
Oracle9i Database
Documentation Release Notes

Release 2 (9.2.0.2)

September 13, 2002

Part No. B10280-01

These Release Notes replace the Documentation Addendum published with
Release 2 (9.2.0.1).

The following manuals have been reissued:

Part Number Title

A96653-02 Oracle Data Guard Concepts and Administration

A96673-02 Oracle Enterprise Manager Configuration Guide

A96676-02 Oracle Intelligent Agent User’s Guide

A95961-02 Oracle9i Data Mining Concepts

A96530-02 Oracle9i Database Migration

A96531-02 Oracle9i Database New Features

A96533-02 Oracle9i Database Performance Tuning Guide and Reference

A96536-02 Oracle9i Database Reference

A96580-02 Oracle9i Net Services Administrator’s Guide

A96581-02 Oracle9i Net Services Reference Guide

A95295-02 Oracle9i OLAP User’s Guide

A96600-02 Oracle9i Real Application Clusters Setup and Configuration

A96540-02 Oracle9i SQL Reference

A96571-02 Oracle9i Streams

A96620-02 Oracle9i XML Database Developer’s Guide - Oracle XML DB

Oracle is a registered trademark, and SQL*Plus, Oracle9i, and PL/SQL are trademarks or registered trademarks of Oracle

Corporation. Other names may be trademarks of their respective owners.

Copyright 2002, Oracle Corporation.

All Rights Reserved.

 2

These Release Notes contain corrections to the following documents:

■ Oracle9i Database Administrator’s Guide

■ Oracle9i Database Concepts

■ Oracle9i Database Globalization Support Guide

■ Oracle9i Database Reference

■ Oracle9i Data Mining Administrator’s Guide

■ Oracle9i SQL Reference

■ Oracle9i Streams

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB

■ Oracle9i XML Developer’s Kits Guide - XDK

■ Oracle Call Interface Programmer’s Guide

■ Oracle Text Reference

■ Backup and Recovery Documentation

See Also: Please refer to the product Release Notes for
changes in functionality in Release 9.2.0.2.

 3

Oracle9i Database Administrator’s Guide
These are corrections to the Oracle9i Database Administrator’s Guide.

Managing Undo Space
In Chapter 13, "Managing Undo Space", in the "Switching Undo
Tablespaces" section, the following paragraph is incorrect:

If the parameter value for UNDO TABLESPACE is set to ’’ (two single
quotes), the current undo tablespace will be switched out without
switching in any other undo tablespace. This can be used, for
example, to unassign an undo tablespace in the event that you want
to revert to manual undo management mode.

There is no way to dynamically revert to manual undo management mode.
The paragraph should read as follows:

If the parameter value for UNDO TABLESPACE is set to ’’ (two single
quotes), then the current undo tablespace will be switched out and
the next available undo tablespace will be switched in. Use this
statement with care, because if there is no available undo tablespace
available, the SYSTEM rollback segment is used and an alert
message is written to the alert file to warn that the system is
running without an undo tablespace.

Establishing Security Policies
Chapter 23, "Establishing Security Policies", contains a section titled "A
Security Checklist". This checklist is intended to provide guidance for
configuring Oracle9i, Release 2 (9.2), in a secure manner, thus protecting the
database itself from attack. However, the checklist has been updated since
the close date for publication of the manual. Please refer to the following
URL for the most recent version of the security checklist:

http://otn.oracle.com/deploy/security/oracle9i/pdf/9iR2_checklist.pdf

DISPATCHERS Initialization Parameter
In this release, the SCOPE clause is not supported for the DISPATCHERS
initialization parameter in an ALTER SYSTEM statement. This fact is not
mentioned in Chapter 2, in the section on managing initialization
parameters.

To reconfigure the DISPATCHERS parameter for the current instance, issue
an ALTER SYSTEM SET DISPATCHERS statement without the SCOPE clause.
To make the new configuration persistent, specify a setting for the
DISPATCHERS parameter in your initialization parameter file before

 4

starting the database. If you are using a server parameter file (spfile) to start
up the database, then you need to re-create your spfile from the
initialization parameter file by issuing a CREATE SPFILE statement.

Oracle9i Database Concepts
In Chapter 1 of Oracle9i Database Concepts, the section titled "Oracle Internet
File System" no longer pertains to this manual. Oracle Internet File System
is not included with the database release 9.2.

Oracle9i Database Globalization Support Guide

Creating a New Character Set Definition with the Oracle Locale Builder When you
create a new character set definition for a multibyte character set, base the
new character set on an existing 8-bit or multibyte character set. Do not
base it on a 7-bit character set because classification verification for
multibyte character sets does not apply to 7-bit character sets.

Oracle9i Database Reference
In this release, the SCOPE clause is not supported for the DISPATCHERS
initialization parameter in an ALTER SYSTEM statement. This fact is not
mentioned in Chapter 1, "Initialization Parameters," in the section on
DISPATCHERS.

To reconfigure the DISPATCHERS parameter for the current instance, issue
an ALTER SYSTEM SET DISPATCHERS statement without the SCOPE clause.
To make the new configuration persistent, specify a setting for the
DISPATCHERS parameter in your initialization parameter file before
starting the database. If you are using a server parameter file (spfile) to start
up the database, then you need to re-create your spfile from the
initialization parameter file by issuing a CREATE SPFILE statement.

See Also: Oracle9i Database Administrator’s Guide

See Also: Oracle9i Database Concepts

See Also: Oracle9i Database Globalization Support Guide

See Also: Oracle9i Database Reference

 5

Oracle9i Data Mining Administrator’s Guide
Please note changes with regard to the following topics:

■ Sharing an Oracle9i Data Mining (ODM) Instance

■ Stopping an ODM Task

■ Starting and Stopping the ODM Task Monitor

■ Developer Project for the Sample Programs

■ Need for Compatible Character Sets

■ Cannot Import Naive Bayes PMML Models

Sharing an ODM Instance
In a classroom situation, you may have several users who need to use ODM
at the same time. The simplest solution is for each user to have a separate
instance of Oracle9i Enterprise Edition with the ODM option installed on
his or her system.

