
Pro*C/C++
Getting Started  

10g Release 2 (10.2) for Microsoft Windows (32-Bit)

B14321-01

June 2005



Pro*C/C++ Getting Started, 10g Release 2 (10.2) for Microsoft Windows (32-Bit) 

B14321-01

Copyright © 2003, 2005, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they 
are provided under a license agreement containing restrictions on use and disclosure and are also protected 
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, 
or decompilation of the Programs, except to the extent required to obtain interoperability with other 
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in 
the documentation, please report them to us in writing. This document is not warranted to be error-free. 
Except as may be expressly permitted in your license agreement for these Programs, no part of these 
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any 
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on 
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation 
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license 
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial 
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, 
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such 
purposes, and we disclaim liability for any damages caused by such use of the Programs. 

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its 
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third 
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. 
You bear all risks associated with the use of such content. If you choose to purchase any products or services 
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: 
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the 
third party, including delivery of products or services and warranty obligations related to purchased 
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from 
dealing with any third party. 



iii

Contents

Preface ................................................................................................................................................................   vii

Intended Audience.....................................................................................................................................    vii
Documentation Accessibility ....................................................................................................................    vii
Related Documents ...................................................................................................................................    viii
Conventions ...............................................................................................................................................    viii

What's New in Pro*C/C++? ......................................................................................................................   ix

Oracle Database10g Release 2 (10.2) New Features in Pro*C/C++ .....................................................    ix
Oracle9i Release 2 (9.2) New Features in Pro*C/C++ ...........................................................................    ix
Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++ ........................................................................    ix
Oracle8i Release 8.1.6 New Features in Pro*C/C++ ..............................................................................    ix

1  Introducing Pro*C/C++

What Is Pro*C/C++? .................................................................................................................................   1-1
Features.......................................................................................................................................................   1-1
Restrictions ................................................................................................................................................   1-2
Directory Structure...................................................................................................................................   1-2

Known Problems, Restrictions, and Workarounds ......................................................................   1-2

2  Using Pro*C/C++

Using Pro*C/C++ at the Command Prompt ........................................................................................   2-1
Header Files ...............................................................................................................................................   2-1
Library Files...............................................................................................................................................   2-2
Multithreaded Applications...................................................................................................................   2-2
Precompiler Options................................................................................................................................   2-3

Configuration File ..............................................................................................................................   2-3
CODE ...................................................................................................................................................   2-3
DBMS ...................................................................................................................................................   2-3
INCLUDE ............................................................................................................................................   2-3
PARSE..................................................................................................................................................   2-3

Using Pro*C/C++ with the Oracle XA Library....................................................................................   2-3
Compiling and Linking a Pro*C/C++ Program with XA............................................................   2-4
XA Dynamic Registration .................................................................................................................   2-4

Adding an Environmental Variable for the Current Session ...............................................   2-4
Adding a Registry Variable for All Sessions...........................................................................   2-5



iv

XA and TP Monitor Information .....................................................................................................   2-5

3  Sample Programs

Sample Program Descriptions ...............................................................................................................   3-1
Building the Demonstration Tables......................................................................................................   3-6
Building the Sample Programs..............................................................................................................   3-6

Using pcmake.bat ..............................................................................................................................   3-6
Using Microsoft Visual C++...................................................................................................................   3-6
Setting the Path for the Sample .pre Files ...........................................................................................   3-7

A  Integrating Pro*C/C++ into Microsoft Visual C++

Integrating Pro*C/C++ within Microsoft Visual C++ Projects.......................................................    A-1
Specifying the Location of the Pro*C/C++ Executable ...............................................................    A-1
Specifying the Location of the Pro*C/C++ Header Files ............................................................    A-2

Adding .pc Files to a Project..................................................................................................................    A-2
Adding References to .c Files to a Project ......................................................................................    A-3
Adding the Pro*C/C++ Library to a Project .................................................................................    A-3
Specifying Custom Build Options ..................................................................................................    A-4

Adding Pro*C/C++ to the Tools Menu ................................................................................................    A-5

Index



v



vi

List of Tables

1–1 precomp Directory Structure ...................................................................................................   1-2
2–1 Header Files ................................................................................................................................   2-2
2–2 Oracle XA Library Components and Locations ....................................................................   2-4
3–1 Sample Programs .......................................................................................................................   3-1



vii

Preface

This manual provides introductory information for the Pro*C/C++ precompiler 
running on Windows operating systems.

This Preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
Pro*C/C++ Getting Started is intended for anyone who wants to use Pro*C/C++ to 
perform the following tasks:

■ Embed SQL statements in a C or C++ program.

■ Build Oracle database applications with Pro*C/C++.

To use this document, you need to know:

■ Commands for deleting and copying files and the concepts of the search path, 
subdirectories, and path names.

■ How to use the Windows operating system.

■ Visual C++ version 5.0 or higher.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at

http://www.oracle.com/accessibility/



viii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace. 

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites. 

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services 
within the United States of America 24 hours a day, seven days a week. For TTY 
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database Installation Guide for 32-Bit Windows

■ Oracle Database Release Notes for Windows

■ Pro*C/C++ Programmer's Guide

■ Oracle Database Platform Guide for Windows

■ Oracle Enterprise Manager Administrator's Guide

■ Oracle Database Net Services Administrator’s Guide

■ Oracle Real Application Clusters Quick Start

■ Oracle Database New Features

■ Oracle Database Concepts

■ Oracle Database Reference

■ Oracle Database Error Messages

Many of the books in the documentation library  use the sample schemas of the seed 
database, which is installed by default when you install Oracle. Refer to Oracle 
Database Sample Schemas for information on how these schemas were created and how 
you can use them yourself.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



ix

What's New in Pro*C/C++?

