
Oracle® HTML DB
User’s Guide

Release 1.5

Part No. B10992-01

December 2003

Oracle HTML DB User’s Guide, Release 1.5

Part No. B10992-01

Copyright © 2003 Oracle Corporation. All rights reserved.

Primary Author: Terri Winters

Contributor: Christina Cho, Michael Hichwa, Joel Kallman, Sergio Leunissen, Raj Mattamal, Tyler
Muth, Marc Sewtz, Scott Spadafore, and Jason Straub

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, PL/SQL, and SQL*Plus are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xix

Preface.. xxi

Intended Audience .. xxi
Organization... xxi
Related Documentation .. xxiv
Conventions.. xxiv
Documentation Accessibility .. xxvii

Part I Getting Started with Oracle HTML DB

1 What is Oracle HTML DB?

About Oracle HTML DB ... 1-1
About Application Builder ... 1-2
About SQL Workshop.. 1-2
About Data Workshop ... 1-3

2 Quick Start

Understanding Oracle HTML DB User Roles... 2-1
Logging in to Oracle HTML DB .. 2-2

Requesting a Workspace ... 2-2
Logging in to a Workspace.. 2-3
Resetting Your Password .. 2-3
Logging Out of Your Workspace ... 2-4

iv

About Oracle HTML DB User Interface ... 2-4
About Using the Tasks List ... 2-5
Other Sources of Information.. 2-5

Creating an Application Using the Create Application Wizard .. 2-6
Running Your Application .. 2-8

3 Running a Demonstration Application

Viewing and Installing a Demonstration Application .. 3-1
Running a Demonstration Application .. 3-2

Running an Application from Demonstration Applications.. 3-2
Running an Application from Application Builder... 3-3

Understanding Sample Application ... 3-4
About the Home Page .. 3-5
About the Orders Page... 3-5
About the Products Page ... 3-6
About the Customers Page.. 3-6
Viewing Pages in Printer Friendly Mode.. 3-6

Modifying a Demonstration Application .. 3-6
About the Developer Toolbar ... 3-7
Editing a Demonstration Application.. 3-7

Viewing Underlying Database Objects .. 3-9

Part II Using Oracle HTML DB

4 Managing Data with Data Workshop

About Data Workshop ... 4-1
Importing Data .. 4-2

Importing a Text File .. 4-2
Importing an XML Document .. 4-3
Importing Spreadsheet Data ... 4-3

Exporting Data ... 4-3
Exporting to a Text File .. 4-4
Exporting to an XML Document .. 4-4

v

5 Using SQL Workshop to Manage Database Objects

About SQL Workshop.. 5-1
About Transaction Support... 5-2
About Support for SQL*Plus Commands .. 5-2

Viewing Database Objects .. 5-3
Using the SQL Command Processor ... 5-3

About Command Termination.. 5-4
Using Explain Plan.. 5-4

Browsing Database Objects ... 5-4
Querying by Example ... 5-5

Viewing Database Objects by Object Type ... 5-5
Managing Database Objects... 5-5

Browsing Database Objects ... 5-6
Creating Database Objects... 5-6
Dropping Database Objects .. 5-7
Restoring Dropped Database Objects.. 5-7
Using the SQL Script Repository.. 5-8

Managing Script Files in the SQL Script Repository .. 5-8
Uploading and Creating Script Files .. 5-10
Using Parameters in a Script.. 5-10
Including SQL Queries in a Script .. 5-11
Exporting a Script File .. 5-11

Accessing Saved Commands in the SQL Archive ... 5-11
Accessing the SQL Command History.. 5-12
Generating DDL.. 5-12
Managing Control Files ... 5-13

Viewing the Control File Run History ... 5-14
Viewing Control File Job Status .. 5-14

Managing Tables... 5-15
Managing User Interface Defaults .. 5-15

Managing Tables Using UI Defaults.. 5-16
Applying UI Defaults to a Table or View ... 5-17
Exporting UI Defaults .. 5-18

Browsing the Data Dictionary.. 5-18

vi

6 Application Builder Concepts

About Page Rendering and Page Processing ... 6-1
What is a Page? ... 6-2
How Application Builder Uses Templates.. 6-5

Page Templates .. 6-5
Region Templates .. 6-6
List Templates .. 6-6
Report Templates... 6-6
Label Templates ... 6-6
Menu Templates .. 6-6
Popup List of Values Templates.. 6-6

How Page Processing and Page Rendering Work... 6-6
Understanding Shared Components ... 6-7

About Standard Tabs and Parent Tabs... 6-7
About Navigation Bars ... 6-8
About List of Values.. 6-8
About Menus.. 6-8
About Lists.. 6-8
About Templates ... 6-9

Understanding Conditional Rendering and Processing .. 6-9
Current Page In Expression 1 .. 6-10
Exists.. 6-10
PLSQL Expression ... 6-10

Using Build Options to Control Configuration.. 6-11
Creating Build Options... 6-11
Viewing Build Option Reports .. 6-11

Verifying User Identity .. 6-12
Controlling Access to Components.. 6-12

Understanding Session State Management ... 6-12
Understanding Session IDs ... 6-13
Viewing Session State... 6-13

Managing Session State Values ... 6-14
Referencing Session State .. 6-15
Setting Session State ... 6-15
Clearing Session State .. 6-16

vii

Clearing Cache by Item .. 6-16
Clearing Cache by Page.. 6-16
Clearing Cache for an Entire Application.. 6-18
Clearing Cache for the Current User Session.. 6-18

About Bind Variables... 6-18
Using Bind Variables in Regions Based on a SQL Query or LOV 6-19
Using Bind Variables in PL/SQL Procedures ... 6-19

Understanding URL Syntax .. 6-19
Using f?p Syntax to Link Pages .. 6-20
Calling a Page Using an Application and Page Alias ... 6-22
Calling a Page from a Button URL... 6-22

Using Substitution Strings ... 6-22
Built-in Substitution Strings.. 6-23

APP_SESSION ... 6-24
APP_USER.. 6-25
IMAGE_PREFIX .. 6-25
WORKSPACE_IMAGES .. 6-26
APP_IMAGES .. 6-26
BROWSER_LANGUAGE... 6-27
PRINTER_FRIENDLY .. 6-27
HOME_LINK ... 6-28
PROXY SERVER .. 6-28
REQUEST ... 6-28
SYSDATE_YYYYMMDD ... 6-30
DEBUG.. 6-30
APP_ID ... 6-31
APP_PAGE_ID .. 6-31
APP SCHEMA OWNER .. 6-32
SQLERRM... 6-32
AUTHENTICATED_URL_PREFIX .. 6-32
LOGOUT_URL .. 6-33
PUBLIC_URL_PREFIX ... 6-33
CURRENT_PARENT_TAB_TEXT.. 6-34
APP_ALIAS.. 6-34
APP_UNIQUE_PAGE_ID .. 6-35

viii

7 Using Application Builder

Understanding the Definition of a Page .. 7-2
Accessing Application Builder ... 7-2

