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Abstract sequences for compromised patient data. As a result of the

Rapid improvements in network bandwidth, cost, and ubii—iSing management c_omplexity and sgcurity ha_zards inherent
uity combined with the security hazards and high total cost of tlhe current Comp“tg‘g madel, there ISa groww:(ggnméer_r:jeﬁt
ownership of personal computers have created a growing miQ-'everage continued improvements in network bandwidth,

ket for thin-client computing. We introduce THINC, a remoteSost: and ubiquity to return to a more centralized, secure, and

display system architecture for high-performance thin—cIierﬁ""‘s'er'to'm"’?nage computing strategy. Thin-client computing
computing in both LAN and WAN environments. THINC Is an embodiment of that movement.

transparently maps high-level application display calls to a A thin-client computing system consists of a server and a
few simple low-level commands which can be implementedlient that communicate over a network using a remote dis-
easily and efficiently. THINC introduces a number of noveplay protocol. The protocol allows graphical displays to be
latency-sensitive optimization techniques, including offscreevirtualized and served across a network to a client device,
drawing awareness, command buffering and scheduling, nowhile application logic is executed on the server. Using the
blocking display operation, native video support, and serveremote display protocol, the client transmits user input to the
side screen scaling. We have implemented THINC in aserver, and the server returns screen updates of the user inter-
XFree86/Linux environment and compared its performancdace of the applications to the client. Since data and applica-
with other popular approaches, including Citrix MetaFrametjons are accessed from a single remote location, several sig-
Microsoft Terminal Services, SunRay, VNC, and X. Our exqificant advantages over desktop computing are achieved. The
perimental results on web and video applications demonstratient is essentially a stateless appliance that does not need
that THINC can be as much as five times faster than traditiontd be backed up or restored, requires almost no maintenance
thin-client systems in high latency network environments andr upgrades, and does not store any sensitive data that can
is capable of playing full-screen video at full frame rate. be lost or stolen. Server resources can be physically secured
in protected data centers and centrally administered, with all
the attendant benefits of easier maintenance and cheaper up-
grades. Moreover, computing resources can be shared across
prany users, resulting in more effective utilization of comput-

g hardware.

1 Introduction

In the last two decades, the centralized computing model
mainframe computing has shifted toward the more distributed
model of desktop computing. But as these personal desk-Given these enormous potential advantages, it is not sur-
top computers become prevalent in today’s large corporageising that the market for thin-client systems is expected to
and government organizations, the total cost of owning argftow substantially over the next five years [27, 29]. How-
maintaining them has become unmanageable. This problewer, thin-clients face a number of technical challenges before
is exacerbated by the growing use of mobile laptop computeashieving mass acceptance. The most salient of these is the
and handheld devices to store and process information, whioked to provide a high fidelity visual and interactive experi-
poses additional administration and security issues. Thesace for end users across the vast spectrum of graphical and
mobile devices often contain sensitive data that must be camultimedia applications commonly found on the computing
fully secured, yet the devices themselves must travel in irdesktop. While previous thin-client approaches have focused
secure environments where they can be easily damaged, last,supporting office productivity tools in LAN environments

or stolen. This management and security problem is particand reducing data transfer for low bandwidth links such as
larly important for the medical community, given the increastSDN and modem lines, they do not effectively support more
ing use of computing in medicine, the urgent need to condisplay-intensive applications such as multimedia video, and
ply with HIPAA regulations[18], and the huge privacy con-they are not designed to operate effectively in higher latency



WAN environments. | Command [ Description \

In this context, we introduce THINCTHin-client Inter- | RAW Display raw pixel data at a given location
Net Computinyy a remote display architecture for thin-clientf COPY Copy frame buffer area to specified coor-
computing that can provide high fidelity display and inter; dinates
active performance in both LAN and WAN environments| SFILL Fill an area with a given pixel color valug
THINC provides a virtual display driver that takes drawing PFILL Tile a pixmap rectangle in a region
commands, packetizes them, and sends them over the netwoB TMAP Fill a region using a bitmap image
to a client device to display. In doing so, THINC leverages the
video display driver interface to work seamlessly with exist- Table 1: THINC Protocol Display Commands
ing unmodified applications, window systems, and operating
systems.

and comparing it against other popular commercial thin-client

With THINC, higher-level graphics calls used by applica- " ietv of web and multimedi licati K
tions are transparently mapped to a small set of low-level co ystems on avariety ot web and muilimedia application work-
oads. Section 7 discusses related work. Finally, we present

mands that form the basis for the THINC remote display pro- :

tocol. Application-level display commands are handled bﬁome concluding remarks.

novel semantic-preserving transformation optimizations, in-

cluding offscreen drawing awareness and native video sug- THINC Architecture

port. THINC's low-level commands mirror the video display

driver interface and are easy to implement and accelerate gdie THINC architecture is based on a thin-client model in

ing widely-available commodity video hardware on clients. which all persistent state is maintained by the server. Dis-
THINC also incorporates several latency-sensitive displafl@y updates are sent to the client only when the display con-

mechanisms which give high performance even in high |dent changes. These. updateg are stored as soft state in a local

tency WAN environments. These include local cursor drawinfamebuffer at the client, which is used for screen refreshes

support based on commodity video hardware, a push displ@d can be overwritten at any time.

update model that minimizes synchronization costs between

client and server, shortest-job-first display command schedi®-1 THINC Protocol Commands

ing to improve response time for interactive applications, and = ) . _ : .
a non-blocking drawing pipeline that integrates well with an(yvnhm this basic architecture, one important design consider-

maximizes the performance of today’s single-threaded wirfion iS the choice of commands used to encode display in-
dow servers. THINC also provides server-side screen scalirfq,lrmat'on for transm|SS|or? from the server to 'the client. The
which minimizes display bandwidth and processing requirdcn0ices range from encoding high-level graphics calls to send-

ments for small display handheld devices. ing raw pixel data.

. . . . Higher-level display encodings such as those used at the
. We have |mple_mented THINC as a virtual _dlsplay dnvera plication level allow the server to simply forward com-
in the XFree86 window system and measured its performanc : . : :
o mands to the client. However, this forces a maintenance issue
on real applications. We have compared our THINC prototype . . . . .
since the client must keep its own set of libraries for decoding

system against several popular thin-client systems, includir}ﬂ) lication-level commands. thus requiring software undates
Citrix MetaFrame, Microsoft Terminal Services, SunRay, X P ' q 9 P

and VNC. Our exoerimental results on web and multimedig)r both the client and the server. Also, while high-level dis-
A P . lay encodings are thought to be more bandwidth efficient,
applications in various network environments demonstrate the ° . - C i :
) ) ) . fevious studies show that this is often not the case in practice
importance of not just the choice of display commands use
. o . 3, 42]. Furthermore, they may be more platform-dependent
but also how the mapping of application-level drawing com:

and can result in additional synchronization overhead between

mands to protocol primitives can affect performance. In th'%lient and server, substantially degrading display performance

regard, THINC'’s approach allows it to achieve overall supelg WAN environments.

rior performance both in terms of application performance an On the other hand, raw pixel encodings are very portable

network bandwidth usage. Most notably, itis capable of dISa'md easy to implement. Servers must do the full translation

g(liyrlgg r?”jg;i?n\sdeo at full frame rate with modest "®¥rom application display commands to actual pixel data, but
. q ' ) ] ) clients can be very simple and stateless. However, display
This paper presents the design and implementation @fmmands consisting of raw pixels alone are typically too
THINC. Section 2 presents the overall THINC system arpanqgwidth-intensive. For example, using raw pixels to encode
chitecture. Section 3 presents THINC's mechanisms 10 inyisplay updates for a video player displaying at 30 frames per
prove system interactivity, while Section 4 describes THINC'§gond (fps) full-screen video clip on a typical 1024x768 24-

screen scaling support for heterogeneous display devices. Thgresolution screen would require over 0.5 Gbps of network
implementation of THINC as a virtual display driver in theygnqwidth.