If it is necessary for users on different client systems to share one instance of
Oracle9i and ODM, you must be aware of the following considerations:

1. Ensure that ODM is properly configured: this means unlocking and
assigning passwords to the accounts ODM and ODM_MTR in an
Enterprise Edition of Oracle9i.

2. Install Oracle9i JDeveloper on each of the client computers and
download and install from Oracle Technology Network
(http://otn.oracle.com) the JDeveloper project package that
contains the ODM sample programs and data, as well as all the
required libraries.

3. Each user accesses Oracle9i as the user ODM. In each user’s Sample_
Global.property file, modify the Thin Client information to list the
server hostname, port number, and SID; the user name is ODM and
password is ODM’s password (as assigned during configuration). The
HTTP server is not required.

4. Establish DB Connections from each JDeveloper instance to the
schemas ODM and ODM_MTR (using the same connection information
that was inserted into the Global property file). This allows the viewing
of the schema tables and the execution of SQL*Plus queries from within
JDeveloper, so no operating system-level access is needed.

5. Each user must use a unique name for every Java object and database
table or view created. This is a substantial requirement; as an indication
of the extent of this requirement, go to the Oracle9i server and look in
$ORACLE_HOME/dm/demo/sample (UNIX) or %ORACLE_

 6

HOME\dm\demo\sample (Windows) for all the property files for the
ODM sample programs and note how many instances there are of a
user-defined object name.

Stopping an ODM Task
If you stop an executing program that uses ODM, you must also stop the
ODM task that was initiated by the program. For example, suppose that
you start one of the ODM sample programs and then decide that you do
not want to run that program after all. If you interrupt the program with
Control-C, you will not stop the ODM task that the program started.

Follow these steps to stop an ODM task that was started by a program that
is no longer running:

1. Query ODM_MINING_TASK for the Task ID. Suppose the Task ID is
999. (You can verify that the task is still running by querying ODM_
MINING_TASK_STATE for that Task ID. If the state is not
TERMINATED, the task is still running.)

2. Stop task 999 by setting the value for CLEAN FLAG in ODM_
MINING_TASK to 1 where Task ID = 999.

3. Wait a few seconds (at least). Now when you query ODM_MINING_
TASK_STATE for the Task ID, you should see the value TERMINATED.

Starting and Stopping the ODM Task Monitor
This corrects the Oracle9i Data Mining Administrator’s Guide. The commands
in step 4 of Section 3.2.1.1, in step 2 of Section 3.2.1.2, and in Section 4.8 all
contain a typographical error. The correct commands are described in this
section.

To start the ODM task monitor, log in as ODM user and start the ODM
Monitor with the following SQL*Plus command:

exec ODM_START_MONITOR

To stop the ODM task monitor, log in as ODM user and stop the ODM
Monitor with the following SQL*Plus command:

exec ODM_STOP_MONITOR

Developer Project for the Sample Programs
You can download from the Data Mining area in Oracle Technology
Network (http://otn.oracle.com) an Oracle9i JDeveloper project for
the ODM sample programs. After you download and install the project,

 7

you can modify and execute the ODM sample programs using Oracle9i
JDeveloper.

The readme file included in the download explains how to install the
project and how to compile and execute the ODM sample programs using
JDeveloper.

Need for Compatible Character Sets
When using ODM in a shared JVM environment, such as when integrated
with a servlet application, all connections made to an ODM server (also
known as a Data Mining Server) must be based on databases with
compatible character sets. Otherwise, string length tests conducted in the
JVM may not recognize these differences, allowing data to pass to the
database, which could result in server-side failures.

Cannot Import Naive Bayes PMML Models
Importing Naive-Bayes PMML models fails when TargetValueCount
element’s count attribute contains a real number. The count attribute’s value
for the TargetValueCount element in a Naive-Bayes model most commonly
contains an integer value; however, the PMML specification allows for real
numbers. If the document to be imported contains real numbers for this
attribute, the import fails. You should instead convert the values of the
count attribute to integers before performing the PMML model import.

Oracle9i SQL Reference
In this release, the SCOPE clause is not supported for the DISPATCHERS
initialization parameter in an ALTER SYSTEM statement. This fact is not
mentioned in Chapter 10, in the section on the DISPATCHERS initialization
parameter.

To reconfigure the DISPATCHERS parameter for the current instance, issue
an ALTER SYSTEM SET DISPATCHERS statement without the SCOPE clause.
To make the new configuration persistent, specify a setting for the
DISPATCHERS parameter in your initialization parameter file before
starting the database. If you are using a server parameter file (spfile) to start
up the database, then you need to re-create your spfile from the
initialization parameter file by issuing a CREATE SPFILE statement.

See Also: Oracle9i Data Mining Concepts

See Also: Oracle9i SQL Reference

 8

Oracle9i Streams
The following are corrections to the Oracle9i Streams manual (part number
A96571-02):

■ In Chapter 3, "Streams Staging and Propagation", in the "Queue
Buffers" section, the following sentence on page 3-20 is incorrect: "In a
single database, all of the queue buffers combined can use up to 10% of
SGA memory."

This sentence should be replaced with the following:

In a single database, all of the queue buffers combined can use up to
10% of shared pool.

■ In Chapter 16, "Other Streams Management Tasks", in the "Apply
Process Behavior for LCRs Containing LOBs" section, the following
sentence should be added on page 16-13:

Do not modify LOB column data in an LCR. This includes DML
handlers, error handlers, and rule-based transformation functions.

