
March 2005

N16156F
VERITAS File System 4.1

Programmer’s Reference Guide

Solaris

Disclaimer

The information contained in this publication is subject to change without notice. VERITAS Software
Corporation makes no warranty of any kind with regard to this manual, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. VERITAS Software
Corporation shall not be liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this manual.

VERITAS Legal Notice

Copyright © 2005 VERITAS Software Corporation. All rights reserved. VERITAS, the VERITAS Logo,

and Storage Foundation are trademarks or registered trademarks of VERITAS Software Corporation

or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective

owners.

VERITAS Software Corporation

350 Ellis Street

Mountain View, CA 94043

USA

Phone 650–527–8000 Fax 650–527–2908

www.veritas.com

Third-Party Legal Notices

Data Encryption Standard (DES) Copyright

Copyright © 1990 Dennis Ferguson. All rights reserved.

Commercial use is permitted only if products that are derived from or include this software are made available for purchase and/or use in
Canada. Otherwise, redistribution and use in source and binary forms are permitted.

Copyright 1985, 1986, 1987, 1988, 1990 by the Massachusetts Institute of Technology. All rights reserved.

Export of this software from the United States of America may require a specific license from the United States Government. It is the responsibility
of any person or organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. M.I.T. makes no representations about the suitability of this software for any purpose. It is provided as
is without express or implied warranty.
ii VERITAS File System Programmer’s Reference Guide

http://www.veritas.com

Contents

How This Guide Is Organized . viii

Software Development Support . x

Chapter 1. The VERITAS File System Software Developer’s Kit1

VERITAS File System Software Developer’s Kit Features . 2

Application Interface . 2

File Change Log . 3

Multi-Volume Support . 3

VxFS I/O . 3

Software Developer’s Kit Packages . 3

Required Libraries and Header Files . 4

Compiling Environment . 5

Chapter 2. File Change Log .7

File Change Log File . 8

Record Types . 10

Special Records . 10

Obsolete Records . 11

Typical Record Sequences . 12

Superblock . 12

Record Details . 14

Records With a Trailing File Name . 16

Records Without a Trailing File Name . 19

iii

Tunables . 19

Programmatic Interface . 20

Reverse Path Name Lookup . 23

Chapter 3. Multi-Volume Support . 27

Uses for Multi-Volume Support . 29

Volume APIs . 30

Examples of Volume Set Operations . 30

Querying the Volume Set for a File System . 30

Modifying a Volume Within a File System . 31

Volume Encapsulation . 31

Allocation Policy APIs . 32

An Illustration of File Allocation . 33

Creating and Assigning Policies . 34

Querying the Defined Policies . 35

Enforcing a Policy on a File . 35

Data Structures . 36

Examples . 37

Defining and Assigning Allocation Policies . 37

Using Volume APIs . 39

Chapter 4. Named Data Streams . 41

Uses for Named Data Streams . 43

Named Data Streams Programmatic Interface . 43

Listing Named Data Streams . 44

Namespace for Named Data Streams . 45

Behavior Changes in Other System Calls . 45

Example . 46

Programmatic API . 47

Programmer’s Reference . 47

iv VERITAS File System Programmer’s Reference Guide

Chapter 5. VxFS I/O .49

Freeze/Thaw . 50

Caching Advisories . 52

Direct I/O . 52

Concurrent I/O . 53

Unbuffered I/O . 54

Other Advisories . 54

Extents . 55

Extent Attributes . 56

Reservation: Preallocating Space to a File . 57

Fixed Extent Size . 57

Application Programming Interface for Extent Attributes . 58

Allocation Flags . 59

Allocation Flags With Fixed Extent Size . 61

How to use Extent Attribute APIs . 61

Contents v

vi VERITAS File System Programmer’s Reference Guide

Preface

This document contains a general description of the content and usage of the VERITAS
File System Software Developer’s Kit. Each chapter introduces and discusses a VxFS file
system feature, its possible uses, and a description of how to use the application
programming interface for common operations. The SDK contains specific programming
examples utilizing these interfaces. VxFS is distributed by VERITAS as part of the Storage
Foundation Product Suites.

In addition to this document, the VxFS SDK packages contain manual pages, sample
programs that demonstrate usage of the features, and coding examples of how to use the
API calls. There is also information on VxFS library and include file locations, and
compilation examples.

This guide assumes that you have a:

◆ Basic understanding of system administration

◆ Working knowledge of the UNIX operating system

◆ General understanding of file systems

◆	 Familiarity with programming in the C language and compiling in a UNIX
environment
vii

How This Guide Is Organized
How This Guide Is Organized
Chapter 1 “The VERITAS File System Software Developer’s Kit,” introduces the major
features and characteristics of the VxFS SDK.

Chapter 2 “File Change Log,” describes the VxFS File Change Log (FCL) API, which
tracks changes to files and directories in a file system. The File Change Log can be used by
applications such as backup products, web crawlers, search and indexing engines, and
replication software that typically scan an entire file system searching for modifications
since a previous scan.

Chapter 3 “Multi-Volume Support,” describes the multi-volume support (MVS) API,
which allows several volumes to be represented by a single logical object. All I/O to and
from an underlying logical volume is directed by way of volume sets. This feature can be
used only in conjunction with VERITAS Volume Manager.

Chapter 4 “Named Data Streams,” describes the named data streams API, which
associates multiple data streams with a file.

Chapter 5 “VxFS I/O,” describes the input/ouput control (IOCTL) directives, including
freezing and thawing a file system, caching advisories, and extents.
viii VERITAS File System Programmer’s Reference Guide

Conventions
Conventions

Convention Usage Example

monospace Used for path names,
commands, output, directory
and file names, functions, and
parameters.

Read tunables from the
/etc/vx/tunefstab file.

See the ls(1) manual page for more
information.

monospace
(bold)

Indicates user input. # ls pubs

C:\> dir pubs

italic Identifies book titles, new
terms, emphasized text, and
variables replaced with a
name or value.

See the User’s Guide for details.

The variable system_name indicates the
system on which to enter the command.

bold Depicts GUI objects, such as
fields, list boxes, menu
selections, etc. Also depicts
GUI commands.

Enter your password in the Password
field.

Press Return.

blue text Indicates hypertext links. See “Getting Help” on page x.

Unix superuser prompt (all
shells).

cp /pubs/4.0/user_book
/release_mgnt/4.0/archive

C:\> Windows user prompt. C:\> copy \pubs\4.0\user_book

c:\release_mgnt\4.0\archive
Preface ix

Getting Help
Getting Help

For technical assistance, visit http://support.veritas.com and select phone or email
support. This site also provides access to resources such as TechNotes, product alerts,
software downloads, hardware compatibility lists, and the VERITAS customer email
notification service. Use the Knowledge Base Search feature to access additional product
information, including current and past releases of product documentation.

Diagnostic tools are also available to assist in troubleshooting problems associated with
the product. These tools are available on disc or can be downloaded from the VERITAS
FTP site. See the README.VRTSspt file in the /support directory for details.

For license information, software updates and sales contacts, visit
https://my.veritas.com/productcenter/ContactVeritas.jsp. For information on
purchasing product documentation, visit http://webstore.veritas.com.

Software Development Support
VERITAS offers software development support through membership in the VERITAS
Enabled™ Program. For information on VERITAS Enabled and becoming a VERITAS
partner, visit the website at http://www.veritas.com/enabled.

If you are not a member of the VERITAS Enabled Program, VERITAS sponsors the
VERITAS Architect Network, an online forum for discussing VERITAS products. The
Application Development Support forum is provided specifically for the development
community to exchange ideas and expertise on VERITAS File System application
development. VERITAS encourages posting questions related to code development, and
actively participates in discussions. To contribute to this forum, go to
http://forums.veritas.com/discussions/forum.jspa?forumID=104.
x VERITAS File System Programmer’s Reference Guide

http://support.veritas.com
https://my.veritas.com/productcenter/ContactVeritas.jsp
http://webstore.veritas.com
http://www.veritas.com/enabled
http://forums.veritas.com/discussions/forum.jspa?forumID=104

The VERITAS File System Software
Developer’s Kit
1
The VERITAS File System Software Developer’s Kit provides developers with the
information necessary to use the application programming interfaces (APIs) for features
of the VERITAS File System. These APIs are provided with the VxFS Software
Developer’s Kit.

Most of the APIs covered in this document are available in VxFS 4.0 and subsequent
releases. The APIs in Chapter 5 “VxFS I/O” are available in VxFS 4.0, subsequent releases,
and several releases prior.

This chapter provides an overview of VxFS APIs that are provided with the SDK, and are
described in detail in later chapters. The following topics are introduced in this chapter:

◆ VERITAS File System Software Developer’s Kit Features

◆ Application Interface

◆ File Change Log

◆ Multi-Volume Support

◆ VxFS I/O

◆ Software Developer’s Kit Packages

◆ Required Libraries and Header Files

◆ Compiling Environment
1

VERITAS File System Software Developer’s Kit Features
VERITAS File System Software Developer’s Kit Features
The SDK features include:

◆ File Change Log

◆ Multi-volume support

◆ Named Data Streams

◆ VxFS I/O

Application Interface
The API library interfaces highlighted in this SDK are the vxfsutil library and VxFS
IOCTL directives. The library contains a collection of API interface calls that can be used
by applications to take advantage of the features of the VxFS file system. Manual pages
are available for all of the API interfaces. The library contains APIs for the following
features:

inotopath Inode-to-path lookup

nattr Named Data Stream

FCL File Change Log

MVS Multi-volume support

Caching Advisories IOCTL directives

Extents IOCTL directives

Freeze/Thaw IOCTL directives

The VxFS API library, vxfsutil, can be installed independent of the VERITAS File
System product. This library is implemented using a stub library and dynamic library
combination. Applications are compiled with the stub library libvxfsutil.a, making
the application portable to any VxFS target environment. The application can then be run
on a VxFS target, and the stub library will find the dynamic library provided with the
VxFS target.

The stubs library will use a default path for the location of the vxfsutil.so dynamic
library. In most cases, the default path should be used. However, the default path can be
overridden by setting the environment variable, LIBVXFSUTIL_DLL_PATH, to the path of
the vxfsutil.so library. This structure allows an application to be deployed with
minimal issues related to compatibility with other releases of VxFS.
2 VERITAS File System Programmer’s Reference Guide

Software Developer’s Kit Packages
File Change Log
The VxFS File Change Log (FCL) tracks changes to files and directories in a file system.
The File Change Log can be used by applications such as backup products, web crawlers,
search and indexing engines, and replication software that typically scan an entire file
system searching for modifications since a previous scan. See “File Change Log” on
page 7 for more information.

Multi-Volume Support
The multi-volume support (MVS) feature allows a VxFS file system to use multiple VxVM
volumes as underlying storage. Administrators and applications can control which files
go where, to maximize effective performance while minimizing cost. This feature can be
used only in conjunction with VERITAS Volume Manager, and some of the functionality
requires additional license keys. See “Multi-Volume Support” on page 27 for more
information.

VxFS I/O
VxFS conforms to the System V Interface Definition (SVID) requirements and supports
user access through the Network File System (NFS). Applications that require
performance features not available with other file systems can take advantage of VxFS
enhancements.

Software Developer’s Kit Packages
Two packages comprise the SDK: VRTSfssdk and VRTSfsmnd. The VRTSfssdk package
contains libraries, header files, and sample programs in source and binary formats that
demonstrate usage of the VxFS API interfaces. The VRTSfsmnd package contains this
document and the API man pages.

These packages can be obtained separately from the licensed VxFS package, for use to
develop and compile applications utilizing the VxFS API interface. To run the applications
or sample programs, a licensed VxFS target is required.
Chapter 1, The VERITAS File System Software Developer’s Kit 3

Required Libraries and Header Files
The directory structure in the VRTSfssdk package is as follows:

src	 Contains several subdirectories with sample programs and
GNU-based Makefile files on each topic of interest.

bin	 Contains symlinks to all the sample programs in the sources
directory for easy access to binaries.

include Contains the header files for API library and ioctl interfaces.

lib	 Contains the pre-compiled vxfsutil API interface stubs
library.

libsrc	 Contains the source code for the vxfsutil API interface stubs
library.

