

A substantial imbalance in the sizes of paging spaces can cause
performance problems. As stated above, the paging space should be
equally distributed throughout the disks.

• Fragmentation of a paging space in a volume group

Chapter 4. Advanced AIX V4 Performance Tools 137

Paging performance is better if paging areas are contiguous on a physical
volume. However, when paging areas are enlarged, it is possible to create
fragments that are scattered across the disk surface. The command reorgvg
could be used to reorganize the paging spaces.

• Significant imbalance in measured I/O load to physical volumes

Probably the data is not well distributed throughout the disks. The command
iostat can give more information about the I/O activity of each disk (refer to
2.2, “The iostat Command” on page 17). A disk should not be utilized more
than 40 percent over a period of time. Data should be distributed throughout
the disks in a manner to balance I/O. The command filemon can give more
information about the most accessed files and file systems. This can be a
good starting point in order to reorganize the data. Refer to 3.4, “The
filemon Command” on page 83 , for more information on filemon.

• New process is identified as a heavy memory or CPU consumer

These processes should be examined for unusual behavior. Note that PDT
simply checks the process ID. If a known heavy user terminates, then is
executed again (with a different process ID); it will be identified as a new
heavy user.

• A file in .files exhibits systematic growth (or decline) in space utilization

Analyze the problem by identifying which user or process is generating the
data.

• A host in .nodes exhibits degradation in ping delays or packet loss
percentage

There is probably a performance problem in the host or in the network.

• A getty process consumes too much CPU time

A getty process that uses more than just a few percent of the CPU may be in
error. Normally the solution is to terminate the process.

• A process with high CPU or memory consumption exhibits systematic growth
(or decline) in resource use

If the growth is unexpected, use vmstat and svmon commands while the
process is running to gather more information on its behavior.

• A WORKLOAD TRACKING indicator shows an upward trend

There are several workload indicators:

− loadavg

Refers to 15 minute load average. In general, it indicates that the level
of contention in the system is growing. The rest of the PDT report should
be examined for indicators of system bottlenecks.

− nusers

Shows that the number of users on the system is growing.

138 RS/6000 Performance Tools in Focus

− nprocesses

Indicates that the total number of processes on the system is rising.
Should be checked if there are users achieving maxuproc limitation.
Perhaps there are ″runaway″ applications forking too many processes.

− STAT_A

Number of active processes. Indicates that processes are spending
more time waiting for the CPU.

− STAT_W

Number of swapped processes. Indicates that processes are contending
excessively for memory.

− STAT_Z

Number of zombie processes. Zombies should not stay around for a
long time. If the number of zombies on a system is growing, this may be
cause for concern.

− STAT_I

Number of idle processes. This might not be of much concern.

− STAT_T

Number of processes stopped after receiving a signal. A trend here
might indicate a programming error.

− STAT_X

X is any valid character in the ps command output. The interpretation of
a trend depends on the meaning of the character X. Refer to 2.4, “The
ps Command” on page 30 , for more information on the ps command.

− cp

Time required to copy a 40-KB file. A trend in the time to do a file copy
suggests that degradation in the I/O subsystem is evident.

− idle_pct_cpu0

Idle percentage for processor 0. An upward trend in the idle percentage
might indicate increased contention in non-CPU resources such as
paging or I/O. Such an increase is of interest because it suggests the
CPU resource is not being well-utilized.

− idle_pct avg

Average idle percentage for all processors. See comments above for
idle_pct_cpu0.

Severity 3 Problems: Severity 3 messages provide additional detail about
problems identified at severity levels 1 and 2. This includes the data-collection
characteristics, such as number of samples, for severity 1 and 2 messages.

4.1.3 PDT Error Reporting
Errors can occur within each of the different PDT components. In general, an
error does not terminate PDT. Instead, a message is written to PDT’s standard
error file (/var/perf/tmp/.stderr), and that phase of processing terminates.

Users experiencing unexpected behavior should examine this file.

Chapter 4. Advanced AIX V4 Performance Tools 139

4.2 The perfpmr Package
The PerfPMR package was developed to help customers report possible
performance problems in AIX by supplying enough information to permit problem
diagnosis by IBM. It is intended to ensure that the customer receives a prompt
and accurate response with a minimum of time and effort. The package consists
of a series of scripts that gather configuration and performance data. The output
files are suitable for performance analysts as well.

Suspected AIX performance problems should be reported to the IBM Software
Service organization, using the normal software problem-reporting channel.
Some general information is required at that time, including a description of the
problem, what led to the conclusion that the problem is due to a defect in AIX,
the hardware and software configuration, the workload characteristics, and the
performance objectives not being met. The data collected with PerfPMR
package should also be provided. If it is determined that the problem is due to
configuration or improper use, the customer may be transferred to a service
organization for (billable) help.

PerfPMR is available in AIX V4 as a fileset of the AIX Base Operating System.
For AIX V3 PerfPMR, you should contact your IBM Software Service organization
to obtain a copy in suitable medium and installation instructions.

4.2.1 Using the perfpmr Command
Before running the perfpmr script, the directory that contains the PerfPMR scripts
and executables should be added to the PATH variable:

PATH=$PATH:/usr/sbin/perf/pmr:
export PATH

In AIX V3, the directory in which perfpmr was installed (instead of
/usr/sbin/perf/pmr) and also the directory for the performance tools,
/usr/lpp/bosperf, should be added to the PATH variable. In this version, the
perfpmr script is named perfpmr.sh.

The perfpmr command captures more information if the tprof, filemon, and
netpmon performance tools are available. In AIX V4, these tools are packaged as
part of the Performance Toolbox for AIX. In AIX V3, they come with the Base
Operating System.

To run perfpmr, the collection period must be specified and must be over 60
seconds. A delay time to wait before collecting starts can optionally be chosen.
If the delay is not passed in the command line, perfpmr begins the collection
right away. Root authority is necessary to execute this script. To track the
system activity for one hour run:

perfpmr 3600

Although a collection period of one hour was specified, perfpmr takes about four
minutes more to complete its execution.

This command should be executed during the peek utilization hour. So the
output files would reflect the worst case in the environment.

140 RS/6000 Performance Tools in Focus

 Hint

Prior to a significant change in system hardware or software, run perfpmr
during the busiest hour of the day. In this way, you have a performance
baseline for comparison after the modification took place.

4.2.2 Output Files
All output files are written to /var/perf/tmp directory. These include both interval
data (.int files) and summary data (.sum files). In AIX V3, these files are
generated in the current directory.

The perfpmr script is the highest-level script of the package. It starts up other
collection scripts. The main script that perfpmr executes is monitor. Some
commands called by monitor are run in intervals. The duration of the interval
depends on the collection-period time specified. If it is less than 10 minutes, the
interval is 10 seconds. For higher collection-period times, the interval is set to 1
minute.

The monitor script runs for the collection-period time to generate the following
files:

• monitor.int

This file is the combined output of the:

− ps -elk and ps gv commands that runs at the beginning and end of the
period.

− sar -A command (for MP machines the option -P ALL is added), run in
intervals.

− iostat command that runs in intervals. The initial cumulative report is
omitted.

− vmstat command that runs in intervals. The initial cumulative report is
omitted.

• monitor.sum

This file contains:

− Process information
− The average from sar -A statistics (for MP machines the option -P ALL is

added).
− The average from iostat statistics
− The average from vmstat statistics
− vmstat -s differences from the beginning and end of the period

• nfsstat.int

The output of the command nfsstat -csnr.

• netstat.int

This file contains the combined output of:

− netstat -v, before and after run.
− netstat -m, before and after run.
− netstat -rs, before and after run.
− netstat -s, before and after run.
− netstat command, run in intervals.

• Pprof.flow

Chapter 4. Advanced AIX V4 Performance Tools 141

Shows the output of the trace command for process-profile data. Example:

ps 25848 28673 9.3124 9.519 0.202 8 26690
ksh 25848 28673 9.2968 9.312 0.012 5 26690
swapper 0 3 0.7847 9.786 0.007 2 0
ps 25850 28675 9.5348 9.740 0.202 8 26690
ksh 25850 28675 9.5187 9.535 0.012 5 26690

The columns in this file mean:

 1. Process name.
 2. Process ID.
 3. Thread ID of the calling kernel thread.
 4. Time of first occurrence of the process within the measurement period.
 5. Time of last occurrence of the process.
 6. Total process execution time.
 7. Describes the beginning and ending state of the process. This column is

the sum of Begin + End values, which are:

Begin:
− Exec’d:0
− Forked:1
− Alive at start:2

End:
− Alive at end:0
− Exec’d away:4

− Exited:8

For example, line 1 for the ps command shows a value 8 in the seventh
column. This means that the process was exec’d at the beginning of the
collection period and was exited when the period ended. A value of 2 for
process swapper shows that it was alive at the start and at the end of the
measuring period.

 8. Parent process ID.

• Pprof.stt

Contains the starting and stopping time when the trace command was
executed.

Besides the execution of the monitor script, perfpmr calls a series of scripts to
generate the following files:

• config.sum

Information about hardware and software configuration.

• trace.fmt, trace.nm, trace.raw

These files are the output of the trace command (5 seconds of data
collection).

• tprof.sum

Output of the tprof -k -s command (1 minute of data collection).

• f i lemon.sum

Output of the filemon -O all command (1 minute of data collection).

• netpmon.sum

Output of the netpmon -O all command (1 minute of data collection).

142 RS/6000 Performance Tools in Focus

• w.int

Output of the w command executed at the beginning and the end of perfpmr.

As mentioned before, the total execution time for perfpmr is not only the
collection-period time specified in the command line. It includes also the
periods for the data collection of the commands mentioned above. For this
reason, it will take about four minutes more for perfpmr to complete its
execution.

Only one trace session may be active at a given time. So the user must make
sure there are no traces running prior to starting perfpmr.

The perfpmr command also generates a file named perfpmr.int, which is a
duplicate of the information that comes to the screen:

PERFPMR: Data collection started...

CONFIG_: Generating reports....
CONFIG_: Report is in file config.sum

Date and time before data collection is Tue Feb 11 10:37:01 CST 1997
Uptime information before collection:
10:37AM up 6 days, 21:30, 10 users, load average: 0.38, 0.14, 0.08

MONITOR: Starting system monitors for 60 seconds....
MONITOR: Waiting for measurement period to end....
MONITOR: Generating reports....
MONITOR: Network reports are in netstat.int and nfsstat.int
MONITOR: Monitor reports are in monitor.int and monitor.sum

TRACE_: Starting trace for 5 seconds....
TRACE_: Trace collected....
TRACE_: Binary trace data is in file trace.raw
TRACE_: Trcnm data is in file trace.nm
TRACE_: /etc/trcfmt saved in file trace.fmt

TPROF_: Starting tprof for 60 seconds....
TPROF_: Sample data collected....
TPROF_: Generating reports....
TPROF_: Tprof report is in tprof.sum

FILEMON_: Starting filesystem monitor for 60 seconds....
FILEMON_: Generating report....
FILEMON_: Finalizing report....
FILEMON_: Report is in filemon.sum

NETPMON_: Starting network trace for 60 seconds....
NETPMON_: Trace stopped....
NETPMON_: Generating report....
NETPMON_: Netpmon report is in file netpmon.sum

Date and time after data collection is Tue Feb 11 10:41:49 CST 1997
Uptime information after collection:
10:41AM up 6 days, 21:35, 11 users, load average: 0.27, 0.37, 0.21

PERFPMR: Data collection complete.

For each section, messages appear indicating when collection has started, the
monitoring period length and when the reports are being generated. Header and
footer information includes the date and time the collection began and ended,
plus load average.

After collecting the data, you could first check the monitor.int and monitor.sum
files. These files have the most information and should be a good starting point
to detect if the problem is related to CPU, memory or I/O. Then look at the other
files for more detailed information.

Chapter 4. Advanced AIX V4 Performance Tools 143

Refer to the previous chapters for further information on the commands
mentioned in this section.

4.3 The bf and bfrpt Commands
BigFoot is a useful set of tools to analyze the memory requirements of
applications running on AIX. It can be run using executable programs without
recompilation. Memory footprints can be obtained for processes, system
components (libraries and kernel routines) and subroutines of processes.

The BigFoot utility assists in answering the following questions:

• How many text, data, shared library and file pages are referenced by an
application?

• How many pages are referenced from each text segment?
• How many pages are referenced from each subroutine with the program?
• How many pages are shared between subroutines?
• How many pages are shared between processes?

Important Notice

This tool places increased load on the system and should only be used to
gather detailed information in a non-production or troubleshooting
environment.

BigFoot is only available in AIX V4.

4.3.1 How Does BigFoot Work?
The implementation of the BigFoot utility is tightly coupled to the Virtual Memory
Manager (VMM) routines, but the VMM algorithms have been left intact. BigFoot
operates by enveloping the page-fault and I/O fault-handling routines of the
VMM. A pair of kernel extensions are used to envelop the necessary VMM
routines.

In the normal kernel (not running BigFoot), the page faults occur when the
process tries to access a page that is not in memory or is not mapped in paging
space. In the BigFoot kernel, all pages are unmapped; so each time a process
accesses a page in memory, there is a BigFoot fault. The BigFoot handler
records in a buffer all the faults and the information linked to this fault, such as
which process caused it, when and why. Each time there is a BigFoot fault,
BigFoot performs its tasks, but after this, it releases the page. So, if the page is
present in the main memory, there is not a real page fault each time. If it is not
present, BigFoot releases the page so VMM can see it and allow the page-fault
handler to do its job.

4.3.2 Using bf
The bf command turns on BigFoot code in the VMM, specifies the user program
to be monitored, executes the user program, collects information about pages
touched during execution, and then produces an output file. By default, the
output file is __bf.rpt and is created in the current directory. The __bf.rpt file
contains either the footprint record for all the processes that were running on the
system or just the footprint record for a specified user program. In this case the
-p option should be used, so bf will only store records of processes with a

144 RS/6000 Performance Tools in Focus

specified name. The user program must be an executable module or an
executable script. If the user program does not reside in any directory listed in
the PATH variable, then the full path to the user program should be provided.

Root authority is necessary to execute this command and only one instance can
be active at a time.

There are two ways of limiting capturing page-trace data:

• BufferSize

Specifies the number of records to store in the BigFoot kernel buffer. If the
buffer size is not large enough, an overflow occurs, and the following
message is given at the end of the execution of bf:

bf: A buffer overflow occurred while tracing. You may want
to try again with a larger buffer size (-b option)

The default buffer size is 5000, which is usually not adequate. So you may
want to increase it when running bf. When the buffer overflows, the
information from the bf command is meaningless.

• WindowSize

The window size causes BigFoot to capture repeated references to the same
page, but only logs the reference if the address of the page is not already
within the specified window of page references. This parameter can be set
anywhere between 2 and 100.

For example, given a window size of 3, and pages A, B, C and D referenced
in the following sequence A B A C D A, the steps performed are:

 1. The contents of the window is initially empty.

[* * *]

 2. Page reference A is captured and logged.

[* * A]

 3. Page reference B is captured and logged.

[* A B]

 4. Page reference A is captured but not logged because A is already in the
window.

[* A B]

 5. Page reference C is captured and logged.

[A B C]

 6. Page reference D is captured, bumps A out, and is logged.

[B C D]

 7. Page reference A is captured, bumps B out, and is logged

[C D A]

Therefore, the page-trace contains ABCDA not ABACDA. The second
reference to A is not logged because A was within the window at the time of
the reference. However, the third reference to A is logged.

Note that the use of the WindowSize parameter does not cancel the use of the
BufferSize parameter. Both parameters can be passed in the command line.

Chapter 4. Advanced AIX V4 Performance Tools 145

Sometimes, only giving a window size cannot prevent a buffer overflow, but can
delay it.

When specifying the parameter WindowSize, remember that you will probably
loose some data, but at least the algorithm is known. When the buffer overflows,
part of the trace is definitely lost, and there is no specified user criteria for which
data will be discarded. To gather all possible data, make the buffer size big
enough to capture the whole trace. Depending on the processes running on the
system when bf is executed, you might have even to increase the paging space
to accommodate the proper buffer size.

To run the eatmem process and monitor only its page references until the process
completes, enter:

bf -b 220000 -p eatmem -x eatmem

The -b flag sets the buffer size to 220000, -p instructs the bf command to filter
out all processes that are not named eatmem, and the -x flag specifies the
process to run. The -x flag is required and must be the last argument on the bf
command line. The program is forked as a child process. The bf command
continues collecting page-reference data until the child program ends or the
buffer overflows.

To fork the child process sleep 10, wait until the sleep completes before turning
off the page monitoring, and record the output in the file bigfoot.out, enter:

bf -W 50 -o /bfdata/bigfoot.out -x sleep 10

In the above example, the -W flag was used to set the window size to 50.

Depending on the parameters used to execute the command bf (specially if the
buffer size is big), the trace files can get very large. Make sure there is enough
space in the file system. If the bf command does not have space to generate the
raw file, the following message will be displayed at the end of the execution:

Error encountered while turning off bigfoot, exiting.

If this happens, increase the size of the file system, and rerun the command.
Another option is to use the -p and/or -W flags to reduce the trace file size.

4.3.3 Generating Reports with bfrpt
The bfrpt command is used to format the raw data generated by the bf
command into a report. It filters bf files for a global state or for a single
process, depending on the type of report specified.

The reports presented in this section were generated based on the output of:

bf -b 1200000 -x eatmem

Root authority is required to run this command.

Global Reports: To generate global reports, the bfrpt command uses the global
filter to provide a comprehensive view of the system.

To generate a global report, enter:

bfrpt -r global

146 RS/6000 Performance Tools in Focus

The report is written to __global.rpt and is created in the current directory. The
examples shown below are sections of the output of the command above.

The global report consists of:

• Header section

Summarizes the usage of the 16 segments in a process for reference.
Example:

Segment Register Usage
0 : Kernel(text & data)
1 : Process private text
2 : Process private data

3-12 : Currently Addressable Files
13 : Shared Library text
14 : Kernel
15 : Shared Library data

This section is a brief reminder for the user about the properties of segment
registers. AIX maps 32-bit virtual memory addresses into 16 segments. Four
of the 32 bits select one of the 16-bit segment registers. The remaining 28
bits give an offset within the segment. Each segment register contains a
24-bit segment ID, which, when prefixed to the 28-bit segment offset, forms a
full 52-bit virtual address.

Non-kernel programs have read-only access to the two kernel segments, 0
and 14, and the shared library segment, 13.

Segment 1 contains the executable of the current program. Other instances
of the same program share the read-only contents of segment 1.

Segment 2 contains the private read/write data-space of the current
program. Program variables, allocated memory, and the program stack
come from the private data-segment of the process. In rare instances,
library text resides in segment 2.

Segment 13 is readable by all users. Therefore, shared libraries with file
permissions that do not include read access for all other users on the
system are not loaded in segment 13. AIX loads libraries without global read
access in the private-data segment of each process that uses them.

Segment 15 contains the private, shared library data for a process.

The ten remaining segments, 3 through 12, provide memory access to files
and shared memory segments. The system maps files into virtual memory
segments when a file is first opened.

 Note

Though the header information is accurate for most AIX processes, the
system can use some segment registers for different purposes. Use the
header information as a guideline only.

• Process name table

Tabulates the number of pages referenced in various segments by the
process name. If the bfrpt command reports two or more processes with
the same process name, it treats them logically as one process in the
process name table. The rows are sorted by the number of referenced
pages and show only the top memory consumers. Example:

Chapter 4. Advanced AIX V4 Performance Tools 147

**

* *

* Number of Pages Referenced by <Process Name> *

* *

**
PNAME (20 chars) TOTAL 0 1 2 3-12 13 14 15

eatmem 5240 68 1 5126 0 22 0 23
ksh 484 227 39 95 8 37 0 78
init 110 50 8 36 2 8 0 6

telnetd 38 22 3 5 0 4 0 4
syslogd 23 10 4 4 0 2 0 3

afsd 5 5 0 0 0 0 0 0
wait 1 1 0 0 0 0 0 0

The first column shows the process name. Next, the total number of
referenced pages is shown, which is a sum of the remaining columns. The
column names 0-15 refer to the segment numbers given in the header
section.

By analyzing the TOTAL column in the example above, it is clear that the
eatmem process is memory bound, and its code should be carefully analyzed.
The number of pages referenced by this process is almost eight times the
number referenced by all the other processes together.

• Process name/process ID table

Provides information about the number of pages referenced by process
name and ID. Because AIX can reuse process IDs, they are combined with
process names to distinguish all processes in the report. Example:

**

* *

* Number of Pages Referenced by <Process Name, PID> *

* *

**
PNAME (20 chars) PID TOTAL 0 1 2 3-12 13 14 15

eatmem 15978 5240 68 1 5126 0 22 0 23
ksh 15980 333 193 29 37 1 33 0 40
ksh 15978 277 155 23 36 1 25 0 37
ksh 14668 189 93 37 22 6 16 0 15
init 1 110 50 8 36 2 8 0 6

telnetd 5014 38 22 3 5 0 4 0 4
syslogd 3104 23 10 4 4 0 2 0 3

afsd 7058 5 5 0 0 0 0 0 0
wait 516 1 1 0 0 0 0 0 0

The output fields are the same as in the first example, except for the process
ID (PID) that was included in this table.

Notice that the ksh line from the previous example was split into three lines
in this table. As you can see only the columns labeled 2 and 3-12 add up to
the values from the previous table. These columns are related to the
process private area. The remaining columns give information about the
kernel and shared memory areas. For multiple instances of a program (in
this case ksh), the executable code just has to be paged in once. There are
also common areas in the memory that are shared among the processes. In
this example the shared pages (pages referenced by more than one process)
are added in every line, and in the previous example they are only
considered once.

148 RS/6000 Performance Tools in Focus

• Unique pages table

Tabulates the total number of unique pages. A unique page is a page
referenced by only one process. The system examines the full 52-bit virtual
address, not just 32 bits, to determine the uniqueness of a page. Example:

**

* *

* Number of Unique Pages Referenced by <Process Name, PID> *

* *

**
PNAME (20 chars) PID TOTAL

eatmem 15978 5135
ksh 15980 115
ksh 14668 62
ksh 15978 36
init 1 65

telnetd 5014 12
syslogd 3104 12

afsd 7058 4
wait 516 0

The first column shows the process name. Next, the PID of the process and
the total number of unique pages referenced by the process are shown. The
total number of unique pages referenced is much higher for the process
eatmem when compared to the others.

If the command bfrpt is executed with the -p option, the report is recorded in a
PostScript file:

bfrpt -r global -p

The file will be written to the current directory as __global.ps and is displayed in
Figure 7 on page 150.

Chapter 4. Advanced AIX V4 Performance Tools 149

Figure 7. Output File __global.ps

act Reports: The act report provides information about the footprints of each
routine in a process. In this case, the bfrpt command uses the address
correlation technology filter, or act filter, to analyze data with emphasis on a
single process. The act filter translates a system, library, or process address
into a symbolic routine name.

To generate an act report based on the eatmen process, enter as root:

bfrpt -r act -P eatmem

The report is writ ten to a f i le named __<process_name>.<process_ID>.rpt in
the current directory. It may take a long time for bfrpt to generate the final
report. The examples that will be shown are sections of the output of the
command above.

150 RS/6000 Performance Tools in Focus

The act report has four logical sections:

• Total footprint

This section is divided into three tables. The first table contains the
footprints for all routines other than the shared library and kernel routines.
The second table contains footprints for the shared library routines that the
main program uses. The third table contains the footprints for the kernel
routines that operate on behalf of the process. Example:

*************** Total Footprint *******************

*********** ROUTINES Start End SUM Kernel Text Data File ShrLib IOdev
.getmem 26c 317 3 0 1 2 0 0 0
.back 318 3d3 3 0 1 1 0 0 1
.exit 580 5a3 3 0 1 1 0 0 1

.__flsbuf 5a4 5c7 3 0 1 1 0 0 1
.printf 5ec 60f 3 0 1 0 0 0 2
.main 3d4 537 2 0 1 1 0 0 0

.malloc 538 55b 2 0 1 0 0 0 1
.free 55c 57f 2 0 1 0 0 0 1

.fflush 610 633 2 0 1 0 0 0 1

.usleep 634 ffffffff 2 0 1 0 0 0 1
.__start 1c8 23f 1 0 1 0 0 0 0

TOTAL NUMBER OF PAGES 26

*********** LIBRARIES Start End SUM Kernel Text Data File ShrLib IOdev
.malloc_y 3f80 4480 2728 0 0 2723 0 2 3

 .disclaim_free_y 1fa8 2af8 2563 0 0 2561 0 1 1
._doprnt 6184 bf44 13 0 0 2 0 4 7
.__flsbuf 4efc 510c 6 0 0 1 0 2 3
.free_y 38cc 3f80 6 0 0 3 0 1 2
.printf 5504 5590 5 0 0 1 0 1 3

(...)
TOTAL NUMBER OF PAGES 5388

*********** KERNEL Start End SUM Kernel Text Data File ShrLib IOdev
loader_sect_start 15dbec ffffffff 13 13 0 0 0 0 0

isync_sc2 3734 37a0 5 5 0 0 0 0 0
.jfs_cntl 119818 119de0 5 5 0 0 0 0 0

.ld_usecount 10d328 10d96c 4 2 0 1 0 0 1
._crfree e663c e66a4 4 4 0 0 0 0 0

.copyin_pwr 7f8c0 7fa40 3 1 0 1 0 0 1

(...)
TOTAL NUMBER OF PAGES 136

It can be noticed in the SUM column in the second table from the above
example that the library function malloc_y is extensively allocating memory,
and the library function disclaim_free_y is being used to free this memory
and put it back in the free list. At least the program seems not to be
generating a memory leak. But the possibly wrong use of malloc_y should
be checked in the source code.

• Footprint before start

Provides footprint for the kernel routines that operate prior to the start of the
main program. Example:

*************** FootPrint Before Start ************

*********** KERNEL Start End SUM Kernel Text Data File ShrLib IOdev
.xmfree da5c4 da8a4 3 3 0 0 0 0 0
.ulimit 125758 1260bc 2 2 0 0 0 0 0

.copyin_pwr 7f8c0 7fa40 2 1 0 1 0 0 0
.copyout_pwr 7fa40 7fbc0 2 1 0 1 0 0 0
.exectrace 818dc 82604 2 2 0 0 0 0 0

.simple_lock 9500 9900 2 2 0 0 0 0 0
.fp_close ec2ec ec3b0 1 1 0 0 0 0 0

TOTAL NUMBER OF PAGES 14

Chapter 4. Advanced AIX V4 Performance Tools 151

• Footprint after stop

Provides a footprint for the kernel routines that operate after the stop of the
main program. Example:

*************** FootPrint After Stop **************
*********** KERNEL Start End SUM Kernel Text Data File ShrLib IOdev

.jfs_cntl 119818 119de0 5 5 0 0 0 0 0
.ld_usecount 10d328 10d96c 4 2 0 1 0 0 1

._crfree e663c e66a4 4 4 0 0 0 0 0
.vnop_rele e70bc e710c 3 3 0 0 0 0 0

.chownx ec0bc ec2ec 3 3 0 0 0 0 0
.acctexit 121e80 1221d4 3 3 0 0 0 0 0

.fp_opencount ecaa0 ecc90 2 2 0 0 0 0 0
.fs_fork ec7b4 ec9bc 2 2 0 0 0 0 0

.vnop_unmap e6c64 e6cb4 2 2 0 0 0 0 0
(...)

TOTAL NUMBER OF PAGES 52

• Unique data footprint

Identifies footprints for unique data segments in the routines of the main
program. If two or more routines touch the same page, the page is shared,
not unique. Example:

*************** Unique Data Footprint **************
**** (Routines ONLY, Not Kernel, Not Shr. Lib.) ****

*********** Routines Start End Data Unique Difference
.getmem 26c 317 2 0 2
.back 318 3d3 1 1 0
.main 3d4 537 1 0 1
.exit 580 5a3 1 1 0

.__flsbuf 5a4 5c7 1 0 1

Note that this table gives only information about the routines. The kernel
and shared libraries are not included.

All Reports: To produce both tabular form reports, enter:

#bfrpt -r all

The global and act reports will be generated in the current directory.

4.4 The stem Command
The meaning of stem is Scanning Tunneling Encapsulation Microscope. This
performance tool provides the user with the vehicle to insert user-defined or
standard instrumentation at the entry and exit points of selected subroutines,
known as target routines. These routines may be within a user program or even
within a shared library.

The instrumentation routines are simple C subroutines that may be created or
tailored by the user. Sample instrumentation routines are located in the file
/usr/samples/perfagent/stem/stem_samples.c, including the default
instrumentation routines used by stem. These can be modified to suit specific
requirements. Three types of instrumentation are possible:

• Instrument the entry point and exit point
• Instrument only the entry point
• Replace the routine completely

The stem command can instrument application programs that are:

• Stripped
• Optimized

152 RS/6000 Performance Tools in Focus

• Running in multiple processes
• In unstripped shared libraries

This tool is only available in AIX V4.

4.4.1 Using stem
Root access is required to execute stem. In AIX V4.2, members of the perf group
are also able to run this command. The simplest way to execute stem is by using
the -p option:

stem -p /usr/bin/cat

This option instructs stem to instrument all target routines of the program
/usr/bin/cat with the default routines Stem_Standard_entry() and
Stem_Standard_exit(). The -p flag copies the stem_samples.c file to the current
directory, unless it already exists. The instrumented version of the program is
generated in the /tmp/EXE directory. To specify another directory, use the
-exedir option. When the instrumented program is executed, it creates a file
called stem_out_xxx (where xxx is the stem thread ID) in the current directory.
This is the output file generated after the execution of the instrumented program:

/tmp/EXE/cat
cat stem_out_001
Seconds.usecs TID Routine Names & Seconds.usecs since entering routine.
856218530.325752 1 ->main
856218530.364687 1 ->setlocale
856218530.367411 1 <-setlocale 0.002724
856218530.367613 1 ->catopen
856218530.368368 1 <-catopen 0.000755
856218530.368566 1 ->fcat
856218530.368689 1 ->fstat
856218530.368851 1 <-fstat 0.000162
856218530.368976 1 ->open
856218530.369203 1 <-open 0.000227
856218530.369341 1 ->fstat
856218530.369472 1 <-fstat 0.000131
856218530.369591 1 ->read
856218530.369798 1 <-read 0.000207
856218530.369920 1 ->write
856218530.372705 1 <-write 0.002785
856218530.372914 1 ->read
856218530.373067 1 <-read 0.000153
856218530.373182 1 ->close
856218530.373331 1 <-close 0.000149
856218530.373527 1 ->fclose
856218530.373689 1 <-fclose 0.000162
856218530.373809 1 ->exit

The first column contains the time (seconds and microseconds) of the enter or
exit event. The second column has the stem thread ID (TID). The indented
routine name, prefixed with either the routine entry symbol (->) or the routine
exit symbol (<-), appears to the right of the TID column. The indentation is
meant to reflect the calling sequence or callgraph of the instrumented program.
For exit events, one additional column appears and includes the elapsed time
(second and microseconds) since entering the routine.

The callgraph above shows the structure of an AIX command. The calls to
setlocale and catopen ensure that the command process is running in the same

Chapter 4. Advanced AIX V4 Performance Tools 153

National Language Support (NLS) locale and with the same message catalog as
its parent process. You might have some problems when using stem with system
executables. However, this tool is intended to be used in a development
environment as a way to detect performance problems in user programs.

The command stem creates a subdirectory ./stemdir under the current directory.
Under the stemdir directory, other additional subdirectories are created, one for
each executable or library to instrument. The previous example would cause
stem to create the directory ./stemdir/_usr_bin_cat. Notice that each slash (/)
passed in the command line was substituted with an underline character (_).
Two files in this created directory are of particular interest: instrumented and
not_instrumented. The former contains the list of target routines instrumented
by stem. The latter contains the list of target routines not instrumented and a
brief explanation of the problem encountered.

Special instrumentation libraries created for stripped programs are generated in
the /tmp/LIBS directory or in the directory specified by the -libdir flag. For
example, the program /usr/bin/cat from the previous example is stripped. After
the execution of stem, a subdirectory named cat was created under /tmp/LIBS to
store the instrumented libraries generated by stem.

4.4.2 Shared-Memory Callgraphs
This approach is similar to the -p flag. The difference is in the instrumentation
and the output mechanism. In this case, the specified program is instrumented
with the Stem_ShmEnter() and Stem_ShmExit() default routines. These routines do
not open files to log output; they log output in a specially-made, shared-memory
buffer.