Oracle9i Supplied PL/SQL Packages and Types
Reference
■ In Chapter 8, "DBMS_CAPTURE_ADM," replace the description for the

force parameter in the STOP_CAPTURE procedure with the following
description:

This parameter is reserved for future use. In the current release, valid
BOOLEAN settings are ignored.

■ In Chapter 14, "DBMS_DESCRIBE," Table 14-2, the description of the
length parameter should read as follows: "For %type formal
arguments, a length of 0 is returned." This is the result of a fix to bug
1402425.

■ In Chapter 29, "DBMS_LOGSTDBY," the order of the parameters for the
INSTANTIATE_TABLE procedure is incorrect. The correct parameter
order is as follows:

 DBMS_LOGSTDBY.INSTANTIATE_TABLE (
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 dblink IN VARCHAR2);

The DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure does not
support the BLOB datatype even though BLOB datatypes are
supported by logical standby databases.

 9

The description should state that the DBMS_LOGSTDBY package is case
sensitive for schema and table names. Be careful to use the correct case
when supplying schema and tables names to the DBMS_LOGSTDBY
package. For example, the following statements show incorrect and
correct syntax for a SKIP procedure that skips changes to OE.TEST.

Incorrect statement:

execute dbms_logstdby.skip(’DML’, ’oe’, ’test’, null);

Because the names are specified with lowercase characters, the
transactions that update these columns will still be applied to the
logical standby database.

Correct statement:

execute dbms_logstdby.skip(’DML’, ’OE’, ’TEST’, null);

■ In Chapter 72, "DBMS_STREAMS," the descriptions for the CONVERT_
ANYDATA_TO_LCR_DDL function and CONVERT_ANYDATA_TO_LCR_
ROW function state that you can specify these functions in rule-based
transformations when propagating logical change records (LCRs) from
SYS.Anydata queues to typed queues. However, rule-based
transformations are not supported currently for such propagations.
Therefore, to configure LCR propagations between SYS.AnyData
queues and typed queues, you must specify a transformation created
using the DBMS_TRANSFORM package.

■ In Chapter 73, "DBMS_STREAMS_ADM," Table 73-10, replace the
description for the streams_type parameter in the REMOVE_RULE
procedure with the following:

The type of Streams rule, either capture, apply, or propagation.

■ In Chapter 107, "JMS Types," the following constants should be listed
under "Constants to Support the aq$_jms_message Type.":

JMS_TEXT_MESSAGE CONSTANT BINARY_INTEGER;

JMS_BYTES_MESSAGE CONSTANT BINARY_INTEGER;

The following constants are not supported:

JMS_STREAM_MESSAGE

JMS_MAP_MESSAGE

JMS_OBJECT_MESSAGE

■ In Chapter 107, "JMS Types," the first sentence under "aq$_jms_message
Type" should read as follows: "This type is the ADT used to store
JMSText and JMSBytes message types." The JMSMap, JMSStream,
and JMSObject types should not be included.

 10

■ In Chapter 107, "JMS Types," the syntax for the member procedures and
functions incorrectly prepends DBMS_AQJMS. The syntax should read as
follows:

 LOOKUP_PROPERTY_NAME(
 new_property_name IN VARCHAR);

 SET_REPLYTO(
 replyto IN SYS.AQ$_AGENT);

 SET_TYPE(
 type IN VARCHAR);

 SET_USERID(
 userid IN VARCHAR);

 SET_APPID(
 appid IN VARCHAR);

 SET_GROUPID(
 groupid IN VARCHAR);

 SET_GROUPSEQ(
 groupseq IN INT);

 CLEAR_PROPERTIES;

 SET_BOOLEAN_PROPERTY(
 property_name IN VARCHAR,
 property_value IN BOOLEAN);

 SET_BYTE_PROPERTY(
 property_name IN VARCHAR,
 property_value IN INT);

 SET_SHORT_PROPERTY(
 property_name IN VARCHAR,
 property_value IN INT);

 SET_INT_PROPERTY(
 property_name IN VARCHAR,
 property_value IN INT);

 SET_LONG_PROPERTY(
 property_name IN VARCHAR,
 property_value IN NUMBER);

 SET_FLOAT_PROPERTY(
 property_name IN VARCHAR,
 property_value IN FLOAT);

 11

 SET_DOUBLE_PROPERTY(
 property_name IN VARCHAR,
 property_value IN DOUBLE PRECISION);

 SET_STRING_PROPERTY(
 property_name IN VARCHAR,
 property_value IN VARDHAR);

 GET_REPLYTO(
 replyto OUT SYS.AQ$_AGENT);

 GET_TYPE(
 type OUT VARCHAR);

 GET_USERID(
 userid OUT VARCHAR);

 GET_APPID(
 appid OUT VARCHAR);

 GET_GROUPID(
 groupid OUT VARCHAR);

 GET_GROUPSEQ(
 groupseq OUT INT);

 GET_BOOLEAN_PROPERTY(
 property_name IN VARCHAR)
 RETURN BOOLEAN;

 GET_BYTE_PROPERTY(
 property_name IN VARCHAR)
 RETURN INT;

 GET_SHORT_PROPERTY(
 property_name IN VARCHAR)
 RETURN INT;

 GET_INT_PROPERTY(
 property_name IN VARCHAR)
 RETURN INT;

 GET_LONG_PROPERTY(
 property_name IN VARCHAR)
 RETURN NUMBER;

 GET_FLOAT_PROPERTY(
 property_name IN VARCHAR)
 RETURN FLOAT;

 12

 GET_DOUBLE_PROPERTY(
 property_name IN VARCHAR)
 RETURN DOUBLE PRECISION;

 GET_STRING_PROPERTY(
 property_name IN VARCHAR)
 RETURN VARCHAR;

