
VERITAS File System™ 3.5

Administrator’s Guide

Solaris
August 2002
N08842F

Disclaimer

The information contained in this publication is subject to change without notice.
VERITAS Software Corporation makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. VERITAS Software Corporation shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual.

Copyright

Copyright © 2002 VERITAS Software Corporation. All rights reserved. VERITAS,
VERITAS Software, the VERITAS logo, VERITAS File System, and all other VERITAS
product names and slogans are trademarks or registered trademarks of VERITAS
Software Corporation in the USA and/or other countries. Other product names
mentioned herein may be trademarks or registered trademarks of their respective
companies.

August 2002.

VERITAS Software Corporation
350 Ellis Street
Mountain View, CA 94043
USA
Phone 650–527–8000
Fax 650–527–2908
http://www.veritas.com

http://www.veritas.com

Contents
Preface . xiii

Introduction . xiii

Organization . xiv

Conventions .xv

Related Documents . xvi

Getting Help . xvi

Chapter 1. The VERITAS File System .1

Introduction . 1

VxFS Features . 2

Disk Layouts . 3

File System Performance Enhancements . 3

VERITAS Enterprise Administrator Graphical User Interface . 4

Extent Based Allocation . 5

Typed Extents . 6

Extent Attributes . 7

Fast File System Recovery . 7

Online System Administration . 8

Defragmentation . 8

Resizing . 8

Application Interface . 9

Application Transparency . 9

Expanded Application Facilities . 9

Extended mount Options . 10
iii

Enhanced Data Integrity Modes . 10

Using blkclear Option for Data Integrity . 10

Using closesync Option for Data Integrity . 10

Using the log Option for Data Integrity . 11

Enhanced Performance Mode . 11

Using the delaylog Option for Enhanced Performance . 11

Using the qlog Option for Enhanced Performance . 11

Temporary File System Modes . 12

Using the tmplog option For Temporary File Systems . 12

Improved Synchronous Writes . 12

Support for Large Files . 12

Enhanced I/O Performance . 13

Enhanced I/O Clustering . 13

VxVM Integration . 13

Application-Specific Parameters . 13

Access Control Lists . 14

Storage Checkpoints . 14

Online Backup . 14

Quotas . 15

Support for Databases . 15

VERITAS QuickLog . 16

Cluster File Systems . 16

Chapter 2. VxFS Performance: Creating, Mounting, and Tuning File Systems . . . 17

Introduction . 17

Choosing mkfs Command Options . 18

Block Size . 18

Intent Log Size . 19

Choosing mount Command Options . 19

log . 20
iv VERITAS File System Administrator’s Guide

delaylog . 20

tmplog . 20

logiosize . 20

nodatainlog . 21

blkclear . 21

mincache . 21

convosync . 23

qlog . 24

largefiles | nolargefiles . 24

Creating a File System with Large Files . 24

Mounting a File System with Large Files . 25

Managing a File System with Large Files . 25

Combining mount Command Options . 26

Example 1 - Desktop File System . 26

Example 2 - Temporary File System or Restoring from Backup 26

Example 3 - Data Synchronous Writes . 26

Kernel Tunables . 27

Internal Inode Table Size . 27

vx_maxlink . 27

VxVM Maximum I/O Size . 28

vol_maxio . 28

Monitoring Free Space . 28

Monitoring Fragmentation . 29

I/O Tuning . 30

Tuning VxFS I/O Parameters . 30

Tunable VxFS I/O Parameters . 32

Chapter 3. Extent Attributes .37

Introduction . 37

Attribute Specifics . 38
Contents v

Reservation: Preallocating Space to a File . 39

Fixed Extent Size . 39

Other Controls . 40

Alignment . 40

Contiguity . 40

Write Operations Beyond Reservation . 40

Reservation Trimming . 40

Reservation Persistence . 41

Including Reservation in the File . 41

Commands Related to Extent Attributes . 41

Failure to Preserve Extent Attributes . 42

Chapter 4. Application Interface . 43

Introduction . 43

Cache Advisories . 44

Direct I/O . 44

Unbuffered I/O . 45

Discovered Direct I/O . 45

Data Synchronous I/O . 45

Other Advisories . 46

Extent Information . 46

Space Reservation . 47

Fixed Extent Sizes . 49

Freeze and Thaw . 50

Get I/O Parameters ioctl . 50

Chapter 5. Storage Checkpoints . 51

What is a Storage Checkpoint? . 52

How a Storage Checkpoint Works . 53

Types of Storage Checkpoints . 56

Data Storage Checkpoints . 56
vi VERITAS File System Administrator’s Guide

Nodata Storage Checkpoints . 56

Removable Storage Checkpoints . 56

Non-mountable Storage Checkpoints . 57

Storage Checkpoint Administration . 57

Creating a Storage Checkpoint . 57

Removing a Storage Checkpoint . 58

Accessing a Storage Checkpoint . 59

Converting a Data Storage Checkpoint to a Nodata Storage Checkpoint 61

Difference Between a Data and a Nodata Storage Checkpoint 62

Conversion with Multiple Storage Checkpoints . 64

Space Management Considerations . 68

Chapter 6. Online Backup .69

Introduction . 69

Snapshot File Systems . 70

Using a Snapshot File System for Backup . 70

Creating a Snapshot File System . 71

Making a Backup . 72

Performance of Snapshot File Systems . 72

Differences Between Snapshots and Storage Checkpoints . 73

Snapshot File System Internals . 74

Snapshot File System Disk Structure . 74

How a Snapshot File System Works . 75

Chapter 7. Quotas .77

Introduction . 77

Quota Limits . 78

Quota Files on VxFS . 78

Quota Commands . 79

Quota Checking With VxFS . 80

Using Quotas . 80
Contents vii

vxquotaon . 80

mount . 81

vxedquota . 81

vxquota . 82

vxquot . 82

vxquotaoff . 82

Chapter 8. Quick I/O for Databases . 83

Introduction . 83

Quick I/O Functionality and Performance . 84

Supporting Kernel Asynchronous I/O . 84

Supporting Direct I/O . 84

Avoiding Kernel Write Locks . 84

Avoiding Double Buffering . 85

Using VxFS Files as Raw Character Devices . 85

Quick I/O Naming Convention . 85

Use Restrictions . 86

Creating a Quick I/O File Using qiomkfile . 86

Accessing Regular VxFS Files Through Symbolic Links . 88

Using Absolute or Relative Path Names . 88

Preallocating Files Using the setext Command . 89

Using Quick I/O with Oracle Databases . 89

Using Quick I/O with Sybase Databases . 90

Enabling and Disabling Quick I/O . 91

Cached Quick I/O For Databases . 91

Enabling Cached Quick I/O . 92

Enabling Cached Quick I/O for File Systems . 92

Enabling Cached Quick I/O for Individual Files . 93

Tuning Cached Quick I/O . 94

Quick I/O Statistics . 94
viii VERITAS File System Administrator’s Guide

Quick I/O Summary . 94

Chapter 9. VERITAS QuickLog .95

Introduction . 95

VERITAS QuickLog Overview . 96

QuickLog Setup . 96

Creating a QuickLog Device . 98

Removing a QuickLog Device . 99

VxFS Administration Using QuickLog . 99

Enabling a QuickLog Device . 99

Disabling a QuickLog Device . 100

QuickLog Administration and Troubleshooting . 100

QuickLog Load Balancing . 100

QuickLog Statistics . 101

QuickLog Recovery . 102

Cluster QuickLog Devices . 102

Appendix A. VERITAS File System Quick Reference .103

Introduction . 103

Creating a File System . 104

How to Create a File System . 104

Mounting a File System . 106

How to Mount a File System . 106

Mount Options . 107

How to Edit the vfstab File . 108

Unmounting a File System . 110

How to Unmount a File System . 110

Displaying Information on Mounted File Systems . 111

How to Display File System Information . 111

Identifying File System Types . 112

How to Identify a File System . 112
Contents ix

Resizing a File System . 113

How to Extend a File System Using fsadm . 113

How to Shrink a File System . 114

How to Reorganize a File System . 115

Backing Up and Restoring a File System . 116

How to Create and Mount a Snapshot File System . 116

How to Back Up a File System . 117

How to Restore a File System . 117

Using Quotas . 118

How to Turn On Quotas . 118

How to Set Up User Quotas . 119

How to View Quotas . 120

How to Turn Off Quotas . 120

Appendix B. Kernel Messages . 121

Introduction . 121

File System Response to Problems . 122

Marking an Inode Bad . 122

Disabling Transactions . 122

Disabling a File System . 122

Recovering a Disabled File System . 123

Kernel Messages . 123

Global Message IDs . 123

Appendix C. Disk Layout . 157

Introduction . 157

Disk Space Allocation . 158

The VxFS Version 4 Disk Layout . 158

The VxFS Version 5 Disk Layout . 162

Using UNIX Commands on File Systems Larger than One TB 162
x VERITAS File System Administrator’s Guide

Glossary .163

Index .171
Contents xi

xii VERITAS File System Administrator’s Guide

Preface
Introduction
The VERITAS File System Administrator’s Guide provides information on the most
important aspects of VERITAS File System™ (VxFS™) administration. This guide is for
system administrators who configure and maintain UNIX systems with the VERITAS File
System, and assumes that you have a:

◆ Basic understanding of system administration

◆ Working knowledge of the UNIX operating system

◆ General understanding of file systems
xiii

Organization
Organization
Chapter 1, “The VERITAS File System,” introduces the major features and characteristics
of VxFS.

Chapter 2, “VxFS Performance: Creating, Mounting, and Tuning File Systems,” describes
VxFS tools that optimize system performance. This section includes information on
mount options.

Chapter 3, “Extent Attributes,” describes the policies associated with allocation of disk
space.

Chapter 4, “Application Interface,” describes ways to optimize an application for use
with VxFS. This chapter includes details on cache advisories, extent sizes, and reservation
of file space.

Chapter 5, “Storage Checkpoints,” describes the VxFS replication technology that allows
the quick and easy creation of resource-efficient file system backups.

Chapter 6, “Online Backup,” describes the snapshot backup feature of VxFS.

Chapter 7, “Quotas,” describes VxFS methods to limit user access to file and data
resources.

Chapter 8, “Quick I/O for Databases,” describes the VERITAS Quick I/O™ feature that
treats preallocated files as raw character devices to increase performance.

Chapter 9, “VERITAS QuickLog,” describes the optional VERITAS QuickLog™ product
that improves the performance of intent log writes.

Appendix A, “VERITAS File System Quick Reference,” provides information on common
file system tasks and examples of typical VxFS operations.

Appendix B, “Kernel Messages,” lists VxFS kernel error messages in numerical order and
provides explanations and suggestions for dealing with these problems.

Appendix C, “Disk Layout,” describes and illustrates the major components of VxFS disk
layouts.

The “Glossary” contains a list of terms and definitions relevant to VxFS.
xiv VERITAS File System Administrator’s Guide

Conventions
Conventions

Typeface Usage Examples

monospace Computer output, files,
directories, software elements
such as command options,
function names, and parameters

Read tunables from the
/etc/vx/tunefstab file.

See the vxtunefs(1M) manual page
for more information.

monospace
(bold)

User input # mount -F vxfs /h/filesys

italic New terms, book titles,
emphasis, variables replaced
with a name or value

See the User’s Guide for details.

The variable vxfs_ninode determines
the value of...

Symbol Usage Examples

% C shell prompt

$ Bourne/Korn/Bash shell
prompt

Superuser prompt (all shells)

\ Continued input on the
following line; you do not type
this character

mount -F vxfs \
/h/filesys

 [] In a command synopsis, brackets
indicates an optional argument

ls [-a]

 | In a command synopsis, a
vertical bar separates mutually
exclusive arguments

mount [suid | nosuid]

 blue text Indicates an active hypertext link In PDF and HTML files, click on links
to move to the specified location
Preface xv

Related Documents
Related Documents
The VERITAS File System Installation Guide provides information on installation
procedures and verification. Make sure that VxFS is correctly installed on your system
before using the VERITAS File System Administrator’s Guide.

The VERITAS SANPoint Foundation Suite Installation and Configuration Guide provides
information on configuring a cluster and using cluster file systems.

The online manual pages provide additional details on VxFS commands and utilities.

Getting Help
For assistance with any of the VERITAS products, contact VERITAS Technical Support:

◆ U.S. and Canadian Customers: 1-800-342-0652

◆ International: +1-650-527-8555

◆ Email: support@veritas.com

For license information:

◆ Phone: 1-925-931-2464

◆ Email: license@veritas.com

◆ Fax: 1-925-931-2487

For software updates:

◆ Email: swupdate@veritas.com

For information on purchasing VERITAS products:

◆ Phone: 1-800-258-UNIX (1-800-258-8649) or 1-650-527-8000

◆ Email: vx-sales@veritas.com

For additional information about VERITAS and VERITAS products, visit the website at:

http://www.veritas.com

For software updates and additional technical support information, such as TechNotes,
product alerts, and hardware compatibility lists, visit the VERITAS Technical Support
Web site at:

http://support.veritas.com
xvi VERITAS File System Administrator’s Guide

http://www.veritas.com
http://support.veritas.com

The VERITAS File System
 1

Introduction

VxFS is an extent based, intent logging file system. VxFS is designed for use in UNIX
environments that require high performance and availability and deal with large amounts
of data.

This chapter provides an overview of major VxFS features that are described in detail in
later chapters. The following topics are introduced in this chapter:

◆ VxFS Features

◆ Disk Layouts

◆ File System Performance Enhancements

◆ VERITAS Enterprise Administrator Graphical User Interface

◆ Extent Based Allocation

◆ Extent Attributes

◆ Fast File System Recovery

◆ Online System Administration

◆ Application Interface

◆ Extended mount Options

◆ Enhanced I/O Performance

◆ Access Control Lists

◆ Storage Checkpoints

◆ Online Backup

◆ Quotas

◆ Support for Databases

◆ VERITAS QuickLog

◆ Cluster File Systems
1

VxFS Features
VxFS Features
Basic features include:

◆ Extent based allocation

◆ Extent attributes

◆ Fast file system recovery

◆ Access control lists (ACLs)

◆ Online administration

◆ Online backup

◆ Enhanced application interface

◆ Enhanced mount options

◆ Improved synchronous write performance

◆ Support for file systems up to 32 terabytes in size

◆ Support for files up to 1 terabyte in size (up to two terabytes for sparse files)

◆ Enhanced I/O performance

◆ Quotas

◆ Improved database performance

◆ Storage Checkpoints

◆ Cluster file systems

◆ Support for improved network file server (NFS) performance through use of
VERITAS QuickLogTM

◆ VxFS supports all UFS file system features and facilities except for the linking,
removing, or renaming of “.” and “..” directory entries. Such operations may
disrupt file system sanity.
2 VERITAS File System Administrator’s Guide

Disk Layouts
Disk Layouts
The disk layout is the way file system information is stored on disk. On VxFS, five disk
layout versions, numbered 1 through 5, were created to support various new features and
specific UNIX environments. Currently, only the Version 4 and 5 disk layouts can be
created, but file systems with Version 1 and Version 2 disk layouts can be mounted.

See “Disk Layout” on page 157 for a description of the disk layouts.

File System Performance Enhancements
Traditional file systems employ block based allocation schemes that provide adequate
random access and latency for small files, but which limit throughput for larger files. As a
result, they are less than optimal for commercial environments.

VxFS addresses this file system performance issue through an alternative allocation
method and increased user control over allocation, I/O, and caching policies. An
overview of the VxFS allocation policy is provided in the section “Extent Based
Allocation” on page 5.

VxFS provides the following performance enhancements:

◆ Extent based allocation

◆ Enhanced mount options

◆ Data synchronous I/O

◆ Direct I/O and discovered direct I/O

◆ Caching advisories

◆ Enhanced directory features

◆ Explicit file alignment, extent size, and preallocation controls

◆ Tunable I/O parameters

◆ Tunable indirect data extent size

◆ Integration with VERITAS Volume Manager™ (VxVM
®
)

◆ Support for improved database performance

The rest of this chapter, as well as “VxFS Performance: Creating, Mounting, and Tuning
File Systems” on page 17 and “Application Interface” on page 43 provide details on many
of these features.
Chapter 1, The VERITAS File System 3

VERITAS Enterprise Administrator Graphical User Interface
VERITAS Enterprise Administrator Graphical User Interface
The VERITAS Enterprise AdministratorTM (VEA) is a Java-based GUI that consists of a
server and a client. The server runs on a UNIX system that is running the VERITAS
Volume Manager and VxFS. The client runs on any platform that supports the Java
Runtime Environment. You can use VEA to perform a subset of VxFS administrative
functions on a local or remote system. These functions include:

◆ Adding a VxFS File System to a VERITAS Volume Manager Volume

◆ Removing a File System from the File System Table

◆ Mounting/Unmounting a File System

◆ Defragmenting a File System

◆ Resizing a File System

◆ Creating a Snapshot Copy of a File System

◆ Checking a File System on a Volume

◆ Viewing File System Properties

◆ Using the QuickLog Feature

◆ Unmounting a File System from a Cluster Node

◆ Removing Resource Information for a Cluster File System

For instructions on how to use VEA, see the VERITAS Volume Manager User s Guide –
VERITAS Enterprise Administrator. This guide is available in the /opt/VRTSvmdoc
directory after you install the VRTSvmdoc package.
4 VERITAS File System Administrator’s Guide

Extent Based Allocation
Extent Based Allocation
Disk space is allocated in 512-byte sectors to form logical blocks. VxFS supports logical
block sizes of 1024, 2048, 4096, and 8192 bytes. The default block size is 1K.For file systems
up to 4 TB, the block size is 1K. 2K for file systems up to 8 TB, 4K for file systems up to 16
TB, and 8K for file systems beyond this size.

An extent is defined as one or more adjacent blocks of data within the file system. An
extent is presented as an address-length pair, which identifies the starting block address
and the length of the extent (in file system or logical blocks). VxFS allocates storage in
groups of extents rather than a block at a time.

Extents allow disk I/O to take place in units of multiple blocks if storage is allocated in
consecutive blocks. For sequential I/O, multiple block operations are considerably faster
than block-at-a-time operations; almost all disk drives accept I/O operations of multiple
blocks.

Extent allocation only slightly alters the interpretation of addressed blocks from the inode
structure compared to block based inodes. A VxFS inode references 10 direct extents, each
of which are pairs of starting block addresses and lengths in blocks. The VxFS inode also
points to two indirect address extents, which contain the addresses of other extents:

◆ The first indirect address extent is used for single indirection; each entry in the extent
indicates the starting block number of an indirect data extent.

◆ The second indirect address extent is used for double indirection; each entry in the
extent indicates the starting block number of a single indirect address extent.

Each indirect address extent is 8K long and contains 2048 entries. All indirect data extents
for a file must be the same size; this size is set when the first indirect data extent is
allocated and stored in the inode. Directory inodes always use an 8K indirect data extent
size. By default, regular file inodes also use an 8K indirect data extent size that can be
altered with vxtunefs (see “Tuning VxFS I/O Parameters” on page 30); these inodes
allocate the indirect data extents in clusters to simulate larger extents.
Chapter 1, The VERITAS File System 5

Extent Based Allocation
Typed Extents
In the Version 4 disk layout, VxFS introduced a new inode block map organization for
indirect extents known as typed extents. Each entry in the block map has a typed descriptor
record containing a type, offset, starting block, and number of blocks.

Indirect and data extents use this format to identify logical file offsets and physical disk
locations of any given extent. The extent descriptor fields are defined as follows:
:

◆ Indirect address blocks are fully typed and may have variable lengths up to a
maximum and optimum size of 8K. On a fragmented file system, indirect extents may
be smaller than 8K depending on space availability. VxFS always tries to obtain 8K
indirect extents but resorts to smaller indirects if necessary.

◆ Indirect Data extents are variable in size to allow files to allocate large, contiguous
extents and take full advantage of VxFS's optimized I/O.

◆ Holes in sparse files require no storage and are eliminated by typed records. A hole is
determined by adding the offset and length of a descriptor and comparing the result
with the offset of the next record.

◆ While there are no limits on the levels of indirection, lower levels are expected in this
format since data extents have variable lengths.

◆ This format uses a type indicator that determines its record format and content and
accommodates new requirements and functionality for future types.

The current typed format is used on regular files only when indirection is needed. Typed
records are longer than the previous format and require less direct entries in the inode.
Newly created files start out using the old format which allows for ten direct extents in the
inode. The inode's block map is converted to the typed format when indirection is needed
to offer the advantages of both formats.

type Uniquely identifies an extent descriptor record and defines the
record's length and format.

offset Represents the logical file offset in blocks for a given descriptor.
Used to optimize lookups and eliminate hole descriptor entries.

starting block The starting file system block of the extent.

number of blocks The number of contiguous blocks in the extent.
6 VERITAS File System Administrator’s Guide

Extent Attributes
Extent Attributes
VxFS allocates disk space to files in groups of one or more extents. VxFS also allows
applications to control some aspects of the extent allocation. Extent attributes are the extent
allocation policies associated with a file.

The setext and getext commands allow the administrator to set or view extent
attributes associated with a file, as well as to preallocate space for a file. Refer to “Extent
Attributes” on page 37, “Application Interface” on page 43, and the setext(1) and
getext(1) manual pages for discussions on how to use extent attributes.

The vxtunefs command allows the administrator to set or view the default indirect data
extent size. Refer to “VxFS Performance: Creating, Mounting, and Tuning File Systems”
on page 17 and the vxtunefs(1M) manual page for discussions on how to use the
indirect data extent size feature.

Fast File System Recovery
Most file systems rely on full structural verification by the fsck utility as the only means
to recover from a system failure. For large disk configurations, this involves a
time-consuming process of checking the entire structure, verifying that the file system is
intact, and correcting any inconsistencies.

VxFS provides recovery only seconds after a system failure by utilizing a tracking feature
called intent logging. This feature records pending changes to the file system structure in a
circular intent log. During system failure recovery, the VxFS fsck utility performs an
intent log replay, which scans the intent log and nullifies or completes file system
operations that were active when the system failed. The file system can then be mounted
without completing a full structural check of the entire file system. The intent log recovery
feature is not readily apparent to the user or the system administrator except during a
system failure.

Replaying the intent log may not completely recover the damaged file system structure if
the disk suffers a hardware failure; such situations may require a complete system check
using the fsck utility provided with VxFS.

Note The use of QuickLog does not affect fast file system recovery.
Chapter 1, The VERITAS File System 7

Online System Administration
Online System Administration
A VxFS file system can be defragmented and resized while it remains online and
accessible to users. The following sections provide an overview of these features.

Defragmentation
Free resources are initially aligned and allocated to files in the most efficient order
possible to provide optimal performance. On an active file system, the original order of
free resources is lost over time as files are created, removed, and resized. The file system is
spread further and further along the disk, leaving unused gaps or fragments between areas
that are in use. This process is also known as fragmentation and leads to degraded
performance because the file system has fewer options when assigning a file to an extent
(a group of contiguous data blocks).

VxFS provides the online administration utility fsadm to resolve the problem of
fragmentation. The fsadm utility defragments a mounted file system by:

◆ Removing unused space from directories.

◆ Making all small files contiguous.

◆ Consolidating free blocks for file system use.

This utility can run on demand and should be scheduled regularly as a cron job.

Resizing
A file system is assigned a specific size as soon as it is created; the file system may become
too small or too large as changes in file system usage take place over time.

Most large file systems with too much space try to reclaim the unused space by
off-loading the contents of the file system and rebuilding it to a preferable size. The VxFS
utility fsadm can expand or shrink a file system without unmounting the file system or
interrupting user productivity. However, to expand a file system, the underlying device
on which it is mounted must be expandable.

VxVM facilitates expansion using virtual disks that can be increased in size while in use.
The VxFS and VxVM packages complement each other to provide online expansion
capability. Refer to the VERITAS Volume Manager Administrator’s Guide for additional
information about such capabilities.
8 VERITAS File System Administrator’s Guide

Application Interface
Application Interface
VxFS conforms to the System V Interface Definition (SVID) requirements and supports
user access through the Network File System (NFS). Applications that require
performance features not available with other file systems can take advantage of VxFS
enhancements that are introduced in this section and covered in detail in “Application
Interface” on page 43.

Application Transparency
In most cases, any application designed to run on native file systems will run
transparently on VxFS.

Expanded Application Facilities
VxFS provides some facilities frequently associated with commercial applications that
make it possible to:

◆ Preallocate space for a file

◆ Specify a fixed extent size for a file

◆ Bypass the system buffer cache for file I/O

◆ Specify the expected access pattern for a file

Because these facilities are provided using VxFS-specific ioctl system calls, most existing
UNIX system applications do not use them. The VxFS-specific cp, cpio, and mv utilities
use the facilities to preserve extent attributes and allocate space more efficiently. The
current attributes of a file can be listed using the getext command or ls command. The
facilities can also improve performance for custom applications. For portability reasons,
these applications must check which file system type they are using before using these
interfaces.
Chapter 1, The VERITAS File System 9

Extended mount Options
Extended mount Options
The VxFS file system supports extended mount options to specify:

◆ Enhanced data integrity modes

◆ Enhanced performance modes

◆ Temporary file system modes

◆ Improved synchronous writes

◆ Large file sizes

See “VxFS Performance: Creating, Mounting, and Tuning File Systems” on page 17 and
the mount_vxfs(1M) manual page for details on the VxFS mount options.

Enhanced Data Integrity Modes

Note Performance trade-offs are associated with these mount options.

Most file systems are “buffered” in that resources are allocated to files and data is written
asynchronously to files. In general, the buffering schemes provide better performance
without compromising data integrity.

If a system failure occurs during space allocation for a file, uninitialized data or data from
another file may appear in the extended file after reboot. Data written shortly before the
system failure may also be lost.

Using blkclear Option for Data Integrity

In environments where performance is more important than absolute data integrity, the
preceding situation is not of great concern. However, VxFS supports environments that
emphasize data integrity by providing the mount -o blkclear option that ensures
uninitialized data does not appear in a file.

Using closesync Option for Data Integrity

VxFS provides the mount -o mincache=closesync option, which is useful in desktop
environments with users who are likely to shut off the power on machines without halting
them first. In closesync mode, only files that are written during the system crash or
shutdown can lose data. Any changes to a file are flushed to disk when the file is closed.
10 VERITAS File System Administrator’s Guide

Extended mount Options
Using the log Option for Data Integrity

File systems are typically asynchronous in that structural changes to the file system are
not immediately written to disk, which provides better performance. However, recent
changes made to a system can be lost if a system failure occurs. Specifically, attribute
changes to files and recently created files may disappear.

The mount -o log intent logging option guarantees that all structural changes to the file
system are logged to disk before the system call returns to the application. If a system
failure occurs, fsck replays any recent changes to preserve all metadata. Recent file data
may be lost unless a request was made to sync it to disk.

Enhanced Performance Mode
VxFS has several mount options that improve performance such as delaylog and qlog.

Using the delaylog Option for Enhanced Performance

The default VxFS logging mode, mount -o delaylog, increases performance by
delaying the logging of some structural changes, but does not provide the equivalent data
integrity as the previously described modes. That is because recent changes may be lost
during a system failure. This option provides at least the same level of data accuracy that
traditional UNIX file systems provide for system failures, along with fast file system
recovery. delaylog is the default mount option.

Using the qlog Option for Enhanced Performance

VxFS provides the mount -o qlog= option to activate QuickLog for a file system.
QuickLog increases VxFS performance by exporting the file system log to a separate
physical volume. This eliminates the disk seek time between the VxFS data and log areas
on disk and increases the performance of synchronous log writes. See “VERITAS
QuickLog” on page 95 for details.
Chapter 1, The VERITAS File System 11

Extended mount Options
Temporary File System Modes
On most UNIX systems, temporary file system directories (such as /tmp and /usr/tmp)
often hold files that do not need to be retained when the system reboots. The underlying
file system does not need to maintain a high degree of structural integrity for these
temporary directories.

Using the tmplog option For Temporary File Systems

VxFS provides a mount -o tmplog option which allows the user to achieve higher
performance on temporary file systems by delaying the logging of most operations.

Improved Synchronous Writes
VxFS provides superior performance for synchronous write applications. The default
mount datainlog option greatly improves the performance of small synchronous
writes.

The mount convosync=dsync option improves the performance of applications that
require synchronous data writes but not synchronous inode time updates.

Caution The use of the convosync=dsync option violates POSIX semantics.

Support for Large Files
VxFS can support files up to two terabytes in size. See “largefiles | nolargefiles” on
page 24 for information on how to create, mount, and manage file systems containing
large files.

Caution Some applications and utilities may not work on large files.
12 VERITAS File System Administrator’s Guide

Enhanced I/O Performance
Enhanced I/O Performance
VxFS provides enhanced I/O performance by applying an aggressive I/O clustering
policy, integrating with VxVM, and allowing application specific parameters to be set on a
per-file system basis.

Enhanced I/O Clustering
I/O clustering is a technique of grouping multiple I/O operations together for improved
performance. VxFS I/O policies provide more aggressive clustering processes than other
file systems and offer higher I/O throughput when using large files; the resulting
performance is comparable to that provided by raw disk.

VxVM Integration
VxFS interfaces with VxVMto determine the I/O characteristics of the underlying volume
and perform I/O accordingly. VxFS also uses this information when using mkfs to
perform proper allocation unit alignments for efficient I/O operations from the kernel.

As part of VxFS/VxVM integration, VxVM exports a set of I/O parameters to achieve
better I/O performance. This interface can enhance performance for different volume
configurations such as RAID-5, striped, and mirrored volumes. Full stripe writes are
important in a RAID-5 volume for strong I/O performance. VxFS uses these parameters to
issue appropriate I/O requests to VxVM.

Application-Specific Parameters
You can also set application specific parameters on a per-file system basis to improve I/O
performance.

◆ Discovered Direct I/O

All sizes above this value would be performed as direct I/O.

◆ Maximum Direct I/O Size

This value defines the maximum size of a single direct I/O.

For a discussion on VxVM integration and performance benefits, refer to “VxFS
Performance: Creating, Mounting, and Tuning File Systems” on page 17, “Application
Interface” on page 43, and the vxtunefs(1M) and tunefstab(1M) manual pages.
Chapter 1, The VERITAS File System 13

Access Control Lists
Access Control Lists
An Access Control List (ACL) stores a series of entries that identify specific users or
groups and their access privileges for a directory or file. A file may have its own ACL or
may share an ACL with other files. ACLs have the advantage of specifying detailed access
permissions for multiple users and groups. Refer to the getfacl(1) and setfacl(1)
manual pages for information on viewing and setting ACLs. ACLs are supported on
cluster file systems.

Storage Checkpoints
To increase availability, recoverability, and performance, the VERITAS File System offers
on-disk and online backup and restore capabilities that facilitate frequent and efficient
backup strategies. Backup and restore applications can leverage the VERITAS Storage
Checkpoint, a disk and I/O efficient copying technology for creating periodic frozen images
of a file system. Storage Checkpoints present a view of a file system at a point in time, and
subsequently identifies and maintains only changed file system blocks. Instead of using a
disk-based mirroring method, Storage Checkpoints save disk space and significantly
reduce I/O overhead by using the free space pool available to a file system.

See “Storage Checkpoints” on page 51 for information on using the Storage Checkpoint
feature.

Online Backup
VxFS provides online data backup using the snapshot feature. An image of a mounted file
system instantly becomes an exact read-only copy of the file system at a specific point in
time. The original file system is called the snapped file system, the copy is called the
snapshot.

When changes are made to the snapped file system, the old data is copied to the snapshot.
When the snapshot is read, data that has not changed is read from the snapped file
system, changed data is read from the snapshot.

Backups require one of the following methods:

◆ Copying selected files from the snapshot file system (using find and cpio)

◆ Backing up the entire file system (using fscat)

◆ Initiating a full or incremental backup (using vxdump)

 See “Online Backup” on page 69 for information on doing backups using the snapshot
feature.
14 VERITAS File System Administrator’s Guide

Quotas
Quotas
VxFS supports quotas, which allocate per-user and per-group quotas and limit the use of
two principal resources: files and data blocks. You can assign quotas for each of these
resources. Each quota consists of two limits for each resource:

◆ The hard limit represents an absolute limit on data blocks or files. A user can never
exceed the hard limit under any circumstances.

