
VERITAS® File System
System Administrator’s Guide

Release 3.3.2
Solaris

May 1999

P/N 100-001043

© 1999 VERITAS® Software Corporation. All rights reserved.

TRADEMARKS

VERITAS, VxVM, VxVA, VxFS, and FirstWatch are registered trademarks of VERITAS Software Corporation in the United
States and other countries.

VERITAS Volume Manager, VERITAS File System, VERITAS NetBackup, VERITAS HSM, VERITAS Media Librarian, CVM,
VERITAS Quick I/O, VxSmartSync, and the VERITAS logo are trademarks of VERITAS Software Corporation.

Other products mentioned in this document are trademarks or registered trademarks of their respective holders.

Contents
Preface . xi

1. The VERITAS File System . 1

Introduction . 1

VxFS Features . 2

Disk Layout Options. 3

File System Performance Enhancements . 4

Extent Based Allocation . 5

Typed Extents . 6

Extent Attributes . 8

Fast File System Recovery . 8

Online System Administration . 9

Defragmentation. 9

Resizing . 10

Online Backup . 10

Application Interface . 11

Application Transparency . 11

Expanded Application Facilities. 11

Extended mount Options . 12
iii

Enhanced Data Integrity Modes . 12

Using blkclear for Data Integrity . 13

Using closesync for Data Integrity . 13

Enhanced Performance Mode. 13

Using delaylog for Enhanced Performance 13

Using vxldlog for Enhanced Performance 14

Temporary File System Modes . 14

Using tmplog For Temporary File Systems. 14

Improved Synchronous Writes . 14

Enhanced I/O Performance . 15

Enhanced I/O Clustering . 15

VxVM Integration. 15

Application-Specific Parameters . 15

Quotas. 16

Access Control Lists . 16

Support for Large Files . 17

Creating a File System with Large Files . 17

Mounting a File System with Large Files . 17

Managing a File System with Large Files . 18

Support for Databases . 18

VERITAS QuickLog. 19

2. Disk Layout. 21

Introduction . 21

Disk Space Allocation . 22

The VxFS Version 1 Disk Layout . 23

Overview . 23

Super-Block . 24
iv VxFS System Administrator’s Guide

Intent Log . 24

Allocation Unit . 26

Allocation Unit Header. 27

Allocation Unit Summary . 27

The VxFS Version 2 Disk Layout . 29

Overview . 30

Basic Layout . 30

Super-Block . 32

Object Location Table . 32

Intent Log . 33

Allocation Unit . 34

Filesets and Structural Files . 36

Fileset Header . 37

Inodes . 40

Inode Allocation Unit . 43

Link Count Table . 45

Current Usage Table . 45

Quotas File . 46

Locating Dynamic Structures . 47

Object Location Table Contents . 47

Mounting and the Object Location Table 47

The VxFS Version 4 Disk Layout . 48

3. Extent Attributes . 53

Introduction . 53

Attribute Specifics . 54

Reservation: Preallocating Space to a File . 55

Fixed Extent Size . 55
Contents v

Other Controls . 56

Alignment. 56

Contiguity . 57

Write Operations Beyond Reservation . 57

Reservation Trimming . 57

Reservation Persistence . 57

Including Reservation in the File. 58

Commands Related to Extent Attributes . 58

Failure to Preserve Extent Attributes. 59

4. Online Backup . 61

Introduction . 61

Snapshot File Systems. 62

Snapshot File System Disk Structure . 62

How a Snapshot File System Works. 64

Using a Snapshot File System for Backup . 65

Creating a Snapshot File System . 66

Making a Backup . 67

Performance of Snapshot File Systems . 68

5. Performance and Tuning . 69

Introduction . 69

Choosing a Block Size . 70

Choosing an Intent Log Size . 71

Choosing Mount Options. 72

log . 72

delaylog . 72

tmplog . 73

nolog . 73
vi VxFS System Administrator’s Guide

nodatainlog . 73

blkclear . 73

mincache . 74

convosync . 75

vxldlog . 76

Combining mount Options . 77

Example 1 - Desktop File System . 77

Example 2 - Temporary File System or Restoring from Backup 77

Example 3 - Data Synchronous Writes . 77

Kernel Tuneables . 78

Internal Inode Table Size . 78

VxVM Maximum I/O Size . 79

Monitoring Free Space . 79

Monitoring Fragmentation . 80

I/O Tuning . 81

Tuning VxFS I/O Parameters . 82

Tuneable VxFS I/O Parameters . 83

6. Application Interface . 89

Introduction . 89

Cache Advisories. 90

Direct I/O . 90

Unbuffered I/O . 91

Discovered Direct I/O . 91

Data Synchronous I/O. 92

Other Advisories . 92

Extent Information . 93

Space Reservation. 93
Contents vii

Fixed Extent Sizes. 96

Freeze and Thaw . 97

Get I/O Parameters ioctl . 97

7. Quotas . 99

Introduction . 99

Quota Limits . 99

Quotas File on VxFS . 100

Quota commands . 101

quotacheck With VxFS . 102

Using Quotas . 102

8. Quick I/O for Databases. 105

Introduction . 105

Quick I/O Functionality and Performance . 106

Supporting Kernel Asynchronous I/O . 106

Supporting Direct I/O . 106

Avoiding Kernel Write Locks . 107

Avoiding Double Buffering . 107

Using VxFS Files as Raw Character Devices . 107

Quick I/O Naming Convention . 107

Use Restrictions . 108

Creating a Quick I/O File Using qiomkfile . 109

Accessing Regular VxFS Files Through Symbolic Links 111

Using Absolute or Relative Pathnames . 111

Preallocating Files Using the setext Command 112

Using Quick I/O with Oracle Databases . 112

Using Quick I/O with Sybase Databases . 113

Enabling and Disabling Quick I/O. 114
viii VxFS System Administrator’s Guide

Cached Quick I/O For Databases . 114

Enabling Cached Quick I/O . 115

Enabling Cached Quick I/O for File Systems 115

Enabling Cached Quick I/O for Individual Files 116

Tuning Cached Quick I/O. 117

Quick I/O Statistics. 117

Quick I/O Summary. 117

9. VERITAS QuickLog . 119

Introduction . 119

VERITAS QuickLog Overview . 120

QuickLog Installation . 120

QuickLog Setup . 122

Creating a QuickLog Device . 122

Removing a QuickLog Device . 123

VxFS Administration Using QuickLog. 124

Enabling a QuickLog Device. 124

Disabling a QuickLog Device . 125

QuickLog Administration and Troubleshooting . 125

QuickLog Load Balancing . 125

QuickLog Statistics. 127

QuickLog Recovery . 127

A. Kernel Messages . 129

Introduction . 129

File System Response to Problems . 130

Marking an Inode Bad . 130

Disabling Transactions. 130

Disabling the File System . 130
Contents ix

Recovering a Disabled File System . 130

Kernel Messages . 131

Global Message IDs . 131

Glossary . 161

Index . 167
x VxFS System Administrator’s Guide

Preface
Introduction
The VERITAS® File System System Administrator’s Guide provides information

on the most important aspects of VERITAS File System™ (VxFS® or vxfs)

administration. This guide is for system administrators who configure and

maintain UNIX systems with the VERITAS File System, and assumes that you

have:

• An understanding of system administration.

• A working knowledge of the UNIX operating system.

• A general understanding of file systems.
xi

Organization
• Chapter 1, “The VERITAS File System,” introduces the features and

characteristics of this product.

• Chapter 2, “Disk Layout,” describes and illustrates the major components of

VxFS disk layouts.

• Chapter 3, “Extent Attributes,” describes the policies associated with

allocation of disk space.

• Chapter 4, “Online Backup,” describes the snapshot backup feature of VxFS.

• Chapter 5, “Performance and Tuning,” describes VxFS tools that optimize

system performance. This section includes information on mount options.

• Chapter 6, “Application Interface,” describes ways to optimize an

application for use with VxFS. This chapter includes details on cache

advisories, extent sizes, and reservation of file space.

• Chapter 7, “Quotas,” describes VxFS methods to limit user access to file and

data resources.

• Chapter 8, “Quick I/O for Databases,” describes the VERITAS Quick I/O™

feature that treats preallocated files as raw character devices to increase

performance.

• Chapter 9, “VERITAS QuickLog,” describes the optional product that

improves the performance of log writes.

• Appendix A, “Kernel Messages,” lists VxFS kernel error messages in

numerical order and provides explanations and suggestions for dealing

with these problems.

• “Glossary” contains a list of terms and definitions relevant to VxFS.
xii VxFS System Administrator’s Guide

Related Documents

Note: The VERITAS File System Installation Guide provides information on

installation procedures and verification. Make sure that either the VxFS or

VxFS Advanced feature set is properly installed on your system.

• The VERITAS File System Quick Start Guide provides information on

common file system tasks and examples of typical VxFS operations.

• The online manual pages provide additional details on VxFS commands

and utilities.

Conventions
The following table describes the typographic conventions in this guide:

Typeface Usage Examples

courier Computer output, user input,

command names, files, and

directories

™ (referred to as VxFS® or
vxfs)ou have mail.
The cat command displays

files.

$ ls -a

italics New terms, document titles,

emphasis, glossary cross

references, variables replaced

with names or values

$ cat filename
See the User’s Guide for details.

bold Glossary terms

Symbol Usage

% C shell prompt

$ Bourne/Korn shell prompt

Superuser prompt (all shells)

\ Continued input on the next

line; you do not have to type

this character

mount -F vxfs \
/h/filesys
Preface xiii

Technical Support
For license information or information about VERITAS service packages,

contact VERITAS Customer Support.

U.S. and Canadian Customers: 1-800-342-0652

International Customers: +1 (650) 335-8555

Fax: (650) 335-8428

Electronic mail: support@veritas.com

For additional information about VERITAS and VERITAS products, visit the

Web site at:

www.veritas.com
xiv VxFS System Administrator’s Guide

The VERITAS File System 1
Introduction
VxFS is an extent based, intent logging file system. VxFS is geared toward

UNIX environments that require high performance and availability and deal

with large amounts of data.

The following topics are covered in this chapter:

• VxFS Features

• Disk Layout Options

• File System Performance Enhancements

• Extent Based Allocation

• Extent Attributes

• Fast File System Recovery

• Online System Administration

• Online Backup

• Application Interface

• Extended mount Options

• Enhanced I/O Performance

• Quotas
1

1

• Access Control Lists

• Support for Large Files

• Support for Databases

• VERITAS QuickLog

VxFS Features
This chapter provides an overview of major VxFS features that are described in

detail in later chapters. Basic features include:

• extent based allocation

• extent attributes

• fast file system recovery

• access control lists (ACLs)

• online administration

• online backup

• enhanced application interface

• enhanced mount options

• improved synchronous write performance

• support for large file systems (up to 1 terabyte)

• support for large files (up to 2 terabytes)

• enhanced I/O performance

• support for BSD-style quotas

• support for improved database performance

• support for improved network file server (NFS) performance through use of

VERITAS QuickLogTM

VxFS supports all ufs file system features and facilities except for the linking,

removing, or renaming of “.” and “..” directory entries. Such operations may

disrupt file system sanity.
2 VxFS System Administrator’s Guide

1

Disk Layout Options
Three disk layout formats are available with VxFS:

Version 1

The Version 1 disk layout is the original layout used with earlier releases of VxFS.

Version 2

The Version 2 disk layout supports such features as:

• filesets

• dynamic inode allocation

The Version 2 layout is available with optional support for quotas.

Note: The Version 3 disk layout is not supported on Solaris.

Version 4

Version 4 is the latest default disk layout with additional support for:

• files up to 2 terabytes

• file systems up to 1 terabyte

• Access Control Lists

See Chapter 2, “Disk Layout,” for a description of the disk layouts.
The VERITAS File System 3

1

File System Performance Enhancements
The ufs file system supplied with Solaris uses block based allocation schemes

which provide adequate random access and latency for small files but limit

throughput for larger files. As a result, the ufs file system is less than optimal

for commercial environments.

VxFS addresses this file system performance issue through an alternative

allocation scheme and increased user control over allocation, I/O, and caching

policies. An overview of the VxFS allocation scheme is covered in the section

“Extent Based Allocation.”

VxFs provides the following performance enhancements:

• extent based allocation

• enhanced mount options

• VERITAS Quick I/O for Databases

• data synchronous I/O

• direct I/O and discovered direct I/O

• caching advisories

• enhanced directory features

• explicit file alignment, extent size, and preallocation controls

• tuneable I/O parameters

• tuneable indirect data extent size

• integration with VERITAS Volume Manager™ (VxVM
®

)

The rest of this chapter along with Chapter 5, “Performance and Tuning,” and

Chapter 6, “Application Interface,” provide more details on some of these

features.
4 VxFS System Administrator’s Guide

1

Extent Based Allocation
Disk space is allocated in 512-byte sectors to form logical blocks. VxFS

supports logical block sizes of 1024, 2048, 4096, and 8192 bytes. The default

block size is 1K for file systems up to 8 GB, 2K for file systems up to 16 GB, 4K

for file systems up to 32 GB, and 8K for file systems beyond this size.

An extent is defined as one or more adjacent blocks of data within the file

system. An extent is presented as an address-length pair, which identifies the

starting block address and the length of the extent (in file system or logical

blocks). VxFS allocates storage in groups of extents rather than a block at a

time (as seen in the ufs file system).

Extents allow disk I/O to take place in units of multiple blocks if storage is

allocated in consecutive blocks. For sequential I/O, multiple block operations

are considerably faster than block-at-a-time operations; almost all disk drives

accept I/O operations of multiple blocks.

Extent allocation only slightly alters the interpretation of addressed blocks

from the inode structure compared to block based inodes. The ufs file system

inode structure contains the addresses of 12 direct blocks, one indirect block,

and one double indirect block. An indirect block contains the addresses of

other blocks. The ufs indirect block size is 8K and each address is 4 bytes long.

ufs inodes therefore can address 12 blocks directly and up to 2048 more blocks

through one indirect address.

A VxFS inode is similar to the ufs inode and references 10 direct extents, each

of which are pairs of starting block addresses and lengths in blocks. The VxFS

inode also points to two indirect address extents, which contain the addresses

of other extents:

• The first indirect address extent is used for single indirection; each entry in

the extent indicates the starting block number of an indirect data extent.

• The second indirect address extent is used for double indirection; each entry

in the extent indicates the starting block number of a single indirect address

extent.
The VERITAS File System 5

1

Each indirect address extent is 8K long and contains 2048 entries. All indirect

data extents for a file must be the same size; this size is set when the first

indirect data extent is allocated and stored in the inode. Directory inodes

always use an 8K indirect data extent size. By default, regular file inodes also

use an 8K indirect data extent size that can be altered with vxtunefs ; these

inodes allocate the indirect data extents in clusters to simulate larger extents.

Typed Extents

Note: The information in this section applies to the VxFS Version 4 disk

layout.

In Version 4, VxFS introduced a new inode block map organization for indirect

extents known as typed extents. Each entry in the block map has a typed

descriptor record containing a type, offset, starting block, and number of

blocks.

Indirect and data extents use this format to identify logical file offsets and

physical disk locations of any given extent. The extent descriptor fields are

defined as follows:

type Uniquely identifies an extent descriptor record and defines the

record's length and format.

offset Represents the logical file offset in blocks for a given descriptor. Used

to optimize lookups and eliminate hole descriptor entries.

starting block
The starting file system block of the extent.

number of blocks
The number of contiguous blocks in the extent.
6 VxFS System Administrator’s Guide

1

Some notes about typed extents:

• Indirect address blocks are fully typed and may have variable lengths up to

a maximum and optimum size of 8K. On a fragmented file system, indirect

extents may be smaller than 8K depending on space availability. VxFS

always tries to obtain 8K indirect extents but resorts to smaller indirects if

necessary.

• Indirect Data extents are variable in size to allow files to allocate large,

contiguous extents and take full advantage of VxFS's optimized I/O.

• Holes in sparse files require no storage and are eliminated by typed records.

A hole is determined by adding the offset and length of a descriptor and

comparing the result with the offset of the next record.

• While there are no limits on the levels of indirection, lower levels are

expected in this format since data extents have variable lengths.

• This format uses a type indicator that determines its record format and

content and accommodates new requirements and functionality for future

types.

The current typed format is used on regular files only when indirection is

needed. Typed records are longer than the previous format and require less

direct entries in the inode. Newly created files start out using the old format

which allows for 10 direct extents in the inode. The inode's block map is

converted to the typed format when indirection is needed to offer the

advantages of both formats.
The VERITAS File System 7

1

Extent Attributes
VxFS allocates disk space to files in groups of one or more extents. VxFS also

allows applications to control some aspects of the extent allocation. Extent
attributes are the extent allocation policies associated with a file.

The setext and getext commands allow the administrator to set or view

extent attributes associated with a file, as well as to preallocate space for a file.

Refer to Chapter 3, “Extent Attributes,” Chapter 6, “Application Interface,” and

the setext (1) and getext (1) manual pages for discussions on how to use

extent attributes.

The vxtunefs command allows the administrator to set or view the default

indirect data extent size. Refer to Chapter 5, “Performance and Tuning,” and

the vxtunefs (1M) manual page for discussions on how to use the indirect

data extent size feature.

Fast File System Recovery
The ufs file system relies on full structural verification by the fsck utility as

the only means to recover from a system failure. For large disk configurations,

this utility involves a time-consuming process of checking the entire structure,

verifying that the file system is intact, and correcting any inconsistencies.

VxFS provides recovery only seconds after a system failure by utilizing a

tracking feature called intent logging. This feature records pending changes to

the file system structure in a circular intent log. During system failure recovery,

the VxFS fsck utility performs an intent log replay, which scans the intent log

and nullifies or completes file system operations that were active when the

system failed. The file system can then be mounted without completing a full

structural check of the entire file system. The intent log recovery feature is not

readily apparent to the user or the system administrator except during a

system failure.

Replaying the intent log may not completely recover the damaged file system

structure if the disk suffers a hardware failure; such situations may require a

complete system check using the fsck utility provided with VxFS.

Note: The use of QuickLog does not affect fast file system recovery.
8 VxFS System Administrator’s Guide

1

Online System Administration
A VxFS file system can be defragmented and resized while it remains online

and accessible to users. The following sections contain detailed information

about these features.

Defragmentation

Free resources are initially aligned and allocated to files in the most efficient

order possible to provide optimal performance. On an active file system, the

original order of free resources is lost over time as files are created, removed,

and resized. The file system is spread further and further along the disk,

leaving unused gaps or fragments between areas that are in use. This process is

also known as fragmentation and leads to degraded performance because the

file system has fewer options when assigning a file to an extent (a group of

contiguous data blocks).

The ufs file system uses the concept of cylinder groups to limit fragmentation.

Cylinder groups are self-contained sections of a file system that indicate free

inodes and data blocks. Allocation strategies in ufs attempt to place inodes

and data blocks in close proximity. This reduces fragmentation but does not

eliminate it.

VxFS provides the online administration utility fsadm to resolve the problem

of fragmentation. The fsadm utility defragments a mounted file system by:

• removing unused space from directories

• making all small files contiguous

• consolidating free blocks for file system use

This utility can run on demand and should be scheduled regularly as a cron
job.
The VERITAS File System 9

1

Resizing

A file system is assigned a specific size as soon as it is created; the file system

may become too small or too large as changes in file system usage take place

over time.

The ufs file system traditionally offers three solutions to address the lack of

space in a small file system:

• Move some users to a different file system.

• Move a subdirectory of the file system to a new file system.

• Copy the entire file system to a larger file system.

Most large file systems with too much space try to reclaim the unused space by

off-loading the contents of the file system and rebuilding it to a preferable size.

The ufs file system requires unmounting the file system and blocking user

access during the modification.

The VxFS utility fsadm can expand or shrink a file system without

unmounting the file system or interrupting user productivity. However, to

expand a file system, the underlying device on which it is mounted must be

expandable.

VxVM facilitates expansion using virtual disks that can be increased in size

while in use. The VxFS and VxVM packages complement each other to provide

online expansion capability. Refer to the VERITAS Volume Manager System
Administrator’s Guide for additional information about such capabilities.

Online Backup
VxFS provides a method of online backup of data using the snapshot feature.

An image of a mounted file system instantly becomes an exact read-only copy

of the file system at a certain point in time. The original file system is snapped
while the copy is called the snapshot.

When changes are made to the snapped file system, the old data is first copied

to the snapshot. When the snapshot is read, data that has not changed is read

from the snapped file system. Changed data is read directly from the snapshot.
10 VxFS System Administrator’s Guide

1

Backups require one of the following methods:

• copying selected files from the snapshot file system (using find and cpio)

• backing up the entire file system (using fscat)

• initiating a full or incremental backup (using vxdump)

For detailed information about performing online backups, see Chapter 4,

“Online Backup.”

Application Interface
The VxFS file system conforms to the System V Interface Definition (SVID)

requirements and supports user access through the Network File System

(NFS). Applications that require performance features not available with other

file systems can take advantage of VxFS enhancements that are introduced in

this section and covered in detail in Chapter 6, “Application Interface.”

Application Transparency

In most cases, any application designed to run on the ufs file system should

run transparently on the VxFS file system.

Expanded Application Facilities

VxFS provides some facilities frequently associated with commercial

applications that make it possible to:

• preallocate space for a file

• specify a fixed extent size for a file

• bypass the system buffer cache for file I/O

• specify the expected access pattern for a file
The VERITAS File System 11

1

Since these facilities are provided using VxFS-specific ioctl system calls, most

existing UNIX system applications do not use these facilities. The cp , cpio,
and mv utilities use these facilities to preserve extent attributes and allocate

space more efficiently. The current attributes of a file can be listed using the

getext command or ls command. The facilities can also improve

performance for custom applications. For portability reasons, these

applications should check what file system type they are using before using

these interfaces.

Extended mount Options
The VxFS file system supports extended mount options to specify:

• enhanced data integrity modes

• enhanced performance modes

• temporary file system modes

• improved synchronous writes

See Chapter 5, “Performance and Tuning,” and the mount_vxfs (1M) manual

page for details on the VxFS mount options.

Enhanced Data Integrity Modes

Note: Performance tradeoffs are associated with these mount options.

The ufs file system is “buffered” in the sense that resources are allocated to

files and data is written asynchronously to files. In general, the buffering

schemes provide better performance without compromising data integrity.

If a system failure occurs during space allocation for a file, uninitialized data or

data from another file may appear in the extended file after reboot. Data

written shortly before the system failure may also be lost.
12 VxFS System Administrator’s Guide

1

Using blkclear for Data Integrity

In environments where performance is more important than absolute data

integrity, the preceding situation is not of great concern. However, VxFS

supports environments that emphasize data integrity by providing the mount
-o blkclear option that ensures uninitialized data does not appear in a file.

Using closesync for Data Integrity

VxFS provides the mount -o mincache=closesync option, which is useful in

desktop environments with users who are likely to shut off the power on

machines without halting them first. In closesync mode, only files that are

written during the system crash or shutdown can lose data. Any changes to a

file are flushed to disk when the file is closed.

Enhanced Performance Mode

The ufs file system is asynchronous in the sense that structural changes to the

file system are not immediately written to disk. File systems are designed this

way to provide better performance. However, recent changes to the file system

may be lost if a system failure occurs. More specifically, attribute changes to

files and recently created files may disappear.

The default logging mode provided by VxFS (mount -o log) guarantees that

all structural changes to the file system are logged to disk before the system

call returns to the application. If a system failure occurs, fsck replays any

recent changes to preserve all metadata. Recent file data may be lost unless a

request was made to sync it to disk.

Using delaylog for Enhanced Performance

VxFS provides the mount -o delaylog option which increases performance

by delaying the logging of some structural changes. However, recent changes

may be lost during a system failure. This option provides at least the same

level of data accuracy that traditional UNIX file systems provide for system

failures, along with fast file system recovery.
The VERITAS File System 13

1

Using vxldlog for Enhanced Performance

VxFS provides the mount -o vxldlog= option to activate QuickLogTM for

a file system. QuickLog increases VxFS performance by exporting the file

system log to a separate physical volume. This eliminates the disk seek time

between the VxFS data and log areas on disk and increases the performance of

synchronous log writes. See Chapter 9, “VERITAS QuickLog,” for details.

Temporary File System Modes

On most UNIX systems, temporary file system directories (such as

/tmp and /usr/tmp) often hold files that do not need to be retained when the

system reboots. The underlying file system does not need to maintain a high

degree of structural integrity for these temporary directories.

Using tmplog For Temporary File Systems

VxFS provides a mount -o tmplog option which allows the user to achieve

higher performance on temporary file systems by delaying the logging of most

operations.

Improved Synchronous Writes

VxFS provides superior performance for synchronous write applications.

The default datainlog option to mount greatly improves the performance of

small synchronous writes.

The convosync=dsync option to mount improves the performance of

applications that require synchronous data writes but not synchronous inode

time updates.

Note: The use of the convosync=dsync option violates POSIX semantics.
14 VxFS System Administrator’s Guide

1

Enhanced I/O Performance
VxFS provides enhanced I/O performance by applying an aggressive I/O

clustering policy, integrating with VxVM, and allowing the system

administrator to set application specific parameters on a per-file system basis.

Enhanced I/O Clustering

I/O clustering is a technique of grouping multiple I/O operations together for

improved performance. The VxFS I/O policies provide more aggressive

clustering processes than other file systems and offer higher I/O throughput

when using large files; the resulting performance is comparable to that

provided by raw disk.

VxVM Integration

VxFS interfaces with VxVM to determine the I/O characteristics of the

underlying volume and perform I/O accordingly. VxFS also uses this

information when using mkfs to perform proper allocation unit alignments for

efficient I/O operations from the kernel.

As part of VxFS/VxVM integration, VxVM exports a set of I/O parameters to

achieve better I/O performance. This interface can enhance performance for

different volume configurations such as RAID-5, striped, and mirrored

volumes. Full stripe writes are important in a RAID-5 volume for strong I/O

performance. VxFS uses these parameters to issue appropriate I/O requests to

VxVM.

Application-Specific Parameters

System administrators can also set application specific parameters on a per-file

system basis to improve I/O performance.

• Default Indirect Extent Size

On disk layout Versions 1 and 2, this value can be set up to apply to all the

indirect extents, provided a fixed extent size is not already set and the file

does not already have indirect extents. The Version 4 disk layout uses typed

extents which have variable sized indirects.
The VERITAS File System 15

1

• Discovered Direct I/O

All sizes above this value would be performed as direct I/O.

• Maximum Direct I/O Size

This value defines the maximum size of a single direct I/O.

