
Oracle® OLAP
Developer's Guide to the OLAP API

10g Release 2 (10.2)

B14347-01

June 2005

Oracle OLAP Developer's Guide to the OLAP API, 10g Release 2 (10.2)

B14347-01

Copyright © 2000, 2005 Oracle. All rights reserved.

Primary Author: David McDermid

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

What’s New.. xiii

Introducing Custom Dimension Members.. xiii
Introducing the OLAP API Model.. xiii
Introducing DataProvider Language Specification and Other Properties xiv
New OLAP API Classes ... xv
New Methods of Existing Classes... xvi
New and Revised Example Programs... xvii

1 Introduction to the OLAP API

OLAP API Overview ... 1-1
Multidimensional Concepts and the OLAP API ... 1-1
What Type of Data Can an Application Access Through the OLAP API?................................ 1-2
What Can an Application Do with the OLAP API?.. 1-3
Context for OLAP API Development.. 1-3

Sample Schema for OLAP API Examples.. 1-3
Access to Data and Metadata Through the OLAP API ... 1-4

MDM Model in the OLAP API .. 1-5
Access to Data Through the OLAP API.. 1-5
Unique and Local Dimension Values.. 1-6
User Connection Requirements ... 1-7

OLAP API Client Software... 1-7
Requirements for Using the OLAP API Client Software ... 1-7

Tasks That an OLAP API Application Performs .. 1-7
Task 1: Connect to the Data Store .. 1-8
Task 2: Discover the Available Metadata ... 1-8
Task 3: Select and Calculate Data Through Queries ... 1-8
Task 4: Retrieve Query Results .. 1-9

iv

2 Understanding OLAP API Metadata

Overview of the OLAP API Metadata.. 2-1
Data Preparation .. 2-1
Metadata Preparation .. 2-2

OLAP Metadata Objects ... 2-2
Dimensions in the OLAP Metadata... 2-2
Measures in the OLAP Metadata... 2-3
Measure Folders in the OLAP Metadata .. 2-3

Overview of MDM Metadata Objects in the OLAP API.. 2-3
Mapping of OLAP Metadata Objects to MDM objects... 2-4
MdmModel Class ... 2-5
MdmSchema Class... 2-5
MdmSource Class... 2-6

MdmDimension Classes ... 2-6
MdmPrimaryDimension Classes ... 2-7
MdmSubDimension Classes... 2-7

MdmHierarchy.. 2-7
MdmLevelHierarchy .. 2-8
MdmValueHierarchy ... 2-8
MdmLevel .. 2-8

MdmDimensionedObject Classes .. 2-9
MdmMeasure.. 2-9
MdmAttribute Class ... 2-10

MdmMember Classes... 2-11
Data Type and Type of MDM Metadata Objects .. 2-13

Data Type of MDM Metadata Objects ... 2-14
Getting the Data Type of an MdmSource.. 2-15
Type of MDM Metadata Objects... 2-16
Getting the Type of an MdmSource ... 2-17

Creating Custom Metadata Objects ... 2-17

3 Connecting to a Data Store

Overview of the Connection Process.. 3-1
Connection Steps.. 3-1
Prerequisites for Connecting .. 3-1

Establishing a Connection .. 3-2
Step 1: Load the JDBC Driver ... 3-2
Step 2: Get a Connection from the DriverManager... 3-2
Step 3: Create a TransactionProvider .. 3-3
Step 4: Create a DataProvider .. 3-3

Getting an Existing Connection .. 3-3
Executing DML Commands Through the Connection ... 3-4
Closing a Connection... 3-4

v

4 Discovering the Available Metadata

Overview of the Procedure for Discovering Metadata ... 4-1
MDM Metadata .. 4-1
Purpose of Discovering the Metadata... 4-2
Steps in Discovering the Metadata .. 4-2
Discovering Metadata and Making Queries .. 4-2

Creating an MdmMetadataProvider... 4-2
Getting the Root MdmSchema .. 4-3

Function of the Root MdmSchema .. 4-3
Calling the getRootSchema Method.. 4-4

Getting the Contents of the Root MdmSchema ... 4-4
Getting the MdmDimension Objects in an MdmSchema .. 4-5
Getting the Subschemas in an MdmSchema.. 4-5
Getting the Contents of Subschemas... 4-5
Getting the MdmMeasureDimension and Its Contents ... 4-5

Getting the Characteristics of Metadata Objects ... 4-5
Getting the MdmDimension Objects for an MdmMeasure ... 4-5
Getting the Related Objects for an MdmPrimaryDimension .. 4-6

Getting the Source for a Metadata Object ... 4-6
Sample Code for Discovering Metadata .. 4-7

Code for the SampleMetadataDiscoverer10g Program.. 4-7
Output from the SampleMetadataDiscoverer10g Program.. 4-13

5 Working with Metadata Mapping Objects

Overview of the MTM Classes .. 5-1
SELECT Statements for MdmSource Objects... 5-2
Purpose of MTM Objects... 5-2
Measures, Cubes, and Hierarchies .. 5-3

Discovering the Columns Mapped To an MdmSource... 5-3
Example of Getting the Columns Mapped To an MdmLevelHierarchy 5-4
Example of Getting the Columns Mapped To an MdmLevel ... 5-4
Example of Getting the Columns Mapped To an MdmMeasure.. 5-5

Creating a Custom Measure ... 5-5
Understanding Solved and Unsolved Data... 5-6

Solved Versus Unsolved Cubes and Hierarchies .. 5-6
Aggregation Forms for Cubes .. 5-7

Aggregation for Unsolved Cubes ... 5-7
Aggregation for Solved Cubes .. 5-8

Solve Specifications for Unsolved Cubes ... 5-9

6 Understanding Source Objects

Overview of Source Objects... 6-1
Kinds of Source Objects.. 6-2

vi

Characteristics of Source Objects.. 6-3
Data Type of a Source.. 6-3
Type of a Source ... 6-4
Source Identification and SourceDefinition of a Source... 6-5

Inputs and Outputs of a Source... 6-6
Inputs of a Source... 6-6
Outputs of a Source.. 6-7
Matching a Source To an Input ... 6-10

Describing Parameterized Source Objects ... 6-15
Model Objects and Source Objects.. 6-17

Describing the Model for a Source ... 6-17
Creating a CustomModel - Example .. 6-19
Dependent Assignment Values - Example.. 6-20
A Custom Member That Specifies an Aggregated Value - Example....................................... 6-22

7 Making Queries Using Source Methods

Describing the Basic Source Methods.. 7-1
Using the Basic Methods .. 7-2

Using the alias Method.. 7-2
Using the distinct Method .. 7-3
Using the join Method ... 7-5
Using the position Method ... 7-7
Using the recursiveJoin Method .. 7-8
Using the value Method... 7-10

Using Other Source Methods.. 7-11
Using the extract Method... 7-11
Creating a Cube and Pivoting Edges ... 7-12
Drilling Up and Down in a Hierarchy ... 7-16
Sorting Hierarchically by Measure Values.. 7-17
Using NumberSource Methods To Compute the Share of Units Sold.................................... 7-19
Ranking Dimension Elements by Measure Value.. 7-20
Selecting Based on Time Series Operations... 7-22
Selecting a Set of Elements Using Parameterized Source Objects ... 7-24

8 Using a TransactionProvider

About Creating a Query in a Transaction .. 8-1
Types of Transaction Objects.. 8-2
Preparing and Committing a Transaction.. 8-2
About Transaction and Template Objects .. 8-3
Beginning a Child Transaction... 8-3
About Rolling Back a Transaction ... 8-5
Getting and Setting the Current Transaction ... 8-7

Using TransactionProvider Objects .. 8-7

vii

9 Understanding Cursor Classes and Concepts

Overview of the OLAP API Cursor Objects ... 9-1
Creating a Cursor Using a CursorManagerSpecification... 9-2
Creating a Cursor Without a CursorManagerSpecification... 9-3
Sources For Which You Cannot Create a Cursor .. 9-3
Cursor Objects and Transaction Objects... 9-3

Cursor Classes ... 9-4
Structure of a Cursor ... 9-4
Specifying the Behavior of a Cursor.. 9-6

CursorManagerSpecification Class .. 9-6
CursorInfoSpecification Classes ... 9-7
CursorManager Classes... 9-8

Updating the CursorManagerSpecification for a CursorManager ... 9-9
Other Classes... 9-9

CursorInput Class ... 9-10
CursorManagerUpdateListener Class.. 9-10
CursorManagerUpdateEvent Class.. 9-10

About Cursor Positions and Extent.. 9-11
Positions of a ValueCursor .. 9-11
Positions of a CompoundCursor .. 9-12
About the Parent Starting and Ending Positions in a Cursor... 9-15
What is the Extent of a Cursor?... 9-17

About Fetch Sizes .. 9-18

10 Retrieving Query Results

Retrieving the Results of a Query .. 10-1
Getting Values from a Cursor ... 10-2

Navigating a CompoundCursor for Different Displays of Data ... 10-7
Specifying the Behavior of a Cursor.. 10-14
Calculating Extent and Starting and Ending Positions of a Value .. 10-15
Specifying a Fetch Size... 10-18

11 Creating Dynamic Queries

About Template Objects .. 11-1
About Creating a Dynamic Source ... 11-1
About Translating User Interface Elements into OLAP API Objects 11-2

Overview of Template and Related Classes... 11-2
What Is the Relationship Between the Classes That Produce a Dynamic Source?................ 11-3
Template Class... 11-3
MetadataState Interface.. 11-3
SourceGenerator Interface ... 11-3
DynamicDefinition Class ... 11-4

Designing and Implementing a Template.. 11-4
Implementing the Classes for a Template ... 11-5
Implementing an Application That Uses Templates ... 11-9

viii

A Setting Up the Development Environment

Overview ... A-1
Required Class Libraries.. A-1
Obtaining the Class Libraries ... A-1

B SingleSelectionTemplate Class

Code for the SingleSelectionTemplate Class ... B-1

Index

ix

List of Examples

2–1 Creating a Custom Member of a Dimension ... 2-13
2–2 Getting the Data Type of an MdmSource... 2-16
2–3 Getting the Type of an MdmSource .. 2-17
2–4 Creating a Custom Member of the MdmMeasureDimension... 2-18
3–1 Loading the JDBC Driver for a Connection .. 3-2
3–2 Getting a JDBC OracleConnection.. 3-2
3–3 Creating a TransactionProvider.. 3-3
3–4 Creating a DataProvider .. 3-3
3–5 Getting an Existing Connection .. 3-3
3–6 Executing DML Commands .. 3-4
3–7 Closing a Connection.. 3-4
4–1 Creating an MdmMetadataProvider.. 4-3
4–2 Getting the Root MdmSchema.. 4-4
4–3 Getting MdmDimension Objects .. 4-5
4–4 Getting Subschemas.. 4-5
4–5 Getting the MdmMeasureDimension and Its Contents .. 4-5
4–6 Getting the Dimensions of an MdmMeasure.. 4-6
4–7 Getting the MdmHierarchy Components of an MdmPrimaryDimenison......................... 4-6
4–8 Getting a Primary Source for a Metadata Object.. 4-7
4–9 Discovering the OLAP Catalog Metadata ... 4-7
5–1 Getting the Columns for an MtmLevelHierarchyMap.. 5-4
5–2 Getting the Column Mapped To an MdmLevel... 5-4
5–3 Getting the Columns For an MdmMeasure .. 5-5
5–4 Creating a Custom Measure.. 5-6
6–1 Getting the Data Type of a Source.. 6-4
6–2 Using the isSubtypeOf Method... 6-5
6–3 Using the join Method To Produce a Source Without an Output 6-8
6–4 Using the join Method To Produce a Source With an Output ... 6-8
6–5 Using the join Method To Match Source Objects To Inputs ... 6-9
6–6 Using Shortcuts .. 6-10
6–7 Matching the Base Source to an Input of the Joined Source .. 6-11
6–8 Matching an Input of the Base Source to an Output of the Joined Source 6-12
6–9 Matching the Inputs of a Measure and Producing Outputs.. 6-14
6–10 Using a Parameterized Source With a Measure Dimension.. 6-16
6–11 Implementing the extract method as a CustomModel ... 6-19
6–12 Creating an Assignment That Depends on Another Assignment 6-21
6–13 Creating a Custom Member That Assigns an Aggregated Value..................................... 6-22
7–1 Controlling Input-to-Source Matching With the alias Method.. 7-3
7–2 Using the distinct Method ... 7-4
7–3 Using COMPARISON_RULE_REMOVE .. 7-5
7–4 Using COMPARISON_RULE_DESCENDING .. 7-6
7–5 Selecting the First and Last Time Elements .. 7-7
7–6 Sorting Products Hierarchically By Color ... 7-9
7–7 Selecting a Subset of the Elements of a Source .. 7-10
7–8 Using the extract Method ... 7-12
7–9 Creating a Cube and Pivoting Its Edges... 7-13
7–10 Drilling in a Hierarchy .. 7-16
7–11 Hierarchical Sorting by Measure Value.. 7-18
7–12 Getting the Share of Units Sold.. 7-20
7–13 Ranking Products by Units Sold.. 7-21
7–14 Using the Lag Method... 7-22
7–15 Using the movingTotal Method... 7-23
7–16 Selecting a Range With NumberParameter Objects ... 7-24

x

8–1 Rolling Back a Transaction .. 8-5
8–2 Using Child Transaction Objects .. 8-8
9–1 Creating the querySource Query .. 9-4
9–2 Setting the CompoundCursor Position and Getting the Current Values........................ 9-13
9–3 Positions in an Asymmetric Query ... 9-14
10–1 Creating a Cursor... 10-2
10–2 Getting a Single Value from a ValueCursor... 10-3
10–3 Getting All of the Values from a ValueCursor .. 10-4
10–4 Getting ValueCursor Objects from a CompoundCursor ... 10-4
10–5 Getting Values from a CompoundCursor with Nested Outputs 10-5
10–6 Navigating for a Table View .. 10-7
10–7 Navigating for a Crosstab View without Pages .. 10-9
10–8 Navigating for a Crosstab View with Pages .. 10-11
10–9 Getting CursorSpecification Objects from a CursorManagerSpecification................... 10-14
10–10 Specifying the Calculation of the Extent of a Cursor.. 10-15
10–11 Specifying the Calculation of Starting and Ending Positions in a Parent 10-16
10–12 Calculating the Span of the Positions in the Parent of a Value 10-16
10–13 Specifying a Fetch Size .. 10-18
11–1 Implementing a Template... 11-5
11–2 Implementing a MetadataState .. 11-8
11–3 Implementing a SourceGenerator ... 11-8
11–4 Getting the Source Produced by the Template.. 11-10

xi

Preface

Oracle OLAP Developer's Guide to the OLAP API introduces Java programmers to the
Oracle OLAP API, which is the Java application programming interface for Oracle
OLAP. Through Oracle OLAP, the OLAP API provides access to data stored in an
Oracle database. The OLAP API capabilities for querying, manipulating, and
presenting data are particularly suited to applications that perform online analytical
processing (OLAP) operations.

The preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle OLAP Developer's Guide to the OLAP API is intended for Java programmers who
are responsible for creating applications that perform analysis using Oracle OLAP. To
use this manual, you should be familiar with Java, relational database management
systems, data warehousing, OLAP concepts, and Oracle OLAP.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:

■ Oracle OLAP Java API Reference

■ Oracle OLAP Application Developer's Guide

■ Oracle OLAP Analytic Workspace Java API Reference

■ Oracle OLAP Reference

■ Oracle OLAP DML Reference

■ Oracle Database JDBC Developer's Guide and Reference

■ Oracle Database Data Warehousing Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

What’s New

This preface describes the features of the Oracle OLAP API that are new in Oracle
OLAP 10g Release 2 (10.2) . This preface contains the following topics:

■ Introducing Custom Dimension Members

■ Introducing the OLAP API Model

■ Introducing DataProvider Language Specification and Other Properties

■ New OLAP API Classes

■ New Methods of Existing Classes

■ New and Revised Example Programs

Introducing Custom Dimension Members
The Oracle OLAP API now supports the creation of custom dimension members,
which are calculated virtual members that you can use in specifying a query. When
you create a custom dimension member, you provide a Source that Oracle OLAP
uses to calculate the value for a dimensioned object that is specified by the custom
member. When you specify a query that retrieves the value of a dimensioned object
that is specified by the custom member, Oracle OLAP calculates the value for the
custom member and assigns it as the value of the dimensioned object.

Custom dimension members are instances of the classes that implement the new
MdmMember interface. You can create a custom member for an
MdmStandardDimension, an MdmTimeDimension, or an MdmMeasureDimension.
For more information on custom dimension members and for examples of creating
them, see Chapter 2, "Understanding OLAP API Metadata".

Oracle OLAP uses an MdmModel to hold information for a custom dimension member.
An MdmModel implements the Model interface. When you create a custom dimension
member, Oracle OLAP automatically creates an Assignment object and adds it to the
MdmModel associated with the dimension. The Assignment object specifies the
dimension, the dimension member, and the Source that Oracle OLAP uses to
calculate the value to assign for the dimension member. For information about the
Model interface and the Assignment class, see "Introducing the OLAP API Model".

Introducing the OLAP API Model
A Source that has inputs is a dimensioned Source. With an OLAP API Model, you
can assign calculated values to a dimensioned Source. Using Model objects, you can
specify elements of the inputs and specify the calculation that produces the value to
assign to the dimensioned Source.

xiv

The MdmModel class and its subclasses implement the Model interface for MdmObject
objects. Those classes are in the oracle.olapi.metadata.mdm package.

The CustomModel class implements the interface for an object that you can explicitly
create and that is not necessarily associated with an MdmObject. In creating a
CustomModel, you specify its input Source objects.

A Model is closely related to a Source, so the Model interface, the associated
Assignment and Qualification classes, and the CustomModel class are in the
oracle.olapi.data.source package. A Qualification identifies an element of
a Source. For example, a Qualification might specify a member of a dimension.
An Assignment has one or more Qualification objects and a Source that Oracle
OLAP uses to calculate the value to assign. A Model can have from zero to many
Assignment objects.

When Oracle OLAP retrieves the values for a dimensioned Source, it evaluates the
Assignment objects of the Model associated with the Source. It assigns the results of
the calculations specified by the Assignment objects to the elements of the
dimensioned Source that are specified by the Qualification objects of the
Assignment objects.

Because the calculations specified by the Assignment objects of a Model can apply to
any Source that has the same inputs as the Model, the OLAP API requires a way to
represent the Source to which Oracle OLAP is currently applying the Model. The role
of representing the current dimensioned Source is taken by a placeholder Source,
which is a new type of Source.

The OLAP API has placeholder Source objects for the different data types. You get a
placeholder Source by first getting a FundamentalMetadataObject object for a
placeholder of a specific data type from your FundamentalMetadataProvider.
You then call the getSource method of the FundamentalMetadataObject.

For examples of using placeholder Source objects and a CustomModel, see "New
and Revised Example Programs". For more information on the Model classes, see
Chapter 6, "Understanding Source Objects".

Introducing DataProvider Language Specification and Other Properties
The ExpressDataProvider class now has constructors that take a
java.util.Locale object, a java.util.Properties object, or both. By passing a
Locale object to the constructor, you can create an ExpressDataProvider that can
provide string values in the language specified for an analytic workspace that
supports the language.

An ExpressDataProvider has certain default characteristics or properties, which
include the following.

■ It uses unique dimension hierarchy member values.

■ It recognizes both OLAP Catalog metadata and standard form analytic workspace
metadata.

■ For an analytic workspace, it issues an ALTER SESSION SET NLS_LANGUAGE
SQL command that sets the language of the database.

By passing a Properties object to the constructor, you can create an
ExpressDataProvider that has different properties. You can specify that the
ExpressDataProvider use local dimension member values. For information on
local and unique dimension member values, see "Unique and Local Dimension Values"
in Chapter 1, "Introduction to the OLAP API".

xv

You can also create an ExpressDataProvider that has an associated
MetadataProvider that recognizes only OLAP Catalog metadata, which is
generated by Oracle Enterprise Manager and by PL/SQL CWM2 package APIs, or
only standard form analytic workspace metadata, which is generated by Analytic
Workspace Manager and by the Oracle OLAP Analytic Workspace Java API, or only
the custom metadata objects you create by using classes in the
oracle.olapi.metadata.mdm and oracle.olapi.metadata.mtm packages.

If you want your application to control the language properties, then you can specify
that the ExpressDataProvider does not use the default language. For more
information on setting the properties of an ExpressDataProvider, see the
description of that class in the Oracle OLAP Java API Reference.

New OLAP API Classes
This section describes the new classes in the OLAP API.

New Classes in the oracle.olap.data.source Package
The following table lists the new classes in the oracle.olapi.data.source
package and provides brief descriptions of them.

For more information on these new classes, see Chapter 6, "Understanding Source
Objects".

New Classes in the oracle.olap.metadata.mdm Package
The following table lists the new classes in the oracle.olapi.metadata.mdm
package and provides brief descriptions of them.

Class Description

Model An interface for an object that contains Assignment
objects. This interface is implemented by the
MdmModel and CustomModel classes.

CustomModel A Model that an application can explicitly create.

Assignment A class that contains one or more Qualification
objects and a Source that Oracle OLAP uses to
calculate a value to assign.

Qualification An abstract class that represents an element of a
Source for an Assignment of a Model. A
Qualification identifies the element of an input
Source to which the Assignment applies.

LiteralQualification A concrete class that extends Qualification and
that represents a literal value that identifies an
element of an input Source, such as a member of a
dimension.

ModelSolutionDefinition A SourceDefinition that has information about
solving a CustomModel.

PlaceholderDefinition A SourceDefinition for a placeholder Source.

Class Description

MdmModel An abstract class that implements the Model
interface for MdmObject objects.

xvi

The MdmMeasure class now implements the MdmMember interface for members of an
MdmMeasureDimension.

For more information on these new classes, see Chapter 2, "Understanding OLAP API
Metadata".

New Methods of Existing Classes
The following classes in the oracle.olapi.data.source package have new
factory or accessor methods related to an OLAP API Model or to custom dimension
members.

■ ConstantListDefinition

■ DataProvider

■ FundamentalMetadataProvider

■ Source

■ SourceDefinition

The following classes in the oracle.olapi.metadata.mdm package have new
factory, accessor, or other methods related to an OLAP API Model or to custom
dimension members.

■ Mdm10_1_0_3_NamingConvention

■ Mdm10_1_0_3_ObjectVisitor

■ MdmCustomObjectFactory

■ MdmMeasure

■ MdmMeasureDimension

■ MdmPrimaryDimension

■ MdmSource

■ MdmStandardDimension

■ MdmTimeDimension

MdmDimensionCalculationModel An MdmModel of a specific data type for an
MdmPrimaryDimension.

MdmDimensionedObjectModel An abstract class that extends MdmModel for
dimensioned objects.

MdmAttributeModel An MdmDimensionedObjectModel for
MdmAttribute objects.

MdmMeasureModel An MdmDimensionedObjectModel for
MdmMeasure objects.

MdmMember An interface for a custom dimension member.

MdmStandardMember An implementation of MdmMember for an
MdmStandardDimension.

MdmTimeMember An implementation of MdmMember for an
MdmTimeDimension.

Class Description

xvii

The oracle.express.olapi.data.full.ExpressDataProvider class has new
constructor methods that accept java.util.Locale or java.util.Properties
objects or both. It also has new methods that accept a Properties object and that
create one or more CursorManager

New and Revised Example Programs
This release of the Oracle OLAP API includes new example programs that
demonstrate the use of Model objects, custom dimension members, and placeholder
Source objects. Some previously existing example programs have significant
revisions.

The example programs contain the complete code for the examples that appear in this
document. They are available from the Overview of the Oracle OLAP Java API
Reference.

New Example Programs
The new example programs and the examples for which they contain the complete
code are the following:

■ CreateCustomDimensionMember.java, Example 2–1, "Creating a Custom
Member of a Dimension".

■ CreateCustomMeasureDimensionMember.java, Example 2–4, "Creating a
Custom Member of the MdmMeasureDimension".

■ ImplementingExtractAsACustomModel.java, Example 6–11, "Implementing
the extract method as a CustomModel".

■ CreateDependentAssignment.java, Example 6–12, "Creating an Assignment
That Depends on Another Assignment".

■ CreateCustomMemberWithAggVal.java, Example 6–13, "Creating a Custom
Member That Assigns an Aggregated Value".

■ CreateColorAttribute.java, which is a class that creates a custom color
MdmAttribute that is used by the CreateCustomMemberWithAggVal.java
class.

Revised Example Programs
The example programs that have significant revisions are the following:

■ TransactionExamples.java, Example 8–1, "Rolling Back a Transaction" and
Example 8–2, "Using Child Transaction Objects".

■ TopBottomTest.java, Example 11–4, "Getting the Source Produced by the
Template".

■ SingleSelectionTemplate.java, Appendix B, "SingleSelectionTemplate
Class".

The complete code for the TopBottomTest.java and
SingleSelectionTemplate.java classes are in this document as well as being in
the Oracle OLAP Java API Reference.

xviii

Introduction to the OLAP API 1-1

1
Introduction to the OLAP API

This chapter introduces the Oracle OLAP API to application developers who plan to
use it in their Java applications.

This chapter includes the following topics:

■ OLAP API Overview

■ Sample Schema for OLAP API Examples

■ Access to Data and Metadata Through the OLAP API

■ OLAP API Client Software

■ Tasks That an OLAP API Application Performs

OLAP API Overview
The OLAP API is a Java application programming interface (API) through which an
application can access data for online analytical processing (OLAP). The Java classes
that implement the API are part of the Oracle OLAP component.

The purpose of the OLAP API is to facilitate the development of OLAP applications,
which allow users to dynamically select, aggregate, calculate, and perform other
analytical tasks on data through a graphical user interface. Typically, the user interface
of an OLAP application displays data in multidimensional formats, such as graphs
and crosstabs.

In general, OLAP applications are developed within the context of business
intelligence and data warehousing systems, and the features of the OLAP API are
optimized for this type of application. With the OLAP API, a Java application can
access, manipulate, and display data in multidimensional terms. The OLAP API also
makes it possible to define a query in a step-by-step process that allows for undoing
individual query steps without reproducing the entire query. Such multistep queries
are easy to modify and refine dynamically.

Multidimensional Concepts and the OLAP API
Data warehousing and OLAP applications are based on a multidimensional view of
data, and they work with queries that represent selections of data. The following
definitions introduce concepts that reflect the multidimensional view and are basic to
data warehousing, OLAP, and the OLAP API:

■ Dimension. A structure that categorizes data. Commonly-used dimensions are
customers, products, and times. Typically, the members of a dimension are
organized one or more hierarchies that have one or more levels. Sets of members
of different dimensions identify measure values. By specifying dimension

OLAP API Overview

1-2 Oracle OLAP Developer's Guide to the OLAP API

members, measures, and calculations to perform on the data, end users formulate
business questions and get answers to their queries. For example, using a time
dimension that categorizes data by month, a product dimension that categorizes
data by item, and a measure that contains data for the unit cost of product items
by month, an application can formulate the query, "Did we sell more widgets in
January or June?"

■ Measure. Data, usually numeric and additive, that can be examined and analyzed.
Typically, a measure is categorized by one or more dimensions, and it is described
as "dimensioned by" them.

■ Hierarchy. A logical structure that uses ordered levels or values as a means of
organizing dimension members in parent-child relationships. Typically, end users
can expand or collapse the hierarchy by drilling down or up on its levels.

■ Level. A position in a level-based hierarchy. For example, a time dimension might
have a hierarchy that has members that represents data at the day, month, quarter,
and year levels.

■ Attribute. A descriptive characteristic of the members of a dimension that an end
user can specify to select data. For example, end users might choose products
using a color attribute.

■ Query. A specification for a particular set of data, and for aggregations,
calculations, or other operations to perform using the data. Any such operations
on the data are an intrinsic part of the query. The data and the operations on it
define the result set of the query.

Two additional data warehouse and OLAP concepts, cube and edge, are not intrinsic
to the OLAP API, but are often incorporated into the design of applications that use
the OLAP API.

■ Cube. A logical organization of multidimensional data. Typically, the edges of a
cube contain dimension member values, and the body of a cube contains measure
values. For example, data on the quantity of product units sold can be organized
into a cube whose edges contain values for members from the time, product,
customer, and channel dimensions and whose body contains values from the units
sold measure.

■ Edge. One side of a cube. Each edge contains values of members from one or more
dimensions. Although there is no limit to the number of edges on a cube, data is
often organized for display purposes along three edges, which are referred to as
the row edge, column edge, and page edge.

For more information about all of these concepts, see the Oracle Database Data
Warehousing Guide.

What Type of Data Can an Application Access Through the OLAP API?
The OLAP API, as part of Oracle OLAP, makes it possible for Java applications
(including applets) to access data that resides in an Oracle data warehouse. A data
warehouse is a relational database that is designed for query and analysis, rather than
transaction processing. Warehouse data often conforms to a star schema, which
represents a multidimensional data model. The star schema consists of one or more
fact tables and one or more dimension tables that are related through foreign keys.
Typically, a data warehouse is created from a transaction processing database by an
extraction transformation transport (ETT) tool, such as Oracle Warehouse Builder.

In order for the OLAP API to access the data in a given data warehouse, a database
administrator must first ensure that the data warehouse is configured according to an

Sample Schema for OLAP API Examples

Introduction to the OLAP API 1-3

organization that is supported by Oracle OLAP. The star schema is one such
organization, but not the only one. Once the data is organized in the warehouse, the
database administrator must map the data to OLAP metadata objects and add them to
the OLAP Catalog or create a dynamic analytic workspace based on the data. Finally,
with the metadata in place, an application can access both the data and the metadata
through the OLAP API.

See the Oracle OLAP Application Developer's Guide for information about supported
data warehouse configurations and about creating OLAP Catalog metadata or a
dynamic analytic workspace.

The collection of warehouse data for which a database administrator has mapped
OLAP Catalog elements or created a dynamic analytic workspace is the data store to
which the OLAP API gives access. Of course, each user who accesses data through the
OLAP API might have security restrictions that limit the scope of the data that he or
she can access within the data store.

With the factory classes in the oracle.olapi.metadata.mdm and
oracle.olapi.metadata.mtm packages, an application developer can create
transient custom metadata objects. For more information, see Chapter 2,
"Understanding OLAP API Metadata" and Chapter 5, "Working with Metadata
Mapping Objects".

What Can an Application Do with the OLAP API?
Through the OLAP API, an application can do the following:

■ Establish a connection to a data store.

■ Explore the metadata to discover what data is available for viewing or analysis.

■ Create queries that specify and manipulate the data according to the needs of
application users (for example, selecting, aggregating, and calculating data).

■ Retrieve query results that are structured for display in multidimensional format.

■ Modify existing queries, rather than totally redefine them, as application users
refine their analyses.

Context for OLAP API Development
The OLAP API is a Java API, so it has all of the advantages of the Java environment. It
is platform independent, and it provides the benefits of an object-oriented API, such as
abstraction, encapsulation, polymorphism, and inheritance. These strengths are built
into the OLAP API, and because the client application is written in Java, its code can
also take advantage of them.

In order to work with the OLAP API, application developers should have familiarity
with Java, object-oriented programming, relational databases, data warehousing, and
multidimensional OLAP concepts.

Sample Schema for OLAP API Examples
This documentation has examples of OLAP API code that use a relational schema,
named the Global Schema for Documentation with OLAP Catalog Metadata. For the
complete code of the examples in this documentation and for information on how to
download the SQL scripts that create the schema, see the Overview of the Oracle OLAP
Java API Reference.

Access to Data and Metadata Through the OLAP API

1-4 Oracle OLAP Developer's Guide to the OLAP API

The OLAP Catalog for the Global Schema for Documentation with OLAP Catalog
Metadata has the following measures:

■ UNITS, which has the quantities of product units sold.

■ UNIT_COST, which has the cost of a unit.

■ UNIT_PRICE, which has the price of a unit.

The data in the measures is identified by detailed (leaf-level) data or aggregate
(node-level) data from dimensions. The UNITS measure is dimensioned by the
following dimensions:

■ PRODUCT, which has a hierarchy of product values named PRODUCT_ROLLUP. The
leaf level of the hierarchy has product item identification numbers and the higher
levels have product family, class, and total products identifiers.

■ CUSTOMER, which has two hierarchies of customer members, named SHIPMENTS_
ROLLUP and MARKET_ROLLUP. The lowest level of each hierarchy has customer
identification numbers and higher levels have warehouse, region, and total
customers, and account, market segment, and total market identifiers, respectively.

■ TIME, which has a hierarchy of calendar year time period identifiers.

■ CHANNEL, which has a hierarchy of sales channel identifiers.

The UNIT_COST and UNIT_PRICE measures are dimensioned by the following two
dimensions:

■ PRODUCT

■ TIME

For an example of a program that discovers the OLAP Catalog metadata for the
schema, see Chapter 4, "Discovering the Available Metadata".

Access to Data and Metadata Through the OLAP API
Oracle OLAP metadata objects describe the data that is available to the OLAP API
through a connection to the database. The metadata objects record three things:

■ The existence of sets of data. For example, a measure of unit price figures,
dimensions of product and time member values, and attributes that contain
information about the members of the dimensions all exist as named entities in the
data store.

■ The structure of the sets of data. For example, the Unit Price measure is
dimensioned by products and times, an attribute is dimensioned by the dimension
for which it records information, and the members of the dimensions are
organized into hierarchical levels.

■ The characteristics of the data. For example, the Unit Price measure contains
numeric values that are specified by the dimension member values, the dimension
members have String values that identify the product or time values and the
hierarchical levels, and the dimensions have attributes that provide additional
information, such as a descriptive name for each dimension member that can be
used in reports.

In contrast, the fact that the price of product 13 in month 55 was 2426.07 dollars is
data, not metadata.

These examples distinguish between the metadata and the data for the measure of unit
prices. The OLAP API makes a similar distinction between the metadata and the data

Access to Data and Metadata Through the OLAP API

Introduction to the OLAP API 1-5

for dimensions. For example, the fact that a product dimension exists and that its
members have text values is metadata. In contrast, the fact that the value of one of its
members is 13 is data.

MDM Model in the OLAP API
The OLAP API multidimensional metadata (MDM) model describes data in
multidimensional terms, which are familiar to OLAP and data warehousing
audiences. For example, it includes objects for measures, dimensions, hierarchies, and
attributes.

The following are some of the Java classes that are supplied by the OLAP API in its
implementation of the MDM model:

■ MdmSchema

■ MdmMetadataProvider

■ MdmMeasure

■ MdmDimension

■ MdmHierarchy

■ MdmLevel

■ MdmAttribute

An MdmSchema is a container for MdmMeasure, MdmDimension, and other
MdmSchema objects. An MdmSchema corresponds to a measure folder in the OLAP
management feature of Oracle Enterprise Manager. Note that an MdmSchema does not
necessarily correspond to a relational schema.

An MdmMetadataProvider gives an application access to the MDM metadata objects
that represent the OLAP metadata objects. To obtain the MDM metadata objects, an
application uses the getRootSchema method of an MdmMetadataProvider. This
method returns the top-level MdmSchema, which contains all of the MdmDimension
objects that are accessible through this particular MdmMetadataProvider. The
MdmDimension objects might be organized in a hierarchical tree, with subschemas
nested under the top-level schema. Using the getMeasureDimension,
getSubSchemas, and getDimensions methods of the top-level MdmSchema, and
the getSubSchemas, getMeasures, and getDimensions methods of all of the
nested MdmSchema objects, an application navigates through the metadata and
discovers what data is available. In addition, the application can use methods to obtain
the related MdmMeasure, MdmHierarchy, MdmLevel, and MdmAttribute objects.

Chapter 2, "Understanding OLAP API Metadata", provides detailed information about
the OLAP API metadata.

Access to Data Through the OLAP API
An MdmMeasure or MdmDimension represents data in the data store. For example, an
MdmMeasure object named units might represent a set of elements whose numeric
values are dollar amounts for units sold, and an MdmDimension called prodDim
might represent a set of members whose text values are product identifiers. However,
an application cannot create a query on the data using an MdmMeasure or
MdmDimension. As metadata, MdmMeasure and MdmDimension objects provide
descriptive information about data, but they do not provide the ability to construct a
query that specifies the data. To select, calculate, and otherwise manipulate data for
analysis, an application must create a query.

Access to Data and Metadata Through the OLAP API

1-6 Oracle OLAP Developer's Guide to the OLAP API

To create a query on the data for an MdmMeasure or MdmDimension, an application
must first get the Source object for the MdmMeasure or MdmDimension by calling
getSource method of the metadata object. This method returns a Source object that
the application can use to specify a query. The query defines a result set, and, in this
case, the result set is the data for the MdmMeasure or MdmDimension.

In addition to representing the data for metadata objects, Source objects can represent
the data for any query that an application creates. For example, a Source might
specify a query for a selection of MdmDimension values (such as January, February,
and March of the year 2002) or a calculation of the values of one MdmMeasure minus
those of another (such as unitPrice minus unitCost). An application can use the
powerful methods of the Source class and its subclasses to combine data in any way
that the user requires.

To retrieve the data specified by a Source, an application creates a Cursor for that
Source. The application then uses this Cursor to request and retrieve the data from
the data store. When an application makes a request for data, it can specify the typical
amount of data that it requires at a given time (for example, enough to fill a 40-cell
table on the screen). Oracle OLAP then handles the issues related to efficient retrieval.
The application does not need to manage the timing, sizing, and caching of the data
blocks that it retrieves through the OLAP API.

Because the primary focus of most OLAP applications is making queries against the
data store, a significant proportion of their data manipulation code works with the
following classes, each of which has methods for selecting, calculating, and otherwise
manipulating data.

■ Source

■ BooleanSource

■ DateSource

■ NumberSource

■ StringSource

One of the useful characteristic of Source objects is that they make no distinction
between attributes, dimensions, and measures. The Source objects for all of them
behave in the same way.

Unique and Local Dimension Values
The members of an Oracle OLAP dimension are usually organized into one or more
hierarchies. Some hierarchies have parent-child relationships based on levels and some
have those relationships based on values. In the OLAP API a dimension always has at
least one hierarchy dimension object and that hierarchy object has at least one level
object. Even a nonhierarchical dimension is represented by a hierarchy dimension
object with one level object.

The OLAP API uses a three-part format to specify the hierarchy, the level, and the
value of a dimension member, and thus identify a unique value in the hierarchy. The
first part of a unique value is the name of the hierarchy object, the second part is the
name of the level object, and the third part is the value of the member in the level. The
parts of the unique value are separated by a value separation string, which by default
is double colons (::). The following is an example of a unique member value in the
YEAR level of the CALENDAR hierarchy of the TIME dimension:

CALENDAR::YEAR::2

Tasks That an OLAP API Application Performs

Introduction to the OLAP API 1-7

The third part of a unique value is the local value. The local value in the preceding
example identifies the year 1999.

The OLAP API has classes and methods that you can use to get the local values of
dimension members. The MdmPrimaryDimension class has a method for getting an
MdmAttribute that records the local values for the members of the hierarchies that
are components of the MdmPrimaryDimension, and the
MdmDimensionMemberInfo class has methods for getting the local or unique values
for a member of a hierarchy or a level.

User Connection Requirements
In addition to ensuring that data and metadata have been prepared appropriately, an
application developer must ensure that application users can make a connection to the
data store through the OLAP API and that users have database privileges that give
them access to the data. For information about setting up for such connections, see the
Oracle OLAP Application Developer's Guide.

OLAP API Client Software
The OLAP API client software is a set of Java packages containing classes that
implement the programming interface to Oracle OLAP. An application creates objects
of these classes and calls their methods to discover metadata, specify queries, and
retrieve data.

When a Java application calls methods of objects of OLAP API Java classes, it uses the
OLAP API client software to communicate with Oracle OLAP, which resides within an
Oracle database instance. The communication between the OLAP API client software
and Oracle OLAP is provided through Java Database Connectivity (JDBC), which is a
standard Java interface for connecting to relational databases. For more information
about JDBC, see the Oracle Database JDBC Developer's Guide and Reference.

Requirements for Using the OLAP API Client Software
To use the OLAP API classes as you develop your application, import them into your
Java code. When you deliver your application to users, include the OLAP API classes
with the application. You must also ensure that users can access JDBC.

In order to develop an OLAP API application, you must have the Java Development
Kit (JDK), such as one in Oracle JDeveloper or one from Sun Microsystems. Users must
have a Java Runtime Environment (JRE) whose version number is compatible with the
JDK that you used for development.

For information about Java version requirements and about setting up the OLAP API
client software, see Appendix A, "Setting Up the Development Environment". For
detailed information about the OLAP API classes and methods, see the Oracle OLAP
Java API Reference and subsequent chapters of this guide.

Tasks That an OLAP API Application Performs
An application that uses the OLAP API typically performs the following tasks:

1. Connects to the data store

2. Discovers the available metadata

3. Specifies queries that select and manipulate data

4. Retrieves query results

Tasks That an OLAP API Application Performs

1-8 Oracle OLAP Developer's Guide to the OLAP API

The rest of this topic briefly describes these tasks, and the rest of this guide provides
detailed information.

Task 1: Connect to the Data Store
An application connects to the data store by identifying some information about the
target Oracle database and specifying this information in a JDBC connection method.

For more information about connecting, see Chapter 3, "Connecting to a Data Store".

Task 2: Discover the Available Metadata
Having established a connection, the application creates an MdmMetadataProvider.
This object gives access to all of the metadata objects in the data store.

To discover the available metadata, an application uses the getRootSchema method
of the MdmMetdataProvider to obtain the MdmSchema object that represents the
top-level measure folder for all of the metadata objects to which the
MdmMetdataProvider provides access. The application then gets the dimensions,
including the measure dimension, and the subfolders that are under the root.

Once the application has all of the dimensions, it can interrogate them to get their
attributes, hierarchies, levels, and other characteristics, and the measures. Having
determined the metadata objects that it has to work with, the application can present
relevant lists of objects to the user for data selection and manipulation.

For a description of the metadata objects, see Chapter 2, "Understanding OLAP API
Metadata". For information about how an application can discover the available
metadata, see Chapter 4, "Discovering the Available Metadata".

Task 3: Select and Calculate Data Through Queries
The heart of any OLAP application lies in the construction of queries against the data
store. The application user interface provides ways for the user to select data and to
specify what should be done with it. Then, the data manipulation code translates these
instructions into queries against the data store. The queries can be as simple as a
selection of dimension members, or they can be complex, including several
aggregations and calculations on measure values specified by selections of dimension
members.

The OLAP API object that specifies a query is a Source. Therefore, a significant
portion of any OLAP API application is devoted to dealing with Source objects.

From an MdmSchema, you get MdmSource objects, such as an MdmMeasure or an
MdmPrimaryDimension. You then get a Source object from the MdmSource. With
the methods of a Source object, you can produce other Source objects that specify a
selection of the elements of the Source, or that specify calculations or other
operations to perform on the values of a Source.

If you are implementing a simple user interface, then you might use only the methods
of the Source classes to select and manipulate the data that users specify in the
interface. However, if you want to offer your users multistep selection procedures and
the ability to modify queries or undo individual steps in their selections, you should
design and implement Template classes. Within the code for each Template, you
use the methods of the Source classes, but the Template classes themselves allow
you to modify and refine even the most complex query. In addition, you can minimize
your work by writing general-purpose Template classes and reusing them in various
parts of your application.

Tasks That an OLAP API Application Performs

Introduction to the OLAP API 1-9

For information about working with Source objects, see Chapter 6, "Understanding
Source Objects". For information about working with Template objects, see
Chapter 11, "Creating Dynamic Queries".

Task 4: Retrieve Query Results
When users of an OLAP application are selecting, calculating, combining, and
generally manipulating data, they also want to see the results of their work. This
means that the application must retrieve the result sets of queries from the data store
and display the data in multidimensional form. To retrieve a result set for a query
through the OLAP API, the application creates a Cursor for the Source that specifies
the query.

An application can also get the SQL that Oracle OLAP generates for a query. To do so,
the application creates a SQLCursorManager for the Source instead of creating a
Cursor. The generateSQL method of the SQLCursorManager returns the SQL
specified by the Source. The application can then retrieve the data by methods
outside of the OLAP API. The ExpressSQLCursorManager class implements the
SQLCursorManager interface.

Because the OLAP API was designed to deal with a multidimensional view of data, a
Source can have a multidimensional result set. For example, a Source can represent
an MdmMeasure that is structured by four MdmPrimaryDimension objects. Each
MdmPrimaryDimension is represented by a Source. An application can create a
query by joining the Source objects for the dimensions to the Source for the
measure. The query has the measure data as its values and it has the Source objects
for the dimensions as its outputs.

A Cursor for the query Source has the same structure as the Source; that is, the
values of the Cursor are the measure data and the Cursor has four outputs. The
values of the outputs are those of the Source objects for the dimensions.

To retrieve all of the items of data through a Cursor, the application can loop through
the multidimensional Cursor structure. This design is well adapted to the
requirements of standard user interface objects for painting the computer screen. It is
especially well adapted to the display of data in multidimensional format.

For more information about using Source objects to specify a query, see Chapter 6,
"Understanding Source Objects". For more information about using Cursor objects to
retrieve data, see Chapter 9, "Understanding Cursor Classes and Concepts". For more
information about the SQLCursorManager class, see the Oracle OLAP Java API
Reference.

Tasks That an OLAP API Application Performs

1-10 Oracle OLAP Developer's Guide to the OLAP API

Understanding OLAP API Metadata 2-1

2
Understanding OLAP API Metadata

This chapter describes the metadata objects that the OLAP API provides, and explains
how these objects relate to the permanent OLAP metadata objects that a database
administrator specifies. The chapter also describes how an application can create
transient custom metadata objects.

This chapter includes the following topics:

■ Overview of the OLAP API Metadata

■ OLAP Metadata Objects

■ Overview of MDM Metadata Objects in the OLAP API

■ MdmDimension Classes

■ MdmDimensionedObject Classes

■ MdmMember Classes

■ Data Type and Type of MDM Metadata Objects

■ Creating Custom Metadata Objects

For the complete code of the examples in this chapter, see the example programs
available from the Overview of the Oracle OLAP Java API Reference.

Overview of the OLAP API Metadata
The OLAP API provides a Java application with access to a multidimensional view of
data in an Oracle database. The OLAP API design includes objects that are consistent
with that view and are familiar to data warehousing and OLAP developers. For
example, it has objects for measures, dimensions, hierarchies, levels, and attributes.
The OLAP API design incorporates an object-oriented model called MDM
(multidimensional metadata).

To make the data in an Oracle database accessible to an OLAP API application as
permanent MDM objects, a database administrator must map the relational data to
OLAP metadata as described in Oracle OLAP Application Developer's Guide. An
application can create transient custom metadata objects.

Data Preparation
A database administrator starts with a data warehouse that is organized according to
certain specifications. For example, it might conform to a star schema. The
requirements are described in Oracle OLAP Application Developer's Guide.

OLAP Metadata Objects

2-2 Oracle OLAP Developer's Guide to the OLAP API

Metadata Preparation
The administrator creates OLAP metadata objects that Oracle OLAP maps to MDM
metadata objects in the OLAP API. An application developer can discover the
mapping of the MDM metadata objects to the relational tables and views, or create
some custom MDM metadata objects, by using MTM (metadata mapping) objects. See
Chapter 5, "Working with Metadata Mapping Objects", for more information on MTM
objects.

The topic "OLAP Metadata Objects" briefly describes the OLAP metadata objects that a
database administrator prepares for use with Oracle OLAP.

OLAP Metadata Objects
A database administrator creates Oracle OLAP metadata objects and can create one or
more measure folders that contain one or more measures. The measures have
dimensions and the dimensions have hierarchies, levels, and attributes. Each of these
OLAP metadata objects maps directly to an MDM object in the OLAP API. For
detailed information about creating OLAP metadata or about creating an analytic
workspace, see Oracle OLAP Application Developer's Guide.

An application developer can create transient custom metadata objects that are based
on the permanent metadata objects. The transient objects exist only in the context of an
MdmMetadataProvider during a connection to the database.

Note that the OLAP metadata includes a cube object, which does not map directly to
any MDM object. Database administrators create OLAP metadata cubes to specify the
dimensions of each measure. Once the dimensions are specified, they are firmly
associated with their measures in the metadata, so this type of cube object is not
needed in the MDM model.

The rest of this topic briefly describes the OLAP metadata objects that map directly to
MDM objects in the OLAP API.

Dimensions in the OLAP Metadata
The following are some of the characteristics that a database administrator can specify
for dimensions:

■ General characteristics, such as the name of the dimension and the database
schema from which its elements are drawn. The elements of a dimension are also
known as the members of the dimension.

■ Hierarchies, which organize the members of the dimension into parent-child
relationships. A hierarchy can be level-based or value-based. In a level-based
hierarchy, the parent and child members are in different levels. A level-based
hierarchy can have up to 31 levels. In a value-based hierarchy, the database
administrator has defined the parent and child relationships by values rather than
levels. A simple, nonhierarchical list of members is represented by a hierarchy that
has only one level and that has no parent-child relationships defined for the
members.

■ Levels, which organize the members of a hierarchy into groups defined by the
parent-child relationships for the hierarchy.

■ Attributes, which record characteristics of the members for the dimension. For
example, attributes record the level of each member of a level-based hierarchy and
the depth of that level in the hierarchy.

Overview of MDM Metadata Objects in the OLAP API

Understanding OLAP API Metadata 2-3

Typically, a database administrator specifies one or more columns in a database table
to serve as the basis for each OLAP level, hierarchy, and attribute.

A database administrator creates cubes after creating dimensions. An OLAP metadata
cube identifies a set of measures that are dimensioned by the same set of dimensions.

Measures in the OLAP Metadata
A database administrator specifies that a measure belongs to an OLAP metadata cube,
which also specifies the set of dimensions for the measure. This is essential
information for the OLAP API, where the dimensionality of a measure is one of its
most important features.

To identify the data for a measure, the database administrator typically specifies a
column in a fact table where the data for the measure resides. As an alternative, the
database administrator can specify a calculation or transformation that produces the
data.

Measure Folders in the OLAP Metadata
Once a database administrator has created measures (after first creating dimensions
and cubes), the next step is to create one or more groups of measures called measure
folders. Typically, the measures in a given folder are related by subject matter. That is,
they all pertain to the same business area. For example, there might be separate folders
for financials, sales, and human resources data.

The measures in a measure folder can belong to different cubes and they can be from
more than one relational schema. Measure folders can be nested, which means that a
measure folder can have subfolders that have their own measures, and even their own
subfolders. Thus, a database administrator can arrange measures in a hierarchy of
folders, and an OLAP API MdmMetadataProvider can give access to all of the
measure folders and their subfolders.

Overview of MDM Metadata Objects in the OLAP API
The OLAP API implementation of the MDM model is represented by classes in the
oracle.olapi.metadata.mdm package. Most of the classes in this package
implement metadata objects, such as dimensions and measures. Figure 2–1 introduces
the subclasses of the MdmObject class.

Overview of MDM Metadata Objects in the OLAP API

2-4 Oracle OLAP Developer's Guide to the OLAP API

Figure 2–1 MdmObject Class and Its Subclasses

Mapping of OLAP Metadata Objects to MDM objects
An application gains access to metadata objects by creating an OLAP API
MdmMetadataProvider and using it to discover the available metadata objects in the
data store.

The Oracle OLAP metadata objects that a database administrator specifies map
directly to MDM metadata objects that are accessible through the
MdmMetadataProvider. The following table presents a typical mapping.

Some MDM metadata objects do not relate directly to OLAP metadata objects. For
example, an MdmCustomObjectFactory object creates custom metadata objects, an
MdmMember object represents a custom member of a dimension, or an MdmMeasure,

Oracle OLAP Metadata Objects MDM Metadata Objects

Dimension MdmPrimaryDimension

Hierarchy MdmLevelHierarchy or
MdmValueHierarchy

Level MdmLevel

Measure MdmMeasure

Attribute MdmAttribute

Measure folder MdmSchema

MdmDimensionedObjectMdmDimension

MdmSubDimensionMdmPrimaryDimension

MdmLevel

MdmDimensionCalculationModel

MdmDimensionedObjectModel

MdmObject

MdmSchema MdmSourceMdmModel

MdmMeasureMdmAttribute

MdmMeasureModel

MdmAttributeModel

MdmHierarchy

MdmLevelHierarchy MdmValueHierarchy

MdmMeasureDimension MdmTimeDimension

MdmStandardDimension

Overview of MDM Metadata Objects in the OLAP API

Understanding OLAP API Metadata 2-5

and an MdmModel object assigns values to an MdmDimensionedObject for one or
more sets of members of its dimensions.

This chapter describes the MDM metadata objects. For information about how an
application discovers the available MDM metadata objects in the data store, see
Chapter 4, "Discovering the Available Metadata". MTM objects record the mapping of
MDM objects to relational tables or views. For information on MTM objects, see
Chapter 5, "Working with Metadata Mapping Objects".

MdmModel, MdmSchema and MdmSource are the subclasses of MdmObject.

MdmModel Class
The MdmModel class and its subclasses implement the Model interface for MdmSource
objects. Because a Model is closely is associated with a Source, the Model interface is
in the oracle.olapi.data.source package. The Model interface is discussed in
the topic "Model Objects and Source Objects" in Chapter 6, "Understanding Source
Objects".

The MdmModel classes are an advanced feature of the OLAP API. When an application
creates an MdmMember object, Oracle OLAP automatically creates an MdmModel for the
MdmMember or adds information to an existing MdmModel object.