 CONSTRUCT(
 mtype IN INT)
 RETURN aq$_jms_message;

 CONSTRUCT RETURN aq$_jms_text_message;

 SET_TEXT(
 payload IN VARCHAR2);

 SET_TEXT(
 payload IN CLOB);

 GET_TEXT(
 payload OUT VARCHAR2);

 GET_TEXT(
 payload OUT CLOB);

 SET_BYTES(
 payload IN RAW);

 SET_BYTES(
 payload IN BLOB);

 GET_BYTES(
 payload OUT RAW);

 GET_BYTES(
 payload OUT BLOB);

■ In Chapter 108, "Logical Change Record Types," a new parameter, use_
old, was added to the following member functions for the SYS.LCR$_
ROW_RECORD type: GET_LOB_INFORMATION, GET_VALUE, and GET_
VALUES. Refer to Chapter 16, "Other Streams Management Tasks," in
Oracle9i Streams (A96571-02) for detailed information about the use_
old parameter in these member functions

See Also: Oracle9i Supplied PL/SQL Packages and Types
Reference

 13

Oracle9i XML Database Developer’s Guide - Oracle
XML DB
There are documentation corrections to the following chapters:

■ Chapter 5: Structured Mapping of XMLType

■ Chapter 7: Searching XMLType Data with Oracle Text

■ Chapter 10: Generating XML Data from the Database

■ Appendix A: Installing and Configuring Oracle XMLDB

Chapter 5: Structured Mapping of XMLType
The following corrections related to QueryRewrite with XML
Schema-Based Structured Storage.

What Is Query Rewrite?
When the XMLType is stored in structured storage (object-relationally)
using an XML schema and queries using XPath are used, they can
potentially be rewritten directly to the underlying object-relational columns.
This rewrite of queries can also potentially happen when queries using
XPath are issued on certain non-schema-based XMLType views.

This enables the use of B*Tree or other indexes, if present on the column, to
be used in query evaluation by the Optimizer. This query rewrite
mechanism is used for XPaths in SQL functions such as existsNode(),
extract(), extractValue(), and updateXML(). This enables the XPath to be
evaluated against the XML document without having to ever construct the
XML document in memory.

Example 1 Query Rewrite

For example a query such as:

SELECT VALUE(p) FROM MyPOs p
 WHERE extractValue(value(p),'/PurchaseOrder/Company’) = 'Oracle';

is trying to get the value of the Company element and compare it with the
literal ’Oracle’. Since the MyPOs table has been created with XML
schema-based structured storage, the extractValue operator gets

Note: Path queries that get rewritten are a subset of the
set of supported XPath queries. As far as possible, queries
should be written so that the query rewrite advantages are
realized.

 14

rewritten to the underlying relational column that stores the company
information for the purchaseorder.

Thus the preceding query is rewritten to the following:

SELECT VALUE(p) FROM MyPOs p
 WHERE p.xmldata.company = ’Oracle’;

If there was a regular index created on the Company column, such as:

CREATE INDEX company_index ON MyPos e
 (extractvalue(value(e),’/PurchaseOrder/Company’));

then the preceding query would use the index for its evaluation.

Consider the XMLType view employee_xml created using SYS_XMLGEN()
over the object type emp_t:

CREATE TYPE Emp_t AS OBJECT (
 EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2));

CREATE VIEW employee_xml OF XMLTYPE
 WITH OBJECT ID
 (SYS_NC_ROWINFO$.EXTRACT('/ROW/EMPNO/text()').getnumberval()) AS
 SELECT SYS_XMLGEN(
 emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal,
e.comm))
 FROM emp e;

Consider the following query to retrieve all employees with an employee
number of 7934:

SELECT VALUE(p) FROM employee_xml p
 WHERE extractValue(value(p),'/ROW/EMPNO') = 7934;

This query is similarly trying to match the value of EMPNO with 12300. This
query is rewritten as follows:

SELECT SYS_XMLGEN(
 emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal, e.comm))
“value(p)”
 FROM emp e WHERE emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate,
e.sal,

See Also: Chapter 4, "Using XMLType".

 15

 e.comm).empno - 7934;

The WHERE clause is further optimized to give the following query:

SELECT SYS_XMLGEN(
 emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal, e.comm))
“value(p)”
 FROM emp e where e.empno = 7934;

An index empno_index created on the empno column is picked up:

CREATE INDEX empno_index ON emp (empno);

The view may alternately be defined over an object view. The object view
may either already exist or be created over the relational data. Consider the
following object view created over existing relational data:

CREATE VIEW employee_ov OF emp_t WITH OBJECT ID (EMPNO) AS
 SELECT emp_t(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal,
 e.comm)
 FROM emp e;

A non-schema-based XMLType view may be created as follows :

CREATE VIEW employee_xml_xv OF XMLTYPE WITH OBJECT ID
 (SYS_NC_ROWINFO$.EXTRACT('/ROW/EMPNO/text()').getnumberval()) AS
 SELECT SYS_XMLGEN(value(p)) FROM employee_ov p;

When Does Query Rewrite Occur?
Query rewrite happens for the following SQL functions:

■ extract()

■ existsNode()

■ extractValue

■ updateXML

The rewrite happens when these SQL functions are present in any
expression in a query, DML, or DDL statement. For example, you can use
extractValue() to create indexes on the underlying relational columns.

What XPath Expressions Are Rewritten?
XPath expressions involving simple expressions with no wild cards or
descendant axes get rewritten. The XPath may select an element or an
attribute node. Predicates are supported and get rewritten into SQL
predicates. In addition, wild cards and descendant axes are rewritten and
supported with certain restrictions for XML schema-based XMLType tables

 16

and views when it can be determined that it can be mapped to a single
unique XPath.