◆ The soft limit is lower than the hard limit and can be exceeded for a limited amount of
time. This allows users to temporarily exceed limits as long as they fall under those
limits before the allotted time expires.

See “Quota Limits” on page 78 for details on using VxFS quotas.

Support for Databases
Databases are usually created on file systems to simplify backup, copying, and moving
tasks and are slower compared to databases on raw disks.

Using the VERITAS Quick I/O for Databases feature with VxFS lets systems retain the
benefits of having a database on a file system without sacrificing performance. VERITAS
Quick I/O creates regular, preallocated files to use as character devices. Databases can be
created on the character devices to achieve the same performance as databases created on
raw disks.

Treating regular VxFS files as raw devices has the following advantages for databases:

◆ Commercial database servers such as OracleServer can issue kernel supported
asynchronous I/O calls on these pseudo devices but not on regular files.

◆ read() and write() system calls issued by the database server can avoid the
acquisition and release of read/write locks inside the kernel that take place on
regular files.

◆ VxFS can avoid double buffering of data already buffered by the database server. This
ability frees up resources for other purposes and results in better performance.

◆ Since I/O to these devices bypasses the system buffer cache, VxFS saves on the cost of
copying data between user space and kernel space when data is read from or written
to a regular file. This process significantly reduces CPU time per I/O transaction
compared to that of buffered I/O.

See “Quick I/O for Databases” on page 83 for details on VxFS database support.
Chapter 1, The VERITAS File System 15

VERITAS QuickLog
VERITAS QuickLog
VERITAS QuickLog moves the VxFS intent log from the physical volume containing the
file system onto a separate physical volume. Without QuickLog, the intent log information
for VxFS is usually stored near the beginning of the file system volume. Because other
disk operations (inode, data) are issued on the same volume, the disk heads seek between
the log and file system data areas. Using QuickLog eliminates the seek time between the
log and file system data on the same volume, thereby improving system performance.

See “VERITAS QuickLog” on page 95 for details on the VERITAS QuickLog feature.

Cluster File Systems
Clustered file systems are an extension of VxFS that support concurrent direct media
access from multiple systems. CFS employs a master/slave protocol. All cluster file
systems can read file data directly from a shared disk. In addition, all systems can write
“in-place” file data. Operations that require changes to file system metadata, such as
allocation, creation, and deletion, can only be performed by the single primary file system
node. To maintain file system consistency, secondary nodes must send messages to the
primary, and the primary will perform the operations.

Installing VxFS and enabling the cluster feature does not create a cluster file system
configuration. File system clustering requires other VERITAS products to enable
communication services and provide storage resources. These products are packaged
with VxFS in the SANPoint Foundation Suite HA to provide a complete clustering
environment.

See The VERITAS SANPoint Foundation Suite Installation and Configuration Guide, included
in the VERITAS SANPoint Foundation Suite product, for more information.

To be a cluster mount, a file system must be mounted using the mount –o cluster option.
File systems mounted without the –o cluster option are termed local mounts.
16 VERITAS File System Administrator’s Guide

VxFS Performance: Creating, Mounting, and
Tuning File Systems
 2

Introduction

For any file system, the ability to provide peak performance is important. Adjusting the
available VERITAS File System (VxFS) options provides a way to increase system
performance. This chapter describes the commands and practices you can use to optimize
VxFS. For information on optimizing an application for use with VxFS, see “Application
Interface” on page 43.

The following topics are covered in this chapter:

◆ Choosing mkfs Command Options

- Block Size

- Intent Log Size

◆ Choosing mount Command Options

- log

- delaylog

- tmplog

- logiosize

- nodatainlog

- blkclear

- mincache

- convosync

- qlog

- largefiles | nolargefiles

- Combining mount Command Options
17

Choosing mkfs Command Options
◆ Kernel Tunables

- Internal Inode Table Size

- vx_maxlink

- VxVM Maximum I/O Size

◆ Monitoring Free Space

- Monitoring Fragmentation

◆ I/O Tuning

- Tuning VxFS I/O Parameters

- Tunable VxFS I/O Parameters

Choosing mkfs Command Options
There are several characteristics that you can select when you create a file system. The
most important options pertaining to system performance are the block size and intent log
size.

Block Size
The unit of allocation in VxFS is a block. Unlike some other UNIX file systems, VxFS does
not make use of block fragments for allocation because storage is allocated in extents that
consist of one or more blocks.

You specify the block size when creating a file system by using the mkfs –o bsize
option. The block size cannot be altered after the file system is created. The smallest
available block size for VxFS is 1K, which is also the default block size.

Choose a block size based on the type of application being run. For example, if there are
many small files, a 1K block size may save space. For large file systems, with relatively
few files, a larger block size is more appropriate. Larger block sizes use less disk space in
file system overhead, but consume more space for files that are not a multiple of the block
size. The easiest way to judge which block sizes provide the greatest system efficiency is to
try representative system loads against various sizes and pick the fastest. For most
applications, it is best to use the default values.

For 64-bit kernels, which support 32 terabyte file systems, the block size determines the
maximum size of the file system you can create. File systems up to 4 TB require a 1K block
size. For four to eight terabyte file systems, the block size is 2K, For file systems between 8
and 16 TB, block size is 4K, and for greater than 16 TB, the block size is 8K. If you specify
the file system size when creating a file system, the block size defaults to these values (see
“The VxFS Version 5 Disk Layout” on page 162 for more information).
18 VERITAS File System Administrator’s Guide

Choosing mount Command Options
Intent Log Size
You specify the intent log size when creating a file system by using the mkfs –o logsize
option. The intent log size cannot be altered after the file system is created. The mkfs
utility uses a default intent log size of 16 megabytes. The default size is sufficient for most
workloads. If the system is used as an NFS server or for intensive synchronous write
workloads, performance may be improved using a larger log size.

With larger intent log sizes, recovery time is proportionately longer and the file system
may consume more system resources (such as memory) during normal operation.

There are several system performance benchmark suites for which VxFS performs better
with larger log sizes. As with block sizes, the best way to pick the log size is to try
representative system loads against various sizes and pick the fastest.

Note When using QuickLog, you choose the log at creation time and can easily change it
at any time during use. For more information on log creation, log manipulation, and
load balancing, see “VERITAS QuickLog” on page 95.

Choosing mount Command Options
In addition to the standard mount mode (delaylog mode), VxFS provides blkclear,
log, tmplog, and nodatainlog modes of operation. Caching behavior can be altered
with the mincache option, and the behavior of O_SYNC and D_SYNC (see the fcntl(2)
manual page) writes can be altered with the convosync option.

The delaylog and tmplog modes can significantly improve performance. The
improvement over log mode is typically about 15 to 20 percent with delaylog; with
tmplog, the improvement is even higher. Performance improvement varies, depending
on the operations being performed and the workload. Read/write intensive loads should
show less improvement, while file system structure intensive loads (such as mkdir,
create, and rename) may show over 100 percent improvement. The best way to select a
mode is to test representative system loads against the logging modes and compare the
performance results.

Most of the modes can be used in combination. For example, a desktop machine might
use both the blkclear and mincache=closesync modes.

Additional information on mount options can be found in the mount_vxfs(1M) manual
page.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 19

Choosing mount Command Options
log
With log mode, VxFS guarantees that all structural changes to the file system have been
logged on disk when the system call returns. If a system failure occurs, fsck replays
recent changes so that they will not be lost.

delaylog
The default logging mode is delaylog. In delaylog mode, some system calls return
before the intent log is written. This logging delay improves the performance of the
system, but some changes are not guaranteed until a short time after the system call
returns, when the intent log is written. If a system failure occurs, recent changes may be
lost. This mode approximates traditional UNIX guarantees for correctness in case of
system failures. Fast file system recovery works with this mode.

tmplog
In tmplog mode, intent logging is almost always delayed. This greatly improves
performance, but recent changes may disappear if the system crashes. This mode is only
recommended for temporary file systems. Fast file system recovery works with this mode.

logiosize
The logiosize=size option is provided to enhance the performance of storage devices
that employ a read-modify-write feature. If you specify logiosize when you mount a file
system, VxFS writes the intent log in at least size bytes to obtain the maximum
performance from such devices. The values for size can be 512, 1024, 2048, 4096, or 8192.
20 VERITAS File System Administrator’s Guide

Choosing mount Command Options
nodatainlog
Use the nodatainlog mode on systems with disks that do not support bad block
revectoring. Usually, a VxFS file system uses the intent log for synchronous writes. The
inode update and the data are both logged in the transaction, so a synchronous write only
requires one disk write instead of two. When the synchronous write returns to the
application, the file system has told the application that the data is already written. If a
disk error causes the metadata update to fail, then the file must be marked bad and the
entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is unlikely, so
logging synchronous writes should be allowed. If the disk does not support bad block
revectoring, then a failure is more likely, so the nodatainlog mode should be used.

A nodatainlog mode file system is approximately 50 percent slower than a standard
mode VxFS file system for synchronous writes. Other operations are not affected.

blkclear
The blkclear mode is used in increased data security environments. The blkclear
mode guarantees that uninitialized storage never appears in files. The increased integrity
is provided by clearing extents on disk when they are allocated within a file. Extending
writes are not affected by this mode. A blkclear mode file system is approximately 10
percent slower than a standard mode VxFS file system, depending on the workload.

mincache
The mincache mode has five suboptions:

◆ mincache=closesync

◆ mincache=direct

◆ mincache=dsync

◆ mincache=unbuffered

◆ mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where users are
likely to shut off the power on the machine without halting it first. In this mode, any
changes to the file are flushed to disk when the file is closed.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 21

Choosing mount Command Options
To improve performance, most file systems do not synchronously update data and inode
changes to disk. If the system crashes, files that have been updated within the past minute
are in danger of losing data. With the mincache=closesync mode, if the system crashes
or is switched off, only files that are currently open can lose data. A
mincache=closesync mode file system should be approximately 15 percent slower
than a standard mode VxFS file system, depending on the workload.

The mincache=direct, mincache=unbuffered, and mincache=dsync modes are
used in environments where applications are experiencing reliability problems caused by
the kernel buffering of I/O and delayed flushing of non-synchronous I/O. The
mincache=direct and mincache=unbuffered modes guarantee that all
non-synchronous I/O requests to files will be handled as if the VX_DIRECT or
VX_UNBUFFERED caching advisories had been specified. The mincache=dsync mode
guarantees that all non-synchronous I/O requests to files will be handled as if the
VX_DSYNC caching advisory had been specified. Refer to the vxfsio(7) manual page for
explanations of VX_DIRECT, VX_UNBUFFERED, and VX_DSYNC. The mincache=direct,
mincache=unbuffered, and mincache=dsync modes also flush file data on close as
mincache=closesync does.

Because the mincache=direct, mincache=unbuffered, and mincache=dsync
modes change non-synchronous I/O to synchronous I/O, there can be a substantial
degradation in throughput for small to medium size files for most applications. Since the
VX_DIRECT and VX_UNBUFFERED advisories do not allow any caching of data,
applications that would normally benefit from caching for reads will usually experience
less degradation with the mincache=dsync mode. mincache=direct and
mincache=unbuffered require significantly less CPU time than buffered I/O.

If performance is more important than data integrity, you can use the
mincache=tmpcache mode. The mincache=tmpcache mode disables special delayed
extending write handling, trading off less integrity for better performance. Unlike the
other mincache modes, tmpcache does not flush the file to disk when it is closed. When
the mincache=tmpcache option is used, bad data can appear in a file that was being
extended when a crash occurred.
22 VERITAS File System Administrator’s Guide

Choosing mount Command Options
convosync

Note Use of the convosync=dsync option violates POSIX guarantees for synchronous
I/O.

The convosync (convert osync) mode has five suboptions:

◆ convosync=closesync

◆ convosync=delay.

◆ convosync=direct

◆ convosync=dsync

◆ convosync=unbuffered

The convosync=closesync mode converts synchronous and data synchronous writes
to non-synchronous writes and flushes the changes to the file to disk when the file is
closed.

The convosync=delay mode causes synchronous and data synchronous writes to be
delayed rather than to take effect immediately. No special action is performed when
closing a file. This option effectively cancels any data integrity guarantees normally
provided by opening a file with O_SYNC. See the open(2), fcntl(2), and vxfsio(7)
manual pages for more information on O_SYNC.

Caution Be very careful when using the convosync=closesync or
convosync=delay mode because they actually change synchronous I/O into
non-synchronous I/O. This may cause applications that use synchronous I/O
for data reliability to fail if the system crashes and synchronously written data
is lost.

The convosync=direct and convosync=unbuffered mode convert synchronous
and data synchronous reads and writes to direct reads and writes.

The convosync=dsync mode converts synchronous writes to data synchronous writes.

As with closesync, the direct, unbuffered, and dsync modes flush changes to the
file to disk when it is closed. These modes can be used to speed up applications that use
synchronous I/O. Many applications that are concerned with data integrity specify the
O_SYNC fcntl in order to write the file data synchronously. However, this has the
undesirable side effect of updating inode times and therefore slowing down performance.
The convosync=dsync, convosync=unbuffered, and convosync=direct modes
alleviate this problem by allowing applications to take advantage of synchronous writes
without modifying inode times as well.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 23

Choosing mount Command Options
Caution Before using convosync=dsync, convosync=unbuffered, or
convosync=direct, make sure that all applications that use the file system do
not require synchronous inode time updates for O_SYNC writes.

qlog
The qlog option can be used in conjunction with the name of a QuickLog device. For
example, to set the QuickLog device vxlog1 to log the file system, use qlog=vxlog1. If
qlog= is specified with no QuickLog device, the QuickLog driver chooses an appropriate
log device automatically. For more information, see “VERITAS QuickLog” on page 95.

largefiles | nolargefiles
VxFS supports files up to one terabyte in size.

Note Be careful when enabling large file capability. Applications and utilities such as
backup may experience problems if they are not aware of large files.

Creating a File System with Large Files

You can create a file system with large file capability by entering the following command:

mkfs -F vxfs -o largefiles special_device size

Specifying largefiles sets the largefiles flag, which allows the file system to hold
files up to one terabyte in size. Conversely, the default nolargefiles option clears the
flag and prevents large files from being created:

mkfs -F vxfs -o nolargefiles special_device size

Note The largefiles flag is persistent and stored on disk.
24 VERITAS File System Administrator’s Guide

Choosing mount Command Options
Mounting a File System with Large Files

If a mount succeeds and nolargefiles is specified, the file system cannot contain or
create any large files. If a mount succeeds and largefiles is specified, the file system
may contain and create large files.

The mount command fails if the specified largefiles|nolargefiles option does not
match the on-disk flag.

The mount command defaults to match the current setting of the on-disk flag if specified
without the largefiles or nolargefiles option, so it’s best not to specify either
option. After a file system is mounted, you can use the fsadm utility to change the large
files option.

Managing a File System with Large Files

You can determine the current status of the largefiles flag using the fsadm or mkfs
command:

mkfs -F vxfs -m special_device
fsadm -F vxfs mount_point | special_device

You can switch capabilities on a mounted file system using the fsadm command:

fsadm -F vxfs -o [no]largefiles mount_point

You can also switch capabilities on an unmounted file system:

fsadm -F vxfs -o [no]largefiles special_device

You cannot change a file system to nolargefiles if it holds large files.

See the mount_vxfs(1M), fsadm_vxfs(1M), and mkfs_vxfs(1M) manual pages.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 25

Choosing mount Command Options
Combining mount Command Options
Although mount options can be combined arbitrarily, some combinations do not make
sense. The following examples provide some common and reasonable mount option
combinations.

Example 1 - Desktop File System
mount -F vxfs -o log,mincache=closesync /dev/dsk/c1t3d0s1 /mnt

This guarantees that when a file is closed, its data is synchronized to disk and cannot be
lost. Thus, once an application is exited and its files are closed, no data will be lost even if
the system is immediately turned off.

Example 2 - Temporary File System or Restoring from Backup
mount -F vxfs -o tmplog,convosync=delay,mincache=tmpcache \
/dev/dsk/c1t3d0s1 /mnt

This combination might be used for a temporary file system where performance is more
important than absolute data integrity. Any O_SYNC writes are performed as delayed
writes and delayed extending writes are not handled specially (which could result in a file
that contains garbage if the system crashes at the wrong time). Any file written 30 seconds
or so before a crash may contain garbage or be missing if this mount combination is in
effect. However, such a file system will do significantly less disk writes than a log file
system, and should have significantly better performance, depending on the application.

Example 3 - Data Synchronous Writes
mount -F vxfs -o log,convosync=dsync /dev/dsk/c1t3d0s1 /mnt

This combination would be used to improve the performance of applications that perform
O_SYNC writes, but only require data synchronous write semantics. Their performance
can be significantly improved if the file system is mounted using convosync=dsync
without any loss of data integrity.
26 VERITAS File System Administrator’s Guide

Kernel Tunables
Kernel Tunables
This section describes the kernel tunable parameters in VxFS.

Internal Inode Table Size
VxFS caches inodes in an inode table. The tunable for VxFS to determine the number of
entries in its inode table is vxfs_ninode.

VxFS uses the value of vxfs_ninode in /etc/system as the number of entries in the
VxFS inode table. By default, the file system uses a value of vxfs_ninode, which is
computed based on system memory size. To increase the value, make the following
change in /etc/system and reboot:

set vxfs:vxfs_ninode = new_value

It may be necessary to tune the dnlc (directory name lookup cache) size to keep the value
within an acceptable range relative to vxfs_ninode. It must be within 80% of
vxfs_ninode to avoid spurious ENFILE errors or excessive CPU consumption, but must
be more than 50% of vxfs_ninode to maintain good performance. The variable ncsize
determines the size of dnlc. The default value of ncsize is based on the kernel variable
maxusers. It is computed at system boot time. This value can be changed by making an
entry in the /etc/system file:

set ncsize = new_value

The new ncsize is effective after you reboot the system.

vx_maxlink
The VxFS vx_maxlink tunable determines the number of sub-directories that can be
created under a directory.

A VxFS file system obtains the value of vx_maxlink from the system configuration file
/etc/system. By default, vx_maxlink is 32K. To change the computed value of
vx_maxlink, you can add an entry to the system configuration file. For example:

set vxfs:vx_maxlink = 65534

sets vx_maxlink to the maximum number of sub-directories. Valid values are 1 to 65534
(FFFE hexadecimal). Changes to vx_maxlink take effect after rebooting.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 27

Monitoring Free Space
VxVM Maximum I/O Size
When using VxFS with the VERITAS Volume Manager (VxVM), VxVM by default breaks
up I/O requests larger than 256K. When using striping, to optimize performance, the file
system issues I/O requests that are up to a full stripe in size. If the stripe size is larger than
256K, those requests are broken up.

To avoid undesirable I/O breakup, you can increase the maximum I/O size by changing
the value of the vol_maxio parameter in the /etc/system file.

vol_maxio

The vol_maxio parameter controls the maximum size of logical I/O operations that can
be performed without breaking up a request. Logical I/O requests larger than this value
are broken up and performed synchronously. Physical I/Os are broken up based on the
capabilities of the disk device and are unaffected by changes to the vol_maxio logical
request limit.

Raising the vol_maxio limit can cause problems if the size of an I/O requires more
memory or kernel mapping space than exists. The recommended maximum for
vol_maxio is 20% of the smaller of physical memory or kernel virtual memory. It is not
advisable to go over this limit. Within this limit, you can generally obtain the best results
by setting vol_maxio to the size of your largest stripe. This applies to both RAID-0
striping and RAID-5 striping.

To increase the value of vol_maxio, add an entry to /etc/system (after the entry
forceload:drv/vxio) and reboot for the change to take effect. For example, the
following line sets the maximum I/O size to 16 MB:

set vxio:vol_maxio=32768

This parameter is in 512-byte sectors and is stored as a 16-bit number, so it cannot be
larger than 65535.

See the VERITAS Volume Manager Administrator’s Guide for more information on avoiding
I/O breakup by setting the maximum I/O tunable parameter.

Monitoring Free Space
In general, VxFS works best if the percentage of free space in the file system does not get
below 10 percent. This is because file systems with 10 percent or more free space have less
fragmentation and better extent allocation. Regular use of the df command (see the
df_vxfs(1M) manual page) to monitor free space is desirable. Full file systems may have
an adverse effect on file system performance. Full file systems should therefore have some
files removed, or should be expanded (see the fsadm_vxfs(1M) manual page for a
description of online file system expansion).
28 VERITAS File System Administrator’s Guide

Monitoring Free Space
Monitoring Fragmentation
Fragmentation reduces performance and availability. Regular use of fsadm’s
fragmentation reporting and reorganization facilities is therefore advisable.

The easiest way to ensure that fragmentation does not become a problem is to schedule
regular defragmentation runs using the cron command.

Defragmentation scheduling should range from weekly (for frequently used file systems)
to monthly (for infrequently used file systems). Extent fragmentation should be
monitored with fsadm or the df -o s commands. There are three factors which can be
used to determine the degree of fragmentation:

◆ Percentage of free space in extents of less than eight blocks in length

◆ Percentage of free space in extents of less than 64 blocks in length

◆ Percentage of free space in extents of length 64 blocks or greater

An unfragmented file system will have the following characteristics:

◆ Less than 1 percent of free space in extents of less than eight blocks in length

◆ Less than 5 percent of free space in extents of less than 64 blocks in length

◆ More than 5 percent of the total file system size available as free extents in lengths of
64 or more blocks

A badly fragmented file system will have one or more of the following characteristics:

◆ Greater than 5 percent of free space in extents of less than 8 blocks in length

◆ More than 50 percent of free space in extents of less than 64 blocks in length

◆ Less than 5 percent of the total file system size available as free extents in lengths of 64
or more blocks

The optimal period for scheduling of extent reorganization runs can be determined by
choosing a reasonable interval, scheduling fsadm runs at the initial interval, and running
the extent fragmentation report feature of fsadm before and after the reorganization.

The “before” result is the degree of fragmentation prior to the reorganization. If the degree
of fragmentation is approaching the figures for bad fragmentation, reduce the interval
between fsadm runs. If the degree of fragmentation is low, increase the interval between
fsadm runs.

The “after” result is an indication of how well the reorganizer has performed. The degree
of fragmentation should be close to the characteristics of an unfragmented file system. If
not, it may be a good idea to resize the file system; full file systems tend to fragment and
are difficult to defragment. It is also possible that the reorganization is not being
performed at a time during which the file system in question is relatively idle.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 29

I/O Tuning
Directory reorganization is not nearly as critical as extent reorganization, but regular
directory reorganization will improve performance. It is advisable to schedule directory
reorganization for file systems when the extent reorganization is scheduled. The following
is a sample script that is run periodically at 3:00 A.M. from cron for a number of file
systems:

outfile=/usr/spool/fsadm/out.‘/bin/date +’%m%d’‘
for i in /home /home2 /project /db
do
/bin/echo "Reorganizing $i"
/bin/timex fsadm -F vxfs -e -E -s $i
/bin/timex fsadm -F vxfs -s -d -D $i

done > $outfile 2>&1

I/O Tuning

Note The tunables and the techniques described in this section work on a per file system
basis. Use them judiciously based on the underlying device properties and
characteristics of the applications that use the file system.

Performance of a file system can be enhanced by a suitable choice of I/O sizes and proper
alignment of the I/O requests based on the requirements of the underlying special device.
VxFS provides tools to tune the file systems.

Tuning VxFS I/O Parameters
VxFS provides a set of tunable I/O parameters that control some of its behavior. These
I/O parameters are useful to help the file system adjust to striped or RAID-5 volumes that
could yield performance superior to a single disk. Typically, data streaming applications
that access large files see the largest benefit from tuning the file system.

If VxFS is being used with the VERITAS Volume Manager, the file system queries VxVM
to determine the geometry of the underlying volume and automatically sets the I/O
parameters. VxVM is queried by mkfs when the file system is created to automatically
align the file system to the volume geometry. The mount command also queries VxVM
when the file system is mounted and downloads the I/O parameters.
30 VERITAS File System Administrator’s Guide

I/O Tuning
If the default parameters are not acceptable or the file system is being used without
VxVM, then the /etc/vx/tunefstab file can be used to set values for I/O parameters.
The mount command reads the /etc/vx/tunefstab file and downloads any
parameters specified for a file system. The tunefstab file overrides any values obtained
from VxVM. While the file system is mounted, any I/O parameters can be changed using
the vxtunefs command which can have tunables specified on the command line or can
read them from the /etc/vx/tunefstab file. For more details, see the vxtunefs(1M)
and tunefstab(4) manual pages. The vxtunefs command can be used to print the
current values of the I/O parameters:

vxtunefs -p mount_point

If the default alignment from mkfs is not acceptable, the -o align=n option can be used
to override alignment information obtained from VxVM. The following is an example
tunefstab file:

/dev/vx/dsk/userdg/netbackup
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/opt
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/metasave
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solbuild
read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solrelease
read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solpatch
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 31

I/O Tuning
Tunable VxFS I/O Parameters

read_pref_io The preferred read request size. The file system uses this in
conjunction with the read_nstream value to determine how
much data to read ahead. The default value is 64K.

write_pref_io The preferred write request size. The file system uses this in
conjunction with the write_nstream value to determine how
to do flush behind on writes. The default value is 64K.

read_nstream The number of parallel read requests of size read_pref_io to
have outstanding at one time. The file system uses the product
of read_nstream multiplied by read_pref_io to determine
its read ahead size. The default value for read_nstream is 1.

write_nstream The number of parallel write requests of size write_pref_io
to have outstanding at one time. The file system uses the
product of write_nstream multiplied by write_pref_io to
determine when to do flush behind on writes. The default value
for write_nstream is 1.

default_indir_
size

On VxFS, files can have up to ten direct extents of variable size
stored in the inode. Once these extents are used up, the file must
use indirect extents which are a fixed size that is set when the file
first uses indirect extents. These indirect extents are 8K by
default. The file system does not use larger indirect extents
because it must fail a write and return ENOSPC if there are no
extents available that are the indirect extent size. For file systems
containing many large files, the 8K indirect extent size is too
small. The files that get into indirect extents use many smaller
extents instead of a few larger ones. By using this parameter, the
default indirect extent size can be increased so large that files in
indirects use fewer larger extents. The tunable
default_indir_size should be used carefully. If it is set too
large, then writes will fail when they are unable to allocate
extents of the indirect extent size to a file. In general, the fewer
and the larger the files on a file system, the larger the
default_indir_size can be set. This parameter should
generally be set to some multiple of the read_pref_io
parameter. default_indir_size is not applicable on Version
4 disk layouts.
32 VERITAS File System Administrator’s Guide

I/O Tuning
discovered_direct
_iosz

Any file I/O requests larger than the
discovered_direct_iosz are handled as discovered direct
I/O. A discovered direct I/O is unbuffered similar to direct I/O,
but it does not require a synchronous commit of the inode when
the file is extended or blocks are allocated. For larger I/O
requests, the CPU time for copying the data into the page cache
and the cost of using memory to buffer the I/O data becomes
more expensive than the cost of doing the disk I/O. For these
I/O requests, using discovered direct I/O is more efficient than
regular I/O. The default value of this parameter is 256K.

hsm_write_
prealloc

For a file managed by a hierarchical storage management (HSM)
application, hsm_write_prealloc preallocates disk blocks
before data is migrated back into the file system. An HSM
application usually migrates the data back through a series of
writes to the file, each of which allocates a few blocks. By setting
hsm_write_prealloc (hsm_write_prealloc=1), a
sufficient number of disk blocks are allocated on the first write
to the empty file so that no disk block allocation is required for
subsequent writes. This improves the write performance during
migration.

The hsm_write_prealloc parameter is implemented outside
of the DMAPI specification, and its usage has limitations
depending on how the space within an HSM-controlled file is
managed. It is advisable to use hsm_write_prealloc only
when recommended by the HSM application controlling the file
system.

initial_extent_
size

Changes the default initial extent size. VxFS determines, based
on the first write to a new file, the size of the first extent to be
allocated to the file. Normally the first extent is the smallest
power of 2 that is larger than the size of the first write. If that
power of 2 is less than 8K, the first extent allocated is 8K. After
the initial extent, the file system increases the size of subsequent
extents (see max_seqio_extent_size) with each allocation.
Since most applications write to files using a buffer size of 8K or
less, the increasing extents start doubling from a small initial
extent. initial_extent_size can change the default initial
extent size to be larger, so the doubling policy will start from a
much larger initial size and the file system will not allocate a set
of small extents at the start of file. Use this parameter only on file
systems that will have a very large average file size. On these file
systems it will result in fewer extents per file and less
fragmentation. initial_extent_size is measured in file
system blocks.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 33

I/O Tuning
max_direct_iosz The maximum size of a direct I/O request that will be issued by
the file system. If a larger I/O request comes in, then it is broken
up into max_direct_iosz chunks. This parameter defines
how much memory an I/O request can lock at once, so it should
not be set to more than 20 percent of memory.

max_diskq Limits the maximum disk queue generated by a single file.
When the file system is flushing data for a file and the number of
pages being flushed exceeds max_diskq, processes will block
until the amount of data being flushed decreases. Although this
doesn't limit the actual disk queue, it prevents flushing
processes from making the system unresponsive. The default
value is 1 MB.

max_seqio_extent_
size

Increases or decreases the maximum size of an extent. When the
file system is following its default allocation policy for
sequential writes to a file, it allocates an initial extent which is
large enough for the first write to the file. When additional
extents are allocated, they are progressively larger (the
algorithm tries to double the size of the file with each new
extent) so each extent can hold several writes worth of data. This
is done to reduce the total number of extents in anticipation of
continued sequential writes. When the file stops being written,
any unused space is freed for other files to use. Normally this
allocation stops increasing the size of extents at 2048 blocks
which prevents one file from holding too much unused space.
max_seqio_extent_size is measured in file system blocks.

qio_cache_enable Enables or disables caching on Quick I/O files. The default
behavior is to disable caching. To enable caching, set
qio_cache_enable to 1. On systems with large memories, the
database cannot always use all of the memory as a cache. By
enabling file system caching as a second level cache,
performance may be improved. If the database is performing
sequential scans of tables, the scans may run faster by enabling
file system caching so the file system will perform aggressive
read-ahead on the files.
34 VERITAS File System Administrator’s Guide

I/O Tuning
write_throttle The write_throttle parameter is useful in special situations
where a computer system has a combination of a large amount
of memory and slow storage devices. In this configuration, sync
operations (such as fsync()) may take long enough to
complete that a system appears to hang. This behavior occurs
because the file system is creating dirty pages (in-memory
updates) faster than they can be asynchronously flushed to disk
without slowing system performance.

Lowering the value of write_throttle limits the number of
dirty pages per file that a file system will generate before
flushing the pages to disk. After the number of dirty pages for a
file reaches the write_throttle threshold, the file system
starts flushing pages to disk even if free memory is still
available.

The default value of write_throttle is zero, which puts no
limit on the number of dirty pages per file. If non-zero, VxFS
limits the number of dirty pages per file to write_throttle
pages.

The default value typically generates a large number of dirty
pages, but maintains fast user writes. Depending on the speed of
the storage device, if you lower write_throttle, user write
performance may suffer, but the number of dirty pages is
limited, so sync operations will complete much faster.

Because lowering write_throttle may in some cases delay
write requests (for example, lowering write_throttle may
increase the file disk queue to the max_diskq value, delaying
user writes until the disk queue decreases), it is advisable not to
change the value of write_throttle unless your system has a
combination of large physical memory and slow storage
devices.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 35

I/O Tuning
If the file system is being used with VxVM, it is advisable to let the VxFS I/O parameters
get set to default values based on the volume geometry.