You can get an MdmModel for an MdmPrimaryDimension or an
MdmDimensionedObject and use the MdmModel to specify the calculation of a value
for a dimension member and the assignment of that value to the Source for a
measure or attribute that is dimensioned by the dimension. For more information on
MdmMember classes and examples of creating custom dimension members and using
MdmModel objects, see "MdmMember Classes" and "Creating Custom Metadata
Objects".

The subclasses of MdmModel are MdmDimensionCalculationModel and
MdmDimensionedObjectModel. An MdmDimensionedObject object has an
associated MdmDimensionedObjectModel that represents the assignment of zero or
more values for the Source for the MdmDimensionedObject. You can get the
MdmDimensionedObjectModel for an MdmDimensionedObject by calling its
getModel method. The concrete subclasses of MdmDimensionedObjectModel are
MdmAttributeModel and MdmMeasureModel.

An MdmDimensionCalculationModel assigns values for a measure of a particular
data type. An MdmPrimaryDimension object has
MdmDimensionCalculationModel objects for the OLAP API data types Boolean,
Date, Number, and String. The MdmMeasureDimension subclass of
MdmPrimaryDimension has a MdmDimensionCalculationModel for the Value
data type, as well. You get an MdmDimensionCalculationModel for a specific data
type by calling a method of an MdmPrimaryDimension, such as the
getStringCalcModel method. Calling the getModel method of an
MdmPrimaryDimension returns null.

The subclasses of MdmSubDimension, and the MdmStandardMember and
MdmTimeMember classes, do not have associated MdmModel objects. Calling the
getModel method of an MdmSubDimension, MdmStandardMember, or
MdmTimeMember returns null.

MdmSchema Class
An MdmSchema represents a set of data that is used for navigational purposes. It is a
container for MdmMeasure, MdmPrimaryDimension, and other MdmSchema objects.
An MdmSchema is equivalent to a folder or directory that contains associated items. It

MdmDimension Classes

2-6 Oracle OLAP Developer's Guide to the OLAP API

does not correspond to a relational schema in the Oracle database. Instead, it
corresponds to an Oracle OLAP measure folder, which can include data from several
relational schemas and which was created by a database administrator. You can create
a custom MdmSchema with the createSchema method of an
MdmCustomObjectFactory.

Data that is accessible through the OLAP API is arranged under a top-level
MdmSchema, which is referred to as the root MdmSchema. Under the root schema, there
can be one or more subschemas. To begin navigating the metadata, an application calls
the getRootSchema method of the MdmMetadataProvider, as explained in
Chapter 4, "Discovering the Available Metadata".

The root MdmSchema contains all of the MdmDimension objects that are in the data
store. Most MdmPrimaryDimension objects are also contained in subschemas under
the root MdmSchema. However, a data store can contain a dimension that is not
included in a subschema. The root MdmSchema contains all of the available dimension
objects, including those that are in subschemas as well as any dimension objects that
are not.

The root MdmSchema contains MdmMeasure objects only if they are not contained in a
subschema. Because most MdmMeasure objects belong to a subschema, the root
MdmSchema typically has no MdmMeasure objects. Therefore, the getMeasures
method of the root MdmSchema typically returns an empty List object.

An MdmSchema has methods for getting all of the MdmMeasure,
MdmPrimaryDimension, and MdmSchema objects that it contains. The root
MdmSchema also has a method for getting the MdmMeasureDimension, whose
members are all of the MdmMeasure objects in the data store regardless of whether
they belong to a subschema.

MdmSource Class
MdmSource objects represent data that is available to an application. With the
getSource method of an MdmSource, an application gets a Source object that it can
use to create a query. The following line of code gets the Source for an
MdmStandardDimension called mdmProductDim.

Source productDim = mdmProductDim.getSource();

A Source that is the result of the getSource method of an MdmSource is called a
primary Source. An application derives new Source objects from this primary
Source as it selects, calculates, and otherwise manipulates the data. When the
application derives a Source that represents the query that it wants to make, it creates
a Cursor for the Source. The Cursor retrieves the data.

For more information about working with Source and Cursor objects, see Chapter 6,
"Understanding Source Objects" and Chapter 9, "Understanding Cursor Classes and
Concepts". The rest of this chapter describes the subclasses of MdmSource.

MdmDimension Classes
MdmDimension is an abstract subclass of MdmSource that represents the general
concept of a list of members that can organize a set of data. For example, if you have a
set of figures that are the prices of product items during month time periods, then the
unit price data is represented by an MdmMeasure that is dimensioned by dimensions
for time and product values. The time dimension includes the month values and the
product dimension includes item values. The month and item values act as indexes for
identifying each particular value in the set of unit price data.

MdmDimension Classes

Understanding OLAP API Metadata 2-7

An MdmDimension can have one or more MdmAttribute objects. An
MdmAttribute maps the value of each member of the MdmDimension to a value
representing some characteristic of the member value. To obtain the MdmAttribute
objects for an MdmDimension, call its getAttributes method or the methods that
return specific attributes, such as the getHierarchyAttribute or the
getParentAttribute method.

MdmDimension has the abstract subclasses MdmPrimaryDimension and
MdmSubDimension.

MdmPrimaryDimension Classes
MdmPrimaryDimension is an abstract subclass of MdmDimension. The concrete
subclasses of the MdmPrimaryDimension class represent different types of data. The
concrete subclasses of MdmPrimaryDimension are the following:

■ MdmMeasureDimension, which has all of the MdmMeasure objects in the data
store as the values of its members. A data store has only one
MdmMeasureDimension. You can obtain the MdmMeasureDimension by calling
the getMeasureDimension method of the root MdmSchema and casting the
result to an MdmMeasureDimension. You can get the measures of the data store
by calling the getMeasures method of the MdmMeasureDimension.

■ MdmStandardDimension, which has no special characteristics, and which
typically represent dimensions of products, customers, distribution channels, and
so on.

■ MdmTimeDimension, which has time periods as the values of its members. Each
time period has an end date and a time span. An MdmTimeDimension has
methods for getting the attributes that record that information.

An MdmPrimaryDimension has one or more component MdmHierarchy objects,
which represent the hierarchies of the dimension. An MdmPrimaryDimension has all
of the members of its component MdmHierarchy objects, while each of its
MdmHierarchy objects has only the members in that hierarchy.

An MdmPrimaryDimension that represents a nonhierarchical list of members has
only one MdmLevelHierarchy, which has all of its members at one level with no
hierarchical relationships defined for them. For example, the MdmMeasureDimension
represents a dimension that is simple list of the MdmMeasure objects in the data store.
The MdmMeasureDimension has one MdmLevelHierarchy, which has one
MdmLevel. The MdmMeasureDimension, its MdmLevelHierarchy, and its
MdmLevel all have the same dimension members, the values of which are the
MdmMeasure objects.

MdmSubDimension Classes
MdmSubDimension is an abstract subclass of MdmDimension. The subclasses of
MdmSubDimension are MdmHierarchy and MdmLevel.

MdmHierarchy
MdmHierarchy is an abstract subclass of MdmSubDimension. An MdmHierarchy
represents an organization of the members of an MdmPrimaryDimension, which can
have more than one hierarchy defined for it. For example, an MdmTimeDimension
dimension might have two hierarchies, one organized by calendar year time periods
and the other organized by fiscal year time periods. The members of both hierarchies
are drawn from the members of the MdmTimeDimension, but the number of members

MdmDimension Classes

2-8 Oracle OLAP Developer's Guide to the OLAP API

in each hierarchy and the parent-child relationships of the values of the members can
be different.

The parent-child relationships of an MdmHierarchy are recorded in a parent
MdmAttribute, which you can get by calling the getParentAttribute method of
the MdmHierarchy. The ancestor-descendent relationships are specified in an
ancestors MdmAttribute, which you can get by calling the
getAncestorsAttribute method.

MdmLevelHierarchy
MdmLevelHierarchy is a concrete subclass of MdmHierarchy. An
MdmLevelHierarchy has its parent-child relationships defined between the values of
the members at different levels. The different levels of an MdmLevelHierarchy are
represented by MdmLevel objects. An MdmLevelHierarchy can have up to 31
component MdmLevel objects. An MdmLevelHierarchy has a tree-like structure. The
members at the lowest level of the hierarchy are the leaves, and the members at higher
levels are nodes. Nodes have children; leaves do not.

The MdmLevelHierarchy has all of the members of the hierarchy, and each of its
component MdmLevel objects has only the members at the level it represents. Each
member, except those at the highest level, can have a parent, and each member, except
those at the lowest level, can have one or more children. The parent and children of a
member of an MdmLevel are in other MdmLevel objects. An MdmLevelHierarchy
can also represent a nonhierarchical list of members, in which case the
MdmLevelHierarchy has one MdmLevel, and both objects have the same members.
You get the levels of an MdmLevelHierarchy by calling its getLevels method.

MdmValueHierarchy
MdmValueHierarchy is the other concrete subclass of MdmHierarchy. An
MdmValueHierarchy has parent-child relationships defined between the values of
the dimension members, and does not have the parent and child members at different
levels. An example of a value hierarchy is the employee reporting structure of a
company, which can be represented with parent-child relationships but without levels.
A database administrator defines a dimension as a value hierarchy in the Oracle OLAP
metadata. An application developer can define a value hierarchy with the
createValueHierarchy method of an MdmCustomObjectFactory or an
MdmPrimaryDimension.

MdmLevel
MdmLevel is a concrete subclass of MdmSubDimension. An MdmLevel represents a
set of members that supply one level of the hierarchical structure of an
MdmLevelHierarchy.

An MdmLevel represents a level that was specified by a database administrator in the
OLAP metadata or that is a custom MdmLevel. Typically, a database administrator
specifies a column in a relational database table or view to provide the values of the
level, or an application specifies a column in an MtmExpression. The values of the
members of an MdmLevel must be unique. If the column in the database has values
that are not unique, then the database administrator can define the members of a level
using two or more columns of the table, thus ensuring that the members of the
MdmLevel have unique values. For example, if a dimension of geographical locations
has a level for cities and more than one city has the same name, then a database
administrator can specify as the value of the city level both the city column and the
state column in the relational database. The values of the members in the MdmLevel

MdmDimensionedObject Classes

Understanding OLAP API Metadata 2-9

for cities are then combinations of the two column values, such as IL:Springfield
for Springfield, Illinois and MA:Springfield for Springfield, Massachusetts.

An MdmLevelHierarchy has one MdmLevel for each level of members in the
hierarchy of dimension members that it represents. Each member of an MdmLevel,
except the highest level, can have a parent, and each member, except those of the
lowest level, can have one or more children. The parent and children of members of
one MdmLevel are members from other MdmLevel objects.

The parent-child relationships among the members are recorded in the parent and
ancestors attributes, which you can obtain by calling the getParentAttribute and
getAncestorsAttribute methods of the MdmLevelHierarchy of which the
MdmLevel is a component. You can get the MdmLevelHierarchy for the MdmLevel
by calling the getLevelHierarchy method of the MdmLevel.

MdmDimensionedObject Classes
MdmDimensionedObject is an abstract subclass of MdmSource that represents
objects the values of which are specified by members of one or more dimensions. The
subclasses of MdmDimensionedObject are MdmMeasure and MdmAttribute.

MdmMeasure
An MdmMeasure represents a set of data that is organized by one or more
MdmDimension objects. The structure of the data is similar to that of a
multidimensional array. Like the dimensions of an array, which provide the indexes
for identifying a specific cell in the array, the MdmDimension objects that organize an
MdmMeasure provide the indexes for identifying a specific value of an element of the
MdmMeasure.

For example, suppose you have an MdmMeasure that has data that records the number
of product units sold to a customer during a time period and through a sales channel.
The data of the measure is organized by dimensions for products, times, customers,
and channels (with channel representing the sales avenue, such as catalog or internet.).
You can think of the data as occupying a four-dimensional array with the product,
time, customer, and channel dimensions providing the organizational structure. The
values of these four dimensions are indexes for identifying each particular cell in the
array, which contains a single units sold data value. You must specify a value for each
dimension in order to identify a value in the array. In relational terms, the
MdmDimension objects constitute a compound (that is, composite) primary key for the
MdmMeasure.

The values of an MdmMeasure are usually numeric, but a measure can have values of
other data types.

A persistent MdmMeasure is based on an OLAP metadata measure that was created by
a database administrator. In most cases, the MdmMeasure maps to a column in a fact
table or to an expression that specifies a mathematical calculation or a data
transformation. In many but not all cases, the MdmMeasure also maps to at least one
hierarchy for each OLAP dimension of the measure, as well as an aggregation method.
Oracle OLAP uses all of this information to identify the number of elements in the
MdmMeasure and the value of each element.

An application can create a transient custom MdmMeasure, and make it a member of
the MdmMeasureDimension, by calling a createCustomMeasure method of the
MdmMeasureDimension or a method of MdmCustomObjectFactory.

MdmDimensionedObject Classes

2-10 Oracle OLAP Developer's Guide to the OLAP API

The set of elements that are in an MdmMeasure is determined by the structure of its
MdmDimension objects. That is, each element of an MdmMeasure is identified by a
unique combination of members from its MdmDimension objects. That combination of
dimension members is called a tuple.

The MdmDimension objects of an MdmMeasure are MdmStandardDimension or
MdmTimeDimension objects. They usually have at least one hierarchical structure.
Those MdmPrimaryDimension objects include all of the members of their component
MdmHierarchy objects. Because of this structure, the values of the elements of an
MdmMeasure are of one or more of the following:

■ Values from the fact table column, view, or calculation on which the MdmMeasure
is based. These values belong to MdmMeasure elements that are identified by a
combination of values from the members at the leaf level of an MdmHierarchy.

■ Aggregated values that Oracle OLAP has provided. These values belong to
MdmMeasure elements that are identified by the value of at least one member
from a node level of an MdmHierarchy.

■ Values assigned by an MdmModel for a custom dimension member.

As an example, imagine an MdmMeasure called mdmUnitCost that is dimensioned by
an MdmTimeDimension called mdmTimeDim and an MdmStandardDimension of
products called mdmProdDim. Each of the mdmTimeDim and the mdmProdDim objects
has all of the leaf members and node members of the dimension it represents.

A unique combination of two members, one from mdmTimeDim and one from
mdmProdDim, identifies each mdmUnitCost element, and every possible combination
is used to specify the entire mdmUnitCost element set.

Some mdmUnitCost elements are identified by a combination of leaf members (for
example, a particular product item and a particular month). Other mdmUnitCost
elements are identified by a combination of node members (for example, a particular
product family and a particular quarter). Still other mdmUnitCost elements are
identified by a mixture of leaf and node members. The values of the mdmUnitCost
elements that are identified only by leaf members come directly from the column in
the database fact table (or fact table calculation). They represent the lowest level of
data. However, for the elements that are identified by at least one node member,
Oracle OLAP provides the values. These higher-level values represent aggregated, or
rolled-up, data.

Thus, the data represented by an MdmMeasure is a mixture of fact table data from the
data store, aggregated data that Oracle OLAP makes available for analytical
manipulation, and possibly values that Oracle OLAP assigns as specified by an
MdmModel.

MdmAttribute Class
MdmAttribute is a concrete subclass of MdmDimensionedObject that represents a
particular characteristic of the members of an MdmDimension. An MdmAttribute
maps a member of the MdmDimension to a particular value.

For example, mdmCustDim is the MdmPrimaryDimension for the Customer
dimension. The MdmPrimaryDimension has a hierarchy that has levels that are based
on shipment origination and destination values. The MdmAttribute returned by the
getShortValueDescriptionAttribute method of mdmCustDim relates a short
description to each the member of the dimension. The elements of the MdmAttribute
have String values such as Europe, Italy, or Computer Services Athens.

MdmMember Classes

Understanding OLAP API Metadata 2-11

The elements of an MdmAttribute might have String values (such as Italy),
numeric values (such as 45), or objects (such as MdmLevel objects).

Like an MdmMeasure, an MdmAttribute has elements that are organized by its
MdmDimension. Sometimes an MdmAttribute does not have a value for every
member of its MdmDimension. For example, an MdmAttribute that records the name
of a contact person might have values only for the Ship To and Warehouse levels of the
Shipments Rollup hierarchy of the mdmCustDim dimension, because contact
information does not apply to the higher Region and All Customers levels. If an
MdmAttribute does not apply to a member of an MdmDimension, then the
MdmAttribute element value for that member is null.

An MdmAttribute object can provide a mapping that is one-to-many, rather than
one-to-one. Therefore, a member in an MdmDimension might map to a whole set of
MdmAttribute elements. For example, the MdmAttribute that serves as the
ancestors attribute for an MdmHierarchy maps each MdmHierarchy member to its
set of ancestor MdmHierarchy members.

An MdmAttribute is based on an OLAP attribute that was specified for a dimension,
hierarchy, or level by a database administrator or that was specified by an
MtmValueExpression for a custom MdmAttribute created by an application.

The following table lists the values of elements of a Source object that represents the
members of a hierarchy of an MdmPrimaryDimension of products. The table also
lists the values of the Source objects for two MdmAttribute objects that are
dimensioned by the MdmPrimaryDimension. One attribute is the short description
attribute for the dimension. Each member of the dimension has a related short
description. The other is a custom attribute that relates a color to the values of
members at the Item level, which is the lowest level of the hierarchy. The values of the
color MdmAttribute are null for the aggregate Total Product, Class, and Family
levels. In the table, null values appear as NA.

MdmMember Classes
MdmMember is an interface that specifies characteristics of a custom dimension
member. Figure 2–2 shows the classes that implement the interface.

Product Values
Related Short
Descriptions

Related
Colors

PRODUCT_ROLLUP::TOTAL_PRODUCT::1 Total Product NA

PRODUCT_ROLLUP::CLASS::2 Hardware NA

PRODUCT_ROLLUP::FAMILY::4 Portable PCs NA

PRODUCT_ROLLUP::ITEM::13 Envoy Standard Black

PRODUCT_ROLLUP::ITEM::14 Envoy Executive Black

PRODUCT_ROLLUP::ITEM::15 Envoy Ambassador Black

PRODUCT_ROLLUP::FAMILY::5 Desktop PCs NA

PRODUCT_ROLLUP::ITEM::16 Sentinel Standard Beige

PRODUCT_ROLLUP::ITEM::17 Sentinel Financial Beige

PRODUCT_ROLLUP::ITEM::18 Sentinel Multimedia Beige

...

MdmMember Classes

2-12 Oracle OLAP Developer's Guide to the OLAP API

Figure 2–2 MdmMember Interface and Its Implementations

You can add a custom member to an MdmStandardDimension or an
MdmTimeDimension by calling a createStandardCustomMember method or a
createTimeCustomMember method of an MdmCustomObjectFactory. You can
also use one of the addCustomMember convenience methods of the
MdmStandardDimension or the MdmTimeDimension.

You can create an MdmMeasure and add it as a custom member of the
MdmMeasureDimension by calling a createCustomMeasure method of an
MdmCustomObjectFactory. You can also use one of the createCustomMeasure
convenience methods of the MdmMeasureDimension.

When you create a custom member, you specify a Source that provides the value that
Oracle OLAP assigns as the measure or attribute value for the custom member. That
Source can specify a constant value or it can specify a calculation to perform. Custom
dimension members are therefore Source-based dimension members, in that the
measure or attribute value that Oracle OLAP assigns for the custom member is
provided by the Source that the application supplies. The measure or attribute values
specified by other members of a dimension, which are not instances of MdmMember,
are not based on a Source but instead are mapped to data derived from columns in
tables or views in the database.

Example 2–1 creates a custom member of the Product dimension. The measure value
specified for the custom member is the result of a calculation.

In the example, dp is the DataProvider. The example gets the placeholder Source,
ph, for the Number data type from the DataProvider. If a query specifies the values
for more than one measure that is dimensioned by the Product dimension, then the
placeholder Source represents the current measure in the query.

The example uses the placeholder in defining the calculation object, calc. The
calculation object defines the value assigned for the custom member as the value
specified by product item 14 plus the value specified by item 15.

In the createCustomMember method call, the local value of the custom dimension
member is 60. In creating the custom member, Oracle OLAP supplies the other parts of
the unique value. The unique value for the member is
PRODUCT_ROLLUP::ITEM::60. The itemLevel object is the MdmLevel for the
custom member. The local value of the parent of the custom member is 4. The calc
object is the value that Oracle OLAP assigns for the member as the measure value for a
measure dimensioned by the Product dimension, and 10 is the precedence value for
the custom member.

The prodSel object specifies the dimension members for items 14 and 15 and the
custom member, item 60. The unitCost and unitPrice objects are Source objects
for the Unit Cost and Unit Price measures, and the calendar object is the Source for
the Calendar hierarchy of the Time dimension.

The result object is the query produced by joining the Source objects for the Unit
Cost and Unit Price price measures to the Source objects for the selected members of
the dimensions of the measures. The join method used to join the Time dimension

MdmMember

MdmStandardMember MdmTimeMemberMdmMeasure

Data Type and Type of MDM Metadata Objects

Understanding OLAP API Metadata 2-13

value, CALENDAR::MONTH::47, to the result of the previous join operations causes
the Time value to not appear in the result object.

Example 2–1 Creating a Custom Member of a Dimension

Source ph = dp.getFundamentalMetadataProvider()
 .getNumberPlaceholder()
 .getSource();

Source calc = ((NumberSource)
 (ph.join(prodRollup, "PRODUCT_ROLLUP::ITEM::14")))
 .plus(
 (NumberSource)
 (ph.join(prodRollup, "PRODUCT_ROLLUP::ITEM::15")));

MdmStandardMember mdmItem60 = mdmProdStdDim.createCustomMember(
 "60", // member local value
 mdmItemLevel, // member level
 "4", // parent local value
 calc, // calculation Source
 10); // precedence value

StringSource prodSel = prodRollup.selectValues(
 new String[]{"PRODUCT_ROLLUP::ITEM::14",
 "PRODUCT_ROLLUP::ITEM::15",
 "PRODUCT_ROLLUP::ITEM::60"});

Source result = unitPrice.join(unitCost)
 .join(prodSel)
 .join(calendar, "CALENDAR::MONTH::47");

A Cursor for result has the following values, with column headings and formatting
added:

 Product Item Cost Price
------------------------ ------- -------
PRODUCT_ROLLUP::ITEM::14 3238.36 3442.86
PRODUCT_ROLLUP::ITEM::15 2847.47 2962.14
PRODUCT_ROLLUP::ITEM::60 6085.83 6405.00

For an example of creating a custom MdmMeasure as a member of an
MdmMeasureDimension, see Example 2–4.

Like Template objects, custom dimension members exist in the context of a
Transaction. Also, custom members are not persistent; they are not stored in the
database after the application closes the DataProvider. For information on the
Transaction and Template classes, see Chapter 8, "Using a TransactionProvider"
and Chapter 11, "Creating Dynamic Queries".

Custom members can only be used by the OLAP API application. They are not
available to an OLAP DML or SQL application.

Data Type and Type of MDM Metadata Objects
All MdmSource objects have the following two basic characteristics:

■ Data type

■ Type

Data Type and Type of MDM Metadata Objects

2-14 Oracle OLAP Developer's Guide to the OLAP API

MdmDimensionCalculationModel objects also have a data type and a type.
MdmDimensionedObjectModel objects have a type but not a data type.

Data Type of MDM Metadata Objects
The concept of data type is a familiar one in computer languages and database
technology. It is common to categorize data into types such as integer, Boolean, and
String.

The OLAP API implements the concept of data type through the
FundamentalMetadataObject and FundamentalMetadataProvider classes.
Every data type recognized by the OLAP API is represented by a
FundamentalMetadataObject, and you obtain this object by calling a method of a
FundamentalMetadataProvider.

The following table lists the most familiar OLAP API data types. For each data type,
the table presents a description of the FundamentalMetadataObject that
represents the data type and the name of the method of
FundamentalMetadataProvider that returns the object. The OLAP API data types
appear in regular typeface, instead of monospace typeface, to distinguish them from
java.lang data type classes.

In addition to these familiar data types, the OLAP API includes two generalized data
types (which represent groups of the familiar data types) and two data types that
represent the absence of values. The following table lists these additional data types.

OLAP API
Data Type

Description of the
FundamentalMetadataObject

Method of
FundamentalMetadataProvider

Boolean Represents the data type that
corresponds to the Java boolean
data type.

getBooleanDataType

Date Represents the data type that
corresponds to the Java Date class.

getDateDataType

Double Represents the data type that
corresponds to the Java double
data type.

getDoubleDataType

Float Represents the data type that
corresponds to the Java float data
type.

getFloatDataType

Integer Represents the data type that
corresponds to the Java int data
type

getIntegerDataType

Short Represents the data type that
corresponds to the Java short data
type.

getShortDataType

String Represents the data type that
corresponds to the Java String
class.

getStringDataType

OLAP API
Data Type

Description of the
FundamentalMetadataObject

Method of
FundamentalmetadataProvider

Number Represents a general data type that
includes any or all of the following
OLAP API numeric data types:
Double, Float, Integer, and Short

getNumberDataType

Data Type and Type of MDM Metadata Objects

Understanding OLAP API Metadata 2-15

When an MDM metadata object, such as an MdmMeasure, has a given data type, this
means that each of its elements conforms to that data type. If the data type is numeric,
then the elements also conform to the generalized Number data type, as well as to the
specific data type (Double, Float, Integer, or Short). The elements of any MDM
metadata object conform to the Value data type, as well as to their more specific data
type, such as Integer or String.

If the elements of an object represent a mixture of several numeric and non-numeric
data types, then the data type is only Value. The object has no data type that is more
specific than that.

The MDM metadata objects for which data type is relevant are
MdmDimensionCalculationModel objects and MdmSource objects, such as
MdmMeasure, MdmLevelHierarchy, and MdmLevel. The typical data type of an
MdmMeasure is one of the numeric data types; the data type of an
MdmLevelHierarchy or MdmLevel is always String.

An MdmPrimaryDimension has a set of MdmDimensionCalculationModel
objects, each of which has a different data type. If an
MdmDimensionCalculationModel has an Assignment, then Oracle OLAP assigns
the specified value to measures that have the same data type as the
MdmDimensionCalculationModel. For example, the data type of the
MdmDimensionCalculationModel returned by the getNumberCalcModel
method of an MdmStandardDimension is the FundamentalMetadataObject for
the Number data type. An Assignment specified by that
MdmDimensionCalculationModel applies only to a measure that has a Number
data type and that is dimensioned by the MdmStandardDimension.

Getting the Data Type of an MdmSource
To find the data type of an MdmSource or MdmDimensionCalculationModel, call
its getDataType method. That method returns a FundamentalMetadataObject.

To find the OLAP API data type that is represented by the returned
FundamentalMetadataObject, you could compare it to the
FundamentalMetadataObject for each OLAP API data type. That is, you compare
it to the return value of each of the data type methods in
FundamentalMetadataProvider.

The following sample method returns a String that indicates the data type of an
MdmSource. Note that this code gets the FundamentalMetadataProvider by
calling a method of a DataProvider. Getting a DataProvider is described in
Chapter 4, "Discovering the Available Metadata".

Value Represents a general data type that
includes any or all of the OLAP API
data types.

getValueDataType

Empty Represents no data, for example
when an MdmSource has no
elements at all defined for it.

getEmptyDataType

Void Represents null data, for example
when an MdmSource has a single
element that has a null value.

getVoidDataType

OLAP API
Data Type

Description of the
FundamentalMetadataObject

Method of
FundamentalmetadataProvider

Data Type and Type of MDM Metadata Objects

2-16 Oracle OLAP Developer's Guide to the OLAP API

Example 2–2 Getting the Data Type of an MdmSource

public String getDataType(DataProvider dp, MdmSource metaSource)
{
 String theDataType = null;
 FundamentalMetadataProvider fmp =
 dp.getFundamentalMetadataProvider();

 if (fmp.getBooleanDataType() == metaSource.getDataType())
 theDataType = "Boolean";
 else if (fmp.getDateDataType() == metaSource.getDataType())
 theDataType = "Date";
 else if (fmp.getDoubleDataType() == metaSource.getDataType())
 theDataType = "Double";
 else if (fmp.getFloatDataType() == metaSource.getDataType())
 theDataType = "Float";
 else if (fmp.getIntegerDataType() == metaSource.getDataType())
 theDataType = "Integer";
 else if (fmp.getShortDataType() == metaSource.getDataType())
 theDataType = "Short";
 else if (fmp.getStringDataType() == metaSource.getDataType())
 theDataType = "String";
 else if (fmp.getNumberDataType() == metaSource.getDataType())
 theDataType = "Number";
 else if (fmp.getValueDataType() == metaSource.getDataType())
 theDataType = "Value";

 return theDataType;
 }

Type of MDM Metadata Objects
An MDM metadata object, such as an MdmSource, is a collection of elements. Its type
(as opposed to its data type) is another metadata object from which the metadata
object draws its elements. In other words, the elements of a metadata object
correspond to a subset of the elements in its type. There can be no element in the
metadata object that does not match an element of its type.

Consider the following example of a MdmPrimaryDimension called mdmCustDim,
which has the OLAP API data type of String. The mdmCustDim dimension has a
hierarchy, which is an MdmLevelHierarchy object called mdmShipmentsRollup,
which in turn has levels, which are MdmLevel objects. The MdmLevelHierarchy and
the MdmLevel objects represent subsets of the members of the
MdmPrimaryDimension. In the following list, the hierarchy and the levels are
indented under the MdmPrimaryDimension to which they belong.

mdmCustDim
 mdmShipmentsRollup
 mdmTotalCust
 mdmRegion
 mdmWarehouse
 mdmShipTo

Because of the hierarchical structure, mdmWarehouse (for example) draws its
members from the members of mdmShipmentsRollup. That is, the set of members
for mdmWarehouse corresponds to a subset of members from
mdmShipmentsRollup, and mdmShipmentsRollup is the type of mdmWarehouse.

Creating Custom Metadata Objects

Understanding OLAP API Metadata 2-17

Similarly, mdmShipmentsRollup is a component hierarchy of mdmCustDim.
Therefore, mdmShipmentsRollup draws its members from mdmCustDim, which is its
type.

However, mdmCustDim is not a component of any other object. It represents the entire
dimension. The pool of elements from which mdmCustDim draws its members is the
entire set of possible String values. Therefore, the type of mdmCustDim is the
FundamentalMetadataObject that represents the OLAP API String data type. In
the case of mdmCustDim, the type and the data type are the same.

The following list presents the types that are typical for the most common MdmSource
objects:

■ The type of an MdmLevel is the MdmLevelHierarchy to which it belongs.

■ The type of a MdmHierarchy is the MdmPrimaryDimension to which it belongs.

■ The type of an MdmPrimaryDimension is the FundamentalMetadataObject
that represents its OLAP API data type. Typically, this is the String data type.

■ The type of an MdmMeasure is the FundamentalMetadataObject that
represents its OLAP API data type. Typically, this is one of the OLAP API numeric
data types.

An MdmModel also has a type, which is the Source from which Oracle OLAP draws
the values that the MdmModel assigns. For example, the type of the
MdmDimensionedObjectModel for the MdmAttribute for the short value
description attribute of the Product dimension is the Source for the
FundamentalMetadataObject for the String data type because the values of that
attribute are String objects.

Getting the Type of an MdmSource
To find the type of an MdmSource that you have obtained from the data store, call its
getType method. That method returns the object that is the type of the MdmSource
object.

For example, the following Java statement obtains the type of the MdmLevel named
mdmWarehouse.

Example 2–3 Getting the Type of an MdmSource

MetadataObject mdmWarehouseType = mdmWarehouse.getType();

Creating Custom Metadata Objects
An application developer can create transient custom metadata objects with methods
of an MdmCustomObjectFactory or with convenience methods of the subclasses of
MdmPrimaryDimension, or with methods of an MdmLevelHierarchy or an
MtmPartitionedCube. The custom metadata objects exist in the context of a
Transaction.

Example 2–4 demonstrates the creation of a custom MdmMeasure as a member of the
MdmMeasureDimension of the root MdmSchema. The example gets the root
MdmSchema from the MdmMetadataProvider, gets the top-level
MdmMeasureDimension from root MdmSchema, and then gets the Source for the
MdmMeasureDimension, cast as a StringSource.

Creating Custom Metadata Objects

2-18 Oracle OLAP Developer's Guide to the OLAP API

Next, the example creates a Source, calculation, that specifies the values for the
custom measure. The values are the result of the calculation unit price minus unit cost.
The unitPrice and unitCost objects are the Source objects for the Unit Price and
Unit Cost measures.

The createCustomMeasure method of the MdmMeasureDimension returns an
MdmMeasure that has the name MARKUP, is a member of the root MdmSchema, has the
calculation specified, and has the precedence value of 10.

The selectValues method of the Source for the MdmMeasureDimension returns a
Source that specifies the identification String objects for each measure. For
example, the ID of the custom measure is Hidden..CUSTOM_MEASURES.MARKUP.
The example gets the short value description attributes for the Time and Product
dimensions, and then gets the Source objects for those attributes.

The prodRollup object is the Source for a hierarchy of the MdmPrimaryDimension
for the Product dimension, and calendar is a hierarchy of the
MdmPrimaryDimension for the Time dimension. The selectValue method of
prodRollup returns a Source that specifies one member of the Product hierarchy,
and the selectValues method of calendar returns a Source that specifies three
members of the Time hierarchy.

The extract method of measDim produces a Source that specifies the values of the
Source objects that are the element values of measDim. The first join method
provides Source objects that match the inputs of the Source produced by the
extract method. The next two join methods add the short value description
attribute for the Time dimension members and provide the input required by the
attribute. The final two join methods do the same for the Product dimension
members. For more information about Source objects and the inputs of a Source, see
Chapter 6, "Understanding Source Objects".

Example 2–4 Creating a Custom Member of the MdmMeasureDimension

MdmSchema rootSchema = mdmMetadataProvider.getRootSchema();
MdmMeasureDimension mdmMeasDim = rootSchema.getMeasureDimension();
StringSource measDim = (StringSource) mdmMeasDim.getSource();

Source calculation = unitPrice.minus(unitCost);

MdmMeasure mdmMarkup = mdmMeasDim.createCustomMeasure("MARKUP",
 rootSchema,
 calculation,
 10);

Source measDimSel = measDim.selectValues(new String[]
 {mdmMarkup.getValue(),
 mdmUnitPrice.getValue(),
 mdmUnitCost.getValue()});

Source timeShortDesc =
 mdmTimeDim.getShortValueDescriptionAttribute().getSource();
Source prodShortDesc =
 mdmProdDim.getShortValueDescriptionAttribute().getSource();

StringSource prodSel = prodRollup.selectValue("PRODUCT_ROLLUP::ITEM::13");
StringSource timeSel = calendar.selectValues(new String[]
 {"CALENDAR::MONTH::43",
 "CALENDAR::MONTH::44",
 "CALENDAR::MONTH::45"});
Source result = measDim.extract()

Creating Custom Metadata Objects

Understanding OLAP API Metadata 2-19

 .join(measDimSel)
 .join(timeShortDesc.join(timeSel))
 .join(prodShortDesc.join(prodSel));

A Cursor for the result object has nine sets of values. Each set has the product
member value and short value description, the time member value and short value
description, the ID of the measure, and the measure value specified by the product and
time members. The first set of values is the following:

PRODUCT_ROLLUP::ITEM::13, Envoy Standard, CALENDAR::MONTH::43, Jan-00,
Hidden..CUSTOM_MEASURES.MARKUP, 134.24

The following is a display of the values of a Cursor for result in a crosstab format
that has only the description and measure values and that has column headings
added.

Product: Envoy Standard
Month Unit Cost Unit Price Markup
------ --------- ---------- ------
Jan-00 2865.87 3000.11 134.24
Feb-00 2862.51 3008.91 146.40
Mar-00 2926.79 3142.99 216.20

Creating Custom Metadata Objects

2-20 Oracle OLAP Developer's Guide to the OLAP API

Connecting to a Data Store 3-1

3
Connecting to a Data Store

This chapter explains the procedure for connecting to a data store through the OLAP
API.

This chapter includes the following topics:

■ Overview of the Connection Process

■ Establishing a Connection

■ Getting an Existing Connection

■ Executing DML Commands Through the Connection

■ Closing a Connection

Overview of the Connection Process
When an application gains access to data through the OLAP API, it uses a connection
provided by the Oracle implementation of the Java Database Connectivity (JDBC) API
from Sun Microsystems. For information about using this JDBC implementation, see
the Oracle Database JDBC Developer's Guide and Reference.

The Oracle JDBC classes that you use to establish a connection to Oracle OLAP are in
the classes12.jar file. For information about getting the JDBC Java archive (jar)
file, see Appendix A, "Setting Up the Development Environment".

Connection Steps
The procedure for connecting involves loading an Oracle JDBC driver, getting a
connection through that driver, and creating two OLAP API objects that handle
transactions and data transfer.

These steps are described in the topic "Establishing a Connection" on page 3-2.

Prerequisites for Connecting
Before attempting to make an OLAP API connection to an Oracle database, ensure that
the following requirements are met:

■ The Oracle Database instance is running and was installed with the OLAP option.

■ The Oracle Database user ID that you are using for the connection has access to the
relational schemas on which the data store is based.

■ The Oracle JDBC and OLAP API jar files are on your application development
computer and are accessible to the application code. For information about setting

Establishing a Connection

3-2 Oracle OLAP Developer's Guide to the OLAP API

up the required jar files, see Appendix A, "Setting Up the Development
Environment".

Establishing a Connection
To make a connection, perform the following steps:

1. Load the JDBC driver for the connection.

2. Get a JDBC OracleConnection from the DriverManager.

3. Create a TransactionProvider.

4. Create a DataProvider.

These steps are explained in more detail in the rest of this topic.

Note that the TransactionProvider and DataProvider objects that you create in
these steps are the ones that you use throughout your work with the data store. For
example, when you create certain Source objects, you use methods of this
DataProvider object.

Step 1: Load the JDBC Driver
The following line of code loads a JDBC driver and registers it with the JDBC
DriverManager.

Example 3–1 Loading the JDBC Driver for a Connection

try
{
 Class.forName("oracle.jdbc.driver.OracleDriver");
}
catch(ClassNotFoundException e)
{
 System.out.println("Could not load the JDBC driver. " + e);
}

After the driver is loaded, you can use the DriverManager object to make a
connection. For more information about loading Oracle JDBC drivers, see the Oracle
Database JDBC Developer's Guide and Reference.

Step 2: Get a Connection from the DriverManager
The following code gets a JDBC OracleConnection object from the
DriverManager.

Example 3–2 Getting a JDBC OracleConnection

String url = "jdbc:oracle:thin:@myhost:1521:orcl";
String user = "global";
String password = "global";
oracle.jdbc.OracleConnection conn = null;
try
{
 conn = (oracle.jdbc.OracleConnection)
 java.sql.DriverManager.getConnection(url, user, password);
}
Catch(SQLException e)
{

Getting an Existing Connection

Connecting to a Data Store 3-3

 System.out.println("Connection attempt failed. " + e);
}

This example connects the user global, who has the password global, to a database
with the SID (system identifier) orcl. The connection is made through TCP/IP
listener port 1521 of host myhost. The connection uses the Oracle JDBC thin driver.

There are many ways to specify your connection characteristics using the
getConnection method. See the Oracle Database JDBC Developer's Guide and Reference
for details.

After you have the OracleConnection object, you can create the required OLAP
API objects, TransactionProvider and DataProvider.

Step 3: Create a TransactionProvider
TransactionProvider is an OLAP API interface that is implemented for Oracle
OLAP by the ExpressTransactionProvider concrete class. In your code, you
create an instance of ExpressTransactionProvider, as in the following example.

Example 3–3 Creating a TransactionProvider

ExpressTransactionProvider tp = new ExpressTransactionProvider();

A TransactionProvider is required for creating a DataProvider.

Step 4: Create a DataProvider
DataProvider is an OLAP API abstract class. The concrete class
ExpressDataProvider extends DataProvider. The following lines of code create
and initialize an ExpressDataProvider.

Example 3–4 Creating a DataProvider

ExpressDataProvider dp = new ExpressDataProvider(conn, tp);
try
{
 dp.initialize();
}
catch(SQLException e)
{
 System.out.println("Could not initialize the DataProvider. " + e);
}

A DataProvider is required for creating a MetadataProvider, which is described
in Chapter 4, "Discovering the Available Metadata".

Getting an Existing Connection
To use the JDBC OracleConnection object after the connection has been established,
you can call the getConnection method of your ExpressDataProvider. The
following line of code calls the getConnection method of dp, which is an
ExpressDataProvider.

Example 3–5 Getting an Existing Connection

oracle.jdbc.OracleConnection currentConn = dp.getConnection();

Executing DML Commands Through the Connection

3-4 Oracle OLAP Developer's Guide to the OLAP API

Executing DML Commands Through the Connection
Some applications depend on the run-time execution of Oracle OLAP data
manipulation language (DML) commands or programs. DML commands and
programs execute in an analytic workspace outside the context of MDM metadata,
which is intrinsic to the OLAP API. Therefore, such commands and programs do not
operate on MDM objects, such as an MdmMeasure or an MdmDimension. Instead, they
operate on DML objects, such as a variable or a dimension. The MDM and DML
contexts are related but distinct.

To execute DML commands or programs in an analytic workspace, create an OLAP
API SPLExecutor object, specifying the JDBC OracleConnection object that you
want to use. Note that the data manipulation language is sometimes referred to as a
stored procedure language (SPL).

Example 3–6 creates and initializes an SPLExecutor object. The conn objects is an
OracleConnection. The executeCommand method of the SPLExecutor passes to
Oracle OLAP a DML command that attaches an analytic workspace named
myworkspace.

For the complete code for the following example, see the example programs available
from the Overview of the Oracle OLAP Java API Reference.

Example 3–6 Executing DML Commands

SPLExecutor dmlExec = new SPLExecutor(conn);
try
{
 dmlExec.initialize();
}
catch(SQLException e)
{
 System.out.println("Cannot initialize the SPL executor. " + e);
}
String returnVal = dmlExec.executeCommand('aw attach myworkspace');

For information about using the DML, see the Oracle OLAP DML Reference. For more
information about using an SPLExecutor, see the Oracle OLAP Java API Reference.

Closing a Connection
If you are finished using the OLAP API, but you want to continue working in your
JDBC connection to the database, then use the close method of your DataProvider
to release the OLAP API resources.

dp.close(); // dp is the DataProvider

When you have completed your work with the data store, use the
OracleConnection.close method.

Example 3–7 Closing a Connection

try
{
 conn.close(); // conn is the OracleConnection
}
catch(SQLException e)
{
 System.out.println("Cannot close the connection. " + e);
}

Discovering the Available Metadata 4-1

4
Discovering the Available Metadata

This chapter explains the procedure for discovering the metadata in a data store
through the OLAP API.

This chapter includes the following topics:

■ Overview of the Procedure for Discovering Metadata

■ Creating an MdmMetadataProvider

■ Getting the Root MdmSchema

■ Getting the Contents of the Root MdmSchema

■ Getting the Characteristics of Metadata Objects

■ Getting the Source for a Metadata Object

■ Sample Code for Discovering Metadata

For the complete code of the examples in this chapter, see the example programs
available from the Overview of the Oracle OLAP Java API Reference.

Overview of the Procedure for Discovering Metadata
The OLAP API provides access to a collection of Oracle data for which a database
administrator has created OLAP Catalog metadata. This collection of data is the data
store for the application. The API also provides the ability to create custom metadata
objects and map relational table data to the metadata objects, and to create queries that
use the data to which the custom objects are mapped.

Potentially, the data store includes all of the measure folders that were created by the
database administrator in the OLAP Catalog. However, the scope of the data store that
is visible when an application is running depends on the database privileges that
apply to the user ID through which the connection was made. A user sees all of the
measure folders (as MdmSchema objects) that the database administrator or the
application created, but the user sees the measures and dimensions that are contained
in those measure folders only if he or she has access rights to the relational tables to
which the measures and dimensions are mapped.

MDM Metadata
When the database administrator created the OLAP Catalog metadata, the
administrator created measures, dimensions, and other OLAP metadata objects by
mapping them to columns in database tables or views. In the OLAP API, these objects
are accessed as multidimensional metadata (MDM) objects, as described in Chapter 2,
"Understanding OLAP API Metadata".

Creating an MdmMetadataProvider

4-2 Oracle OLAP Developer's Guide to the OLAP API

The mapping between the OLAP metadata objects and the MDM objects is
automatically performed by Oracle OLAP. You can, however, discover the mapping of
the MDM objects by using classes in the oracle.olapi.metadata.mtm package, as
described in Chapter 5, "Working with Metadata Mapping Objects". You can also
create your own custom MDM metadata objects and map them to database tables or
views using MTM objects.

Purpose of Discovering the Metadata
The metadata objects in the data store help your application to make sense of the data.
They provide a way for you to find out what data is available, how it is structured, and
what its characteristics are.

Therefore, after connecting, your first step is to find out what metadata is available.
Armed with this knowledge, you can present choices to the end user about what data
should be selected or calculated and how it should be displayed.

Steps in Discovering the Metadata
Before investigating the metadata, your application must make a connection to Oracle
OLAP, as described in Chapter 3, "Connecting to a Data Store". Then, your application
might perform the following steps:

1. Create an MdmMetadataProvider.

2. Get the root MdmSchema from the MdmMetadataProvider.

3. Get the contents of the root MdmSchema, which include MdmMeasure,
MdmDimension, MdmMeasureDimension, and MdmSchema objects. In addition,
get the contents of any subschemas.

4. Get the components or related objects of each MdmMeasure and MdmDimension.
For example, get the MdmDimension objects for each MdmMeasure, and for each
MdmDimension get its MdmHierarchy objects.

The next four topics in this chapter describe these steps in detail.

Discovering Metadata and Making Queries
After your application discovers the metadata, it typically goes on to create queries for
selecting, calculating, and otherwise manipulating the data. To work with data in these
ways, you must get the Source objects from the MDM objects. These Source objects
are referred to as primary Source objects. Source objects specify the data for
querying.

This chapter focuses on the initial step of discovering the available metadata, but it
also briefly mentions the step of getting a primary Source from a metadata object.
Subsequent chapters of this guide explain how you work with primary Source
objects and create queries based on them.

Creating an MdmMetadataProvider
An MdmMetadataProvider gives access to the metadata in a data store. It provides
OLAP metadata objects, such as measures, dimensions, and measure folders, as
corresponding MDM objects, such as MdmMeasure, MdmDimension, and MdmSchema
objects.

Getting the Root MdmSchema

Discovering the Available Metadata 4-3

Before you can create an MdmMetadataProvider, you must create a DataProvider
as described in Chapter 3, "Connecting to a Data Store". Example 4–1 creates an
MdmMetadataProvider. In the example, dp is an ExpressDataProvider.

Example 4–1 Creating an MdmMetadataProvider

MdmMetadataProvider mp = null;
try
{
 mp = (MdmMetadataProvider) dp.getDefaultMetadataProvider();
}
catch (UnsupportedDatabaseException e)
{
 System.out.println("Cannot create the MDM metadata provider. " + e);
}

Getting the Root MdmSchema
Getting the root MdmSchema is the first step in exploring the metadata in your data
store.

Function of the Root MdmSchema
The metadata objects that are accessible through an MdmMetadataProvider are
organized in a tree-like structure, with the root MdmSchema at the top. Under the root
MdmSchema are MdmPrimaryDimension objects and one or more MdmSchema
objects, which are referred to as subschemas. In addition, if an MdmMeasure object
does not belong to any subschema, then it is included under the root.

Subschemas have their own MdmMeasure and MdmPrimaryDimension objects.
Optionally, they can have their own subschemas as well.

The root MdmSchema contains all of the MdmPrimaryDimension objects that are in
the subschemas. Therefore, an MdmPrimaryDimension typically appears twice in the
tree. It appears once under the root MdmSchema and again under the subschema. If an
MdmPrimaryDimension does not belong to a subschema, then it is listed only under
the root.

The starting point for discovering the available metadata objects is the root
MdmSchema, which is the top of the tree. The following diagram illustrates an
MdmSchema that has two subschemas and four MdmPrimaryDimension objects.

Getting the Contents of the Root MdmSchema

4-4 Oracle OLAP Developer's Guide to the OLAP API

Figure 4–1 Root MdmSchema and Subschemas

In the OLAP Catalog, a database administrator arranges dimensions and measures
under one or more top-level measure folders. When Oracle OLAP maps the measure
folders to MdmSchema objects, it always creates the root MdmSchema over the
MdmSchema objects for the top-level measure folders. Therefore, even if the database
administrator creates only one measure folder, its corresponding MdmSchema is a
subschema under the root.

For more information about MDM metadata objects and how they map to OLAP
metadata objects, see Chapter 2, "Understanding OLAP API Metadata".

Calling the getRootSchema Method
The following code gets the root MdmSchema for mp, which is an
MdmMetadataProvider.

Example 4–2 Getting the Root MdmSchema

MdmSchema rootSchema = mp.getRootSchema();

Getting the Contents of the Root MdmSchema
The root MdmSchema contains MdmPrimaryDimension objects, MdmSchema objects,
and possibly MdmMeasure objects. In addition, the root MdmSchema has an
MdmMeasureDimension that has a List of all of the MdmMeasure objects.

Root MdmSchema

MdmPrimaryDimension1

MdmPrimaryDimension2

MdmPrimaryDimension3

MdmSchema1

MdmMeasure2

MdmPrimaryDimension1

MdmPrimaryDimension2

MdmSchema2

MdmMeasure3

MdmPrimaryDimension3

MdmPrimaryDimension4

MdmPrimaryDimension4

MdmMeasure1

Getting the Characteristics of Metadata Objects

Discovering the Available Metadata 4-5

Getting the MdmDimension Objects in an MdmSchema
The following code gets a List of the MdmPrimaryDimension objects that are in
rootSchema, which is the root MdmSchema. The List does not include the
MdmMeasureDimension.

Example 4–3 Getting MdmDimension Objects

List dims = rootSchema.getDimensions();

Getting the Subschemas in an MdmSchema
The following code gets a List of MdmSchema objects that are in rootSchema.

Example 4–4 Getting Subschemas

List subSchemas = rootSchema.getSubSchemas();

Getting the Contents of Subschemas
For each MdmSchema that is under the root MdmSchema, you can call its
getMeasures, getDimensions, and getSubSchemas methods. The procedures are
the same as those for getting the contents of the root MdmSchema.

Getting the MdmMeasureDimension and Its Contents
Example 4–5 gets the MdmMeasureDimension that is in the root MdmSchema. Use this
method only on the root MdmSchema, because only the root MdmSchema has the
MdmMeasureDimension. The example displays the names of the MdmMeasure
objects that are contained by the MdmMeasureDimension.

Example 4–5 Getting the MdmMeasureDimension and Its Contents

MdmMeasureDimension mdmMeasureDim =
 (MdmMeasureDimension) rootSchema.getMeasureDimension();
List mdmMeasureDimMeasures = mdmMeasureDim.getMeasures();
Iterator mdmMeasureDimMeasuresItr = mdmMeasureDimMeasures.iterator();
MdmMeasure measure = null;
System.out.println("The measures in the MdmMeasureDimension are:");
while (mdmMeasureDimMeasuresItr.hasNext())
{
 measure = (MdmMeasure) mdmMeasureDimMeasuresItr.next();
 System.out.println("\t" + measure.getName());
}

Getting the Characteristics of Metadata Objects
Having discovered the list of MdmMeasure and MdmDimension objects, the next step
in metadata discovery involves finding out the characteristics of those objects.

Getting the MdmDimension Objects for an MdmMeasure
A primary characteristic of an MdmMeasure is that it has related
MdmPrimaryDimension objects. Example 4–6 gets a List of
MdmPrimaryDimension objects for mdmUnits, which is an MdmMeasure.

Getting the Source for a Metadata Object

4-6 Oracle OLAP Developer's Guide to the OLAP API

Example 4–6 Getting the Dimensions of an MdmMeasure

List dimsOfUnits = mdmUnits.getDimensions();

The getMeasureInfo method, which is in the Example 4–9, shows one way to iterate
through the MdmPrimaryDimension objects belonging to an MdmMeasure.

Getting the Related Objects for an MdmPrimaryDimension
An MdmPrimaryDimension has one or more component MdmHierarchy objects,
which you can obtain by calling its getHierarchies method. That method returns a
List of MdmHierarchy objects. If an MdmHierarchy is an MdmLevelHierarchy,
then it has levels that you can obtain by calling its getLevels method.

Example 4–7 demonstrates how you can get the MdmHierarchy objects for an
MdmPrimaryDimension. The example displays the OLAP Catalog names of the
MdmHierarchy objects.

Example 4–7 Getting the MdmHierarchy Components of an MdmPrimaryDimenison

List mdmHiers = mdmPrimaryDim.getHierarchies();
Iterator mdmHiersItr = mdmHiers.iterator();
System.out.println("The MdmHierarchy components of " + mdmPrimaryDim.getName()
 + " are:");
while (mdmHiersItr.hasNext())
{
 MdmHierarchy mdmHier = (MdmHierarchy) mdmHiersItr.next();
 System.out.println("\t" + mdmHier.getName());
}

The getDimInfo method in Example 4–9 shows one way to get the following
metadata objects for an MdmDimension.

■ Its concrete class.

■ Its MdmHierarchy objects.

■ Its default MdmHierarchy object.

■ The MdmAttribute objects returned by its getAttributes method.

■ Its parent, ancestors, level, and level depth attributes.

Methods are also available for obtaining other MdmPrimaryDimension
characteristics. See the Oracle OLAP Java API Reference for descriptions of all of the
methods of the MDM classes.