About the Available Applications List ... 7-2
About the Edit Page List... 7-3
About the Application Navigation Pane.. 7-4

Viewing a Page Definition... 7-5
Using the Page Navigation Pane... 7-7

Viewing Page Reports .. 7-7
About All Conditions.. 7-8
About Event View ... 7-8
About History .. 7-9
About Page Detail.. 7-9
About Related Pages ... 7-9
About Summary of All Pages .. 7-9
About Tree View.. 7-10

Using the Developer Toolbar .. 7-10
Creating an Application .. 7-11

Creating a New Application ... 7-11
Deleting an Application... 7-12

Creating a New Page Using a Wizard ... 7-13
About SVG Charting Support .. 7-13
Creating a Page While Viewing the Page Definition... 7-14
Creating a Page from the Developer Toolbar ... 7-14
Creating a Page Using a Wizard... 7-14
Deleting a Page.. 7-15

Working with Templates ... 7-16
Viewing Existing Templates ... 7-16

About Cascading Style Sheets ... 7-16
Creating Custom Templates.. 7-17
Editing Templates... 7-17

Editing Page Templates .. 7-18
Editing Region Templates .. 7-23
Editing Report Templates... 7-24
Editing List Templates .. 7-26

ix

Editing Label Templates... 7-27
Editing Menu Templates .. 7-27
Editing Button Templates .. 7-28
Editing Popup LOV Templates ... 7-28

Viewing Application Attributes .. 7-28
Editing Application Attributes .. 7-29

About Application Definition... 7-30
About Authorization.. 7-32
About Session Management ... 7-33
About User Interface Templates... 7-34
About Template Defaults .. 7-35
About Globalization ... 7-35
About Application Availability .. 7-36
About Global Notifications ... 7-36
About Virtual Private Database (VPD) ... 7-36
About Static Substitution Strings ... 7-36
About Build Options .. 7-37
About Application Comments.. 7-37

Viewing Page Attributes ... 7-37
Editing a Page Definition.. 7-38

Managing Page Rendering Components .. 7-39
About Page ... 7-39
About Regions ... 7-39
About Buttons .. 7-42
About Items.. 7-43
About Page Computations... 7-49
About Page Processes ... 7-50

About Page Processing Components... 7-50
About Validations ... 7-51
About Branching ... 7-51

Editing Page Attributes ... 7-52
About Primary Page Attributes... 7-53
About HTML Header ... 7-54
About Page Header, Footer and Text Attributes .. 7-54
About On Load JavaScript ... 7-55

x

About Security ... 7-55
About Duplicate Page Submission Checks.. 7-56
About Configuration Management .. 7-56
About On Error Text ... 7-56
About Page Help Text... 7-56
About Comments... 7-57

Running a Page.. 7-57

8 Building Application Components

Displaying Components on Every Page ... 8-1
Adding Navigation ... 8-2

Creating Tab Sets .. 8-2
About Template Support.. 8-3
Using Tab Manager to Manage Tab Information ... 8-3
About the Standard Tab Tasks List... 8-4

Creating a Navigation Bar ... 8-4
Creating a Navigation Bar Entry... 8-5

Creating Menus... 8-7
Creating a Menu .. 8-7
Creating a Menu Template... 8-8
Adding a Menu to a Page... 8-9
About Creating a Dynamic Menu... 8-9

Creating Trees ... 8-10
Creating Lists... 8-11

Creating a List .. 8-11
Adding a List on a Page.. 8-12
About Creating a List Template .. 8-13

Creating a Branch ... 8-13
Creating Regions ... 8-14

Creating New Regions ... 8-15
Building a Form Using a Region .. 8-16
Building a Report Using a Region.. 8-17
About Regions Based on an URL ... 8-17
About Regions Based on PL/SQL Dynamic Content.. 8-18

Creating Buttons ... 8-19

xi

Using the Create Button Wizard .. 8-19
Creating an HTML Button ... 8-20

Creating Lists of Values ... 8-20
Creating LOVs... 8-21

Referencing Session State within a LOV.. 8-21
Inline Static LOV.. 8-21
Popup LOV... 8-22

Creating Forms .. 8-22
Using a Wizard to Build a Form... 8-23
Creating a Form Manually .. 8-23
Processing a Form... 8-24

Creating an Automatic Row Processing Process .. 8-24
Creating a Process Containing One or More Insert Statements 8-25
Using a PL/SQL API to Process Form Values .. 8-26
Populating Forms .. 8-26

Validating User Input in Forms.. 8-27
Creating Reports ... 8-28

Using a Wizard to Create a Report .. 8-28
Managing Report Attributes ... 8-29

Accessing Report Attributes .. 8-30
Enabling Column Sorting... 8-31
Exporting a Report .. 8-31
Creating a Column link .. 8-32
Defining Updatable Columns.. 8-33
Defining a Column as a List of Values ... 8-33
Controlling When Columns Display.. 8-34
Controlling Column Breaks ... 8-34

Creating a Report with Pagination .. 8-35
Creating Charts.. 8-35
Creating Calendars ... 8-36
Specifying Layout and User Interface .. 8-36

Creating a Multiple Column Layout ... 8-37
Creating Regions in Multiple Columns ... 8-37
Creating a Multiple Column Page Template... 8-38

Using a LOV to Drive Another LOV ... 8-38

xii

Specifying Print Preview Mode.. 8-39
Setting a Print Mode Template for an Application... 8-39
Using f?p Syntax to Toggle to Print Mode... 8-40

Utilizing Shortcuts .. 8-40
Defining Shortcuts... 8-40

Creating a Help Page .. 8-41
Creating a Help Page and Region .. 8-41
Defining Help Text ... 8-42
Creating a Help Navigation Bar Icon... 8-43

Sending E-mail from an Application .. 8-43

9 Debugging an Application

About Tuning Performance ... 9-1
Remembering to Review Session State .. 9-2
Accessing Debug Mode ... 9-2
Enabling SQL Tracing and Using TKPROF... 9-3
Monitoring Application and Page Resource Use ... 9-3
Viewing Page Reports .. 9-3
Debugging Problematic SQL Queries .. 9-4
Removing Components to Isolate a Problem .. 9-5