XFree86 window system is discussed in Section 5. Section 6
presents experimental results measuring THINC performance



The design of THINC is based on the idea that a small s&.2 Application Command Interception
of low-level display encoding commands provides a simple ) L . .
yet powerful low-latency mechanism that translates to sup&nother important design issue is the method for obtaining
rior remote display performance. THINC uses a set of confliSPlay information from application display commands so
mands that mimic operations commonly found in client disthat they can be translated into THINC protocol commands.

play hardware. The five display commands used in THINC'dO be a viable replacement for the traditional desktop com-
display protocol are listed in Table 1. puting model, THINC needs to be able to obtain display up-

dates from application display commands without modifying

These commands were selected because they are ubidtifiSting applications. Also, since good performance even in
tously supported, simple to implement, and easily portabl /AN environments is essentlfal, THINC must intercept d|§—
to a range of environments. They also represent a subsetRigy commands at an appropriate abstraction layer to provide
operations accelerated by most graphics subsystems. GrapHfficient information to optimize the processing of display
ics acceleration interfaces such as the XFree86 XAA architeEommands in a latency-sensitive manner.
ture [41] and Microsoft Windows’ GDI Video Driver interface Given that traditional display systems are structured in mul-
[28] use a set of operations which can be synthesized usiHB'e abstraction layers, there are a number of ways in which
THINC’s commands. In this manner, clients need to do littld HINC can interact with existing display systems. One ap-
more than translate protocol commands into hardware callRfoach is to intercept commands at the application layer using
and servers avoid the need to do full translation to actual pixgfnctions provided by a display library. Intercepting at this
data, reducing the latency of display processing. Furthermor@Yyer provides a high-level view of the overall characteristics
THINC commands can capture important semantic inform&f the display system including the operation and manage-
tion regarding the content of display updates so that they c&pent of windows, input mechanisms, and display capabilities
be encoded in a bandwidth-efficient manner. The THINC prdg?f the system. Though it gives the ability to fully optimize
tocol display commands allow clients to be simple and statéde encoding of display updates to the client, the translation
less and operate in a wide-range of network environments. Of application layer requests down to THINC display com-

mands entails a significant amount of application logic, soft-

The five core THINC display commands are as followsware complexity, and computational power on the client.
RAW is used to present unencoded pixel data to be displayedAnother possibility is to intercept commands at the mid-
verbatim on a region of the screen. This command is invoke@leware layer, a hardware-independent abstraction of the dis-
as a last resort if the server is unable to employ any oth@y hardware created to meet the requirements of the display
command. RAW commands are the only commands that ag¥Stem and its applications. To maintain consistency across
compressed to mitigate their impact on the network. COP¥ardware with differing capabilities, this layer is provisioned
instructs the client to copy a region of the screen from its lowith fallback mechanisms and software routines that can im-
cal framebuffer to another location. This command improveglement missing hardware features. However, the complex-
the user experience by accelerating scrolling and opaque wify: of the middleware layer can make implementating display
dow movement without having to resend screen data from ttg@mmand interception difficult. Moreover, non-standard mid-
server. SFILL, PFILL, and BITMAP are commands that painglleware implementations quickly become outdated and need
a fixed-size region on the screen. They are useful for accel&onstant revision to keep up with advances in commodity mid-
ating the display of solid window backgrounds, desktop paglleware systems.
terns, backgrounds of web pages, text drawing, and certainAnother approach is to operate at the lowest level possi-
operations in graphics manipulation programs. SFILL fills &le by simply reading the actual pixel data in the framebuffer,
sizable region on the screen with a single color. PFILL repliimplicitly intercepting commands after they have been pro-
cates a tile over a screen region. BITMAP performs afill usingessed completely. In this manner, it is possible to develop
a bitmap as a stipple to apply a foreground and backgrourgdvery portable system since raw pixels are ubiquitously sup-
color. ported. Nonetheless, this approach is unsatisfactory because

semantic information that may have been associated with

To provide higher fidelity display, all THINC commands application display commands is no longer available. This
are designed to support full 24-bit color as well as an almakes it computationally expensive to translate pixel data into
pha channel. The alpha channel enables THINC to use alphandwidth-efficient display protocol commands, despite ad-
blending to work with more advanced window system feavances in compression algorithms developed for this purpose
tures that incorporate transparency, such as Mac OS X. Ho{#, 8].
ever, most current window systems such as XFree86 do notTHINC takes an approach based on the video device ab-
yet provide support for advanced transparency features. Dataction layer which sits below the middleware layer and
to space constraints, and since we use the XFree86 windalove the framebuffer. This layer is a well-defined, low-level,
system for the THINC prototype implementation and experidevice-dependent layer that exposes the video hardware to the
mental results, we skip the details of transparency support fdisplay system. Instead of relying on a real hardware-specific
this paper. driver, THINC is designed as a virtual video device driver that



can intercept graphics commands at the device layer, encodeThe generic command interface consists of the following
them as THINC protocol commands, and send the commandsethods:

over the network to the client. The virtual video device ap- : .
proach enables THINC to maximize the use of available client * gre:;ltea newb[ns:c[e}nc;a of a command object.

resources without requiring a significant amount of applica- : Cif);g)rﬁailp\s?aﬁi gllsaﬁgcb?éct Commands are free to im-
tion logic and computational power. The advantage to this ap- plement copying efficiently. fc;r example by using copy-
proach is that it works with existing unmodified middleware on-write mechanisms to sf;are private data across object
layer implementations, thus allowing THINC to leverage con- instances

itimnu:231:ggﬁniiié?a%zt?ﬁgﬂ?;g ?;ﬁ;?;gc:h%\gi rS' . Modifythé characteristics of an object instance. Current
tergs. THINg can also support new ¥/ideo hardware featl}lres ;:J f g?;\t;\??enzgglggiﬁgzzséf ;lrllrc)jprl: egr a:gd é:caicvsole(l)tlbqgc?sf
with at most the same amount of development work required g Ject. ging )

. : " . . into one.
for supporting them in traditional desktop display drivers. « Queryinformation about an object instance, for example,
THINC can utilize this semantic information at the video

the region where it draws, or its size.

device driver layer to translate application commands and o Flushan object instance by creating the appropriate pro-
transmit them from the server to the client in a way that is  tocol representation of the command encapsulated by the
computationally and bandwidth efficient. Still, this seman- object, and passing it to the network layer for delivery to
tic information is not guaranteed to be maintained through-  the client.