Getting the Source for a Metadata Object
A metadata object represents a set of data, but it does not provide the ability to create
queries on that data. Its function is informational, recording the existence, structure,
and characteristics of the data. It does not give access to the data values.

To access the data values for a metadata object, an application gets the Source object
for that metadata object. A Source for a metadata object is called a primary Source.

To get the primary Source for a metadata object, an application calls the getSource
method of that metadata object. For example, if an application needs to display the
quantity of product units sold during the year 1999, then it must use the getSource
method of the MdmMeasure for that data, which is mdmUnits in the following
example.

Sample Code for Discovering Metadata

Discovering the Available Metadata 4-7

Example 4–8 Getting a Primary Source for a Metadata Object

Source units = mdmUnits.getSource();

For more information about getting and working with primary Source objects, see
Chapter 6, "Understanding Source Objects".

Sample Code for Discovering Metadata
The sample code that follows is a simple Java program called
SampleMetadataDiscoverer10g. The program discovers the metadata objects that
are under the root MdmSchema of a data store. The output of the program lists the
names and related objects for the MdmMeasure and MdmDimension objects in the root
MdmSchema and the MdmSchema subschema for the relational Global Schema for
Documentation with OLAP Catalog Metadata.

After presenting the program code, this topic presents the output of the program when
it is run against a data store that consists of the Global relational schema. In the OLAP
metadata, the Global schema is represented as the GLOBAL_CAT measure folder.
Through an OLAP API connection, the GLOBAL_CAT measure folder maps to an
MdmSchema whose name is GLOBAL_CAT.

Code for the SampleMetadataDiscoverer10g Program
The program in Example 4–9 gets the OLAP Catalog metadata objects that map to the
tables and views of the Global relational schema. It passes the command line
arguments that specify the server on which the Oracle Database instance is running
and a user name and password to the connectToDB method of a MyConnection10g
object, which establishes a connection to the database.

The code for the MyConnection10g is not shown here, but the procedure for
connecting is described in Chapter 3, "Connecting to a Data Store". The complete code
for the MyConnection10g and the SampleMetadataDiscoverer10g classes is
available from the Overview of the Oracle OLAP Java API Reference.

Example 4–9 Discovering the OLAP Catalog Metadata

package globalExamples;

import oracle.express.olapi.data.full.ExpressDataProvider;
import oracle.olapi.metadata.mdm.*;
import oracle.olapi.data.source.Source;

import java.util.List;
import java.util.Iterator;

/**
 * Discovers the MDM metadata objects in the Global schema.
 * This file and the MyConnection10g.java file are available from the
 * Overview of the <I>Oracle OLAP Java API Reference</I>.
 */
public class SampleMetadataDiscoverer10g
{
/**
 * Constant to use to display less information about metadata objects.
 */
static final int TERSE = 0;
/**
 * Constant to use to display more information about metadata objects.

Sample Code for Discovering Metadata

4-8 Oracle OLAP Developer's Guide to the OLAP API

 */
static final int VERBOSE = 1;

private MdmSchema root = null;
private MdmPrimaryDimension mdmDim = null;

 public SampleMetadataDiscoverer10g()
 {
 }

 /**
 * Creates an object that makes a connection to an Oracle database
 * and gets MDM metadata objects.
 */
 public void run(String[] args)
 {
 // Connect through JDBC to an instance of an Oracle database
 // and get a DataProvider.
 MyConnection10g myConn = new MyConnection10g();
 ExpressDataProvider dp = myConn.connectToDB(args, TERSE);

 // Get the default MdmMetadataProvider from the DataProvider.
 MdmMetadataProvider mp = null;
 try
 {
 mp = (MdmMetadataProvider) dp.getDefaultMetadataProvider();
 }
 catch (Exception e)
 {
 System.out.println("Cannot create the MDM metadata provider." + e);
 }

 // Get metadata information about the root MdmSchema and its subschemas.
 try
 {
 root = mp.getRootSchema();
 System.out.println("The root MdmSchema is " + root.getName() + ".\n");
 getSchemaInfo(root, VERBOSE);
 }
 catch (Exception e)
 {
 System.out.println("Encountered exception. " + e);
 }

 // Get the Source for the dimension that was saved in getDimInfo.
 System.out.println("\nGetting the primary Source object for dimension " +
 mdmDim.getName() + ".");
 Source dimSource = mdmDim.getSource();
 System.out.println("Got the Source.");

 // Close the ExpressDataProvider and the connection.
 dp.close();
 System.out.println("\nClosed the DataProvider.");
 myConn.closeConnection();
 System.out.println("Closed the connection.");
 }

 /**
 * Gets information about an MdmSchema.
 */

Sample Code for Discovering Metadata

Discovering the Available Metadata 4-9

 public void getSchemaInfo(MdmSchema schema, int outputStyle)
 {
 if (schema == root)
 {
 System.out.println("The MdmPrimaryDimension components of" +
 "the root schema are:");
 }
 else
 {
 System.out.println(" The MdmPrimaryDimension components of schema "
 + schema.getName() + " are:");
 }
 // Get the dimension information for the MdmSchema.
 MdmPrimaryDimension oneDim = null;
 int i = 1;
 try
 {
 List dims = schema.getDimensions();
 Iterator dimIter = dims.iterator();
 // Save the first dimension to use later for getting its Source.
 mdmDim = (MdmPrimaryDimension) dims.get(0);
 // Iterate through the list of MdmPrimaryDimension objects and get
 // information about each one.
 while (dimIter.hasNext())
 {
 oneDim = (MdmPrimaryDimension) dimIter.next();
 getDimInfo(i, oneDim, outputStyle);
 i++;
 }
 }
 catch (Exception e)
 {
 System.out.println(" Encountered exception. " + e);
 }

 // If the MdmSchema is the root MdmSchema, get the
 // MdmMeasureDimension amd get its measures.
 MdmMeasure oneMeasure = null;
 MdmMeasureDimension mdmMeasureDim =
 (MdmMeasureDimension) schema.getMeasureDimension();
 if (mdmMeasureDim != null)
 {
 System.out.println("The measures of the MdmMeasureDimension are:");
 List mdmMeasures = mdmMeasureDim.getMeasures();
 Iterator mdmMeasuresIter = mdmMeasures.iterator();
 while (mdmMeasuresIter.hasNext())
 {
 oneMeasure = (MdmMeasure) mdmMeasuresIter.next();
 getMeasureInfo(oneMeasure, outputStyle);
 System.out.println(" ");
 }
 }

 // Get the measures from the MdmSchema.
 try
 {
 List mdmMeasures = schema.getMeasures();
 if (mdmMeasures.size() > 0)
 {
 Iterator mdmMeasuresIter = mdmMeasures.iterator();

Sample Code for Discovering Metadata

4-10 Oracle OLAP Developer's Guide to the OLAP API

 System.out.println("\n The measures of schema " +
 schema.getName() + " are:");
 while (mdmMeasuresIter.hasNext())
 {
 oneMeasure = (MdmMeasure) mdmMeasuresIter.next();
 getMeasureInfo(oneMeasure, outputStyle);
 }
 }
 }
 catch (Exception e)
 {
 System.out.println(" Encountered exception. " + e);
 }

 // Get the subschema information for the MdmSchema.
 MdmSchema oneSchema = null;
 try
 {
 List subSchemas = schema.getSubSchemas();
 Iterator subSchemaIter = subSchemas.iterator();
 while (subSchemaIter.hasNext())
 {
 oneSchema = (MdmSchema) subSchemaIter.next();
 // To get information on subschemas other than the Global
 // schema, GLOBAL_CAT, remove the if condition and call
 // the getSchemaInfo method.
 if (oneSchema.getName().equals("GLOBAL_CAT"))
 getSchemaInfo(oneSchema, TERSE);
 }
 }
 catch (Exception e)
 {
 System.out.println(" Encountered exception. " + e);
 }
 }

 /**
 * Gets information about an MdmMeasure.
 */
 public void getMeasureInfo(MdmMeasure measure, int outputStyle)
 {
 System.out.println(" " + measure.getName());
 if (outputStyle == VERBOSE)
 {
 // Get the dimensions of the MdmMeasure.
 try
 {
 List mDims = measure.getDimensions();
 Iterator mDimIter = mDims.iterator();
 System.out.println(" Its dimensions are: ");
 while (mDimIter.hasNext())
 {
 System.out.println(" " +
 ((MdmDimension) mDimIter.next()).getName());
 }
 }
 catch (Exception e)
 {
 System.out.println(" Encountered exception. " + e);
 }

Sample Code for Discovering Metadata

Discovering the Available Metadata 4-11

 }
 }

 /**
 * Gets information about an MdmDimension.
 */
 public void getDimInfo(int count,
 MdmPrimaryDimension dim,
 int outputStyle)
 {
 if (outputStyle == TERSE)
 System.out.println(" " + dim.getName());

 else if (outputStyle == VERBOSE)
 {
 System.out.println(count + ": MdmPrimaryDimension Name: " +
 dim.getName());
 String description = dim.getDescription();
 if (description.length() > 0)
 System.out.println(" Description: " + dim.getDescription());
 // Determine the type of the MdmPrimaryDimension.
 try
 {
 if (dim instanceof MdmStandardDimension)
 {
 System.out.println(" It is an MdmStandardDimension.");
 }
 else if (dim instanceof MdmTimeDimension)
 {
 System.out.println(" It is an an MdmTimeDimension.");
 }
 else if (dim instanceof MdmMeasureDimension)
 {
 System.out.println(" It is an MdmMeasureDimension.");
 }
 }
 catch (Exception e)
 {
 System.out.println(" Encountered exception. " + e);
 }

 // Get the attributes of the MdmPrimaryDimension
 System.out.println(" Its attributes are:");
 try
 {
 List attributes = dim.getAttributes();
 Iterator attrIter = attributes.iterator();
 while (attrIter.hasNext())
 {
 System.out.println(" Attribute: " +
 ((MdmAttribute) attrIter.next()).getName());
 }
 }
 catch (Exception e)
 {
 System.out.println(" Encountered exception. " + e);
 }

 // Get the hierarchies of the MdmPrimaryDimension
 getHierInfo(dim);

Sample Code for Discovering Metadata

4-12 Oracle OLAP Developer's Guide to the OLAP API

 System.out.println(" ");
 }
 }

 /**
 * Gets the MdmHierarchy components of an MdmPrimaryDimension.
 */
 public void getHierInfo(MdmPrimaryDimension dim)
 {
 List mdmHiers = dim.getHierarchies();
 Iterator mdmHiersItr = mdmHiers.iterator();
 MdmHierarchy mdmHier = null;
 MdmLevelHierarchy mdmLevelHier = null;
 boolean isLevelHierarchy = false;
 int i = 1;
 System.out.println(" The MdmHierarchy components of " +
 dim.getName() + " are:");
 while (mdmHiersItr.hasNext())
 {
 mdmHier = (MdmHierarchy) mdmHiersItr.next();
 System.out.println(" "+ i + ": " + mdmHier.getName());
 if (mdmHier.isDefaultHierarchy())
 {
 System.out.println(" "+ i + ": " + mdmHier.getName());
 " is the default MdmHierarchy of " + dim.getName() + ".");
 }
 if (mdmHier instanceof MdmLevelHierarchy)
 {
 mdmLevelHier = (MdmLevelHierarchy) mdmHier;
 System.out.println(" It is an MdmLevelHierarchy.");
 isLevelHierarchy = true;
 }
 else if (mdmHier instanceof MdmValueHierarchy)
 {
 System.out.println(" It is an MdmValueHierarchy");
 }
 System.out.println(" Its attributes are:");
 if (isLevelHierarchy)
 {
 System.out.println(" Level attribute: "
 + mdmLevelHier.getLevelAttribute().getName());
 System.out.println(" Level depth attribute: "
 + mdmLevelHier.getLevelDepthAttribute().getName());
 }
 System.out.println(" Parent attribute: " +
 mdmHier.getParentAttribute().getName());
 System.out.println(" Ancestors attribute: " +
 mdmHier.getAncestorsAttribute().getName());
 if (isLevelHierarchy)
 getLevelInfo(mdmLevelHier);
 i++;
 }
 }

 /**
 * Gets the MdmLevel components of an MdmLevelHierarchy.
 */
 public void getLevelInfo(MdmLevelHierarchy mdmHier)
 {
 List mdmLevels = mdmHier.getLevels();

Sample Code for Discovering Metadata

Discovering the Available Metadata 4-13

 Iterator mdmLevelsItr = mdmLevels.iterator();
 System.out.println(" Its levels are:");
 while (mdmLevelsItr.hasNext()) {
 MdmLevel mdmLevel = (MdmLevel) mdmLevelsItr.next();
 System.out.println(" " + mdmLevel.getName());
 }
 }

 /**
 * Creates a new SampleMetadataDiscoverer10g object and calls its
 * run method.
 */
 public static void main(String[] args)
 {
 new SampleMetadataDiscoverer().run(args);
 }
}

Output from the SampleMetadataDiscoverer10g Program
The output from the sample program consists of text lines produced by Java
statements such as the following one.

System.out.println("The root MdmSchema is " + root.getName() + ".\n");

When the program is run on the Global Schema for Documentation with OLAP
Catalog Metadata, the output includes the following items:

■ The name of the root MdmSchema, which is ROOT.

■ The names and other information for the MdmPrimaryDimension objects in the
root MdmSchema.

■ The measures in the MdmMeasureDimension.

■ The dimensions and measures of the GLOBAL_CAT MdmSchema.

Because the GLOBAL_CAT MdmSchema is the only subschema under the root
MdmSchema, its MdmPrimaryDimension objects are identical to those in the root.

■ Two lines that indicate that the code got the primary Source for an
MdmPrimaryDimension.

Here is the output. To conserve space, some blank lines have been omitted.

The root MdmSchema is ROOT.

The MdmPrimaryDimension components of the root schema are:
1: MdmPrimaryDimension Name: CHANNEL
 It is an MdmStandardDimension.
 Its attributes are:
 Attribute: Long_Description
 Attribute: Short_Description
 The MdmHierarchy components of CHANNEL are:
 1: CHANNEL_ROLLUP
 CHANNEL_ROLLUP is the default MdmHierarchy of CHANNEL.
 It is an MdmLevelHierarchy.
 Its attributes are:
 Level attribute: D_GLOBAL.CHANNELLEVEL_ATTRIBUTE
 Level depth attribute: D_GLOBAL.CHANNELLEVELDEPTH_ATTRIBUTE
 Parent attribute: D_GLOBAL.CHANNELPARENT_ATTRIBUTE
 Ancestors attribute: D_GLOBAL.CHANNELANCESTORS_ATTRIBUTE

Sample Code for Discovering Metadata

4-14 Oracle OLAP Developer's Guide to the OLAP API

 Its levels are:
 ALL_CHANNELS
 CHANNEL

2: MdmPrimaryDimension Name: CUSTOMER
 It is an MdmStandardDimension.
 Its attributes are:
 Attribute: Long_Description
 Attribute: Short_Description
 The MdmHierarchy components of CUSTOMER are:
 1: MARKET_ROLLUP
 It is an MdmLevelHierarchy.
 Its attributes are:
 Level attribute: D_GLOBAL.CUSTOMERLEVEL_ATTRIBUTE
 Level depth attribute: D_GLOBAL.CUSTOMERLEVELDEPTH_ATTRIBUTE
 Parent attribute: D_GLOBAL.CUSTOMERPARENT_ATTRIBUTE
 Ancestors attribute: D_GLOBAL.CUSTOMERANCESTORS_ATTRIBUTE
 Its levels are:
 TOTAL_MARKET
 MARKET_SEGMENT
 ACCOUNT
 SHIP_TO
 2: SHIPMENTS_ROLLUP
 SHIPMENTS_ROLLUP is the default MdmHierarchy of CUSTOMER.
 It is an MdmLevelHierarchy.
 Its attributes are:
 Level attribute: D_GLOBAL.CUSTOMERLEVEL_ATTRIBUTE
 Level depth attribute: D_GLOBAL.CUSTOMERLEVELDEPTH_ATTRIBUTE
 Parent attribute: D_GLOBAL.CUSTOMERPARENT_ATTRIBUTE
 Ancestors attribute: D_GLOBAL.CUSTOMERANCESTORS_ATTRIBUTE
 Its levels are:
 ALL_CUSTOMERS
 REGION
 WAREHOUSE
 SHIP_TO

3: MdmPrimaryDimension Name: PRODUCT
 It is an MdmStandardDimension.
 Its attributes are:
 Attribute: Long_Description
 Attribute: Package
 Attribute: Short_Description
 The MdmHierarchy components of PRODUCT are:
 1: PRODUCT_ROLLUP
 PRODUCT_ROLLUP is the default MdmHierarchy of PRODUCT.
 It is an MdmLevelHierarchy.
 Its attributes are:
 Level attribute: D_GLOBAL.PRODUCTLEVEL_ATTRIBUTE
 Level depth attribute: D_GLOBAL.PRODUCTLEVELDEPTH_ATTRIBUTE
 Parent attribute: D_GLOBAL.PRODUCTPARENT_ATTRIBUTE
 Ancestors attribute: D_GLOBAL.PRODUCTANCESTORS_ATTRIBUTE
 Its levels are:
 TOTAL_PRODUCT
 CLASS
 FAMILY
 ITEM

4: MdmPrimaryDimension Name: TIME
 It is an an MdmTimeDimension.
 Its attributes are:

Sample Code for Discovering Metadata

Discovering the Available Metadata 4-15

 Attribute: End_Date
 Attribute: Long_Description
 Attribute: Short_Description
 Attribute: Time_Span
 The MdmHierarchy components of TIME are:
 1: CALENDAR
 CALENDAR is the default MdmHierarchy of TIME.
 It is an MdmLevelHierarchy.
 Its attributes are:
 Level attribute: D_GLOBAL.TIMELEVEL_ATTRIBUTE
 Level depth attribute: D_GLOBAL.TIMELEVELDEPTH_ATTRIBUTE
 Parent attribute: D_GLOBAL.TIMEPARENT_ATTRIBUTE
 Ancestors attribute: D_GLOBAL.TIMEANCESTORS_ATTRIBUTE
 Its levels are:
 YEAR
 QUARTER
 MONTH

The measures of the MdmMeasureDimension are:
 UNIT_COST
 Its dimensions are:
 PRODUCT
 TIME

 UNIT_PRICE
 Its dimensions are:
 PRODUCT
 TIME

 UNITS
 Its dimensions are:
 CHANNEL
 CUSTOMER
 PRODUCT
 TIME

Schema: GLOBAL_CAT
 The MdmPrimaryDimension components of schema GLOBAL_CAT are:
 CHANNEL
 CUSTOMER
 PRODUCT
 TIME

 The measures of schema GLOBAL_CAT are:
 UNITS
 UNIT_COST
 UNIT_PRICE

Getting the primary Source object for dimension CHANNEL.
Got the Source.

Closed the DataProvider.
Closed the connection.

Sample Code for Discovering Metadata

4-16 Oracle OLAP Developer's Guide to the OLAP API

Working with Metadata Mapping Objects 5-1

5
Working with Metadata Mapping Objects

The objects in the MDM model, which is described in Chapter 2, are based on
relational tables and views in the data store. Metadata mapping (MTM) objects
provide the information that maps the MDM objects to the relational tables and views
on which the MDM objects are based. MTM objects are instances of the classes in the
oracle.olapi.metadata.mtm package.

Application developers who have extensive experience with the OLAP API and with
SQL can investigate, and in some cases create, objects from the MTM classes. For
example, they might want to investigate MTM objects in order to discover the tables
and columns to which particular MDM objects are mapped. Or they might want to
create new objects in order to implement custom MDM objects, such as an
MdmMeasure.

This chapter briefly describes the MTM objects, explains key concepts required for
understanding them, and provides simple examples of how they can be used. The
chapter has the following sections:

■ Overview of the MTM Classes

■ Discovering the Columns Mapped To an MdmSource

■ Creating a Custom Measure

■ Understanding Solved and Unsolved Data

For detailed information about the MTM classes, see the Oracle OLAP Java API
Reference. For the complete code for the examples in this chapter, see the example
programs available from the Overview of the Oracle OLAP Java API Reference.

Overview of the MTM Classes
When an application developer uses Source objects to specify a query and Cursor
objects to execute it, Oracle OLAP first identifies the MdmSource objects that
correspond to the Source objects, and then identifies the MtmSourceMap objects that
correspond to those MDMSource objects. An MtmSourceMap object maps the
relationship between an MdmSource and the underlying SQL tables and expressions
on which the MdmSource is based.

Oracle OLAP must identify the underlying SQL tables and expressions, because it
must generate a SQL SELECT statement for every MdmSource that is referenced in an
OLAP API query. The SELECT statements are constructed by the SQL generator
component of Oracle OLAP.

Overview of the MTM Classes

5-2 Oracle OLAP Developer's Guide to the OLAP API

SELECT Statements for MdmSource Objects
The SQL generator tailors a SQL statement to the subclass of MdmSource for which it
is generating the SQL code.

■ For an MdmSubDimension, the SQL statement is based on an
MtmDimensionMap. The code includes the following three parts, one on each line.

SELECT select-list-expression
FROM source-table
ORDER BY expression

■ For an MdmMeasure, the SQL statement is based on an MtmMeasureMap. The
code includes the following two parts, one on each line.

SELECT select-list-expression
FROM source-table

■ An MdmAttribute does not have its own SQL statement. An MdmAttribute is
associated with an MdmDimension, and it is based on the table or tables to which
the MdmDimension is mapped. The columns for the MdmAttribute are part of
the select-list-expression for the SELECT statement on which the MdmDimension is
based. An MtmAttributeMap stores information about those columns.

An MdmDimensionMap, MdmMeasureMap, or MdmAttributeMap references the
following MTM objects, which hold information about the parts of the generated SQL
statement:

■ An MtmExpression, which identifies an expression that the SQL generator can
use as the select-list-expression.

■ An MtmTabularSource, which identifies a logical table that the SQL generator
can use as the source-table in the FROM clause. A source-table can be a table or view, a
SELECT statement, or the join of a pair of tables.

■ An MtmDimensionOrderSpecification, which holds information that the
SQL generator can use to construct the expression for the ORDER BY clause of the
SELECT statement for an MdmDimension.

For MdmMeasure objects, the SQL generator also uses the following MTM objects:

■ MtmBaseCube objects, which record the dimensionality of the MdmMeasure
objects for one set of the dimension hierarchies of an MtmPartionedCube.

■ MtmCubeDimensionality objects, which store information about the fact table
and dimension tables that must be joined to specify the data of an MdmMeasure.
An MtmBaseCube has a set of MtmCubeDimensionality objects, one for each
dimension of the measures of the cube.

Purpose of MTM Objects
Instances of the classes in the MTM package provide the information that the SQL
generator needs to construct SELECT statements that implement OLAP API queries.
The information is recorded in the form of MTM objects, such as MtmExpression,
MtmTabularSource, and MtmCube.

As an application developer, you can interrogate MTM objects to discover the
underlying relational tables and expressions. In some cases, you can use the
information that you have discovered to create new MdmSource objects.

Discovering the Columns Mapped To an MdmSource

Working with Metadata Mapping Objects 5-3

Measures, Cubes, and Hierarchies
For mapping purposes, every MdmMeasure belongs to a cube, and all of the
MdmMeasure objects in a cube have the same dimensionality. That is, the values of the
measures are specified by elements of the same set of MdmDimension objects. Thus,
when you know the cube to which a measure belongs, you also know its
dimensionality. From the point of view of mapping, the MTM model only has to
record the dimensionality once for all the measures in a cube.

Dimensions can have multiple hierarchies, and the underlying data can be different for
each hierarchy. Therefore, the MTM model emphasizes hierarchy mappings, which are
more specific, rather than dimension mappings.

The MTM model also considers the fact that if a cube is made up of dimensions with
multiple hierarchies, then the data can be different for each combination of hierarchies.
Therefore, such a cube is partitioned into base cubes, each of which represents one
hierarchy combination.

For example, the OLAP Catalog has a cube for the UNITS measure and its four
dimensions, which are TIME, PRODUCTS, CHANNEL, and CUSTOMER. CUSTOMER has
two hierarchies, MARKET_ROLLUP and SHIPMENTS_ROLLUP. The other three
dimensions each have only one hierarchy, which are CALENDAR, PRODUCT_ROLLUP,
and CHANNEL_ROLLUP. The following are the possible hierarchy combinations for the
measures.

CALENDAR, PRODUCT_ROLLUP, CHANNEL_ROLLUP, MARKET_ROLLUP

CALENDAR, PRODUCT_ROLLUP, CHANNEL_ROLLUP, SHIPMENTS_ROLLUP

The MtmPartitionedCube for that cube therefore has two MtmBaseCube objects.

For all of these reasons, the mappings that are recorded by MTM objects are organized
by cube and hierarchy, rather than by measure and dimension.

Discovering the Columns Mapped To an MdmSource
Ordinarily, neither an end-user nor an application developer needs to know the names
of the relational columns to which an MdmSource is mapped. However, sometimes
this information can be useful. For example, an application developer might want to
ask a database administrator (DBA) to change a particular value in a dimension or
might want to identify an existing column so that the developer can map a new
custom metadata object to it. To discover the columns to which an MdmSource is
mapped, you use instances of the concrete subclasses of the MtmObject class.

To identify the columns to which an MdmSource is mapped, you first get the
MtmSourceMap for the MdmSource, and then from it you get the
MtmTabularSource. From the MtmTabularSource, you get the
MtmColumnExpression objects that represent the columns.

Of course, not all MdmSource objects have a specific column that can be mapped. An
MdmSource that is mapped to a specific column has an MtmExpression that is
implemented as an MtmColumnExpression. The MtmExpression cannot be an
MtmCustomExpression or MtmLiteralExpression, because these objects are not
based on a specific column. You should be familiar with the data and metadata with
which you are working, so that you are not attempting to find specific columns for
MdmSource objects that are derived or otherwise specified.

Discovering the Columns Mapped To an MdmSource

5-4 Oracle OLAP Developer's Guide to the OLAP API

Example of Getting the Columns Mapped To an MdmLevelHierarchy
In Example 5–1, mdmProdHier is an MdmLevelHierarchy that represents the
default hierarchy of the PRODUCT dimension. The example gets the
MtmLevelHierarchyMap for the MdmLevelHierarchy, gets the
MtmRdbmsTableOrView that represents the relational table to which the dimension is
mapped, and then gets the MtmColumnExpression objects that represent the
columns of the table.

Example 5–1 Getting the Columns for an MtmLevelHierarchyMap

MtmLevelHierarchyMap mtmProdHierMap =
 (MtmLevelHierarchyMap) mdmProdHier.getLevelHierarchyMap();
MtmRdbmsTableOrView mtmRdbmsTableOrView =
 (MtmRdbmsTableOrView) mtmProdHierMap.getTable();
System.out.println("The name of the table is "
 + mtmRdbmsTableOrView.getName());
List mdmProdColumns = mtmRdbmsTableOrView.getColumns();
Iterator mdmProdColItr = mdmProdColumns.iterator();
System.out.println("Its columns are:");
while (mdmProdColItr.hasNext())
{
 MtmColumnExpression mtmColExp = (MtmColumnExpression) mdmProdColItr.next();
 System.out.println(mtmColExp.getColumnName());
}

The output of the example is the following:

The name of the table is GLOBAL.PRODUCT_DIM
Its columns are:
TOTAL_PRODUCT_ID
CLASS_ID
FAMILY_ID
ITEM_ID
CLASS_DSC
FAMILY_DSC
ITEM_DSC
TOTAL_PRODUCT_DSC
ITEM_PACKAGE_ID

Example of Getting the Columns Mapped To an MdmLevel
In Example 5–2, the mdmShipToLevel object is the MdmLevel that represents the
SHIP_TO level of the default MdmLevelHierarchy of the CUSTOMER dimension. The
example gets the MtmColumnExpression object that represents the column to which
the MdmLevel is mapped and then gets the table that the column is in.

Example 5–2 Getting the Column Mapped To an MdmLevel

MtmLevelMap mtmShipToLevelMap = mdmShipToLevel.getLevelMap();
MtmColumnExpression mtmShipToColumnExp = (MtmColumnExpression)
 mtmShipToLevelMap.getLevelExpression();
String shipToLevelColumnName = mtmShipToColumnExp.getColumnName();
System.out.println(shipToLevelColumnName);

MtmRdbmsTableOrView mtmTableWithShipTo = (MtmRdbmsTableOrView)
 mtmShipToColumnExp.getTable();
System.out.println(mtmTableWithShipTo.getName());

Creating a Custom Measure

Working with Metadata Mapping Objects 5-5

The example displays the following:

SHIP_TO_ID
GLOBAL.CUSTOMER_DIM

Example of Getting the Columns Mapped To an MdmMeasure
In Example 5–3, mdmUnits is an MdmMeasure that represents the UNITS measure.
The example gets the MtmMeasureMap for the MdmMeasure, gets the
MtmPartitionedCube that represents the cube to which the measure belongs, and
gets the base cubes of the MtmPartitionedCube. The base cubes are all instances of
MtmUnsolvedCube.

For the first base cube, the example gets the MtmRdbmsTableOrView that represents
the relational table to which the dimension is mapped, which is the GLOBAL.UNITS_
HISTORY_FACT table, and then gets the MtmColumnExpression objects that
represent the columns of the table.

The other base cube of the partitioned cube represents the other combination of
dimension hierarchies for the cube. All of the base cubes are mapped to the same table.

Example 5–3 Getting the Columns For an MdmMeasure

MtmMeasureMap mtmMeasureMap = mdmUnits.getMeasureMap();
MtmPartitionedCube mtmPCube = (MtmPartitionedCube) mtmMeasureMap.getCube();
List baseCubes = mtmPCube.getBaseCubes();
MtmUnsolvedCube mtmFirstBaseCube = (MtmUnsolvedCube) baseCubes.get(0);
MtmRdbmsTableOrView mtmRdbmsTableorView =
 (MtmRdbmsTableOrView) mtmFirstBaseCube.getTable();
System.out.println("The name of the table is " +
 mtmRdbmsTableorView.getName());
List columns = mtmRdbmsTableorView.getColumns();
Iterator colItr = columns.iterator();
System.out.println("Its columns are:"
while (colItr.hasNext())
{
 MtmColumnExpression mtmColExpr = (MtmColumnExpression) colItr.next();
 System.out.println(mtmColExpr.getColumnName());
}

The example displays the following:

The name of the table is GLOBAL.UNITS_DETAIL_FACT
Its columns are:
CHANNEL_ID
SHIP_TO_ID
ITEM_ID
MONTH_ID
UNITS

Creating a Custom Measure
Using the MTM mapping objects, you can create a custom metadata objects, such as an
MdmMeasure, that exists only for the life of your MdmMetadataProvider. A custom
MdmMeasure must be assigned to an existing MtmCube.

To create a custom measure, you start with an existing MdmMeasure that has the
dimensionality that you want your custom MdmMeasure to have. Oracle OLAP
assigns the new MdmMeasure to the MtmCube to which the existing MdmMeasure
belongs, and creates it within the scope of your current MdmMetadataProvider.

Understanding Solved and Unsolved Data

5-6 Oracle OLAP Developer's Guide to the OLAP API

Complete the following steps to create the custom measure:

1. Call the getMeasureMap method of the existing MdmMeasure, which returns the
MtmMeasureMap for the MdmMeasure.

2. Call the getCube method of the MtmMeasureMap, which returns the
MtmPartitionedCube for the MtmMeasureMap.

3. Call the getMdmCustomObjectFactory method of your
MdmMetadataProvider, which returns an MdmCustomObjectFactory.

4. Call a method of the MdmCustomObjectFactory that creates a new
MtmExpression.

5. Call a method of the MdmCustomObjectFactory that accepts the MtmCube and
MtmExpression as parameters and returns a new custom MdmMeasure.

Example 5–4 demonstrates these steps. It creates a custom MdmMeasure that is based
on the RDBMS column to which an existing MdmMeasure is mapped. In the example,
the existing MdmMeasure is mdmUnitPrice and mp is the MdmMetadataProvider.
The MdmMeasure is based on the UNIT_PRICE column of the PRICE_AND_COST_
HISTORY_FACT table of the relational Global schema.

Example 5–4 Creating a Custom Measure

MtmMeasureMap mtmUnitPriceMap = mdmUnitPrice.getMeasureMap();
MtmPartitionedCube mtmUnitPricePartCube = (MtmPartitionedCube)
 mtmUnitPriceMap.getCube();
MdmCustomObjectFactory mdmCustObjFactory = mp.getMdmCustomObjectFactory();
FundamentalMetadataProvider fdp = dp.getFundamentalMetadataProvider();
FundamentalMetadataObject numberFMO = fdp.getNumberDataType();
MtmCustomExpression mtmCustExp =
 mdmCustObjFactory.createCustomExpression("UNIT_PRICE - UNIT_COST",
 numberFMO);
MdmMeasure mdmCustMeasure =
 mdmCustObjFactory.createNumericMeasure("MARKUP",
 mtmUnitPricePartCube,
 mtmCustExp);

Understanding Solved and Unsolved Data
The way in which an MdmSource is mapped by MTM objects depends on the way its
underlying data is specified (the data might be solved or unsolved) as well as the form
in which the data is aggregated (grouping set, rollup, or embedded totals form). An
understanding of these storage and aggregation concepts can be useful when you
peruse the MTM classes. Classes such as MtmSolvedETCubeDimensionality and
MtmUnsolvedLevelHierarchyMap encapsulate the storage and aggregation types.

Solved Versus Unsolved Cubes and Hierarchies
Typically, the data that is analyzed using the OLAP API is structured hierarchically.
Detailed (leaf-level) data is at the lowest level of the hierarchy, and aggregate data is at
higher levels of the hierarchy. A hierarchy is one of two types:

■ A level hierarchy, in which each element belongs to a level and the parent-child
relationships are organized by level. A level-based hierarchy can have up to 31
levels.

Understanding Solved and Unsolved Data

Working with Metadata Mapping Objects 5-7

■ A value hierarchy, in which each element participates in parent-child relationships
but there are no levels in the logical organization. (However, in the MTM model, a
logical value hierarchy is stored in a level-based form.)

The detail data is ordinarily specified by a DBA in relational tables, materialized
views, or an analytic workspace. However, the aggregate data might, or might not, be
specified by the DBA. Aggregate data that is not specified by the DBA must be
calculated by Oracle OLAP.

If all the data for a cube is specified by the DBA, then the cube is considered to be
solved. If some or all of the aggregate data must be calculated by Oracle OLAP, then
the cube is unsolved.

Note that the data for a solved cube is not necessarily stored in the database. It might
be specified by the DBA as a materialized view, which is calculated when necessary.
The distinction between solved and unsolved cubes rests on who specifies the data:
the DBA, or Oracle OLAP.

It is not only cubes that can be either solved or unsolved. Hierarchies can be solved or
unsolved as well. If all of the elements of a hierarchy, both aggregate and detailed,
exist in a single table or view, then the hierarchy is solved. If some or all of the
aggregate elements must be collected by Oracle OLAP from separate tables, then the
hierarchy is unsolved.

Aggregation Forms for Cubes
There are three possible forms in which data for a cube can be aggregated. For a solved
cube, the DBA specified the method of aggregation, so the SQL statement that is
constructed by the SQL generator does not have to reflect the aggregation form.
However, for an unsolved cube, the Oracle OLAP SQL generator constructs a SQL
statement that is appropriate to the aggregation form.

The following forms are supported. Each is described in terms of a SQL statement,
though it might be specified by a DBA for a solved cube or by the SQL generator for
an unsolved cube.

■ Grouping set aggregation form. The SQL statement uses the GROUP BY
GROUPING SETS syntax to aggregate the data for each level combination. The
select list includes all of the level expressions as well as a GROUPING_ID
expression for each hierarchy.

■ Rollup aggregation form. The SQL statement uses the GROUP BY ROLLUP syntax
to aggregate the data for each level combination. The select list includes all of the
level expressions as well as a GROUPING_ID expression for each hierarchy.

■ ET aggregation form. The SQL statement uses the GROUP BY ROLLUP syntax to
aggregate the data for each level combination. However, only the ET and
GROUPING_ID expression for each hierarchy are placed in the SELECT list.

The SQL expressions for the three aggregation forms are described in more detail in
the rest of this section. For information about GROUPING_ID expressions, ET
expressions, and types of aggregation, see the Oracle OLAP Application Developer's
Guide.

Aggregation for Unsolved Cubes
Using the aggregation form for a given cube, the SQL generator constructs an
appropriate SQL statement. (Note that the getAggregationForm method of an
MtmUnsolvedCube returns its aggregation form.)

Understanding Solved and Unsolved Data

5-8 Oracle OLAP Developer's Guide to the OLAP API

In all cases, the SQL statement aggregates the higher-level values from the detailed
level (leaf-level) data. The statement has the following structure.

SELECT SUM(measure1), SUM(measure2), ..., SUM(measureN), dimension-keys
FROM fact-table, dimension-tables
WHERE join-condition
GROUP BY group-by-clause

For example, assume a single hierarchy with three levels: Y as the top level, Q as the
middle level, and M as the bottom level. The GROUP BY clause is one of the following,
depending on the aggregation form:

GROUP BY clause for grouping set aggregation:

GROUP BY GROUPING SETS((Y), (Q), (M))

GROUP BY clause for rollup aggregation:

GROUP BY Y, ROLLUP(Q, M)

GROUP BY clause for ET aggregation:

GROUP BY Y, ROLLUP(Q, M)

Using the same example, the dimension-keys component of the select list is one of the
following, depending on the aggregation form:

dimension-keys for grouping set aggregation:

SELECT Y, Q, M, GROUPING_ID(Y, Q, M)

dimension-keys for rollup aggregation:

SELECT Y, Q, M, GROUPING_ID(Y, Q, M)

dimension-keys for ET aggregation:

SELECT
 (CASE GROUPING_ID(Y, Q, M)
 WHEN 3 THEN Y
 WHEN 1 THEN Q
 ELSE M
 END) et_value,
 GROUPING_ID(Y, Q, M)

In general, for grouping set or rollup form, the dimension-keys component is made up
of one expression for each level and one GROUPING ID expression. For ET form, the
dimension-keys component is made up of an ET expression and a GROUPING ID
expression.

Note that, in all cases, the join-condition in the generated SQL statement is determined
by the MtmUnsolvedCubeDimensionality object that is associated with the
MtmUnsolvedCube.

Aggregation for Solved Cubes
All of the values, both detail and aggregate, for a solved cube are explicitly specified
by a DBA. Therefore, the SELECT statement that is generated by the Oracle OLAP SQL
generator is relatively simple, and it has the same structure for all aggregation forms.
Using the same example, the SELECT statement would be the following.

SELECT Y, Q, M, dimension-keys
FROM source-table

Understanding Solved and Unsolved Data

Working with Metadata Mapping Objects 5-9

The dimension-keys component has the same make up as it does for unsolved cubes,
varying by the aggregation form that the DBA used.

The DBA specifies the aggregation form for a solved cube when he or she is setting up
metadata using Oracle Enterprise Manager or the SQL procedures provided by Oracle
for working with the OLAP Catalog.

The DBA specifies one of the following two storage types:

■ ET (Embedded Totals). The fact table for the cube includes all of the aggregated
values for the associated measures. Therefore, materialized views are not required.
DBAs can create cubes with the ET storage type when they use the SQL
procedures for working with the OLAP Catalog.

■ Lowest Level. The fact table for the cube includes only the detailed (leaf-level)
data. Aggregated values must be supplied using materialized views. When DBAs
create cubes using the OLAP Management tool in Oracle Enterprise Manager, the
cubes are created with lowest level storage type. Using a different tool, the DBA
can specify one of the following forms of materialized view for aggregating data:

■ Grouping Set form, in which all the hierarchy combinations are in a single
materialized view. This form is created when the DBA uses the DBMS_ODM
package procedures.

■ Rolled Up form, in which there is a separate materialized view for each
hierarchy combination. This form is created when the DBA uses the OLAP
Summary Adviser in Oracle Enterprise Manager.

Thus, there are three aggregation forms, which correspond to the following three
concrete subclasses of the MtmSolvedCubeDimensionality class.

■ MtmSolvedETCubeDimensionality

■ MtmSolvedGroupingSetCubeDimensionality

■ MtmSolvedRollupCubeDimensionality

A term that recurs in the methods of the MTM classes is GID, which stands for
Grouping ID. It refers to the GID column of the fact table for a cube. The GID column,
which is derived from the level columns in the fact table, identifies the level associated
with each value in a hierarchy. The values of a GID column are calculated by assigning
a zero to each non-null value and a one to each null value in the level columns. The
resulting binary number is the value of the GID. Hierarchy values that have the same
GID are in the same level.

For more information about storage types, aggregation forms, and GID columns, see
the Oracle OLAP Application Developer's Guide.

Solve Specifications for Unsolved Cubes
In addition to the aggregation form, an MtmUnsolvedCube has an
MtmSolveSpecification, which records the SQL operation that Oracle performs
when it aggregates the measure data specified by a dimension, and the order in which
Oracle aggregates the dimensions of the measure. An
MtmAggregationSpecification, which is a subclass of
MtmSolveSpecification, has one or more MtmAggregationStep objects.

An MtmAggregationStep specifies the SQL function and other aspects of operations
to perform when Oracle aggregates the values of the measures of an
MtmUnsolvedCube for the dimension hierarchies that of the MtmDimensionMap

Understanding Solved and Unsolved Data

5-10 Oracle OLAP Developer's Guide to the OLAP API

objects of the MtmAggregationStep. The MtmDimensionMap objects of an
MtmUnsolvedCube are always instances of MtmUnsolvedLevelHierarchyMap.

Each MtmUnsolvedLevelHierarchyMap of the MtmUnsolvedCube is associated
with one and only one MtmAggregationStep. An MtmAggregationStep can
specify the aggregation operations for one or more of the
MtmUnsolvedLevelHierarchyMap objects.

The default aggregation function is SUM. For an MtmSimpleAggregationStep, you
can specify other SQL group functions or your own function. You can create a simple
aggregation step or other types of aggregation steps with methods of an
MtmObjectFactory, which you get from your MdmMetadataProvider.

The other types of aggregation steps are MtmFirstLastAggregationStep,
MtmWeightedAverageStep, and MtmNoAggregationStep. An
MtmFirstLastAggregationStep represents an aggregation that uses the SUM
function and uses the measure data specified by the first or last child element of the
current parent element as the aggregate measure value for the parent element. An
MtmWeightedAverageStep specifies the AVG function with a weighting factor
applied to the aggregation. An MtmNoAggregationStep specifies that no
aggregation occur for the dimension hierarchy or hierarchies.

Understanding Source Objects 6-1

6
Understanding Source Objects

This chapter introduces Source objects, which you use to specify a query. With a
Source, you specify the data that you want to retrieve from the data store and the
analytical or other operations that you want to perform on the data. Chapter 7,
"Making Queries Using Source Methods", provides examples of using Source objects.
Using Template objects to make modifiable queries is discussed in Chapter 11,
"Creating Dynamic Queries".

This chapter includes the following topics:

■ Overview of Source Objects

■ Kinds of Source Objects

■ Characteristics of Source Objects

■ Inputs and Outputs of a Source

■ Describing Parameterized Source Objects

■ Model Objects and Source Objects

For the complete code for most of the examples in this chapter, see the example
programs available from the Overview of the Oracle OLAP Java API Reference.

Overview of Source Objects
After you have used the classes in the oracle.olapi.metadata.mdm package to
get MdmSource objects that represent measures and dimensions in the OLAP Catalog,
you can get Source objects from them. You can also create other Source objects with
methods of a DataProvider. You can then use the Source objects to create a query
that specifies the data that you want to retrieve from the database. To retrieve the data,
you create a Cursor for the Source.

With the methods of a Source, you can specify selections of dimension or measure
values and specify operations on the elements of the Source, such as mathematical
calculations, comparisons, and ordering, adding or removing elements of a query. The
Source class has a few basic methods and many shortcut methods that use one or
more of the basic methods. The most complex basic methods are the join(Source
joined, Source comparison, int comparisonRule, boolean visible)
method and the recursiveJoin(Source joined, Source comparison,
Source parent, int comparisonRule, boolean parentsFirst, boolean
parentsRestrictedToBase, int maxIterations, boolean visible)
method. The many other signatures of the join and recursiveJoin methods are
shortcuts for certain operations of the basic methods.

Kinds of Source Objects

6-2 Oracle OLAP Developer's Guide to the OLAP API

In this chapter, the information about the join method applies equally to the
recursiveJoin method, except where otherwise noted. With the join method, you
can select elements of a Source and, most importantly, you can relate the elements of
one Source to those of another Source. For example, to specify the dimension
members that retrieving the data of a measure requires, you use a join method to
relate the dimension to the measure.

A Source has certain characteristics, such as a type and a data type, and it sometimes
has one or more inputs or outputs. This chapter describes these concepts. It also
describes the different kinds of Source objects and how you get them, the join
method and other Source methods, and how you use those methods to specify a
query.

Kinds of Source Objects
The kinds of Source objects that you use to specify data and to perform analysis, and
the ways that you get them, are the following:

■ Primary Source objects, which are returned by the getSource method of an
MdmSource object such as an MdmDimension or an MdmMeasure. A primary
Source provides access to the data that the MdmSource represents. Getting
primary Source objects is usually the first step in creating a query. You then
typically select elements from the primary Source objects, thereby producing
derived Source objects.

■ Derived Source objects, which you get by calling some of the methods of a
Source object. Methods such as join return a new Source that is based on the
Source on which you call the method. All queries on the data store, other than a
simple list of values specified by the primary Source for an MdmSubdimension,
such as an MdmLevelHierarchy or an MdmLevel, are derived Source objects.

■ Fundamental Source objects, which are returned by the getSource method of a
FundamentalMetadataObject. These Source objects represent the OLAP API
data types.

■ List or range Source objects, which are returned by the
createConstantSource, createListSource or createRangeSource
methods of a DataProvider. Typically, you use this kind of Source as the
joined or comparison parameter to a join method.

■ Empty, null, or void Source objects. Empty and void Source objects are returned
by the getEmptySource or getVoidSource method of a DataProvider, and
null Source objects are returned by the nullSource method of a Source. An
empty Source has no elements. A void or null Source has one element that has
the value of null. The difference between them is that a void Source has as its
type the FundamentalMetadataObject for the Value data type, and the null
Source has as its type the Source whose nullSource method returned it.
Typically, you use these kinds of Source objects as the joined or comparison
parameter to a join method.

■ Dynamic Source objects, which are returned by the getSource method of a
DynamicDefinition. A dynamic Source is usually a derived Source. It is
generated by a Template, which you use to create a dynamic query that you can
revise after interacting with an end user.

■ Parameterized Source objects, which are returned by the
createParameterizedSource methods of a DataProvider. Like a list or
range Source, you use a parameterized Source as a parameter to the join
method. Unlike a list or range Source, however, you can change the value that

Characteristics of Source Objects

Understanding Source Objects 6-3

the Parameter represents after the join operation and thereby change the
selection that the derived Source represents. You can create a Cursor for that
derived Source and retrieve the results of the query. You can then change the
value of the Parameter, and, without having to create a new Cursor for the
derived Source, use that same Cursor to retrieve the results of the modified
query.

■ Placeholder Source objects, which are returned by the getSource method of the
FundamentalMetadataObject that represents a placeholder for a specific data
type. You get the FundamentalMetadataObject for a placeholder with
methods of a FundamentalMetadataProvider such as the
getNumberPlaceholder or getStringPlaceholder methods. Oracle OLAP
uses placeholder Source objects in Assignment objects in an MdmModel or
CustomModel. In an Assignment, a placeholder Source represents the Source
for the current dimensioned Source to which the value is being assigned. You can
use a placeholder Source in creating a custom dimension member and Oracle
OLAP automatically adds an Assignment to the appropriate Model.

The Source class has the following subclasses:

■ BooleanSource

■ DateSource

■ NumberSource

■ StringSource

These subclasses have different data types and implement Source methods that
require those data types. Each subclass also implements methods unique to it, such as
the implies method of a BooleanSource or the indexOf method of a
StringSource.

Characteristics of Source Objects
A Source has a data type and a type, a Source identification (ID), and a
SourceDefinition. This topic describes these concepts. Some Source objects have
one or more inputs or outputs. Those complex concepts are discussed in the "Inputs
and Outputs of a Source" topic. Some Source objects have an associated Model object,
which is discussed in the "Model Objects and Source Objects" topic.

Data Type of a Source
As described in Chapter 2, "Understanding OLAP API Metadata", the OLAP API has a
class, FundamentalMetadataObject, that represents the data type of the elements
of an MdmSource. The data type of a Source is represented by a fundamental
Source. For example, a BooleanSource has elements that have Java boolean
values. The data type of a BooleanSource is the fundamental Source that
represents OLAP API Boolean values.

To get the fundamental Source that represents the data type of a Source, call the
getDataType method of the Source. You can also get a fundamental Source by
calling the getSource method of a FundamentalMetadataObject.

Example 6–1 demonstrates getting the fundamental Source for the OLAP API String
data type, the Source for the data type of an MdmPrimaryDimension, and the
Source for the data type of the Source for the MdmPrimaryDimension, and
comparing them to verify that they are all the same object. In the example, dp is the

Characteristics of Source Objects

6-4 Oracle OLAP Developer's Guide to the OLAP API

DataProvider and mdmProdDim is the MdmPrimaryDimension for the Product
dimension.

Example 6–1 Getting the Data Type of a Source

FundamentalMetadataProvider fmp = dp.getFundamentalMetadataProvider();
FundamentalMetadataObject fmoStringDataType = fmp.getStringDataType();
Source stringDataTypeSource = fmoStringDataType.getSource();
FundamentalMetadataObject fmoMdmProdDimDataType =
 mdmProdDim.getDataType();
Source mdmProdDimDataTypeSource = fmoMdmProdDimDataType.getSource();
Source prodDim = mdmProdDim.getSource();
Source prodDimDataTypeSource = prodDim.getDataType();
if(stringDataTypeSource == prodDimDataTypeSource &&
 mdmProdDimDataTypeSource == prodDimDataTypeSource)
 System.out.println("The Source objects for the data types are all the same.");
else
 System.out.println("The Source objects for the data types are not " +
 "all the same.");

The example displays the following:

The Source objects for the data types are all the same.

Type of a Source
Along with a data type, a Source has a type, which is the Source from which the
elements of the Source are drawn. The type of a Source determines whether the
join method can match the Source to an input of another Source. The only Source
that does not have a type is the fundamental Source for the OLAP API Value data
type, which represents the set of all values, and from which all other Source objects
ultimately descend.

The type of a fundamental Source is its data type. The type of a list or range Source
is the data type of the values of the elements of the list or range Source.

The type of a primary Source is one of the following:

■ The fundamental Source that represents the data type of the values of the
elements of the primary Source. For example, the Source returned by
getSource method of a typical MdmMeasure is the fundamental Source that
represents the set of all OLAP API number values.

■ The Source for the MdmSource of which the MdmSource of the primary Source
is a component. For example, the type of the Source returned by the getSource
method of an MdmLevelHierarchy is the Source for the
MdmPrimaryDimension of which the hierarchy is a component.

The type of a derived Source is one of the following:

■ Its base Source, which is the Source whose method returned the derived
Source. A Source returned by the alias, extract, join, recursiveJoin, or
value methods, or one of their shortcuts, has its base Source as its type. An
exception is the derived Source returned by the distinct method, whose type
is the type of its base Source rather than the base Source itself.

■ A fundamental Source. Methods such as position and count return a Source
that has the fundamental Source for the OLAP API Integer data type as its type.
Methods that make comparisons, such as eq, le, and so on, return a Source that
has the fundamental Source for the Boolean data type as its type. Methods that
perform aggregate functions, such as the NumberSource methods total and

Characteristics of Source Objects

Understanding Source Objects 6-5

average, return as the type of the Source a fundamental Source that represents
the function.

You can find the type of a Source by calling its getType method.

A Source derived from another Source is a subtype of the Source from which it is
derived. You can use the isSubtypeOf method to determine if a Source is a subtype
of another Source.

For example, in Example 6–2 the myList object is a list Source. The example uses
myList to select values from prodRollup, a Source for the default
MdmLevelHierarchy of the MdmPrimaryDimension for the Product dimension. In
the example, dp is the DataProvider.

Example 6–2 Using the isSubtypeOf Method

Source myList = dp.createListSource(new String[] {
 "PRODUCT_ROLLUP::FAMILY::4",
 "PRODUCT_ROLLUP::FAMILY::5",
 "PRODUCT_ROLLUP::FAMILY::7",
 "PRODUCT_ROLLUP::FAMILY::8"});
Source prodSel = prodRollup.selectValues(myList);
if (prodSel.isSubtypeOf(prodRollup))
 System.out.println("prodSel is a subtype of prodRollup.");
else
 System.out.println("prodSel is not a subtype of prodRollup.");

Because prodSel is a subtype of prodRollup, the condition in the if statement is
true and the example displays the following:

prodSel is a subtype of prodRollup.

The type of both myList and prodRollup is the fundamental String Source. The
type of prodSel is prodRollup because the elements of prodSel are derived from
the elements of prodRollup.

The supertype of a Source is the type of the type of a Source, and so on, up through
the types to the Source for the fundamental Value data type. For example, the
fundamental Value Source is the type of the fundamental String Source, which is
the type of prodRollup, which is the type of prodSel. The fundamental Value
Source and the fundamental String Source are both supertypes of prodSel. The
prodSel Source is a subtype of prodRollup, and of the fundamental String
Source, and of the fundamental Value Source.