10 Managing an Application

Accessing Application Builder Utilities ... 10-1
Viewing Application Summary and Utilization Reports ... 10-2

Exporting and Importing Applications .. 10-2
How Exporting an Application Works.. 10-3
About Managing Database Objects.. 10-3
Exporting an Application and Related Files ... 10-4

Exporting Related Application Files... 10-5
Importing Exported Application Files... 10-6
Installing Files from the View Export Repository.. 10-6

Uploading CSS, Images, and Static Files ... 10-8
Understanding Security ... 10-8

Using the Security Navigation Pane .. 10-9
Establishing User Identity Through Authentication ... 10-9

xiii

Understanding How Authentication Works .. 10-9
Creating an Authentication Scheme .. 10-10
Using the Authentication Scheme Repository ... 10-11
Viewing the Current Authentication Scheme for an Application 10-12
About Preconfigured Authentication Schemes.. 10-12

About DAD Credentials Verification ... 10-13
About HTML DB Account Credentials.. 10-14
About LDAP Credentials Verification ... 10-14
About Single Sign-On Server Verification ... 10-14

About Creating an Authentication Scheme from Scratch .. 10-15
About Session Management Security... 10-15
Building a Login Page... 10-16
About Deep Linking ... 10-16

Providing Security Through Authorization .. 10-17
How Authorization Schemes Work... 10-17
Creating an Authorization Scheme.. 10-17

About the Evaluation Point Attribute .. 10-18
About Resetting Authorization Scheme State... 10-18

Attaching an Authorization Scheme to an Application, Page, or Component 10-19
Viewing the Authorization Scheme Utilization Report .. 10-20

11 Managing Your Development Workspace

Understanding Administrator Roles... 11-1
Managing Users .. 11-2

Creating New User Accounts ... 11-2
Editing Existing User Accounts.. 11-3
Changing Your Password ... 11-3

Monitoring Users .. 11-4
Administering Session State and User Preferences ... 11-4

Managing Session State and User Preferences for the Current Session 11-5
Managing Recent Sessions .. 11-5

Viewing Workspace Reports... 11-6
Monitoring Developer Activity ... 11-6
Managing Log Files .. 11-7
Managing Development Services.. 11-8

xiv

Viewing Current Workspace Status... 11-8
Requesting a Database Schema... 11-8
Requesting Additional Storage... 11-9
Requesting Service Termination... 11-9

12 Advanced Programming Techniques

Accessing Data with Database Links .. 12-1
Using Collections .. 12-2

Using the HTMLDB_COLLECTION API ... 12-2
About Collection Naming .. 12-3
Creating a Collection... 12-3
Truncating a Collection .. 12-4
Deleting a Collection ... 12-4
Adding Members to a Collection .. 12-4
Updating Collection Members .. 12-6
Deleting a Collection Member ... 12-6
Determining Collection Status... 12-7
Merging Collections .. 12-8
Managing Collections ... 12-9
Clearing Collection Session State .. 12-10

Running Background PL/SQL.. 12-10
Understanding the HTMLDB_PLSQL_JOB Package .. 12-11
About System Status Updates... 12-13
Using a Process to Implement Background PL/SQL.. 12-13

Implementing Web Services ... 12-15
Creating a Web Service .. 12-15
Invoking a Web Service as a Process ... 12-17

Managing User Preferences .. 12-18
Viewing User Preferences.. 12-18
Setting User Preferences .. 12-18

Setting User Preferences Using a Page Process... 12-19
Setting the Source of an Item Based on a User Preference .. 12-19
Setting User Preferences Programatically.. 12-20

Resetting User Preferences Manually .. 12-20
Resetting Preferences Using a Page Process ... 12-21

xv

13 Oracle HTML DB APIs

HTMLDB_UTIL .. 13-1
CLEAR_APP_CACHE Procedure.. 13-2
CLEAR_USER_CACHE Procedure ... 13-3
COUNT_CLICK Procedure... 13-3
GET_FILE Procedure ... 13-4
GET_NUMERIC_SESSION_STATE Function.. 13-5
GET_PREFERENCE Function .. 13-6
GET_SESSION_STATE Function ... 13-6
PUBLIC_CHECK_AUTHORIZATION Function .. 13-7
REMOVE_PREFERENCE Procedure... 13-8
REMOVE_SORT_PREFERENCES Procedure .. 13-8
RESET_AUTHORIZATIONS Procedure .. 13-9
SET_PREFERENCE Procedure ... 13-9
SET_SESSION_STATE Procedure.. 13-10
STRING_TO_TABLE Function... 13-11
TABLE_TO_STRING Function... 13-12
URL_ENCODE Function... 13-13

HTMLDB_ITEM ... 13-13
CHECKBOX Function.. 13-14
DATE_POPUP Function.. 13-16
HIDDEN Function.. 13-18
MD5_CHECKSUM Function .. 13-19
MD5_HIDDEN Function... 13-20
MULTI_ROW_UPDATE Procedure .. 13-21
SELECT_LIST Function ... 13-22
SELECT_LIST_FROM_LOV Function ... 13-23
SELECT_LIST_FROM_LOV_XL Function.. 13-24
SELECT_LIST_FROM_QUERY Function ... 13-26
SELECT_LIST_FROM_QUERY_XL Function .. 13-27
TEXT Function .. 13-28
TEXT_FROM_LOV Function .. 13-30
RADIOGROUP Function... 13-30
POPUP_FROM_LOV Function... 13-32
POPUP_FROM_QUERY Function ... 13-34

xvi

POPUPKEY_FROM_LOV Function... 13-36
POPUPKEY_FROM_QUERY Function ... 13-37

HTMLDB_APPLICATION.. 13-40
Referencing Arrays... 13-40
Referencing Values Within an On Submit Process .. 13-41
Converting an Array to a Single Value.. 13-41

HTMLDB_CUSTOM_AUTH ... 13-42
APPLICATION_PAGE_ITEM_EXISTS Function .. 13-42
CURRENT_PAGE_IS_PUBLIC Function .. 13-43
DEFINE_USER_SESSION Procedure .. 13-43
GET_NEXT_SESSION_ID Function... 13-43
GET_SECURITY_GROUP_ID Function .. 13-43
GET_SESSION_ID Function.. 13-44
GET_USER Function .. 13-44
SESSION_ID_EXISTS Function .. 13-44
SET_USER Procedure... 13-44
SET_SESSION_ID Procedure .. 13-45
SET_SESSION_ID_TO_NEXT_VALUE Procedure.. 13-45