Required Libraries and Header Files
The VRTSfssdk package is installed in the /opt directory. The associated libraries and
header files are installed in the following locations:

◆ /opt/VRTSfssdk/4.1/lib/libvxfsutil.a

◆ /opt/VRTSfssdk/4.1/lib/sparcv9/libvxfsutil.a

◆ /opt/VRTSfssdk/4.1/include/vxfsutil.h

◆ /opt/VRTSfssdk/4.1/include/fcl.h

◆ /opt/VRTSfssdk/4.1/include/sys/fs/vx_ioctl.h

There are also symlinks to these files from the standard VERITAS paths, which are
/opt/VRTS/lib and /opt/VRTS/include. The standard paths are the default paths in
the latest releases of VxFS and the VxFS SDK.
4 VERITAS File System Programmer’s Reference Guide

Compiling Environment
Compiling Environment
Sample programs are installed by the SDK package with compiled binaries. If you would
like to recompile with a different compiler, follow these steps.

The required tools for compiling the src or libsrc directory are as follows:

◆ gmake or make command

◆ gcc compiler or cc command

To compile the src and libsrc directories:

1. Edit the make.env file and modify it with the path to your compiler.

2.	 Change to the src or libsrc directory and run the gmake or make command:

gmake

3. After writing the application, it can be compiled as follows:

gcc -I /opt/VRTS/include -L /opt/VRTS/lib -ldl -o MyApp \

MyApp.c libvxfsutil.a

The requirements for running the sample programs are as follows:

◆ A target system with the appropriate version of VRTSvxfs installed

◆ Root permission, required for some programs

◆ A mounted VxFS 4.x file system

◆ Some programs require a file system to be mounted on a volume set
Chapter 1, The VERITAS File System Software Developer’s Kit 5

Compiling Environment
6 VERITAS File System Programmer’s Reference Guide

File Change Log
2

The VxFS File Change Log (FCL) tracks changes to files and directories in a file system.
Applications that can make use of the FCL are those that are typically required to scan an
entire or a subset of a file system to discover changes since the last scan, such as backup
utilities, webcrawlers, search engines, and replication programs.

The File Change Log records file system changes such as creates, links, unlinks, renaming,
data appended, data overwritten, data truncated, extended attribute modifications, holes
punched, and miscellaneous file property updates.

Note	 The FCL keeps track of the fact that data has changed, not the actual data. It is the
responsibility of the application to examine the files that have changed data to
determine which data has changed.

Topics in this chapter include:

◆ File Change Log File

◆ Record Types

◆ Superblock

◆ Record Details

◆ Programmatic Interface

◆ Reverse Path Name Lookup
7

File Change Log File
File Change Log File
The FCL stores changes in a sparse file, referred to as the FCL file, in the file system
namespace. The FCL file is always located in
/mount_point/lost+found/changelog. The FCL file behaves like a regular file, but
some user-level operations are prohibited, such as writes. The standard system calls
open(2), lseek(2), read(2) and close(2) can access the data in the FCL file. Other
system calls are not allowed on the FCL file.

VxFS tracks changes to the file system by appending the FCL file with information
pertaining to those changes. The FCL file could be used to track space usage when a file
system gets close to being full. The FCL file could be searched for recent file create or
overwrite records to note new files or files that have grown recently. Depending on the
application’s needs, the search can be done on the entire FCL file. Alternately, the search
can be performed on a portion of the FCL file that corresponds to a specific time frame. In
both cases, the search identifies changes to the file system captured in the entire FCL file.

Another use is to track space usage by looking for files created with particular names. For
example, if users are downloading *.mp3 files that are taking up too much space, the FCL
file could be read to find files created with the name *.mp3, or the tail end of the FCL file
could be read to find file system operations that eventually resulted in a full file system.

For backup applications, searching the FCL file could reduce the need for full file system
scans to detect recent changes as part of an incremental backup process. VxFS creates and
logs an FCL record for every update opration perform on an FCL-enabled file system.

A file’s history can be traced by scanning the FCL file and coalescing FCL record
sequences for a file. Related FCL records from a file’s creation, attribute changes, write
records and the files deletion can be used to track the file’s history.

By default, FCL logging is deactivated and can be activated on a per file system basis
using the fcladm command. The FCL state is persistent across reboots. When
deactivated, the FCL file can still be accessed. When FCL is re-activated, logging continues
and records are appended to the file. As file system changes occur, new FCL records are
appended to the FCL file and the superblock is updated.

The FCL file contains both the information about the FCL file, which is stored in the FCL
superblock, and changes to files and directories in the file system, stored as FCL records.
The superblock, which is stored in the first block of the FCL file, describes the state of the
FCL file. The superblock can be read at file offset 0 in the FCL file. The remainder of the
FCL file is a series of records that describe changes to the file system.

The superblock indicates whether FCL logging is enabled, what time it was activated, and
the offsets of the FCL record. When parsing the FCL File, the superblock should be read
and the values stored by the application. The superblock should be periodically reread to
note any changes in state from previous to current.
8 VERITAS File System Programmer’s Reference Guide

File Change Log File
When attempting to read FCL records, two important fields from the superblock are the
first valid offset (fc_foff) and last valid offset (fc_loff). fc_foff specifies the offset in the FCL
file where the first valid record is logged. fc_loff specifies the offset in the FCL file where
the last record is logged. The FCL file should be read sequentially. Reading beyond the last
valid offset of the FCL file has the same result as reading beyond the end-of-file of a
regular file; zero bytes are returned.

The format of the FCL file is described in the figure below.

Offset 0x0

First Offset File System Block Boundary

Superblock

Record

Record

Record

Record

File System Block Boundary

Last Offset

In most cases, each 32-byte entry in the FCL file is an FCL record. It is self-contained and
can be processed by identifying the record type using the record type field and parsing the
remaining fields within the record. The VX_FCL_LINK, VX_FCL_RENAME, and
VX_FCL_UNLINK records are exceptions to this because of file names. These records are
fully described in “Records With a Trailing File Name” on page 16.

The VX_FCL_LINK, VX_FCL_RENAME, and VX_FCL_UNLINK records span multiple
32-byte entries in the FCL file. For these records, multiple 32-byte entries in the FCL file
contain the file name character string. The first of the multi-record FCL entries is
processed as stated previously, with the exception of using the name length field to
determine if one or more subsequent FCL entries need to be parsed to extract the file
name. Once the file name is extracted, processing the subsequent FCL records continues
as before by identifying the record type using the record type field.

While FCL records are at 32-byte increments within the FCL file because of the use of FCL
entries for file names, there are cases when a 32-byte entry record contains only characters
from a file name, in which case the record type field is invalid. For this reason, random
access to the FCL file for processing records is not recommended. The type field in each
FCL record should be used to know what action or sequence of records may need to be
parsed.
Chapter 2, File Change Log 9

Record Types
Record Types
The following table lists actions that generate FCL record types:

Action to Create an FCL Record

Add a link to an existing file or directory

Appending write to a file

Create a file or directory

Create a name data stream directory

Create a symbolic link

Perform an mmap on a file in a shared and writable
mode

Promote a file from a Storage Checkpoint

Punch a hole into a file

Remove a file or directory

Remove a named data stream directory

Rename a file or directory

Rename a file to an existing file

Set file attributes (allocation policies, ACLs, and
extended attributes)

Set file extent reservation

Set file extent size

Set file group ownership

Set file mode

Set file size

Set file user ownership

Set mtime of a file

Truncate a file

Write to an existing block in a file

Special Records

Record Type

VX_FCL_LINK

VX_FCL_DATA_EXTNDWRITE

VX_FCL_CREATE

VX_FCL_CREATE

VX_FCL_SYMLINK

VX_FCL_DATA_OVERWRITE

VX_FCL_UNDELETE

VX_FCL_HOLE_PUNCHED

VX_FCL_UNLINK

VX_FCL_UNLINK

VX_FCL_RENAME

VX_FCL_UNLINK

VX_FCL_RENAME

VX_FCL_EATTR_CHG

VX_FCL_INORES_CHG

VX_FCL_INOEX_CHG

VX_FCL_IGRP_CHG

VX_FCL_IMODE_CHG

VX_FCL_DATA_TRUNCATE

VX_FCL_IOWN_CHG

VX_FCL_MTIME_CHG

VX_FCL_DATA_TRUNCATE

VX_FCL_DATA_OVERWRITE

There are two record types, VX_FCL_HEADER and VX_FCL_NO_CHANGE, that are used for
special purposes within the FCL file. Neither record indicates any specific file system
change. They are used for the special purpose of formatting the FCL file.
10 VERITAS File System Programmer’s Reference Guide

Record Types
The FCL file is written in chunks the size of file system blocks. The VX_FCL_HEADER
record is always the first record written at the beginning of each file system block within
the FCL file. Use the statvfs() system call to lookup the value of the file system block
size stored in the f_bsize field of the statvfs structure.

In addition, the VX_FCL_HEADER record can be used in conjunction with trailing file
name records. If the name length field is non-zero, the header record is being used to
indicate that a multi-record filename has crossed a file system block boundary with the
FCL file. This would indicate the record following the header contains a portion of the
filename.

The VX_FCL_NO_CHANGE record is used as a filler record.

The following are special records:

VX_FCL_HEADER	 Found at the beginning of a file system block and usually has a
full or partial name trailing it. Without a trailing name, this
record marks the beginning of a block. The file system block size
and the current offset are needed to locate the next record.

VX_FCL_NO_CHANGE Only follows trailing file names. This is a no-op record.

Obsolete Records
These records are older record types and have been deprecated. They are superseded by
the use of VX_FCL_INOEX_CHG, VX_FCL_INORES_CHG, VX_FCL_IMODE_CHG,
VX_FCL_IOWN_CHG, VX_FCL_IGRP_CHG, and VX_FCL_MTIME_CHG record types in FCL
version 2 and later.

The following are obsolete records.:

VX_FCL_INFO_CHG	 Recorded changes to file regular attributes, such as file mode,
ownership, atime, and mtime.

VX_FCL_ITIMES_CHG Recorded changes to file atime and mtime.
Chapter 2, File Change Log 11

Superblock
Typical Record Sequences
The life cycle of a file in a file system is recorded in the FCL file from creation to deletion.
When creating a file, the following is a typical sequence of FCL records written to the log:

VX_FCL_CREATE

VX_FCL_DATA_EXTNDWRITE

VX_FCL_DATA_OVERWRITE

When writing a file, the following is a typical sequence of FCL records written to the log
for every write operation:

VX_FCL_DATA_EXTNDWRITE

VX_FCL_DATA_OVERWRITE

When moving or deleting a file, the following is a typical sequence of FCL records written
to the log:

VX_FCL_RENAME

VX_FCL_HEADER (optional depending on file name length)

VX_FCL_UNLINK

VX_FCL_HEADER (optional depending on file name length)

Superblock
Applications need to read the superblock each time they open the FCL. The activation
time (fc_atime) should be saved after each read. At the next read, the saved values can be
compared with the current values to determine if the FCL is currently enabled, if the FCL
was disabled and re-enabled since the last reference.

The FCL superblock is written to the FCL the first time it is activated. It is defined as:

struct fcl_sb {

uint32_t fc_magic;

uint32_t fc_version;

fcl_state_t fc_state;

uint32_t fc_sync;

fcl_timeval32_t fc_atime;

uint64_t fc_foff;

uint64_t fc_loff;

/* FCL magic number */

/* FCL version number */

/* FCL state */

/* FCL sync count */

/* FCL activation time */

/* first valid offset in

FCL file */

/* last valid offset in FCL

file */

char fc_oldfile[64]; /* reserved */
uint32_t fc_padding[2]; /* padding */

/* 0x70 is length */
}
12 VERITAS File System Programmer’s Reference Guide

Superblock
The superblock fields are defined below:

fc_magic	 Defined as VX_FCL_MAGIC. It is used to verify that the file is really the
FCL file.

fc_version	 Incremented when the FCL structure is changed. Version numbers are
compared to ensure compatibility.

fc_state Indicates whether the FCL is activated (ON) or deactivated (OFF).

fc_sync	 Incremented each time the FCL is synchronized via the
vxfs_fcl_sync() API or fcladm sync command. It is also
incremented when a file system Storage Checkpoint is created. See the
VERITAS File System Administrator’s Guide for information on Storage
Checkpoints.

fc_atime	 The time stamp of when the FCL was activated. If the activation time
of the last read is different from that of the current read, the FCL has
been deactivated at least once between the two reads.

fc_foff	 The offset of the first valid FCL record. It is initialized to the value of
the file system block size, which will be located at the second block in
the FCL file. Because an FCL file can be punched with a hole to release
unneeded space, the value of fc_foff will change to the offset of the
first file system block after the punched region. The punched hole is
described later. If the application’s last read offset is less than the FCL
first valid offset, the application has already missed some records.

fc_loff	 The offset in the FCL file indicating the end of the last record. The next
FCL record written into the FCL will be written at this offset. When it
crosses the system maximum file size, the FCL resets. The file is
truncated to 1 block, which contains the superblock. The activation
time is reset to the current time. The first and last valid offsets are reset
to the file system block size.

fc_padding[2] Reserved.
Chapter 2, File Change Log 13

Record Details
The following figure illustrates an FCL resetting after the last valid offset crosses the value
of MAXFILESIZE.