For a discussion on VxVM integration and performance benefits, refer to

Chapter 5, “Performance and Tuning,” Chapter 6, “Application Interface,” and

the vxtunefs (1M) and tunefstab (1M) manual pages.

Quotas
VxFS supports the Berkeley Software Distribution (BSD) style user quotas,

which allocate per-user quotas and limit the use of two principal resources:

files and data blocks. The system administrator can assign quotas for each of

these resources. Each quota consists of two limits for each resource:

• The hard limit represents an absolute limit on data blocks or files. The user

may never exceed the hard limit under any circumstances.

• The soft limit is lower than the hard limit and may be exceeded for a limited

amount of time. This allows users to temporarily exceed limits as long as

they fall under those limits before the allotted time expires.

The system administrator is responsible for assigning hard and soft limits to

users. See Chapter 7, “Quotas,” for more information.

Access Control Lists
An Access Control List (ACL) stores a series of entries that identify specific

users or groups and their access privileges for a particular file. A file may have

its own ACL or may share an ACL with other files. ACLs have the advantage

of specifying detailed access permissions for multiple users and groups. Refer

to the getfacl (1) and setfacl (1) manual pages for information on viewing

and setting ACLs.
16 VxFS System Administrator’s Guide

1

Support for Large Files
The changes implemented with the Version 4 disk layout have greatly

expanded file system scalability. VxFS can now support files up to two

terabytes in size because file system structures are no longer in fixed locations

(see Chapter 2, “Disk Layout”).

Note: Be careful when enabling large file capability. Applications and utilities

such as backup may experience problems if they are not aware of large files.

Creating a File System with Large Files

You can create a file system with large file capability by entering the following

command:

mkfs -F vxfs -o largefiles special_device size

Specifying largefiles sets the largefiles flag, which allows the file system to

hold files up to two terabytes in size. Conversely, the default nolargefiles
option clears the flag and prevents large files from being created:

mkfs -F vxfs -o nolargefiles special_device size

Note: The largefiles flag is persistent and stored on disk.

Mounting a File System with Large Files

If a mount succeeds and nolargefiles is specified, the file system cannot

contain or create any large files. If a mount succeeds and largefiles is

specified, the file system may contain and create large files.

The mount command fails if the specified largefiles|nolargefiles
option does not match the on-disk flag.

Try to avoid specifying the largefiles or nolargefiles options so the

mount command will default to match the current setting of the on-disk flag.

Use fsadm to manage the system after a file system is mounted.
The VERITAS File System 17

1

Managing a File System with Large Files

You can determine the current status of the largefiles flag with either of the

following commands:

mkfs -F vxfs -m special_device

fsadm mount_point | special_device

You can switch capabilities on a mounted file system with the fsadm
command:

fsadm -o [no]largefiles mount_point

You can also switch capabilities on an unmounted file system:

fsadm -o [no]largefiles special_device

You cannot switch a file system to nolargefiles if it holds large files.

See the mount_vxfs (1M), fsadm_vxfs (1M), and mkfs_vxfs (1M) manual

pages.

Support for Databases
Databases are usually created on file systems to simplify backup, copying, and

moving tasks and are slower compared to databases on raw disks.

Using the VERITAS Quick I/O for Databases feature with VxFS lets systems

retain the benefits of having a database on a file system without sacrificing

performance. VERITAS Quick I/O creates regular, preallocated files to use as

character devices. Databases can be created on the character devices to achieve

the same performance as databases created on raw disks.
18 VxFS System Administrator’s Guide

1

Treating regular VxFS files as raw devices has the following advantages for

databases:

• Commercial database servers such as Oracle Server can issue kernel

supported asynchronous I/O calls on these pseudo devices but not on

regular files.

• read () and write () system calls issued by the database server can avoid

the acquisition and release of read /write locks inside the kernel that take

place on regular files.

• VxFS can avoid double buffering of data already buffered by the database

server. This ability frees up resources for other purposes and results in

better performance.

• Since I/O to these devices bypasses the system buffer cache, VxFS saves on

the cost of copying data between user space and kernel space when data is

read from or written to a regular file. This process significantly reduces

CPU time per I/O transaction compared to that of buffered I/O.

See Chapter 8, “Quick I/O for Databases,” for details on VxFS database

support.

VERITAS QuickLog
Without QuickLogTM, the intent log information for VxFS is usually stored

near the beginning of the file system volume and log data is written

sequentially. From a volume perspective, writing to the log appears to be

random because other disk operations (inode, data) are issued on the same

volume, causing the disk head to seek between the log and file system data

areas. QuickLog moves the VxFS log from the physical volume containing the

file system onto a separate physical volume. This eliminates the seek time

between the log and file system data and improves performance.
The VERITAS File System 19

1

20 VxFS System Administrator’s Guide

Disk Layout 2
Introduction
The following topics are covered in this chapter:

• Disk Space Allocation

• The VxFS Version 1 Disk Layout

• Overview

• Super-Block

• Intent Log

• Allocation Unit

• The VxFS Version 2 Disk Layout

• Overview

• Basic Layout

• Filesets and Structural Files

• Locating Dynamic Structures

• The VxFS Version 4 Disk Layout
21

2

Three disk layouts are available with the VERITAS File System:

Version 1 The Version 1 disk layout is the original VxFS disk layout provided

with pre-2.0 versions of VxFS.

Version 2 The Version 2 disk layout was designed to support features such as

filesets, dynamic inode allocation, and enhanced security. The

Version 2 layout is available with and without quotas support.

Version 4 The Version 4 disk layout encompasses all file system structural

information in files, rather than at fixed locations on disk, allowing

for greater scalability. Version 4 supports files up to two terabytes in

size and file systems up to one terabyte in size.

Note: The Version 3 disk layout is not supported on Solaris.

All disk layout versions are supported by VxFS. After VxFS Release 3.3 is

installed on a system, new file systems are created with the Version 4 layout by

default. Although mkfs allows the user to specify other disk layouts, it is

generally preferable to use the Version 4 layout for new file systems.

The vxupgrade command is provided to upgrade an existing VxFS file system

to the Version 4 layout while the file system remains online. See the

vxupgrade (1M) manual page for details on upgrading VxFS file systems.

Disk Space Allocation
Disk space is allocated by the system in 512-byte sectors. An integral number

of sectors are grouped together to form a logical block. VxFS supports logical

block sizes of 1024, 2048, 4096, and 8192 bytes. The default block size is 1024

bytes. The block size may be specified as an argument to the mkfs utility and

may vary between VxFS file systems mounted on the same system. VxFS

allocates disk space to files in extents. An extent is a set of contiguous

blocks.
22 VxFS System Administrator’s Guide

2

The VxFS Version 1 Disk Layout
This section describes the VxFS Version 1 disk layout.

Overview

The VxFS Version 1 disk layout, as shown in Figure 1, includes:

• the super-block

• the intent log

• one or more allocation units

These elements are discussed in detail in the sections that follow.

Figure 1 VxFS Version 1 Disk Layout

Super-Block

Intent Log

Allocation Unit 0

Allocation Unit n

.

.

.

Disk Layout 23

2

Super-Block

The super-block contains important information about the file system, such as:

• the file system type

• creation and modification dates

• label information

• information about the size and layout of the file system

• the count of available resources

• the file system disk layout version number

Refer to the fs_vxfs (4) manual page for details on the contents of the

super-block.

The super-block is always in a fixed location, offset from the start of the file

system by 8192 bytes. This fixed location enables utilities to easily locate the

super-block when necessary. The super-block is 1024 bytes long.

Copies of the super-block are kept in allocation unit headers: these copies can

be used for recovery purposes if the super-block is corrupted or destroyed (see

the fsck (1M) manual page for more details).

Intent Log

In the event of system failure, the VxFS file system uses intent logging to

guarantee file system integrity.

The intent log is a circular activity log with a default size of 1024 blocks. If the

file system is smaller than 4 MB, the default log size is reduced (by mkfs) to

avoid wasting space. The intent log contains records of the intention of the

system to update a file system structure. An update to the file system structure

(a transaction) is divided into separate subfunctions for each data structure that

needs to be updated. A composite log record of the transaction is created,

containing the subfunctions constituting the transaction.
24 VxFS System Administrator’s Guide

2

For example, the creation of a file that would expand the directory in which the

file is contained would produce a transaction consisting of the following

subfunctions:

• a free extent map update for the allocation of the new directory block

• a directory block update

• an inode modification for the directory size change

• an inode modification for the new file

• a free inode map update for the allocation of the new file

VxFS maintains log records in the intent log for all pending changes to the file

system structure and ensures that the log records are written to disk in advance
of the changes to the file system. Once the intent log has been written, the

transaction’s other updates to the file system can be written in any order. In the

event of a system failure, the pending changes to the file system are either

nullified or completed by the fsck utility. The VxFS intent log generally only

records changes to the file system structure. File data changes are not normally

logged.

Note: Using QuickLog does not affect the general operation of the intent log.
Disk Layout 25

2

Allocation Unit

An allocation unit is a group of consecutive blocks in a file system that contain

a resource summary, free resource maps, inodes, data blocks, and a copy of the

super-block. An allocation unit in the VxFS file system is similar in concept to

the ufs “cylinder group.” Each component of an allocation unit begins on a

block boundary. The VxFS Version 1 allocation unit is shown in Figure 2.

Figure 2 Allocation Unit Structure

Allocation Unit Header

Allocation Unit Summary

Free Inode Map

Extended Inode Operations Map

Free Extent Map

Padding

Inode List

Data Blocks
26 VxFS System Administrator’s Guide

2

One or more allocation units exist per file system. Allocation units are located

immediately after the intent log. The number and size of allocation units can be

specified when the file system is made. All of the allocation units, except

possibly the last one, are of equal size. If space is limited, the last allocation

unit can have a partial set of data blocks to allow use of all remaining blocks.

Allocation Unit Header

The allocation unit header contains a copy of the file system’s super-block that

is used to verify that the allocation unit matches the super-block of the file

system. The super-block copies contained in allocation unit headers can also be

used for recovery purposes if the super-block is corrupted or destroyed. The

allocation unit header occupies the first block of each allocation unit.

Allocation Unit Summary

The allocation unit summary contains the number of inodes with extended

operations pending, the number of free inodes, and the number of free extents

in the allocation unit.

Free Inode Map

The free inode map is a bitmap that indicates which inodes are free and which

are allocated. A free inode is indicated by the bit being on. Inodes zero and one

are reserved by the file system; inode two is the inode for the root directory;

inode three is the inode for the lost+found directory.

Extended Inode Operations Map

The extended inode operations map keeps track of inodes on which operations

would remain pending for too long to reside in the intent log. The extended

inode operations map is in the same format as the free inode map. To prevent

the intent log from wrapping and the transaction from getting overwritten, the

required operations are stored in the affected inode (if the transaction has not

completed, it does not get overwritten, the new log waits and the file system is

frozen). This map is then updated to identify the inodes that have extended

operations that need to be completed.
Disk Layout 27

2

Free Extent Map

The free extent map is a series of independent 512-byte bitmaps that are each

referred to as a free extent map section. Each section is broken down into

multiple regions. The first region, of 2048 bits, represents a section of 2048 one-

block extents. The second region, of 1024 bits, represents a section of 1024 two-

block extents. This regioning continues for all powers of 2 up to the single bit

that represents one 2048 block extent.

The file system uses this bitmapping scheme to find an available extent closest

in size to the space required. This keeps files as contiguous as possible for

faster performance.

Inode List

An inode is a data structure that contains information about a file. The VxFS

inode size is 256 bytes. Each inode stores information about a particular file

such as:

• file length

• link count

• owner and group IDs

• access privileges

• time of last access

• time of last modification

• pointers to the extents that contain the file’s data

There are up to ten direct extent address size pairs per inode. Each direct

extent address indicates the starting block number of a direct extent; direct

extent sizes can vary. If all of the direct extents are used, two indirect address

extents are available for use in each inode:

• The first indirect address extent is used for single indirection, where each

entry in the extent indicates the starting block number of an indirect data

extent.

• The second indirect address extent is used for double indirection, where

each entry in the extent indicates the starting block number of a single

indirect address extent.
28 VxFS System Administrator’s Guide

2

Each indirect address extent is 8K long and contains 2048 entries. All indirect

data extents for a given file have the same size, which is determined when the

file’s first indirect data extent is allocated.

The inode list is a series of inodes. There is one inode in the list for every file in

the file system.

Padding

It may be desirable to align data blocks to a physical boundary. To facilitate

this, the system administrator may specify that a gap be left between the end of

the inode list and the first data block.

Data Blocks

The balance of the allocation unit is occupied by data blocks. Data blocks

contain the actual data stored in files and directories.

The VxFS Version 2 Disk Layout
This section describes the VxFS Version 2 disk layout.

Due to the relatively complex nature of the Version 2 layout, the sections that

follow are arranged to cover the following general areas:

• Structural elements of the file system that exist in fixed locations. These

elements are discussed in the section entitled “Basic Layout.”

• Structural elements of the file system that do not exist in fixed locations.

These elements are discussed in the section entitled “Filesets and Structural

Files.”

• How the various structural elements of the file system are located and used

when the file system is mounted. This is discussed in the section entitled

“Locating Dynamic Structures.”
Disk Layout 29

2

Overview

Many aspects of the Version 1 disk layout are preserved in the Version 2 disk

layout. However, the Version 2 layout differs from the Version 1 layout in that

it includes support for the following features:

• filesets (sets of files within a file system)

• dynamic inode allocation (allocation of inodes on an as-needed basis)

• enhanced security

The addition of filesets and dynamic allocation of inodes has affected the disk

layout in various ways. In particular, many of the file system structures are

now located in files (referred to as structural files) rather than in fixed disk

areas. This provides a simple mechanism for dynamic growth of structures. For

example, inodes are now stored in structural files and allocated as needed. In

general, file system structures that deal with space allocation are still in fixed

disk locations, while most other structures are dynamically allocated and have

become clients of the file system’s disk space allocation scheme.

The Version 2 disk layout for VxFS 2.3 differs from previous VxFS releases

because of the addition of BSD-style quota support. The differences include the

fileset header structure modification to store a quota inode and preallocation of

an internal quotas file.

Basic Layout

This section describes the structural elements of the file system that exist in

fixed locations on the disk.

The VxFS Version 2 disk layout is illustrated in Figure 3 and is composed of:

• the super-block

• the object location table

• the intent log

• a replica of the object location table

• one or more allocation units

These and other elements are discussed in detail in the sections that follow.
30 VxFS System Administrator’s Guide

2

Figure 3 VxFS Version 2 Disk Layout

Super-Block

Intent Log

Allocation Unit 0

Allocation Unit n

.

.

.

Object Location Table Replica

Object Location Table
Disk Layout 31

2

Super-Block

The super-block contains important information about the file system, such as

• the file system type

• creation and modification dates

• label information

• information about the size and layout of the file system

• the count of available resources

• the file system disk layout version number

• pointers to the object location table and its replica

The super-block is always in a fixed location, offset from the start of the file

system by 8192 bytes. This fixed location enables utilities to easily locate the

super-block when necessary. The super-block is 1024 bytes long.

Copies of the super-block are kept in allocation unit headers: these copies can

be used for recovery purposes if the super-block is corrupted or destroyed (see

the fsck (1M) manual page).

Object Location Table

The object location table (OLT) can be considered an extension of the

super-block. The OLT contains information used at mount time to locate file

system structures that are not in fixed locations. The OLT is typically located

immediately after the super-block and is 8K long. However, if a Version 1 file

system is upgraded to Version 2, the placement of the OLT depends on the

availability of space.

The OLT is replicated and its replica is located immediately after the intent log.

The OLT and its replica are separated in order to minimize the potential for

losing both copies of the vital OLT information in the event of localized disk

damage.

The contents and use of the OLT are described in detail in the section entitled

“Locating Dynamic Structures.”
32 VxFS System Administrator’s Guide

2

Intent Log

The VxFS file system uses intent logging to guarantee file system integrity in

the event of system failure

The intent log is a circular activity log with a default size of 512 blocks. If the

file system is less than 4 MB, the log size will be reduced to avoid wasting

space. The intent log contains records of the intention of the system to update

a file system structure. An update to the file system structure (a transaction) is

divided into separate subfunctions for each data structure that needs to be

updated. A composite log record of the transaction is created that contains the

subfunctions that constitute the transaction.

For example, the creation of a file that would expand the directory in which the

file is contained will produce a transaction consisting of the following

subfunctions:

• a free extent map update for the allocation of the new directory block

• a directory block update

• an inode modification for the directory size change

• an inode modification for the new file

• a free inode map update for the allocation of the new file

VxFS maintains log records in the intent log for all pending changes to the file

system structure, and ensures that the log records are written to disk in advance
of the changes to the file system. Once the intent log has been written, the

transaction’s other updates to the file system can be written in any order. In the

event of a system failure, the pending changes to the file system are either

nullified or completed by the fsck utility. The VxFS intent log generally only

records changes to the file system structure. File data changes are not normally

logged.

Note: Using QuickLog does not affect the general operation of the intent log.
Disk Layout 33

2

Allocation Unit

An allocation unit is a group of consecutive blocks in a file system that contain

a resource summary, a free resource map, data blocks, and a copy of the

super-block. An allocation unit in the VxFS file system is similar in concept to

the ufs “cylinder group.” Each component of an allocation unit begins on a

block boundary. All of the Version 2 allocation unit components deal with the

allocation of disk space. Those components of the Version 1 allocation unit that

deal with inode allocation have been relocated elsewhere for Version 2. In

particular, the inode list now resides in an inode list file and the inode

allocation information now resides in an inode allocation unit (described later).

The VxFS Version 2 allocation unit is depicted in Figure 4.

Figure 4 Allocation Unit Structure

One or more allocation units exist per file system. Allocation units are located

after the OLT replica. The number and size of allocation units can be specified

when the file system is made. All of the allocation units, except possibly the

last one, are of equal size. If space is limited, the last allocation unit can have a

partial set of data blocks to allow use of all remaining blocks.

Allocation Unit Header

Allocation Unit Summary

Free Extent Map

Padding

Data Blocks
34 VxFS System Administrator’s Guide

2

Allocation Unit Header

The allocation unit header contains a copy of the file system’s super-block that

is used to verify that the allocation unit matches the super-block of the file

system. The super-block copies contained in allocation unit headers can also be

used for recovery purposes if the super-block is corrupted or destroyed. The

allocation unit header occupies the first block of each allocation unit.

Allocation Unit Summary

The allocation unit summary summarizes the resources (data blocks) used in

the allocation unit. This includes information such as the number of free

extents of each size in the allocation unit.

Free Extent Map

The free extent map is a series of independent 512-byte bitmaps that are each

referred to as a free extent map section. Each section is broken down into

multiple regions. The first region of 2048 bits represents a section of 2048 one-

block extents. The second region of 1024 bits represent a section of 1024 two-

block extents. This regioning continues for all powers of 2 up to the single bit

that represents one 2048 block extent.

The file system uses this bitmapping scheme to find an available extent closest

in size to the space required. This keeps files as contiguous as possible for

faster performance.

Padding

It may be desirable to align data blocks to a physical boundary. To facilitate

this, the system administrator may specify that a gap be left between the end of

the free extent map and the first data block. Refer to the “Alignment” section in

Chapter 6, “Application Interface,” for additional information.

Data Blocks

The balance of the allocation unit is occupied by data blocks. Data blocks

contain the actual data stored in files and directories.
Disk Layout 35

2

Filesets and Structural Files

This section describes the structural elements of the file system that are not

necessarily in fixed locations on the disk.

With the Version 2 layout, many structural elements of the file system are

encapsulated in files to allow dynamic allocation of the file system structure.

Files that store this file system structural data are referred to as structural files.

As the file system grows, more space is allocated to the structural files.

Structural files are intended for file system use only and are not generally

visible to users.

The Version 2 layout supports filesets, which are collections of files that exist

within a file system. In the current release, each file system contains two

filesets:

attribute fileset
A special fileset that stores the structural elements of the file system

in the form of structural files. These files are the “property” of the file

system and are not normally visible to the user.

primary fileset
A fileset that contains files that are visible to and accessible by users.

Structural files exist in the attribute fileset only and include the following:

fileset header file
A file that contains a series of fileset headers.

inode list file
A file that contains a series of inodes.

inode allocation unit (IAU) file
A file that contains a series of inode allocation units.

current usage table (CUT) file
A file that contains a series of fileset usage entries.

link count table file
A file that contains a link count for each inode in the attribute fileset.

quotas file
A file containing user quota information (for the primary fileset

only).
36 VxFS System Administrator’s Guide

2

Structural files and their components are discussed in the sections that follow.

Although structural files are contained in the structural fileset, they can

“belong” to another fileset. For example, the inode list file for the primary

fileset is in the structural fileset, but the structural details that it contains are

only applicable to the primary fileset.

Each fileset is defined by structural files as follows:

• an inode list file, which contains the inodes belonging to the fileset

• an inode allocation unit file, which contains a series of inode allocation

units

• an entry in the fileset header file, which contains one fileset header per

fileset

• an entry in the current usage table file, which contains usage information

for each fileset

In addition, the primary fileset has a user quotas file and the structural fileset

has a link count table file.

Fileset metadata that cannot be reconstructed using the inode list is replicated

to help fsck reconstruct the file system in the event of disk damage.

Figure 5 shows a fileset and the structural files by which it is defined.

Fileset Header

Each fileset has a header containing information about the fileset’s contents

and characteristic. All fileset headers are stored in a single fileset header file in

the attribute fileset. The fileset header file contains one fileset header per fileset

(see Figure 6). Each fileset header entry is 1 block long. The fileset header file is

replicated because fileset headers cannot be rebuilt from other data structures.
Disk Layout 37

2

Figure 5 Filesets and Structural Files

CUT
Entry

Fileset
Header
Entry

Inode 0

Inode 1

Inode 2

Inode n

IAU 0

IAU 1

IAU 2

IAU n

LCT File (attribute fileset only)

Inode List File IAU File

Fileset Header File

CUT File

Fileset

.

.

.

.

.

.

Quotas File
(primary fileset only)
38 VxFS System Administrator’s Guide

2

Figure 6 Fileset Header File

The fileset header for a given fileset includes information such as:

• the fileset index (1 for the attribute fileset and 999 for the primary fileset)

• the fileset name

• the inode numbers of the fileset’s inode list file and its replica

• the total number of allocated inodes

• the maximum number of inodes allowed in the fileset

• the inode list extent size (in blocks)

• the inode number of the file containing the inode allocation units for the

fileset

• the inode number of the fileset’s link count table (attribute fileset only)

• the inode number of the fileset’s quotas file (primary fileset only)

Note: The quotas file inode is present only in VxFS 2.3 and later and is not

applicable to earlier releases of VxFS.

Attribute Fileset Header Entry

Primary Fileset Header Entry

. . .
Disk Layout 39

2

Inodes

An inode is a data structure that contains information about a file. The VxFS

inode size is 256 bytes. Each inode stores information about a particular file

such as:

• file length

• link count

• owner and group IDs

• access privileges

• time of last access

• time of last modification

• pointers to the extents that contain the file’s data

Refer to the inode_vxfs (4) manual page for details on the contents of a VxFS

inode.

There are up to ten direct extent address size pairs per inode. Each direct

extent address indicates the starting block number of a direct extent; direct

extent sizes can vary. If all of the direct extents are used, two indirect address

extents are available for use in each inode. The first indirect address extent is

used for single indirection, where each entry in the extent indicates the starting

block number of an indirect data extent. The second indirect address extent is

used for double indirection, where each entry in the extent indicates the

starting block number of a single indirect address extent. Each indirect address

extent is 8K long and contains 2048 entries. All indirect data extents for a given

file have the same size, which is determined when the file’s first indirect data

extent is allocated.

Version 2 inodes differ from Version 1 inodes in that they are located in

structural files to facilitate dynamic inode allocation, which is the allocation of

inodes on an as-needed basis. Instead of allocating a fixed number of inodes

into the file system, mkfs allocates a minimum number of inodes. Additional

inodes are later allocated as the file system needs them.

The inode list is a series of inodes located in the inode list file. There is one

inode in the list for every file in a given fileset. For recovery purposes, the

inode list file is referenced by two inodes that point to the same set of data

blocks. Although the inode addresses are replicated for recovery purposes, the

inodes themselves are not.
40 VxFS System Administrator’s Guide

2

An inode extent is an extent that contains inodes and is 8K long, by default.

Inode extents are dynamically allocated to store inodes as they are needed.

Initial Inode List Extents

The initial inode list extents contain the inodes first allocated by mkfs for each

fileset in a file system. During file system use, inodes are allocated as needed

and are added into the inode list files for the filesets.

Figure 7 shows the initial inode list extents allocated for the primary and

attribute filesets. Each of these extents contain 32 inodes and is 8K long.

The construction of the primary fileset’s inode list resembles that of the VxFS

Version 1 file system layout, with the first two inodes reserved and inodes 2

and 3 pre-assigned to the root and lost+found directories. The structural

fileset’s inode list is similarly constructed, with certain inodes allocated for

specific files and other inodes reserved or unallocated.

There are two initial inode list extents for the attribute fileset. These contain the

inodes for all structural files needed to find and set up the file system.

Some of the entries in the structural fileset’s inode list are replicas of one

another. For example, inodes 4 and 36 both reference copies of the fileset

header file. The replicated inodes are used by fsck to reconstruct the file

system in the event of damage to either one of the replicas. Although the two

initial inode list extents belonging to the attribute fileset are logically

contiguous, they are physically separated. This helps to ensure the integrity of

the replicated information and reduces the chance that localized disk damage

might result in complete loss of the file system.

Note that inodes 6 and 38 in the attribute fileset reference the inode list file for

the attribute fileset. In a newly created file system, this file contains the two

inode extents pictured for the attribute fileset. Likewise, the attribute fileset

inodes 7 and 39 reference the inode list file for the primary fileset. In a newly

created file system, this file contains the single extent pictured for the primary

fileset. All of the unused inodes in the initial extents of the structural inode list

are reserved for future use.
Disk Layout 41

2

Figure 7 Inode Lists

0

1

2

3

4

5

6

7

8

...

31

0

1

2

3

4

5

6

7

8

...

31

32

33

34

35

36

37

38

39

40

...