Part III Administration

14 Administering Workspaces

About the Oracle HTML DB Administrator.. 14-1
Viewing Workspace Reports .. 14-2
Creating a Workspace ... 14-3

Specifying a Provisioning Mode... 14-3
Managing a Service and Change Request ... 14-4

Viewing a Pending Service or Change Request .. 14-4
Approving a Service or Change Request ... 14-5

Creating a Workspace Without a Request .. 14-6
Managing Users in a Workspace .. 14-6
Managing the Schemas Associated with a Workspace .. 14-8
Removing a Workspace.. 14-8
Exporting and Importing a Workspace ... 14-9

xvii

15 Managing Services

Managing Logs .. 15-1
Deleting Developer Activity Log Entries .. 15-2
Deleting Click Counting Log Entries... 15-2
Deleting SQL Workshop Logs .. 15-2
Deleting User Activity Log Entries .. 15-3

Managing Session State... 15-3
Purging Sessions by Age ... 15-4
Viewing Session Details Before Purging ... 15-4
Viewing Session Statistics Before Purging.. 15-5

Monitoring Activities... 15-5
Managing Engine Settings .. 15-5

16 Managing Globalization

About Translating an Application and Globalization Support... 16-1
About Language Identification... 16-2
How Translated Applications Are Rendered .. 16-2
About Translatable Components ... 16-2

About Messages... 16-2
About Dynamic Translation Text Strings .. 16-3
About Translating Templates .. 16-3

Specifying the Primary Language for an Application .. 16-4
Using Format Masks for Items ... 16-5
Translating Applications for Multibyte Languages ... 16-5

Understanding the Translation Process.. 16-6
Navigating to the Translate Application Page ... 16-6
Mapping Primary and Target Application IDs.. 16-6
Seeding and Exporting Text to a Translation File.. 16-7

Seeding Translatable Text .. 16-7
Exporting Text to a Translation File ... 16-8

Translating the XLIFF File ... 16-9
Uploading and Publishing a Translated XLIFF Document.. 16-10

Translating Messages Used in PL/SQL Procedures ... 16-12
Defining Translatable Messages... 16-12
HTMLDB_LANG.MESSAGE API.. 16-12

xviii

Translating Data that Supports List of Values... 16-14
Defining a Dynamic Translation .. 16-14
HTMLDB_LANG.LANG API ... 16-15

About Oracle HTML DB Globalization Codes ... 16-16

A Available Conditions

Conditions Available in Oracle HTML DB ... A-1

Index

xix

Send Us Your Comments

Oracle HTML DB User's Guide, Release 1.5

Part No. B10992-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
■ Postal service:

Oracle Corporation
Oracle Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) your
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xx

xxi

Preface

Oracle HTML DB User's Guide describes how to use the Oracle HTML DB
development environment to build and deploy database-centric Web applications.
Oracle HTML DB turns a single Oracle database into a shared service by enabling
multiple workgroups to build and access applications as if they were running in
separate databases.

This preface contains these topics:

■ Intended Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

Intended Audience
Oracle HTML DB User's Guide is intended for application developers who are
building database-centric Web applications using Oracle HTML DB. The guide
describes how to use the Oracle HTML DB development environment to build,
debug, manage, and deploy applications. To use this guide, you need to have a
general understanding of relational database concepts as well as an understanding
of the operating system environment under which you are running Oracle HTML
DB.

Organization
This document contains:

xxii

Part I, "Getting Started with Oracle HTML DB"
Part I provides an introduction to Oracle HTML DB by introducing you to basic
Oracle HTML DB concepts.

Chapter 1, "What is Oracle HTML DB?"
This chapter offers a general description of Oracle HTML DB and the components
you can use it to develop database-centric Web applications.

Chapter 2, "Quick Start"
This chapter offers a quick introduction to using Oracle HTML DB.

Chapter 3, "Running a Demonstration Application"
This chapter describes how to run a demonstration application and defines
fundamental concepts that are unique to Oracle HTML DB.

Part II, "Using Oracle HTML DB"
Part II describes how to use Data Workshop, SQL Workshop, and Application
Builder to develop database-driven applications.

Chapter 4, "Managing Data with Data Workshop"
This chapter describes how to use Data Workshop to import data into and export
data from a hosted database.

Chapter 5, "Using SQL Workshop to Manage Database Objects"
This chapter provides information on how to use SQL Workshop to view and
manage database objects as well as browse the data dictionary.

Chapter 6, "Application Builder Concepts"
This chapter provides basic conceptual information about Application Builder.

Chapter 7, "Using Application Builder"
This chapter describes how to use Application Builder to build the pages that
comprise an application.

xxiii

Chapter 8, "Building Application Components"
This chapter describes how to build application components in Oracle HTML DB,
including navigation, regions, buttons, Lists of Values, forms, reports, charts, and
help pages.

Chapter 9, "Debugging an Application"
This chapter describes a number of approaches to debugging your application
including viewing Debug Mode, enabling SQL tracing, viewing page reports, and
how to manually remove a component to isolate a problem.

Chapter 10, "Managing an Application"
This chapter provides information about Application Builder utilities, how to
export and import an application, and how to manage application security.

Chapter 11, "Managing Your Development Workspace"
This chapter describes the tools and reports available to Workspace administrators.

Chapter 12, "Advanced Programming Techniques"
This chapter provides information about advanced programming techniques
including establishing database links, using collections, running background SQL,
utilizing Web Services and managing user preferences.

Chapter 13, "Oracle HTML DB APIs"
This chapter describes available Oracle HTML DB APIs.

Part III, "Administration"
Part III describes the tasks associated with administering Oracle HTML DB,
including creating and managing workspaces, translating an application, and
managing activities, log files, and sessions.

Chapter 14, "Administering Workspaces"
This chapter describes tasks an Oracle HTML DB administrator performs when
administering workspaces.

Chapter 15, "Managing Services"
This chapter provides information about additional administrator activities
available in Oracle HTML DB, including sending e-mail, monitoring user activity,
managing log files, and managing sessions.

xxiv

Chapter 16, "Managing Globalization"
This chapter describes how to translate an application created in Oracle HTML DB.

Appendix A, "Available Conditions"
Provides a listing of conditions available in Oracle HTML DB.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Database Concepts

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database Administrator's Guide

■ Oracle Database SQL Reference

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

xxv

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

xxvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

xxvii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxviii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.

Part I
Getting Started with Oracle HTML DB

Part I provides an introduction to Oracle HTML DB. These chapters introduce you
to basic Oracle HTML DB concepts.