Offset 0x0	
Superblock

Record

Record

Record

MAXFILESIZE = 2GB
statvfs.f_bsize = 8KB

fc_foff = 8KB

Offset 0x0

fc_loff = 2GB - fc_foff = 8KB
sizeof(fcl_ent_t) fc_loff = 8KB

Superblock

FCL Before Resetting FCL After Resetting

Record Details
While the FCL is activated, each file or directory change is recorded in the file. An FCL
record is represented by the fcl_ent structure.

struct fcl_ent {

uint64_t fe_ino; /* inode number */

uint64_t fe_dino; /* parent inode number */

fcl_timeval32_t fe_time; /* time stamp */

uint32_t fe_gen; /* inode gen count */

uint16_t fe_type; /* change type */

uint16_t fe_nmlen; /* file name length */

/* 0x20 is length */

};

The descriptions of the fields in the structure are as follows:

fe_ino	 Inode number of the file being changed. To generate the full path name
of the changed object, inode number and generation count (fe_gen)
could be used with the vxfs_inotopath_gen() API.

fe_dino	 Inode number for the directory containing the file being changed. The
parent directory inode and generation count can be used in the same
way to identify the full path name of the parent directory. Adding the
trailing file name yields the object’s full name.
14 VERITAS File System Programmer’s Reference Guide

Record Details
fe_gen	 Generation count of the file changed. The generation count in
combination with either inode is passed to vxfs_inotopath_gen()
to provide the exact full path name of the object. Without the
generation count, the returned path name can be of a re-used inode. In
most cases, the generation count refers to the fe_ino field. In the case of
a VX_FCL_UNLINK record, this field contains the generation count of
the parent inode (fe_dino).

In the case of a rename, the fe_gen field of the VX_FCL_HEADER or
VX_FCL_NO_CHANGE record, which follows the file name, contains the
generation count of the parent directory.

fe_time	 A time stamp that provides an approximation of when the change was
recorded in the FCL file. Use the ctime() call to interpret this field.

fe_type	 Record change type that indicates whether the change was a creation,
unlink, write, file attributes change, or other change.

fe_nmlen	 Name length field. This field is valid only when the record is either
VX_FCL_LINK, VX_FCL_UNLINK, VX_FCL_RENAME, or
VX_FCL_HEADER. It specifies the partial or full length of the trailing
file name. The current FCL offset plus the name length, rounded up to
32 bytes, yields the offset of the next valid record.

The enum structure below fully defines all of the record types of the fe_type field in the
fcl_ent structure.

typedef enum {

VX_FCL_NO_CHANGE,

VX_FCL_INFO_CHG,

VX_FCL_CREATE,

VX_FCL_LINK,

VX_FCL_UNLINK,

VX_FCL_RENAME,

VX_FCL_UNDELETE,

VX_FCL_DATA_EXTNDWRITE,

VX_FCL_DATA_OVERWRITE,

VX_FCL_DATA_TRUNCATE,

VX_FCL_EATTR_CHG,

VX_FCL_HOLE_PUNCHED,

VX_FCL_HEADER,

VX_FCL_SYMLINK,

VX_FCL_INOEX_CHG,

VX_FCL_INORES_CHG,

VX_FCL_IMODE_CHG,

VX_FCL_IOWN_CHG,

/* no change */

/* file info change */

/* file create */

/* file link added */

/* file unlink/file deleted */

/* file rename */

/* file undelete */

/* file data extending write*/

/* file data overwrite */

/* file data truncate */

/* file extended attribute

change*/

/* file hole punched */

/* block header record */

/* symbolic link created */

/* inode extent attributes

changed */

/* inode reservation

changed */

/* inode mode changed */

/* inode owner changed */

Chapter 2, File Change Log 15

Record Details
VX_FCL_IGRP_CHG, /* inode group changed */

VX_FCL_ITIMES_CHG, /* inode times changed */

VX_FCL_MTIME_CHG, /* inode mtime changed */

VX_FCL_MAX, /* maximum FCL type + 1 */

} fcl_chgtype_t;

New FCL record types may be periodically added; applications should be written
accordingly. The introduction of new record types will result in the fc_version field in the
FCL superblock being incremented.

Records With a Trailing File Name
There are two special records types, VX_FCL_NO_CHANGE and VX_FCL_HEADER, that are
used as filler records in the FCL file. They contain no file system change information, but
need to be processed to find the next record. These records are used to pad the FCL file for
VX_FCL_LINK, VX_FCL_UNLINK, and VX_FCL_RENAME records because of a variable
length record or when spanning a block boundary.

FCL records are written one after another, sometimes interspersed with trailing file
names. FCL record types are enumerated in fcl_chgtype_t. There are 3 special records,
VX_FCL_LINK, VX_FCL_UNLINK, and VX_FCL_RENAME, where file or directory names
trail the records. In those records, the file name length field is non-zero. In addition to the
name length field, other fields in the record provide additional details about the change:

VX_FCL_LINK The trailing name is the new link’s name.

VX_FCL_UNLINK The trailing name is the name of the unlinked file.

VX_FCL_RENAME The trailing name is the previous name of the file.

File names have a maximum size of MAXNAMELEN. Thus, a trailing file name in the FCL
could span one or more FCL records. In all cases, file names are padded with zeroes at the
end of the name to a 32-byte boundary to ensure that all FCL records begin on a 32-byte
aligned offset.
16 VERITAS File System Programmer’s Reference Guide

Record Details
The following sections provide examples of how file names with trailing records are
managed with the FCL_UNLINK record. These same examples apply equally to the
VX_FCL_LINK and VX_FCL_RENAME records.

◆	 VX_FCL_UNLINK record, file name, and VX_FCL_NO_CHANGE record fit completely
in the remainder of the current file system block

Record 1 is the VX_FCL_UNLINK record. The record name length (fe_nmlen) contains
the length of the full name. Record 2 contains the 30-byte file name, which can be read
entirely from this record. Record 3 contains the VX_FCL_NO_CHG record, which is
used to fill the current file system block boundary.

File System Block Boundary
VX_FCL_NO_CHG

VX_FCL_UNLINK
fe_nmlen = 30

This filename is
30 bytes long

Record 1

Record 2

Record 3

◆	 VX_FCL_UNLINK record and file name fit in the remaining of the current file system
block

Record 1 is the VX_FCL_UNLINK record. The record name length (fe_nmlen) contains
the length of the full name. Record 2 contains the 30-byte file name, which can be read
entirely from this record. Record 3 contains a VX_FCL_HEADER record, which is
written at offset 0 of the next block and its fe_nmlen field is set to 0.

File System Block Boundary
VX_FCL_HEADER

This filename is
30 bytes long

VX_FCL_UNLINK
fe_nmlen = 30

fe_nmlen = 0

Record 1

Record 2

Record 3
Chapter 2, File Change Log 17

Record Details
◆ File name crosses the file system block boundary

Record 1 is the VX_FCL_UNLINK record. The record name length, fe_nmlen, will be set
to the length of the partial file name that fits between the preceding FCL record
(record 1) and the file system block boundary. The partial file name is written to
records 2 and 3.

Record 4 is a VX_FCL_HEADER record, which is written at offset 0 of the next block,
and its fe_nmlen field is set to the remaining file name length. Record 5 contains the
remaining file name bytes.

The full file name has to be assembled from reading records 2, 3, and 5.

File System Block Boundary
VX_FCL_HEADER

VX_FCL_UNLINK
fe_nmlen = 64

fe_nmlen = 1

Next 32 bytes of the

First 32 bytes of the
file name

file name

Last byte of the
65-byte file name

Record 1

Record 2

Record 3

Record 4

Record 5

◆	 Insufficient space to write at least 32 bytes of the file name in the current file system
block

Record 1 is the VX_FCL_UNLINK record. The record name length, fe_nmlen, will be set
0. Record 2 is a VX_FCL_HEADER record, which is written at offset 0 of the next block,
and its fe_nmlen field is set to the file name length. The partial file name is written to
records 3 and 4. Record 5 contains the remaining file name bytes.

The full file name is written after the VX_FCL_HEADER record. The full file name has
to be assembled from reading records 3, 4, and 5.

File System Block Boundary
VX_FCL_UNLINK

fe_nmlen = 0

VX_FCL_HEADER
fe_nmlen = 65

Next 32 bytes of the

First 32 bytes of the
file name

file name
Last byte of the

65-byte file name

Record 1

Record 2

Record 3

Record 4

Record 5
18 VERITAS File System Programmer’s Reference Guide

Tunables
Records Without a Trailing File Name
The remaining FCL records do not have trailing file names and should be read
sequentially.

Tunables
There are 3 FCL tunable parameters that can be set via the vxtunefs command (see the
vxtunefs(1m) manual page).

fcl_keeptime	 Specifies the duration in seconds that FCL records stay in the FCL file
before they can be purged. The first records to be purged are the oldest
ones, which are located at the beginning of the file. Additionally,
records at the beginning of the file can be purged if allocation to the
FCL file exceeds fcl_maxalloc bytes. The default value is 0. Note that
fcl_keeptime takes precedence over fcl_maxalloc. No hole is punched if
the FCL file exceeds fcl_maxalloc bytes but the life of the oldest record
has not reached fcl_keeptime seconds.

Tuning recommendation: The fcl_keeptime tunable parameter needs to
be tuned only when the administrator wants to ensure that records are
kept in the FCL for fcl_keeptime length of time. The fcl_keeptime
parameter generally should be set to a value that is twice the time
between FCL scans. For example, if the FCL is scanned every 24 hours,
fcl_keeptime should be set to 48 hours. This prevents FCL records from
being purged before they are read and processed.

fcl_maxalloc	 Specifies the maximum number of space in bytes to be allocated to the
FCL file. When the space allocated exceeds fcl_maxalloc, a hole is
punched at the beginning of the file. As a result, records are purged
and the first valid offset (fc_foff) is updated. The minimum value of
fcl_maxalloc is 4MB. The default value is fs_size/33.
Chapter 2, File Change Log 19

Programmatic Interface
fcl_winterval	 Specifies the time in seconds that must elapse before the FCL records
an overwrite, extending write, or a truncate. This helps to reduce the
number of repetitive records in the FCL. fcl_winterval time-out is per
inode. If an inode happens to go out of cache and returns, its write
interval is reset. As a result, there could be more than one write record
for that file in the same write interval. The default value is 3600
seconds.

Tuning recommendation: The fcl_winterval tunable parameter should
be set to a value that is less than the time between FCL scans. For
example, if the FCL is scanned every 24 hours, fcl_winterval should be
set to less than 24 hours. This ensures that there is at least one record in
the FCL for each file being overwritten, extended, or truncated
between scans.

In the following figure, a 16K extent is punched at the beginning of the FCL file.

Offset 0x0

fc_foff = 8K

Superblock

Record

Record

Record

Offset 0x0
Superblock

16K Hole

Record

Record

Record

fc_foff = 24KB

FCL Before: No holes

FCL After: A 16K hole
exists at offset 8K

Programmatic Interface
The standard system calls open(2), lseek(2), read(2) and close(2) can be used on the
FCL file at /mount_point/lost+found/changelog. Additionally, there is one
programmatic interface exposed through libvxfsutil: vxfs_fcl_sync(). The
following is the syntax for the vxfs_fcl_sync() API:

int vxfs_fcl_sync(char *fname, uint64_t *offp);

The vxfs_fcl_sync() API has two parameters: a pointer to the FCL file name, fname,
and the address of a 64-bit offset, offp.
20 VERITAS File System Programmer’s Reference Guide

Programmatic Interface
The vxfs_fcl_sync() API sets a synchronization point within the FCL file. This
synchronization point defines a clear offset into the FCL file that applications can use as a
stopping point when reading the FCL. The application saves this offset to use it as a
starting point the next time the application reads more of the FCL file.