out the translation process. Consider the case where display

commands are intercepted and fully rendered into actual pixel Functions within the application interception layer pass ap-
data. At this point, no semantic information for the interPropriate information to the translation layer to create a par-
cepted display command is available, and THINC is left téicular type of object as an opaque handle. This handle is
analyze only pixel data to determine the best commands wiissed to th€reatemethod which returns a generic object
which to encode. While the choice of abstraction layer fofnstance that the translation layer can manipulate. However,
intercepting display commands and the underlying protoc&s discussed later, translated commands are not instantly dis-
commands are important in thin-client design, the mechanish@tched to the client. Instead, depending on where drawing

used for translating from one to another is also critical for pef2ccurs and current conditions in the system, commands nor-
formance. mally need to be stored and groups of commands may need to

be manipulated as a single entity.
To facilitate this process, THINC introduces the notion of
2.3 THINC Translation Architecture a command queue A command queue is a typical queue
structure where commands are ordered according to their ar-
Having described the basic THINC protocol and the mechgival time. However, the queue also has a single invariant:
nism used to transparently intercept application drawing rewo overlap exists among opaque commands inside the queue.
quests, we discuss how THINC translates application contp guarantee correct drawing, the queue distinguishes be-
mands to THINC commands. As we will show, this translatween self-contained opaque commands and commands with
tion architecture is a key component of several THINC optitransparent regions that depend on commands previously ex-
mizations. ecuted. The former are allowed to overwrite previous com-
THINC introduces an abstraction layer that allows it to permands whereas the latter cannot. The invariant is maintained
form the translation from application draw requests to protasy modifying queue insertion. When newer commands are
col commands, and to efficiently manage protocol commandgided to the queue, existing commands are automatically
as they traverse the system, The abstraction layer builds up@ivdified to maintain no overlap. If a command in the queue is
two basic objects: thprotocol command objecand thecom-  partially overwritten by the new object, the intersection of its
mand queue object draw region and the region of the new object is modified. For
Protocol command obijects, or jusbmmand objectsare example, if a RAW command is partially overwritten by a new
implemented in an object-oriented fashion. All command obFILL object, the queue will clip and discard the RAW pixel
jects are based on a generic interface that allows the THIN@ata associated with the overwritten region. Furthermore, if
server to operate on all of the THINC commands in the syghe new command completely overwrites a queued object, the
tem. Objects specific to each protocol command are concrejaeued object is purged from the queue.
implementations of this generic interface. Several attributes Command queues provide a powerful mechanism for
and methods are shared by all command objects, though paHINC to manage groups of commands. For example, queues
ticular objects implement their own set of attributes and mettean be merged and the resulting queue will maintain the in-
ods specific to the command they represent. Attributes camariant automatically. Command queues also play a key role
indicate specific characteristics of a command such as its THINC’s non-blocking operation. In the following sec-
scheduling priority or whether the command is opaque dion, we discuss an important translation optimization based
transparent. on command objects and queues.



2.4 Offscreen Drawing | Command [ Description

: ANIT Initializes a video stream
Over the past few years, there has been a trend in grap MEND Tears down a video stream
applications to move towards a drawing model where the USeNEXT Disolay the next video frame
interface is prepared using offscreen video memory; that is play - . -

. . . MOVE Change the location of the video display
the interface is computed offscreen and copied onscreen ml‘éRCSIZE ch 0 . the vide
when it is ready to present to the user. This idea is similar strjerx]r?]e € source size of he video
to the double- and triple-buffering methods used in video and — , .
3D-intensive applications. DSTSIZE Cthange the destination size of the video

Though this practice provides the user with a more pleas stream

ant experience on a regular local desktop client, it can pose
a serious performance problem for thin-client systems. Thin- Table 2: THINC Video Commands
client systems typically ignore all offscreen commands since

they do not directly result in any visible change to the frames COPY- When the commands are copied, they are clipped so

. that they do not draw outside of the source area. In addition,
buffer. Only when offscreen data are copied onscreen doges o o

L . . ey are translated to the proper position in the destination off-
the thin-client server send a corresponding display update

Q ) . L
the client. However, at this point, all semantic information re>creen region. Finally, the destination command gueue guar-

: an%ees that commands are properly modified so that no over-
garding the offscreen data has been lost and the server mps o

) ) . aps exist with the newly-added commands.

resort to using raw pixel drawing commands for the onscreen Wh & dat iod THING ;
display update. This can be very bandwidth-intensive if ther eno s?rde_enl ataare cop(;e onscreend, ith th executes
are many offscreen operations that result in large onscreen LE%-e qulfeue o dispiay cgmman sthassdQC|?te Wlt 't't c r.est[:r)]ec-
dates. Even if the updates can be successfully compressed Us: 0 screer|1 reglon. (Ceiczuse TI—?I ng ay p”mldlve'?l—llrllN C‘?
ing image compression algorithms, these algorithms can freue are aiready encoded as commands, S

computationally expensive and would impose additional loafecution stage normally entalls I!ttle mare than extract_mg _the
on the server. relevant data from the command’s structure and passing it to

To deliver effective performance for applications that usé:he functions in charge of formatting and outputting THINC

offscreen drawing operations, THINC provides a translatioHrOtOCOI commands to be sent to the client. This process is

optimization that tracks drawing commands as they occur [quncapsulated by the commanéish method. The simplic-

offscreen memory. The server then sends only those cor"ﬁy of this stage is crucial to the performance of the offscreen

mands that affect the display when offscreen data are Copir?na(—:tchamsm since it should behave equivalently to a local desk-

onscreen. THINC imolements this by keeping a commany? client that transfers pixel data from offscreen to onscreen
] P y Ping memory.

gueue for each offscreen region where drawing occurs. When . _ .
In monitoring offscreen operations, THINC incurs some

a draw command is received by THINC with an offscreen

destination, the appropriate THINC protocol command o tracking and translation overhead compared to systems that

ject is generated and added to the command queue ass&a[npletely ignore offscreen operations. However, the domi-

ated with the destination offscreen region. Since the commaRgt cost of offscreen operations is the actual drawing that oc-

queue guarantees that no overlap exists among command&ys: which is the same regardless of whether the operations

the queue, only relevant commands are stored for each off© trgcked or ignor_eq. As aresult, THINQS offscreen aware-
screen region. In addition, transparent manipulation of off1€SS IMPOSes negligible overhead and yields substantial im-

screen commands is made possible by the generic commad vements in overall system performance, as demonstrated

object interface. The command queue also allows new corfit Section 6.
mands to be merged with existing commands of the same kind
that draw next to each other. . 2.5 Video Support

THINC's offscreen awareness mechanism also accounts for
applications that create a hierarchy of offscreen regions t€rom video conferencing and presentations to movie and mu-
help them manage the drawing of their graphical interfacesic entertainment, multimedia applications play an everyday
Smaller offscreen regions are used to draw simple elements)e in desktop computing. However, existing thin-client plat-
which are then combined with larger offscreen regions to forforms have little or no support for multimedia applications,
more complex elements. This is accomplished by copying thend in particular for video delivery to the client. Video de-
contents of one offscreen region to another. To preserve dissery imposes rather high requirements on the underlying
play content semantics across these copy operations, THINE€mote display architecture. If the video is completely de-
mimics the process by copying the group of commands thabded by applications on the server, there is little the thin-
draw on the area being copied in the source offscreen regiahient server can do to provide a scalable solution. Real-time
to the destination region’s queue. Note that the commands-encoding of the video data is computationally expensive,
cannot simply be moved from one queue to the other sin@ven with today’s high end server CPUs. At the same time,
an offscreen region may be used multiple times as source fdelivering 24fps of ranRGBdata can rapidly overwhelm the



capacity of a typical network. Further hampering the abilMPEG stream, the server would have to re-encode the stream
ity of thin-client systems to support video playback are then the fly.