Source Identification and SourceDefinition of a Source
A Source has an identification, an ID, which is a String that uniquely identifies it
during the current connection to the database. You can get the identification of a
Source by calling its getID method. For example, the following code gets the
identification of the Source for the MdmPrimaryDimension for the Product
dimension and displays the value.

System.out.println("The Source ID of prodDim is " +
 prodDim.getID());

The preceding code displays the following:

The Source ID of prodDim is Hidden..D_GLOBAL.PRODUCT

The text displayed by Example 6–9 has several examples of Source identifications.

Inputs and Outputs of a Source

6-6 Oracle OLAP Developer's Guide to the OLAP API

Each Source has a SourceDefinition object, which records information about the
Source. The different kinds of Source objects have different kinds of
SourceDefinition objects. For example, the fundamental Source for an
MdmPrimaryDimension has an MdmSourceDefinition, which is a subclass of
HiddenDefinition, which is a subclass of SourceDefinition.

The SourceDefinition of a Source that is produced by a call to the join method
is an instance of the JoinDefinition class. From a JoinDefinition you can get
information about the parameters of the join operation that produced its Source, such
as the base Source, the joined Source, the comparison Source, the comparison rule,
and the value of the visible parameter.

Inputs and Outputs of a Source
The inputs and the outputs of a Source are complex and powerful aspects of the
class. This section describes the concepts of inputs and outputs and provides examples
of how they are related.

Inputs of a Source
A Source that has inputs is a dimensioned Source. An input of a Source is also a
Source. An input indicates that the values of the dimensioned Source depend upon
an unspecified set of values of the input. A Source that matches to the input provides
the values that the input requires. You match an input to a dimensioned Source by
using the join method. For information on how to match a Source to an input, see
"Matching a Source To an Input".

Certain Source objects always have one or more inputs. They are the Source objects
for the MdmDimensionedObject subclasses MdmMeasure and MdmAttribute. They
have inputs because the values of a measure or attribute are specified by the values of
their dimensions. The inputs of the Source for the measure or attribute are the
Source objects for the dimensions of the measure or the attribute. Before you can
retrieve the data for a measure or an attribute, you must match each input to a Source
that provides the required values.

Some Source methods produce a Source that has an input. You can produce a
Source that has an input by using the extract, position, or value methods.
These methods provide a means of producing a Source whose elements are a subset
of the elements of another Source. A Source produced by one of these methods has
its base Source as an input.

For example, in the following code, the base Source is prodRollup. Its value
method produces prodRollupValues, which has prodRollup as an input.

Source prodRollupValues = prodRollup.value();

The input provides the means to select values from prodRollup, as demonstrated by
Example 6–2. The selectValues method in Example 6–2 is a shortcut for the
following join method.

Source prodSel = prodRollup.join(prodRollup.value(),
 myList,
 Source.COMPARISON_RULE_SELECT,
 false);

The parameters of the join method specify the elements of the base Source that
appear in the resulting Source. In the example, the joined parameter is the Source
produced by the prodRollup.value() method. The resulting unnamed Source

Inputs and Outputs of a Source

Understanding Source Objects 6-7

has prodRollup as an input. The input is matched by the base of the join method,
which is also prodRollup. The result of the join operation, prodSel, has the values
of prodRollup that match the values of prodRollup that are in the comparison
Source, myList.

If the joined Source were prodRollup and not the Source produced by
prodRollup.value(), then the comparison would be between the Source object
itself and the values of the comparison Source and not between the values of the
Source and the values of the comparison Source. Because the joined Source object
does not match any of the values of the comparison Source, the result of the join
method would have all of the elements of prodRollup instead of having only the
values of prodRollup that are specified by the values of the joined Source that
match the values of the comparison Source as specified by the comparison rule.

The input of a Source produced by the position or value method, and an input
intrinsic to an MdmDimensionedObject, are regular inputs. A regular input causes
the join method, when it matches a Source to the input, to compare the values of
the comparison Source to the values of the Source that has the input rather than to
the input Source itself.

The input of a Source produced by the extract method is an extraction input. An
extraction input differs from a regular input in that, when a value of the Source that
has the extraction input is a Source, the join method extracts the values of the
Source that is a value of the Source that has the input. The join method then
compares the values of the comparison Source to the extracted values rather than to
the Source itself.

A Source can have from zero to many inputs. You can get all of the inputs of a
Source by calling its getInputs method, the regular inputs by calling its
getRegularInputs method, and its extraction inputs by calling its
getExtractionInputs method. Each of those methods returns a Set of Source
objects.

Outputs of a Source
The join method returns a Source that has the elements of its base Source that are
specified by the parameters of the method. If the value of the visible parameter is
true, then the joined Source becomes an output of the returned Source. An output
of a Source returned by the join method has the elements of the joined Source that
specify the elements of the returned Source. An output is a means of identifying the
elements of the joined Source that specify the elements of the Source that has the
output.

A Source can have from zero to many outputs. You can get the outputs of a Source
by calling its getOutputs method, which returns a List of Source objects.

A Source with more than one output has one or more elements for each set of the
elements of the outputs. For example, a Source that represents a measure that has
had all of its inputs matched, and has had the Source objects that match the inputs
turned into outputs, has a single type element for each set of the elements of its
outputs because each data value of the measure is identified by a unique set of the
values of its dimensions. A Source that represents dimension values that are selected
by some operation performed on the data of a measure, however, might have more
than one element for each set of the elements of its outputs. An example is a Source
that represents product values that have unit costs greater than a certain amount. Such
a Source might have several products for each time period that have a unit cost
greater than the specified amount.

Inputs and Outputs of a Source

6-8 Oracle OLAP Developer's Guide to the OLAP API

Example 6–3 produces a selection of the elements of shipRollup, which is a Source
for a hierarchy of a dimension of customer values. The customers are grouped by a
shipment origination and destination hierarchy.

Example 6–3 Using the join Method To Produce a Source Without an Output

Source custValuesToSelect = dp.createListSource(new String[]
 {"SHIPMENTS_ROLLUP::REGION::9",
 "SHIPMENTS_ROLLUP::REGION::10"});
Source shipRollupValues = shipRollup.value();
Source custSel = shipRollup.join(shipRollupValues,
 custValuesToSelect,
 Source.COMPARISON_RULE_SELECT,
 false);

The shipRollupValues Source has an input of shipRollup. In the join method
in the example, the base Source, shipRollup, matches the input of the joined
Source, shipRollupValues because the base and the input are the same object. The
join method selects the elements of the base shipRollup whose values match the
values of the joined shipRollup that are specified by the comparison Source,
custValuesToSelect. The method produces a Source, custSel, that has only the
selected elements of shipRollup. Because the visible parameter is false, the
joined Source is not an output of custSel. The custSel Source therefore has only
two elements, the values of which are SHIPMENTS_ROLLUP::REGION::9 and
SHIPMENTS_ROLLUP::REGION::10.

You produce a Source that has an output by specifying true as the visible
parameter to the join method. Example 6–4 joins the Source objects for the
dimension selections from Example 6–2 and Example 6–3 to produce a Source,
custSelByProdSel, that has one output. The custSelByProdSel Source has the
elements from custSel that are specified by the elements of prodSel.

The comparison Source is an empty Source, which has no elements and which is the
result of the getEmptySource method of the DataProvider, dp. The comparison
rule value, COMPARISON_RULE_REMOVE, selects only the elements of prodSel that
are not in the comparison Source. Because the comparison Source has no elements,
all of the elements of the joined Source are selected. Each of the elements of the joined
Source specify all of the elements of the base Source. The resulting Source,
custSelByProdSel, therefore has all of the elements of custSel.

Because the visible parameter is true in Example 6–4, prodSel is an output of
custSelByProdSel. Therefore, for each element of the output, custSelByProdSel
has the elements of custSel that are specified by that element of the output. Because
the custSel and prodSel are both simple lists of dimension values, the result is the
cross product of the elements of both Source objects.

Example 6–4 Using the join Method To Produce a Source With an Output

Source custSelByProdSel = custSel.join(prodSel,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 true);

To actually retrieve the data specified by custSelByProdSel, you must create a
Cursor for it. Such a Cursor contains the values shown in the following table, which
has headings added that indicate that the values from the output, prodSel, are in the
left column and the values from the elements of the custSelByProdSel Source,
which are derived from its type, custSel, are in the right column.

Inputs and Outputs of a Source

Understanding Source Objects 6-9

 Output Values Type Values
------------------------- ----------------------------
PRODUCT_ROLLUP::FAMILY::4 SHIPMENTS_ROLLUP::REGION::9
PRODUCT_ROLLUP::FAMILY::4 SHIPMENTS_ROLLUP::REGION::10
PRODUCT_ROLLUP::FAMILY::5 SHIPMENTS_ROLLUP::REGION::9
PRODUCT_ROLLUP::FAMILY::5 SHIPMENTS_ROLLUP::REGION::10
PRODUCT_ROLLUP::FAMILY::7 SHIPMENTS_ROLLUP::REGION::9
PRODUCT_ROLLUP::FAMILY::7 SHIPMENTS_ROLLUP::REGION::10
PRODUCT_ROLLUP::FAMILY::8 SHIPMENTS_ROLLUP::REGION::9
PRODUCT_ROLLUP::FAMILY::8 SHIPMENTS_ROLLUP::REGION::10

The custSelByProdSel Source has two type elements, and its output has four
elements. The number of elements of custSelByProdSel is eight because for this
Source, each output element specifies the same set of two type elements.

Each join operation that specifies a visible parameter of true adds an output to the
list of outputs of the resulting Source. For example, if a Source has two outputs and
you call one of its join methods that produces an output, then the Source that
results from the join operation has three outputs. You can get the outputs of a Source
by calling its getOutputs method, which returns a List of Source objects.

Example 6–5 demonstrates joining a measure to selections from the dimensions of the
measure, thus matching to the inputs of the measure Source objects that provide the
required elements. Because the last two join methods match the dimension selections
to the inputs of the measure, the resulting Source does not have any inputs. Because
the visible parameter in those joins is true, the last join method produces a
Source that has two outputs.

Example 6–5 gets the Source for the measure of unit costs. That Source, unitCost,
has two inputs, which are the primary Source objects for the Time and Product
dimensions, which are the dimensions of unit cost. The example gets the Source
objects for level hierarchies of the dimensions, which are subtypes of the Source
objects for the dimensions. It produces selections of the level hierarchies and then joins
those selections to the measure. The result, unitCostSel, specifies the unit costs of
the selected products at the selected times.

Example 6–5 Using the join Method To Match Source Objects To Inputs

Source unitCost = mdmUnitCost.getSource();
Source calendar = mdmCalendar.getSource();
Source prodRollup = mdmProdRollup.getSource();
Source timeSel = calendar.join(calendar.value(),
 dp.createListSource(new String[]
 {"CALENDAR::MONTH::47",
 "CALENDAR::MONTH::59"}),
 Source.COMPARISON_RULE_SELECT,
 false);
Source prodSel = prodRollup.join(prodRollup.value(),
 dp.createListSource(new String[]
 {"PRODUCT_ROLLUP::ITEM::13",
 "PRODUCT_ROLLUP::ITEM::14",
 "PRODUCT_ROLLUP::ITEM::15"}),
 Source.COMPARISON_RULE_SELECT,
 false);
Source unitCostSel = unitCost.join(timeSel,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 true);
 .join(prodSel,
 dp.getEmptySource(),

Inputs and Outputs of a Source

6-10 Oracle OLAP Developer's Guide to the OLAP API

 Source.COMPARISON_RULE_REMOVE,
 true);

The unnamed Source that results from joining timeSel to unitCost has one
output, which is timeSel. Joining prodSel to that unnamed Source produces
unitCostSel, which has two outputs, timeSel and prodSel. The unitCostSel
Source has the elements from its type, unitCost, that are specified by its outputs.

A Cursor for unitCostSel contains the following, displayed as a table with
headings added that indicate the structure of the Cursor. A Cursor has the same
structure as its Source. The unit cost values are formatted as dollar values.

 Output 1 Output 2 Type
 Values Values Values
------------------------ ------------------- --------
PRODUCT_ROLLUP::ITEM::13 CALENDAR::MONTH::47 2897.40
PRODUCT_ROLLUP::ITEM::13 CALENDAR::MONTH::59 2376.73
PRODUCT_ROLLUP::ITEM::14 CALENDAR::MONTH::47 3238.36
PRODUCT_ROLLUP::ITEM::14 CALENDAR::MONTH::59 3015.90
PRODUCT_ROLLUP::ITEM::15 CALENDAR::MONTH::47 2847.47
PRODUCT_ROLLUP::ITEM::15 CALENDAR::MONTH::59 2819.85

Output 1 has the values from prodSel, output 2 has the values from timeSel, and
the type values are the values from unitCost that are specified by the output values.

Because these join operations are performed by most OLAP API applications, the API
provides shortcuts for these and many other join operations. Example 6–6 uses
shortcuts for the join operations in Example 6–5 to produce the same result.

Example 6–6 Using Shortcuts

Source unitCost = mdmUnitCost.getSource();
StringSource calendar = (StringSource) mdmCalendar.getSource();
StringSource prodRollup =(StringSource) mdmProdRollup.getSource();
Source timeSel = calendar.selectValues(new String[]
 {"CALENDAR::MONTH::47",
 "CALENDAR::MONTH::59"}),
Source prodSel = prodRollup.selectValues(new String[]
 {"PRODUCT_ROLLUP::ITEM::13",
 "PRODUCT_ROLLUP::ITEM::14",
 "PRODUCT_ROLLUP::ITEM::15"}),
Source unitCostSel = unitCost.join(timeSel).join(prodSel);

Matching a Source To an Input
In a join operation, a Source-to-input match occurs only between the base Source
and the joined Source. A Source matches an input if one of the following conditions
is true.

1. The Source is the same object as the input or it is a subtype of the input.

2. The Source has an output that is the same object as the input or the output is a
subtype of the input.

3. The output has an output that is the same object as the input or is a subtype of the
input.

The join operation looks for the conditions in the order in the preceding list. It searches
the list of outputs of the Source recursively, looking for a match to the input. The
search ends with the first matching Source. An input can match with only one
Source, and two inputs cannot match with the same Source.

Inputs and Outputs of a Source

Understanding Source Objects 6-11

When a Source matches an input, the result of the join method has the elements of
the base that match the elements specified by the parameters of the method. You can
determine if a Source matches another Source, or an output of the other Source, by
passing the Source to the findMatchFor method of the other Source.

When a Source matches an input, the resulting Source does not have that input.
Matching a Source to an input does not affect the outputs of the base Source or the
joined Source. If a base Source has an output that matches the input of the joined
Source, the resulting Source does not have the input but it does have the output.

If the base Source or the joined Source in a join operation has an input that is not
matched in the operation, then the unmatched input is an input of the resulting
Source.

The comparison Source of a join method does not participate in the input matching.
If the comparison Source has an input, then that input is not matched and the
Source returned by the join method has that same input.

Example 6–7 demonstrates a base Source matching the input of the joined Source in
a join operation. The example uses the position method to produce a Source that
has an input, and then uses the join method to match the base of the join operation to
the input of the joined Source.

Example 6–7 Matching the Base Source to an Input of the Joined Source

Source myList = dp.createListSource(new String[]
 "PRODUCT_ROLLUP::FAMILY::4",
 "PRODUCT_ROLLUP::FAMILY::5",
 "PRODUCT_ROLLUP::FAMILY::7",
 "PRODUCT_ROLLUP::FAMILY::8"});
Source pos = dp.createListSource(new int[] {2, 4});
Source myListPos = myList.position();
Source myListSel = myList.join(myListPos, pos,
 Source.COMPARISON_RULE_SELECT, false);

In Example 6–7, the position method returns myListPos, which has the elements
of myList and which has myList as an input. The join method matches the base
myList to the input of the joined Source, myListPos.

The comparison Source, pos, specifies the positions of the elements of myListPos to
match to the positions of the elements of myList. The elements of the resulting
Source, myListSel, are the elements of myList whose positions match those
specified by the parameters of the join method.

A Cursor for myListSel has the following values.

PRODUCT_ROLLUP::FAMILY::5
PRODUCT_ROLLUP::FAMILY::8

If the visible parameter in Example 6–7 were true instead of false, then the result
would have elements from myList and an output of myListPos. A Cursor for
myListSel in that case would have the following values, displayed as a table with
headings added that indicate the output and type values.

Output Type
Values Values
------ -------------------------
 2 PRODUCT_ROLLUP::FAMILY::5
 4 PRODUCT_ROLLUP::FAMILY::8

Inputs and Outputs of a Source

6-12 Oracle OLAP Developer's Guide to the OLAP API

Example 6–8 demonstrates matching outputs of the joined Source to two inputs of
the base Source. In the example, units is a Source for an MdmMeasure. It has as
inputs the primary Source objects for the Time, Product, Customer, and Channel
dimensions.

The DataProvider is dp, and prodRollup, shipRollup, calendar, and
chanRollup are the Source objects for the default hierarchies of the Product,
Customer, Time, and Channel dimensions, respectively. Those Source objects are
subtypes of the Source objects for the dimensions that are the inputs of units.

The join method of prodRollup in the first line of Example 6–8 results in prodSel,
which specifies selected product values. In that method, the joined Source is the
result of the value method of prodRollup. The joined Source has the same
elements as prodRollup, and it has prodRollup as an input. The comparison
Source is the list Source that is the result of the createListSource method of the
DataProvider.

The base Source of the join method, prodRollup, matches the input of the joined
Source. Because prodRollup is the input of the joined Source, the Source
returned by the join method has only the elements of the base, prodRollup, that
match the elements of the joined Source that appear in the comparison Source.
Because the visible parameter value is false, the resulting Source does not have
the joined Source as an output. The next three similar join operations in Example 6–8
result in selections for the other three dimensions.

The join method of timeSel has custSel as the joined Source. Its comparison
Source is the result of the getEmptySource method, so it has no elements. The
comparison rule specifies that the elements of the joined Source that are present in
the comparison Source do not appear in the resulting Source. Because the
comparison Source has no elements, all of the elements of the joined Source are
selected. The true value for the visible parameter causes the joined Source to be
an output of the Source returned by the join method. The returned Source,
custSelByTime, has the selected elements of the Customer dimension and has
timeSel as an output.

The join method of prodSel has custSelByTime as the joined Source. It
produces prodByCustByTime, which has the selected elements from the Product
dimension and has custSelByTime as an output. Example 6–8 then joins the
dimension selections to the units Source.

The dimension selections are subtypes of the Source objects that are the inputs of
units, and therefore the selections match the inputs of units. The input for the
Product dimension is matched by prodByCustByTime because prodByCustByTime
is a subtype of prodSel, which is a subtype of prodRollup. The input for the
Customer dimension is matched by the custSelByTime, which is the output of
prodByCustByTime.

The custSelByTime Source is a subtype of custSel, which is a subtype of
shipRollup. The input for the times dimension is matched by timeSel, which is the
output of custSelByTime. The timeSel Source is a subtype of calendar.

Example 6–8 Matching an Input of the Base Source to an Output of the Joined Source

Source prodSel = prodRollup.join(prodRollup.value(),
 dp.createListSource(new String[]
 {"PRODUCT_ROLLUP::FAMILY::4",
 "PRODUCT_ROLLUP::FAMILY::5"}),
 Source.COMPARISON_RULE_SELECT,
 false);
Source custSel = shipRollup.join(shipRollup.value(),

Inputs and Outputs of a Source

Understanding Source Objects 6-13

 dp.createListSource(new String[]
 {"SHIPMENTS_ROLLUP::REGION::9",
 "SHIPMENTS_ROLLUP::REGION::10"}),
 Source.COMPARISON_RULE_SELECT,
 false);
Source timeSel = calendar.join(calendar.value(),
 dp.createConstantSource(
 "CALENDAR::YEAR::4"),
 Source.COMPARISON_RULE_SELECT,
 false);
Source chanSel = chanRollup.join(chanRollup.value(),
 dp.createConstantSource(
 "CHANNEL_ROLLUP::CHANNEL::4"),
 Source.COMPARISON_RULE_SELECT,
 false);

Source custSelByTime = custSel.join(timeSel,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 true);
Source prodByCustByTime = prodSel.join(custSelByTime,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 true);

Source selectedUnits = units.join(prodByCustByTime,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 true)
 .join(promoSel,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 true),
 .join(chanSel,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 true);

A Cursor for selectedUnits contains the following values, displayed in a crosstab
format with column headings and formatting added. The table has only the local
values of the dimension elements. The first two lines are the page edge values of the
crosstab, which are the values of the chanSel output of selectedUnits, and the
value of timeSel, which is an output of the prodByCustByTime output of
selectedUnits. The row edge values of the crosstab are the customer values in the
left column, and the column edge values are the products values that head the middle
and right columns.

The crosstab has only the local value portion of the unique values of the dimension
elements. The measure values are the units sold values specified by the selected
dimension values.

4
4
 Products

Customers 4 5
--------- --- ----
9 215 439
10 846 1748

Inputs and Outputs of a Source

6-14 Oracle OLAP Developer's Guide to the OLAP API

The following table has the same results except that the dimension element values are
replaced by the short descriptions of those values.

Internet
2001
 Products

Customers Portable PCs Desktop PCs
------------- ------------ -----------
Europe 215 439
North America 846 1748

To demonstrate turning inputs into outputs, Example 6–9 uses units, which is the
Source for the Units measure, and defaultHiers, which is an ArrayList of the
Source objects for the default hierarchies of the dimensions of the measure. The
example gets the inputs and outputs of the Source for the measure. It displays the
Source identifications of the Source for the measure and for its inputs. The inputs of
the Source for the measure are the Source objects for the MdmPrimaryDimension
objects that are the dimensions of the measure.

Example 6–9 next displays the number of inputs and outputs of the Source for the
measure. Using the join(Source joined) method, which produces a Source that
has the elements of the base of the join operation as its elements and the joined
parameter Source as an output, it joins one of the hierarchy Source objects to the
Source for the measure, and displays the number of inputs and outputs of the
resulting Source. It then joins each remaining hierarchy Source to the result of the
previous join operation and displays the number of inputs and outputs of the resulting
Source.

Finally the example gets the outputs of the Source produced by the last join
operation, and displays the Source identifications of the outputs. The outputs of the
last Source are the Source objects for the default hierarchies, which the example
joined to the Source for the measure. Because the Source objects for the hierarchies
are subtypes of the Source objects for the MdmPrimaryDimension objects that are
the inputs of the measure, they match those inputs.

Example 6–9 Matching the Inputs of a Measure and Producing Outputs

Set inputs = units.getInputs();
Iterator inputsItr = inputs.iterator();
List outputs = units.getOutputs();
Source input = null;

int i = 1;
System.out.println("The inputs of " + units.getID() + " are:");
while(inputsItr.hasNext())
{
 input = (Source) inputsItr.next();
 System.out.println(i + ": " + input.getID());
 i++;
}

System.out.println(" ");
int setSize = inputs.size();
for(i = 0; i < (setSize + 1); i++)
{
 System.out.println(units.getID() + " has " + inputs.size() +
 " inputs and " + outputs.size() + " outputs.");
 if (i < setSize)
 {

Describing Parameterized Source Objects

Understanding Source Objects 6-15

 input = defaultHiers.get(i);
 System.out.println("Joining " + input.getID() + " to "
 + units.getID());
 units = units.join(input);
 inputs = units.getInputs();
 outputs = units.getOutputs();
 }
}

System.out.println(" ");
System.out.println("The outputs of " + units.getID() + " are:");
Iterator outputsItr = outputs.iterator();
i = 1;
while(outputsItr.hasNext())
{
 Source output = (Source) outputsItr.next();
 System.out.println(i + ": " + output.getID());
 i++;
}

The text displayed by the example is the following:

The inputs of Hidden..M_GLOBAL.UNITS_CUBE.UNITS are:
1: Hidden..D_GLOBAL.TIME
2: Hidden..D_GLOBAL.PRODUCT
3: Hidden..D_GLOBAL.CUSTOMER
4: Hidden..D_GLOBAL.CHANNEL

Hidden..M_GLOBAL.UNITS_CUBE.UNITS has 4 inputs and 0 outputs.
Joining Hidden..D_GLOBAL.PRODUCT.PRODUCT_ROLLUP to
 Hidden..M_GLOBAL.UNITS_CUBE.UNITS
Join.0 has 3 inputs and 1 outputs.
Joining Hidden..D_GLOBAL.CUSTOMER.SHIPMENTS_ROLLUP to Join.0
Join.1 has 2 inputs and 2 outputs.
Joining Hidden..D_GLOBAL.TIME.CALENDAR to Join.1
Join.2 has 1 inputs and 3 outputs.
Joining Hidden..D_GLOBAL.CHANNEL.CHANNEL_ROLLUP to Join.2
Join.3 has 0 inputs and 5 outputs.

The outputs of Join.3 are:
1: Hidden..D_GLOBAL.CHANNEL.CHANNEL_ROLLUP
2: Hidden..D_GLOBAL.TIME.CALENDAR
3: Hidden..D_GLOBAL.CUSTOMER.SHIPMENTS_ROLLUP
4: Hidden..D_GLOBAL.PRODUCT.PRODUCT_ROLLUP

Note that as each successive Source for a hierarchy is joined to the result of the
previous join operation, it becomes the first output in the List of outputs of the
resulting Source. Therefore, the first output of Join.3 is
Hidden..D_GLOBAL.CHANNEL.CHANNEL_ROLLUP, and its last output is
Hidden..D_GLOBAL.PRODUCT.PRODUCT_ROLLUP.

Describing Parameterized Source Objects
Parameterized Source objects provide a way of specifying a query and retrieving
different result sets for the query by changing the set of elements specified by the
parameterized Source. You create a parameterized Source with a
createParameterizedSource method of the DataProvider that you are using.
In creating the parameterized Source, you supply a Parameter object. The
Parameter supplies the value that the parameterized Source specifies.

Describing Parameterized Source Objects

6-16 Oracle OLAP Developer's Guide to the OLAP API

Parameter objects are similar to CursorInput objects in that you use them to
specify an initial value for a Source that is part of a query. A typical use of both
Parameter and CursorInput objects is to specify the page edges of a cube.
Example 7–9 demonstrates using Parameter objects to specify page edges.

An advantage of Parameter objects over CursorInput objects is that with
Parameter objects you can easily fetch from the server only the set of elements that
you currently need. Example 7–16 demonstrates using Parameter objects to fetch
different sets of elements.

When you create a Parameter object, you supply an initial value for the Parameter.
You then create the parameterized Source using the Parameter. You include the
parameterized Source in specifying a query. You create a Cursor for the query. You
can change the value of the Parameter with its setValue method, which changes
the set of elements that the query specifies. Using the same Cursor, you can then
display the new set of values.

Example 6–10 demonstrates the use of a Parameter and a parameterized Source to
specify an element in a measure dimension. It creates a list Source that has as its
element values the Source objects for Unit Cost and Unit Price measures. The
example creates a StringParameter object that has as its initial value the unique
identifying String for the Source for the Unit Cost measure. That
StringParameter is then used to create a parameterized Source.

The example extracts the values from the measures, and then selects the data values
that are specified by joining the dimension selections to the measure specified by the
parameterized Source. It creates a Cursor for the resulting query and displays the
results. After resetting the Cursor position and changing the value of the measParam
StringParameter, the example displays the values of the Cursor again.

The dp object is the DataProvider. The context object has a method that displays
the values of the Cursor with only the local value of the dimension elements.

Example 6–10 Using a Parameterized Source With a Measure Dimension

Source measDim = dp.createListSource(new Source[] {unitCost,
 unitPrice});

// Get the unique identifiers of the Source objects for the measures.
String unitCostID = unitCost.getID();
String unitPriceID = unitPrice.getID();

// Create a StringParameter using one of the IDs as the initial value.
StringParameter measParam = new StringParameter(dp, unitCostID);

// Create a parameterized Source.
StringSource measParamSrc = dp.createParameterizedSource(measParam);

// Extract the values from the measure dimension elements, and join
// them to the specified measure and the dimension selections.
Source result = measDim.extract().join(measDim, measParamSrc)
 .join(prodSelShortDescr)
 .join(timeSelShortDescr);
// Get the TransactionProvider and prepare and commit the
// current transaction. These operations are not shown.

// Create a Cursor.
CursorManagerSpecification cMngrSpec =
 dp.createCursorManagerSpecification(results);
SpecifiedCursorManager spCMngr = dp.createCursorManager(cMngrSpec);

Model Objects and Source Objects

Understanding Source Objects 6-17

Cursor resultsCursor = spCMngr.createCursor();

// Display the results.
context.displayCursor(resultsCursor, true);

//Reset the Cursor position to 1.
resultsCursor.setPosition(1);

// Change the value of the parameterized Source.
measParam.setValue(unitPriceID);

// Display the results again.
context.displayCursor(resultsCursor, true);

The following table displays the first set of values of resultsCursor, with column
headings and formatting added. The left column of the table has the local value of the
Time dimension hierarchy. The second column from the left has the short value
description of the time value. The third column has the local value of the Product
dimension hierarchy. The fourth column has the short value description of the product
value. The fifth column has the Unit Cost measure value for the time and product.

Time Description Product Description Unit Cost
---- ----------- ------- --------------- ---------
 58 Apr-01 13 Envoy Standard 2360.78
 58 Apr-01 14 Envoy Executive 2952.85
 59 May-01 13 Envoy Standard 2376.73
 59 May-01 14 Envoy Executive 3015.90

The following table displays the second set of values of resultsCursor in the same
format. This time the fifth column has values from the Unit Price measure.

Time Description Product Description Unit Price
---- ----------- ------- --------------- ----------
 58 Apr-01 13 Envoy Standard 2412.42
 58 Apr-01 14 Envoy Executive 3107.65
 59 May-01 13 Envoy Standard 2395.63
 59 May-01 14 Envoy Executive 3147.85

Model Objects and Source Objects
This topic describes the Model interface and its implementations, and the relationship
of Model and Source objects. It also presents examples of creating custom Model
objects and performing other tasks that involve Source and Model objects.

Describing the Model for a Source
Introduced to the OLAP API in Oracle Database 10.2, a Model is analogous to the
Oracle SQL Model clause and an Oracle DML Model object. With a Model you can
assign a value to the Source for a dimensioned object for one or more sets of
members of the dimensions of the object. The value that the Model assigns can be
anything from a simple constant to the result of a complex calculation involving
several other Source objects with nested Model objects.

The value that a Model assigns for a set of dimension members is represented by an
Assignment object. A Model can have one or more Assignment objects. Each
dimension member in the set is represented by a Qualification object. An
Assignment has one or more Qualification objects.

Model Objects and Source Objects

6-18 Oracle OLAP Developer's Guide to the OLAP API

The value that the Assignment assigns is specified by a Source. An Assignment
also has an integer that specifies a precedence that affects the order in which Oracle
OLAP calculates a value and assigns it. If you create more that one Assignment for a
Model without specifying a precedence, then the order in which Oracle OLAP
calculates and assigns the values is not guaranteed.

A Model assigns values for existing dimension members. You can use a Model to
assign a different value for a dimension member, or to assign a value for a set of
members of more than one dimension, or to assign a different value for a specific
measure for the set of dimension members, or to assign a value for the dimension
member for an attribute.

When you create a custom dimension member, you specify an assignment value for it.
Oracle OLAP automatically adds an Assignment object that specifies the value for
the custom member to the appropriate Model for the dimension. Oracle OLAP assigns
that value as the measure value for any measure dimensioned by the dimension.

Figure 6–1 illustrates the class hierarchy of the Model interface and the classes that
implement it. The oracle.olapi.metadata.mdm.MdmModel class implements the
Model interface for MdmObject objects. Another implementation of the Model
interface is the CustomModel class in the oracle.olapi.data.source package.

Figure 6–1 Model Interface and its Implementations

A Model has one or more inputs, which are the Source objects for which the model
assigns values. The inputs are equivalent to the list of dimensions of an OLAP DML or
SQL Model. For example, the MdmDimensionCalculationModel returned by the
getNumberCalcModel method of an MdmStandardDimension has as its input the
Source for that same MdmStandardDimension. The
MdmDimensionedObjectModel returned by the getModel method of an
MdmAttribute has as its input the Source for the MdmPrimaryDimension that
dimensions the attribute. The MdmDimensionedObjectModel returned by
getModel method of an MdmMeasure has as its inputs the Source objects for the
MdmPrimaryDimension objects that dimension the measure.

A Model can have one or more parents, which are other Model objects from which the
Model inherits Assignment objects. An MdmMeasureModel has as its parents the
MdmDimensionCalculationModel objects of its dimensions.
MdmAttributeModel and MdmDimensionCalculationModel objects do not have
parent Model objects.

A CustomModel can have inputs and it can have parent Model objects. When you
create a CustomModel object, you can specify inputs and parent Model objects for it.
A CustomModel can have also have outputs, which MdmModel objects do not have.

MdmModel

Model

CustomModel

MdmDimensionedObjectModelMdmDimensionCalculationModel

MdmMeasureModelMdmAttributeModel

Model Objects and Source Objects

Understanding Source Objects 6-19

You can create a series of CustomModel objects and have them inherit Assignment
objects from each other. The following restrictions apply to the inheritance of an
Assignment by one CustomModel from another:

■ The inheritance cannot be circular. For example, if customModelB inherits from
customModelA, then customModelA cannot inherit from customModelB.

■ The type and the outputs of the CustomModel objects must be the same.

■ If a parent CustomModel has an input, then the child CustomModel must also
specify that input. The child CustomModel can have additional inputs, but it
must specify the inputs of the parent CustomModel objects.

After creating a CustomModel and adding any assignments to it, you can create a
Source for it by calling the createSolvedSource method of the CustomModel.
With the defaultValues parameter of the createSolvedSource method, you can
specify a Source that supplies default values for the Source returned by the method.
If you do not specify a Source for the default values, then the default values of the
resulting Source are null.

Creating a CustomModel - Example
The Source.extract method is now implemented as a CustomModel. An
advantage of using your own CustomModel over the extract method is that you
can assign the measure value to a String other than a Source ID. Example 6–11
demonstrates using the extract method and then using a CustomModel to achieve
the same result. It also demonstrates using another CustomModel to achieve a result
that assigns the measure values to a different set of String values.

In the example, unitPrice and unitCost are NumberSource objects for the Unit
Price and Unit Cost measures, and dp is the DataProvider. The prodSel object is a
Source that represents the selection of three members of the Product dimension.

Example 6–11 Implementing the extract method as a CustomModel

// Create a Source that represents a calculation involving two measures.
Source calculation = unitPrice.minus(unitCost);

// Create a list Source that has Source objects as its element values.
Source sourceListSrc = dp.createListSource(new Source[]
 {unitPrice, unitCost, calculation});
// Use the extract method to get the values of the Source components of the
// list and join Source objects that match the inputs.
Source resultUsingExtract = sourceListSrc.extract()
 .join(sourceListSrc)
 .join(prodSel)
 .join(calendar, "CALENDAR::YEAR::3");

// Produce the same result using a CustomModel directly.
CustomModel customModel = dp.createModel(sourceListSrc);
customModel.assign(unitPrice.getID(), unitPrice);
customModel.assign(unitCost.getID(), unitCost);
customModel.assign(calculation.getID(), calculation);
Source measValForSrc = customModel.createSolvedSource();
Source resultUsingCustomModel =
 measValForSrc.join(sourceListSrc)
 .join(prodSel)
 .join(calendar, "CALENDAR::MONTH::47");

Model Objects and Source Objects

6-20 Oracle OLAP Developer's Guide to the OLAP API

// Create a list Source that has String objects as its element values.
Source stringListSrc = dp.createListSource(new String[]
 {"price", "cost", "markup"});
// Create a CustomModel for the list Source.
CustomModel customModel2 = dp.createModel(stringListSrc);
customModel2.assign("price", unitPrice);
customModel2.assign("cost", unitCost);
customModel2.assign("markup", calculation);
Source measValForSrc2 = customModel2.createSolvedSource();

Source resultUsingCustomModel2 =
 measValForSrc2.join(stringListSrc)
 .join(prodSel)
 .join(calendar, "CALENDAR::MONTH::47");

Cursor objects for resultUsingExtract and resultUsingCustomModel have
the same values, which are the following, shown with formatting added:

PRODUCT_ROLLUP::ITEM::13 Hidden..M_GLOBAL.PRICE_CUBE.UNIT_PRICE 3118.61
PRODUCT_ROLLUP::ITEM::13 Hidden..M_GLOBAL.PRICE_CUBE.UNIT_COST 2897.40
PRODUCT_ROLLUP::ITEM::13 Join.2 221.21
PRODUCT_ROLLUP::ITEM::14 Hidden..M_GLOBAL.PRICE_CUBE.UNIT_PRICE 3442.86
PRODUCT_ROLLUP::ITEM::14 Hidden..M_GLOBAL.PRICE_CUBE.UNIT_COST 3238.36
PRODUCT_ROLLUP::ITEM::14 Join.2 204.50
PRODUCT_ROLLUP::ITEM::15 Hidden..M_GLOBAL.PRICE_CUBE.UNIT_PRICE 2962.14
PRODUCT_ROLLUP::ITEM::15 Hidden..M_GLOBAL.PRICE_CUBE.UNIT_COST 2847.47
PRODUCT_ROLLUP::ITEM::15 Join.2 114.67

A Cursor for resultUsingCustomModel2 has the following values, shown with
formatting added:

PRODUCT_ROLLUP::ITEM::13 price 3118.61
PRODUCT_ROLLUP::ITEM::13 cost 2897.40
PRODUCT_ROLLUP::ITEM::13 markup 221.21
PRODUCT_ROLLUP::ITEM::14 price 3442.86
PRODUCT_ROLLUP::ITEM::14 cost 3238.36
PRODUCT_ROLLUP::ITEM::14 markup 204.50
PRODUCT_ROLLUP::ITEM::15 price 2962.14
PRODUCT_ROLLUP::ITEM::15 cost 2847.47
PRODUCT_ROLLUP::ITEM::15 markup 114.67

Dependent Assignment Values - Example
The value that is specified by the assigned Source of an Assignment object can be
the result of a calculation that involves another Assignment object. Each custom
member adds an Assignment to the appropriate
MdmDimensionCalculationModel object of the dimension.

Example 6–12 creates the same custom member of the Product dimension that
Example 2–1 creates. It then creates a second custom member for the dimension. In
Example 6–12, the value assigned by the second custom member depends on the value
assigned by the first custom member.

As in Example 2–1, Example 6–12 uses the DataProvider object, dp, to get the
placeholder Source, ph, for the Number data type from the DataProvider. the
example uses the placeholder in defining the objects, calc and dependentCalc, that
define the values that Oracle OLAP assigns for the custom members.

Model Objects and Source Objects

Understanding Source Objects 6-21

The calc object defines the value assigned for the first custom member as the value
specified by product item 14 plus the value specified by item 15. The dependentCalc
object defines the value assigned for the second custom member as the value specified
by the first custom member, product item 60, plus the value specified by item 13.

The prodSel object specifies the dimension members for items 13, 14, and 15 and the
custom members, items 60 and 61. The unitCost and unitPrice objects are
Source objects for the Unit Cost and Unit Price measures, and the calendar object is
the Source for the Calendar hierarchy of the Time dimension.

The result object is the query produced by joining the Source objects for the Unit
Cost and Unit Price measures to the Source objects for the selected members of the
dimensions of the measures. The join method used to join the Time dimension value,
CALENDAR::MONTH::47, to the result of the previous join operations causes the
Time value to not appear in the result object.

Example 6–12 Creating an Assignment That Depends on Another Assignment

Source ph = dp.getFundamentalMetadataProvider()
 .getNumberPlaceholder()
 .getSource();

Source calc = ((NumberSource)
 (ph.join(prodRollup, "PRODUCT_ROLLUP::ITEM::14")))
 .plus(
 (NumberSource)
 (ph.join(prodRollup, "PRODUCT_ROLLUP::ITEM::15")));

MdmStandardMember mdmItem60 = mdmProdStdDim.createCustomMember("60",
 mdmItemLevel,
 "4",
 calc,
 10);

Source dependentCalc = ((NumberSource)
 (ph.join(prodRollup, "PRODUCT_ROLLUP::ITEM::60")))
 .plus(
 (NumberSource)
 (ph.join(prodRollup, "PRODUCT_ROLLUP::ITEM::13")));

MdmStandardMember mdmItem61 = mdmProdStdDim.createCustomMember("61",
 mdmItemLevel,
 "4",
 dependentCalc,
 10);

StringSource prodSel = prodRollup.selectValues(
 new String[]{"PRODUCT_ROLLUP::ITEM::13",
 "PRODUCT_ROLLUP::ITEM::14",
 "PRODUCT_ROLLUP::ITEM::15",
 "PRODUCT_ROLLUP::ITEM::60"
 "PRODUCT_ROLLUP::ITEM::61"});

Source result = unitPrice.join(unitCost)
 .join(prodSel)
 .join(calendar, "CALENDAR::MONTH::47");

Model Objects and Source Objects

6-22 Oracle OLAP Developer's Guide to the OLAP API

A Cursor for result has the following values, with column headings and formatting
added:

 Product Item Cost Price
------------------------ ------- -------
PRODUCT_ROLLUP::ITEM::13 2897.40 3118.61
PRODUCT_ROLLUP::ITEM::14 3238.36 3442.86
PRODUCT_ROLLUP::ITEM::15 2847.47 2962.14
PRODUCT_ROLLUP::ITEM::60 6085.83 6405.00
PRODUCT_ROLLUP::ITEM::61 8983.23 9523.61

A Custom Member That Specifies an Aggregated Value - Example
Example 6–13 creates a custom member of the Product dimension that has an assigned
value that is the result of an aggregation operation. The example uses the Source for a
custom MdmAttribute that relates colors to dimension members in the Item level of
dimension hierarchy.

Like Example 6–12, this example uses a placeholder Source, ph, in creating the calc
object, which defines the value that Oracle OLAP assigns for the custom member. The
calc object represents the total of the values specified by a set of dimension members.

The example creates the custom member and then specifies a short value description
for it. Next, the example appends the custom member to the selection of green
products. Finally, it produces the result query by joining the Source for the Units
measure to the Source objects for the short value description of the Product
dimension and the selected members of the dimensions of the measure. The particular
join method that is used to join the Customer dimension value,
SHIPMENTS_ROLLUP::SHIP_TO::106, the Channel dimension value,
CHANNEL_ROLLUP::ALL_CHANNELS::1, and the Time dimension value,
CALENDAR::YEAR::3, to the result of the previous join operations causes the
Customer, Channel, and Time values to not appear in the result object.

Example 6–13 Creating a Custom Member That Assigns an Aggregated Value

// Create a Source that has the green products.
Source greenProducts = itemLevel.join(prodColorAttr, "Green");

Source calc = ((NumberSource)
 (ph.join(prodRollup,
 new String[] {"PRODUCT_ROLLUP::ITEM::25",
 "PRODUCT_ROLLUP::ITEM::26",
 "PRODUCT_ROLLUP::ITEM::30",
 "PRODUCT_ROLLUP::ITEM::31"}))).total();

MdmStandardMember mdmGreenProdTotal =
 mdmProdStdDim.createCustomMember("65", // member local value
 mdmItemLevel, // member level
 "4", // parent local value
 calc, // calculation Source
 10); // precedence value

mdmGreenProdTotal.setShortDescription("Green Products Total");

Source greenProdWithTotal =
 greenProducts.appendValue(prodRollup.selectValue("PRODUCT_ROLLUP::ITEM::65"));

Model Objects and Source Objects

Understanding Source Objects 6-23

Source result = units.join(prodShortDescr.join(greenProdWithTotal))
 .join(shipRollup, "SHIPMENTS_ROLLUP::SHIP_TO::106")
 .join(chanRollup, "CHANNEL_ROLLUP::ALL_CHANNELS::1")
 .join(calendar, "CALENDAR::YEAR::3");

The following is a crosstab display of the values of a Cursor for result. The display
includes only the local value of the Product dimension members and has column
headings and formatting added.

Product Description Units Sold
------- ---------------------------- ----------
 25 SIMM- 8MB PCMCIAII card 64
 26 SIMM- 16MB PCMCIAII card 21
 30 Mouse Pad 277
 31 1.44MB External 3.5 Diskette 52
 65 Green Products Total 414

Model Objects and Source Objects

6-24 Oracle OLAP Developer's Guide to the OLAP API

Making Queries Using Source Methods 7-1

7
Making Queries Using Source Methods

You create a query by producing a Source that specifies the data that you want to
retrieve from the data store and any operations that you want to perform on that data.
To produce the query, you begin with the primary Source objects that represent the
metadata of the measures and the dimensions and their attributes that you want to
query. Typically, you use the methods of the primary Source objects to derive a
number of other Source objects, each of which specifies a part of the query, such as a
selection of dimension elements or an operation to perform on the data. You then join
the primary and derived Source objects that specify the data and the operations that
you want. The result is one Source that represents the query.

This chapter briefly describes the various kinds of Source methods, and discusses
some of them in greater detail. It also discusses how to make some typical OLAP
queries using these methods and provides examples of some of them.

This chapter includes the following topics:

■ Describing the Basic Source Methods

■ Using the Basic Methods

■ Using Other Source Methods

For the complete code of the examples in this chapter, see the example programs
available from the Overview of the Oracle OLAP Java API Reference.

Describing the Basic Source Methods
The Source class has many methods that return a derived Source. The elements of
the derived Source result from operations on the base Source, which is the Source
whose method is called that produces the derived Source. Only a few methods
perform the most basic operations of the Source class.

The Source class has many other methods that use one or more of the basic methods
to perform operations such as selecting elements of the base Source by value or by
position, or sorting elements. Many of the examples in this chapter and in Chapter 6,
"Understanding Source Objects" use some of these methods. Other Source methods
get objects that have information about the Source, such as the getDefinition,
getInputs, and getType methods, or convert the values of the Source from one
data type to another, such as the toDoubleSource method.

This section describes the basic Source methods and provides some examples of their
use. Table 7–1 lists the basic Source methods.

Using the Basic Methods

7-2 Oracle OLAP Developer's Guide to the OLAP API

Using the Basic Methods
This section provides examples of using some of the basic methods.

Using the alias Method
You use the alias method to control the matching of a Source to an input. For
example, if you want to find out if the measure values specified by an element of a
dimension of the measure are greater than the measure values specified by the other
elements of the same dimension, then you need to match the inputs of the measure
twice in the same join operation. To do so, you can produce two Source objects that
are aliases for the same dimension, make them inputs of two instances of the measure,
join each measure instance to its aliased dimension, and then compare the results.

Example 7–1 performs such an operation. It produces a Source that specifies whether
the number of units sold for each value of the channel dimension is greater than the
number of units sold for the other values of the channel dimension.

The example joins to units, which is the Source for a measure, Source objects that
are selections of single values of three of the dimensions of the measure to produce
unitsSel. The unitsSel Source specifies the units elements for the dimension
values that are specified by the timeSel, custSel, and prodSel objects, which are
outputs of unitsSel.

The timeSel, custSel, and prodSel Source objects specify single values from the
default hierarchies of the Time, Customer, and Product dimensions, respectively. The
timeSel value is CALENDAR::MONTH::55, which identifies the month January, 2001,
the custSel value is SHIPMENTS_ROLLUP::SHIP_TO::52, which identifies the
Business Word San Jose customer, and the prodSel value is PRODUCT_
ROLLUP::ITEM::15, which identifies the Envoy Ambassador portable PC.

The example next creates two aliases, chanAlias1 and chanAlias2, for chanHier,
which is the default hierarchy of the Channel dimension. It then produces unitsSel1
by joining unitsSel to the Source that results from calling the value method of
chanAlias1. The unitsSel1 Source has the elements and outputs of unitsSel

Table 7–1 The Basic Source Methods

Method Description

alias Produces a Source that has the same elements as its base
Source, but has its base Source as its type.

distinct Produces a Source that has the same elements as its base
Source, except that any elements that are duplicated in the
base appear only once in the derived Source.

join Produces a Source that has the elements of its base Source
that are specified by the joined, comparison, and
comparisonRule parameters of the method call. If the
visible parameter is true, then the joined Source is an
output of the resulting Source.

position Produces a Source that has the positions of the elements of its
base Source, and that has its base Source as a regular input.

recursiveJoin Similar to the join method, except that this method, in the
Source that it produces, orders the elements of the Source
hierarchically by parent-child relationships.

value Produces a Source that has the same elements as its base
Source, but that has its base Source as a regular input.

Using the Basic Methods

Making Queries Using Source Methods 7-3

and it has chanAlias1 as an input. Similarly, the example produces unitsSel2,
which has chanAlias2 as an input.

The example uses the gt method of unitsSel1, which determines whether the
values of unitsSel1 are greater than the values of unitsSel2. The final join
operations match chanAlias1 to the input of unitsSel1 and match chanAlias1 to
the input of unitsSel2.

Example 7–1 Controlling Input-to-Source Matching With the alias Method

Source unitsSel = units.join(timeSel).join(custSel).join(prodSel);
Source chanAlias1 = chanHier.alias();
Source chanAlias2 = chanHier.alias();
NumberSource unitsSel1 = (NumberSource)
 unitsSel.join(chanAlias1.value());
NumberSource unitsSel2 = (NumberSource)
 unitsSel.join(chanAlias2.value());
Source result = unitsSel1.gt(unitsSel2)
 .join(chanAlias1) // Output 2, column
 .join(chanAlias2); // Output 1, row;

The result Source specifies the query, "Are the units sold values of unitsSel1 for
the channel values of chanAlias1 greater than the units sold values of unitsSel2
for the channel values of chanAlias2?" Because result is produced by the joining
of chanAlias2 to the Source produced by
unitsSel1.gt(unitsSel2).join(chanAlias1), chanAlias2 is the first output
of result, and chanAlias1 is the second output of result.

A Cursor for the result Source has as its values the boolean values that answer
the query. The values of the first output of the Cursor are the channel values specified
by chanAlias2 and the values of its second output are the channel values specified
by chanAlias1.

The following is a display of the values of the Cursor formatted as a crosstab with
headings added. The column edge values are the values from chanAlias1, and the
row edge values are the values from chanAlias2. The values of the crosstab cells are
the boolean values that indicate whether the units sold value for the column channel
value is greater than the units sold value for the row channel value. For example, the
crosstab values in the first column indicate that the units sold for the column channel
value All Channels is not greater than the units sold for the row All Channels
value but it is greater than the units sold for the Direct Sales, Catalog, and
Internet row values.

 ---------- chanAlias1 ----------
chanAlias2 All Channels Direct Sales Catalog Internet
------------ ------------ ------------ ------- --------
All Channels false false false false
Direct Sales true false true false
Catalog true false false false
Internet true true true false

Using the distinct Method
You use the distinct method to produce a Source that does not have any
duplicated values. Example 7–2 selects an element from a hierarchy of the Customer
dimension and gets the descendants of that element. It then appends the descendants
to the hierarchy element selection. Because the Source for the descendants includes
the ancestor value, the example uses the distinct method to remove the duplicated
ancestor value, which would otherwise appear twice in the result.

Using the Basic Methods

7-4 Oracle OLAP Developer's Guide to the OLAP API

In Example 7–2, mktRollup is a StringSource that represents the Market Rollup
hierarchy of the Customer dimension. The mktRollupAncestors object is the
Source for the ancestors attribute of that hierarchy. To get a Source that represents
the descendants of the ancestors, the example uses the join method to select, for each
element of mktRollupAncestors, the elements of mktRollup that have the
mktRollupAncestors element as their ancestor. The join operation matches the base
Source, mktRollup, to the input of the ancestors attribute.

The resulting Source, mktRollupDescendants, however, still has mktRollup as
an input because the Source produced by the mktRollup.value() method is the
comparison Source of the join operation. The comparison parameter Source of a
join operation does not participate in the matching of an input to a Source.

The selectValue method of mktRollup selects the element of mktRollup that has
the value MARKET_ROLLUP::ACCOUNT::23, which is the Business World account,
and produces selVal. The join method of mktRollupDescendants uses selVal
as the comparison Source. The method produces selValDescendants, which has
the elements of mktRollupDescendants that are present in mktRollup, and that
are also in selVal. The input of mktRollupDescendants is matched by the joined
Source mktRollup. The mktRollup Source is not an output of
selValDescendants because the value of the visible parameter of the join
operation is false.

The appendValues method of selVal produces selValPlusDescendants, which
is the result of appending the elements of selValDescendants to the element of
selVal and then removing any duplicate elements with the distinct method.

Example 7–2 Using the distinct Method

Source mktRollupDescendants =
 mktRollup.join(mktRollupAncestors, mktRollup.value());
Source selVal = mktRollup.selectValue("MARKET_ROLLUP::ACCOUNT::23");
Source selValDescendants = mktRollupDescendants.join(mktRollup,
 selVal,
 false);
Source selValPlusDescendants = selVal.appendValues(selValDescendants)
 .distinct();

A Cursor for the selValPlusDescendants Source has the following values:

MARKET_ROLLUP::ACCOUNT::23
MARKET_ROLLUP::SHIP_TO::51
MARKET_ROLLUP::SHIP_TO::52
MARKET_ROLLUP::SHIP_TO::53
MARKET_ROLLUP::SHIP_TO::54

If the example did not include the distinct method call, then a Cursor for
selValPlusDescendants would have the following values:

MARKET_ROLLUP::ACCOUNT::23
MARKET_ROLLUP::ACCOUNT::23
MARKET_ROLLUP::SHIP_TO::51
MARKET_ROLLUP::SHIP_TO::52
MARKET_ROLLUP::SHIP_TO::53
MARKET_ROLLUP::SHIP_TO::54

Using the Basic Methods

Making Queries Using Source Methods 7-5

Using the join Method
You use the join method to produce a Source that has the elements of its base
Source that are determined by the joined, comparison, and comparisonRule
parameters of the method. The visible parameter determines whether the joined
Source is an output of the Source produced by the join operation. You also use the
join method to match a Source to an input of the base or joined parameter
Source.