Setting a synchronization point in the FCL also resets the FCL data write interval for all of
the files in the file system. The FCL data write interval is a VxFS tunable used to limit the
number of FCL records for file data changes during a specified time interval. This
limitation applies to all files in all read-write mounted filesets for a given file system
volume or device. See the vxtunefs(1M) manual page for more information. By resetting
the FCL data write interval, an application is certain to find least one FCL data change
record for each file in the file system that is being overwritten, extended, or truncated the
next time that the application reads the FCL file from offp.

Multiple applications can use the vxfs_fcl_sync() function simultaneously. The
synchronization point that is set does not affect the operation of other applications using
the FCL. Multiple applications issuing a call to vxfs_fcl_sync() obtain different offsets
to use as their own synchronization points.

Synchronizing the FCL is one of the critical steps in reading and processing the FCL. The
prototype is available in the /opt/VRTSfssdk/4.1/include/vxfsutil.h header
file. See the vxfs_fcl_sync(3) manual page for more information.

▼ Sample steps to read and process the FCL

1. Open the /mountpoint/lost+found/changelog file.

2. Read the superblock from offset 0.

3. Check the FCL state. If the state is OFF, then you are done. Otherwise, proceed.

4. Record the activation time.

5.	 Compare the activation time to that of the last time the FCL log was read. If the times
are different, then the FCL was deactivated and reactivated since the last time the
application read the FCL log. It is likely that some changes to the files in the file
system were not recorded in the FCL log. The application cannot depend on the FCL
to identify the modified files. Instead, it needs to rescan the file system and
re-establish a baseline before using the FCL log again.

6.	 If this is not the first time the application read the FCL log, check if the last offset read
by the application is greater than the FCL’s first valid offset. If the last offset read is
not greater than the FCL’s first valid offset, it is possible that holes were punched in
front of the FCL and records in the punched region were not read. Rescan the file
system and re-establish a baseline before using the FCL again.
Chapter 2, File Change Log 21

Programmatic Interface
7.	 Synchronize the FCL via the vxfs_fcl_sync() API, which returns the value of
sync_offset. Read the FCL from the last offset read by the application up to the offset
specified by sync_offset.

8. Save this offset as the offset last read by the application.

9.	 Reread the superblock to confirm that the offsets from which the application has read
FCL records are still valid.

The following sample code fragment reads the FCL superblock, checks that the state of the
FCL is VX_FCLS_ON, issues a call to vxfs_fcl_sync() to obtain a finishing offset to read
to, determines the first valid offset in the FCL file, then reads the entries in 8K chunks
from this offset. The section process fcl entries is what an application developer
must supply to process the entries in the FCL.

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/fcntl.h>

#include <errno.h>

#include <fcl.h>

#include <vxfsutil.h>

#define FCL_READSZ 8192

char* fclname = "/mnt/lost+found/changelog";

int

read_fcl(fclname)

char* fclname;

{

struct fcl_sb fclsb;

uint64_t off, lastoff;

size_t size;

char buf[FCL_READSZ], *bufp = buf;

int fd;

int err = 0;

if ((fd = open(fclname, O_RDONLY)) < 0) {

return ENOENT;

}

if ((off = lseek(fd, 0, SEEK_SET)) != 0) {

close(fd);

return EIO;

}

size = read(fd, &fclsb, sizeof (struct fcl_sb));

22 VERITAS File System Programmer’s Reference Guide

Reverse Path Name Lookup
if (size < 0) {

close(fd);

return EIO;

}

if (fclsb.fc_state == VX_FCLS_OFF) {

close(fd);

return 0;

}

if (err = vxfs_fcl_sync(fclname, &lastoff)) {

close(fd);

return err;

}

if ((off = lseek(fd, fclsb.fc_foff, SEEK_SET)) !=

fclsb.fc_foff) {

close(fd);

return EIO;

}

while (off < lastoff) {

if ((size = read(fd, bufp, FCL_READSZ)) <= 0) {

close(fd);

return errno;

}

/* process fcl entries */

off += size;

}

close(fd);

return 0;

}

Reverse Path Name Lookup
The reverse path name lookup feature obtains the full path name of a file or directory
from the inode number of that file or directory. The inode number is provided as an
argument to the vxfs_inotopath_gen() application programming interface library
function. See the vxfs_inotopath_gen(3) online manual page for more information.

The reverse path name lookup feature can be useful for a variety of applications, such as
for clients of the VxFS file change log feature, in backup and restore utilities, and for
replication products. Typically, these applications store information by inode numbers
because a path name for a file or directory can be very long, thus the need for an easy
method of obtaining a path name.
Chapter 2, File Change Log 23

Reverse Path Name Lookup
An inode is a unique identification number for each file in a file system. An inode contains
the data and metadata associated with that file, but does not include the file name to
which the inode corresponds. It is therefore relatively difficult to determine the name of a
file from an inode number. The ncheck command provides a mechanism for obtaining a
file name from an inode identifier by scanning each directory in the file system, but this
process can take a long period of time. The VxFS reverse path name lookup feature
obtains path names relatively quickly.

Note	 Because symbolic links do not constitute a path to the file, the reverse path name
lookup feature cannot track symbolic links to files.

A file inode number, generation count, and, in the case of a VX_FCL_LINK,
VX_FCL_UNLINK, or VX_FCL_RENAME record, trailing file name, when combined with
the use of reverse path name lookup, can generate full path names for each FCL record.

The vxfs_inotopath_gen() API takes a mount point name, inode number, and inode
generation count and returns a buffer that contains one or more (in the case of multiple
links to an inode) full path names representing the inode. The inode generation count
parameter ensures that the returned path name is not a false value of a re-used inode.
Because of this, use the vxfs_inotopath_gen() API whenever possible.

The vxfs_inotopath() API is included only for backward compatibility. The
vxfs_inotopath() API does not take the inode generation count.

The following is the syntax for the vxfs_inotopath() and vxfs_inotopath_gen()
APIs:

int vxfs_inotopath(char *mount_point, uint64_t inode_number,

int all, char ***bufp, int *inentries)

int vxfs_inotopath_gen(char *mnt_pt, uint64_t inode_number,

unint32_t inode_generation, int all,

char ***bufp, int *nentries)

For the vxfs_inotopath() call, the all argument must be 0 to obtain a single path name
or 1 to obtain all path names. The mount_point argument specifies the file system mount
point. Upon successful return, bufp points to a two-dimensional character pointer
containing the path names and nentries contains the number of entries. Each entry of the
returned two-dimensional array is MAXPATHLEN in size and must be freed by the calling
application.
24 VERITAS File System Programmer’s Reference Guide

Reverse Path Name Lookup
The vxfs_inotopath_gen() call is identical to the vxfs_inotopath() call, except that
it uses an additional parameter, inode_generation. The vxfs_inotopath_gen() function
returns one or more path names associated with the given inode number, if the
inode_generation passed matches the current generation of the inode number. If the
generations differ, it returns with an error. Specify inode_generation=0 when the generation
count is unknown. This is equivalent to using the vxfs_inotopath() call.

The vxfs_inotopath_gen() and vxfs_inotopath() calls are supported only on
Version 6 and later disk layouts.
Chapter 2, File Change Log 25

Reverse Path Name Lookup
26 VERITAS File System Programmer’s Reference Guide

Multi-Volume Support
3

The multi-volume support (MVS) feature allows a VxFS file system to use multiple VxVM
volumes as underlying storage instead of the traditional single volume per file system.
These different volumes can have different characteristics, such as performance,
redundancy, or cost, or they could be used to isolate different parts of the file system from
each other for performance or administrative purposes.

Administrators and applications can control which files and metadata go into which
volumes by using allocation policies. Each file system operation that allocates space
examines the applicable allocation policies to see which volumes are specified for that
operation. Allocation policies normally only affect new allocations, but there are also
interfaces to move existing data to match a new allocation policy.

There are several levels of policies that can apply to each allocation:

◆ Per-file policies

◆ Per-Storage-Checkpoint policies

◆ Per-file-system policies

The most specific allocation policy in effect for a given allocation operation will be used.

The MVS APIs fall into three basic categories:

◆ Manipulation of volumes within a file system

◆ Manipulation of allocation policy definitions

◆ Application of allocation policies

Each of the APIs is also available via options to the fsvoladm(1M) and fsapadm(1M)
commands.
27

Topics in this chapter include:

◆ Uses for Multi-Volume Support

◆ Volume APIs

◆ Allocation Policy APIs

◆ Data Structures

◆ Examples

28 VERITAS File System Programmer’s Reference Guide

Uses for Multi-Volume Support
Uses for Multi-Volume Support
Possible uses for the multi-volume support feature include the following:

◆	 Controlling where files are stored so that specific files or file hierarchies can be
assigned to different volumes.

◆	 Separating Storage Checkpoints so that data allocated to a Storage Checkpoint is
isolated from the rest of the file system.

◆ Separating file system metadata from file data.

◆	 Encapsulating volumes so that a volume appears in the file system as a file. This is
particularly useful for databases that are running on raw volumes.

◆ Migrating files off a volume so that the volume can be replaced or serviced.

◆	 Implementing a storage optimization application that periodically scans the file
system and modifies the allocation policies in response to changing patterns of
storage use.
Chapter 3, Multi-Volume Support 29

Volume APIs
Volume APIs
The volume APIs can be used to add volumes to a file system, remove volumes from a file
system, list which volumes are in a file system, and retrieve information on usage and
availability of space in a volume.

Multi-volume file systems can only be used with VxVM volume sets. Volume sets are
administered via the vxvset command. See the VERITAS Volume Manager Administrator’s
Guide for more information.

Examples of Volume Set Operations
◆ Convert myvol1 to a volume set:

vxvset make myvset myvol1

◆ Add my vol2 to the volume set myvset:

vxvset addvol myvset myvol2

◆ List the volumes of myvset:

vxvset list myvset

◆ Remove myvol2 from myvset:

vxvset rmvol myvset myvol2

Querying the Volume Set for a File System
◆ Query all the volumes associated with the file system:

vxfs_vol_enumerate(fd, &count, infop);

◆ Query a single volume:

vxfs_vol_stat(fd, vol_name, vol_size);
30 VERITAS File System Programmer’s Reference Guide

Volume APIs
Modifying a Volume Within a File System
◆ Grow or shrink a volume:

vxfs_vol_resize(fd, vol_name, new_vol_size);

◆ Remove a volume from a file system:

vxfs_vol_remove(fd, vol_name);

◆ Add a volume to a file system:

vxfs_vol_add(fd, new_vol_name, new_vol_size);

Volume Encapsulation
◆	 Encapsulate an existing raw volume and make the volume contents appear as a file in

the file system:

vxfs_vol_encapsulate(encapsulate_name, vol_name, vol_size);

◆ De-encapsulate an existing raw volume to remove the file from the file system:

vxfs_vol_deencapsulate(encapsulate_name);

See the VERITAS File System Administrator’s Guide for more information.
Chapter 3, Multi-Volume Support 31

Allocation Policy APIs
Allocation Policy APIs
To make full use of multi-volume support features, VxFS provides support for allocation
policies that allow files or groups of files to be assigned to specified volumes within the
volume set.

An allocation policy specifies a list of volumes and the order in which to attempt
allocations. A policy can be assigned to a file, file system, or Storage Checkpoint created
from a file system. When policies are assigned to objects in the file system, you must
specify how the policy maps to both metadata and file data. For example, if a policy is
assigned to a single file, the file system must know where to place both the file data and
metadata. If no policies are specified, the file system places data randomly.

The allocation policies are defined per file system and are persistent. There is no fixed
limit on the number of allocation policy definitions in a file system. Once a policy is
assigned, new file allocations are governed by the policy. For files allocated before a policy
was defined or assigned or when a policy on a file has been changed, the policy can be
enforced, causing the file to be re-allocated to the appropriate volumes. Allocation policies
can be inherited by a newly created file from its parent directory. This is accomplished by
specifying the FSAP_INHERIT flag when assigning the policy to the parent directory.

Currently, there is no interface for determining where an existing file is currently
allocated. However, these APIs can be used to assign and enforce a policy on a file to
assure that the blocks are allocated properly.
32 VERITAS File System Programmer’s Reference Guide

Allocation Policy APIs
An Illustration of File Allocation
The following figure shows how you might use the allocation policies to direct file
allocations. In the figure, the /mnt file system has 3 volumes in its volume set: vol-01,
vol-02, and vol-03. These volumes correspond to policy1, policy2, and policy3,
respectively.