63

root

lost+found CUT

fileset header

attribute

attribute fileset
inode list

primary fileset
inode list

fileset header
(replica)

LCT

primary fileset IAU

attribute fileset
inode list (replica)

primary fileset
inode list (replica)

Primary Fileset
Inode List

Attribute Fileset Inode List

primary fileset
quotas file

fileset IAU
42 VxFS System Administrator’s Guide

2

Inode Allocation Unit

An Inode Allocation Unit (IAU) contains inode allocation information for a

given fileset. Each fileset contains one or more IAUs, each of which details

allocation for a set number of inodes. The number of inodes per IAU varies,

depending on the block size being used. One IAU exists for every 16,384

inodes in a fileset with the default block size (1024 bytes). If an IAU is

damaged, the information that it contains can be reconstructed by examining

the fileset’s inode list.

The IAUs for a fileset are stored in sequential order in the fileset’s IAU file. The

fileset header identifies the attribute fileset inode associated with that fileset’s

IAU file.

Figure 8 shows the inode allocation unit structure. All IAU components begin

on a block boundary.

Figure 8 Inode Allocation Unit (IAU) Structure

IAU Header

IAU Summary

Free Inode Map

Extended Inode Operations Map
Disk Layout 43

2

IAU Header

The IAU header verifies that the inode allocation unit matches the fileset. The

IAU header occupies the first block of each inode allocation unit. If damaged,

the IAU can be reconstructed from inodes and other information.

IAU Summary

The IAU summary summarizes the resources used in the IAU. It includes

information on the number of free inodes in the IAU and the number of inodes

with extended operation sets in the IAU. The IAU summary is 1 block long.

Free Inode Map

The free inode map is a bitmap that indicates which inodes are free and which

are allocated. A free inode is indicated by the bit being on. The length of the

free inode map is 2K for file systems with 1K or 2K block sizes and is equal to

the block size for file systems with larger block sizes.

Extended Inode Operations Map

The extended inode operations map keeps track of inodes on which operations

would remain pending for too long to reside in the intent log. The extended

inode operations map is in the same format as the free inode map. To prevent

the intent log from wrapping and the transaction from getting overwritten, the

required operations are stored in the affected inode. This map is then updated

to identify the inodes that have extended operations that need to be completed.

This map allows the fsck utility to quickly identify which inodes had

extended operations pending at the time of a system failure. The length of the

extended inode operations map is 2K for file systems with 1K or 2K block sizes

and is equal to the block size for file systems with larger block sizes.
44 VxFS System Administrator’s Guide

2

Link Count Table

The link count table (LCT) contains a reference count for each inode in the

associated fileset. This reference count is identical to the conventional link field

of an inode. Each LCT entry contains the actual reference count for the

associated fileset inode. The link count field in an inode itself is set to either 0

or 1, and the actual number of links is stored in the LCT entry for the

associated fileset inode.

The link count table can be reconstructed using the inode list, so it is not

replicated.

The current layout only uses the LCT for inodes in the attribute fileset. The

LCT supports quick updates of the link count for structural fileset inodes.

Current Usage Table

The current usage table (CUT) is a file that contains usage related information

for each fileset. The information contained in the CUT changes frequently and

is not replicated. The information in the CUT can, however, be reconstructed

using the inode list if the CUT is damaged.

The CUT file contains one entry per fileset (see Figure 9). The CUT entry for a

given fileset contains information such as the following:

• The number of blocks currently used by the fileset.

• The fileset version number, which is a 64-bit integer that is guaranteed to be at

least as large as the largest inode version number. An inode version number is

a 64-bit integer that is incremented every time its inode is modified or

written to disk and can be used to indicate whether an inode has been

modified in any way since the last time it was examined. It is possible to

find out which inodes have been modified since a specific time by saving

the fileset version number and then later looking for inodes with a larger

version number.
Disk Layout 45

2

Figure 9 Current Usage Table (CUT) File

Quotas File

VxFS supports BSD-style quotas for users. Quota information is stored in a

quotas file. User quotas files track the resources used by each user ID. The

quotas file keeps track of soft limits, hard limits, block usage, and inode usage

for users within a file system.

Because quotas apply to mountable filesets only, the attribute fileset does not

have quotas. However, the primary fileset’s quotas file exists as a structural file

in the attribute fileset. The primary fileset’s user quotas file is referenced by the

attribute fileset’s initial inode list extent.

Note: The quotas file is present only in VxFS 2.3 and later and is not

applicable to earlier releases of VxFS.

Attribute Fileset CUT Entry

Primary Fileset CUT Entry

. . .
46 VxFS System Administrator’s Guide

2

Locating Dynamic Structures

The existence of dynamic structures in the Version 2 disk layout makes the task

of initially locating those structures difficult. The object location table (OLT)

contains information needed to initially locate important file system structural

elements. In particular, the OLT records the starting block numbers of the

initial inode list extents for the attribute fileset and indicates which inodes

within those initial extents reference the fileset header file.

Object Location Table Contents

The OLT is composed of records for the following:

fileset header inodes
This record identifies the inode numbers of the fileset header file and

its replica.

initial inode list extent addresses
This record identifies the addresses of the beginning of each of two

8K inode extents. These are the initial inode list extents for the

attribute fileset, which contain the inodes for all structural files

belonging to the attribute fileset.

current usage table inode
This record identifies the inode number of the file that contains the

current usage table.

Mounting and the Object Location Table

At mount time, the object location table provides essential information about

the location of key file system components. The super-block plays an important

role in locating the OLT, in that it contains pointers to both the OLT and its

replica.
Disk Layout 47

2

Using the OLT, the process of mounting a VxFS Version 2 file system is as

follows:

1. Read in the super-block. Validate the super-block and its replicas (located in

the allocation unit headers).

2. Read and validate the OLT and its replica at the locations recorded in the

super-block.

3. Obtain the addresses of the initial inode list extents for the attribute fileset

from the OLT. Read in these initial inode extents.

4. Find the fileset header file, based on the fileset header file inode number

recorded in the OLT.

5. Read the contents of the fileset header file. Each fileset header file entry

represents a particular fileset and indicates the inode numbers of its inode

list file and IAU file. The attribute fileset is set up first so that subsequent

references to its inode list can be resolved.

The VxFS Version 4 Disk Layout
The Version 4 disk layout was designed to allow the file system to scale easily

to accommodate large files and large file systems.

The Version 1 and 2 disk layouts divided up the file system space into

allocation units. The first AU started part way into the file system which

caused potential alignment problems depending on where the first AU started.

Each allocation unit also had its own summary, bitmaps, and data blocks.

Because this AU structural information was stored at the start of each AU, this

also limited the maximum size of an extent that could be allocated. By

replacing the allocation unit model of previous versions, the need for

alignment of allocation units and the restriction on extent sizes was removed.

The VxFS Version 4 disk layout divides the entire file system space into fixed

size allocation units. The first allocation unit starts at block zero and all

allocation units are a fixed length of 32K blocks. (An exception may be the last

AU, which occupies whatever space remains at the end of the file system).

Because the first AU starts at block zero instead of part way through the file

system as in previous versions, there is no longer a need for explicit AU

alignment or padding to be added when creating a file system (see mkfs (1M)).
48 VxFS System Administrator’s Guide

2

The Version 4 file system also moves away from the model of storing AU

structural data at the start of an AU and puts all structural information in files.

So expanding the file system structures simply requires extending the

appropriate structural files. This removes the extent size restriction imposed by

the Version 1 and Version 2 layouts.

All Version 4 structural files reside in the structural fileset, which is similar to

the Version 2 attribute fileset. The structural files in the Version 4 disk layout

are:

Object Location Table File
Contains the object location table (OLT). As with the Version 2 disk

layout, the OLT, which is referenced from the super-block, is used to

locate the other structural files.

Label File Encapsulates the super-block and super-block replicas. Although the

location of the primary super-block is known, the label file can be

used to locate super-block copies if there is structural damage to the

file system.

Device File
Records device information such as volume length and volume label,

and contains pointers to other structural files.

Fileset Header File
Holds information on a per-fileset basis. This may include the inode

of the fileset's inode list file, the maximum number of inodes

allowed, an indication of whether the file system supports large files,

and the inode number of the quotas file if the fileset supports quotas.

When a file system is created, there are two filesets, the structural

fileset, which defines the file system structure, and the primary fileset,
which contains user data.

Inode List File
Both the structural fileset and the primary fileset have their own

inode lists which are stored in inode list files. Increasing the number

of inodes involves increasing the size of the file after expanding the

inode allocation unit file.

Inode Allocation Unit File
Holds the free inode map, extended operations map, and a summary

of inode resources.
Disk Layout 49

2

Log File Maps the block used by the file system intent log.

Extent Allocation Unit State File
Indicates the allocation state of each AU by defining whether each

AU is free, allocated as a whole (no bitmaps allocated), or expanded,

in which case the bitmaps associated with each AU determine which

extents are allocated.

Extent Allocation Unit Summary File
Contains the AU summary for each allocation unit, which contains

the number of free extents of each size. The summary for an extent is

created only when an allocation unit is expanded for use.

Free Extent Map File
Contains the free extent maps for each of the allocation units.

Quotas Files
If the file system supports quotas, there is a quotas file which is used

to track the resources allocated to each user.

Figure 10 shows how the kernel and utilities build information about the

structure of the file system. The super-block location is in a known location

from which the OLT can be located. From the OLT, the initial extents of the

structural inode list can be located along with the inode number of the fileset

header file. The initial inode list extents contain the inode for the fileset header

file from which the extents associated with the fileset header file are obtained.

As an example, when mounting the file system, the kernel needs to access the

primary fileset in order to access its inode list, inode allocation unit, quotas file

and so on. The required information is obtained by accessing the fileset header

file from which the kernel can locate the appropriate entry in the file and

access the required information.
50 VxFS System Administrator’s Guide

2

Figure 10 VxFS Version 4 Disk Layout

Fileset Header File

Structural Fileset

Primary Fileset

Header

Inode List inum

Fileset Index

max_inodes

Features

....

Primary Fileset Header

....

Initial Inode Extents

Inode List Inode

Fileset Header/

Initial Inode List

....

Object Location Table

....

File Inode Number

Extent Addresses

OLT Replica

Inode Allocation

Unit Inode

Fileset Header
File Inode

OLT
Extent
Addresses

Super-block

Header

and Name
Disk Layout 51

2

52 VxFS System Administrator’s Guide

Extent Attributes 3
Introduction
The VERITAS file system allocates disk space to files in groups of one or more

adjacent blocks called extents. VxFS defines an application interface that allows

programs to control various aspects of the extent allocation for a given file (see

Chapter 6, “Application Interface”). The extent allocation policies associated

with a file are referred to as extent attributes.

The VxFS getext and setext commands allows users to view or manipulate

file extent attributes. In addition, the vxdump , vxrestore , mv_vxfs ,

cp_vxfs , and cpio_vxfs commands preserve extent attributes when a file is

backed up, moved, copied, or archived.

The following topics are covered in this chapter:

• Attribute Specifics

• Reservation: Preallocating Space to a File

• Fixed Extent Size

• Other Controls

• Commands Related to Extent Attributes

• Failure to Preserve Extent Attributes
53

3

Attribute Specifics
The two basic extent attributes associated with a file are its reservation and its

fixed extent size. The user can preallocate space to the file by manipulating a

file’s reservation; the user can also override the default allocation policy of the

file system by setting a fixed extent size.

Other policies determine the way these attributes are expressed during the

allocation process. The user can specify that:

• the space reserved for a file must be contiguous

• no allocations should be made for a file beyond the current reservation

• unused reservation should be released when the file is closed

• space should be allocated but no reservation should be assigned

• the file size should be changed to immediately incorporate the allocated

space

Some of the extent attributes are persistent and become part of the on-disk

information about the file, while other attributes are temporary and lost after

the file is closed or the system is rebooted. The persistent attributes are similar

to the file’s permissions and are actually written in the inode for the file. When

a file is copied, moved, or archived, only the persistent attributes of the source

file can be preserved in the new file (see “Other Controls” on page 56 for more

information).

In general, the user will only set extent attributes for reservation. Many of the

attributes are designed for applications that are tuned to a particular pattern of

I/O or disk alignment (see the mkfs_vxfs (1M) manual page and Chapter 6,

“Application Interface,” for more information).
54 VxFS System Administrator’s Guide

3

Reservation: Preallocating Space to a File

VxFS makes it possible to preallocate space to a file at the time of the request

rather than when data is written into the file. This space cannot be allocated to

other files in the file system. VxFS prevents any unexpected out-of-space

condition on the file system by ensuring that a file’s required space will be

associated with the file before it is required.

Persistent reservation is not released when a file is truncated. The reservation

must be cleared or the file must be removed to free reserved space.

Fixed Extent Size

The VxFS default allocation policy uses a variety of heuristics to determine

how to make an allocation to a file when a write requires additional space. The

policy attempts to balance the two goals of optimum I/O performance through

large allocations and minimal file system fragmentation through allocation

from space available in the file system that best fits the data.

Setting a fixed extent size overrides the default allocation policies for a file and

always serves as a persistent attribute. Be careful to choose an extent size

appropriate to the application when using fixed extents. An advantage of

VxFS’s extent based allocation policies is that they rarely use indirect blocks

compared to block based file systems; VxFS eliminates many instances of disk

access that stem from indirect references. However, a small extent size can

eliminate this advantage.

Files with aggressive allocation sizes tend to be more contiguous and have

better I/O characteristics. However, the overall performance of the file system

degrades because the unused space fragments free space by breaking large

extents into smaller pieces. By erring on the side of minimizing fragmentation

for the file system, files may become so non-contiguous that their I/O

characteristics would degrade.
Extent Attributes 55

3

Fixed extent sizes are particularly appropriate in the following situations:

• If a file is large and sparse and its write size is fixed, a fixed extent size that

is a multiple of the write size can minimize space wasted by blocks that do

not contain user data as a result of misalignment of write and extent sizes.

(The default extent size for a sparse file is 8K.)

• If a file is large and contiguous, a large fixed extent size can minimize the

number of extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such

as the need to align extents to cylinder or striping boundaries on disk).

Other Controls

The auxiliary controls on extent attributes determine:

• whether allocations are aligned

• whether allocations are contiguous

• whether the file can be written beyond its reservation

• whether unused reservation is released when the file is closed

• whether the reservation is a persistent attribute of the file

• when the space reserved for a file will actually become part of the file

Alignment

Specific alignment restrictions coordinate a file’s allocations with a particular

I/O pattern or disk alignment (see the mkfs_vxfs (1M) manual page and the

introduction to Chapter 6, “Application Interface,” for details). Alignment can

only be specified if a fixed extent size has also been set. Setting alignment

restrictions on allocations is best left to well designed applications.
56 VxFS System Administrator’s Guide

3

Contiguity

A reservation request can specify that its allocation remain contiguous (all one

extent). Maximum contiguity of a file optimizes its I/O characteristics.

Note: Fixed extent sizes or alignment will cause the file system to return an

error message reporting insufficient space if no suitably sized (or aligned)

extent is available. This may happen even if the file system has plenty of free

space and the fixed extent size is large.

Write Operations Beyond Reservation

A reservation request can specify that no allocations can take place after a

write operation fills up the last available block in the reservation. This

specification can be used in a similar way to ulimit to prevent a file’s

uncontrolled growth.

Reservation Trimming

A reservation request can specify that any unused reservation be released

when the file is closed. The file is not completely closed until all processes

open against the file have closed it.

Reservation Persistence

A reservation request can ensure the reservation does not become a persistent

attribute of the file. Unused reservation is discarded when the file is closed.
Extent Attributes 57

3

Including Reservation in the File

A reservation request can make sure the size of the file is adjusted to include

the reservation. Normally, the space of the reservation is not included in the

file until an extending write operation requires it. A reservation that

immediately changes the file size can generate large temporary files. Unlike a

ftruncate operation that increases the size of a file, this type of reservation

does not perform zeroing of the blocks included in the file and limits this

facility to users with appropriate privileges. The data that appears in the file

may have been previously contained in another file.

Commands Related to Extent Attributes
The VxFS commands for manipulating extent attributes are setext and

getext ; they allow the user to set up files with a given set of extent attributes

or view any attributes that are already associated with a file. See the getext (1)

and setext (1) manual pages for details on using these commands.

The VxFS-specific commands vxdump, vxrestore , mv_vxfs , cp_vxfs , and

cpio_vxfs preserve extent attributes when backing up, restoring, moving, or

copying files. Make sure to modify your PATH when using the VxFS versions

of mv, cp , and cpio .

Most of these commands include a command line option (-e) for maintaining

extent attributes on files. This option specifies dealing with a VxFS file that has

extent attribute information including reserved space, a fixed extent size, and

extent alignment. The extent attribute information may be lost if the

destination file system does not support extent attributes, has a different block

size than the source file system, or lacks free extents appropriate to satisfy the

extent attribute requirements.

The -e option takes any of the following keywords as an argument:

warn Issue a warning message if extent attribute information cannot be

maintained (the default)

force Fail the copy if extent attribute information cannot be maintained

ignore Ignore extent attribute information entirely

The commands that move, copy, or archive files (mv_vxfs , cp_vxfs and

cpio_vxfs) use the -e option with arguments of ignore , warn , or force .
58 VxFS System Administrator’s Guide

3

For example, the mv_vxfs command could be used with the -e option to

produce the following results:

• The ignore keyword loses any extent attributes for files.

• The warn keyword issues a warning if extent attributes for a file cannot be

preserved. Such a situation may take place if the file is moved into a non-

VxFS file system; the file would ultimately be moved while the extent

attributes would be lost.

• The force keyword issues an error if attributes are lost and the file is not

relocated.

The ls command has an -e option, which prints the extent attributes of the

file.

Failure to Preserve Extent Attributes

Whenever a file is copied, moved, or archived using commands that preserve

extent attributes, there is nevertheless the possibility of losing the attributes.

Such a failure might occur for three reasons:

• The file system receiving a copied, moved, or restored file from an archive

is not a VxFS type. Since other file system types do not support the extent

attributes of the VxFS file system, the attributes of the source file are lost

during the migration.

• The file system receiving a copied, moved, or restored file is a VxFS type

but does not have enough free space to satisfy the extent attributes. For

example, consider a 50K file and a reservation of 1 MB. If the target file

system has 500K free, it could easily hold the file but fail to satisfy the

reservation.

• The file system receiving a copied, moved, or restored file from an archive

is a VxFS type but the different block sizes of the source and target file

system make extent attributes impossible to maintain. For example,

consider a source file system of block size 1024, a target file system of block

size 4096, and a file that has a fixed extent size of 3 blocks (3072 bytes). This

fixed extent size adapts to the source file system but cannot translate onto

the target file system.
Extent Attributes 59

3

The same source and target file systems in the preceding example with a file

carrying a fixed extent size of 4 could preserve the attribute; a 4 block (4096

byte) extent on the source file system would translate into a 1 block extent

on the target.

On a system with mixed block sizes, a copy, move, or restoration operation

may or may not succeed in preserving attributes. It is recommended that

the same block size be used for all file systems on a given system.
60 VxFS System Administrator’s Guide

Online Backup 4
Introduction
This chapter describes the online backup facility provided with the VERITAS

File System. The snapshot feature of VxFS can be used to create a snapshot

image of a mounted file system, which becomes a duplicate read-only copy of

the mounted file system.

The following topics are covered in this chapter:

• Snapshot File Systems

• Snapshot File System Disk Structure

• How a Snapshot File System Works

• Using a Snapshot File System for Backup

• Creating a Snapshot File System

• Making a Backup

• Performance of Snapshot File Systems
61

4

Snapshot File Systems
The VxFS file system provides a mechanism for taking snapshot images of

mounted file systems, which is useful for making backups. The snapshot file
system is an exact image of the original file system, which is referred to as the

snapped file system. The snapshot is a consistent view of the file system

“snapped” at the point in time the snapshot is made. Selected files can be

backed up from the snapshot (using standard utilities such as cpio or cp or

the entire file system image can be backed up (using the volcopy , vxdump , or

fscat utilities).

The mount command is used to create a snapshot file system; there is no mkfs
step involved. A snapshot file system is always read-only and exists only as

long as it and the file system that has been snapped are mounted. A snapped

file system cannot be unmounted until any corresponding snapshots are first

unmounted. A snapshot file system ceases to exist when unmounted. While it

is possible to have multiple snapshots of a file system made at different times,

it is not possible to make a snapshot of a snapshot.

This chapter describes the creation of snapshot file systems and gives some

examples of backing up all or part of a file system using the snapshot

mechanism.

Snapshot File System Disk Structure

A snapshot file system consists of:

• a super-block

• a bitmap

• a blockmap

• data blocks copied from the snapped file system

Figure 11 shows the disk structure of a snapshot file system.
62 VxFS System Administrator’s Guide

4

Figure 11 The Snapshot Disk Structure

The super-block is similar to the super-block of a normal VxFS file system,

however, the magic number is different and many of the fields are

meaningless.

Immediately following the super-block is the bitmap. The bitmap contains one

bit for every block on the snapped file system. Initially, all bitmap entries are

zero. A set bit indicates that the appropriate block was copied from the

snapped file system to the snapshot. In this case, the appropriate position in

the blockmap will reference the copied block,

Following the bitmap is the blockmap. It contains one entry for each block on

the snapped file system. Initially, all entries are zero. When a block is copied

from the snapped file system to the snapshot, the appropriate entry in the

blockmap is changed to contain the block number on the snapshot file system

that holds the data from the snapped file system.

The data blocks used by the snapshot file system are located after the

blockmap. These are filled by any data copied from the snapped file system,

starting from the front of the data block area.

Super-Block

Bitmap

Blockmap

Data Blocks
Online Backup 63

4

How a Snapshot File System Works

A snapshot file system is created by mounting an empty disk slice as a

snapshot of a currently mounted file system. The bitmap, blockmap and super-

block are initialized and then the currently mounted file system is frozen (see

Chapter 6, “Application Interface,” for a description of the VX_FREEZEioctl).

Once the file system to be snapped is frozen, the snapshot is enabled and

mounted and the snapped file system is thawed. The snapshot appears as an

exact image of the snapped file system at the time the snapshot was made.

Initially, the snapshot file system satisfies read requests by simply finding the

data on the snapped file system and returning it to the requesting process.

When an inode update or a write changes the data in block n of the snapped

file system, the old data is first read and copied to the snapshot before the

snapped file system is updated. The bitmap entry for block n is changed from

0 to 1 (indicating that the data for block n can be found on the snapped file

system) The blockmap entry for block n is changed from 0 to the block number

on the snapshot file system containing the old data.

A subsequent read request for block n on the snapshot file system will be

satisfied by checking the bitmap entry for block n and reading the data from

the indicated block on the snapshot file system, rather than from block n on the

snapped file system. Subsequent writes to block n on the snapped file system

do not result in additional copies to the snapshot file system, since the old data

only needs to be saved once.

All updates to the snapped file system for inodes, directories, data in files,

extent maps, etc., are handled in this fashion so that the snapshot can present a

consistent view of all file system structures for the snapped file system for the

time when the snapshot was created. As data blocks are changed on the

snapped file system, the snapshot will gradually fill with data copied from the

snapped file system.

The amount of disk space required for the snapshot depends on the rate of

change of the snapped file system and the amount of time the snapshot is

maintained. In the worst case, the snapped file system is completely full and

every file is removed and rewritten. The snapshot file system would need

enough blocks to hold a copy of every block on the snapped file system, plus

additional blocks for the data structures that make up the snapshot file system.

This is approximately 101 percent of the size of the snapped file system.

Normally, most file systems do not undergo changes at this extreme rate.

During periods of low activity, the snapshot should only require 2 to 6 percent
64 VxFS System Administrator’s Guide

4

of the blocks of the snapped file system. During periods of high activity, the

snapshot might require 15 percent of the blocks of the snapped file system.

These percentages tend to be lower for larger file systems and higher for

smaller ones.

Note: If a snapshot file system runs out of space for changed data blocks, it is

disabled and all further access to it fails. This does not affect the snapped file

system.

Using a Snapshot File System for Backup
Once a snapshot file system is created, it can be used to perform a consistent

backup of the snapped file system. Backup programs that function using the

standard file system tree (such as cpio) can be used without modification on a

snapshot file system, since the snapshot presents the same data as the snapped

file system. Backup programs that access the disk structures of a VxFS file

system (such as volcopy and vxdump) require some modifications to deal

with a snapshot file system. The VxFS utilities understand snapshot file

systems and make suitable modifications in their behavior so that their

operation on a snapshot file system is indistinguishable from that on a normal

file system.

Other backup programs that normally read the raw disk image cannot work on

snapshots without modification. These programs can use the fscat command

to obtain a raw image of the entire file system identical to that which would

have been obtained by a dd of the disk device containing the snapped file

system at the exact moment the snapshot was created. The snapread ioctl

takes arguments similar to those of the read system call and returns the same

results as would have been obtained by performing a read on the disk device

containing the snapped file system at the exact time the snapshot was created.

In both cases, however, the snapshot file system provides a consistent image of

the snapped file system with all activity complete; it is an instantaneous read

of the entire file system. This is a marked contrast to the results that would be

obtained by a dd or read of the disk device of an active file system.

If a complete backup of a snapshot file system is made through a utility such as

volcopy and is later restored, it will be necessary to fsck the restored file

system because the snapshot file system is only consistent and not clean. The

file system may have some extended inode operations that must be completed,
Online Backup 65

4

though there should be no other changes. Since the snapshot file system is not

writable, it cannot be fully fsck ed. However, the fsck -n command can be

used to report any inconsistencies.

Creating a Snapshot File System

A snapshot file system is created by using the -o snapof= option of the mount
command. The -o snapsize= option may also be required if the device being

mounted does not identify the device size in its disk label, or if a size smaller

than the entire device is desired. Use the following syntax to create a snapshot

file system:

mount -F vxfs -o snapof =special,snapsize =snapshot_size \

snapshot_special snapshot_mount_point

The snapshot file system must be created large enough to hold any blocks on

the snapped file system that may be written to while the snapshot file system

exists.

Note: If a snapshot file system runs out of blocks to hold copied data, it will

be disabled and all further access to the snapshot file system will fail.

During a period of low activity when the system is relatively inactive (for

example, on nights and weekends), the snapshot only needs to contain 2 to 6

percent of the blocks of the snapped file system. During a period of higher

activity, the snapshot of an “average” file system might require 15 percent of

the blocks of the snapped file system, though most file systems do not

experience this much turnover of data over an entire day. These percentages

tend to be lower for larger file systems and higher for smaller ones. The system

administrator should manage the blocks allocated to the snapshot based on file

system usage, duration of backups, etc.

Note: A snapshot file system ceases to exist when unmounted. If remounted,

it will be a fresh snapshot of the snapped file system. A snapshot file system

must be unmounted before the corresponding snapped file system can be

unmounted. Neither fuser nor mount will indicate that a snapped file system

cannot be unmounted because a snapshot of it exists.
66 VxFS System Administrator’s Guide

4

CAUTION! Any existing data on the disk used for the snapshot is overwritten

and lost.