lack of well-defined application interfaces for video display. To provide transparent video playback functionality,
Most video players use ad-hoc, unique methods and architebHINC supports alternative YUV pixel formats commonly
tures for video decoding and playback, and providing suppotsed in applications that manipulate video content. A wide
in this environment would require prohibitive per-applicationrange of YUV pixel formats exist that provide efficient encod-
modifications. This section describes THINC’s video suping of video content. For example, the preferred pixel format
port. We first present THINC’s generic video architecturein the MPEG decoding process is YV12, which allows normal
designed to provide scalable remote video delivery. Then weue color pixels to be represented with only 12 bits. YUV for-
describe how THINC'’s video architecture transparently sugmats are able to efficiently compress RGB data without loss of
ports today’s multimedia applications. quality by taking advantage of the human eye’s ability to bet-

Video supportin THINC is implemented as a separate set &r distinguish differences in brightness than in color. In ad-
protocol commands. We decided against reusing or extendif§ion to the obvious compression gains, the use of YUV data
the basic display update protocol commands since they codl@s the benefit of being natively supported by virtually every
not cleanly provide the appropriate framework that video deaff-the-shelf video card available today. This allows THINC
livery requires. While typical display updates are stateled® take full advantage of the capabilities of client video hard-
and self-contained, video display updates are deeply intercoffre while incurring minimal overhead for video processing.
nected and require considerable amounts of state. The vidEbe video data need only be transferred to the client video
architecture is built around the notion of video stream objectfardware, which automatically and efficiently performs the
Each stream object represents a video being displayed. Avdigduired colorspace conversion and scaling to the stream’s
able formats for a session are negotiated at client connectiggstination size. Moreover, in the absence of suitable video
time to allow the system to adapt to varying client capabilitied)@rdware, the colorspace conversion can be optimized using
All streams share a common set of characteristics that allo}gh-speed operations such as Intel's MMX or PowerPC'’s Al-
THINC to manipulate them such as their format, position ofivec extensions, both of which are found in almost all CPUs
the screen, and the geometry of the video. In addition, eadh common use today. Widely used application interfaces al-

stream encapsulates information and state for its respectifady exist today to allow video players to transfer YUV data
format. directly to the video card. THINC is able to leverage these in-

ée[faces to provide its support for YUV pixel formats without

arygquiring any modifications to existing applications.

a video, the THINC server sends #dIT message to the Appllcathn Interface_s .that support the_YUV p|>§el model
gRable applications to initially query the video device to find

client that sets up the video stream. Playback does not Stoutwhat pixel formats are supported. From the list of formats,

until the client acknowledges successful stream initializatiorg S
This synchronization step is needed because the client Wlne application chooses one to use and then forwards subse-
uent images in this format to the video device. THINC’s

normally need to make use of hardware resources that m X . . :
. ; .. virtual video device operates in the same manner, such that
not always be available. (However, after a video stream is in|-

tialized, no additional synchronization is needed.) THE at the query stage, THINC can steer an application towards a

message also assigns a unique ID to the stream. Any 0,[Tearrtlcular pixel format optimal for its environment. The rela-

video command will use this ID to identify the stream tha Ive simplicity of the YUV formats allows the THINC server

is being modified. Video playback is accomplished using the do on-thg-fly resampling to supportvideo playback in small
. screen devices. As demonstrated by our performance results,

NEXTcommand.NEXTencapsulates the data needed to dISt-he resampling operation incurs very low overhead while pro-
play the next frame in the video stream, and is sent in re: ~ . pling operatic y . : P
ducing excellent gains in resource constrained environments.

sponse to requests from the application. Because applications
have complete control over video playback, THINC does not
need to implement playback control commands, for examplg Improving Interactivity

to pause, rewind or fast forward.

The commands used to manipulate video streams are
scribed in Table 2. When an application attempts to displ

The MOVESRCSIZE, andDSTSIZE commands are used Thin clients must provide a high-quality interactive experi-
to change the characteristics of the stream after playback hexsce in order to become a viable replacement to traditional
started. MOVEchanges the location on the screen where theéesktop computers. The interactive performance of a thin-
video is displayed, typically in response to movement of thelient system is directly dependent on its response time and,
video player’s windowDSTSIZE changes the display geom- more importantly, on its ability to effectively support network
etry of the stream which is useful for displaying videos at redatency variations. Unfortunately, today’s thin-client systems
olutions different from the actual encoded stre@8RCSIZE are either optimized for LAN or low bandwidth environments
informs the client that the dimensions of the encoded streaamd, consequently, use continuous synchronization or have
have changed. The command may not be supported with allent-driven display update mechanisms which can only give
video formats. For example, to change the geometry of aubpar interactive performance. Furthermore, they may be-



come completely unusable as network latency increases. ] Command \ Description \

We have designed THINC with responsiveness and latent\CHANGE Changes the shape of the cursor, te-
tolerance as a top priority. Previous sections have described scribed as two bitmaps: source and mask
THINC'’s low overhead architecture. We now describe the SHOWHIDE | Show or hide the cursor
mechanisms built on top of this architecture, employed bymMOVE Move the cursor (only in response to ap-
THINC to maximize the interactive feel of the system and plication request)
adapt to variable network latency. As we demonstrate wWith\COLOR Change the color of the cursor

our results, these mechanisms allow THINC to provide an
interactive gxpgrience superior to any pther existing system, Table 3: THINC Cursor Commands
particularly in high-latency network environments.
detects that committing a command may cause it block, the
3.1 Server-Push Model operation is postponed until the next flush period. Second,
to protect the server from blocking on large updates, a com-
At the heart of THINC's interactive architecture lies its desigimand’s flush handler is required to guarantee non-blocking
around aserver-pusharchitecture, where display updates araperation during the commit by breaking large commands into
pushedo the client as soon as they are generated. In contrashaller updates. When the handler detects that it cannot con-
to theclient-pullmodel used by popular systems such as VNGinue without blocking, it reformats the command to reflect
[3] and GoToMyPC [17], server-push maximizes display rethe portion that was committed and informs the server to stop
sponse time by obviating the need for a round trip delay on e¥tushing the bluffer. Commands are not broken up in advance
ery update. This is particularly important for display-intensiveo guarantee minimum overhead and allow the system to adapt
applications such as video playback since updates are gengrehanging conditions.
ated faster than the rate at which the client can send update
re_qL_Je_sts back 'Fo the server. Furthermore, a server-push n_10§_e\l; Scheduling Updates
minimizes the impact of network latency on the responsive-
ness of the system because it requires no client-server syflongside the client buffer is a multi-queuShortest-

chronization, whereas a client-driven system has an updd&emaining-Size-First (SRSPBreemptive scheduler, analo-

delay of at least half the round-trip time in the network. gous to Shortest-Remaining-Processing-Time (SRPT). SRPT
is known to be optimal for minimizing mean response time
3.2 Non-Blocking Operation [5], a primary goal in improving the interactivity of a sys-

tem. THINC uses remaining size instead of the update’s orig-

Although a push mechanism can outperform client-pull sysnal size to shorten the delay between delivery of segments of
tems, a server that blindly pushes data to clients can quickin update, and minimize artifacts due to partially sent com-
overwhelm slow or congested networks and slowly respon@rands. Commands are sorted in multiple queues in increas-
ing clients. In this situation, the server may have to block oihg order with respect to the amount of data needed to de-
buffer updates. If updates are not buffered carefully and thHiarer them to the client. Each queue represents a size range
state of the display continues to change, outdated contentaad commands within the queue are ordered by arrival time.
sent to the client before relevant updates can be delivered. When a command is added to the client's command buffer,