This section describes new features of Oracle Database 10g releases and provides 
pointers to additional information. New features information from previous releases is 
also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Pro*C/C++:

■ Oracle Database10g Release 2 (10.2) New Features in Pro*C/C++

■ Oracle9i Release 2 (9.2) New Features in Pro*C/C++

■ Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++

■ Oracle8i Release 8.1.6 New Features in Pro*C/C++

Oracle Database10g Release 2 (10.2) New Features in Pro*C/C++
There is no new Windows specific feature in Pro*C/C++ for this release.

Oracle9i Release 2 (9.2) New Features in Pro*C/C++
There is no new Windows specific feature in Pro*C/C++ for this release.

Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++
The Oracle9i release 1 (9.0.1) feature described in this section highlights the support 
for Windows 2000.

Using Oracle9i on Windows 2000
Pro*C/C++ is now supported on Windows 2000. There are some differences between 
using Oracle9i on Windows 2000.

Oracle8i Release 8.1.6 New Features in Pro*C/C++
The Oracle8i release 8.1.6 features and enhancements described in this section 
comprise the overall effort to make Pro*C/C++ application development simpler.

See Also: "What's New" preface of Pro*C/C++ Programmer's Guide

See Also: Oracle Database Platform Guide for Windows



x

Fully Integrated Debugging Capabilities
Beginning with release 8.1.6, the behavior of the LINES={YES|NO} option has 
changed. Now, when LINES=YES is specified, a #line preprocessor directive is 
generated after every line of generated code in the output program. This enables 
developers using debuggers such as GDB or IDEs such as the Microsoft Visual Studio 
for C++ to debug their application programs by viewing the Pro*C/C++ source 
program instead of by stepping through the generated code.

See Also: Integrating Pro*C/C++ within Microsoft Visual C++ 
Projects



Introducing Pro*C/C++ 1-1

1
Introducing Pro*C/C++

This chapter describes Pro*C/C++, the Oracle programmatic interface for the C and 
C++ languages running on Windows operating systems. Pro*C/C++ enables you to 
build Oracle database applications in a Win32 environment.

This chapter contains these topics:

■ What Is Pro*C/C++?

■ Features

■ Restrictions

■ Directory Structure

What Is Pro*C/C++?
The Pro*C/C++ precompiler enables you to create applications that access your Oracle 
database whenever rapid development and compatibility with other systems are your 
priorities.

The Pro*C/C++ programming tool enables you to embed Structured Query Language 
(SQL) statements in a C or C++ program. The Pro*C/C++ precompiler translates these 
statements into standard Oracle runtime library calls, then generates a modified 
source program that you can compile, link, and run in the usual way.

Features
Pro*C/C++ supports the following features:

■ Remote access with Oracle Net Services or local access to Oracle databases 

■ Embedded PL/SQL blocks

■ Bundled database calls, which can provide better performance in client/server 
environments

■ Full ANSI compliance for embedded SQL programming

■ PL/SQL version 9.0 and host language arrays in PL/SQL procedures

■ Multi-threaded applications

■ Full ANSI C compliance

See Also:  Pro*C/C++ Programmer's Guide for additional 
information



Restrictions

1-2 Pro*C/C++ Getting Started

■ Can be deployed in Instant Client environments. For more information, refer to 
the OCI Instant Client documentation.

■ Microsoft Visual C++ support, version 6.0 for 32-bit applications

Restrictions
Pro*C/C++ does not support 16-bit code generation.

Directory Structure
Installing Oracle software creates a directory structure on your hard drive for the 
Oracle products. A main Oracle directory contains the Oracle subdirectories and files 
that are necessary to run Pro*C/C++. 

When you install Pro*C/C++, Oracle Universal Installer creates a directory called 
\precomp in the ORACLE_BASE\ORACLE_HOME directory. This subdirectory contains 
the Pro*C/C++ executable files, library files, and sample programs listed in Table 1–1.

Known Problems, Restrictions, and Workarounds 
Although all Windows operating systems allow spaces in file names and directory 
names, the Oracle Pro*C/C++ and Oracle Pro*COBOL precompilers will not 
precompile files that include spaces in the filename or directory name. For example, do 
not use the following formats: 

■ proc iname=test one.pc 

■ proc iname=d:\dir1\second dir\sample1.pc 

Note: Borland C++ is no longer supported.

Table 1–1 precomp Directory Structure

Directory Name Contents

\admin Configuration files

\demo\proc Sample programs for Pro*C/C++

\demo\sql SQL scripts for sample programs

\doc\proc Readme files for Pro*C/C++

\help\proc Help files for Pro*C/C++

\lib\msvc Library files for Pro*C/C++

\mesg Message files

\misc\proc Miscellaneous files for Pro*C/C++

\public Header files

Note: The \precomp directory can contain files for other 
products, such as Pro*COBOL.



Using Pro*C/C++ 2-1

2
Using Pro*C/C++

This chapter explains how to create and precompile a project. It also explains how to 
use Pro*C/C++ at the command prompt. 

This chapter contains these topics:

■ Header Files

■ Library Files

■ Multithreaded Applications

■ Precompiler Options

■ Using Pro*C/C++ with the Oracle XA Library

Using Pro*C/C++ at the Command Prompt
To precompile a file at the command prompt, enter the following command:

C:\> proc iname=filename.pc

where filename.pc is the name of the file. If the file is not in your current working 
directory, include the file's full path after the INAME argument.

Pro*C/C++ generates filename.c, which can be compiled by your C compiler.

Header Files
The ORACLE_BASE\ORACLE_HOME\precomp\public directory contains the 
Pro*C/C++ header files. Table 2–1 lists and describes the header files.

See Also:  Pro*C/C++ Programmer's Guide  for additional 
information

See Also: Pro*C/C++ Programmer's Guide for more information 
about oraca.h, sqlca.h, and sqlda.h.



Library Files

2-2 Pro*C/C++ Getting Started

Library Files
The ORACLE_BASE\ORACLE_HOME\precomp\lib\msvc directory contains the 
library file that you use when linking Pro*C/C++ applications. The library file is called 
orasql110.lib.