If the file system is being used with a hardware disk array or volume manager other than
VxVM, try to align the parameters to match the geometry of the logical disk. With striping
or RAID-5, it is common to set read_pref_io to the stripe unit size and read_nstream
to the number of columns in the stripe. For striped arrays, use the same values for
write_pref_io and write_nstream, but for RAID-5 arrays, set write_pref_io to
the full stripe size and write_nstream to 1.

For an application to do efficient disk I/O, it should issue read requests that are equal to
the product of read_nstream multiplied by read_pref_io. Generally, any multiple or
factor of read_nstream multiplied by read_pref_io should be a good size for
performance. For writing, the same rule of thumb applies to the write_pref_io and
write_nstream parameters. When tuning a file system, the best thing to do is try out the
tuning parameters under a real life workload.

If an application is doing sequential I/O to large files, it should try to issue requests larger
than the discovered_direct_iosz. This causes the I/O requests to be performed as
discovered direct I/O requests, which are unbuffered like direct I/O but do not require
synchronous inode updates when extending the file. If the file is larger than can fit in the
cache, using unbuffered I/O avoids removing useful data out of the cache and lessens
CPU overhead.
36 VERITAS File System Administrator’s Guide

Extent Attributes
 3

Introduction

The VERITAS File System (VxFS) allocates disk space to files in groups of one or more
adjacent blocks called extents. VxFS defines an application interface that allows programs
to control various aspects of the extent allocation for a given file (see “Extent Information”
on page 46). The extent allocation policies associated with a file are referred to as extent
attributes.

The VxFS getext and setext commands let you view or manipulate file extent
attributes. In addition, the vxdump, vxrestore, mv_vxfs, cp_vxfs, and cpio_vxfs
commands preserve extent attributes when a file is backed up, moved, copied, or
archived.

The following topics are covered in this chapter:

◆ Attribute Specifics

- Reservation: Preallocating Space to a File

- Fixed Extent Size

- Other Controls

◆ Commands Related to Extent Attributes

- Failure to Preserve Extent Attributes
37

Attribute Specifics
Attribute Specifics
The two basic extent attributes associated with a file are its reservation and its fixed extent
size. You can preallocate space to the file by manipulating a file’s reservation, or override
the default allocation policy of the file system by setting a fixed extent size.

Other policies determine the way these attributes are expressed during the allocation
process. You can specify that:

◆ The space reserved for a file must be contiguous

◆ No allocations are made for a file beyond the current reservation

◆ An unused reservation is released when the file is closed

◆ Space is allocated, but no reservation is assigned

◆ The file size is changed to immediately incorporate the allocated space

Some of the extent attributes are persistent and become part of the on-disk information
about the file, while other attributes are temporary and are lost after the file is closed or
the system is rebooted. The persistent attributes are similar to the file’s permissions and
are written in the inode for the file. When a file is copied, moved, or archived, only the
persistent attributes of the source file are preserved in the new file (see “Other Controls”
on page 40 for more information).

In general, the user will only set extent attributes for reservation. Many of the attributes
are designed for applications that are tuned to a particular pattern of I/O or disk
alignment (see the mkfs_vxfs(1M) manual page and “Application Interface” on page 43
for more information).
38 VERITAS File System Administrator’s Guide

Attribute Specifics
Reservation: Preallocating Space to a File
VxFS makes it possible to preallocate space to a file at the time of the request rather than
when data is written into the file. This space cannot be allocated to other files in the file
system. VxFS prevents any unexpected out-of-space condition on the file system by
ensuring that a file’s required space will be associated with the file before it is required.

Persistent reservation is not released when a file is truncated. The reservation must be
cleared or the file must be removed to free reserved space.

Fixed Extent Size
The VxFS default allocation policy uses a variety of methods to determine how to make an
allocation to a file when a write requires additional space. The policy attempts to balance
the two goals of optimum I/O performance through large allocations and minimal file
system fragmentation through allocation from space available in the file system that best
fits the data.

Setting a fixed extent size overrides the default allocation policies for a file and always
serves as a persistent attribute. Be careful to choose an extent size appropriate to the
application when using fixed extents. An advantage of VxFS’s extent based allocation
policies is that they rarely use indirect blocks compared to block based file systems; VxFS
eliminates many instances of disk access that stem from indirect references. However, a
small extent size can eliminate this advantage.

Files with aggressive allocation sizes tend to be more contiguous and have better I/O
characteristics. However, the overall performance of the file system degrades because the
unused space fragments free space by breaking large extents into smaller pieces. By erring
on the side of minimizing fragmentation for the file system, files may become so
non-contiguous that their I/O characteristics would degrade.

Fixed extent sizes are particularly appropriate in the following situations:

◆ If a file is large and sparse and its write size is fixed, a fixed extent size that is a
multiple of the write size can minimize space wasted by blocks that do not contain
user data as a result of misalignment of write and extent sizes. (The default extent size
for a sparse file is 8K.)

◆ If a file is large and contiguous, a large fixed extent size can minimize the number of
extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such as the need
to align extents to cylinder or striping boundaries on disk.
Chapter 3, Extent Attributes 39

Attribute Specifics
Other Controls
The auxiliary controls on extent attributes determine:

◆ Whether allocations are aligned

◆ Whether allocations are contiguous

◆ Whether the file can be written beyond its reservation

◆ Whether an unused reservation is released when the file is closed

◆ Whether the reservation is a persistent attribute of the file

◆ When the space reserved for a file will actually become part of the file

Alignment

Specific alignment restrictions coordinate a file’s allocations with a particular I/O pattern
or disk alignment (see the mkfs_vxfs(1M) manual page and “Application Interface” on
page 43 for details). Alignment can only be specified if a fixed extent size has also been set.
Setting alignment restrictions on allocations is best left to well designed applications.

Contiguity

A reservation request can specify that its allocation remain contiguous (all one extent).
Maximum contiguity of a file optimizes its I/O characteristics.

Note Fixed extent sizes or alignment cause a file system to return an error message
reporting insufficient space if no suitably sized (or aligned) extent is available. This
can happen even if the file system has sufficient free space and the fixed extent size
is large.

Write Operations Beyond Reservation

A reservation request can specify that no allocations can take place after a write operation
fills up the last available block in the reservation. This specification can be used in a
similar way to ulimit to prevent a file’s uncontrolled growth.

Reservation Trimming

A reservation request can specify that any unused reservation be released when the file is
closed. The file is not completely closed until all processes open against the file have
closed it.
40 VERITAS File System Administrator’s Guide

Commands Related to Extent Attributes
Reservation Persistence

A reservation request can ensure that the reservation does not become a persistent
attribute of the file. The unused reservation is discarded when the file is closed.

Including Reservation in the File

A reservation request can make sure the size of the file is adjusted to include the
reservation. Normally, the space of the reservation is not included in the file until an
extending write operation requires it. A reservation that immediately changes the file size
can generate large temporary files. Unlike a ftruncate operation that increases the size
of a file, this type of reservation does not perform zeroing of the blocks included in the file
and limits this facility to users with appropriate privileges. The data that appears in the
file may have been previously contained in another file.

Commands Related to Extent Attributes
The VxFS commands for manipulating extent attributes are setext and getext; they
allow the user to set up files with a given set of extent attributes or view any attributes
that are already associated with a file. See the getext(1) and setext(1) manual pages for
details on using these commands.

The VxFS-specific commands vxdump, vxrestore, mv_vxfs, cp_vxfs, and
cpio_vxfs preserve extent attributes when backing up, restoring, moving, or copying
files. Make sure to modify your PATH when using the VxFS versions of mv, cp, and cpio.

Most of these commands include a command line option (-e) for maintaining extent
attributes on files. This option specifies dealing with a VxFS file that has extent attribute
information including reserved space, a fixed extent size, and extent alignment. The
extent attribute information may be lost if the destination file system does not support
extent attributes, has a different block size than the source file system, or lacks free extents
appropriate to satisfy the extent attribute requirements.

The -e option takes any of the following keywords as an argument:

warn Issues a warning message if extent attribute information cannot be
maintained (the default)

force Fails the copy if extent attribute information cannot be maintained

ignore Ignores extent attribute information entirely
Chapter 3, Extent Attributes 41

Commands Related to Extent Attributes
The commands that move, copy, or archive files (mv_vxfs, cp_vxfs and cpio_vxfs)
use the -e option with arguments of ignore, warn, or force.

For example, the mv_vxfs command could be used with the -e option to produce the
following results:

◆ The ignore keyword loses any extent attributes for files.

◆ The warn keyword issues a warning if extent attributes for a file cannot be preserved.
Such a situation may take place if the file is moved into a non-VxFS file system; the file
would ultimately be moved while the extent attributes would be lost.

◆ The force keyword issues an error if attributes are lost and the file is not relocated.

Failure to Preserve Extent Attributes
Whenever a file is copied, moved, or archived using commands that preserve extent
attributes, there is nevertheless the possibility of losing the attributes. Such a failure might
occur for three reasons:

◆ The file system receiving a copied, moved, or restored file from an archive is not a
VxFS type. Since other file system types do not support the extent attributes of the
VxFS file system, the attributes of the source file are lost during the migration.

◆ The file system receiving a copied, moved, or restored file is a VxFS type but does not
have enough free space to satisfy the extent attributes. For example, consider a 50K
file and a reservation of 1 MB. If the target file system has 500K free, it could easily
hold the file but fail to satisfy the reservation.

◆ The file system receiving a copied, moved, or restored file from an archive is a VxFS
type but the different block sizes of the source and target file system make extent
attributes impossible to maintain. For example, consider a source file system of block
size 1024, a target file system of block size 4096, and a file that has a fixed extent size of
3 blocks (3072 bytes). This fixed extent size adapts to the source file system but cannot
translate onto the target file system.

The same source and target file systems in the preceding example with a file carrying
a fixed extent size of 4 could preserve the attribute; a 4 block (4096 byte) extent on the
source file system would translate into a 1 block extent on the target.

On a system with mixed block sizes, a copy, move, or restoration operation may or
may not succeed in preserving attributes. It is recommended that the same block size
be used for all file systems on a given system.
42 VERITAS File System Administrator’s Guide

Application Interface
 4

Introduction

The VERITAS File System (VxFS) provides enhancements that can be used by applications
that require certain performance features. This chapter describes cache advisories and
provides information about fixed extent sizes and reservation of space for a file.

If you are writing applications, you can optimize them for use with the VxFS. To optimize
VxFS for use with applications, see “VxFS Performance: Creating, Mounting, and Tuning
File Systems” on page 17.

The following topics are covered in this chapter:

◆ Cache Advisories

- Direct I/O

- Unbuffered I/O

- Discovered Direct I/O

- Data Synchronous I/O

- Other Advisories

◆ Extent Information

- Space Reservation

- Fixed Extent Sizes

◆ Freeze and Thaw

◆ Get I/O Parameters ioctl
43

Cache Advisories
Cache Advisories
VxFS allows an application to set cache advisories for use when accessing files. These
advisories are in memory only and they do not persist across reboots. Some advisories are
currently maintained on a per-file, not a per-file-descriptor, basis. This means that only
one set of advisories can be in effect for all accesses to the file. If two conflicting
applications set different advisories, both use the last advisories that were set.

All advisories are set using the VX_SETCACHE ioctl command. The current set of
advisories can be obtained with the VX_GETCACHE ioctl command. For details on the use
of these ioctl commands, see the vxfsio(7) manual page.

Direct I/O
Direct I/O is an unbuffered form of I/O. If the VX_DIRECT advisory is set, the user is
requesting direct data transfer between the disk and the user-supplied buffer for reads
and writes. This bypasses the kernel buffering of data, and reduces the CPU overhead
associated with I/O by eliminating the data copy between the kernel buffer and the user’s
buffer. This also avoids taking up space in the buffer cache that might be better used for
something else. The direct I/O feature can provide significant performance gains for some
applications.

For an I/O operation to be performed as direct I/O, it must meet certain alignment
criteria. The alignment constraints are usually determined by the disk driver, the disk
controller, and the system memory management hardware and software. The file offset
must be aligned on a sector boundary.The file offset must be aligned on a sector boundary.

If a request fails to meet the alignment constraints for direct I/O, the request is performed
as data synchronous I/O. If the file is currently being accessed by using memory mapped
I/O, any direct I/O accesses are done as data synchronous I/O.

Because direct I/O maintains the same data integrity as synchronous I/O, it can be used
in many applications that currently use synchronous I/O. If a direct I/O request does not
allocate storage or extend the file, the inode is not immediately written.

The CPU cost of direct I/O is about the same as a raw disk transfer. For sequential I/O to
very large files, using direct I/O with large transfer sizes can provide the same speed as
buffered I/O with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write the inode
change before returning to the application. This eliminates some of the performance
advantages of direct I/O.

The direct I/O and VX_DIRECT advisories are maintained on a per-file-descriptor basis.
44 VERITAS File System Administrator’s Guide

Cache Advisories
Unbuffered I/O
If the VX_UNBUFFERED advisory is set, I/O behavior is the same as direct I/O with the
VX_DIRECT advisory set, so the alignment constraints that apply to direct I/O also apply
to unbuffered I/O. For unbuffered I/O, however, if the file is being extended, or storage is
being allocated to the file, inode changes are not updated synchronously before the write
returns to the user. The VX_UNBUFFERED advisory is maintained on a per-file-descriptor
basis.

Discovered Direct I/O
Discovered Direct I/O is a file system tunable you can set using the vxtunefs command.
When the file system gets an I/O request larger than the discovered_direct_iosz, it
tries to use direct I/O on the request. For large I/O sizes, Discovered Direct I/O can
perform much better than buffered I/O.

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment
constraints, except writes that allocate storage or extend the file size do not require
writing the inode changes before returning to the application.

For information on how to set the discovered_direct_iosz, see “I/O Tuning” on
page 30.

Data Synchronous I/O
If the VX_DSYNC advisory is set, the user is requesting data synchronous I/O. In
synchronous I/O, the data is written, and the inode is written with updated times and (if
necessary) an increased file size. In data synchronous I/O, the data is transferred to disk
synchronously before the write returns to the user. If the file is not extended by the write,
the times are updated in memory, and the call returns to the user. If the file is extended by
the operation, the inode is written before the write returns.

Like direct I/O, the data synchronous I/O feature can provide significant application
performance gains. Because data synchronous I/O maintains the same data integrity as
synchronous I/O, it can be used in many applications that currently use synchronous I/O.
If the data synchronous I/O does not allocate storage or extend the file, the inode is not
immediately written. The data synchronous I/O does not have any alignment constraints,
so applications that find it difficult to meet the alignment constraints of direct I/O should
use data synchronous I/O.

If the file is being extended or storage is allocated, data synchronous I/O must write the
inode change before returning to the application. This case eliminates the performance
advantage of data synchronous I/O.

The direct I/O and VX_DSYNC advisories are maintained on a per-file-descriptor basis.
Chapter 4, Application Interface 45

Extent Information
Other Advisories
The VX_SEQ advisory indicates that the file is being accessed sequentially. When the file is
being read, the maximum read-ahead is always performed. When the file is written,
instead of trying to determine whether the I/O is sequential or random by examining the
write offset, sequential I/O is assumed. The pages for the write are not immediately
flushed. Instead, pages are flushed some distance behind the current write point.

The VX_RANDOM advisory indicates that the file is being accessed randomly. For reads, this
disables read-ahead. For writes, this disables the flush-behind. The data is flushed by the
pager, at a rate based on memory contention.

The VX_NOREUSE advisory is used as a modifier. If both VX_RANDOM and VX_NOREUSE
are set, VxFS notifies the operating system that the pages are free and may be reclaimed. If
VX_NOREUSE is set when doing sequential I/O, pages are also freed when they are
flushed to disk. The VX_NOREUSE advisory may slow down access to the file, but it can
reduce the cached data held by the system. This can allow more data to be cached for
other files and may speed up those accesses.

Extent Information
The VX_SETEXT ioctl command allows an application to reserve space for a file, and set
fixed extent sizes and file allocation flags. Applications can obtain status information on
VxFS ioctls by using the VX_GETEXT ioctl. The getext command also provides access to
this information. See the getext(1), setext(1), and vxfsio(7) manual pages for more
information.

The VX_SETEXT ioctl command allows an application to reserve space for a file, and set
fixed extent sizes and file allocation flags. The current state of much of this information
can be obtained by applications by using the VX_GETEXT ioctl (the getext command
provides access to this functionality). For details, see the getext(1), setext(1), and
vxfsio(7) manual pages.

Each invocation of the VX_SETEXT ioctl affects all the elements in the vx_ext structure.
When using VX_SETEXT, always use the following procedure:

1. Use VX_GETEXT to read the current settings.

2. Modify the values to be changed.

3. Call VX_SETEXT to set the values.

Caution Follow this procedure carefully. A fixed extent size may be inadvertently
cleared when the reservation is changed.
46 VERITAS File System Administrator’s Guide

Extent Information
Space Reservation
Storage can be reserved for a file at any time. When a VX_SETEXT ioctl is issued, the
reservation value is set in the inode on disk. If the file size is less than the reservation
amount, the kernel allocates space to the file from the current file size up to the reservation
amount. When the file is truncated, space below the reserved amount is not freed. The
VX_TRIM, VX_NOEXTEND, VX_CHGSIZE, VX_NORESERVE and VX_CONTIGUOUS flags can
be used to modify reservation requests.

Note VX_NOEXTEND is the only one of these flags that is persistent; the other flags may
have persistent effects, but they are not returned by the VX_GETEXT ioctl.

If the VX_TRIM flag is set, when the last close occurs on the inode, the reservation is
trimmed to match the file size and the VX_TRIM flag is cleared. Any unused space is freed.
This can be useful if an application needs enough space for a file, but it is not known how
large the file will become. Enough space can be reserved to hold the largest expected file,
and when the file has been written and closed, any extra space will be released.

If the VX_NOEXTEND flag is set, an attempt to write beyond the current reservation, which
requires the allocation of new space for the file, fails instead. To allocate new space to the
file, the space reservation must be increased. This can be used like ulimit to prevent a
file from using too much space.

If the VX_CONTIGUOUS flag is set, any space allocated to satisfy the current reservation
request is allocated in one extent. If there is not one extent large enough to satisfy the
request, the request fails. For example, if a file is created and a 1 MB contiguous
reservation is requested, the file size is set to zero and the reservation to 1 MB. The file will
have one extent that is 1 MB long. If another reservation request is made for a 3 MB
contiguous reservation, the new request will find that the first 1 MB is already allocated
and allocate a 2 MB extent to satisfy the request. If there are no 2 MB extents available, the
request fails. Extents are, by definition, contiguous.

Note Because VX_CONTIGUOUS is not a persistent flag, space will not be allocated
contiguously after doing a file system restore.
Chapter 4, Application Interface 47

Extent Information
If the VX_NORESERVE flag is set, the reservation value in the inode is not changed. This
flag is used by applications to do temporary reservation. Any space past the end of the file
is given up when the file is closed. For example, if the cp command is copying a file that is
1 MB long, it can request a 1 MB reservation with the VX_NORESERVE flag set. The space
is allocated, but the reservation in the file is left at 0. If the program aborts for any reason
or the system crashes, the unused space past the end of the file is released. When the
program finishes, there is no cleanup because the reservation was never recorded on disk.

If the VX_CHGSIZE flag is set, the file size is increased to match the reservation amount.
This flag can be used to create files with uninitialized data. Because this allows
uninitialized data in files, it is restricted to users with appropriate privileges.

It is possible to use these flags in combination. For example, using VX_CHGSIZE and
VX_NORESERVE changes the file size but does not set any reservation. When the file is
truncated, the space is freed. If the VX_NORESERVE flag had not been used, the
reservation would have been set on disk along with the file size.

Space reservation is used to make sure applications do not fail because the file system is
out of space. An application can preallocate space for all the files it needs before starting to
do any work. By allocating space in advance, the file is optimally allocated for
performance, and file accesses are not slowed down by the need to allocate storage. This
allocation of resources can be important in applications that require a guaranteed
response time.

With very large files, use of space reservation can avoid the need to use indirect extents. It
can also improve performance and reduce fragmentation by guaranteeing that the file
consists of large contiguous extents. Sometimes when critical file systems run out of space,
cron jobs, mail, or printer requests fail. These failures are harder to track if the logs kept
by the application cannot be written due to a lack of space on the file system.

By reserving space for key log files, the logs will not fail when the system runs out of
space. Process accounting files can also have space reserved so accounting records will not
be lost if the file system runs out of space. In addition, by using the VX_NOEXTEND flag for
log files, the maximum size of these files can be limited. This can prevent a runaway
failure in one component of the system from filling the file system with error messages
and causing other failures. If the VX_NOEXTEND flag is used for log files, the logs should
be cleaned up before they reach the size limit in order to avoid losing information.
48 VERITAS File System Administrator’s Guide

Extent Information
Fixed Extent Sizes
VxFS uses the I/O size of write requests, and a default policy, when allocating space to a
file. For some applications, this may not work out well. These applications can set a fixed
extent size, so that all new extents allocated to the file are of the fixed extent size.

By using a fixed extent size, an application can reduce allocations and guarantee good
extent sizes for a file. An application can reserve most of the space a file needs, and then
set a relatively large fixed extent size. If the file grows beyond the reservation, any new
extents are allocated in the fixed extent size.

Another use of a fixed extent size occurs with sparse files. The file system usually does
I/O in page size multiples. When allocating to a sparse file, the file system allocates pages
as the smallest default unit. If the application always does sub-page I/O, it can request a
fixed extent size to match its I/O size and avoid wasting extra space.

When setting a fixed extent size, an application should not select too large a size. When all
extents of the required size have been used, attempts to allocate new extents fail: this
failure can happen even though there are blocks free in smaller extents.

Fixed extent sizes can be modified by the VX_ALIGN flag. If the VX_ALIGN flag is set, then
any future extents allocated to the file are aligned on a fixed extent size boundary relative
to the start of the allocation unit. This can be used to align extents to disk striping
boundaries or physical disk boundaries.

The VX_ALIGN flag is persistent and is returned by the VX_GETEXT ioctl.
Chapter 4, Application Interface 49

Freeze and Thaw
Freeze and Thaw
The VX_FREEZE ioctl command is used to freeze a file system. Freezing a file system
temporarily blocks all I/O operations to a file system and then performs a sync on the file
system. When the VX_FREEZE ioctl is issued, all access to the file system is blocked at the
system call level. Current operations are completed and the file system is synchronized to
disk. Freezing provides a stable, consistent file system.

When the file system is frozen, any attempt to use the frozen file system, except for a
VX_THAW ioctl command, is blocked until a process executes the VX_THAW ioctl command
or the time-out on the freeze expires.

Get I/O Parameters ioctl
VxFS provides the VX_GET_IOPARAMETERS ioctl to get the recommended
I/O sizes to use on a file system. This ioctl can be used by the application to make
decisions about the I/O sizes issued to VxFS for a file or file device. For more details on
this ioctl, refer to the vxfsio(7) manual page. For a discussion on various I/O
parameters, refer to “VxFS Performance: Creating, Mounting, and Tuning File Systems”
on page 17 and the vxtunefs(1M) manual page.
50 VERITAS File System Administrator’s Guide

Storage Checkpoints
 5

Storage Checkpoints are a feature of the VERITAS File System (VxFS) that provide
point-in-time images of file system contents. These frozen images of VxFS file systems can
be used in a variety of applications such as full and incremental online backups, fast error
recovery, and product development testing. Storage Checkpoint replicas of real time
databases can also be used for decision support and an assortment of database analyses.

Note You can use Storage Checkpoints only on file systems using the Version 4 or Version
5 disk layout; if you are using an older disk layout, you must upgrade to use this
feature (see the vxupgrade(1M) and vxfsconvert(1M) manual page for
information on how to upgrade the VxFS disk layout).

The following topics are covered in this chapter:

◆ What is a Storage Checkpoint?

◆ How a Storage Checkpoint Works

◆ Types of Storage Checkpoints

- Data Storage Checkpoints

- Nodata Storage Checkpoints

- Removable Storage Checkpoints

- Non-mountable Storage Checkpoints

◆ Storage Checkpoint Administration

- Creating a Storage Checkpoint

- Removing a Storage Checkpoint

- Accessing a Storage Checkpoint

- Converting a Data Storage Checkpoint to a Nodata Storage Checkpoint

◆ Space Management Considerations
51

What is a Storage Checkpoint?
What is a Storage Checkpoint?
The VERITAS File System provides a unique Storage Checkpoint facility which quickly
creates a persistent image of a file system at an exact point in time. Storage Checkpoints
significantly reduce I/O overhead by identifying and maintaining only the file system
blocks that have changed since the last Storage Checkpoint or backup via a copy-on-write
technique (see “How a Storage Checkpoint Works” on page 53). Unlike a disk-based
mirroring technology that requires a separate storage space, this VERITAS technology
minimizes the use of disk space by creating a Storage Checkpoint within the same free
space available to the file system.

Storage Checkpoints are data objects which are managed and controlled by the file
system; as a result, Storage Checkpoints are persistent across system reboots and crashes.
You can create, remove, and rename Storage Checkpoints because they are data objects
with associated names (see “Storage Checkpoint Administration” on page 57). After you
create a Storage Checkpoint of a mounted file system, you can also continue to create,
remove, and update files on the file system without affecting the logical image of the
Storage Checkpoint. This technology preserves not only the name space (directory
hierarchy) of the file system, but also the user data as it existed at the moment the Storage
Checkpoint was taken.

Storage Checkpoints differ from VERITAS File System snapshots in the following ways:

◆ Allow write operations to the Storage Checkpoint itself.

◆ Persist after a system reboot or failure.

◆ Share the same pool of free space as the file system.

◆ Maintain a relationship with other Storage Checkpoints by identifying changed file
blocks since the last Storage Checkpoint.

◆ Multiple, read-only Storage Checkpoints reduce I/O operations and required storage
space because the most recent Storage Checkpoint is the only one that accumulates
updates from the primary file system.

Various backup and replication solutions can take advantage of Storage Checkpoints. The
ability of Storage Checkpoints to track the file system blocks that have changed since the
last Storage Checkpoint facilitates backup and replication applications which only need to
retrieve the changed data. Storage Checkpoints significantly minimize data movement
and may promote higher availability and data integrity by increasing the frequency of
backup and replication solutions.

Storage Checkpoints can be taken in environments with a large number of files (for
example, file servers with millions of files) with little adverse impact on performance.
Because the file system does not remain frozen during Storage Checkpoint creation,
applications can access the file system even while the Storage Checkpoint is taken. Storage
Checkpoint creation, however, may take several minutes to complete depending on the
number of files in the file system.
52 VERITAS File System Administrator’s Guide

How a Storage Checkpoint Works
How a Storage Checkpoint Works
The Storage Checkpoint facility freezes the mounted file system (known as the primary
fileset), initializes the Storage Checkpoint, and thaws the file system. Specifically, the file
system is first brought to a stable state where all of its data is written to disk, and the
freezing process momentarily blocks all I/O operations to the file system. A Storage
Checkpoint is then created without any actual data; the Storage Checkpoint instead points
to the block map (described below) of the primary fileset. The thawing process that follows
restarts I/O operations to the file system.

You can create a Storage Checkpoint on a single file system or a list of file systems. A
multiple file system Storage Checkpoint simultaneously freezes the file systems, creates a
Storage Checkpoint on all file systems, and thaws the file systems. As a result, the Storage
Checkpoints for multiple file systems have the same creation timestamp. The Storage
Checkpoint facility guarantees that multiple file system Storage Checkpoints are created
on all or none of the specified file systems (unless there is a system crash while the
operation is in progress).

Note The calling application is responsible for cleaning up Storage Checkpoints after a
system crash.

As mentioned above, a Storage Checkpoint of the primary fileset initially contains a
pointer to the file system block map rather than to any actual data. The block map points
to the data on the primary fileset. The figure below shows the file system /database and
its Storage Checkpoint. The Storage Checkpoint is logically identical to the primary fileset
when the Storage Checkpoint is created, but it does not contain any actual data blocks.

Primary Fileset and Its Storage Checkpoint

Primary Fileset Storage Checkpoint

/database

emp.db jun.dbf emp.db jun.dbf

/database
Chapter 5, Storage Checkpoints 53

How a Storage Checkpoint Works
In the figure below, each block of the file system is represented by a square. Similar to the
previous figure, this figure shows a Storage Checkpoint containing pointers to the
primary fileset at the time the Storage Checkpoint is taken.

Initializing a Storage Checkpoint

The Storage Checkpoint presents the exact image of the file system by finding the data
from the primary fileset. As the primary fileset is updated, the original data is copied to
the Storage Checkpoint before the new data is written. When a write operation changes a
specific data block in the primary fileset, the old data is first read and copied to the
Storage Checkpoint before the primary fileset is updated. Subsequent writes to the
specified data block on the primary fileset do not result in additional updates to the
Storage Checkpoint because the old data needs to be saved only once. As blocks in the
primary fileset continue to change, the Storage Checkpoint accumulates the original data
blocks.

Primary Fileset

A

B

C

D

E

 Storage Checkpoint
54 VERITAS File System Administrator’s Guide

How a Storage Checkpoint Works
In the following figure, the third block originally containing C is updated. Before the block
is updated with new data, the original data is copied to the Storage Checkpoint. This is
called the copy-on-write technique, which allows the Storage Checkpoint to preserve the
image of the primary fileset when the Storage Checkpoint is taken.

Every update or write operation does not necessarily result in the process of copying data
to the Storage Checkpoint. In this example, subsequent updates to this block, now
containing C’, are not copied to the Storage Checkpoint because the original image of the
block containing C is already saved.

Updates to the Primary Fileset

Primary Fileset

A

B

C’

D

E

 Storage Checkpoint

C

Chapter 5, Storage Checkpoints 55

Types of Storage Checkpoints
Types of Storage Checkpoints
You can create the following types of Storage Checkpoints:

◆ Data Storage Checkpoints

◆ Nodata Storage Checkpoints

◆ Removable Storage Checkpoints

◆ Non-mountable Storage Checkpoints

Data Storage Checkpoints
A data Storage Checkpoint is a complete image of the file system at the time the Storage
Checkpoint is created. This type of Storage Checkpoint contains the file system metadata
and file data blocks. You can mount, access, and write to a data Storage Checkpoint just as
you would to a file system. Data Storage Checkpoints are useful for backup applications
which require a consistent and stable image of an active file system. Data Storage
Checkpoints introduce some overhead to the system and to the application performing
the write operation. For best results, you can limit the life of data Storage Checkpoints to
minimize the impact on system resources.

Nodata Storage Checkpoints
A nodata Storage Checkpoint only contains file system metadata—no file data blocks. As
the original file system changes, the nodata Storage Checkpoint records the location of
every changed block. Nodata Storage Checkpoints use minimal system resources and
have little impact on the performance of the file system because the data itself does not
have to be copied. Nodata Storage Checkpoints are useful with the Block Level
Incremental Backup feature.

Removable Storage Checkpoints
A removable Storage Checkpoint can “self-destruct” under certain conditions when the
file system runs out of space (see “Space Management Considerations” on page 68 for
more information). After encountering certain out-of-space (ENOSPC) conditions, the
kernel removes Storage Checkpoints to free up space for the application to continue
running on the file system. In almost all situations, you should create Storage Checkpoints
with the removable attribute.
56 VERITAS File System Administrator’s Guide

Storage Checkpoint Administration
Non-mountable Storage Checkpoints
A non-mountable Storage Checkpoint cannot be mounted. You can use this type of
Storage Checkpoint as a security feature which prevents other applications from accessing
the Storage Checkpoint and modifying it.

Storage Checkpoint Administration
Storage Checkpoint administrative operations require the fsckptadm utility (see
fsckptadm(1M)). You can use the fsckptadm utility to create and remove Storage
Checkpoints, change attributes, and ascertain statistical data. Every Storage Checkpoint
has an associated name which allows you to manage Storage Checkpoints; this name is
limited to 127 characters and cannot contain a colon (:).

Creating a Storage Checkpoint
You can create a Storage Checkpoint using the fsckptadm utility. In these examples,
/mnt0 is a mounted VxFS file system with a Version 4 disk layout.