Table 1 lists the kinds of XPath expressions that can be translated into
underlying SQL queries in this release.

Supported XPath Constructs for Query Rewrites
The following XPath constructs get rewritten:

■ Simple XPath traversals

■ Predicates

■ Descendant axes (XML schema-based only): Rewrites over descendant
axis (//) are supported if the following conditions are met:

■ There is at least one XPath child or attribute access following the //

■ Only one descendant of the children can potentially match the
XPath child or attribute name following the //. If the schema
indicates that multiple descendants children can potentially match,
and there is no unique path the // can be expanded to, then no
rewrite is done.

■ None of the descendants have an element of type xsi:anyType

Table 1 Supported XPath Expressions for Translation to Underlying SQL
Queries

XPath Expression for
Translation Description

Simple XPath expressions:

/PurchaseOrder/@Purchase
Date

/PurchaseOrder/Company

Involves traversals over object type attributes only,
where the attributes are simple scalar or object
types themselves. The only axes supported are the
child and the attribute axes.

Collection traversal
expressions:

/PurchaseOrder/Item/Part

Involves traversal of collection expressions. The
only axes supported are child and attribute axes.
Collection traversal is not supported if the SQL
operator is used during CREATE INDEX or
updateXML().

Predicates:

[Company="Oracle"]

/ROW[DEPTNAME="ACCO
UNTING"]

Predicates in the XPath are rewritten into SQL
predicates. Predicates are not rewritten for
updateXML()

List indexe:

lineitem[1]

/ROW/EMPLOYEES[1]

Indexes are rewritten to access the n’th item in a
collection. These are not rewritten for
updateXML().

 17

■ There is no substitution group that has the same element name at
any descendant.

■ Wildcards (XML schema-based only): Rewrites over wildcard axis (/*)
are supported if the following conditions are met:

■ There is at least one XPath child or attribute access following the /*

■ Only one of the grandchildren can potentially match the XPath
child or attribute name following the /*. If the schema indicates
that multiple grandchildren can potentially match, and there is no
unique path the /* can be expanded to, then no rewrite is done.

■ None of the children or grandchildren of the node before the /*
have an element of type xsi:anyType

■ There is no substitution group that has the same element name for
any child of the node before the /*.

Supported Non-Schema-Based XMLType Views
Queries over non-schema-based XMLType views using SYS_XMLGEN can
potentially get rewritten to operate on the arguments to SYS_XMLGEN.

■ The arguments to SYS_XMLGEN can be of any object type, and can
themselves be columns of an object view. If the object type of the
argument to SYS_XMLGEN contains embedded collections, then rewrite
happens only if there is a single XML operator, such as existsnode(),
extract(), or extractvalue() in the query. If there are multiple
operators, then no rewrite is done.

■ SYS_XMLGEN must not take any additional parameters, such as
XMLFormat. The major advantage of non-schema-based XMLType
views is that the data does not have to be migrated into new tables, so
the data can be directly exposed as XML and queried as XML. A
disadvantage is that a rich set of mappings to XML are best captured
using XML schema, and only the canonical mapping of object types to
XML is supported with non-schema-based XMLType views.

How are the XPaths Rewritten For Non-Schema-Based XMLType
Views?
Consider the following XMLType view definition. This XMLType view
definition is used as the running example for this subsection. This
subsection explains how XPaths are rewritten for non-schema-based
XMLType views.

create type emp_t as object (
 EMPNO NUMBER(4), ename VARCHAR2(10), job VARCHAR2(9), mgr NUMBER(4),
 HIREDATE DATE);

 18

create type emp_list is varray(100) of emp_t;

create or replace type dept_t as object (
 "@DEPTNO" NUMBER(2), DeptNAME VARCHAR2(14), LOC VARCHAR2(13),
 employees emp_list);

create view dept_ov of dept_t with object id (deptname) as
 select deptno, dname, loc, CAST(MULTISET(
 select emp_t(empno, ename, job, mgr, hiredate)
 from emp e where e.deptno = d.deptno) AS emp_list)
 from dept d;

create view dept_xv of xmltype
 with object id(SYS_NC_
ROWINFO$.extract(’/ROW/@DEPTNO’).getnumberval()) as
 select SYS_XMLGEN(VALUE(p)) FROM dept_ov p ;

Non-Schema-Based XMLType Views: Mapping for a Simple XPath
A rewrite for a simple XPath involves accessing the attribute corresponding
to the XPath expression. Thus, rewrite of the expressions
‘/ROW/DEPTNAME’, ’/ROW/@DEPTNO’ and ‘/ROW/EMPLOYEES’ map to
dname, deptno, and CAST(MULTISET(select emp_t(empno, …)
from emp e where …) AS emplist) respectively.

For example, consider a query that extracts the department number dno
from the department view dept_xv:

SELECT extractvalue(value(p),’/ROW/@DEPTNO’) dno from dept_xv p ;

This gets rewritten into the following query:

SELECT SYS_ALIAS_1.DNO "DNO" FROM DEPT SYS_ALIAS_1;

Non-Schema-Based XMLType Views: Mapping for Scalar Nodes
An Xpath expression containing a text() operator may be rewritten into
the underlying relational column. For example, consider a query that
extracts the department name dname from the department view dept_xv:

SELECT extract(value(p),’/ROW/DEPTNAME’/text()) dname from dept_xv p ;

This gets rewritten into the following query :

SELECT SYS_ALIAS_1.DNAME "DNAME" FROM DEPT SYS_ALIAS_1;

Non-Schema-Based XMLType Views: Mapping of Predicates
Predicates are mapped to SQL predicate expressions. For example, consider
a query that gets the number of departments called ACCOUNTING:

 19

select count(*) from dept_xv e where existsnode(value(e),
’/ROW[DEPTNAME="ACCOUNTING"]’) = 1;

This query gets rewritten to the following :

SELECT COUNT(*) "COUNT(*)" FROM DEPT "SYS_ALIAS_1"
WHERE "SYS_ALIAS_1"."DNAME"='ACCOUNTING' AND DEPT_T(….) IS NOT NULL;

Non-Schema-Based XMLType Views: Simple Collection Traversals
Simple traversals through a collection are rewritten using XMLAGG() to
aggregate over the elements of the collection. Consider the following query
extracts all the employee numbers from the department view. Since it needs
to iterate over the elements of the collection of employees for each
department, an XMLAGG() is added to aggregate over the final result.