The join method has many signatures that are convenient shortcuts for the full
join(Source joined, Source comparison, int comparisonRule,
boolean visible) method. The examples in this chapter use various join method
signatures.

The Source class has several constants that you can provide as the value of the
comparisonRule parameter. Example 7–3 and Example 7–4 demonstrate the use of
two of those constants, COMPARISON_RULE_REMOVE and COMPARISON_RULE_
DESCENDING. Example 7–5 also uses COMPARISON_RULE_REMOVE.

Example 7–3 produces a result similar to Example 7–2. It uses mktRollup, which is
the Source for a hierarchy of the Customer dimension, and mktRollupAncestors,
which is the Source for the ancestors attribute for the hierarchy. It also uses
mktRollupDescendants, which is a Source for the descendants of elements of the
hierarchy.

The example first selects an element of the hierarchy. Next, the join method of
mktRollupDescendants produces mktRollupDescendantsOnly, which specifies
the descendants of mktRollup, and which has mktRollup as an input because the
comparison parameter of the join operation is the Source that results from the
mktRollup.value() method.

Because COMPARISON_RULE_REMOVE is the comparison rule of the join operation that
produced mktRollupDescendantsOnly, a join operation that matches a Source to
the input of mktRollupDescendantsOnly produces a Source that has only those
elements of mktRollupDescendantsOnly that are not in the comparison Source of
the join operation.

The next join operation performs such a match. It matches the joined Source,
mktRollup, to the input of mktRollupDescendantsOnly to produce
selValDescendantsOnly, which specifies the descendants of the selected hierarchy
value but does not include the selected value because mktRollupDescendantsOnly
specifies the removal of any values that match the value of the comparison Source,
which is selVal.

As a contrast, the last join operation produces selValDescendants, which specifies
the descendants of the selected hierarchy value and which does include the selected
value.

Example 7–3 Using COMPARISON_RULE_REMOVE

Source selVal = mktRollup.selectValue("MARKET_ROLLUP::ACCOUNT::23");
Source mktRollupDescendantsOnly =
 mktRollupDescendants.join(mktRollupDescendants.getDataType().value(),
 mktRollup.value(),
 Source.COMPARISON_RULE_REMOVE);

// Select the descendants of the specified element.
Source selValDescendants = mktRollupDescendants.join(mktRollup, selVal);

// Select only the descendants of the specified element.

Using the Basic Methods

7-6 Oracle OLAP Developer's Guide to the OLAP API

Source selValDescendantsOnly = mktRollupDescendantsOnly.join(mktRollup,
 selVal);

A Cursor for selValDescendants has the following values.

MARKET_ROLLUP::ACCOUNT::23
MARKET_ROLLUP::SHIP_TO::51
MARKET_ROLLUP::SHIP_TO::52
MARKET_ROLLUP::SHIP_TO::53
MARKET_ROLLUP::SHIP_TO::54

A Cursor for selValDescendantsOnly has the following values.

MARKET_ROLLUP::SHIP_TO::51
MARKET_ROLLUP::SHIP_TO::52
MARKET_ROLLUP::SHIP_TO::53
MARKET_ROLLUP::SHIP_TO::54

Example 7–4 demonstrates another join operation, which uses the comparison rule
COMPARISON_RULE_DESCENDING. It uses the following Source objects.

■ prodSelWithShortDescr, which is the Source produced by joining the
Source for the short value description attribute of the Product dimension to the
Source for the FAMILY level of the Product Rollup hierarchy of that dimension.

■ unitPrice, which is the Source for the Unit Price measure.

■ timeSelWithShortDescr, which is the Source produced by joining the
Source for the short value description attribute of the Time dimension to the
Source for a selected element of the Calendar hierarchy of that dimension.

The resulting Source specifies the product family level elements in descending order
of total unit prices for the month of May, 2001.

Example 7–4 Using COMPARISON_RULE_DESCENDING

Source result =
 prodSelWithShortDescr.join(unitPrice,
 unitPrice.getDataType(),
 Source.COMPARISON_RULE_DESCENDING,
 true)
 .join(timeSelWithShortDescr);

A Cursor for the result Source has the following values, displayed as a table. The
table includes only the short value descriptions of the dimension elements and the unit
price values, and has formatting added.

May, 2001

Total Unit Prices Product Family
----------------- --------------

 8,536.77 Portable PCs
 5,613.08 Desktop PCs
 1,273.00 CD-ROM
 830.74 Memory
 795.24 Monitors
 448.06 Documentation
 364.93 Accessories
 318.61 Modems/Fax
 131.84 Operating Systems

Using the Basic Methods

Making Queries Using Source Methods 7-7

Using the position Method
You use the position method to produce a Source that has the positions of the
elements of its base and has the base as an input. Example 7–5 uses the position
method in producing a Source that specifies the selection of the first and last
elements of the levels of a hierarchy of the Time dimension.

In the example, mdmTimeDim is the MdmPrimaryDimension for the Time dimension.
The example gets the level attribute and the default hierarchy of the dimension. It then
gets Source objects for the attribute and the hierarchy.

Next, the example creates an array of Source objects and gets a List of the
MdmLevel components of the hierarchy. It gets the Source object for each level and
adds it to the array, and then creates a list Source that has the Source objects for the
levels as its element values.

The example then produces levelMembers, which is a Source that specifies the
members of the levels of the hierarchy. Because the comparison parameter of the join
operation is the Source produced by levelList.value(), levelMembers has
levelList as an input. Therefore, levelMembers is a Source that returns the
members of each level, by level, when its input is matched in a join operation.

The range Source specifies a range of elements from the second element to the next
to last element of a Source.

The next join operation produces the firstAndLast Source. The base of the
operation is levelMembers. The joined parameter is the Source that results from
the levelMembers.position() method. The comparison parameter is the range
Source and the comparison rule is COMPARISON_RULE_REMOVE. The value of the
visible parameter is true. The firstAndLast Source therefore specifies only the
first and last members of the levels because it removes all of the other members of the
levels from the selection. The firstAndLast Source still has levelList as an
input.

The final join operation matches the input of firstAndLast to levelList.

Example 7–5 Selecting the First and Last Time Elements

MdmAttribute mdmTimeLevelAttr = mdmTimeDim.getLevelAttribute();
MdmLevelHierarchy mdmTimeHier = (MdmLevelHierarchy)
 mdmTimeDim.getDefaultHierarchy();

Source levelRel = mdmTimeLevelAttr.getSource();
StringSource calendar = (StringSource) mdmTimeHier.getSource();

Source[] levelSources = new Source[3];
List levels = mdmTimeHier.getLevels();
for (int i = 0; i < levelSources.length; i++)
{
 levelSources[i] = ((MdmLevel) levels.get(i)).getSource();
}
Source levelList = dp.createListSource(levelSources);
Source levelMembers = calendar.join(levelRel, levelList.value());
Source range = dp.createRangeSource(2, levelMembers.count().minus(1));
Source firstAndLast = levelMembers.join(levelMembers.position(),
 range
 Source.COMPARISON_RULE_REMOVE,
 true);

Source result = firstAndLast.join(levelList);

Using the Basic Methods

7-8 Oracle OLAP Developer's Guide to the OLAP API

A Cursor for the result Source has the following values, displayed as a table with
column headings and formatting added. The left column names the level, the middle
column is the position of the member in the level, and the right column is the local
value of the member.

Level Member Position in Level Member Value
----- ------------------------- -----------
YEAR 1 1
YEAR 7 119
QUARTER 1 5
QUARTER 26 116
MONTH 1 19
MONTH 77 107

Using the recursiveJoin Method
You use the recursiveJoin method to produce a Source that has its elements
ordered hierarchically. You use the recursiveJoin method only with the Source
for an MdmHierarchy or with a subtype of such a Source. The method produces a
Source whose elements are ordered hierarchically by the parents and their children in
the hierarchy.

Like the join method, you use the recursiveJoin method to produce a Source
that has the elements of its base Source that are determined by the joined,
comparison, and comparisonRule parameters of the method. The visible
parameter determines whether the joined Source is an output of the Source
produced by the recursive join operation.

The recursiveJoin method has several signatures. The full recursiveJoin
method has parameters that specify the parent attribute of the hierarchy, whether the
result should have the parents before or after their children, how to order the elements
of the result if the result includes children but not the parent, and whether the joined
Source is an output of the resulting Source.

Example 7–6 uses a recursiveJoin method that lists the parents first, restricts the
parents to the base, and does not add the joined Source as an output. The example
first sorts the elements of a hierarchy of the Product dimension by hierarchical levels
and then by the value of the color attribute of each element.

The first recursiveJoin method orders the elements of the prodRollup hierarchy
in ascending hierarchical order. The prodParent object is the Source for the parent
attribute of the hierarchy.

The prodColorAttr object in the second recursiveJoin method is the Source for
a color attribute of the hierarchy. Only the elements of the Item level of the hierarchy
have a related color value. Because the elements in the aggregate levels Total Product,
Class, and Family, do not have related colors, the color attribute value for elements in
those levels is null, which appears as NA in the results. Some of the Item level
elements do not have a related color, so their values are NA, also.

The second recursiveJoin method joins the color attribute values to their related
hierarchy elements and sorts the elements hierarchically by level, and then sorts them
in ascending order in the level by the color value. The COMPARISON_RULE_
ASCENDING_NULLS_FIRST parameter specifies that elements that have a null value
appear before the other elements in the same level. The example then joins the result of
the method, sortedHierNullsFirst, to the color attribute to produce a Source
that has the color values as its element values and sortedHierNullsFirst as an
output.

Using the Basic Methods

Making Queries Using Source Methods 7-9

The third recursiveJoin method is the same as the second, except that the
COMPARISON_RULE_ASCENDING_NULLS_LAST parameter specifies that elements
that have a null value appear after the other elements in the same level.

Example 7–6 Sorting Products Hierarchically By Color

Source result1 =
 prodRollup.recursiveJoin(prodDim.value(),
 prodRollup.getDataType(),
 prodParent,
 Source.COMPARISON_RULE_ASCENDING);

Source sortedHierNullsFirst =
 prodRollup.recursiveJoin(prodColorAttr,
 prodColorAttr.getDataType(),
 prodParent,
 Source.COMPARISON_RULE_ASCENDING_NULLS_FIRST);
Source result2 = prodColorAttr.join(sortedHierNullsFirst);

Source sortedHierNullsLast =
 prodRollup.recursiveJoin(prodColorAttr,
 prodColorAttr.getDataType(),
 prodParent,
 Source.COMPARISON_RULE_DESCENDING_NULLS_LAST);
Source result3 = prodColorAttr.join(sortedHierNullsLast);

A Cursor for the result1 Source has the following values, displayed with a
heading added. The list contains only the first ten values of the Cursor.

Product Dimension Element Value

PRODUCT_ROLLUP::TOTAL_PRODUCT::1
PRODUCT_ROLLUP::CLASS::2
PRODUCT_ROLLUP::FAMILY::4
PRODUCT_ROLLUP::ITEM::13
PRODUCT_ROLLUP::ITEM::14
PRODUCT_ROLLUP::ITEM::15
PRODUCT_ROLLUP::FAMILY::5
PRODUCT_ROLLUP::ITEM::16
PRODUCT_ROLLUP::ITEM::17
PRODUCT_ROLLUP::ITEM::18
...

A Cursor for the result2 Source has the following values, displayed as a table
with headings added. The table contains only the first ten values of the Cursor. The
left column has the member values of the hierarchy and the right column has the color
attribute value for the member.

The Item level elements that have a null value appear first, and then the other level
members appear in ascending order of color value. Since the data type of the color
attribute is String, the color values are in ascending alphabetical order.

Product Dimension Element Value Color Value
------------------------------- -----------
PRODUCT_ROLLUP::TOTAL_PRODUCT::1 NA
PRODUCT_ROLLUP::CLASS::2 NA
PRODUCT_ROLLUP::FAMILY::4 NA
PRODUCT_ROLLUP::ITEM::14 NA
PRODUCT_ROLLUP::ITEM::15 Black
PRODUCT_ROLLUP::ITEM::13 Silver
PRODUCT_ROLLUP::FAMILY::5 NA

Using the Basic Methods

7-10 Oracle OLAP Developer's Guide to the OLAP API

PRODUCT_ROLLUP::ITEM::18 NA
PRODUCT_ROLLUP::ITEM::17 Beige
PRODUCT_ROLLUP::ITEM::16 Silver
...

A Cursor for the result3 Source has the following values, displayed as a table
with headings added. This time the members are in descending order, alphabetically
by color attribute value.

Product Dimension Element Value Color Value
------------------------------- -----------
PRODUCT_ROLLUP::TOTAL_PRODUCT::1 NA
PRODUCT_ROLLUP::CLASS::2 NA
PRODUCT_ROLLUP::FAMILY::4 NA
PRODUCT_ROLLUP::ITEM::14 NA
PRODUCT_ROLLUP::ITEM::13 Silver
PRODUCT_ROLLUP::ITEM::15 Black
PRODUCT_ROLLUP::FAMILY::5 NA
PRODUCT_ROLLUP::ITEM::18 NA
PRODUCT_ROLLUP::ITEM::16 Silver
PRODUCT_ROLLUP::ITEM::17 Beige
...

Using the value Method
You use the value method to create a Source that has itself as an input. That
relationship enables you to select a subset of elements of the Source.

Example 7–7 demonstrates the selection of such a subset. In the example, shipRollup
is a Source for the SHIPMENTS_ROLLUP hierarchy of the Customer dimension. The
selectValues method of shipRollup produces custSel, which is a selection of
some of the elements of shipRollup. The selectValues method of custSel
produces custSel2, which is a subset of that selection.

The first join method has custSel as the base and as the joined Source. It has
custSel2 as the comparison Source. The elements of the resulting Source,
result1, are one set of the elements of custSel for each element of custSel that is
in the comparison Source. The true value of the visible parameter causes the
joined Source to be an output of result1.

The second join method also has custSel as the base and custSel2 as the
comparison Source, but it has the result of the custSel.value() method as the
joined Source. Because custSel is an input of the joined Source, the base Source
matches that input. That input relationship causes the resulting Source, result2, to
have only those elements of custSel that are also in the comparison Source.

Example 7–7 Selecting a Subset of the Elements of a Source

StringSource custSel = (StringSource) shipRollup.selectValues(new String[]
 {"SHIPMENTS_ROLLUP::SHIP_TO::60",
 "SHIPMENTS_ROLLUP::SHIP_TO::61",
 "SHIPMENTS_ROLLUP::SHIP_TO::62",
 "SHIPMENTS_ROLLUP::SHIP_TO::63"});

Source custSel2 = custSel.selectValues(new String[]
 {"SHIPMENTS_ROLLUP::SHIP_TO::60",
 "SHIPMENTS_ROLLUP::SHIP_TO::62"});

Source result1 = custSel.join(custSel, custSel2, true);

Using Other Source Methods

Making Queries Using Source Methods 7-11

Source result2 = custSel.join(custSel.value(), custSel2, true);

A Cursor for result1 has the following values, displayed as a table with headings
added. The left column has the values of the elements of the output of the Cursor.
The right column has the values of the Cursor.

 Output Value result1 Value
----------------------------- -----------------------------
SHIPMENTS_ROLLUP::SHIP_TO::60 SHIPMENTS_ROLLUP::SHIP_TO::60
SHIPMENTS_ROLLUP::SHIP_TO::60 SHIPMENTS_ROLLUP::SHIP_TO::61
SHIPMENTS_ROLLUP::SHIP_TO::60 SHIPMENTS_ROLLUP::SHIP_TO::62
SHIPMENTS_ROLLUP::SHIP_TO::60 SHIPMENTS_ROLLUP::SHIP_TO::63
SHIPMENTS_ROLLUP::SHIP_TO::62 SHIPMENTS_ROLLUP::SHIP_TO::60
SHIPMENTS_ROLLUP::SHIP_TO::62 SHIPMENTS_ROLLUP::SHIP_TO::61
SHIPMENTS_ROLLUP::SHIP_TO::62 SHIPMENTS_ROLLUP::SHIP_TO::62
SHIPMENTS_ROLLUP::SHIP_TO::62 SHIPMENTS_ROLLUP::SHIP_TO::63

A Cursor for result2 has the following values, displayed as a table with headings
added. The left column has the values of the elements of the output of the Cursor.
The right column has the values of the Cursor.

 Output Value result2 Value
----------------------------- -----------------------------
SHIPMENTS_ROLLUP::SHIP_TO::60 SHIPMENTS_ROLLUP::SHIP_TO::60
SHIPMENTS_ROLLUP::SHIP_TO::62 SHIPMENTS_ROLLUP::SHIP_TO::62

Using Other Source Methods
Along with the methods that are various signatures of the basic methods, the Source
class has many other methods that use combinations of the basic methods. Some
methods perform selections based on a single position, such as the at and offset
methods. Others operate on a range of positions, such as the interval method. Some
perform comparisons, such as eq and gt, select one or more elements, such as
selectValue or removeValue, or sort elements, such as sortAscending or
sortDescendingHierarchically.

The subclasses of Source each have other specialized methods, also. For example, the
NumberSource class has many methods that perform mathematical functions such as
abs, div, and cos, and methods that perform aggregations, such as average and
total.

Some of the Source methods are implemented as CustomModel objects. For
example, the extract method, which used to be a basic Source method, now uses a
CustomModel, as shown in Example 6–11 in Chapter 6, "Understanding Source
Objects". The current implementation of the extract method produces the same
result as the previous implementation.

This section has examples that demonstrate the use of some of the Source methods.
Some of the examples are tasks that an OLAP application typically performs.

Using the extract Method
You use the extract method to extract the values of a Source that has Source
objects as its element values. If the elements of a Source have element values that are
not Source objects, the extract method operates like the value method.

Example 7–8 uses the extract method to get the values of the NumberSource
objects that are themselves the values of the elements of measDim. Each of the
NumberSource objects represents a measure. The first two are the primary

Using Other Source Methods

7-12 Oracle OLAP Developer's Guide to the OLAP API

NumberSource objects for the Units and the Unit Price measures, and the third is a
NumberSource derived from a mathematical operation on the primary
NumberSource objects.

The example selects values from hierarchies of the dimensions of the NumberSource
for the Units measure. Two of the dimensions are the dimensions of the
NumberSource for the Unit Price measure. The example produces sales, which is
the result of the times method of units with unitPrice as the rhs parameter of
the method.

Next, the example creates a list Source, measDim, which has the three
NumberSource objects as its element values. It then uses the extract method to get
the values of the NumberSource objects. The resulting unnamed Source has
measDim as an extraction input. The input is matched by first join operation, which
has measDim as the joined parameter. The example then matches the other inputs of
the measures by joining the dimension selections to produce the result Source.

Example 7–8 Using the extract Method

Source prodSel = prodHier.selectValues(new String[]
 {"PRODUCT_ROLLUP::ITEM::13",
 "PRODUCT_ROLLUP::ITEM::14",
 "PRODUCT_ROLLUP::ITEM::15"});
Source chanSel = chanHier.selectValue("CHANNEL_ROLLUP::CHANNEL::2");
Source timeSel = timeHier.selectValue("CALENDAR::MONTH::59");
Source custSel = custHier.selectValue("SHIPMENTS_ROLLUP::ALL_CUSTOMERS::1");

Source sales = units.times(unitPrice);

Source measDim = dp.createListSource(new Source[]
 {units, unitPrice, sales});

Source result = measDim.extract().join(measDim) // column
 .join(prodSel) // row
 .join(timeSel) // page
 .join(chanSel) // page
 .join(custSel); // page

The following crosstab displays the values of a Cursor for the result Source, with
headings and formatting added.

SHIPMENTS_ROLLUP::ALL_CUSTOMERS::1
CHANNEL_ROLLUP::CHANNEL::2
CALENDAR::MONTH::59

 UNITS SOLD TOTAL OF UNIT PRICES SALES AMOUNT
ITEM ---------- -------------------- -------------

 13 39 2,395.63 93,429.57
 14 37 3,147.85 116,470.45
 15 26 2,993.29 77,825.54

Creating a Cube and Pivoting Edges
One typical OLAP operation is the creation of a cube, which is a multi-dimensional
array of data. The data of the cube is specified by the elements of the column, row, and
page edges of the cube. The data of the cube can be data from a measure that is
specified by the elements of the dimensions of the measure. The cube data can also be
dimension elements that are specified by some calculation of the measure data, such as
products that have unit sales quantities greater than a specified amount.

Using Other Source Methods

Making Queries Using Source Methods 7-13

Most of the examples in this section create cubes. Example 7–9 creates a cube that has
the quantity of units sold as its data. The column edge values are initially from a
channel dimension hierarchy, the row edge values are from a time dimension
hierarchy, and the page edge values of the cube are from elements of hierarchies for
product and customer dimensions. The product and customer elements on the page
edge are represented by parameterized Source objects.

The example joins the selections of the dimension elements to the short value
description attributes for the dimensions so that the results have more information
than just the numerical identifications of the dimension values. It then joins the
Source objects derived from the dimensions to the Source for the measure to
produce the cube query. It prepares and commits the current Transaction, and then
creates a Cursor for the query and displays its values.

After displaying the values of the Cursor, the example changes the value of the
Parameter for the parameterized Source for the customer selection, thereby
retrieving a different result set using the same Cursor in the same Transaction. The
example resets the position of the Cursor, and displays the values of the Cursor
again.

The example then pivots the column and row edges so that the column values are time
elements and the row values are channel elements. It prepares and commits the
Transaction, creates another Cursor for the query, and displays its values. It then
changes the value of each Parameter object and displays the values of the Cursor
again.

The dp object is the DataProvider. The context object has a method that displays
the values of the Cursor in a crosstab format.

Example 7–9 Creating a Cube and Pivoting Its Edges

// Create Parameter objects with values from the default hierarchies
// of the Customer and Product dimensions.
StringParameter custParam =
 new StringParameter(dp, "SHIPMENTS_ROLLUP::REGION::9");
StringParameter prodParam =
 new StringParameter(dp, "PRODUCT_ROLLUP::FAMILY::4");

// Create parameterized Source objects using the Parameter objects.
StringSource custParamSrc = dp.createParameterizedSource(custParam);
StringSource prodParamSrc = dp.createParameterizedSource(prodParam);

// Select single values from the hierarchies, using the Parameter
// objects as the comparisons in the join operations.
Source paramCustSel = custHier.join(custHier.value(), custParamSrc);
Source paramProdSel = prodHier.join(prodHier.value(), prodParamSrc);

// Select elements from the other dimensions of the measure
Source timeSel = timeHier.selectValues(new String[]
 {"CALENDAR::YEAR::2"
 "CALENDAR::YEAR::3",
 "CALENDAR::YEAR::4"});
Source chanSel = chanHier.selectValues(new String[]
 {"CHANNEL_ROLLUP::CHANNEL::2",
 "CHANNEL_ROLLUP::CHANNEL::3",
 "CHANNEL_ROLLUP::CHANNEL::4"});

// Join the dimension selections to the short description attributes
// for the dimensions.
Source columnEdge = chanSel.join(chanShortDescr);

Using Other Source Methods

7-14 Oracle OLAP Developer's Guide to the OLAP API

Source rowEdge = timeSel.join(timeShortDescr);
Source page1 = paramProdSel.join(prodShortDescr);
Source page2 = paramCustSel.join(custShortDescr);

// Join the dimension selections to the measure.
Source cube = units.join(columnEdge)
 .join(rowEdge)
 .join(page2)
 .join(page1);

// Get the TransactionProvider.
TransactionProvider tp = context.getTransactionProvider();
// Prepare and commit the currentTransaction.
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 context.println("Cannot prepare the current Transaction. " + e
}
tp.commitCurrentTransaction();

// Create a Cursor for the query.
CursorManagerSpecification cMngrSpec =
 dp.createCursorManagerSpecification(cube);
SpecifiedCursorManager spCMngr = dp.createCursorManager(cMngrSpec);
Cursor cubeCursor = spCMngr.createCursor();
// Display the values of the Cursor as a crosstab.
context.displayCursorAsCrosstab(cubeCursor);

// Change the customer parameter value.
custParam.setValue("SHIPMENTS_ROLLUP::REGION::10");

// Reset the Cursor position to 1 and display its values again.
cubeCursor.setPosition(1);
context.println(" ");
context.displayCursorAsCrosstab(cubeCursor);

// Pivot the column and row edges.
columnEdge = timeSel.join(timeShortDescr);
rowEdge = chanSel.join(chanShortDescr);

// Join the dimension selections to the measure.
cube = units.join(columnEdge)
 .join(rowEdge))
 .join(page2)
 .join(page1);

// Prepare and commit the current Transaction.
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 context.println("Cannot prepare the current Transaction. " + e);
}
tp.commitCurrentTransaction();

Using Other Source Methods

Making Queries Using Source Methods 7-15

// Create another Cursor.
cMngrSpec = dp.createCursorManagerSpecification(cube);
spCMngr = dp.createCursorManager(cMngrSpec);
cubeCursor = spCMngr.createCursor();
context.displayCursorAsCrosstab(cubeCursor);

// Change the product parameter value.
prodParam.setValue("PRODUCT_ROLLUP::FAMILY::5");

// Reset the Cursor position to 1
cubeCursor.setPosition(1);
context.println(" ");
context.displayCursorAsCrosstab(cubeCursor);

The following crosstab has the values of cubeCursor displayed by the first
displayCursorAsCrosstab method.

Portable PCs
Europe

 Direct Sales Catalog Internet
1999 86 1986 0
2000 193 1777 10
2001 196 1449 215

The following crosstab has the values of cubeCursor after the example changed the
value of the custParam Parameter object.

Portable PCs
North America

 Direct Sales Catalog Internet
1999 385 6841 0
2000 622 6457 35
2001 696 5472 846

The next crosstab has the values of cubeCursor after pivoting the column and row
edges.

Portable PCs
North America

 1999 2000 2001
Direct Sales 385 622 696
Catalog 6841 6457 5472
Internet 0 35 846

The last crosstab has the values of cubeCursor after changing the value of the
prodParam Parameter object.

Desktop PCs
North America

 1999 2000 2001
Direct Sales 793 1224 1319
Catalog 14057 1321 11337
Internet 0 69 1748

Using Other Source Methods

7-16 Oracle OLAP Developer's Guide to the OLAP API

Drilling Up and Down in a Hierarchy
Drilling up or down in a dimension hierarchy is another typical OLAP operation.
Example 7–10 demonstrates getting the elements of one level of a dimension hierarchy,
selecting an element, and then getting the parent, children, and ancestors of the
element.

The example uses the following objects.

■ levelSrc, which is the Source for the Family level of the Product Rollup
hierarchy of the Product dimension.

■ prodRollup, which is the Source for the Product Rollup hierarchy.

■ prodRollupParentAttr, which is the Source for the parent attribute of the
hierarchy.

■ prodRollupAncsAttr, which is the Source for the ancestors attribute of the
hierarchy.

■ prodShortLabel, which is the Source for the short value description attribute
of the Product dimension.

■ context, which has methods that prepare and commit the current
Transaction, that create a Cursor for a Source, that display text, and that
display the values of the Cursor.

Example 7–10 Drilling in a Hierarchy

int pos = 5;
// Get the element at the specified position of the level Source.
Source levelElement = levelSrc.at(pos);

// Select the element of the hierarchy with the specified value.
Source levelSel = prodRollup.join(prodRollup.value(), levelElement);

// Get ancestors of the level element.
Source levelElementAncs = prodRollupAncsAttr.join(prodRollup,
 levelElement);
// Get the parent of the level element.
Source levelElementParent = prodRollupParentAttr.join(prodRollup,
 levelElement);
// Get the children of a parent.
Source prodRollupChildren = prodRollup.join(prodRollupParentAttr,
 prodRollup.value());

// Select the children of the level element.
Source levelElementChildren = prodRollupChildren.join(prodRollup,
 levelElement);

// Get the short value descriptions for the elements of the level.
Source levelSrcWithShortDescr = prodShortLabel.join(levelSrc);

// Get the short value descriptions for the children.
Source levelElementChildrenWithShortDescr =
 prodShortLabel.join(levelElementChildren);

// Get the short value descriptions for the parents.
Source levelElementParentWithShortDescr =
 prodShortLabel.join(prodRollup, levelElementParent, true);

Using Other Source Methods

Making Queries Using Source Methods 7-17

// Get the short value descriptions the ancestors.
Source levelElementAncsWithShortDescr =
 prodShortLabel.join(prodRollup, levelElementAncs, true);

// Prepare and commit the current Transaction.
context.commit();

// Create Cursor objects and display their values.
context.println("Level element values:");
context.displayResult(levelSrcWithShortDescr);
context.println("\nLevel element at position " + pos + ":");
context.displayResult(levelElement);
context.println("\nParent of the level element:");
context.displayResult(levelElementParent);
context.println("\nChildren of the level element:");
context.displayResult(levelElementChildrenWithShortDescr);
context.println("\nAncestors of the level element:");
context.displayResult(levelElementAncs);

The following list has the values of the Cursor objects created by the
displayResults methods.

Level element values:

1: (PRODUCT_ROLLUP::FAMILY::10,Memory)
2: (PRODUCT_ROLLUP::FAMILY::11,CD-ROM)
3: (PRODUCT_ROLLUP::FAMILY::12,Documentation)
4: (PRODUCT_ROLLUP::FAMILY::4,Portable PCs)
5: (PRODUCT_ROLLUP::FAMILY::5,Desktop PCs)
6: (PRODUCT_ROLLUP::FAMILY::6,Operating Systems)
7: (PRODUCT_ROLLUP::FAMILY::7,Accessories)
8: (PRODUCT_ROLLUP::FAMILY::8,Monitors)
9: (PRODUCT_ROLLUP::FAMILY::9,Modems/Fax)

Level element at position 5:

1: PRODUCT_ROLLUP::FAMILY::5

Parent of the level element:

1: (PRODUCT_ROLLUP::CLASS::2,Hardware)

Children of the level element:

1: (PRODUCT_ROLLUP::ITEM::16,Sentinel Standard)
2: (PRODUCT_ROLLUP::ITEM::17,Sentinel Financial)
3: (PRODUCT_ROLLUP::ITEM::18,Sentinel Multimedia)

Ancestors of the level element:

1: (PRODUCT_ROLLUP::TOTAL_PRODUCT::1,Total Product)
2: (PRODUCT_ROLLUP::CLASS::2,Hardware)
3: (PRODUCT_ROLLUP::FAMILY::5,Desktop PCs)

Sorting Hierarchically by Measure Values
Example 7–11 uses the recursiveJoin method to sort the elements of the Product
Rollup hierarchy of the Product dimension hierarchically in ascending order of the
values of the Units measure. The example joins the sorted products to the short value

Using Other Source Methods

7-18 Oracle OLAP Developer's Guide to the OLAP API

description attribute of the dimension, and then joins the result of that operation,
sortedProductsShortDescr, to units.

The successive joinHidden methods join the selections of the other dimensions of
units to produce the result Source, which has the measure data as its element
values and sortedProductsShortDescr as its output. The example uses the
joinHidden methods so that the other dimension selections are not outputs of the
result.

The example uses the following objects.

■ prodRollup, which is the Source for the Product Rollup hierarchy.

■ units, which is the Source for the UNITS measure of product units sold.

■ prodParent, which is the Source for the parent attribute of the Product Rollup
hierarchy.

■ prodShortDescr, which is the Source for the short value description attribute
of the Product dimension.

■ custSel, which is a Source that specifies a single element of the default
hierarchy of the Customer dimension. Its value is SHIPMENTS_ROLLUP::ALL_
CUSTOMERS::1, which is all customers.

■ chanSel, which is a Source that specifies a single element of the default
hierarchy of the Channel dimension. Its value is CHANNEL_
ROLLUP::CHANNEL::2, which is the direct sales channel.

■ timeSel, which is a Source that specifies a single element of the default
hierarchy of the Time dimension. Its value is CALENDAR::YEAR::4, which is the
year 2001.

Example 7–11 Hierarchical Sorting by Measure Value

Source sortedProduct =
 prodRollup.recursiveJoin(units,
 units.getDataType(),
 prodParent,
 Source.COMPARISON_RULE_ASCENDING,
 true, // Parents first
 true); // Restrict parents to base

Source sortedProductShortDescr = prodShortDescr.join(sortedProduct);
Source result = units.join(sortedProductShortDescr)
 .joinHidden(custSel)
 .joinHidden(chanSel)
 .joinHidden(timeSel);

A Cursor for the result Source has the following values, displayed in a table with
column headings and formatting added. The left column has the name of the level in
the PRODUCT_ROLLUP hierarchy. The next column to the right has the product
identification value, and the next column has the short value description of the
product. The rightmost column has the number of units of the product sold to all
customers in the year 2001 through the direct sales channel.

The table contains only the first nine and the last ten values of the Cursor, plus the
Software/Other class value. The product values are listed in hierarchical order by
units sold. The Hardware class appears before the Software/Other class because the
Software/Other class has a greater number of units sold. In the Hardware class, the
Monitors family sold the fewest units, so it appears first. In the Software/Other class,
the Accessories family has the greatest number of units sold, so it appears last.

Using Other Source Methods

Making Queries Using Source Methods 7-19

Product Level ID Description Units Sold
------------- -- ---------------------------- ----------

TOTAL_PRODUCT 1 Total Product 43,783
 CLASS 2 Hardware 16,541
 FAMILY 4 Portable PCs 1,192
 ITEM 15 Envoy Ambassador 330
 ITEM 14 Envoy Executive 385
 ITEM 13 Envoy Standard 477
 FAMILY 8 Monitors 1,193
 ITEM 21 Monitor- 19 Super VGA 207
 ITEM 20 Monitor- 15 Super VGA 986
 ...
 CLASS 3 Software/Other 27,242
 ...
 FAMILY 7 Accessories 18,949
 ITEM 22 Envoy External Keyboard 146
 ITEM 23 External 101-key keyboard 678
 ITEM 32 Multimedia speakers- 5 cones 717
 ITEM 46 Standard Mouse 868
 ITEM 27 Multimedia speakers- 3 cones 1,120
 ITEM 31 1.44MB External 3.5 Diskette 1,145
 ITEM 48 Keyboard Wrist Rest 2,231
 ITEM 19 Laptop carrying case 3,704
 ITEM 47 Deluxe Mouse 3,884
 ITEM 30 Mouse Pad 4,456

Using NumberSource Methods To Compute the Share of Units Sold
Example 7–12 uses the NumberSource methods div and times to produce a Source
that specifies the share that the Desktop PC and Portable PC families have of the total
quantity of product units sold for the selected time, customer, and channel values. The
example first uses the selectValue method of prodRollup, which is the Source
for a hierarchy of the Product dimension, to produce allProds, which specifies a
single element with the value PRODUCT_ROLLUP::TOTAL_PRODUCT::1, which is the
highest aggregate level of the hierarchy.

The joinHidden method of the NumberSource units produces totalUnits,
which specifies the Units measure values at the total product level, without having
allProds appear as an output of totalUnits. The div method of units then
produces a Source that represents each units sold value divided by total quantity of
units sold. The times method then multiplies the result of that div operation by 100
to produce productShare, which represents the percentage, or share, that a product
element has of the total quantity of units sold. The productShare Source has the
inputs of the units measure as its inputs.

The prodFamilies object is the Source for the Family level of the Product Rollup
hierarchy. The join method of productShare, with prodFamilies as the joined
Source, produces a Source that specifies the share that each product family has of
the total quantity of products sold.

The custSel, chanSel, and timeSel Source objects are selections of single
elements of hierarchies of the Customer, Channel, and Time dimensions. The
remaining join methods match those Source objects to the other inputs of
productShare, to produce result. The join(Source joined, String
comparison) signature of the join method produces a Source that does not have
the joined Source as an output.

Using Other Source Methods

7-20 Oracle OLAP Developer's Guide to the OLAP API

The result Source specifies the share for each product family of the total quantity of
products sold to all customers through the direct sales channel in the year 2001.

Example 7–12 Getting the Share of Units Sold

Source allProds = prodRollup.selectValue("PRODUCT_ROLLUP::TOTAL_PRODUCT::1");
NumberSource totalUnits = (NumberSource) units.joinHidden(allProds);
Source productShare = units.div(totalUnits).times(100);
Source result =
 productShare.join(prodFamilies)
 .join(timeHier, "CALENDAR::YEAR::4")
 .join(chanHier, "CHANNEL_ROLLUP::CHANNEL::2")
 .join(custHier, "SHIPMENTS_ROLLUP::ALL_CUSTOMERS::1");

A Cursor for the result Source has the following values, displayed in a table with
column headings and formatting added. The left column has the product family value
and the right column has the share of the total number of units sold for the product
family to all customers through the direct sales channel in the year 2001.

Product Family Element Share of Total Units Sold
------------------------- -------------------------
PRODUCT_ROLLUP::FAMILY::10 3.57%
PRODUCT_ROLLUP::FAMILY::11 11.71%
PRODUCT_ROLLUP::FAMILY::12 6.4%
PRODUCT_ROLLUP::FAMILY::4 2.72%
PRODUCT_ROLLUP::FAMILY::5 5.13%
PRODUCT_ROLLUP::FAMILY::6 12.54%
PRODUCT_ROLLUP::FAMILY::7 43.28%
PRODUCT_ROLLUP::FAMILY::8 2.73%
PRODUCT_ROLLUP::FAMILY::9 11.92%

Ranking Dimension Elements by Measure Value
Example 7–13 produces two results. The first is result1, which is a Source that
specifies the rank of two families of products and their members in the order of the
sales of all product units. The second is result2, which ranks those families and their
members by quantity of units sold compared to each other.

The units object is the Source for the Units measure, and prodRollup is the
Source for the Product Rollup hierarchy of the Product dimension. The join method
of units produces a Source that specifies units sold values for each element of the
hierarchy.

The select method has as its filter parameter the BooleanSource produced by
the gt method of the Source that results from the units.value() method. The
Source that results from the select method has units as an input. When a join
operation matches a Source to that input, it produces a Source that, for each element
of the units measure, has the Boolean value true for every units sold value that is
greater than the current element value.

The count method then produces a Source that has, for each element of the measure,
the total number of all the products that have greater sales quantities. The product
element with the greatest quantity of units sold therefore has a count of zero. The
plus method then adds 1 to each count amount so that the rank values begin with the
number 1.

The join method of the Source produced by the plus method selects the elements
of pcParentsAndChildren from all of the elements of the product hierarchy. The
joinHidden methods then match Source objects that specify selections of the
dimensions that are the remaining inputs of the units measure to produce result1,

Using Other Source Methods

Making Queries Using Source Methods 7-21

which specifies the calculation of the rank of the selected product elements relative to
all of the product elements for the customer, time, and channel values.

The methods that product result2 are the same except that the first join produces a
Source that specifies the units elements only for the elements of
pcParentsAndChildren. The select, gt, count, and plus methods operate on
only those selected elements of the hierarchy. The result2 Source therefore specifies
the calculation of the rank of the selected product elements relative to each other
rather than relative to all product elements.

Example 7–13 Ranking Products by Units Sold

// First result: PC products unit sales ranked relative to all products.
Source result1 = units.join(prodRollup,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 false)
 .select(units.value().gt(units)).count().plus(1)
 .join(pcParentsAndChildren)
 .joinHidden(custSel)
 .joinHidden(timeSel)
 .joinHidden(chanSel);

// Second result: PC products unit sales ranked relative to each other.
Source result2 = units.join(pcParentsAndChildren,
 dp.getEmptySource(),
 Source.COMPARISON_RULE_REMOVE,
 false)
 .select(units.value().gt(units)).count().plus(1)
 .join(prodRollup)
 .joinHidden(custSel)
 .joinHidden(timeSel)
 .joinHidden(chanSel);

A Cursor for the result1 Source has the following values, displayed in a table
with column headings and formatting added. The left column has the product element
value and the right column has the rank of that product compared to all product units
sold.

 Rank Compared To
Product Element Total Products Sold
------------------------- -------------------

PRODUCT_ROLLUP::FAMILY::5 16
PRODUCT_ROLLUP::FAMILY::4 21
PRODUCT_ROLLUP::ITEM::16 29
PRODUCT_ROLLUP::ITEM::17 31
PRODUCT_ROLLUP::ITEM::18 34
PRODUCT_ROLLUP::ITEM::13 35
PRODUCT_ROLLUP::ITEM::14 37
PRODUCT_ROLLUP::ITEM::15 39

A Cursor for the result2 Source has the following values, displayed in a table
with column headings and formatting added. The left column has the product element
value and the right column has the rank of that product compared to the other product
family members.

Using Other Source Methods

7-22 Oracle OLAP Developer's Guide to the OLAP API

 Rank Compared To
Product Element Each Other
------------------------- ----------------
PRODUCT_ROLLUP::FAMILY::5 1
PRODUCT_ROLLUP::FAMILY::4 2
PRODUCT_ROLLUP::ITEM::16 3
PRODUCT_ROLLUP::ITEM::17 4
PRODUCT_ROLLUP::ITEM::18 5
PRODUCT_ROLLUP::ITEM::13 6
PRODUCT_ROLLUP::ITEM::14 7
PRODUCT_ROLLUP::ITEM::15 8

Selecting Based on Time Series Operations
This section has two examples of using methods that operate on a series of time
dimension elements. Example 7–14 uses the lag method of unitPrice, which is the
Source for the Unit Price measure, to produce unitPriceLag4, which specifies, for
each element of unitPrice, the element of unitPrice that is four time periods
before it at the same time dimension level.

In the example, dp is the DataProvider. Its createListSource method creates
measuresDim, which has the unitPrice and unitPriceLag4 Source objects as
its element values. The extract method of measuresDim gets the values of the
elements of measuresDim. The Source produced by the extract method has
measuresDim as an extraction input. The first join method matches a Source,
measuresDim, to the input of the Source produced by the extract method.

The unitPrice and unitPriceLag4 measures both have the Product and Time
dimensions as inputs. The second join method matches quarterLevel, which is a
Source for the Quarter level of the Calendar hierarchy of the Time dimension, to the
measure input for the Time dimension, and makes it an output of the resulting
Source.

The joinHidden method matches prodSel to the measure input for the Product
dimension, and does not make prodSel an output of the resulting Source. The
prodSel Source specifies the single hierarchy element PRODUCT_
ROLLUP::FAMILY::5, which is Desktop PCs.

The lagResult Source specifies the aggregate unit prices for each quarter and the
aggregate unit prices for the quarter four quarters earlier for the Desktop PC product
family.

Example 7–14 Using the Lag Method

NumberSource unitPriceLag4 = unitPrice.lag(mdmTimeHier, 4);
Source measuresDim = dp.createListSource(new Source[] {unitPrice,
 unitPriceLag4});

Source lagResult = measuresDim.extract()
 .join(measuresDim)
 .join(quarterLevel)
 .joinHidden(prodSel);

A Cursor for the lagResult Source has the following values, displayed in a table
with column headings and formatting added. The left column has the quarter, the
middle column has the total of the unit prices for the members of the Desktop PC
family for that quarter, and the left column has the total of the unit prices for the
quarter four quarters earlier. The first four values in the right column are NA because

Using Other Source Methods

Making Queries Using Source Methods 7-23

quarter 5, Q1-98, is the first quarter in the Calendar hierarchy. The table includes only
the first eight quarters.

 Unit Price
Quarter Unit Price Four Quarters Before
--------------------- ---------- --------------------
CALENDAR::QUARTER::5 16125.24 NA
CALENDAR::QUARTER::6 16226.89 NA
CALENDAR::QUARTER::7 16039.61 NA
CALENDAR::QUARTER::8 15526.53 NA
CALENDAR::QUARTER::9 21553.14 16,125.24
CALENDAR::QUARTER::10 21034.61 162,26.89
CALENDAR::QUARTER::11 21135.51 16,039.61
CALENDAR::QUARTER::12 19600.98 15,526.53
...

Example 7–15 uses the same unitPrice, quarterLevel, and prodSel objects as
Example 7–14, but it uses the unitPriceMovingTotal measure as the second
element of measuresDim. The unitPriceMovingTotal Source is produced by the
movingTotal method of unitPrice. That method provides mdmTimeHier, which
is an MdmLevelHierarchy component of the Time dimension, as its dimension
parameter and the integers 0 and 3 as the starting and ending offset values.

The movingTotalResult Source specifies, for each quarter, the aggregate of the
unit prices for the members of the Desktop PC family for that quarter and the total of
that unit price plus the unit prices for the next three quarters.

Example 7–15 Using the movingTotal Method

NumberSource unitPriceMovingTotal =
 unitPrice.movingTotal(mdmTimeHier, 0, 3);

Source measuresDim = dp.createListSource(new Source[]
 {unitPrice,
 unitPriceMovingTotal});

Source movingTotalResult = measuresDim.extract()
 .join(measuresDim)
 .join(quarterLevel)
 .joinHidden(prodSel);

A Cursor for the movingTotalResult Source has the following values, displayed
in a table with column headings and formatting added. The left column has the
quarter, the middle column has the total of the unit prices for the members of the
Desktop PC family for that quarter, and the left column has the total of the unit prices
for that quarter and the next three quarters. The table includes only the first eight
quarters.

 Unit Price Moving Total
Quarter Unit Price Current Plus Next Three Periods
-------------------- ---------- -------------------------------
CALENDAR::QUARTER::5 16,125.24 63,918.27
CALENDAR::QUARTER::6 16,226.89 69,346.17
CALENDAR::QUARTER::7 16,039.61 74,153.89
CALENDAR::QUARTER::8 15,526.53 79,249.79
CALENDAR::QUARTER::9 21,553.14 83,324.24
CALENDAR::QUARTER::10 21,034.61 80,206.84
CALENDAR::QUARTER::11 21,135.51 77,638.28
...

Using Other Source Methods

7-24 Oracle OLAP Developer's Guide to the OLAP API

Selecting a Set of Elements Using Parameterized Source Objects
Example 7–16 uses NumberParameter objects to create parameterized Source
objects. Those objects are the bottom and top parameters for the interval method
of prodRollup. That method produces paramProdSelInterval, which is a
Source that specifies the set of elements of prodRollup from the bottom to the top
positions of the hierarchy.

The product elements specify the elements of the units measure that appear in the
result Source. By changing the values of the Parameter objects, you can select a
different set of units sold values using the same Cursor and without having to
produce new Source and Cursor objects.

The example uses the following objects.

■ dp, which is the DataProvider for the session.

■ prodRollup, which is the Source for the Product Rollup hierarchy of the
Product dimension.

■ prodShortDescr, which is the Source for the short value description attribute
of the Product dimension.

■ units, which is the Source for the Units measure of product units sold.

■ chanRollup, which is the Source for the Channel Rollup hierarchy of the
Channel dimension.

■ calendar, which is the Source for the Calendar hierarchy of the Time
dimension.

■ shipRollup, which is the Source for the Shipments Rollup hierarchy of the
Customer dimension.

■ context, which has methods that prepare and commit the current
Transaction, that create a Cursor for a Source, that display text, and that
display the values of the Cursor.

The join method of prodShortDescr gets the short value descriptions for the
elements of paramProdSelInterval. The next four join methods match Source
objects to the inputs of the units measure. The example creates a Cursor and
displays the result set of the query. Next, the setPosition method of
resultCursor sets the position of the Cursor back to its first element.

The setValue methods of the NumberParameter objects change the values of those
objects, which changes the selection of product elements specified by the query. The
example then displays the values of the Cursor again.

Example 7–16 Selecting a Range With NumberParameter Objects

NumberParameter startParam = new NumberParameter(dp, 1);
NumberParameter endParam = new NumberParameter(dp, 6);

NumberSource startParamSrc = dp.createParameterizedSource(startParam);
NumberSource endParamSrc = dp.createParameterizedSource(endParam);

Source paramProdSelInterval = prodRollup.interval(startParamSrc,
 endParamSrc);
Source paramProdSelIntervalShortDescr =
 prodShortDescr.join(paramProdSelInterval);

Using Other Source Methods

Making Queries Using Source Methods 7-25

NumberSource result = (NumberSource)
 units.join(chanRollup, "CHANNEL_ROLLUP::CHANNEL::4")
 .join(calendar, "CALENDAR::YEAR::4")
 .join(shipRollup,
 "SHIPMENTS_ROLLUP::ALL_CUSTOMERS::1")
 .join(paramProdSelIntervalShortDescr);

// Get the TransactionProvider and prepare and commit the
// current transaction. These operations are not shown.

CursorManagerSpecification cMngrSpec =
 dp.createCursorManagerSpecification(results);
SpecifiedCursorManager spCMngr = dp.createCursorManager(cMngrSpec);
Cursor resultCursor = spCMngr.createCursor();

context.displayCursor(resultCursor);

//Reset the Cursor position to 1;
resultCursor.setPosition(1);

// Change the value of the parameterized Source
startParam.setValue(7);
endParam.setValue(12);

// Display the results again.
context.displayCursor(resultsCursor);

The following table displays the values of resultCursor, with column headings and
formatting added. The left column has the product hierarchy elements, the middle
column has the short value description, and the right column has the quantity of units
sold.

Product Description Units Sold
-------------------------------- ---------------------- ----------
PRODUCT_ROLLUP::TOTAL_PRODUCT::1 Total Product 55,872
PRODUCT_ROLLUP::CLASS::2 Hardware 21,301
PRODUCT_ROLLUP::FAMILY::4 Portable PCs 1,420
PRODUCT_ROLLUP::ITEM::13 Envoy Standard 550
PRODUCT_ROLLUP::ITEM::14 Envoy Executive 482
PRODUCT_ROLLUP::ITEM::15 Envoy Ambassador 388

PRODUCT_ROLLUP::FAMILY::5 Desktop PCs 2,982
PRODUCT_ROLLUP::ITEM::16 Sentinel Standard 1,092
PRODUCT_ROLLUP::ITEM::17 Sentinel Financial 1,015
PRODUCT_ROLLUP::ITEM::18 Sentinel Multimedia 875
PRODUCT_ROLLUP::FAMILY::8 Monitors 1,505
PRODUCT_ROLLUP::ITEM::20 Monitor- 15 Super VGA 1,238

Using Other Source Methods

7-26 Oracle OLAP Developer's Guide to the OLAP API

Using a TransactionProvider 8-1

8
Using a TransactionProvider

This chapter describes the Oracle OLAP API Transaction and
TransactionProvider interfaces and describes how you use implementations of
those interfaces in an application. You must create a TransactionProvider before
you can create a DataProvider, and you must use methods of the
TransactionProvider to prepare and commit a Transaction before you can
create a Cursor for a derived Source.

This chapter includes the following topics:

■ About Creating a Query in a Transaction

■ Using TransactionProvider Objects

For the complete code for the examples in this chapter, see the example programs
available from the Overview of the Oracle OLAP Java API Reference.

About Creating a Query in a Transaction
The Oracle OLAP API is transactional. Each step in creating a query occurs in the
context of a Transaction. One of the first actions of an OLAP API application is to
create a TransactionProvider. The TransactionProvider provides
Transaction objects to the application.

The TransactionProvider ensures the following:

■ A Transaction is isolated from other Transaction objects. Operations
performed in a Transaction are not visible in, and do not affect, other
Transaction objects.

■ If an operation in a Transaction fails, its effects are undone (the Transaction
is rolled back).

■ The effects of a completed Transaction persist.

When you create a derived Source by calling a method of another Source, the
derived Source is created in the context of the current Transaction. The Source is
active in the Transaction in which you create it or in a child Transaction of that
Transaction.

You get or set the current Transaction, or begin a child Transaction, by calling
methods of a TransactionProvider. In a child Transaction you can alter the
query, for example by changing the selection of dimension elements or by performing
a different mathematical or analytical operation on the data, which changes the state of
a Template that you created in the parent Transaction. By displaying the data
specified by the Source produced by the Template in the parent Transaction and
also displaying the data specified by the Source produced by the Template in the

About Creating a Query in a Transaction

8-2 Oracle OLAP Developer's Guide to the OLAP API

child Transaction, you can provide the end user of your application with the means
of easily altering a query and viewing the results of different operations on the same
set of data, or the same operations on different sets of data.

Types of Transaction Objects
The OLAP API has the following two types of Transaction objects:

■ A read Transaction. Initially, the current Transaction is a read
Transaction. A read Transaction is required for creating a Cursor to fetch
data from Oracle OLAP. For more information on Cursor objects, see Chapter 10.

■ A write Transaction. A write Transaction is required for creating a derived
Source or for changing the state of a Template. For more information on
creating a derived Source, see Chapter 6. For information on Template objects,
see Chapter 11.

In the initial read Transaction, if you create a derived Source or if you change the
state of a Template object, then a child write Transaction is automatically
generated. That child Transaction becomes the current Transaction.

If you then create another derived Source or change the Template state again, that
operation occurs in the same write Transaction. You can create any number of
derived Source objects, or make any number of Template state changes, in that
same write Transaction. You can use those Source objects, or the Source
produced by the Template, to define a complex query.

Before you can create a Cursor to fetch the result set specified by a derived Source,
you must move the Source from the child write Transaction into the parent read
Transaction. To do so, you prepare and commit the Transaction.

Preparing and Committing a Transaction
To move a Source that you created in a child Transaction into the parent read
Transaction, call the prepareCurrentTransaction and
commitCurrentTransaction methods of the TransactionProvider. When you
commit a child write Transaction, a Source you created in the child Transaction
moves into the parent read Transaction. The child Transaction disappears and
the parent Transaction becomes the current Transaction. The Source is active in
the current read Transaction and you can therefore create a Cursor for it.