Making a Backup

Here are some typical examples of making a backup of a 300,000 block file

system named /home (which exists on disk /dev/dsk/c0t0d0s7) using a

snapshot file system on /dev/dsk/c0t1d0s1 with a snapshot mount point of

/backup/home :

• To back up files changed within the last week using cpio :

mount -F vxfs -o snapof=/dev/dsk/c0t0d0s7, \
snapsize=100000 /dev/dsk/c0t1d0s1 /backup/home

cd /backup

find home -ctime -7 -depth -print | \
cpio -oc > /dev/rmt/c0s0

umount /backup/home

• To back up entire file system using volcopy :

mount -F vxfs -o snapof=/dev/dsk/c0t0d0s7, \
snapsize=100000 /dev/dsk/c0t1d0s1 /backup/home

volcopy -F vxfs home /dev/rdsk/c0t1d0s1 \
c0t1d0s1 /dev/rmt/c0s0 tape77

umount /backup/home

• To do a full backup of /dev/dsk/c0t0d0s7 and use dd to control blocking

of output onto tape device using vxdump :

vxdump f - /dev/rdsk/c0t0d0s7 | \
dd bs=128k > /dev/rmt/c0s0

• To do a level 3 backup of /dev/dsk/c0t0d0s7 and collect those files that

have changed in the current directory:

vxdump 3f - /dev/rdsk/c0t0d0s7 | vxrestore -xf -
Online Backup 67

4

• To do a full backup of a snapshot file system:

mount -o snapof=/dev/dsk/c0t0d0s7,snapsize=100000 \
/dev/dsk/c0t1d0s1 /backup/home

vxdump f - /dev/rdsk/c0t1d0s1 | \
dd bs=128k > /dev/rmt/c0s0

The vxdump and volcopy programs will ascertain whether

/dev/rdsk/c0t1d0s1 is a snapshot mounted as /backup/home and do the

appropriate work to get the snapshot data through the mount point.

Performance of Snapshot File Systems
Snapshot file systems maximize the performance of the snapshot at the

expense of writes to the snapped file system. Reads from a snapshot file system

will typically perform at nearly the throughput of reads from a normal VxFS

file system, allowing backups to proceed at the full speed of the VxFS file

system.

The performance of reads from the snapped file system should not be affected.

Writes to the snapped file system, however, typically average two to three

times as long as without a snapshot, since the initial write to a data block now

requires a read of the old data, a write of the data to the snapshot, and finally

the write of the new data to the snapped file system. If multiple snapshots of

the same snapped file system exist, writes will be even slower. Only the initial

write to a block suffers this penalty, however, so operations like writes to the

intent log or inode updates proceed at normal speed after the initial write.

Reads from the snapshot file system are impacted if the snapped file system is

busy, since the snapshot reads are slowed by all of the disk I/O associated with

the snapped file system.

The overall impact of the snapshot is dependent on the read to write ratio of an

application and the mixing of the I/O operations. As an example, Oracle

running an OLTP workload on a snapped file system was measured at about

15 to 20 percent slower than a file system that was not snapped.
68 VxFS System Administrator’s Guide

Performance and Tuning 5
Introduction
For any file system, the ability to provide peak performance is important.

Adjusting the available VERITAS File System options provides a way to

optimize system performance. This chapter describes tools that an

administrator can use to optimize VxFS. To optimize an application for use

with VxFS, see Chapter 6, “Application Interface.”

The following topics are covered in this chapter:

• Choosing a Block Size

• Choosing an Intent Log Size

• Choosing Mount Options

• log

• delaylog

• tmplog

• nolog

• nodatainlog

• blkclear

• mincache

• convosync

• vxldlog
69

5

• Combining mount Options

• Kernel Tuneables

• Internal Inode Table Size

• VxVM Maximum I/O Size

• Monitoring Free Space

• Monitoring Fragmentation

• I/O Tuning

• Tuning VxFS I/O Parameters

• Tuneable VxFS I/O Parameters

Choosing a Block Size

Note: The block size is chosen when a file system is created and cannot be

changed later.

The standard ufs file system defaults to an 8K block size with a 1K fragment

size. This means that space is allocated to small files (up to 8K) in 1K

increments. Allocations for larger files are done in 8K increments, except for

the last block which may be a fragment. Since many files are small, the

fragment facility saves a large amount of space when compared to allocating

space 8K at a time.

The unit of allocation in VxFS is a block. There are no fragments, since storage

is allocated in extents that consist of one or more blocks. For the most efficient

space utilization, the smallest block size available on the system should be

used. Typically, this provides the best performance as well. The smallest block

size available is 1K, which is also the default block size for VxFS file systems

created on the system. Unless there are special concerns, there should never be

a need to specify a block size when creating file systems.

For large file systems, with relatively few files, the system administrator may

wish to experiment with larger block sizes. The trade off of specifying larger

block sizes is a decrease in the amount of space used to hold the free extent

bitmaps for each allocation unit, an increase in the maximum extent size, and a

decrease in the number of extents used per file versus an increase in the
70 VxFS System Administrator’s Guide

5

amount of space wasted at the end of files that are not a multiple of the block

size. Larger block sizes use less disk space in file system overhead, but

consume more space for files that are not a multiple of the block size.

Overall file system performance may be improved or degraded by changing

the block size. For most applications, it is recommended that the default values

for the system be used. Some applications may benefit from a larger block size.

The easiest way to judge which block sizes will provide the greatest system

efficiency is to try representative system loads against various sizes and pick

the fastest.

Choosing an Intent Log Size

Note: The intent log size is chosen when a file system is created and cannot be

subsequently changed.

The mkfs utility uses a default intent log size of 1024 blocks. The default size is

sufficient for most workloads. If the system is used as an NFS server or for

intensive synchronous write workloads, performance may be improved using a

larger log size.

There are several system performance benchmark suites for which VxFS

performs better with larger log sizes. The best way to pick the log size is to try

representative system loads against various sizes and pick the fastest.

Note: When a larger intent log size is chosen, recovery time will be

proportionately longer and the file system may consume more system

resources (such as memory) during normal operation.

Note: When QuickLog is used, the log is chosen by the system administrator

at creation time and is easily changed at any time during use. For more

information on log creation, log manipulation, and load balancing, see

Chapter 9, “VERITAS QuickLog.”
Performance and Tuning 71

5

Choosing Mount Options
In addition to the standard mount mode (log mode), VxFS provides

blkclear , delaylog , tmplog , nolog , and nodatainlog modes of

operation. Caching behavior can be altered with the mincache option, and the

behavior of O_SYNCand D_SYNC(see the fcntl (2) manual page) writes can be

altered with the convosync option.

The delaylog and tmplog modes are capable of significantly improving

performance. The improvement over log mode is typically about 15 to 20

percent with delaylog ; with tmplog , the improvement is even higher.

Performance improvement varies, depending on the operations being

performed and the workload. Read/write intensive loads should show less

improvement, while file system structure intensive loads (such as mkdir ,

create , rename , etc.) may show over 100 percent improvement. The best way

to select a mode is to test representative system loads against the logging

modes and compare the performance results.

Most of the modes can be used in combination. For example, a desktop

machine might use both the blkclear and mincache=closesync modes.

Additional information on mount options can be found in the

mount_vxfs (1M) manual page.

log

The default logging mode is log . With log mode, VxFS guarantees that all

structural changes to the file system have been logged on disk when the

system call returns. If a system failure occurs, fsck replays recent changes so

that they will not be lost.

delaylog

In delaylog mode, some system calls return before the intent log is written.

This logging delay improves the performance of the system, but some changes

are not guaranteed until a short time after the system call returns, when the

intent log is written. If a system failure occurs, recent changes may be lost. This

mode approximates traditional UNIX guarantees for correctness in case of

system failures. Fast file system recovery works with this mode.
72 VxFS System Administrator’s Guide

5

tmplog

In tmplog mode, intent logging is almost always delayed. This greatly

improves performance, but recent changes may disappear if the system

crashes. This mode is only recommended for temporary file systems. Fast file

system recovery works with this mode.

nolog

Same as tmplog .

nodatainlog

The nodatainlog mode should be used on systems with disks that do not

support bad block revectoring. Normally, a VxFS file system uses the intent log

for synchronous writes. The inode update and the data are both logged in the

transaction, so a synchronous write only requires one disk write instead of

two. When the synchronous write returns to the application, the file system has

told the application that the data is already written. If a disk error causes the

data update to fail, then the file must be marked bad and the entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is

unlikely, so logging synchronous writes should be allowed. If the disk does not

support bad block revectoring, then a failure is more likely, so the

nodatainlog mode should be used.

A nodatainlog mode file system should be approximately 50 percent slower

than a standard mode VxFS file system for synchronous writes. Other

operations are not affected.

blkclear

The blkclear mode is used in increased data security environments. The

blkclear mode guarantees that uninitialized storage never appears in files.

The increased integrity is provided by clearing extents on disk when they are

allocated within a file. Extending writes are not affected by this mode. A

blkclear mode file system should be approximately 10 percent slower than a

standard mode VxFS file system, depending on the workload.
Performance and Tuning 73

5

mincache

The mincache mode has five suboptions:

• mincache=closesync

• mincache=direct

• mincache=dsync

• mincache=unbuffered

• mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where

users are likely to shut off the power on the machine without halting it first. In

this mode, any changes to the file are flushed to disk when the file is closed.

To improve performance, most file systems do not synchronously update data

and inode changes to disk. If the system crashes, files that have been updated

within the past minute are in danger of losing data. With the

mincache=closesync mode, if the system crashes or is switched off, only

files that are currently open can lose data. A mincache=closesync mode file

system should be approximately 15 percent slower than a standard mode VxFS

file system, depending on the workload.

The mincache=direct, mincache=unbuffered , and mincache=dsync
modes are used in environments where applications are experiencing reliability

problems caused by the kernel buffering of I/O and delayed flushing of non-

synchronous I/O. The mincache=direct and mincache=unbuffered
modes guarantee that all non-synchronous I/O requests to files will be

handled as if the VX_DIRECTor VX_UNBUFFEREDcaching advisories had been

specified. The mincache=dsync mode guarantees that all non-synchronous

I/O requests to files will be handled as if the VX_DSYNCcaching advisory had

been specified. Refer to the vxfsio (7) manual page for explanations of

VX_DIRECT, VX_UNBUFFERED, and VX_DSYNC. The mincache=direct ,

mincache=unbuffered , and mincache=dsync modes also flush file data on

close as mincache=closesync does.

Since the mincache=direct , mincache=unbuffered , and

mincache=dsync modes change non-synchronous I/O to synchronous I/O,

there can be a substantial degradation in throughput for small to medium size

files for most applications. Since the VX_DIRECTand VX_UNBUFFERED
advisories do not allow any caching of data, applications that would normally
74 VxFS System Administrator’s Guide

5

benefit from caching for reads will usually experience less degradation with

the mincache=dsync mode. mincache=direct and

mincache=unbuffered require significantly less CPU time than buffered

I/O.

If performance is more important than data integrity, the

mincache=tmpcache mode may be used. The mincache=tmpcache mode

disables special delayed extending write handling, trading off less integrity for

better performance. Unlike the other mincache modes, tmpcache does not

flush the file to disk when it is closed. When this option is used, garbage may

appear in a file that was being extended when a crash occurred.

convosync

Note: Use of the convosync=dsync option violates POSIX guarantees for

synchronous I/O.

The “convert osync” (convosync) mode has five suboptions:

convosync=closesync , convosync=direct , convosync=dsync ,

convosync=unbuffered , and convosync=delay .

The convosync=closesync mode converts synchronous and data

synchronous writes to non-synchronous writes and flushes the changes to the

file to disk when the file is closed.

The convosync=delay mode causes synchronous and data synchronous

writes to be delayed rather than to take effect immediately. No special action is

performed when closing a file. This option effectively cancels any data

integrity guarantees normally provided by opening a file with O_SYNC. See the

open (2), fcntl (2), and vxfsio (7) manual pages for more information on

O_SYNC.

CAUTION! Extreme care should be taken when using the

convosync=closesync or convosync=delay mode because they actually

change synchronous I/O into non-synchronous I/O. This may cause

applications that use synchronous I/O for data reliability to fail if the system

crashes and synchronously written data is lost.

The convosync=direct and convosync=unbuffered mode convert

synchronous and data synchronous reads and writes to direct reads and writes.
Performance and Tuning 75

5

The convosync=dsync mode converts synchronous writes to data

synchronous writes.

As with closesync , the direct , unbuffered , and dsync modes flush

changes to the file to disk when it is closed. These modes can be used to speed

up applications that use synchronous I/O. Many applications that are

concerned with data integrity specify the O_SYNC fcntl in order to write the

file data synchronously. However, this has the undesirable side effect of

updating inode times and therefore slowing down performance. The

convosync=dsync , convosync=unbuffered , and convosync=direct
modes alleviate this problem by allowing applications to take advantage of

synchronous writes without modifying inode times as well.

Note: Before using convosync=dsync , convosync=unbuffered , or

convosync=direct , make sure that all applications that use the file system

do not require synchronous inode time updates for O_SYNCwrites.

vxldlog

vxldlog can be used in conjunction with the name of a QuickLog device. For

example, to set the QuickLog device vxlog1 to log the file system, use

vxldlog=vxlog1 . If vxldlog= is specified with no QuickLog device, the

QuickLog driver chooses an appropriate log device automatically.

For more information, see Chapter 9, “VERITAS QuickLog.”
76 VxFS System Administrator’s Guide

5

Combining mount Options

Although mount options can be combined arbitrarily, some combinations do

not make sense. The following examples provide some common and

reasonable mount option combinations.

Exampl e 1 - Desktop File System

mount -F vxfs -o log,mincache=closesync /dev/dsk/c1t3d0s1 /mnt

This guarantees that when a file is closed, its data is synchronized to disk and

cannot be lost. Thus, once an application is exited and its files are closed, no

data will be lost even if the system is immediately turned off.

Exampl e 2 - Temporary File System or Restoring from Backup

mount -F vxfs -o tmplog,convosync=delay,mincache=tmpcache \

/dev/dsk/c1t3d0s1 /mnt

This combination might be used for a temporary file system where

performance is more important than absolute data integrity. Any O_SYNC
writes are performed as delayed writes and delayed extending writes are not

handled specially (which could result in a file that contains garbage if the

system crashes at the wrong time). Any file written 30 seconds or so before a

crash may contain garbage or be missing if this mount combination is in effect.

However, such a file system will do significantly less disk writes than a log
file system, and should have significantly better performance, depending on

the application.

Exampl e 3 - Data Synchronous Writes

mount -F vxfs -o log,convosync=dsync /dev/dsk/c1t3d0s1 /mnt

This combination would be used to improve the performance of applications

that perform O_SYNCwrites, but only require data synchronous write

semantics. Their performance can be significantly improved if the file system is

mounted using convosync=dsync without any loss of data integrity.
Performance and Tuning 77

5

Kernel Tuneables
This section describes the kernel tuneables in VxFS.

Internal Inode Table Size

Inodes are cached in a “per file system table,” known as the inode table. Each

file system type has a tuneable to determine the number of entries in its inode

table. For the VxFS file system, the tuneable is vxfs_ninode . For the ufs file

system, the tuneable is ufs_ninode .

The VxFS file system type uses the value of vxfs_ninode in /etc/system as

the number of entries in the VxFS inode table. By default, the file system uses a

value of vxfs_ninode , which is computed based on system memory size. To

increase the value, make the following change in /etc/system and reboot:

set vxfs:vxfs_ninode = new_value

It may be necessary to tune the dnlc (directory name lookup cache) size to

keep the value within an acceptable range relative to vxfs_ninode . It must be

within 80% of vxfs_ninode to avoid spurious ENFILE errors or excessive

CPU consumption, but must be more than 50% of vxfs_ninode to maintain

good performance. On Solaris 2.6, the variable ncsize determines the size of

dnlc . The default value of ncsize is based on the kernel variable maxusers .

It is computed at system boot time. This value can be changed by making an

entry in the /etc/system file:

set ncsize = new_value

The new ncsize is effective after the system has been rebooted.
78 VxFS System Administrator’s Guide

5

VxVM Maximum I/O Size

If the file system is being used in conjunction with the VERITAS Volume

Manager, then the Volume Manager by default breaks up I/O requests larger

than 256K. If you are using striping, for optimal performance, the file system

issues I/O requests that are full stripes. If the stripe size is larger than 256K,

those requests are broken up.

To avoid undesirable I/O breakup, the vol_maxio parameter should be

increased. To increase the value of vol_maxio, add an entry to /etc/system
and reboot for the change to take effect. For example, the following line sets

the maximum I/O size to 16 MB.

set vxio:vol_maxio=32768

This parameter is in sectors and is stored as a 16-bit number, so it cannot be set

to a value larger than 65535. The value of vol_maxio determines the largest

amount of memory that an I/O request can lock, so it should not be set to more

than approximately 20 percent of memory.

Monitoring Free Space
In general, VxFS works best if the percentage of free space in the file system

does not get below 10 percent. This is because file systems with 10 percent or

more free space have less fragmentation and better extent allocation. Regular

use of the df command to monitor free space is desirable. Full file systems may

have an adverse effect on file system performance. Full file systems should

therefore have some files removed, or should be expanded (see the

fsadm_vxfs (1M) manual page for a description of online file system

expansion).
Performance and Tuning 79

5

Monitoring Fragmentation

Fragmentation reduces performance and availability. Regular use of fsadm ’s

fragmentation reporting and reorganization facilities is therefore advisable.

The easiest way to ensure that fragmentation does not become a problem is to

schedule regular defragmentation runs from cron .

Defragmentation scheduling should range from weekly (for frequently used

file systems) to monthly (for infrequently used file systems). Extent

fragmentation should be monitored with fsadm or the -o s option of

/usr/lib/fs/vxfs/df . There are three factors which can be used to

determine the degree of fragmentation:

• percentage of free space in extents of less than eight blocks in length

• percentage of free space in extents of less than 64 blocks in length

• percentage of free space in extents of length 64 blocks or greater

An unfragmented file system will have the following characteristics:

• less than 1 percent of free space in extents of less than eight blocks in length

• less than 5 percent of free space in extents of less than 64 blocks in length

• more than 5 percent of the total file system size available as free extents in

lengths of 64 or more blocks

A badly fragmented file system will have one or more of the following

characteristics:

• greater than 5 percent of free space in extents of less than 8 blocks in length

• more than 50 percent of free space in extents of less than 64 blocks in length

• less than 5 percent of the total file system size available as free extents in

lengths of 64 or more blocks

The optimal period for scheduling of extent reorganization runs can be

determined by choosing a reasonable interval, scheduling fsadm runs at the

initial interval, and running the extent fragmentation report feature of fsadm
before and after the reorganization.
80 VxFS System Administrator’s Guide

5

The “before” result is the degree of fragmentation prior to the reorganization.

If the degree of fragmentation is approaching the figures for bad

fragmentation, then the interval between fsadm runs should be reduced. If the

degree of fragmentation is low, the interval between fsadm runs can be

increased.

The “after” result is an indication of how well the reorganizer is performing. If

the degree of fragmentation is not close to the characteristics of an

unfragmented file system, then the extent reorganizer is not functioning

properly. The file system may be a candidate for expansion. (Full file systems

tend to fragment and are difficult to defragment.) It is also possible that the

reorganization is not being performed at a time during which the file system in

question is relatively idle.

Directory reorganization is not nearly as critical as extent reorganization, but

regular directory reorganization will improve performance. It is advisable to

schedule directory reorganization for file systems when the extent

reorganization is scheduled. The following is a sample script that is run

periodically at 3:00 A.M. from cron for a number of file systems:

outfile=/usr/spool/fsadm/out.‘/bin/date +’%m%d’‘

for i in /home /home2 /project /db

do

/bin/echo "Reorganizing $i"

/bin/timex /usr/lib/fs/vxfs/fsadm -e -E -s $i

/bin/timex /usr/lib/fs/vxfs/fsadm -s -d -D $i

done > $outfile 2>&1

I/O Tuning

Note: The tuneables and the techniques described in this section are for

tuning on a per file system basis and should be used judiciously based on the

underlying device properties and characteristics of the applications that use

the file system.

Performance of a file system can be enhanced by a suitable choice of I/O sizes

and proper alignment of the I/O requests based on the requirements of the

underlying special device. VxFS provides tools to tune the file systems.
Performance and Tuning 81

5

Tuning VxFS I/O Parameters

The VxFS file system provides a set of tuneable I/O parameters that control

some of its behavior. These I/O parameters are useful to help the file system

adjust to striped or RAID-5 volumes that could yield performance far superior

to a single disk. Typically, data streaming applications that access large files see

the largest benefit from tuning the file system.

If the VxFS file system is being used with the VERITAS Volume Manager, the

file system queries the Volume Manager to find out the geometry of the

underlying volume and automatically sets the I/O parameters. The Volume

Manager is queried by mkfs when the file system is created to automatically

align the file system to the volume geometry. Then the mount command

queries the Volume Manager when the file system is mounted and downloads

the I/O parameters.

If the default parameters are not acceptable or the file system is being used

without the Volume Manager, then the /etc/vx/tunefstab file can be used

to set values for I/O parameters. The mount command reads the

/etc/vx/tunefstab file and downloads any parameters specified for a file

system. The tunefstab file overrides any values obtained from the Volume

Manager. While the file system is mounted, any I/O parameters can be

changed using the vxtunefs command which can have tuneables specified on

the command line or can read them from the /etc/vx/tunefstab file. For

more details, see the vxtunefs (1M) and tunefstab (4) manual pages. The

vxtunefs command can be used to print the current values of the I/O

parameters.

If the default alignment from mkfs is not acceptable, the -o align= n option

can be used to override alignment information obtained from the Volume

Manager.
82 VxFS System Administrator’s Guide

5

Tuneable VxFS I/O Parameters

The tuneable VxFS I/O parameters are:

read_pref_io
The preferred read request size. The file system uses this in

conjunction with the read_nstream value to determine how much

data to read ahead. The default value is 64K.

read_nstream
The desired number of parallel read requests of size read_pref_io
to have outstanding at one time. The file system uses the product of

read_nstream multiplied by read_pref_io to determine its read

ahead size. The default value for read_nstream is 1.

read_unit_io
This is a less preferred request size. Currently, the file system does

not use this tuneable.

write_pref_io
The preferred write request size. The file system uses this in

conjunction with the write_nstream value to determine how to do

flush behind on writes. The default value is 64K.

write_nstream
The desired number of parallel write requests of size

write_pref_io to have outstanding at one time. The file system

uses the product of write_nstream multiplied by

write_pref_io to determine when to do flush behind on writes.

The default value for write_nstream is 1.

write_unit_io
This is a less preferred request size. Currently, the file system does

not use this tuneable.

pref_strength
Indicates to the file system how large a performance gain might be

made by adhering to the preferred I/O sizes. The file system does

not use this tuneable.
Performance and Tuning 83

5

buf_breakup_size
Tells the file system how large an I/O it can issue without a driver

breaking up the request. The file system does not use this tuneable.

max_direct_iosz
The maximum size of a direct I/O request that will be issued by the

file system. If a larger I/O request comes in, then it is broken up into

max_direct_iosz chunks. This parameter defines how much

memory an I/O request can lock at once, so it should not be set to

more than 20 percent of memory.

discovered_direct_iosz
Any file I/O requests larger than the discovered_direct_iosz
are handled as discovered direct I/O. A discovered direct I/O is

unbuffered similar to direct I/O, but it does not require a

synchronous commit of the inode when the file is extended or blocks

are allocated. For larger I/O requests, the CPU time for copying the

data into the page cache and the cost of using memory to buffer the

I/O data becomes more expensive than the cost of doing the disk

I/O. For these I/O requests, using discovered direct I/O is more

efficient than regular I/O. The default value of this parameter is

256K.

default_indir_size
On VxFS, files can have up to 10 direct extents of variable size stored

in the inode. Once these extents are used up, the file must use

indirect extents which are a fixed size that is set when the file first

uses indirect extents. These indirect extents are 8K by default. The

file system does not use larger indirect extents because it must fail a

write and return ENOSPCif there are no extents available that are the

indirect extent size. For file systems with a lot of large files, the 8K

indirect extent size is too small. The files that get into indirect extents

use a lot of smaller extents instead of a few larger ones. By using this

parameter, the default indirect extent size can be increased so large

that files in indirects use fewer larger extents.

The tuneable default_indir_size should be used carefully. If it

is set too large, then writes will fail when they are unable to allocate

extents of the indirect extent size to a file. In general, the fewer and

the larger the files on a file system, the larger the

default_indir_size can be set.
84 VxFS System Administrator’s Guide

5

This parameter should generally be set to some multiple of the

read_pref_io parameter.

default_indir_size is not applicable on Version 4 disk layouts.

max_diskq
Limits the maximum disk queue generated by a single file. When the

file system is flushing data for a file and the number of pages being

flushed exceeds max_diskq , processes will block until the amount

of data being flushed decreases. Although this doesn't limit the

actual disk queue, it prevents flushing processes from making the

system unresponsive. The default value is 1 MB.

qio_cache_enable
Enables or disables caching on Quick I/O files. The default behavior

is to disable caching. To enable caching, set qio_cache_enable
to 1.

On systems with large memories, the database cannot always use all

of the memory as a cache. By enabling file system caching as a

second level cache, performance may be improved.

If the database is performing sequential scans of tables, the scans

may run faster by enabling file system caching so the file system will

perform aggressive read-ahead on the files.

max_seqio_extent_size
Increases or decreases the maximum size of an extent. When the file

system is following its default allocation policy for sequential writes

to a file, it allocates an initial extent which is large enough for the first

write to the file. When additional extents are allocated, they are

progressively larger (the algorithm tries to double the size of the file

with each new extent) so each extent can hold several writes worth of

data. This is done to reduce the total number of extents in

anticipation of continued sequential writes. When the file stops being

written, any unused space is freed for other files to use.

Normally this allocation stops increasing the size of extents at 2048

blocks which prevents one file from holding too much unused space.

max_seqio_extent_size is measured in file system blocks.
Performance and Tuning 85

5

initial_extent_size
Changes the default initial extent size. VxFS determines, based on

the first write to a new file, the size of the first extent to be allocated

to the file. Normally the first extent is the smallest power of 2 that is

larger than the size of the first write. If that power of 2 is less than 8K,

the first extent allocated is 8K. After the initial extent, the file system

increases the size of subsequent extents (see

max_seqio_extent_size) with each allocation.