SELECT extract(value(e), '/ROW/EMPLOYEES/EMP_T/EMPNO') empno from dept_
xv e;

This is rewritten using XMLAGG() as follows :

SELECT (SELECT XMLAGG(SYS_XMLGEN(TO_CHAR(EMPNO))) “VALUE(P)”
 FROM EMP E WHERE EMPNO IS NOT NULL AND EMP_T(…) IS NOT NULL
 AND E.DEPTNO = “SYS_ALIAS1”.DEPTNO) “EMPNO”
 FROM DEPT “SYS_ALIAS1”;

Non-Schema-Based XMLType Views: Collection Indexing
An XPath expression can also access a particular index of a collection For
example, ‘/ROW/EMPLOYEES/EMP_T[1]/EMPNO’ is rewritten to get the
first element in the employees collection of the department view, and then
to get the employee number from the first element.

Non-Schema-Based XMLType Views: Predicates in Collections
An XPath expression that traverses through a collection might involve
predicates. For example, the expression extract(value(p),
‘/ROW[EMPLOYEES/EMP_T/EMPNO > 7900]’) involves a comparison
predicate (> 7900). XPath 1.0 defines such XPaths to be satisfied if any of the
items of the collection satisfies the predicate. Thus, this expression is
rewritten to retrieve all those rows that have an employee collection such
that at least one employee in the collection has an employee number greater
than 7900. An existential check using the EXISTS() clause gets the list of
all such rows.

 20

Chapter 7: Searching XMLType Data with Oracle Text

Highlighting Support for INPATH and HASPATH Operators Page 7-34 states that the
CTX_DOC.HIGHLIGHT procedure does not support highlighting of XML
documents with INPATH and HASPATH operators. While this is true for
release 9.2, highlighting support has been added for these operators in
9.2.0.2. This added support is documented with examples on page 7-49
Oracle9i XML Database Developer’s Guide - Oracle XML DB, release 9.2.0.2.,
under the heading "Using Oracle Text: Advanced Techniques".

Chapter 10: Generating XML Data from the Database
The following functions were not previously documented:

■ PROCEDURE setNullHandling(ctx IN ctxHandle, flag IN
NUMBER);

■ PROCEDURE useNullAttributeIndicator(ctx IN ctxHandle,
attrind IN boolean := TRUE);

setNullHandling The values for the flag of setNullHandling are:

■ DROP_NULLS CONSTANT NUMBER := 0; This is the default setting.

■ NULL_ATTR CONSTANT NUMBER := 1;

■ EMPTY_TAG CONSTANT NUMBER := 2;

■ DROP_NULLS leaves out the tag for null elements.

■ NULL_ATTR sets xsi:nil="true".

■ EMPTY_TAG sets, for example, <foo/>.

useNullAttributeIndicator This is a short-cut for setNullHandling(ctx,
NULL_ATTR).

Appendix A: Installing and Configuring Oracle XMLDB
To re-install Oracle XML DB follow these steps:

1. Remove the dispatcher.

2. Drop user xdb.

3. Drop tablespace xdb.

4. Recreate tablespace xdb.

5. Execute catnoqm.sql.

 21

6. Execute catqm.sql.

7. Execute catxdbj.sql.

Oracle9i XML Developer’s Kits Guide - XDK
Please note the corrections to documentation of the following topics:

■ XML-SQL Utility (XSU)

■ XMLGEN API Has Been Deprecated

XML-SQL Utility (XSU)
In Chapter 8, "XML SQL Utility (XSU)", Example 3 should be replaced as it
is unnecessarily complex. You must first call XSU, then position the first
element’s cursor. Also, there is no need for a scrollable cursor. XSU
processes all rows following the current row in the resultset. If you position
the cursor at the first row of the resultset, then XSU starts with row #2. To
position the cursor before the first row use the beforeFirst() method.
XSU scrolls the resultset on its own so you do not have to worry about
breaking.

The following example should replace the existing Example 3. It shows how
you can use the XSU for Java API to generate an XML page:

------------------ b.java -------------
import oracle.sql.*;
import oracle.jdbc.driver.*;
import oracle.xml.sql.*;
import oracle.xml.sql.query.*;
import oracle.xml.sql.dataset.*;
import oracle.xml.sql.docgen.*;

import java.sql.*;
import java.io.*;

public class b
{
 public static void main(String[] args) throws Exception
 {

@ DriverManager.registerDriver(new
oracle.jdbc.driver.OracleDriver());

 Connection conn =

See Also: Oracle9i XML Database Developer’s Guide - Oracle
XML DB

 22

 DriverManager.getConnection("jdbc:oracle:oci8:scott/tiger@");

 Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

 String sCmd = "SELECT ENAME FROM SCOTT.EMP";
 ResultSet rs = stmt.executeQuery(sCmd);

 OracleXMLQuery xmlQry = new OracleXMLQuery(conn, rs);
 xmlQry.keepObjectOpen(true);
 //xmlQry.setRowIdAttrName("");
 xmlQry.setRowsetTag("ROWSET");
 xmlQry.setRowTag("ROW");
 xmlQry.setMaxRows(20);

 //rs.beforeFirst();
 String sXML = xmlQry.getXMLString();
 System.out.println(sXML);
 }
}

XSU Dependencies
XML SQL Utility (XSU) depends on the following components:

■ Database connectivity -- JDBC drivers. XSU can work with any JDBC
driver but it is optimized for Oracle JDBC drivers. Oracle Corporation
does not make any guarantee or provide support for the XSU running
against non-Oracle databases.