Figure 8. Shared-Memory Buffer Structure

Figure 8 shows the structure of the shared-memory buffer:

• Event Control Area

Includes the ON/OFF flag, pointers defining the boundaries of other areas,
and the WithinInstrumentation flag. This flag determines the present
instrumentation state and prevents infinite instrumentation loops. These
loops result from instrumenting a target routine and then directly or
indirectly calling the target routine from the instrumentation routine, for
example, calling the printf function in the instrumentation routine code that
surrounds the printf function. In cases like this, stem still generates the
instrumented executable, but would not be locked in an infinite loop. If you
try to run the instrumented program, it will terminate with a segmentation
fault.

154 RS/6000 Performance Tools in Focus

• Counter Area

Reserved for a counter-based implementation. For example, rather than
producing an event for each file open, instrumentation routines can add to a
counter or set of counters.

• PID to Process Name Area

This area contains the process IDs and process names for all processes
running on the system at the time of the last stem -on call.

• Event Log Area

Logs events of any type and any length. The stem command defines some
event types in the /usr/samples/perfagent/stem/stem_shm.h file.

The following is an example sequence of instructions using the shared-memory
flags:

stem -pshm dbapp
stem -on
/tmp/EXE/dbapp
stem -cg /tmp/EXE/dbapp
stem -shmkill

The -pshm flag causes stem to instrument the program with the shared-memory
routines. The stem_samples.c file is copied to the current directory unless it
already exists.

The logging of events can be controlled with the -on, -off and -noreset options.
Logging of events only occurs if the on/off flag of the memory buffer is set to on
and the buffer is not full. When created, the current pointer of the buffer is set
to full and the on/off flag is off. The -on flag resets the buffer pointer and turns
on the on/off flag. It also stores the process IDs and process names of all
running processes in the shared-memory buffer. In case you do not want to
reset the buffer pointer, the flag -noreset should be used in conjunction with the
-on option. The -shmkill option destroys an existing shared-memory segment
and disables logging. This flag causes stem to ignore other options that might
have been passed in the command line.

The size of the shared-memory buffer can be increased with the -shm flag. The
default size is 40960 bytes. Care should be taken when using this flag because
stem pins the shared-memory buffer. So make sure to make the buffer size is
not too large.

The -cg produces a shared-memory callgraph to stdout:

PID ElapsedTime DeltaSecs IAR NAME
 17038 Enter 0.000000 0.000000 100004b0 1 main
 17038 Enter 0.033452 0.033452 10000684 1 . signal
 17038 Exit 0.083022 0.049570 10000684 1 . signal
 17038 Enter 0.083139 0.000117 100006a8 1 . alarm
 17038 Exit 0.089919 0.006780 100006a8 1 . alarm
 17038 Enter 0.090040 0.000121 100006cc 1 . select
 17038 Exit 1.090289 1.000249 100006cc 1 . select
 17038 Enter 1.091789 0.001500 100006cc 1 . select
 17038 Exit 2.092053 1.000264 100006cc 1 . select
 17038 Enter 2.093552 0.001499 100006cc 1 . select
 17038 Exit 3.094432 1.000880 100006cc 1 . select
 17038 Enter 3.095932 0.001500 100006cc 1 . select
 17038 Exit 4.096196 1.000264 100006cc 1 . select
 17038 Enter 4.097696 0.001500 100006cc 1 . select

Chapter 4. Advanced AIX V4 Performance Tools 155

The output is different from the previous example, but the information is almost
the same. The first column contains the PID of the process. Next is shown if the
program entered or exited from a routine. ElapsedTime gives the total time spent
since the program started. DeltaSecs gives the time spent until the program
either entered the next routine or the total time spent in that routine on exit. IAR
stands for Instruction Address Register and can usually be disregarded. The
next column has the stem thread ID (TID). The last column shows the name of
the routine in an indented form.

The dbapp program simulates a database activity. Notice that each select takes
about one second to complete. In a real environment, the time spent in each
instruction would be different because it depends on the query complexity. If in
your system the execution time for a specific instruction is high, the query
structure should be verified. Maybe it can be modified to run faster, or the
database might not be well designed.

It can be noticed from this example that stem is very useful for development.
Through the time spent in the execution of each routine, it can be seen where
the program has hot spots and might be improved.

If you want to execute another instrumented program and collect only the
information related to this program, make sure you first run the command stem
-on. In this way, the pointers will be reset, and the output will show only the
data associated with the last command.

The use of the -pshm parameter for stem has some advantages over the -p option:

• Logging data within the shared-memory buffer is faster than writing to files.
• Logging together of events from multiple instrumented processes in one

output stream is possible.
• The ON/OFF shared-memory buffer flag readily controls the logging of

events.

The disadvantage is post processing. To view the data, stem has to be executed
again with the -cg flag.

4.4.3 Stem Map File
The -p and -pshm flags explained in the previous sections are used to instrument
a program with the standard instrumentation routines. The map file (-mf)
parameter specifies a user-created file whose contents describe which target
routines and/or shared libraries to instrument. Map files contain the names of
target routines and of the entry and exit instrumentation routines.

Figure 9. Map File Format

Figure 9 shows the format of the stem map file. The first field is the target
routine to be instrumented. The name of the file that contains the routine should

156 RS/6000 Performance Tools in Focus

be given next. The two following columns give the names of the instrumentation
routines to be executed before and after the target routine. The last field is the
file name where the instrumentation routines reside.

To avoid name collisions with routines in the target files, stem mandates that all
instrumentation routines begin with the Stem_ prefix. Instrumentation object
files in column 5 can have any name, but they should be within the current
directory unless when using the default stem_samples.o file. If the file
Make.Stem exists in the current directory, stem tries to create the
instrumentation object by running the command:

make -f Make.Stem <Intrumentation_Object_File_Name>

Example of a map file:

Figure 10. Map File Example

The map file shown in Figure 10 changes the program flow of target routine
malloc(). After instrumentation, calls to target routine malloc() are directed first
through instrumentation routine Stem_malloc_entry(), then through malloc(), and
finally through the Stem_malloc_exit() instrumentation routine. These two
instrumentation routines mentioned in the example are given in the file
stem_samples.c. This file contains examples for basic instrumentation routines.

Instrumented versions of libraries are created in the directory /tmp/LIBS by
default, unless the -libdir option specifies another directory. Both instrumented
and uninstrumented programs can make use of these libraries by setting the
LIBPATH environment variable. For example:

LIBPATH=/tmp/LIBS /usr/bin/eatmem

The uninstrumented program /usr/bin/eatmem will use whatever instrumented
libraries exist in the directory /tmp/LIBS.

There are three keywords that can be used in map files:

• StemAll

Used to instrument all routines in a program or in a shared library.
Examples:

StemAll /bin/test_prog .Stem_ProgEnter .Stem_ProgEnd function.o
StemAll /usr/lib/libc.a:shr.o .Stem_ShmEnter .Stem_ShmExit stem_samples.o

The first line instructs stem to instrument all routines in the program
test_prog with the instrumentation routines Stem_ProgEnter() and
Stem_ProgEnd() located in function.o. The second line causes all target
routines in the library /usr/lib/libc.a:shr.o to be directed through the default
shared-memory instrumentation routines.

• No_Exit

Used to instrument only the entry point of a target routine. Example:

.main /bin/test_prog .Stem_ProgEnter No_Exit function.o

Chapter 4. Advanced AIX V4 Performance Tools 157

The above example would cause the entry point of routine main() to be
instrumented with the routine Stem_ProgEnter(), but the exit point would not
be instrumented.

• Replace

Used to replace a target routine with an instrumentation routine. Example:

.func1 /bin/test_prog .Stem_newfunc1 Replace function.o

This example causes all calls to func1() to be directed to the instrumentation
routine Stem_newfunc1().

 Note

Target routine replacement is inherently dangerous. To avoid
unpredictable results, the replacement routines must adhere to all
pre-conditions and post-conditions of the target routines. For example,
you can replace a sorting routine with another as long as the output is
properly sorted upon exiting the replacement routine.

To instrument a program using a map file, enter:

stem -mf <name_of_map_file>

The output in this case will depend on the code used for instrumentation. If the
routines Stem_Standard_entry() and Stem_Standard_exit() are used, after running
the instrumented program, the file stem_out_xxx will be generated. In case of
instrumenting a program with the default shared-memory routines
Stem_ShmEnter() and Stem_ShmExit(), the steps mentioned in 4.4.2,
“Shared-Memory Callgraphs” on page 154, should be followed.

The map files approach makes stem a very powerful tool. The default behavior of
stem can be very helpful, but if specific information is needed, you need to code
your own routines. To accomplish this, knowledge of what the program does,
how it does it, and C function programing is necessary.

The stem command has been tested on a number of programming languages,
like C, C++ and FORTRAN, although C has received the most testing.
FORTRAN programs have one restriction. The FORTRAN programming language
supports multiple entry points to subroutines. The stem command cannot
currently detect multiple entry points. Therefore, the stem output cannot properly
represent entry and exit events from these FORTRAN routines.

The stem command does not work on non-archived libraries and does not
support programs or libraries with more than 6200 subroutines. User-created
threads are not yet supported by stem, and the result is a segmentation fault.

4.5 The syscalls Command
The syscalls command has the ability to trace system calls for all processes
running on the system, or just the ones associated with a particular program. It
can also maintain counts for all system calls made over long periods of time.
The events are logged in a shared-memory buffer. The syscalls command does
not use the trace daemon.

158 RS/6000 Performance Tools in Focus

 Caution

Since the commands stem and syscalls share the same buffer, do not
execute them at the same time.

Capabilities of syscalls:

• Real-time trace of system calls
• Timestamps on a per-second basis
• Ability to see all calls or filter out calls by process ID (PID)
• Executable not modified

Differences from trace:

• trace sees all kernel events
• trace timestamps to nanosecond granularity

This tool is only available in AIX V4.

4.5.1 Using syscalls
Root authority is necessary to run this command. In AIX V4.2, the members of
the perf group are also able to execute syscalls.

Some steps are necessary to set up the environment used by the syscalls
command. The first thing is to create the shared-memory buffer. Certain
options of syscalls automatically create the buffer, if it does not exist. However,
the buffer may already exist because it was created by the stem command, for
instance. If you try to collect data with syscalls, then no events will be logged.
You need to recreate the buffer.

The following is a description of the options used to manipulate the
shared-memory buffer:

-enable <bytes>

Creates the system call trace buffer. If the bytes option is not specified, the
buffer size gets to be 819200 bytes, which is the default size.

It should always be used if events are not being logged in the buffer. This
happens when there is a conflict with another process using the same
shared memory buffer ID. As stated previously, if you use stem with the
shared memory instrumentation routines, you must use this option prior to
initiating syscalls data collection.

Some other options of syscalls automatically enable the buffer. However, by
using this flag, the buffer size can be altered. Also, when no events are
being logged into the buffer, these other options will not revert the situation.
This happens because they only create the buffer if it does not exist. If there
is a buffer, it will not be re-created. A good policy is to always use the
-enable option before starting data collection. This option should be used
any time you are not sure that the stem command has been used.

Again, this option does not start data collection; it only (re)creates the buffer.

-disable

Destroys the system call buffer and disables system call tracing and
counting.

-start

Chapter 4. Advanced AIX V4 Performance Tools 159

Resets the trace buffer pointer. This option enables the buffer if it does not
exist, resets the counters to zero and starts tracing.

This flag only creates the buffer if it does not exist. But if the buffer was
already created by another command, the -start option will only reset the
counters and syscalls will not be able to log events.

-stop

Stops the logging of system-call events and prints to stdout the contents of
the buffer. In case a buffer overflow occurred, the following message will be
given:

Syscall Trace Buffer Overflow

When this happens, some events were lost, and you should increase the
buffer size.

The handling of system calls is very time and resource consuming to the system.
When a program starts a system call, the system-call handler gains control. It
then changes the protection domain from the caller (user) to the system call
protection domain (kernel) and switches to a protected stack. Next, the
system-call handler calls the function supporting the system call. After the
function performs its operation, the system-call handler restores the state of the
process and returns to the user program.

4.5.2 Examples
To trace system calls for all processes on the system, execute the following
commands:

syscalls -enable
syscalls -start
syscalls -c

The first command (re)creates the system call trace buffer. The next command
enables data collection. The -c flag prints a summary of system-call counts to
stdout:

System Call Counts for all processes
 12203 .lseek

5486 .kreadv
297 .sigaction
134 .sbrk
111 .close
74 .kioctl
72 .kwritev
60 .open
55 .kfcntl
45 .kwaitpid
39 .select
31 .getpid
22 .execve
20 .statx
20 .getuidx

(...)

The output shows the total number of each system call issued by all processes
sorted in decreasing order of usage. The syscalls command can maintain
counts for all system calls made over long periods of time. However, if syscalls
is executed with the options to manipulate the buffer or stem is used with the
shared memory routines, the data will be lost.

To run a program and log only the events referred to that process, execute:

160 RS/6000 Performance Tools in Focus

syscalls -x cpubound
PID System Call
22424 .open (/dev/null, 200002e0, 0) = 4
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
(... skip 4000 lines ...)
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kreadv (4, 2ff22278, 1, 0) = 0
22424 .kfcntl (1, 3, 2) = 2
22424 .kfcntl (2, 3, 6) = 2

In this case, the level of detail you can see in the output includes the process ID
(PID) of the program that was executed, the system call name, the system call
parameters (in parenthesis), and the return code (after the equal sign). The
option -x automatically enables the buffer if necessary, resets the pointers and
starts data collection for the specified process. If the program is not within the
directories of the PATH variable, the full path must be given.

The output shown in the above example was truncated, but still shows the
intensive use of system calls by the program. As explained, the use of system
calls is very expensive to the system. The program given in the example should
be checked. You should try to minimize the use of system calls to achieve
better performance.

The -t option prints the time associated with each system-call event alongside
the event:

syscalls -t -x cpubound
Time PID System Call
17:05:40 22424 .open (/dev/null, 200002e0, 0) = 4
17:05:40 22424 .kreadv (4, 2ff22278, 1, 0) = 0
17:05:40 22424 .kreadv (4, 2ff22278, 1, 0) = 0
(...)
17:05:40 22424 .kreadv (4, 2ff22278, 1, 0) = 0
17:05:40 22424 .kreadv (4, 2ff22278, 1, 0) = 0
17:05:40 22424 .kfcntl (1, 3, 2) = 2
17:05:40 22424 .kfcntl (2, 3, 6) = 2

When used in conjunction with -c flag, the -t flag is ignored. This means that
you do not get the time column.

To redirect the output to a file, use the -o option:

syscalls -o syscalls.out -x ls

Notice that the option -o when used in conjunction with -x, must be passed first
in the command line. Otherwise, the output will be directed to stdout. The -x
flag has to be the last one because after this flag the command to be executed is
given with a variable number of parameters.

Chapter 4. Advanced AIX V4 Performance Tools 161

4.6 The fdpr Command
The meaning of fdpr is Feedback Directed Program Restructuring. The fdpr
command is a performance-tuning utility that can improve both performance and
real memory utilization of user-level application programs. The source code is
not necessary as input to fdpr. However, stripped executables are not
supported.

The fdpr tool reorders the instructions in an executable to improve instruction
cache, Translation Lookaside Buffer (TLB), and real memory utilization by
packing together highly executed code sequences (as determined through
profiling) and by recoding conditional branches to improve hardware branch
prediction.

For example, given an ″if-then-else″ statement, fdpr may conclude that the
program uses the else branch more often than the if branch. It will then reverse
the condition and the two branches as shown in Figure 11.

Figure 11. Example of Condit ional Branch Re-Coding

Programs can improve execution time up to 73 percent, but typically the
performance is improved between 10 and 20 percent. The reduction of real
memory requirements for the text pages can reach 61 percent. The average is
between 20 and 30 percent.

The optimized program is built in three stages:

 1. The executable module to be optimized is instrumented to allow detailed
performance-data collection.

 2. The instrumented executable is run in a workload provided by the user, and
performance data from that run is recorded.

 3. The performance data is used to drive a performance-optimization process
that results in a restructured executable module.

162 RS/6000 Performance Tools in Focus

 Attention

The fdpr command applies advanced optimization techniques to a program
which may result in programs that do not behave as expected; programs that
are reordered using this tool should be used with caution and should be
rigorously retested with, at a minimum, the same test suite used to test the
original program in order to verify expected functionality. The reordered
program is not supported by IBM.

It is critically important that the workload used to drive fdpr closely match the
actual use of the program. The performance of the restructured program
with workloads that differ substantially from that used to drive fdpr is
unpredictable, but can be worse than that of the original executable. The
fdpr user should also attempt to eliminate, where feasible, any
time-dependent aspects of the program.

This tool is only available in AIX V4. A Programming Request for Price
Quotation (PRPQ) is available for AIX V3.

4.6.1 Using fdpr
The typical usage of fdpr is:

fdpr -p testprog -x testprog.sh

The -p flag specifies the program to be optimized, which should be within the
current directory. Otherwise, the full path must be given in the command line.
The -x option specifies the command used for invoking the workload against
which the program will be optimized.

In the previous example, the phases of fdpr processing were transparent to the
user. However, they can be executed separately with the following set of
commands:

fdpr -s -1 -p testprog
fdpr -s -2 -p testprog -x testprog.sh
fdpr -s -3 -p testprog

The -s option instructs fdpr not to erase the temporary files. This option must
be used when running fdpr in separate phases so that the succeeding phases
can access the required intermediate files. The -1, -2, -3 flags specify which
phase to run. These can be combined together (for example: -12 and then -3)
and must be run in order. You cannot run phase 3 before phases 1 and 2 and so
on. The default option is -123. The same user has to execute all phases.

After phase 1, fdpr generates the file __testprog.save. This file is a copy of the
original program. The file testprog is now the instrumented version, which will
be executed in phase 2. When phase 2 ends, the output file __testprog.prof is
created, which is the profiled version of the executable being optimized. Phase
3 generates two intermediate files, __testprog.save.bt and __testprog.save.histo,
and the optimized executable output file, testprog.fdpr. The testprog file again
contains the original program. All files are written to the current directory.

Chapter 4. Advanced AIX V4 Performance Tools 163

4.6.2 Other fdpr Options
The flags -R0,-R1,-R2 and -R3 can be used to specify the level of optimization.
The default option is -R0, while -R3 is the most aggressive optimization.
However, the use of higher optimization levels may result in an executable that
does not behave as expected. The programs generated with the -R0 and -R2
options are supported by the dbx command. To avoid branch reversing, the
option -nI should be passed in the command line.

Executables built with the -qfdpr compiler flag contain information to assist fdpr
in producing reordered programs with guaranteed functionality. When this
compiler flag is used, the guaranteed functionality advantage of fdpr option -R0
is extended to options -R1, -R2 and -R3. However, if -qfdpr is used, only those
object modules built with this flag will be reordered. So it should be used for all
object modules in a program.

The fdpr program only reorders the instructions within the executable program
specified. Any dynamically linked shared library routines called by the program
will not be reordered.

4.6.3 Considerations
As stated before, a full test-verification cycle should be run to ensure that the
results are correct and similar to the ones that are expected. Also, if you
change the parameters for the program, the gain of performance you have
encountered before is probably going to be altered.

This tool can also be used during the development of the program. You can use
fdpr to check if the code can be further optimized. If the execution time of the
executable generated by fdpr is significantly less than the original program,
some sections can probably be recoded to obtain a better performance.
Although this use for fdpr is arduous to the developer, it guarantees total control
over the code, which can always be checked in case of undesired behavior.

4.7 The lockstat Command
The lockstat command displays lock-contention statistics for SMP systems.
Application locks cannot be seen with this command. Only kernel locks
generated by the workload can be verified.

This tool is only available in AIX V4.

4.7.1 Locks on SMP Systems
Multiprocessors and thread support make it attractive and easier to write
applications that share data among threads. To avoid disaster, programs that
share data must arrange to access that data serially, rather than in parallel, as
shown in Figure 12 on page 165. If there is a shared variable that can be
modified by more than one thread at a time, then modifications to this variable
cannot be done simultaneously; instead, the updates to this variable have to be
synchronized through the use of locks. The section of code that updates a
shared variable is called a critical section, and must not be executed by more
than one processor at a time.

164 RS/6000 Performance Tools in Focus

Figure 12. Data Serialization

Conceptually a lock is a bit in memory that threads use to regulate their entry
into critical sections. For a processor, the simplest code sequence to take a lock
is:

test the lock bit;
if lock is free
then

set it to busy;
else

wait for it to become free;

Since taking a lock requires several operations (read, test and set the lock bit),
this operation is itself a critical section. Several threads can test the same lock
at the same time. Therefore, multiprocessor hardware must provide a way to
perform this test-and-set operation atomically with respect to the other
processors. This kind of atomic operation is the basic block upon which all of
the locking primitives are built.

When a thread wants to use a lock held by another thread, the thread is blocked.
The operating system supports several types of locking strategies:

• Spin Lock

Allows the waiting thread to keep its time slice and continually recheck the
lock bit in a very tight loop. If the thread has a high priority, it could block
other threads; therefore, spin locks should be used only when a lock is held
for a very short time.

• Blocking Lock

Suspends the thread until the lock is free and puts it back on the run queue.
This type of lock is used when a lock is held for long periods of time.

• Read-Write

Allows developers to distinguish between threads that need to read data and
threads that need to write data. A read-write lock allows multiple readers,
but guarantees mutual exclusion for writers.

• Hybrid Lock

Is a combination of a spin lock and a blocking lock. A thread will spin for a
short period of time waiting for the lock. If the lock does not become
available, the thread will put itself to sleep.

Chapter 4. Advanced AIX V4 Performance Tools 165

AIX developers can choose between simple locks, which are either blocking or
spin, and complex locks, which are read-write or hybrid. This choice has a big
consequence for the scalability of the system. The use of locks made AIX V4
MP-safe, but it is the responsibility of the developers to define and implement an
appropriate locking strategy to protect their own global data.

AIX V4 was changed and continues to be enhanced to make it more MP-efficient.
This means that the system is optimized to spend the minimum time waiting for
and dealing with locks. AIX-defined subsystems are comprised of 256 lock
classes in /usr/include/sys/lockname.h.

AIX V4.2 was changed in order to reduce lock contention inside the kernel.
Previously there was only one lock for the whole process table; now each
process entry can be locked. For the JFS, the global JFS_LOCK has been cut
into several smaller locks for operations on cache, directory and inodes.

The lockstat command supports the use of user-supplied lock names in files
named /usr/include/sys/lockname_*.h, where * is a wildcard.

4.7.2 Using l ockstat
Prior to using the lockstat command, you must create as root a new bosboot
image with the -L option to enable lock instrumentation: (Assuming your boot
disk is hdisk0)

bosboot -a -d /dev/hdisk0 -L

After running the command, reboot the machine to enable lock instrumentation.
At this time, lockstat can be used to look at the locking activity.

 Attention

The lockstat command can be CPU intensive because there is overhead
involved with lock instrumentation. That is the reason why it is not turned on
by default. The overhead of enabling lock instrumentation is typically 3-5
percent. Also be aware that AIX trace buffers will fill up much quicker when
using this option since there are a lot of locks being used.

Root authority is necessary to run lockstat.

The lockstat command generates a report for each kernel lock that meets all
specified conditions. When no conditions are specified, the default values are
used. These are the parameters that can be used to filter the data collected:

-c <LockCount>

Specifies how many times a lock must be requested during an interval in
order to be displayed. A lock request is a lock operation which in some
cases cannot be satisfied immediately. All lock requests are counted. The
default is 200.

-b <BlockRatio>

Specifies a block ratio. When a lock request is not satisfied, it is said to be
blocked. A lock must have a block ratio that is higher than BlockRatio to
appear in the list. The default of BlockRatio is 5 percent.

-n <CheckCount>

166 RS/6000 Performance Tools in Focus

Specifies the number of locks which are to be checked. The lockstat
command sorts locks according to lock activity. This parameter determines
how many of the most active locks will be subject to further checking.
Limiting the number of locks that are checked maximizes system
performance, particularly if lockstat is executed in intervals. The default
value is 40.

-p <LockRate>

Specifies a percentage of the activity of the most-requested lock in the
kernel. Only locks that are more active than this will be listed. The default
value is 2, which means that the only locks listed are those requested at
least 2 percent as often as the most active lock.

-t <MaxLocks>

Specifies the maximum number of locks to be displayed. The default is 10.

If the lockstat command is executed with no options, an output similar to the
following would be displayed:

lockstat
Subsys Name Ocn Ref/s %Ref %Block %Sleep
__

PFS IRDWR_LOCK_CLASS 259 75356 37.49 9.44 0.21
PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00

The first column is the subsystem (Subsys) to which the lock belongs. Some
common subsystems are:

PROC Scheduler, dispatcher or interrupt handlers
VMM Pages, segment and freelist
TCP Sockets, NFS
PFS Inodes, icache

Next, the symbolic name of the lock class is shown. Some common classes are:

TOD_LOCK_CLASS All interrupts that need the Time-of-Day (TOD) timer
PROC_INT_CLASS Interrupts for processes
U_TIMER_CLASS Per-process timer lock
VMM_LOCK_VMKER Free list
VMM_LOCK_PDT Paging device table
VMM_LOCK_LV Per paging space
ICACHE_LOCK_CLASS Inode cache

The field Ocn gives the occurrence number of the lock in its class. Next the
reference number (Ref/s - number of lock requests per second) is listed,
followed by the reference rate expressed as a percentage of all lock requests
(%Ref). The last two columns present respectively the ratio of blocking lock
requests to total lock requests (%Block) and the percentage of lock requests that
cause the calling thread to sleep (%Sleep).

As a rule of thumb, you should be concerned if a lock has a reference number
above 10000. In our example, both classes shown present a very high rate. In
this case, you may want to use the vmstat command to investigate further. Refer
to 2.1, “The vmstat Command” on page 7 for more information. If the vmstat
output shows a significant amount of CPU idle time when the system seems
subjectively to be running slowly, delays may be due to kernel lock contention,
because lock requestors go into blocked mode. Lock contentions cause wasted

Chapter 4. Advanced AIX V4 Performance Tools 167

cycles because a thread may be spinning on a busy lock or sleeping until the
lock is granted. Improper designs may even lead to deadlocks. The wasted
cycles would degrade system performance.

The lockstat output does not show exactly which application is causing a
problem to the system. The lock contentions problem can only be solved at the
source-code level. For example, if your application has a high number of
processes that read and write a unique message queue, you might have lock
contention for the VMM subsystem. Adding more message queues may reduce
the level of lock contention.

In the given example, many instances of a process that opens the same file for
read-only were running simultaneously on the system. In AIX, every time a file
is accessed, its inode is updated with the last access time. That is the reason
for the high reference number observed for the lock class IRDWR_LOCK_CLASS.
There were many threads trying to update the inode of the same file
concurrently.

When lockstat is run without options, only the locks with %Block above 5 percent
are listed. You can change this behavior by specifying another BlockRatio with
the -b option:

lockstat -b 1
Subsys Name Ocn Ref/s %Ref %Block %Sleep
__

PFS IRDWR_LOCK_CLASS 258 95660 60.22 69.15 0.16
PROC PROC_INT_CLASS 1 5798 3.65 4.73 0.00
PROC PROC_INT_CLASS 2 2359 1.48 1.02 0.00

In this case, all the lock requests with %Block above 1 percent will be shown.

If no lock has a BlockRatio within the given range, the output would be the
following:

lockstat
No Contention

The -a option additionally lists the 10 most-requested (or active) locks:

lockstat -a
Subsys Name Ocn Ref/s %Ref %Block %Sleep
__

PFS IRDWR_LOCK_CLASS 259 75356 37.49 9.44 0.21
PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00

First 10 largest reference rate locks :

Subsys Name Ocn Ref/s %Ref %Block %Sleep
__

PFS IRDWR_LOCK_CLASS 259 75356 37.49 9.44 0.21
PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00
PROC TOD_LOCK_CLASS -- 5949 2.96 1.68 0.00
PROC PROC_INT_CLASS 2 5288 2.63 3.97 0.00
XPSE PSE_OPEN_LOCK -- 4498 2.24 0.87 0.00
IOS SELPOLL_LOCK_CLASS -- 4276 2.13 3.20 0.00
XPSE PSE_SQH_LOCK 95 4223 2.10 0.62 0.00

168 RS/6000 Performance Tools in Focus

XPSE PSE_SQH_LOCK 105 4213 2.10 0.50 0.00
XPSE PSE_SQH_LOCK 75 3585 1.78 0.31 0.00
XPTY PTY_LOCK_CLASS 6 3336 1.66 0.00 0.00

The meaning of the fields is the same as in the previous example. The first table
is a list of locks with %Block above 5 percent. Then a list of the top 10
reference-rate locks, sorted in decreasing order, is given. The number of locks
in the most-requested list can be changed with the -t option:

lockstat -a -t 3
Subsys Name Ocn Ref/s %Ref %Block %Sleep
__

PFS IRDWR_LOCK_CLASS 259 75356 37.49 9.44 0.21
PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00

First 3 largest reference rate locks :

Subsys Name Ocn Ref/s %Ref %Block %Sleep
__

PFS IRDWR_LOCK_CLASS 259 75356 37.49 9.44 0.21
PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00
PROC TOD_LOCK_CLASS -- 5949 2.96 1.68 0.00

In the above example, the -t option specifies that only the top three
reference-rate locks will be shown.

The lockstat command can also be run in intervals:

lockstat 10 100

The first number passed in the command line specifies the amount of time in
seconds between each report. Each report contains statistics collected during
the interval since the previous report. If no interval is specified, the system
gives information covering an interval of one second and then exits. The second
number determines the number of reports generated. It can only be specified if
an interval is given.

If the output of lockstat -a looks like:

No Contention

First 10 largest reference rate locks :

Subsys Name Ocn Ref/s %Ref %Block %Sleep
__

then an empty most-requested lock list means that the lock instrumentation has
not been enabled, which can be done by executing the command bosboot as
explained at the beginning of this section.

4.7.3 Improving Lock Performance
According to queuing theory, the less idle a resource, the longer the average
time to get it. The relationship is non-linear; if the area that the lock is
protecting is doubled, the average wait time for that lock more than doubles.
The most effective way to reduce wait time for a lock is to reduce the size of
what the lock is protecting. There are also some useful rules to improve
performance:

Chapter 4. Advanced AIX V4 Performance Tools 169

• The frequency with which any lock is requested should be reduced.
• Lock just the code that accesses shared data, not all the code in a

component. This will reduce lock holding time.
• Locks should always be associated with specific data items or structures, not

with routines.
• For large data structures, choose one lock for each element of the structure

rather than one lock for the whole structure.
• Never do synchronous I/O or any other blocking activity while holding a lock.
• If you have more than one access to the same data in your component, try to

move them together so they can be covered by one lock-unlock.
• Avoid double wake up. If you modify some data under a lock and have to

notify someone that you have done it, release the lock and then post the
wake up.

• If you must hold two locks simultaneously, request the busiest one last.

On the other hand, a too fine granularity will increase the frequency of lock
requests and lock releases, which therefore will add additional instructions. A
balance must be found between a too fine and a too coarse granularity. The
optimum granularity will have to be found empirically and is one of the big
challenges in an MP system. The graph in Figure 13 shows the relation between
the throughput and the granularity of locks. As an initial rule of thumb, try not to
hold locks for more than about 300 seconds.

The existence of widely used locks places an upper limit on the throughput of the
system. For example, if a given program spends 20 percent of its execution time
holding a mutual-exclusion lock, at most five instances of that program can run
simultaneously, regardless of the number of processors in the system.

Figure 13. Relationship Between Throughput and Granularity

4.8 The cpu_state Command
The cpu_state command controls and lists which processors on a multiprocessor
system will be active when the system is next started.

This tool is only available in AIX V4. The cpu_state command is only supported
on machines that have a service processor. It cannot get status information
about the processors without having a service processor.

This tool may be used to size the number of processors required for a given
application by varying the number of active processors and monitoring system
performance. Note that additional processors do not usually increase system
performance in a linear fashion.

170 RS/6000 Performance Tools in Focus

4.8.1 Using cpu_state
Root authority is necessary to run this command.

To check the status of the processors, run:

cpu_state -l

The following output will be shown:

Name Cpu Status Location
proc0 0 enabled 00-0P-00-00
proc1 1 enabled 00-0P-00-01
proc2 2 enabled 00-0Q-00-00
proc3 3 enabled 00-0Q-00-01

The Name field is the object data manager (ODM) processor name, shown in the
form procX, where X is the physical processor number. Next is the logical
processor number. Only enabled processors have logical numbers. Then the
status for the next boot is shown. The last field is the ODM processor location
code, shown in the form AA-BB-CC-DD (AA is the main unit, always 00; BB is the
processor board number 0P, 0Q, 0R or 0S, indicating respectively the first,
second, third or fourth processor card; CC is always 00; DD is the position of the
processor on the card, it can be 00 or 01).