Blocking can have potentially worse effects. Display systhe scheduler chooses the appropriate queue to store it. The
tems are commonly built around a monolithic core servatommands are then flushed in increasing queue order.
which manages display and input events, and where displayin addition to the queues for normal commands, the sched-
drivers are integrated. If the video device driver blocks, thaler has areal-time queue for commands with high interac-
core display server also blocks. As a result, the system bvity needs. Commands in the real-time queue take priority
comes unresponsive since neither application requests rend preempt commands in the normal queues. Real-time com-
user input events can be serviced. In display systems whareands are small to medium-sized and are issued in direct re-
applications send requests to the window system using IRfponse to user interaction with the applications. For example,
mechanisms, blocking may eventually cause applications tghen the user clicks on a button, she expects immediate feed-
also block after the IPC buffers are filled. back from the system in the form of a pressed button image.

The THINC server guarantees correct buffering and loy marking this update as real-time and delivering it sooner
overhead display update management by keeping a per-client opposed to later, THINC improves the perceived respon-
command buffer based on the command queue structure diveness of the system.
scribed in Section 2.3. The command queue within the buffer
ensures no command overlap, thus any outdated commary
in the buffer are automatically evicted. Periodically, THINC ™"
attempts to flush the buffer in a two stage process. First, eaGuaranteeing quick cursor response has a direct effect on
command in the buffer's queue is committed to the networthe perceived feel of the system. Owing to the fact that to-
layer by using the command’s flush handler. If the servettay’s commodity video hardware has the ability to manage

2 Managing the Cursor



a hardware cursor, THINC optimizes cursor management bied to the client, which takes care of resizing and merging
transferring the responsibility of drawing the cursor to thehem into the display. Also, resizinGFILL updates repre-
client. Since hardware support exists for cursor drawing, sents no savings with respect to bandwidth or computation,
local client cursor does not impose additional overhead on ttaand therefore they are sent unmodified. As we show in our re-
client. In contrast, approaches where the cursor is drawn snlts, our approach provides substantial performance benefits
the server and delivered as normal display update cannot guby- taking advantage of server resources and reducing band-
antee the response time required by cursor movement. Thisagdth consumption, vastly outperforming the client-only sup-
particularly true in high latency WAN environments where theort present in other thin-client systems. Furthermore, since
cursor updates have a continuous lag of at least the round-tfiplINC leverages the powerful server CPU to do most of the
time. In THINC, the server continues to maintain cursor stateesize work, it can use high quality resampling algorithms to
and transmits changes to the client using the commands shopnovide superior display content to the user.
in Table 3. Each command modifies a component of the cursorAs a final note, we wish to draw attention to the interest-
state while the client is responsible for using this state to comg differences in providing this kind of support in thin-client
tinuously draw the cursor in response to local mouse moveystems versus the prevalent local computer model. In par-
ments. Cursor commands are treated as high priority cortieular, the topic of web page display in small screen devices
mands by THINC's scheduler, thus minimizing the perceivetias received lots of attention over the last couple of years.
user delay between local cursor activity and any corresponfechanisms like WAP, specialized web browsers, and even
ing display changes. different website versions tailored to different screen sizes,
have all attempted to provide desktop-like web experience in
. . mobile devices with varying degrees of success. On the other
4 Supporting Heterogeneous Displays hand, we have shown that THINC easily provides this kind of

) o ) support without requiring any changes to existing protocols,
The promise of ubiquitous computing access has been a Masrastructure, or applications.

jor driving force in the growing popularity of thin-client sys-
tems. To deliver on this promise, THINC enables access from
a variety of devices by supporting variable display sizes anfd THINC Implementation
dynamic resizing. For instance, to view a desktop session
through a small-screen mobile device such as a PDA, THIN®@/e have implemented a prototype THINC server as a video
initially presents a zoomed-out version of the user’s desktoggvice driver for XFree86 4.3.0 in Linux, and a prototype
from where the user can zoom in on particular sections of thEHINC client as a simple X application. We also have a Java
display. In sharp contrast to similar client-only approacheslient implementation, both as a standalone application and
in existing thin-client systems, THINC's small screen client&a web browser applet, demonstrating THINC's client porta-
are fully supported by the server. After a client reports it®ility and simplicity. XFree86 4.0 introduced a modular de-
screen size to the server, subsequent updates are automaticalte driver infrastructure that allows THINC to be confined
resized by the server to fit in the client's smaller viewportto a single, dynamically loadable module. The module en-
When the user zooms in on the desktop, the client presertapsulates all the THINC server functionality, along with
a temporary magnified view of the desktop while it requestsimple, network-aware, cursor, mouse, and keyboard drivers.
updated content from the server. The server updates are n&&HINC’s module seamlessly hooks into XFree86's existing
essary when the display size increases, because the client dager infrastructure to capture display commands and trans-
only a small-size version of the display, with not enough conlate them to THINC protocol commands. Since THINC uses
tent to provide an accurate view of the desktop. well-defined and standard interfaces, no changes are required
Server resize support is designed to minimize processirig applications or the window system. XFree86 is designed
and network overhead while maintaining display quality. Foaround a single-user workstation model where a server has
this reason, resizing is supported differently for each prot@xclusive access to the computer's display hardware, and mul-
col command. RAWupdates can be easily resized becausiple server instances are not allowed to be active simultane-
they consist of pure pixel data which can be reliably resansusly. Because the THINC server does not access local hard-
pled, and more importantly, the bandwidth savings are sigvare, THINC modifies XFree86's behavior from within the
nificant. Similarly forPFILL updates the tile image is re- video driver interface and without any changes to XFree86,
sized to save client computation, since the region to be filleitius allowing for multiple THINC servers to be active at the
can be large. On the other harglTMAP updates cannot be same time. To implement THINC’s drawing infrastructure,
resized without incurring significant loss of display informa-we have made use of XFree8®sawableso track and record
tion and generating display artifacts. Traditionally, antialiasall display operations in the system. In particular for offscreen
ing technigues are used to minimize the loss of informationpdates, THINC attaches to &lixmapobjects a command
from the downsize operation. However, antialiasing requiregueue where all draw operations on the Pixmap are recorded.
the use of intermediate pixel values which bitmap data cannot As previously discussed, the RAW command is the only
represent. In this cas&ITMAP updates are sent unmodi- command where we apply additional compression to miti-



gate its impact on the network. The current prototype usecﬂ’gnt
zlib's implementation ofdeflat¢13] for this purpose. We
have experimented with other compression algorithms anqgs:
have found zlib’s implementation to have the best size/speet—
ratio. To support resizing, we use a simplified version of
Fant’s resampling algorithm [15], which produces high qual ,.5%
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ity, antialiased results with very low overhead. To pro~,.. “Sunkay
vide video support, THINC implements XFree86's standardtient server
XVideo driver interface. THINC primarily exports the YV12 Figure 1: Experimental Testbed

format to applications, which we chose not only for its intrin-
sic compression characteristics, but more importantly, for the®2'¢ | Hardware | Software |

wide range of applications supporting it, and its use as one of hin-Client Server | IBM Netfinity Debian Linux

the preferred formats in MPEG codecs. ’F\]afket kMé).nltolr . éﬁ?oggagsz'\:\'sﬂz tJnstaSI?/&Z.g.zo
. . etwor Imuiator , ernel), Winaows