■ Oracle XML Parser, Version2 -- xmlparserv2.jar.
xmlparserv2.jar is included in the Oracle9i installations.
xmlparserv2.jar is also part of the XDK for java archive
downloadable from Oracle Technology Network (OTN) Web site.

■ XSU also depends on the classes included in xdb.jar and
servlet.jar. These are present in Oracle9i installations. These are
also included in the XDK for java archive downloadable from OTN.

Installing the XSU
XML SQL Utility (XSU) ships with the Oracle9i software CD, and is also
part of XDK for Java available from OTN. XSU is comprised of the
following two files:

■ $ORACLE_HOME/lib/xsu12.jar: This contains the Java classes that
constitute XSU. xsu12 requires a minimum of JDK1.2.x and JDBC2.x.

 23

■ $ORACLE_HOME/rdbms/admin/dbmsxsu.sql: This is the SQL
script that builds the XSU PL/SQL API. Load xsu12.jar into the
database before executing dbmsxsu.sql.

By default Oracle Universal Installer installs XSU on your hard drive at the
locations specified in the previous paragraph. It also loads XSU into the
database. If XSU is not installed during the initial Oracle installation, it can
be installed later. You can either use Oracle Universal Installer to install the
XSU and its dependent components, or you can download the latest XDK
for Java from OTN.

To load the XSU into the database you must perform one the following
steps, depending on how you installed XSU:

■ Oracle Universal Installer installation: change to your ORACLE_HOME
directory, then to rdbms/admin. Run initxml.sql.

■ OTN download installation: change to the bin directory of the
downloaded/expanded XDK archive. Run the xdkload script. If you
are using Windows run xdkload.bat.

XMLGEN API Has Been Deprecated
Before the first XSU production release, that is, before Oracle8i Release 3
(8.1.7), XSU for PL/SQL API was named "XMLGEN". This must not be
confused with a) the XML generation SQL function SYS_XMLGEN, b) the
XML generation PL/SQL supplied package DBMS_XMLGEN, or c) XMLGen()
the SQLX standard function. Note that when XSU was first offered as a
production release in Oracle8i Release 3 (8.1.7), the "XMLGEN" package was
deprecated. In other words, "XMLGEN" was never offered as part of Oracle8i
Release 3 (8.1.7) production code although it continued to be shipped with
the Oracle software. It was never documented.

"XMLGEN" replacements are DBMS_XMLQuery, used for XML generation,
and DBMS_XMLSave used for DML and data manipulation. Oracle9i
Release 2 (9.2) and higher no longer include "XMLGEN" with the Oracle
software.

Although for this release, the "XMLGEN" "deprecated" package can still be
downloaded from OTN as part of the XSU download, which in turn is part
of the XDK download, you are recommended to migrate to the latest
production packages DBMS_XMLQuery and DBMS_XMLSave. Migration is
simple as the method names are identical. The difference is that the new
XSU for PL/SQL API contains more methods. Note that all take the context
handle as the first argument.

See Also: Oracle10i XML Developer’s Kit Guide - XDK

 24

Oracle Call Interface Programmer’s Guide
■ In Chapter 2, "OCI Programming Basics", in the "Using PL/SQL in an

OCI Program" section, the following note is added:

When binding a PL/SQL VARCHAR2 variable in OCI, the maximum
size of the bind variable is 32512, because of the overhead of control
structures.

■ In Chapter 6, "Describing Schema Metadata", in the "Character Length
Semantics Support in Describing" section, the following sentence is
added:

Calling OCIAttrGet() with attribute OCI_ATTR_CHAR_SIZE does
not return data on stored procedure parameters because stored
procedure parameters are not bounded.

■ Chapter 13, "Object Cache Navigation" is rewritten to satisfy the
following bug report:

The object cache is logically partitioned by "connection", that is, service
context. As a result of this the OCI code is written to expect that all
object types (TDOs) and table definitions are fetched for each service
context that uses them. Unless the cache is low and objects are being
aged out, programs that fetch all TDOs and tables on one service
context but use them on others, generally work as you would like.
However once TDOs and tables are aged out of the cache, unexpected
behavior can occur. This can lead to internal errors.

The section "The Object Cache and Memory Management" should
explain from the start how the cache is logically partitioned and the
importance of the service context. It does briefly mention that you have
one copy of an object in the cache for each connection; but the rest of
the chapter makes no reference to this again. For instance, under the
pinning section, it says if the object is already in the cache it is retrieved.
This is true only if it is in your logical partition of the cache, otherwise it
is fetched from the database again.

This has confused a number of customers in the past when they try to
share objects between threads but end up with multiple copies.

OCITypeByName(), OCITypeArrayByName(), and
OCIObjectPinTable() definitions should be updated to explain
that:

■ The service context should correspond to that of the logical partition in
which the TDO or table definition is used.

■ If TDOs or tables are used across logical partitions, then the behavior is
not known and may change between releases.

 25

Oracle Text Reference
■ The descriptions for the INPATH, HASPATH, and CTX_

DOC.HIGHLIGHT, CTX_DOC.MARKUP do not mention that highlighting
is not supported for INPATH and HASPATH in 9.2.

In 9.2.0.2 this limitation has been removed. You can use CTX_
DOC.HIGHLIGHT and CTX_DOC.MARKUP to highlight XML documents
that have been queried with the INPATH and HASPATH operators. For
more information, see Chapter 7 of the Oracle9i XML Database
Developer’s Guide - Oracle XML DB, release 9.2.0.2.