To disable a processor, enter:

cpu_state -d proc2
cpu_state -l
Name Cpu Status Location
proc0 0 enabled 00-0P-00-00
proc1 1 enabled 00-0P-00-01
proc2 2 disabled 00-0Q-00-00
proc3 3 enabled 00-0Q-00-01

The -d option can be used to disable a processor. Notice that the status field
does not display the current processor state, but rather the state to be used for
the next boot. In this example, after issuing the command to disable proc2, it still
has a logical CPU number, and the scheduler could assign threads to this CPU.

After system reboot:

cpu_state -l
Name Cpu Status Location
proc0 0 enabled 00-0P-00-00
proc1 1 enabled 00-0P-00-01
proc2 - disabled 00-0Q-00-00
proc3 2 enabled 00-0Q-00-01

As can be seen in the above example, after the system reboot, proc2 does not
have a logical CPU number, instead a dash (-) is shown in the field. Notice that
now proc3 has been assigned a different logical CPU number. It changed from 3
to 2 because proc2 has been disabled.

To enable a processor, enter:

Chapter 4. Advanced AIX V4 Performance Tools 171

cpu_state -e proc2
cpu_state -l
Name Cpu Status Location
proc0 0 enabled 00-0P-00-00
proc1 1 enabled 00-0P-00-01
proc2 - enabled 00-0Q-00-00
proc3 2 enabled 00-0Q-00-01

After system reboot, proc2 will be enabled and have a logical CPU number
associated to it:

cpu_state -l
Name Cpu Status Location
proc0 0 enabled 00-0P-00-00
proc1 1 enabled 00-0P-00-01
proc2 2 enabled 00-0Q-00-00
proc3 3 enabled 00-0Q-00-01

If a processor does not respond at boot time, it is either faulty (an ODM state) or
a communication error occurred. In this case, the cpu_state command would
show:

cpu_state -l
Name Cpu Status Location
proc0 0 enabled 00-0P-00-00
proc1 1 enabled 00-0P-00-01
proc2 2 enabled 00-0Q-00-00
proc3 - no reply 00-0Q-00-01

This means that during system boot, proc3 failed the power-on tests, and its
status was changed to no reply.

Another way of using the cpu_state command is through the diag tool:

#diag

Next, press Enter and choose:

Task Selection
Display or Change Multi-processor Configuration

Display or Change Processor States

After the last selection, the following options will be given:

Display Processor States
Disable a processor
Enable a processor

The first option is equivalent to the command cpu_state -l, the next to cpu_state
-d <processor_name> and the last to cpu_state -e <processor_name>. In AIX V4.2,
the last two options are not working properly. This should be solved in AIX
V4.2.1.

The lsdev command can also be used on any multiprocessor system to query
information about processors:

lsdev -Cc processor
proc0 Available 00-0P-00-00 Processor
proc1 Available 00-0P-00-01 Processor
proc2 Defined 00-0Q-00-00 Processor
proc3 Available 00-0Q-00-01 Processor

172 RS/6000 Performance Tools in Focus

The output above shows that the machine has three processors available (proc0,
proc1 and proc3) and one defined (proc2). When a processor is defined, the
scheduler cannot assign threads to it.

4.8.2 Differences in AIX V4.1
In AIX V4.1, the user interface for the cpu_state command is different. Instead of
passing the name in the command line, the user should only give the physical
CPU number:

cpu_state -d 2 (AIX V4.1)
cpu_state -e 2 (AIX V4.1)

Notice that the number following the option is not the logical CPU number.
Instead, it is the number associated with the name of the processor (procX).
Modifications will be done for AIX V4.2 in order to be able to accept both user
interfaces (name and physical CPU number). The changes should be available
in AIX V4.2.1.

The difference in the user interface between AIX V4.1 and 4.2 is the reason for
the problem with the diag tool in AIX V4.2. This tool tries to execute the
command cpu_state with a processor physical number instead of a processor
name, as is expected in AIX V4.2. With the planned changes mentioned, this
problem should also be solved.

The diag tool in AIX V4.1 has different menus to access the Display or Change
Processor States menu:

#diag

Next press Enter and choose:

Service Aids
Multi-processor Service Aids

Display or Change Processor States

The menu that follows has the same interface and functionality as in AIX V4.2.

4.9 The bindprocessor Command
The bindprocessor command should be used to bind or unbind the kernel threads
of a process to a processor.

This command is meant for multiprocessor systems. Although it will also work
on uniprocessor systems, binding has no effect on such systems.

This tool is only available in AIX V4.

4.9.1 Processor Affinity
If a thread is interrupted and later redispatched to the same processor, there
may still be lines in the cache of the processor that belong to that thread. If the
thread is dispatched to a different processor, it will experience a series of cache
misses until its cache working set has been retrieved from RAM. If the thread
has not been blocked long, some of its instructions and data may still be in the
cache of the processor it ran on last; so it would be more efficient to run the
thread there rather than on another processor. On the other hand, if a

Chapter 4. Advanced AIX V4 Performance Tools 173

dispatchable thread has to wait until the processor it was previously running on
is available, the thread may experience an even longer delay.

Processor affinity is the dispatching of a thread to the processor that was
previously executing it. The degree of emphasis on processor affinity should
vary directly with the size of the cache working set of the thread and inversely
with the length of time since it was last dispatched.

AIX V4 implements processor affinity. When a thread is dispatched on a
processor, the identity of the processor is registered in the structure of the
thread itself. Each time the dispatcher selects a thread, it knows the processor
number on which the thread last ran.

When a processor asks to run a thread, the dispatcher chooses from the
priority-ordered run queues the thread with the highest priority and tests if this
thread has affinity with the processor. If yes, the thread is dispatched to the
processor. If no, the dispatcher tries to find another thread which last ran on the
processor. It scans the run queues until it finds one. This scanning is not done
indefinitely, it has some limits. Three criterias are used to limit the scanning of
the run queues:

 1. If the priority difference between the thread with the highest priority and the
thread that last ran on the processor is greater than a threshold value, then
the thread with the highest priority will be chosen. The threshold value is
determined by a parameter called affinity_priodelta. The default value is
0, which means that by default the highest priority thread is always chosen
to be executed.

 2. Scanning is stopped when the number of scanned threads is higher than a
defined value. This value is determined by a parameter called
affinity_scandelta, which has a default value of 3 * number_of_CPUs.

 3. Scanning is also stopped when the dispatcher encounters a boosted thread
and if a parameter called affinity_skipboosted is FALSE.

When a thread with a low priority holds a lock and if a higher-priority thread
is waiting for the same lock, the low-priority thread gets the priority of the
higher-priority thread (it is boosted so that the higher-priority thread does not
have to wait too much for the lock). This priority inversion is always done by
the system.

When the affinity_skipboosted parameter is set to TRUE, the boosted thread
is skipped, and the dispatcher goes on finding a thread that has affinity with
the processor. The default value is FALSE.

The default values for the parameters mentioned above guard against side
effects. For example, if the affinity_skipboosted is TRUE, then a low-priority
thread may run instead of a boosted thread. Thus, the thread waiting for the
lock may wait longer. Also, if the affinity_scandelta parameter is too high, the
dispatcher may spend too much time scanning the run queues.

A better performance has been achieved on SDET (an industry standard
multi-user benchmark) with:

affinity_priodelta = 3
affinity_scandelta = 2 x (number_of_CPUs) +1
affinity_skipboosted = TRUE

174 RS/6000 Performance Tools in Focus

It is possible to change the values of these parameters, but currently there is no
available program to change them. The only way to do that is to create a
program that writes to /dev/kmem or patch the kernel. An example of a
program to alter these values is given in 4.10.5, “Processor Affinity Parameters”
on page 185. Changing these values should be done with care.

The highest possible degree of processor affinity is to bind a thread to a specific
processor. Binding means that the thread will be dispatched to that processor
only, regardless of the availability of other processors. The bindprocessor
command binds the threads of a specified process to a particular processor.
Binding a thread to a processor can help that process, but it can hurt overall
system throughput.

4.9.2 Using bindprocessor
Root authority is necessary to bind or unbind threads in processes you do not
own.

To query the available processors, enter:

bindprocessor -q
The available processors are: 0 1 2 3

The output shows the logical processor numbers for the available processors,
which are used with the bindprocessor command as will be seen.

To bind a process whose PID is 14596 to processor 1, enter:

bindprocessor 14596 1

No return message is given if the command was successful. To verify if a
process is bound or unbound to a processor, you can use the command ps -mo
THREAD as explained in 2.4, “The ps Command” on page 30 :

ps -mo THREAD
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 3292 7130 - A 1 60 1 - 240001 pts/0 - -ksh

- - - 14309 S 1 60 1 - 400 - - -
root 14596 3292 - A 73 100 1 - 200001 pts/0 1 /tmp/cpubound

- - - 15629 R 73 100 1 - 0 - 1 -
root 15606 3292 - A 74 101 1 - 200001 pts/0 - /tmp/cpubound

- - - 16895 R 74 101 1 - 0 - - -
root 16634 3292 - A 73 100 1 - 200001 pts/0 - /tmp/cpubound

- - - 15107 R 73 100 1 - 0 - - -
root 18048 3292 - A 14 67 1 - 200001 pts/0 - ps -mo THREAD

- - - 17801 R 14 67 1 - 0 - - -

The column BND shows the number of the processor that the process is bound to
or a dash (-) if the process is not bound at all.

To unbind a process whose PID is 14596, use the following command:

bindprocessor -u 14596

Chapter 4. Advanced AIX V4 Performance Tools 175

ps -mo THREAD
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 3292 7130 - A 2 61 1 - 240001 pts/0 - -ksh

- - - 14309 S 2 61 1 - 400 - - -
root 14596 3292 - A 120 124 1 - 200001 pts/0 - /tmp/cpubound

- - - 15629 R 120 124 1 - 0 - - -
root 15606 3292 - A 120 124 1 - 200001 pts/0 - /tmp/cpubound

- - - 16895 R 120 124 1 - 0 - - -
root 16634 3292 - A 120 124 0 - 200001 pts/0 - /tmp/cpubound

- - - 15107 R 120 124 0 - 0 - - -
root 18052 3292 - A 12 66 1 - 200001 pts/0 - ps -mo THREAD

- - - 17805 R 12 66 1 - 0 - - -

When the bindprocessor command is used on a process, all of its threads will
then be bound to one processor and unbound from their former processor.
Unbinding the process will also unbind all its threads. You cannot bind/unbind
an individual thread using bindprocessor. However, within a program, you can
use the bindprocessor() function call to bind individual threads.

When a process does not exist, the following error is given:

bindprocessor 7359 1
1730-002: Process 7359 does not match an existing process

 Note

A process cannot be bound until it is started; that is, it must exist in order to
be bound.

When a processor does not exist, the following error is given:

bindprocessor 7358 4
1730-001: Processor 4 is not available

You should not use the bindprocessor command on the wait processes kproc.
That will make the system crash immediately. This problem should be solved
with AIX V4.2.1. However, it is still not recommended that you change the
characteristics of these processes.

4.9.3 Considerations
Binding can be useful for CPU-intensive programs that experience few interrupts.
It can sometimes be counterproductive for ordinary programs because it may
delay the redispatch of a thread after an I/O until the processor to which the
thread is bound becomes available. If the thread has been blocked for the
duration of an I/O operation, it is unlikely that much of its processing context
remains in the caches of the processor to which it is bound. It would probably
be better served if it were dispatched to the next available processor.

Binding does not prevent other processes to be dispatched on the processor on
which you bound your process. Binding is different from partitioning. It is not
possible in AIX V4, for example, to dedicate a set of processors to a specific
workload and another set of processors to another workload.

This means that a higher priority process might be dispatched on the processor
where you bound your process. In this case, your process will not be dispatched
on other processors. So, you will not always increase the performance of the

176 RS/6000 Performance Tools in Focus

bound process. Better results may be achieved if you increase the priority of the
bound process.

In fact, binding a single-threaded process will improve its performance on an idle
system. In this case, if the process is not bound, it will bounce around all the
processors and then might suffer a high cache miss rate.

Typically, if you bind a single-threaded program on an idle SMP, you will
increase its performance. On the other hand, if you bind the same process on a
heavily loaded system, you might decrease its performance because when a
processor becomes idle, the process will not be able to run on the idle
processor if it is not the processor on which the process is bound.

If the process is multithreaded, binding the process will bind all its threads to the
same processor. This means that the process will not take advantage of the
multiprocessing. You will not improve the performance of the process by doing
this.

 Attention

Process binding should be used with care because it disrupts the natural
load balancing provided by AIX V4, and the overall performance of the
system could degrade.

If the workload of the machine changes from that which is monitored when
making the initial binding, system performance may suffer. If you use the
bindprocessor command, take care to monitor the machine regularly because
the environment may change, making the bound process adversely affect
system performance.

4.10 The schedtune Command
The schedtune command can be used to set the parameters for CPU scheduler
and Virtual Memory Manager processing. The executable and source for
schedtune can be found in the /usr/samples/kernel directory. In AIX V3, these
files are located in the /usr/lpp/bos/samples directory.

Take Note!!

The schedtune command is in the samples directory because it is
VMM-implementation dependent. The schedtune code that accompanies each
release of AIX is tailored specifically to the VMM of that release. This
command is not supported under SMIT, nor has it been tested with all
possible combinations of parameters. Misuse of this command can cause
performance degradation or operating-system failure. If execution of
schedtune causes a system to crash with flashing 888, then the appropriate
level of schedtune for that release of AIX needs to be installed. Be sure that
you have studied the appropriate tuning sections before using schedtune to
change system parameters.

The schedtune command can only be executed by the root user. Changes made
by this tool last until the next reboot of the system. If a permanent change is
needed, an appropriate entry should be put in the /etc/inittab. For example:

Chapter 4. Advanced AIX V4 Performance Tools 177

schedtune:2:wait:/usr/samples/kernel/schedtune -m 6

In AIX V3, the path to the command schedtune should be altered to
/usr/ lpp/bos/samples.

Executing the schedtune command with no options shows the current settings for
the parameters:

schedtune
THRASH SUSP FORK SCHED

-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
6 4 2 1 2 10 5 16 2

The first five parameters specify the thresholds for the memory load control
algorithm, -f defines a wait time value used by the fork() routine; the -d and -r
options are used in the scheduling policy algorithm, and -t defines the maximum
amount of time a thread can spend on the processor. Each one of them will be
discussed in detail in the next sections.

The -D option can be used to restore the default settings:

schedtune -D
THRASH SUSP FORK SCHED

-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
6 4 2 1 2 10 16 16 1

4.10.1 Memory Load Control Parameters
When a page fault occurs, the referenced page must be paged in and, on
average, one or more pages must be paged out. AIX attempts to steal real
memory from pages that are unlikely to be referenced in the near future, via the
page replacement algorithm. Refer to the “The Page-Replacement Algorithm”
on page 14, for more information.

At some level of competition for memory, no pages are good candidates for
paging out to disk because they will all be reused in the near future by the active
set of processes. When this happens, continuous paging in and out occurs. This
condition is called thrashing. Thrashing results in incessant I/O to the paging
disk and causes each process to encounter a page fault almost as soon as it is
dispatched, with the result that none of the processes make any significant
progress. The most pernicious aspect of thrashing is that the system may
continue thrashing for an indefinitely long time.

AIX has a memory-load control algorithm that detects when the system is
starting to thrash and then suspends active processes and delays the initiation of
new processes for a period of time. The memory load-control mechanism
assesses, once a second, whether sufficient memory is available for the set of
active processes. When a memory overcommitment condition is detected, some
processes are suspended, decreasing the number of active processes and
thereby decreasing the level of memory overcommitment.

The pages of the suspended processes quickly become stale and are paged out
via the page-replacement algorithm, releasing enough page frames to allow the
remaining active processes to progress. During the interval in which existing
processes are suspended, newly created processes are also suspended,
preventing new work from entering the system. Suspended processes are not

178 RS/6000 Performance Tools in Focus

reactivated until a subsequent interval passes during which no potential
thrashing condition exists. Once this safe interval has passed, the threads of the
suspended processes are gradually reactivated.

 Note

Memory load control is intended to smooth-out infrequent peaks that might
otherwise cause a system to thrash. It is not intended to act continuously in
a configuration that has too little RAM to handle its normal workload.

Five parameters set rates and thresholds for the algorithm. The default values
of these parameters have been chosen to ″fail safe″ across a wide range of
workloads. The schedtune command can be used to alter these values. You
should not change the memory load-control parameter settings unless your
workload is consistent, and you believe the default values are ill-suited to your
environment.

The h Parameter: Controls the threshold defining memory overcommitment.
Memory load control attempts to suspend processes when this threshold is
exceeded during any one-second period. The threshold is a relationship
between two direct measures: the number of pages written to paging space in
the last second (p) and the number of page steals occurring in the last second
(s). The number of page writes is usually much less than the number of page
steals. Memory is overcommitted when:

p/s > 1/h

The default value is 6. This value was chosen because it is comparatively
configuration-independent. Any positive value is valid. In AIX V4, if a system
has more than 128 MB of memory, the default value is 0. This means that, for
these systems, memory load control is by default disabled. Testing has proved
that with more than 128 MB of RAM, the normal VMM algorithms could correct
thrashing conditions on the average more efficiently than by utilization of
memory load control.

To disable memory load control, enter:

schedtune -h 0
THRASH SUSP FORK SCHED

-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
0 4 2 1 2 10 16 16 1

If disabling memory load control results in more, rather than fewer, thrashing
situations (with correspondingly poorer responsiveness), then memory load
control is playing an active and supportive role in your system. Tuning its
parameters may result in improved performance; it would be better to add RAM.
The vmstat command can be used to detect if the system is thrashing or if the
memory is overcommited. Refer to 2.1.2, “Memory Bound” on page 10, for
detailed information.

If you run schedtune -D on any system, the h parameter will be set to 6,
independently of the memory size. A copy of the source code for schedtune is
shipped with AIX in the /usr/samples/kernel directory and can be altered to
change this behavior for systems with more than 128 MB of memory:

Chapter 4. Advanced AIX V4 Performance Tools 179

(...)
struct cmdtab cmdtab[] = {
/* flag, nlst[i], validation(), current, default */

{′ h′ , V_REPAGE_HI, v_repage_hi_x, 0, 6 },
{ ′ p′ , V_REPAGE_PROC, v_repage_proc_x, 0, 4 },
{ ′ w′ , V_WAIT_SECS, v_wait_secs_x, 0, 1 },
{ ′ m′ , V_MIN_PROCESS, NULL, 0, 2 },
{ ′ e′ , V_EXEMPT_SECS, v_exempt_secs_x, 0, 2 },
{ ′ f′ , PACEFORK, pacefork_x, 0, 10 },
{ ′ d′ , SCHED_D, sched_d_x, 0, 16 },
{ ′ r′ , SCHED_R, sched_r_x, 0, 16 },
{ ′ t′ , TIMESLICE, timeslice_x, 0, 1 },
NULL,

};
(...)

This is the section of the source code that sets the default values used by the -D
option. The highlighted line shows the settings for the h parameter. The last
column is the default value. For systems with more than 128 MB of memory, you
may want to change this value from 6 to 0:

{ ′ h′ , V_REPAGE_HI, v_repage_hi_x, 0, 0 },

To make the changes effective, you need to recompile the program:

cc schedtune.c -o schedtune

Make sure you have a C compiler installed along with the appropriate license.

A lower value of h raises the thrashing detection threshold; that is, the system is
allowed to come closer to thrashing before processes are suspended.
Regardless of the system configuration, when the above p/s fraction is low,
thrashing is unlikely.

To alter the threshold to 4, enter:

schedtune -h 4
THRASH SUSP FORK SCHED

-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
4 4 2 1 2 10 16 16 1

In this way, you permit the system to come closer to thrashing before the
algorithm starts suspending processes.

If you are using rmss to investigate the effects of reduced memory sizes, you will
want to disable memory load control to avoid interference with your
measurement. Refer to 3.3, “The rmss Command” on page 79, for more
information on this command.

The p Parameter: Determines whether a process is eligible for suspension and
is used to set a threshold for the ratio of two measures that are maintained for
every process: the number of repages (r - refer to the “The Page-Replacement
Algorithm” on page 14) and the number of page faults that the process has
accumulated in the last second (f). A high ratio of repages to page faults means
the individual process is thrashing. A process is considered eligible for
suspension (it is thrashing or contributing to overall thrashing) when:

180 RS/6000 Performance Tools in Focus

r / f > 1 /p

The default value of p is 4, meaning that a process is considered to be thrashing
(and a candidate for suspension) when the fraction of repages to page faults
over the last second is greater than 25 percent. A low value of p results in a
higher degree of individual process thrashing being allowed before a process is
eligible for suspension.

To disable processes from being suspended by the memory load control:

schedtune -p 0
THRASH SUSP FORK SCHED

-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
6 0 2 1 2 10 16 16 1

Note that fixed-priority processes and kernel processes are exempt from being
suspended.

The m Parameter: Determines a lower limit for the degree of multiprogramming,
which is defined as the number of active processes. Active processes are those
that are runable and waiting for page I/O. Processes that are waiting for events
and processes suspended are not considered active nor is the wait process
considered active.

Each process is counted as one, regardless of the number of threads running in
it. Excluded from the count are the kernel processes, processes with fixed
priority values less than 60, pinned memory, or awaiting events because no
process in these categories is ever eligible for suspension.

The default value of 2 ensures that at least two user processes are always able
to be active. Lower values of m, while allowed, mean that at times as few as one
user process may be active. High values of m effectively defeat the ability of
memory load control to suspend processes. This parameter is very sensitive to
configuration and workload. While a value of 2 is appropriate for a desktop,
single-user configuration, it is frequently too small for larger, multiuser or server
configurations with large amounts of RAM. In these systems, increasing the
value of m may result in better performance:

schedtune -m 10
THRASH SUSP FORK SCHED

-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
6 4 10 1 2 10 16 16 1

With these settings, the memory load control has to leave at least 10 user
processes running when it is suspending processes.

When the memory requirements of the thrashing application is known, the m
value can be suitably chosen. Suppose thrashing is caused by numerous
instances of one application of size M. Given the system memory size N, the m
parameter should be set to a value close to N/M. Setting m too low would
unnecessarily limit the number of processes that could be active at the same
time.

The w Parameter: Controls the number of one-second intervals during which the
p/s fraction (explained in the “The h Parameter” on page 179) must remain
below 1/h before suspended processes are reactivated. The default value of

Chapter 4. Advanced AIX V4 Performance Tools 181

one second is close to the minimum value allowed, zero. A value of one second
aggressively attempts to reactivate processes as soon as a one-second safe
period has occurred. Large values of w run the risk of unnecessarily poor
response times for suspended processes while the processor is idle for lack of
active processes to run.

To alter the wait time to reactivate processes after two seconds, enter:

schedtune -w 2
THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
0 4 2 2 2 10 16 16 1

The e Parameter: Each time a suspended process is reactivated, it is exempt
from suspension for a period of e elapsed seconds. This is to ensure that the
high cost (in disk I/O) of paging in the pages of a suspended process results in a
reasonable opportunity for progress. The default value of e is 2 seconds.

To alter this parameter, enter:

schedtune -e 1
THRASH SUSP FORK SCHED

-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
6 4 2 1 1 10 16 16 1

Suppose thrashing is caused occasionally by an application that uses lots of
memory but runs for about T seconds. The default system setting for e (2
seconds) would probably cause this application swapping in and out T/2 times
on a busy system. In this case, resetting e to a longer time would help this
application to progress. System performance would improve when this offending
application is pushed through quickly.

4.10.2 fork() Retry Interval Parameter
Specifies the number of clock ticks to wait before retrying a failed fork() call.
The system will retry a failed fork() call five times. For example, if a fork()
subroutine call fails because there is not enough space available to create a
new process, the system retries the call after waiting the specified number of
clock ticks. The default value is 10, and as there is one clock tick every 10 ms,
the system would retry the fork() call every 100 ms.

If the paging space is only due to brief, sporadic workload peaks, increasing the
retry interval may allow processes to delay long enough to be released:

schedtune -f 15
THRASH SUSP FORK SCHED

-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
6 4 2 1 2 15 16 16 1

In this way, when the system retries the fork() call, there is a higher chance of
success because some processes might have finished their execution and,
consequently, released pages from paging space.

182 RS/6000 Performance Tools in Focus

4.10.3 Priority Calculation Parameters
The kernel maintains a priority value for each thread. The priority value is a
positive integer and varies inversely with the importance of the associated
thread. That is, a smaller priority value indicates a more important thread.
When the scheduler is looking for a thread to dispatch, it chooses the
dispatchable thread with the smallest priority value.

The priority of most threads varies with the amount of CPU time the thread has
used recently. This implies that, on average, the more time slices a thread has
been allocated recently, the less likely it is that the thread will be allocated the
next time slice.

The formula for calculating the priority value for a process or thread is:

priority value = base value + nice value + CPU penalty due to recent CPU usage

The nice value is a fixed value set with the nice or renice commands. For more
information on these commands, refer to 2.10, “The nice Command” on page 54,
and to 2.11, “The renice Command” on page 56.

The calculation of the CPU penalty is based on two parameters that can be
altered with schedtune. The options of schedtune to change these values are the
-r and -d options.

The formula used by the scheduler to calculate the amount to be added to the
priority of a process/thread as a penalty for recent CPU usage is:

CPU penalty = recent CPU use value * r/32

The once-per-second recalculation of the recently used CPU value for each
process/thread is:

new recent CPU use value = old recent CPU use value * d/32

This recalculation permits a process/thread to be penalized less for old CPU
usage. The recent CPU usage increases by one each time the thread is in
control of the CPU at the end of a 10 ms clock tick, up to a maximum value of
120.

The recent CPU usage value is displayed as the C column in the ps command
output:

ps -ef | more
 USER PID PPID C STIME TTY TIME CMD

root 1 0 0 Feb 24 - 12:43 /etc/init
root 1362 1 0 Feb 24 - 0:00 /etc/srcmstr
root 1721 1 0 Feb 24 - 0:00 /etc/uprintfd
root 2483 1 0 Feb 24 - 0:28 /etc/cron

(...)

The default value for options -d and -r is 16, and the valid range is from 0 to 32.

The execution of the command:

schedtune -r 0

would cause the CPU penalty to be always 0, making priority absolute. No
background process would get any CPU time unless there were no dispatchable
foreground processes at all. This behavior is only true if the background

Chapter 4. Advanced AIX V4 Performance Tools 183

process is executed in a shell, where a background process receives a nice
value of 24, compared to 20 for foreground processes (the ksh is an example of
this). Decreasing the r value makes it easier for foreground processes to
compete. Decreasing the d value enables foreground processes to avoid
competition with background processes for a longer time.

For example:

schedtune -r 32 -d 32

Long-running processes would reach a C value of 120 and stay there, contending
on the basis of their nice values. New processes would have better priority,
regardless of their nice value, until they had accumulated enough time slices to
bring them within the priority value range of the existing processes. The settings
of the above example penalize processes/threads to a higher degree on CPU
usage.

Another example:

schedtune -r 4 -d 31

With this command, the normal priority range for interactive processes would be
60-75. A low r value restricts the priority range to a small value, restricting the
impact of CPU usage on the priority. Consider the maximum C value of 120
multiplied by 4/32 would give a maximum CPU penalty of 15. A high value for d
implies that the CPU usage is decayed slowly. This means that the CPU penalty
value is almost the same after the one-second recalculation (decays 31/32 every
second).

Along with the last settings shown in the above example for schedtune, run the
renice command on long-running CPU-bound processes to change their initial
priority to 80. In this way, the priority range for these processes would be 80-95.
This means that these processes would never delay a foreground process that
was started with regular 60 priority. This is a procedure that could be used to
prevent batch processes from interfering with the online processes.

4.10.4 Time-Slice Increment Parameter
The number of clock interrupts that must occur before the dispatcher is called.
The CPU time slice is the period between recalculations of the priority value.
Normally, recalculation is done at each tick (10 ms) of the system clock. The
number of clock ticks between recalculations (length of the time slice) can be
increased by 10 ms (one clock tick) increments.

However a time slice is not a guaranteed amount of processor time. It is the
longest time that a process/thread can be in control before it is replaced by
another process or thread. A process or thread can lose control of the CPU
before its full time slice when the following occurs:

• A process/thread with a higher priority returns from a system call.

• A process/thread with a higher priority completes an I/O request.

• The current process/thread issues an I/O request.

• The current process/thread is suspended.

• The current process/thread yields the CPU with the yield() subroutine.

184 RS/6000 Performance Tools in Focus

In AIX V4, the default value is 1, and this parameter only applies to threads with
the SCHED_RR scheduling policy (an explanation about scheduling policies is
given in 2.5, “The pstat Command” on page 33). This means that variable time
slices only affect fixed-priority threads. The command:

schedtune -t 2
THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE
6 4 2 1 2 10 16 16 2

would set the time slice to 20 ms; so a fixed priority thread would get at least
two full time slices before it is switched out of the CPU.

If you set the time slice parameter to 0, it means that a fixed-priority thread
would never get more than one CPU tick, whereas with a value of 1, it would
likely get one tick but possibly a bit more of execution time. The performance is
probably be better with a time slice of one instead of zero.

In AIX V3, the default value for t is 0, but it is 1 in AIX V4. If you execute
schedtune -t 2 in AIX V3, the time slice wil l be set to 30 ms and, in this version,
will affect all processes. Notice that:

• In AIX V3, changing the time slice with the -t option sets the time slice tick
value to the number specified plus 1. This setting affects all processes.

• In AIX V4, changing the time slice will only have an effect on round-robin
scheduling policy threads, and the value of schedtune -t is the same as that
of its time slice value.

It has been found that different values of t have not caused significant changes
in the execution times of processes or threads. Although, if your workload
consists almost entirely of very long-running, CPU-intensive programs,
increasing this parameter may have some positive effect.

4.10.5 Processor Affinity Parameters
There are three variables concerning affinity that are used by the scheduler:
affinity_priodelta, affinity_scandelta and affinity_skipboosted. These, along
with the processor affinity issues, are discussed in detail in 4.9.1, “Processor
Affinity” on page 173. As stated in this chapter, there is no available program to
change these values. But the source code for schedtune (located in
/usr/samples/kernel) can be easily altered to permit the modification of these
parameters. Changes to the default values only apply to MP systems, and not
many tests have been done up to now to give recommendations about the best
usage of these parameters.