Part I contains the following chapters:

■ Chapter 1, "What is Oracle HTML DB?"

■ Chapter 2, "Quick Start"

■ Chapter 3, "Running a Demonstration Application"

What is Oracle HTML DB? 1-1

1
What is Oracle HTML DB?

The section offers a general description of Oracle HTML DB and the components
you can use to develop database-centric Web applications.

This section contains the following topics:

■ About Oracle HTML DB

■ About Application Builder

■ About SQL Workshop

■ About Data Workshop

About Oracle HTML DB
Oracle HTML DB is a hosted declarative development environment for developing
and deploying database-centric Web applications. Oracle HTML DB turns a single
Oracle database into a shared service by enabling multiple workgroups to build and
access applications as if they were running in separate databases. Thanks to built-in
features such as design themes, navigational controls, form handlers, and flexible
reports, Oracle HTML DB accelerates the application development process.

The HTML DB engine renders applications in real time from data stored in database
tables. When you create or extend your application, Oracle HTML DB creates or
modifies metadata stored in database tables. When the application is run, the
HTML DB engine then reads the metadata and displays the application.

Oracle HTML DB automatically maintains session state without requiring any
coding. To provide stateful behavior within an application Oracle HTML DB
transparently manages session state in the database. Application developers can get
and set session state using simple substitutions as well as standard SQL bind
variable syntax.

About Application Builder

1-2 Oracle HTML DB User’s Guide

The Oracle HTML DB development platform consists of the following components:

■ Application Builder

■ SQL Workshop

■ Data Workshop

About Application Builder
You use Application Builder to assemble an HTML interface (or application) on top
of database objects such as tables and procedures. An application is a collection of
database-driven Web pages linked together using tabs, buttons, or hypertext links.
Once you create an application, the HTML DB engine renders the application using
templates and UI elements you specify.

A page is the basic building block of an application. Each page can have buttons
and fields and can include application logic (or processes). You can branch from one
page to the next using conditional navigation, perform calculations, run validations
(such as edit checks), and display reports, forms, and charts.

About SQL Workshop
You use SQL Workshop to view and manage database objects from a Web browser.
Using SQL Workshop you can store and retrieve data, execute SQL commands, and
perform the following tasks:

■ Run SQL commands

■ Upload and run SQL scripts

■ Maintain a history of the executed SQL

■ Create or modify database objects

■ Query data by example

■ Browse the data dictionary

■ Enable database browsing with drill-up and drill-down

See Also:

■ "Application Builder Concepts" on page 6-1

■ "Using Application Builder" on page 7-1

■ "Building Application Components" on page 8-1

About Data Workshop

What is Oracle HTML DB? 1-3

About Data Workshop
You use Data Workshop to import data into and export data from the hosted
database. Supported import formats include text (such as comma or tab delimited
data), XML documents, and spreadsheets. Supported export formats include text
(such as comma or tab delimited data) and XML documents.

For example, you can quickly share data with multiple users by converting a
spreadsheet into a database table using the Spreadsheet Import Wizard. Running
this wizard creates a new table and loads the data without requiring any SQL
knowledge. Once the data is loaded into a database table, you can build a
application on top of it just like you would on any other database table.

See Also: "Using SQL Workshop to Manage Database Objects" on
page 5-1

See Also:

■ "Managing Data with Data Workshop" on page 4-1

■ "Importing Spreadsheet Data" on page 4-3

About Data Workshop

1-4 Oracle HTML DB User’s Guide

Quick Start 2-1

2
Quick Start

This section offers a quick introduction to using Oracle HTML DB. This section
assumes you have already completed the installation process.

This section contains the following topics:

■ Understanding Oracle HTML DB User Roles

■ Logging in to Oracle HTML DB

■ About Oracle HTML DB User Interface

■ Creating an Application Using the Create Application Wizard

Understanding Oracle HTML DB User Roles
In the Oracle HTML DB development environment, users log in to a shared work
area called a workspace. Users are divided into three primary roles:

■ Developer

■ Workspace administrator

■ Oracle HTML DB administrator

A developer can create and edit applications. A Workspace administrator performs
administrator tasks specific to their workspace. An Oracle HTML DB administrator
manages an entire Oracle HTML DB development environment instance.

See Also:

■ "Running a Demonstration Application" on page 3-1

■ "Application Builder Concepts" on page 6-1

■ "Using Application Builder" on page 7-1

Logging in to Oracle HTML DB

2-2 Oracle HTML DB User’s Guide

Logging in to Oracle HTML DB
When you log in to Oracle HTML DB, you log in to a workspace. A workspace is an
area within the Oracle HTML DB development environment where multiple
developers can create applications.

Topics in this section include:

■ Requesting a Workspace

■ Logging in to a Workspace

■ Resetting Your Password

■ Logging Out of Your Workspace

Requesting a Workspace

Before you can log in Oracle HTML DB, you must request a workspace. Each
workspace has a unique ID and name. Only an administrator with the appropriate
credentials can create a new workspace.

See Also:

■ "Application Builder Concepts" on page 6-1

■ "Managing Your Development Workspace" on page 11-1

■ "Administering Workspaces" on page 14-1

Note: Before users can request a workspace or change their
passwords, an Oracle HTML DB administrator must configure the
engine settings.

See Also: "Managing Engine Settings" on page 15-5

Note: This section only applies if your Oracle HTML DB
administrator has configured Oracle HTML DB to support
workspace requests.

See Also: "Specifying a Provisioning Mode" on page 14-3 for
more information on enabling workspace requests

Logging in to Oracle HTML DB

Quick Start 2-3

To request a workspace:

1. In a Web browser, navigate to the Oracle HTML DB Login page. By default,
Oracle HTML DB installs to the following location:

http://server:port/pls/Database Authentication Descriptor/htmldb

The Login page appears.

2. Under Tasks, click Request a Workspace.

The Request Service Wizard appears.

3. Click Continue and follow the on-screen instructions.

Logging in to a Workspace
Once your workspace request has been approved, an Oracle HTML DB
administrator provides you with a workspace name, username, and password.

To log in to Oracle HTML DB:

1. In a Web browser, navigate to the Oracle HTML DB Login page. By default,
Oracle HTML DB installs to the following location:

http://server:port/pls/Database Authentication Descriptor/htmldb

The Login page appears.

2. Under Login, type the following:

■ In Workspace, type the name of your workspace.

■ In Username, type a username.

■ In Password, type a case sensitive password.

3. Click Login.

Resetting Your Password
You can reset your password by clicking the Reset Password link on the Oracle
HTML DB Login page.