. Even though the th|n—c_l|en_t m0(_jel prese!’lts aleap forwaI c}Neb Server 2000/2003 Server

in overgll computer security, its reliance on insecure Networksp e et T 450MHzZ =T Debian Linux

make; it vuIngrabIe to sniff attacks that can potentially con)- 128MB RAM, Unstable (2.4.20

promise sensitive data such as passwords typed on the client’s nVidia Riva TNT | kernel), Windows

keyboard. To further improve the thin-client security model, XP Pro

THINC encrypts all traffic using RC4, a streaming cipher pat- SunRay server SunFire V210 Solaris 9 4/03,

ticularly suited for the kind of traffic prevalent in thin-client 2x1GHz OpenWindows

environments. Although block ciphers can have a significant UltraSPARC lIli, 6.6.1

effect in the performance of the system, we have found the 2GB RAM

cost of RC4 to be rather minimal, and the benefits far out-SunRay client SunRay | Terminal,| SunRay OS

weigh any minor overhead in overall system performance. 100MHz uSPARC

Our prototype also implements standard UNIX authentication llep, 8MB RAM

through the use of PAM (Pluggable Authentication Modules).

Our authentication model requires the user to have a valid ac- Table 4: Testbed Machine Configurations

count on the server system and to be the owner of the session .

she is connecting to. To support multiple users collaboratin'@emal testbed consisted of seven computers connected on a
in a Screen_sharing Session’ the authentication model is éyy":ched FaStEthernet net\NOI’kZ two thin'client C”ent/server
tended to allow host users to specify a session password, tR&i's, a network emulator machine, a packet monitor, and

is then used by peers connecting to the shared session. @ Web server used for testing web applications. Only one
client/server pair was active at a time. Table 4 summarizes

the characteristics of the machines. The Web Server used was
6 Experimental Results Apache 1.3.27, the network simulator was NISTNet 2.0.12,

and the packet monitor was Ethereal 0.9.13.
We measured the performance of THINC on common web Al of the thin-client systems except SunRay used the Pen-
and multimedia applications in a range of different networkiym 11 PC as the client, and a Netfinity server as the thin-
environments and compared our unoptimized THINC protjient server. We used a SunRay | hardware thin client with
type with a number of state-of-the-art popular thin-client platay Solaris 9 SunFire v210 server for SunRay measurements,
forms in use today, including Citrix MetaFrame, Microsoftsince it does not run with the common hardware/software con-
Terminal Services, SunRay, X, and VNC. Citrix MetaFramgigyration used by the other systems. To minimize application
and Terminal Services are often referred to by their respectivyironment differences, we used common thin-client con-
remote display protocols, ICA (Independent Computing Arfigyration options and common applications across all plat-
chitecture) and RDP (Remote Desktop Protocol), which wgyrms whenever possible. All of the tests were done with the
also do here. We also used a local PC as a baseline refiient display set to 24-bit color and, if supported by the sys-
resenting today’s prevalent desktop computer model. Segm, 128-bit encryption enabled. Any remaining thin-client
tion 6.1 describes our experimental testbed. Section 6.2 desnfiguration settings were set to their defaults. Some thin-
scribes the application benchmarks used for our studies. Segient systems used a persistent disk cache in addition to a

tion 6.3 presents our measurement resullts. per-session cache. To minimize variability, we left the per-
sistent cache turned on but cleared it before every test was
6.1 Experimental Testbed run. Finally, because VNC's adaptive compression mech-

anisms compromise display quality by using variable color
We used an isolated network testbed to measure the perfdepths, we disabled this mechanism and set VNC to use the
mance of THINC and other thin-client systems under differbest compression algorithm available for 24-bit color to guar-
ent network conditions. As shown in Figure 1, our experiantee a fair comparison with the other systems.



For each thin-client system we used the server operaequence of 54 web pages containing a mix of text and graph-
ing system which delivered the best performance for thies. The browser window was set to full-screen resolution
given system. Terminal Services only runs on Windowdpr all platforms measured. Video playback performance was
MetaFrame ran best on Windows, THINC, VNC, and X rarmeasured using a video player to play a 34.75 s video clip
best on UNIX/Linux, and SunRay only runs on Solaris. Weof original size 352x240 pixels displayed at full-screen reso-
used the most recent system versions available on each plation. The video player used was MPlayer 1.0pre3 for the
form at the time of our experiments, namely Citrix MetaFramé&Jnix-based platforms, and Windows Media Player 9 for the
XPe, Microsoft Terminal Services built into Windows XP andWindows-based platforms. PC performance was measured by
Windows 2003, VNC 3.3.7, XFree86 4.3.0, and SunRay 2.0running the web browser and video player on the thin-client

We considered two different display resolutions for our exelient computer. Graphics editing performance was measured
periments, one with the client display set to 1024x768 for hy recording a one minute long graphics editing session, and
desktop-like viewing experience, and the other with the clierthen replaying the session on each of the systems. Record-
display set to 320x240 for a PDA-like viewing experience. Wéng was done using Xnee and the graphics editor used was
used the network emulator to adjust the network characteri$he Gimp 1.2. Because Xnee is only available for X/Unix-
tics to match those of various LAN and WAN network condi-based platforms, the Windows-based systems were not mea-
tions. For desktop screen resolution, we measured the perfeured with this benchmark.
mance on a 100 Mbps LAN network, and on a 100 Mbps In- We used the packet monitor in our testbed to measure per-
ternet2 WAN network, where the round-trip network latencyormance on the thin-client systems using slow-motion bench-
was set to 66 ms to represent US cross-country network lerarking [31, 24]. This allowed us to quantify system perfor-
tency [23]. These environments are identifiedl&N Desk- mance in a non-invasive manner by capturing network traf-
top andWAN Desktoprespectively. For PDA screen resolu-fic. The primary measure of web browsing performance was
tion, we measured the performance on an idealized 802.11lte average page download latency. The primary measure of
network by limiting bandwidth to 24 Mbps [2]. We chosevideo playback performance was video quality [31], which
802.11g over 802.11b to reflect 802.11g’s emergence as thecounts for both playback delays and frame drops that de-
next standard for wireless networks. In addition, the addegtade playback quality. For example, 100 percent video qual-
bandwidth capacity guarantees a more legitimate comparisdp means that all video frames were displayed at real-time
for bandwidth intensive applications, such as video playbackpeed. On the other hand, 50 percent video quality could
Since the purpose of the test was to measure performanceraean that half the video frames were dropped when displayed
small-screen displays, we did not add the latency and paclatreal-time speed or that the clip took twice as long to play
loss characteristics typical of wireless networks. This envieven though all of the video frames were displayed. The pri-
ronment is identified a802.11g PDAand results are only re- mary measure of interactive graphics editing performance was
ported for those architectures with support for small screenspmpletion time.
as we discuss later on.