A sample of a modified version of schedtune is given below, but make sure you
understand the use of each parameter before issuing any changes. Example:

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <nlist.h>

extern int errno;
extern int optind;
extern char *optarg;

#define V_REPAGE_HI 0
#define V_REPAGE_PROC 1
#define V_WAIT_SECS 2

Chapter 4. Advanced AIX V4 Performance Tools 185

#define V_MIN_PROCESS 3
#define V_EXEMPT_SECS 4
#define PACEFORK 5
#define SCHED_D 6
#define SCHED_R 7
#define TIMESLICE 8
#define A_PRIODELTA 9
#define A_SCANDELTA 10
#define A_SKIPBOOSTED 11
#define MAXPARMS 12

static struct nlist nlst[] = {
{ ″v_repage_hi″ },
{ ″v_repage_proc″ },
{ ″v_sec_wait″ },
{ ″v_min_process″ },
{ ″v_exempt_secs″ },
{ ″pacefork″ },
{ ″sched_D″ },
{ ″sched_R″ },
{ ″timeslice″ },
{ ″affinity_priodelta″} ,
{ ″affinity_scandelta″} ,
{ ″affinity_skipboosted″} ,
NULL

};

struct cmdtab {
char flag; /* command flag; see below */
int index; /* index into nlist */
void (*invalid)(); /* validation routine */
int current; /* current value */
int vdefault; /* default value */

};

static void v_repage_hi_x();
static void v_repage_proc_x();
static void v_wait_secs_x();
static void v_exempt_secs_x();
static void pacefork_x();
static void sched_d_x();
static void sched_r_x();
static void timeslice_x();
static void a_priodelta_x();
static void a_scandelta_x();
static void a_skipboosted_x();

struct cmdtab cmdtab[] = {
/* flag, nlst[i], validation(), current, default */

{ ′ h′ , V_REPAGE_HI, v_repage_hi_x, 0, 6 },
{ ′ p′ , V_REPAGE_PROC, v_repage_proc_x, 0, 4 },
{ ′ w′ , V_WAIT_SECS, v_wait_secs_x, 0, 1 },
{ ′ m′ , V_MIN_PROCESS, NULL, 0, 2 },
{ ′ e′ , V_EXEMPT_SECS, v_exempt_secs_x, 0, 2 },
{ ′ f′ , PACEFORK, pacefork_x, 0, 10 },
{ ′ d′ , SCHED_D, sched_d_x, 0, 16 },
{ ′ r′ , SCHED_R, sched_r_x, 0, 16 },
{ ′ t′ , TIMESLICE, timeslice_x, 0, 1 },
{ ′ a′ , A_PRIODELTA, a_priodelta_x, 0, 0 },
{ ′ s′ , A_SCANDELTA, a_scandelta_x, 0, 12 },
{ ′ k′ , A_SKIPBOOSTED, a_skipboosted_x, 0, 0 },
NULL,

};

static void rdwrval();
static void read_values();
static cmd_help();
static display_values();

int kmem;

#define READ_MODE 0
#define WRITE_MODE 1

186 RS/6000 Performance Tools in Focus

main(argc, argv)
int argc;
char **argv;

{
int i, c, value;

nlist(″ /usr/lib/boot/unix″ , nlst);

if (nlst[V_REPAGE_HI].n_value == 0) {
perror(″namelist on /usr/lib/boot/unix failed″) ;
exit(1);

}

kmem = open(″ /dev/kmem″ , O_RDWR, 0);
if (kmem < 0) {

perror(″failed open of /dev/kmem″) ;
exit(1);

}

read_values();

if (argc == 1) /* display current values */
{

display_values();
exit(0);

}

while ((c = getopt(argc, argv, ″Dt:r:d:h:p:m:w:e:f:a:s:k:″)) != EOF) {
if (c == ′ ? ′)
{

cmd_help();
exit(1);

}
if (c == ′ D′)
{

for (i=0; i<MAXPARMS; i++)
{

cmdtab[i].current = cmdtab[i].vdefault;
rdwrval(WRITE_MODE,i);

}
read_values();
display_values();
exit(0);

}

for(i=0; cmdtab[i].flag != c; i++);

if (cmdtab[i].flag == c && nlst[i].n_value){
value = atoi(optarg);

if (cmdtab[i].invalid)
(*cmdtab[i].invalid)(i, value);

cmdtab[i].current = value;

if (nlst[i].n_value)
rdwrval(WRITE_MODE,i);

}
}

display_values();
close(kmem);
exit(0);

}
static
cmd_help()
{

printf(″schedtune command\n″) ;
printf(″\n″) ;
(... skip ...)
printf(″-a n The maximum number of threads to be scanned in the priority list\n″) ;
printf(″ after the highest one\n″) ;
printf(″-s n The maximum number of threads to be scanned\n″) ;
printf(″-k n Skip or not threads which have been boost\n″) ;
printf(″\n″) ;

}

Chapter 4. Advanced AIX V4 Performance Tools 187

static
void
read_values()
{

rdwrval(READ_MODE,V_REPAGE_HI);
rdwrval(READ_MODE,V_REPAGE_PROC);
rdwrval(READ_MODE,V_WAIT_SECS);
rdwrval(READ_MODE,V_MIN_PROCESS);
rdwrval(READ_MODE,V_EXEMPT_SECS);
rdwrval(READ_MODE,PACEFORK);
rdwrval(READ_MODE,SCHED_D);
rdwrval(READ_MODE,SCHED_R);
rdwrval(READ_MODE,TIMESLICE);
rdwrval(READ_MODE,A_PRIODELTA);
rdwrval(READ_MODE,A_SCANDELTA);
rdwrval(READ_MODE,A_SKIPBOOSTED);

}
static
void
rdwrval(int mode, int index)
{
(... skip ...)
}

static
display_values()
{

char outbuf[120];

printf(″\n″) ;
printf(″ THRASH SUSP FORK SCHED

AFFINITY\n″) ;
printf(″-h -p -m -w -e -f -d -r -t

-a -s -k\n″) ;
printf(″SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE P

RIO SCAN SKIP\n″) ;

sprintf(outbuf,
″ %-d %-d %-d %-d %-d %-d %d %d

%d %d %d %d\n″ ,
cmdtab[V_REPAGE_HI].current,
cmdtab[V_REPAGE_PROC].current,
cmdtab[V_MIN_PROCESS].current,
cmdtab[V_WAIT_SECS].current,
cmdtab[V_EXEMPT_SECS].current,
cmdtab[PACEFORK].current,
cmdtab[SCHED_D].current,
cmdtab[SCHED_R].current,
cmdtab[TIMESLICE].current,
cmdtab[A_PRIODELTA].current,
cmdtab[A_SCANDELTA].current,
cmdtab[A_SKIPBOOSTED].current);

printf(outbuf);

return(0);
}

/* validation routines */
(... skip ...)

static
void
a_priodelta_x(int i, int value)
{

if (value < -2 || value > 127)
{

printf(″Invalidating -%c %d.\n″ , cmdtab[i].flag, value);
printf(″New value must be greater than zero and less than 127. S

pecify -1 to disable affinity.\n″) ;
exit(1);

}
}

188 RS/6000 Performance Tools in Focus

static
void
a_scandelta_x(int i, int value)
{

if (value < 0)
{

printf(″Invalidating -%c %d.\n″ , cmdtab[i].flag, value);
printf(″New value must be greater than or equal to zero\n″) ;
exit(1);

}
}

static
void
a_skipboosted_x(int i, int value)
{

if (value < 0 || value > 1)
{

printf(″Invalidating -%c %d.\n″ , cmdtab[i].flag, value);
printf(″New value must be zero or one\n″) ;
exit(1);

}
}

The highlighted lines show the modified/added lines in the program. The
cmd_help() function is truncated, but the lines that should be included are shown.
The cmd_help() function is called when the user runs schedtune -?. The -? option
displays information about the use of the command.

In this example, the option -a was chosen to change the affinity_priodelta
value, the -s for the affinity_scandelta and the -k for the affinity_skipboosted.
These new options are used in the same way as the other schedtune options.

The default value for the affinity_scandelta parameter is 3 multiplied by the
number of CPUs. For this example, a four-way SMP was used to test the
program, and that is the reason for the default value of 12 for this parameter.
You should change this value accordingly to your hardware configuration. The
default values are set in the struct cmdtab.

The rdwrval() routine was truncated because its code was not changed. Some
validation routines were not shown, but their code also remains the same.

4.11 The vmtune Command
The vmtune command can be used to modify the VMM parameters that control
the behavior of the memory-management subsystem. Some options are
available to alter the defaults for other AIX components. The executable for
vmtune is found in the /usr/samples/kernel directory. In AIX V3, this file is
located in the /usr/lpp/bos/samples directory.

Prior to AIX V4.2, a copy of the source code for vmtune was also shipped along
with the executable. But to recompile the program a kernel header file that is
needed is not available. So you are not able to make changes to vmtune,
although you have the source code.

Chapter 4. Advanced AIX V4 Performance Tools 189

Take Note!!

The vmtune command is in the samples directory because it is
VMM-implementation dependent. The vmtune code that accompanies each
release of AIX is tailored specifically to the VMM in that release. Running
vmtune from one release on a system with a different VMM release might
result in an operating system failure. It is also possible that the functions of
vmtune may change from release to release. It takes know-how and
experience to set vmtune parameters properly. Be sure that you have studied
the appropriate tuning sections before using vmtune to change system
parameters.

The vmtune command can only be executed by the root user. Changes made by
this tool last until the next reboot of the system. If a permanent change is
needed, an appropriate entry should be put in the /etc/inittab. For example:

schedtune:2:wait:/usr/samples/kernel/vmtune -P 50

In AIX V3, the path to the command vmtune should be altered to
/usr/ lpp/bos/samples.

Executing the vmtune command with no options:

vmtune
vmtune: current values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
3072 12288 2 8 120 128 524288 0

-M -w -k -c -b -B -u
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt
13108 1280 320 1 93 64 9

number of valid memory pages = 16384 maxperm=75.0% of real memory
maximum pinable=80.0% of real memory minperm=18.8% of real memory
number of file memory pages = 3004 numperm=18.3% of real memory

The output shows the current settings for the parameters. Each one of them will
be discussed in the next sections.

4.11.1 Tuning VMM Page Replacement
The Virtual Memory Manager (VMM) services memory requests from the system
and its applications. Virtual memory segments are partitioned in units called
pages; each page is either located in physical memory (RAM) or stored on disk
until it is needed. AIX uses virtual memory in order to address more memory
than is physically available in the system. The management of memory pages in
RAM or on disk is handled by the VMM.

In AIX, virtual memory segments are partitioned into 4096-byte units called
pages. Real memory is divided into 4096-byte page frames. The VMM has two
major functions:

• To manage the allocation of page frames

• To resolve references to virtual memory pages that are not currently in RAM
(stored in paging space) or do not yet exist

190 RS/6000 Performance Tools in Focus

In order to accomplish its task, the VMM maintains a free list of available page
frames. The VMM also uses a page-replacement algorithm to determine which
virtual memory pages currently in RAM can have their page frames reassigned
to the free list. Refer to the “The Page-Replacement Algorithm” on page 14.

AIX distinguishes between different types of memory segments:

• Persistent segments

They have a permanent storage location on disk. Files containing data or
executable programs are mapped to persistent segments. When a journaled
file system (JFS) file is opened and accessed, the file data is copied into
RAM.

• Working segments

They are transitory and exist only during their use by a process and have no
permanent disk storage location. Process stack and data regions are
mapped to working segments and to shared-library text segments. Pages of
working segments must also have disk storage locations to occupy when
they cannot be kept in real memory. The disk paging space is used for this
purpose. When a program exits, all of its working pages are placed back on
the free list immediately.

Computational memory consists of the pages that belong to working storage
segments or to program text segments. File memory consists of the remaining
pages.

VMM Thresholds: Several numerical thresholds define the objectives of the
VMM. When one of these is reached, the VMM takes appropriate action to bring
the state of memory back within bounds. The thresholds that can be altered by
the vmtune command are:

• minfree

Minimum acceptable number of real memory page frames in the free list.
When the size of the free list falls below this number, the VMM begins
stealing pages until the size of the free list reaches maxfree. The default
value of minfree is the maxfree value minus 8. The valid range is from 8 to
204800.

• maxfree

Maximum size to which the free list will grow by VMM page-stealing. The
size of the free list may exceed this number as a result of processes
terminating and freeing their working segment pages or the deletion of files
that have pages in memory. The default value is set by:

maxfree = minimum (number of memory pages/128, 128)

The valid range is from 16 to 204800, but must be greater than the number
specified by the minfree parameter by at least the value of maxpgahead (this
parameter is explained later in this chapter).

• minperm

If the percentage of real memory occupied by file pages falls below this
level, the page-replacement algorithm steals both file and computational
pages, regardless of repage rates. The default value is calculated by:

minperm (in pages) = ((number of memory frames) - 1024) * .2

Chapter 4. Advanced AIX V4 Performance Tools 191

The resulting percentage is always around 17 to 19 percent. Any value equal
to or greater than one is valid.

• maxperm

If the percentage of real memory occupied by file pages rises above this
level, the page-replacement algorithm steals only file pages. The default
value is calculated by:

maxperm (in pages) = ((number of memory frames) - 1024) * .8

The resulting percentage is always around 75 to 80 percent. Any value equal
to or greater than one is valid.

When the percentage of real memory occupied by file pages is between minperm
and maxperm, the VMM normally steals only file pages, but if the repaging rate for
file pages is higher than the repaging rate for computational pages,
computational pages are stolen as well.

The main intent of the page-replacement algorithm is to ensure that
computational pages are given fair treatment. For example, the sequential
reading of a long data file into memory should not cause the loss of program text
pages that are likely to be used again soon. The page-replacement algorithm
ensures that both types of pages get treated fairly, with a slight bias in favor of
computational pages.

Choosing minfree and maxfree Settings: The objectives in tuning these limits
are to ensure that any activity that has critical response time objectives can
always get the page frames it needs from the free list and that the system does
not experience unnecessarily high levels of I/O because of premature stealing of
pages to expand the free list.

If you have a short list of programs you want to run fast, you could investigate
their memory requirements with the svmon command and set minfree to the
largest memory requirement found. Refer to 3.2, “The svmon Command” on
page 71, for more information about the svmon command. This technique risks
being too conservative because not all of the pages that a process uses are
acquired in one burst.

Another way to investigate the memory requirements of a program is with the
vmstat command. If you run vmstat 1 while executing the program on an
otherwise idle system, you can see the memory being requested over time:

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 16506 3402 0 0 0 0 0 0 151 216 54 1 2 97 0
0 0 16506 3401 0 0 0 0 0 0 161 377 72 1 2 97 0
0 0 16506 3401 0 0 0 0 0 0 173 396 112 2 6 92 0
0 0 16506 3401 0 0 0 0 0 0 171 360 89 1 5 94 0
0 0 16506 3401 0 0 0 0 0 0 169 347 98 2 5 93 0
1 0 16762 3139 0 0 0 0 0 0 407 2322 921 28 69 3 0
2 0 17072 2829 0 0 0 0 0 0 496 2288 905 33 67 0 0
2 0 17318 2583 0 0 0 0 0 0 420 2318 889 30 70 0 0
3 0 17582 2319 0 0 0 0 0 0 425 2293 1011 24 76 0 0
3 1 17854 2047 0 0 0 0 0 0 584 2185 926 25 75 0 0
2 0 18111 1790 0 0 0 0 0 0 463 2249 1003 21 79 0 0
2 0 18358 1543 0 0 0 0 0 0 402 2264 996 30 70 0 0
3 0 18637 1264 0 0 0 0 0 0 443 2284 982 28 72 0 0
2 0 18916 985 0 0 0 0 0 0 438 2322 983 20 80 0 0
2 0 16506 3401 0 0 0 0 0 0 324 1807 690 25 56 19 0
0 0 16506 3401 0 0 0 0 0 0 191 335 111 2 11 87 0
0 0 16506 3401 0 0 0 0 0 0 200 850 180 2 18 80 0
0 0 16506 3401 0 0 0 0 0 0 175 427 107 4 7 89 0

192 RS/6000 Performance Tools in Focus

0 0 16506 3401 0 0 0 0 0 0 162 289 67 2 4 94 0
0 0 16506 3401 0 0 0 0 0 0 170 412 119 2 7 91 0

The highlighted fields show the difference in the active virtual memory when the
process was running. As you can see, the program requests each second
around 250 pages. The testing system was idle, but on a production
environment, the free list would be approximately 120, which is the default value
for the system in question. Raising the minfree value would improve the
execution time of this application on a production environment:

vmtune -f 270 -F 330
vmtune: current values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
2457 4915 2 8 120 128 524288 0

-M -w -k -c -b -B -u
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt
13108 1280 320 1 93 64 9

number of valid memory pages = 16384 maxperm=30.0% of real memory
maximum pinable=80.0% of real memory minperm=15.0% of real memory
number of file memory pages = 1911 numperm=11.7% of real memory

vmtune: new values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
2457 4915 2 8 270 330 524288 0

-M -w -k -c -b -B -u
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt
13108 1280 320 1 93 64 9

number of valid memory pages = 16384 maxperm=30.0% of real memory
maximum pinable=80.0% of real memory minperm=15.0% of real memory
number of file memory pages = 1911 numperm=11.7% of real memory

Notice that maxfree should be greater than minfree by at least 8 or by maxpgahead,
whichever is greater. Increasing the maxfree value above the minimum allowed
can help reduce calls to replenish the free list. But as a rule of thumb, keep the
difference between maxfree and minfree below 100.

Choosing minperm and maxperm Settings: AIX takes advantage of the varying
requirements for real memory by leaving in memory pages of files that have
been read or written. If the file pages are requested again before their page
frames are reassigned, this technique saves an I/O operation. These file pages
may be from local or remote (for example, NFS) file systems.

In a particular workload, it may be worthwhile to emphasize the avoidance of file
I/O. In another workload, keeping computational segment pages in memory may
be more important. To understand what the ratio is in the untuned state, use the
vmtune command with no arguments:

vmtune
vmtune: current values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
3072 12288 2 8 120 128 524288 0

Chapter 4. Advanced AIX V4 Performance Tools 193

-M -w -k -c -b -B -u
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt
13108 1280 320 1 93 64 9

number of valid memory pages = 16384 maxperm=75.0% of real memory
maximum pinable=80.0% of real memory minperm=18.8% of real memory
number of file memory pages = 1506 numperm=9.2% of real memory

The numperm gives the percentage number of file pages in memory, 9.2 percent.
If we know that our workload makes little use of recently read or written files, we
may want to constrain the amount of memory used for that purpose.

vmtune -p 15 -P 30
vmtune: current values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
3072 16384 2 8 120 128 524288 0

-M -w -k -c -b -B -u
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt
13108 1280 320 1 93 64 9

number of valid memory pages = 16384 maxperm=100.0% of real memory
maximum pinable=80.0% of real memory minperm=18.8% of real memory
number of file memory pages = 1794 numperm=10.9% of real memory

vmtune: new values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
2457 4915 2 8 120 128 524288 0

-M -w -k -c -b -B -u
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt
13108 1280 320 1 93 64 9

number of valid memory pages = 16384 maxperm=30.0% of real memory
maximum pinable=80.0% of real memory minperm=15.0% of real memory
number of file memory pages = 1794 numperm=10.9% of real memory

This would set minperm to 15 percent and maxperm to 30 percent of real memory.
It would ensure that the VMM would steal page frames only from file pages when
the ratio of file pages to total memory pages exceeds 30 percent.

Tuning for Maximum Caching of NFS Data: NFS does not have a data-caching
function, but VMM caches pages of NFS data just as it caches pages of disk data.
If a system is essentially a dedicated NFS server, it may be appropriate to permit
the VMM to use as much memory as necessary for data caching. This is
accomplished by setting the maxperm parameter to 100 percent with:

vmtune -P 100

4.11.2 Tuning Sequential Read-Ahead
The VMM tries to anticipate the future need for pages of a sequential file by
observing the pattern in which a program is accessing the file. When the
program accesses two successive pages of the file, the VMM assumes that the
program will continue to access the file sequentially, and the VMM schedules
additional sequential reads of the file. These reads are overlapped with the
program processing and will make the data available to the program sooner

194 RS/6000 Performance Tools in Focus

than if the VMM had waited for the program to access the next page before
initiating the I/O. The number of pages to be read ahead is determined by two
VMM thresholds:

• minpgahead

Number of pages read ahead when the VMM first detects the sequential
access pattern. If the program continues to access the file sequentially, the
next read ahead will be two times minpgahead, the next four times minpgahead,
and so on until the number of pages reaches maxpgahead. The default value
is 2. This value can range from 0 through 4096 and should be a power of 2.

• maxpgahead

Maximum number of pages the VMM will read ahead in a sequential file.
The default value is 8. This value can range from 0 through 4096. It should
be a power of 2 and should be greater than or equal to minpgahead.

Figure 14. Sequential Read Ahead

The first access to a file causes the first page to be read in. When the second
page is accessed, the minpgahead number of pages is read in. Subsequent

Chapter 4. Advanced AIX V4 Performance Tools 195

accesses of first-page read-ahead pages result in a doubling of the pages read
in, up to maxpgahead.

If the program deviates from the sequential-access pattern and accesses a page
of the file out of order, sequential read-ahead is terminated. It will be resumed
with minpgahead pages if the VMM detects a resumption of sequential access by
the program.

Occasions when tuning the sequential read-ahead feature (or turning it off) will
improve performance are rare. The minpgahead and maxpgahead values can be
changed with the vmtune command. If you are contemplating changing these
values, keep in mind:

• The values should be one of the set: 0, 1, 2, 4, 8, 16. The use of other values
may have adverse performance or functional effects.

• Values should be powers of 2 because of the doubling algorithm of the VMM.

• Values of maxpgahead greater than 16 (reads ahead of more then 64 KB)
exceed the capabilities of some disk device drivers.

• Higher values of maxpgahead can be used in systems where the sequential
performance of striped logical volumes is of high importance.

• A minpgahead value of 0 effectively defeats the mechanism. This may have
serious adverse consequences for performance.

• The default maxpgahead value of 8 yields the maximum possible sequential I/O
performance for currently supported disk drives.

• The ramp-up of the read-ahead value from minpgahead to maxpgahead is quick
enough that for most file sizes there would be no advantage to increasing
minpgahead.

• The VMM currently only allows read ahead of 512 pages; so there is no use
in increasing maxpgahead above this value.

VMM page-ahead can be turned off by setting minpgahead to zero. This can be
useful in some cases where I/O is random, but the size of the I/Os cause the
read-ahead algorithm to take effect. Another case where turning off page-ahead
is useful is in the case of NFS reads on files that are locked; on these types of
files, read-ahead pages are typically flushed by NFS so that reading ahead is a
waste of time.

Tuning for Striped Logical Volume I/O: In benchmarks, the following techniques
have yielded the highest levels of sequential I/O throughput:

• Stripe unit size of 64 KB.

• max_coalesce of 64 KB, which is the default value. This parameter limits the
largest request, in terms of data transmitted, that the SCSI device driver will
build (cannot be altered with vmtune). This is equal to the stripe-unit size.

• minpgahead of 2.

• maxpgahead of 16 times the number of disk drives. This causes page-ahead to
be done in units of the stripe-unit size (64 KB) times the number of disk
drives, resulting in the reading of one stripe unit from each disk drive for
each read-ahead operation.

• I/O requests for 64 KB times the number of disk drives. This is equal to the
maxpgahead value.

196 RS/6000 Performance Tools in Focus

• Modify maxfree to accommodate the change in maxpgahead. The maxfree value
should be greater than minfree by at least 8 or maxpgahead, whichever is
greater.

• 64-byte aligned I/O buffers. If the logical volume will occupy physical drives
that are connected to two or more disk adapters, the I/O buffers used should
be allocated on 64-byte boundaries. This avoids having the LVM serialize
the I/Os to the different disks. The following code would yield a
64-byte-aligned buffer pointer:

char *buffer;
buffer = malloc(MAXBLKSIZE+64);
buffer = ((int)buffer + 64) & ¬0x3f;

The vmtune syntax to accomplish the above recommendations could be:

vmtune -r 2 -R 48 -F 168
vmtune: current values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
3072 12288 2 8 120 128 524288 0

-M -w -k -c -b -B -u
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt
13108 1024 256 1 93 64 9

number of valid memory pages = 16384 maxperm=75.0% of real memory
maximum pinable=80.0% of real memory minperm=18.8% of real memory
number of file memory pages = 2295 numperm=14.0% of real memory

vmtune: new values:
-p -P -r -R -f -F -N -W

minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
3072 12288 2 48 120 168 524288 0

-M -w -k -c -b -B -u
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt
13108 1024 256 1 93 64 9

number of valid memory pages = 16384 maxperm=75.0% of real memory
maximum pinable=80.0% of real memory minperm=18.8% of real memory
number of file memory pages = 2295 numperm=14.0% of real memory

For this example, consider a striped logical volume spread across three physical
volumes. The -r option sets the minpgahead value to 2 (default value). The -R
option changes the value of maxpgahead to 48 (16 * number of disk drives). The -F
option is used to increase maxfree in order to accommodate the new value for
maxpgahead.

• lvm_bufcnt

If the striped logical volumes are on raw logical volumes and writes larger
than 1.125 MB are being done to these striped raw logical volumes,
increasing the lvm_bufcnt parameter of vmtune might increase throughput of
the write activity. This parameter specifies the number of LVM buffers for
raw physical I/Os. It would take very large I/O combined with very fast I/O
devices to cause the bottleneck to be the LVM layer. The default value is 9,
and the valid range is between 1 and 64. It can be changed with the -u
option and is only available in AIX V4.

Chapter 4. Advanced AIX V4 Performance Tools 197

4.11.3 Tuning Write-Behind
Write-behind involves asynchronously writing modified pages in memory to disk
rather than waiting for the syncd daemon to flush the pages to disk. There are
two types of write-behind: sequential and random. Random write-behind was
introduced in AIX V4.1.3, while sequential write-behind has always been
available.

Sequential write-behind initiates I/O for pages if the VMM detects that writing is
sequential. In order to increase write performance, limit the number of dirty file
pages in memory, reduce system overhead, and minimize disk fragmentation,
the file system divides each file into 16-KB partitions, or four pages. Each of
these partitions is called a cluster. The pages of a given partition are not written
to disk until the program writes the first byte of the next 16-KB partition. At that
point, the file system forces the four dirty pages of the first partition to be written
to disk. This helps preventing I/O bottlenecks and fragmentation of the file. The
pages of data remain in memory until their frames are reused, at which point no
additional I/O is required. If a program accesses any of the pages before their
frames are reused, again no I/O is required.

• numclust

The numclust parameter, which can be changed with the -c option from
vmtune, can be used to specify the number of 16-KB clusters to be processed
by the sequential write-behind algorithm. The default value is 1, and any
integer greater than 0 is valid. Increasing numclust results in delaying the
write-behind algorithm and may result in better sequential write performance
on devices that support very fast writes. Setting the value to a very high
number like 500000 will essentially defeat the write-behind algorithm.

If a large number of dirty file pages remain in memory and do not get reused,
the syncd daemon writes them to disk, which might result in abnormal disk
utilization. To distribute the I/O activity more efficiently across the workload,
random write-behind can be turned on to tell the system how many pages to
keep in memory before writing them to disk. This causes pages to be written to
disk before the syncd daemon runs; thus, the I/O is spread more evenly
throughout the workload.

• maxrandwrt

The maxrandwrt parameter, which can be changed with the -W option from
vmtune, can be used to specify a threshold (in 4-KB pages) for random writes
to be accumulated in memory before these pages are written to disk via the
write-behind algorithm. This threshold is on a per-file basis. The default
value is 0, which disables random write-behind. By enabling random
write-behind (a typical value might be 128), applications that make heavy use
of random writes can get better performance due to less of a dependence on
the syncd daemon to force writes out to disk.

The vmstat command can be used to verify if the system could benefit from the
write-behind algorithm. If the output shows high page outs from vmstat -s and
I/O wait spikes on regular vmstat intervals (usually when the syncd daemon is
writing pages to disk), adjusting the maxrandwrt value will help spread the I/O
more efficiently. Refer to 2.1, “The vmstat Command” on page 7, for more
information on the vmstat command.

Note that some applications may degrade their performance due to write-behind,
such as database index creations. In these cases, it may be beneficial to disable

198 RS/6000 Performance Tools in Focus

write-behind before creating database indexes and then reenabling write-behind
after the indexes are created.

4.11.4 Tuning Paging-Space Thresholds
There are two parameters that set the thresholds of when the system paging
space is running low that can be set through vmtune:

• npswarn

Specifies the number of free paging-space pages at which AIX begins
sending the SIGDANGER signal to processes. If the npswarn threshold is
reached and a process is handling this signal, the process can choose to
ignore it or do some other action like exit or free-up memory using
disclaim(). The default value in AIX V3 is 512 pages. The formula to
determine the default value in AIX V4 is:

npswarn = maximum (512, 4*npskill)

The value of npswarn has to be greater than zero and less than the total
number of paging space pages on the system. It can be changed with option
-w from vmtune.

• npskill

Specifies the number of free paging-space pages at which AIX begins killing

processes. If the npskill threshold is reached, then the current policy is to
send a SIGKILL signal to the youngest process; this policy has changed over
AIX releases and may be enhanced in the future. Processes that are
handling SIGDANGER or processes that are using the early page space
allocation (paging space is allocated as soon as memory is requested) are
exempt from being killed. The default value in AIX V3 is 128 pages. The
formula to determine the default value of npskill in AIX V4 is:

npskill = maximum (64, number_of_paging_space_pages/128)

The npskill value has to be greater than zero and less than the total number
of paging space pages on the system. It can be changed with option -k from
vmtune.

4.11.5 Miscellaneous I/O Tuning Parameters
These are the other parameters that can be altered with the vmtune command:

• maxpin

Specifies the maximum percentage of real memory that can be pinned. The
default value is 80 percent. If this value is changed, the new value should
ensure that at least 4 MB of real memory will be left unpinned for use by the
kernel. The value for the maxpin parameter must be greater than one and
less than 100. The field maximum pinable at the end of the output of vmtune is
the maxpin value converted to a percentage. It can be changed with option
-M.

• numfsbufs

Specifies the number of file system bufstructs. The default value is 64 in AIX
V3. The current default in AIX V4 is 93 and it is dependent on the size of the
buf struct. This value must be greater than zero. Increasing this value will
help write performance for very large writes sizes (on devices that support
very fast writes). In order to enable this value, a file system has to be
unmounted and mounted again after changing the value with option -b.

Chapter 4. Advanced AIX V4 Performance Tools 199

• hd_pbuf_cnt

Controls the number of pbufs available to the LVM device driver. The pbufs
are pinned memory buffers used to hold I/O requests related to a journaled
file system. Do not set the value too high since it cannot be lowered without
a system reboot. The maximum value is 128. It can be changed with option
-B.

In AIX V3, one pbuf is required for each page being read or written. On
systems where large amounts of sequential I/O occurs, this can result in an
I/O bottleneck at the LVM layer waiting for pbufs to be freed. The default
value in AIX V3.2+ will be at least 64. Add 16 for each additional physical
disk with an open logical volume on it, excluding the first disk. For example,
a system with three disks will have 96 as the hd_pbuf_cnt value.

In AIX V4, a single pbuf is used for each sequential I/O request regardless of
the number of pages in that I/O. Therefore, it is harder to encounter this
type of bottleneck. The number of pbufs usually has a default value of 80
because of the way memory is requested.

• pd_npages

Specifies the number of pages that should be deleted in one chunk from
RAM when a file is deleted. Changing this value may only be beneficial to
real-time applications that delete files. By reducing the value of pd_npages, a
real-time application can get better response time since few number of
pages will be deleted before a process/thread is dispatched. The default
value is the largest possible file size divided by the page size (currently
4096); if the largest possible file size is 2 GB, then pd_npages is by default
524288. It can be changed with option -N. This option is only available in
AIX V4.

200 RS/6000 Performance Tools in Focus

Chapter 5. Performance Toolbox

This chapter describes the Performance Toolbox for AIX licensed product. The
purpose of this chapter is a brief introduction of the tool and its concepts. The
main focus is on the usage and customization of this tool.

5.1 Introduction
The Performance Toolbox (PTX) is a comprehensive tool for monitoring and
tuning system performance. PTX uses the client/server model to monitor local
and remote system performance with several graphical windows that are fully
user configurable. It is a Motif-based toolbox that includes 2D and 3D views of
performance statistics. Analysis and tuning facilities incorporate existing
performance tools into a menu-driven environment.

5.2 Performance Toolbox Concepts
PTX for AIX consists of two major components: the agent and the manager. The
agent consists of programs that run on the machine or machines you want to
monitor and its role is to obtain and filter performance statistics. The manager
has the tools to manipulate the data providing meaningful statistics such as:

• Monitoring of system resource statistics

• Analysis of system resource statistics

• Tuning of the systems performance parameters to balance the utilization of
fixed resources

The client/server implementation of PTX is an excellent aid to monitor and tune
the performance of various UNIX systems in a network environment from a
single graphics workstation.

Figure 15. The Performance Toolbox Environment

 Copyright IBM Corp. 1997 201

While you run the manager and the agent on the same machine, it is highly
recommended that the manager not run on the system to be monitored. This
will minimize the impact of running PTX on the system load and will give a true
indication of system performance. Be aware that the manager puts a significant
load on the system.

PTX major features are:

• Separately installable manager and agent components that allow a manager
to monitor multiple agents and an agent to supply data to multiple managers.

• HP-UX (V9.03), SunOS (V4.1.3) and Solaris (V2.3, V2.4 and V2.5) agents to
allow monitoring of performance data on OEM machines.

• Application programming interfaces (API) that allow programmers to access
local or remote data as well as to register custom data with the local agent.

• Ability to respond to SNMP requests and to send traps to an SNMP manager
(AIX agents only).

• Support for RS/6000 SP systems using the Performance Toolbox Parallel
Extensions Feature of the Parallel System Support Programs (PSSP) for
AIX/6000.

Performance Toolbox Parallel Extensions (PTPE) is a feature of PSSP 2.2 and is
used in conjunction with PTX to simplify the performance analysis and reduce
RS/6000 SP administrative overhead by organizing your SP nodes into reporting
groups. Each node sends performance data to a manager node, which performs
the administrative tasks for the group. It also provides the utilities to monitor,
store and retrieve performance data collected on RS/6000 SP nodes about their
resources, such as the switch, virtual shared disk and LoadLeveler.