Directing File Allocations
/mnt (step 2)

meta_policy = “policy1”
data_policy = “policy2”

dir1 (step 3) (inherit flag)
meta_policy = “policy3”
data_policy = “policy3”

dir2

file3 file4 (step 4) (step 8) (step 9)

file1 file2
(step 5)	 meta_policy = “policy3”

data_policy = “policy3”
(step 7) (step 6)

▼	 Directing File Allocations

The following are actions taken in the steps shown in the figure:

1. Create the allocation policies on the /mnt file system.

2.
 Assign the data and metadata allocation policies to the /mnt file system as policy1
and policy2.

3.
 Assign the data and metadata allocation policies to dir1 with the INHERIT flag, with
both as policy3.

4. Create file4 (100MB), which becomes allocated to vol-02.

5. Create file3 (10MB), which becomes allocated to vol-02.

6. Create file2 (100MB), which becomes allocated to vol-03.
Chapter 3, Multi-Volume Support 33

Allocation Policy APIs
7. Create file1 (100MB), which becomes allocated to vol-03.

8. Assign the data and metadata allocation policies to file4, with both as policy3.

9. Enforce the allocation policies on file4, which reallocates the file to vol-03.

In the figure, the file system has a policy assignment that allocates data as directed by
policy1 and metadata as directed by policy2. These policies cause files to be allocated
on vol-01 and vol-02, except for dir1, which has overriding assignments for
allocation on vol-03.

When the file3 and file4 files are created, they will be allocated on vol-02 as
directed by the policy1 and policy2 assignments. When file1 and file2 are
created, they will be allocated on vol-03, as specified by policy3.

When file4 is created, the initial allocation is on vol-01 and vol-02. To move file4
to vol-03, assign policy3 to file4 and enforce that policy on the file. This reallocates
file4 to vol-03.

Creating and Assigning Policies
The following is an example for creating and assigning a policy using the multi-volume
API:

1.
 Define a policy for a file system.

vxfs_ap_define(fd, fsap_info_ptr, 0);

2.
 Assign a policy to a file system.

vxfs_ap_assign_fs(fd, data_policy, meta_policy);

3.
 Assign a policy to a file or directory.

vxfs_ap_assign_file(fd, data_policy, meta_policy, 0);

4. Assign a policy to a Storage Checkpoint

vxfs_ap_assign_ckpt(fd, check_point_name, data_policy,

meta_policy)

34 VERITAS File System Programmer’s Reference Guide

Allocation Policy APIs
Querying the Defined Policies
◆ Query all policies on a file system.

vxfs_ap_enumerate(fd, &count, fsap_info_ptr);

◆ Query a single defined policy.

vxfs_ap_query(fs, fsap_info_ptr);

◆ Query a file for its assigned policies.

vxfs_ap_query_file(fs, data_policy, meta_policy, 0);

◆ Query a Storage Checkpoint for its assigned policies.

vxfs_ap_query_ckpt(fd, check_point_name, data_policy,

meta_policy)

Enforcing a Policy on a File
◆ Enforce a policy. This may cause the file to be reallocated to another volume.

vxfs_ap_enforce_file(fd, data_policy, meta_policy);
Chapter 3, Multi-Volume Support 35

Data Structures
Data Structures
For more information, see the vxfsutil.h header file and libvxfsutil.a library file.

#define FSAP_NAMESZ 64

#define FSAP_MAXDEVS 256

#define FSDEV_NAMESZ 32

struct fsap_info { /* policy structure */

char ap_name[FSAP_NAMESZ]; /* policy name */

uint32_t ap_flags; /* FSAP_CREATE | FSAP_INHERIT |

FSAP_ANYUSER */

uint32_t ap_order; /* FSAP_ORDER_ASGIVEN |

FSAP_ORDER_LEASTFULL |

FSAP_ORDER_ROUNDROBIN */

uint32_t ap_ndevs; /* number of volumes */

char ap_devs[FSAP_MAXDEVS][FSDEV_NAMESZ];

/* volume names associated with this

policy */

};

struct fsdev_info { /* volume structure */

int dev_id; /* a number from 0 to n */

uint64_t dev_size; /* size in bytes of volume */

uint64_t dev_free;

uint64_t dev_avail;

char dev_name[FSDEV_NAMESZ]; /* volume name */

};

36 VERITAS File System Programmer’s Reference Guide

Examples
Examples
The following examples assume there is a volume set, volset, with the volumes vol-01,
vol-02, and vol-03. The file system mount point /mnt is mounted on volset.

Defining and Assigning Allocation Policies
The following pseudocode provides an example of using the allocation policy APIs to
define and assign allocation policies.

◆ Reallocate an existing file’s data blocks to a specific volume (vol-03)

/* Create a data policy for moving file’s data */

strcpy((char *) ap.ap_name, "Data_Mover_Policy");

ap.ap_flags = FSAP_CREATE;

ap.ap_order = FSAP_ORDER_ASGIVEN;

ap.ap_ndevs = 1;

strcpy(ap.ap_devs[0], "vol-03");

fd = open("/mnt", O_RDONLY);

vxfs_ap_define(fd, &ap, 0);

file_fd = open ("/mnt/file_to_move", O_RDONLY);

vxfs_ap_assign_file(file_fd, "Data_Mover_Policy", NULL, 0);

vxfs_ap_enforce_file(file_fd, "Data_Mover_Policy", NULL);

Chapter 3, Multi-Volume Support 37

Examples
◆ Create policies to allocate new files under directory dir1 according to the policies

In this example, the files are under dir1, the metadata will be allocated to vol-01,
and file data will be allocated to vol-02.

/* Define 2 policies */

/* Create the RAID5 policy */

strcpy((char *) ap.ap_name, "RAID5_Policy");

ap.ap_flags = FSAP_CREATE | FSAP_INHERIT;

ap.ap_order = FSAP_ORDER_ASGIVEN;

ap.ap_ndevs = 1;

strcpy(ap.ap_devs[0], "vol-02");

fd = open("/mnt", O_RDONLY);

dir_fd = open("/mnt/dir1", O_RDONLY);

vxfs_ap_define(fd, &ap, 0);

/* Create the mirror policy */

strcpy((char *) ap.ap_name, "Mirror_Policy");

ap.ap_flags = FSAP_CREATE | FSAP_INHERIT;

ap.ap_order = FSAP_ORDER_ASGIVEN;

ap.ap_ndevs = 1;

strcpy(ap.ap_devs[0], "vol-01");

vxfs_ap_define(fd, &ap, 0);

/* Assign policies to the directory */

vxfs_ap_assign_file(dir_fd, "RAID5_Policy", “Mirror_Policy”, 0);

/* Create file under directory dir1 */

/* Meta and data blocks for file1 will be allocated on

vol-01 and vol-02 respectively. */

file_fd = open("/mnt/dir1/file1");

write(file_fd, buf, 1024);

38 VERITAS File System Programmer’s Reference Guide

Examples
Using Volume APIs
The following pseudocode provides an example of using the volume APIs.

◆ Shrink or grow a volume within a file system

To grow a volume, use the vxresize command to grow the physical volume. Then,
use the vxfs_vol_resize() call to grow the file system.

/* stat volume "vol-03" to get the size information */

fd = open("/mnt");

vxfs_vol_stat(fd, "vol-03", infop);

/* resize (shrink/grow) accordingly. This example shrinks

the volume by half */

vxfs_vol_resize(fd, "vol-03", infop->dev_size / 2);

◆	 Encapsulate a raw volume vol-03 as a file (encapsulate_name) in a the file system
/mnt. The volume must first be added to the volume set before encapsulation.

/* Take the raw volume vol-03 and encapsulate it. The volume’s

contents will be accessible through the given path name. */

vxfs_vol_encapsulate("/mnt/encapsulate_name", "vol-03",

infop->dev_size);

/* Access to the volume is through writes and reads of file

"/mnt/encapsulate_name" */

encap_fd = open("/mnt/encapsulate_name");

write(encap_fd, buf, 1024);

◆	 De-encapsulate the raw volume vol-03 known as encapsulate_name in the file
system /mnt

/* Use de-ecapsulate to remove raw volume. After de-encapsulation

vol-03 is still part of volset, but is not an active part of

the file system. */

vxfs_vol_deencapsulate("/mnt/encapsulate_name");

Chapter 3, Multi-Volume Support 39

Examples
40 VERITAS File System Programmer’s Reference Guide

Named Data Streams
4

Named data streams associate multiple data streams with a file. The default (unnamed)
data stream can be accessed through the file descriptor returned by the open() function
called on the file name. The other data streams are stored in an alternate name space
associated with the file. The following figure illustrates the alternate namespace
associated with a file.

Alternate Namespace

file1 / Alternate namespace for named data streams

data_stream_1 data_stream_2

In the figure, the file1 file has two named data streams: data_stream_1 and
data_stream_2.

Every file can have its own alternate namespace to store named data streams. The
alternate namespace can be accessed through the named data stream APIs supported by
VxFS.

Access to the named data stream can be done through a file descriptor using the named
data stream library functions. Applications can open the named data stream to obtain a
file descriptor and perform read(), write(), and mmap() operations using the file
descriptor. These system calls work as though they are operating on a regular file. The
named data streams of a file are stored in a hidden named data stream directory inode
associated with the file. The hidden directory inode for the file can be accessed only
through the named data stream application programming interface.

There are no VxFS-supplied administrative commands to use this feature. A VxFS API is
provided for creating, reading, and writing the named data streams of a file.

This feature is compatible with the Solaris 10 administrative commands.

Note Named data streams are also known as named attributes.
41

Topics in this chapter include:

◆ Uses for Named Data Streams

◆ Named Data Streams Programmatic Interface

◆ Listing Named Data Streams

◆ Namespace for Named Data Streams

◆ Behavior Changes in Other System Calls

◆ Example

◆ Programmatic API

◆ Programmer’s Reference

42 VERITAS File System Programmer’s Reference Guide

Uses for Named Data Streams
Uses for Named Data Streams
Named data streams allow applications to attach information to a file that appears to be
hidden. An administrative program could use this to attach file usage information,
backup information, and so on. An application could use this feature to hide or collect file
attachments. For example, a multi-media document could have all text, audio clips, and
video clips organized in one file rather than in several files. A document being reviewed
by multiple people could have each person’s comments attached to the file as a named
data stream.

Named Data Streams Programmatic Interface
The following standard system calls can manipulate named data streams:

open() Opens a named data stream.

read() Reads a named data stream.

write() Writes a named data stream.

getdents()	 Reads directory entries and puts in a file system independent
format.

mmap() Maps pages of memory.

readdir() Reads a directory.

VxFS named data stream functionality is available through several application
programming interface functions.

The vxfs_nattr_open() function works similar to the open() system call, except that
the path is interpreted as a named data stream to a file descriptor. If the
vxfs_nattr_open() operation completes successfully, the return value is the file
descriptor associated with the named data stream. The file descriptor can be used by other
input/output functions to refer to that named data stream. If the path of the named data
stream is set to “.” the file descriptor returned points to the named data stream directory
vnode. The syntax for the vxfs_nattr_open() API is as follows:

int vxfs_nattr_open(int fd, char *path, int oflag);

Chapter 4, Named Data Streams 43

Listing Named Data Streams
The vxfs_nattr_link() function creates a new directory entry for the existing named
data stream and increments its link count by one. There is a pointer to an existing named
data stream in the named data stream namespace and a pointer to the new directory entry
created in the named data stream namespace. The syntax for the vxfs_nattr_open()
API is as follows:

int vxfs_nattr_link(int sfd, char *spath, char *tpath);

The vxfs_nattr_unlink() function removes the named data stream at a specified path.
The calling function must have write permission to remove the directory entry for the
named data stream. The syntax for the vxfs_nattr_unlink() API is as follows:

int vxfs_nattr_unlink(int fd, char *path);

The vxfs_nattr_rename() function changes a specified namespace entry at path1 to a
second specified namespace at path2. The specified paths are resolved relative to a
pointer to the named data stream directory vnodes. The syntax for the
vxfs_nattr_rename() API is as follows:

int vxfs_nattr_rename(int sfd, char *old, char *tnew);

The vxfs_nattr_utimes() function sets the access and modification times of the named
data stream. The syntax for the vxfs_nattr_utimes() API is as follows:

int vxfs_nattr_utimes(int sfd, const char *path,

const struct timeval times[2]);

See the vxfs_nattr_open(3), vxfs_nattr_link(3), vxfs_nattr_unlink(3),
vxfs_nattr_rename(3), and vxfs_nattr_rename(3) manual pages for more
information.