We conducted our WAN experiments using the kind o 3  Measurements
high-bandwidth network environment that are becoming in-
creasingly available in public settings [1]. For example, Soutive compared THINC to other popular thin-client platforms
Korea is building a nationwide Internet access infrastructufigy measuring performance in three representative applica-
to make speeds up to 100 Mbps available to the home by 20tign scenarios, web browsing, video playback, and interac-
[26]. Because most of the thin-client systems tested used T@Pe graphics editing, and three network/display environments.
as the underlying transport protocol, we were careful to corfFigures 2 and 3 show web browsing performance results in
sider the impact of TCP window sizing on performance irierms of the perceived latency and average per page data trans-
WAN environments. Since TCP windows should be adjustef@r, respectively. Figures 4 and 5 show the video playback
to at least the bandwidth delay product size to maximize bangerformance results in terms of video quality and total data
width utilization, on the WAN environment we used a 1 MBtransferred, respectively. Due to space constraints, figures are
TCP window size to take full advantage of the 100 Mbps Interot shown for the interactive graphics editing performance but

net2 network bandwidth capacity available. Network packeare discussed below.
loss was set to zero for our experiments. For LAN and WAN environments, Figure 2 shows that the

local PC is the most bandwidth efficient platform for web
browsing. However, Figure 3 shows that THINC is 2.5 times
faster than the local PC, and provides the best web page down-
We evaluated display performance using three popular dedkad latencies across all thin-client systems. THINC is 1.25 to
top application scenarios, web browsing, video playback ard6 times faster in the LAN environment, with a more marked
interactive graphics editing. Web browsing performance wadifference in the WAN environment, where THINC is 1.8t0 5
measured using the Mozilla 1.6 browser to run a benchmatknes faster than all measured systems. THINC outperforms
based on the Web Text Page Load test from the Ziff-Davithe PC because it leverages the faster server machine to pro-
i-Bench benchmark suite [43]. The benchmark consists of @ss web pages more quickly than the web browser running

6.2 Application Benchmarks

10



450,00 ‘ 1805 ‘ —— command separation and translation layer, very few of the el-
esktop mmm— .
400.00 WAN Deskiop ements in the web pages actually need to be sent usily

802.11g PDA s | - ¢ g )
and thus need compression using a generic algorithm.

Finally, the importance of offscreen drawing awareness is
illustrated by the large difference between THINC and Sun-
250.00 | Ray’s bandwidth usage in both LAN and WAN, where Sun-
200.00 | . Ray transfers 15 times more data per page than THINC. While
SunRay and THINC use a similar multi-command protocol,
SunRay is unable to leverage its own protocol due to Mozilla’s
heavy use of offscreen drawing. As previously discussed, by
50.00 - 1 the time Mozilla finally renders the web page onscreen, Sun-
Ray has lost all semantic information and must resort to its
equivalentRAWcommand to draw updates. We have mea-
sured the impact of disabling offscreen awareness in THINC
to cause a Adslowdown in latency. The slowdown is caused
160 — ‘ ‘ ‘ " T AN Deskiop mamm by having to fallback td(RAV¢ expensive deflate compression
140 AN DesKIOD o || for all data transferred. We note that this demonstrates both
the importance of THINC's offscreen drawing awareness, and
the drawbacks of relying on a single encoding mechanism for
1.00 all display data.
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Figure 2: Web Benchmark: Average Page Data Transfer

1.20

g 0.80 | Small screen results are also shown in Figures 2 and 3. We

& only report results for VNC, RDP and ICA since only these
060 1 architectures have support for a client display geometry dif-
040 | i ferent than the server’s. The results show that THINC has the

best performance overall, particularly with respect to band-

width usage where THINC transfers between 2 to 5 times less
data than the other systems.

PC X SunRay ICA RDP VNC THINC

Platform Support for small screen devices can be divided in two

Figure 3: Web Benchmark: Average Page Latency models: systems which clip the client’s display and systems
which actually resize the contents of the display. RDP and
on the slower client PC. It is worth mentioning that X andvNC fall within the first category, which requires users to
VNC are the only platforms with no encryption support. Wescroll around the display to see the full screen and offers a
have measured the |atency pena|ty of tunne"ng X and VN@ore cumbersome usage model. Citrix and THINC fall within
over ssh - the preferred method to secure these platforms -tfte second category though THINC differs from ICA in that
be approximately 1%and 4@4 respectively. the THINC server does most of the resizing work. As shown
The results show that due to its latency-sensitive desigRY our results, this approach achieves the best performance
THINC is the only system that does not suffer any perforacross all the architectures. Since most of the display up-
mance penalties in the WAN environment. Platforms employdates are resized before being sent on the network, THINC's
ing a high-|eve| d|5p|ay approach such as X, ICA, and RDFb?andWldth utilization is reduced by more than a factor of two
have the worst WAN performance - up to five times sloweWhile only marginally affecting the latency of the system. In
than THINC in ICAs case - because of the tight couplingcontrast, ICA's client-only resize approach increases latency
required between the application running on the server ar@ more than twice its LAN latency, with no improvement in
the viewer running on the client. VNC’'s WAN performancebandWidth ConSUmption. In the CPU- and bandwidth-limited
degradation is partially due to its reliance on a client pull disenvironment of mobile devices this approach adversely af-
play update model. THINC's server push model avoids rount§cts the overall user experience. As a final note, we also
trip latencies for each update and provides a better interactigénducted tests on different PDA devices using the respective
response time. PDA specific clients for each platform, where available. All
The results also demonstrate the drawbacks of VNC's sifit€ systems behaved the same except RDP's client. Specif-
gle compression strategy for all types of display data. Alically, RDP's desktop client delivers all display updates, but
though many graphics compression algorithms exist, none BPP’s PDA client only sends those display updates that draw
them can effective'y and efﬁcient'y Compress every type d{\llthlﬂ the Client’S VieWpOI‘t. As SUCh, the I‘esultS reported here
graphics data - a fact best illustrated by VNC'’s subpar peflo not show the effects of RDP’s clipping support on perfor-
formance. In contrast, THINC'’s multiple command approacR'ance.
results in much better bandwidth utilization and higher per- It is also worth mentioning the large difference in quality
formance. Since most of the compression work is done by tteg THINC's resized display compared with ICAs. THINC’s
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Figure 4: Video Benchmark: Total Data Transferred Figure 5: Video Benchmark: Video Quality