5.3 Benefits of Using Performance Toolbox
There are a number of benefits derived from using PTX, including:

Monitoring System Performance: PTX/6000 provides an easy way of monitoring
your local as well as your remote systems, including the performance of the
network, which is very important in the SP environment. In network client/server
environments, the performance of sets of systems working together can be as
important as the performance of an individual system. Likewise, the
performance of multiple applications working together can be as important as
that of an individual application. Therefore, it is very important to be able to get
the “big picture” by graphically viewing many correlated parameters
concurrently across multiple nodes in a network. PTX/6000 allows a user to
concurrently visualize the live (near real time) performance characteristics of the
clients and server applications across the network.

Analysis and Control of System Performance: By providing an umbrella for tools
that can be used to analyze performance data and control system resources, the
manager program xmperf assists the system administrator in keeping track of
available tools and in applying them in appropriate ways. This is done through a
customizable menu interface. Tools can be added to menus, either with fixed
sets of command line arguments to match specific situations or in a dialog
window. The menus of xmperf are preconfigured to include most of the
performance tools shipped as part of the tools option of the agent component.

202 RS/6000 Performance Tools in Focus

All performance-related tools already available in AIX can be accessed through
this interface. In addition, the ability to record load scenarios and play them
back in graphical windows at any desired speed gives ways of analyzing a
performance problem.

Features for analyzing a recording of performance data are provided by the
azizo program and its support programs. Recordings can be produced from the
monitoring programs xmperf and 3dmon during monitoring, or can be created by
the xmservd daemon. The xmservd daemon allows for recording with a minimum
of overhead. This makes constant recording possible so that you can analyze
performance problems after they occurred.

Finally, using the agent component filter filtd, you can define conditions that,
when met, could trigger any action you deem appropriate, including alerting
yourself and/or initiating corrective action without human intervention. This
facility is entirely configurable so that alarms and actions can be customized to
your installation.

Capacity Planning: If you can make your system simulate a future load
scenario, xmperf can be used to visualize the resulting performance of your
system. By simulating the load scenario on systems with more resources, such
as more memory or more disks, the result of increasing the resources can be
demonstrated.

Network Operation: The xmservd data supplier daemon can provide consumers
of performance statistics with a stream of data. Frequency and contents of each
packet of performance data are determined by the consumer program. Any
consumer program can access performance data from the local host and one or
more remote hosts. Any data supplier daemon can supply data to multiple
hosts.

SNMP Interface: By entering a single keyword in a configuration file, the data
supplier daemon can be told to export all its statistics to a local snmpd SNMP
agent. Users of an SNMP manager, such as IBM NetView, see the exported
statistical data as an extension of the set of data already available from snmpd.

Note : The SNMP multiplex interface is only available on IBM RS/6000 agents.

5.4 Manager
The manager component of the Performance Toolbox for AIX has the following
components:

xmperf The main interface program providing graphical display of local and
remote performance information in a menu interface to commands
of your choice.

3dmon A program that can monitor up to 576 statistics simultaneously and
display the statistics in a 3D graph.

3dplay A program to playback 3dmon recordings in a 3dmon-like view.

chmon Supplied as an executable and in source form. This program
allows monitoring of vital statistics from a character terminal.

exmon A program that allows monitoring of alarms generated by the filtd
daemon running on local or remote hosts.

Chapter 5. Performance Toolbox 203

azizo A program that allows you to analyze any recording of performance
data. It lets you zoom in on sections of the recording and provides
graphical as well as tabular views of the entire recording or
zoomed-in parts.

ptxtab A program that can format recording files for printed output.

ptxmerge This program allows you to merge up to 10 recording files into one.
For example, you could merge xmservd recordings from the client
and server sides of an application into one file to better correlate
the performance impact of the application on the two sides.

The xmperf Program: The xmperf program is the most comprehensive and
largest program in the manager component. It is an X Window-system-based
program developed with the OSF/Motif toolkit. The xmperf program allows you to
define monitoring environments to supervise the performance of the local AIX
system and remote AIX, SUN or HP-UX systems.

Each monitoring environment consists of a number of consoles. Consoles show
up as graphical windows on the display. Consoles, in turn, contain one or more
instruments, and each instrument can show one or more values that are
monitored.

The following terms are used to refer to the xmperf monitoring functions or
components:

• A Console is a graphical window containing instruments that monitor the
system. A console can have one or more instruments.

• An Instrument is a graphical view of monitored values, and each instrument
can show one or more values that are monitored. The presentation of the
values can be in form of graphs, gauges and so on.

• A Value is the unit to be monitored. It can be any piece of the system able
to be monitored, for example, CPU usage for user processes, disk transfer
rates or TCP bytes transmitted.

• Groups of Statistics are a functional part of the system. The values are
grouped in relation to the functional part of the system they belong to. For
example, CPU global user, kernel, wait and idle percentages are a Group of
CPU Statistics. However, an instrument can have values from several
groups.

5.5 Agent
The agent component is a collection of programs that make it possible for a host
to act as a provider of performance statistics across a network or locally. The
key program is the daemon xmservd. It supplies the statistics for the monitoring
environment through an API called System Performance Measurement Interface
(SPMI). The SPMI implementation allows one agent to supply data to many
managers, and one manager to request data from many agents. The SPMI
interface can be used for any dynamic data supplier program to export their
data.

Another agent’s program is filtd. This daemon is in charge of filtering data by
processing all previously defined expressions that define new statistics. This
feature allows to easily combine existing “raw” statistics into new statistics that
make more sense in the monitoring environment. The filtd also supplies exmon

204 RS/6000 Performance Tools in Focus

with the exceptions that occurred in the monitored system and allows you to
define alarms that trigger actions.

The xmservd daemon also acts as supplier of performance statistics to Simple
Network Management Protocol (SNMP) managers like NetView. This feature is
only available in RS/6000 systems.

5.6 Useful Information
The UNIX platforms that PTX/6000 supports are RS/6000, which includes the SMP
and SP environments, Sun (SunOS 4.1.3), Solaris (Sun Solaris 2.3, 2.4 and 2.5), or
HP (HP-UX 9.03) environments. You need to install the following filesets on
either the agent or manager as listed below for PTX 2.2:

perfagent.server on the agent

perfagent.tools on the agent

perfmgr.common on the manager

perfmgr.local on the manager, only if you want to monitor your
local system

perfmgr.network on the manager, only if you want to monitor remote
systems

To check that you have the filesets installed on either the agent or manager
machine:

For the manager: lslpp -l perfmgr.* will provide a list of the installed filesets.

For the agent: lslpp -l perfagent.* will provide a list of the installed filesets.

The fileset perfagent.server contains among other programs, the xmservd
daemon. This daemon must be installed and running on all monitored systems.
The fileset perfagent.tools contains all the performance tools such as rmss,
filemon, netpmon, svmon, lockstat, tprof, fileplace, and others. The perfmgr
filesets contain the graphical part of PTX. The commands xmperf and 3dmon are
part of this fileset.

Remote AIX, HP-UX 9.03, SunOS 4.1.3, and Solaris 2.3, 2.4 and 2.5 systems can
be monitored with the remote option. HP and Sun data-supplier daemons belong
to the agent.

Perfagent on Hewlett-Packard 9000/700: The agent code is tested on HP-UX 9.01
and 9.03. For proper disk statistics on HP-UX 9.02, patch number 3325 must be
applied. HP-UX 9.03 already includes this patch.

To install the agent, copy the file /usr/lpp/perfagent/hp/hpinstall.tar.Z to a
working directory on the HP system. While logged in as root, uncompress and
untar the file, and run the script /usr/bin/perfagent.install.scr.

The statistics available from the HP system are a subset of those available on
AIX systems. In some cases, the statistics are slightly different, though
comparable, to the AIX statistics. The agent code for HP 9000/700 series
machines is not guaranteed to work on MP systems, but probably will.

Chapter 5. Performance Toolbox 205

Perfagent on Hewlett-Packard 9000/800: The agent code is developed on HP-UX
9.00. The code has not been through a formal test cycle and is shipped as-is.

To install, copy the file /usr/lpp/perfagent/hp/hp800install.tar.Z to a working
directory on the HP system. While logged in as root, uncompress and untar the
file, and run the script /usr/bin/perfagent.install.scr.

The statistics available from the HP system are a subset of those available on
AIX systems. In some cases, the statistics are slightly different, though
comparable, to the AIX statistics. The agent code for HP 9000/800 series
machines has been tested on a two-processor MP system.

If the HP 9000/800 machine has a remote file system hard-mounted via NFS and
that remote file system is unreachable, the SPMI interface may not initialize
properly. Attempts to run any program using the SPMI may cause the program
to hang and common shared memory to be only partly initialized. The only
known way to cope with this is to clean the shared memory areas and remove
the unresolved mount or make the remote file system accessible; then retry the
program.

Perfagent on Sun SPARCstations: The following versions of Perfagent are
available for Sun Microsystem’s SPARCstations and SPARCservers. For each
version, the corresponding compressed tar file is listed, and the type of system
that was used to develop the version:

Table 4. Table of Perfagents for Sun SPARCstations

Because of the changes to the kernel and libraries between versions of Solaris,
you must install the correct version to get correct results. Remember that a
Solaris 2.5 system responds to ″uname -a″ with a message like:

 SunOS <hostname> 5.5 Generic sun4m sparc SUNW,SPARCstation-10

The agent code was developed to run on SMP (multiprocessor) systems, but has
not been tested on such systems. IBM does not guarantee it will run, but it
probably will.

To install, copy the appropriate file from the /usr/lpp/perfagent/sun directory to a
working directory on the Sun system. While logged in as root, uncompress and
untar the file, and run the script:

/usr/bin/perfagent.install.scr

The statistics available from the Sun system are a subset of those available on
AIX systems. In some cases, the statistics are slightly different though
comparable to the AIX statistics.

The xmservd daemon on a SunOS 4.1.3 system is NOT capable of recording
xmservd statistics locally. If you specify a path name that begins with
DDS/IBM/XMservd in the /etc/perf/xmservd.cf recording configuration file, the

206 RS/6000 Performance Tools in Focus

xmservd daemon will abort with a segmentation fault. This restriction doesn ′ t
apply to the agent running under Solaris.

On Solaris platforms, LOCAL data-consumer programs may be interrupted while
processing a SIGALRM signal. Such programs should issue a signal(SIGALRM,
SIG_IGN) immediately after getting control in their timer signal-handler function
and reissue the signal to what it was before exiting the timer signal-handling
function. For an example of this, see the shipped sample program
/usr/samples/perfagent/server/lchmon.c. The timer signal-handling function is
feeding().

On Solaris 2.3, a data-supplier program can′ t issue the SpmiDdsInit call more
than once. This seems to be related to the peculiar way the kstat_open() and
kstat_close() functions are implemented and may be fixed in some patch to the
operating system.

5.7 Using Performance Toolbox
In many cases, performance management starts at a high level and then zooms
in on problem areas when they are reported, generally known as the ″Top-down″
approach or methodology. PTX/6000 is implemented in such a way that it can
take advantage of this methodology, which will become clear as you go through
the various facilities of PTX/6000. It is advisable to start with the default
consoles provided, and as you become familiar with the product, you could start
designing your own consoles.

The performance manager component of PTX/6000 can be started from the
command line by entering the xmperf command or xmperf -h <hostname> if you
want to monitor your system from a remote host. The two windows as shown
below will appear on your screen. These windows are the manager main
window and a console of which the name would be prefixed with your hostname.
In this case, it was named ah6000a: Mini Monitor, ah6000a being the hostname in
this case.

Chapter 5. Performance Toolbox 207

Figure 16. AIX Performance Toolbox Init ial Screen

5.7.1 Manager Main Window
At the top of the xmperf main window is a menu bar that provides access to six
pull-down menus.

File The menu from where you can exit xmperf, save your changes, start a
playback, or refresh the host list.

Monitor The menu from where you open, close or create new consoles.
Analysis The first of the three tools menus from where commands can be

executed. The menu and the tools are customizable, and it is
included for commands that analyze performance. Each option has
extensive help menus associated with it, and you are encouraged to
use them.

Controls The second of the three tools menus from where commands can be
executed. This menu has a fixed menu item that creates a list of
processes in the local system. The rest of the menu is fully
customizable, and it is intended to be used for commands that
influence the performance of your RS/6000. Each option has
extensive help menus associated with it, and you are encouraged to
use them.

Utilities The last of the three tools menus from where commands can be
executed. This menu has a fixed menu item that creates a list of
processes on a remote system that you select. The rest of the menu
is customizable, and it is intended to be used for miscellaneous tools
and commands. The tools are customizable as well.

208 RS/6000 Performance Tools in Focus

Help Provides online help about PTX/6000 and its utilities.

From the main menu, you can observe the names and syntax of the commands
that are executed. The output will be presented in a scrollable window so that
you can scroll back to see the complete output report, if any.

The console on the right-hand side of the main menu displays the CPU
consumption (kernel, wait, user), the network view with the token-ring activity,
TCP and UDP activity, the page-space utilization, page-ins, the run and swap
queues, and how busy the disks are. These are defined in the configuration file
xmperf.cf. You can add or delete the variables easily with the Edit Console
option of your console window.

5.7.2 Creating a New Console
PTX provides predefined consoles for monitoring your UP or SMP system. You
could either add a new console or use the skeleton consoles provided by PTX
and modify those to suite your needs. In this example, the Add New Console
option is used to create a console to monitor CPU statistics on a four-way SMP
system.

Figure 17. Creating a New Console (Step 1)

Select the Monitor pull-down menu to start adding a new console.

• The Instantiate Skeleton option contains console skeletons of the most
common values used for performance monitoring grouped by categories.
Each of these predefined consoles can be modified, and they are an easy
and fast way to build a console.

• The Add New Console option lets you build a new console from scratch. You
have to create your own instruments by selecting the system variables you
want to see in the console.

Chapter 5. Performance Toolbox 209

Select the Add New Console option and you will get a subwindow inviting you to
enter a console name. Give a meaningful name to your console instead of the
default name. The default console name is built using the current time and date.

Figure 18. Creating a New Console (Step 2)

Click on the Proceed button to continue; you will then get another blank window.
Use the Edit Console pull-down menu and select Add Local Instrument .

210 RS/6000 Performance Tools in Focus

Figure 19. Creating a New Console (Step 3)

• Add Local Instrument means you are going to create a console that monitors
your local system (the system where xmperf is running).

• Add Remote Instrument means you are going to monitor a remote host; the
program will ask you to provide the hostname. This host must have xmservd
running.

Note: The remote host can be any UP, SP or SMP RS/6000 system. As
mentioned earlier, there are also xmservd versions for HP-UX, SunOS, and
Solaris.

Having selected Add Local Instrument , you will get the following screen that will
invite you to select the statistics you want to monitor within your console.

Chapter 5. Performance Toolbox 211

Figure 20. Creating a New Console (Step 4)

• This screen shows the whole set of statistics groups. Each group has
variables that are common within a specific function of the system (CPU,
disk, memory, TCP/IP, NFS, and so on).

• This is the sample list of the first level of data available. Whenever the
name of the value is followed by ’...’, it means there is another window
behind this one to select the fi nal name.

For this example, we want to monitor CPU statistics for an SMP; so we selected
Central processor statistics.

212 RS/6000 Performance Tools in Focus

Figure 21. Creating a New Console (Step 5)

As you can see, there are several subgroups within the CPU group. The gl...
subgroup has values that are global to the system and are the average for the
values of each CPU. The cpu# subgroups (one per processor) have the values
for a specific processor.

You can create a console with multiple CPU values by just selecting the first
cpu# subgroup and adding the values you want to see in the instrument for that
cpu#. Then go back to this screen and select another cpu# subgroup, and
repeat the selection of values, and so on...

For this example, we selected the CPUs one after the other. We will show you
cpu3 in the next figure.

Chapter 5. Performance Toolbox 213

Figure 22. Creating a New Console (Step 6)

When you select the cpu3 subgroup, a list of the values specific for that CPU is
shown. You can add a maximum of 24 values for each instrument; the
instrument can contain values from any group or subgroups. The instrument
creation finishes when you click on the End Selection button.

For example, you can create an instrument showing the CPU percentage time in
user mode for each processor in the same graph, or you can create several
instruments in the same console showing each one the CPU kernel, user and
wait percentages per processor. Each instrument represents a processor (cpu#).
It all depends on your needs.

In this example, we selected kernel, user and wait CPU values because we want
to show them all in one instrument per processor.

 Note

You have to select one value after the other. You cannot select all three in
the same window.

214 RS/6000 Performance Tools in Focus

Figure 23. Changing the Properties of a Value

After each selection from the screen on the previous page, the screen above is
displayed. You can then customize the properties of the value you selected,
such as the color and the type of graph you want (line, area, bars). You will be
able to set upper and lower limits, set a threshold, and set an alarm when this
threshold is reached. Once you are satisfied with the property values, select
OK .

Selecting OK takes you back to the screen on the previous page. You can then
select the next value, which brings you back to the screen above. When you
have selected all the values you require in your console, click on the End
Selection button, and a console similar the one on the next page will be
displayed.

Chapter 5. Performance Toolbox 215

Figure 24. Created New Console

In this console, there are eight instruments, each one belongs to a specific CPU.
Instruments in the first column compare CPU kernel, user and wait percentages
of each of the processors. Instruments in the second column compare the
number of readch, writech and syscall of the processors.

Since each instrument has values from a single subgroup, the graphic title
shows this subgroup name (cpu#).

 Hints

When you modify the xmperf setup, the changes get saved in the xmperf.cf file
in your home directory. If you have created a set of consoles that you wish
to use again, it is always advisable to make a copy of this file. You may also
edit this file using a text editor to change console parameters. This is
sometimes quicker than using the xmperf menus. For more details on
configuring and using Performance Toolbox, please refer to the manual,
Performance Toolbox for AIX: Guide and Reference, Version 1.2 and 2,
SC23-2625.

216 RS/6000 Performance Tools in Focus

5.7.3 Monitoring a Process
The procedure to create a process-specific console is similar to the procedure
that was used to create a new console.

• Select the Monitor pull-down menu to start adding a new console. (See
Figure 17 on page 209).

• Select the Add New Console option (See Figure 17 on page 209).

• When the Name of New Console menu is displayed, enter console name and
click on the Proceed button to continue. (See Figure 18 on page 210).

• From the Edit Console pull-down menu, select Add Local Instrument . (See
Figure 19 on page 211).

At this point, the procedure you need to follow is slightly different from the one
used to create the console to monitor the CPU statistics on an SMP system.

Figure 25. Monitoring a Process (Step 1)

The intention of this example is to see how a process-specific console shows
those values that are affected because the process runs across several
processors. At this point, select the Process statistics .

Chapter 5. Performance Toolbox 217

Figure 26. Monitoring a Process (Step 2)

This screen shows a list of all the processes that are running in the system. The
list does not reflect threads and does not show a CPU ID. It only shows the
process ID, the percentage of CPU usage, paging space and user ID who started
the process. Note that the %cpu value for the selected process is 340.4 percent.
This is so because the current process is a multithreaded process that runs
across four processors at the same time. PTX just adds the %cpu the process is
using in each of the processors and presents the total as the result.

218 RS/6000 Performance Tools in Focus

Figure 27. Monitoring a Process (Step 3)

The CPU percentage values are the ones we want to see in this example, and
they are SMP related.

After selecting the value you wish to display in your console, in the example
above we selected usercpu , a screen similar to Figure 23 on page 215 is
displayed. This screen allows you to customize the properties of the value you
selected, such as the color and the type of graph you want (line, area, bars).
You will be able to set upper and lower limits, set a threshold, and set an alarm
when this threshold is reached. Once you are satisfied with the property values,
select OK .

Selecting usercpu and kerncpu and customizing their properties gives you a
console similar to the one on the next page.

Chapter 5. Performance Toolbox 219

Figure 28. Monitoring a Process (Step 4)

After the CPU percentage values have been selected, the system creates the
graph, but the default range is 0-100 percent. Since this process is using 340
percent of the system, the graph would not show a correct draw of the values.
You have to change the range of these values to be 0-400 percent, or 0 -
(number of processors * 100).

 Hints

How do you change the range of the values? Simply move the mouse pointer
into the graph area. Click your left mouse button. A dotted box appears
around the graph area. Select the Edit Value item; then select the Change
Value item. For more details, see chapter 3, Changing the Properties of a
Value in the Performance Toolbox for AIX: Guide and Reference, Version 1.2
and 2, SC23-2625.

5.7.4 Monitoring an SMP with 3dmon
The 3dmon monitor provides a quick method of producing statistics about your
system in a three-dimensional graphical view.

This monitor may be invoked by going to the Utilities menu in the main xmperf
window. Inside this menu, you will find both the 3-D Monitor, Single Host and
3-D Monitor, Multiple Hosts submenus.

Once you have selected 3-D Monitor, Single Host from the Utilities pull-down
menu, you will see the following screen:

220 RS/6000 Performance Tools in Focus

Figure 29. 3-D Monitor Selection Menu

At this step, you can select resources you want to monitor and change the
sampling interval. If you select Local Processors (CPUs) , you will then see the
following screen:

Chapter 5. Performance Toolbox 221

Figure 30. 3dmon Output on a Four-Way SMP

Note: If you cannot read the values behind the first towers corresponding to the
user activity, you can move any monitored value to the front by clicking on the
name of that value. For example, if you want to read the kern values for all the
processors, you can click on kern. It will then move to the first position.

5.7.5 Monitoring Multiple Hosts with 3dmon
This monitor may be invoked by going to the Utilities menu in the main xmperf
menu. Inside this menu, you will find both the 3-D Monitor, Single Host and 3-D
Monitor, Multiple Hosts submenus.

Once you have selected 3-D Monitor, Multiple Host from the Utilities pull-down
menu, you will see the following screen:

222 RS/6000 Performance Tools in Focus

Figure 31. Configuration and Til ing

This screen allows you to pick any of the remote configuration sets supplied in
the sample configuration file for 3dmon. Only one set can be selected at a time,
but each invocation of 3dmon may use a different set. Sets that are marked as
(dual) provide you with the opportunity to select from two selection lists. You
can either accept the defaults or select the configuration or tiling options that
you require. Click on the Proceed button. The 3Dmon on host <hostname>
screen as shown below and an Inviting Data Suppliers screen will be displayed.
After a few seconds, the Inviting Data Suppliers screen disappears, and the
3Dmon on host <hostname> screen is displayed with the hostnames and IP
addresses that you can select for monitoring.

Chapter 5. Performance Toolbox 223

Figure 32. Host Selection

Note: As you can see, six hosts have been selected. Five of them are grouped
together, and the last one is at the bottom of the list. Selecting the top five is
very easy; all you need to do is hold the left mouse button and move the mouse
pointer down to the fifth hostname, then release the left mouse button. To select
the last hostname, hold the Ctrl key, move the mouse pointer to the last
hostname and click your left mouse button.

 Hints

Always use the Ctrl key and the left mouse button after your first selection if
you are going to select more than one hostname, and one or more
hostnames are to be skipped between the ones you are selecting.

Click on the Click here when selection complete button, and the following screen
is displayed:

224 RS/6000 Performance Tools in Focus

Figure 33. Multiple Hosts 3dmon Graph

When this graph was first displayed, the Mem/Virt/steal and Syscall/total values
were not the first and second row of towers as shown above. By clicking on
each of those values, they were moved to the first and second row. See note
under Figure 30 on page 222. No values were displayed for the itsosmp system
because the system was not available during this time.

5.8 Investigating Performance Problems
In the example above, there is a big difference between the Syscall/total value
for host ah6000a and the other hosts. Also the Mem/Virt/steal value is not zero.
This may indicate that a performance problem exists on host ah6000a. You need
to obtain more information about host ah6000a in order to identify the nature of
the problem. The Local System Monitor will provide more information about host
ah6000a.

Assuming ah6000a is your local system, this is how you would get to the Local
System Monitor of ah6000a.

• Select the Monitor pull-down menu from the main xmperf menu.
• Select the Local System Monitor option. See Figure 17 on page 209.

If you need to get to the Local System Monitor of a remote system, this is the
procedure you need to follow:

• Select the Monitor pull-down menu from the main xmperf menu.
• Select Instantiate Skeleton from the Monitor pull-down menu.

Chapter 5. Performance Toolbox 225

• Select S Single-host Monitor option.
• Select the required host from Wildcard Selection menu.
• Click on Done , and then click on Accept Selection .

Figure 34. Local System Monitor Console

The graphs above provide much more information about host ah6000a. The CPU
instrument (top on the left), the disk busy instrument (second on the left), and the
paging/memory instrument (top on the right) are of most interest here.
Unfortunately, not all the full value names are displayed on the graphs.
However, you can click on Edit Value , then click on Change Value on the
pull-down menu that is displayed, and the full value names will be displayed.

The CPU instrument compares CPU kernel, user and wait percentages of the
processor. Notice that the kernel and user values are using most of the CPU
cycles, with the wait value being zero. This could indicate that you may have a
CPU-related performance problem.

If you look at the disk busy instrument and the paging/memory instrument, you
will see that at the end of the disk busy instrument, you have some disk activity
on hdisk0 at the same time there is some paging activity (Mem/Virt/pgspgout) in
the paging/memory instrument. If you look closely at the paging/memory
instrument, you can see the line graph just above the vertical bars

226 RS/6000 Performance Tools in Focus

(Mem/Real/%free) near the end of the instrument. This is the paging activity.
Notice how the free memory (Mem/Real/%free) is decreasing, and paging activity
is commencing. This indicates that you might have a memory-related
performance problem.

In order to identify which programs could be causing the problem, you need to
have a look at the running processes.

Select Utilities from the main xmperf menu. Then select 3D-Monitor, Single Host
from the Utilities pull-down menu, and the same screen as Figure 29 on
page 221 is displayed. Select Local Processes , and press the Proceed button.
A screen similar to the one below is displayed.

Figure 35. Select Host Processes

This graph displays all the local processes that are executing on your system
with the most CPU-intensive process at the top of the list. The list does not
reflect threads and does not show a CPU ID. It only shows the process ID, the
percentage of CPU usage, paging space, and user ID who started the process.
In our example, we have selected the four most CPU-intensive processes for
further investigation. Click on Click here when selection complete , and the
following screen is displayed:

Chapter 5. Performance Toolbox 227

Figure 36. Initial 3dmon Graph of CPU-Intensive Processes

The two processes we are interested in are cpubound and peatmem.

Let’s have a look at the process cpubound. It is consuming much more CPU time
than any of the other processes. This in itself is not really a problem; however if
you look at the CPU values from this graph together with the CPU values from
the Local System Monitor console, where a zero wait time was displayed, you
could have a looping program. Let’s use the vmstat command to confirm that
cpubound is looping. The vmstat output is in Figure 37 on page 229.

Pay particular attention to the idle (id) and wait (wa) values. If CPU is 100
percent busy (that is, 0 percent idle and 0 percent wait) for an extended period,
there is a good chance that the cpubound program is in an infinite loop.

The vmstat command can be executed from the PTX main menu.

From the main xmperf window, select Analysis ; from the pull-down menu that is
displayed select Virtual Memory Analysis , and then select vmstat Monitor . On
the vmstat Monitor pop-up menu, you can accept the defaults or change the
interval value and number of samples as required and click on Proceed . A
screen similar to the one in Figure 37 on page 229 will be displayed. See 2.1.1,
“CPU Bound” on page 7, for more detail about vmstat output fields.

228 RS/6000 Performance Tools in Focus

� �
kthr memory page faults cpu disk xfer
----- ----------- ------------------------ ------------ ----------- -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa 1 2 3 4
0 0 13618 535 0 0 0 1 7 0 169 34357 295 10 28 60 2 0 2 0
1 0 13622 529 0 0 0 0 0 0 238 90625 2166 19 81 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 207 87476 2599 24 76 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 153 116034 116 16 84 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 126 117427 35 13 87 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 128 117274 35 13 87 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 123 117430 35 14 86 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 122 118332 35 13 87 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 124 117610 35 18 82 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 126 117274 36 16 84 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 125 117190 34 16 84 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 135 116697 37 13 87 0 0 0 5 0
1 0 13626 525 0 0 0 0 0 0 129 117616 36 14 86 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 128 117216 36 13 87 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 126 117356 36 15 85 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 129 117883 35 13 87 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 128 117821 35 14 86 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 130 117304 35 14 86 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 132 117130 34 15 85 0 0 0 0 0
1 0 13626 525 0 0 0 0 0 0 129 117688 35 15 85 0 0 0 0 0� �

Figure 37. vmstat Output

The next process you look at is peatmem. The working memory segments for
process peatmem and process X are about the same size. However, their working
memory segment sizes are greater than the other processes displayed above.
You can then monitor the working memory segment of process X and more
particularly process peatmem as this is a user initiated process. After a few
minutes, compare the working memory segments of process X and process
peatmem to the initial values in Figure 36 on page 228. You can see this in
Figure 38 on page 230.

Chapter 5. Performance Toolbox 229

Figure 38. Final 3dmon Graph of CPU-Intensive Processes

Within a space of a few minutes, the working memory segment for process
peatmem has grown from 551 pages to 2135 pages. Remember that the Local
System Monitor showed us that during the memory segment growth of peatmem,
the free memory decreased so much that paging activity started. The growth of
the working memory segment for process peatmem is significant, and there is a
distinct possibility that process peatmem has a memory leak. See 2.1.2, “Memory
Bound” on page 10, for more details.

5.9 Customizing Performance Toolbox
A very useful feature of the Performance Toolbox is the ability to monitor the
system and react to specific situations. The filter daemon (filtd) allows you to
define:

• New statistics from existing ones through data reduction

• Alarms that are triggered by conditions you define, which can execute any
command you desire

5.9.1 Data Reduction and Alarms with filtd
To use the filtd daemon, you will need to work with the xmservd.res and filter.cf
files. There are sample versions of these files in /usr/lpp/perfagent. It is
recommended that you copy these files from /usr/lpp/perfagent to your home
directory or to /etc/perf for customization. When xmservd starts, it first checks
your home directory for these files. If it does not find them there, it checks

230 RS/6000 Performance Tools in Focus

/etc/perf for these files. If these files do not exist in /etc/perf, it then checks
/usr/lpp/perfagent.

Since filtd is a dynamic-data supplier program, you may want to always have it
running when the xmservd daemon runs. You can cause this to happen by
removing the comment character from the line below in the xmservd.res file.

supplier /usr/bin/filtd -p5

If you want the xmservd daemon to be started automatically as part of the boot
process, you can add the following two lines at the end of the /etc/rc.tcpip file:

/usr/bin/sleep 10
/usr/bin/xmpeek

The first line is only necessary when you intend to use the xmservd/SMUX
interface (used by IBM NetView) to export statistics to the local SNMP agent.
The sleep command makes sure that the start of the snmpd daemon is completed
before the xmservd daemon starts.

In the example below, we have created new statistics from existing statistics and
three alarms for demonstrations purposes. Use the xmpeek -l command to
obtain a list of all available statistics in order to create new ones. Figure 39
shows a partial listing of statistics on host ah6000a after executing the xmpeek -l
command:

� �
/ah6000a/CPU/ Central processor statistics
/ah6000a/CPU/gluser System-wide time executing in user mod
e (percent)
/ah6000a/CPU/glkern System-wide time executing in kernel m
ode (percent)
/ah6000a/CPU/glwait System-wide time waiting for IO (perce
nt)
/ah6000a/CPU/glidle System-wide time CPU is idle (percent)
. . .
/ah6000a/DDS/IBM/Filters/ Filters defined by DDS
/ah6000a/DDS/IBM/Filters/user Percent User CPU
/ah6000a/DDS/IBM/Filters/allcpu Percent CPU, excluding idl
e
/ah6000a/DDS/IBM/Filters/cpubusy cpubusy
/ah6000a/DDS/IBM/Filters/cpufree New line added to default
filter file
/ah6000a/DDS/IBM/Filters/rwratio Read/write ratio, all disk
s combined
/ah6000a/DDS/IBM/Filters/diskmax Busy percent - most busy d
isk
/ah6000a/DDS/IBM/Filters/diskmin Busy percent - least busy
disk
/ah6000a/DDS/IBM/Filters/diskavg Average disk busy percent
/ah6000a/DDS/IBM/Filters/readdistr Average disk reads in perc
ent of most busy disk
a� �

Figure 39. Partial Listing of Statistics

Copy the default filter.cf file from the /usr/lpp/perfagent directory to the /etc/perf
directory, and then add the modifications after the cpubusy entry as listed below.