Since most applications write to files using a buffer size of 8K or less,

the increasing extents start doubling from a small initial extent.

initial_extent_size can change the default initial extent size to

be larger, so the doubling policy will start from a much larger initial

size and the file system will not allocate a set of small extents at the

start of file.

This parameter should only be used on file systems that will have a

very large average file size. On these file systems it will result in

fewer extents per file and less fragmentation.

initial_extent_size is measured in file system blocks.

If the file system is being used with the Volume Manager, it is advisable to let

the VxFS I/O parameters get set to default values based on the volume

geometry.

If the file system is being used with a hardware disk array or volume manager

other than VxVM, try to align the parameters to match the geometry of the

logical disk. With striping or RAID-5, it is common to set read_pref_io to

the stripe unit size and read_nstream to the number of columns in the stripe.

For striping arrays, use the same values for write_pref_io and

write_nstream , but for RAID-5 arrays, set write_pref_io to the full stripe

size and write_nstream to 1.
86 VxFS System Administrator’s Guide

5

For an application to do efficient disk I/O, it should issue read requests that

are equal to the product of read_nstream multiplied by read_pref_io .

Generally, any multiple or factor of read_nstream multiplied by

read_pref_io should be a good size for performance. For writing, the same

rule of thumb applies to the write_pref_io and write_nstream
parameters. When tuning a file system, the best thing to do is try out the

tuning parameters under a real life workload.

If an application is doing sequential I/O to large files, it should try to issue

requests larger than the discovered_direct_iosz . This causes the I/O

requests to be performed as discovered direct I/O requests, which are

unbuffered like direct I/O but do not require synchronous inode updates when

extending the file. If the file is larger than can fit in the cache, then using

unbuffered I/O avoids throwing useful data out of the cache and it avoids a lot

of CPU overhead.
Performance and Tuning 87

5

88 VxFS System Administrator’s Guide

Application Interface 6
Introduction
The VERITAS File System provides enhancements that can be used by

applications that require certain performance features. This chapter describes

cache advisories and provides information about fixed extent sizes and

reservation of space for a file.

This chapter describes how the application writer can optimize applications for

use with the VxFS. To optimize VxFS for use with applications, see Chapter 5,

“Performance and Tuning.”

The following topics are covered in this chapter:

• Cache Advisories

• Direct I/O

• Unbuffered I/O

• Discovered Direct I/O

• Data Synchronous I/O

• Other Advisories

• Extent Information

• Space Reservation

• Fixed Extent Sizes

• Freeze and Thaw

• Get I/O Parameters ioctl
89

6

Cache Advisories
The VxFS file system allows an application to set cache advisories for use when

accessing files. These advisories are in memory only and they do not persist

across reboots. Some advisories are currently maintained on a per-file, not a

per-file-descriptor, basis. This means that only one set of advisories can be in

effect for all accesses to the file. If two conflicting applications set different

advisories, both use the last advisories that were set.

All advisories are set using the VX_SETCACHEioctl command. The current set

of advisories can be obtained with the VX_GETCACHEioctl command. For

details on the use of these ioctl commands, see the vxfsio (7) man page.

Direct I/O

Direct I/O is an unbuffered form of I/O. If the VX_DIRECTadvisory is set, the

user is requesting direct data transfer between the disk and the user-supplied

buffer for reads and writes. This bypasses the kernel buffering of data, and

reduces the CPU overhead associated with I/O by eliminating the data copy

between the kernel buffer and the user’s buffer. This also avoids taking up

space in the buffer cache that might be better used for something else. The

direct I/O feature can provide significant performance gains for some

applications.

For an I/O operation to be performed as direct I/O, it must meet certain

alignment criteria. The alignment constraints are usually determined by the

disk driver, the disk controller, and the system memory management hardware

and software. The file offset must be aligned on a sector boundary. The transfer

size must be a multiple of the sector size.

If a request fails to meet the alignment constraints for direct I/O, the request is

performed as data synchronous I/O. If the file is currently being accessed by

using memory mapped I/O, any direct I/O accesses are done as data

synchronous I/O.

Since direct I/O maintains the same data integrity as synchronous I/O, it can

be used in many applications that currently use synchronous I/O. If a

direct I/O request does not allocate storage or extend the file, the inode is not

immediately written.
90 VxFS System Administrator’s Guide

6

The CPU cost of direct I/O is about the same as a raw disk transfer. For

sequential I/O to very large files, using direct I/O with large transfer sizes can

provide the same speed as buffered I/O with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write

the inode change before returning to the application. This eliminates some of

the performance advantages of direct I/O.

The direct I/O and VX_DIRECTadvisories are maintained on a per-file-

descriptor basis.

Unbuffered I/O

If the VX_UNBUFFEREDadvisory is set, I/O behavior is the same as direct I/O

with the VX_DIRECTadvisory set, so the alignment constraints that apply to

direct I/O also apply to unbuffered. For I/O with unbuffered I/O, however, if

the file is being extended, or storage is being allocated to the file, inode

changes are not updated synchronously before the write returns to the user.

The VX_UNBUFFEREDadvisory is maintained on a per-file-descriptor basis.

Discovered Direct I/O

Discovered Direct I/O is not a cache advisory that the user can set using the

VX_SETCACHEioctl. When the file system gets an I/O request larger than the

discovered_direct_iosz, it tries to use direct I/O on the request. For

large I/O sizes, Discovered Direct I/O can perform much better than buffered

I/O.

Discovered Direct I/O behavior is similar to direct I/O and has the same

alignment constraints, except writes that allocate storage or extend the file size

do not require writing the inode changes before returning to the application.

For information on how to set the discovered_direct_iosz , see “I/O

Tuning” in Chapter 5.
Application Interface 91

6

Data Synchronous I/O

If the VX_DSYNCadvisory is set, the user is requesting data synchronous I/O.

In synchronous I/O, the data is written, and the inode is written with updated

times and (if necessary) an increased file size. In data synchronous I/O, the

data is transferred to disk synchronously before the write returns to the user. If

the file is not extended by the write, the times are updated in memory, and the

call returns to the user. If the file is extended by the operation, the inode is

written before the write returns.

Like direct I/O, the data synchronous I/O feature can provide significant

application performance gains. Since data synchronous I/O maintains the

same data integrity as synchronous I/O, it can be used in many applications

that currently use synchronous I/O. If the data synchronous I/O does not

allocate storage or extend the file, the inode is not immediately written. The

data synchronous I/O does not have any alignment constraints, so applications

that find it difficult to meet the alignment constraints of direct I/O should use

data synchronous I/O.

If the file is being extended or storage is allocated, data synchronous I/O must

write the inode change before returning to the application. This case eliminates

the performance advantage of data synchronous I/O.

The direct I/O and VX_DSYNCadvisories are maintained on a per-file-

descriptor basis.

Other Advisories

The VX_SEQadvisory indicates that the file is being accessed sequentially.

When the file is being read, the maximum read-ahead is always performed.

When the file is written, instead of trying to determine whether the I/O is

sequential or random by examining the write offset, sequential I/O is assumed.

The pages for the write are not immediately flushed. Instead, pages are flushed

some distance behind the current write point.

The VX_RANDOMadvisory indicates that the file is being accessed randomly. For

reads, this disables read-ahead. For writes, this disables the flush-behind. The

data is flushed by the pager, at a rate based on memory contention.
92 VxFS System Administrator’s Guide

6

The VX_NOREUSEadvisory is used as a modifier. If both VX_RANDOMand

VX_NOREUSEare set, pages are immediately freed and put on the quick reuse

free list as soon as the data has been used. If VX_NOREUSEis set when doing

sequential I/O, pages are also put on the quick reuse free list when they are

flushed. The VX_NOREUSEmay slow down access to the file, but it can reduce

the cached data held by the system. This can allow more data to be cached for

other files and may speed up those accesses.

Extent Information
The VX_SETEXTioctl command allows an application to reserve space for a

file, and set fixed extent sizes and file allocation flags. The current state of

much of this information can be obtained by applications using the

VX_GETEXTioctl (the getext command provides access to this functionality).

For details, see the getext (1), setext (1), and vxfsio (7) manual pages.

Each invocation of the VX_SETEXTioctl affects all the elements in the vx_ext
structure. When using VX_SETEXT, always use the following procedure:

1. Use VX_GETEXTto read the current settings.

2. Modify the values to be changed.

3. Call VX_SETEXTto set the values.

Note: Follow this procedure carefully. Otherwise, a fixed extent size could be

cleared when the reservation is changed.

Space Reservation

Storage can be reserved for a file at any time. When a VX_SETEXTioctl is

issued, the reservation value is set in the inode on disk. If the file size is less

than the reservation amount, the kernel allocates space to the file from the

current file size up to the reservation amount. When the file is truncated, space

below the reserved amount is not freed. The VX_TRIM, VX_NOEXTEND,
VX_CHGSIZE, VX_NORESERVEand VX_CONTIGUOUSflags can be used to

modify reservation requests.
Application Interface 93

6

Note: VX_NOEXTENDis the only one of these flags that is persistent; the other

flags may have persistent effects, but they are not returned by the VX_GETEXT
ioctl.

If the VX_TRIM flag is set, when the last close occurs on the inode, the

reservation is trimmed to match the file size and the VX_TRIM flag is cleared.

Any unused space is freed. This can be useful if an application needs enough

space for a file, but it is not known how large the file will become. Enough

space can be reserved to hold the largest expected file, and when the file has

been written and closed, any extra space will be released.

If the VX_NOEXTENDflag is set, an attempt to write beyond the current

reservation, which requires the allocation of new space for the file, fails

instead. To allocate new space to the file, the space reservation must be

increased. This can be used like ulimit to prevent a file from using too much

space.

If the VX_CONTIGUOUSflag is set, any space allocated to satisfy the current

reservation request is allocated in one extent. If there is not one extent large

enough to satisfy the request, the request fails. For example, if a file is created

and a 1 MB contiguous reservation is requested, the file size is set to zero and

the reservation to 1 MB. The file will have one extent that is 1 MB long. If

another reservation request is made for a 3 MB contiguous reservation, the new

request will find that the first 1 MB is already allocated and allocate a 2 MB

extent to satisfy the request. If there are no 2 MB extents available, the request

fails. (Extents are, by definition, contiguous.)

Note: Because VX_CONTIGUOUSis not a persistent flag, space will not be

allocated contiguously after doing a file system restore.

If the VX_NORESERVEflag is set, the reservation value in the inode is not

changed. This flag is used by applications to do temporary reservation. Any

space past the end of the file is given up when the file is closed. For example, if

the cp command is copying a file that is 1 MB long, it can request a

1 MB reservation with the VX_NORESERVEflag set. The space is allocated, but

the reservation in the file is left at 0. If the program aborts for any reason or the

system crashes, the unused space past the end of the file is released. When the

program finishes, there is no cleanup because the reservation was never

recorded on disk.
94 VxFS System Administrator’s Guide

6

If the VX_CHGSIZEflag is set, the file size is increased to match the reservation

amount. This flag can be used to create files with uninitialized data. Because

this allows uninitialized data in files, it is restricted to users with appropriate

privileges.

It is possible to use these flags in combination. For example, using

VX_CHGSIZEand VX_NORESERVEchanges the file size but does not set any

reservation. When the file is truncated, the space is freed. If the

VX_NORESERVEflag had not been used, the reservation would have been set

on disk along with the file size.

Space reservation is used to make sure applications do not fail because the file

system is out of space. An application can preallocate space for all the files it

needs before starting to do any work. By allocating space in advance, the file is

optimally allocated for performance, and file accesses are not slowed down by

the need to allocate storage. This allocation of resources can be important in

applications that require a guaranteed response time.

With very large files, use of space reservation can avoid the need to use

indirect extents. It can also improve performance and reduce fragmentation by

guaranteeing that the file consists of large contiguous extents. Sometimes when

critical file systems run out of space, cron jobs, mail, or printer requests fail.

These failures are harder to track if the logs kept by the application cannot be

written due to a lack of space on the file system.

By reserving space for key log files, the logs will not fail when the system runs

out of space. Process accounting files can also have space reserved so

accounting records will not be lost if the file system runs out of space. In

addition, by using the VX_NOEXTENDflag for log files, the maximum size of

these files can be limited. This can prevent a runaway failure in one component

of the system from filling the file system with error messages and causing

other failures. If the VX_NOEXTENDflag is used for log files, the logs should be

cleaned up before they reach the size limit in order to avoid losing information.
Application Interface 95

6

Fixed Extent Sizes

The VxFS file system uses the I/O size of write requests, and a default policy,

when allocating space to a file. For some applications, this may not work out

well. These applications can set a fixed extent size, so that all new extents

allocated to the file are of the fixed extent size.

By using a fixed extent size, an application can reduce allocations and

guarantee good extent sizes for a file. An application can reserve most of the

space a file needs, and then set a relatively large fixed extent size. If the file

grows beyond the reservation, any new extents are allocated in the fixed extent

size.

Another use of a fixed extent size occurs with sparse files. The file system

usually does I/O in page size multiples. When allocating to a sparse file, the

file system allocates pages as the smallest default unit. If the application

always does subpage I/O, it can request a fixed extent size to match its I/O

size and avoid wasting extra space.

When setting a fixed extent size, an application should not select too large a

size. When all extents of the required size have been used, attempts to allocate

new extents fail: this failure can happen even though there are blocks free in

smaller extents.

Fixed extent sizes can be modified by the VX_ALIGN flag. If the VX_ALIGN flag

is set, then any future extents allocated to the file are aligned on a fixed extent

size boundary relative to the start of the allocation unit. This can be used to

align extents to disk striping boundaries or physical disk boundaries.

The VX_ALIGN flag is persistent and is returned by the VX_GETEXTioctl.
96 VxFS System Administrator’s Guide

6

Freeze and Thaw

The VX_FREEZEioctl command is used to freeze a file system. Freezing a file

system temporarily blocks all I/O operations to a file system and then

performs a sync on the file system. When the VX_FREEZEioctl is issued, all

access to the file system is blocked at the system call level. Current operations

are completed and the file system is synchronized to disk. Freezing provides a

stable, consistent file system.

When the file system is frozen, any attempt to use the frozen file system, except

for a VX_THAWioctl command, is blocked until a process executes the VX_THAW
ioctl command or the time-out on the freeze expires.

Note: While a file system is frozen by the VX_FREEZEioctl, all logging

performed by the QuickLog device is suspended. Logging of the file system is

resumed once the VX_THAWioctl is issued. For more information on the effects

of these ioctls on QuickLog, see Chapter 9, “VERITAS QuickLog.”

Get I/O Parameters ioctl
VxFS provides the VX_GET_IOPARAMETERSioctl to get the recommended

I/O sizes to use on a file system. This ioctl can be used by the application to

make decisions about the I/O sizes issued to VxFS for a file or file device. For

more details on this ioctl, refer to the vxfsio (7) manual page. For a discussion

on various I/O parameters, refer to Chapter 5, “Performance and Tuning,” and

the vxtunefs (1M) manual page.
Application Interface 97

6

98 VxFS System Administrator’s Guide

Quotas 7
Introduction
The VERITAS File System supports BSD-style user quotas. The quota system

limits the use of two principal resources of a file system: files and data blocks.

For each of these resources, users may be assigned quotas.

The following topics are covered in this chapter:

• Quota Limits

• Quotas File on VxFS

• Quota commands

• quotacheck With VxFS

• Using Quotas

Quota Limits
Quota limits for individual users can be set up for file and data block usage on

a file system. A user quota consists of limits for these resources. The following

limits can be set for each resource:

• The hard limit is an absolute limit that cannot be exceeded under any

circumstances.

• The soft limit (which is lower than the hard limit) can be exceeded, but only

for a limited time. The time limit can be configured on a per-file system

basis, and a default value of 7 days is set by VxFS. There are separate time

limits for files and blocks.
99

7

An example of the use of soft limits is when the user needs to run applications

that might generate large temporary files. In cases like these, quota limit

violations may be allowed for a limited duration. However, if the user

continuously exceeds the soft limit, no further allocations are allowed after the

expiration of the time limit.

The system administrator is responsible for assigning hard and soft limits to

the users, as well as setting associated time limits. Although file and data block

limits can be set individually for each user, the time limits apply to the file

system as a whole. Quota information associated with user IDs are stored in a

quotas file, as described in Chapter 2, “Disk Layout.”

Quotas File on VxFS
A quotas file (named quotas) must exist in the root directory of a file system

for any of the quotas commands to work. This is a BSD quotas implementation

requirement, and is also applicable to VxFS quotas. The quotas file in the root

directory is referred to as the external quotas file. VxFS also maintains an

internal quotas file for its internal use.

The quotas administration commands read and write the external quotas file

to get or change usage limits. The internal quotas file is used to maintain

counts of blocks and inodes used by each user. When quotas are turned on, the

quota limits are copied from the external quotas file into the internal quotas
file. While quotas are on, all the changes in the usage information as well as

changes to quotas are registered in the internal quotas file. When quotas are

turned off, the contents of the internal quotas file are flushed into the external

quotas file so that all data is in sync between the two files.
100 VxFS System Administrator’s Guide

7

Quota commands

Note: Most of the quotas commands in VxFS (as with ufs) are similar to BSD

quotas commands. However, the quotacheck command is an exception—

VxFS does not support an equivalent command. This is discussed in more

detail in “quotacheck With VxFS.”

In general, quota administration for VxFS is performed using commands

similar to ufs quota commands. On Solaris, the available quota commands are

ufs specific (that is, these commands work only on ufs file systems). For this

reason, VxFS supports a similar set of commands that work only for VxFS file

systems.

VxFS supports the following quota-related commands:

• vxedquota —used to edit quota limits for users. The limit changes made

by vxedquota are reflected both in the internal quotas file and the

external quotas file.

• vxrepquota —provides a summary of quotas and disk usage

• vxquot —provides file ownership and usage summaries

• vxquota —used to view quota limits and usage

• vxquotaon —used to turn quotas on for a mounted VxFS file system

• vxquotaoff —used to turn quotas off for a mounted VxFS file system

Besides these commands, the VxFS mount command supports a special mount

option (-o quota) , which can be used to turn on quotas at mount time.

For additional information on the quota commands, see the corresponding

manual pages.
Quotas 101

7

quotacheck With VxFS

The standard practice with most quota implementations is to mount all file

systems and then run a quotacheck on each one. quotacheck reads all the

inodes on disk and calculates the usage for each user. This can be costly, and

because the file system is mounted, the usage can change while quotacheck is

running.

VxFS does not support a quotacheck command. With VxFS, quotachec k is

automatically performed (if necessary) at the time quotas are turned on. A

quotacheck is necessary if the file system has changed with respect to the

usage information as recorded in the internal quotas file. This only happens if

the file system has been written with quotas turned off or if there has been

structural damage to the file system that required a full fsck .

quotacheck reads information for each inode off the disk and rebuilds the

internal quotas file. It is possible that while quotas were not on, quota limits

were changed by the system administrator. These changes are stored in the

external quotas file. As part of enabling quotas processing, quota limits are

read from the external quotas file into the internal quotas file.

Using Quotas
To use the quotas functionality on a file system, quotas need to be turned on.

Quotas can be turned on either at mount time or any time after a file system is

mounted.

Note: Before turning on quotas, the root directory of the file system must

contain a file owned by root, called quotas .
102 VxFS System Administrator’s Guide

7

To turn on quotas for a VxFS file system, use the following commands:

vxquotaon / mount_point

Quotas can also be turned on for a file system at mount time by giving an

option to the mount command:

mount -F vxfs -o quota special / mount_point

vxedquota is a quota editor. User quotas can be set up with the vxedquota
command by the superuser:

vxedquota username

vxedquota creates a temporary file for the given user; this file contains on-

disk quotas for each mounted file system that has a quotas file. It is not

necessary that quotas be turned on for vxedquota to work. However, the

quota limits will be applicable only after quotas are turned on for a given file

system.

The soft and hard limits can be modified or assigned desired values. For any

user, usage can never exceed the hard limit.

Time limits can be modified using the command:

vxedquota -t

Modified time limits apply to the entire file system and cannot be set

selectively for each user.

The vxquota command can be used to view a user’s disk quotas and usage on

VxFS file systems:

vxquota -v username

This displays the user's quotas and disk usage on all mounted VxFS file

systems where the quotas file exists.

To turn off quotas for a mounted file system, enter:

vxquotaoff / mount_point
Quotas 103

7

104 VxFS System Administrator’s Guide

Quick I/O for Databases 8
Introduction
VERITAS Quick I/O™ for Databases (referred to as Quick I/O) lets

applications access preallocated VxFS files as raw character devices. This

provides the administrative benefits of running databases on file systems

without the performance degradation usually associated with databases

created on file systems.

Quick I/O is separately licensable product available from VERITAS as a Quick

I/O Database accelerator option, or as part of a VERITAS Edition integrated

product suite.

Topics covered in this chapter:

• Quick I/O Functionality and Performance

• Using VxFS Files as Raw Character Devices

• Creating a Quick I/O File Using qiomkfile

• Accessing Regular VxFS Files Through Symbolic Links

• Using Quick I/O with Oracle Databases

• Using Quick I/O with Sybase Databases

• Enabling and Disabling Quick I/O

• Cached Quick I/O For Databases

• Quick I/O Statistics

• Quick I/O Summary
105

8

Quick I/O Functionality and Performance
Many database administrators (DBAs) create databases on file systems because

it makes common administrative tasks (such as moving, copying, and backup)

much simpler. However, putting databases on file systems significantly reduces

database performance. By using VERITAS Quick I/O, you can retain the

advantages of having databases on file systems without performance

degradation.

Quick I/O uses a special naming convention to allow database applications to

access regular files as raw character devices. This provides higher database

performance in the following ways:

• supporting kernel asynchronous I/O

• supporting direct I/O

• avoiding kernel write locks

• avoiding double buffering

Supporting Kernel Asynchronous I/O

Operating systems such as Solaris provide kernel support for asynchronous

I/O on raw devices, but not on regular files. As a result, even if the database

server is capable of using asynchronous I/O, it cannot issue asynchronous I/O

requests when the database is built on a file system. Lack of asynchronous I/O

significantly degrades performance. Quick I/O lets the database server take

advantage of kernel supported asynchronous I/O on file system files accessed

via the Quick I/O interface.

Supporting Direct I/O

I/O on files using read () and write () system calls typically results in data

being copied twice: once between user and kernel space, and later between

kernel space and disk. In contrast, I/O on raw devices is direct. That is, data is

copied directly between user space and disk, saving one level of copying. As

with I/O on raw devices, Quick I/O avoids the extra copying.
106 VxFS System Administrator’s Guide

8

Avoiding Kernel Write Locks

When database I/O is performed via the write () system call, each system call

acquires and releases a write lock inside the kernel. This lock prevents

simultaneous write operations on the same file. Because database systems

usually implement their own locks for managing concurrent access to files,

write locks unnecessarily serialize I/O operations. Quick I/O bypasses file

system locking and lets the database server control data access.

Avoiding Double Buffering

Most database servers implement their own buffer cache and do not need the

system buffer cache. So the memory used by the system buffer cache is wasted,

and results in data being cached twice: first in the database cache and then in

the system buffer cache. By using direct I/O, Quick I/O does not waste

memory on double buffering. This frees up memory which can then be used by

the database server buffer cache, leading to increased performance.

Using VxFS Files as Raw Character Devices
When VxFS with Quick I/O is installed, there are two ways of accessing a file:

• the VxFS interface treats the file as a regular VxFS file

• the Quick I/O interface treats the same file as if it were a raw character

device, having similar performance as a raw device

This allows a database server to use the Quick I/O interface while a backup

server uses the VxFS interface.

Quick I/O Naming Convention

To treat a file as a raw character device, Quick I/O requires a file name

extension to create an alias for a regular VxFS file. Quick I/O recognizes the

alias when you add the following suffix to a file name:

::cdev:vxfs:
Quick I/O for Databases 107

8

Whenever an application opens an existing VxFS file with the suffix

::cdev:vxfs (the cdev portion is an acronym for character device), Quick I/O

treats the file as if it were a raw device. For example, if the file xxx is a regular

VxFS file, then an application can access xxx as a raw character device by

opening it with the name:

xxx::cdev:vxfs:

Note: When Quick I/O is enabled, you cannot create a regular VxFS file with

a name that uses the ::cdev:vxfs: extension. If an application tries to create

a regular file named xxx::cdev:vxfs: , the create fails. If Quick I/O is not

available, it is possible to create a regular file with the ::cdev:vxfs:
extension, but this could cause problems if Quick I/O is later enabled. It’s a

good idea to reserve the extension only for Quick I/O files.

Use Restrictions

There are restrictions to using regular VxFS files as Quick I/O files.

1. The name xxx::cdev:vxfs: is recognized as a special name by VxFS only

when:

a. the qio module is loaded

b. Quick I/O has a valid license

c. the regular file xxx is physically present on the VxFS file system

d. there is no regular file named xxx::cdev:vxfs: on the system

2. If the file xxx is being used for memory mapped I/O, it cannot be accessed

as a Quick I/O file.

3. An I/O fails if the file xxx has a logical hole and the I/O is done to that hole

on xxx::cdev:vxfs: .

4. The size of the file cannot be extended by writes through the Quick I/O

interface.

Note: If the qio module is loaded after the VxFS file system is mounted, the

file system must be unmounted and mounted again to be accessible by the

Quick I/O interface.
108 VxFS System Administrator’s Guide

8

Creating a Quick I/O File Using qiomkfile

The best way to make regular files accessible to the Quick I/O interface and

preallocate space for them is to use the qiomkfile command. The

qiomkfile command has five options:

-h (For Oracle database files.) Creates a file with additional space

allocated for the Oracle header.

-s Preallocates space for a file.

-e (For Oracle database files.) Extends the file by a specified amount to

allow Oracle tablespace resizing.

-r (For Oracle database files.) Increases the file to a specified size to

allow Oracle tablespace resizing.

-a Creates a symbolic link with an absolute pathname for a specified

file. The default is to create a symbolic link with a relative pathname.