The following figure illustrates the process of moving a Source created in a child
write Transaction into its parent read Transaction.

About Creating a Query in a Transaction

Using a TransactionProvider 8-3

Figure 8–1 Committing a Write Transaction into Its Parent Read Transaction

About Transaction and Template Objects
Getting and setting the current Transaction, beginning a child Transaction, and
rolling back a Transaction are operations that you use to allow an end user to make
different selections starting from a given state of a dynamic query.

To present the end user with alternatives based on the same initial query, you do the
following:

1. Create a Template in a parent Transaction and set the initial state for the
Template.

2. Get the Source produced by the Template, create a Cursor to retrieve the result
set, get the values from the Cursor, and then display the results to the end user.

3. Begin a child Transaction and modify the state of the Template.

4. Get the Source produced by the Template in the child Transaction, create a
Cursor, get the values, and display them.

You can then replace the first Template state with the second one or discard the
second one and retain the first.

Beginning a Child Transaction
To begin a child read Transaction, call the beginSubtransaction method of the
TransactionProvider you are using. In the child read Transaction, if you
change the state of a Template, then a child write Transaction begins
automatically. The write Transaction is a child of the child read Transaction.

To get the data specified by the Source produced by the Template, you prepare and
commit the write Transaction into its parent read Transaction. You can then
create a Cursor to fetch the data. The changed state of the Template is not visible in

// Get MdmDimension objects. // Sources from t2 now exist in t1.
// Get MdmMeasure objects. // Transaction t2 diappears.
// Get primary Sources from // Create a Cursor for unitCostForSelections.
// those metadata objects. // Display the result set.

t 1 = The initial Transaction
 is a read Transaction.

// Create derived Sources from the primary Sources

StringSource prodSel, timeSel;
NumberSource unitCostForSelections;

prodSel = products.selectValues(new String [] {"P1", "P2", "P3"});
timeSel = times.selectValues(new String[] {"T1", "T2", "T3", "T4"});

unitCostForSelections = unitCost.join(timeSel).join(prodSel);

transactionProvider.prepareCurrentTransaction();
transactionProvider.commitCurrentTransaction();

t2 = A write Transaction is now
 the current Transaction.

Creating a derived
Source begins the child
write Transaction, t2.

t 1 = After committing t2, this read Transaction
 is again the current Transaction.

Committing the child Transaction
makes the new Sources visible
in the parent Transaction.

About Creating a Query in a Transaction

8-4 Oracle OLAP Developer's Guide to the OLAP API

the original parent. The changed state does not become visible in the parent until you
prepare and commit the child read Transaction into the parent read Transaction.

The following figure illustrates beginning a child read Transaction, creating
Source objects in a write Transaction, and committing the write Transaction
into its parent read Transaction. The figure then shows committing the child read
Transaction into its parent read Transaction. In the figure, tp is the
TransactionProvider.

Figure 8–2 Committing a Child Read Transaction into Its Parent Transaction

After beginning a child read Transaction, you can begin a child read Transaction
of that child, or a grandchild of the initial parent Transaction. For an example of
creating child and grandchild Transaction objects, see Example 8–2.

// Create a TopBottomTemplate, tp.beginSubtransaction() ; // begins t3
// topNBottom.
 // After committing t3, the Source
// After committing t2, get the Source // produced by topNBottom is generated
// produced by topNBottom. // using the state defined in t4.
// Create a Cursor for the
// for the Source. Display the values.

t1 = The initial read
 Transaction.

// Change the state of topNBottom
topNBottom.setTopBottomType(TOP);
topNBottom.setN(10);
// Prepare and commit the current Transaction.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction();

t2 = The current Transaction
 is now a write Transaction.

Changing the state of topNBottom
automatically begins t2.

t1 = After committing t2 and again after
 committing t3, t1 is the current Transaction.

The state of topNBottom
defined in t2 is now
active in t1.

Beginning a child Transaction creates t3.

// Change the state of topNBottom
topNBottom.setTopBottomType(BOTTOM);
topNBottom.setN(15);
// Prepare and commit the current Transaction.
tp.prepareCurrentTransaction();
tp.commitCurrentTransaction();

// The state of topNBottom // After submitting t4, t3 is the current Transaction.
// is the one defined in t2. // The state of topNBottom is the one defined in t4.
 // Get the Source produced by topNBottom. Create
 // a Cursor for the Source and display the values.
 // Prepare and commit t3.
 tp.prepareCurrentTransaction();
 tp.commitCurrentTransaction();

The state changes
are now active in t3
and t4 disappears.

Changing the state of
topNBottom begins t4.

t3 = The current Transaction is a read Transaction.

t4 = The current Transaction
 is a write Transaction.

The state changes
from t3 are now
active in t1 and t3
disappears.

About Creating a Query in a Transaction

Using a TransactionProvider 8-5

About Rolling Back a Transaction
You roll back, or undo, a Transaction by calling the
rollbackCurrentTransaction method of the TransactionProvider you are
using. Rolling back a Transaction discards any changes that you made during that
Transaction and makes the Transaction disappear.

Before rolling back a Transaction, you must close any CursorManager objects you
created in that Transaction. After rolling back a Transaction, any Source objects
that you created or Template state changes that you made in the Transaction are
no longer valid. Any Cursor objects you created for those Source objects are also
invalid.

Once you roll back a Transaction, you cannot prepare and commit that
Transaction. Likewise, once you commit a Transaction, you cannot roll it back.

Example 8–1 Rolling Back a Transaction

The following example uses the TopBottomTemplate and
SingleSelectionTemplate classes that are described in Chapter 11, "Creating
Dynamic Queries". In creating the TopBottomTemplate and
SingleSelectionTemplate objects, the example uses the same code that appears
in Example 11–4, "Getting the Source Produced by the Template". Example 8–1 does
not show that code. This example sets the state of the TopBottomTemplate. It begins
a child Transaction that sets a different state for the TopBottomTemplate and
then rolls back the child Transaction. The TransactionProvider is tp and
context is an object that has methods that create Cursor objects and display their
values.

// The current Transaction is a read Transaction, t1.
// Create a TopBottomTemplate using a hierarchy of the Product dimension
// as the base and dp as the DataProvider.
TopBottomTemplate topNBottom = new TopBottomTemplate(prodRollup, dp);

// Changing the state of a Template requires a write Transaction, so a
// write child Transaction, t2, is automatically started.
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);
topNBottom.setN(10);
topNBottom.setCriterion(singleSelections.getSource());

// Prepare and commit the Transaction t2.
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 context.println("Cannot commit the Transaction. " + e);
}
tp.commitCurrentTransaction(); //t2 disappears

// The current Transaction is now t1.
// Get the dynamic Source produced by the TopBottomTemplate.
Source result = topNBottom.getSource();

// Create a Cursor and display the results (these operations are
// performed by the context object).
context.println("\nThe current state of the TopBottomTemplate\n" +
 "produces the following values:\n");
context.displayTopBottomResult(result);

About Creating a Query in a Transaction

8-6 Oracle OLAP Developer's Guide to the OLAP API

// Start a child Transaction, t3. It is a read Transaction.
tp.beginSubtransaction(); // t3 is the current Transaction

// Change the state of topNBottom. Changing the state requires a
// write Transaction so Transaction t4 starts automatically,
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);
topNBottom.setN(15);

// Prepare and commit the Transaction.
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 context.println("Cannot commit the Transaction. " + e);
}
tp.commitCurrentTransaction(); // t4 disappears

// Create a Cursor and display the results. // t3 is the current Transaction
context.println("\nIn the child Transaction, the state of the\n" +
 "TopBottomTemplate produces the following values:\n");
context.displayTopBottomResult(result);
// The displayTopBottomResult method closes the CursorManager for the
// Cursor created in t3.

// Undo t3, which discards the state of topNBottom that was set in t4.
tp.rollbackCurrentTransaction(); // t3 disappears

// Transaction t1 is now the current Transaction and the state of
// topNBottom is the one defined in t2.

// To show the current state of the TopNBottom template Source,
// prepare and commit the Transaction, create a Cursor, and display
// its values.
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 context.println("Cannot commit the Transaction. " + e);
}
tp.commitCurrentTransaction();

context.println("\nAfter rolling back the child Transaction, the state "
+ "of\nthe TopBottomTemplate produces the following "
+ "values:\n");
context.displayTopBottomResult(result);

Example 8–1 produces the following output.

The current state of the TopBottomTemplate
produces the following values:

1. PRODUCT_ROLLUP::TOTAL_PRODUCT::1
2. PRODUCT_ROLLUP::CLASS::3
3. PRODUCT_ROLLUP::FAMILY::7
4. PRODUCT_ROLLUP::CLASS::2
5. PRODUCT_ROLLUP::FAMILY::9

Using TransactionProvider Objects

Using a TransactionProvider 8-7

6. PRODUCT_ROLLUP::FAMILY::6
7. PRODUCT_ROLLUP::FAMILY::11
8. PRODUCT_ROLLUP::ITEM::30
9. PRODUCT_ROLLUP::ITEM::28
10. PRODUCT_ROLLUP::ITEM::47

In the child Transaction, the state of the
TopBottomTemplate produces the following values:

1. PRODUCT_ROLLUP::ITEM::36
2. PRODUCT_ROLLUP::ITEM::43
3. PRODUCT_ROLLUP::ITEM::44
4. PRODUCT_ROLLUP::ITEM::38
5. PRODUCT_ROLLUP::ITEM::22
6. PRODUCT_ROLLUP::ITEM::21
7. PRODUCT_ROLLUP::ITEM::42
8. PRODUCT_ROLLUP::ITEM::41
9. PRODUCT_ROLLUP::ITEM::15
10. PRODUCT_ROLLUP::ITEM::34
11. PRODUCT_ROLLUP::ITEM::14
12. PRODUCT_ROLLUP::ITEM::45
13. PRODUCT_ROLLUP::ITEM::13
14. PRODUCT_ROLLUP::ITEM::26
15. PRODUCT_ROLLUP::ITEM::18

After rolling back the child Transaction, the state of
the TopBottomTemplate produces the following values:

1. PRODUCT_ROLLUP::TOTAL_PRODUCT::1
2. PRODUCT_ROLLUP::CLASS::3
3. PRODUCT_ROLLUP::FAMILY::7
4. PRODUCT_ROLLUP::CLASS::2
5. PRODUCT_ROLLUP::FAMILY::9
6. PRODUCT_ROLLUP::FAMILY::6
7. PRODUCT_ROLLUP::FAMILY::11
8. PRODUCT_ROLLUP::ITEM::30
9. PRODUCT_ROLLUP::ITEM::28
10. PRODUCT_ROLLUP::ITEM::47

Getting and Setting the Current Transaction
You get the current Transaction by calling the getCurrentTransaction method
of the TransactionProvider you are using, as in the following example.

Transaction t1 = getCurrentTransaction();

To make a previously saved Transaction the current Transaction, you call the
setCurrentTransaction method of the TransactionProvider, as in the
following example.

setCurrentTransaction(t1);

Using TransactionProvider Objects
In the Oracle OLAP API, the TransactionProvider interface is implemented by
the ExpressTransactionProvider concrete class. Before you create a
DataProvider, you must create a new instance of an
ExpressTransactionProvider. You then pass that TransactionProvider to

Using TransactionProvider Objects

8-8 Oracle OLAP Developer's Guide to the OLAP API

the DataProvider constructor. The TransactionProvider provides
Transaction objects to your application.

As described in "Preparing and Committing a Transaction", you use the
prepareCurrentTransaction and commitCurrentTransaction methods to
make a derived Source that you created in a child write Transaction visible in the
parent read Transaction. You can then create a Cursor for that Source.

If you are using Template objects in your application, then you might also use the
other methods of TransactionProvider to do the following:

■ Begin a child Transaction.

■ Get the current Transaction so you can save it.

■ Set the current Transaction to a previously saved one.

■ Rollback, or undo, the current Transaction, which discards any changes made
in the Transaction. Once a Transaction has been rolled back, it is invalid and
cannot be committed. Once a Transaction has been committed, it cannot be
rolled back. If you created a Cursor for a Source in a Transaction, you must
close the CursorManager before rolling back the Transaction.

Example 8–2 demonstrates the use of Transaction objects to modify dynamic
queries. Like Example 8–1, this example uses the same code to create
TopBottomTemplate and SingleSelectionTemplate objects as does
Example 11–4, "Getting the Source Produced by the Template". This example does not
show that code.

To help track the Transaction objects, this example saves the different
Transaction objects with calls to the getCurrentTransaction method. In the
example, tp object is the TransactionProvider, and context is an object that has
methods that create Cursor objects and display their values.

Example 8–2 Using Child Transaction Objects

// The parent Transaction is the current Transaction at this point.
// Save the parent read Transaction as parentT1.
Transaction parentT1 = tp.getCurrentTransaction();

// Get the dynamic Source produced by the TopBottomTemplate.
Source result = topNBottom.getSource();

// Create a Cursor and display the results (these operations are
// performed by the context object).
context.println("\nThe current state of the TopBottomTemplate\n" +
 "produces the following values:\n");
context.displayTopBottomResult(result);

// Begin a child Transaction of parentT1.
tp.beginSubtransaction(); // This is a read Transaction.

// Save the child read Transaction as childT2.
Transaction childT2 = tp.getCurrentTransaction();

// Change the state of the TopBottomTemplate. This starts a
// write Transaction, a child of the read Transaction childT2.
topNBottom.setN(12);
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);

// Save the child write Transaction as writeT3.
Transaction writeT3 = tp.getCurrentTransaction();

Using TransactionProvider Objects

Using a TransactionProvider 8-9

// Prepare and commit the write Transaction writeT3.
try
{
tp.prepareCurrentTransaction();

}
catch(NotCommittableException e)
{
context.println("Cannot commit current Transaction. " + e);

}
tp.commitCurrentTransaction();

// The commit moves the changes made in writeT3 into its parent,
// the read Transaction childT2. The writeT3 Transaction
// disappears. The current Transaction is now childT2
// again but the state of the TopBottomTemplate has changed.

// Create a Cursor and display the results of the changes to the
// TopBottomTemplate that are visible in childT2.
try
{
 context.println("\nIn the child Transaction, the state of the\n" +
 "TopBottomTemplate produces the following values:\n");

 context.displayTopBottomResult(result);
}
catch(Exception e)
{
 context.println("Cannot display the results of the query. " + e);
}

// Begin a grandchild Transaction of the initial parent.
tp.beginSubtransaction(); // This is a read Transaction.

// Save the grandchild read Transaction as grandchildT4.
Transaction grandchildT4 = tp.getCurrentTransaction();

// Change the state of the TopBottomTemplate. This starts another
// write Transaction, a child of grandchildT4.
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);

// Save the write Transaction as writeT5.
Transaction writeT5 = tp.getCurrentTransaction();

// Prepare and commit writeT5.
try
{
tp.prepareCurrentTransaction();

}
catch(NotCommittableException e)
{
context.println("Cannot commit current Transaction. " + e);

}
tp.commitCurrentTransaction();

// Transaction grandchildT4 is now the current Transaction and the
// changes made to the TopBottomTemplate state are visible.

Using TransactionProvider Objects

8-10 Oracle OLAP Developer's Guide to the OLAP API

// Create a Cursor and display the results visible in grandchildT4.
try
{
context.println("\nIn the grandchild Transaction, the state of the\n" +

 "TopBottomTemplate produces the following values:\n");
 context.displayTopBottomResult(result);
}
catch(Exception e)
{
context.println(""Cannot display the results of the query. " + e);

}

// Commit the grandchild into the child.
try
{
tp.prepareCurrentTransaction();

}
catch(NotCommittableException e)
{
context.println("Cannot commit current Transaction. " + e);

}
tp.commitCurrentTransaction();

// Transaction childT2 is now the current Transaction.
// Instead of preparing and committing the grandchild Transaction,
// you could rollback the Transaction, as in the following
// method call:
// rollbackCurrentTransaction();
// If you roll back the grandchild Transaction, then the changes
// you made to the TopBottomTemplate state in the grandchild
// are discarded and childT2 is the current Transaction.

// Commit the child into the parent.
try
{
tp.prepareCurrentTransaction();

}
catch(NotCommittableException e)
{
 context.println("Cannot commit the child Transaction. " + e);
}
tp.commitCurrentTransaction();

// Transaction parentT1 is now the current Transaction. Again,
// you can roll back the childT2 Transaction instead of
// preparing and committing it. If you do so, then the changes
// you made in childT2 are discarded. The current Transaction
// is be parentT1, which has the original state of
// the TopBottomTemplate, without any of the changes made in
// the grandchild or the child transactions.

Example 8–2 produces the following output.

The current state of the TopBottomTemplate
produces the following values:

1. PRODUCT_ROLLUP::TOTAL_PRODUCT::1
2. PRODUCT_ROLLUP::CLASS::3
3. PRODUCT_ROLLUP::FAMILY::7
4. PRODUCT_ROLLUP::CLASS::2

Using TransactionProvider Objects

Using a TransactionProvider 8-11

5. PRODUCT_ROLLUP::FAMILY::9
6. PRODUCT_ROLLUP::FAMILY::6
7. PRODUCT_ROLLUP::FAMILY::11
8. PRODUCT_ROLLUP::ITEM::30
9. PRODUCT_ROLLUP::ITEM::28
10. PRODUCT_ROLLUP::ITEM::47

In the child Transaction, the state of the
TopBottomTemplate produces the following values:

1. PRODUCT_ROLLUP::ITEM::36
2. PRODUCT_ROLLUP::ITEM::43
3. PRODUCT_ROLLUP::ITEM::44
4. PRODUCT_ROLLUP::ITEM::38
5. PRODUCT_ROLLUP::ITEM::22
6. PRODUCT_ROLLUP::ITEM::21
7. PRODUCT_ROLLUP::ITEM::42
8. PRODUCT_ROLLUP::ITEM::41
9. PRODUCT_ROLLUP::ITEM::15
10. PRODUCT_ROLLUP::ITEM::34
11. PRODUCT_ROLLUP::ITEM::14
12. PRODUCT_ROLLUP::ITEM::45

In the grandchild Transaction, the state of the
TopBottomTemplate produces the following values:

1. PRODUCT_ROLLUP::TOTAL_PRODUCT::1
2. PRODUCT_ROLLUP::CLASS::3
3. PRODUCT_ROLLUP::FAMILY::7
4. PRODUCT_ROLLUP::CLASS::2
5. PRODUCT_ROLLUP::FAMILY::9
6. PRODUCT_ROLLUP::FAMILY::6
7. PRODUCT_ROLLUP::FAMILY::11
8. PRODUCT_ROLLUP::ITEM::30
9. PRODUCT_ROLLUP::ITEM::28
10. PRODUCT_ROLLUP::ITEM::47
11. PRODUCT_ROLLUP::ITEM::19
12. PRODUCT_ROLLUP::ITEM::24

Using TransactionProvider Objects

8-12 Oracle OLAP Developer's Guide to the OLAP API

Understanding Cursor Classes and Concepts 9-1

9
Understanding Cursor Classes and

Concepts

This chapter describes the Oracle OLAP API Cursor class and its related classes,
which you use to retrieve the results of a query. This chapter also describes the
Cursor concepts of position, fetch size, and extent. For examples of creating and
using a Cursor and its related objects, see Chapter 10, "Retrieving Query Results".

This chapter includes the following topics:

■ Overview of the OLAP API Cursor Objects

■ Cursor Classes

■ CursorManagerSpecification Class

■ CursorInfoSpecification Classes

■ CursorManager Classes

■ Other Classes

■ About Cursor Positions and Extent

■ About Fetch Sizes

For the complete code of the examples in this chapter, see the example programs
available from the Overview of the Oracle OLAP Java API Reference.

Overview of the OLAP API Cursor Objects
A Cursor retrieves the result set defined by a Source. You can also get the SQL
generated for a Source by the Oracle OLAP SQL generator without having to create a
Cursor.

To get the SQL for the Source, you create an ExpressSQLCursorManager by using
the createSQLCursorManager method of a DataProvider. You can then use
classes outside of the OLAP API to retrieve data using the generated SQL.

The Oracle OLAP API has two paths to the creation of a Cursor for a Source. The
older method requires creating a CursorManagerSpecification, then creating a
CursorManager, and then creating a Cursor. The newer method eliminates the
CursorManagerSpecification. Instead, you simply create a CursorManager for
the Source and then create a Cursor.

Overview of the OLAP API Cursor Objects

9-2 Oracle OLAP Developer's Guide to the OLAP API

Creating a Cursor Using a CursorManagerSpecification
In the older method, after creating a Source that defines the data that you want to
retrieve from the data store, you create a Cursor for that Source by doing the
following:

1. Creating a CursorManagerSpecification by passing the Source to the
createCursorManagerSpecification method of the DataProvider that
you are using. The CursorManagerSpecification has
CursorSpecification objects in a structure that mirrors the structure of the
Source.

2. Creating a CursorManager by calling the createCursorManager method of
the DataProvider and passing it the CursorManagerSpecification. The
CursorManager creates Cursor objects. It also manages the local data cache for
its Cursor objects and is aware of changes to the Source for a dynamic query or
a parameterized Source. If the Source for the
CursorManagerSpecification has inputs, then you must also pass to the
createCursorManager method an array of Source objects for those inputs.

3. Creating a Cursor by calling the createCursor method of the
CursorManager. The structure of the Cursor mirrors the structures of the
CursorManagerSpecification and the Source. The
CursorSpecification objects of a CursorManagerSpecification specify
the behavior of their corresponding Cursor objects. If the Source for the
CursorManagerSpecification has inputs, then you must also pass to the
createCursor method an array of CursorInput objects that specify values for
the input Source objects.

For an example of creating a Cursor using this method, see Chapter 10.

This architecture provides great flexibility in fetching data from a result set and in
selecting data to display. You can do the following:

■ Create more than one CursorManagerSpecification object for the same
Source. You can specify different behavior on the CursorSpecification
components of the various CursorManagerSpecification objects in order to
retrieve and display different sets of values from the same result set. You might
want to do this when displaying the data from a Source in different formats, such
as in a table and a crosstab.

■ Receive notification that the Source produced by the Template has changed. If
you add a CursorManagerUpdateListener to the CursorManager for a
Source, then the CursorManager notifies the
CursorManagerUpdateListener when the Source for a dynamic query has
changed and you that therefore need to update the
CursorManagerSpecification for the CursorManager.

■ Update the CursorManagerSpecification for a CursorManager. If you are
using Template objects to produce a dynamic query and the state of a Template
changes, then the Source produced by the Template changes. If you have
created a Cursor for the Source produced by the Template, then you need to
replace the CursorManagerSpecification for the CursorManager with an
updated CursorManagerSpecification for the changed Source. You can
then create a new Cursor from the CursorManager.

■ Create different Cursor objects from the same CursorManager and set different
fetch sizes on those Cursor objects. You might do this when you want to display
the same data as a table and as a graph.

Overview of the OLAP API Cursor Objects

Understanding Cursor Classes and Concepts 9-3

This older method of creating a CursorManager returns an
ExpressSpecifiedCursorManager.

Creating a Cursor Without a CursorManagerSpecification
In the newer method, you create a Cursor for a Source by doing the following:

1. Creating a CursorManager by calling one of the createCursorManager
methods of the DataProvider and passing it the Source. If you want to alter the
behavior of the Cursor, then you can create a CursorInfoSpecification and
use its methods to specify the behavior. You then create a CursorManager with a
method that takes the Source and the CursorInfoSpecification.

2. Creating a Cursor by calling the createCursor method of the
CursorManager.

This newer method of creating a CursorManager returns an
ExpressDataCursorManager.

Sources For Which You Cannot Create a Cursor
Some Source objects do not specify data that a Cursor can retrieve from the data
store. The following are Source objects for which you cannot create a Cursor.

■ A Source that specifies an operation that is not computationally possible. An
example is a Source that specifies an infinite recursion.

■ A Source that defines an infinite result set. An example is the fundamental
Source that represents the set of all String objects.

■ A Source that has no elements or includes another Source that has no elements.
Examples are a Source returned by the getEmptySource method of
DataProvider and another Source derived from the empty Source. Another
example is a derived Source that results from selecting a value from a primary
Source that you got from an MdmDimension and the selected value does not
exist in the dimension.

Cursor Objects and Transaction Objects
When you create a derived Source or change the state of a Template, you create the
Source in the context of the current Transaction. The Source is active in the
Transaction in which you create it or in a child Transaction of that
Transaction. A Source must be active in the current Transaction for you to be
able to create a Cursor for it.

Creating a derived Source occurs in a write Transaction. Creating a Cursor
occurs in a read Transaction. After creating a derived Source, and before you can
create a Cursor for that Source, you must change the write Transaction into a
read Transaction by calling the prepareCurrentTransaction and
commitCurrentTransaction methods of the TransactionProvider your
application is using. For information on Transaction and TransactionProvider
objects, see Chapter 8, "Using a TransactionProvider".

For a Cursor that you create for a query that includes a parameterized Source, you
can change the value of the Parameter object and then get the new values of the
Cursor without having to prepare and commit the Transaction again. For
information on parameterized Source objects, see Chapter 6, "Understanding Source
Objects".

Cursor Classes

9-4 Oracle OLAP Developer's Guide to the OLAP API

Cursor Classes
In the oracle.olapi.data.cursor package, the Oracle OLAP API defines the
interfaces described in the following table.

Structure of a Cursor
The structure of a Cursor mirrors the structure of its Source. If the Source does not
have any outputs, then the Cursor for that Source is a ValueCursor. If the Source
has one or more outputs, then the Cursor for that Source is a CompoundCursor. A
CompoundCursor has as children a base ValueCursor, which has the values of the
base of the Source of the CompoundCursor, and one or more output Cursor objects.

The output of a Source is another Source. An output Source can itself have
outputs. The child Cursor for an output of a Source is a ValueCursor if the output
Source does not have any outputs and a CompoundCursor if it does.

Example 9–1 creates a query that specifies the prices of selected product items for
selected months. In the example, timeHier is a Source for a hierarchy of a
dimension of time values, and prodHier is a Source for a hierarchy of a dimension
of product values.

If you create a Cursor for prodSel or for timeSel, then either Cursor is a
ValueCursor because both prodSel and timeSel have no outputs.

The unitPrice object is a Source for an MdmMeasure that represents values for the
price of product units. The MdmMeasure has as inputs the MdmPrimaryDimension
objects representing products and times, and the unitPrice Source has as inputs
the Source objects for those dimensions.

The example selects elements of the dimension hierarchies and then joins the Source
objects for the selections to that of the measure to produce querySource, which has
prodSel and timeSel as outputs.

Example 9–1 Creating the querySource Query

Source timeSel = timeHier.selectValues(new String[]
 {"CALENDAR::MONTH::55",
 "CALENDAR::MONTH::58",
 "CALENDAR::MONTH::61",
 "CALENDAR::MONTH::64"});

Source prodSel = prodHier.selectValues(new String[]
 {"PRODUCT_ROLLUP::ITEM::13",
 "PRODUCT_ROLLUP::ITEM::14",
 "PRODUCT_ROLLUP::ITEM::15"});

Source querySource = unitPrice.join(timeSel).join(prodSel);

Interface Description

Cursor An abstract superclass that encapsulates the notion of a current
position.

ValueCursor A Cursor that has a value at the current position. A
ValueCursor has no child Cursor objects.

CompoundCursor A Cursor that has child Cursor objects, which are a child
ValueCursor for the values of its Source and an output child
Cursor for each output of the Source.

Cursor Classes

Understanding Cursor Classes and Concepts 9-5

The result set defined by querySource is the unit price values for the selected
products for the selected months. The results are organized by the outputs. Since
timeSel is joined to the Source produced by the unitPrice.join(prodSel)
operation, timeSel is the slower varying output, which means that the result set
specifies the set of selected products for each selected time value. For each time value
the result set has three product values so the product values vary faster than the time
values. The values of the base ValueCursor of querySource are the fastest varying
of all, because there is one price value for each product for each day.

Example 10–1 in Chapter 10, creates a Cursor, queryCursor, for querySource.
Since querySource has outputs, queryCursor is a CompoundCursor. The base
ValueCursor of queryCursor has values from unitPrice, which is the base
Source of the operation that created querySource. The values from unitPrice are
those specified by the outputs.The outputs for queryCursor are a ValueCursor that
has values from prodSel and a ValueCursor that has values from timeSel.

Figure 9–1 illustrates the structure of queryCursor. The base ValueCursor and the
two output ValueCursor objects are the children of queryCursor, which is the
parent CompoundCursor.

Figure 9–1 Structure of the queryCursor CompoundCursor

The following table displays the values from queryCursor in a table. The left column
has time values, the middle column has product values, and the right column has the
unit price of the product for the month.

For examples of getting the values from a ValueCursor, see Chapter 10.

Month Product Price of Unit

55 13 2426.07

55 14 3223.28

55 15 3042.22

58 13 2412.42

58 14 3107.65

58 15 3026.12

61 13 2505.57

61 14 3155.91

61 15 2892.18

64 13 2337.30

64 14 3105.53

64 15 2856.86

queryCursor
CompoundCursor

ValueCursor for
querySource

Base
ValueCursor

ValueCursor for
prodSel

Output 2

ValueCursor for
timeSel

Output 1

CursorManagerSpecification Class

9-6 Oracle OLAP Developer's Guide to the OLAP API

Specifying the Behavior of a Cursor
CursorSpecification objects specify some aspects of the behavior of their
corresponding Cursor objects. You must specify the behavior on a
CursorSpecification before creating the corresponding Cursor. To specify the
behavior, use the following CursorSpecification methods:

■ setDefaultFetchSize

■ setExtentCalculationSpecified

■ setParentEndCalculationSpecified

■ setParentStartCalculationSpecified

■ specifyDefaultFetchSizeOnChildren
(for a CompoundCursorSpecification only)

A CursorSpecification also has methods that you can use to discover if the
behavior is specified. Those methods are the following:

■ isExtentCalculationSpecified

■ isParentEndCalculationSpecified

■ isParentStartCalculationSpecified

If you have used the CursorSpecification methods to set the default fetch size, or
to calculate the extent or the starting or ending positions of a value in its parent, then
you can successfully use the following Cursor methods:

■ getExtent

■ getFetchSize

■ getParentEnd

■ getParentStart

■ setFetchSize

For examples of specifying Cursor behavior, see Chapter 10. For information on fetch
sizes, see "About Fetch Sizes" on page 9-18. For information on the extent of a Cursor,
see "What is the Extent of a Cursor?" on page 9-17. For information on the starting and
ending positions in a parent Cursor of the current value of a Cursor, see "About the
Parent Starting and Ending Positions in a Cursor" on page 9-15.

CursorManagerSpecification Class
A CursorManagerSpecification for a Source has one or more
CursorSpecification objects. The structure of those objects reflects the structure
of the Source. For example, a Source that has outputs has a top-level, or root,
CursorSpecification for the Source, a child CursorSpecification for the
values of the Source, and a child CursorSpecification for each output of the
Source.

A Source that does not have any outputs has only one set of values. A
CursorManagerSpecification for that Source therefore has only one
CursorSpecification. That CursorSpecification is the root
CursorSpecification of the CursorManagerSpecification.

You can create a CursorManagerSpecification for a multidimensional Source
that has one or more inputs. If you do so, then you need to supply a Source for each
input when you create a CursorManager for the CursorManagerSpecification.

CursorInfoSpecification Classes

Understanding Cursor Classes and Concepts 9-7

You must also supply a CursorInput for each input Source when you create a
Cursor from the CursorManager. You might create a
CursorManagerSpecification for a Source with inputs if you want to use a
CursorManager to create a series of Cursor objects with each Cursor retrieving
data specified by a different set of single values for the input Source objects.

The structure of a Cursor reflects the structure of its
CursorManagerSpecification. A Cursor can be a single ValueCursor, for a
Source with no outputs, or a CompoundCursor with child Cursor objects, for a
Source with outputs. Each Cursor corresponds to a CursorSpecification in the
CursorManagerSpecification. You use CursorSpecification methods to
specify aspects of the behavior of the corresponding Cursor.

If your application uses Template objects, and a change occurs in the state of a
Template so that the structure of the Source produced by the Template changes,
then any CursorManagerSpecification objects that the application created for
the Source expire. If a CursorManagerSpecification expires, then you must
create a new CursorManagerSpecification. You can then either use the new
CursorManagerSpecification to replace the old
CursorManagerSpecification of a CursorManager or use it to create a new
CursorManager. You can discover whether a CursorManagerSpecification has
expired by calling the isExpired method of the CursorManagerSpecification.

CursorInfoSpecification Classes
The CursorInfoSpecification interface and its subinterfaces
CompoundCursorInfoSpecification and ValueCursorInfoSpecification,
specify methods for the abstract CursorSpecification class and the concrete
CompoundCursorSpecification and ValueCursorSpecification classes. A
CursorSpecification specifies certain aspects of the behavior of the Cursor that
corresponds to it. You can create instances of classes that implement the
CursorInfoSpecification interface either directly or indirectly.

You can create a CursorInfoSpecification for a Source directly by calling the
createCursorInfoSpecification method of a DataProvider. You can use the
methods of the CursorInfoSpecification to specify aspects of the behavior of a
Cursor. You can then use the CursorInfoSpecification in creating a
CursorManager by passing it as the cursorInfoSpec argument to the
createCursorManager method of a DataProvider.

You can create a CursorInfoSpecification for a Source indirectly by creating a
CursorManagerSpecification. You pass a Source to the
createCursorManagerSpecification method of a DataProvider and the
CursorManagerSpecification returned has a root CursorSpecification for
that Source. If the Source has outputs, then the CursorManagerSpecification
also has a child CursorSpecification for the values of the Source and one for
each output of the Source.

With CursorSpecification methods, you can do the following:

■ Get the Source that corresponds to the CursorSpecification.

■ Get or set the default fetch size for the corresponding Cursor.

■ On a CompoundCursorSpecification, specify that the default fetch size is set
on the children of the corresponding Cursor.

■ Specify that Oracle OLAP should calculate the extent of a Cursor.

■ Determine whether calculating the extent is specified.

CursorManager Classes

9-8 Oracle OLAP Developer's Guide to the OLAP API

■ Specify that Oracle OLAP should calculate the starting or ending position of the
current value of the corresponding Cursor in its parent Cursor. If you know the
starting and ending positions of a value in the parent, then you can determine how
many faster varying elements the parent Cursor has for that value.

■ Determine whether calculating the starting or ending position of the current value
of the corresponding Cursor in its parent is specified.

■ Accept a CursorSpecificationVisitor.

For more information, see "About Cursor Positions and Extent" on page 9-11 and
"About Fetch Sizes" on page 9-18.

In the oracle.olapi.data.source package, the Oracle OLAP API defines the
classes described in the following table.

A Cursor has the same structure as its CursorManagerSpecification. For every
ValueCursorSpecification or CompoundCursorSpecification of a
CursorManagerSpecification, a Cursor has a corresponding ValueCursor or
CompoundCursor. To be able to get certain information or behavior from a Cursor,
your application must specify that it wants that information or behavior by calling
methods of the corresponding CursorSpecification before it creates the Cursor.

CursorManager Classes
The OLAP API has the following concrete classes for creating a Cursor for a Source
or for getting the SQL generated by a Source.

■ ExpressDataCursorManager

■ ExpressSpecifiedCursorManager

■ ExpressSQLCursorManager

An ExpressSQLCursorManager has methods that return the SQL generated by the
Oracle OLAP SQL generator for the Source. You create one or more
ExpressSQLCursorManager objects by calling the createSQLCursorManager or
createSQLCursorManagers methods of a DataProvider. You do not use an
ExpressSQLCursorManager to create a Cursor to retrieve the result set of the

Interface Description

CursorInfoSpecification An interface that specifies methods for
CursorSpecification objects.

CursorSpecification An abstract class that implements some
methods of the CursorInfoSpecification
interface.

CompoundCursorSpecification A CursorSpecification for a Source that
has one or more outputs. A
CompoundCursorSpecification has
component child CursorSpecification
objects.

CompoundInfoCursorSpecification An interface that specifies methods for
CompoundCursorSpecification objects.

ValueCursorSpecification A CursorSpecification for a Source that
has values and no outputs.

ValueCursorInfoSpecification An interface for
ValueCursorSpecification objects.

Other Classes

Understanding Cursor Classes and Concepts 9-9

query specified by the Source. Instead, you use the SQL returned by the
ExpressSQLCursorManager with classes outside of the OLAP API to retrieve the
data specified by the query.

An ExpressDataCursorManager or ExpressSpecifiedCursorManager
returned by one of the createCursorManager methods of a DataProvider
manages the buffering of data for the Cursor objects it creates.

You can create more than one Cursor from the same cursor manager, which is useful
for displaying data from a result set in different formats such as a table or a graph. All
of the Cursor objects created by a cursor manager have the same specifications, such
as the default fetch sizes. Because the Cursor objects have the same specifications,
they can share the data managed by the cursor manager.

An ExpressSpecifiedCursorManager implements the
SpecifiedCursorManager interface, which extends the CursorManager interface.
A CursorManager has methods for creating a Cursor, for discovering whether the
CursorManagerSpecification for the CursorManager needs updating, and for
adding or removing a CursorManagerUpdateListener. The
SpecifiedCursorManager interface adds methods for updating the
CursorManagerSpecification, for discovering whether the
SpecifiedCursorManager is open, and for closing it. Some of the
createCursorManager methods of DataProvider return an
ExpressSpecifiedCursorManager, which is an implementation of the
SpecifiedCursorManager interface.

When your application no longer needs a SpecifiedCursorManager, it should
close it to free resources in the application and in Oracle OLAP. To close the
SpecifiedCursorManager, call its close method.

Updating the CursorManagerSpecification for a CursorManager
If your application is using OLAP API Template objects and the state of a Template
changes in a way that alters the structure of the Source produced by the Template,
then any CursorManagerSpecification objects for the Source are no longer
valid. You need to create new CursorManagerSpecification objects for the
changed Source.

After creating a new CursorManagerSpecification, you can create a new
CursorManager for the Source. You do not, however, need to create a new
CursorManager. You can call the updateSpecification method of the existing
CursorManager to replace the previous CursorManagerSpecification with the
new CursorManagerSpecification. You can then create a new Cursor from the
CursorManager.

To determine whether the CursorManagerSpecification for a CursorManager
needs updating, call the isSpecificationUpdateNeeded method of the
CursorManager. You can also use a CursorManagerUpdateListener to listen for
events generated by changes in a Source. For more information, see
"CursorManagerUpdateListener Class" on page 9-10.

Other Classes
This topic describes CursorInput, CursorManagerUpdateListener, and
CursorManagerUpdateEvent classes in the oracle.olapi.data.cursor
package.

Other Classes

9-10 Oracle OLAP Developer's Guide to the OLAP API

CursorInput Class
For Oracle OLAP in Oracle Database 10g, the OLAP API includes Parameter classes,
which are more convenient than CursorInput objects. With a Parameter, you can
create a parameterized Source. You can create a CursorManagerSpecification
for a query that includes a parameterized Source, and then create a CursorManager
and a Cursor.

You can then change the value of the Parameter, which changes the selection of
dimension or measure elements specified by the parameterized Source. The Cursor
for the query then has the new set of values for the changed query. You do not need to
prepare and commit the Transaction again before getting the values of the Cursor.
For information on parameterized Source objects, see Chapter 6, "Understanding
Source Objects".

A CursorInput provides a value for a Source that you include in the array of
Source objects that is the inputSources argument to the createCursorManager
method of a DataProvider. If you create a CursorManagerSpecification for a
Source that has one or more inputs, then you must provide an inputSources
argument when you create a CursorManager for that
CursorManagerSpecification. You include a Source in the inputSources
array for each input of the Source that you pass to the
createCursorManagerSpecification method.

When you create a CursorInput object, you can specify either a single value or a
ValueCursor. If you specify a ValueCursor, then you can call the synchronize
method of the CursorInput to make the value of the CursorInput be the current
value of the ValueCursor.

CursorManagerUpdateListener Class
CursorManagerUpdateListener is an interface that has methods that receive
CursorManagerUpdateEvent object. Oracle OLAP generates a
CursorManagerUpdateEvent object in response to a change that occurs in a
Source that is produced by a Template or when a CursorManager updates its
CursorManagerSpecification. Your application can use a
CursorManagerUpdateListener to listen for events that indicate it might need to
create new Cursor objects from the CursorManager or to update its display of data
from a Cursor.

To use a CursorManagerUpdateListener, implement the interface, create an
instance of the class, and then add the CursorManagerUpdateListener to the
CursorManager for a Source. When a change to the Source occurs, the
CursorManager calls the appropriate method of the
CursorManagerUpdateListener and passes it a CursorManagerUpdateEvent.
Your application can then perform the tasks needed to generate new Cursor objects
and update the display of values from the result set that the Source defines.

You can implement more than one version of the CursorManagerUpdateListener
interface. You can add instances of them to the same CursorManager.

CursorManagerUpdateEvent Class
Oracle OLAP generates a CursorManagerUpdateEvent object in response to a
change that occurs in a Source that is produced by a Template or when a
CursorManager updates its CursorManagerSpecification.

You do not directly create instances of this class. Oracle OLAP generates
CursorManagerUpdateEvent objects and passes them to the appropriate methods

About Cursor Positions and Extent

Understanding Cursor Classes and Concepts 9-11

of any CursorManagerUpdateListener objects you have added to a
CursorManager. The CursorManagerUpdateEvent has a field that indicates the
type of event that occurred. A CursorManagerUpdateEvent has methods you can
use to get information about it.

About Cursor Positions and Extent
A Cursor has one or more positions. The current position of a Cursor is the position
that is currently active in the Cursor. To move the current position of a Cursor call
the setPosition or next methods of the Cursor.

Oracle OLAP does not validate the position that you set on the Cursor until you
attempt an operation on the Cursor, such as calling the getCurrentValue method.
If you set the current position to a negative value or to a value that is greater than the
number of positions in the Cursor and then attempt a Cursor operation, then the
Cursor throws a PositionOutOfBoundsException.

The extent of a Cursor is described in "What is the Extent of a Cursor?" on page 9-17.

Positions of a ValueCursor
The current position of a ValueCursor specifies a value, which you can retrieve. For
example, prodSel, a derived Source described in "Structure of a Cursor" on
page 9-4, is a selection of three products from a primary Source that specifies a
dimension of products and their hierarchical groupings. The ValueCursor for
prodSel has three elements. The following example gets the position of each element
of the ValueCursor, and displays the value at that position. The context object has
a method that displays text.

// prodSelValCursor is the ValueCursor for prodSel
context.println("ValueCursor Position Value ");
context.println("-------------------- ------------------------ ");
do
{
 context.println(" " + prodSelValCursor.getPosition() +
 " " + prodSelValCursor.getCurrentValue());
} while(prodSelValCursor.next());

The preceding example displays the following:

ValueCursor Position Value
-------------------- ------------------------
 1 PRODUCT_ROLLUP::ITEM::13
 2 PRODUCT_ROLLUP::ITEM::14
 3 PRODUCT_ROLLUP::ITEM::15

The following example sets the current position of prodSelValCursor to 2 and
retrieves the value at that position.

prodSelValCursor.setPosition(2);
context.println(prodSelValCursor.getCurrentString());

The preceding example displays the following:

PRODUCT_ROLLUP::ITEM::14

For more examples of getting the current value of a ValueCursor, see Chapter 10.

About Cursor Positions and Extent

9-12 Oracle OLAP Developer's Guide to the OLAP API

Positions of a CompoundCursor
A CompoundCursor has one position for each set of the elements of its descendent
ValueCursor objects. The current position of the CompoundCursor specifies one of
those sets.

For example, querySource, the Source created in Example 9–1, has values from a
measure, unitPrice. The values are the prices of product units at different times. The
outputs of querySource are Source objects that represent selections of four month
values from a time dimension and three product values from a product dimension.

The result set for querySource has one measure value for each tuple (each set of
output values), so the total number of values is twelve (one value for each of the three
products for each of the four months). Therefore, the queryCursor
CompoundCursor created for querySource has twelve positions.

Each position of queryCursor specifies one set of positions of its outputs and its base
ValueCursor. For example, position 1 of queryCursor defines the following set of
positions for its outputs and its base ValueCursor:

■ Position 1 of output 1 (the ValueCursor for timeSel)

■ Position 1 of output 2 (the ValueCursor for prodSel)

■ Position 1 of the base ValueCursor for queryCursor (This position has the
value from the unitPrice measure that is specified by the values of the outputs.)

Figure 9–2 illustrates the positions of queryCursor CompoundCursor, its base
ValueCursor, and its outputs.

Figure 9–2 Cursor Positions in queryCursor

Output 1 = 1, Output 2 = 1, VC=1
Output 1 = 1, Output 2 = 2, VC=1
Output 1 = 1, Output 2 = 3, VC=1
Output 1 = 2, Output 2 = 1, VC=1
Output 1 = 2, Output 2 = 2, VC=1
Output 1 = 2, Output 2 = 3, VC=1
Output 1 = 3, Output 2 = 1, VC=1
Output 1 = 3, Output 2 = 2, VC=1
Output 1 = 3, Output 2 = 3, VC=1
Output 1 = 4, Output 2 = 1, VC=1
Output 1 = 4, Output 2 = 2, VC=1
Output 1 = 4, Output 2 = 3, VC=1

55
58
61
64

13
14
15

n

Base ValueCursor
with specified values

from unitPrice

Output 1
ValueCursor for

timeSel

Output 2
ValueCursor for

prodSel

Positions
1
2
3
4

Positions
1
2
3

Positions
1

queryCursor
CompoundCursor

Positions
1
2
3
4
5
6
7
8
9

10
11
12

About Cursor Positions and Extent

Understanding Cursor Classes and Concepts 9-13

The ValueCursor for queryCursor has only one position because only one value of
unitPrice is specified by any one set of values of the outputs. For a query like
querySource, the ValueCursor of its Cursor has only one value, and therefore
only one position, at a time for any one position of the root CompoundCursor.

Figure 9–3 illustrates one possible display of the data from queryCursor. It is a
crosstab view with four columns and five rows. In the left column are the month
values. In the top row are the product values. In each of the intersecting cells of the
crosstab is the price of the product for the month.

Figure 9–3 Crosstab Display of queryCursor

A CompoundCursor coordinates the positions of its ValueCursor objects relative to
each other. The current position of the CompoundCursor specifies the current
positions of its descendent ValueCursor objects. Example 9–2 sets the position of
queryCursor and then gets the current values and the positions of the child Cursor
objects.

Example 9–2 Setting the CompoundCursor Position and Getting the Current Values

CompoundCursor rootCursor = (CompoundCursor) queryCursor;
ValueCursor baseValueCursor = rootCursor.getValueCursor();
List outputs = rootCursor.getOutputs();
ValueCursor output1 = (ValueCursor) outputs.get(0);
ValueCursor output2 = (ValueCursor) outputs.get(1);
int pos = 5;
rootCursor.setPosition(pos);
System.out.println("CompoundCursor position set to " + pos + ".");
System.out.println("The current position of the CompoundCursor is = "
 + rootCursor.getPosition() + ".");
System.out.println("Output 1 position = " + output1.getPosition() +

", value = " + output1.getCurrentValue());
System.out.println("Output 2 position = " + output2.getPosition() +

", value = " + output2.getCurrentValue());
System.out.println("VC position = " + baseValueCursor.getPosition() +

", value = " + baseValueCursor.getCurrentValue());

Example 9–2 displays the following:

CompoundCursor position set to 5.
The current position of the CompoundCursor is 5.
Output 1 position = 2, value = CALENDAR::MONTH::58
Output 2 position = 2, value = PRODUCT_ROLLUP::ITEM::14
VC position = 1, value = 3107.65

The positions of queryCursor are symmetric in that the result set for querySource
always has three product values for each time value. The ValueCursor for prodSel,

13 14 15

55

2505.57

2426.07

58

61 2892.18

3223.28

2337.30 2856.86

2412.42 3026.123107.65

3155.91

3105.53

3042.22

64

Product

Month

About Cursor Positions and Extent

9-14 Oracle OLAP Developer's Guide to the OLAP API

therefore, always has three positions for each value of the timeSel ValueCursor.
The timeSel output ValueCursor is slower varying than the prodSel
ValueCursor.

In an asymmetric case, however, the number of positions in a ValueCursor is not
always the same relative to its slower varying output. For example, if the price of units
for product 15 for month 64 were null because that product was no longer being sold
by that date, and if null values were suppressed in the query, then queryCursor
would only have eleven positions. The ValueCursor for prodSel would only have
two positions when the position of the ValueCursor for timeSel was 4.

Example 9–3 demonstrates an asymmetric result set that is produced by selecting
elements of one dimension based on a comparison of measure values. The example
uses the same product and time selections as in Example 9–1. It uses a Source for a
measure of product units sold, units, that is dimensioned by product, time, sales
channels, and customer dimensions. The chanSel and custSel objects are selections
of single values of the dimensions. The example produces a Source, querySource2,
that specifies which of the selected products sold more than one unit for the selected
time, channel, and customer values.

Because querySource2 is a derived Source, this example prepares and commits the
current Transaction. The TransactionProvider in the example is tp. For
information on Transaction objects, see Chapter 8.

The example creates a Cursor for querySource2, loops through the positions of the
CompoundCursor, gets the position and current value of the first output
ValueCursor and the ValueCursor of the CompoundCursor, and displays the
positions and values of the ValueCursor objects. The getLocalValue method is a
method in the program that extracts the local value from a unique value.

Example 9–3 Positions in an Asymmetric Query

// Create the query
querySource2 = prodSel.join(unitPrice).join(timeSel);

// Prepare and commit the current Transaction.
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 output.println("Cannot commit current Transaction " + e);
}
tp.commitCurrentTransaction();

// Create the Cursor. The DataProvider is dp.
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(querySource2);
CursorManager cursorManager = dp.createCursorManager(cursorMngrSpec);
Cursor queryCursor2 = cursorManager.createCursor();

CompoundCursor rootCursor = (CompoundCursor) queryCursor2;
ValueCursor baseValueCursor = rootCursor.getValueCursor();
List outputs = rootCursor.getOutputs();
ValueCursor output1 = (ValueCursor) outputs.get(0);

// Get the positions and values and display them.
System.out.println("CompoundCursor Output ValueCursor" +
 " ValueCursor");

About Cursor Positions and Extent

Understanding Cursor Classes and Concepts 9-15

System.out.println(" position position | value " +
 "position | value");
do
{
System.out.println(" " + rootCursor.getPosition() +
 " " + output1.getPosition() +
 " " + getLocalValue(output1.getCurrentString()) +
 " " + baseValueCursor.getPosition() + " "
 + getLocalValue(baseValueCursor.getCurrentString()));
}
while(queryCursor2.next());

Example 9–3 displays the following:

CompoundCursor Output ValueCursor ValueCursor
 position position | value position | value
 1 1 55 1 13
 2 1 55 2 14
 3 1 55 3 15
 4 2 58 1 15
 5 3 61 1 14
 6 3 61 2 15
 7 4 64 1 13
 8 4 64 2 14

Because not every combination of product and time selections has unit sales greater
than 1 for the specified channel and customer selections, the number of elements of the
ValueCursor for the values derived from prodSel is not the same for each value of
the output ValueCursor. For time value 55, all three products have sales greater than
one, but for time value 58, only one of the products does. The other two time values, 61
and 64, have two products that meet the criteria. Therefore, the ValueCursor for the
CompoundCursor has three positions for time 55, only one position for time 58, and
two positions for times 61 and 64.

About the Parent Starting and Ending Positions in a Cursor
To effectively manage the display of the data that you get from a CompoundCursor,
you sometimes need to know how many faster varying values exist for the current
slower varying value. For example, suppose that you are displaying in a crosstab one
row of values from an edge of a cube, then you might want to know how many
columns to draw in the display for the row.

To determine how many faster varying values exist for the current value of a child
Cursor, you find the starting and ending positions of that current value in the parent
Cursor. Subtract the starting position from the ending position and then add 1, as in
the following.

long span = (cursor.getParentEnd() - cursor.getParentStart()) + 1;

The result is the span of the current value of the child Cursor in its parent Cursor,
which tells you how many values of the fastest varying child Cursor exist for the
current value. Calculating the starting and ending positions is costly in time and
computing resources, so you should only specify that you want those calculations
performed when your application needs the information.

An Oracle OLAP API Cursor enables your application to have only the data that it is
currently displaying actually present on the client computer. For information on
specifying the amount of data for a Cursor, see "About Fetch Sizes" on page 9-18.

About Cursor Positions and Extent

9-16 Oracle OLAP Developer's Guide to the OLAP API

From the data on the client computer, however, you cannot determine at what position
of its parent Cursor the current value of a child Cursor begins or ends. To get that
information, you use the getParentStart and getParentEnd methods of a
Cursor.

For example, suppose your application has a Source named cube that represents a
cube that has an asymmetric edge. The cube has four outputs. The cube Source
defines products with unit sales greater than one purchased by a certain customers
during three months of the year 2001. The products were sold through the direct sales
channel.

You create a Cursor for that Source and call it cubeCursor. The CompoundCursor
cubeCursor has the following child Cursor objects:

■ output 1, a ValueCursor for the channel values

■ output 2, a ValueCursor for the time values

■ output 4, a ValueCursor for the customer values

■ The base ValueCursor, which has values that are the products with unit sales
greater than one.