Chapter 5. Performance Toolbox 231

cpubusy = CPU_gluser + CPU_glkern ″Line from default filter file″

cpufree = CPU_glwait + CPU_glidle ″New line added to default filter file″

@cpubusy:{TRAP22}{EXCEPTION} DDS_IBM_Filters_cpubusy > 80 \
DURATION 60 FREQUENCY 5 SEVERITY 0 \
″Test CPU busy″

@cpufree:{EXCEPTION} DDS_IBM_Filters_cpufree == 0 \
DURATION 60 FREQUENCY 5 SEVERITY 1 \
″Test CPU Not Idle″

@varfsfull:[aixterm -bg red -e ksh -c ″(banner Var Full,being increased;
read)″ ; / home/ausres03/increase_var]{EXCEPTION} FS_rootvg_hd9var_%totused > 95\
DURATION 60 FREQUENCY 5 SEVERITY 2 \
″Test var filesystem full″

The second line starting with cpufree creates a new statistic named cpufree that
is equal to CPU_glwait and CPU_glidle. Notice that the xmpeek output lists these
statistics as /ah6000a/CPU/glwait and /ah6000a/CPU/glidle. When we refer to the
statistics in the filter.cf file, we remove the hostname (in this case ah6000a) and
replace the ″/″ with ″_″. When the filter.cf file is used with the filtd daemon, the
newly created statistic will be included in the xmpeek output under Filters
defined by DDS. (See the cpufree statistic in Figure 39 on page 231.)

The third line starting with @cpubusy creates an exception named @cpubusy. What
happens here, is that as soon as DDS_IBM_Filters_cpubusy is greater than 80
percent for more than 60 seconds, the filtd daemon will inform xmservd daemon
that the condition was met. You can then use exmon to monitor these exceptions.
The TRAP action will, when the defined condition becomes true, produce an
SNMP trap that is passed on through xmservd daemon to snmpd daemon and
eventually to an SNMP manager such as IBM NetView. The keyword DURATION in
seconds is used to determine how long a condition must remain true before the
alarm is triggered. The keyword FREQUENCY in minutes is the time to wait before
checking the condition again after an alarm has been triggered. See the
Performance Toolbox for AIX: Guide and Reference, Version 1.2 and 2, SC23-2625
for more details about the TRAP, DURATION, FREQUENCY and SEVERITY keywords.

Line four is much the same as the third line except that line four does not
specify a TRAP. In line four, the newly created statistic cpufree is monitored.

In line five, the var filesystem is monitored to ensure that we are informed before
it reaches 100 percent utilization. As soon as FS_rootvg_hd9var is used more
than 95 percent for more than 60 seconds, the filtd daemon will inform the
xmservd daemon that the condition was met. The keyword DURATION in seconds, is
used to determine how long a condition must remain true before the alarm is
triggered. The keyword FREQUENCY in minutes is the time to wait before checking
the condition again after an alarm has been triggered. When the alarm is
triggered, the message in Figure 40 on page 233 will pop up on your console,
and the /var filesystem will be increased by ten percent.

The first portion of the @varfsfull exception, up to read, displays the pop-up
message, and /home/ausres03/increase_var executes the script, which increases
/var by ten percent.

232 RS/6000 Performance Tools in Focus

This is the Increase_var script
#
CURSIZE=`df | grep /var | awk ′ {print $2}′ `
ADDSIZE=`expr $CURSIZE / 10`
chfs -a size=+$ADDSIZE /var

Figure 40. Output From Alarm

Before you start the filtd daemon with the new filter.cf file, you have to ensure
that the filtd daemon is not running already. If it is running, kill it (don’t use
kill -9), use kill -15.

ps -ef|grep filtd
root 14544 17698 0 09:46:43 pts/0 0:00 filtd -f /home/ausres03/filter.cf
root 18992 17698 2 11:01:13 pts/0 0:00 grep filtd:

In this case, the filtd daemon was running; so kill it by executing the following
command:

kill -15 14544

Now you can start the filtd daemon with the new filter.cf file.

filtd -f /etc/perf/filter.cf &

If there are any errors in your filter.cf file, they will not be displayed on your
screen when you execute the above command. Therefore, you need to check
the filter.log# (latest log file) in the /etc/perf directory. If you have any errors,
correct them, then stop and start the filtd daemon again. Check to see that
your filtd daemon is running.

Chapter 5. Performance Toolbox 233

Let’s see how the new statistics and alarms that were created can be used.
First, create a new console including an instrument with the new statistic,
cpufree, and a predefined statistic, cpubusy. Secondly, use exmon to monitor the
alarms created above.

The procedure you need to follow to create a new console is the same as the
one to create the new console. Refer to 5.7.2, “Creating a New Console” on
page 209, if you have any problems following the instructions below:

Select the Monitor pull-down menu to start adding a new console.

Select the Add New Console option from the Monitor pull-down menu. Then
either enter the name of your new console or accept the default name and click
on Proceed .

A menu similar to Figure 19 on page 211 without the Edit Console pull-down
menu will be displayed. Select Edit Console . From the Edit Console pull-down
menu, select Add Local Instrument .

The Dynamic Data Supplier Statistics menu will be displayed. Select Dynamic
Data Supplier Statistics .

The IBM-defined Dynamic Data Suppliers menu will be displayed. Select
IBM-defined Dynamic Data Suppliers.

The Filters defined by the DDS menu will be displayed. Select Filters defined by
DDS.

From the Filters menu, first select cpubusy and a menu similar to Figure 23 on
page 215 is displayed. Here you can customize the properties of the values you
selected, such as the color and the type of graph you want (line, area, bars).
You will be able to set upper and lower limits, set a threshold, and set an alarm
when this threshold is reached.

When satisfied with the property values, select OK . This takes you back to the
Filters menu.

Then select cpufree from the Filters menu. Accept the default property values,
and select OK . This takes you back to the Filters menu.

From the Filter menu, click on the End Selection button, and a console similar to
Figure 41 on page 235 is displayed.

234 RS/6000 Performance Tools in Focus

Figure 41. An Instrument Using Filters

Let’s change the instrument style to a pie chart and increase the size of the pie
chart to make it easier to read.

Place your mouse pointer in the instrument and click your left mouse button. A
dotted box appears around the instrument. Select the Edit Console option.

Select Modify Instrument from the Edit Console pull-down menu.

Select Style & Stacking from the Modify Instrument pull-down menu.

Select Pie Chart and click on Proceed . The instrument style is now a pie chart.
To change the size of the instrument, select Edit Console again.

Select Resize Instrument from the Edit Console pull-down menu.

The instrument will disappear from the console and a dotted box with the box
size displayed in the top-left corner will appear in your console. Press the left
mouse button and move the mouse pointer to the required size. Release the left
mouse button, and the new sized instrument will appear in your console.

Chapter 5. Performance Toolbox 235

Figure 42. Pie Chart Using Filters

5.10 Monitoring Exceptions with exmon
The exception monitoring program, exmon, is designed to provide a convenient
facility for monitoring exceptions as they are detected. It works with the filtd
daemon that generates exceptions packets based upon alarm conditions defined
in the filtd configuration file (filter.cf). Just below Figure 39 on page 231 the
three exceptions we used in the example are shown. Let’s now have a look at
the exmon monitoring window after starting the filtd daemon with our filter.cf file.

From the main xmperf window, select Utilities ; then from the pull-down menu that
is displayed, select Exception Monitor. On the Exception Monitor pop-up menu,
click on Proceed . Select the host or hosts you wish to monitor on the Add Hosts
pop-up menu, and click on Click here when selection complete .

236 RS/6000 Performance Tools in Focus

Figure 43. The exmon Main Window

The filtd daemon together with the new filter.cf file is running on two hosts,
ah6000a and ah6000e. On host ah6000a, there are three different exceptions,
Sev 0, Sev 1 and Sev 2, and on host ah6000e there are two different exceptions,
Sev 0 and Sev 1. You need to look at your filter.cf file to understand what these
exceptions mean.

It is advisable to have one filter.cf file for all your hosts so that Sev 0 means the
same thing on all your hosts. These Sev column headings are not very helpful in
terms of describing what type of exceptions they represent. However, you are
able to change these column headings. In the /usr/lib/X11/app-defaults
directory, you will find the EXmon file, which you can modify. It is strongly
suggested that you backup the EXmon file before modifying it. Here is a copy of
the EXmon file used to obtain the exmon main window below:

exmon options
#
*GraphFont: -ibm-block-medium-r-normal--15-100-100-100-c-70-iso8859-1
*DrawArea.background: black
*DrawArea.foreground: white
*Foreground: black
*Background: grey

*RangeDisplay: true
*RangeColor1: green
*RangeColor2: yellow
*RangeColor3: red

Chapter 5. Performance Toolbox 237

*ValueRange1: 5
*ValueRange2: 10

*ValueColor0: blue
*ValueColor1: red
*ValueColor2: white
*ValueColor3: green
*ValueColor4: yellow
*ValueColor5: orange
*ValueColor6: grey
*ValueColor7: pink
*ValueColor8: magenta
*ValueColor9: GreenYellow
*ValueColor10: SkyBlue

*ExceptionText0: CPU H
*ExceptionText1: WIC l
*ExceptionText2: VAR F
*ExceptionText3: Sev 3
*ExceptionText4: Sev 4
*ExceptionText5: Sev 5
*ExceptionText6: Sev 6
*ExceptionText7: Sev 7
*ExceptionText8: Sev 8
*ExceptionText9: Sev 9
*ExceptionText10: Sev 10

Figure 44. Modified exmon Main Window

 1. The ExceptionText0 was changed from Sev 0 to CPU H.
 2. The ExceptionText1 was changed from Sev 1 to WIC L.

238 RS/6000 Performance Tools in Focus

 3. The ExceptionText2 was changed from Sev 2 to VAR F.

At least the column headings make some sense now, CPU H stands for CPU
usage is high. WIC L stands for CPU wait and CPU idle is zero. VAR F means
the /var filesystem is full.

If you move your mouse pointer to one of the hostnames in the exmon main
window and click your left mouse button, the following pop-up menu appears on
your screen.

Figure 45. Command Execution Pop-Up

If you select 3dmon Processes and click on OK, you will be presented with a
screen similar to Figure 35 on page 227, where all the local processes that are
executing on your system are displayed with the most CPU-intensive process at
the top of the list. You might then be able to determine which process or
processes are causing the problem. If you select xmperf , another main xmperf
window will be opened for you. If you select xmpeek , details similar to the ones
below will be displayed. The Performance Toolbox for AIX: Guide and Reference,
Version 1.2 and 2, SC23-2625 describes the output below in great detail.

Statistics for xmservd daemon on *** ah6000a ***

Instruments currently defined: 15
Instruments currently active: 3
Remote monitors currently known: 7

--Instruments--- Values Packets
Defined Active Active Sent Internet Address Port Hostname

 ------- ------- ------- ---------- ---------------- ----- ----------
13 1 15 16,234 9.3.1.113 1448 ah6000a
2 2 40 777 9.3.1.113 2298 ah6000a

 ------- ------- ------- ----------
15 3 55 17,011

If you select chmon , a screen similar to the one below will be displayed.

Chapter 5. Performance Toolbox 239

� �
Data Consumer API Remote Monitor for host Thu Feb 27 16:55:38 1997
CHMON Sample Program *** ah6000a *** Interval: 5 seconds

% CPU EVENTS/QUEUES FILE/TTY
Kernel 82.5 |####################### | Pswitch 292 Readch 15313
User 17.3 |##### | Syscall 106575 Writech 29
Wait 0.0 | | Reads 104938 Rawin 0
Idle 0.0 | | Writes 0 Ttyout 29

Forks 0 Igets 0
PAGING counts PAGING SPACE REAL MEM 64MB Execs 0 Namei 0
Faults 0 % Used 26.0 % Comp 75.0 Runqueue 1.0 Dirblk 0
Steals 0 % Free 73.9 % Noncomp 21.0 Swapqueue 0.0
Reclaim 0 Size,MB 192 % Client 16.0

PAGING page/s DISK Read Write % NETWORK Read Write
Pgspin 0 ACTIVITY KB/sec KB/sec Busy ACTIVITY KB/sec KB/sec
Pgspout 0 hdisk0 0.0 0.0 0.0 lo0 0.8 0.8
Pagein 0 hdisk1 0.0 0.0 0.0 tr0 0.0 0.0
Pageout 0 cd0 0.0 0.0 0.0
Sios 0� �

The chmon program allows you to display data on a character-based screen. The
default data displayed here are CPU, memory, paging, network activity, and
syscalls. The chmon program is a good example of using the data consumer (Rsi)
API, and the source code for this program can be found in /usr/samples/perfmgr.
This program can be modified to display any values you want or under any
format that you will find useful. The sample program refreshes the values on the
screen every few seconds, and the program will exit after two thousand
observations. You are able to terminate this program before it has done two
thousand observations by typing the letter q in its window.

It is also possible to start the chmon program from the command line, where you
can supply parameters such as interval in seconds between observations,
number of processes and the name of the host you would like to monitor.

5.11 Analyzing Recordings with the azizo Program
Recording files are binary files whose first record is a configuration record. This
record identifies the file as a recording file, names the source of the recording,
and states the version of the file. Recording files are created by one of the
agent or manager programs. They can be created by the xmperf and 3dmon
programs during monitoring, by the xmservd daemon at any time it is running, by
the a2ptx program from ASCII files that adhere to a certain format, or by the
ptxrlog program.

The ptxrlog program can produce recordings in either ASCII format, which
allows you to print the output or postprocess it with database or spreadsheet
programs, or with the a2ptx program to produce a standard Performance
Toolbox for AIX recording file, or it can produce a standard Performance Toolbox
for AIX recording file in binary format. If the ptxrlog program is executed in the
background, the list of statistics to record must be specified in a control file.
Below is a copy of a ptxrlog configuration file used to monitor the system for a
period of five hours and produce a standard Performance Toolbox for AIX
recording file in binary format.

240 RS/6000 Performance Tools in Focus

Ptxrlog.cf file
#
CPU/gluser
CPU/glkern
CPU/glwait
CPU/glidle
CPU/cpu0/syscall
Mem/Real/%free
Mem/Virt/pgrclm
Mem/Virt/pgspgin
Mem/Virt/pgspgout
PagSp/%totalfree
Disk/hdisk0/busy
Disk/hdisk1/busy
Proc/runque
Proc/swpque
end of Ptxrlog.cf file

Use the following ptxrlog command line:

ptxrlog -f /home/ausres03/ptxrlog.cf -r /home/ausres03/XmRec/R.ptxrlog.out -b
1205 -e 17.12 &

The recordings are written to /home/ausres03/XmRec/R.ptxrlog.out and started
at approximately 12 noon and stopped at approximately 5:12 pm. The
/home/ausres03/XmRec directory was used because this is the default directory
used by the azizo program to look for recording files. All recording files done
with the xmperf and 3dmon programs will start with ″R.″. The same naming
convention is used, which makes it easier to select the recording file after the
azizo program has been started. The -r flag specifies that the output from
ptxrlog goes to a binary recording file in standard recording file format. The
Performance Toolbox for AIX: Guide and Reference, Version 1.2 and 2, SC23-2625
describes the format of the ptxrlog command in great detail. Then the azizo
program is used to analyze the recording.

From the main xmperf window, select Utilities. Then select Analyzing Recordings
(azizo). The pop-up window shown below will appear on your screen.

Figure 46. Analyzing Recordings Pop-Up

You can either enter the name of the recording file to analyze on the Analyzing
Recordings (azizo) pop-up and click on Proceed, or just click on Proceed and
select the recording file later from the azizo main menu.

The azizo main window is shown below:

Chapter 5. Performance Toolbox 241

Figure 47. The azizo Main Window

Now move the mouse pointer to the Local Files icon, click on it, and the
recording files pop-up is displayed:

Figure 48. Recording Files Pop-Up Menu

242 RS/6000 Performance Tools in Focus

Select the ptxrlog recording file named R.ptxrlog.out and click on OK . The azizo
main graph window is displayed, and the azizo main window now contains the
metrics (list of statistics that were recorded) that were defined in the ptxrlog.cf
file. Just above the metrics, you will find information about the metric, such as
the style and ticks and the date and time of the recording.

First, the azizo main window is discussed, and then we move on to the azizo
main graph window.

Figure 49. The azizo Main Window

5.11.1 The azizo Main Window
The azizo main window is divided into three sections. They are from top to
bottom, the Actions section, the metrics selection window and the message
window. From the metrics section, you can drag-and-drop metrics to the Actions
section. To demonstrate how the drag-and-drop operation works, all the
CPU-related metrics will be removed from the azizo main window. For the
purpose of this exercise, we will assume we are looking at a memory-related
problem.

Move the mouse pointer anywhere in the block displaying the
/ah6000a/CPU/gluser metric, then press mouse button 2 (middle button). The
mouse pointer changes to a drag icon (a small metric icon). Hold the middle
mouse button down, move the drag icon to The Pit icon in the Actions section

Chapter 5. Performance Toolbox 243

and release the mouse button. The /ah6000a/CPU/gluser was removed from the
metrics selection window. Do the same with the /ah6000a/CPU/glkern,
/ah6000a/CPU/glwait, /ah6000a/CPU/glidle, and /ah6000a/CPU/cpu0/syscall
metrics. Now all the memory-related metrics are displayed in one window.

Note : As the CPU-related metrics were removed from the azizo main window,
they were automatically removed from the azizo graph window. The reverse
does not happen when the metrics are removed from the azizo graph window.

The data for the metrics that were removed has not been deleted from the
recording file /home/ausres03/XmRec/R.ptxrlog.out.

Figure 50. Main Window of azizo with Memory-Related Metrics

When you look at Figure 51 on page 245, it still contains all the metrics from the
ptxrlog recording because we want to show the same metric removal procedure
we did for the azizo main window.

5.11.2 The azizo Graph Window
The main graph is the principle viewing window of azizo. When azizo reads a
recording file, it always displays a top-level main graph that covers the entire
time interval of the recording file. The main graph has two sections. To the left
is a list of metrics that are included in the graph. The metric names are
displayed using the same color as used to draw the data. If the list of metrics is
longer than the window can display, a scroll bar allows you to scroll the list of

244 RS/6000 Performance Tools in Focus

metrics. On the right is the actual graphical display of the metrics data for the
time period covered by the graph. The drag-and-drop operations from the azizo
main graph window work with all the Action icons. The next page displays the
main graph of the ptxrlog recording.

Figure 51. The azizo Graph Window

The azizo main graph can look very busy if you are working with a large number
of metrics. It is much simpler to work with the azizo main graph if you have only
the metrics displayed that are related to a particular problem. In our case, we
are looking at a memory-related problem; so we will remove all the
non-memory-related metrics and then save these metrics in a filter file for later
use.

Move the mouse pointer to the first CPU metric in the list of metrics to the left of
the azizo main graph window. Press and hold the middle mouse button; then
move the drag icon to The Pit icon in the Actions section. The metric will be
removed from the list of metrics to the left of the azizo main graph window. At
the same time, the actual graphical display of the metric will be removed from
the graph area to the right of the azizo main graph window. Keep repeating this
procedure with the rest of the non-memory-related metrics until only
memory-related metrics are left.

If you accidently remove a metric that you did not intend to, you are able to add
this metric back again. You need to have the azizo main window and the azizo
main graph displayed. All you do is move your mouse pointer to the metric in

Chapter 5. Performance Toolbox 245

the azizo main window, press and hold the middle mouse button. Then move
the required metric to the graph area of the main graph window. The metric will
be added to the metric list and graph area.

This is what the azizo main graph window looks like after removing all the
non-memory-related metrics.

Figure 52. Filtered azizo Main Graph Window

It is much easier to work with this graph. All the metrics are displayed in this
window, and the graph is much easier to read. We have created a subset of the
recording file, and this is known as filtering when working with the azizo
program. Filtering can be done by reducing the time interval, by reducing the
number of metrics, or by reducing both the time interval and the number of
metrics. Now save the filtered recording in a file.

Move the mouse pointer to the graph area of the main graph window, press and
hold the middle mouse button. Then move the drag icon to the Filter icon in the
Actions section and release the mouse button. The filter dialog box pop-up
menu will be displayed.

246 RS/6000 Performance Tools in Focus

Figure 53. Filter Dialog Box

The filter dialog box has the default values for the lowest and the highest time
stamps to be included when data values are copied to the filtered output file.
You can change either time stamp to extend or reduce the time period covered
by the filtered output, as long as the time period covers at least two seconds.
The default file name for the filtered output is the source file with ″.filt″
appended. You can change the file name to anything you want. If the file exists,
you are asked whether you want to overwrite it. In our example, we accepted
the defaults and clicked on OK. The filtered recording file was saved.

5.11.3 Zooming-In on Main Graphs
The next thing you might want to do is select a period during the day when
performance was particularly bad. The azizo program gives you the ability to
zoom-in on subsections of a main graph. This is achieved by drawing an outline
in the main graph area and then selecting the type of zoom-in from a dialog
window. The outline around the area of interest would be shaped like a
rectangle.

In our case, the area of interest is the last hour of the recording. Draw the
outline by moving the mouse pointer to the 16:00 mark on the time scale. Then
press the left mouse button and keep it down while moving the mouse pointer to
the top right-hand corner of the graph. Release the left mouse button. The
zoom-in dialog box shown below will appear.

Chapter 5. Performance Toolbox 247

Figure 54. Zoom-In Dialog Box

Click on Keep Metrics to obtain the zoomed-in main graph. Rescan would have
included all the metrics from the original ptxrlog.out file, and this is not what we
want right now. The Help option will provide more information about the Keep
Metrics and Rescan. You now have a zoomed-in main graph that represents 23
percent of Figure 52 on page 246. When you are done with analyzing the main
graph, you could save it as a filter file. The procedure to do this is exactly the
same as the one on the previous page.

Figure 55. Zoomed-In Main Graph

248 RS/6000 Performance Tools in Focus

You could also delete the zoomed-in main graph by putting it in The Pit in the
Actions section. All you need to do is move the mouse pointer to the graph area
of the zoomed-in main graph. Press and hold the middle mouse button. Move
the drag icon to The Pit icon in the Actions section and release the mouse
button. The zoomed-in main graph window will be deleted from the screen. It is
not possible to remove the original azizo main graph in this way. When you
move the azizo main graph window to The Pit icon, the graph will disappear
from the azizo main graph window, but the window will remain.

It is also possible to obtain statistical information for the metrics of your
zoomed-in main graph or main graph window. You move the mouse pointer to
the graph area of the zoomed-in main graph. Press and hold the middle mouse
button. Move the drag icon to the Info icon in the Actions section, and release
the mouse button. Here is an example of the information window for a
zoomed-in main graph.

Figure 56. Information Window for a Zoomed-In Main Graph

Chapter 5. Performance Toolbox 249

5.11.4 Other Options
We have looked at a few of the actions that are available to you. You can
explore the rest of the actions by simply moving the mouse pointer to the graph
area of the zoomed-in main graph. Press and hold the middle mouse button.
Move the drag icon to any of the icons in the Actions section.

• The Config icon is used to save, retrieve, and delete customized views of
main graphs. The idea is that by saving a particular view, you can later use
it for viewing other recordings and display the graphs in a way that allows
you to immediately compare the data in the recordings.

• The Info icon is used to display summary information for either a single
metric or all metrics in a main graph or in the metrics selection window.

• The Print icon is where you drop objects you want to print. This will cause
either the ″Print box″ or the ″Report box″ to appear, depending on the object
you dropped.

• The View icon is used to change the way a given metric (or all metrics) are
plotted in any of the graphs where it appears. This is done by dragging a
metric’s object, a main graph, or the title of the metrics selection window to
the icon.

• The Scale icon is used to change the scale for one or more metrics in a main
graph. This is done by dragging an object to the icon.

• The Annotate icon is used to add or modify annotation text to a recording.
Annotation text is kept in a separate file, linked to the recording file by a
naming convention.

• The Pit icon is where you drop objects you no longer need. This will cause
the object to be removed from where you dragged it, but it will never cause
changes to the recording file. Removal of objects, thus, is only from the
viewing environment you are in. It is always possible to start over by
re-reading the recording file.

5.12 Conclusion
Performance Toolbox is a specialized tool that works with a suite of system and
network management tools. PTX addresses the needs of a wide audience, from
novice to expert. It allows you to complete a simple performance tuning cycle,
monitoring, recording, analyzing, prescribing a remedy, setting alarm and alert
conditions, and adjusting performance resource parameters either manually or
automatically.

250 RS/6000 Performance Tools in Focus

Chapter 6. Additional Performance Tools

Tuning is an integral requirement for any system. There are a variety of tools
included with AIX V4.2 or separately purchasable that can help you in monitoring
your system. But there are some other tools available either on the IBM
Developer Connection CD-ROM, the IBM Software Development Solutions for AIX
Version 4 CD-ROM, or from World Wide Web sites. The objective of this chapter
is to introduce some useful performance tools that are available in addition to
the ones described in the previous chapters.

6.1 xgprof
The xgprof tool is an extended graphical user interface profiler for AIX V4. It is
an enhancement to the gprof command, which is the standard AIX graph profiler.

The gprof command produces a text file for the user to read. The text file has
two parts, the flat profile and the call graph. The flat profile is a list of functions
sorted by how much time each function used. The call graph is a list or table
describing the dynamic call graph. For more information about the gprof
command, please refer to 2.13, “The gprof Command” on page 59.

The xgprof tool uses the same information as gprof and works in exactly the
same way, but it provides a graphical user interface (GUI). Viewing the flat
profile generated by gprof is useful, but the textual call graph table that gprof
provides is useless for large programs. It would be very useful if it is displayed
graphically. Furthermore, statement-level profiling is useful and can be provided
through the gprof mechanism, but gprof does not display it.

To use the xgprof tool, the source code has to be compiled with the -pg option.
Then use xgprof instead of gprof after the execution of the compiled program.
The xgprof tool provides:

• Graphical display of the dynamic call graph.
• Displays source code in a text window, with statement level profiling.
• Displays disassembler code with instruction level profiling.
• Displays the flat profile in a text window.
• Displays the call graph table textual (like gprof).
• It works also with longer running programs which cause arithmetic overflow

in gprof.

The graph editing/filter capabilities of xgprof are good, and it allows to filter the
dynamic call graph based on paths through the graph. It also allows to cluster
functions based on which load-unit they belong to.

The xgprof tool is available internally from the AIXTOOLS disks and externally
via the IBM Developer Connection CD-ROM.

The following screen-shots show the xgprof windows for profiling the cwhet
benchmark program, which was also used in 2.12.1, “The prof Implementation”
on page 58.

 Copyright IBM Corp. 1997 251

Figure 57. The xgprof Start Window

The xgprof tool starts up with an overview over the call graph from the profiled
program. By selecting a node with the mouse, a pop-up menu is displayed,
which provides informations like name, self and descendent (similar to gprof). It
allows to display the source code, the disassembler source, parents, and
children and allows to zoom in. The following snapshot shows the zoomed-in
window for the main routine.

252 RS/6000 Performance Tools in Focus

Figure 58. Zoomed-In Window of the Main Routine

It shows which functions are called by the main routine and how often. Via
selecting the nodes with the mouse, additional information is available. Also the
menu bar allows additional actions to provide more information. Comparing
these windows and the additional information provided by the pop-up menu
against the gprof textual call graph shows the advantage of the xgprof tool.

Additional information about the xgprof tool is available in the xgprof User’s
Guide, which is provided as a PostScript file on the IBM Developer Connection
CD-ROM.

6.2 Program Visualizer
Reading trace output is not the easiest way to find performance problems, as
you probably saw. But the data that trace provides is very useful. The Program
Visualizer (PV) provides graphical, animated views of trace data.

PV for AIX allows you to graphically display the behavior of a target program and
the system underlying it. PV is a program visualization system which provides
concurrent visual presentation of behavior from all layers including: the program
itself, user-level libraries, the operating system, and the hardware, as this
behavior unfolds over time. The main features of PV are:

• Aids debugging and performance analysis by showing trends, anomalies,
and interesting correlations that help track down pressing problems or
reveal unexpected ones

Chapter 6. Additional Performance Tools 253

• Helps you to understand the structure and dynamics of large applications,
libraries, and frameworks

• Shows application-level activity such as algorithm phase transitions and
execution time profiles, correlated to source code, if available

• Shows language and library runtime activity such as parallel-loop scheduling
and dynamic memory allocation

• Shows operating-system-level activity such as context switches, address
space activity, system calls and interrupts, and kernel performance statistics

• For POWER/2 architectures, shows hardware-level performance information
such as instruction execution rates, cache utilization, processor element
utilization, and delays due to branches and interlocks

You can use either a PV screen dialog or a PV trace utility named pvtrace to
record the execution of a target program and create an AIX trace file with
appropriate data. Then you use PV to replay the trace file as many times as you
want, showing many different views of program and overall system behavior.
Zoom-in on the problems in your target program by continually narrowing your
focus and looking at more detailed views.

PV trace collection uses the AIX trace facility, plus some additional utility
commands to augment the trace data and ensure that a certain subset of trace
hooks are enabled during trace collection. A “normal” trace file, collected with
the AIX trace command alone, can be recast with trcrpt -r so that PV will
display it; however, usage of the PV trace-collection facilities is recommended.

The Program Visualizer (PV) tool is available internally from the AIXTOOLS disk
and externally via the IBM Developer Connection CD-ROM or the IBM Software
Development Solutions for AIX Version 4 CD-ROM.

The principal World Wide Web site established for PV is at:
http://www.research.ibm.com/pv.

6.2.1 pvtrace
The pvtrace utility is shipped with the Program Visualizer. The pvtrace utility
enables the AIX trace facility, runs the given command with arguments, and then
disables the AIX trace facility. The trace file is placed in your current directory
and is cal led <command_name>.trc, where <command_name> is the f inal
component of the <command> path name.

The pvtrace utility can be invoked from the command line or from a Trace
Generation screen dialog available from the PV control panel. An example of
invoking the pvtrace utility from the command line is shown below:

pvtrace /usr/bin/spell /usr/dict/words | wc

This command will generate a trace file named spell.trc for the spell program.
For more information about the pvtrace utility, have a look at the Program
Visualizer (PV) Tutorial and Reference Manual that comes with the tool.

254 RS/6000 Performance Tools in Focus

6.2.2 Starting PV
Start PV by typing the following command at the prompt:

pv &

and press the Enter key. After a few seconds, the PV control panel should be
displayed.

You may get the following error message: Cannot allocate enough colors. This
can occur when you run PV with applications that also use custom colors. To
correct this error, either end the application in question and restart PV, or you
could try starting PV by typing:

pv -cmap &

You may get something like the following error messages:

Could not load program pv
Symbol _system_configuration in ksh is undefined
Symbol _fp_trapstate in ksh is undefined

These messages mean that the AIX system on which you are trying to install PV
is not at level V3.2.5 or V4. You cannot run PV on a system with AIX level V3.2.4
or earlier.

Figure 59. PV Control Panel

The control panel is where you tell PV the source of the information you want to
display and how to display it. You enter this information into selection boxes in
the control panel, and then you use the control panel to control how the trace file
is replayed.

• The four control push-buttons starting from the left are:

Chapter 6. Additional Performance Tools 255

Rewind Repositions the trace file to the beginning of the trace and clears
out all information in the views

Pause Suspends replay of the trace
Play Replays the trace or resumes replay after the pause
Step Steps through the trace one event at a time

• The Time display shows the amount of original run time that has elapsed
between the beginning of the trace and the current position in the trace.

• The Speed Factor slider controls the speed of play.

• The Lag indicator turns red if PV is unable to display events at the rate
requested by the speed factor slider. Otherwise, the indicator is white.

• The Wait indicator turns red if PV is blocked, waiting for trace data, when it
is consuming the trace file from a pipe and has read and displayed all
available trace data. Otherwise, the indicator is white.

• The Trace File Position bar fills slowly to show how far replay has
progressed through the trace. When the entire trace has been replayed, the
bar is totally filled.

• The Trace File entry field displays the name of the trace file you are
currently analyzing. A new trace file may be selected by entering its name
in this entry field and pressing Enter.

• The Configuration File entry field displays the name of the configuration file
you are currently using. A new configuration file may be selected by
entering its name in this entry field and pressing Enter. The configuration
file contains a collection of views that you can show using PV.