This example shows the creation of a nodata Storage Checkpoint (see “Space Management
Considerations” on page 68) named thu_7pm on /mnt0 and lists all Storage Checkpoints
of the /mnt0 file system:

fsckptadm -n create thu_7pm /mnt0
fsckptadm list /mnt0
/mnt0
thu_7pm:
ctime= Thu Jun 1 19:02:17 2001
mtime= Thu Jun 1 19:02:17 2001
flags= nodata

This example shows the creation of a removable Storage Checkpoint named thu_8pm on
/mnt0 and list all Storage Checkpoints of the /mnt0 file system:

fsckptadm -r create thu_8pm /mnt0
fsckptadm list /mnt0
/mnt0
thu_8pm:
ctime= Thu Jun 1 20:01:19 2001
mtime= Thu Jun 1 20:01:19 2001
flags= removable

thu_7pm:
ctime= Thu Jun 1 19:02:17 2001
mtime= Thu Jun 1 19:02:17 2001
flags= nodata
Chapter 5, Storage Checkpoints 57

Storage Checkpoint Administration
Removing a Storage Checkpoint
You can delete a Storage Checkpoint by specifying the remove keyword of the
fsckptadm command. Specifically, you can use either the synchronous or asynchronous
method of removing a Storage Checkpoint; the asynchronous method is the default
method. The synchronous method entirely removes the Storage Checkpoint and returns
all of the blocks to the file system before completing the fsckptadm operation. The
asynchronous method simply marks the Storage Checkpoint for removal and causes
fsckptadm to return immediately. At a later time, an independent kernel thread
completes the removal operation and releases the space used by the Storage Checkpoint.

In this example, /mnt0 is a mounted VxFS file system with a Version 4 disk layout. This
example shows the asynchronous removal of the Storage Checkpoint named thu_8pm
and synchronous removal of the Storage Checkpoint named thu_7pm. This example also
lists all the Storage Checkpoints remaining on the /mnt0 file system after the specified
Storage Checkpoint is removed:

fsckptadm remove thu_8pm /mnt0
fsckptadm list /mnt0
/mnt0
thu_7pm:
ctime= Thu Jun 1 19:02:17 2001
mtime= Thu Jun 1 19:02:17 2001
flags= nodata

fsckptadm -s remove thu_7pm /mnt0
fsckptadm list /mnt0
/mnt0
58 VERITAS File System Administrator’s Guide

Storage Checkpoint Administration
Accessing a Storage Checkpoint
You can mount Storage Checkpoints using the mount command (see mount_vxfs(1M))
with the mount option –o ckpt=ckpt_name. Observe the following rules when
mounting Storage Checkpoints:

◆ Storage Checkpoints are mounted as read-only Storage Checkpoints by default. If you
need to write to a Storage Checkpoint, mount it using the -o rw option.

◆ If a Storage Checkpoint is originally mounted as a read-only Storage Checkpoint, you
can remount it as a writable Storage Checkpoint using the -o remount option.

◆ To mount a Storage Checkpoint of a file system, first mount the file system itself.

◆ To unmount a file system, first unmount all of its Storage Checkpoints.

Caution If you create a Storage Checkpoint for backup purposes, do not mount it as a
writable Storage Checkpoint. You will lose the point-in-time image if you
accidently write to the Storage Checkpoint.

A Storage Checkpoint is mounted on a special pseudo device. This pseudo device does not
exist in the system name space; the device is internally created by the system and used
while the Storage Checkpoint is mounted. The pseudo device is removed after you
unmount the Storage Checkpoint. A pseudo device name is formed by appending the
Storage Checkpoint name to the file system device name using the colon character (:) as
the separator.

For example, if a Storage Checkpoint named may_23 belongs to the file system residing
on the special device /dev/vx/dsk/fsvol/vol1, the Storage Checkpoint pseudo
device name is:

/dev/vx/dsk/fsvol/vol1:may_23
Chapter 5, Storage Checkpoints 59

Storage Checkpoint Administration
To mount the Storage Checkpoint named may_23 as a read-only (default) Storage
Checkpoint on directory /fsvol_may_23, type:

mount -F vxfs -o ckpt=may_23 /dev/vx/dsk/fsvol/vol1:may_23 \
 /fsvol_may_23

The /fsvol file system must already be mounted before the Storage Checkpoint can be
mounted. To remount the Storage Checkpoint named may_23 as a writable Storage
Checkpoint, type:

mount -F vxfs -o ckpt=may_23,remount,rw \
/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23

To automatically mount this Storage Checkpoint when the system starts up, put the
following entries in the /etc/vfstab file:

To mount a Storage Checkpoint of a cluster file system, you must also use the
–o cluster option:

mount -F vxfs -o cluster,ckpt=may_23 \
/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23

You can only mount a Storage Checkpoint clusterwide if the file system that the Storage
Checkpoint belongs to is also mounted clusterwide. Similarly, you can only mount a
Storage Checkpoint locally if the file system that the Storage Checkpoint belongs to is
mounted locally.

You can unmount Storage Checkpoints using the umount command (see
umount_vxfs(1M)). Storage Checkpoints can be unmounted by the mount point or
pseudo device name:

umount /fsvol_may_23
umount /dev/vx/dsk/fsvol/vol1:may_23

Note You do not need to run the fsck utility on a Storage Checkpoint pseudo device
because this utility runs on the actual file system.

#device to mount device to fsck mount point FS
type

fsck
pass

mount
at boot

mount
options

/dev/vx/dsk/
fsvol/vol1

/dev/vx/rdsk/
fsvol/vol1

/fsvol vxfs 1 yes —

/dev/vx/dsk/fsvol/
vol1:may_23

— /fsvol_may_23 vxfs 0 yes ckpt=
may_23
60 VERITAS File System Administrator’s Guide

Storage Checkpoint Administration
Converting a Data Storage Checkpoint to a Nodata Storage
Checkpoint

A nodata Storage Checkpoint does not contain actual file data. Instead, this type of
Storage Checkpoint contains a collection of markers indicating the location of all the
changed blocks since the Storage Checkpoint was created (see “Types of Storage
Checkpoints” on page 56 for more information).

You can use either the synchronous or asynchronous method to convert a data Storage
Checkpoint to a nodata Storage Checkpoint; the asynchronous method is the default
method. In a synchronous conversion, fsckptadm waits for all files to undergo the
conversion process to “nodata” status before completing the operation. In an
asynchronous conversion, fsckptadm returns immediately and marks the Storage
Checkpoint as a nodata Storage Checkpoint even though the Storage Checkpoint’s data
blocks are not immediately returned to the pool of free blocks in the file system. The
Storage Checkpoint deallocates all of its file data blocks in the background and eventually
returns them to the pool of free blocks in the file system.

If all of the older Storage Checkpoints in a file system are nodata Storage Checkpoints, use
the synchronous method to convert a data Storage Checkpoint to a nodata Storage
Checkpoint. If an older data Storage Checkpoint exists in the file system, use the
asynchronous method to mark the Storage Checkpoint you want to convert for a delayed
conversion. In this case, the actual conversion will continue to be delayed until the Storage
Checkpoint becomes the oldest Storage Checkpoint in the file system, or all of the older
Storage Checkpoints have been converted to nodata Storage Checkpoints.

Note You cannot convert a nodata Storage Checkpoint to a data Storage Checkpoint
because a nodata Storage Checkpoint only keeps track of the location of block
changes and does not save the content of file data blocks.
Chapter 5, Storage Checkpoints 61

Storage Checkpoint Administration
Difference Between a Data and a Nodata Storage Checkpoint

The following example shows the difference between data Storage Checkpoints and
nodata Storage Checkpoints:

1. Create a file system and mount it on /mnt0:

mkfs -F vxfs /dev/vx/rdsk/test0
version 4 layout
11845780 sectors, 5922890 blocks of size 1024, log size 1024
blocks unlimited inodes, largefiles not supported
5922890 data blocks, 5920314 free data blocks
181 allocation units of 32768 blocks, 32768 data blocks
last allocation unit has 24650 data blocks
mount -F vxfs /dev/vx/dsk/test0 /mnt0

2. Create a small file with a known content. Create a Storage Checkpoint and mount it
on /mnt0@5_30pm:

echo "hello, world" > /mnt0/file
fsckptadm create ckpt@5_30pm /mnt0
mkdir /mnt0@5_30pm
mount -F vxfs -o ckpt=ckpt@5_30pm \
/dev/vx/dsk/test0:ckpt@5_30pm /mnt0@5_30pm

3. Examine the content of the original file and the Storage Checkpoint file:

cat /mnt0/file
hello, world
cat /mnt0@5_30pm/file
hello, world

4. Change the content of the original file:

echo "goodbye" > /mnt0/file
62 VERITAS File System Administrator’s Guide

Storage Checkpoint Administration
5. Examine the content of the original file and the Storage Checkpoint file. The original
file contains the latest data while the Storage Checkpoint file still contains the data at
the time of the Storage Checkpoint creation:

cat /mnt0/file
goodbye
cat /mnt0@5_30pm/file
hello, world

6. Unmount the Storage Checkpoint, convert the Storage Checkpoint to a nodata Storage
Checkpoint, and mount the Storage Checkpoint again.

umount /mnt0@5_30pm
fsckptadm -s set nodata ckpt@5_30pm /mnt0
mount -F vxfs -o ckpt=ckpt@5_30pm \
/dev/vx/dsk/test0:ckpt@5_30pm /mnt0@5_30pm

7. Examine the content of both files. The original file must contain the latest data:

cat /mnt0/file
goodbye

You can traverse and read the directories of the nodata Storage Checkpoint; however,
the files contain no data, only markers to indicate which block of the file has been
changed since the Storage Checkpoint was created:

ls -l /mnt0@5_30pm/file
-rw-r--r-- 1 root other 9 Jul 13 17:13 /mnt0@5_30pm/file
cat /mnt0@5_30pm/file
cat: there is an input or output error on /mnt0@5_30pm/file: I/O error
Chapter 5, Storage Checkpoints 63

Storage Checkpoint Administration
Conversion with Multiple Storage Checkpoints

The following example highlights the conversion of data Storage Checkpoints to nodata
Storage Checkpoints, particularly when dealing with older Storage Checkpoints on the
same file system:

1. Create a file system and mount it on /mnt0:

mkfs -F vxfs /dev/vx/rdsk/test0
version 4 layout
4194304 sectors, 2097152 blocks of size 1024,
log size 1024 blocks
unlimited inodes, largefiles not supported
2097152 data blocks, 2095536 free data blocks
64 allocation units of 32768 blocks, 32768 data blocks
mount -F vxfs /dev/vx/dsk/test0 /mnt0

2. Create four data Storage Checkpoints on this file system, note the order of creation,
and list them:

fsckptadm create oldest /mnt0
fsckptadm create older /mnt0
fsckptadm create old /mnt0
fsckptadm create latest /mnt0
fsckptadm list /mnt0
/mnt0
latest:
ctime =Mon Oct 16 11:56:55 2001
mtime =Mon Oct 16 11:56:55 2001
flags =none

old:
ctime =Mon Oct 16 11:56:51 2001
mtime =Mon Oct 16 11:56:51 2001
flags =none

older:
ctime =Mon Oct 16 11:56:46 2001
mtime =Mon Oct 16 11:56:46 2001
flags =none

oldest:
ctime =Mon Oct 16 11:56:41 2001
mtime =Mon Oct 16 11:56:41 2001
flags =none
64 VERITAS File System Administrator’s Guide

Storage Checkpoint Administration
3. Try to convert synchronously the “latest” Storage Checkpoint to a nodata Storage
Checkpoint. The attempt will fail because the Storage Checkpoints older than the
“latest” Storage Checkpoint are data Storage Checkpoints, namely the Storage
Checkpoint “old”:

fsckptadm -s set nodata latest /mnt0
vxfs fsckptadm: checkpoint set failed on latest.
Do not specify on an existing file (17)

4. You can instead convert the “latest” Storage Checkpoint to a nodata Storage
Checkpoint in a delayed or asynchronous manner. If you list the Storage Checkpoints,
you will see that the “latest” Storage Checkpoint is marked for conversion in the
future:

fsckptadm set nodata latest /mnt0
fsckptadm list /mnt0
/mnt0
latest:
ctime =Mon Oct 16 11:56:55 2001
mtime =Mon Oct 16 11:56:55 2001
flags =nodata, delayed

old:
ctime =Mon Oct 16 11:56:51 2001
mtime =Mon Oct 16 11:56:51 2001
flags =none

older:
ctime =Mon Oct 16 11:56:46 2001
mtime =Mon Oct 16 11:56:46 2001
flags =none

oldest:
ctime =Mon Oct 16 11:56:41 2001
mtime =Mon Oct 16 11:56:41 2001
flags =none
Chapter 5, Storage Checkpoints 65

Storage Checkpoint Administration
5. You can combine the two previous steps and create the “latest” Storage Checkpoint as
a nodata Storage Checkpoint. The creation process will detect the presence of the
older data Storage Checkpoints and create the “latest” Storage Checkpoint as a
delayed nodata Storage Checkpoint. First remove the “latest” Storage Checkpoint:

fsckptadm remove latest /mnt0
fsckptadm list /mnt0
/mnt0
old:
ctime =Mon Oct 16 11:56:51 2001
mtime =Mon Oct 16 11:56:51 2001
flags =none

older:
ctime =Mon Oct 16 11:56:46 2001
mtime =Mon Oct 16 11:56:46 2001
flags =none

oldest:
ctime =Mon Oct 16 11:56:41 2001
mtime =Mon Oct 16 11:56:41 2001
flags =none

Then recreate it as a nodata Storage Checkpoint:

fsckptadm -n create latest /mnt0
fsckptadm list /mnt0
/mnt0
latest:
ctime = Mon Oct 16 12:06:42 2001
mtime = Mon Oct 16 12:06:42 2001
flags = nodata, delayed

old:
ctime = Mon Oct 16 11:56:51 2001
mtime = Mon Oct 16 11:56:51 2001
flags = none

older:
ctime = Mon Oct 16 11:56:46 2001
mtime = Mon Oct 16 11:56:46 2001
flags = none

oldest:
ctime = Mon Oct 16 11:56:41 2001
mtime = Mon Oct 16 11:56:41 2001
flags = none
66 VERITAS File System Administrator’s Guide

Storage Checkpoint Administration
6. You can synchronously convert the “oldest” Storage Checkpoint to a nodata Storage
Checkpoint because it is the oldest Storage Checkpoint in the file system:

fsckptadm -s set nodata oldest /mnt0
fsckptadm list /mnt0
/mnt0
latest:
ctime =Mon Oct 16 12:06:42 2001
mtime =Mon Oct 16 12:06:42 2001
flags =nodata, delayed

old:
ctime =Mon Oct 16 11:56:51 2001
mtime =Mon Oct 16 11:56:51 2001
flags =none

older:
ctime =Mon Oct 16 11:56:46 2001
mtime =Mon Oct 16 11:56:46 2001
flags =none

oldest:
ctime =Mon Oct 16 11:56:41 2001
mtime =Mon Oct 16 11:56:41 2001
flags =nodata

7. Remove the “older” and “old” Storage Checkpoints. After you remove the “old”
Storage Checkpoint, the “latest” Storage Checkpoint is automatically converted to a
nodata Storage Checkpoint because the only remaining older Storage Checkpoint
(“oldest”) is already a nodata Storage Checkpoint:

fsckptadm remove older /mnt0
fsckptadm remove old /mnt0
fsckptadm list /mnt0
/mnt0
latest:
ctime =Mon Oct 16 12:06:42 2001
mtime =Mon Oct 16 12:06:42 2001
flags =nodata

oldest:
ctime =Mon Oct 16 11:56:41 2001
mtime =Mon Oct 16 11:56:41 2001
flags =nodata
Chapter 5, Storage Checkpoints 67

Space Management Considerations
Space Management Considerations
Several operations, such as removing or overwriting a file, can fail when a file system
containing Storage Checkpoints runs out of space. Usually these operations do not fail
because of insufficient space on the file system, but these operations on a file system
containing Storage Checkpoints can cause a data block copy which, in turn, may require
extent allocation. If the system cannot allocate sufficient space, the operation will fail.

Database applications usually preallocate storage for their files and may not expect a
write operation to fail. If a file system runs out of space, the kernel automatically removes
Storage Checkpoints and attempts to complete the write operation after sufficient space
becomes available. The kernel removes Storage Checkpoints to prevent commands, such
as rm (see rm(1)), from failing under an out-of-space (ENOSPC) condition.

The kernel will follow these policies when automatically removing Storage Checkpoints:

1. Remove as few Storage Checkpoints as possible to complete the operation.

2. Never select a non-removable Storage Checkpoint.

3. Select a nodata Storage Checkpoint only when data Storage Checkpoints no longer
exist.

4. Remove the oldest Storage Checkpoint first.
68 VERITAS File System Administrator’s Guide

Online Backup
 6

Introduction

This chapter describes the online backup facility provided with the VERITAS File System
(VxFS). The snapshot feature of VxFS can be used to create a snapshot image of a mounted
file system, which becomes a duplicate read-only copy of the mounted file system. This
chapter also provides a description of how to create a snapshot file system and some
examples of backing up all or part of a file system using the snapshot mechanism.

The following topics are covered in this chapter:

◆ Snapshot File Systems

◆ Using a Snapshot File System for Backup

◆ Creating a Snapshot File System

◆ Making a Backup

◆ Performance of Snapshot File Systems

◆ Differences Between Snapshots and Storage Checkpoints

◆ Snapshot File System Internals

- Snapshot File System Disk Structure

- How a Snapshot File System Works
69

Snapshot File Systems
Snapshot File Systems
A snapshot file system is an exact image of a VxFS file system, referred to as the snapped file
system, that provides a mechanism for making backups. The snapshot is a consistent view
of the file system “snapped” at the point in time the snapshot is made. You can select files
to back up from the snapshot (using a standard utility such as cpio or cp), or back up the
entire file system image (using the vxdump or fscat utilities).

You use the mount command to create a snapshot file system (the mkfs command is not
required). A snapshot file system is always read-only. A snapshot file system exists only as
long as it and the snapped file system are mounted and ceases to exist when unmounted.
A snapped file system cannot be unmounted until all of its snapshots are unmounted.
Although it is possible to have multiple snapshots of a file system made at different times,
it is not possible to make a snapshot of a snapshot.

Note A snapshot file system ceases to exist when unmounted. If mounted again, it is
actually a fresh snapshot of the snapped file system.

A snapshot file system must be unmounted before its dependent snapped file
system can be unmounted. Neither the fuser command nor the mount command
will indicate that a snapped file system cannot be unmounted because a snapshot of
it exists.

On cluster file systems, snapshots can be created on any node in the cluster, and backup
operations can be performed from that node. The snapshot of a cluster file system is
accessible only on the node where it is created, that is, the snapshot file system itself
cannot be cluster mounted. See the VERITAS SANPoint Foundation Suite Installation and
Configuration Guide for more information on creating snapshots on cluster file systems.

Using a Snapshot File System for Backup
After a snapshot file system is created, the snapshot performs a consistent backup of data
in the snapped file system.

Backup programs (such as cpio) that back up a standard file system tree can be used
without modification on a snapshot file system because the snapshot presents the same
data as the snapped file system. Backup programs (such as vxdump) that access the disk
structures of a file system require some modifications to handle a snapshot file system.

VxFS utilities recognize snapshot file systems and modify their behavior so that they
operate the same way on snapshots as they do on standard file systems. Other backup
programs that typically read the raw disk image cannot work on snapshots without
altering the backup procedure.
70 VERITAS File System Administrator’s Guide

Creating a Snapshot File System
These other backup programs can use the fscat command to obtain a raw image of the
entire file system that is identical to an image obtainable by running a dd command on the
disk device containing the snapped file system at the exact moment the snapshot was
created. The snapread ioctl takes arguments similar to those of the read system call and
returns the same results that are obtainable by performing a read on the disk device
containing the snapped file system at the exact time the snapshot was created. In both
cases, however, the snapshot file system provides a consistent image of the snapped file
system with all activity complete—it is an instantaneous read of the entire file system.
This is much different than the results that would be obtained by a dd or read command
on the disk device of an active file system.

If you create a complete backup of a snapshot file system using a utility such as vxdump
and later restore it, you must run the fsck command on the restored file system because
the snapshot file system is consistent, but not clean. That is, the file system may have some
extended inode operations to complete, but there should be no other changes. Because a
snapshot file system is not writable, it cannot be fully checked, but the fsck -n command
can be used to report any inconsistencies.

Creating a Snapshot File System
You create a snapshot file system by using the -o snapof= option of the mount
command. The -o snapsize= option may also be required if the device you are
mounting does not identify the device size in its disk label, or if you want a size smaller
than the entire device. Use the following syntax to create a snapshot file system:

mount -F vxfs -o snapof=special,snapsize=snapshot_size \
snapshot_special snapshot_mount_point

You must make the snapshot file system large enough to hold any blocks on the snapped
file system that may be written to while the snapshot file system exists. If a snapshot runs
out of blocks to hold copied data, it is disabled and further attempts to access the snapshot
file system fail.

During periods of low activity (such as nights and weekends), a snapshot typically
requires about two to six percent of the blocks of the snapped file system. During a period
of high activity, the snapshot of a typical file system may require 15 percent of the blocks
of the snapped file system. Most file systems do not turn over 15 percent of data in a single
day. These approximate percentages tend to be lower for larger file systems and higher for
smaller file systems. You can allocate blocks to a snapshot based on characteristics such as
file system usage and duration of backups.

Caution Any existing data on the device used for the snapshot is overwritten.
Chapter 6, Online Backup 71

Making a Backup
Making a Backup
Here are some typical examples of making a backup of a 300,000 block file system named
/home using a snapshot file system on /dev/vx/dsk/fsvol/vol1 with a snapshot
mount point of /backup/home:

◆ To back up files changed within the last week using cpio:

mount -F vxfs –o snapof=/home,snapsize=100000 \
/dev/vx/dsk/fsvol/vol1 /backup/home

cd /backup
find home –ctime –7 –depth –print | cpio –oc > /dev/rmt/c0s0
umount /backup/home

◆ To do a full backup of /home, which exists on disk /dev/dsk/c0t0d0s7, and use
dd to control blocking of output onto tape device using vxdump:

vxdump f – /dev/vx/dsk/fsvol/vol1 | dd bs=128k > /dev/rmt/c0s0

◆ To do a level 3 backup of /dev/dsk/c0t0d0s7 and collect those files that have
changed in the current directory:

vxdump 3f – /dev/vx/dsk/fsvol/vol1 | vxrestore –xf –

◆ To do a full backup of a snapshot file system:

mount –F vxfs –o snapof=/home,snapsize=100000 \
/dev/vx/dsk/fsvol/vol1 /backup/home

vxdump f – /dev/vx/dsk/fsvol/vol1 | dd bs=128k > /dev/rmt/c0s0

The vxdump utility ascertains whether /dev/rdsk/c0t1d0s1 is a snapshot mounted as
/backup/home and do the appropriate work to get the snapshot data through the mount
point.

Performance of Snapshot File Systems
Snapshot file systems maximize the performance of the snapshot at the expense of writes
to the snapped file system. Reads from a snapshot file system typically perform at nearly
the throughput rates of reads from a standard VxFS file system, allowing backups to
proceed at the full speed of the standard file system.

The performance of reads from the snapped file system are generally not affected. Writes
to the snapped file system, however, typically average two to three times as long as
without a snapshot. This is because the initial write to a data block requires reading the
old data, writing the data to the snapshot, and then writing the new data to the snapped
file system. If there are multiple snapshots of the same snapped file system, writes are
even slower. Only the initial write to a block experiences this delay, so operations such as
writes to the intent log or inode updates proceed at normal speed after the initial write.
72 VERITAS File System Administrator’s Guide

Differences Between Snapshots and Storage Checkpoints
Reads from the snapshot file system are impacted if the snapped file system is busy
because the snapshot reads are slowed by the disk I/O associated with the snapped file
system.

The overall impact of the snapshot is dependent on the read to write ratio of an
application and the mixing of the I/O operations. For example, a database application
running an online transaction processing (OLTP) workload on a snapped file system was
measured at about 15 to 20 percent slower than a file system that was not snapped.

Differences Between Snapshots and Storage Checkpoints
While snapshots and Storage Checkpoints both create a point-in-time image of a file system
and only the changed data blocks are updated, there are significant differences between
the two technologies:

◆ Snapshots require a separate device for storage. Storage Checkpoints reside on the
same device as the original file system.

◆ Snapshots are read-only. Storage Checkpoints can be read-only or read-write.

◆ Snapshots are transient. Storage Checkpoints are persistent.

◆ Snapshots cease to exist after being unmounted. Storage Checkpoints can exist and be
mounted on their own

◆ Snapshots track changed blocks on the file system level. Storage Checkpoints track
changed blocks on each file in the file system.

◆ Although there can be more than one snapshot of a file system, they are all based on a
single, parent file system. Storage Checkpoints can be based on other Storage
Checkpoints.

Storage Checkpoints also serve as the enabling technology for two other VERITAS
features: Block-Level Incremental Backups and Storage Rollback, which are used extensively
for backing up databases. See “Storage Checkpoints” on page 51 for more information.
Chapter 6, Online Backup 73

Snapshot File System Internals
Snapshot File System Internals
The following sections describe the internal structure of a snapshot file system and how it
copies changed data blocks from the original snapped file system.

Snapshot File System Disk Structure
A snapshot file system consists of:

◆ A super-block

◆ A bitmap

◆ A blockmap

◆ Data blocks copied from the snapped file system

The following figure shows the disk structure of a snapshot file system:

The Snapshot Disk Structure

The super-block is similar to the super-block of a standard VxFS file system, but the magic
number is different and many of the fields are not applicable.

The bitmap contains one bit for every block on the snapped file system. Initially, all
bitmap entries are zero. A set bit indicates that the appropriate block was copied from the
snapped file system to the snapshot. In this case, the appropriate position in the blockmap
references the copied block.

 super-block

 bitmap

 blockmap

 data block
74 VERITAS File System Administrator’s Guide

Snapshot File System Internals
The blockmap contains one entry for each block on the snapped file system. Initially, all
entries are zero. When a block is copied from the snapped file system to the snapshot, the
appropriate entry in the blockmap is changed to contain the block number on the
snapshot file system that holds the data from the snapped file system.

The data blocks are filled by data copied from the snapped file system, starting from the
beginning of the data block area.

How a Snapshot File System Works
A snapshot file system is created by mounting an empty disk slice as a snapshot of a
currently mounted file system. The bitmap, blockmap and super-block are initialized and
then the currently mounted file system is frozen (see “Freeze and Thaw” on page 50, for a
description of the VX_FREEZE ioctl). After the file system to be snapped is frozen, the
snapshot is enabled and mounted and the snapped file system is thawed. The snapshot
appears as an exact image of the snapped file system at the time the snapshot was made.

Initially, the snapshot file system satisfies read requests by finding the data on the
snapped file system and returning it to the requesting process. When an inode update or a
write changes the data in block n of the snapped file system, the old data is first read and
copied to the snapshot before the snapped file system is updated. The bitmap entry for
block n is changed from 0 to 1 (indicating that the data for block n can be found on the
snapped file system). The blockmap entry for block n is changed from 0 to the block
number on the snapshot file system containing the old data.

A subsequent read request for block n on the snapshot file system will be satisfied by
checking the bitmap entry for block n and reading the data from the indicated block on the
snapshot file system, instead of from block n on the snapped file system. This technique is
called copy-on-write. Subsequent writes to block n on the snapped file system do not result
in additional copies to the snapshot file system, since the old data only needs to be saved
once.

All updates to the snapped file system for inodes, directories, data in files, extent maps,
and so forth, are handled in this fashion so that the snapshot can present a consistent view
of all file system structures on the snapped file system for the time when the snapshot was
created. As data blocks are changed on the snapped file system, the snapshot gradually
fills with data copied from the snapped file system.
Chapter 6, Online Backup 75

Snapshot File System Internals
The amount of disk space required for the snapshot depends on the rate of change of the
snapped file system and the amount of time the snapshot is maintained. In the worst case,
the snapped file system is completely full and every file is removed and rewritten. The
snapshot file system would need enough blocks to hold a copy of every block on the
snapped file system, plus additional blocks for the data structures that make up the
snapshot file system. This is approximately 101 percent of the size of the snapped file
system. Normally, most file systems do not undergo changes at this extreme rate. During
periods of low activity, the snapshot should only require two to six percent of the blocks of
the snapped file system. During periods of high activity, the snapshot might require 15
percent of the blocks of the snapped file system. These percentages tend to be lower for
larger file systems and higher for smaller ones.

Caution If a snapshot file system runs out of space for changed data blocks, it is disabled
and all further access to it fails. This does not affect the snapped file system.
76 VERITAS File System Administrator’s Guide

Quotas
 7

Introduction

The VERITAS File System (VxFS) supports user and group quotas. The quota system
limits the use of two principal resources of a file system: files and data blocks. For each of
these resources, you can assign quotas to individual users and groups to limit their usage.

Note When VxFS file systems are exported via NFS, the VxFS quota commands on the
NFS client cannot query or edit quotas. You can use the VxFS quota commands on
the server to query or edit quotas.

The following topics are covered in this chapter:

◆ Quota Limits

◆ Quota Files on VxFS

◆ Quota Commands

◆ Quota Checking With VxFS

◆ Using Quotas
77

Quota Limits
Quota Limits
You can set limits for individual users and groups to file and data block usage on a file
system. You can set two kinds of limits for each of the two resources:

◆ The hard limit is an absolute limit that cannot be exceeded under any circumstances.

◆ The soft limit, which must be lower than the hard limit, can be exceeded, but only for a
limited time. The time limit can be configured on a per-file system basis only. The
VxFS default limit is seven days.

A typical use of soft limits is when a user must run an application that could generate
large temporary files. In this case, you can allow the user to exceed the quota limit for a
limited time. No allocations are allowed after the expiration of the time limit. Use the
vxedquota command to set limits (see “Using Quotas” on page 80 for an example).

Although file and data block limits can be set individually for each user and group, the
time limits apply to the file system as a whole. The quota limit information is associated
with user and group IDs and is stored in a user or group quota file (see “Quota Files on
VxFS” below).

The quota soft limit can be exceeded when VxFS preallocates space to a file. See “Attribute
Specifics” on page 38 for information on extent allocation policies.

Quota limits cannot exceed one terabyte on a Version 5 disk layout.

Quota Files on VxFS
A quotas file (named quotas) must exist in the root directory of a file system for any of
the quota commands to work. For group quotas to work, there must be a quotas.grp
file.The files in the root directory are referred to as the external quotas file. VxFS also
maintains an internal quotas file for its own use.

The quota administration commands read and write to the external quotas file to obtain
or change usage limits. VxFS uses the internal file to maintain counts of data blocks and
inodes used by each user. When quotas are turned on, the quota limits are copied from the
external quotas file into the internal quotas file. While quotas are on, all the changes in
the usage information and changes to quotas are registered in the internal quotas file.
When quotas are turned off, the contents of the internal quotas file are copied into the
external quotas file so that all data between the two files is synchronized.

VxFS supports group quotas in addition to user quotas. Just as user quotas limit file system
resource (disk blocks and the number of inodes) usage on individual users, group quotas
specify and limit resource usage on a group basis. As with user quotas, group quotas
provide a soft and hard limit for file system resources. If both user and group quotas are
enabled, resource utilization is based on the most restrictive of the two limits for a given
user.
78 VERITAS File System Administrator’s Guide

Quota Commands
To distinguish between group and user quotas, VxFS quota commands use a –g and –u
option. The default is user quotas if neither option is specified. One exception to this rule
is when quotas are specified as a mount command option. In this case, both user and
group quotas are enabled. Support for group quotas also requires a separate group quotas
file. The VxFS group quota file is named “quotas.grp.” The VxFS user quotas file is named
“quotas.” This name was used to distinguish it from the “quotas.user” file used by other
file systems under Solaris.

Quota Commands

Note Most of the quota commands in VxFS are similar to BSD quota commands.
However, the quotacheck command is an exception—VxFS does not support an
equivalent command. This is discussed in more detail in “Quota Checking With
VxFS.”