Figure 9–4 illustrates the parent, cubeCursor, with the values of its child Cursor
objects layered horizontally. The slowest varying output, with the channel value, is at
the top and the fastest varying child, with the product values, is at the bottom. The
only portion of the edge that you are currently displaying in the user interface is the
block between positions 9 and 12 of cubeCursor, which is shown within the bold
border. The positions, 1 through 15, of cubeCursor appear over the top row.

Figure 9–4 Values of the ValueCursor Children of cubeCursor

The current value of the output ValueCursor for the time Source is 44. You cannot
determine from the data within the block that the starting and ending positions of the
current value, 44, in the parent, cubeCursor, are 5 and 9, respectively.

The cubeCursor from the previous figure is shown again in Figure 9–5, this time
with the range of the positions of the parent, cubeCursor, for each of the values of
the child Cursor objects. By subtracting the smaller value from the larger value and
adding one, you can compute the span of each value. For example, the span of the
time value 44 is (9 - 5 + 1) = 5.

43 4544

2

61 58 61 655858 61

13 15 1414 13 13 1514 13 14 13 1315

1 62 103 4 5 7 8 9 11 12 13 14 15

1413

About Cursor Positions and Extent

Understanding Cursor Classes and Concepts 9-17

Figure 9–5 The Range of Positions of the Child Cursor Objects of cubeCursor

To specify that you want Oracle OLAP to calculate the starting and ending positions of
a value of a child Cursor in its parent Cursor, call the
setParentStartCalculationSpecified and
setParentEndCalculationSpecified methods of the CursorSpecification
corresponding to the Cursor. You can determine whether calculating the starting or
ending positions is specified by calling the
isParentStartCalculationSpecified or
isParentEndCalculationSpecified methods of the CursorSpecification.
For an example of specifying these calculations, see Chapter 10.

What is the Extent of a Cursor?
The extent of a Cursor is the total number of elements it contains relative to any
slower varying outputs. Figure 9–6 illustrates the number of positions of each child
Cursor of cubeCursor relative to the value of its slower varying output. The child
Cursor objects are layered horizontally with the slowest varying output at the top.

The total number of elements in cubeCursor is fifteen so the extent of cubeCursor
is therefore fifteen. That number is over the top row of the figure. The top row is the
ValueCursor for the channel value. The extent of the ValueCursor for channel
values is one because it has only one value.

The second row down is the ValueCursor for the time values. Its extent is 3, since
there are 3 months values. The next row down is the ValueCursor for the customer
values. The extent of its elements depends on the value of the slower varying output,
which is time. The extent of the customers ValueCursor for the first month is two,
for the second month it is two, and for the third month it is three.

The bottom row is the base ValueCursor for the cubeCursor CompoundCursor. Its
values are products. The extent of the elements of the products ValueCursor
depends on the values of the customers ValueCursor and the time ValueCursor.
For example, since three products values are specified by the first set of month and
customer values (products 13, 14, and 15 for customer 58 for time 43), the extent of the
products ValueCursor for that set is 3. For the second set of values for customers and
times (customer 61 for time 43), the extent of the products ValueCursor is 1, and so
on.

1 - 4 10 - 155 - 9

1 - 15

8 - 9 10 - 11 12 - 13 14 - 155 - 71 - 3 4

1 3 132 4 5 76 8 9 10 1211

1 62 103 4 5 7 8 9 11 12 13 14 15

1514

About Fetch Sizes

9-18 Oracle OLAP Developer's Guide to the OLAP API

Figure 9–6 The Number of Elements of the Child Cursor Objects of cubeCursor

The extent is information that you can use, for example, to display the correct number
of columns or correctly-sized scroll bars. The extent, however, can be expensive to
calculate. For example, a Source that represents a cube might have four outputs. Each
output might have hundreds of values. If all null values and zero values of the
measure for the sets of outputs are eliminated from the result set, then to calculate the
extent of the CompoundCursor for the Source, Oracle OLAP must traverse the entire
result space before it creates the CompoundCursor. If you do not specify that you
wants the extent calculated, then Oracle OLAP only needs to traverse the sets of
elements defined by the outputs of the cube as specified by the fetch size of the
Cursor and as needed by your application.

To specify that you want Oracle OLAP to calculate the extent for a Cursor, call the
setExtentCalculationSpecified method of the CursorSpecification
corresponding to the Cursor. You can determine whether calculating the extent is
specified by calling the isExtentCalculationSpecified method of the
CursorSpecification. For an example of specifying the calculation of the extent of
a Cursor, see Chapter 10.

About Fetch Sizes
An OLAP API Cursor represents the entire result set for a Source. The Cursor is a
virtual Cursor, however, because it retrieves only a portion of the result set at a time
from Oracle OLAP. A CursorManager manages a virtual Cursor and retrieves
results from Oracle OLAP as your application needs it. By managing the virtual
Cursor, the CursorManager relieves your application of a substantial burden.

The amount of data that a Cursor retrieves in a single fetch operation is determined
by the fetch size specified for the Cursor. You specify a fetch size to limit the amount
of data your application needs to cache on the local computer and to maximize the
efficiency of the fetch by customizing it to meet the needs of your method of
displaying the data.

You can also regulate the number of elements that Oracle OLAP returns by using
Parameter and parameterized Source objects in constructing your query. For more
information on Parameter objects, see Chapter 6, "Understanding Source Objects".
For examples of using parameterized Source objects, see Chapter 7, "Making Queries
Using Source Methods".

When you create a CursorManagerSpecification for a Source, as the first step
in creating a Cursor, Oracle OLAP specifies a default fetch size on the root
CursorSpecification of the CursorManagerSpecification. You can change
the default fetch size with the setDefaultFetchSize method of the root
CursorSpecification. You can also change the fetch size with the setFetchSize
method of the CursorManager that you create using the
CursorManagerSpecification, or with the setFetchSize method of a Cursor
that you create with the CursorManager.

1 32

1

2 1 2 311 2

1 3 22 1 1 32 1 2 1 12

15

21

About Fetch Sizes

Understanding Cursor Classes and Concepts 9-19

You can create two or more Cursor objects from the same CursorManager and use
both Cursor objects simultaneously. Rather than having separate data caches, the
Cursor objects can share the data managed by the CursorManager.

An example is an application that displays the results of a query to the user as both a
table and a graph. The application creates a CursorManagerSpecification for a
Source and then creates a CursorManager for the
CursorManagerSpecification. The application creates two separate Cursor
objects from the same CursorManager, one for a table view and one for a graph view.
The two views share the same query and display the same data, just in different
formats. Figure 9–7 illustrates the relationship between the Source, the Cursor
objects, and the views.

Figure 9–7 A Source and Two Cursors for Different Views of Its Values

Table View Bar Graph View

�
�
�
�
�
�
�
�1000's

tableCursor : Cursor

graphView : ViewtableView : View

graphCursor : Cursor

querySource : Source

queryCMS : CursorManagerSpecification

queryCM : CursorManager

About Fetch Sizes

9-20 Oracle OLAP Developer's Guide to the OLAP API

Retrieving Query Results 10-1

10
Retrieving Query Results

This chapter describes how to retrieve the results of a query with an Oracle OLAP API
Cursor and how to gain access to those results. This chapter also describes how to
customize the behavior of a Cursor to fit your method of displaying the results. For
information on the class hierarchies of Cursor and its related classes, and for
information on the Cursor concepts of position, fetch size, and extent, see Chapter 9,
"Understanding Cursor Classes and Concepts".

This chapter includes the following topics:

■ Retrieving the Results of a Query

■ Navigating a CompoundCursor for Different Displays of Data

■ Specifying the Behavior of a Cursor

■ Calculating Extent and Starting and Ending Positions of a Value

■ Specifying a Fetch Size

For the complete code of the examples in this chapter, see the example programs
available from the Overview of the Oracle OLAP Java API Reference.

Retrieving the Results of a Query
A query is an OLAP API Source that specifies the data that you want to retrieve from
Oracle OLAP and any calculations you want Oracle OLAP to perform on that data. A
Cursor is the object that retrieves, or fetches, the result set specified by a Source.
Creating a Cursor for a Source involves the following steps:

1. Get a primary Source from an MdmObject or create a derived Source through
operations on a DataProvider or a Source. For information on getting or
creating Source objects, see Chapter 6, "Understanding Source Objects".

2. If the Source is a derived Source, prepare and commit the Transaction in
which you created the Source. To prepare and commit the Transaction, call the
prepareCurrentTransaction and commitCurrentTransaction methods
of your TransactionProvider. For more information on preparing and
committing a Transaction, see Chapter 8, "Using a TransactionProvider". If the
Source is a primary Source, then you do not need to prepare and commit the
Transaction.

3. Create a CursorManagerSpecification by calling the
createCursorManagerSpecification method of your DataProvider and
passing that method the Source.

4. Create a SpecifiedCursorManager by calling the createCursorManager
method of your DataProvider and passing that method the

Retrieving the Results of a Query

10-2 Oracle OLAP Developer's Guide to the OLAP API

CursorManagerSpecification. If the Source for the
CursorManagerSpecification has one or more inputs, then you must also
pass an array of Source objects that provides a Source for each input.

5. Create a Cursor by calling the createCursor method of the CursorManager.
If you created the CursorManager with an array of input Source objects, then
you must also pass an array of CursorInput objects that provides a value for
each input Source.

Example 10–1 creates a Cursor for the derived Source named querySource. The
example uses a TransactionProvider named tp and a DataProvider named dp.
The example creates a CursorManagerSpecification named cursorMngrSpec,
a SpecifiedCursorManager named cursorMngr, and a Cursor named
queryCursor.

Finally, the example closes the SpecifiedCursorManager. When you have finished
using the Cursor, you should close the SpecifiedCursorManager to free
resources.

Example 10–1 Creating a Cursor

try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 System.out.println("Cannot commit the current Transaction. " + e);
}
tp.commitCurrentTransaction();
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(querySource);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor queryCursor = cursorMngr.createCursor();

// ... Use the Cursor in some way, such as to display its values.

cursorMngr.close();

Getting Values from a Cursor
The Cursor interface encapsulates the notion of a current position and has methods for
moving the current position. The ValueCursor and CompoundCursor interfaces
extend the Cursor interface. The Oracle OLAP API has implementations of the
ValueCursor and CompoundCursor interfaces. Calling the createCursor method
of a CursorManager returns either a ValueCursor or a CompoundCursor
implementation, depending on the Source for which you are creating the Cursor.

A ValueCursor is returned for a Source that has a single set of values. A
ValueCursor has a value at its current position, and it has methods for getting the
value at the current position.

A CompoundCursor is created for a Source that has more than one set of values,
which is a Source that has one or more outputs. Each set of values of the Source is
represented by a child ValueCursor of the CompoundCursor. A CompoundCursor
has methods for getting its child Cursor objects.

The structure of the Source determines the structure of the Cursor. A Source can
have nested outputs, which occurs when one or more of the outputs of the Source is

Retrieving the Results of a Query

Retrieving Query Results 10-3

itself a Source with outputs. If a Source has a nested output, then the
CompoundCursor for that Source has a child CompoundCursor for that nested
output.

The CompoundCursor coordinates the positions of its child Cursor objects. The
current position of the CompoundCursor specifies one set of positions of its child
Cursor objects.

For an example of a Source that has only one level of output values, see
Example 10–4. For an example of a Source that has nested output values, see
Example 10–5.

An example of a Source that represents a single set of values is one returned by the
getSource method of an MdmDimension, such as an MdmPrimaryDimension that
represents product values. Creating a Cursor for that Source returns a
ValueCursor. Calling the getCurrentValue method returns the product value at
the current position of that ValueCursor.

Example 10–2 gets the Source from mdmProdHier, which is an
MdmPrimaryDimension that represents product values, and creates a Cursor for
that Source. The example sets the current position to the fifth element of the
ValueCursor and gets the product value from the Cursor. The example then closes
the CursorManager. In the example, dp is the DataProvider.

Example 10–2 Getting a Single Value from a ValueCursor

Source prodSource = mdmProdHier.getSource();
// Because prodSource is a primary Source, you do not need to
// prepare and commit the current Transaction.
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(productSource);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor prodCursor = cursorMngr.createCursor();
// Cast the Cursor to a ValueCursor.
ValueCursor prodValues = (ValueCursor) prodCursor;
// Set the position to the fifth element of the ValueCursor.
prodValues.setPosition(5);

// Product values are Strings. Get the String value at the current
// position.
String value = prodValues.getCurrentString();

// Do something with the value, such as display it...

// Close the SpecifiedCursorManager.
cursorMngr.close();

Example 10–3 uses the same Cursor as Example 10–2. Example 10–3 uses a
do...while loop and the next method of the ValueCursor to move through the
positions of the ValueCursor. The next method begins at a valid position and
returns true when an additional position exists in the Cursor. It also advances the
current position to that next position.

The example sets the position to the first position of the ValueCursor. The example
loops through the positions and uses the getCurrentValue method to get the value
at the current position.

Retrieving the Results of a Query

10-4 Oracle OLAP Developer's Guide to the OLAP API

Example 10–3 Getting All of the Values from a ValueCursor

// prodValues is the ValueCursor for prodSource
prodValues.setPosition(1);
do
{

System.out.println(prodValues.getCurrentValue);
} while(prodValues.next());

The values of the result set represented by a CompoundCursor are in the child
ValueCursor objects of the CompoundCursor. To get those values, you must get the
child ValueCursor objects from the CompoundCursor.

An example of a CompoundCursor is one that is returned by calling the
createCursor method of a CursorManager for a Source that represents the
values of a measure as specified by selected values from the dimensions of the
measure.

Example 10–4 uses a Source, named units, that results from calling the getSource
method of an MdmMeasure that represents the number of units sold. The dimensions
of the measure are MdmPrimaryDimension objects representing products, customers,
times, and channels. This example uses Source objects that represent selected values
from the default hierarchies of those dimensions. The names of those Source objects
are prodSel, custSel, timeSel, and chanSel. The creation of the Source objects
representing the measure and the dimension selections is not shown.

Example 10–4 joins the dimension selections to the measure, which results in a
Source named unitsForSelections. It creates a CompoundCursor, named
unitsForSelCursor, for unitsForSelections, and gets the base ValueCursor
and the outputs from the CompoundCursor. Each output is a ValueCursor, in this
case. The outputs are returned in a List. The order of the outputs in the List is the
inverse of the order in which the outputs were added to the list of outputs by the
successive join operations. In the example, dp is the DataProvider and tp is the
TransactionProvider.

Example 10–4 Getting ValueCursor Objects from a CompoundCursor

Source unitsForSelections = units.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel);
// Prepare and commit the current Transaction
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 System.out.println("Cannot commit the current Transaction. " + e);
}
tp.commitCurrentTransaction();

// Create a Cursor for unitsForSelections
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(unitsForSelections);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
CompoundCursor unitsForSelCursor = (CompoundCursor)
 cursorMngr.createCursor();

Retrieving the Results of a Query

Retrieving Query Results 10-5

// Get the base ValueCursor
ValueCursor specifiedUnitsVals = unitsForSelCursor.getValueCursor();

// Get the outputs
List outputs = unitsForSelCursor.getOutputs();
ValueCursor chanSelVals = (ValueCursor) outputs.get(0);
ValueCursor timeSelVals = (ValueCursor) outputs.get(1);
ValueCursor custSelVals = (ValueCursor) outputs.get(2);
ValueCursor prodSelVals = (ValueCursor) outputs.get(3);

// You can now get the values from the ValueCursor objects.
// When you have finished using the Cursor objects, close the
// SpecifiedCursorManager.
cursorMngr.close();

Example 10–5 uses the same units measure as Example 10–4, but it joins the dimension
selections to the measure differently. Example 10–5 joins two of the dimension
selections together. It then joins the result to the Source that results from joining the
single dimension selections to the measure. The resulting Source,
unitsForSelections, represents a query has nested outputs, which means it has
more than one level of outputs.

The CompoundCursor that this example creates for unitsForSelections therefore
also has nested outputs. The CompoundCursor has a child base ValueCursor and as
its outputs has three child ValueCursor objects and one child CompoundCursor.

Example 10–5 joins the selection of channel dimension values, chanSel, to the
selection of customer dimension values, custSel. The result is custByChanSel, a
Source that has customer values as its base values and channel values as the values of
its output. The example joins to units the selections of product and time values, and
then joins custByChanSel. The resulting query is represented by
unitsForSelections.

The example prepares and commits the current Transaction and creates a
CompoundCursor, named unitsForSelCursor, for unitsForSelections.

The example gets the base ValueCursor and the outputs from the
CompoundCursor. In the example, dp is the DataProvider and tp is the
TransactionProvider.

Example 10–5 Getting Values from a CompoundCursor with Nested Outputs

// ...in someMethod...
Source custByChanSel = custSel.join(chanSel
Source unitsForSelections = units.join(prodSel)
 .join(timeSel)
 .join(custByChanSel);
// Prepare and commit the current Transaction
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 System.out.println("Caught exception " + e + ".");
}
tp.commitCurrentTransaction();

Retrieving the Results of a Query

10-6 Oracle OLAP Developer's Guide to the OLAP API

// Create a Cursor for unitsForSelections
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(unitsForSelections);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
Cursor unitsForSelCursor = cursorMngr.createCursor();

// Send the Cursor to a method that does different operations
// depending on whether the Cursor is a CompoundCursor or a
// ValueCursor.
printCursor(unitsForSelCursor);
cursorMngr.close();
// ...the remaining code of someMethod...

// The printCursor method has a do...while loop that moves through the positions
// of the Cursor passed to it. At each position, the method prints the number of
// the iteration through the loop and then a colon and a space. The output
// object is a PrintWriter. The method calls the private _printTuple method and
// then prints a new line. A "tuple" is the set of output ValueCursor values
// specified by one position of the parent CompoundCursor. The method prints one
// line for each position of the parent CompoundCursor.
private void printCursor(Cursor rootCursor)
{
 int i = 1;
 do
 {
 cpw.print(i++ + ": ");
 _printTuple(rootCursor);
 cpw.print("\n");
 cpw.flush();
 } while(rootCursor.next());
}

// If the Cursor passed to the _printTuple method is a ValueCursor,
// the method prints the value at the current position of the ValueCursor.
// If the Cursor passed in is a CompoundCursor, the method gets the
// outputs of the CompoundCursor and iterates through the outputs,
// recursively calling itself for each output. The method then gets the
// base ValueCursor of the CompoundCursor and calls itself again.
private void _printTuple(Cursor cursor)
{
 if(cursor instanceof CompoundCursor)
 {
 CompoundCursor compoundCursor = (CompoundCursor)cursor;
 // Put an open parenthesis before the value of each output
 cpw.print("(");
 Iterator iterOutputs = compoundCursor.getOutputs().iterator();
 Cursor output = (Cursor)iterOutputs.next();
 _printTuple(output);
 while(iterOutputs.hasNext())
 {
 // Put a comma after the value of each output
 cpw.print(",");
 _printTuple((Cursor)iterOutputs.next());
 }
 // Put a comma after the value of the last output
 cpw.print(",");
 // Get the base ValueCursor
 _printTuple(compoundCursor.getValueCursor());

Navigating a CompoundCursor for Different Displays of Data

Retrieving Query Results 10-7

 // Put a close parenthesis after the base value to indicate
 // the end of the tuple.
 cpw.print(")");
 }
 else if(cursor instanceof ValueCursor)
 {
 ValueCursor valueCursor = (ValueCursor) cursor;
 if (valueCursor.hasCurrentValue())
 print(valueCursor.getCurrentValue());
 else // If this position has a null value
 print("NA");
 }
}

Navigating a CompoundCursor for Different Displays of Data
With the methods of a CompoundCursor you can easily move through, or navigate,
its structure and get the values from its ValueCursor descendents. Data from a
multidimensional OLAP query is often displayed in a crosstab format, or as a table or
a graph.

To display the data for multiple rows and columns, you loop through the positions at
different levels of the CompoundCursor depending on the needs of your display. For
some displays, such as a table, you loop through the positions of the parent
CompoundCursor. For other displays, such as a crosstab, you loop through the
positions of the child Cursor objects.

To display the results of a query in a table view, in which each row contains a value
from each output ValueCursor and from the base ValueCursor, you determine the
position of the top-level, or root, CompoundCursor and then iterate through its
positions. Example 10–6 displays only a portion of the result set at one time. It creates
a Cursor for a Source that represents a query that is based on a measure that has
unit cost values. The dimensions of the measure are the product and time dimensions.
The creation of the primary Source objects and the derived selections of the
dimensions is not shown.

The example joins the Source objects representing the dimension value selections to
the Source representing the measure. It prepares and commits the current
Transaction and then creates a Cursor, casting it to a CompoundCursor. The
example sets the position of the CompoundCursor, iterates through twelve positions
of the CompoundCursor, and prints out the values specified at those positions. The
TransactionProvider is tp and the DataProvider is dp. The cpw object is a
PrintWriter.

Example 10–6 Navigating for a Table View

Source unitPriceByMonth = unitPrice.join(productSel)
 .join(timeSel);
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 cpw.println("Cannot prepare the current Transaction. " + e);
}
tp.commitCurrentTransaction();

// Create a Cursor for unitPriceByMonth

Navigating a CompoundCursor for Different Displays of Data

10-8 Oracle OLAP Developer's Guide to the OLAP API

CursorManagerSpecification cursorMngrSpec =
dp.createCursorManagerSpecification(unitPriceByMonth);

SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
(CompoundCursor) rootCursor =
 (CompoundCursor) cursorMngr.createCursor();

// Determine a starting position and the number of rows to display
int start = 7;
int numRows =12;

cpw.println("Month Product Unit Price");
cpw.println("----- ------- ----------");

// Iterate through the specified positions of the root CompoundCursor.
// Assume that the Cursor contains at least (start + numRows) positions.
for(int pos = start; pos < start + numRows; pos++)
{
 // Set the position of the root CompoundCursor

rootCursor.setPosition(pos);
 // Print the local values of the output and base ValueCursors.
 // The getLocalValue method gets the local value from the unique
 // value of a dimension element.
 String timeValue = ((ValueCursor)rootCursor.getOutputs().get(0))
 .getCurrentString();
 String timeLocVal = getLocalValue(timeValue);
 String prodValue = ((ValueCursor)rootCursor.getOutputs().get(1))
 .getCurrentString();
 String prodLocVal = getLocalValue(prodValue);
 Object price = rootCursor.getValueCursor().getCurrentValue();
 cpw.println(" " + timeLocVal + " " + prodLocVal
 + " " + price);
};
cursorMngr.close();

If the time selection for the query has eight values, such as the first month of each
calendar quarter for the years 2001 and 2002, and the product selection has three
values, then the result set of the unitPriceByMonth query has twenty-four
positions. Example 10–6 displays the following table, which has the values specified
by positions 7 through 18 of the CompoundCursor.

Month Product Unit Price
------ ------- ----------
 61 13 2505.57
 61 14 3155.91
 61 15 2892.18
 64 13 2337.30
 64 14 3105.53
 64 15 2856.86
 69 13 4281.42
 69 14 6017.90
 69 15 5793.54
 72 13 4261.76
 72 14 5907.92
 72 15 5760.78

Example 10–7 uses the same query as Example 10–6. In a crosstab view, the first row is
column headings, which are the values from prodSel in this example. The output for
prodSel is the faster varying output because the prodSel dimension selection is the
last output in the list of outputs that results from the operations that join the measure

Navigating a CompoundCursor for Different Displays of Data

Retrieving Query Results 10-9

to the dimension selections. The remaining rows begin with a row heading. The row
headings are values from the slower varying output, which is timeSel. The
remaining positions of the rows, under the column headings, contain the unitPrice
values specified by the set of the dimension values. To display the results of a query in
a crosstab view, you iterate through the positions of the children of the top-level
CompoundCursor.

The TransactionProvider is tp and the DataProvider is dp. The cpw object is a
PrintWriter.

Example 10–7 Navigating for a Crosstab View without Pages

Source unitPriceByMonth = unitPrice.join(productSel)
 .join(timeSel);
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 cpw.println("Cannot prepare the current Transaction. " + e);
}
tp.commitCurrentTransaction();

// Create a Cursor for unitPriceByMonth
CursorManagerSpecification cursorMngrSpec =

dp.createCursorManagerSpecification(unitPriceByMonth);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
CompoundCursor rootCursor = (CompoundCursor)
 cursorMngr.createCursor();

// Get the outputs and the ValueCursor
List outputs = rootCursor.getOutputs();
// The first output has the values of timeSel, the slower varying output
ValueCursor rowCursor = (ValueCursor) outputs.get(0);
// The second output has the faster varying values of productSel
ValueCursor columnCursor = (ValueCursor) outputs.get(1);
// The base ValueCursor has the values from unitPrice
ValueCursor unitPriceValues = rootCursor.getValueCursor();

// Display the values as a crosstab.
cpw.println("\t Product");
cpw.println("\t-----------------------");
cpw.print("Month");
do
{
 String value = ((ValueCursor) columnCursor).getCurrentString();
 cpw.print("\t" + getLocalValue(value) + " ");
} while (columnCursor.next());
cpw.println();
cpw.println("-----\t-------\t-------\t-------");

// Reset the column Cursor to its first element.
columnCursor.setPosition(1);

do
{
 // Print the row dimension values.
 String value = ((ValueCursor) rowCursor).getCurrentString();

Navigating a CompoundCursor for Different Displays of Data

10-10 Oracle OLAP Developer's Guide to the OLAP API

 cpw.print(getLocalValue(value) + "\t");
 // Loop over columns
 do
 {
 // Print data value
 cpw.print(unitPriceValues.getCurrentValue() + "\t");
 } while (columnCursor.next());

 cpw.println();

 // Reset the column Cursor to its first element.
 columnCursor.setPosition(1);
 } while (rowCursor.next());

cursorMngr.close();

The following is a crosstab view of the values from the result set specified by the
unitPriceByMonth query. The first line labels the rightmost three columns as
having product values. The third line labels the first column as having month values
and then labels each of the rightmost three columns with the product value for that
column. The remaining lines have the month value in the left column and then have
the data values from the units measure for the specified month and product.

 Product

Month 13 14 15
----- ------- ------- -------
55 2426.07 3223.28 3042.22
58 2412.42 3107.65 3026.12
61 2505.57 3155.91 2892.18
64 2337.30 3105.53 2856.86
69 4281.42 6017.90 5793.54
72 4261.76 5907.92 5760.78
75 4149.12 6004.68 5730.28
78 3843.24 5887.92 5701.76

Example 10–8 creates a Source that is based on a measure of units sold values. The
dimensions of the measure are the customer, product, time, and channel dimensions.
The Source objects for the dimensions represent selections of the dimension values.
The creation of those Source objects is not shown.

The query that results from joining the dimension selections to the measure Source
represents unit sold values as specified by the values of its outputs.

The example creates a Cursor for the query and then sends the Cursor to the
printAsCrosstab method, which prints the values from the Cursor in a crosstab.
That method calls other methods that print page, column, and row values.

The fastest varying output of the Cursor is the selection of products, which has three
values (the product items 13, 14, and 15). The product values are the column headings
of the crosstab. The next fastest varying output is the selection of customers, which has
three values (the customers 58, 61, and 65). Those three values are the row headings.
The page dimensions are selections of three time values (the months 43, 44, and 45),
and one channel value (2, which is the direct sales channel).

The TransactionProvider is tp and the DataProvider is dp. The cpw object is a
PrintWriter. The getLocalValue method gets the local value from a unique
dimension value.

Navigating a CompoundCursor for Different Displays of Data

Retrieving Query Results 10-11

Example 10–8 Navigating for a Crosstab View with Pages

// ...in someMethod...
Source unitsForSelections = units.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel);
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 cpw.println("Cannot prepare the current Transaction. " + e);
}
tp.commitCurrentTransaction();

// Create a Cursor for unitsForSelections
CursorManagerSpecification cursorMngrSpec =

 dp.createCursorManagerSpecification(unitsForSelections);
SpecifiedCursorManager cursorMngr =
 dp.createCursorManager(cursorMngrSpec);
CompoundCursor unitsForSelCursor = (CompoundCursor)
 cursorMngr.createCursor();

// Send the Cursor to the printAsCrosstab method
printAsCrosstab(unitsForSelCursor);

cursorMngr.close();
// ...the remainder of the code of someMethod...

private void printAsCrosstab(CompoundCursor rootCursor)
{
 List outputs = rootCursor.getOutputs();
 int nOutputs = outputs.size();

 // Set the initial positions of all outputs
 Iterator outputIter = outputs.iterator();
 while (outputIter.hasNext())
 ((Cursor) outputIter.next()).setPosition(1);

 // The last output is fastest-varying; it represents columns.
 // The next to last output represents rows.
 // All other outputs are on the page.
 Cursor colCursor = (Cursor) outputs.get(nOutputs - 1);
 Cursor rowCursor = (Cursor) outputs.get(nOutputs - 2);
 ArrayList pageCursors = new ArrayList();
 for (int i = 0 ; i < nOutputs - 2 ; i++)
 {
 pageCursors.add(outputs.get(i));
 }

 // Get the base ValueCursor, which has the data values
 ValueCursor dataCursor = rootCursor.getValueCursor();

 // Print the pages of the crosstab
 printPages(pageCursors, 0, rowCursor, colCursor, dataCursor);
}

Navigating a CompoundCursor for Different Displays of Data

10-12 Oracle OLAP Developer's Guide to the OLAP API

// Prints the pages of a crosstab
private void printPages(List pageCursors, int pageIndex, Cursor rowCursor,
 Cursor colCursor, ValueCursor dataCursor)
{
 // Get a Cursor for this page
 Cursor pageCursor = (Cursor) pageCursors.get(pageIndex);

 // Loop over the values of this page dimension
 do
 {
 // If this is the fastest-varying page dimension, print a page
 if (pageIndex == pageCursors.size() - 1)
 {
 // Print the values of the page dimensions
 printPageHeadings(pageCursors);

 // Print the column headings
 printColumnHeadings(colCursor);

 // Print the rows
 printRows(rowCursor, colCursor, dataCursor);

 // Print a couple of blank lines to delimit pages
 cpw.println();
 cpw.println();
 }

 // If this is not the fastest-varying page, recurse to the
 // next fastest varying dimension.
 else
 {
 printPages(pageCursors, pageIndex + 1, rowCursor, colCursor,
 dataCursor);
 }
 } while (pageCursor.next());

 // Reset this page dimension Cursor to its first element.
 pageCursor.setPosition(1);
}

// Prints the values of the page dimensions on each page
private void printPageHeadings(List pageCursors)
{
 // Print the values of the page dimensions
 Iterator pageIter = pageCursors.iterator();
 while (pageIter.hasNext())
 {
 String value = ((ValueCursor) pageIter.next()).getCurrentString();
 cpw.println(getLocalValue(value));
 }
 cpw.println();
}

// Prints the column headings on each page
private void printColumnHeadings(Cursor colCursor)
{
 do
 {
 cpw.print("\t");
 String value = ((ValueCursor) colCursor).getCurrentString();

Navigating a CompoundCursor for Different Displays of Data

Retrieving Query Results 10-13

 cpw.print(getLocalValue(value));
 } while (colCursor.next());
 cpw.println();
 colCursor.setPosition(1);
}

// Prints the rows of each page
private void printRows(Cursor rowCursor, Cursor colCursor,
 ValueCursor dataCursor)
{
 // Loop over rows
 do
 {
 // Print row dimension value
 String value = ((ValueCursor) rowCursor).getCurrentString();
 cpw.print(getLocalValue(value));
 cpw.print("\t");
 // Loop over columns
 do
 {
 // Print data value
 cpw.print(dataCursor.getCurrentValue());
 cpw.print("\t");
 } while (colCursor.next());
 cpw.println();

 // Reset the column Cursor to its first element
 colCursor.setPosition(1);
 } while (rowCursor.next());

 // Reset the row Cursor to its first element
 rowCursor.setPosition(1);
}

Example 10–8 displays the following values, formatted as a crosstab. The display has
added page, column, and row headings to identify the local values of the dimensions.

Channel 2
Customer 43

 Product

Month 13 14 15
----- -- -- --
58 2 4 2
61 2 1 1
65 1 0 0

Channel 2
Customer 44

 Product

Month 13 14 15
----- -- -- --
58 6 6 5
61 2 2 1
65 1 1 1

Specifying the Behavior of a Cursor

10-14 Oracle OLAP Developer's Guide to the OLAP API

Channel 2
Customer 45

 Product

Month 13 14 15
----- -- -- --
58 2 0 2
61 3 2 0
65 2 2 0

Specifying the Behavior of a Cursor
You can specify the following aspects of the behavior of a Cursor.

■ The fetch size of a Cursor, which is the number of elements of the result set that
the Cursor retrieves during one fetch operation.

■ Whether Oracle OLAP calculates the extent of the Cursor. The extent is the total
number of positions of the Cursor. If the Cursor is a child Cursor of a
CompoundCursor, its extent is relative to any slower varying outputs.

■ Whether Oracle OLAP calculates the positions in the parent Cursor at which the
value of a child Cursor starts or ends.

To specify the behavior of Cursor, you use methods of the CursorSpecification
for that Cursor. To get the CursorSpecification for a Cursor, you use methods
of the CursorManagerSpecification that you create for a Source.

For more information on the relationships of Source, Cursor,
CursorSpecification, and CursorManagerSpecification objects or the
concepts of fetch size, extent, or Cursor positions, see Chapter 9.

Example 10–9 creates a Source, creates a CursorManagerSpecification for the
Source, and then gets the CursorSpecification objects from a
CursorManagerSpecification. The root CursorSpecification is the
CursorSpecification for the top-level CompoundCursor.

Example 10–9 Getting CursorSpecification Objects from a CursorManagerSpecification

Source unitsForSelections = units.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel);
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 System.out.println("Caught exception " + e + ".");
}

Note: Specifying the calculation of the extent or the starting or
ending position in a parent Cursor of the current value of a child
Cursor can be a very expensive operation. The calculation can
require considerable time and computing resources. You should
only specify these calculations when your application needs them.

Calculating Extent and Starting and Ending Positions of a Value

Retrieving Query Results 10-15

tp.commitCurrentTransaction();

// Create a Cursor for unitsForSelections
CursorManagerSpecification cursorMngrSpec =

 dp.createCursorManagerSpecification(unitsForSelections);

// Get the root CursorSpecification of the CursorManagerSpecification.
CompoundCursorSpecification rootCursorSpec =
(CompoundCursorSpecification) cursorMngrSpec.getRootCursorSpecification();

// Get the CursorSpecification for the base values
ValueCursorSpecification baseValueSpec =
 rootCursorSpec.getValueCursorSpecification();

// Get the CursorSpecification objects for the outputs
List outputSpecs = rootCursorSpec.getOutputs();
ValueCursorSpecification promoSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(0);
ValueCursorSpecification chanSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(1);
ValueCursorSpecification timeSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(2);
ValueCursorSpecification prodSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(3);
ValueCursorSpecification custSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(4);

Once you have the CursorSpecification objects, you can use their methods to
specify the behavior of the Cursor objects that correspond to them.

Calculating Extent and Starting and Ending Positions of a Value
To manage the display of the result set retrieved by a CompoundCursor, you
sometimes need to know the extent of its child Cursor components. You might also
want to know the position at which the current value of a child Cursor starts in its
parent CompoundCursor. You might want to know the span of the current value of a
child Cursor. The span is the number of positions of the parent Cursor that the
current value of the child Cursor occupies. You can calculate the span by subtracting
the starting position of the value from its ending position and subtracting 1.

Before you can get the extent of a Cursor or get the starting or ending positions of a
value in its parent Cursor, you must specify that you want Oracle OLAP to calculate
the extent or those positions. To specify the performance of those calculations, you use
methods of the CursorSpecification for the Cursor.

Example 10–10 specifies calculating the extent of a Cursor. The example uses the
CursorManagerSpecification from Example 10–9.

Example 10–10 Specifying the Calculation of the Extent of a Cursor

CompoundCursorSpecification rootCursorSpec = (CompoundCursorSpecification)
 cursorMngrSpec.getRootCursorSpecification();
rootCursorSpec.setExtentCalculationSpecified(true);

You can use methods of a CursorSpecification to determine whether the
CursorSpecification specifies the calculation of the extent of a Cursor as in the
following example.

boolean isSet = rootCursorSpec.isExtentCalculationSpecified();

Calculating Extent and Starting and Ending Positions of a Value

10-16 Oracle OLAP Developer's Guide to the OLAP API

Example 10–11 specifies calculating the starting and ending positions of the current
value of a child Cursor in its parent Cursor. The example uses the
CursorManagerSpecification from Example 10–9.

Example 10–11 Specifying the Calculation of Starting and Ending Positions in a Parent

CompoundCursorSpecification rootCursorSpec = (CompoundCursorSpecification)
 cursorMngrSpec.getRootCursorSpecification();

// Get the List of CursorSpecification objects for the outputs.
// Iterate through the list, specifying the calculation of the extent
// for each output CursorSpecification.
Iterator iterOutputSpecs = rootCursorSpec.getOutputs().iterator();
while(iterOutputSpecs.hasNext())
{
 ValueCursorSpecification valCursorSpec = (ValueCursorSpecification)
 iterOutputSpecs.next();
 valCursorSpec.setParentStartCalculationSpecified(true);
 valCursorSpec.setParentEndCalculationSpecified(true);
}

You can use methods of a CursorSpecification to determine whether the
CursorSpecification specifies the calculation of the starting or ending positions
of the current value of a child Cursor in its parent Cursor, as in the following
example.

boolean isSet;
Iterator iterOutputSpecs = rootCursorSpec.getOutputs().iterator();
ValueCursorSpecification valCursorSpec = (ValueCursorSpecification)
 iterOutputSpecs.next();
while(iterOutputSpecs.hasNext())
{
 isSet = valCursorSpec.isParentStartCalculationSpecified();
 isSet = valCursorSpec.isParentEndCalculationSpecified();
 valCursorSpec = (ValueCursorSpecification) iterOutputSpecs.next();
}

Example 10–12 determines the span of the positions in a parent CompoundCursor of
the current value of a child Cursor for two of the outputs of the CompoundCursor.
The example uses the unitForSelections Source from Example 10–8.

The example gets the starting and ending positions of the current values of the time
and product selections and then calculates the span of those values in the parent
Cursor. The parent is the root CompoundCursor. The TransactionProvider is
tp, the DataProvider is dp, and cpw is a PrintWriter.

Example 10–12 Calculating the Span of the Positions in the Parent of a Value

Source unitsForSelections = units.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel);
try
{
 tp.prepareCurrentTransaction();
}
catch(NotCommittableException e)
{
 cpw.println("Caught exception " + e + ".");
}

Calculating Extent and Starting and Ending Positions of a Value

Retrieving Query Results 10-17

tp.commitCurrentTransaction();

// Create a CursorManagerSpecification for unitsForSelections
CursorManagerSpecification cursorMngrSpec =

 dp.createCursorManagerSpecification(unitsForSelections);

 // Get the root CursorSpecification from the CursorManagerSpecification.
CompoundCursorSpecification rootCursorSpec = (CompoundCursorSpecification)
 cursorMngrSpec.getRootCursorSpecification();
// Get the CursorSpecification objects for the outputs
List outputSpecs = rootCursorSpec.getOutputs();
ValueCursorSpecification timeSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(3); // output for time
ValueCursorSpecification prodSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(1); // output for product

// Specify the calculation of the starting and ending positions
timeSelValCSpec.setParentStartCalculationSpecified(true);
timeSelValCSpec.setParentEndCalculationSpecified(true);
prodSelValCSpec.setParentStartCalculationSpecified(true);
prodSelValCSpec.setParentEndCalculationSpecified(true);

// Create the CursorManager and the Cursor
SpecifiedCursorManager cursorMngr = dp.createCursorManager(cursorMngrSpec);
CompoundCursor rootCursor = (CompoundCursor) cursorMngr.createCursor();

// Get the child Cursor objects
ValueCursor baseValCursor = cursor.getValueCursor();
List outputs = rootCursor.getOutputs();
ValueCursor chanSelVals = (ValueCursor) outputs.get(0);
ValueCursor timeSelVals = (ValueCursor) outputs.get(1);
ValueCursor custSelVals = (ValueCursor) outputs.get(2);
ValueCursor prodSelVals = (ValueCursor) outputs.get(3);

// Set the position of the root CompoundCursor
rootCursor.setPosition(15);

// Get the values at the current position and determine the span
// of the values of the time and product outputs.
cpw.print(promoSelVals.getCurrentValue() + ", ");
cpw.print(chanSelVals.getCurrentValue() + ", ");
cpw.print(timeSelVals.getCurrentValue() + ", ");
cpw.print(custSelVals.getCurrentValue() + ", ");
cpw.print(prodSelVals.getCurrentValue() + ", ");
cpw.println(baseValCursor.getCurrentValue());

// Determine the span of the values of the two fastest varying outputs
int span;
span = (prodSelVals.getParentEnd() - prodSelVals.getParentStart()) +1);
cpw.println("The span of " + prodSelVals.getCurrentValue() +
 " at the current position is " + span + ".")
span = (timeSelVals.getParentEnd() - timeSelVals.getParentStart()) +1);
cpw.println("The span of " + timeSelVals.getCurrentValue() +
 " at the current position is " + span + ".")
cursorMngr.close();

Specifying a Fetch Size

10-18 Oracle OLAP Developer's Guide to the OLAP API

This example displays the following text.

CHANNEL_ROLLUP::CHANNEL::2, CALENDAR::MONTH::44,
SHIPMENTS_ROLLUP::SHIP_TO::61, PRODUCT_ROLLUP::ITEM::15, 1.0
The span of PRODUCT_ROLLUP::ITEM::15 at the current position is 1.
The span of CALENDAR::MONTH::44 at the current position is 9.

Specifying a Fetch Size
The number of elements of a Cursor that Oracle OLAP sends to the client application
during one fetch operation depends on the fetch size specified for that Cursor. You
can set the fetch size on the root Cursor for a Source. Cursor for that
CursorSpecification to change the fetch size of the Cursor. The default fetch
size is 100.

Example 10–13 uses the CursorManagerSpecification from Example 10–9. It gets
the default fetch size from the root CursorSpecification, creates a Cursor and
sets a different fetch size on it, and then gets the fetch size for the Cursor. The
TransactionProvider is tp, the DataProvider is dp, and cpw is a
PrintWriter.

Example 10–13 Specifying a Fetch Size

CursorSpecification rootCursorSpec =
 cursorMngrSpec.getRootCursorSpecification();
context.println("The default fetch size is "
 + rootCursorSpec.getDefaultFetchSize() + ".");
CursorManager cursorMngr = dp.createCursorManager(cursorMngrSpec);
Cursor rootCursor = cursorMngr.createCursor();
rootCursor.setFetchSize(10);
context.println("The fetch size is now " + rootCursor.getFetchSize())
 + ".";

This example displays the following text.

The default fetch size is 100.
The fetch size is now 10.

Creating Dynamic Queries 11-1

11
Creating Dynamic Queries

This chapter describes the Oracle OLAP API Template class and its related classes,
which you use to create dynamic queries. This chapter also provides examples of
implementations of those classes.

This chapter includes the following topics:

■ About Template Objects

■ Overview of Template and Related Classes

■ Designing and Implementing a Template

For the complete code of the examples in this chapter, see the example programs
available from the Overview of the Oracle OLAP Java API Reference.

About Template Objects
The Template class is the basis of a very powerful feature of the Oracle OLAP API.
You use Template objects to create modifiable Source objects. With those Source
objects, you can create dynamic queries that can change in response to end-user
selections. Template objects also offer a convenient way for you to translate
user-interface elements into OLAP API operations and objects.

These features are briefly described in the following section. The rest of this chapter
describes the Template class and the other classes you use to create dynamic Source
objects. For information on the Transaction objects that you use to make changes to
the dynamic Source and to either save or discard those changes, see Chapter 8,
"Using a TransactionProvider".

About Creating a Dynamic Source
The main feature of a Template is its ability to produce a dynamic Source. That
ability is based on two of the other objects that a Template uses: instances of the
DynamicDefinition and MetadataState classes.

When a Source is created, a SourceDefinition is automatically created. The
SourceDefinition has information about how the Source was created. Once
created, the Source and its SourceDefinition are paired immutably. The
getSource method of a SourceDefinition returns its paired Source.

DynamicDefinition is a subclass of SourceDefinition. A Template creates a
DynamicDefinition, which acts as a proxy for the SourceDefinition of the
Source produced by the Template. This means that instead of always getting the
same immutably paired Source, the getSource method of the
DynamicDefinition gets whatever Source is currently produced by the

Overview of Template and Related Classes

11-2 Oracle OLAP Developer's Guide to the OLAP API

Template. The instance of the DynamicDefinition does not change even though
the Source that it gets is different.

The Source that a Template produces can change because the values, including
other Source objects, that the Template uses to create the Source can change. A
Template stores those values in a MetadataState. A Template provides methods
to get the current state of the MetadataState, to get or set a value, and to set the
state. You use those methods to change the data values the MetadataState stores.

You use a DynamicDefinition to get the Source produced by a Template. If your
application changes the state of the values that the Template uses to create the
Source, for example, in response to end-user selections, then the application uses the
same DynamicDefinition to get the Source again, even though the new Source
defines a result set different than the previous Source.

The Source produced by a Template can be the result of a series of Source
operations that create other Source objects, such as a series of selections, sorts,
calculations, and joins. You put the code for those operations in the generateSource
method of a SourceGenerator for the Template. That method returns the Source
produced by the Template. The operations use the data stored in the
MetadataState.

You might build an extremely complex query that involves the interactions of dynamic
Source objects produced by many different Template objects. The end result of the
query building is a Source that defines the entire complex query. If you change the
state of any one of the Template objects that you used to create the final Source,
then the final Source represents a result set different than that of the previous
Source. You can thereby modify the final query without having to reproduce all of
the operations involved in defining the query.

About Translating User Interface Elements into OLAP API Objects
You design Template objects to represent elements of the user interface of an
application. Your Template objects turn the selections that the end user makes into
OLAP API query-building operations that produce a Source. You then create a
Cursor to fetch the result set defined by the Source from Oracle OLAP. You get the
values from the Cursor and display them to the end user. When an end user makes
changes to the selections, you change the state of the Template. You then get the
Source produced by the Template, create a new Cursor, get the new values, and
display them.

Overview of Template and Related Classes
In the OLAP API, several classes work together to produce a dynamic Source. In
designing a Template, you must implement or extend the following:

■ The Template abstract class

■ The MetadataState interface

■ The SourceGenerator interface

Instances of those three classes, plus instances of other classes that Oracle OLAP
creates, work together to produce the Source that the Template defines. The classes
that Oracle OLAP provides, which you create by calling factory methods, are the
following:

■ DataProvider

■ DynamicDefinition

Overview of Template and Related Classes

Creating Dynamic Queries 11-3

What Is the Relationship Between the Classes That Produce a Dynamic Source?
The classes that produce a dynamic Source work together as follows:

■ A Template has methods that create a DynamicDefinition and that get and
set the current state of a MetadataState. An extension to the Template abstract
class adds methods that get and set the values of fields on the MetadataState.

■ The MetadataState implementation has fields for storing the data to use in
generating the Source for the Template. When you create a new Template, you
pass the MetadataState to the constructor of the Template. When you call the
getSource method of the DynamicDefinition, the MetadataState is passed
to the generateSource method of the SourceGenerator.

■ The DataProvider is used in creating a Template and by the
SourceGenerator in creating new Source objects.

■ The SourceGenerator implementation has a generateSource method that
uses the current state of the data in the MetadataState to produce a Source for
the Template. You pass in the SourceGenerator to the
createDynamicDefinition method of the Template to create a
DynamicDefinition.

■ The DynamicDefinition has a getSource method that gets the Source
produced by the SourceGenerator. The DynamicDefinition serves as a
proxy for the immutably paired SourceDefinition of that Source.

Template Class
You use a Template to produce a modifiable Source. A Template has methods for
creating a DynamicDefinition and for getting and setting the current state of the
Template. In extending the Template class, you add methods that provide access to
the fields on the MetadataState for the Template. The Template creates a
DynamicDefinition that you use to get the Source produced by the
SourceGenerator for the Template.

For an example of a Template implementation, see Example 11–1 on page 11-5.

MetadataState Interface
An implementation of the MetadataState interface stores the current state of the
values for a Template. A MetadataState must include a clone method that
creates a copy of the current state.

When instantiating a new Template, you pass a MetadataState to the Template
constructor. The Template has methods for getting and setting the values stored by
the MetadataState. The generateSource method of the SourceGenerator for
the Template uses the MetadataState when the method produces a Source for
the Template.

For an example of a MetadataState implementation, see Example 11–2 on page 11-8.

SourceGenerator Interface
An implementation of SourceGenerator must include a generateSource method,
which produces a Source for a Template. A SourceGenerator must produce only
one type of Source, such as a BooleanSource, a NumberSource, or a
StringSource. In producing the Source, the generateSource method uses the
current state of the data represented by the MetadataState for the Template.

Designing and Implementing a Template

11-4 Oracle OLAP Developer's Guide to the OLAP API

To get the Source produced by the generateSource method, you create a
DynamicDefinition by passing the SourceGenerator to the
createDynamicDefinition method of the Template. You then get the Source by
calling the getSource method of the DynamicDefinition.

A Template can create more than one DynamicDefinition, each with a differently
implemented SourceGenerator. The generateSource methods of the different
SourceGenerator objects use the same data, as defined by the current state of the
MetadataState for the Template, to produce Source objects that define different
queries.

For an example of a SourceGenerator implementation, see Example 11–3 on
page 11-8.

DynamicDefinition Class
DynamicDefinition is a subclass of SourceDefinition. You create a
DynamicDefinition by calling the createDynamicDefinition method of a
Template and passing it a SourceGenerator. You get the Source produced by the
SourceGenerator by calling the getSource method of the DynamicDefinition.

A DynamicDefinition created by a Template is a proxy for the
SourceDefinition of the Source produced by the SourceGenerator. The
SourceDefinition is immutably paired to its Source. If the state of the Template
changes, then the Source produced by the SourceGenerator is different. Because
the DynamicDefinition is a proxy, you use the same DynamicDefinition to get
the new Source even though that Source has a different SourceDefinition.

The getCurrent method of a DynamicDefinition returns the
SourceDefinition immutably paired to the Source that the generateSource
method currently returns. For an example of the use of a DynamicDefinition, see
Example 11–4 on page 11-10.

Designing and Implementing a Template
The design of a Template reflects the query-building elements of the user interface of
an application. For example, suppose you want to develop an application that allows
the end user to create a query that requests a number of values from the top or bottom
of a list of values. The values are from one dimension of a measure. The other
dimensions of the measure are limited to single values.

The user interface of your application has a dialog box that allows the end user to do
the following:

■ Select a radio button that specifies whether the data values should be from the top
or bottom of the range of values.

■ Select a measure from a drop-down list of measures.

■ Select a number from a field. The number specifies the number of data values to
display.

■ Select one of the dimensions of the measure as the base of the data values to
display. For example, if the user selects the product dimension, then the query
specifies some number of products from the top or bottom of the list of products.
The list is determined by the measure and the selected values of the other
dimensions.

■ Click a button to bring up a Single Selections dialog box through which the end
user selects the single values for the other dimensions of the selected measure.

Designing and Implementing a Template

Creating Dynamic Queries 11-5

After selecting the values of the dimensions, the end user clicks an OK button on
the second dialog box and returns to the first dialog box.

■ Click an OK button to generate the query. The results of the query appear.

To generate a Source that represents the query that the end user creates in the first
dialog box, you design a Template called TopBottomTemplate. You also design a
second Template, called SingleSelectionTemplate, to create a Source that
represents the end user's selections of single values for the dimensions other than the
base dimension. The designs of your Template objects reflect the user interface
elements of the dialog boxes.

In designing the TopBottomTemplate and its MetadataState and
SourceGenerator, you do the following:

■ Create a class called TopBottomTemplate that extends Template. To the class,
you add methods that get the current state of the Template, set the values
specified by the user, and then set the current state of the Template.

■ Create a class called TopBottomTemplateState that implements
MetadataState. You provide fields on the class to store values for the
SourceGenerator to use in generating the Source produced by the Template.
The values are set by methods of the TopBottomTemplate.

■ Create a class called TopBottomTemplateGenerator that implements
SourceGenerator. In the generateSource method of the class, you provide
the operations that create the Source specified by the end user's selections.

Using your application, an end user selects units sold as the measure and products as
the base dimension in the first dialog box. From the Single Selections dialog box, the
end user selects the Asia Pacific region, the first quarter of 2001, and the direct sales
channel as the single values for each of the remaining dimensions.

The query that the end user has created requests the ten products that have the highest
total amount of units sold through the direct sales channel to customers in the Asia
Pacific region during the calendar year 2001.

For examples of implementations of the TopBottomTemplate,
TopBottomTemplateState, and TopBottomTemplateGenerator classes, and an
example of an application that uses them, see Example 11–1, Example 11–2,
Example 11–3, and Example 11–4. The TopBottomTemplateState and
TopBottomTemplateGenerator classes are implemented as inner classes of the
TopBottomTemplate outer class.

Implementing the Classes for a Template
Example 11–1 is an implementation of the TopBottomTemplate class.