■ The ctxsrv index maintenance utility and its related procedures and
views are no longer supported. Specifically, the related procedure of
CTX_ADM.SHUTDOWN is not supported as documented in Chapter 5,
nor is the querying of the CTX_SERVERS view as documented in
Appendix G.

■ In Chapter 6, "CTX_CLS Package", in the "Syntax" section, the following
columns currently support only nonnegative integer values:

doc_id

catdocid

catid

rescatid

 Backup and Recovery Documentation
The following are corrections to Oracle9i Recovery Manager Reference:

■ In the description of the BLKSIZE parameter in allocOperandList,
the choice of BLKSIZE must also be a multiple of the database
initialization parameter DB_BLOCK_SIZE. This restriction holds true
regardless of the block sizes of the datafiles being backed up.

If you set BLKSIZE to something that is not a multiple of DB_BLOCK_
SIZE, then RMAN issues errors when you try to allocate the channel.

■ In "Performing Differential Incremental Backups: Example" in the
examples section for the BACKUP command, the user is instructed to
make a new backup after an ADD DATAFILE. You do not need to take a
level 0 backup after adding a datafile. RMAN detects that a datafile was
added, and when you take the next incremental backup, it takes the

See Also: Oracle Call Interface Programmer’s Guide

See Also: Oracle Text Reference

 26

incremental backup for all of the files except the one that was recently
added, and for that file it automatically takes a level 0 backup.

The following notes are corrections to Oracle9i Recovery Manager User’s
Guide:

■ In Chapter 5, "RMAN Concepts I: Channels, Backups, and Copies," the
section "Detection of Physical Block Corruption" contains a misleading
note that explains that RMAN cannot detect all types of block
corruption. If you run RMAN with the following configuration, then it
detects all types of corruption that are possible to detect:

- In the initialization parameter file, set DB_BLOCK_
CHECKSUM=TRUE

- In the RMAN BACKUP and RESTORE commands, do not specify the
MAXCORRUPT option, do not specify the NOCHECKSUM option, but do
specify the CHECK LOGICAL option

■ In Chapter 5, "RMAN Concepts I: Channels, Backups, and Copies," the
section "Backup Retention Policies" is unclear with respect to
incremental backups. The REPORT OBSOLETE and DELETE OBSOLETE
commands work in two steps:

- They identify the oldest full or level 0 backup or copy of every
datafile that is not obsolete as defined by the retention policy
(either REDUNDANCY or RECOVERY WINDOW). Every older full or
level 0 backup is obsolete.

- RMAN considers the following files obsolete: archived logs and
incremental backups at level 1 or higher that are older than the
oldest non-obsolete full backup. They are obsolete because there is
no longer any full or level 0 backup to which they can possibly
apply. Note that incremental backups at a level 1 or higher perform
much the same function as archived logs (causing a full backup to
move forward in time), so they are treated as archived logs for the
purposes of the retention policy.

See Also:

■ Oracle9i Recovery Manager Reference

■ Oracle9i Recovery Manager User’s Guide

 27

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting
documentation accessible, with good usability, to the disabled community.
To that end, our documentation includes features that make information
available to users of assistive technology. This documentation is available in
HTML format, and contains markup to facilitate access by the disabled
community. Standards will continue to evolve over time, and Oracle
Corporation is actively engaged with other market-leading technology
vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the
Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document.
The conventions for writing code require that closing braces should appear
on an otherwise empty line; however, JAWS may not always read a line of
text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or
organizations that Oracle Corporation does not own or control. Oracle
Corporation neither evaluates nor makes any representations regarding the
accessibility of these Web sites.

 28

	Oracle9i Database Administrator’s Guide
	Managing Undo Space
	Establishing Security Policies
	DISPATCHERS Initialization Parameter

	Oracle9i Database Concepts
	Oracle9i Database Globalization Support Guide
	Oracle9i Database Reference
	Oracle9i Data Mining Administrator’s Guide
	Sharing an ODM Instance
	Stopping an ODM Task
	Starting and Stopping the ODM Task Monitor
	Developer Project for the Sample Programs
	Need for Compatible Character Sets
	Cannot Import Naive Bayes PMML Models

	Oracle9i SQL Reference
	Oracle9i Streams
	Oracle9i Supplied PL/SQL Packages and Types Reference
	Oracle9i XML Database Developer’s Guide - Oracle XML DB
	Chapter 5: Structured Mapping of XMLType
	What Is Query Rewrite?
	When Does Query Rewrite Occur?
	What XPath Expressions Are Rewritten?
	Supported XPath Constructs for Query Rewrites
	Supported Non-Schema-Based XMLType Views

	How are the XPaths Rewritten For Non-Schema-Based XMLType Views?
	Non-Schema-Based XMLType Views: Mapping for a Simple XPath
	Non-Schema-Based XMLType Views: Mapping for Scalar Nodes
	Non-Schema-Based XMLType Views: Mapping of Predicates
	Non-Schema-Based XMLType Views: Simple Collection Traversals
	Non-Schema-Based XMLType Views: Collection Indexing
	Non-Schema-Based XMLType Views: Predicates in Collections

	Chapter 7: Searching XMLType Data with Oracle Text
	Chapter 10: Generating XML Data from the Database
	Appendix A: Installing and Configuring Oracle XMLDB

	Oracle9i XML Developer’s Kits Guide - XDK
	XML-SQL Utility (XSU)
	XSU Dependencies
	Installing the XSU

	XMLGEN API Has Been Deprecated

	Oracle Call Interface Programmer’s Guide
	Oracle Text Reference
	Backup and Recovery Documentation
	Documentation Accessibility