To reset your password:

See Also: "Creating a Workspace" on page 14-3

About Oracle HTML DB User Interface

2-4 Oracle HTML DB User’s Guide

1. In a Web browser, navigate to the Oracle HTML DB Login page. By default,
Oracle HTML DB installs to the following location:

http://server:port/pls/Database Authentication Descriptor/htmldb

2. Under Tasks, click Reset Password.

3. Type you workspace name and e-mail address and click Reset Password. A
new password is sent to your e-mail address.

Logging Out of Your Workspace
To logout of Oracle HTML DB, click the Logout icon in the upper right corner of the
window.

About Oracle HTML DB User Interface
Once you log in to Oracle HTML DB, the Oracle HTML DB Home page appears as
shown in Figure 2–1.

Figure 2–1 Oracle HTML DB Home Page

The Oracle HTML DB development environment consists of three components:

About Oracle HTML DB User Interface

Quick Start 2-5

■ Application Builder. Use Application Builder to assemble an HTML interface
(or application) on top of a database objects such as tables and procedures.

■ SQL Workshop. Use SQL Workshop to view and manage database objects from
a Web browser.

■ Data Workshop. Use Data Workshop to import data into and export from the
hosted database.

To access any of these components, click the large icons in the center of the page, or
click the navigation bar icons in upper right corner. Use Administration to access
the Administration Services page.

About Using the Tasks List
Many Oracle HTML DB pages feature a Tasks list on the right side of the page.
Select a list item to quickly link to common procedures.

Other Sources of Information
Most pages in Oracle HTML DB include page level help. Page level help displays in
a text box on the right side of the page and offers a brief description of the page
functionality. Oracle HTML DB also includes two other forms of online help:

■ Procedural online help. You can access an HTML-based online help system by
clicking the Help navigation bar icon.

■ Field level help. Most lists of values, select lists, check boxes, and fields in
Oracle HTML DB include item help. When item help is available, the item label
appears highlighted when you pass your cursor over it. Clicking the item label
displays a a description in a separate window.

See Also:

■ "Application Builder Concepts" on page 6-1

■ "Using Application Builder" on page 7-1

■ "Using SQL Workshop to Manage Database Objects" on
page 5-1

■ "Managing Data with Data Workshop" on page 4-1

■ "Managing Your Development Workspace" on page 11-1

Creating an Application Using the Create Application Wizard

2-6 Oracle HTML DB User’s Guide

Creating an Application Using the Create Application Wizard
A quick way to make data in the Oracle database accessible to an end user is to run
the Create Application Wizard. This wizard creates a basic application which
contains up to five pages and includes:

■ a home page with a menu

■ a searchable report

■ an edit page

■ an insert page

■ a charting page

The Create Application Wizard assumes you have a single table or several unrelated
tables for which you want to create a report or update and insert data. Once the
application is generated, you can modify it using Application Builder.

To create an application using the Create Application Wizard:

1. Log in to Oracle HTML DB as described in "Logging in to Oracle HTML DB" on
page 2-2.

2. Click the Build navigation bar icon in the upper right corner of the window.
(See Figure 2–2.)

Figure 2–2 Build Navigation Bar Icon

Application Builder appears.

3. Click Create Application. (See Figure 2–3.)

Creating an Application Using the Create Application Wizard

Quick Start 2-7

Figure 2–3 Create Application

Create Application Wizard appears.

4. Under Select Creation Method, click Based on Existing Tables and click Next.

Selecting this option creates a complete application based on existing tables you
specify. Selecting the default options results in an application that includes a
menu, breadcrumb menus, report page, form page, and a chart page.

5. Select the tables or views on which your application will be based and click
Next.

Each application is based on a table or view owned by a specific database
schema.

6. Specify an Application Name.

7. If appropriate, select the following options and click Next:

■ Include Breadcrumb Navigation Aids

■ Hide Primary Key in Report Page

8. Confirm your selections and click Finish.

A Confirmation page appears, displaying two icons:

■ Run Application

■ Edit Application

Creating an Application Using the Create Application Wizard

2-8 Oracle HTML DB User’s Guide

Running Your Application
You can run your application by clicking the Run Application icon on the Quick
Application Confirmation page.

To run your application from the Quick Application Confirmation page:

1. Click Run Application.

The Login page appears.

2. Log in to your application by typing your workspace username and password
and clicking Login.

Your application appears. Note the Developer toolbar at the bottom on the page
(See Figure 2–4).

Figure 2–4 Application Builder Developer Toolbar

The Developer toolbar offers a quick way to edit the current page, create a new
page, control, or component, view session state, or toggle edit links on an off.

3. Explore your application.

4. To exit your application and return to Application Builder, click Edit Page on
the Developer toolbar.

As shown in Figure 2–5, the Page Definition appears.

See Also:

■ "Running Your Application" on page 2-8 for more information
on running your application from the Quick Application
Confirmation page

■ "Running a Page" on page 7-57 for information on running an
application from Application Builder

■ "Editing Application Attributes" on page 7-29 for more
information on application attributes

Creating an Application Using the Create Application Wizard

Quick Start 2-9

Figure 2–5 Page Definition

A page is the basic building block of an application. You use the Page Definition
to view, create, and edit the components that define a page.

5. To return to Application Builder home page, select the Application tab.

See Also:

■ "Application Builder Concepts" on page 6-1

■ "Understanding the Definition of a Page" on page 7-2

■ "Using the Developer Toolbar" on page 7-10

Creating an Application Using the Create Application Wizard

2-10 Oracle HTML DB User’s Guide

Running a Demonstration Application 3-1

3
Running a Demonstration Application

This section describes how to run and modify the demonstration applications that
install with Oracle HTML DB. Running and analyzing how these applications work
is an effective way to better understand how you can use Oracle HTML DB to build
your own applications.

 This section contains the following topics:

■ Viewing and Installing a Demonstration Application

■ Running a Demonstration Application

■ Understanding Sample Application

■ Modifying a Demonstration Application

■ Viewing Underlying Database Objects

Viewing and Installing a Demonstration Application
Oracle HTML DB installs with a number of demonstration applications. Use these
applications to learn more about the different types of functionality you can include
in your applications.

To view the demonstration applications included with Oracle HTML DB:

See Also:

■ Chapter 1, "What is Oracle HTML DB?"

■ Chapter 2, "Quick Start"

■ Chapter 6, "Application Builder Concepts"

■ Chapter 7, "Using Application Builder"

Running a Demonstration Application

3-2 Oracle HTML DB User’s Guide

1. Log in to Oracle HTML DB as described in "Logging in to Oracle HTML DB" on
page 2-2.

Oracle HTML DB appears.