Example 11–1 Implementing a Template

package globalExamples;

import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.DynamicDefinition;
import oracle.olapi.data.source.Source;
import oracle.olapi.data.source.SourceGenerator;
import oracle.olapi.data.source.Template;
import oracle.olapi.transaction.metadataStateManager.MetadataState;

Designing and Implementing a Template

11-6 Oracle OLAP Developer's Guide to the OLAP API

/**
* Creates a TopBottomTemplateState, a TopBottomTemplateGenerator,
 * and a DynamicDefinition. Gets the current state of the
* TopBottomTemplateState and the values it stores. Sets the data
 * values stored by the TopBottomTemplateState and sets the changed state as
 * the current state.
*/
public class TopBottomTemplate extends Template
{
// Constants for specifying the selection of elements from the
// beginning or the end of the result set.
public static final int TOP_BOTTOM_TYPE_TOP = 0;
public static final int TOP_BOTTOM_TYPE_BOTTOM = 1;

// Variable to store the DynamicDefinition.
private DynamicDefinition _definition;

/**
* Creates a TopBottomTemplate with a default type and number values
* and the specified base dimension.
*/
public TopBottomTemplate(Source base, DataProvider dataProvider)

 {
super(new TopBottomTemplateState(base, TOP_BOTTOM_TYPE_TOP, 0),

dataProvider);
// Create the DynamicDefinition for this Template. Create the
// TopBottomTemplateGenerator that the DynamicDefinition uses.
_definition =
createDynamicDefinition(new TopBottomTemplateGenerator(dataProvider));

}

/**
* Gets the Source produced by the TopBottomTemplateGenerator
* from the DynamicDefinition.
*/
public final Source getSource()

 {
return _definition.getSource();

}

/**
* Gets the Source that is the base of the elements in the result set.
* Returns null if the state has no base.
*/
public Source getBase()

 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 return state.base;
}

/**
 * Sets a Source as the base.

*/
public void setBase(Source base)

 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
state.base = base;
setCurrentState(state);

}

Designing and Implementing a Template

Creating Dynamic Queries 11-7

/**
* Gets the Source that specifies the measure and the single
* selections from the dimensions other than the base.
*/
public Source getCriterion()

 {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
return state.criterion;

}

/**
* Specifies a Source that defines the measure and the single values
* selected from the dimensions other than the base.
* The SingleSelectionTemplate produces such a Source.
*/
public void setCriterion(Source criterion)

 {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
state.criterion = criterion;
setCurrentState(state);

}

/**
* Gets the type, which is either TOP_BOTTOM_TYPE_TOP or
* TOP_BOTTOM_TYPE_BOTTOM.
*/
public int getTopBottomType()

 {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
return state.topBottomType;

}

/**
* Sets the type.
*/
public void setTopBottomType(int topBottomType)

 {
if ((topBottomType < TOP_BOTTOM_TYPE_TOP) ||

(topBottomType > TOP_BOTTOM_TYPE_BOTTOM))
throw new IllegalArgumentException("InvalidTopBottomType");

TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
state.topBottomType = topBottomType;
setCurrentState(state);

}

/**
* Gets the number of values selected.
*/
public float getN()

 {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
return state.N;

}

/**
* Sets the number of values to select.
*/
public void setN(float N)

 {
TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();

Designing and Implementing a Template

11-8 Oracle OLAP Developer's Guide to the OLAP API

state.N = N;
setCurrentState(state);

}
}

Example 11–2 is an implementation of the TopBottomTemplateState inner class.

Example 11–2 Implementing a MetadataState

/**
* Stores data that can be changed by its TopBottomTemplate.
* The data is used by a TopBottomTemplateGenerator in producing
* a Source for the TopBottomTemplate.
*/
private static final class TopBottomTemplateState

 implements Cloneable, MetadataState
{
public int topBottomType;
public float N;
public Source criterion;
public Source base;

/**
* Creates a TopBottomTemplateState.
*/
public TopBottomTemplateState(Source base, int topBottomType, float N)

 {
this.base = base;
this.topBottomType = topBottomType;
this.N = N;

}

/**
* Creates a copy of this TopBottomTemplateState.
*/
public final Object clone()

 {
try

 {
return super.clone();

}
catch(CloneNotSupportedException e)

 {
return null;

}
}

}

Example 11–3 is an implementation of the TopBottomTemplateGenerator inner
class.

Example 11–3 Implementing a SourceGenerator

/**
* Produces a Source for a TopBottomTemplate based on the data
* values of a TopBottomTemplateState.
*/
private final class TopBottomTemplateGenerator

implements SourceGenerator
{

Designing and Implementing a Template

Creating Dynamic Queries 11-9

// Store the DataProvider.
private DataProvider _dataProvider;

/**
* Creates a TopBottomTemplateGenerator.
*/
public TopBottomTemplateGenerator(DataProvider dataProvider)

 {
_dataProvider = dataProvider;

}

/**
* Generates a Source for a TopBottomTemplate using the current
* state of the data values stored by the TopBottomTemplateState.
*/
public Source generateSource(MetadataState state)

 {
TopBottomTemplateState castState = (TopBottomTemplateState) state;
if (castState.criterion == null)
throw new NullPointerException("CriterionParameterMissing");

Source sortedBase = null;
if (castState.topBottomType == TOP_BOTTOM_TYPE_TOP)
sortedBase = castState.base.sortDescending(castState.criterion);

else
sortedBase = castState.base.sortAscending(castState.criterion);

return sortedBase.interval(1, Math.round(castState.N));
}

}

Implementing an Application That Uses Templates
After you have stored the selections made by the end user in the MetadataState for
the Template, use the getSource method of the DynamicDefinition to get the
dynamic Source created by the Template. This section provides an example of an
application that uses the TopBottomTemplate described in Example 11–1. For
brevity, the code does not contain much exception handling.

 The Context10g class used in the example has methods that do the following:

■ Connects to an Oracle Database instance as the specified user.

■ Provides the OLAP Catalog metadata objects for the measure and the dimensions
selected by the end user.

■ Creates Cursor objects and displays their values.

Example 11–4 does the following:

■ Creates a Context10g object and from it gets the DataProvider and the
TransactionProvider.

■ From the Context10g object, gets the MdmMeasure and the
MdmPrimaryDimension objects that it uses.

■ Creates a SingleSelectionTemplate for selecting single values from some of
the dimensions of the measure. For the code of the SingleSelectionTemplate
class that this example uses, see Appendix B.

■ Creates a TopBottomTemplate and stores selections made by the end user.

■ Gets the Source produced by the TopBottomTemplate.

Designing and Implementing a Template

11-10 Oracle OLAP Developer's Guide to the OLAP API

■ Uses the Context10g object to create a Cursor for that Source and to display
its values.

To use Example 8–2 from Chapter 8, replace the lines in the run method from the
following comment to the end of the method

// Replace from here on for the Using Child Transaction example.

You can also get the complete code for the examples from the Oracle OLAP Java API
Reference..

Example 11–4 Getting the Source Produced by the Template

import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.Source;
import oracle.olapi.data.source.StringSource;
import oracle.olapi.transaction.Transaction;
import oracle.olapi.transaction.TransactionProvider;
import oracle.olapi.transaction.NotCommittableException;
import oracle.olapi.metadata.mdm.MdmDimensionMemberInfo;
import oracle.olapi.metadata.mdm.MdmHierarchy;
import oracle.olapi.metadata.mdm.MdmMeasure;
import oracle.olapi.metadata.mdm.MdmPrimaryDimension;

import java.util.Iterator;
import java.util.ArrayList;
import java.util.List;

/**
* Creates a query that specifies a number of elements from the top
* or bottom of a selection of dimension members, creates a Cursor
 * for the query, and displays the values of the Cursor.
 * The selected dimension members are those that have measure values
 * that are specified by selected members of the other dimensions of
 * the measure.
*/
public class TopBottomTest
{
 /**
 * Creates a Context10g object that connects to an Oracle Database instance.
 * Gets the MdmMeasure for the Global schema UNITS measure
 * and the MdmPrimaryDimension objects for that measure.
 * Gets the default hierarchies for the dimensions and then gets the Source
 * object for the base of the query.
 * Creates a SingleSelectionTemplate and adds selections to it.
 * Creates a TopBottomTemplate and sets its properties.
 * Gets the Source produced by the TopBottomTemplate, creates a Cursor
 * for it, and displays the values of the Cursor.
 * Changes the state of the SingleSelectionTemplate and the
 * TopBottomTemplate, creates a new Cursor for the Source produced by the
 * TopBottomTemplate, and displays the values of that Cursor.
 */
 public void run(String[] args)
 {
 // Create a Context10g object and get the DataProvider and
 // TransactionProvider from it.
 Context10g context = new Context10g(args, false);
 DataProvider dp = context.getDataProvider();
 TransactionProvider tp = context.getTransactionProvider();

Designing and Implementing a Template

Creating Dynamic Queries 11-11

 // Get the MdmMeasure for the measure.
 MdmMeasure mdmUnits = context.getMdmMeasureByName("UNITS");
 // Get the Source for the measure.
 Source units = mdmUnits.getSource();

 // Get the MdmPrimaryDimension objects for the dimensions of the measure.
 MdmPrimaryDimension[] mdmPrimDims =
 context.getMdmPrimaryDimensionsByName(new String[]
 {"CUSTOMER",
 "PRODUCT",
 "CHANNEL",
 "TIME"});
 MdmPrimaryDimension mdmCustDim = mdmPrimDims[0];
 MdmPrimaryDimension mdmProdDim = mdmPrimDims[1];
 MdmPrimaryDimension mdmChanDim = mdmPrimDims[2];
 MdmPrimaryDimension mdmTimeDim = mdmPrimDims[3];

 // Get the default hierarchy of the Product dimension.
 MdmHierarchy mdmProdRollup = mdmProdDim.getDefaultHierarchy();

 // Get the StringSource for the hierarchy.
 StringSource prodRollup = (StringSource) mdmProdRollup.getSource();

 // Create a SingleSelectionTemplate to produce a Source that
 // represents the measure values specified by single members of each of
 // the dimensions of the measure other than the base dimension.
 SingleSelectionTemplate singleSelections =
 new SingleSelectionTemplate(units, dp);

 // Create MdmDimensionMemberInfo objects for single members of the
 // other dimensions of the measure.
 MdmDimensionMemberInfo timeMemInfo =
 new MdmDimensionMemberInfo(mdmTimeDim, "CALENDAR::YEAR::4");
 MdmDimensionMemberInfo custMemInfo =
 new MdmDimensionMemberInfo(mdmCustDim, "SHIPMENTS_ROLLUP::REGION::8");
 MdmDimensionMemberInfo chanMemInfo =
 new MdmDimensionMemberInfo(mdmChanDim, "CHANNEL_ROLLUP::CHANNEL::2");

 // Add the dimension member information objects to the
 // SingleSelectionTemplate.
 singleSelections.addDimMemberInfo(custMemInfo);
 singleSelections.addDimMemberInfo(chanMemInfo);
 singleSelections.addDimMemberInfo(timeMemInfo);

 // Create a TopBottomTemplate specifying, as the base, the Source for a
 // a hierarchy of a dimension.
 TopBottomTemplate topNBottom = new TopBottomTemplate(prodRollup, dp);

 // Specify whether to retrieve the elements from the beginning (top) or the
 // end (bottom) of the selected elements of the base dimension.
 topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);

 // Set the number of elements of the base dimension to retrieve.
 topNBottom.setN(10);
 // Get the Source produced by the SingleSelectionTemplate and specify it as
 // the criterion object.
 topNBottom.setCriterion(singleSelections.getSource());

Designing and Implementing a Template

11-12 Oracle OLAP Developer's Guide to the OLAP API

 // Prepare and commit the current transaction.
 try
 {
 tp.prepareCurrentTransaction();
 }
 catch(NotCommittableException e)
 {
 context.println("Cannot commit the current Transaction. " + e);
 }
 tp.commitCurrentTransaction();

 // Replace from here on for the Using Child Transaction Objects example.

 // Get the short value descriptions of the dimension members from the
 // SingleSelectionTemplate.
 StringBuffer shortDescrsForMemberVals =
 singleSelections.getMemberShortDescrs(dp, tp);
 context.println("\nThe " + Math.round(topNBottom.getN()) +
 " products with the most units sold \nfor" +
 shortDescrsForMemberVals +" are:\n");

 // Get the Source produced by the TopBottomTemplate, create a Cursor
 // for it, and display the values of the Cursor.
 Source result = topNBottom.getSource();
 context.displayTopBottomResult(result);

 // Change a dimension member selection of the SingleSelectionTemplate.
 timeMemInfo.setUniqueValue("CALENDAR::YEAR::3");
 singleSelections.changeSelection(timeMemInfo);

 // After changing the selection of a dimension member, get the short value
 // descriptions of the dimension members again.
 StringBuffer shortDescrsForMemberValsAfter =
 singleSelections.getMemberShortDescrs(dp, tp);

 // Change the number of elements selected and the type of selection.
 topNBottom.setN(5);
 topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);

 // Prepare and commit the current transaction.
 try
 {
 tp.prepareCurrentTransaction();
 }
 catch(NotCommittableException e)
 {
 context.println("Cannot commit the current Transaction. " + e);
 }

 tp.commitCurrentTransaction();

 context.println("\nThe " + Math.round(topNBottom.getN()) + " products " +
 "with the fewest units sold \nfor" +
 shortDescrsForMemberValsAfter + " are:\n");

 // Create a new Cursor for the Source produced by the TopBottomTemplate
 // and display the Cursor values.
 context.displayTopBottomResult(result);
 }

Designing and Implementing a Template

Creating Dynamic Queries 11-13

 /**
 * Runs the TopBottomTest application.
 *
 * @param args An array of String objects that provides the arguments
 * required to connect to an Oracle Database instance, as
 * specified in the Context10g class.
 */
 public static void main(String[] args)
 {
 new TopBottomTest().run(args);
 }
}

The TopBottomTest program produces the following output.

The 10 products with the most units sold
for Asia Pacific, Direct Sales, 2001 are:

 1. PRODUCT_ROLLUP::TOTAL_PRODUCT::1
 2. PRODUCT_ROLLUP::CLASS::3
 3. PRODUCT_ROLLUP::FAMILY::7
 4. PRODUCT_ROLLUP::CLASS::2
 5. PRODUCT_ROLLUP::FAMILY::9
 6. PRODUCT_ROLLUP::FAMILY::6
 7. PRODUCT_ROLLUP::FAMILY::11
 8. PRODUCT_ROLLUP::ITEM::30
 9. PRODUCT_ROLLUP::ITEM::28
10. PRODUCT_ROLLUP::ITEM::47

The 5 products with the fewest units sold
for Asia Pacific, Direct Sales, 2000 are:

1. PRODUCT_ROLLUP::ITEM::44
2. PRODUCT_ROLLUP::ITEM::36
3. PRODUCT_ROLLUP::ITEM::43
4. PRODUCT_ROLLUP::ITEM::38
5. PRODUCT_ROLLUP::ITEM::21

Designing and Implementing a Template

11-14 Oracle OLAP Developer's Guide to the OLAP API

Setting Up the Development Environment A-1

A
Setting Up the Development Environment

This appendix describes the development environment for creating applications that
use the OLAP API.

This appendix includes the following topics:

■ Overview

■ Required Class Libraries

■ Obtaining the Class Libraries

Overview
The Oracle Database installation, with the OLAP option, provides the OLAP API and
other class libraries, as jar files, that you require to develop an OLAP API client
application. As an application developer, you must copy the required jar files to the
computer on which you develop your Java application, or otherwise make them
accessible to your development environment.

Required Class Libraries
Your application development environment must have the following files:

■ The OLAP API jar file, which contains the OLAP API class libraries.

■ Certain Oracle JDBC (Java Database Connectivity) jar files, which provide
communications between the application and the Oracle database. The Oracle
installation includes the JDBC files. You must use these JDBC files and not those
from another Oracle product or those from a product from another vender.

■ The Java Development Kit (JDK) version 1.4. The Oracle installation does not
provide the JDK. For information about obtaining and using it, see the Sun
Microsystems Java Web site at

http://java.sun.com

If you are using Oracle JDeveloper as your development environment, the JDK is
already installed on your computer. However, ensure that you are using the correct
version of the JDK in JDeveloper.

Obtaining the Class Libraries
Table A–1 lists the OLAP API and other jar files that you must include in your
application development environment. The table includes the locations of the files
under the directory identified by the ORACLE_HOME environment variable on the

Obtaining the Class Libraries

A-2 Oracle OLAP Developer's Guide to the OLAP API

system on which the Oracle database is installed. You can copy these files to your
application development computer, or otherwise include them in your development
environment.

The olap_api.jar file contain the OLAP API classes. The classes12.jar file
contains JDBC classes, and the xmlparserv2.jar file contains classes that provide
XML parsing support.

Table A–1 Required Class Libraries and Their Locations in the Oracle Installation

Class Library jar File Location under ORACLE_HOME

olap_api.jar /olap/api/lib

classes12.jar /jdbc/lib

xmlparserv2.jar /lib

SingleSelectionTemplate Class B-1

B
SingleSelectionTemplate Class

This appendix contains the code for the SingleSelectionTemplate class. This
class is used by the examples in Chapter 8, "Using a TransactionProvider", and
Chapter 11, "Creating Dynamic Queries".

This class is also available as the SingleSelectionTemplate.java file. To open
the file, click the Example Oracle OLAP Java API Programs link in the Overview of the
Oracle OLAP Java API Reference and then click the file name.

Code for the SingleSelectionTemplate Class
The following is the SingleSelectionTemplate.java class.

import oracle.olapi.data.cursor.CursorManager;
import oracle.olapi.data.cursor.ValueCursor;
import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.DynamicDefinition;
import oracle.olapi.data.source.Source;
import oracle.olapi.data.source.StringSource;
import oracle.olapi.data.source.SourceGenerator;
import oracle.olapi.data.source.Template;
import oracle.olapi.transaction.TransactionProvider;
import oracle.olapi.transaction.NotCommittableException;
import oracle.olapi.transaction.metadataStateManager.MetadataState;
import oracle.olapi.metadata.mdm.MdmAttribute;
import oracle.olapi.metadata.mdm.MdmDimensionMemberInfo;
import oracle.olapi.metadata.mdm.MdmHierarchy;
import oracle.olapi.metadata.mdm.MdmMeasure;
import oracle.olapi.metadata.mdm.MdmPrimaryDimension;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;

/**
 * A Template that joins Source objects for selected members of
 * dimension hierarchies to a Source for a measure.
 */
public class SingleSelectionTemplate extends Template
{
 // Variable to store the DynamicDefinition.
 private DynamicDefinition _definition;

Code for the SingleSelectionTemplate Class

B-2 Oracle OLAP Developer's Guide to the OLAP API

 /**
 * Creates a SingleSelectionTemplate.
 */
 public SingleSelectionTemplate(Source measure, DataProvider dataProvider)
 {
 super(new SingleSelectionTemplateState(measure), dataProvider);
 _definition = createDynamicDefinition(
 new SingleSelectionTemplateGenerator(dataProvider));
 }

 /**
 * Gets the Source produced by the SingleSelectionTemplateGenerator
 * from the DynamicDefinition.
 */
 public final Source getSource()
 {
 return _definition.getSource();
 }

 /**
 * Gets the measure stored by the SingleSelectionTemplateState.
 */
 public Source getMeasure()
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState) getCurrentState();
 return state.measure;
 }

 /**
 * Gets the List of MdmDimensionMemberInfo objects for the selected members
 * of the dimensions.
 */
 public List getDimMemberInfos()
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState) getCurrentState();
 return Collections.unmodifiableList(state.dimMemberInfos);
 }

 /**
 * Adds an MdmDimensionMemberInfo to the List of
 * MdmDimensionMemberInfo objects.
 */
 public void addDimMemberInfo(MdmDimensionMemberInfo mdmDimMemberInfo)
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState) getCurrentState();
 state.dimMemberInfos.add(mdmDimMemberInfo);
 setCurrentState(state);
 }

 /**
 * Changes the member specified for a dimension.
 */
 public void changeSelection(MdmDimensionMemberInfo mdmDimMemberInfo)
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState) getCurrentState();
 int i = 0;

Code for the SingleSelectionTemplate Class

SingleSelectionTemplate Class B-3

 Iterator dimMemberInfosItr = state.dimMemberInfos.iterator();
 while (dimMemberInfosItr.hasNext())
 {
 MdmDimensionMemberInfo mdmDimMemberInfoInList =
 (MdmDimensionMemberInfo) dimMemberInfosItr.next();
 MdmPrimaryDimension mdmPrimDim1 = mdmDimMemberInfo.getPrimaryDimension();
 MdmPrimaryDimension mdmPrimDim2 =
 mdmDimMemberInfoInList.getPrimaryDimension();
 //String value = (String) valuesItr.next();
 if (mdmPrimDim1.getName().equals(mdmPrimDim2.getName()))
 {
 state.dimMemberInfos.remove(i);
 state.dimMemberInfos.add(i, mdmDimMemberInfo);
 break;
 }
 i++;
 }

 setCurrentState(state);
 }

 /**
 * Gets the short value description of the each of the dimension members
 * specified by the list of MdmDimensionMemberInfo objects and returns
 * the descriptions in a StringBuffer.
 */
 StringBuffer getMemberShortDescrs(DataProvider dp,
 TransactionProvider tp)
 {
 boolean firsttime = true;

 List mdmDimMemInfoList = getDimMemberInfos();

 StringBuffer shortDescrForMemberVals = new StringBuffer(" ");
 Iterator mdmDimMemInfoListItr = mdmDimMemInfoList.iterator();

 while(mdmDimMemInfoListItr.hasNext())
 {
 MdmDimensionMemberInfo mdmDimMemInfo = (MdmDimensionMemberInfo)
 mdmDimMemInfoListItr.next();
 MdmPrimaryDimension mdmPrimDim = mdmDimMemInfo.getPrimaryDimension();
 MdmAttribute mdmShortDescrAttr =
 mdmPrimDim.getShortValueDescriptionAttribute();
 Source shortDescrAttr = mdmShortDescrAttr.getSource();
 MdmHierarchy mdmHier = mdmDimMemInfo.getHierarchy();
 StringSource hierSrc = (StringSource) mdmHier.getSource();
 Source memberSel = hierSrc.selectValue(mdmDimMemInfo.getUniqueValue());
 Source shortDescrForMember = shortDescrAttr.joinHidden(memberSel);

 // Prepare and commit the current transaction.
 try
 {
 tp.prepareCurrentTransaction();
 }
 catch(NotCommittableException e)
 {
 System.out.println("Cannot commit the current Transaction. " + e);
 }
 tp.commitCurrentTransaction();

Code for the SingleSelectionTemplate Class

B-4 Oracle OLAP Developer's Guide to the OLAP API

 CursorManager cmngr = dp.createCursorManager(shortDescrForMember);
 ValueCursor valCursor = (ValueCursor) cmngr.createCursor();

 String shortDescrForMemberVal = valCursor.getCurrentString();

 if(firsttime)
 {
 shortDescrForMemberVals.append(shortDescrForMemberVal);
 firsttime = false;
 }
 else
 {
 shortDescrForMemberVals.append(", " + shortDescrForMemberVal);
 }
 }

 return shortDescrForMemberVals;
 }

 /**
 * Inner class that implements the MetadataState object for this Template.
 * Stores data that can be changed by its SingleSelectionTemplate.
 * The data is used by a SingleSelectionTemplateGenerator in producing
 * a Source for the SingleSelectionTemplate.
 */
 private static class SingleSelectionTemplateState
 implements MetadataState
 {
 public Source measure;
 public ArrayList dimMemberInfos;

 /**
 * Creates a SingleSelectionTemplateState.
 */
 public SingleSelectionTemplateState(Source measure)
 {
 this(measure, new ArrayList());
 }

 private SingleSelectionTemplateState(Source measure,
 ArrayList dimMemberInfos)
 {
 this.measure = measure;
 this.dimMemberInfos = dimMemberInfos;
 }

 public Object clone()
 {
 return new SingleSelectionTemplateState(measure,
 (ArrayList)
 dimMemberInfos.clone());
 }
 }

Code for the SingleSelectionTemplate Class

SingleSelectionTemplate Class B-5

 /**
 * Inner class that implements the SourceGenerator object for this Template.
 * Produces a Source based on the data values of a SingleSelectionTemplate.
 */
 private static final class SingleSelectionTemplateGenerator
 implements SourceGenerator
 {
 DataProvider dp = null;

 /**
 * Creates a SingleSelectionTemplateGenerator.
 */
 public SingleSelectionTemplateGenerator(DataProvider dataProvider)
 {
 dp = dataProvider;
 }

 /**
 * Generates a Source for the SingleSelectionTemplate.
 */
 public Source generateSource(MetadataState state)
 {
 SingleSelectionTemplateState castState =
 (SingleSelectionTemplateState) state;
 Source result = castState.measure;

 Iterator dimMemberInfosItr = castState.dimMemberInfos.iterator();
 while (dimMemberInfosItr.hasNext())
 {
 MdmDimensionMemberInfo mdmDimMemInfo = (MdmDimensionMemberInfo)
 dimMemberInfosItr.next();
 MdmHierarchy mdmHier = mdmDimMemInfo.getHierarchy();
 StringSource hierSrc = (StringSource) mdmHier.getSource();
 Source memberSel = hierSrc.selectValue(mdmDimMemInfo.getUniqueValue());
 // Join the Source objects for the selected dimension members
 // to the measure.
 result = result.joinHidden(memberSel);
 }
 return result;
 }
 }
}

Code for the SingleSelectionTemplate Class

B-6 Oracle OLAP Developer's Guide to the OLAP API

Index-1

Index

A
addCustomMember method, 2-12
aggregate data

in a hierarchy, 5-6
aggregated values

supplied by materialized views, 5-9
aggregating data

for solved cubes, 5-8
for unsolved cubes, 5-7

aggregation forms
ET, 5-7
for cubes, 5-7
grouping set, 5-7
rollup, 5-7

aggregation functions, 5-10
aggregation steps, 5-9
alias method

description, 7-2
example of, 7-2

analytic workspaces
creating dynamic, 1-3

ancestors attribute
example of getting, 4-7
method for getting, 2-8

appendValues method
example of, 7-3

application
tasks performed by, 1-7

assigned values
specified by an Assignment, 6-18

Assignment objects
assigned value dependent on another Assignment,

example of, 6-20
assigned value result of aggregation, example

of, 6-22
of a Model, 6-17

asymmetric result set, Cursor positions in an, 9-14
at method, example of, 7-16
attributes

based on a database column, 2-3, 2-10
definition, 1-2
example of getting, 4-7
in OLAP metadata, 2-2
MdmAttribute objects, 2-10

B
base cubes

representing hierarchies, 5-3
base Source

definition, 6-4, 7-1
Boolean OLAP API data type, 2-14

C
Catalog

see OLAP Catalog
class libraries, obtaining, A-1
classes12.jar file, 3-1, A-1
code for examples, 1-3
color custom MdmAttribute, 2-11, 6-22
COMPARISON_RULE_ASCENDING

example of, 7-8, 7-17
COMPARISON_RULE_ASCENDING_NULLS_FIRST

example of, 7-8
COMPARISON_RULE_ASCENDING_NULLS_LAST

example of, 7-8
COMPARISON_RULE_DESCENDING

example of, 7-6
COMPARISON_RULE_DESCENDING_NULLS_

LAST
example of, 7-8

COMPARISON_RULE_REMOVE
example of, 6-8, 6-9, 7-5, 7-7, 7-20

COMPARISON_RULE_SELECT
example of, 6-8, 6-9

CompoundCursor objects
getting children of, example, 10-4
navigating for a crosstab view, example, 10-9,

10-10
navigating for a table view, example, 10-7
positions of, 9-12

Connection objects
example of closing, 3-4
example of creating, 3-2
example of getting an existing, 3-3

connections
closing, 3-4
getting existing, 3-3
prerequisites, 3-1
steps for establishing, 3-2

Index-2

count method, example of, 7-20
createCustomMeasure method, 2-12

example of, 2-17
createCustomMember method

example of, 2-12
createListSource method

example of, 6-16, 7-11, 7-22, 7-23
createParameterizedSource method, 6-15

example of, 6-16, 7-13, 7-24
createRangeSource method, example of, 7-7
createSQLCursorManager method, 9-1, 9-8
createStandardCustomMember method, 2-12
createTimeCustomMember method, 2-12
crosstab view

example of, 7-3
navigating Cursor for, example, 10-9, 10-10

cubes
aggregation forms for, 5-7
definition, 1-2
example of, 7-13
in OLAP metadata, 2-2, 2-3
partitioned into base cubes, 5-3
recording dimensionality of MdmMeasure

objects, 5-3
solved, 5-7
unsolved, 5-7

current position in a Cursor, definition, 9-11
Cursor class

architecture, advantages of, 9-2
Cursor objects

created in the current Transaction, 9-3
creating, example of, 7-13, 10-2
current position, definition, 9-11
CursorManager objects for creating, 9-8
extent calculation, example, 10-15
extent definition, 9-17
faster and slower varying components, 9-5
fetch size definition, 9-18
getting children of, example, 10-4
getting the values of, examples, 10-2
methods of creating, 9-1
parent starting and ending position, 9-15
position, 9-11
Source objects for which you cannot create, 9-3
span, definition, 9-15
specifying fetch size for a table view,

example, 10-18
specifying the behavior of, 9-6, 10-14
starting and ending positions of a value, example

of calculating, 10-16
structure, 9-4

CursorInfoSpecification interface, 9-7
CursorInput class, 9-6, 9-10
CursorInput objects

compared to Parameter objects, 6-16
CursorManager class, 9-8
CursorManager objects

closing before rolling back a Transaction, 8-8
creating, example of, 7-13, 10-2

methods of creating, 9-1
updating the CursorManagerSpecification, 9-9

CursorManagerSpecification class, 9-6
creating object, example of, 7-13, 10-2

CursorManagerUpdateEvent class, 9-10
CursorManagerUpdateListener class, 9-10
CursorSpecification class, 9-7
CursorSpecification objects

getting from a CursorManagerSpecification,
example, 10-14

custom
MdmMeasure, creating, 2-17, 5-5
MdmMeasureDimension member, creating, 2-17
metadata objects, creating, 2-17

custom dimension members
creating, 2-11, 2-12
new feature, xiii

CustomModel class, 6-18
CustomModel objects

example of, 6-19
inputs of, 6-18
outputs of, 6-18
parent Model objects of, 6-18

D
data store

definition, 1-3
exploring, 4-2
gaining access to data in, 4-1
scope of, 4-1

data type
of MDM metadata objects, 2-14
of Source objects, 6-3
OLAP API, 2-14

data warehouse, 1-2
DataProvider objects

creating, 3-3
needed to create MdmMetadataProvider, 4-3

Date OLAP API data type, 2-14
derived Source objects

definition, 6-2
detailed data

in a hierarchy, 5-6
storage type, 5-9

dimension members
creating custom, 2-11

dimensioned Source, xiii
definition, 6-6

dimensions
creating custom members, 2-11
definition, 1-1
dimensioning measures, 2-6
in OLAP metadata, 2-2
MdmDimension objects, 2-6
value formatting, 1-6

distinct method
description, 7-2
example of, 7-3

div method, example of, 7-19

Index-3

DML
custom dimension members not available to, 2-13
Model object, 6-17, 6-18

Double OLAP API data type, 2-14
drilling in a hierarchy, example of, 7-16
DriverManager objects, 3-2
dynamic analytic workspaces, 1-3
dynamic queries, 11-1
dynamic Source objects

definition, 6-2
example of getting, 11-9
produced by a Template, 11-1

DynamicDefinition class, 11-4

E
edges of a cube

definition, 1-2
pivoting, example of, 7-13

elements
of a dimension, 2-2
of an MdmAttribute, 2-11
of an MdmMeasure, 2-9

embedded totals (ET) storage type, 5-9
Empty OLAP API data type, 2-15
empty Source objects

definition, 6-2
ET aggregation form, 5-7
ETT tool, 1-2
example programs

complete code for, 1-3
new, xvii
sample schema for, 1-3

ExpressDataCursorManager class, 9-8
ExpressDataCursorManager, returned by the

createCursorManager method., 9-3
ExpressSpecifiedCursorManager class, 9-8
ExpressSpecifiedCursorManager, returned by the

createCursorManager method., 9-3
ExpressSQLCursorManager class, 1-9, 9-1, 9-8
ExpressTransactionProvider class, 8-7
extent of a Cursor

definition, 9-17
example of calculating, 10-15
use of, 9-18

extract method, 6-6
description, 7-11
example of, 6-16, 7-11, 7-22, 7-23
implemented as a CustomModel, 6-19

extraction input
definition, 6-7

F
faster varying Cursor components, 9-5
fetch size of a Cursor

definition, 9-18
example of specifying, 10-18
reasons for specifying, 9-18

Float OLAP API data type, 2-14

font conventions
OLAP API data types, 2-14

fundamental Source objects
definition, 6-2

FundamentalMetadataObject class, 2-14
FundamentalMetadataProvider class, 2-14

G
generated SQL, getting, 9-1
getAncestorsAttribute method

of an MdmHierarchy, 2-8
getDefaultMetadataProvider method

example of, 4-3
getEmptySource method, 6-2

example of, 6-8, 6-9, 6-12
getID method

of a Source, 6-5
getID method, example of, 6-16
getInputs method, 6-7
getLevelAttribute method, example of, 7-7
getOutputs method

of a Source, 6-7
getParentAttribute method

of an MdmHierarchy, 2-8
getRootSchema method, 4-4
getSource method

example of, 4-6, 7-7, 7-16
for getting Source produced by a Template,

example, 11-9
in DynamicDefinition class, 11-1, 11-4
of an MdmSource, 2-6

getSubSchema method, 4-5
getType method

of a Source, 6-5
of an MdmSource, example of, 2-17

getVoidSource method, 6-2
GID

calculating values of, 5-9
column of fact table, 5-9

Global Schema for Documentation with OLAP
Catalog Metadata

description, 1-3
discovering metadata for, 4-7

Grouping ID (GID) column of fact table, 5-9
grouping set aggregation form, 5-7
Grouping Set, form of materialized view for

aggregating data, 5-9
gt method, example of, 7-20

H
hierarchical sorting, example of, 7-17
hierarchies

based on a database column, 2-3
definition, 1-2
in OLAP metadata, 2-2
level-based, 5-6
limit of levels in, 2-2, 5-6
solved, 5-7

Index-4

unsolved, 5-7
value-based, 5-7

hierarchies of an MdmDimension
example of getting, 4-7

I
identification

of a Source, 6-5
inputs

of a Cursor, 9-10
of a CustomModel, 6-18
of a Model, 6-18
of a Source

definition, 6-6
matching to a Source, 6-9, 6-10
obtaining, 6-7
producing, 6-6

Integer OLAP API data type, 2-14
interval method, example of, 7-24
isSubType method, example of, 6-5

J
Java archive (jar) files, required, 3-1
Java Development Kit, version required, A-1
JDBC

Connection objects, 3-2
DriverManager objects, 3-2
libraries required, A-1
loading drivers, 3-2

join method
description, 7-2
examples of, 7-2 to 7-25
examples of using different comparison rules, 7-5
rules governing matching a Source to an

input, 6-10

L
lag method, example of, 7-22
leaf-level data

in a hierarchy, 5-6
storage type, 5-9

level hierarchy, 2-2, 5-6
levels

based on a database column, 2-3
definition, 1-2
in OLAP metadata, 2-2
limit of number in a hierarchy, 2-2, 5-6
MdmLevel objects, 2-8

list Source objects
definition, 6-2

local dimension value, 1-6
lowest level storage type, 5-9

M
mapping

MdmSource objects to relational tables and
expressions, 5-1

matching a Source to an input
example, 6-11
example of, 6-9, 6-12, 6-14
rules governing, 6-10

materialized views
solved cube as a, 5-7
supplying aggregated values, 5-9

MDM. See multidimensional metadata model
MdmAttribute objects

custom attribute, used in example, 6-22
description, 2-10
elements, 2-11

MdmAttributeModel class
subclass of MdmDimensionedObject, 2-5

MdmAttributeModel objects
not having parent Model objects, 6-18

MdmCustomObjectFactory object
creating custom dimension members with, 2-12

MdmCustomObjectFactory objects
creating custom metadata objects with, 2-17
using to create a custom measure, 5-6

MdmDimension objects
description, 2-6
example of getting related objects, 4-6
introduction, 1-5
related MdmAttribute objects, 2-7

MdmDimensionCalculationModel class, 2-5
MdmDimensionCalculationModel objects

not having parent Model objects, 6-18
MdmDimensionedObject class

description, 2-9
MdmDimensionedObject object, 2-5
MdmDimensionedObjectModel class, 2-5
MdmHierarchy class, 2-7
MdmLevel objects

description, 2-8
members, 2-8

MdmLevelHierarchy objects
description, 2-8

MdmMeasure objects
creating custom, 2-11, 2-17, 5-5
description, 2-9
elements, 2-9
example of getting their dimensions, 4-5
introduction, 1-5
kinds of values, 2-10

MdmMeasureModel
subclass of MdmDimensionedObject, 2-5

MdmMeasureModel objects
parent Model objects of, 6-18

MdmMember interface
description, 2-11

MdmMetadataProvider objects
creating, 4-3
description, 4-2
introduction, 1-5

MdmModel class, 2-5
MdmObject class, 2-3
MdmPrimaryDimension objects

description, 2-7, 2-8

Index-5

MdmSchema objects
description, 2-5
getting contents of, 4-4
getting the root, 4-4
introduction, 1-5
root, 2-6, 4-3

MdmSource objects, 2-6
MdmStandardDimension objects

description, 2-7
MdmSubDimension class, 2-7
MdmTimeDimension objects

description, 2-7
measure folders

in OLAP metadata, 2-2, 2-3
mapped to MdmSchema objects, 2-5

measure MdmDimension objects, 4-5
measures

based on a database column, 2-3, 2-9
definition, 1-2
dimensioned by dimensions, 1-2, 2-6
in OLAP metadata, 2-3
MdmMeasure objects, 2-9

members
of a dimension, 2-2
of an MdmDimension, 2-6
of an MdmLevel, 2-8

metadata
creating a provider, 4-3
definition, 1-2
discovering, 4-1
distinguished from data, 1-4
mapping OLAP metadata to MDM metadata, 2-4
preparation for OLAP API, 1-2, 2-2
sample code for discovering, 4-7 to 4-13

metadata mapping (MTM) objects
definition, 5-1

MetadataState class, 11-3
example of implementation, 11-8

Model interface, 2-5, 6-18
description, 6-17
new feature, xiii

movingTotal method, example of, 7-23
MTM. See metadata mapping objects
MtmAggregationSpecification class

description, 5-9
MtmAggregationStep class

description, 5-9
MtmAttributeMap objects

storing information about columns mapped to an
MdmDimension, 5-2

MtmBaseCube objects
description, 5-2

MtmColumnExpression objects
mapping an MdmSource to a column, 5-3

MtmCubeDimensionality objects
description, 5-2

MtmCustomExpression objects
not mapped to a specific column, 5-3

MtmDimensionMap objects
SQL statement for MdmSubDimension based

on, 5-2
MtmDimensionOrderSpecification objects

description, 5-2
MtmExpression

mapping an MdmSource to a specific column, 5-3
MtmExpression objects

creating with an MdmCustomObjectFactory, 5-6
description, 5-2

MtmFirstLastAggregationStep class
description, 5-10

MtmLiteralExpression objects
not mapped to a specific column, 5-3

MtmMeasureMap objects
getting for an MdmMeasure, 5-6
SQL statement for MdmSubDimension based

on, 5-2
MtmNoAggregationStep class

description, 5-10
MtmObject class

using to discover relational column mappings to
MdmSource objects, 5-3

MtmPartitionedCube objects
getting for an MtmMeasureMap, 5-6

MtmSimpleAggregationStep class
description, 5-10

MtmSolvedCubeDimensionality class
representing aggregation forms, 5-9

MtmSolvedETCubeDimensionality class
representing an aggregation form, 5-9

MtmSolvedGroupingSetCubeDimensionality class
representing an aggregation form, 5-9

MtmSolvedRollupCubeDimensionality class
representing an aggregation form, 5-9

MtmSolveSpecification class
description, 5-9

MtmSourceMap objects
mapping MdmSource to relational tables and

expressions, 5-1
MtmTabularSource objects

description, 5-2
MtmWeightedAverageStep class

description, 5-10
multidimensional metadata model (MDM)

description, 2-1
introduction, 1-5

N
nested measure folders, 2-3
nested outputs

getting values from a Cursor with, example, 10-5
of a Source, definition, 10-2

null Source objects
definition, 6-2

nullSource method, 6-2
Number OLAP API data type, 2-14
NumberParameter objects

example of, 7-24

Index-6

O
OLAP API

definition, 1-1
required class libraries, A-1
sample schema for examples, 1-3
software components, 1-7

OLAP API data types
font conventions, 2-14
for MDM metadata objects, 2-14

OLAP Catalog, 1-2
OLAP metadata objects, 1-4, 2-2
olap_api.jar file, A-1
Oracle Enterprise Manager, 1-5
ORACLE_HOME environment variable, A-1
outputs

getting from a CompoundCursor, example, 10-4
getting from a CompoundCursorSpecification,

example, 10-14
getting nested, example, 10-5
in a CompoundCursor, 9-4, 9-16, 9-17

positions of, 9-12
of a CustomModel, 6-18
of a Source

definition, 6-7
obtaining, 6-7
order of, 6-15, 7-3
producing, 6-8

P
Parameter objects

compared to CursorInput objects, 6-16, 9-10
description, 6-15
example of, 6-16, 7-13, 7-24

parameterized Source objects
definition, 6-2
description, 6-15
example of, 6-16, 7-13, 7-24

parent attribute
example of getting, 4-7
method for getting, 2-8

parent Model objects
of a CustomModel, 6-18
of a Model, 6-18

parent-child relationships
in hierarchies, 2-2, 2-8
in levels, 2-8

pivoting cube edges, example of, 7-13
placeholder Source

new feature, xiv
placeholder Source objects

definition, 6-3
example of, 6-20, 6-22

plus method, example of, 7-20
position method, 6-6

description, 7-2
example of, 7-7

positions
CompoundCursor, 9-12
Cursor, 9-11

parent starting and ending, 9-15
ValueCursor, 9-11

precedence
of an Assignment, 6-18

primary Source objects
definition, 6-2
from MdmSource objects, 2-6
result of getSource method, 4-6

Q
Qualification objects

of an Assignment, 6-17
queries

creating using Source methods, 7-1
definition, 1-2
dynamic, 11-1
Source objects that are not, 9-3
specifying with Source objects, 6-1
steps in retrieving results of, 10-1

R
range Source objects

definition, 6-2
ranking values, 7-20
read Transaction object, 8-2
recursiveJoin method

description, 7-2
example of, 7-8, 7-17

regular input
definition, 6-7

relational schema, 1-2, 1-5
Rolled Up, form of materialized view for aggregating

data, 5-9
rolllup aggregation form, 5-7
root MdmSchema

description, 2-6
function of, 4-3
obtaining, 4-4

rotating cube edges, example of, 7-13

S
sample schemas, 1-3
schemas

relationship to the OLAP API, 1-5
star, 1-2

select method, example of, 7-20
SELECT statement

for an MdmDimension, 5-2
for an MdmMeasure, 5-2

selecting
by position, 7-24
by rank, 7-20
by time series, 7-22

selectValue method
example of, 7-3, 7-11

selectValues method
example of, 7-10, 7-13

Index-7

setValue method
example of, 6-16, 7-13, 7-24

Short OLAP API data type, 2-14
SID (system identifier), 3-3
SingleSelectionTemplate class, 8-5, 8-8, 11-9, B-1
slower varying Cursor components, 9-5, 9-13
solve specification, description, 5-9
solved cubes, 5-7

aggregating data for, 5-8
solved hierarchies, 5-7
sorting hierarchically, example of, 7-17
Source class

basic methods, 7-1
Source objects

active in a Transaction object, 9-3
data type

definition, 6-3
getting, 6-3

dimensioned, xiii, 6-6
getting a modifiable Source from a

DynamicDefinition, 11-4
identification String

obtaining, 6-5
inputs of

definition, 6-6
matching to a Source, 6-9, 6-10
obtaining, 6-7
producing, 6-6

introducing, 6-1
kinds of, 6-2
methods of getting, 6-2
modifiable, 11-1
outputs of

definition, 6-7
obtaining, 6-7
producing, 6-8

parameterized, 6-15
SourceDefinition for, 6-6
specifying value of an Assignment, 6-18
subtype

definition, 6-5
obtaining, 6-5

type
definition, 6-4
obtaining, 6-5

SourceDefinition, 6-6
SourceGenerator class, 11-3

example of implementation, 11-8
span of a value in a Cursor

definition, 9-15, 10-15
SpecifiedCursorManager objects

closing, 9-9
creating, example of, 7-13
returned by the createCursorManager

method, 9-9
SQL

custom dimension members not available to, 2-13
getting generated, 9-1
group functions, 5-10
Model clause, 6-17, 6-18

SQLCursorManager class, 1-9
star schema, 1-2
String OLAP API data type, 2-14
StringParameter objects

example of, 6-16, 7-13
subschemas

description, 4-3
getting contents, 4-5

subtype of an Source object
definition, 6-5
obtaining, 6-5

T
table view

navigating Cursor for, example, 10-7
Template class, 11-3

designing, 11-4
example of implementation, 11-5

Template objects
classes used to create, 11-2
for creating modifiable Source objects, 11-1
relationship of classes producing a dynamic

Source, 11-3
Transaction objects used in, 8-3

time series, selecting based on, 7-22
times method, example of, 7-19
TopBottomTemplate class, 8-5, 8-8, 11-5
Transaction objects

child read and write, 8-2
committing, 8-2
creating a Cursor in the current, 9-3
current, 8-1
custom metadata objects existing in, 2-17
example of using child, 8-8
getting the current, 8-7
preparing, 8-2
read, 8-2
rolling back, 8-5
setting the current, 8-7
using in Template classes, 8-3
write, 8-2

TransactionProvider interface, 8-7
TransactionProvider objects

creating, 3-3
tuple

definition, 2-10
in a Cursor, example, 10-6
specifying a measure value, 9-12

type of an MDM object
definition, 2-16
obtaining, 2-17

type of an Source object
definition, 6-4
obtaining, 6-5

U
unique dimension value, 1-6

Index-8

unsolved cubes, 5-7
aggregating data for, 5-7

unsolved hierarchies, 5-7

V
value hierarchy, 2-2, 5-7
value method, 6-6

description, 7-2
example of, 7-10, 7-16, 7-20

Value OLAP API data type, 2-15
value separation string, 1-6
ValueCursor objects

getting from a parent CompoundCursor,
example, 10-4

getting values from, example, 10-3
position, 9-11

virtual Cursor
definition, 9-18

Void OLAP API data type, 2-15
void Source objects

definition, 6-2

W
write Transaction object, 8-2

X
xmlparserv2.jar file, A-1

	Contents
	List of Examples
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New
	Introducing Custom Dimension Members
	Introducing the OLAP API Model
	Introducing DataProvider Language Specification and Other Properties
	New OLAP API Classes
	New Methods of Existing Classes
	New and Revised Example Programs

	1 Introduction to the OLAP API
	OLAP API Overview
	Multidimensional Concepts and the OLAP API
	What Type of Data Can an Application Access Through the OLAP API?
	What Can an Application Do with the OLAP API?
	Context for OLAP API Development

	Sample Schema for OLAP API Examples
	Access to Data and Metadata Through the OLAP API
	MDM Model in the OLAP API
	Access to Data Through the OLAP API
	Unique and Local Dimension Values
	User Connection Requirements

	OLAP API Client Software
	Requirements for Using the OLAP API Client Software

	Tasks That an OLAP API Application Performs
	Task 1: Connect to the Data Store
	Task 2: Discover the Available Metadata
	Task 3: Select and Calculate Data Through Queries
	Task 4: Retrieve Query Results

	2 Understanding OLAP API Metadata
	Overview of the OLAP API Metadata
	Data Preparation
	Metadata Preparation

	OLAP Metadata Objects
	Dimensions in the OLAP Metadata
	Measures in the OLAP Metadata
	Measure Folders in the OLAP Metadata

	Overview of MDM Metadata Objects in the OLAP API
	Mapping of OLAP Metadata Objects to MDM objects
	MdmModel Class
	MdmSchema Class
	MdmSource Class

	MdmDimension Classes
	MdmPrimaryDimension Classes
	MdmSubDimension Classes

	MdmDimensionedObject Classes
	MdmMeasure
	MdmAttribute Class

	MdmMember Classes
	Data Type and Type of MDM Metadata Objects
	Data Type of MDM Metadata Objects
	Getting the Data Type of an MdmSource
	Type of MDM Metadata Objects
	Getting the Type of an MdmSource

	Creating Custom Metadata Objects

	3 Connecting to a Data Store
	Overview of the Connection Process
	Connection Steps
	Prerequisites for Connecting

	Establishing a Connection
	Step 1: Load the JDBC Driver
	Step 2: Get a Connection from the DriverManager
	Step 3: Create a TransactionProvider
	Step 4: Create a DataProvider

	Getting an Existing Connection
	Executing DML Commands Through the Connection
	Closing a Connection

	4 Discovering the Available Metadata
	Overview of the Procedure for Discovering Metadata
	MDM Metadata
	Purpose of Discovering the Metadata
	Steps in Discovering the Metadata
	Discovering Metadata and Making Queries

	Creating an MdmMetadataProvider
	Getting the Root MdmSchema
	Function of the Root MdmSchema
	Calling the getRootSchema Method

	Getting the Contents of the Root MdmSchema
	Getting the MdmDimension Objects in an MdmSchema
	Getting the Subschemas in an MdmSchema
	Getting the Contents of Subschemas
	Getting the MdmMeasureDimension and Its Contents

	Getting the Characteristics of Metadata Objects
	Getting the MdmDimension Objects for an MdmMeasure
	Getting the Related Objects for an MdmPrimaryDimension

	Getting the Source for a Metadata Object
	Sample Code for Discovering Metadata
	Code for the SampleMetadataDiscoverer10g Program
	Output from the SampleMetadataDiscoverer10g Program

	5 Working with Metadata Mapping Objects
	Overview of the MTM Classes
	SELECT Statements for MdmSource Objects
	Purpose of MTM Objects
	Measures, Cubes, and Hierarchies

	Discovering the Columns Mapped To an MdmSource
	Example of Getting the Columns Mapped To an MdmLevelHierarchy
	Example of Getting the Columns Mapped To an MdmLevel
	Example of Getting the Columns Mapped To an MdmMeasure

	Creating a Custom Measure
	Understanding Solved and Unsolved Data
	Solved Versus Unsolved Cubes and Hierarchies
	Aggregation Forms for Cubes
	Solve Specifications for Unsolved Cubes

	6 Understanding Source Objects
	Overview of Source Objects
	Kinds of Source Objects
	Characteristics of Source Objects
	Data Type of a Source
	Type of a Source
	Source Identification and SourceDefinition of a Source

	Inputs and Outputs of a Source
	Inputs of a Source
	Outputs of a Source
	Matching a Source To an Input

	Describing Parameterized Source Objects
	Model Objects and Source Objects
	Describing the Model for a Source
	Creating a CustomModel - Example
	Dependent Assignment Values - Example
	A Custom Member That Specifies an Aggregated Value - Example

	7 Making Queries Using Source Methods
	Describing the Basic Source Methods
	Using the Basic Methods
	Using the alias Method
	Using the distinct Method
	Using the join Method
	Using the position Method
	Using the recursiveJoin Method
	Using the value Method

	Using Other Source Methods
	Using the extract Method
	Creating a Cube and Pivoting Edges
	Drilling Up and Down in a Hierarchy
	Sorting Hierarchically by Measure Values
	Using NumberSource Methods To Compute the Share of Units Sold
	Ranking Dimension Elements by Measure Value
	Selecting Based on Time Series Operations
	Selecting a Set of Elements Using Parameterized Source Objects

	8 Using a TransactionProvider
	About Creating a Query in a Transaction
	Types of Transaction Objects
	Preparing and Committing a Transaction
	About Transaction and Template Objects
	Beginning a Child Transaction
	About Rolling Back a Transaction
	Getting and Setting the Current Transaction

	Using TransactionProvider Objects

	9 Understanding Cursor Classes and Concepts
	Overview of the OLAP API Cursor Objects
	Creating a Cursor Using a CursorManagerSpecification
	Creating a Cursor Without a CursorManagerSpecification
	Sources For Which You Cannot Create a Cursor
	Cursor Objects and Transaction Objects

	Cursor Classes
	Structure of a Cursor
	Specifying the Behavior of a Cursor

	CursorManagerSpecification Class
	CursorInfoSpecification Classes
	CursorManager Classes
	Updating the CursorManagerSpecification for a CursorManager

	Other Classes
	CursorInput Class
	CursorManagerUpdateListener Class
	CursorManagerUpdateEvent Class

	About Cursor Positions and Extent
	Positions of a ValueCursor
	Positions of a CompoundCursor
	About the Parent Starting and Ending Positions in a Cursor
	What is the Extent of a Cursor?

	About Fetch Sizes

	10 Retrieving Query Results
	Retrieving the Results of a Query
	Getting Values from a Cursor

	Navigating a CompoundCursor for Different Displays of Data
	Specifying the Behavior of a Cursor
	Calculating Extent and Starting and Ending Positions of a Value
	Specifying a Fetch Size

	11 Creating Dynamic Queries
	About Template Objects
	About Creating a Dynamic Source
	About Translating User Interface Elements into OLAP API Objects

	Overview of Template and Related Classes
	What Is the Relationship Between the Classes That Produce a Dynamic Source?
	Template Class
	MetadataState Interface
	SourceGenerator Interface
	DynamicDefinition Class

	Designing and Implementing a Template
	Implementing the Classes for a Template
	Implementing an Application That Uses Templates

	A Setting Up the Development Environment
	Overview
	Required Class Libraries
	Obtaining the Class Libraries

	B B SingleSelectionTemplate Class
	Code for the SingleSelectionTemplate Class

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