Pro*C/C++ application program interface (API) calls are implemented in DLL files 
provided with your Pro*C/C++ software. To use the DLLs, you must link your 
application with the import libraries (.lib files) that correspond to the Pro*C/C++ 
DLLs. Also, you must ensure that the DLL files are installed on the computer that is 
running your Pro*C/C++ application.

Microsoft provides you with three libraries: libc.lib, libcmt.lib, and 
msvcrt.lib. The Oracle DLLs use the msvcrt.lib runtime library. You must link 
with msvcrt.lib rather than the other two Microsoft libraries.

Multithreaded Applications
Build multithreaded applications if you are planning to perform concurrent database 
operations.

Windows 2000, and Windows 98 schedule and allocate threads belonging to processes. 
A thread is a path of a program's execution. It consists of a kernel stack, the state of the 
CPU registers, a thread environment block, and a users stack. Each thread shares the 
resources of a process. Multithreaded applications use the resources of a process to 
coordinate the activities of individual threads.

When building a multithreaded application, make sure that your C/C++ code is 
reentrant. This means that access to static or global data must be restricted to one 

Table 2–1 Header Files

Header Files Description

oraca.h Contains the Oracle Communications Area (ORACA), which helps you to 
diagnose runtime errors and to monitor your program's use of various Oracle 
Database 10g resources.

sql2oci.h Contains SQLLIB functions that enable the Oracle Call Interface (OCI) 
environment handle and OCI service context to be obtained in a Pro*C/C++ 
application.

sqlapr.h Contains ANSI prototypes for externalized functions that can be used in 
conjunction with OCI.

sqlca.h Contains the SQL Communications Area (SQLCA), which helps you to diagnose 
runtime errors. The SQLCA is updated after every executable SQL statement.

sqlcpr.h Contains platform-specific ANSI prototypes for SQLLIB functions that are 
generated by Pro*C/C++. By default, Pro*C/C++ does not support full-function 
prototyping of SQL programming calls. If you need this feature, include 
sqlcpr.h before any EXEC SQL statements in your application source file.

oraca.h Contains the Oracle Communications Area (ORACA), which helps you to 
diagnose runtime errors and to monitor your program's use of various Oracle 
Database 10g resources.

sql2oci.h Contains SQLLIB functions that enable the Oracle Call Interface (OCI) 
environment handle and OCI service context to be obtained in a Pro*C/C++ 
application.

sqlapr.h Contains ANSI prototypes for externalized functions that can be used in 
conjunction with OCI.



Using Pro*C/C++ with the Oracle XA Library

Using Pro*C/C++ 2-3

thread at a time. If you mix multithreaded and non-reentrant functions, one thread can 
modify information that is required by another thread.

The Pro*C/C++ precompiler automatically creates variables on the local stack of the 
thread. This ensures that each thread using the Pro*C/C++ function has access to a 
unique set of variables and is reentrant.

Precompiler Options
This section highlights issues related to Pro*C/C++ for Windows platforms. 

Configuration File
A configuration file is a text file that contains precompiler options.

For this release, the system configuration file is called pcscfg.cfg. This file is located 
in the ORACLE_BASE\ORACLE_HOME\precomp\admin directory.

CODE
The CODE option has a default setting of ANSI_C. Pro*C/C++ for other operating 
systems may have a default setting of KR_C.

DBMS
DBMS=V6_CHAR is not supported when using CHAR_MAP=VARCHAR2. Instead, use 
DBMS=V7.

INCLUDE
For sample programs that precompile with PARSE=PARTIAL or PARSE=FULL, an 
include path of c:\program files\devstudio\vc\include has been added. If 
Microsoft Visual C++ has been installed in a different location, modify the Include 
Directories field accordingly for the sample programs to precompile correctly.

PARSE
The PARSE option has a default setting of NONE. Pro*C/C++ for other operating 
systems may have a default setting of FULL.

Using Pro*C/C++ with the Oracle XA Library
The XA Application Program Interface (API) is typically used to enable an Oracle 
database to interact with a Transaction Processing (TP) monitor, such as:

■ BEA Tuxedo 

■ IBM Transarc Encina

■ IBM CICS

See Also: Pro*C/C++ Programmer's Guidefor additional 
information on how to write multithreaded applications with 
Pro*C/C++

See Also: "Precompiler Options" of Pro*C/C++ Programmer's 
Guide



Using Pro*C/C++ with the Oracle XA Library

2-4 Pro*C/C++ Getting Started

You can also use TP monitor statements in your client programs. The use of the XA 
API is also supported from both Pro*C/C++ and OCI. 

The Oracle XA Library is automatically installed as part of Oracle Database 10g 
Enterprise Edition. The following components are created in your Oracle home 
directory:

Compiling and Linking a Pro*C/C++ Program with XA
To compile and link a Pro*C/C++ program with XA:

1. Precompile filename.pc using Pro*C/C++ to generate filename.c.

2. Compile filename.c, making sure to include ORACLE_BASE\ORACLE_
HOME\rdbms\xa in your path.

3. Link filename.obj with the following libraries:

1. Run filename.exe.

XA Dynamic Registration
Oracle supports the use of XA dynamic registration. XA dynamic registration 
improves the performance of applications that interface with XA-compliant TP 
monitors.

For TP monitors to use XA dynamic registration with an Oracle database, you must 
add either an environmental variable or a registry variable to the Windows computer 
on which your TP monitor is running. See either of the following sections for 
instructions:

■ Adding an Environmental Variable for the Current Session

■ Adding a Registry Variable for All Sessions

Adding an Environmental Variable for the Current Session
Adding an environmental variable at the command prompt affects only the current 
session.