You can specify file size in terms of bytes, kilobytes, megabytes, gigabytes, or

sectors (512 bytes) by adding a k , K, m, M, g, G, s or S suffix. The default is

bytes. Unlike the VxFS setext command, which requires superuser privileges,

any user who has read/write permissions can run qiomkfile to create the

files.

qiomkfile creates two files: a regular file with preallocated, contiguous space;

and a symbolic link pointing to the Quick I/O name extension. For example, to

create a 100 MB file named dbfile in /database , enter:

$ qiomkfile -s 100m /database/dbfile

In this example, the first file created is a regular file named

/database/.dbfile (which has the real space allocated).
Quick I/O for Databases 109

8

The second file is a symbolic link named /database/dbfile . This is a

relative link to /database/.dbfile via the Quick I/O interface, that is, to

.dbfile::cdev:vxfs: . This allows .dbfile to be accessed by any database

or application as a raw character device. To check the results, enter:

$ ls -al

-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:03 .dbfile

lrwxrwxrwx 1 oracle dba 19 Oct 22 15:03 dbfile -> \
.dbfile::cdev:vxfs:

or:

$ ls -lL

crw-r----- 1 oracle dba 43, 0 Aug 22 13:46 dbfile

-rw-r--r-- 1 oracle dba 10485760 Aug 22 13:46 .dbfile

If you specify the -a option, an absolute pathname (see “Using Absolute or

Relative Pathnames”) is used so /database/dbfile points to

/database/.dbfile::cdev:vxfs: . To check the results, enter:

$ ls -al

-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:05 .dbfile

lrwxrwxrwx 1 oracle dba 31 Oct 22 15:05 dbfile ->
/database/.dbfile::cdev:vxfs:

See the qiomkfile (1) manual page for more information.
110 VxFS System Administrator’s Guide

8

Accessing Regular VxFS Files Through Symbolic Links
Another way to use Quick I/O is to create a symbolic link for each file in your

database and use the symbolic link to access the regular files as Quick I/O

files.

The following commands create a 100 MB Quick I/O file named dbfile on

the VxFS file system /database . The dd command preallocates the file space:

$ cd /database
$ dd if=/dev/zero of=/database/.dbfile bs=128k count=800
$ ln -s .dbfile::cdev:vxfs: /database/dbfile

Any database or application can then access the file dbfile as a raw character

device. See the VERITAS Database Edition for Oracle Database Administrator’s
Guide for more information.

Using Absolute or Relative Pathnames

It’s usually better to use relative pathnames instead of absolute pathnames

when creating symbolic links to access regular files as Quick I/O files. Using

relative pathnames prevents copies of the symbolic link from referring to the

original file. This is important if you are backing up or moving database files

with a command that preserves the symbolic link. However, some applications,

such as SAP, require absolute pathnames.

If you create a symbolic link using a relative path name, both the symbolic link

and the file are under the same parent directory. If you want to relocate the file,

both the file and the symbolic link must be moved.

It is also possible to use the absolute path name when creating a symbolic link.

If the database file is relocated to another directory, however, you must change

the symbolic link to use the new absolute path. You can put all the symbolic

links in a directory separate from the data directories. For example, you may

create a directory named /database and put in all the symbolic links, with

the symbolic links pointing to absolute path names.
Quick I/O for Databases 111

8

Preallocating Files Using the setext Command

You can use the VxFS setext command to preallocate file space, however, the

setext command requires superuser privileges. You may need to use the

chown and chgrp commands to change the owner and group permissions on

the file after it is created. The following example shows how to use setext to

create a 100 MB database file for an Oracle database:

cd /database
touch /database/dbfile
setext -r 102400 -f noreserve -f chgsize \

/database/.dbfile
ln -s .dbfile::cdev:vxfs: /database/dbfile
chown oracle /database/dbfile
chgrp dba /database/dbfile

See the setext (1) man page for more information.

Using Quick I/O with Oracle Databases
The following example shows how a file can be used by an Oracle database to

create a tablespace. This command would be run by the Oracle DBA (typically

user ID oracle):

$ qiomkfile -h -s 100m /database/dbfile
$ svrmgrl

SVRMGR> connect internal
SVRMGR> create tablespace ts1
SVRMGR> datafile ’/database/dbfile’ size 100M;
SVRMGR> exit;

The following example shows how the file can be used by an Oracle database

to create a tablespace. Oracle requires additional space for one Oracle header

size. So in this example, although 100 MB was allocated to

/database/dbfile , the Oracle database can use only up to 100 MB minus

the Oracle parameter db_block_size .

$ svrmgrl

SVRMGR> connect internal
SVRMGR> create tablespace ts1
SVRMGR> datafile ’/database/dbfile’ size 99M;
SVRMGR> exit;
112 VxFS System Administrator’s Guide

8

Using Quick I/O with Sybase Databases
Quick I/O works similarly on Sybase database devices.

To create a new database device, preallocate space on the file system by using

the qiomkfile command, then use the Sybase buildmaster command for a

master device, or the Transact SQL disk init command for a database device.

qiomkfile creates two files: a regular file using preallocated, contiguous

space, and a symbolic link pointing to the ::cdev:vxfs: name extension. For

example, to create a 100 megabyte master device masterdev on the file system

/sybmaster , enter:

$ cd /sybmaster

$ qiomkfile -s 100m masterdev

You can use this master device while running the sybsetup program or

sybinit script. If you are creating the master device directly, type:

$ buildmaster -d masterdev -s 51200

To add a new 500 megabyte database device datadev to the file system

/sybdata on your dataserver, enter:

$ cd /sybdata

$ qiomkfile -s 500m datadev

...

$ isql -U sa -P sa_password -S dataserver_name

1> disk init

2> name = “ logical_name”,

3> physname = “/sybdata/datadev”,

4> vdevno = “ device_number”,

5> size = 256000

6> go
Quick I/O for Databases 113

8

Enabling and Disabling Quick I/O
If the Quick I/O package (VRTSqio) is licensed and installed, Quick I/O is

enabled by default when a file system is mounted. Alternatively, the VxFS

mount -o qio command enables Quick I/O. The mount -o noqio command

disables Quick I/O.

If VRTSqio is not installed or licensed, a file system mounts by default without

Quick I/O and no error message is displayed. However, if you specify the

-o qio option, the mount command prints the following error message and

terminates without mounting the file system.

VxFDD: You don’t have a license to run this program
vxfs mount: Quick I/O not available

Cached Quick I/O For Databases
Databases can use a maximum of only 4 GB of memory for their databases

because of the 32-bit address limitation. The Cached Quick I/O feature

improves database performance on machines with sufficient memory by also

using the file system cache to store data.

For read operations through the Quick I/O interface, the data is cached in the

system page cache, so subsequent reads of the same data can access this cached

copy and avoid doing disk I/O. To maintain the correct data in its buffer for

write operations, Cached Quick I/O uses a direct-write, copy-behind

technique. After the direct I/O is scheduled, and while it is waiting for the

completion of the I/O, the file system updates its buffer to reflect the changes

written to disk.

Cached Quick I/O also helps sequential table scan because of the read-ahead

algorithm used in the VERITAS File System. For most queries that require

sequential table scans, Cached Quick I/O can significantly reduce the query

response time.

To use this feature, set the qio_cache_enable system parameter with the

vxtunefs utility, and use the qioadmin command to turn the per-file cache

advisory on and off. See the vxtunefs (1M) and qioadmin (1) online manual

pages for more information.
114 VxFS System Administrator’s Guide

8

Enabling Cached Quick I/O

Caching for Quick I/O files can be enabled online when the database is

running. You enable caching in two steps:

1. Setting the qio_cache_enable parameter.

2. Enabling the Cached Quick I/O feature for specific Quick I/O files.

Quick I/O must be enabled on the file system for Cached Quick I/O to

operate.

Enabling Cached Quick I/O for File Systems

You enable Cached Quick I/O for a file system by setting the

qio_cache_enable flag with the vxtunefs command after the file system is

mounted. For example, to enable Cached Quick I/O for the file system

/database01 , enter:

vxtunefs -s -o qio_cache_enable=1 /database01

where /database01 is a VxFS file system containing the Quick I/O files. This

command enables caching for all the Quick I/O files on this file system.

Note: This enables Cached Quick I/O for all files in the file system.

You can make this setting persistent across mounts by adding a file system

entry in the file /etc/vx/tunefstab . For example:

/dev/vx/dsk/datadg/database01 qio_cache_enable=1
/dev/vx/dsk/datadg/database02 qio_cache_enable=1

For information on how add tuning parameters, see the tunefstab (4) manual

page.
Quick I/O for Databases 115

8

Enabling Cached Quick I/O for Individual Files

There are several ways to enable caching for a Quick I/O file. Use the

following syntax to enable caching on an individual file:

$ qioadmin -S filename=on mount_point

To enable caching for the Quick I/O file /database01/names.dbf , type:

$ qioadmin -S names.dbf=ON /database01

To disable the caching for that file, enter:

$ qioadmin -S names.dbf=OFF /database01

To make the setting persistent across mounts, create a tunetable file,

/etc/vx/qioadmin , to list files and their caching advisories. Based on the

following example, the file /database/sell.dbf will have caching turned

on whenever the file system /database is mounted:

device=/dev/vx/dsk/datadg/database01
dates.dbf,off
names.dbf,off
sell.dbf,on

The cache advisories operate only if Cached Quick I/O is enabled for the file

system. If the qio_cache_enable flag is zero, Cached Quick I/O is OFF for

all the files in that file system even if the individual cache advisory for some

files is ON.

To check on the current cache advisory settings for a file, use the -P option:

$ qioadmin -P names.dbf /database01

names.dbf,OFF

To check the setting of the qio_cache_enable flag for a file system:

$ vxtunefs -p /database01

qio_cache_enable = 1

For more information on the format of the /etc/vx/qioadmin file and the

command syntax, see the qioadmin (1) manual page.
116 VxFS System Administrator’s Guide

8

Note: Check the setting of the flag qio_cache_enable using the vxtunefs
command, and the individual cache advisories for each file to verify caching.

Tuning Cached Quick I/O

Not all database files can take advantage of caching. Performance may even

degrade in some instances, due to double buffering for example. Determining

which files and applications can benefit from Cached Quick I/O requires that

you first collect and analyze the caching statistics.

See the qiostat (1) man page for information on gathering statistics, and the

VERITAS Database Edition for Oracle Database Administrator’s Guide for a

description of the Cached Quick I/O tuning methodology.

Quick I/O Statistics
Quick I/O provides the qiostat utility to collect database I/O statistics

generated over a period of time. qiostat reports statistics such as the number

of read and write operations, the number of blocks read or written, and the

average time spent on read and write operations during an interval. See the

qiostat (1) manual page for more information.

Quick I/O Summary
To increase database performance on a VERITAS File System using Quick I/O:

1. Make sure that the qio module is loaded. You can add the following line to

the file /etc/system to load qio whenever the system reboots.

forceload: drv/qio

2. Create a regular VxFS file and preallocate it to required size. The size of this

preallocation depends on the size requirement of the database server.

3. Create and access the database using the file name xxx::cdev:vxfs:.

For information on how to configure VxFS and set up file devices for use with

new and existing Oracle databases, see the VERITAS Database Edition for Oracle
Database Administrator’s Guide.
Quick I/O for Databases 117

8

118 VxFS System Administrator’s Guide

VERITAS QuickLog 9
Introduction
VERITAS QuickLog™ is an optionally licensable product included as part of

the VERITAS File Server Edition for enhanced file system performance.

• VERITAS QuickLog Overview

• QuickLog Installation

• QuickLog Setup

• Creating a QuickLog Device

• Removing a QuickLog Device

• VxFS Administration Using QuickLog

• Enabling a QuickLog Device

• Disabling a QuickLog Device

• QuickLog Administration and Troubleshooting

• QuickLog Load Balancing

• QuickLog Statistics

• QuickLog Recovery

Although QuickLog improves file system performance, VxFS does not require

QuickLog to operate effectively. QuickLog is transparent to the end user and

requires minimum intervention or training for a system administrator.
119

9

VERITAS QuickLog Overview
The VxFS intent log is stored near the beginning of the volume on which the

file system resides (The word volume here describes either a VERITAS Volume

Manager™ (VxVM®) volume or a physical disk). VxFS log writes are

sequential, meaning that each log record is written to disk where the previous

log record finished. The performance of the log writes is limited by the fact that

the file system is performing other operations (inode updates, reading and

writing data) that requires reads and writes from other areas of the disk. The

disk head is constantly seeking between the log and data areas of VxFS,

reducing the benefits associated with sequential writes to disk.

QuickLog improves file system performance by eliminating the time that a disk

spends seeking between the log and data areas of VxFS. This is accomplished

by exporting the file system intent log to a separate physical volume called a

QuickLog device. A QuickLog device should not reside on a physical disk that

shares space with other file systems, since the performance improvement that

QuickLog provides depends on the disk head always being in position to write

the next log record.

Figure 12 shows a logical view of QuickLog and how it interfaces with the

operating system.

QuickLog Installation
The VERITAS QuickLog driver package (VRTSqlog) is dynamically loadable

and unloadable using the pkgadd and pkgrm utilities. pkgadd modifies

/etc/devlink.tab and creates the 32 QuickLog device nodes used to attach

QuickLog volumes to the QuickLog driver. Each QuickLog device can attach a

maximum of four volumes.
120 VxFS System Administrator’s Guide

9

Figure 12 QuickLog Logical View

VxFS VxFS
File System Device

Device Driver or VxVM

QuickLog Driver

VxFS File System
Interface

VxFS Administration Commands QuickLog Administration Commands

Hardware

Kernel

User

QuickLog
File System
VERITAS QuickLog 121

9

QuickLog Setup
VERITAS QuickLog supports:

• up to 32 QuickLog devices

• up to 32 VxFS file systems per QuickLog device

• from one to four QuickLog volumes per QuickLog device (see “QuickLog

Load Balancing” for details)

• communication between QuickLog and VxFS through an integrated

interface

QuickLog cannot be enabled for the root file system.

Creating a QuickLog Device

The creation of a QuickLog device requires the following two steps:

1. Create a VxVM volume using the command vxassist :

vxassist -g diskgroup make qlog_volume size [vxvm_disk]

or a raw disk partition using the format command.

If the QuickLog volume is a VxVM volume, it must reside in the same disk

group as the file system to be logged. Each QuickLog volume should reside on

a separate physical disk.

To determine the appropriate size of your QuickLog device, figure out how

many file systems you plan to log for this device (1-32). Multiply this number

by 16 (16MB is the optimal VxFS log size) to get the total size of the log area for

your QuickLog device.This device should be approximately 150% of this

QuickLog log area to allow space for QuickLog maps and superblocks.

QuickLog devices should be a minimum of 32 MB.

2. Build a QuickLog volume using the command vxld_mklog :

vxld_mklog -g diskgroup vxlog[x] qlog_volume

One to four QuickLog volumes must be attached once you have determined

the size of your QuickLog device. These volumes provide the static storage for

the QuickLog device, including the VxFS log records, QuickLog superblocks

and QuickLog maps.
122 VxFS System Administrator’s Guide

9

The size of the QuickLog device should be spread out across the one to four

QuickLog volumes to be attached (see “QuickLog Load Balancing” for details).

The command vxld_mklog both writes out the QuickLog volume layout to

the volume qlog_volume and attaches the QuickLog volume to the specified

QuickLog device. Accepted QuickLog device names are vxlog1 through

vxlog32 .

Removing a QuickLog Device

The removal of a QuickLog device involves the vxld_rmlog and vxedit
commands:

vxld_rmlog qlog_volume

vxld_rmlog detaches a QuickLog volume from its QuickLog device. If the

QuickLog volume is the only volume attached to the QuickLog device, all file

systems that are logging to the QuickLog device must have logging by

QuickLog disabled prior to using vxld_rmlog (see “Disabling a
QuickLog Device ” for details).

Use vxedit to remove the VxVM volume:

vxedit -g diskgroup -rf rm qlog_volume
VERITAS QuickLog 123

9

VxFS Administration Using QuickLog

Enabling a QuickLog Device

There are two methods to enable logging of a VERITAS file system by

QuickLog: the QuickLog utility vxld_mntfs and a VxFS special mount

option.

The -o vxldlog= option to the mount command is provided by VxFS to

enable logging by QuickLog. This can be used in conjunction with the -o
remount mount option to enable QuickLog or change QuickLog devices for

active file systems.

From the command line, remount the VERITAS File System using

vxld_mntfs :

vxld_mntfs [qlog_device] / mount-point

or by using the VxFS -o remount option:

mount -F -o remount,vxldlog= [qlog_device] fsname /mount-point

The use of either method is transparent to users and does not stop or unmount

mounted file systems. When no QuickLog device name is specified, QuickLog

automatically assigns one of the idle or least loaded QuickLog devices.

To ensure that QuickLog is enabled for a specific VERITAS file system after

every system reboot, add “vxldlog =“ to the mount option field in the file

/etc/vfstab for that file system entry, as shown in the following example:

#device device mount FS fsck mount mount
#to mountto fsck point type pass at boot options
#

/dev/vx/dsk/vol1 /dev/vx/rdsk/vol1 /vol1 vxfs 1 no \
vxldlog=

If no QuickLog device name is selected after the vxldlog= argument, QuickLog

automatically assigns an idle or least loaded QuickLog device.
124 VxFS System Administrator’s Guide

9

Disabling a QuickLog Device

To disable logging by QuickLog without unmounting a VERITAS File System,

use the vxld_umntfs command:

vxld_umntfs / mount-point

Make sure to disable QuickLog devices for all mounted and logged VERITAS

File Systems and detach all QuickLog volumes before unloading the QuickLog

driver (see vxld_umntall (1M)).

QuickLog Administration and Troubleshooting
This section discusses QuickLog functionality important to a system

administrator responsible for implementing and tuning QuickLog.

QuickLog Load Balancing

QuickLog can perform load balancing when two or more physical volumes are

attached to a QuickLog device. QuickLog supports from one to four QuickLog

volumes attached to each of the 32 QuickLog devices.

QuickLog monitors the average response time for each volume attached to a

QuickLog device. If some volume(s) are responding faster than others,

QuickLog diverts more of the log writes to those volumes, decreasing the

overall response time for the device.

You can add a QuickLog volume to a particular QuickLog device with no more

than three QuickLog volumes attached to grow the device’s capacity. Similarly,

you can remove a QuickLog volume from a QuickLog device with at least one

other QuickLog volume attached to shrink the device. Growing or shrinking a

QuickLog device does not interrupt file systems logged by QuickLog.
VERITAS QuickLog 125

9

To shrink a QuickLog device that has more than one attached QuickLog

volume:

1. Detach a QuickLog volume from the QuickLog device by using

vxld_umntlog .

vxld_umntlog qlog_volume

2. Remove the QuickLog volume from the QuickLog configuration by using

vxld_rmlog .

vxld_rmlog qlog_volume

Before the QuickLog volume is detached, vxld_umntlog flushes all valid log

blocks back to the corresponding VxFS logs. The remaining attached QuickLog

volumes take up the load released by the removed volume.

To grow a QuickLog device that has three or fewer attached QuickLog

volumes, create and attach a QuickLog volume to the QuickLog device by

using vxld_mklog:

vxld_mklog -g diskgroup vxlog[x] qlog_volume

If a QuickLog volume already exists, attach the volume by using

vxld_mntlog:

vxld_mntlog vxlog[x] qlog_volume

The newly attached QuickLog volume begins receiving VxFS log writes being

sent to the QuickLog device, easing the load on the existing QuickLog device

volumes.
126 VxFS System Administrator’s Guide

9

QuickLog Statistics

QuickLog maintains statistics about the QuickLog devices, QuickLog volumes

and the VERITAS File Systems logged by QuickLog. The statistics include:

• the number of read and write I/O operations per second

• the average number of read and write I/O operations per second

• the number of bytes per second for I/O read and write operations

• the average number of bytes per second for I/O read and write operations

• the average service time for I/O read and write operations

See vxld_stat (1M) online manual page for details.

QuickLog Recovery

Note: No user intervention is required.

During the boot sequence, the QuickLog start-up script

/etc/init.d/vxld-startup searches the QuickLog configuration file

/etc/vxld/config . For each QuickLog device in this file that is in the

‘attached’ state, the script tries to replay the log data and metadata that has not

been committed to the VERITAS File System(s) before the crash or reboot

occurred. This log replay is similar to that of the VxFS fsck command (see

fsck_vxfs(1M) for details). If the log replay is successful, VxFS does not

need to perform a full file system consistency check when running fsck. (See

the vxld_logck(1M) man page for more information).

If an error occurs on one of the QuickLog volumes, the QuickLog device to

which this volume is attached is disabled and a full file system consistency

check is done on all VERITAS File Systems logged by this device.

If an error occurs on only one of the file systems logged on a QuickLog device,

a full file system consistency check is run only on that file system.

The start-up script calls vxld_mntall , which reattaches all recovered

QuickLog volumes. The QuickLog volumes must be reattached before you can

remount VERITAS File Systems to log with QuickLog.
VERITAS QuickLog 127

9

128 VxFS System Administrator’s Guide

Kernel Messages A
Introduction
This appendix contains a listing of diagnostic or error messages generated by

the VERITAS File System kernel. Each message is accompanied by an

explanation and a suggestion on how to handle or correct the underlying

problem.

The following topics are covered in this chapter:

• File System Response to Problems

• Marking an Inode Bad

• Disabling Transactions

• Disabling the File System

• Recovering a Disabled File System

• Kernel Messages

• Global Message IDs
129

A

File System Response to Problems
When the file system encounters problems, it responds in one of three ways:

• marks an inode bad

• disables transactions

• disables the file system

Marking an Inode Bad

Inodes can be marked bad if an inode update or a directory-block update fails.

In these types of failures, the file system doesn’t know what information is on

the disk, and considers all the information that it finds to be invalid. After an

inode is marked bad, the kernel still permits access to the file name, but any

attempt to access the data in the file or change the inode fails.

Disabling Transactions

If the file system detects an error while writing the intent log, it disables

transactions. After transactions are disabled, the files in the file system can still

be read or written, but no block or inode frees or allocations, structural

changes, directory entry changes, or other changes to metadata are allowed.

Disabling the File System

If an error occurs that compromises the integrity of the file system, VxFS

disables itself. If the intent log fails or an inode-list error occurs, the super-

block is ordinarily updated (setting the VX_FULLFSCKflag) so that the next

fsck does a full structural check. If this super-block update fails, any further

changes to the file system can cause inconsistencies that are undetectable by

the intent log replay. To avoid this situation, the file system disables itself.

Recovering a Disabled File System

When the file system is disabled, no data can be written to the disk. Although

some minor file system operation still work, most simply return EIO . The only

thing that can be done when the file system is disabled is to do a umount and

run a full fsck .
130 VxFS System Administrator’s Guide

A

Although a log replay may produce a clean file system, do a full structural

check to be safe. To do a full structural check, enter:

fsck -F vxfs -o full -y /dev/rdsk/c1t0d0s1

The file system usually becomes disabled because of disk errors. Disk failures

that disabled a file system should be fixed as quickly as possible (see

fsck_vxfs (1M)).

Kernel Messages
This section lists the VxFS kernel error messages in numerical order. The

Explanation sub-section for each message describes the problem, the

Action sub-section suggests possible solutions.

Global Message IDs

Each time a VxFS kernel message is displayed on the system console, it is

displayed along with a monatomically increasing message ID, shown in the

msgcnt field. This ID guarantees that the sequence of events is known in order

to help analyze file system problems.

Each message is also written to an internal kernel buffer and can be viewed in

the file /var/adm/messages .

In some cases, additional data is written to the kernel buffer. For example, if an

inode is marked bad, the contents of the bad inode is written. When an error

message is displayed on the console, you can use the unique message ID to

find the message in /var/adm/messages and obtain the additional

information.

Message: 001

NOTICE: msgcnt x: vxfs: mesg 001: vx_nospace - mount_point file system
full (n block extent)

▼ Explanation

The file system is out of space.

Often, there is plenty of space and one runaway process used up all the

remaining free space. In other cases, the available free space becomes

fragmented and unusable for some files.
Kernel Messages 131

A

▼ Action

Monitor the free space in the file system and prevent it from becoming full.

If a runaway process has used up all the space, stop that process, find the

files created by the process, and remove them. If the file system is out of

space, remove files, defragment, or expand the file system.

To remove files, use the find command to locate the files that are to be

removed. To get the most space with the least amount of work, remove

large files or file trees that are no longer needed. To defragment or expand

the file system, use fsadm (see the fsadm (1M) manual page).

Message: 002

WARNING: msgcnt x: vxfs: mesg 002: vx_snap_strategy - mount_point file
system write attempt to read-only file system

WARNING: msgcnt x: vxfs: mesg 002: vx_snap_copyblk - mount_point file
system write attempt to read-only file system

▼ Explanation

The kernel tried to write to a read-only file system. This is an unlikely

problem, but if it occurs, the file system is disabled.

▼ Action

The file system was not written, so no action is required. Report this as a

bug to your customer support organization.

Message: 003, 004, 005

WARNING: msgcnt x: vxfs: mesg 003: vx_mapbad - mount_point file system
free extent bitmap in au aun marked bad

WARNING: msgcnt x: vxfs: mesg 004: vx_mapbad - mount_point file system
free inode bitmap in au aun marked bad

WARNING: msgcnt x: vxfs: mesg 005: vx_mapbad - mount_point file system
inode extended operation bitmap in au aun marked bad
132 VxFS System Administrator’s Guide

A

▼ Explanation

If there is an I/O failure while writing a bitmap, the map is marked bad.

The kernel considers the maps to be invalid, so does not do any more

resource allocation from maps. This situation can cause the file system to

report “out of space” or “out of inode” error messages even though df may

report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a

consistency check, or blocks are freed that are already free in the bitmap,

the file system has been corrupted. This may have occurred because a user

or process wrote directly to the device or used fsdb to change the file

system.

The VX_FULLFSCKflag is set. If the map that failed was a free extent

bitmap, and the VX_FULLFSCKflag can’t be set, then the file system is

disabled.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process was writing to the device,

report the problem to your customer support organization. Unmount the

file system and use fsck to run a full structural check.

Message: 006, 007

WARNING: msgcnt x: vxfs: mesg 006: vx_sumupd - mount_point file system
summary update in au aun failed

WARNING: msgcnt x: vxfs: mesg 007: vx_sumupd - mount_point file system
summary update in inode au iaun failed

▼ Explanation

An I/O error occurred while writing the allocation unit or inode allocation

unit bitmap summary to disk. This sets the VX_FULLFSCKflag on the file

system. If the VX_FULLFSCKflag can’t be set, the file system is disabled.

▼ Action

Check the console log for I/O errors. If the problem was caused by a disk

failure, replace the disk before the file system is mounted for write access,

and use fsck to run a full structural check.
Kernel Messages 133

A

Message: 008, 009

WARNING: msgcnt x: vxfs: mesg 008: vx_direrr - mount_point file system
inode inumber block blkno error errno

WARNING: msgcnt x: vxfs: mesg 009: vx_direrr - mount_point file system
inode inumber immediate directory error errno

▼ Explanation

A directory operation failed in an unexpected manner. The mount point,

inode, and block number identify the failing directory. If the inode is an

immediate directory, the directory entries are stored in the inode, so no

block number is reported. If the error is ENOENTor ENOTDIR, an

inconsistency was detected in the directory block. This inconsistency could

be a bad free count, a corrupted hash chain, or any similar directory

structure error. If the error is EIO or ENXIO, an I/O failure occurred while

reading or writing the disk block.