Listing Named Data Streams
The named data streams for a file can be listed by calling getdents() on the named data
stream directory inode. For example:

fd = open("foo", O_RDWR); /* open file foo */

afd = vxfs_nattr_open(fd, "stream1",

O_RDWR|O_CREAT, 0777); /* create named data stream

stream1 for file foo */

write(afd, buf, 1024); /* writes to named stream file */

read(afd, buf, 1024); /* reads from named stream file */

dfd = vxfs_nattr_open(fd, ".", O_RDONLY);/* opens named stream

directory for file foo */

getdents(dfd, buf, 1024); /* reads directory entries for

named stream directory */

44 VERITAS File System Programmer’s Reference Guide

Namespace for Named Data Streams
The reverse name lookup call resolves a stream file to a pathname. The resulting
pathname’s format is similar to the following:

/mount_point/file_with_named_data_stream/./data_stream_file_name

Namespace for Named Data Streams
Names starting with “$vxfs:” are reserved for future use. Creating a data stream in
which the name starts with “$vxfs:” fails with an EINVAL error.

Behavior Changes in Other System Calls
Though the named data stream directory is hidden from the namespace, it is possible to
open the name data stream directory inode with a fchdir() or fchroot() call. Some of
the attributes (such as “..”) are not defined for a named data streams directory. Any
operation that accesses these fields can fail. Attempts to create directories, symbolic links,
or device files on a named data stream directory will fail. VOP_SETATTR() called on a
named data stream directory or named data stream inode will also fail.

An alternative method for reading the hidden directory using the fchdir() call is as
follows:

fd = open(filename, O_RDONLY)

dfd = vxfs_nattr_open(fd, ".", O_RDONLY, mode)

fchdir(dfd);

dirp = opendir(".");

readdir_r(dirp, (struct dirent *)&entry, &result);

Note	 The usage section of the getcwd(3C) man page states that applications should
exercise care when using the chdir(2) call in conjunction with getcwd(). The
current working directory is global to all threads within a process. If more than one
thread calls chdir() to change the working directory, a subsequent call to getcwd()
could produce results that are unexpected.
Chapter 4, Named Data Streams 45

Example
Example
Using the API calls, a file, named_stream_file, was created with 20 named data
streams. Using the ls command on the file displays the following:

ls -al named_stream_file

-r-xr-lr-x 1 root other 1024 Aug 12 09:49 named_stream_file

The named data streams are not displayed by the ls command. When named data
streams are created, they are organized in a hidden directory. Using the getdents() or
readdir_r() system call, you can query the named_stream_file file for its directory
contents, which contains the 20 named stream files.

Attribute Directory contents for /vxfstest1/named_stream_file

0x1ff root other 1K Thu Aug 12 09:49:17 2004 .

0x565 root other 1K Thu Aug 12 09:49:17 2004 ..

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream0

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream1

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream2

.

.

.

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream17

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream18

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream19

46 VERITAS File System Programmer’s Reference Guide

Programmatic API
Programmatic API
The named data streams API uses a combination of standard system calls and VxFS API
calls to utilize its functionality. The following is pseudo code for creating the above
example:

/* Create and open a file */

if ((fd = open("named_stream_file", O_RDWR | O_CREAT | O_TRUNC,

mode)) < 0) {

sprintf(error_buf, "%s, Error Opening File %s ", argv[0],

filename);

perror(error_buf);

exit(-1);

}

/* Write to the regular file as usual */

write(fd, buf, 1024);

/* Create several named data streams for file named_stream_file */

for (i = 0; i < 20; i++) {

sprintf(attrname, "%s%d", "stream", i);

nfd = vxfs_nattr_open(fd, attrname, O_WRONLY | O_CREAT, mode);

if (nfd < 0) {

sprintf(error_buf,

"%s, Error Opening Attribute file %s/./%s ",

argv[0], filename, attrname);

perror(error_buf);

exit(-1);

}

/* Write some data to the stream file */

memset(buf, 0x41 + i, 1024);

write(nfd, buf, 1024);

close(nfd);

}

Programmer’s Reference
When using the cp, tar, ls or similar commands to copy or list a file with named data
streams, the file will be copied or listed, but the attached named data streams will not be
copied or listed.

Note	 The Solaris 9 operating environment and later provide the -@ option that may be
specified with these commands to manipulate the named data streams.
Chapter 4, Named Data Streams 47

Programmer’s Reference
48 VERITAS File System Programmer’s Reference Guide

VxFS I/O
5

Unlike the other VxFS APIs described in this document, the APIs described in this chapter
are available in previous releases of VxFS on all platforms. The exception is the API that
provides concurrent I/O access through the VxFS caching advisories, which is available
on VxFS 4.1 and later releases.

Topics in this chapter include:

◆ Freeze/Thaw

◆ Caching Advisories

◆ Extents
49

Freeze/Thaw
Freeze/Thaw
Freezing a file system is a necessary step for obtaining a stable and consistent image of the
file system. Consistent file system images can be obtained and used with a file system
snapshot tool. The freeze operation flushes all buffers and pages in the file system cache
that contain dirty metadata and user data. The operation then suspends any new activity
on the file system until the file system is thawed.

VxFS provides ioctl interfaces to application programs to freeze and thaw VxFS file
systems. The interfaces are VX_FREEZE, VX_FREEZE_ALL, and VX_THAW.

The VX_FREEZE ioctl operates on a single file system. The program performing this ioctl
can freeze the specified file system and block any attempts to access the file system until it
is thawed. The file system will thaw once the time-out value, specified with the
VX_FREEZE ioctl, has expired, or the VX_THAW ioctl is operated on the file system.

The VX_THAW ioctl operates on a frozen file system. It can be used to thaw the specified
file system before the freeze time-out period has elapsed.

The VX_FREEZE_ALL ioctl interface freezes one or more file systems. The
VX_FREEZE_ALL ioctl operates in an atomic fashion when there are more than one file
systems specified with a freeze operation. VxFS blocks access to the specified file systems
simultaneously and disallows a user-initiated write operation that may modify more than
one file system with a single write operation. Because VX_FREEZE_ALL can be used with
a single file system, VX_FREEZE_ALL is the preferred interface over the VX_FREEZE ioctl.

The execution of the VX_FREEZE or VX_FREEZE_ALL ioctls will result in a clean file
system image that can be mounted after the image is split off from the file system device.
In response to a freeze request, all modified file system metadata is flushed to disk with no
pending file system transactions in the log that must be replayed before mounting the
split off image.

Both the VX_FREEZE and VX_FREEZE_ALL interfaces can be used to freeze locally
mounted file systems, or locally or remotely mounted cluster file systems. See the
following table for compatibility with VxFS releases:

Freeze/Thaw Compatibility With VxFS Releases

VxFS 3.5 VxFS 4.0 VxFS 4.1

VX_FREEZE Local File System Local File System

Cluster File System

Local File System

Cluster File System

VX_FREEZE_ALL Local File System Local File System Local File System

Cluster File System
50 VERITAS File System Programmer’s Reference Guide

Freeze/Thaw
When freezing a file system, care should be taken with choosing a reasonable time-out
value for freeze to reduce impact to external resources targeting the file system. User or
system processes and resources are blocked while the file system is frozen. If the specified
time-out value is too large, resources will be blocked for an extended period of time.

During a file system freeze, any attempt to get a file descriptor from the root directory of
the file system for use with the VX_THAW ioctl will cause the calling process to be blocked
as the result the frozen state of the file system. The file descriptor must be acquired before
issuing the VX_FREEZE_ALL or VX_FREEZE ioctl.

File systems frozen with the VX_FREEZE_ALL ioctl before the time-out has expired can be
thawed by issuing the VX_THAW ioctl for each file system.

The programming interface is as follows:

include <sys/fs/vx_ioctl.h>

int timeout;

int vxfs_fd;

/*

* A common mistake is to pass the address of "timeout".

* Do not pass the address of timeout, as that would be interpreted

* as a very long timeout period

*/

if (ioctl(vxfs_fd, VX_FREEZE, timeout)) {

perror("ERROR: File system freeze failed");

}

For multiple file systems:

int vxfs_fd[NUM_FILE_SYSTEMS];

struct vx_freezeall freeze_info;

freeze_info.num = NUM_FILE_SYSTEMS

freeze_info.timeout = timeout;

freeze_info.fds = &vxfs_fd[0];

if (ioctl(vxfs_fd[0], VX_FREEZE_ALL, &freeze_info)) {

perror("ERROR: File system freeze failed");

}

for (i = 0; i < NUM_FILE_SYSTEMS; i++)

if (ioctl(vxfs_fd[i], VX_THAW, NULL)) {

perror("ERROR: File system thaw failed");

}

Chapter 5, VxFS I/O 51

Caching Advisories
Caching Advisories
VxFS allows an application to set caching advisories for use when accessing files. A
caching advisory is the application’s preferred choice for accessing a file. The choice may
be based on optional performance achieved through the specified advisory or to ensure
integrity of user data. For example, a database application may choose to access the files
containing database data using direct I/O, or the application may choose to benefit from
the file system level caching by selecting a buffered I/O advisory. The application chooses
which caching advisory to use.

To set a caching advisory on a file, open the file first. When a caching advisory is
requested, the advisory is recorded in memory. This implies that caching advisories do
not persist across reboots or remounts. Some advisories are maintained on a per-file basis,
not a per-file-descriptor basis, meaning that the effect of setting such an advisory through
a file descriptor will impact other processes’ access to the same file. This also means that
conflicting advisories cannot be in effect for accesses to the same file. If two applications
set different advisories, both applications use the last advisory set on the file. VxFS does
not coordinate or prioritize advisories.

Some advisories are not cleared from memory after the last close of the file. The recording
of advisories remain in memory for as long as the file system metadata used to manage
access to the file remains in memory. The removal of file system metadata for the file from
memory is not predictable.

All advisories are set using the file descriptor, returned via the open() and ioctl() calls
using the VX_SETCACHE ioctl command. For details on the use of the ioctl commands, see
the vxfsio(7) manual page.

The caching advisories are described in the following sections.

Direct I/O
Direct I/O is an unbuffered form of I/O for accessing files. If the VX_DIRECT advisory is
set, the user is requesting direct data transfer between the disk and the user-supplied
buffer for reads and writes. This bypasses the kernel buffering of data, and reduces the
CPU overhead associated with I/O by eliminating the data copy between the kernel
buffer and the user’s buffer. This also avoids taking up space in the buffer cache that
might be better used for something else, such as application cache. The direct I/O feature
can provide significant performance gains for some applications.

For an I/O operation to be performed as direct I/O, it must meet certain alignment
criteria. The alignment constraints are usually determined by the disk driver, the disk
controller, and the system memory management hardware and software. The file offset
must be aligned on a sector boundary (DEV_BSIZE). All user buffers must be aligned on a
long or sector boundary. If the file offset is not aligned to sector boundaries, VxFS will
perform a regular read or write instead of a concurrent read or write.
52 VERITAS File System Programmer’s Reference Guide

Caching Advisories
If a request fails to meet the alignment constraints for direct I/O, the request is performed
as data synchronous I/O. If the file is currently being accessed by using memory mapped
I/O, any direct I/O accesses are done as data synchronous I/O.

Because direct I/O maintains the same data integrity as synchronous I/O, it can be used
in many applications that currently use synchronous I/O. If a direct I/O request does not
allocate storage or extend the file, the inode is not immediately written.

The CPU cost of direct I/O is about the same as a raw disk transfer. For sequential I/O to
very large files, using direct I/O with large transfer sizes can provide the same speed as
buffered I/O with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write the inode
change before returning to the application. This eliminates some of the performance
advantages of direct I/O.

The direct I/O advisory is maintained on a per-file-descriptor basis.

Concurrent I/O
Concurrent I/O (VX_CONCURRENT) is a form of I/O for file access. This form of I/O
allows multiple processes to read or write to the same file without blocking other read()
or write() operations. POSIX semantics requires read() and write() operations to be
serialized on a file with other read() and write() operations. With POSIX semantics, a
read will either read the data before or after the write occurred. With the VX_CONCURRENT
advisory set on a file, the reads and writes are not serialized similar to character devices.
This advisory is usually used by applications that require high performance for accessing
data and do not perform overlapping writes to the same file. An example is database
applications. Such applications perform their own locking at the application level to avoid
overlapping writes to the same region of the file.

It is the responsibility of the application or threads to coordinate write activities to the
same file when using the VX_CONCURRENT advisory to avoid overlapping writes. The
consequence of two overlapping writes to the same file is unpredictable. The best practice
for applications is to avoid simultaneous write operations to the same region of the same
file.