To add an environmental variable for the current session:

1. Go to the computer where your TP monitor is installed.

2. Enter the following at the command prompt:

C:\> set ORA_XA_REG_DLL = vendor.dll

Table 2–2 Oracle XA Library Components and Locations

Component Location

oraxa9.lib ORACLE_BASE\ORACLE_HOME\rdbms\xa

xa.h ORACLE_BASE\ORACLE_HOME\rdbms\demo

Library Location

oraxa10.lib ORACLE_BASE\ORACLE_HOME\rdbms\xa

oci.lib ORACLE_BASE\ORACLE_HOME\oci\lib\msvc

orasql10.lib ORACLE_BASE\ORACLE_HOME\precomp\lib\msvc



Using Pro*C/C++ with the Oracle XA Library

Using Pro*C/C++ 2-5

where vendor.dll is the TP monitor DLL provided by your vendor.

Adding a Registry Variable for All Sessions
Adding a registry variable affects all sessions on your Windows computer. This is 
useful for computers where only one TP monitor is running. 

To add a registry variable for all sessions:

1. Go to the computer where your TP monitor is installed.

2. Enter the following at the command prompt:

C:\> regedt32

The Registry Editor window appears.

3. Go to HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOMEID. 

4. Select the Add Value option in the Edit menu.

The Add Value dialog box appears.

5. Enter ORA_XA_REG_DLL in the Value Name field.

6. Select REG_EXPAND_SZ from the Data Type list .

7. Click OK.

The String Editor dialog appears.

8. Enter vendor.dll in the String field, where vendor.dll is the TP monitor DLL 
provided by your vendor.

9. Click OK.

The Registry Editor adds the parameter. 

10. Select Exit from the Registry menu.

The registry exits.

XA and TP Monitor Information
Refer to the following for more information about XA and TP monitors:

■ Distributed TP: The XA Specification (C193) published by the Open Group. See the 
Web site at:

http://www.opengroup.org/publications/catalog/tp.htm

■ The Open Group., 1010 El Camino Real, Suite 380, Menlo Park, CA 94025, U.S.A.

■ Your specific TP monitor documentation

See Also: Oracle Database Application Developer's Guide - 
Fundamentalsfor more information about the Oracle XA Library and 
using XA dynamic registration



Using Pro*C/C++ with the Oracle XA Library

2-6 Pro*C/C++ Getting Started



Sample Programs 3-1

3
Sample Programs

This chapter describes how to build Oracle database applications with Pro*C/C++ 
using the sample programs that are included with this release. 

This chapter contains these topics:

■ Sample Program Descriptions

■ Building the Demonstration Tables

■ Building the Sample Programs

Sample Program Descriptions
When you install Pro*C/C++, Oracle Universal Installer copies a set of Pro*C/C++ 
sample programs to the ORACLE_BASE\ORACLE_HOME\precomp\demo\proc 
directory. These sample programs are listed in Table 3–1, " Sample Programs" and 
described in the subsequent section.

When built, the sample programs that Oracle provides produce .exe executables. 

For some sample programs, as indicated in the Notes column of the table, you must 
run the SQL scripts in the sample directory before you precompile and run the sample 
program. The SQL scripts set up the correct tables and data so that the sample 
programs run correctly. These SQL scripts are located in the ORACLE_BASE\ORACLE_
HOME\precomp\demo\sql directory.

Oracle Corporation recommends that you build and run these sample programs to 
verify that Pro*C/C++ has been installed successfully and operates correctly. You can 
delete the programs after you use them.

You can build the sample program using a batch file called pcmake.bat or using 
Visual C++ 6.0. 

See Also: "Building the Sample Programs" on page 3-6

Table 3–1 Sample Programs

Sample Program Source Files
Pro*C/C++ GUI Project 
File

MSVC Compiler
Project File Notes

ANSIDYN1 ansidyn1.pc ansidyn1.pre ansidyn1.dsp -

ANSIDYN2 ansidyn2.pc ansidyn2.pre ansidyn2.dsp -

COLDEMO1 coldemo1.h 
coldemo1.pc 
coldemo1.sql 
coldemo1.typ

coldemo1.pre coldemo1.dsp Run coldemo1.sql 
and the Object Type 
Translator before 
building coldemo1.

CPDEMO1 cpdemo1.pc cpdemo1.pre cpdemo1.dsp -



Sample Program Descriptions

3-2 Pro*C/C++ Getting Started

CPDEMO2 cpdemo2.pc cpdemo2.pre cpdemo2.dsp -

CPPDEMO1 cppdemo1.pc cppdemo1.pre cppdemo1.dsp -

CPPDEMO2 cppdemo2.pc 
empclass.pc 
cppdemo2.sql 
empclass.h

cppdemo2.pre cppdemo2.dsp Run cppdemo2.sql 
before building 
cppdemo2.

CPPDEMO3 cppdemo3.pc cppdemo3.pre cppdemo3.dsp -

CVDEMO cv_demo.pc
cv_demo.sql

cv_demo.pre cv_demo.dsp Run cv_demo.sql 
before building cv_
demo.

EMPCLASS cppdemo2.pc 
empclass.pc 
cppdemo2.sql 
empclass.h

empclass.pre empclass.dsp Run cppdemo2.sql 
before building 
empclass.

LOBDEMO1 lobdemo1.h 
lobdemo1.pc 
lobdemo1.sql

lobdemo1.pre lobdemo1.dsp Run lobdemo1.sql 
before building 
lobdemo1.

MLTTHRD1 mltthrd1.pc 
mltthrd1.sql

mltthrd1.pre mltthrd1.dsp Run mltthrd1.sql 
before building 
mltthrd1.

NAVDEMO1 navdemo1.h 
navdemo1.pc 
navdemo1.sql 
navdemo1.typ

navdemo1.pre navdemo1.dsp Run navdemo1.sql 
and the Object Type 
Translator before 
building navdemo1.

OBJDEMO1 objdemo1.h 
objdemo1.pc 
objdemo1.sql 
objdemo1.typ

objdemo1.pre objdemo1.dsp Run objdemo1.sql 
and the Object Type 
Translator before 
building objdemo1.