resize algorithm appropriately interpolates pixel data and usby THINC for small screen devices, as discussed next.
antialiasing to provide high quality results such that the web The small display results again demonstrate the benefits of
page is still readable even when displaying the 320x240 clieMHINC’s server resize mechanism. THINC still performs at
window on a computer with a resolution of 1280x1024. Orl0®%bvideo quality, demonstrating the minimum overhead in-
the other hand, ICA's resized display version is barely reaaturred on the server by resampling the video data while signif-
able and appears to be useful only for locating portions of thieantly reducing bandwidth consumption to 2.5Mbps, well be-
screen to zoom in to. Clearly, ICAs choice of resizing algoiow any of the other systems. In fact, we have conducted tests
rithm is restricted by the client’s computational power, whilghat demonstrate that THINC's resized bandwidth require-
THINC can take advantage of the server’s powerful CPU anahents are more than enough to provide perfect video play-
make use of better algorithms that produce higher quality réack over an 802.11b wireless network, which cannot be done
sults. by any of the other thin-client systems, including X. ICAs
Video playback performance results are shown in Figureglient-side resize mechanism aggravates its low video quality,
4 and 5. Figure 4 shows that the local PC is also the moggducing it to less than%while consuming the same amount
bandwidth efficient platform for video playback, using aboubf bandwidth. RDP and VNC's clipping mechanisms are not
1.2Mbps of bandwidth. However, Figure 5 shows that THIN@articularly useful for video playback since the user only sees
provides perfect video quality in the same manner as the I8he section of the video that intersects with the client’s view-
cal PC and X. Figure 5 also shows that all of the other plaport. The user could potentially watch the video at a smaller
forms deliver very poor video quality, specifically %623% size and make the video window fit within the client’s display.
and ®for ICA, RDP, and VNC, respectively. They suffer However, we believe that adding such awkward constraints to
from their inability to distinguish video data from normal dis-the user interface is detrimental to the overall usability of the
play updates and apply ineffective and expensive compressigystem.
algorithms on the video data. These algorithms are unable toFinally, we measured graphics editing performance as a
keep up with the stream of updates being generated, reslienchmark of a highly interactive application with reason-
ing in dropped frames or extremely long playback times. lable bandwidth demands. Although the application runs on
contrast, THINC's ability to leverage client hardware to deX/Unix-based systems, neither VNC nor SunRay were able
liver video provides substantial performance benefits over thie run the benchmark. VNC lacks support for the appropiate
other systems. VNC has the worst overall performance pri mechanisms needed to record the session, demonstrating
marily because of its use of a client pull model. In order téhe drawbacks of implementing alternative middleware sys-
display each video frame, the VNC client needs to send an uggms. VNC is implemented as a variation of an old version of
date request to the server. Clearly, video frames are genera¥éree86, and has grown outdated and lacking support for oth-
faster than the rate at which the client can send requests to gmvise ubiquituous features. SunRay could not run the bench-
server. Figure 4 also shows that THINC’s %00ideo qual- mark because of incompatibilities between its X server and
ity does not translate into high resource utilization. The totaXnee’s implementation. The only systems that ran the bench-
data transferred corresponds to bandwidth usage of roughtyark were X and THINC.
24Mbps. While VNC, RDP and ICA consume less bandwidth THINC and X both completed the benchmark in one minute
- 13, 11 and 19Mbps respectively - their video quality is toan the LAN environment, but THINC vastly outperformed X
low to provide useful video delivery. X and THINC have thein terms of the amount of data transferred, sending about 5
same video quality and bandwidth consumption as both atienes less data than X during the benchmark. Furthermore,
using a similar mechanism to provide remote video displaypnly THINC completed the benchmark successfully in the
However, X is not able to provide the scaling benefits show/AN environment. Xnee's replay operation relies heavily on
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timing and synchronization information between mouse anated a terminal device optimized for wireless access to mul-
keyboard events, and the graphic responses to those eventdiniiedia content. Many commercial systems provide remote
timing at replay time is not equivalent to the recorded inforaccess to 3D content, for example SGI’s VizServer [40]. Sim-
mation, Xnee will be unable to know if responses were missatarly, WireGL and Chromium [20] enable cluster rendering
and it should continue, or if responses have yet to arrive argystems that distribute the load of processing 3D content, but
it should keep waiting. Although Xnee has considerable reequire high bandwidth environments to operate efficiently.
silience to timing differences, if synchronization is lost for an While technology has changed, the vision of customers
extended period of time it will give up on the replay operarenting their computing services from a public computer util-
tion. X's large synchronization overhead made it significantljty harkens back to the days of Multics [11]. Unlike Mul-
slower, causing Xnee to lose synchronization and give up aftécs, ASPs are faced with supporting not just simple text pro-
only 20 seconds. grams but also graphics and multimedia-oriented applications.
THINC provides a key componet to support these kinds of

applications, thereby modernizing the vision (and reality) of
7 Related Work utility computing.

A number of remote display systems have been developed, i
and previous studies have compared many of them and iderfs- Conclusions
fied those with superior performance [23, 31]. We used those

systems as a basis for comparison with THINC. These sy¥/e introduced THINC, a remote display architecture for

tems can be loosely classified by their choice of protocol prinfligh-performance thin-client computing for LAN and WAN
itives. X [36], Citrix Metaframe [10], and Microsoft Termi- €nvironments.  THINC uses a simple, low-level protocol
nal Services [12] use high-level commands which are widelf?t mimics operations commonly found in commodity dis-
thought to allow for more efficient encodings. However, thi®/@y hardware, and introduces a low overhead, semantic-
approach suffers from substantial performance degradationfEServing translation architecture to convert high-level appli-
high-latency WAN environments. VNC [33] takes a low-leve(ction drawing calls to THINC protocol commands. On top
approach and uses a single encoding mechanism providin§@&his architecture, THINC implements a number of latency-
simple and portable solution. Though a number of encodirgf"Sitive optimizations to provide a high fidelity visual and
algorithms have been developed for thin-client systems, suleractive experience. These include cllent-3|de_curs_or man-
as VNC's ZRLE, FABD [16], PWC [4], and TCC [9, 8], none agement, a server-push update model, shortest-job-first com-
of them can effectively and efficiently compress all types of@nd scheduling, and a non-blocking drawing pipeline. Fur-

display data, resulting in subpar performance as illustrated Bjermore, THINC provides native support for video display

VNC's results. SunRay [37] is designed around a set of sin?-y leveraging client display hardware, and is amenable to use

ple commands similar to those used in THINC. However, it{! Small screen devices with server-side scaling of display up-
inability to recognize new application display approaches adtat€s: ,
versely affects its overall performance. Furthermore, it lacks W€ implemented a THINC prototype system as a vir-
many of THINC's other design features, including screeﬁ“_a' display driver for XFree86 4.3.0 and an Xlib client ap-

scaling for heterogeneous display devices, transparent viggcation. Our implementation illustrates the simplicity of
support, and latency-sensitive optimizations. THINC'’s protocol and the effectiveness of its translation ar-

Many other systems for remote display exist includingc,hitecmre' We measured THINC'’s performance in web and

Tarantella [35], Laplink [25] and PC Anywhere [38], alongV'deo applipations ina qumper of network environmepts and
with extensions to other systems such as Kaplinsk's vNEOMPared it to other thin-client systems. Our experimental
tight encoding[21], low-bandwidth X (LBX)[6], and more re- results m_web applications haye shown that _THII_\IC deliv-
cently, NoMachine’s NX system[32]. Previous studies hav&'S Superior performance and is as much as five times faster
shown the limitations in several of them [19, 22, 30] andhan traditional systems in high Igtency enwronmen’ts. Our
demonstrated that they perform worse than the thin-client Syggsults al_so demonstrate the effectweness ,Of THINC,: S server-
tems we compared against THINC. In particular, these sySid€ scaling mechanism, reducing THINC's bandwidth con-
tems have primarily been designed for LAN or low-bandwidtrsUmption by more than a factor of two. Finally, THINC's
networks, without regard for latency and responsiveness. Stifide0 support outperforms other existing systems with rea-

a growing number of ASPs such as services from FutureLini°aple network usage, and coupled with server-side video

[7], Runaware [34], and Expertcity [14] are employing thin_scaling, THINC is the only system capable of delivering full-

client technology to host desktop computing sessions ov&Fr€en video on 802.11b wireless networks.
WAN environments.
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