2. From the Tasks list on the right side of the page, select Review Demonstration
Applications.

The Demonstration Applications page appears, displaying links to the
following applications:

■ Sample Application offers a working demonstration that highlights basic
design concepts

■ Collection Showcase demonstrates shopping cart concepts

■ Web Services serves an example of how you can use Web Services

■ Presidential Inaugural Addresses demonstrates Oracle Text

The Status column on the Demonstration Applications page indicates whether or
not an application is currently installed.

To re-install a demonstration application:

1. Navigate to the Demonstration Applications page as described in the previous
procedure.

2. Scroll down to the application you wish to install, click Re-install.

3. Follow the on-screen instructions.

Running a Demonstration Application
Oracle HTML DB installs with a number of demonstration applications. Once a
demonstration application has been installed, there are a number of ways to run it.

Running an Application from Demonstration Applications
The simplest way to run a demonstration application is navigate to the
Demonstration Applications page.

To run a demonstration application from the Demonstration Applications page:

See Also: "Implementing Web Services" on page 12-15

Running a Demonstration Application

Running a Demonstration Application 3-3

1. Log in to Oracle HTML DB as described in "Logging in to Oracle HTML DB" on
page 2-2.

Oracle HTML DB appears.

2. From the Tasks list on the right side of the page, select Review Demonstration
Applications.

The Demonstration Applications page appears.

3. Locate the application you wish to run.

4. In the Action column, click Run.

5. Enter your Oracle HTML DB username and password and click Login.

Running an Application from Application Builder
You can also run a demonstration application from Application Builder. Application
Builder is the tool you use to build the pages that comprise an application.

To run a demonstration application from Application Builder:

1. Log in to Oracle HTML DB as described in "Logging in to Oracle HTML DB" on
page 2-2.

Oracle HTML DB appears.

2. Click the Build navigation bar icon in the upper right corner of the window.

Application Builder appears.

3. From the Available Applications list, select the desired demonstration
application and click Go.

4. Click Run. (See Figure 3–1.)

Figure 3–1 Run Icon

5. Enter your Oracle HTML DB username and password and click Login.

Understanding Sample Application

3-4 Oracle HTML DB User’s Guide

Understanding Sample Application
Each demonstration application features a different set of functionality. This section
describes the demonstration application, Sample Application.

As show in Figure 3–2, Sample Application features an easy-to-use interface for
viewing, updating, and searching order and customer information for electronic
and computer products. Users can navigate between the pages using the Home,
Orders, Products, and Customers tabs.

Figure 3–2 Sample Application

Sample Application demonstrates the following functionality:

■ Searching for customers

■ Viewing order and customer details

■ Editing customer and product information

■ Viewing all orders, products, or customers

■ Sorting order, product, and customer information by column heading

■ Creating new orders, products, and customers

Understanding Sample Application

Running a Demonstration Application 3-5

■ Viewing pages in printer friendly mode

The sections that follow describe specific functionality available on each page.

About the Home Page
The Home page contains three distinct sections:

■ Customer search field

■ Tasks list

■ Orders, customers, and products reports

You can search for customers using the Customer Search field. Type a customer
name in the Customer Search field and click Go.

The right side of the Home page features two different report formats and a bar
chart. Note that in the Top Order report you can link to order details by selecting
the Order number. In the Top Customers report you can link to customer details by
selecting the customer name.

The Tasks list consists of a series of links that take you to other pages within the
application. Links available on the Home Page Tasks list include:

■ Enter New Order links to a wizard that walks you through the process of
creating a new order. First you select a customer name and then you add items
to the order

■ Enter New Order links to a form where you can enter new customer
information.

■ About this Application links to an informational page describing this
application.

About the Orders Page
Use the Orders page to search, view, and enter order information. By default, the
right side of the page displays current orders. To search for an order, enter the order
number in the Search for field and click Go. Click a column heading to sort the
information. You view more details about a specific order by clicking the view icon.
(See Figure 3–3.)

See Also: "What is a Page?" on page 6-2

Modifying a Demonstration Application

3-6 Oracle HTML DB User’s Guide

Figure 3–3 View Icon

To enter new orders or view reports that display order revenue by month and
orders by customer, use the Tasks list on the left side of the page.

About the Products Page
Use the Products page to view and edit product information. By default, the right
side of the page displays current products. Click a column heading to sort the
information. You can edit a product description by clicking Edit. To add a new
product or view a chart displaying products by category, use the Tasks list on the
left side of the page.

About the Customers Page
Use the Customers page to view and edit customer information. To search for a
customer, type a customer name in the Search for field and click Go. By default, the
right side of the page displays customer information. Click a column heading to
sort the information. Click Edit to update customer information. To view all
customers or to enter a new customer record, use the Tasks list on the left side of the
page.

Viewing Pages in Printer Friendly Mode
Clicking Print in the upper right corner of the page displays the current page in
Printer Friendly mode. When in Printer Friendly mode, the HTML DB engine
displays all text within HTML from fields as text.

To enable your application to display in Printer Friendly mode, you need to create
and then specify a Print Mode Page Template on the Edit Application Attributes
page.

Modifying a Demonstration Application
Once you understand the type of functionality available in a demonstration
application, the next step is to learn more about how each page is constructed. You

See Also: "Working with Templates" on page 7-16 and "About
User Interface Templates" on page 7-34 for more information on
specifying a Print Mode Page Template

Modifying a Demonstration Application

Running a Demonstration Application 3-7

edit an application using Application Builder. Using Application Builder you can
edit existing pages in an application, add pages to an application, or create entirely
new applications.

About the Developer Toolbar
When you log in to Oracle HTML DB having developer privileges and run an
application, a Developer toolbar displays at the bottom of every page. As shown in
Figure 3–4, the Developer toolbar offers a quick way to edit the currently running
page, create a new page, control, or component, view session state, or turn edit links
on or off.

Figure 3–4 Developer Toolbar in Sample Application

The Developer toolbar consists of the following links:

■ Edit Application links you to the Application Builder home page. (See
"Viewing a Page Definition" on page 7-5.)

■ Edit Page accesses the Page Definition for the currently running page. (See
"Viewing Page Attributes" on page 7-37.)

■ New links to a wizard that enables you to create a new blank page, a
component (report, chart, or form), a page control (region, button, or item), or a
shared component (menu, list, or tab).

■ Session links you to session state information for the current page. (See
"Viewing Session State" on page 6-13.)

■ Debug runs the current page in debug mode. (See "Accessing Debug Mode" on
page 9-2.)