In general, quota administration for VxFS is performed using commands similar to UFS
quota commands. On Solaris, the available quota commands are UFS specific (that is,
these commands work only on UFS file systems). For this reason, VxFS supports a similar
set of commands that work only for VxFS file systems.

VxFS supports the following quota-related commands:

◆ vxedquota—used to edit quota limits for users and groups. The limit changes made
by vxedquota are reflected both in the internal quotas file and the external quotas
file.

◆ vxrepquota—provides a summary of quotas and disk usage.

◆ vxquot—provides file ownership and usage summaries.

◆ vxquota—used to view quota limits and usage.

◆ vxquotaon—used to turn quotas on for a mounted VxFS file system.

◆ vxquotaoff—used to turn quotas off for a mounted VxFS file system.

Besides these commands, the VxFS mount command supports a special mount option
(–o quota), which can be used to turn on quotas at mount time.

For additional information on the quota commands, see the corresponding manual pages.
Chapter 7, Quotas 79

Quota Checking With VxFS
Quota Checking With VxFS
The standard practice with most quota implementations is to mount all file systems and
then run a quota check on each one. The quota check reads all the inodes on disk and
calculates the usage for each user and group This can be time consuming, and because the
file system is mounted, the usage can change while quotacheck is running.

VxFS does not support a quotacheck command. With VxFS, quota checking is
performed automatically (if necessary) at the time quotas are turned on. A quota check is
necessary if the file system has changed with respect to the usage information as recorded
in the internal quotas file. This happens only if the file system was written with quotas
turned off, or if there was structural damage to the file system that required a full file
system check (see fsck_vxfs(1M)).

A quota check generally reads information for each inode on disk and rebuilds the
internal quotas file. It is possible that while quotas were not on, quota limits were changed
by the system administrator. These changes are stored in the external quotas file. As part
of enabling quotas processing, quota limits are read from the external quotas file into the
internal quotas file.

Using Quotas
This section shows usage examples of the VxFS quota commands.

vxquotaon
To use the quota functionality on a file system, quotas must be turned on. You can turn
them on at mount time or after a file system is mounted.

Note Before turning on quotas, the root directory of the file system must contain a file for
user quotas named quotasand a file for group quotas named quotas.grp owned
by root.

To turn on user and group quotas for a VxFS file system, enter:

vxquotaon /mount_point

To turn on only user quotas for a VxFS file system, enter:

vxquotaon –u /mount_point

To turn on only group quotas for a VxFS file system, enter:

vxquotaon –g /mount_point
80 VERITAS File System Administrator’s Guide

Using Quotas
mount
You can also turn on user or group quotas for a file system at mount time by specifying
the –o quota option to the mount command:

mount –F vxfs –o quota special|mount_point

To turn on only user quotas, enter:

mount –F vxfs –o usrquota special|mount_point

To turn on only group quotas, enter:

mount –F vxfs –o grpquota special|mount_point

vxedquota
You can set up user and group quotas using the vxedquota command. You must have
superuser privileges to edit quotas. By default, or when you specify the –u option,
vxedquota edits the quotas of one or more users specified by username:

vxedquota [–u] username

When you specify the –g option, vxedquota edits the quotas of one or more groups
specified by groupname:

vxedquota –g groupname

vxedquota creates a temporary file for the given user; this file contains on-disk quotas
for each mounted file system that has a quotas file. It is not necessary that quotas be
turned on for vxedquota to work. However, the quota limits are applicable only after
quotas are turned on for a given file system.

The soft and hard limits can be modified or assigned values. For any user or group, usage
can never exceed the hard limit after quotas are turned on. Time limits can be modified for
any user with the command:

vxedquota [–u] –t

Time limits can be modified for any group with the command:

vxedquota –g –t

Modified time limits apply to the entire file system and cannot be set selectively for each
user or group.
Chapter 7, Quotas 81

Using Quotas
vxquota
Use the vxquota command to view a user’s or group’s disk quotas and usage on VxFS
file systems. To display a user’s quotas and disk usage on all mounted VxFS file systems
where the quotas file exists, enter:

vxquota –v [–u] username

To display a group’s quotas and disk usage on all mounted VxFS file systems where the
quotas.grp file exists, enter:

vxquota –v –g groupname

vxquot
Use the vxquot command to display the number of blocks owned by each user or group
in a file system. The following command displays the number of files and the space
owned by each user:

vxquot [–u] –f filesystem

The following command displays the number of files and the space owned by each group:

vxquot –g –f filesystem

vxquotaoff
To turn off quotas for a mounted file system, enter:

vxquotaoff /mount_point

To turn off only user quotas for a VxFS file system, enter:

vxquotaoff –u /mount_point

To turn off only group quotas for a VxFS file system, enter:

vxquotaoff –g /mount_point
82 VERITAS File System Administrator’s Guide

Quick I/O for Databases
 8

Introduction

VERITAS Quick I/O for Databases (referred to as Quick I/O) lets applications access
preallocated VxFS files as raw character devices. This provides the administrative benefits
of running databases on file systems without the performance degradation usually
associated with databases created on file systems.

Quick I/O is part of the VRTSvxfs package, but is available for use only with other
VERITAS products. See the VERITAS File System Release Notes for current product
information.

Topics covered in this chapter:

◆ Quick I/O Functionality and Performance

◆ Using VxFS Files as Raw Character Devices

◆ Creating a Quick I/O File Using qiomkfile

◆ Accessing Regular VxFS Files Through Symbolic Links

◆ Using Quick I/O with Oracle Databases

◆ Using Quick I/O with Sybase Databases

◆ Enabling and Disabling Quick I/O

◆ Cached Quick I/O For Databases

◆ Quick I/O Statistics

◆ Quick I/O Summary
83

Quick I/O Functionality and Performance
Quick I/O Functionality and Performance
Many database administrators (DBAs) create databases on file systems because it makes
common administrative tasks (such as moving, copying, and backup) much simpler.
However, putting databases on file systems significantly reduces database performance.
By using VERITAS Quick I/O, you can retain the advantages of having databases on file
systems without performance degradation.

Quick I/O uses a special naming convention to allow database applications to access
regular files as raw character devices. This provides higher database performance in the
following ways:

◆ Supporting kernel asynchronous I/O

◆ Supporting direct I/O

◆ Avoiding kernel write locks

◆ Avoiding double buffering

Supporting Kernel Asynchronous I/O
Some operating systems provide kernel support for asynchronous I/O on raw devices,
but not on regular files. As a result, even if the database server is capable of using
asynchronous I/O, it cannot issue asynchronous I/O requests when the database is built
on a file system. Lack of asynchronous I/O significantly degrades performance. Quick
I/O lets the database server take advantage of kernel supported asynchronous I/O on file
system files accessed via the Quick I/O interface by providing a character device node
that is treated by the OS as a raw device.

Supporting Direct I/O
I/O on files using read() and write() system calls typically results in data being copied
twice: once between user and kernel space, and later between kernel space and disk. In
contrast, I/O on raw devices is direct. That is, data is copied directly between user space
and disk, saving one level of copying. As with I/O on raw devices, Quick I/O avoids the
extra copying.

Avoiding Kernel Write Locks
When database I/O is performed via the write() system call, each system call acquires
and releases a write lock inside the kernel. This lock prevents simultaneous write
operations on the same file. Because database systems usually implement their own locks
for managing concurrent access to files, write locks unnecessarily serialize I/O operations.
Quick I/O bypasses file system locking and lets the database server control data access.
84 VERITAS File System Administrator’s Guide

Using VxFS Files as Raw Character Devices
Avoiding Double Buffering
Most database servers implement their own buffer cache and do not need the system
buffer cache. So the memory used by the system buffer cache is wasted, and results in data
being cached twice: first in the database cache and then in the system buffer cache. By
using direct I/O, Quick I/O does not waste memory on double buffering. This frees up
memory that can then be used by the database server buffer cache, leading to increased
performance.

Using VxFS Files as Raw Character Devices
When VxFS with Quick I/O is installed, there are two ways of accessing a file:

◆ The VxFS interface treats the file as a regular VxFS file

◆ The Quick I/O interface treats the same file as if it were a raw character device,
having performance similar to a raw device

This allows a database server to use the Quick I/O interface while a backup server uses
the VxFS interface.

Quick I/O Naming Convention
To treat a file as a raw character device, Quick I/O requires a file name extension to create
an alias for a regular VxFS file. Quick I/O recognizes the alias when you add the
following suffix to a file name:

::cdev:vxfs:

Whenever an application opens an existing VxFS file with the suffix ::cdev:vxfs (the
cdev portion is an acronym for character device), Quick I/O treats the file as if it were a raw
device. For example, if the file xxx is a regular VxFS file, then an application can access xxx
as a raw character device by opening it with the name:

xxx::cdev:vxfs:

Note When Quick I/O is enabled, you cannot create a regular VxFS file with a name that
uses the ::cdev:vxfs: extension. If an application tries to create a regular file
named xxx::cdev:vxfs:, the create fails. If Quick I/O is not available, it is
possible to create a regular file with the ::cdev:vxfs: extension, but this could
cause problems if Quick I/O is later enabled. It is advisable to reserve the extension
only for Quick I/O files.
Chapter 8, Quick I/O for Databases 85

Creating a Quick I/O File Using qiomkfile
Use Restrictions
There are restrictions to using regular VxFS files as Quick I/O files.

1. The name xxx::cdev:vxfs: is recognized as a special name by VxFS only when:

a. the qio module is loaded

b. Quick I/O has a valid license

c. the regular file xxx is physically present on the VxFS file system

d. there is no regular file named xxx::cdev:vxfs: on the system

2. If the file xxx is being used for memory mapped I/O, it cannot be accessed as a Quick
I/O file.

3. An I/O fails if the file xxx has a logical hole and the I/O is done to that hole on
xxx::cdev:vxfs:.

4. The size of the file cannot be extended by writes through the Quick I/O interface.

Creating a Quick I/O File Using qiomkfile
The best way to make regular files accessible to the Quick I/O interface and preallocate
space for them is to use the qiomkfile command. Unlike the VxFS setext command,
which requires superuser privileges, any user who has read/write permissions can run
qiomkfile to create the files. The qiomkfile command has five options:

You can specify file size in terms of bytes (the default), or in kilobytes, megabytes,
gigabytes, or sectors (512 bytes) by adding a k, K, m, M, g, G, s or S suffix. If the size of the
file including the header is not a multiple of the file system block size, it is rounded to a
multiple of the file system block size before preallocation.

-a Creates a symbolic link with an absolute path name for a specified file. The
default is to create a symbolic link with a relative path name.

-e (For Oracle database files to allow tablespace resizing.) Extends the file size
by the specified amount.

-h (For Oracle database files.) Creates a file with additional space allocated for
the Oracle header.

-r (For Oracle database files to allow tablespace resizing.) Increases the file to
the specified size.

-s Preallocates space for a file.
86 VERITAS File System Administrator’s Guide

Creating a Quick I/O File Using qiomkfile
qiomkfile creates two files: a regular file with preallocated, contiguous space; and a
symbolic link pointing to the Quick I/O name extension. For example, to create a 100 MB
file named dbfile in /database, enter:

$ qiomkfile -s 100m /database/dbfile

In this example, the first file created is a regular file named /database/.dbfile (which
has the real space allocated).

The second file is a symbolic link named /database/dbfile. This is a relative link to
/database/.dbfile via the Quick I/O interface, that is, to .dbfile::cdev:vxfs:.
This allows .dbfile to be accessed by any database or application as a raw character
device. To check the results, enter:

$ ls -al
-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:03 .dbfile
lrwxrwxrwx 1 oracle dba 19 Oct 22 15:03 dbfile -> \

.dbfile::cdev:vxfs:

or:

$ ls -lL
crw-r----- 1oracle dba 43,0 Oct 22 15:04 dbfile
-rw-r--r-- 1oracle dba 10485760 Oct 22 15:04 .dbfile

If you specify the -a option to qiomkfile, an absolute path name (see “Using Absolute
or Relative Path Names” on page 88) is used so /database/dbfile points to
/database/.dbfile::cdev:vxfs:. To check the results, enter:

$ ls -al
-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:05 .dbfile
lrwxrwxrwx 1 oracle dba 31 Oct 22 15:05 dbfile ->

/database/.dbfile::cdev:vxfs:

See the qiomkfile(1) manual page for more information.
Chapter 8, Quick I/O for Databases 87

Accessing Regular VxFS Files Through Symbolic Links
Accessing Regular VxFS Files Through Symbolic Links
Another way to use Quick I/O is to create a symbolic link for each file in your database
and use the symbolic link to access the regular files as Quick I/O files.

The following commands create a 100 MB Quick I/O file named dbfile on the VxFS file
system /database. The dd command preallocates the file space:

$ cd /database
$ dd if=/dev/zero of=/database/.dbfile bs=128k count=800
$ ln -s .dbfile::cdev:vxfs: /database/dbfile

Any database or application can then access the file dbfile as a raw character device. See
the VERITAS Editions product documentation for more information.

Using Absolute or Relative Path Names
It is usually better to use relative path names instead of absolute path names when
creating symbolic links to access regular files as Quick I/O files. Using relative path
names prevents copies of the symbolic link from referring to the original file. This is
important if you are backing up or moving database files with a command that preserves
the symbolic link. However, some applications, such as SAP, require absolute path names.

If you create a symbolic link using a relative path name, both the symbolic link and the file
are under the same parent directory. If you want to relocate the file, both the file and the
symbolic link must be moved.

It is also possible to use the absolute path name when creating a symbolic link. If the
database file is relocated to another directory, you must change the symbolic link to use
the new absolute path. You can put all the symbolic links in a directory separate from the
data directories. For example, you can create a directory named /database and put in all
the symbolic links, with the symbolic links pointing to absolute path names.
88 VERITAS File System Administrator’s Guide

Using Quick I/O with Oracle Databases
Preallocating Files Using the setext Command
You can use the VxFS setext command to preallocate file space, but the setext
command requires superuser privileges. You may need to use the chown and chgrp
commands to change the owner and group permissions on the file after it is created. The
following example shows how to use setext to create a 100 MB database file for an
Oracle database:

cd /database
touch .dbfile
setext -r 102400 -f noreserve -f chgsize .dbfile
ln -s .dbfile::cdev:vxfs: dbfile
chown oracle dbfile
chgrp dba dbfile

See the setext(1) manual page for more information.

Using Quick I/O with Oracle Databases
The following example shows how a file can be used by an Oracle database to create a
tablespace. This command would be run by the Oracle DBA (typically user ID oracle):

$ qiomkfile -h -s 100m /database/dbfile
$ svrmgrl
SVRMGR> connect internal
SVRMGR> create tablespace ts1
SVRMGR> datafile ’/database/dbfile’ size 100M;
SVRMGR> exit;

The following example shows how the file can be used by an Oracle database to create a
tablespace. Oracle requires additional space for one Oracle header size. So in this example,
although 100 MB was allocated to /database/dbfile, the Oracle database can use only
up to 100 MB minus the Oracle parameter db_block_size.

$ svrmgrl
SVRMGR> connect internal
SVRMGR> create tablespace ts1
SVRMGR> datafile ’/database/dbfile’ size 99M;
SVRMGR> exit;
Chapter 8, Quick I/O for Databases 89

Using Quick I/O with Sybase Databases
Using Quick I/O with Sybase Databases
Quick I/O works similarly on Sybase database devices.

To create a new database device, preallocate space on the file system by using the
qiomkfile command, then use the Sybase buildmaster command for a master device,
or the Transact SQL disk init command for a database device. qiomkfile creates two
files: a regular file using preallocated, contiguous space, and a symbolic link pointing to
the ::cdev:vxfs: name extension. For example, to create a 100 megabyte master device
masterdev on the file system /sybmaster, enter:

$ cd /sybmaster
$ qiomkfile -s 100m masterdev

You can use this master device while running the sybsetup program or sybinit script.
If you are creating the master device directly, type:

$ buildmaster -d masterdev -s 51200

To add a new 500 megabyte database device datadev to the file system /sybdata on
your dataserver, enter:

$ cd /sybdata
$ qiomkfile -s 500m datadev
...
$ isql -U sa -P sa_password -S dataserver_name
1> disk init
2> name = “logical_name”,
3> physname = “/sybdata/datadev”,
4> vdevno = “device_number”,
5> size = 256000
6> go
90 VERITAS File System Administrator’s Guide

Enabling and Disabling Quick I/O
Enabling and Disabling Quick I/O
If the Quick I/O feature is licensed and installed, Quick I/O is enabled by default when a
file system is mounted. Alternatively, the VxFS mount -o qio command enables Quick
I/O. The mount -o noqio command disables Quick I/O.

If Quick I/O is not installed or licensed, a file system mounts by default without Quick
I/O and no error message is displayed. However, if you specify the -o qio option, the
mount command prints the following error message and terminates without mounting
the file system.

VxFDD: You don’t have a license to run this program
vxfs mount: Quick I/O not available

Cached Quick I/O For Databases
32-bit applications (such as 32-bit databases) can use a maximum of only 4 GB of memory
because of the 32-bit address limitation. The Cached Quick I/O feature improves database
performance on machines with sufficient memory by also using the file system cache to
store data.

For read operations through the Quick I/O interface, data is cached in the system page
cache, so subsequent reads of the same data can access this cached copy and avoid doing
disk I/O. To maintain the correct data in its buffer for write operations, Cached Quick I/O
keeps the page cache in sync with the data written to disk.

With 64-bit applications, for which limited memory is not a critical problem, using the file
system cache still provides performance benefits by using the read-ahead functionality.
Because of the read-ahead functionality, sequential table scans will benefit the most from
using Cached Quick I/O by significantly reducing the query response time.

To use this feature, set the qio_cache_enable system parameter with the vxtunefs
utility, and use the qioadmin command to turn the per-file cache advisory on or off. See
the vxtunefs(1M) and qioadmin(1) man pages for more information.
Chapter 8, Quick I/O for Databases 91

Cached Quick I/O For Databases
Enabling Cached Quick I/O
Caching for Quick I/O files can be enabled online when the database is running. You
enable caching in two steps:

1. Set the qio_cache_enable parameter of vxtunefs to enable caching on a file
system.

2. Enable the Cached Quick I/O feature for specific files using the qioadmin command.

Note Quick I/O must be enabled on the file system for Cached Quick I/O to operate.

Enabling Cached Quick I/O for File Systems

Caching is initially disabled on a file system. You enable Cached Quick I/O for a file
system by setting the qio_cache_enable option of the vxtunefs command after the
file system is mounted. For example, to enable Cached Quick I/O for the file system
/database01, enter:

vxtunefs -s -o qio_cache_enable=1 /database01

where /database01 is a VxFS file system containing the Quick I/O files.

Note This command enables caching for all the Quick I/O files on this file system.

You can make this setting persistent across mounts by adding a file system entry in the file
/etc/vx/tunefstab. For example:

/dev/vx/dsk/datadg/database01 qio_cache_enable=1
/dev/vx/dsk/datadg/database02 qio_cache_enable=1

For information on how to add tuning parameters, see the tunefstab(4) manual page.
92 VERITAS File System Administrator’s Guide

Cached Quick I/O For Databases
Enabling Cached Quick I/O for Individual Files

There are several ways to enable caching for a Quick I/O file. Use the following syntax to
enable caching on an individual file:

$ qioadmin -S filename=on mount_point

To enable caching for the Quick I/O file /database01/names.dbf, type:

$ qioadmin -S names.dbf=ON /database01

To disable the caching for that file, enter:

$ qioadmin -S names.dbf=OFF /database01

To make the setting persistent across mounts, create a qiotab file, /etc/vx/qioadmin, to
list files and their caching advisories. Based on the following example, the file
/database/sell.dbf will have caching turned on whenever the file system
/database is mounted:

device=/dev/vx/dsk/datadg/database01
dates.dbf,off
names.dbf,off
sell.dbf,on

Note The cache advisories operate only if Cached Quick I/O is enabled for the file
system. If the qio_cache_enable flag is zero, Cached Quick I/O is OFF for all the
files in that file system even if the individual file cache advisory for a file is ON.

To check on the current cache advisory settings for a file, enter:

$ qioadmin -P names.dbf /database01
names.dbf,OFF

To check the setting of the qio_cache_enable flag for a file system, enter:

$ vxtunefs -p /database01
qio_cache_enable = 1

For more information on the format of the /etc/vx/qioadmin file and the command
syntax, see the qioadmin(1) manual page.

Note Check the setting of the flag qio_cache_enable using the vxtunefs command,
and the individual cache advisories for each file, to verify caching.
Chapter 8, Quick I/O for Databases 93

Quick I/O Statistics
Tuning Cached Quick I/O
Not all database files can take advantage of caching. Performance may even degrade in
some instances (due to double buffering, for example). Determining which files and
applications can benefit from Cached Quick I/O requires that you first collect and analyze
the caching statistics.

See the qiostat(1) man page for information on gathering statistics, and the VERITAS
Editions products documentation for a description of the Cached Quick I/O tuning
methodology.

Quick I/O Statistics
Quick I/O provides the qiostat utility to collect database I/O statistics generated over a
period of time. qiostat reports statistics such as the number of read and write
operations, the number of blocks read or written, and the average time spent on read and
write operations during an interval. See the qiostat(1) manual page for more
information.

Quick I/O Summary
To increase database performance on a VxFS file system using Quick I/O:

1. Make sure that the Quick I/O module is loaded.

modinfo | grep fdd

2. You can add the following line to the file /etc/system to load Quick I/O whenever
the system reboots.

forceload: drv/fdd

3. Create a regular VxFS file and preallocate it to the required size, or use the
qiomkfile command. The size of this preallocation depends on the size requirement
of the database server.

4. Create and access the database using the file name xxx::cdev:vxfs:.

For information on how to configure VxFS and set up file devices for use with new and
existing Oracle databases, see the VERITAS Editions product documentation.
94 VERITAS File System Administrator’s Guide

VERITAS QuickLog
 9

Introduction

VERITAS QuickLog™ is an optionally licensable feature that enhances file system
performance. Although QuickLog can improve file system performance, VxFS does not
require QuickLog to operate effectively.

VERITAS QuickLog is part of the VRTSvxfs package, but is available for use only with
other VERITAS products. See the VERITAS File System Release Notes for current product
information.

Topics in this chapter include:

◆ VERITAS QuickLog Overview

◆ QuickLog Setup

- Creating a QuickLog Device

- Removing a QuickLog Device

◆ VxFS Administration Using QuickLog

- Enabling a QuickLog Device

- Disabling a QuickLog Device

◆ QuickLog Administration and Troubleshooting

- QuickLog Load Balancing

- QuickLog Statistics

- QuickLog Recovery

◆ Cluster QuickLog Devices
95

VERITAS QuickLog Overview
VERITAS QuickLog Overview
The VxFS intent log is stored near the beginning of the volume on which the file system
resides (The word volume here describes either a VERITAS Volume Manager (VxVM)
volume or a raw disk partition). VxFS log writes are sequential, meaning that each log
record is written to disk where the previous log record finished. The performance of the
log writes is limited because the file system is doing other operations (inode updates,
reading and writing data) that require reads and writes from other areas of the disk. The
disk head is constantly seeking between the log and data areas of VxFS, reducing the
benefits associated with sequential writes to disk.

QuickLog improves file system performance by eliminating the time that a disk spends
seeking between the log and data areas of VxFS. This is accomplished by exporting the file
system intent log to a separate physical volume called a QuickLog device. A QuickLog
device should not reside on a physical disk that shares space with other file systems, since
the performance improvement that QuickLog provides depends on the disk head always
being in position to write the next log record.

QuickLog is transparent to the end user and requires a minimum of intervention or
training to operate.

Note QuickLog cannot be enabled on a root file system.

The figure on the following page shows a logical view of QuickLog and how it interfaces
with the operating system.

QuickLog Setup
VERITAS QuickLog supports:

◆ Up to 63 QuickLog devices

- Up to 31 local QuickLog devices

- Up to 32 cluster QuickLog devices

◆ Up to 32 VxFS file systems per QuickLog device

◆ From one to four QuickLog volumes per QuickLog device (see “QuickLog Load
Balancing” on page 100 for details)

◆ Communication between QuickLog and VxFS through an integrated interface
96 VERITAS File System Administrator’s Guide

QuickLog Setup
QuickLog Logical View

VxFS VxFS
File System Device

Device Driver or VxVM

QuickLog Driver

VxFS File System
Interface

VxFS Administration Commands QuickLog Administration Commands

Hardware

Kernel

User

QuickLog
File System
Chapter 9, VERITAS QuickLog 97

QuickLog Setup
Creating a QuickLog Device
The creation of a QuickLog device requires the following two steps:

1. Create a VxVM volume using the command vxassist:

vxassist -g diskgroup make qlog_volume size vxvm_disk

If the QuickLog volume is a VxVM volume, it must reside in the same disk group as the
file system to be logged. Each QuickLog volume should reside on a separate physical disk.
Specify vxvm_disk during the creation of the VxVM volume to be used by the QuickLog
device. The VxVM disk should not be shared or used by any other volumes.

Note As the number of file systems enabled on a QuickLog device increases, the larger
the QuickLog device is, the better the performance will be. Because a QuickLog log
file is circular, very large logs typically reduce the overhead associated with
wrapping when the end of the log file is reached.

To calculate the minimum size of a QuickLog device, determine how many file systems to
log to the device (1-31). Multiply this number by 16 megabytes (16 MB is the optimal VxFS
intent log size) to get the total size of the log area for your QuickLog device. The
QuickLog device should be approximately 50% larger than this QuickLog log area and a
minimum of 32 MB. For example, to estimate the minimum size needed for four file
systems on a single QuickLog device:

(4 x 16 MB) x 1.5 = 96 MB

2. Build a QuickLog volume using the command qlogmk:

qlogmk -g diskgroup vxlog[x] qlog_volume

One to four QuickLog volumes must be attached once you have determined the size of
your QuickLog device. These volumes provide the static storage for the QuickLog device,
including the VxFS log records, QuickLog superblocks and QuickLog maps.

The size of the QuickLog device can be spread out across the one to four QuickLog
volumes to be attached (see “QuickLog Load Balancing” on page 100 for details).

The command qlogmk both writes out the QuickLog volume layout to the volume
qlog_volume and attaches the QuickLog volume to the specified QuickLog device.
Acceptable QuickLog device names are vxlog1 through vxlog31.
98 VERITAS File System Administrator’s Guide

VxFS Administration Using QuickLog
Removing a QuickLog Device
The removal of a QuickLog device involves the qlogrm and vxedit commands:

qlogrm -g diskgroup qlog_volume

qlogrm detaches a QuickLog volume from its QuickLog device. If the QuickLog volume
is the only volume attached to the QuickLog device, all file systems that are logging to the
QuickLog device must have logging by QuickLog disabled prior to using qlogrm (see
“Disabling a QuickLog Device” on page 100 for details).

Use vxedit to remove the VxVM volume:

vxedit -g diskgroup -rf rm qlog_volume

VxFS Administration Using QuickLog

Enabling a QuickLog Device
There are two methods to enable logging of a VxFS file system by QuickLog: the
QuickLog utility qlogenable and a VxFS special mount option.

The -o qlog= option to the mount command is provided by VxFS to enable logging by
QuickLog. This can be used in conjunction with the -o remount mount option to enable
QuickLog or change QuickLog devices for active file systems.

From the command line, remount the VxFS file system using qlogenable:

qlogenable [qlog_device] /mountpoint

or by using the VxFS -o remount option:

mount -F vxfs -o remount,qlog=[qlog_device] special /mountpoint

The use of either method is transparent to users and does not stop or unmount mounted
file systems. When no QuickLog device name is specified, QuickLog automatically
assigns one of the idle or least loaded QuickLog devices in the same disk group as that of
the file system.

To ensure that QuickLog is enabled for a specific VxFS file system after every system
reboot, add “qlog=” to the mount option field in the file /etc/vfstab for that file
system entry, as shown in the following example:

device device mount FS fsck mount mount
to mount to fsck point type pass at boot options
#
/dev/vx/dsk/vol1 /dev/vx/rdsk/vol1 /vol1 vxfs 1 no qlog=
Chapter 9, VERITAS QuickLog 99

QuickLog Administration and Troubleshooting
If no QuickLog device name is selected after the qlog= argument, QuickLog
automatically assigns an idle or least loaded QuickLog device.

Disabling a QuickLog Device
To disable logging by QuickLog without unmounting a VxFS file system, use the
qlogdisable command:

qlogdisable /mountpoint

Make sure to disable QuickLog devices for all mounted and logged VxFS file systems and
detach all QuickLog volumes before unloading the QuickLog driver (see
qlogdetach(1M)).

QuickLog Administration and Troubleshooting
This section discusses QuickLog functionality important to a system administrator
responsible for implementing and tuning QuickLog.

QuickLog Load Balancing
QuickLog can perform load balancing when two or more physical volumes are attached
to a QuickLog device. QuickLog supports from one to four QuickLog volumes attached to
each of the 63 QuickLog devices.

QuickLog monitors the average response time for each volume attached to a QuickLog
device. If some volume(s) are responding faster than others, QuickLog diverts more of the
log writes to those volumes, decreasing the overall response time for the device.

You can add a QuickLog volume to a particular QuickLog device with no more than three
QuickLog volumes attached to grow the device’s capacity. Similarly, you can remove a
QuickLog volume from a QuickLog device with at least one other QuickLog volume
attached to shrink the device. Growing or shrinking a QuickLog device does not interrupt
file systems logged by QuickLog.

To shrink a QuickLog device that has more than one attached QuickLog volume, detach a
QuickLog volume from the QuickLog device by using qlogdetach:

qlogdetach vxlog[1-31] qlog_volume

Alternatively, if you want to remove the QuickLog volume that you are detaching from
the QuickLog device your are shrinking, use qlogrm:

qlogrm qlog_volume
100 VERITAS File System Administrator’s Guide

QuickLog Administration and Troubleshooting
Before the QuickLog volume is detached, qlogdetach flushes all valid log blocks back
to the corresponding VxFS logs. The remaining attached QuickLog volumes take up the
load released by the removed volume.

To grow a QuickLog device that has three or fewer attached QuickLog volumes, create
and attach a QuickLog volume to the QuickLog device by using qlogmk:

qlogmk -g diskgroup vxlog[1-31] qlog_volume

If the QuickLog volume that you want to attach already exists, attach the volume by using
qlogattach:

qlogattach vxlog[1-31] qlog_volume

The newly attached QuickLog volume begins receiving VxFS log writes being sent to the
QuickLog device, easing the load on the existing QuickLog device volumes.

QuickLog Statistics
QuickLog maintains statistics about the QuickLog devices, QuickLog volumes and the
VxFS file systems logged by QuickLog. The statistics include:

◆ The number of read and write I/O operations per second

◆ The average number of read and write I/O operations per second

◆ The number of bytes per second for read and write I/O operations

◆ The average number of bytes per second for read and write I/O operations

◆ The average service time for read and write I/O operations

See the qlogstat(1M) online manual page for details.
Chapter 9, VERITAS QuickLog 101

Cluster QuickLog Devices
QuickLog Recovery
During the boot sequence, the QuickLog start up script
/etc/rcS.d/S88qlog-startup searches the QuickLog configuration file
/etc/qlog/config. For each QuickLog device in this file that is in the ATTACHED state,
the script tries to replay the log data and metadata that has not been committed to the
VxFS file systems before the crash or reboot occurred. This log replay is similar to that of
the VxFS fsck command (see fsck_vxfs(1M) for details). If the log replay is successful,
VxFS does not need to perform a full file system consistency check when running fsck.
(See the qlogck(1M) man page for more information).

If an error occurs on one of the QuickLog volumes, the QuickLog device to which this
volume is attached is disabled and a full file system consistency check is done on all VxFS
file systems that were enabled on this device.

If an error occurs on only one of the file systems logged on a QuickLog device, a full file
system consistency check is run only on that file system.

The start up script calls qlogattach, which reattaches all recovered QuickLog volumes.
The QuickLog volumes must be reattached before you can remount VxFS file systems to
log with QuickLog.