The VX_FULLFSCKflag is set in the super-block so that fsck will do a full

structural check the next time it is run.

▼ Action

Check the console log for I/O errors. If the problem was caused by a disk

failure, replace the disk before the file system is mounted for write access.

Unmount the file system and use fsck to run a full structural check.

Message: 010

WARNING: msgcnt x: vxfs: mesg 010: vx_ialloc - mount_point file system
inode inumber not free

▼ Explanation

When the kernel allocates an inode from the free inode bitmap, it checks the

mode and link count of the inode. If either is non-zero, the free inode

bitmap or the inode list is corrupted.

The VX_FULLFSCKflag is set in the super-block so that fsck will do a full

structural check the next time it is run.

▼ Action

Unmount the file system and use fsck to run a full structural check.
134 VxFS System Administrator’s Guide

A

Message: 011

NOTICE: msgcnt x: vxfs: mesg 011: vx_noinode - mount_point file system
out of inodes

▼ Explanation

The file system is out of inodes.

▼ Action

Monitor the free inodes in the file system. If the file system is getting full,

create more inodes either by removing files or by expanding the file system.

File system resizing is described in Chapter 1, “The VERITAS File System,”

and in the fsadm (1M) online manual page.

Message: 012

WARNING: msgcnt x: vxfs: mesg 012: vx_iget - mount_point file system
invalid inode number inumber

▼ Explanation

When the kernel tries to read an inode, it checks the inode number against

the valid range. If the inode number is out of range, the data structure that

referenced the inode number is incorrect and must be fixed.

The VX_FULLFSCKflag is set in the super-block so that fsck will do a full

structural check the next time it is run.

▼ Action

Unmount the file system and use fsck to run a full structural check.

Message: 013

WARNING: msgcnt x: vxfs: mesg 013: vx_iposition - mount_point file
system inode inumber invalid inode list extent

▼ Explanation

For a Version 2 and above disk layout, the inode list is dynamically

allocated. When the kernel tries to read an inode, it must look up the

location of the inode in the inode list file. If the kernel finds a bad extent,

the inode can’t be accessed. All of the inode list extents are validated when

the file system is mounted, so if the kernel finds a bad extent, the integrity

of the inode list is questionable. This is a very serious error.
Kernel Messages 135

A

The VX_FULLFSCKflag is set in the super-block and the file system is

disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check.

Message: 014

WARNING: msgcnt x: vxfs: mesg 014: vx_iget - inode table overflow

▼ Explanation

All the system in-memory inodes are busy and an attempt was made to use

a new inode.

▼ Action

Look at the processes that are running and determine which processes are

using inodes. If it appears there are runaway processes, they might be tying

up the inodes. If the system load appears normal, increase the

vxfs_ninode parameter in the kernel (see “Internal Inode Table Size” in

Chapter 5, “Performance and Tuning”).

Message: 015

WARNING: msgcnt x: vxfs: mesg 015: vx_ibadinactive - mount_point file
system can’t mark inode inumber bad

WARNING: msgcnt x: vxfs: mesg 015: vx_ilisterr - mount_point file
system can’t mark inode inumber bad

▼ Explanation

An attempt to mark an inode bad on disk, and the super-block update to set

the VX_FULLFSCKflag, failed. This indicates that a catastrophic disk error

may have occurred since both an inode list block and the super-block had

I/O failures. The file system is disabled to preserve file system integrity.

▼ Action

Unmount the file system and use fsck to run a full structural check. Check

the console log for I/O errors. If the disk failed, replace it before

remounting the file system.
136 VxFS System Administrator’s Guide

A

Message: 016

WARNING: msgcnt x: vxfs: mesg 016: vx_ilisterr - mount_point file
system error reading inode inumber

▼ Explanation

An I/O error occurred while reading the inode list. The VX_FULLFSCKflag

is set.

▼ Action

Check the console log for I/O errors. If the problem was caused by a disk

failure, replace the disk before the file system is mounted for write access.

Unmount the file system and use fsck to run a full structural check.

Message: 017

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_getblk - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_iget - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_indadd - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_indtrunc - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_attr_iremove - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_bmap - mount_point file system
inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_bmap_indirect_ext4 - mount_point
file system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_delbuf_flush - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_dio_iovec - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_dirbread - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_dircreate - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_dirlook - mount_point file system
inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_doextop_iau - mount_point file
system inode inumber marked bad
Kernel Messages 137

A

WARNING: msgcnt x: vxfs: mesg 017: vx_doextop_now - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_do_getpage - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_enter_ext4 - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_exttrunc - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_get_alloc - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_ilisterr - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_ilock - mount_point file system
inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_indtrunc - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_iread - mount_point file system
inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_iremove - mount_point file system
inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_iremove_attr - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_logwrite_flush - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_oltmount_iget - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_overlay_bmap - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_readnomap - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_reorg_trunc - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_stablestore - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_tranitimes - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_trunc - mount_point file system
inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_write_alloc2 - mount_point file
system inode inumber marked bad
138 VxFS System Administrator’s Guide

A

WARNING: msgcnt x: vxfs: mesg 017: vx_write_default - mount_point file
system inode inumber marked bad

WARNING: msgcnt x: vxfs: mesg 017: vx_zero_alloc - mount_point file
system inode inumber marked bad

▼ Explanation

When inode information is no longer dependable, the kernel marks it bad

on disk. The most common reason for marking an inode bad is a disk I/O

failure. If there is an I/O failure in the inode list, on a directory block, or an

indirect address extent, the integrity of the data in the inode, or the data the

kernel tried to write to the inode list, is questionable. In these cases, the disk

driver prints an error message and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address, invalid

inode fields, or corruption in directory data blocks during a validation

check. A validation check failure indicates the file system has been

corrupted. This usually occurs because a user or process has written

directly to the device or used fsdb to change the file system.

The VX_FULLFSCKflag is set in the super-block so fsck will do a full

structural check the next time it is run.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process is writing to the device, report

the problem to your customer support organization. In either case,

unmount the file system and use fsck to run a full structural check.

Message: 019

WARNING: msgcnt x: vxfs: mesg 019: vx_log_add - mount_point file system
log overflow

▼ Explanation

Log ID overflow. When the log ID reaches VX_MAXLOGID(approximately

one billion by default), a flag is set so the file system resets the log ID at the

next opportunity. If the log ID has not been reset, when the log ID reaches

VX_DISLOGID (approximately VX_MAXLOGIDplus 500 million by default),

the file system is disabled. Since a log reset will occur at the next 60 second

sync interval, this should never happen.
Kernel Messages 139

A

▼ Action

Unmount the file system and use fsck to run a full structural check.

Message: 020

WARNING: msgcnt x: vxfs: mesg 020: vx_logerr - mount_point file system
log error errno

▼ Explanation

Intent log failed. The kernel will try to set the VX_FULLFSCKand

VX_LOGBADflags in the super-block to prevent running a log replay. If the

super-block can’t be updated, the file system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check. Check

the console log for I/O errors. If the disk failed, replace it before

remounting the file system.

Message: 021

WARNING: msgcnt x: vxfs: mesg 021: vx_fs_init - mount_point file system
validation failure

▼ Explanation

When a VERITAS File System is mounted, the structure is read from disk. If

the file system is marked clean, the structure is correct and the first block of

the intent log is cleared.

If there is any I/O problem or the structure is inconsistent, the kernel sets

the VX_FULLFSCKflag and the mount fails.

If the error isn’t related to an I/O failure, this may have occurred because a

user or process has written directly to the device or used fsdb to change

the file system.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process is writing to the device, report

the problem to your customer support organization. In either case,

unmount the file system and use fsck to run a full structural check.
140 VxFS System Administrator’s Guide

A

Message: 022

WARNING: msgcnt x: vxfs: mesg 022: vx_mountroot - root file system
remount failed

▼ Explanation

The remount of the root file system failed. The system will not be usable if

the root file system can’t be remounted for read/write access.

When a VERITAS root file system is first mounted, it is mounted for read-

only access. After fsck is run, the file system is remounted for read/write

access. The remount fails if fsck completed a resize operation or modified

a file that was opened before the fsck was run. It also fails if an I/O error

occurred during the remount.

Usually, the system halts or reboots automatically.

▼ Action

Reboot the system. The system either remounts the root cleanly or runs a

full structural fsck and remounts cleanly. If the remount succeeds, no

further action is necessary.

Check the console log for I/O errors. If the disk has failed, replace it before

the file system is mounted for write access.

If the system won’t come up and a full structural fsck hasn’t been run,

reboot the system on a backup root and manually run a full structural fsck .

If the problem persists after the full structural fsck and there are no I/O

errors, contact your customer support organization.

Message: 023

WARNING: msgcnt x: vxfs: mesg 023: vx_unmountroot - root file system
is busy and can’t be unmounted cleanly

▼ Explanation

There were active files in the file system and they caused the unmount to

fail.

When the system is halted, the root file system is unmounted. This happens

occasionally when a process is hung and it can’t be killed before

unmounting the root.
Kernel Messages 141

A

▼ Action

fsck will run when the system is rebooted. It should clean up the file

system. No other action is necessary.

If the problem occurs every time the system is halted, determine the cause

and contact your customer support organization.

Message: 024

WARNING: msgcnt x: vxfs: mesg 024: vx_cutwait - mount_point file system
current usage table update error

▼ Explanation

Update to the current usage table (CUT) failed.

For a Version 2 disk layout, the CUT contains a fileset version number and

total number of blocks used by each fileset.

The VX_FULLFSCKflag is set in the super-block. If the super-block can’t be

written, the file system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check.

Message: 025

WARNING: msgcnt x: vxfs: mesg 025: vx_wsuper - mount_point file system
superblock update failed

▼ Explanation

An I/O error occurred while writing the super-block during a resize

operation. The file system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check. Check

the console log for I/O errors. If the problem is a disk failure, replace the

disk before the file system is mounted for write access.
142 VxFS System Administrator’s Guide

A

Message: 026

WARNING: msgcnt x: vxfs: mesg 026: vx_snap_copyblk - mount_point
primary file system read error

▼ Explanation

Snapshot file system error.

When the primary file system is written, copies of the original data must be

written to the snapshot file system. If a read error occurs on a primary file

system during the copy, any snapshot file system that doesn’t already have

a copy of the data is out of date and must be disabled.

▼ Action

An error message for the primary file system prints. Resolve the error on

the primary file system and rerun any backups or other applications that

were using the snapshot that failed when the error occurred.

Message: 027

WARNING: msgcnt x: vxfs: mesg 027: vx_snap_bp copy - mount_point
snapshot file system write error

▼ Explanation

A write to the snapshot file system failed.

As the primary file system is updated, copies of the original data are read

from the primary file system and written to the snapshot file system. If one

of these writes fails, the snapshot file system is disabled.

▼ Action

Check the console log for I/O errors. If the disk has failed, replace it.

Resolve the error on the disk and rerun any backups or other applications

that were using the snapshot that failed when the error occurred.
Kernel Messages 143

A

Message: 028

WARNING: msgcnt x: vxfs: mesg 028: vx_snap_alloc - mount_point snapshot
file system out of space

▼ Explanation

The snapshot file system ran out of space to store changes.

During a snapshot backup, as the primary file system is modified, the

original data is copied to the snapshot file system. This error can occur if

the snapshot file system is left mounted by mistake, if the snapshot file

system was given too little disk space, or the primary file system had an

unexpected burst of activity. The snapshot file system is disabled.

▼ Action

Make sure the snapshot file system was given the correct amount of space.

If it was, determine the activity level on the primary file system. If the

primary file system was unusually busy, rerun the backup. If the primary

file system is no busier than normal, move the backup to a time when the

primary file system is relatively idle or increase the amount of disk space

allocated to the snapshot file system.

Rerun any backups that failed when the error occurred.

Message: 029, 030

WARNING: msgcnt x: vxfs: mesg 029: vx_snap_getbp - mount_point snapshot
file system block map write error

WARNING: msgcnt x: vxfs: mesg 030: vx_snap_getbp - mount_point snapshot
file system block map read error

▼ Explanation

During a snapshot backup, each snapshot file system maintains a block map

on disk. The block map tells the snapshot file system where data from the

primary file system is stored in the snapshot file system. If an I/O operation

to the block map fails, the snapshot file system is disabled.

▼ Action

Check the console log for I/O errors. If the disk has failed, replace it.

Resolve the error on the disk and rerun any backups that failed when the

error occurred.
144 VxFS System Administrator’s Guide

A

Message: 031

WARNING: msgcnt x: vxfs: mesg 031: vx_disable - mount_point file system
disabled

▼ Explanation

File system disabled, preceded by a message that specifies the reason. This

usually indicates a serious disk problem.

▼ Action

Unmount the file system and use fsck to run a full structural check. If the

problem is a disk failure, replace the disk before the file system is mounted

for write access.

Message: 032

WARNING: msgcnt x: vxfs: mesg 032: vx_disable - mount_point snapshot
file system disabled

▼ Explanation

Snapshot file system disabled, preceded by a message that specifies the

reason.

▼ Action

Unmount the snapshot file system, correct the problem specified by the

message, and rerun any backups that failed due to the error.

Message: 033

WARNING: msgcnt x: vxfs: mesg 033: vx_check_badblock - mount_point file
system had an I/O error, setting VX_FULLFSCK

▼ Explanation

When the disk driver encounters an I/O error, it sets a flag in the super-

block structure. If the flag is set, the kernel will set the VX_FULLFSCKflag

as a precautionary measure. Since no other error has set the VX_FULLFSCK
flag, the failure probably occurred on a data block.

▼ Action

Unmount the file system and use fsck to run a full structural check. Check

the console log for I/O errors. If the problem is a disk failure, replace the

disk before the file system is mounted for write access.
Kernel Messages 145

A

Message: 034

WARNING: msgcnt x: vxfs: mesg 034: vx_resetlog - mount_point file
system can’t reset log

▼ Explanation

The kernel encountered an error while resetting the log ID on the file

system. This happens only if the super-block update or log write

encountered a device failure. The file system is disabled to preserve its

integrity.

▼ Action

Unmount the file system and use fsck to run a full structural check. Check

the console log for I/O errors. If the problem is a disk failure, replace the

disk before the file system is mounted for write access.

Message: 035

WARNING: msgcnt x: vxfs: mesg 035: vx_inactive - mount_point file
system inactive of locked inode inumber

▼ Explanation

VOP_INACTIVE was called for an inode while the inode was being used.

This should never happen, but if it does, the file system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check. Report

as a bug to your customer support organization.

Message: 036

WARNING: msgcnt x: vxfs: mesg 036: vx_lctbad - mount_point file system
link count table lctnumber bad

▼ Explanation

Update to the link count table (LCT) failed.

For a Version 2 and above disk layout, the LCT contains the link count for

all the structural inodes. The VX_FULLFSCKflag is set in the super-block. If

the super-block can’t be written, the file system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check.
146 VxFS System Administrator’s Guide

A

Message: 037

WARNING: msgcnt x: vxfs: mesg 037: vx_metaioerr - file system meta
data error

▼ Explanation

A read or a write error occurred while accessing file system metadata. The

full fsck flag on the file system was set. The message specifies whether the

disk I/O that failed was a read or a write.

File system metadata includes inodes, directory blocks, and the file system

log. If the error was a write error, it is likely that some data was lost. This

message should be accompanied by another file system message describing

the particular file system metadata affected, as well as a message from the

disk driver containing information about the disk I/O error.

▼ Action

Resolve the condition causing the disk error. If the error was the result of a

temporary condition (such as accidentally turning off a disk or a loose

cable), correct the condition. Check for loose cables, etc. Unmount the file

system and use fsck to run a full structural check (possibly with loss of

data).

In case of an actual disk error, if it was a read error and the disk driver

remaps bad sectors on write, it may be fixed when fsck is run since fsck
is likely to rewrite the sector with the read error. In other cases, you replace

or reformat the disk drive and restore the file system from backups. Consult

the documentation specific to your system for information on how to

recover from disk errors. The disk driver should have printed a message

that may provide more information.

Message: 038

WARNING: msgcnt x: vxfs: mesg 038: vx_dataioerr - file system file
data error

▼ Explanation

A read or a write error occurred while accessing file data. The message

specifies whether the disk I/O that failed was a read or a write. File data

includes data currently in files and free blocks. If the message is printed

because of a read or write error to a file, another message that includes the

inode number of the file will print. The message may be printed as the

result of a read or write error to a free block, since some operations allocate
Kernel Messages 147

A

an extent and immediately perform I/O to it. If the I/O fails, the extent is

freed and the operation fails. The message is accompanied by a message

from the disk driver regarding the disk I/O error.

▼ Action

Resolve the condition causing the disk error. If the error was the result of a

temporary condition (such as accidentally turning off a disk or a loose

cable), correct the condition. Check for loose cables, etc. If any file data was

lost, restore the files from backups. Determine the file names from the inode

number (see the ncheck(1M) manual page for more information.)

If an actual disk error occurred, make a backup of the file system, replace or

reformat the disk drive, and restore the file system from the backup.

Consult the documentation specific to your system for information on how

to recover from disk errors. The disk driver should have printed a message

that may provide more information.

Message: 039

WARNING: msgcnt x: vxfs: mesg 039: vx_writesuper - file system super-
block write error

▼ Explanation

An attempt to write the file system super block failed due to a disk I/O

error. If the file system was being mounted at the time, the mount will fail.

If the file system was mounted at the time and the full fsck flag was being

set, the file system will probably be disabled and Message 031 will also be

printed. If the super-block was being written as a result of a sync
operation, no other action is taken.

▼ Action

Resolve the condition causing the disk error. If the error was the result of a

temporary condition (such as accidentally turning off a disk or a loose

cable), correct the condition. Check for loose cables, etc. Unmount the file

system and use fsck to run a full structural check.

If an actual disk error occurred, make a backup of the file system, replace or

reformat the disk drive, and restore the file system from backups. Consult

the documentation specific to your system for information on how to

recover from disk errors. The disk driver should have printed a message

that may provide more information.
148 VxFS System Administrator’s Guide

A

Message: 040

WARNING: msgcnt x: vxfs: mesg 040: vx_dqbad - mount_point file system
quota file update error for id id.

▼ Explanation

An update to the user quotas file failed for the user ID.

The quotas file keeps track of the total number of blocks and inodes used by

each user, and also contains soft and hard limits for each user ID. The

VX_FULLFSCKflag is set in the super-block. If the super-block cannot be

written, the file system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check. Check

the console log for I/O errors. If the disk has a hardware failure, it should

be repaired before the file system is mounted for write access.

Message: 041

WARNING: msgcnt x: vxfs: mesg 041: vx_dqget - mount_point file system
user quota file can't read quota for id id

▼ Explanation

A read of the user quotas file failed for the uid .

The quotas file keeps track of the total number of blocks and inodes used by

each user, and contains soft and hard limits for each user ID. The

VX_FULLFSCKflag is set in the super-block. If the super-block cannot be

written, the file system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check. Check

the console log for I/O errors. If the disk has a hardware failure, it should

be repaired before the file system is mounted for write access.
Kernel Messages 149

A

Message: 042

WARNING: msgcnt x: vxfs: mesg 042: vx_bsdquotaupdate - mount_point file
system user id disk limit reached.

▼ Explanation

The hard limit on blocks was reached. Further attempts to allocate blocks

for files owned by the user will fail.

▼ Action

Remove some files to free up space.

Message: 043

WARNING: msgcnt x: vxfs: mesg 043: vx_bsdquotaupdate - mount_point file
system user id disk quota exceeded too long

▼ Explanation

The soft limit on blocks was exceeded continuously for longer than the soft

quota time limit. Further attempts to allocate blocks for files will fail.

▼ Action

Remove some files to free up space.

Message: 044

WARNING: msgcnt x: vxfs: mesg 044: vx_bsdquotaupdate - mount_point file
system user id disk quota exceeded.

▼ Explanation

The soft limit on blocks is exceeded. The soft limit can be exceeded for a

certain amount of time before allocations begin to fail. Once the soft quota

time limit has expired, further attempts to allocate blocks for files will fail.

▼ Action

Remove some files to free up space.
150 VxFS System Administrator’s Guide

A

Message: 045

WARNING: msgcnt x: vxfs: mesg 045: vx_bsdiquotaupdate - mount_point
file system user id inode limit reached.

▼ Explanation

The hard limit on inodes was exceeded. Further attempts to create files

owned by the user will fail.

▼ Action

Remove some files to free inodes.

Message: 046

WARNING: msgcnt x: vxfs: mesg 046: vx_bsdiquotaupdate - mount_point
file system user id inode quota exceeded too long

▼ Explanation

The soft limit on inodes has been exceeded continuously for longer than the

soft quota time limit. Further attempts to create files owned by the user will

fail.

▼ Action

Remove some files to free inodes.

Message: 047

WARNING: msgcnt x: vxfs: mesg 047: vx_bsdiquotaupdate - warning:
mount_point file system user id inode quota exceeded

▼ Explanation

The soft limit on inodes was exceeded. The soft limit can be exceeded for a

certain amount of time before attempts to create new files begin to fail.

Once the time limit has expired, further attempts to create files owned by

the user will fail.

▼ Action

Remove some files to free inodes.
Kernel Messages 151

A

Message: 048, 049

WARNING: msgcnt x: vxfs: mesg 048: vx_dqread - warning: mount_point
file system external user quota file read failed

WARNING: msgcnt x: vxfs: mesg 049: vx_dqwrite - warning: mount_point
file system external user quota file write failed.

▼ Explanation

To maintain reliable usage counts, VxFS maintains the user quotas file as a

structural file in the structural fileset. These files are updated as part of the

transactions that allocate and free blocks and inodes. For compatibility with

the quota administration utilities, VxFS also supports the standard user

visible quota files.

When quotas are turned off, synced, or new limits are added, VxFS tries to

update the external quota files. When quotas are enabled, VxFS tries to read

the quota limits from the external quotas file. If these reads or writes fail,

the external quotas file is out of date.

▼ Action

Determine the reason for the failure on the external quotas file and correct

it. Recreate the quotas file.

Message: 50

WARNING: msgcnt x: vxfs: mesg 050: vx_ldlogwrite - mount_point file
system log write failed

▼ Explanation

A write to VERITAS QuickLog log failed. This marks the log bad and sets

the full file system check flag in the super block.

▼ Action

No immediate action required. When the file system is unmounted, run a

full file system check using fsck before mounting it again.
152 VxFS System Administrator’s Guide

A

Message: 51

WARNING: msgcnt x: vxfs: mesg 051: vx_ldlog_start - mount_point file
system log start failed

▼ Explanation

vx_ldlog_start failed. QuickLog logging is disabled and file system

continues to use its own log.

▼ Action

No corrective action required on the file system. Determine why the log

didn’t start and do administrative tasks on QuickLog (see Chapter 9,

“VERITAS QuickLog“).

Message: 52

WARNING: msgcnt x: vxfs: mesg 052: vx_ldlog_stop - mount_point file
system log stop failed

▼ Explanation

QuickLog copies the log back to the file system after stopping logging

activity. If the stop failed, VxFS treats the failure as the log going bad.

▼ Action

No immediate action required. When the file system is unmounted, run a

full file system check using fsck before mounting it again.

Message: 53

WARNING: msgcnt x: vxfs: mesg 053: vx_ldlog_suspend - mount_point file
system log suspend failed:

▼ Explanation

When the file system is frozen, QuickLog is suspended; it is activated again

on thaw. If this operation fails, the kernel marks the log bad and sets the full

file system check flag in the super block.

▼ Action

No immediate action required. When the file system is unmounted, run a

full file system check using fsck before mounting it again.
Kernel Messages 153

A

Message: 54

WARNING: msgcnt x: vxfs: mesg 054: vx_ldlog_resume - mount_point file
system log resume failed:

▼ Explanation

When the file system is thawed, QuickLog must be resumed. If this

operation fails, the kernel marks the log bad and sets the full file system

check flag in the super block.

▼ Action

No immediate action required. When the file system is unmounted, run a

full file system check using fsck before mounting it again.

Message: 056

WARNING: msgcnt x: vxfs: mesg 056: vx_mapbad - mount_point file system
extent allocation unit state bitmap number number marked bad

▼ Explanation

If there is an I/O failure while writing a bitmap, the map is marked bad.

The kernel considers the maps to be invalid, so does not do any more

resource allocation from maps. This situation can cause the file system to

report “out of space” or “out of inode” error messages even though df may

report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a

consistency check, or blocks are freed that are already free in the bitmap,

the file system has been corrupted. This may have occurred because a user

or process wrote directly to the device or used fsdb to change the file

system.

The VX_FULLFSCKflag is set. If the VX_FULLFSCKflag can’t be set, the file

system is disabled.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process was writing to the device,

report the problem to your customer support organization. Unmount the

file system and use fsck to run a full structural check.
154 VxFS System Administrator’s Guide

A

Message: 057

WARNING: msgcnt x: vxfs: mesg 057: vx_esum_bad - mount_point file
system extent allocation unit summary number number marked bad

▼ Explanation

An I/O error occurred reading or writing an extent allocation unit

summary.

The VX_FULLFSCKflag is set. If the VX_FULLFSCKflag can’t be set, the file

system is disabled.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process was writing to the device,

report the problem to your customer support organization. Unmount the

file system and use fsck to run a full structural check.

Message: 058

WARNING: msgcnt x: vxfs: mesg 058: vx_isum_bad - mount_point file
system inode allocation unit summary number number marked bad

▼ Explanation

An I/O error occurred reading or writing an inode allocation unit summary.

The VX_FULLFSCKflag is set. If the VX_FULLFSCKflag can’t be set, the file

system is disabled.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process was writing to the device,

report the problem to your customer support organization. Unmount the

file system and use fsck to run a full structural check.
Kernel Messages 155

A

Message: 059

WARNING: msgcnt x: vxfs: mesg 059: vx_snap_getbitbp - mount_point
snapshot file system bitmap write error

▼ Explanation

An I/O error occurred while writing to the snapshot file system bitmap.

There is no problem with the snapped file system, but the snapshot file

system is disabled.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process was writing to the device,

report the problem to your customer support organization. Restart the

snapshot on an error free disk partition. Rerun any backups that failed

when the error occurred.