If you already had a trace file, you would enter its name into the Trace File entry
field. Then you need to enter the configuration file name. A number of
configuration files are provided with PV. To access these configuration files,
select Configuration. Then select Load Config... . Move the mouse pointer to the
configuration file you prefer and click on it. Then click on OK . To replay the
trace file, click on the PLAY button.

If you do not have a trace file for your program, you will have to create one
using the PV control panel. From the PV control panel, select Tracefile. Then
from the Tracefile pull-down menu, select Generate... . The Trace Generation
pop-up menu will be displayed.

256 RS/6000 Performance Tools in Focus

Figure 60. Trace Generation Pop-Up Menu

Enter the command you normally type to execute your program, in this case
/usr/bin/spell /usr/dict/words | wc in the Command entry field. Then click on
OK , and after a few seconds, the Question pop-up menu is displayed:

Figure 61. Question Pop-Up Menu

Click on Yes and while the spell.trc trace file is playing, six different views are
displayed. Unfortunately we are not able to display all six views in one figure;
therefore we will show three of these views in Figure 62 on page 258 and three
more in Figure 63 on page 259.

Chapter 6. Additional Performance Tools 257

Figure 62. Partial PV Views (One)

The views displayed by PV:

• The Process Tree view shows all the processes that exist at a particular
point in the trace. Each process appears as a rectangle, colored cool to
warm to indicate the recent CPU consumption of that process.

• The Target Process identifies the target process selected by the user. The
target process is the process in the trace that will be the subject of all views
that display information specific to a particular process. A process identifier
of -2 indicates that no target process has been specified.

• Process scheduling is presented in the Process Histogram view and the
Current Process view. The Process Histogram view shows how much CPU
time particular processes have accumulated up to the current point in the
trace. The Current Process view shows which process was running at each
instant in time as the trace was recorded.

• The System State view shows the sequence of system states such as system
calls, interrupts, page faults, and user mode as they occurred at each instant
in time. A user click in the view will pop up detailed information, as shown
in Figure 63 on page 259.

• The kernel performance statistics are presented in the Kernel Statistics view,
which shows the rates at which a selected set of kernel activities were
occurring as those rates changed over time. The selected set shown depicts
the rates at which system calls were made, disk blocks were read and
written, and network bytes were received and transmitted at different times.

258 RS/6000 Performance Tools in Focus

Figure 63. Partial PV Views (Two)

PV juxtaposes these time-oriented strips to allow the user to make visual
correlations between system and process activity at any instant in time. Clicking
on any of the time strips shows a pop-up with detail about what was happening
at that instant in time. PV also provides a sophisticated zooming capability,
coordinated among these views, to allow detailed visual examination of activity
down to the level of individual trace events.

The tool contains many additional views that show memory operations, heap
storage use, execution profiling information, and application function usage.

6.2.3 Packaging the Trace
To package a trace file for visualizing on a different machine, you can use the
package utility shipped with PV called pvpackage. The pvpackage utility creates a
compressed tar file that contains everything necessary for viewing a trace file on
a machine other than the one on which it was created.

You can package the spell.trc trace file by typing the command:

pvpackage -v -s spell.trc

which creates the spell.pkg.tar.Z file in the current directory.

You are also able to package your trace file from the PV control panel. From the
Tracefile option on the PV control panel, you can either package your trace file
during the trace generation process or you can generate only the trace package
from an existing trace file.

During the trace generation process, click on Package when the trace generation
pop-up menu is displayed (see Figure 60 on page 257). Trace and Package will
now be selected. Then press enter or click on OK . The trace file and the
compressed tar file will be created.

To generate only the trace package from an existing trace, click on the Trace
Name entry field when the trace generation pop-up menu is displayed, and type

Chapter 6. Additional Performance Tools 259

the name of the trace file you wish to use to generate the trace package. Click
on the Trace check button to turn off trace generation. Click on the Package
check button to select it. Then press Enter or click on OK. Only the compressed
tar file will be created.

The compressed trace package file can then be moved to a different machine,
uncompressed and extracted via tar into a clean directory, and viewed by PV in
the normal way. The trace file and all the associated symbol table information
will be available in that directory.

6.2.4 Making a Textual Trace Report Using pvreport
To format a standard AIX trace file for PV’s Trace Report view (or for human
viewing), you can use the report utility shipped with PV called pvreport. The
pvreport util ity takes a trace file (<file>.trc) and generates a textual report file
(<f i le>.rpt) and a corresponding l ine index f i le (<f i le>.t l i) . The resulting
report file (with its index) can be viewed using the PV Trace Report view. As you
use some other PV views to select trace events and examine them, PV can
automatically scroll the large trace report to highlight the lines relevant to each
event.

To generate a textual trace report called spell.rpt and a index file for PV called
spell.tli, type the following:

pvreport spell.trc

To view the resulting report file using the PV Trace Report view, proceed as
follows:

Select Configuration from the PV control panel. Then select Add View Scroll
down to TraceReport.view on the Add View File pop-up menu. Then click on
TraceReport.view to select it. Click on OK . The Trace Report window pops up
on the screen. TraceReport.view will be displayed in the Configuration File entry
field on the PV control panel.

On the PV control panel, enter the trace file name into the Trace File field. The
trace file will be loaded, and its associated textual trace file report will appear in
the Trace Report window.

260 RS/6000 Performance Tools in Focus

Figure 64. Trace Report View

6.2.5 PV Tutorial
With PV you will receive a tutorial that shows you how to use PV. If you are not
familiar with PV, work your way through the lessons. The lessons provide you
with a feel for the capabilities of PV by touching on a sampling of the many
features and functions of PV. Topics in the tutorials include:

• Examining process context switching
• Studying memory operations and heap storage usage
• Finding execution hot spots
• Using phase markers to trace program activity

PV also includes a full explanatory help facility.

For further information on the World Wide Web, see:
http://www.research.ibm.com/pv.

6.3 utld
The utld command is a trace-based tool that was originally used in the
development of AIX, but has now been made generally available; it can be
obtained on the Internet via anonymous FTP from ftp.software.ibm.com in the
directory /aix/tools/perftools.

The utld tool reports on system locks and delays. Although intended for use on
all AIX platforms, this tool is especially useful in an SMP environment. It reports
thread/processor affinity and gives a greater insight into locking that can be

Chapter 6. Additional Performance Tools 261

gained by using tools such as lockstat. This tool also provides a very useful
summary of system utilization.

Further documentation on this command is included in its respective package.

 Important!

Please note that this tool is currently available free of charge and as such is
provided without warranty or support. Because it is a development tool, it
may change significantly in future releases. The following notes are intended
for use with Version 1.x of the tool, for AIX V4.1.4 or later.

Since this tool depends on data captured using the trace command, we first take
a look at how to capture trace data and also how to create a trace names file.
For more information on trace, see 3.12, “The trace and trcrpt Commands” on
page 120.

6.3.1 Generating a Trace for utld
When using trace-based tools, information must first be captured by using the
trace command. The trace data for utld can be collected through the following
commands:

trace -a -d -f -T 80000000 -L 80000000 -o ./trace.out
trcon ; sleep 60 ; trcoff
trcstop

The trace command is started detached (-a) and deferred (-d). This puts trace
running in the background but not yet collecting trace hooks. This trace
command will collect 80 MB of trace data (-T) and stop collecting trace data
when the buffer fills (-f). It is important that the system has sufficient free
memory (> 80 MB) that can be dedicated to the trace command, or the
command will fail or the workload will be perturbed (perhaps by excessive
paging). The maximum length for the output file is 80 MB (-L), and the output is
written to the file ./trace.out (-o). The trace data is collected in a 60-second
interval.

It is unlikely, that a full 60-second trace will be collected due to the use of the -f
flag. You will actually get a trace corresponding to one full trace buffer (that is,
80 MB). Please bear in mind that trace adds considerable path length in system
time; so using trace will distort the user/system time mix.

The trace data collected will be in binary format that can be translated into ASCII
by the trcrpt program. To translate a trace file (for example, trace.out), enter
the following:

trcrpt ./trace.out | pg

Capturing Names: In order for the trace tools to provide meaningful reports, the
“names” of the system must be collected by using the trcnm tool. This tool
builds a load map of what’s in the AIX kernel so things like device drivers can be
identified in the trace. The following command can be used to collect names:

trcnm > names.out

If you are unsure of what device driver names map to adapters, use the
command:

262 RS/6000 Performance Tools in Focus

lsdev -Cc adapter

to get an explanation of the function of each of the adapter drivers in your
system. The third step is to unwrap the trace. Since the trace file is collected in
a double buffered fashion, it must be put into the correct order. The following
command will unwrap the trace:

trcrpt -r trace.out > trace.unwrapped

Ensure you have enough space in the file system before entering this command
because it effectively duplicates the trace. Note, this example required 260 MB
of disk space. More space will be required on an active system.

6.3.2 Using utld
Once the trace has been unwrapped, the utld command can be invoked as
follows:

utld -i trace.unwrapped -n names.out > utld.out

Note that if the -n option is omitted, the utld command will automatically
generate a list of names using the trcnm command as outlined above.

This command produces a summary report in the utld.out file. If you require all
locking details, run the command as follows:

utld -i trace.unwrapped -n names.out -d -l lock.out > utld.out

 Note

In order for the trace command to capture information regarding locks, MP
Lock Instrumentation must be enabled. For further details regarding this,
please see 4.7, “The lockstat Command” on page 164.

If the -d -l <filename> option is specified when invoking utld, a separate report
detailing the locking statistics can be obtained. To look at locking in greater
detail, it is necessary to provide utld with a larger dictionary of names. The
larger dictionary is created by using the getnames executable provided in the utld
package, as follows:

getnames > names.out

The getnames facility uses the genkex executable, provided as part of the
perfagent.tools section of Performance Toolbox. This must be installed on the
system in order for this to work.

Using getnames is only necessary if detailed locking information is required.

This time, utld will create the following files:

utld.out A summary report

lock.out A detailed report on process locks

lock.out.details A detailed report on locks per process

Once the utld command has completed, the lock.out and lock.out.details files will
be very large. The utld.out report contains some very useful information for
anyone concerned with SMP performance. However, lock.out and

Chapter 6. Additional Performance Tools 263

lock.out.details are very in-depth technical reports designed primarily for use by
application developers.

Sample utld Report: The following screen shots are examples of output
contained in the utld.out report:

The first section of the utld report (see following figure) is a summary of CPU
consumption during the trace period. This breaks down CPU usage into five
categories:

Application More commonly referred to as user mode

Kernel The time spent in kernel mode

FLIH The amount of time spent dealing with first line interrupt handlers

SLIH The amount of time spent in second line interrupt handlers

DISPATCH The amount of time spent dispatching threads

� �

SYSTEM SUMMARY

processing percent percent
total (msecs) tot time busy time processing category
============= ========= ========= ====================
4834.901 47.452 47.452 APPLICATION
3249.240 31.890 31.890 KERNEL
1907.669 18.723 18.723 FLIH
132.542 1.301 1.301 SLIH
64.625 0.634 0.634 DISPATCH

------------- --------- ---------
 10188.976 100.000 100.000 CPU(s) busy time

0.000 0.000 WAIT
------------- ---------
 10188.976 100.000 TOTAL

Total number of process dispatches = 5041
Average time between same process dispatch = 20.475002 msec.
Average process to processor affinity = 0.528291

� �

If the trace was collected on an SMP server (as in these examples), the CPU
breakdown will include a weighted average of all the processors, as well as
information for each processor. For an SMP, the report will also include the
number of dispatches and a measure of the processor affinity of the threads.

Following the system summary, there is a section detailing the system usage by
processor.

The next section presents a list of all processes/threads that ran during the
trace, and for each, specifies the amount of time spent in kernel and user mode
(see below).

264 RS/6000 Performance Tools in Focus

APPLICATION and KERNEL SUMMARY (Per Thread/Process)

-- processing total (msecs) -- -- percent of total processing time --
combined application kernel combined app kernel process name (proc id / thrd id)
======== =========== ====== ======== === ====== =======================
773.399 773.399 0.000 7.591 7.591 0.000 trace (18262 18527)
683.106 656.024 27.082 6.704 6.439 0.266 nroff (17974 18239)
660.407 656.398 4.008 6.482 6.442 0.039 no name (18456 18721)

The above information is then condensed into time spent per type of process,
headed by title information reporting the total number of threads, as follows:

APPLICATION and KERNEL SUMMARY (Per Process Type)
total number of threads = 57

-- processing total (msecs) -- -- percent of total processing time --
combined application kernel combined app kernel process name (count)
======== =========== ====== ======== === ====== =======================
773.399 773.399 0.000 7.591 7.591 0.000 trace (1)
730.833 698.473 32.361 7.173 6.855 0.318 nroff (2)

4560.335 2333.526 2226.809 44.758 22.902 21.855 no name (14)
332.740 15.698 317.042 3.266 0.154 3.112 cpio (1)
321.571 237.929 83.643 3.156 2.335 0.821 xlcentry (1)
189.248 62.744 126.504 1.857 0.616 1.242 ed (1)

The third part of the report breaks down the total kernel execution time into a list
of all system calls that were made:

KERNEL (System Call) Summary

 processing percent - path in msecs -
total (msecs) proc time count -min- -avg- -max- system call
============= ========= ===== ===== ===== ===== ===========

744.791 7.310 000000193 1.598 3.859 7.323 creat
431.640 4.236 000000659 0.098 0.655 2.109 statx
317.197 3.113 000000204 0.935 1.555 4.080 chown
305.065 2.994 000000205 0.902 1.488 3.697 chmod
269.923 2.649 000000196 0.659 1.377 3.191 utimes
207.466 2.036 000000284 0.193 0.731 5.273 open

 71.907 0.706 000000544 0.004 0.132 0.506 close
 69.426 0.681 000000016 2.385 4.339 7.686 unlink

The next two sections detail the FLIH and SLIH statistics (see below). The final
section presents a summary of the idle process for each processor.

Chapter 6. Additional Performance Tools 265

FLIH Summary

 processing percent - path in msecs -
total (msecs) proc time count -min- -avg- -max- flih type
============= ========= ===== ===== ===== ===== ====================

1158.986 2.663 000004931 0.005 0.235 0.852 DECREMENTER
437.893 1.006 000000616 0.034 0.711 1.482 DATA ACCESS PAGE FAULT
182.108 0.418 000000495 0.010 0.368 0.897 I/O INTERRUPT

 13.889 0.032 000000089 0.003 0.156 0.552 level 50
0.038 0.000 000000004 0.004 0.010 0.022 FLOATING POINT UNAVAIL

------------- --------- -----
1792.913 4.119 000006135

SLIH Summary

 processing percent - path in msecs -
total (msecs) proc time count -min- -avg- -max- slih type
============= ========= ===== ===== ===== ===== ====================
 62.156 0.143 000000340 0.066 0.183 0.300 ascsiddpin
 50.828 0.117 000000155 0.070 0.328 0.921 tokdd
------------- --------- -----

112.984 0.260 000000495

The utld command is an extremely powerful tool. It is beyond the scope of this
redbook to cover all the options and reports available. More information can be
obtained from the ultd.doc file provided with the package.

6.4 Sources for Additional Tools
xgprof and PV: The Program Visualizer (PV) and xgprof can be obtained from
the IBM Developer Connection, Z121-0200, CD-ROM. More information can be
obtained at: http://www.developer.ibm.com/devcon/index.html

PV can also be found on the IBM Software Development Solutions for AIX
Version 4, SK2T-2729, CD-ROM.

There also is a Web site for PV: http://www.research.ibm.com/pv

utld: The tool utld can be obtained at this WWW address:

ftp://ftp.software.ibm.com/aix/tools/perftools/utld/utld.obj

General Tools Repository: A general repository for useful tools of all sort can be
found at: http://aixpdslib.seas.ucla.edu/aixpdslib.html

266 RS/6000 Performance Tools in Focus

Appendix A. Summary of Rules of Thumb

 Copyright IBM Corp. 1997 267

Table 5. Rules of Thumb

268 RS/6000 Performance Tools in Focus

Appendix B. Summary of Tunable AIX Parameters

Each of the following sections describes the AIX parameters that can affect
performance. The parameters are described in alphabetical order.

• arpt_killc

Purpose: Time before an inactive, complete ARP entry is deleted.

Values: Default: 20 (minutes), Range: N/A

Display: no -a or no -o arpt_killc

Change: no -o arpt_killc=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: To reduce ARP activity in a stable network, arpt_killc can be
increased. This is not a large effect.

Refer to: N/A

• biod Count

Purpose: Number of biod processes available to handle NFS requests on a
client.

Values: Default: 6, Range: 1 to any positive integer.

Display: ps -ef | grep biod

Change: chnfs -b NewValue. Change normally takes effect immediately and
is permanent. The -N flag causes an immediate, temporary
change. The -I flag causes a change that takes effect at the next
boot.

Diagnosis: netstat -s to look for UDP socket buffer overflows.

Tuning: Increase number until socket buffer overflows cease.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″How Many biods and nfsds Are Needed for Good Performance?″.

• Disk Adapter Outstanding-Requests Limit

Purpose: Maximum number of requests that can be outstanding on a SCSI
bus. (Applies only to the SCSI-2 Fast/Wide Adapter.)

Values: Default: 40, Range: 40 to 128

Display: lsattr -E -l scsin -a num_cmd_elems

Change: chdev -l scsin -a num_cmd_elems= NewValue. Change is effective
immediately and is permanent. If the -T flag is used, the change
is immediate and lasts until the next boot. If the -P flag is used,
the change is deferred until the next boot, and is permanent.

Diagnosis: N/A

Tuning: Value should equal the number of physical drives (including those
in disk arrays) on the SCSI bus, times the queue depth of the
individual drives.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Setting SCSI-Adapter and Disk-Device Queue Limits″.

 Copyright IBM Corp. 1997 269

• Disk Drive Queue Depth

Purpose: Maximum number of requests the disk device can hold in its
queue.

Values: Default: IBM disks=3, Range: N/A. Default: Non-IBM disks=0,
Range: specified by manufacturer.

Display: lsattr -E -l hdiskn

Change: chdev -l hdiskn -a q_type=simple -a queue_depth=NewValue.
Change is effective immediately and is permanent. If the -T flag
is used, the change is immediate and lasts until the next boot. If
the -P flag is used, the change is deferred until the next boot, and
is permanent.

Diagnosis: N/A

Tuning: If the non-IBM disk drive is capable of request queuing, this
change should be made to ensure that the operating system takes
advantage of the capability.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Setting SCSI-Adapter and Disk-Device Queue Limits″.

• dog_ticks

Purpose: Timer granularity for IfWatchdog routines. This value is not used
in AIX.

Values: Default: 60

Display: N/A

Change: N/A

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• fork() Retry Interval

Purpose: Specify the amount of time to wait to retry a fork that has failed
for lack of paging space.

Values: Default: 10 (10-millisecond clock ticks), Range: 10 to n clock ticks.

Display: schedtune

Change: schedtune -f NewValue. Change takes effect immediately. Change
is effective until next boot. Permanent change is made by adding
schedtune command to /etc/inittab.

Diagnosis: If processes have been killed for lack of paging space, monitor
the situation with the sigdanger() subroutine.

Tuning: If the paging-space-low condition is only due to brief, sporadic
workload peaks, increasing the retry interval may allow processes
to delay long enough for paging space to be released. Otherwise,
make the paging spaces larger.

Refer to: N/A

• ipforwarding

Purpose: Specifies whether the kernel forwards IP packets.

270 RS/6000 Performance Tools in Focus

Values: Default: 0 (no), Range: 0 to 1

Display: no -a or no -o ipforwarding

Change: no -o ipforwarding=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with performance consequences.

Refer to: N/A

• ipfragttl

Purpose: Time to live for IP packet fragments.

Values: Default: 60 (seconds), Range: 60 to n

Display: no -a or no -o ipfragttl

Change: no -o ipfragttl=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: netstat -s

Tuning: If value of IP: fragments dropped after timeout is nonzero,
increasing ipfragttl may reduce retransmissions.

Refer to: N/A

• ipqmaxlen

Purpose: Specify the maximum number of entries on the IP input queue.

Values: Default: 50, Range: 50 to n

Display: no -a or no -o ipqmaxlen

Change: no -o ipqmaxlen=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: Use crash to access IP input queue overflow counter.

Tuning: Increase size.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365 ″IP
Protocol Performance Tuning Recommendations″.

• ipsendredirects

Purpose: Specifies whether the kernel sends redirect signals.

Values: Default: 1 (yes), Range: 0 to 1

Display: no -a or no -o ipsendredirects

Change: no -o ipsendredirects=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A. This is a configuration decision with performance
consequences.

Refer to: N/A

• loop_check_sum (AIX Version 3.2.5 only)

Appendix B. Summary of Tunable AIX Parameters 271

Purpose: Specifies whether checksums are built and verified on a loopback
interface. (This function does not exist in AIX Version 4.1.)

Values: Default: 1 (yes), Range: 0 to 1

Display: no -a or no -o loop_check_sum

Change: no -o loop_check_sum=0. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: Turning checksum verification off (loop_check_sum=0) is
recommended.

Refer to: N/A

• lowclust (AIX Version 3.2.5 only)

Purpose: Specifies the low-water mark for the mbuf cluster pool.

Values: Default: configuration-dependent, Range: 5 to n

Display: no -a or no -o lowclust

Change: no -o lowclust=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: netstat -m

Tuning: If ″requests for memory denied″ is nonzero, increase lowclust.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″AIX Version 3.2.5 mbuf Pool Performance Tuning″.

• lowmbuf (AIX Version 3.2.5 only)

Purpose: Specifies the low-water mark for the mbuf pool

Values: Default: configuration-dependent, Range: 64 to n

Display: no -a or no -o lowmbuf

Change: no -o lowmbuf=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: netstat -m

Tuning: If ″requests for memory denied″ is nonzero, increase lowmbuf.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″AIX Version 3.2.5 mbuf Pool Performance Tuning″.

• lowthresh

Purpose: Specifies the maximum number of bytes (in percentage) that can
be allocated by the thewall parameter using allocb() for the
BPRI_LO priority. When the total amount of memory allocated by
the net_malloc() subroutine reaches this threshold, the allocb()
request for the BPRI_LO priority returns 0. The lowthresh
parameter can be set to any value between 0 and 100, inclusively.
The default value is 90, indicating the threshold is at 90 percent of
the value of the thewall parameter.

Values: Default: 90, Range 0 to 100

272 RS/6000 Performance Tools in Focus

Display: no -a or no -o lowthresh

Change: no -o lowthresh=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• lvm_bufcnt (AIX Version 4 only)

Purpose: The number of LVM buffers for raw physical I/Os.

Values: Default: 9, Range: 1 to 64

Display: vmtune

Change: vmtune -u NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: Applications doing large writes to striped raw logical volumes are
not getting the desired throughput rate.

Tuning: If a system is configured to have striped raw logical volumes and
is doing writes greater than 1.125 MB, increasing this value may
help throughput of the application.

Refer to: vmtune command

• maxbuf

Purpose: Number of (4 KB) pages in the block-I/O buffer cache.

Values: Default: 20, Range: x to y

Display: lsattr -E -l sys0 -a maxbuf

Change: chdev -l sys0 -a maxbuf=NewValue. Change is effective
immediately and is permanent. If the -T flag is used, the change
is immediate and lasts until the next boot. If the -P flag is used,
the change is deferred until the next boot and is permanent.

Diagnosis: N/A

Tuning: This parameter normally has little performance effect on an AIX
system, since ordinary I/O does not use the block-I/O buffer
cache.

Refer to: N/A

• max_coalesce

Purpose: Specifies the maximum size, in bytes, of requests that the SCSI
device driver will coalesce from the requests in its queue.

Values: Default: 64 KB, Range: 64 KB to 2 GB

Display: odmget

Change: odmdelete, odmadd, bosboot. Change takes effect at next boot and is
permanent.

Diagnosis: N/A

Tuning: Increase if striped logical volumes or disk arrays are in use.

Appendix B. Summary of Tunable AIX Parameters 273

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Modifying the SCSI Device Driver max_coalesce Parameter″.

• maxfree

Purpose: The maximum size to which the VMM page-frame free list will
grow by page stealing.

Values: Default: configuration-dependent, Range: 16 to 204800 (4 KB
frames)

Display: vmtune

Change: vmtune -F NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: Observe free-list-size changes with vmstat n.

Tuning: If vmstat n shows free-list size frequently driven below minfree by
application demands, increase maxfree to reduce calls to
replenish free list. Generally, keep maxfree - minfree < = 1 0 0 .

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning VMM Page Replacement″.

• maxperm

Purpose: The percentage of memory page frames occupied by permanent
pages above which only permanent pages will have their frames
stolen.

Values: Default: 80 percent of (memory size - 4 MB), Range: 5 to 100

Display: vmtune

Change: vmtune -P NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: Monitor disk I/O with iostat n.

Tuning: If some files are known to be read repetitively, and I/O rates do
not decrease with time from startup, maxperm may be too low.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning VMM Page Replacement″.

• maxpgahead

Purpose: The upper limit on the number of pages the VMM will read ahead
when processing a sequentially accessed file.

Values: Default: 8, Range: 0 to 16

Display: vmtune

Change: vmtune -R NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: Observe the elapsed execution time of critical
sequential-I/O-dependent applications with time command.

Tuning: If execution time decreases with higher maxpgahead, observe other
applications to ensure that their performance has not
deteriorated.

274 RS/6000 Performance Tools in Focus

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning Sequential Read Ahead″.

• maxpin (AIX Version 4 only)

Purpose: The maximum percentage of real memory that can be pinned.

Values: Default: 80 (percent of RAM), Range: At least 4 MB pinable to at
least 4 MB unpinable.

Display: vmtune

Change: vmtune -M NewValue. Change takes effect immediately. Change is
effective until next boot.

Diagnosis: N/A

Tuning: Only change for extreme situations, such as maximum-load
benchmarking.

Refer to: vmtune command.

• maxpout

Purpose: Specifies the maximum number of pending I/Os to a file.

Values: Default: 0 (no checking), Range: 0 to n (n should be a multiple of
4, plus 1)

Display: lsattr -E -l sys0 -a maxpout

Change: chdev -l sys0 -a maxpout=NewValue. Change is effective
immediately and is permanent. If the -T flag is used, the change
is immediate and lasts until the next boot. If the -P flag is used,
the change is deferred until the next boot and is permanent.

Diagnosis: If foreground response time sometimes deteriorates when
programs with large amounts of sequential disk output are
running, sequential output may need to be paced.

Tuning: Set maxpout to 33 and minpout to 16. If sequential performance
deteriorates unacceptably, increase one or both. If foreground
performance is still unacceptable, decrease both.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Use of Disk-I/O Pacing″.

• maxrandwrt (AIX Version 4.1.3 and above)

Purpose: The number of dirty file pages to accumulate in RAM before these
pages are sync′d to disk via a write-behind algorithm. The
random write-behind threshold is on a per file basis.

Values: Default: 0, Range: 0 to 128 (4 KB pages)

Display: vmtune

Change: vmtune -W NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: vmstat n shows page out and I/O wait spikes on regular intervals
(usually when the sync daemon is writing pages to disk).

Tuning: If vmstat n shows page out and I/O wait spikes on regular
intervals (usually when the sync daemon is writing pages to disk),
adjusting the maxrandwrt value helps spread the I/O more
efficiently. A value of 0 disables random write-behind.

Appendix B. Summary of Tunable AIX Parameters 275

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Performance Overview of AIX Management of Fixed-Disk
Storage″ and the vmtune command

• maxttl

Purpose: Time to live for Routing Information Protocol (RIP) packets.

Values: Default: 255, Range: N/A

Display: no -a or no -o maxttl

Change: no -o maxttl=NewValue. Change takes effect immediately. Change
is effective until next boot. Permanent change is made by adding
no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• mb_cl_hiwat (3.2.5 only)

Purpose: Specifies the high-water mark for the mbuf cluster pool

Values: Default: configuration-dependent, Range: N/A

Display: no -a or no -o mb_cl_hiwat

Change: no -o mb_cl_hiwat=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: netstat -m

Tuning: If the number of mbuf clusters (called ″mapped pages″ by
netstat) is regularly greater than mb_cl_hiwat, increase
mb_cl_hiwat.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″AIX Version 3.2.5 mbuf Pool Performance Tuning″.

• medthresh

Purpose: Specifies the maximum number of bytes (in percentage) that can
be allocated by the thewall parameter using allocb() for the
BPRI_MED priority. When the total amount of memory allocated
by the net_malloc() subroutine reaches this threshold, the
allocb() request for the BPRI_MED priority returns 0. The
medthresh parameter can be set to any value between 0 and 100,
inclusively. The default value is 95, indicating the threshold is at
90percent of the value of the thewall parameter.

Values: Default: 95, Range 0 to 100

Display: no -a or no -o medthresh

Change: no -o medthresh=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• Memory-Load-Control Parameters

276 RS/6000 Performance Tools in Focus

Purpose: Customize the VMM memory-load-control facility to maximize use
of the system while avoiding thrashing. The most frequently used
parameters are:

h - High memory-overcommitment threshold

p - Process memory-overcommitment threshold

m - Minimum level of multiprogramming

Values: h Default: 6, Range: 0 to any positive integer

p Default: 4, Range: 0 to any positive integer

m Default: 2, Range: 0 to any positive integer

Display: schedtune

Change: schedtune [-h NewValue] [-p NewValue] [-m NewValue]. Change
takes effect immediately. Change is effective until next boot.
Permanent change is made by adding schedtune command to
/etc/inittab.

Diagnosis: Heavy memory loads cause wide variations in response time.

Tuning: schedtune -h 0 turns off memory load control.

schedtune -p 2 requires a higher level of repaging by a given
process before it is a candidate for suspension by memory load
control.

schedtune -m 10 requires that memory load control always leave
at least 10 user processes running when it is suspending
processes.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″VMM Memory Load Control Facility″ and ″Tuning VMM Memory
Load Control″.

• minfree

Purpose: The VMM page-frame free-list size at which the VMM starts to
steal pages to replenish the free list.

Values: Default: configuration-dependent, Range: x to any positive integer

Display: vmtune

Change: vmtune -f NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: vmstat n

Tuning: If processes are being delayed by page stealing, increase minfree
to improve response time. Increase maxfree by an equal or
greater amount.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning VMM Page Replacement″.

• minperm

Purpose: The percentage of page frames occupied by permanent pages
below which the VMM steals frames from both permanent and
working pages without regard to repage rates.

Values: Default: 20 percent of (memory size - 4 MB), Range: 5 to 100

Appendix B. Summary of Tunable AIX Parameters 277

Display: vmtune

Change: vmtune -P NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: Monitor disk I/O with iostat n.

Tuning: If some files are known to be read repetitively, and I/O rates do
not decrease with time from startup, minperm may be too low.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning VMM Page Replacement″.

• minpgahead

Purpose: The number of pages the VMM reads ahead when it first detects
sequential access.

Values: Default: 2, Range: 0 to 16

Display: vmtune

Change: vmtune -r NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: Observe the elapsed execution time of critical
sequential-I/O-dependent applications with time command.

Tuning: If execution time decreases with higher minpgahead, observe other
applications to ensure that their performance has not
deteriorated.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning Sequential Read Ahead″.

• minpout

Purpose: Specifies the point at which programs that have hit maxpout can
resume writing to the file.

Values: Default: 0 (no checking), Range: 0 to n (n should be a multiple of 4
and should be at least 4 less than maxpout)

Display: lsattr -E -l sys0 -a minpout

Change: chdev -l sys0 -a minpout=NewValue. Change is effective
immediately and is permanent. If the -T flag is used, the change
is immediate and lasts until the next boot. If the -P flag is used,
the change is deferred until the next boot and is permanent.

Diagnosis: If foreground response time sometimes deteriorates when
programs with large amounts of sequential disk output are
running, sequential output may need to be paced.

Tuning: Set maxpout to 33 and minpout to 16. If sequential performance
deteriorates unacceptably, increase one or both. If foreground
performance is still unacceptable, decrease both.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Use of Disk-I/O Pacing″.

• MTU

Purpose: Limits the size of packets that are transmitted on the network.

278 RS/6000 Performance Tools in Focus

Values: trn (4 Mb): Default: 1492, Range: 60 to 3900

trn (16 Mb): Default: 1492, Range: 60 to 17960

enn: Default: 1500, Range: 60 to 1500

fin: Default: 4352, Range: 60 to 4352

hin: Default: 65536, Range: 60 to 65536

son: Default: 61428, Range: 60 to 61428

lon: Default: 1500 (3.2.5) 16896 (4.1), Range: 60 to 65536

Display: lsattr -E -l trn

Change: chdev -l trn -a mtu=NewValue. Cannot be changed while the
interface is in use. Because all systems on a LAN must have the
same MTU, they must all change simultaneously. Change is
effective across boots.