ORACA oraca.pc 
oracatst.sql

oraca.pre oraca.dsp Run oracatst.sql 
before building oraca.

PLSSAM plssam.pc plssam.pre plssam.dsp -

SAMPLE sample.pc sample.pre sample.dsp -

SAMPLE1 sample1.pc sample1.pre sample1.dsp -

SAMPLE2 sample2.pc sample2.pre sample2.dsp -

SAMPLE3 sample3.pc sample3.pre sample3.dsp -

SAMPLE4 sample4.pc sample4.pre sample4.dsp -

SAMPLE5 sample5.pc 
exampbld.sql 
examplod.sql

sample5.pre sample5.dsp Run exampbld.sql, 
then run 
examplod.sql, before 
building sample5.

SAMPLE6 sample6.pc sample6.pre sample6.dsp -

SAMPLE7 sample7.pc sample7.pre sample7.dsp -

SAMPLE8 sample8.pc sample8.pre sample8.dsp -

SAMPLE9 sample9.pc 
calldemo.sql

sample9.pre sample9.dsp Run calldemo.sql 
before building 
sample9.

SAMPLE10 sample10.pc sample10.pre sample10.dsp -

SAMPLE11 sample11.pc 
sample11.sql

sample11.pre sample11.dsp Run sample11.sql 
before building 
sample11.

SAMPLE12 sample12.pc sample12.pre sample12.dsp -

SCDEMO1 scdemo1.pc scdemo1.pre scdemo1.dsp -

Table 3–1 (Cont.) Sample Programs

Sample Program Source Files
Pro*C/C++ GUI Project 
File

MSVC Compiler
Project File Notes



Sample Program Descriptions

Sample Programs 3-3

The following subsections describe the functionality of the sample programs.

ANSIDYN1
Demonstrates using ANSI dynamic SQL to process SQL statements that are not known 
until runtime. This program is intended to demonstrate the simplest (though not the 
most efficient) approach to using ANSI dynamic SQL.

ANSIDYN2
Demonstrates using ANSI dynamic SQL to process SQL statements that are not known 
until runtime. This program uses the Oracle extensions for batch processing and 
reference semantics.

COLDEMO1
Fetches census information for California counties. This program demonstrates 
various ways to navigate through collection-typed database columns.

CPDEMO1
Demonstrates how the connection pool feature can be used. It also shows how 
different connection pool options can be used to optimize performance.

CPDEMO2
Demonstrates connection pool feature with relatively complex set of SQL statements 
and shows how performance gain depends on the kind of SQL statements used by the 
program.

CPPDEMO1
Prompts the user for an employee number, then queries the emp table for the 
employee's name, salary, and commission. This program uses indicator variables (in 
an indicator struct) to determine whether the commission is NULL.

CPPDEMO2
Retrieves the names of all employees in a given department from the emp table 
(dynamic SQL Method 3).

CPPDEMO3
Finds all salespeople and prints their names and total earnings (including 
commissions). This program is an example of C++ inheritance.

CVDEMO
Declares and opens a ref cursor.

EMPCLASS
The EMPCLASS and CPPDEMO2 files were written to provide an example of how to 
write Pro*C/C++ programs within a C++ framework. EMPCLASS encapsulates a 
specific query on the emp table and is implemented using a cursor variable. EMPCLASS 
instantiates an instance of that query and provides cursor variable functionality (that 

SCDEMO2 scdemo2.pc scdemo2.pre scdemo2.dsp -

SQLVCP sqlvcp.pc sqlvcp.pre sqlvcp.dsp -

WINSAM resource.h 
winsam.h 
winsam.ico 
winsam.pc 
winsam.rc

winsam.pre winsam.dsp -

Table 3–1 (Cont.) Sample Programs

Sample Program Source Files
Pro*C/C++ GUI Project 
File

MSVC Compiler
Project File Notes



Sample Program Descriptions

3-4 Pro*C/C++ Getting Started

is: open, fetch, close) through C++ member functions that belong to the emp class. 
The empclass.pc file is not a standalone demo program. It was written to be used by 
the cppdemo2 demo program. To use the emp class, you have to write a driver 
(cppdemo2.pc) which declares an instance of the emp class and issues calls to the 
member functions of that class.

LOBDEMO1
Fetches and adds crime records to the database based on the person's Social Security 
Number. This program demonstrates the mechanisms for accessing and storing large 
objects (LOBs) to tables and manipulating LOBs through the stored procedures 
available through the DBMS_LOB package.

MLTTHRD1
Shows how to use threading in conjunction with precompilers. The program creates as 
many sessions as there are threads. 

NAVDEMO1
Demonstrates navigational access to objects in the object cache.

OBJDEMO1
Demonstrates the use of objects. This program manipulates the object types person and 
address.

ORACA
Demonstrates how to use ORACA to determine various performance parameters at 
runtime.

PLSSAM
Demonstrates the use of embedded PL/SQL blocks. This program prompts you for an 
employee name that already resides in a database. It then executes a PL/SQL block, 
which returns the results of four SELECT statements.

SAMPLE
Adds new employee records to the personnel database and checks database integrity. 
The employee numbers in the database are automatically selected using the current 
maximum employee number +10.

SAMPLE1
Logs on to an Oracle database, prompts the user for an employee number, queries the 
database for the employee's name, salary, and commission, and displays the result. 
The program continues until the user enters 0 as the employee number.

SAMPLE2
Logs on to an Oracle database, declares and opens a cursor, fetches the names, salaries, 
and commissions of all salespeople, displays the results, and closes the cursor.

SAMPLE3
Logs on to an Oracle database, declares and opens a cursor, fetches in batches using 
arrays, and prints the results using the print_rows() function.

SAMPLE4
Demonstrates the use of type equivalencies using the LONG VARRAW external 
datatype.