Note All operations are done automatically during system start up; no manual
intervention is required.

Cluster QuickLog Devices
Cluster QuickLog supports logging of a cluster file system. After a cluster QuickLog
device is configured into a cluster, the status of the device is free, so the device can be used
from any node in the cluster. When a node first accesses the free cluster QuickLog device,
that node becomes the master of the device. From that point on, only the master node can
access the device until the node leaves the cluster or relinquishes mastership of the device.
Configuration updates (such as attaching or detaching a QuickLog volume and enabling
or disabling file system logging) can only be done from the master. See The VERITAS
SANPoint Foundation Suite Installation and Configuration Guide, included in the SANPoint
Foundation Suite product, for more information.
102 VERITAS File System Administrator’s Guide

VERITAS File System Quick Reference
 A

Introduction

This appendix provides instructions and examples on performing the following VERITAS
File System (VxFS) operations:

◆ Creating a File System

◆ Mounting a File System

◆ Unmounting a File System

◆ Displaying Information on Mounted File Systems

◆ Identifying File System Types

◆ Resizing a File System

◆ Backing Up and Restoring a File System

◆ Using Quotas
103

Creating a File System
Creating a File System
The mkfs command creates a VxFS file system by writing to a special character device file.
The special character device is a raw disk device or a VERITAS Volume Manager (VxVM)
volume. mkfs builds a file system with a root directory and a lost+found directory.

Before running mkfs, you must create the target device. Refer to your operating system
documentation for more information. If you are using a logical device (such as a VxVM
volume), see the VxVM documentation for instructions on device initialization.

How to Create a File System
To create a file system, use the mkfs command:

mkfs [-F vxfs] [generic_options] [-o specific_options] special [size]

See the following manual pages for more information about creating VxFS file systems:

◆ mkfs(1M)

◆ mkfs_vxfs(1M)

vxfs The file system type.

generic_options Options common to most other file system types.

specific_options Options specific to VxFS.

-o N Displays the geometry of the file system and does not write to the
device.

-o largefiles Allows user to create files larger than two gigabytes.

special The character (raw) device or VERITAS Volume Manager volume.

size The size of the new file system (in sectors).
104 VERITAS File System Administrator’s Guide

Creating a File System
Example

To create a VxFS file system 12288 sectors in size on VxVM volume, enter:

mkfs -F vxfs /dev/vx/rdsk/diskgroup/volume 12288

Information similar to the following displays:

version 5 layout

12288 sectors, 6144 blocks of size 1024, log size 512 blocks
unlimited inodes, 5597 data blocks, 5492 free data blocks
1 allocation units of 32778 blocks, 32768 data blocks
last allocation unit has 5597 data blocks
first allocation unit starts at block 537
overhead per allocation unit is 10 blocks
initial allocation overhead is 105 blocks

At this point, you can mount the newly created file system.
Appendix A, VERITAS File System Quick Reference 105

Mounting a File System
Mounting a File System
You can mount a VxFS file system by using the mount command. When you enter the
mount command, the generic mount command parses the arguments and the -F FSType
option executes the mount command specific to that file system type. The mount
command first searches the /etc/fs/FSType directory, then the
/usr/lib/fs/FSType directory. If the -F option is not supplied, the command searches
the file /etc/vfstab for a file system and an FSType matching the special file or mount
point provided. If no file system type is specified, mount uses the default file system.

How to Mount a File System
After you create a VxFS file system, you can use the mount command to mount the file
system:

mount [-F vxfs] [generic_options] [-r] [-o specific_options] \
special mount_point

vxfs File system type.

generic_options Options common to most other file system types.

specific_options Options specific to VxFS.

-o ckpt=ckpt_name Mounts a VERITAS Storage Checkpoint.

-o cluster Mounts a file system in shared mode. Available only with the VxFS
cluster file system feature.

special Block special device.

mount_point Directory on which to mount the file system.

-r Mounts the file system as read-only.
106 VERITAS File System Administrator’s Guide

Mounting a File System
Mount Options

The mount command has numerous options to tailor a file system for various functions
and environments. Some specific_options are listed below.

◆ Security feature

If security is important, use blkclear to ensure that deleted files are completely
erased before the space is reused.

◆ Support for large files

If you specify the largefiles option, you can create files larger than two gigabytes
on the file system.

◆ Support for cluster file systems

If you specify the cluster option, the file system is mounted in shared mode.
Cluster file systems depend on several other VERITAS products that must be correctly
configured before a complete clustering environment is enabled.

◆ Using Storage Checkpoints

The -o ckpt=checkpoint_name option mounts a Storage Checkpoint of a mounted file
system that was previously created by the fsckptadm command.

◆ Using databases

If you are using databases with VxFS and if you have installed a license key for the
VERITAS Quick I/O for Databases feature, the mount command enables Quick I/O
by default (the same as specifying the qio option). The noqio option disables Quick
I/O. If you do not have Quick I/O, mount ignores the qio option. Alternatively, you
can increase database performance using the mount option convosync=direct,
which utilizes direct I/O. See “Quick I/O for Databases” on page 83 for more
information.

◆ News file systems

If you are using cnews, use delaylog (or tmplog),mincache=closesync
because cnews does an fsync() on each news file before marking it received. The
fsync() is performed synchronously as required, but other options are delayed.

◆ VERITAS QuickLog

If you are using QuickLog, you can improve I/O performance by moving logging to a
separate disk device by using qlog=[dev]. See “VERITAS QuickLog” on page 95 for
more information.

◆ Temporary file systems

For a temporary file system such as /tmp, where performance is more important than
data integrity, use tmplog,mincache=tmpcache.
Appendix A, VERITAS File System Quick Reference 107

Mounting a File System
See “Choosing mount Command Options” on page 19 and the following manual pages
for more information about the mount command and its available options:

fsckptadm(1M)

mount(1M)

mount_vxfs(1M)

vfstab(4)

Example

To mount the file system /dev/vx/dsk/fsvol/vol1 on the /ext directory with
read/write access and delayed logging, enter:

mount -F vxfs -o delaylog /dev/vx/dsk/fsvol/vol1 /ext

How to Edit the vfstab File
You can edit the /etc/vfstab file to automatically mount a file system at boot time. You
must specify:

◆ the special block device name to mount

◆ the special character device name used by fsck

◆ the mount point

◆ the mount options

◆ the file system type (vxfs)

◆ which fsck pass looks at the file system

◆ whether to mount the file system at boot time

Each entry must be on a single line. See the vfstab(4) manual page for more information
about the /etc/vfstab file format.
108 VERITAS File System Administrator’s Guide

Mounting a File System
Here is a typical vfstab file with the new file system on the last line:

device
to mount
#

device
to fsck

mount
point

FS
type

fsck
pass

mount
at boot

mount
options

/dev/dsk/c1d0s2 /dev/rdsk/c1d0s2 /usr ufs 1 yes —

/proc — /proc proc — no —

fd — /dev/fd fd — no —

swap — /tmp tmpfs — yes —

/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 / ufs 1 no —

/dev/dsk/c0t3d0s1 — — swap — no —

/dev/vx/dsk/fsvol/vol1 /dev/vx/rdsk/fsvol/vol1 /ext vxfs 1 yes —
Appendix A, VERITAS File System Quick Reference 109

Unmounting a File System
Unmounting a File System
Use the umount command to unmount a currently mounted file system.

How to Unmount a File System
To unmount a file system, use the following syntax:

 umount special | mount_point

Specify the file system to be unmounted as a mount_point or special (the device on which
the file system resides). See the umount_vxfs(1M) manual page for more information
about this command and its available options.

Example

To unmount the file system /dev/vx/dsk/fsvol/vol1, enter:

umount /dev/vx/dsk/fsvol/vol1

To unmount all file systems not required by the system, enter:

umount -a

This unmounts all file systems except /, /usr, /usr/kvm, /var, /proc, /dev/fd, and
/tmp.
110 VERITAS File System Administrator’s Guide

Displaying Information on Mounted File Systems
Displaying Information on Mounted File Systems
You can use the mount command to display a list of currently mounted file systems.

How to Display File System Information
To view the status of mounted file systems, use the syntax:

 mount -v

This shows the file system type and mount options for all mounted file systems. The -v
option specifies verbose mode.

See the following manual pages for more information about the mount command and its
available options:

mount(1M)

mount_vxfs(1M)

Example

When invoked without options, the mount command displays file system information
similar to the following:

mount
/ on /dev/root read/write/setuid on Thu May 26 16:58:24 2001

/proc on /proc read/write on Thu May 26 16:58:25 2001
/dev/fd on /dev/fd read/write on Thu May 26 16:58:26 2001
/tmp on /tmp read/write on Thu May 26 16:59:33 2001
/var/tmp on /var/tmp read/write on Thu May 26 16:59:34 2001
Appendix A, VERITAS File System Quick Reference 111

Identifying File System Types
Identifying File System Types
Use the fstyp command to determine the file system type for a specified file system. This
is useful when a file system was created elsewhere and you want to know its type.

How to Identify a File System
To determine the status of mounted file systems, use the syntax:

 fstyp -v special

See the following manual pages for more information about the fstyp command and its
available options:

fstyp(1M)

fstyp_vxfs(1M)

Example

To find out what kind of file system is on the device /dev/vx/dsk/fsvol/vol1, enter:

fstyp -v /dev/vx/dsk/fsvol/vol1

The output indicates that the file system type is vxfs, and displays file system
information similar to the following:

vxfs
magic a501fcf5 version 5 ctime Tue Jun 25 18:29:39 2002
logstart 17 logend 1040
bsize 1024 size 1048576 dsize 1047255 ninode 0 nau 8
defiextsize 64 ilbsize 0 immedlen 96 ndaddr 10
aufirst 1049 emap 2 imap 0 iextop 0 istart 0
bstart 34 femap 1051 fimap 0 fiextop 0 fistart 0 fbstart 1083
nindir 2048 aulen 131106 auimlen 0 auemlen 32
auilen 0 aupad 0 aublocks 131072 maxtier 17
inopb 4 inopau 0 ndiripau 0 iaddrlen 8 bshift 10
inoshift 2 bmask fffffc00 boffmask 3ff checksum d7938aa1
oltext1 9 oltext2 1041 oltsize 8 checksum2 52a
free 382614 ifree 0
efree 676 413 426 466 612 462 226 112 85 35 14 3 6 5 4 4 0 0

special The character (raw) device.

-v Specifies verbose mode.
112 VERITAS File System Administrator’s Guide

Resizing a File System
Resizing a File System
You can extend or shrink mounted VxFS file systems using the fsadm command. See the
following manual pages for more information about resizing file systems:

format(1M)

fsadm_vxfs(1M)

How to Extend a File System Using fsadm
If a VxFS file system is not large enough, you can increase its size. The size of the file
system is specified in units of 512-byte blocks (or sectors).

Note If a file system is full, busy, or too fragmented, the resize operation may fail.

To extend a VxFS file system, use the syntax:

/usr/lib/fs/vxfs/fsadm [-b newsize] [-r rawdev] mount_point

Note The device must have enough space to contain the larger file system. See the
format(1M) manual page or the VERITAS Volume Manager Administrator’s Guide for
more information.

Example

To extend the VxFS file system mounted on /ext to 22528 sectors, enter:

fsadm -b 22528 /ext

newsize The size (in sectors) to which the file system will increase.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/vfstab and fsadm cannot determine the raw device.
Appendix A, VERITAS File System Quick Reference 113

Resizing a File System
How to Shrink a File System
You can decrease the size of the file system using fsadm, even while the file system is
mounted.

Note In cases where data is allocated towards the end of the file system, shrinking may
not be possible. If a file system is full, busy, or too fragmented, the resize operation
may fail.

To decrease the size of a VxFS file system, use the syntax:

fsadm [-b newsize] [-r rawdev] mount_point

Example

To shrink a VxFS file system mounted at /ext to 20480 sectors, enter:

fsadm -b 20480 /ext

Caution After this operation, there is unused space at the end of the device. You can then
resize the device, but be careful not to make the device smaller than the new
size of the file system.

newsize The size (in sectors) to which the file system will shrink.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/vfstab and fsadm cannot determine the raw device.
114 VERITAS File System Administrator’s Guide

Resizing a File System
How to Reorganize a File System
You can reorganize (or compact) a fragmented file system using fsadm, even while the file
system is mounted. This may help shrink a file system that could not previously be
decreased.

Note If a file system is full or busy, the reorg operation may fail.

To reorganize a VxFS file system, use the syntax:

fsadm [-e] [-d] [-E] [-D] [-r rawdev] mount_point

Example

To reorganize the VxFS file system mounted at /ext, enter:

fsadm -EeDd /ext

-d Reorders directory entries to put subdirectory entries first, then all
other entries in decreasing order of time of last access. Also
compacts directories to remove free space.

-D Reports on directory fragmentation.

-e Minimizes file system fragmentation. Files are reorganized to have
the minimum number of extents.

-E Reports on extent fragmentation.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/vfstab and fsadm cannot determine the raw device.
Appendix A, VERITAS File System Quick Reference 115

Backing Up and Restoring a File System
Backing Up and Restoring a File System
To back up a VxFS file system, you first create a read-only snapshot file system, then back
up the snapshot. This procedure lets you keep the main file system on line. The snapshot
is a copy of the snapped file system that is frozen at the moment the snapshot is created.

See “Online Backup” on page 69 and the following manual pages for more information
about the mount, vxdump, and vxrestore commands and their available options:

- mount(1M)

- mount_vxfs(1M)

- vxdump(1M)

- vxrestore(1M)

How to Create and Mount a Snapshot File System
The first step in backing up a VxFS file system is to create and mount a snapshot file
system. To create and mount a snapshot of a VxFS file system, use the syntax:

mount [-F vxfs] -o snapof=source,[snapsize=size] \
destination snap_mount_point

Example

To create a snapshot file system of the file system at /home on
/dev/vx/dsk/fsvol/vol1 and mount it at /snapmount, enter:

mount -F vxfs -o snapof=/dev/vx/dsk/fsvol/vol1, \
snapsize=32768 /dev/vx/dsk/fsvol/vol1 /snapmount

You can now back up the file system, as described in the following section.

source The special device name or mount point of the file system to copy.

destination The name of the special device on which to create the snapshot.

size The size of the snapshot file system in sectors.

snap_mount_point Location where to mount the snapshot; snap_mount_point must
exist before you enter this command.
116 VERITAS File System Administrator’s Guide

Backing Up and Restoring a File System
How to Back Up a File System
After creating a snapshot file system as described in the previous section, you can use
vxdump to back it up. To back up a VxFS snapshot file system, use the syntax:

vxdump [-c] [-f backupdev] snap_mount_point

Example

To back up the VxFS snapshot file system mounted at /snapmount to the tape drive with
device name /dev/rmt/00m, enter:

vxdump -cf /dev/rmt/00m /snapmount

How to Restore a File System
After backing up the file system, you can restore it using the vxrestore command. First,
create and mount an empty file system. To restore a VxFS snapshot file system, use the
syntax:

vxrestore [-v] [-x] [filename]

Example

To restore a VxFS snapshot file system using /restore as a mount point, enter:

vxrestore -vx /restore

-c Specifies using a cartridge tape device.

backupdev The device on which to back up the file system.

snap_mount_point The snapshot file system’s mount point.

-v Specifies verbose mode.

-x Extracts the named files from the tape.

filename The file or directory to restore. If filename is omitted, the root
directory (and thus the entire tape) is extracted.
Appendix A, VERITAS File System Quick Reference 117

Using Quotas
Using Quotas
You can use quotas to allocate per-user quotas on VxFS file systems.

See “Quotas” on page 77 and the following manual pages for more information about the
vxquota, vxquotaon, vxquotaoff, and vxedquota commands and their available
options:

- vxquota(1M)

- vxquotaon(1M)

- vxquotaoff(1M)

- vxedquota(1M)

How to Turn On Quotas
You can enable quotas at mount time or after a file system is mounted. The root directory
of the file system must contain a file named quotas that is owned by root.

To turn on quotas for a mounted file system, use the syntax:

vxquotaon mount_point

To mount a file system and turn on quotas at the same time, use the syntax:

 mount -F vxfs -o quota special mount_point

If the root directory does not contain a quotas file, the mount command succeeds, but
quotas are not turned on.

Example

To create a quotas file (if it does not already exist) and turn on quotas for a VxFS file
system mounted at /mnt, enter:

touch /mnt/quotas
vxquotaon /mnt

To turn on quotas for a file system at mount time, enter:

mount -F vxfs -o quota /dev/vx/dsk/fsvol/vol1 /mnt
118 VERITAS File System Administrator’s Guide

Using Quotas
How to Set Up User Quotas
You can set user quotas with the vxedquota command if you have superuser privileges.
User quotas can have a soft limit and/or hard limit. You can modify the limits or assign
them specific values. Users are allowed to exceed the soft limit, but only for a specified
time. Disk usage can never exceed the hard limit. The default time limit for exceeding the
soft limit is seven days on VxFS file systems.

vxedquota creates a temporary file for a specified user. This file contains on-disk quotas
for each mounted VxFS file system that has a quotas file. The temporary file has one or
more lines similar to:

fs /mnt blocks (soft = 0, hard = 0) inodes (soft=0, hard=0)
fs /mnt1 blocks (soft = 100, hard = 200) inodes (soft=10, hard=20)

Quotas do not need to be turned on for vxedquota to work. However, the quota limits
apply only after quotas are turned on for a given file system.

vxedquota has an option to modify time limits. Modified time limits apply to the entire
file system; you cannot set time limits for an individual user.

To invoke the quota editor, use the syntax:

 vxedquota username

To modify the time limit, use the syntax:

 vxedquota -t
Appendix A, VERITAS File System Quick Reference 119

Using Quotas
How to View Quotas
The superuser or individual user can view disk quotas and usage on VxFS file systems
using the vxquota command. To view quotas for a specific user, use the syntax:

vxquota -v username

This command displays the user’s quotas and disk usage on all mounted VxFS file
systems where the quotas file exists. You will see all established quotas regardless of
whether or not the quotas are actually turned on.

How to Turn Off Quotas
You can turn off quotas for a mounted file system using the vxquotaoff command. To
turn off quotas for a file system, use the syntax:

 vxquotaoff mount_point

Example

To turn off quotas for a VxFS file system mounted at /mnt, enter:

vxquotaoff /mnt
120 VERITAS File System Administrator’s Guide

Kernel Messages
 B

Introduction

This appendix contains a listing of diagnostic or error messages generated by the
VERITAS File System (VxFS) kernel. Each message has a description and a suggestion on
how to handle or correct the underlying problem.

The following topics are covered in this chapter:

◆ File System Response to Problems

- Marking an Inode Bad

- Disabling Transactions

- Disabling a File System

- Recovering a Disabled File System

◆ Kernel Messages

- Global Message IDs
121

File System Response to Problems
File System Response to Problems
When the file system encounters problems, it responds in one of three ways:

◆ Marks an inode bad

◆ Disables transactions

◆ Disables the file system

Marking an Inode Bad
Inodes can be marked bad if an inode update or a directory-block update fails. In these
types of failures, the file system does not know what information is on the disk, and
considers all the information that it finds to be invalid. After an inode is marked bad, the
kernel still permits access to the file name, but any attempt to access the data in the file or
change the inode fails.

Disabling Transactions
If the file system detects an error while writing the intent log, it disables transactions.
After transactions are disabled, the files in the file system can still be read or written, but
no block or inode frees or allocations, structural changes, directory entry changes, or other
changes to metadata are allowed.

Disabling a File System
If an error occurs that compromises the integrity of the file system, VxFS disables itself. If
the intent log fails or an inode-list error occurs, the super-block is ordinarily updated
(setting the VX_FULLFSCK flag) so that the next fsck does a full structural check. If this
super-block update fails, any further changes to the file system can cause inconsistencies
that are undetectable by the intent log replay. To avoid this situation, the file system
disables itself.
122 VERITAS File System Administrator’s Guide

Kernel Messages
Recovering a Disabled File System
When the file system is disabled, no data can be written to the disk. Although some minor
file system operations still work, most simply return EIO. The only thing that can be done
when the file system is disabled is to do a umount and run a full fsck.

Although a log replay may produce a clean file system, do a full structural check to be
safe. To execute a full structural check, enter:

fsck -F vxfs -o full -y /dev/vx/rdsk/diskgroup/volume

Caution Be careful when running this command. By specifying the –y option, fsck can
make irreversible changes if it performs a full file system check.

The file system usually becomes disabled because of disk errors. Disk failures that disable
a file system should be fixed as quickly as possible (see fsck_vxfs(1M)).

Kernel Messages
This section lists the VxFS kernel error messages in numerical order. The Description
subsection for each message describes the problem, the Action sub-section suggests
possible solutions.

Global Message IDs
When a VxFS kernel message displays on the system console, it is preceded by a
numerical ID shown in the msgcnt field. This ID number increases with each instance of
the message to guarantee that the sequence of events is known when analyzing file system
problems.

Each message is also written to an internal kernel buffer that you can view in the file
/var/adm/messages.

In some cases, additional data is written to the kernel buffer. For example, if an inode is
marked bad, the contents of the bad inode are written. When an error message is
displayed on the console, you can use the unique message ID to find the message in
/var/adm/messagesand obtain the additional information.
Appendix B, Kernel Messages 123

Kernel Messages
Message
Number

Message and Definition

001 NOTICE: msgcnt x: vxfs: mesg 001: vx_nospace - mount_point file system full (n
block extent)

◆ Description

The file system is out of space.

Often, there is plenty of space and one runaway process used up all the
remaining free space. In other cases, the available free space becomes
fragmented and unusable for some files.

◆ Action

Monitor the free space in the file system and prevent it from becoming full. If a
runaway process has used up all the space, stop that process, find the files
created by the process, and remove them. If the file system is out of space,
remove files, defragment, or expand the file system.

To remove files, use the find command to locate the files that are to be
removed. To get the most space with the least amount of work, remove large
files or file trees that are no longer needed. To defragment or expand the file
system, use fsadm (see the fsadm_vxfs(1M) manual page).

002 WARNING: msgcnt x: vxfs: mesg 002: vx_snap_strategy - mount_point file
system write attempt to read-only file system

WARNING: msgcnt x: vxfs: mesg 002: vx_snap_copyblk - mount_point file
system write attempt to read-only file system

◆ Description

The kernel tried to write to a read-only file system. This is an unlikely problem,
but if it occurs, the file system is disabled.

◆ Action

The file system was not written, so no action is required. Report this as a bug to
your customer support organization.
124 VERITAS File System Administrator’s Guide

Kernel Messages
003, 004, 005 WARNING: msgcnt x: vxfs: mesg 003: vx_mapbad - mount_point file system free
extent bitmap in au aun marked bad

WARNING: msgcnt x: vxfs: mesg 004: vx_mapbad - mount_point file system free
inode bitmap in au aun marked bad

WARNING: msgcnt x: vxfs: mesg 005: vx_mapbad - mount_point file system
inode extended operation bitmap in au aun marked bad

◆ Description

If there is an I/O failure while writing a bitmap, the map is marked bad. The
kernel considers the maps to be invalid, so does not do any more resource
allocation from maps. This situation can cause the file system to report out of
space or out of inode error messages even though df may report an
adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a
consistency check, or blocks are freed that are already free in the bitmap, the file
system has been corrupted. This may have occurred because a user or process
wrote directly to the device or used fsdb to change the file system.

The VX_FULLFSCK flag is set. If the map that failed was a free extent bitmap,
and the VX_FULLFSCK flag can’t be set, then the file system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Unmount the file system and
use fsck to run a full structural check.

006, 007 WARNING: msgcnt x: vxfs: mesg 006: vx_sumupd - mount_point file system
summary update in au aun failed

WARNING: msgcnt x: vxfs: mesg 007: vx_sumupd - mount_point file system
summary update in inode au iaun failed

◆ Description

An I/O error occurred while writing the allocation unit or inode allocation unit
bitmap summary to disk. This sets the VX_FULLFSCK flag on the file system. If
the VX_FULLFSCK flag can’t be set, the file system is disabled.

◆ Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access, and
use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 125

Kernel Messages
008, 009 WARNING: msgcnt x: vxfs: mesg 008: vx_direrr - mount_point file system inode
inumber block blkno error errno

WARNING: msgcnt x: vxfs: mesg 009: vx_direrr - mount_point file system inode
inumber immediate directory error errno

◆ Description

A directory operation failed in an unexpected manner. The mount point, inode,
and block number identify the failing directory. If the inode is an immediate
directory, the directory entries are stored in the inode, so no block number is
reported. If the error is ENOENT or ENOTDIR, an inconsistency was detected in
the directory block. This inconsistency could be a bad free count, a corrupted
hash chain, or any similar directory structure error. If the error is EIO or ENXIO,
an I/O failure occurred while reading or writing the disk block.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a full
structural check the next time it is run.

◆ Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access.
Unmount the file system and use fsck to run a full structural check.

010 WARNING: msgcnt x: vxfs: mesg 010: vx_ialloc - mount_point file system inode
inumber not free

◆ Description

When the kernel allocates an inode from the free inode bitmap, it checks the
mode and link count of the inode. If either is non-zero, the free inode bitmap or
the inode list is corrupted.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a full
structural check the next time it is run.

◆ Action

Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
126 VERITAS File System Administrator’s Guide

Kernel Messages
011 NOTICE: msgcnt x: vxfs: mesg 011: vx_noinode - mount_point file system out of
inodes

◆ Description

The file system is out of inodes.

◆ Action

Monitor the free inodes in the file system. If the file system is getting full, create
more inodes either by removing files or by expanding the file system. File
system resizing is described in “Online System Administration” on page 8, and
in the fsadm_vxfs(1M) online manual page.

012 WARNING: msgcnt x: vxfs: mesg 012: vx_iget - mount_point file system invalid
inode number inumber

◆ Description

When the kernel tries to read an inode, it checks the inode number against the
valid range. If the inode number is out of range, the data structure that
referenced the inode number is incorrect and must be fixed.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a full
structural check the next time it is run.

◆ Action

Unmount the file system and use fsck to run a full structural check.

013 WARNING: msgcnt x: vxfs: mesg 013: vx_iposition - mount_point file system
inode inumber invalid inode list extent

◆ Description

For a Version 2 and above disk layout, the inode list is dynamically allocated.
When the kernel tries to read an inode, it must look up the location of the inode
in the inode list file. If the kernel finds a bad extent, the inode can’t be accessed.
All of the inode list extents are validated when the file system is mounted, so if
the kernel finds a bad extent, the integrity of the inode list is questionable. This
is a very serious error.

The VX_FULLFSCK flag is set in the super-block and the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 127

Kernel Messages
014 WARNING: msgcnt x: vxfs: mesg 014: vx_iget - inode table overflow

◆ Description

All the system in-memory inodes are busy and an attempt was made to use a
new inode.

◆ Action

Look at the processes that are running and determine which processes are using
inodes. If it appears there are runaway processes, they might be tying up the
inodes. If the system load appears normal, increase the vxfs_ninode
parameter in the kernel (see “Kernel Tunables” on page 27).

015 WARNING: msgcnt x: vxfs: mesg 015: vx_ibadinactive - mount_point file system
can’t mark inode inumber bad

WARNING: msgcnt x: vxfs: mesg 015: vx_ilisterr - mount_point file system can’t
mark inode inumber bad

◆ Description

An attempt to mark an inode bad on disk, and the super-block update to set the
VX_FULLFSCK flag, failed. This indicates that a catastrophic disk error may
have occurred since both an inode list block and the super-block had I/O
failures. The file system is disabled to preserve file system integrity.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the disk failed, replace it before remounting the file
system.

016 WARNING: msgcnt x: vxfs: mesg 016: vx_ilisterr - mount_point
file system error reading inode inumber

◆ Description

An I/O error occurred while reading the inode list. The VX_FULLFSCK flag is
set.

◆ Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access.
Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
128 VERITAS File System Administrator’s Guide

Kernel Messages
017 WARNING: msgcnt x: vxfs: mesg 017: vx_attr_getblk - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_iget - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_indadd - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_indtrunc - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_iremove - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_bmap - mount_point file system inode
inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_bmap_indirect_ext4 - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_delbuf_flush - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_dio_iovec - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_dirbread - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_dircreate - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_dirlook - mount_point file system inode
inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_doextop_iau - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_doextop_now - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_do_getpage - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_enter_ext4 - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_exttrunc - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_get_alloc - mount_point file system
inode inumber marked bad in core

Message
Number

Message and Definition
Appendix B, Kernel Messages 129

Kernel Messages
017 (continued) WARNING: msgcnt x: vxfs: mesg 017: vx_ilisterr - mount_point file system inode
inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_indtrunc - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_iread - mount_point file system inode
inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_iremove - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_iremove_attr - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_logwrite_flush - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_oltmount_iget - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_overlay_bmap - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_readnomap - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_reorg_trunc - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_stablestore - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_tranitimes - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_trunc - mount_point file system inode
inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_write_alloc2 - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_write_default - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: vxfs: mesg 017: vx_zero_alloc - mount_point file system
inode inumber marked bad in core

Message
Number

Message and Definition
130 VERITAS File System Administrator’s Guide

Kernel Messages
017 (continued) ◆ Description

When inode information is no longer dependable, the kernel marks it bad in
memory. This is followed by a message to mark it bad on disk as well unless the
mount command ioerror option is set to disable, or there is subsequent I/O
failure when updating the inode on disk. No further operations can be
performed on the inode.

The most common reason for marking an inode bad is a disk I/O failure. If there
is an I/O failure in the inode list, on a directory block, or an indirect address
extent, the integrity of the data in the inode, or the data the kernel tried to write
to the inode list, is questionable. In these cases, the disk driver prints an error
message and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address, invalid
inode fields, or corruption in directory data blocks during a validation check. A
validation check failure indicates the file system has been corrupted. This
usually occurs because a user or process has written directly to the device or
used fsdb to change the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a full structural
check the next time it is run.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process is writing to the device, report the
problem to your customer support organization. In either case, unmount the file
system. The file system can be remounted without a full fsck unless the
VX_FULLFSCK flag is set for the file system.

Message
Number

Message and Definition
Appendix B, Kernel Messages 131

Kernel Messages
019 WARNING: msgcnt x: vxfs: mesg 019: vx_log_add - mount_point file system log
overflow

◆ Description

Log ID overflow. When the log ID reaches VX_MAXLOGID (approximately one
billion by default), a flag is set so the file system resets the log ID at the next
opportunity. If the log ID has not been reset, when the log ID reaches
VX_DISLOGID (approximately VX_MAXLOGID plus 500 million by default), the
file system is disabled. Since a log reset will occur at the next 60 second sync
interval, this should never happen.

◆ Action

Unmount the file system and use fsck to run a full structural check.

020 WARNING: msgcnt x: vxfs: mesg 020: vx_logerr - mount_point file system log
error errno

◆ Description

Intent log failed. The kernel will try to set the VX_FULLFSCK and VX_LOGBAD
flags in the super-block to prevent running a log replay. If the super-block can’t
be updated, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the disk failed, replace it before remounting the file
system.

Message
Number

Message and Definition
132 VERITAS File System Administrator’s Guide

Kernel Messages
021 WARNING: msgcnt x: vxfs: mesg 021: vx_fs_init - mount_point file system
validation failure

◆ Description

When a VxFS file system is mounted, the structure is read from disk. If the file
system is marked clean, the structure is correct and the first block of the intent
log is cleared.

If there is any I/O problem or the structure is inconsistent, the kernel sets the
VX_FULLFSCK flag and the mount fails.

If the error isn’t related to an I/O failure, this may have occurred because a user
or process has written directly to the device or used fsdb to change the file
system.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process is writing to the device, report the
problem to your customer support organization. In either case, unmount the file
system and use fsck to run a full structural check.

022 WARNING: msgcnt x: vxfs: mesg 022: vx_mountroot - root file system remount
failed

◆ Description

The remount of the root file system failed. The system will not be usable if the
root file system can’t be remounted for read/write access.