Diagnosis: Packet fragmentation stats

Tuning: Increase MTU size for the token-ring interfaces:

trn (4 Mb): 4056

trn (16 Mb): 8500

For the loopback interface lon in Version 3.2.5, increase to 16896.
For other interfaces, the default should be kept.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″LAN Adapters and Device Drivers″.

• nfs_chars (3.2.5), nfs_socketsize (AIX Version 4)

Purpose: The size of the NFS UDP socket buffer.

Values: Default: 60000, Range: 60000 to (sb_max -128)

Display: nfso -a or nfso -o nfs_chars (In 4.1, nfso -o nfs_socketsize)

Change: nfso -o nfs_chars=NewValue

(In 4.1, nfso -o nfs_socketsize=NewValue)

stopsrc -g nfs

startsrc -g nfs

Change takes effect immediately. Change is effective until next
boot. Permanent change is made by adding nfso command to
/etc/rc.nfs or /etc/rc.net. The sb_max parameter must change
first.

Diagnosis: netstat -s

Tuning: If UDP: socket buffer overflows count is nonzero, increase sb_max
and nfs_chars.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″NFS Tuning″.

• nfsd Count

Purpose: Number of nfsd processes available to handle NFS requests on a
server.

Values: Default: 8, Range: 1 to n

Appendix B. Summary of Tunable AIX Parameters 279

Display: ps -ef | grep nfsd

Change: chnfs -n NewValue. Change normally takes effect immediately and
is permanent. The -N flag causes an immediate, temporary
change. The -I flag causes a change that takes effect at the next
boot.

Diagnosis: netstat -s to look for UDP socket buffer overflows.

Tuning: Increase number until socket buffer overflows cease.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″How Many biods and nfsds Are Needed for Good Performance?″.

• nfs_gather_threshold (AIX Version 4 only)

Purpose: Minimum size of a write that sleeps before a sync. Used to
disable scatter/gather of writes to the same vnode.

Values: Default: 4096, Range: x to y

Display: nfso -a or nfso -o nfs_gather_threshold

Change: nfso -o nfs_gather_threshold=NewValue. Change takes effect
immediately. Change is effective until next boot.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• nfs_portmon (AIX Version 3.2.5), portcheck (AIX Version 4)

Purpose: Specifies that NFS is to check whether or not requests come from
privileged ports.

Values: Default: 0 (no), Range: 0 to 1

Display: nfso -a or nfso -o nfs_portmon

Change: nfso -o nfs_portmon=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding nfso command to /etc/rc.nfs.

Diagnosis: N/A

Tuning: This is a configuration decision with minimal performance
consequences.

Refer to: N/A

• nfs_repeat_messages (AIX Version 4 only)

Purpose: Should messages written by NFS be repeated?

Values: Default: 1 (yes), Range: 0 to 1

Display: nfso -a or nfso -o nfs_repeat_messages

Change: nfso -o nfs_repeat_messages=NewValue. Change takes effect
immediately. Change is effective until next boot.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• nfs_setattr_error (AIX Version 4 only)

280 RS/6000 Performance Tools in Focus

Purpose: Specifies that NFS is to ignore NFS errors due to illegal PC
setattrs.

Values: Default: 1, Range: 0 to 1

Display: nfso -a

Change: nfso -o nfs_setattr_error=NewValue. Change takes effect
immediately. Change is effective until next boot.

Diagnosis: N/A

Tuning: N/A

• nfsudpcksum (AIX Version 3.2.5), udpchecksum (AIX Version 4)

Purpose: Specifies that NFS is to use UDP checksum processing.

Values: Default: 1 (yes), Range: 0 to 1

Display: nfso -a or nfso -o nfsudpcksum

Change: nfso -o nfsudpcksum=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding nfso command to /etc/rc.nfs.

Diagnosis: N/A

Tuning: Turning checksum processing off may save some processing
time, but increases the risk of undetected data errors.

Refer to: N/A

• nonlocsrcroute

Purpose: Indicates that strict-source-routed IP packets can be addressed to
hosts outside the local ring. (Loose source routing is not
affected.)

Values: Default: 1 (yes), Range: 0 to 1

Display: no -a or no -o nonlocsrcroute

Change: no -o nonlocsrcroute=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with minimal performance
consequences.

Refer to: N/A

• npskill (AIX Version 4 only)

Purpose: The number of free paging-space pages at which processes begin
to be killed.

Values: Default: 128, Range: 0 to the number of pages in real memory.

Display: vmtune

Change: vmtune -k NewValue. Change takes effect immediately. Change is
effective until next boot.

Diagnosis: N/A

Tuning: N/A

Refer to: vmtune command.

Appendix B. Summary of Tunable AIX Parameters 281

• npswarn (AIX Version 4 only)

Purpose: The number of free paging-space pages at which processes begin
to receive SIGDANGER.

Values: Default: 512, Range: At least npskill to the number of pages in
real memory.

Display: vmtune

Change: vmtune -w NewValue. Change takes effect immediately. Change is
effective until next boot.

Diagnosis: N/A

Tuning: Increase if you experience processes being killed for low paging
space.

Refer to: vmtune command.

• nstrpush

Purpose: Indicates the maximum number of modules that can be pushed
onto a single STREAM. This is a loadtime attribute.

Values: Default: 8.

Display: Defined in file: /etc/pse_tune.conf

Change: Change in file: /etc/pse_tune.conf. Change takes effect at next
reboot during initial STREAMS load time, when the strload
command reads the parameter names and values from the
/etc/pse_tune.conf file.

Diagnosis: N/A

Tuning: Should be at least 8.

Refer to: N/A

• numclust (AIX Version 4 only)

Purpose: The number of 16 KB clusters processed by write behind.

Values: Default: 1, Range: 1 to any positive integer

Display: vmtune

Change: vmtune -c NewValue. Change takes effect immediately. Change is
effective until next boot.

Diagnosis: N/A

Tuning: May be appropriate to increase if striped logical volumes or disk
arrays are being used.

Refer to: vmtune command.

• numfsbuf (AIX Version 4 only)

Purpose: The number of file-system bufstructs.

Values: Default: 64, Range: 64 to any positive integer

Display: vmtune

Change: vmtune -b NewValue. Change takes effect immediately. Change is
effective until next boot.

Diagnosis: N/A

282 RS/6000 Performance Tools in Focus

Tuning: May be appropriate to increase if striped logical volumes or disk
arrays are being used.

Refer to: vmtune command.

• Paging Space Size

Purpose: The amount of disk space required to hold pages of working
storage.

Values: Default: configuration-dependent, Range: 32 MB to n MB for hd6,
16 MB to n MB for non-hdg.

Display: lsps -a

Change: mkps or chps or smit pgsp. Change takes effect immediately and is
permanent. Paging space is not necessarily put into use
immediately, however.

Diagnosis: lsps -a If processes have been killed for lack of paging space,
monitor the situation with the psdanger() subroutine.

Tuning: If it appears that there is not enough paging space to handle the
normal workload, add a new paging space on another physical
volume, or make the existing paging spaces larger.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Placement and Sizes of Paging Spaces″.

• pd_npages

Purpose: The number of pages that should be deleted in one chunk from
RAM when a file is deleted.

Values: Default: largest file size / page size, Range: 1 to largest file size /
page size

Display: vmtune

Change: vmtune -N NewValue. Change takes effect immediately. Change is
effective until next boot. Permanent change is made by adding
vmtune command to /etc/inittab.

Diagnosis: This option may be useful if a real-time application is
experiencing some slow response time while large files are being
deleted.

Tuning: If real-time response is critical, adjusting this option may improve
response time by spreading the removal of file pages from RAM
more evenly over a workload.

Refer to: vmtune command

• Process-Priority Calculation

Purpose: Specify the amount by which a process′s priority value will be
increased by its recent CPU usage and the rate at which the
recent-CPU-usage value decays. The parameters are called r
and d.

Values: Default: 16, Range: 0 to 32 (Note: When applied to the calculation,
the values of r and d are divided by 32. Thus the effective range
of factors is from 0 to 1 in increments of 0.03125.)

Display: schedtune

Appendix B. Summary of Tunable AIX Parameters 283

Change: schedtune -r or schedtune -d. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding schedtune command to /etc/inittab.

Diagnosis: ps al If you find that the PRI column has priority values for
foreground processes (those with NI values of 20) that are higher
than the PRI values of some background processes (NI values >
20), you may want to reduce the r value.

Tuning: Decreasing r makes it easier for foreground processes to
compete. Decreasing d enables foreground processes to avoid
competition with background processes for a longer time.
schedtune -r 2 would ensure that any new foreground process
would receive at least 0.5 seconds of CPU time before it had to
compete with any process with NI >= 24.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning the Process-Priority-Value Calculation with schedtune″.

• psebufcalls

Purpose: Specifies the maximum number of bufcalls to allocate by
STREAMS. In AIX, the STREAM subsystem allocates a certain
number of bufcall structures at initialization time. When allocb()
fails, the user can register requests for the bufcall(). Lowering
this value is not allowed until the system reboots. At reboot, it
returns to its default value.

Values: Default: 0

Display: no -a or no -o psebufcalls

Change: no -o psebufcalls=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• pseintrstack

Purpose: Indicates the maximum number of the interrupt stack size allowed
by STREAMS while running in the offlevel. Sometimes, when a
process running other than INTBASE level enters a STREAM, it
encounters stack overflow problems because of not enough
interrupt stack size. Tuning this parameter properly reduces the
chances of stack overflow problems.

Values: Default: 0x3000 (decimal 12288).

Display: Defined in file: /etc/pse_tune.conf

Change: Change in file: /etc/pse_tune.conf. Change takes effect at next
reboot during initial STREAMS load time, when the strload
command reads the parameter names and values from the
/etc/pse_tune.conf file.

Diagnosis: Stack overflow problems.

Tuning: N/A

Refer to: N/A

284 RS/6000 Performance Tools in Focus

• psetimers

Purpose: Specifies the maximum number of timers to allocate by
STREAMS. In AIX, the STREAM subsystem allocates a certain
number of timer structures at initialization time so the STREAMS
driver or module can register the timeout() requests. Lowering
this value is not allowed until the system reboots. At reboot, it
returns to its default value.

Values: Default: 20

Display: no -a or no -o psetimers

Change: no -o psetimers=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• rec_que_size

Purpose: (Tunable only in AIX Version 3.) Specifies the maximum number of
receive buffers that can be queued-up for the interface.

Values: Default: 30, Range: 20 to 150

Display: lsattr -E -l tokn -a rec_que_size

Change: ifconfig tr0 detach

chdev -I tokn -a rec_que_size=NewValue

ifconfig tr0 hostname up

Change is effective across boots.

Diagnosis: N/A

Tuning: Increase size. Should be set to 150 as a matter of course on
network-oriented systems, especially servers.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″LAN Adapters and Device Drivers″.

• rfc1122addrchk

Purpose: Specifies whether address validation is performed between
communications layers.

Values: Default: 0 (no), Range: 0 to 1

Display: no -a or no -o rfc1122addrchk

Change: no -o rfc1122addrchk=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: This value should not be changed.

Refer to: N/A

• rfc1323

Appendix B. Summary of Tunable AIX Parameters 285

Purpose: Value of 1 indicates that tcp_sendspace and tcp_recvspace can
exceed 64 KB.

Values: Default: 0, Range: 0 or 1

Display: no -a or no -o rfc1323

Change: no -o rfc1323=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: None.

Tuning: Change before attempting to set tcp_sendspace and tcp_recvspace
to more than 64 KB.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″TCP Layer″.

• sb_max

Purpose: Provide an absolute upper bound on the size of TCP and UDP
socket buffers. Limits setsockopt(), udp_sendspace, udp_recvspace,
tcp_sendspace, and tcp_recvspace.

Values: Default: 65536, Range: N/A

Display: no -a or no -o sb_max

Change: no -o sb_max=NewValue. Change takes effect immediately for new
connections. Change is effective until next boot. Permanent
change is made by adding no command to /etc/rc.net.

Diagnosis: None.

Tuning: Increase size, preferably to multiple of 4096. Should be about
twice the largest socket buffer limit.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Socket Layer″

• strctlsz

Purpose: Specifies the maximum number of bytes of information that a
single system call can pass to a STREAM to be placed into the
control part of a message (in M_PROTO or M_PCPROTO block).
Any putmsg() with a control part exceeding this size will fail
returning an ERANGE error code.

Values: Default: 1024

Display: no -a or no -o strctlsz

Change: no -o strctlsz=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• strmsgsz

Purpose: Specifies the maximum number of bytes of information that a
single system call can pass to a STREAM to be placed into the
data part of a message (in M_DATA blocks). Any write()

286 RS/6000 Performance Tools in Focus

exceeding this size will be broken into multiple messages. A
putmsg() with a data part exceeding this size will fail returning an
ERANGE error code.

Values: Default: 0

Display: no -a or no -o strmsgsz

Change: no -o strmsgsz=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• strturncnt

Purpose: Specifies the maximum number of requests handled by the
currently running thread for Module- or Elsewhere-level STREAMS
synchronization. In AIX Version 4, the Module-level
synchronization works in such a way that only one thread can run
in the module at any given time, and all other threads trying to
acquire the same module enqueue their requests and exit. After
the currently running thread completes its work, it dequeues all
the previously enqueued requests one at a time and starts them.
If there are large numbers of requests enqueued in the list, the
currently running thread must serve everyone and will always be
busy serving others thus starvimg itself. To eliminate this
problem, the currently running thread serves only the strturncnt
number of threads. After that, a separate kernel thread starts all
the pending requests.

Values: Default: 15

Display: no -a or no -o strturncnt

Change: no -o strturncnt=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• strthresh

Purpose: Specifies the maximum number of bytes STREAMS are normally
allowed to allocate. When the threshold is passed, users without
the appropriate privilege will not be allowed to open STREAMS,
push modules, or write to STREAMS devices. The ENOSR error
code is returned. The threshold applies only to the output side;
therefore, data coming into the system is not affected and
continues to work properly. A value of 0 indicates there is no
threshold.

The strthresh parameter represents a percentage of the value of
the thewall parameter, and its value can be set between 0 and
100, inclusively. The thewall parameter indicates the maximum
number of bytes that can be allocated by STREAMS and Sockets

Appendix B. Summary of Tunable AIX Parameters 287

using the net_malloc() subroutine. The user can change the
value of the thewall parameter using the no command. When the
user changes the value of the thewall parameter, the threshold
gets updated accordingly. The default value is 85, indicating the
threshold is 85 percent of the value of the thewall parameter.

Values: Default: 85, Range: 0 to 100

Display: no -a or no -o strthresh

Change: no -o strthresh=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• subnetsarelocal

Purpose: Specifies that all subnets that match the subnet mask are to be
considered local for purposes of establishing, for example, the
TCP maximum segment size.

Values: Default: 1 (yes), Range: 0 to 1

Display: no -a or no -o subnetsarelocal

Change: no -o subnetsarelocal=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with performance consequences.
If the subnets do not all have the same MTU, fragmentation at
bridges may degrade performance. If the subnets do have the
same MTU, and subnetsarelocal is 0, TCP sessions may use an
unnecessarily small MSS.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning TCP Maximum Segment Size (MSS)″.

• syncd Interval

Purpose: The time between sync() calls by syncd.

Values: Default: 60 (seconds), Range: 1 to any positive integer

Display: grep syncd /sbin/rc.boot

Change: vi /sbin/rc.boot. Change takes effect at next boot and is
permanent.

Diagnosis: N/A

Tuning: At its default level, this parameter has little performance cost. No
change is recommended. Significant reductions in the syncd
interval in the interests of data integrity could have adverse
consequences.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Performance Implications of sync/fsync″.

• tcp_keepidle

288 RS/6000 Performance Tools in Focus

Purpose: Total length of time to keep an idle TCP connection alive.

Values: Default: 14400 (half-seconds) = 2 hours, Range: any positive
integer

Display: no -a or no -o tcp_keepidle

Change: no -o tcp_keepidle=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with minimal performance
consequences. No change is recommended.

Refer to: N/A

• tcp_keepintvl

Purpose: Interval between packets sent to validate the TCP connection.

Values: Default: 150 (half-seconds) = 75 seconds, Range: any positive
integer

Display: no -a or no -o tcp_keepintvl

Change: no -o tcp_keepintvl=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: This is a configuration decision with minimal performance
consequences. No change is recommended. If the interval were
shortened significantly, processing and bandwidth costs might
become significant.

Refer to: N/A

• tcp_mssdflt

Purpose: Default maximum segment size used in communicating with
remote networks.

Values: Default: 512, Range: 512 to (MTU of local net - 64)

Display: no -a or no -o tcp_mssdflt

Change: no -o tcp_mssdflt=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: Increase, if practical.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Tuning TCP Maximum Segment Size (MSS)″.

• tcp_recvspace

Purpose: Provide the default value of the size of the TCP socket receive
buffer.

Values: Default: 16384, Range: 0 to 64 KB if rfc1323=0, Range: 0 to 4 GB if
rfc1323= 1 . Must be less than or equal to sb_max. Should be
equal to tcp_sendspace and uniform on all frequently accessed AIX
systems.

Appendix B. Summary of Tunable AIX Parameters 289

Display: no -a or no -o tcp_recvspace

Change: no -o tcp_recvspace=NewValue. Change takes effect immediately
for new connections. Change is effective until next boot.
Permanent change is made by adding no command to /etc/rc.net.

Diagnosis: Poor throughput.

Tuning: Increase size, preferably to multiple of 4096.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Socket Layer″.

• tcp_sendspace

Purpose: Provide the default value of the size of the TCP socket send
buffer.

Values: Default: 16384, Range: 0 to 64 KB if rfc1323=0, Range: 0 to 4 GB if
rfc1323= 1 . Must be less than or equal to sb_max. Should be
equal to tcp_recvspace and uniform on all frequently accessed AIX
systems.

Display: no -a or no -o tcp_sendspace

Change: no -o tcp_sendspace=NewValue. Change takes effect immediately
for new connections. Change is effective until next boot.
Permanent change is made by adding no command to /etc/rc.net.

Diagnosis: Poor throughput.

Tuning: Increase size, preferably to multiple of 4096.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Socket Layer″.

• tcp_ttl

Purpose: Time to live for TCP packets.

Values: Default: 60 (10-millisecond processor ticks), Range: any positive
integer

Display: no -a or no -o tcp_ttl

Change: no -o tcp_ttl=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: netstat -s

Tuning: If the system is experiencing TCP timeouts, increasing tcp_ttl
may reduce retransmissions.

Refer to: N/A

• thewall

Purpose: Provide an absolute upper bound on the amount of real memory
that can be used by the communications subsystem.

Values: Default: 25 percent of real memory, Range: 0 to 50 percent of real
memory

Display: no -a or no -o thewall

290 RS/6000 Performance Tools in Focus

Change: no -o thewall=NewValue. NewValue is in KB, not bytes. Change
takes effect immediately for new connections. Change is effective
until next boot. Permanent change is made by adding no
command to /etc/rc.net.

Diagnosis: None.

Tuning: Increase size, preferably to multiple of 4 (KB).

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″AIX Version 3.2.5 mbuf Pool Performance Tuning″

• Time-Slice Expansion Amount

Purpose: The number of 10-millisecond clock ticks by which the default 10
millisecond time slice is to be increased.

Values: Default: 0, Range: 0 to any positive integer

Display: schedtune

Change: schedtune -t NewValue. Change takes effect immediately. Change
is effective until next boot. Permanent change is made by adding
schedtune command to /etc/inittab.

Diagnosis: N/A

Tuning: In general, this parameter should not be changed. If the workload
consists almost entirely of very long-running, CPU-intensive
programs, increasing this parameter may have some positive
effect.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Modifying the Scheduler Time Slice″.

• udp_recvspace

Purpose: Provide the default value of the size of the UDP socket receive
buffer.

Values: Default: 41600, Range: N/AMust be less than or equal to sb_max.

Display: no -a or no -o udp_recvspace

Change: no -o udp_recvspace=NewValue. Change takes effect immediately
for new connections. Change is effective until next boot.
Permanent change is made by adding no command to /etc/rc.net.

Diagnosis: Nonzero n in netstat -s report of udp: n socket buffer overflows

Tuning: Increase size, preferably to multiple of 4096.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Socket Layer″

• udp_sendspace

Purpose: Provide the default value for the size of the UDP socket send
buffer.

Values: Default: 9216, Range: 0 to 65536. Must be less than or equal to
sb_max.

Display: no -a or no -o udp_sendspace

Change: no -o udp_sendspace=NewValue. Change takes effect immediately
for new connections. Change is effective until next boot.
Permanent change is made by adding no command to /etc/rc.net.

Appendix B. Summary of Tunable AIX Parameters 291

Tuning: Increase size, preferably to multiple of 4096.

Refer to: AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365
″Socket Layer″

• udp_ttl

Purpose: Time to live for UDP packets.

Values: Default: 30 (10-millisecond timer ticks), Range: any positive
integer

Display: no -a or no -o udp_ttl

Change: no -o udp_ttl=NewValue. Change takes effect immediately.
Change is effective until next boot. Permanent change is made
by adding no command to /etc/rc.net.

Diagnosis: N/A

Tuning: N/A

Refer to: N/A

• xmt_que_size

Purpose: Specifies the maximum number of send buffers that can be
queued up for the device.

Values: Default: 30, Range: 20 to 150

Display: lsattr -E -l tok0 -a xmt_que_size

Change: ifconfig tr0 detach

chdev -I tok0 -a xmt_que_size=NewValue

ifconfig tr0 hostname up

Change is effective across boots.

Diagnosis: netstat -i Oerr > 0

Tuning: Increase size. Should be set to 150 as a matter of course on
network-oriented systems, especially servers.

Refer to: “LAN Adapters and Device Drivers”

292 RS/6000 Performance Tools in Focus

Appendix C. Performance Tools Paths and Filesets

Path and command name Fileset

/usr/bin/3dmon perfmgr

/usr/bin/bf perfagent.tools

/usr/bin/bfrpt perfagent.tools

/usr/sbin/bindprocessor bos.mp (V 4.2), bos.rte.mp (V 4.1)

/usr/sbin/chdev bos.rte.methods

/usr/bin/chmon perfmgr

/usr/sbin/cpu_state bos.mp (V 4.2), bos.rte.mp (V 4.1)

/usr/sbin/defragfs bos.rte.filesystem

/usr/bin/fdpr perfagent.tools

/usr/bin/f i lemon perfagent.tools

/usr/bin/f i leplace perfagent.tools

/usr/bin/genkex perfagent.tools

/usr/bin/genkld perfagent.tools

/usr/bin/genld perfagent.tools

/usr/ccs/bin/gprof bos.adt.prof

/usr/bin/iostat bos.acct

/usr/bin/lockstat perfagent.tools

/usr/sbin/lslv bos.rte.lvm

/usr/sbin/migratepv bos.rte.lvm

/usr/bin/netpmon perfagent.tools

/usr/bin/nice bos.rte.control

/usr/sbin/netstat bos.net.tcp.client

/usr/sbin/nfsstat bos.net.nfs.client

/usr/sbin/nfso bos.net.nfs.client

/usr/sbin/no bos.net.tcp.client

/usr/sbin/perf/diag_tool/pdt_config bos.perf.diag_tool

/usr/sbin/perf/diag_tool/pdt_report bos.perf.diag_tool

/usr/sbin/perf/pmr/perfpmr bos.perf.pmr

/usr/ccs/bin/prof bos.adt.prof

/usr/bin/ps bos.rte.control

/usr/sbin/pstat bos.sysmgt.serv_aid

/usr/ lpp/pv/bin/pv aixtools (*, **)

/usr/sbin/renice bos.rte.control

/usr/sbin/reorgvg bos.rte.lvm

 Copyright IBM Corp. 1997 293

/usr/bin/rmss perfagent.tools

/usr/sbin/sar bos.acct

/usr/samples/kernel/schedtune bos.adt.samples

/usr/bin/stem perfagent.tools

/usr/bin/str ipnm perfagent.tools

/usr/bin/svmon perfagent.tools

/usr/bin/syscalls perfagent.tools

/usr/bin/t ime bos.rte.misc_cmds

/usr/bin/t imex bos.acct

/usr/bin/tprof perfagent.tools

/usr/bin/vmstat bos.acct

/usr/samples/kernel/vmtune bos.adt.samples

xgprof aixtools (*)

/usr/bin/xmperf perfmgr

/usr/bin/xmpeek perfagent.server

 * also available on the IBM Developer Connection, CD-ROM Z121-0200

Info at: http://www.developer.ibm.com/devcon/index.html

** also available on the IBM Software Development Solutions for AIX Version 4,

CD-ROM SK2T-2729

294 RS/6000 Performance Tools in Focus

Appendix D. Special Notices

This publication is intended to help RS/6000 users, system administrators, and
system engineers to understand the available performance monitoring and
system-tuning tools on RS/6000, to use them, and to undertake a detailed
performance analysis. The information in this publication is not intended as the
specification of any programming interfaces that are provided by IBM RS/6000,
AIX, and Performance Toolbox for AIX. See the PUBLICATIONS section of the
IBM Programming Announcement for IBM RS/6000, AIX, and Performance
Toolbox for AIX for more information about what publications are considered to
be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

 Copyright IBM Corp. 1997 295

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

AIX AIXwindows
AS/400 BookManager
HACMP/6000 IBM
IMS InfoExplorer
LoadLeveler NetView
POWERparallel RISC System/6000
RS/6000 SP
System/390 Xstation Manager
400

486 Intel Corporation
C + + American Telephone & Telegraph

Company, Incorporated
DDS Sony Corporation
Hewlett-Packard Hewlett-Packard Company
HP Hewlett-Packard Company
Motif Open Software Foundation, Incorporated
Network File System Sun Microsystems, Incorporated
NFS Sun Microsystems, Incorporated
OSF/Motif Open Software Foundation, Incorporated
POSIX Institute of Electrical and Electronic

Engineers
PostScript Adobe Systems, Incorporated
SCSI Security Control Systems, Incorporated
Solaris Sun Microsystems, Incorporated
Sun Sun Microsystems, Incorporated
SunOS Sun Microsystems, Incorporated
X Window System Massachusetts Institute of Technology
Zip Iomega Corporation

296 RS/6000 Performance Tools in Focus

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 299.

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

• RS/6000 SMP Enterprise Servers Architecture and Implementation, SG24-2583

E.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

E.3 Other Publications
These publications are also relevant as further information sources:

• AIX Performance Tuning Guide, Versions 3.2 and 4, SC23-2365

• Performance Toolbox for AIX Guide and Reference, Version 1.2 and 2,
SC23-2625

• AIX Version 4 Optimization and Tuning Guide for Fortran, C, and C++,
SC09-1705

• AIX Version 4 System Management Guide: Communications and Networks,
SC23-2526

• AIX Version 4 Commands Reference, SBOF-1851

 Copyright IBM Corp. 1997 297

298 RS/6000 Performance Tools in Focus

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1997 299

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

300 RS/6000 Performance Tools in Focus

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How to Get ITSO Redbooks 301

302 RS/6000 Performance Tools in Focus

List of Abbreviations

AIX advanced interactive executive

API application program interface

ARP address resolution protocol

ASCII American National Standard Code for
Information Interchange

azizo analyzing zoom-in zoom-out

bf bigfoot

CD-ROM compact disk read only memory

CDLI common data link interface

COBOL common business oriented language

CPU central processing unit

DB data base

DDS dynamic data supplier

DNS domain name service

exmon exception monitor

FDDI f iber distributed data interface

fdpr feedback directed program restructuring

FORTRAN formula translation

FTP File Transfer Program

GB gigabyte

GUI graphical user interface

HACMP high availabil ity cluster multi-processing

HP-UX Hewlett-Packard Co.-UNIX

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

I/O input/output

IAR instruction address register

IBM International Business Machines
Corporation

ICMP internet control message protocol

ID identif ication number

IP Internet protocol

ITSO International Technical Support
Organization

JFS journaled fi le system

K kilo

KB kilobyte

KB/s kilobyte per second

LAN local area network

LP logical partit ion

LPP l icensed program product

LV logical volume

LVCB logical volume control block

LVM logical volume manager

LZ Lempel-Zev

M mill ion

MB megabyte

MP multiprocessor

ms mill iseconds

MTU maximum transmission unit

N/A not applicable

N/A not available

NFS network fi le system

NLS national language support

ODM object data manager

OEM original equipment manufacturer

OS operating system

PDT performance diagnostic tool

perfPMR performance program modification request

PFT page frame table

PID process identifier

PMTU path maximum transmission unit

POSIX portable operating system interface for
UNIX

POWER performance optimization with enhanced
RISC

PRPQ programming request for price quotation

PSSP Parallel System Support Programs

PTF program temporary f ix

PTPE Performance Toolbox Parallel Extensions

PTX Performance Toolbox

PV Program Visualizer

RAM random access memory

RFC request for comments

RISC reduced instruction set computer

rmss reduced memory system simulator

RPC remote procedure call

RS RISC system

Rsi Remote Statistics Interface

RSS resident set size

sar system accounting report

SCSI small computer system interface

 Copyright IBM Corp. 1997 303

SDET software development environment test

sdev standard deviation

SMIT System Management Interface Tool

SMP symmetric mult iprocessor

SMUX single multiplexor

SNMP simple network management protocol

SP Scalable POWERparallel

SPARC scalable processor architecture

SPMI system performance measurement
interface

stem scanning tunneling encapsulating
microscope

SunOS Sun operating system

SYN synchronization

TCP transmission control protocol

TID thread identif ier

TLB translation lookaside buffer

TRS text resident size

TSIZ text size

TTY Teletypewriter

UDP user datagram protocol

UP uniprocessor

URL Universal Resource Locator

VM virtual machine

VMM virtual memory manager

WWW World Wide Web

X X Window System

XCOFF Extended Common Object File Format

XDR external data representation

XID exchange identifier

304 RS/6000 Performance Tools in Focus

Index

Numerics
3dmon 203, 220
3dplay 203

A
a2ptx 240
Abbreviat ions 303
Acronyms 303
azizo 203, 204, 241

B
Baseline 4
bf 144
bfrpt 146
Bibliography 297
BigFoot 144
bindprocessor 173
Bottleneck 1

C
chmon 203, 239
cpu_state 170
cron 5, 24

E
exmon 203, 236

F
fdpr 162
fi lemon 83
fileplace 95
filtd 5, 203, 204, 230

G
genkex 115
genkld 114
genld 113
getnames 263
gprof 59, 251

I
iostat 17, 29

L
Locks 164, 169
lockstat 164

lslv 98

N
netpmon 106
netstat 35
nfso 50
nfsstat 42
nice 54
no 46

P
Page Replacement Algorithm 14, 178, 191
PDT (Performance Diagnostic Tool) 4, 129
Performance

Monitor ing 1
Tools 3

perfPMR 4, 140
Processor Affinity 33, 174, 185
prof 58
ps 30, 76
pstat 33
PTX (Performance Toolbox) 201

Agent 201, 204
Console 204, 209
Filesets 205
Instrument 204
Manager 201, 203
Statistics 204
Value 204

ptxmerge 204
ptxrlog 240
ptxtab 204
PV (Program Visualizer) 253, 266
pvpackage 259
pvreport 260
pvtrace 254

R
renice 56
rmss 79

S
sadc 23, 24
sar 4, 23, 29
schedtune 11, 13, 55, 79, 177
Scheduling Policy 34
stem 152
str ipnm 116
svmon 71, 89
syscalls 158

 Copyright IBM Corp. 1997 305

T
Thrashing 11, 13, 126, 178
timex 30
tprof 63
trace 63, 120, 262
trcnm 262
trcrpt 124

U
utld 261, 266

V
vmstat 7, 29, 75, 92
vmtune 11, 14, 15, 17, 189

X
xgprof 251, 266
xmperf 202, 203, 204
xmservd 4, 5, 203, 204, 231

306 RS/6000 Performance Tools in Focus

ITSO Redbook Evaluation

RS/6000 Performance Tools in Focus
SG24-4989-00

Your feedback is very important to help us maintain
the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following
methods:

• Use the online evaluation form found at
http://www.redbooks.com

• Fax this form to: USA International Access Code
+ 1 914 432 8264

• Send your comments in an Internet note to
redeval@vnet. ibm.com

Please rate your overall satisfaction with this book
using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5
= very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 307

IBML

Printed in U.S.A.

SG24-4989-00