See Also: "Multithreaded Applications" on page 2-2



Sample Program Descriptions

Sample Programs 3-5

SAMPLE5
Prompts the user for an account number and a debit amount. The program verifies 
that the account number is valid and that there are sufficient funds to cover the 
withdrawal before it debits the account. This program shows the use of embedded 
SQL.

SAMPLE6
Creates a table, inserts a row, commits insert, and drops the table (dynamic SQL 
Method 1).

SAMPLE7
Inserts two rows into the emp table and deletes them (dynamic SQL Method 2).

SAMPLE8
Retrieves the names of all employees in a given department from the emp table 
(dynamic SQL Method 3).

SAMPLE9
Connects to an Oracle database using the scott/tiger account. The program 
declares several host arrays and calls a PL/SQL stored procedure (GET_EMPLOYEES in 
the CALLDEMO package). The PL/SQL procedure returns up to ASIZE values. The 
program keeps calling GET_EMPLOYEES, getting ASIZE arrays each time, and printing 
the values, until all rows have been retrieved.

SAMPLE10
Connects to an Oracle database using your username and password and prompts for a 
SQL statement. You can enter any legal SQL statement, but you must use regular SQL 
syntax, not embedded SQL. Your statement is processed. If the statement is a query, 
the rows fetched are displayed (dynamic SQL Method 4).

SAMPLE11
Fetches from the emp table, using a cursor variable. The cursor is opened in the stored 
PL/SQL procedure open_cur, in the EMP_DEMO_PKG package.

SAMPLE12
Demonstrates how to do array fetches using dynamic SQL Method 4.

SCDEMO1
Demonstrates how the scrollable cursor can be used with Oracle dynamic SQL Method 
4. Scrollable cursor can also be used with ANSI dynamic SQL Method 4.

SCDEMO2
Demonstrates the use of scrollable cursor with host arrays.

SQLVCP
Demonstrates how you can use the sqlvcp() function to determine the actual size of 
a VARCHAR struct. The size is then used as an offset to increment a pointer that steps 
through an array of VARCHARs.

This program also demonstrates how to use the SQLStmtGetText() function to 
retrieve the text of the last SQL statement that was executed.

WINSAM
Adds new employee records to the personnel database and checks database integrity. 
You can enter as many employee names as you want and perform the SQL commands 
by selecting the appropriate buttons in the Employee Record dialog box. This is a GUI 
version of the sample program.



Building the Demonstration Tables

3-6 Pro*C/C++ Getting Started

Building the Demonstration Tables
To run the sample programs, you must have a database account with the username 
scott and the password tiger. Also, you must have a database with the sample 
tables emp and dept. This account is included in the starter database for your Oracle 
Database 10g server. If the account does not exist on your database, create the account 
before running the sample programs. If your database does not contain emp and dept 
tables, you can use the demobld.sql script to create them.

To build the sample tables:

1. Start SQL*Plus

2. Connect as username scott with the password tiger.

3. Run the demobld.sql script:

SQL> @ORACLE_BASE\ORACLE_HOME\sqlplus\demo\demobld.sql;

Building the Sample Programs
You can build the sample programs in two ways:

■ Using the pcmake.bat file provided

■ Using Microsoft Visual C++ 6.0

Using pcmake.bat 
The pcmake.bat file for compiling Pro*C/C++ demos is found in the following 
location:

ORACLE_BASE\ORACLE_HOME\precomp\demo\proc

This batch file is designed to illustrate how Pro*C/C++ applications can be built at the 
command prompt. 

In order to use this batch file, Microsoft Visual Studio must be installed. The 
environment variable MSVCDir must be set. Pro*C/C++ command line options and 
linker options vary depending on your application. 

You can use this file to build a demo, to build sample1 for example:

1. Navigate to the location of the demo file and enter the following at the command 
prompt:

C:\> CD ORACLE_BASE\ORACLE_HOME\precomp\demo\proc\sample1

2. Enter the following: 

% pcmake sample1

Using Microsoft Visual C++
Microsoft Visual C++ 6.0 project files have an extension of.dsp. The.dsp files in the 
ORACLE_BASE\ORACLE_HOME\precomp\demo\proc directory guide and control 
the steps necessary to precompile, compile, and link the sample programs.

See Also: Oracle Database Platform Guide for Windows



Setting the Path for the Sample .pre Files

Sample Programs 3-7

Pro*C/C++, SQL*Plus, and the Object Type Translator have been integrated into the 
Microsoft Visual C++ sample project files. You do not have to run Pro*C/C++, 
SQL*Plus, and the Object Type Translator separately before compilation. 

To build a sample program:

1. Open a Visual C++ project file, such as sample1.dsp.

2. Check the paths in the project file to ensure that they correspond to the 
configuration of your system. If they do not, change the paths accordingly. Your 
system may produce error messages if the paths to all components are not correct. 

1. Select Build > Rebuild All. Visual C++ creates the executable.

Setting the Path for the Sample .pre Files
By default the sample .pre files search for their corresponding .pc files in the 
C:\oracle\ora92 directory where C:\ is the drive that you are using, and 
oracle\ora92 represents the location of the Oracle home. If the Oracle base and 
Oracle home directories are different on your computer, you must change the 
directory path to the correct path. 

To change the directory path for a sample .pre file: 

1. In Pro*C/C++, open the .pre file. 

2. Double-click the filename in the Input File area to display the Input File dialog 
box. 

3. Change the directory path to the correct path. 

4. Click Open. 

See Also:

■ "Setting the Path for the Sample .pre Files" on page 3-7

■ Appendix A, "Integrating Pro*C/C++ into Microsoft Visual 
C++"

■ Pro*C/C++ Programmer's Guide for more information on Object 
Type Translator

Note: All of the sample programs were created with 
C:\oracle\ora92 as the default drive.