When a VERITAS root file system is first mounted, it is mounted for read-only
access. After fsck is run, the file system is remounted for read/write access.
The remount fails if fsck completed a resize operation or modified a file that
was opened before the fsck was run. It also fails if an I/O error occurred
during the remount.

Usually, the system halts or reboots automatically.

◆ Action

Reboot the system. The system either remounts the root cleanly or runs a full
structural fsck and remounts cleanly. If the remount succeeds, no further
action is necessary.

Check the console log for I/O errors. If the disk has failed, replace it before the
file system is mounted for write access.

If the system won’t come up and a full structural fsck hasn’t been run, reboot
the system on a backup root and manually run a full structural fsck. If the
problem persists after the full structural fsck and there are no I/O errors,
contact your customer support organization.

Message
Number

Message and Definition
Appendix B, Kernel Messages 133

Kernel Messages
023 WARNING: msgcnt x: vxfs: mesg 023: vx_unmountroot - root file system is busy
and can’t be unmounted cleanly

◆ Description

There were active files in the file system and they caused the unmount to fail.

When the system is halted, the root file system is unmounted. This happens
occasionally when a process is hung and it can’t be killed before unmounting
the root.

◆ Action

fsck will run when the system is rebooted. It should clean up the file system.
No other action is necessary.

If the problem occurs every time the system is halted, determine the cause and
contact your customer support organization.

024 WARNING: msgcnt x: vxfs: mesg 024: vx_cutwait - mount_point file system
current usage table update error

◆ Description

Update to the current usage table (CUT) failed.

For a Version 2 disk layout, the CUT contains a fileset version number and total
number of blocks used by each fileset.

The VX_FULLFSCK flag is set in the super-block. If the super-block can’t be
written, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check.

025 WARNING: msgcnt x: vxfs: mesg 025: vx_wsuper - mount_point file system
superblock update failed

◆ Description

An I/O error occurred while writing the super-block during a resize operation.
The file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the problem is a disk failure, replace the disk before
the file system is mounted for write access.

Message
Number

Message and Definition
134 VERITAS File System Administrator’s Guide

Kernel Messages
026 WARNING: msgcnt x: vxfs: mesg 026: vx_snap_copyblk - mount_point primary
file system read error

◆ Description

Snapshot file system error.

When the primary file system is written, copies of the original data must be
written to the snapshot file system. If a read error occurs on a primary file
system during the copy, any snapshot file system that doesn’t already have a
copy of the data is out of date and must be disabled.

◆ Action

An error message for the primary file system prints. Resolve the error on the
primary file system and rerun any backups or other applications that were
using the snapshot that failed when the error occurred.

027 WARNING: msgcnt x: vxfs: mesg 027: vx_snap_bpcopy - mount_point snapshot
file system write error

◆ Description

A write to the snapshot file system failed.

As the primary file system is updated, copies of the original data are read from
the primary file system and written to the snapshot file system. If one of these
writes fails, the snapshot file system is disabled.

◆ Action

Check the console log for I/O errors. If the disk has failed, replace it. Resolve the
error on the disk and rerun any backups or other applications that were using
the snapshot that failed when the error occurred.

Message
Number

Message and Definition
Appendix B, Kernel Messages 135

Kernel Messages
028 WARNING: msgcnt x: vxfs: mesg 028: vx_snap_alloc - mount_point snapshot file
system out of space

◆ Description

The snapshot file system ran out of space to store changes.

During a snapshot backup, as the primary file system is modified, the original
data is copied to the snapshot file system. This error can occur if the snapshot
file system is left mounted by mistake, if the snapshot file system was given too
little disk space, or the primary file system had an unexpected burst of activity.
The snapshot file system is disabled.

◆ Action

Make sure the snapshot file system was given the correct amount of space. If it
was, determine the activity level on the primary file system. If the primary file
system was unusually busy, rerun the backup. If the primary file system is no
busier than normal, move the backup to a time when the primary file system is
relatively idle or increase the amount of disk space allocated to the snapshot file
system.

Rerun any backups that failed when the error occurred.

029, 030 WARNING: msgcnt x: vxfs: mesg 029: vx_snap_getbp - mount_point snapshot file
system block map write error

WARNING: msgcnt x: vxfs: mesg 030: vx_snap_getbp - mount_point snapshot file
system block map read error

◆ Description

During a snapshot backup, each snapshot file system maintains a block map on
disk. The block map tells the snapshot file system where data from the primary
file system is stored in the snapshot file system. If an I/O operation to the block
map fails, the snapshot file system is disabled.

◆ Action

Check the console log for I/O errors. If the disk has failed, replace it. Resolve the
error on the disk and rerun any backups that failed when the error occurred.

Message
Number

Message and Definition
136 VERITAS File System Administrator’s Guide

Kernel Messages
031 WARNING: msgcnt x: vxfs: mesg 031: vx_disable - mount_point file system
disabled

◆ Description

File system disabled, preceded by a message that specifies the reason. This
usually indicates a serious disk problem.

◆ Action

Unmount the file system and use fsck to run a full structural check. If the
problem is a disk failure, replace the disk before the file system is mounted for
write access.

032 WARNING: msgcnt x: vxfs: mesg 032: vx_disable - mount_point snapshot file
system disabled

◆ Description

Snapshot file system disabled, preceded by a message that specifies the reason.

◆ Action

Unmount the snapshot file system, correct the problem specified by the
message, and rerun any backups that failed due to the error.

033 WARNING: msgcnt x: vxfs: mesg 033: vx_check_badblock - mount_point file
system had an I/O error, setting VX_FULLFSCK

◆ Description

When the disk driver encounters an I/O error, it sets a flag in the super-block
structure. If the flag is set, the kernel will set the VX_FULLFSCK flag as a
precautionary measure. Since no other error has set the VX_FULLFSCK flag, the
failure probably occurred on a data block.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the problem is a disk failure, replace the disk before
the file system is mounted for write access.

Message
Number

Message and Definition
Appendix B, Kernel Messages 137

Kernel Messages
034 WARNING: msgcnt x: vxfs: mesg 034: vx_resetlog - mount_point file system can’t
reset log

◆ Description

The kernel encountered an error while resetting the log ID on the file system.
This happens only if the super-block update or log write encountered a device
failure. The file system is disabled to preserve its integrity.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the problem is a disk failure, replace the disk before
the file system is mounted for write access.

035 WARNING: msgcnt x: vxfs: mesg 035: vx_inactive - mount_point file system
inactive of locked inode inumber

◆ Description

VOP_INACTIVE was called for an inode while the inode was being used. This
should never happen, but if it does, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Report as a
bug to your customer support organization.

036 WARNING: msgcnt x: vxfs: mesg 036: vx_lctbad - mount_point file system link
count table lctnumber bad

◆ Description

Update to the link count table (LCT) failed.

For a Version 2 and above disk layout, the LCT contains the link count for all the
structural inodes. The VX_FULLFSCK flag is set in the super-block. If the
super-block can’t be written, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
138 VERITAS File System Administrator’s Guide

Kernel Messages
037 WARNING: msgcnt x: vxfs: mesg 037: vx_metaioerr - file system meta data error

◆ Description

A read or a write error occurred while accessing file system metadata. The full
fsck flag on the file system was set. The message specifies whether the disk
I/O that failed was a read or a write.

File system metadata includes inodes, directory blocks, and the file system log.
If the error was a write error, it is likely that some data was lost. This message
should be accompanied by another file system message describing the
particular file system metadata affected, as well as a message from the disk
driver containing information about the disk I/O error.

◆ Action

Resolve the condition causing the disk error. If the error was the result of a
temporary condition (such as accidentally turning off a disk or a loose cable),
correct the condition. Check for loose cables, etc. Unmount the file system and
use fsck to run a full structural check (possibly with loss of data).

In case of an actual disk error, if it was a read error and the disk driver remaps
bad sectors on write, it may be fixed when fsck is run since fsck is likely to
rewrite the sector with the read error. In other cases, you replace or reformat the
disk drive and restore the file system from backups. Consult the documentation
specific to your system for information on how to recover from disk errors. The
disk driver should have printed a message that may provide more information.

Message
Number

Message and Definition
Appendix B, Kernel Messages 139

Kernel Messages
038 WARNING: msgcnt x: vxfs: mesg 038: vx_dataioerr - file system file data error

◆ Description

A read or a write error occurred while accessing file data. The message specifies
whether the disk I/O that failed was a read or a write. File data includes data
currently in files and free blocks. If the message is printed because of a read or
write error to a file, another message that includes the inode number of the file
will print. The message may be printed as the result of a read or write error to a
free block, since some operations allocate an extent and immediately perform
I/O to it. If the I/O fails, the extent is freed and the operation fails. The message
is accompanied by a message from the disk driver regarding the disk I/O error.

◆ Action

Resolve the condition causing the disk error. If the error was the result of a
temporary condition (such as accidentally turning off a disk or a loose cable),
correct the condition. Check for loose cables, etc. If any file data was lost, restore
the files from backups. Determine the file names from the inode number (see the
ncheck(1M) manual page for more information.)

If an actual disk error occurred, make a backup of the file system, replace or
reformat the disk drive, and restore the file system from the backup. Consult the
documentation specific to your system for information on how to recover from
disk errors. The disk driver should have printed a message that may provide
more information.

039 WARNING: msgcnt x: vxfs: mesg 039: vx_writesuper - file system super-block
write error

◆ Description

An attempt to write the file system super block failed due to a disk I/O error. If
the file system was being mounted at the time, the mount will fail. If the file
system was mounted at the time and the full fsck flag was being set, the file
system will probably be disabled and Message 031 will also be printed. If the
super-block was being written as a result of a sync operation, no other action is
taken.

◆ Action

Resolve the condition causing the disk error. If the error was the result of a
temporary condition (such as accidentally turning off a disk or a loose cable),
correct the condition. Check for loose cables, etc. Unmount the file system and
use fsck to run a full structural check.

If an actual disk error occurred, make a backup of the file system, replace or
reformat the disk drive, and restore the file system from backups. Consult the
documentation specific to your system for information on how to recover from
disk errors. The disk driver should have printed a message that may provide
more information.

Message
Number

Message and Definition
140 VERITAS File System Administrator’s Guide

Kernel Messages
040 WARNING: msgcnt x: vxfs: mesg 040: vx_dqbad - mount_point file system
user|group quota file update error for id id

◆ Description

An update to the user quotas file failed for the user ID.

The quotas file keeps track of the total number of blocks and inodes used by
each user, and also contains soft and hard limits for each user ID. The
VX_FULLFSCK flag is set in the super-block. If the super-block cannot be
written, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the disk has a hardware failure, it should be
repaired before the file system is mounted for write access.

041 WARNING: msgcnt x: vxfs: mesg 041: vx_dqget - mount_point file system
user|group quota file can't read quota for id id

◆ Description

A read of the user quotas file failed for the uid.

The quotas file keeps track of the total number of blocks and inodes used by
each user, and contains soft and hard limits for each user ID. The VX_FULLFSCK
flag is set in the super-block. If the super-block cannot be written, the file system
is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the disk has a hardware failure, it should be
repaired before the file system is mounted for write access.

042 WARNING: msgcnt x: vxfs: mesg 042: vx_bsdquotaupdate - mount_point file
system user|group id disk limit reached

◆ Description

The hard limit on blocks was reached. Further attempts to allocate blocks for
files owned by the user will fail.

◆ Action

Remove some files to free up space.

Message
Number

Message and Definition
Appendix B, Kernel Messages 141

Kernel Messages
043 WARNING: msgcnt x: vxfs: mesg 043: vx_bsdquotaupdate - mount_point file
system user|group id disk quota exceeded too long

◆ Description

The soft limit on blocks was exceeded continuously for longer than the soft
quota time limit. Further attempts to allocate blocks for files will fail.

◆ Action

Remove some files to free up space.

044 WARNING: msgcnt x: vxfs: mesg 044: vx_bsdquotaupdate - mount_point file
system user|group id disk quota exceeded

◆ Description

The soft limit on blocks is exceeded. Users can exceed the soft limit for a limited
amount of time before allocations begin to fail. After the soft quota time limit
has expired, subsequent attempts to allocate blocks for files fail.

◆ Action

Remove some files to free up space.

045 WARNING: msgcnt x: vxfs: mesg 045: vx_bsdiquotaupdate - mount_point file
system user|group id inode limit reached

◆ Description

The hard limit on inodes was exceeded. Further attempts to create files owned
by the user will fail.

◆ Action

Remove some files to free inodes.

046 WARNING: msgcnt x: vxfs: mesg 046: vx_bsdiquotaupdate - mount_point file
system user|group id inode quota exceeded too long

◆ Description

The soft limit on inodes has been exceeded continuously for longer than the soft
quota time limit. Further attempts to create files owned by the user will fail.

◆ Action

Remove some files to free inodes.

Message
Number

Message and Definition
142 VERITAS File System Administrator’s Guide

Kernel Messages
047 WARNING: msgcnt x: vxfs: mesg 047: vx_bsdiquotaupdate - warning:
mount_point file system user|group id inode quota exceeded

◆ Description

The soft limit on inodes was exceeded. The soft limit can be exceeded for a
certain amount of time before attempts to create new files begin to fail. Once the
time limit has expired, further attempts to create files owned by the user will
fail.

◆ Action

Remove some files to free inodes.

048, 049 WARNING: msgcnt x: vxfs: mesg 048: vx_dqread - warning: mount_point file
system external user|group quota file read failed

WARNING: msgcnt x: vxfs: mesg 049: vx_dqwrite - warning: mount_point file
system external user|group quota file write failed

◆ Description

To maintain reliable usage counts, VxFS maintains the user quotas file as a
structural file in the structural fileset.To maintain reliable usage counts, VxFS
maintains the user quotas file as a structural file in the structural fileset. These
files are updated as part of the transactions that allocate and free blocks and
inodes. For compatibility with the quota administration utilities, VxFS also
supports the standard user visible quota files.

When quotas are turned off, synced, or new limits are added, VxFS tries to
update the external quota files. When quotas are enabled, VxFS tries to read the
quota limits from the external quotas file. If these reads or writes fail, the
external quotas file is out of date.

◆ Action

Determine the reason for the failure on the external quotas file and correct it.
Recreate the quotas file.

050 WARNING: msgcnt x: vxfs: mesg 050: vx_ldlogwrite - mount_point file system
log write failed

◆ Description

A write to VERITAS QuickLog log failed. This marks the log bad and sets the
full file system check flag in the super block.

◆ Action

No immediate action required. When the file system is unmounted, run a full
file system check using fsck before mounting it again.

Message
Number

Message and Definition
Appendix B, Kernel Messages 143

Kernel Messages
051 WARNING: msgcnt x: vxfs: mesg 051: vx_ldlog_start - mount_point file system
log start failed

◆ Description

vx_ldlog_start failed. QuickLog logging is disabled and file system continues to
use its own log.

◆ Action

No corrective action required on the file system. Determine why the log didn’t
start and do administrative tasks on QuickLog (for more information on
QuickLog, see “VERITAS QuickLog” on page 95“).

052 WARNING: msgcnt x: vxfs: mesg 052: vx_ldlog_stop - mount_point file system
log stop failed

◆ Description

QuickLog copies the log back to the file system after stopping logging activity. If
the stop failed, VxFS treats the failure as the log going bad.

◆ Action

No immediate action required. When the file system is unmounted, run a full
file system check using fsck before mounting it again.

053 WARNING: msgcnt x: vxfs: mesg 053: vx_ldlog_suspend - mount_point file
system log suspend failed

◆ Description

When the file system is frozen, QuickLog is suspended; it is activated again on
thaw. If this operation fails, the kernel marks the log bad and sets the full file
system check flag in the super block.

◆ Action

No immediate action required. When the file system is unmounted, run a full
file system check using fsck before mounting it again.

Message
Number

Message and Definition
144 VERITAS File System Administrator’s Guide

Kernel Messages
054 WARNING: msgcnt x: vxfs: mesg 054: vx_ldlog_resume - mount_point file system
log resume failed

◆ Description

When the file system is thawed, QuickLog must be resumed. If this operation
fails, the kernel marks the log bad and sets the full file system check flag in the
super block.

◆ Action

No immediate action required. When the file system is unmounted, run a full
file system check using fsck before mounting it again.

056 WARNING: msgcnt x: vxfs: mesg 056: vx_mapbad - mount_point file system
extent allocation unit state bitmap number number marked bad

◆ Description

If there is an I/O failure while writing a bitmap, the map is marked bad. The
kernel considers the maps to be invalid, so does not do any more resource
allocation from maps. This situation can cause the file system to report “out of
space” or “out of inode” error messages even though df may report an
adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a
consistency check, or blocks are freed that are already free in the bitmap, the file
system has been corrupted. This may have occurred because a user or process
wrote directly to the device or used fsdb to change the file system.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set, the file
system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Unmount the file system and
use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 145

Kernel Messages
057 WARNING: msgcnt x: vxfs: mesg 057: vx_esum_bad - mount_point file system
extent allocation unit summary number number marked bad

◆ Description

An I/O error occurred reading or writing an extent allocation unit summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set, the file
system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Unmount the file system and
use fsck to run a full structural check.

058 WARNING: msgcnt x: vxfs: mesg 058: vx_isum_bad - mount_point file system
inode allocation unit summary number number marked bad

◆ Description

An I/O error occurred reading or writing an inode allocation unit summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set, the file
system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Unmount the file system and
use fsck to run a full structural check.

059 WARNING: msgcnt x: vxfs: mesg 059: vx_snap_getbitbp - mount_point snapshot
file system bitmap write error

◆ Description

An I/O error occurred while writing to the snapshot file system bitmap. There
is no problem with the snapped file system, but the snapshot file system is
disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Restart the snapshot on an
error free disk partition. Rerun any backups that failed when the error occurred.

Message
Number

Message and Definition
146 VERITAS File System Administrator’s Guide

Kernel Messages
060 WARNING: msgcnt x: vxfs: mesg 060: vx_snap_getbitbp - mount_point snapshot
file system bitmap read error

◆ Description

An I/O error occurred while reading the snapshot file system bitmap. There is
no problem with snapped file system, but the snapshot file system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Restart the snapshot on an
error free disk partition. Rerun any backups that failed when the error occurred.

061 WARNING: msgcnt x: vxfs: mesg 061: vx_resize - mount_point file system
remount failed

◆ Description

During a file system resize, the remount to the new size failed. The
VX_FULLFSCK flag is set and the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. After the
check, the file system shows the new size.

062 NOTICE: msgcnt x: vxfs: mesg 062: vx_attr_creatop - invalid disposition
returned by attribute driver

◆ Description

A registered extended attribute intervention routine returned an invalid return
code to the VxFS driver during extended attribute inheritance.

◆ Action

Determine which vendor supplied the registered extended attribute
intervention routine and contact their customer support organization.

063 WARNING: msgcnt x: vxfs: mesg 063: vx_fset_markbad - mount_point file system
mount_point fileset (index number) marked bad

◆ Description

An error occurred while reading or writing a fileset structure. VX_FULLFSCK
flag is set. If the VX_FULLFSCK flag can’t be set, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 147

Kernel Messages
064 WARNING: msgcnt x: vxfs: mesg 064: vx_ivalidate - mount_point file system
inode number version number exceeds fileset's

◆ Description

During inode validation, a discrepancy was found between the inode version
number and the fileset version number. The inode may be marked bad, or the
fileset version number may be changed, depending on the ratio of the
mismatched version numbers.

VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set, the file system is
disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process is writing to the device, report the
problem to your customer support organization. In either case, unmount the file
system and use fsck to run a full structural check.

066 NOTICE: msgcnt x: vxfs: mesg 066: DMAPI mount event - buffer

◆ Description

An HSM (Hierarchical Storage Management) agent responded to a DMAPI
mount event and returned a message in buffer.

◆ Action

Consult the HSM product documentation for the appropriate response to the
message.

067 WARNING: msgcnt x: vxfs: mesg 067: mount of device_path requires HSM agent

◆ Description

The file system mount failed because the file system was marked as being under
the management of an HSM agent, and no HSM agent was found during the
mount.

◆ Action

Restart the HSM agent and try to mount the file system again.

Message
Number

Message and Definition
148 VERITAS File System Administrator’s Guide

Kernel Messages
068 WARNING: msgcnt x: vxfs: mesg 068: ncsize parameter is greater than 80% of
the vxfs_ninode parameter; increasing the value of vxfs:vxfs_ninode

◆ Description

The value auto-tuned for the vxfs_ninode parameter is less than 125% of the
ncsize parameter.

◆ Action

To prevent this message from occurring, set vxfs_ninode to at least 125% of
the value of ncsize. The best way to do this is to adjust ncsize down, rather
than adjusting vxfs_ninode up. For more information on performance and
tuning, see “VxFS Performance: Creating, Mounting, and Tuning File Systems”
on page 17.

069 WARNING: msgcnt x: vxfs: mesg 069: memory usage specified by the
vxfs:vxfs_ninode and vxfs:vx_bc_bufhwm parameters exceeds available
memory; the system may hang under heavy load

◆ Description

The value of the system tunable parameters—vxfs_ninode and
vx_bc_bufhwm—add up to a value that is more than 66% of the kernel virtual
address space or more than 50% of the physical system memory. VxFS inodes
require approximately one kilobyte each, so both values can be treated as if they
are in units of one kilobyte.

◆ Action

To avoid a system hang, reduce the value of one or both parameters to less than
50% of physical memory or to 66% of kernel virtual memory. For more
information on performance and tuning, see “VxFS Performance: Creating,
Mounting, and Tuning File Systems” on page 17.

070 WARNING: msgcnt x: vxfs: mesg 070: checkpoint checkpoint_name removed
from file system mount_point

◆ Description

The file system ran out of space while updating a Storage Checkpoint. The
Storage Checkpoint was removed to allow the operation to complete.

◆ Action

Increase the size of the file system. If the file system size cannot be increased,
remove files to create sufficient space for new Storage Checkpoints. Monitor
capacity of the file system closely to ensure it does not run out of space. See the
fsadm_vxfs(1M) manual page more information.

Message
Number

Message and Definition
Appendix B, Kernel Messages 149

Kernel Messages
071 NOTICE: msgcnt x: vxfs: mesg 071: cleared data I/O error flag in mount_point file
system

◆ Description

The user data I/O error flag was reset when the file system was mounted. This
message indicates that a read or write error occurred (see Message Number 038)
while the file system was previously mounted.

◆ Action

Informational only, no action required.

075 WARNING: msgcnt x: vxfs: mesg 075: replay fsck failed for mount_point file
system

◆ Description

The log replay failed during a failover or while migrating the CFS primary-ship
to one of the secondary cluster nodes. The file system was disabled.

◆ Action

Unmount the file system from the cluster. Use fsck to run a full structural
check and mount the file system again.

076 NOTICE: msgcnt x: vxfs: mesg 076: checkpoint asynchronous operation on
mount_point file system still in progress

◆ Description

An EBUSY message was received while trying to unmount a file system. The
unmount failure was caused by a pending asynchronous fileset operation, such
as a fileset removal or fileset conversion to a nodata Storage Checkpoint.

◆ Action

The operation may take a considerable length of time. You can do a forced
unmount (see umount_vxfs(1M)), or simply wait for the operation to complete
so file system can be unmounted cleanly.

Message
Number

Message and Definition
150 VERITAS File System Administrator’s Guide

Kernel Messages
077 WARNING: msgcnt x: vxfs: mesg 077: vx_fshdchange - mount_point file system
number fileset, fileset header: checksum failed

◆ Description

Disk corruption was detected while changing fileset headers. This can occur
when writing a new inode allocation unit, preventing the allocation of new
inodes in the fileset.

◆ Action

Unmount the file system and use fsck to run a full structural check.

078 WARNING: msgcnt x: vxfs: mesg 078: vx_ilealloc - mount_point file system
mount_point fileset (index number) ilist corrupt

◆ Description

The inode list for the fileset was corrupted and the corruption was detected
while allocating new inodes. The failed system call returns an ENOSPC error.
Any subsequent inode allocations will fail unless a sufficient number of files are
removed.

◆ Action

Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 151

Kernel Messages
079 WARNING: msgcnt x: vxfs: mesg 017: vx_attr_getblk - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_iget - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_indadd - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_indtrunc - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_iremove - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_bmap - mount_point file system inode
inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_bmap_indirect_ext4 - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_delbuf_flush - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_dio_iovec - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_dirbread - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_dircreate - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_dirlook - mount_point file system inode
inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_doextop_iau - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_doextop_now - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_do_getpage - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_enter_ext4 - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_exttrunc - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_get_alloc - mount_point file system
inode inumber marked bad on disk

Message
Number

Message and Definition
152 VERITAS File System Administrator’s Guide

Kernel Messages
079 (continued) WARNING: msgcnt x: vxfs: mesg 017: vx_ilisterr - mount_point file system inode
inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_indtrunc - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_iread - mount_point file system inode
inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_iremove - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_iremove_attr - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_logwrite_flush - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_oltmount_iget - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_overlay_bmap - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_readnomap - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_reorg_trunc - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_stablestore - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_tranitimes - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_trunc - mount_point file system inode
inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_write_alloc2 - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_write_default - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: vxfs: mesg 017: vx_zero_alloc - mount_point file system
inode inumber marked bad on disk

Message
Number

Message and Definition
Appendix B, Kernel Messages 153

Kernel Messages
079 (continued) ◆ Description

When inode information is no longer dependable, the kernel marks it bad on
disk. The most common reason for marking an inode bad is a disk I/O failure. If
there is an I/O failure in the inode list, on a directory block, or an indirect
address extent, the integrity of the data in the inode, or the data the kernel tried
to write to the inode list, is questionable. In these cases, the disk driver prints an
error message and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address, invalid
inode fields, or corruption in directory data blocks during a validation check. A
validation check failure indicates the file system has been corrupted. This
usually occurs because a user or process has written directly to the device or
used fsdb to change the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a full structural
check the next time it is run.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process is writing to the device, report the
problem to your customer support organization. In either case, unmount the file
system and use fsck to run a full structural check.

Message
Number

Message and Definition
154 VERITAS File System Administrator’s Guide

Kernel Messages
080 WARNING: msgcnt x: vxfs: mesg 080: Disk layout versions older than Version 4
will not be supported in the next release. It is advisable to upgrade to the latest
disk layout version now. See vxupgrade(1M) for information on upgrading a
VxFS file system and see the VxFS Release Notes for information on disk layout
support.

◆ Action

Use the vxupgrade command to begin upgrading file systems using older disk
layouts to Version 5. Consider the following when planning disk layout
upgrades:

◆ Version 1 disk layout file systems can support more than 8 million inodes,
while Version 2 disk layout file systems have an 8 million inode limit.

◆ The Version 1 disk layout provides finer control of disk geometry than
subsequent disk layouts. This finer control is not relevant on disks
employing newer technologies, but can still be applicable on older
hardware. If you are using Version 1 disk layout file systems on older
hardware that needs fine control of disk geometry, a disk layout upgrade
may be problematic.

◆ Images of Version 1 or Version 2 disk layout file systems created by copy
utilities, such as dd or volcopy, will become unusable after a disk layout
upgrade. Offline conversions tools will be provided in the next VxFS feature
release to aid in migrating volume-image backup copies of Version 1 and
Version 2 disk layout file systems to a Version 4 disk layout.

081 WARNING: msgcnt x: vxfs: mesg 081: possible network partition detected

◆ Description

There are one or more private network links for communication between
between the nodes in a cluster. At least one link must be active to maintain the
integrity of the cluster. If all the links go down, after the last network link is
broken, the node can no longer communicate with other nodes in the cluster.
Thus the cluster is in one of two possible states. Either the last network link is
broken (called a network partition condition), or the last network link is okay, but
the node crashed, in which case it is not a network partition problem. It is not
possible to identify whether it is the first or second state, so this warning is
issued to indicate that a network partition may exist and there is a possibility of
data corruption.

◆ Action

A network link failure is typically detected by the underlying communication
software, at which time you must rectify the network problem. If a problem
goes unnoticed, however, and then the last network link also fails, CFS indicates
all file systems were mounted on the shared disk devices.

Message
Number

Message and Definition
Appendix B, Kernel Messages 155

Kernel Messages
082 WARNING: msgcnt x: vxfs: mesg 082: mount_point file system is on a shared
volume and may become corrupted if the cluster is in a partitioned state

◆ Description

If a cluster node is in a partitioned state, and if the file system is on a shared
VxVM volume, this volume may become corrupted by accidental access from
another node in the cluster.

◆ Action

These shared disks can also be seen by nodes in a different partition, so they can
inadvertently be corrupted. So the second message 082 tells that the device
mentioned is on shared volume and damage can happen only if it is a real
partition problem. Do not use it on any other node until the file system is
unmounted from the mounted nodes.

083 WARNING: msgcnt x: vxfs: mesg 083: mount_point file system log is not
compatible with the specified intent log I/O size

◆ Description

Either the specified mount logiosize size is not compatible with the file
system layout, or the file system is corrupted.

◆ Action

Mount the file system again without specifying the logiosize option, or use a
logiosize value compatible with the intent log specified when the file system
was created. If the error persists, unmount the file system and use fsck to run a
full structural check.

Message
Number

Message and Definition
156 VERITAS File System Administrator’s Guide

Disk Layout
 C

Introduction

The disk layout is the way file system information is stored on disk. On VxFS, five
different disk layout versions were created to take advantage of evolving technological
developments. The disk layout versions used on VxFS were:

Some of the disk layout versions were not supported on all UNIX operating systems.
Currently, only the Version 4 and 5 disk layouts can be created. Version 1 and 2 file
systems can still be mounted, but this will be disallowed in future releases.

The vxupgrade command is provided to upgrade an existing VxFS file system to the
Version 5 layout while the file system remains online. See the vxupgrade(1M) manual
page for details on upgrading VxFS file systems.

The vxfsconvert command is provided to upgrade Version 1 and 2 disk layouts to the
Version 5 disk layout while the file system is not mounted. Version 4 disk layouts cannot
be upgraded offline. See the vxfsconver(1M) manual page for details on upgrading
VxFS disk layouts.

Version 1 The Version 1 disk layout is the original VxFS disk layout provided with pre-2.0
versions of VxFS.

Version 2 The Version 2 disk layout was designed to support features such as filesets,
dynamic inode allocation, and enhanced security. The Version 2 layout is
available with and without quotas support.

Version 3 The Version 3 disk layout encompasses all file system structural information in
files, rather than at fixed locations on disk, allowing for greater scalability.
Version 3 supports files and file systems up to one terabyte in size.

Version 4 The Version 4 disk layout encompasses all file system structural information in
files, rather than at fixed locations on disk, allowing for greater scalability.
Version 4 supports files and file systems up to one terabyte in size.

Version 5 Version 5 enables the creation of file system sizes up to 32 terabytes. Files can be
a maximum of two terabytes. File systems larger than 1TB must be created on a
VERITAS Volume Manager volume.
157

Disk Space Allocation
The following additional topics are covered in this appendix:

◆ Disk Space Allocation

◆ The VxFS Version 4 Disk Layout

◆ The VxFS Version 5 Disk Layout

◆ Using UNIX Commands on File Systems Larger than One TB

Disk Space Allocation
Disk space is allocated by the system in 512-byte sectors. An integral number of sectors
are grouped together to form a logical block. VxFS supports logical block sizes of 1024,
2048, 4096, and 8192 bytes. The default block size is 1024 bytes. The block size may be
specified as an argument to the mkfs utility and may vary between VxFS file systems
mounted on the same system. VxFS allocates disk space to files in extents. An extent is a
set of contiguous blocks.

The VxFS Version 4 Disk Layout

Note The information in this section also applies to the Version 5 disk layout.

The Version 4 disk layout allows the file system to scale easily to accommodate large files
and large file systems.

The original disk layouts divided up the file system space into allocation units. The first
AU started part way into the file system which caused potential alignment problems
depending on where the first AU started. Each allocation unit also had its own summary,
bitmaps, and data blocks. Because this AU structural information was stored at the start of
each AU, this also limited the maximum size of an extent that could be allocated. By
replacing the allocation unit model of previous versions, the need for alignment of
allocation units and the restriction on extent sizes was removed.