If the VX_CONCURRENT advisory is set on a file, VxFS performs direct I/O for reads and
writes to the file. As is the case with direct I/O, concurrent I/O also has the same direct
I/O alignment requirements (see “Direct I/O” on page 52). When concurrent I/O is
enabled, the read and write behaves as follows:

◆	 The write() system call acquires a shared read-write lock instead of an exclusive
lock.

◆	 The write() system call performs direct I/O to the disk instead of copying and then
writing the user data to the pages in the system page cache.
Chapter 5, VxFS I/O 53

Caching Advisories
◆	 The read() system call acquires a shared read or write lock and performs direct I/O
from disk instead of reading the data into pages in the system page cache and copying
from the pages to the user buffer.

◆	 The read() and write() system calls will not be atomic. The application must ensure
that two threads will not write to the same region of a file at the same time.

VxFS 4.1 introduces support for the VX_CONCURRENT caching advisory. This is the first
release that provides this API.

Concurrent I/O can be set through the file descriptor and ioctl() operation using the
VX_SETCACHE ioctl command with the VX_CONCURRENT advisory flag. Only the read()
and write() operations occurring through this file descriptor use concurrent I/O. Read()
and write() operations occurring through other file descriptors will still follow the POSIX
semantics. The VX_CONCURRENT advisory can be set via the VX_SETCACHE ioctl
descriptor on a file.

Concurrent I/O is a licensable feature of VxFS.

Unbuffered I/O
The I/O behavior of the VX_UNBUFFERED advisory is the same as the VX_DIRECT
advisory set with the alignment constraints as direct I/O. However, for unbuffered I/O, if
the file is being extended, or storage is being allocated to the file, metadata updates on the
disk for extending the file is not performed synchronously before the write returns to the
user. The VX_UNBUFFERED advisory is maintained on a per-file-descriptor basis.

Other Advisories
The VX_SEQ advisory is a per-file advisory that indicates that the file is being accessed
sequentially. A process setting this advisory on a file through its file descriptor will impact
the access pattern of other processes currently accessing the same file. When a file with
VX_SEQ advisory is being read, the maximum read-ahead is performed. When a file with
VX_SEQ advisory is written, sequential write access is assumed and the modified pages
with write operations are not immediately flushed. Instead, modified pages remain in the
system page cache and those pages are flushed at some distance point behind the current
write point (flush behind).
54 VERITAS File System Programmer’s Reference Guide

Extents
The VX_RANDOM advisory is a per-file advisory that indicates that the file is being accessed
randomly. A process setting this advisory on a file through its file descriptor will impact
the access pattern of other processes currently accessing the same file. This advisory
disables read-ahead with read operations on the file, and disables flush-behind on the file,
as described above. The result of disabling flush behind is that the modified pages in the
system page cache from the recent write operations are not flushed to the disk until the
system pager is scheduled and run to flush dirty pages. The rate at which the system
pager is scheduled is based on availability of free memory and contention.

Note The VX_SEQ and VX_RANDOM are mutually exclusive advisories.

Extents
In general disk space is allocated in 512-byte or 1024-byte (DEV_BSIZE) sectors to form
logical blocks. VxFS supports logical block sizes of 1024, 2048, 4096, and 8192 bytes. The
default block size is 1K for file systems up to 2 TB in size, and 8K for other file system
sizes. Users can choose any block when creating file systems using the mkfs command.
VxFS allocates disk space to files in groups of one or more adjacent blocks called extents.
An extent is a set of one or more consecutive logical blocks. Extents allow disk I/O to take
place in units of multiple blocks if storage is allocated in consecutive blocks. For
sequential I/O, multiple block operations are considerably faster than block-at-a-time
operations.

VxFS uses an aggressive allocation policy for allocating extents to files. It also allows an
application to pre-allocate space or request contiguous space. This results in improved
I/O performance and less file system overhead for performing allocations. For an
extending write operation, the policy attempts to extend the previously allocated extent
by the size of the write operation or larger. Larger allocation is attempted when
consecutive extending write operations are detected. If the last extent cannot be extended
to satisfy the entire write operation, a new disjoint extent is allocated. This policy leaves
excess allocation that will be trimmed at the last close of the file or if the file is not written
to for some amount of time. The file system can still be fragmented with too many
non-contiguous extents, especially file systems of smaller size.
Chapter 5, VxFS I/O 55

Extents
Extent Attributes
VxFS allocates disk space to files in groups of one or more extents. In general, the internal
allocation policies of VxFS attempt to achieve two goals: allocate extents for optimum I/O
performance and reduce fragmentation. VxFS allocation policies attempt to balance these
two goals through large allocations and minimal file system fragmentation by allocating
from space available in the file system that best fits the data. These extent-based allocation
policies provide an advantage over block-based allocation policies. Extent based policies
rarely use indirect blocks with allocations and eliminate many instances of disk access
that stem from indirect references.

VxFS allows control over some aspects of the extent allocation policies for a given file via
two administrative tools, setext(1) and getext(1), and an API. The
application-imposed policies associated with a file are referred to as extent attributes.
VxFS provides APIs that allow an application to set or view extent attributes associated
with a file and preallocate space for a file.

Attribute Specifics

There are two basic extent attributes associated with a file: reservation and fixed extent size.
You can preallocate space to the file by manipulating a file’s reservation, or override the
default allocation policy of the file system by setting a fixed extent size. Other policies
determine the way these attributes are expressed during the allocation process. You can
specify that:

◆ The space reserved for a file must be contiguous

◆ No allocations are made for a file beyond the current reservation

◆ An unused reservation is released when the file is closed

◆ Space is allocated, but no reservation is assigned

◆ The file size is changed to incorporate immediately the allocated space

Some of the extent attributes are persistent and become part of the on-disk information
about the file, while other attributes are temporary and are lost after the file is closed or
the system is rebooted. The persistent attributes are similar to the file’s permissions and
are written in the inode for the file. When a file is copied, moved, or archived, only the
persistent attributes of the source file are preserved in the new file.
56 VERITAS File System Programmer’s Reference Guide

Extents
Reservation: Preallocating Space to a File
Space reservation is used to make sure applications do not fail because the file system is
out of space. An application can preallocate space for all the files it needs before starting to
do any work. By allocating space in advance, the file is optimally allocated for
performance, and file accesses are not slowed down by the need to allocate storage. This
allocation of resources can be important in applications that require a guaranteed
response time. With very large files, use of space reservation can avoid the need to use
indirect extents. It can also improve performance and reduce fragmentation by
guaranteeing that the file consists of large contiguous extents.

VxFS provides an API to preallocate space to a file at the time of the request rather than
when data is written into the file. Preallocation, or reservation, prevents any unexpected
out-of-space condition on the file system by ensuring that a file’s required space is
associated with the file before data is written to the file. Storage can be reserved for a file at
any time, and reserved space to a file is not allocated to other files in the file system. The
API provides the application the option to change the size of the file to include the
reserved space.

Reservation does not perform zeroing of the allocated blocks to the file. Therefore, this
facility is limited to applications running with appropriate privileges, unless the size of
the file is not changed with the reservation request. The data that appears in the newly
allocated blocks for the file may have been previously contained in another file.

Reservation is a persistent attribute for the file saved on disk. When this attribute is set on
a file, the attribute is not released when the file is truncated. The reservation must be
cleared through the same API, or the file must be removed to free the reserved space. At
the time of specifying the reservation, if the file size is less than the reservation amount,
space is allocated to the file from the current file size up to the reservation amount. When
the file is truncated, space below the reserved amount is not freed.

Fixed Extent Size
VxFS uses the I/O size of write requests and the default allocation policy for allocating
space to a file. For some applications, the default allocation policy may not be optimal.
Setting a fixed extent size on a file overrides the default allocation policies for that file.
Applications can set a fixed extent size to match the application I/O size so that all new
extents allocated to the file are of the fixed size. By using a fixed extent size, an application
can reduce allocation attempts and guarantee optimal extent sizes for a file. With the fixed
extent size attribute, an extending write operation will trigger VxFS to extend the
previously allocated extent by the fixed extent size amount to maintain contiguity of the
extent. If the last extent cannot be extended by the fixed extent size amount, a new disjoint
extent is allocated. The size of a fixed extent should factor in the size of file I/O
appropriate to the application. Do not use small fixed extent size to eliminate the
advantage with extent-base allocation policies.
Chapter 5, VxFS I/O 57

Extents
Another use of a fixed extent size occurs with sparse files. VxFS usually performs I/O in
multiples of the system-defined page size. When allocating to a sparse file, VxFS allocates
space in multiples of the page size according to the amount of page I/O in need of
allocation. If the application always does sub-page I/O, the use of fixed extent size in
multiples of the page size reduces allocations.

Applications should not use a large fixed extent size. Allocating a large fixed extent may
fail due to the unavailability of an extent of that size, whereas smaller extents are more
readily available for allocation.

Custom applications may also use fixed extent sizes for specific reasons, such as the need
to align extents to cylinder or striping boundaries on disk.

The fixed extent size attribute is specified in units of file system block size. It specifies the
number of contiguous file system blocks to allocate for a new extent, or the number of
contiguous blocks to allocate and append to the end of an existing extent. A file with this
attribute has fixed size extents or larger extents that are a multiple of the fixed size extent.

Application Programming Interface for Extent Attributes
The current API for extent attributes is ioctl(). Applications can open a file and use the
returned file descriptor with calls to ioctl() to retrieve, set, or change extent attributes.
To set or change existing extent attributes, use the VX_SETEXT ioctl. To retrieve existing
extent attributes, if any, use the VX_GETEXT ioctl. Applications can set or change extent
attributes on a file by providing the attribute information in the structure of type vx_ext
and passing the VX_SETEXT iotcl and the address of the structure using the third
argument of the ioctl() call. Applications can also retrieve existing extent attributes, if
any, by passing the VX_GETEXT ioctl and the address of the same structure, of type vx_ext,
as the third argument with the ioctl() call.

struct vx_ext {

off_t ext_size; /* extent size in fs blocks */

off_t reserve; /* space reservation in fs blocks */

int a_flags; /* allocation flags */

}

The ext_size argument is set to specify a fixed extent size. The value of fixed extent size is
specified in units of the file system block size. Be sure the file system block size is known
before setting the fixed extent size. If a fixed extent size is not required, use zero to allow
the default allocation policy to be used for allocating extents. The fixed extent allocation
policy takes effect immediately after successful execution of the VX_SETEXT ioctl. An
exception is with files that already contain indirect blocks, in which case the fixed extent
policy has no effect unless all current indirect blocks are freed via file truncation.
58 VERITAS File System Programmer’s Reference Guide

Extents
The reserve argument can be set to specify the amount of space preallocated to a file. The
amount is specified in units of the file system block size. Be sure the file system block size
is known before setting the preallocation amount. If a file has already been preallocated,
its current reservation amount can be changed with the VX_SETEXT ioctl. If the specified
reserve amount is greater than the current reservation, the allocation for the file is
increased to match the newly specified reserve amount. If the reserve amount is less than
the current reservation, the reservation amount is decreased and the allocation is reduced
to the newly set reservation amount or the current file size. Note that file preallocation
requires root privilege, unless the size of the file is not changed (see the VX_CHGSIZE
flag), and the preallocation size cannot be increased beyond the ulimit of the requesting
process. See the ulimit(2) manual page for more information.

Allocation Flags
Allocation flags can be specified with VX_SETEXT ioctl for additional control over
allocation policies. Allocation flags are specified in the a_flag argument of vx_ext
structure to determine:

◆ Whether allocations are aligned

◆ Whether allocations are contiguous

◆ Whether the file can be written beyond its reservation

◆ Whether an unused reservation is released when the file is closed

◆ Whether the reservation is a persistent attribute of the file

◆ When the space reserved for a file will actually become part of the file.

Allocation flags with Reservation

The VX_TRIM, VX_NOEXTEND, VX_CHGSIZE, VX_NORESERVE and VX_CONTIGUOUS flags
can be used to modify reservation requests. Note that VX_NOEXTEND is the only flag that
is persistent; the other flags may have persistent effects, but they are not returned by the
VX_GETEXT ioctl. The non-persistent flags remain active for a file in the file system cache
until the file is no longer accessed and is removed from the cache.