Setting the Path for the Sample .pre Files

3-8 Pro*C/C++ Getting Started



Integrating Pro*C/C++ into Microsoft Visual C++ A-1

A
Integrating Pro*C/C++ into Microsoft Visual

C++

This appendix describes how to integrate Pro*C/C++ into the Microsoft Visual C++ 
integrated development environment. 

This appendix contains these topics:

■ Integrating Pro*C/C++ within Microsoft Visual C++ Projects

■ Adding Pro*C/C++ to the Tools Menu

Integrating Pro*C/C++ within Microsoft Visual C++ Projects
This section describes how to fully integrate Pro*C/C++ within Microsoft Visual C++ 
projects.

All the precompiler errors and warnings are displayed in the output box where 
Microsoft Visual C++ displays compiler and linker messages. You do not have to 
precompile a file separately from the Microsoft Visual C++ build environment. More 
importantly, Microsoft Visual C++ maintains the dependencies between .c and .pc 
files. Microsoft Visual C++ maintains the dependency and precompile files, if needed. 

All of the procedures in this section are performed within Microsoft Visual C++.

Specifying the Location of the Pro*C/C++ Executable
For Microsoft Visual C++ to run Pro*C/C++, it must know the location of the 
Pro*C/C++ executable. If Microsoft Visual C++ was installed before any Oracle 
release 9.2 products were installed, then you must add the directory path.

To specify the location of the Pro*C/C++ executable:

1. Select Options from the Tools menu. 

The Options dialog appears.

2. Click the Directories tab.

3. Select Executable files from Show directories For.

4. Scroll to the bottom of the Directories box and click the dotted rectangle.

5. Enter the ORACLE_BASE\ORACLE_HOME\bin directory. For example:

       C:\oracle\ora92\bin

6. Click OK.



Adding .pc Files to a Project

A-2 Pro*C/C++ Getting Started

Specifying the Location of the Pro*C/C++ Header Files
To specify the location of the Pro*C/C++ header files:

1. Select Options from the Tools menu. The Options dialog appears.

2. Click the Directories tab.

3. Select Include Files from the Show Directories For list.

4. Scroll to the bottom of the Directories box and click the dotted rectangle.

5. Enter the ORACLE_BASE\ORACLE_HOME\precomp\public directory. For 
example:

        C:\oracle\ora92\precomp\public

6. Click OK.

Adding .pc Files to a Project
After you create a project, you need to add the .pc files.

To add a .pc file to a project:

1. Select Add To Project from the Project menu and then select Files. The Insert Files 
into Project dialog appears.



Adding .pc Files to a Project

Integrating Pro*C/C++ into Microsoft Visual C++ A-3

2. Select All Files from the Files list.

3. Select the .pc file.

4. Click OK.

Adding References to .c Files to a Project
For each .pc file, you need to add a reference to the .c file that will result from 
precompiling.

To add a reference to a .c file to a project:

1. Select Add To Project from the Project menu, and then select Files. The Insert Files 
into Project dialog appears.

2. Type the name of the .c file in the File Name box.

3. Click OK. Because the .c file has not been created yet, Microsoft Visual C++ 
displays the following message: "The specified file does not exist. Do you want to 
add a reference to the project anyway?"

4. Click Yes.

Adding the Pro*C/C++ Library to a Project
Pro*C/C++ applications must link with the library file orasql10.lib.

To add the Pro*C/C++ library to a project:

1. Select Add To Project from the Project menu, and then select Files. The Insert Files 
into Project dialog appears.



Adding .pc Files to a Project

A-4 Pro*C/C++ Getting Started

2. Select All Files from the Files list.

3. Select orasql10.lib from the ORACLE_BASE\ORACLE_HOME\precomp\lib\msvc 
directory.

4. Click OK.

Specifying Custom Build Options

To specify Custom Build options:

1. In FileView, right-click a .pc file and select Settings. The Project Settings dialog 
appears with the Custom Build tab displayed.

2. In the Build commands box, on one line, set the build to use the same hardcoded 
path as that of the $ORACLE_HOME setting.

3. In the Output files box, enter one of the following:

■ If you are generating .c files, then enter $(ProjDir)\$(InputName).c.

■ If you are generating .cpp files, then enter 
$(ProjDir)\$(InputName).cpp.

$(ProjDir) and $MSDEVDIR are macros for custom build commands in 
Microsoft Visual C++. When the project is built, Microsoft Visual C++ checks the 
date of the output files to determine whether they need to be rebuilt for any new 
modifications made to the source code. 

4. Click OK.

See Also: Microsoft Visual C++ documentation



Adding Pro*C/C++ to the Tools Menu

Integrating Pro*C/C++ into Microsoft Visual C++ A-5

Adding Pro*C/C++ to the Tools Menu

You can include Pro*C/C++ as a choice in the Tools menu of Microsoft Visual C++.

To add Pro*C/C++ to the Tools menu:

1. From within Microsoft Visual C++, select Customize from the Tools menu. The 
Customize dialog appears.

2. Click the Tools tab.

3. Scroll to the bottom of the Menu contents box and click the dotted rectangle.

4. Enter the following text:

Pro*C/C++

5. In the Command box, type the path and filename of the graphical Pro*C/C++ 
executable, or use the Browse button to the right of the box to select the file name. 
For example:

C:\oracle\ora92\bin\procui.exe

6. In the Arguments box, enter the following text:

$(TargetName)

When you select Pro*C/C++ from the Tools menu, Microsoft Visual C++ uses the 
$(TargetName) argument to pass the name of the current development project 
to Pro*C/C++. Pro*C/C++ then opens a precompile project with the same name 
as the opened project, but with a .pre extension in the project directory.

7. In the Initial directory box, enter the following text:

$(WkspDir)



Adding Pro*C/C++ to the Tools Menu

A-6 Pro*C/C++ Getting Started

The Customize dialog should now look like the following graphic (although the 
Oracle home directory may be different on your computer).