Message: 060

WARNING: msgcnt x: vxfs: mesg 060: vx_snap_getbitbp - mount_point
snapshot file system bitmap read error

▼ Explanation

An I/O error occurred while reading the snapshot file system bitmap. There

is no problem with snapped file system, but the snapshot file system is

disabled.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process was writing to the device,

report the problem to your customer support organization. Restart the

snapshot on an error free disk partition. Rerun any backups that failed

when the error occurred.
156 VxFS System Administrator’s Guide

A

Message: 061

WARNING: msgcnt x: vxfs: mesg 061: vx_resize - mount_point file system
remount failed

▼ Explanation

During a file system resize, the remount to the new size failed. The

VX_FULLFSCKflag is set and the file system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check. After

the check, the file system shows the new size.

Message: 062

NOTICE: msgcnt x: vxfs: mesg 062: vx_attr_creatop - invalid
disposition returned by attribute driver

▼ Explanation

A registered extended attribute intervention routine returned an invalid

return code to the VxFS driver during extended attribute inheritance.

▼ Action

Determine which vendor supplied the registered extended attribute

intervention routine and contact their customer support organization.

Message: 063

WARNING: msgcnt x: vxfs: mesg 063: vx_fset_markbad - mount_point file
system mount_point fileset (index number) marked bad

▼ Explanation

An error occurred while reading or writing a fileset structure.

VX_FULLFSCKflag is set. If the VX_FULLFSCKflag can’t be set, the file

system is disabled.

▼ Action

Unmount the file system and use fsck to run a full structural check.
Kernel Messages 157

A

Message: 064

WARNING: msgcnt x: vxfs: mesg 064: vx_ivalidate - mount_point file
system inode number version number exceeds fileset's

▼ Explanation

During inode validation, a discrepancy was found between the inode

version number and the fileset version number. The inode may be marked

bad, or the fileset version number may be changed, depending on the ratio

of the mismatched version numbers.

VX_FULLFSCKflag is set. If the VX_FULLFSCKflag can’t be set, the file

system is disabled.

▼ Action

Check the console log for I/O errors. If the problem is a disk failure, replace

the disk. If the problem is not related to an I/O failure, find out how the

disk became corrupted. If no user or process is writing to the device, report

the problem to your customer support organization. In either case,

unmount the file system and use fsck to run a full structural check.

Message: 066

NOTICE: msgcnt x: vxfs: mesg 066: DMAPI mount event - buffer

▼ Explanation

An HSM (Hierarchical Storage Management) agent responded to a DMAPI

mount event and returned a message in buffer.

▼ Action

Consult the HSM product documentation for the appropriate response to

the message.
158 VxFS System Administrator’s Guide

A

Message: 067

WARNING: msgcnt x: vxfs: mesg 067: mount of device_path requires HSM
agent

▼ Explanation

The file system mount failed because the file system was marked as being

under the management of an HSM agent, and no HSM agent was found

during the mount.

▼ Action

Restart the HSM agent and try to mount the file system again.

Message: 068

WARNING: msgcnt x: vxfs: mesg 068: ncsize parameter is greater than
80% of the vxfs_ninode parameter; increasing the value of
vxfs:vxfs_ninode

▼ Explanation

The value auto-tuned for the vxfs_ninode parameter is less than 125% of

the ncsize parameter. This message occurs only if one of the system

tuneable parameters—ncsize , vxfs_ninode , maxusers , or

max_nprocs —is set manually in the file /etc/system .

▼ Action

To prevent this message from occurring, set vxfs_ninode to at least 125% of

the value of ncsize . The best way to do this is to adjust ncsize down,

rather than adjusting vxfs_ninode up. See Chapter 5, “Performance and

Tuning,” for more information.

Message: 069

WARNING: msgcnt x: vxfs: mesg 069: memory usage specified by the
vxfs:vxfs_ninode and vxfs:vx_bc_bufhwm parameters exceeds available
memory; the system may hang under heavy load

▼ Explanation

The value of the system tuneable parameters—vxfs_ninode and

vx_bc_bufhwm —add up to a value that is more than 66% of the kernel

virtual address space or more than 50% of the physical system memory. VxFS

inodes require approximately one kilobyte each, so both values can be treated

as if they are in units of one kilobyte.
Kernel Messages 159

A

▼ Action

To avoid a system hang, reduce the value of one or both parameters to less

than 50% of physical memory or to 66% of kernel virtual memory. See

Chapter 5, “Performance and Tuning,” for more information.

Message: 070

WARNING: msgcnt x: vxfs: mesg 070: checkpoint checkpoint_name removed
from file system mount_point

▼ Explanation

The file system ran out of space while updating a checkpoint. The

checkpoint was removed to allow the operation to complete.

▼ Action

Increase the size of the file system. If the file system size cannot be

increased, remove files to create sufficient space for new checkpoints.

Monitor capacity of the file system closely to ensure it does not run out of

space. See the fsadm_vxfs(1M) man page more information.

Message: 071

NOTICE: msgcnt x: vxfs: mesg 071: cleared data I/O error flag in
mount_point file system

▼ Explanation

The user data I/O error flag was reset when the file system was mounted.

This message indicates e that a read or write error occurred (see Message

038) while the file system was previously mounted.

▼ Action

Informational only, no action required.
160 VxFS System Administrator’s Guide

Glossary
access control list (ACL)
A list of users or groups who have access privileges to a specified file. A file

may have its own ACL or may share an ACL with other files. ACLs allow

detailed access permissions for multiple users and groups.

allocation unit
A group of consecutive blocks on a file system that contain resource

summaries, free resource maps, and data blocks. Allocation units also contain

copies of the super-block.

asynchronous writes
A delayed write in which the data is written to a page in the system’s page

cache, but is not written to disk before the write returns to the caller. This

improves performance, but carries the risk of data loss if the system crashes

before the data is flushed to disk.

buffered I/O
During a read or write operation, data usually goes through an intermediate

kernel buffer before being copied between the user buffer and disk. If the same

data is repeatedly read or written, this kernel buffer acts as a cache, which can

improve performance. See unbuffered I/O and direct I/O.

contiguous file
A file in which data blocks are physically adjacent on the underlying media.

current usage table
A table containing fileset information, such as the number of blocks currently

used by the fileset. Not used in the Version 4 disk layout.
161

data blocks
Blocks that contain the actual data belonging to files and directories.

data synchronous writes
A form of synchronous I/O that writes the file data to disk before the write

returns, but only marks the inode for later update. If the file size changes, the

inode will be written before the write returns. In this mode, the file data is

guaranteed to be on the disk before the write returns, but the inode

modification times may be lost if the system crashes.

defragmentation
Reorganizing data on disk to keep file data blocks physically adjacent so as to

reduce access times.

direct extent
An extent that is referenced directly by an inode.

direct I/O
An unbuffered form of I/O that bypasses the kernel’s buffering of data. With

direct I/O, the file system transfers data directly between the disk and the

user-supplied buffer. See buffered I/O and unbuffered I/O.

discovered direct I/O
Discovered Direct I/O behavior is similar to direct I/O and has the same

alignment constraints, except writes that allocate storage or extend the file size

do not require writing the inode changes before returning to the application.

extent
A group of contiguous file system data blocks that are treated as a unit. An

extent is defined by a starting block and a length.

extent attributes
The extent allocation policies associated with a file.

external quotas file
A quotas file (named quotas) must exist in the root directory of a file system

for quota-related commands to work. See quotas file and internal quotas file.

file system block
The fundamental minimum size of allocation in a file system. This is

equivalent to the ufs fragment size.

fileset
A collection of files within a file system.
162 VxFS System Administrator’s Guide

fixed extent size
An extent attribute associated with overriding the default allocation policy of

the file system.

GB
Gigabytes.

hard limit
The hard limit is an absolute limit on system resources for individual users for

file and data block usage on a file system. See quota.

I/O clustering
The grouping of multiple I/O operations to achieve better performance.

indirect address extent
An extent that contains references to other extents, as opposed to file data

itself. A single indirect address extent references indirect data extents. A double
indirect address extent references single indirect address extents.

indirect data extent
An extent that contains file data and is referenced via an indirect address

extent.

inode
A unique identifier for each file within a file system which also contains

metadata associated with that file.

inode allocation unit
A group of consecutive blocks that contain inode allocation information for a

given fileset. This information is in the form of a resource summary and a free

inode map.

intent logging
A logging scheme that records pending changes to the file system structure.

These changes are recorded in a circular intent log file.

internal quotas file
VxFS maintains an internal quotas file for its internal usage. The internal

quotas file maintains counts of blocks and inodes used by each user. See

quotas and external quotas file.

K
Kilobytes.

large file
A file larger than 2 gigabytes. VxFS supports files up to two terabytes in size.
Glossary 163

large file system
A file system more than 2 gigabytes in size. VxFS supports file systems up to a

terabyte in size.

latency
For file systems, this typically refers to the amount of time it takes a given file

system operation to return to the user.

MB
Megabytes.

preallocation
The preallocation of space for a file so that disk blocks will physically be part

of a file before they are needed. Enabling an application to preallocate space for

a file guarantees that a specified amount of space will be available for that file,

even if the file system is otherwise out of space.

primary fileset
A fileset that contains the files that are visible and accessible to users.

qio
The Quick I/O program module.

Quick I/O file
A regular VxFS file that is accessed using the ::cdev:vxfs: extension.

Quick I/O for Databases
Quick I/O is a VERITAS File System feature which improves database

performance by minimizing read/write locking and eliminating double

buffering of data. This allows online transactions to be processed at speeds

equivalent to that of using raw disk devices, while keeping the administrative

benefits of file systems.

QuickLog
VERITAS QuickLog is a high performance mechanism for receiving and

storing intent log information for VxFS file systems. QuickLog increases

performance by exporting intent log information to a separate physical

volume.

quotas
Quota limits on system resources for individual users for file and data block

usage on a file system. See hard limit and soft limit.
164 VxFS System Administrator’s Guide

quotas file
The quotas commands read and write the external quotas file to get or change

usage limits. When quotas are turned on, the quota limits are copied from the

external quotas file to the internal quotas file. See quotas, internal quotas file,

and external quotas file.

reservation
An extent attribute associated with preallocating space for a file.

snapshot file system
An exact copy of a mounted file system at a specific point in time. Used to do

online backups.

snapped file system
A file system whose exact image has been used to create a snapshot file system.

soft limit
The soft limit is lower than a hard limit. The soft limit can be exceeded for a

limited time. There are separate time limits for files and blocks. See hard limit
and quota.

structural fileset
A special fileset that stores the structural elements of the file system in the

form of structural files. These files define the structure of the file system and

are visible only when using utilities such as the file system debugger.

super-block
A block containing critical information about the file system such as the file

system type, layout, and size. The VxFS super-block is always located 8192

bytes from the beginning of the file system and is 8192 bytes long.

synchronous writes
A form of synchronous I/O that writes the file data to disk, updates the inode

times, and writes the updated inode to disk. When the write returns to the

caller, both the data and the inode have been written to disk.

transaction
An update to the file system structure.

throughput
For file systems, this typically refers to the number of I/O operations in a

given unit of time.

ufs
The UNIX file system type derived from the 4.2 Berkeley Fast File System.
Glossary 165

I/O
I/O that bypasses the kernel cache to increase I/O performance. This is similar

to direct I/O, except when a file is extended; for direct I/O, the inode is

written to disk synchronously, for unbuffered I/O, the inode update is

delayed. See buffered I/O and direct I/O.

volume
A virtual disk which represents an addressable range of disk blocks used by

applications such as file systems or databases.

vxfs
The name of the VERITAS File System type.

VxVM
The VERITAS Volume Manager.
166 VxFS System Administrator’s Guide

Index
A
access control lists, 16

alias

for Quick I/O files, 107

allocation

extent based, 4

allocation policies, 55

default, 55

extent, 5

extent based, 5

ufs , 9

allocation unit, 26

allocation unit header, 27, 35

padding, 29, 35

allocation unit summary, 27, 35

allocation units, 23, 30, 33, 34

data blocks, 29, 35

extended inode operations map, 27

free extent map, 28, 35

free inode map, 27

inode list, 29

partial, 27, 34

structure, 26, 34

application

transparency, 11

B
bad block revectoring, 73
blkclear , 13

blkclear mount option, 72, 73

block based architecture, 4

block size, 5, 22

choosing, 70

default, 5, 22

blockmap

snapshot file system, 63

blocks

data, 29

buffered file systems, 12

buffered I/O, 91

C
cache advisories, 90 to 93

closesync , 13

configuration file

/etc/vxld/config, 127

contiguous reservation, 57

convosync mount option, 72, 75

cp_vxfs , 58

cpio_vxfs , 58

creating file systems with large files, 17

creating Quick I/O files, 109

cron , 9, 80

cron

sample script, 81

current usage table, 45
167

168
current usage table file, 36

CUT, 45

cylinder groups, 9

D
data blocks, 29, 35

data copy, 90

data integrity

absolute, 13

data synchronous I/O, 74, 92

data transfer

direct, 90

default

allocation policy, 55

block sizes, 5, 22

intent log size, 71

defragmentation, 9

extent, 80

scheduling, 80

delaylog mount option, 72

device file, 49

direct data transfer, 90

direct I/O, 90

directory

reorganization, 81

disabled file system

snapshot, 65

transactions, 130

discovered direct I/O, 91

disk hardware failure

recovery from, 8

disk layout

Version 1, 23

Version 2, 29

Version 4, 49

disk space allocation, 5, 22

disk structure

snapshot, 62

dynamic inode allocation, 30, 40

E
enabling Quick I/O, 114

enhanced data integrity modes, 12

ENOENT, 134

ENOTDIR, 134

expansion, 9 to 10

file system, 79, 81

extended inode operations map, 27, 44

extension

Quick I/O, 108

extent, 5, 53

reorganization, 81

extent allocation, 5

aligned, 54

control, 53

fixed size, 54

extent allocation unit state file, 50

extent allocation unit summary file, 50

extent attributes, 53

extent information, 93

extent size

fixed, 96

indirect, 6

extents, 22

external quotas file, 100

F
fast file system recovery, 8

file

device, 49

extent allocation unit state, 50

extent allocation unit summary, 50

fileset header, 49

free extent map, 50

inode allocation unit, 49

inode list, 49

label, 49

log, 50

object location table, 49

quotas, 50
VxFS System Administrator’s Guide

sparse, 56, 96

file system

buffering, 12

expansion, 81

integrity, 24, 33

structure, 25, 33

file system block size, 59

file system performance enhancements, 4

files

structural, 30, 36

fileset header, 46

fileset header file, 36, 49

filesets, 30, 36

primary, 36

structural, 36

fixed extent size, 54, 96

fixed write size, 56

fragmentation

limiting, 9

monitoring, 80, 81

reorganization facilities, 80

reporting, 80

fragmented file system

characteristics, 80

free extent bitmaps, 70

free extent map, 28, 35

free extent map file, 50

free inode map, 27, 44

free space, 79

monitoring, 79

freeze, 97

fsadm , 9

reporting extent fragmentation, 80

scheduling, 80

fsadm_vxfs , 18

fscat , 11, 65

fsck , 25, 33, 44

G
get I/O parameter ioctl, 97

getext , 58

getfacl , 16

global message IDs, 131

H
header

allocation unit, 27, 35

inode allocation unit, 44

HSM agent error message, 158, 159

I
I/O

direct, 90

sequential, 91

synchronous, 90

I/O requests

asynchronous, 74

synchronous, 73

IAU, 43

indirect address extent

double, 5, 28

single, 5, 28

indirect extent

address size, 6

initial inode list extents, 41

inode allocation unit file, 36, 49

inode allocation unit header, 44

inode allocation unit summary, 44

inode allocation units, 43

inode extents, 41

inode list error, 130

inode list extents, 41

inode list file, 36, 49

inode lists, 28, 29, 40

extents, 41

inode structure
Index 169

170
ufs , 5

inode table, 78

internal, 78

inodes, 28, 40

block based, 5

dynamic allocation, 30, 40

lost+found , 27

root , 27

intent log, 23, 24, 30, 33

default, 71

default size, 24, 33

wrapping, 27, 44

intent logging, 24, 33

internal inode table, 78

sizes, 78

internal quotas file, 100

ioctl interface, 53

K
kernel asynchronous I/O, 106

kernel tuneables, 78

L
label file, 49

large files, 17

creating file systems with, 17

mounting file systems with, 17

largefiles mount option, 17

LCT, 45

link count table, 45

link count table file, 36

load balancing, 125

log failure, 130

log file, 50

log files, 95

log mount option, 72

M
maps

extended inode operations, 27

extended node operations, 44

free extent, 28, 35

free inode, 27, 44

maximum I/O size, 79

mincache mount option, 72, 74

mkfs , 18, 22

modes

enhanced data integrity, 12

monitoring fragmentation, 80

mount , 12, 18

mount options

log , 13

mount options, 71 to 76

blkclear , 72, 73

choosing, 71 to 76

combining, 77

convosync , 72, 75

delaylog , 13, 72

extended, 12

largefiles , 17

log , 72

mincache , 72, 74

nodatainlog , 72, 73

nolog , 72, 73

tmplog , 72, 73

mounting file systems

option combinations, 77

with large files, 17

with QuickLog, 124

msgcnt field, 131

multiple block operations, 5

mv_vxfs , 58

N
naming convention

Quick I/O, 107

NFS, 11
VxFS System Administrator’s Guide

nodatainlog mount option, 72, 73

nolog mount option, 72, 73

O
O_SYNC, 72

object location table, 30, 32, 47

object location table file, 49

OLT, 32, 47

options

qiomkfile, 109

P
padding, 29, 35

parameters

default, 82

tuneable, 83

tuning, 82

performance

enhancing, 13, 69, 89

overall, 71

snapshot file systems, 68

physical boundary alignment, 29, 35

preallocating space for Quick I/O

files, 112

primary fileset, 36

Q
qio module

loading on system reboot, 117

qiomkfile

options, 109

qiostat, 117

Quick I/O, 105

access Quick I/O files as raw

devices, 107

creating Quick I/O files, 109

direct I/O, 106

double buffering, 107

extension, 108

read/write locks, 107

restrictions, 108

special naming convention, 108

Quick I/O files

accessing regular UNIX files, 111

preallocating space, 112

statistics, 117

using relative and absolute

pathnames, 111

QuickLog

disabling, 125

enabling, 124

installing, 120

load balancing, 125

logical view, 120

overview, 120

removing, 123

statistics, 127

troubleshooting, 125

quota commands, 101

quotacheck, 102

quotas, 46, 99

hard limit, 99

soft limit, 99

quotas file, 36, 46, 50, 100

R
recovery

QuickLog, 127

relative and absolute pathnames

use with symbolic links, 111

reorganization

directory, 81

extent, 81

report

extent fragmentation, 80

reservation

space, 54, 93 to 95

restrictions

Quick I/O, 108
Index 171

172
S
sectors, 22

security, 30

sequential I/O, 91

setext , 58

setfacl , 16

snapof , 66

snapped file systems, 10, 62

performance, 68

unmounting, 66

snapread , 65

snapshot, 62

snapshot file systems, 10, 62

blockmap, 63

creating, 66

data block area, 63

disabled, 65

errors, 143

for backup, 65

fscat , 65

fsck , 66

fuser , 66

mounting, 66

multiple, 62

performance, 68

read , 65

super-block, 63

using for backup, 62

snapsize , 66

space reservation, 93 to 95

sparse file, 56, 96

statistics

generated for Quick I/O, 117

QuickLog, 127

storage

uninitialized

clearing, 73

structural files, 30, 36

structural fileset, 36

super-block, 23, 24, 30, 32, 63

backup, 27, 35

SVID requirement

VxFS conformance to, 11

symbolic links

to access Quick I/O files, 111

synchronous I/O, 90

system failure

recovery from, 8

system performance, 69

enhancing, 69, 89

overall, 71

T
temporary directories, 14

thaw, 97

tmplog mount option, 72, 73

transactions

disabled, 130

tuneable I/O parameters, 83

tuning I/O parameters, 82

typed extents, 6, 15

U
ufs_ninode , 78

uninitialized storage

clearing, 73

unmount, 131

snapped file system, 66

snapshot file system, 66

utilities

cron, 9

fsadm, 9

fscat , 11

fsck , 25, 44

fsck, 33

getext , 58

mkfs , 22

setext , 58

vxassist, 122

vxedit, 123
VxFS System Administrator’s Guide

V
Version 1 disk layout, 23

Version 2 disk layout, 29

Version 4 disk layout, 49

virtual disks

expanding, 10

VOP_INACTIVE, 146

VX_CHGSIZE, 93

VX_CONTIGUOUS, 93

VX_DSYNC, 92

VX_FREEZE, 97, 102

VX_FULLFSCK, 130, 133, 134, 135, 136, 137,

139, 140, 142, 145, 146, 149, 154,

155, 157, 158

VX_GETCACHE, 90

VX_GETEXT, 93

vx_ninode, 78

VX_NOEXTEND, 93

VX_NORESERVE, 93

VX_NOREUSE, 93

VX_RANDOM, 92

VX_SEQ, 92

VX_SETCACHE, 90

VX_SETEXT, 93

VX_SNAPREAD, 65

VX_THAW, 97

VX_TRIM, 93

VX_UNBUFFERED, 91

vxassist, 122

vxdump , 58

vxedit

removing a VxVM volume, 123

VxFS

disk layout, 21 to 48

disk structure, 21

storage allocation, 70

vxld_logck, 127

vxld_mklog, 122

vxld_mntall, 127

vxld_mntfs, 124

vxld_rmlog, 123

vxld_stat, 127

vxld_umntall, 125

vxld_umntfs, 125

vxrestore , 58

W
write size

fixed, 56
Index 173

174
 VxFS System Administrator’s Guide

	Contents
	The VERITAS File System
	Introduction
	VxFS Features
	Disk Layout Options
	File System Performance Enhancements
	Extent Based Allocation
	Typed Extents

	Extent Attributes
	Fast File System Recovery
	Online System Administration
	Defragmentation
	Resizing

	Online Backup
	Application Interface
	Application Transparency
	Expanded Application Facilities

	Extended mount Options
	Enhanced Data Integrity Modes
	Using blkclear for Data Integrity
	Using closesync for Data Integrity

	Enhanced Performance Mode
	Using delaylog for Enhanced Performance
	Using vxldlog for Enhanced Performance

	Temporary File System Modes
	Using tmplog For Temporary File Systems

	Improved Synchronous Writes

	Enhanced I/O Performance
	Enhanced I/O Clustering
	VxVM Integration
	Application-Specific Parameters

	Quotas
	Access Control Lists
	Support for Large Files
	Creating a File System with Large Files
	Mounting a File System with Large Files
	Managing a File System with Large Files

	Support for Databases
	VERITAS QuickLog

	Disk Layout
	Introduction
	Disk Space Allocation
	The VxFS Version 1 Disk Layout
	Overview
	Super-Block
	Intent Log
	Allocation Unit
	Allocation Unit Header
	Allocation Unit Summary

	The VxFS Version 2 Disk Layout
	Overview
	Basic Layout
	Super-Block
	Object Location Table
	Intent Log
	Allocation Unit

	Filesets and Structural Files
	Fileset Header
	Inodes
	Inode Allocation Unit
	Link Count Table
	Current Usage Table
	Quotas File

	Locating Dynamic Structures
	Object Location Table Contents
	Mounting and the Object Location Table

	The VxFS Version 4 Disk Layout

	Extent Attributes
	Introduction
	Attribute Specifics
	Reservation: Preallocating Space to a File
	Fixed Extent Size
	Other Controls
	Alignment
	Contiguity
	Write Operations Beyond Reservation
	Reservation Trimming
	Reservation Persistence
	Including Reservation in the File

	Commands Related to Extent Attributes
	Failure to Preserve Extent Attributes

	Online Backup
	Introduction
	Snapshot File Systems
	Snapshot File System Disk Structure
	How a Snapshot File System Works

	Using a Snapshot File System for Backup
	Creating a Snapshot File System
	Making a Backup

	Performance of Snapshot File Systems

	Performance and Tuning
	Introduction
	Choosing a Block Size
	Choosing an Intent Log Size
	Choosing Mount Options
	log
	delaylog
	tmplog
	nolog
	nodatainlog
	blkclear
	mincache
	convosync
	vxldlog
	Combining mount Options
	Example 1 - Desktop File System
	Example 2 - Temporary File System or Restoring from Backup
	Example 3 - Data Synchronous Writes

	Kernel Tuneables
	Internal Inode Table Size
	VxVM Maximum I/O Size

	Monitoring Free Space
	Monitoring Fragmentation

	I/O Tuning
	Tuning VxFS I/O Parameters
	Tuneable VxFS I/O Parameters

	Application Interface
	Introduction
	Cache Advisories
	Direct I/O
	Unbuffered I/O
	Discovered Direct I/O
	Data Synchronous I/O
	Other Advisories

	Extent Information
	Space Reservation
	Fixed Extent Sizes
	Freeze and Thaw

	Get I/O Parameters ioctl

	Quotas
	Introduction
	Quota Limits
	Quotas File on VxFS
	Quota commands
	quotacheck With VxFS

	Using Quotas

	Quick I/O for Databases
	Introduction
	Quick I/O Functionality and Performance
	Supporting Kernel Asynchronous I/O
	Supporting Direct I/O
	Avoiding Kernel Write Locks
	Avoiding Double Buffering

	Using VxFS Files as Raw Character Devices
	Quick I/O Naming Convention
	Use Restrictions

	Creating a Quick I/O File Using qiomkfile
	Accessing Regular VxFS Files Through Symbolic Links
	Using Absolute or Relative Pathnames
	Preallocating Files Using the setext Command

	Using Quick I/O with Oracle Databases
	Using Quick I/O with Sybase Databases
	Enabling and Disabling Quick I/O
	Cached Quick I/O For Databases
	Enabling Cached Quick I/O
	Enabling Cached Quick I/O for File Systems
	Enabling Cached Quick I/O for Individual Files

	Tuning Cached Quick I/O

	Quick I/O Statistics
	Quick I/O Summary

	VERITAS QuickLog
	Introduction
	VERITAS QuickLog Overview
	QuickLog Installation
	QuickLog Setup
	Creating a QuickLog Device
	Removing a QuickLog Device

	VxFS Administration Using QuickLog
	Enabling a QuickLog Device
	Disabling a QuickLog Device

	QuickLog Administration and Troubleshooting
	QuickLog Load Balancing
	QuickLog Statistics
	QuickLog Recovery

	Kernel Messages
	Introduction
	File System Response to Problems
	Marking an Inode Bad
	Disabling Transactions
	Disabling the File System
	Recovering a Disabled File System

	Kernel Messages
	Global Message IDs

	Index