The VxFS Version 4 disk layout divides the entire file system space into fixed size
allocation units. The first allocation unit starts at block zero and all allocation units are a
fixed length of 32K blocks. (An exception may be the last AU, which occupies whatever
space remains at the end of the file system). Because the first AU starts at block zero
instead of part way through the file system as in previous versions, there is no longer a
need for explicit AU alignment or padding to be added when creating a file system.

The Version 4 file system also moves away from the model of storing AU structural data at
the start of an AU and puts all structural information in files. So expanding the file system
structures simply requires extending the appropriate structural files. This removes the
extent size restriction imposed by the previous layouts.
158 VERITAS File System Administrator’s Guide

The VxFS Version 4 Disk Layout
All Version 4 structural files reside in the structural fileset. The structural files in the
Version 4 disk layout are:

object location table file Contains the object location table (OLT). The OLT, which is
referenced from the super-block, is used to locate the other
structural files.

label file Encapsulates the super-block and super-block replicas.
Although the location of the primary super-block is known, the
label file can be used to locate super-block copies if there is
structural damage to the file system.

device file Records device information such as volume length and volume
label, and contains pointers to other structural files.

fileset header file Holds information on a per-fileset basis. This may include the
inode of the fileset's inode list file, the maximum number of
inodes allowed, an indication of whether the file system
supports large files, and the inode number of the quotas file if
the fileset supports quotas. When a file system is created, there
are two filesets—the structural fileset defines the file system
structure, the primary fileset contains user data.

inode list file Both the primary fileset and the structural fileset have their own
set of inodes stored in an inode list file. Only the inodes in the
primary fileset are visible to users. When the number of inodes
is increased, the kernel increases the size of the inode list file.

inode allocation unit
file

Holds the free inode map, extended operations map, and a
summary of inode resources.

log file Maps the block used by the file system intent log.

extent allocation unit
state file

Indicates the allocation state of each AU by defining whether
each AU is free, allocated as a whole (no bitmaps allocated), or
expanded, in which case the bitmaps associated with each AU
determine which extents are allocated.

extent allocation unit
summary file

Contains the AU summary for each allocation unit, which
contains the number of free extents of each size. The summary
for an extent is created only when an allocation unit is expanded
for use.

free extent map file Contains the free extent maps for each of the allocation units.

quotas files There is a quotas file which is used to track the resources
allocated to each user and a quotas.group file to track the
resources allocated to each group.
Appendix C, Disk Layout 159

The VxFS Version 4 Disk Layout
The following figure shows how the kernel and utilities build information about the
structure of the file system. The super-block location is in a known location from which
the OLT can be located. From the OLT, the initial extents of the structural inode list can be
located along with the inode number of the fileset header file. The initial inode list extents
contain the inode for the fileset header file from which the extents associated with the
fileset header file are obtained.

As an example, when mounting the file system, the kernel needs to access the primary
fileset in order to access its inode list, inode allocation unit, quotas file and so on. The
required information is obtained by accessing the fileset header file from which the kernel
can locate the appropriate entry in the file and access the required information.

The Version 4 disk layout supports Access Control Lists and Block-Level Incremental
(BLI) Backup. BLI Backup is a backup method that stores and retrieves only the data
blocks changed since the previous backup, not entire files. This saves times, storage space,
and computing resources required to backup large databases. This file system technology
is implemented in other VERITAS products. For information on how to use this feature,
contact your sales channel.
160 VERITAS File System Administrator’s Guide

The VxFS Version 4 Disk Layout
VxFS Version 4 Disk Layout

Fileset Header File

Structural Fileset

Primary Fileset

Header

Inode List inum

Fileset Index

max_inodes

Features

....

Primary Fileset Header

....

Initial Inode Extents

Inode List Inode

Fileset Header/

Initial Inode List

....

Object Location Table

....

File Inode Number

Extent Addresses

OLT Replica

Inode Allocation

Unit Inode

Fileset Header
File Inode

OLT
Extent
Addresses

Super-block

Header

and Name
Appendix C, Disk Layout 161

The VxFS Version 5 Disk Layout
The VxFS Version 5 Disk Layout
The Version 5 disk layout supports file systems up to 32 terabytes. For a file system to take
advantage of VxFS 32-terabyte support, it must be created on a VERITAS Volume
Manager volume, and only on a 64-bit kernel operating system. The maximum file system
size on a 32-bit kernel is still one terabyte. Files cannot exceed two terabytes in size. For
64-bit kernels, the maximum size of the file system you can create depends on the block
size:

If you specify the file system size when creating a file system, the block size defaults to the
appropriate value as shown above (see the mkfs(1M) manual page for more information).

The Version 5 disk layout also supports group quotas (see “Quota Files on VxFS” on
page 78). Quota limits cannot exceed one terabyte.

Using UNIX Commands on File Systems Larger than One TB
Some UNIX commands may not work correctly on file systems larger than one terabyte.

The ustat command returns an EOVERFLOW error for VxFS files systems larger than
one terabyte because the variable used to store file system size overflows (see the
ustat(2) manual page).

System administration utilities such as backup may not operate correctly if they are not
large file aware (files larger than two gigabytes). Similarly, utilities that operate on large
file systems (larger than one terabyte), must be large file aware to operate correctly, even if
invoked on a small file. Note also that you can have a large file system without creating
the file system with the mkfs –o largefiles option. See the lfcompile(5) manual
page for information on the large file compilation environment.

Block Size Maximum File System Size

1024 bytes 8,589,934,078 sectors (≈ 4 TB)

2048 bytes 17,179,868,156 sectors (≈ 8 TB)

4096 bytes 34,359,736,312 sectors (≈ 16 TB)

8192 bytes 68,719,472,624 sectors (≈ 32 TB)
162 VERITAS File System Administrator’s Guide

Glossary
access control list (ACL)

The information that identifies specific users or groups and their access privileges for a
particular file or directory.

agent

A process that manages predefined VERITAS Cluster Server (VCS) resource types. Agents
bring resources online, take resources offline, and monitor resources to report any state
changes to VCS. When an agent is started, it obtains configuration information from VCS
and periodically monitors the resources and updates VCS with the resource status.

allocation unit

A group of consecutive blocks on a file system that contain resource summaries, free
resource maps, and data blocks. Allocation units also contain copies of the super-block.

asynchronous writes

A delayed write in which the data is written to a page in the system’s page cache, but is
not written to disk before the write returns to the caller. This improves performance, but
carries the risk of data loss if the system crashes before the data is flushed to disk.

atomic operation

An operation that either succeeds completely or fails and leaves everything as it was
before the operation was started. If the operation succeeds, all aspects of the operation
take effect at once and the intermediate states of change are invisible. If any aspect of the
operation fails, then the operation aborts without leaving partial changes.

Block-Level Incremental Backup (BLI Backup)

A VERITAS backup capability that does not store and retrieve entire files. Instead, only
the data blocks that have changed since the previous backup are backed up.
163

buffered I/O

During a read or write operation, data usually goes through an intermediate kernel buffer
before being copied between the user buffer and disk. If the same data is repeatedly read
or written, this kernel buffer acts as a cache, which can improve performance. See
unbuffered I/O and direct I/O.

CFS

VERITAS Cluster File System.

cluster mounted file system

A shared file system that enables multiple hosts to mount and perform file operations on
the same file. A cluster mount requires a shared storage device that can be accessed by
other cluster mounts of the same file system. Writes to the shared device can be done
concurrently from any host on which the cluster file system is mounted. To be a cluster
mount, a file system must be mounted using the mount –o cluster option. See local
mounted file system.

contiguous file

A file in which data blocks are physically adjacent on the underlying media.

CVM

The cluster functionality of VERITAS Volume Manager.

data block

A block that contains the actual data belonging to files and directories.

data synchronous writes

A form of synchronous I/O that writes the file data to disk before the write returns, but
only marks the inode for later update. If the file size changes, the inode will be written
before the write returns. In this mode, the file data is guaranteed to be on the disk before
the write returns, but the inode modification times may be lost if the system crashes.

defragmentation

The process of reorganizing data on disk by making file data blocks physically adjacent to
reduce access times.

direct extent

An extent that is referenced directly by an inode.
164 VERITAS File System Administrator’s Guide

direct I/O

An unbuffered form of I/O that bypasses the kernel’s buffering of data. With direct I/O,
the file system transfers data directly between the disk and the user-supplied buffer. See
buffered I/O and unbuffered I/O.

discovered direct I/O

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment
constraints, except writes that allocate storage or extend the file size do not require
writing the inode changes before returning to the application.

encapsulation

A process that converts existing partitions on a specified disk to volumes. If any partitions
contain file systems, /etc/vfstab entries are modified so that the file systems are
mounted on volumes instead. Encapsulation is not applicable on some systems.

extent

A group of contiguous file system data blocks treated as a single unit. An extent is defined
by the address of the starting block and a length.

extent attribute

A policy that determines how a file allocates extents.

external quotas file

A quotas file (named quotas) must exist in the root directory of a file system for
quota-related commands to work. See quotas file and internal quotas file.

file system block

The fundamental minimum size of allocation in a file system. This is equivalent to the
fragment size on some UNIX file systems.

fileset

A collection of files within a file system.

fixed extent size

An extent attribute used to override the default allocation policy of the file system and set
all allocations for a file to a specific fixed size.

GB

Gigabyte (230 bytes or 1024 megabytes).
Glossary 165

hard limit

The hard limit is an absolute limit on system resources for individual users for file and
data block usage on a file system. See quota.

indirect address extent

An extent that contains references to other extents, as opposed to file data itself. A single
indirect address extent references indirect data extents. A double indirect address extent
references single indirect address extents.

indirect data extent

An extent that contains file data and is referenced via an indirect address extent.

inode

A unique identifier for each file within a file system that contains the data and metadata
associated with that file.

inode allocation unit

A group of consecutive blocks containing inode allocation information for a given fileset.
This information is in the form of a resource summary and a free inode map.

intent logging

A method of recording pending changes to the file system structure. These changes are
recorded in a circular intent log file.

internal quotas file

VxFS maintains an internal quotas file for its internal usage. The internal quotas file
maintains counts of blocks and indices used by each user. See quotas and external quotas
file.

K

Kilobyte (210 bytes or 1024 bytes).

large file

A file larger than two gigabytes. VxFS supports files up to one terabyte in size.

large file system

A file system more than two gigabytes in size. VxFS supports file systems up to 32
terabytes in size.
166 VERITAS File System Administrator’s Guide

latency

For file systems, this typically refers to the amount of time it takes a given file system
operation to return to the user.

local mounted file system

A file system mounted on a single host. The single host mediates all file system writes to
storage from other clients. To be a local mount, a file system cannot be mounted using the
mount –o cluster option. See cluster mounted file system.

metadata

Structural data describing the attributes of files on a disk.

MB

Megabyte (220 bytes or 1024 kilobytes).

mirror

A duplicate copy of a volume and the data therein (in the form of an ordered collection of
subdisks). Each mirror is one copy of the volume with which the mirror is associated.

node

One of the hosts in a cluster.

node abort

A situation where a node leaves a cluster (on an emergency basis) without attempting to
stop ongoing operations.

node join

The process through which a node joins a cluster and gains access to shared disks.

object location table (OLT)

The information needed to locate important file system structural elements. The OLT is
written to a fixed location on the underlying media (or disk).

object location table replica

A copy of the OLT in case of data corruption. The OLT replica is written to a fixed location
on the underlying media (or disk).
Glossary 167

page file

A fixed-size block of virtual address space that can be mapped onto any of the physical
addresses available on a system.

preallocation

A method of allowing an application to guarantee that a specified amount of space is
available for a file, even if the file system is otherwise out of space.

primary fileset

The files that are visible and accessible to the user.

Quick I/O file

A regular VxFS file that is accessed using the ::cdev:vxfs: extension.

Quick I/O for Databases

Quick I/O is a VERITAS File System feature that improves database performance by
minimizing read/write locking and eliminating double buffering of data. This allows
online transactions to be processed at speeds equivalent to that of using raw disk devices,
while keeping the administrative benefits of file systems.

QuickLog

VERITAS QuickLog is a high performance mechanism for receiving and storing intent log
information for VxFS file systems. QuickLog increases performance by exporting intent
log information to a separate physical volume.

quotas

Quota limits on system resources for individual users for file and data block usage on a
file system. See hard limit and soft limit.

quotas file

The quotas commands read and write the external quotas file to get or change usage
limits. When quotas are turned on, the quota limits are copied from the external quotas
file to the internal quotas file. See quotas, internal quotas file, and external quotas file.

reservation

An extent attribute used to preallocate space for a file.

root disk group

A special private disk group that always exists on the system. The root disk group is
named rootdg.
168 VERITAS File System Administrator’s Guide

shared disk group

A disk group in which the disks are shared by multiple hosts (also referred to as a
cluster-shareable disk group).

shared volume

A volume that belongs to a shared disk group and is open on more than one node at the
same time.

snapshot file system

An exact copy of a mounted file system at a specific point in time. Used to do online
backups.

snapped file system

A file system whose exact image has been used to create a snapshot file system.

soft limit

The soft limit is lower than a hard limit. The soft limit can be exceeded for a limited time.
There are separate time limits for files and blocks. See hard limit and quota.

storage checkpoint

A facility that provides a consistent and stable view of a file system or database image and
keeps track of modified data blocks since the last checkpoint.

structural fileset

The files that define the structure of the file system. These files are not visible or accessible
to the user.

super-block

A block containing critical information about the file system such as the file system type,
layout, and size. The VxFS super-block is always located 8192 bytes from the beginning of
the file system and is 8192 bytes long.

synchronous writes

A form of synchronous I/O that writes the file data to disk, updates the inode times, and
writes the updated inode to disk. When the write returns to the caller, both the data and
the inode have been written to disk.

TB

Terabyte (240 bytes or 1024 gigabytes).
Glossary 169

transaction

Updates to the file system structure that are grouped together to ensure they are all
completed

throughput

For file systems, this typically refers to the number of I/O operations in a given unit of
time.

ufs

The UNIX file system type. Used as parameter in some commands.

UFS

The UNIX file system; derived from the 4.2 Berkeley Fast File System.

Unbuffered I/O

I/O that bypasses the kernel cache to increase I/O performance. This is similar to direct
I/O, except when a file is extended; for direct I/O, the inode is written to disk
synchronously, for unbuffered I/O, the inode update is delayed. See buffered I/O and direct
I/O.

VCS

VERITAS Cluster Server.

volume

A virtual disk which represents an addressable range of disk blocks used by applications
such as file systems or databases.

vxfs

The VERITAS File System type. Used as a parameter in some commands.

VxFS

The VERITAS File System.

VxVM

The VERITAS Volume Manager.
170 VERITAS File System Administrator’s Guide

Index
A
access control lists 14
alias for Quick I/O files 85
allocation policies 39

default 39
extent 5
extent based 5

application
expanded facilities 9
transparency 9

B
bad block revectoring 21
blkclear 10
blkclear mount option 19, 21
block based architecture 3
block size 5, 158
blockmap for a snapshot file system 75
buffered file systems 10
buffered I/O 44

C
cache advisories 44–46
Cached Quick I/O 91
Cached Quick I/O read-ahead 91
CFS QuickLog 102
closesync 10
cluster mount 16
configuration file, /etc/qlog/config 102
contiguous reservation 40
converting a data Storage Checkpoint to a
nodata Storage Checkpoint 61
convosync mount option 19, 23
copy-on-write technique 52, 55
cp_vxfs 41
cpio_vxfs 41
creating file systems with large files 24
creating files with mkfs 104
creating Quick I/O files 86

cron 8, 29
cron sample script 30

D
data copy 44
data integrity 10
data Storage Checkpoints definition 56
data synchronous I/O 22, 45
data transfer 44
default

allocation policy 39
block sizes 5, 158

default_indir_size tunable parameter 32
defragmentation 8

extent 29
scheduling with cron 29

delaylog mount option 19, 20
device file 159
direct data transfer 44
direct I/O 44
directory reorganization 30
disabled file system

snapshot 76
transactions 122

discovered direct I/O 45
discovered_direct_iosize tunable parameter
33
disk layout

Version 4 158, 162
Version 5 157

disk space allocation 5, 158
displaying mounted file systems 111

E
enabling Quick I/O 91
enhanced data integrity modes 10
ENOENT 126
ENOSPC 68
ENOTDIR 126
171

expansion 8
expansion of a file system 28
extensions of Quick I/O files 85
extent 5, 37

attributes 37
description 158
indirect 5
information 46
reorganization 30

extent allocation 5
aligned 38
control 37
fixed size 38
unit state file 159
unit summary file 159

extent size
fixed 49
indirect 5

external quotas file 78

F
file

device 159
extent allocation unit state 159
extent allocation unit summary 159
fileset header 159
free extent map 159
inode allocation unit 159
inode list 159
label 159
log 159
object location table 159
quotas 159
sparse 39, 49

file system
block size 42
buffering 10
displaying mounted 111
increasing size 113

fileset
header file 159
primary 53

fixed extent size 38, 49
fixed write size 39
fragmentation

monitoring 29, 30
reorganization facilities 29
reporting 29

fragmented file system characteristics 29

free extent map file 159
free space monitoring 28
free space, monitoring 28
freeze 50
freezing and thawing, relation to Storage
Checkpoints 53
fsadm 8

how to reorganize a file system 115
how to resize a file system 113
reporting extent fragmentation 29
scheduling defragmentation using cron
29

fsadm_vxfs 25
fscat 71
fsck 60
fsckptadm, Storage Checkpoint
administration 57
fstyp, how to determine the file system type
112

G
get I/O parameter ioctl 50
getext 41
getfacl 14
global message IDs 123

H
how to access a Storage Checkpoint 59
how to create a backup file system 116
how to create a Storage Checkpoint 57
how to determine the file system type 112
how to display mounted file systems 110
how to edit the vfstab file 108
how to mount a Storage Checkpoint 59
how to remove a Storage Checkpoint 58
how to reorganize a file system 115
how to resize a file system 113
how to restore a file system 117
how to set up user quotas 119
how to turn on quotas 118
how to unmount a Storage Checkpoint 60
how to view quotas 120
HSM agent error message 148
hsm_write_prealloc 33

I
I/O

direct 44
sequential 44
synchronous 44
172 VERITAS File System Administrator’s Guide

I/O requests
asynchronous 22
synchronous 21

increasing file system size 113
indirect extent

address size 5
double 5
single 5

initial_extent_size tunable parameter 33
inode allocation unit file 159
inode list error 122
inode list file 159
inode table 27

internal 27
sizes 27

inodes, block based 5
internal inode table 27
internal quotas file 78
ioctl interface 37

K
kernel asynchronous I/O 84
kernel tunables 27

L
label file 159
large files 12, 24

creating file systems with 24
mounting file systems with 25

largefiles mount option 25
load balancing 100
local mount 16
log failure 122
log file 159
log files 48
log mount option 19
logiosize mount option 20

M
max_direct_iosize tunable parameter 34
max_diskq tunable parameter 34
max_seqio_extent_size tunable parameter
34
maximum I/O size 28
mincache mount option 19, 21
mkfs 158

creating files with 104
creating large files 25

modes, enhanced data integrity 10
monitoring fragmentation 29

mount 10, 25
how to display mounted file systems 110
how to mount a file system 106
mounting a Storage Checkpoint 59
pseudo device 59

mount options 19–24
blkclear 19, 21
choosing 19–24
combining 26
convosync 19, 23
delaylog 11, 19, 20
extended 10
largefiles 25
log 11, 19
logiosize 20
mincache 19, 21
nodatainlog 19, 21
qlog 24
tmplog 19, 20

mounted file system, displaying 111
mounting a file system 106

option combinations 26
with large files 25
with QuickLog 99

mounting a Storage Checkpoint 60
mounting a Storage Checkpoint of a cluster
file system 60
msgcnt field 123
multiple block operations 5
mv_vxfs 41

N
name space, preserved by Storage
Checkpoints 52
naming convention, Quick I/O 85
NFS 9
nodata Storage Checkpoints 61
nodata Storage Checkpoints definition 56
nodatainlog mount option 19, 21
non-mountable Storage Checkpoints
definition 57

O
O_SYNC 19
object location table file 159

P
parameters

default 31
tunable 32
Index 173

tuning 30
performance

enhancing 43
overall 18
snapshot file systems 72

preallocating space for Quick I/O files 89
primary fileset relation to Storage
Checkpoints 53
pseudo device 59

Q
qio module, loading on system reboot 94
qio_cache_enable tunable parameter 34, 91
qiomkfile 86
qiostat 94
qlog mount option 24
qlogattach 102
qlogck 102
qlogdetach 100
qlogenable 99
qlogmk 98
qlogrm 99
qlogstat 101
Quick I/O 83

access Quick I/O files as raw devices 85
access regular UNIX files 88
creating Quick I/O files 86
direct I/O 84
double buffering 85
extension 85
read/write locks 84
restrictions 86
special naming convention 85

Quick I/O files
access regular UNIX files 88
preallocating space 89
statistics 94
using relative and absolute path names
88

QuickLog
disabling 100
enabling 99
load balancing 100
logical view 96
number of supported devices 96
on CFS 102
overview 96
removing 99
troubleshooting 100

quota commands 79
quotacheck 80
quotas 77

exceeding the soft limit 78
hard limit 78
how to view quotas 120
soft limit 78

quotas file 78, 159
quotas.grp file 78

R
read_nstream tunable parameter 32
read_pref_io tunable parameter 32
read-ahead functionality in Cached Quick
I/O 91
read-only Storage Checkpoints 59
recovery, QuickLog 102
relative and absolute path names used with
symbolic links 88
removable Storage Checkpoints definition
56
reorganization

directory 30
extent 30

report extent fragmentation 29
reservation space 38, 46, 48
restrictions on Quick I/O 86

S
sectors, forming logical blocks 158
sequential I/O 44
setext 41
setfacl 14
snapof 71
snapped file systems 14, 70

performance 72
unmounting 70

snapread 71
snapshot 116
snapshot file system

on CFS 70
snapshot file systems 14, 70

blockmap 75
creating 71
data block area 75
disabled 76
errors 135
for backup 70
fscat 71
fsck 71
174 VERITAS File System Administrator’s Guide

fuser 70
mounting 71
multiple 70
performance 72
read 71
super-block 74

snapshot, how to create a backup file system
116
snapsize 71
space reservation 46–48
sparse file 39, 49
statistics

generated for Quick I/O 94
QuickLog 101

storage
clearing 21
uninitialized 21

Storage Checkpoints
accessing 59
administration of 57
converting a data Storage Checkpoint to
a nodata Storage Checkpoint with
multiple Storage Checkpoints 64
creating 57
data Storage Checkpoints 56
definition of 52
difference between a data Storage
Checkpoint and a nodata Storage
Checkpoint 62
freezing and thawing a file system 53
mounting 59
nodata Storage Checkpoints 56, 61
non-mountable Storage Checkpoints 57
operation failures 68
pseudo device 59
read-only Storage Checkpoints 59
removable Storage Checkpoints 56
removing 58
space management 68
synchronous vs. asynchronous
conversion 61
types of 56
unmounting 60
using the fsck utility 60
writable Storage Checkpoints 59

super-block 74
SVID requirement, VxFS conformance to 9
symbolic links, accessing Quick I/O files 88
synchronous I/O 44

system failure recovery 7
system performance 17

enhancing 43
overall 18

T
temporary directories 12
thaw 50
tmplog mount option 19, 20
transaction disabling 122
tunable I/O parameters 32

default_indir_size 32
discovered_direct_iosize 33
initial_extent_size 33
max_direct_iosize 34
max_diskq 34
max_seqio_extent_size 34
qio_cache_enable 34, 91
read_nstream 32
read_pref_io 32
Volume Manager maximum I/O size 28
write_nstream 32
write_pref_io 32
write_throttle 35

tuning I/O parameters 30
typed extents 6

U
umount command 110
uninitialized storage, clearing 21
unmount 60, 123

a snapped file system 70
utilities

cron 8
fsadm 8
fscat 14
getext 41
mkfs 158
qiostat 94
setext 41
vxassist 98
vxedit 99

V
VEA 4
VERITAS Enterprise Administrator 4
Version 4 disk layout 158, 162
Version 5 disk layout 157
vfstab file, editing 108
virtual disks 8
Index 175

vol_maxio tunable I/O parameter 28
VOP_INACTIVE 138
VX_CHGSIZE 47
VX_CONTIGUOUS 47
VX_DSYNC 45
VX_FREEZE 50, 80
VX_FULLFSCK 122, 125, 126, 127, 128, 131,
132, 133, 134, 137, 138, 141, 145, 146, 147, 148,
154
VX_GETCACHE 44
VX_GETEXT 46
VX_NOEXTEND 47
VX_NORESERVE 47
VX_NOREUSE 46
VX_RANDOM 46
VX_SEQ 46
VX_SETCACHE 44
VX_SETEXT 46
VX_SNAPREAD 71
VX_THAW 50
VX_TRIM 47
VX_UNBUFFERED 45

vxassist 98
vxdump 41
vxedit, removing a VxVM volume 99
vxedquota, how to set up user quotas 119
VxFS

disk layout 157
disk structure 157
storage allocation 18

vxfs_ninode 27
vxquota, how to view quotas 120
vxquotaoff, how to turn off quotas 120
vxquotaon 118
vxrestore 41, 117
vxtunefs, changing extent size 5

W
writable Storage Checkpoints 59
write size 39
write_nstream tunable parameter 32
write_pref_io tunable parameter 32
write_throttle tunable parameter 35
176 VERITAS File System Administrator’s Guide

	Contents
	Preface
	Introduction
	Organization
	Conventions
	Related Documents
	Getting Help

	The VERITAS File System
	Introduction
	VxFS Features
	Disk Layouts
	File System Performance Enhancements
	VERITAS Enterprise Administrator Graphical User Interface
	Extent Based Allocation
	Typed Extents

	Extent Attributes
	Fast File System Recovery
	Online System Administration
	Defragmentation
	Resizing

	Application Interface
	Application Transparency
	Expanded Application Facilities

	Extended mount Options
	Enhanced Data Integrity Modes
	Using blkclear Option for Data Integrity
	Using closesync Option for Data Integrity
	Using the log Option for Data Integrity

	Enhanced Performance Mode
	Using the delaylog Option for Enhanced Performance
	Using the qlog Option for Enhanced Performance

	Temporary File System Modes
	Using the tmplog option For Temporary File Systems

	Improved Synchronous Writes
	Support for Large Files

	Enhanced I/O Performance
	Enhanced I/O Clustering
	VxVM Integration
	Application-Specific Parameters

	Access Control Lists
	Storage Checkpoints
	Online Backup
	Quotas
	Support for Databases
	VERITAS QuickLog
	Cluster File Systems

	VxFS Performance: Creating, Mounting, and Tuning File Systems
	Introduction
	Choosing mkfs Command Options
	Block Size
	Intent Log Size

	Choosing mount Command Options
	log
	delaylog
	tmplog
	logiosize
	nodatainlog
	blkclear
	mincache
	convosync
	qlog
	largefiles | nolargefiles
	Creating a File System with Large Files
	Mounting a File System with Large Files
	Managing a File System with Large Files

	Combining mount Command Options
	Example 1 - Desktop File System
	Example 2 - Temporary File System or Restoring from Backup
	Example 3 - Data Synchronous Writes

	Kernel Tunables
	Internal Inode Table Size
	vx_maxlink
	VxVM Maximum I/O Size
	vol_maxio

	Monitoring Free Space
	Monitoring Fragmentation

	I/O Tuning
	Tuning VxFS I/O Parameters
	Tunable VxFS I/O Parameters

	Extent Attributes
	Introduction
	Attribute Specifics
	Reservation: Preallocating Space to a File
	Fixed Extent Size
	Other Controls
	Alignment
	Contiguity
	Write Operations Beyond Reservation
	Reservation Trimming
	Reservation Persistence
	Including Reservation in the File

	Commands Related to Extent Attributes
	Failure to Preserve Extent Attributes

	Application Interface
	Introduction
	Cache Advisories
	Direct I/O
	Unbuffered I/O
	Discovered Direct I/O
	Data Synchronous I/O
	Other Advisories

	Extent Information
	Space Reservation
	Fixed Extent Sizes

	Freeze and Thaw
	Get I/O Parameters ioctl

	Storage Checkpoints
	What is a Storage Checkpoint?
	How a Storage Checkpoint Works
	Types of Storage Checkpoints
	Data Storage Checkpoints
	Nodata Storage Checkpoints
	Removable Storage Checkpoints
	Non-mountable Storage Checkpoints

	Storage Checkpoint Administration
	Creating a Storage Checkpoint
	Removing a Storage Checkpoint
	Accessing a Storage Checkpoint
	Converting a Data Storage Checkpoint to a Nodata Storage Checkpoint
	Difference Between a Data and a Nodata Storage Checkpoint
	Conversion with Multiple Storage Checkpoints

	Space Management Considerations

	Online Backup
	Introduction
	Snapshot File Systems
	Using a Snapshot File System for Backup
	Creating a Snapshot File System
	Making a Backup
	Performance of Snapshot File Systems
	Differences Between Snapshots and Storage Checkpoints
	Snapshot File System Internals
	Snapshot File System Disk Structure
	How a Snapshot File System Works

	Quotas
	Introduction
	Quota Limits
	Quota Files on VxFS
	Quota Commands
	Quota Checking With VxFS
	Using Quotas
	vxquotaon
	mount
	vxedquota
	vxquota
	vxquot
	vxquotaoff

	Quick I/O for Databases
	Introduction
	Quick I/O Functionality and Performance
	Supporting Kernel Asynchronous I/O
	Supporting Direct I/O
	Avoiding Kernel Write Locks
	Avoiding Double Buffering

	Using VxFS Files as Raw Character Devices
	Quick I/O Naming Convention
	Use Restrictions

	Creating a Quick I/O File Using qiomkfile
	Accessing Regular VxFS Files Through Symbolic Links
	Using Absolute or Relative Path Names
	Preallocating Files Using the setext Command

	Using Quick I/O with Oracle Databases
	Using Quick I/O with Sybase Databases
	Enabling and Disabling Quick I/O
	Cached Quick I/O For Databases
	Enabling Cached Quick I/O
	Enabling Cached Quick I/O for File Systems
	Enabling Cached Quick I/O for Individual Files

	Tuning Cached Quick I/O

	Quick I/O Statistics
	Quick I/O Summary

	VERITAS QuickLog
	Introduction
	VERITAS QuickLog Overview
	QuickLog Setup
	Creating a QuickLog Device
	Removing a QuickLog Device

	VxFS Administration Using QuickLog
	Enabling a QuickLog Device
	Disabling a QuickLog Device

	QuickLog Administration and Troubleshooting
	QuickLog Load Balancing
	QuickLog Statistics
	QuickLog Recovery

	Cluster QuickLog Devices

	VERITAS File System Quick Reference
	Introduction
	Creating a File System
	How to Create a File System

	Mounting a File System
	How to Mount a File System
	Mount Options

	How to Edit the vfstab File

	Unmounting a File System
	How to Unmount a File System

	Displaying Information on Mounted File Systems
	How to Display File System Information

	Identifying File System Types
	How to Identify a File System

	Resizing a File System
	How to Extend a File System Using fsadm
	How to Shrink a File System
	How to Reorganize a File System

	Backing Up and Restoring a File System
	How to Create and Mount a Snapshot File System
	How to Back Up a File System
	How to Restore a File System

	Using Quotas
	How to Turn On Quotas
	How to Set Up User Quotas
	How to View Quotas
	How to Turn Off Quotas

	Kernel Messages
	Introduction
	File System Response to Problems
	Marking an Inode Bad
	Disabling Transactions
	Disabling a File System
	Recovering a Disabled File System

	Kernel Messages
	Global Message IDs

	Disk Layout
	Introduction
	Disk Space Allocation
	The VxFS Version 4 Disk Layout
	The VxFS Version 5 Disk Layout
	Using UNIX Commands on File Systems Larger than One TB

	Glossary
	Index