Reservation Trimming

The VX_TRIM flag specifies that the reservation amount must be be trimmed to match the
file size when the last close occurs on the file. At the last close, the VX_TRIM flag is cleared
and any unused reservation space beyond the size of the file is freed. This can be useful if
an application needs enough space for a file, but it is not known how large the file will
become. Enough space can be reserved to hold the largest expected file, and when the file
has been written and closed, any extra space will be released.
Chapter 5, VxFS I/O 59

Extents
Non-Persistent Reservation

If reservation is not desired to be a persistent attribute, the VX_NORESERVE flag can be
specified to request allocation of space without making reservation a persistent attribute
of the file. This flag can be used by applications interested in temporary reservation but
wish to free any space past the end of the file when the file is closed. For example, if an
application is copying a file that is 1 MB long, it can request a 1 MB reservation with the
VX_NORESERVE flag set. The space is allocated, but the reservation in the file is left at 0. If
the program aborts for any reason or the system crashes, the unused space past the end of
the file is released. When the program finishes, there is no clean up because the
reservation was never recorded on disk.

No Write Beyond Reservation

The VX_NOEXTEND flag specifies that any attempt to write beyond the current reservation
must fail. Writing beyond the current reservation requires the allocation of new space for
the file. To allocate new space to the file, the space reservation must be increased. This can
be used similar to the function of the ulimit command to prevent a file from using too
much space.

Contiguous Reservation

The VX_CONTIGUOUS flag specifies that any space allocated to a file must satisfy the
requirement of a single extent allocation. If there is not one extent large enough to satisfy
the reservation request, the request fails. For example, if a file is created and a 1 MB
contiguous reservation is requested, the file size is set to zero and the reservation to 1 MB.
The file will have one extent that is 1 MB long. If another reservation request is made for a
3 MB contiguous reservation, the new request will find that the first 1 MB is already
allocated and allocate a 2 MB extent to satisfy the request. If there are no 2 MB extents
available, the request fails. Extents are, by definition, contiguous. Note that because
VX_CONTIGUOUS is not a persistent flag, space will not be allocated contiguously for
restoring a file that was previously allocated with the VX_CONTIGUOUS flag.

Include Reservation in the File Size

A reservation request can affect the size of the file to include the reservation amount by
specifying VX_CHGSIZE. This flag increases the size of the file to match the reservation
amount without zeroing the reserved space. Because the effect of this flag is uninitialized
data in a file, which might have been previously contained in other files, the use of this
flag is restricted to users with the appropriate privileges. Without this flag, the space of
the reservation is not included in the file until an extending write operation requires the
space. A reservation that immediately changes the file size can generate large temporary
files. Applications can benefit from this type of reservation by eliminating the overhead
imposed with write operations to allocate space and update the size of the file.
60 VERITAS File System Programmer’s Reference Guide

Extents
It is possible to use these flags in combination. For example, using VX_CHGSIZE and
VX_NORESERVE changes the file size, but does not set any reservation. When the file is
truncated, the space is freed. If the VX_NORESERVE flag is not used, the reservation is set
on the disk along with the file size.

Allocation Flags With Fixed Extent Size
The VX_ALIGN flag can be used to specify an allocation flag for fixed extent size. This flag
has no effect if it is specified with a reservation request. The VX_ALIGN specifies the
alignment requirement for allocating future extents aligned on a fixed extent size
boundary relative to the start of the allocation unit. This can be used to align extents to
disk striping boundaries or physical disk boundaries. The VX_ALIGN flag is persistent
and is returned by the VX_GETEXT ioctl.

How to use Extent Attribute APIs
First, verify that the target file system is VxFS, and then determine the file system block
size using the statfs() call. The type for VxFS is MNT_VXFS on most platforms, and the
file system block size is returned in statfs.f_bsize. The block size must be known for setting
or interpreting the extent attribute information through VxFS extent attribute APIs.

Each invocation of the VX_SETEXT ioctl affects all the elements in the vx_ext structure.
When using VX_SETEXT, always use the following procedure:

1. Call the VX_GETEXT ioctl to read the current settings, if any.

2. Modify the current values to be changed.

3. Call the VX_SETEXT ioctl to set the new values.

Caution	 Follow this procedure carefully. A fixed extent size may be inadvertently
cleared when the reservation is changed. When copying files between VxFS and
non-VxFS file systems, the extent attributes cannot be preserved. Note that the
attribute values returned for a file in a vx_ext structure will have a different
effect on another VxFS file system with different a file system block size from
the source file system. Translation of attribute values for different block sizes
may be necessary when copying files with attributes between two file systems
of a different block size.
Chapter 5, VxFS I/O 61

Extents
The following is an example code snippet for setting the fixed extent size of the
MY_PREFERRED_EXTSIZE attribute on a new file, MY_FILE, assuming
MY_PREFFERED_EXTSIZE is multiple of the file system block size:

#include <sys/fs/vx_ioctl.h>

struct vx_ext myext;

fd = open(MY_FILE, O_CREATE, 0644);

myext.ext_size = MY_PREFERRED_EXTSIZE;

myext.reserve = 0;

myext.flags = 0;

error = ioctl(fd, VX_SETEXT, &myext);

The following is an example code snippet for preallocating MY_FILESIZE_IN_BYTES
bytes of space on the new file, MY_FILE, assuming the target file system block size is
THIS_FS_BLOCKSIZE:

#include <sys/fs/vx_ioctl.h>

struct vx_ext ext;

fd = open(MY_FILE, O_CREATE, 0644);

myext.ext_size =0;

myext.reserve = (MY_FILESIZE_IN_BYTES + THIS_FS_BLOCKSIZE) +

THIS_FS_BLOCKSIZE;

myext.flags = VX_CHGSIZE;

error = ioctl(fd, VX_SETEXT, &myext);

62 VERITAS File System Programmer’s Reference Guide

Index

A
Activation Time 12
Allocation Flags 59
Allocation Flags With Fixed Extent Size 61
Allocation Policies 27

Multi-Volume Support 32
Alternate Namespace 41
Application Interface 2

C
Caching Advisories 52
close 8, 20
Compiling Environment 5
Concurrent I/O 53
ctime 15

D
Data Copy 52
Data Transfer 52
DEV_BSIZE 52, 55
Direct Data Transfer 52
Direct I/O 52

E
enum 15
Extent Attributes 56
Extents 55

F
fc_atime 12, 13
fc_foff 9, 13, 19
fc_loff 9, 13
fc_magic 13
fc_padding 13
fc_state 13
fc_sync 13
fc_version 13, 16
fchdir 45
fchroot 45
fcl_chgtype_t 16

fcl_ent 14
Fields 14

fcl_keeptime 19
fcl_maxalloc 19
fcl_winterval 20
fe_dino 14, 15
fe_gen 15
fe_ino 14, 15
fe_nmlen 15
fe_time 15
fe_type 15
Features 2
File Change Log 3, 7

File Change Log File 8
Programmatic Interface 20
Record Details 14

Records With a Trailing File

Name 16

Records Without a Trailing File

Name 19

Record Types 10
Obsolete Records 11
Special Records 10

Superblock 12
Fields 13

Tunables 19
File Change Log File 8
First Valid Offset 9
Fixed Extent Size 56, 57
Freeze/Thaw 50
FSAP_INHERIT 32
fsapadm 27
fsvoladm 27

G
getcwd 45
getdents 43, 44
getext 56
63

H
Header Files 4

I

I/O

Direct 52

Sequential 53

Synchronous 53

ioctl 2, 52, 58

L
Last Valid Offset 9

Libraries 4

libvxfsutil 20

Logical Blocks 55

lseek 8, 20

M
mkfs 55

mmap 41, 43

Multi-Volume Support 3, 27

Allocation Policy APIs 32

Creating and Assigning Policies 34

Data Structures 36

Enforcing the Policy on a File 35

Examples 37

Examples of Volume Set Operations 30

Modifying a Volume Within a File

System 31

Querying the Defined Policies 35

Querying the Volume Set for a File

System 30

Uses 29

Volume APIs 30

Volume Encapsulation 31

N
Named Attributes 41

Named Data Streams 41

Behavior Changes in Other System

Calls 45

Example 46

Listing 44

Namespace 45

Programmatic Interface 43, 47

Programmer’s Reference 47

ncheck 24

O
Obsolete Records 11

open 8, 20, 41, 43, 52

Other Advisories 54

R
read 8, 20, 41, 43, 53

readdir 43

Record Details 14

Record Types 10

Obsolete Records 11

Special Records 10

Records With a Trailing File Name 16

Records Without a Trailing File Name 19

Reservation 56, 57

Reverse Path Name Lookup 23

S
Sequential I/O 55

sequential I/O 53

setext 56

Software Developer’s Kit 1

Packages 3

Special Records 10

statfs 61

statvfs 11

Storage Checkpoints 29

Superblock 8, 12

Fields 13

Synchronous I/O 53

U
ulimit 59

Unbuffered I/O 54

Using Extent Attribute APIs 61

V

Volume APIs 30

Volume Set 30

VOP_SETATTR 45

VRTSfsmnd 3

VRTSfssdk 3

VX_ALIGN 61

VX_CHGSIZE 59, 60

VX_CONCURRENT 53

VX_CONTIGUOUS 59, 60

VX_DIRECT 54

vx_ext 58, 61

VX_FCL_HEADER 11, 15, 16

VX_FCL_INFO_CHG 11

VX_FCL_ITIMES_CHG 11

VX_FCL_LINK 9, 15, 16

VX_FCL_MAGIC 13

VX_FCL_NO_CHANGE 11, 15, 16

64 VERITAS File System Programmer’s Reference Guide

VX_FCL_RENAME 9, 15, 16

VX_FCL_UNLINK 9, 15, 16

VX_FREEZE 50

VX_FREEZE_ALL 50

VX_GETEXT 58, 61

VX_NOEXTEND 59, 60

VX_NORESERVE 59, 60

VX_RANDOM 55

VX_SEQ 54

VX_SETCACHE 54

VX_SETEXT 58, 61

VX_THAW 50

VX_TRIM 59

VX_UNBUFFERED 54

VxFS I/O 3, 49

Caching Advisories 52
Concurrent I/O 53
Direct I/O 52
Other Advisories 54
Unbuffered I/O 54

Extents 55
Allocation Flags 59
Allocation Flags With Fixed Extent

Size 61

API 58

Attribute Specifics 56

Extent Attributes 56

Fixed Extent Size 57

Reservation 57

Using Extent Attribute APIs 61

Freeze/Thaw 50
vxfs_fcl_sync 13, 20, 21
vxfs_inotopath 24
vxfs_inotopath_gen 14, 15, 23
vxfs_nattr_link 44
vxfs_nattr_open 43
vxfs_nattr_rename 44
vxfs_nattr_unlink 44
vxfs_nattr_utimes 44
vxfsio 52
vxtunefs 19, 21
vxvset 30

W
write 41, 43, 53
Index 65

	Programmer’s Reference Guide
	Contents
	Preface
	How This Guide Is Organized
	Conventions
	Getting Help
	Software Development Support

	The VERITAS File System Software Developer’s Kit
	VERITAS File System Software Developer’s Kit Features
	Application Interface
	File Change Log
	Multi-Volume Support
	VxFS I/O

	Software Developer’s Kit Packages
	Required Libraries and Header Files
	Compiling Environment

	File Change Log
	File Change Log File
	Record Types
	Special Records
	Obsolete Records
	Typical Record Sequences

	Superblock
	Record Details
	Records With a Trailing File Name
	Records Without a Trailing File Name

	Tunables
	Programmatic Interface
	Reverse Path Name Lookup

	Multi-Volume Support
	Uses for Multi-Volume Support
	Volume APIs
	Examples of Volume Set Operations
	Querying the Volume Set for a File System
	Modifying a Volume Within a File System
	Volume Encapsulation

	Allocation Policy APIs
	An Illustration of File Allocation
	Creating and Assigning Policies
	Querying the Defined Policies
	Enforcing a Policy on a File

	Data Structures
	Examples
	Defining and Assigning Allocation Policies
	Using Volume APIs

	Named Data Streams
	Uses for Named Data Streams
	Named Data Streams Programmatic Interface
	Listing Named Data Streams
	Namespace for Named Data Streams
	Behavior Changes in Other System Calls
	Example
	Programmatic API
	Programmer’s Reference

	VxFS I/O
	Freeze/Thaw
	Caching Advisories
	Direct I/O
	Concurrent I/O
	Unbuffered I/O
	Other Advisories

	Extents
	Extent Attributes
	Reservation: Preallocating Space to a File
	Fixed Extent Size
	Application Programming Interface for Extent Attributes
	Allocation Flags
	Allocation Flags With Fixed Extent Size
	How to use Extent Attribute APIs

	Index