8. Click Close. Microsoft Visual C++ adds Pro*C/C++ to the Tools menu.



Index-1

Index

Numerics
16-bit code, not supported, 1-2

A
ANSI compliance, 1-1
ANSI dynamic SQL, 3-3

C
CODE option, 2-3
command line, precompiling from, 2-1
configuration files, 2-3

location, 2-3

D
DBMS option, 2-3
directory structures, 1-2
.dsp files, 3-6
Dynamic Link Libraries (DLLs), 2-2
dynamic SQL

method 1, 3-5
method 2, 3-5
method 3, 3-3, 3-5
method 4, 3-5

E
embedded SQL, 3-4

F
features

new, 0-ix
features,new, 0-ix

G
generic documentation references

default values for options, 2-3
demo directory, 1-2
header files, location of, 2-1
linking, 2-2
Oracle XA, 2-3

H
header files

location of, 2-1
oraca.h, 2-2
sql2oci.h, 2-2
sqlapr.h, 2-2
sqlca.h, 2-2
sqlcpr.h, 2-2

I
INCLUDE option, 2-3

L
large objects, 3-4
linking, 2-2
LOBs, 3-4

M
Microsoft Visual C++

integrating Pro*C/C++ into, A-1
msvcrt.lib runtime library, 2-2
multithreaded applications, 2-2, 3-4

N
new features, 0-ix

O
Object Type Translator (OTT), 3-7
objects

demonstration program, 3-4
oraca.h header file, 2-2
Oracle Net, 1-1
Oracle XA, 2-3
Oracle XA Library

additional documentation, 2-5
orasql9.lib, A-4
orasql9.lib library file, 2-2
OTT (Object Type Translator), 3-7



Index-2

P
PARSE option, 2-3
paths

checking, 3-7
checking the .pre files, 3-7

pcmake.bat, 3-6
pcscfg.cfg configuration file, 2-3
.pre files

checking the paths, 3-7
Pro*C/C++

command-line interface, 2-1
configuration files, 2-3
features, 1-1
integrating into Microsoft Visual C++, A-1
library file, A-3
linking, 2-2
overview, 1-1

project files, 3-6

R
reentrant functions, 2-2

S
sample programs

ANSIDYN1, 3-1, 3-3
ANSIDYN2, 3-1, 3-3
building, 3-6
COLDEMO1, 3-1, 3-3
CPPDEMO1, 3-2, 3-3
CPPDEMO2, 3-2, 3-3
CPPDEMO3, 3-2, 3-3
CV_DEMO, 3-2, 3-3
default drive, 3-7
described, 3-3 to 3-5
EMPCLASS, 3-2, 3-3
LOBDEMO1, 3-2, 3-4
location of, 1-2, 3-1
MLTTHRD1, 3-2, 3-4
NAVDEMO1, 3-2, 3-4
OBJDEMO1, 3-2, 3-4
ORACA, 3-2, 3-4
PLSSAM, 3-2, 3-4
SAMPLE, 3-2, 3-4
SAMPLE1, 3-2, 3-4
SAMPLE10, 3-2, 3-5
SAMPLE11, 3-2, 3-5
SAMPLE12, 3-2, 3-5
SAMPLE2, 3-2, 3-4
SAMPLE3, 3-2, 3-4
SAMPLE4, 3-2, 3-4
SAMPLE5, 3-2, 3-5
SAMPLE6, 3-2, 3-5
SAMPLE7, 3-2, 3-5
SAMPLE8, 3-2, 3-5
SAMPLE9, 3-2, 3-5
setting the path, 3-7
setting the path for the .pre files, 3-7
SQLVCP, 3-3, 3-5

WINSAM, 3-3, 3-5
sample tables

building, 3-6
SQL (Structured Query Language), 1-1
sql2oci.h header file, 2-2
sqlapr.h header file, 2-2
sqlca.h header file, 2-2
sqlcpr.h header file, 2-2
SQLStmtGetText() function, 3-5
sqlvcp() function, 3-5
Structured Query Language (SQL), 1-1

T
threads

defined, 2-2
transaction processing monitor

additional documentation, 2-5


	Contents
	List of Tables
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Pro*C/C++?
	Oracle Database10g Release 2 (10.2) New Features in Pro*C/C++
	Oracle9i Release 2 (9.2) New Features in Pro*C/C++
	Oracle9i Release 1 (9.0.1) New Features in Pro*C/C++
	Oracle8i Release 8.1.6 New Features in Pro*C/C++

	1 Introducing Pro*C/C++
	What Is Pro*C/C++?
	Features
	Restrictions
	Directory Structure
	Known Problems, Restrictions, and Workarounds


	2 Using Pro*C/C++
	Using Pro*C/C++ at the Command Prompt
	Header Files
	Library Files
	Multithreaded Applications
	Precompiler Options
	Configuration File
	CODE
	DBMS
	INCLUDE
	PARSE

	Using Pro*C/C++ with the Oracle XA Library
	Compiling and Linking a Pro*C/C++ Program with XA
	XA Dynamic Registration
	Adding an Environmental Variable for the Current Session
	Adding a Registry Variable for All Sessions

	XA and TP Monitor Information


	3 Sample Programs
	Sample Program Descriptions
	Building the Demonstration Tables
	Building the Sample Programs
	Using pcmake.bat

	Using Microsoft Visual C++
	Setting the Path for the Sample .pre Files

	A Integrating Pro*C/C++ into Microsoft Visual C++
	Integrating Pro*C/C++ within Microsoft Visual C++ Projects
	Specifying the Location of the Pro*C/C++ Executable
	Specifying the Location of the Pro*C/C++ Header Files

	Adding .pc Files to a Project
	Adding References to .c Files to a Project
	Adding the Pro*C/C++ Library to a Project
	Specifying Custom Build Options

	Adding Pro*C/C++ to the Tools Menu

	Index
	Numerics
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T