■ Show edit links toggles between Show edit links and Hide edit links. Clicking
Show edit links displays an edit link (resembling four gray dots) to the right of
most page components or controls. By clicking an edit link you can edit the
selected component or control.

Editing a Demonstration Application
There are two common ways to edit a demonstration application:

Modifying a Demonstration Application

3-8 Oracle HTML DB User’s Guide

■ From Demonstration Applications page, click Edit next to the desired
application

■ If you are running an application, click Edit Application on the Developer
toolbar

As shown in Figure 3–5, the Available Applications list displays at the top of the
Application Builder home page. Note that the Available Applications list displays
the current application name.

Figure 3–5 Available Applications List

The current application ID, last update date, authentication scheme, alias, owner,
and selected template display directly beneath the list. You can run an existing
application, create a new application, edit application attributes, or export
information by clicking the following icons:

■ Run submits the pages in the current application to the HTML DB engine to
render viewable HTML beginning on the Home Link identified in the
application attributes.

■ Create Application creates a new application using the Create Application
Wizard.

■ Edit Attributes displays the Edit Application Attributes page.

■ Export/Install links you to the Export Import Wizard.

As shown in Figure 3–6 on page 3-9, the bottom of the Application Builder home
page displays a list of all pages in the currently selected application.

Viewing Underlying Database Objects

Running a Demonstration Application 3-9

Figure 3–6 Page List View

To access a specific page, enter a page ID in the Edit Page field and click Go. To edit
a page, drill down on the page name. Note that application in Figure 3–6 contains
16 pages.

Viewing Underlying Database Objects
The HTML DB engine renders applications in real time based on data stored in
database tables. You can view the database objects for any demonstration
application in SQL Workshop.

To view the database objects used for an application:

1. Click the SQL icon.

You view by schema and type and then by name. Under Data Browser, you can
selecting existing database objects by selecting a database object type.

See Also:

■ "Accessing Application Builder" on page 7-2 for more
information on using the Application Builder home page

■ "Viewing a Page Definition" on page 7-5 for more information
on viewing, creating, and editing the components and controls
that define a page

See Also: "Using SQL Workshop to Manage Database Objects" on
page 5-1

Viewing Underlying Database Objects

3-10 Oracle HTML DB User’s Guide

2. Under Data Browser, select Tables.

3. To create a search:

■ In Schema, select your workspace

■ In Type, select Table

■ In Search, type DEMO

■ Click Go

All tables having names that contain the string DEMO appear.

4. To view table details, click the view icon adjacent to the appropriate table name.

The Object Detail page appears.

5. Optionally, select a task from Tasks list on the right side of the page.

Part II
Using Oracle HTML DB

Part II describes how to use Data Workshop, SQL Workshop, and Application
Builder to develop database-driven applications.

Part II contains the following chapters:

■ Chapter 4, "Managing Data with Data Workshop"

■ Chapter 5, "Using SQL Workshop to Manage Database Objects"

■ Chapter 6, "Application Builder Concepts"

■ Chapter 7, "Using Application Builder"

■ Chapter 8, "Building Application Components"

■ Chapter 9, "Debugging an Application"

■ Chapter 10, "Managing an Application"

■ Chapter 11, "Managing Your Development Workspace"

■ Chapter 12, "Advanced Programming Techniques"

■ Chapter 13, "Oracle HTML DB APIs"

Managing Data with Data Workshop 4-1

4
Managing Data with Data Workshop

This section describes how to use Data Workshop to import data into and export
data from your hosted database.

 This section contains the following topics:

■ About Data Workshop

■ Importing Data

■ Exporting Data

About Data Workshop
Oracle HTML DB renders information stored in a Oracle database to create a
collection of database-driven Web pages called an application. Using Data
Workshop you can import data into and export data from the hosted database.
Supported import formats include:

■ Text such as comma or tab delimited data

■ XML documents

■ Spreadsheets

Supported export formats include:

■ Text such as comma or tab delimited data

■ XML documents

See Also:

■ Chapter 1, "What is Oracle HTML DB?"

■ Chapter 2, "Quick Start"

Importing Data

4-2 Oracle HTML DB User’s Guide

To access Data Workshop:

1. Click the Data icon. (See Figure 4–1.)

Figure 4–1 Data Icon

2. Under Data Import and Data Export, click the appropriate link.

Importing Data
You can use Data Workshop to import text files, XML documents, and data stored in
a spreadsheet into an Oracle database.

Topics in this section include:

■ Importing a Text File

■ Importing an XML Document

■ Importing Spreadsheet Data

Importing a Text File
For files less than 30KB, you can copy and paste tab delimited data directly into the
Import Text Wizard. For files larger than 30KB, you must upload a separate file.

To load a text file:

1. Click the Data icon.

2. Under Data Import, click Import Text Data.

The Import Text Data Wizard appears.

3. Under Import to, select Existing table or New table.

4. Under Import from, select Upload file or Copy and paste.

5. Follow the on-screen instructions.

Exporting Data

Managing Data with Data Workshop 4-3

Importing an XML Document
Data Workshop supports the import of XML documents adhering to the Canonical
XML specification.

To import an XML document:

1. Click the Data icon.

2. Under Data Import, click XML Data.

The XML Import Wizard appears.

3. Follow the on-screen instructions.

Importing Spreadsheet Data
You can load spreadsheet data by either copying and pasting text, or by importing a
file. To copy and paste text, the spreadsheet file must be less than 30KB. For files
larger than 30KB, you can import the file in a delimited format (such as comma
delimited (.csv) or tab delimited), upload the file, and then load the data into a new
or existing table.

To import spreadsheet data:

1. Click the Data icon.

2. Under Data Import, click Import Spreadsheet Data.

The Spreadsheet Data Import Wizard appears.

3. Under Import to, select Existing table or New table.

4. Under Import from, select Copy and paste or Upload file.

5. Follow the on-screen instructions.

Exporting Data
You can also use Data Workshop to export the contents of a table to a text file or
XML document.

Topics in this section include:

■ Exporting to a Text File

■ Exporting to an XML Document

Exporting Data

4-4 Oracle HTML DB User’s Guide

Exporting to a Text File
Use the Text Export Wizard to export the contents of a table to a text file. For
example, you could export an entire table to a comma delimited file (.csv).

To export a table to a text file:

1. Click the Data icon.

2. Under Data Export, click Export Text Data.

The Text Data Export Wizard appears.

3. Follow the on-screen instructions.

You select the schema and choose the table and columns to be exported. You can
also specify the type of separator to be used to separate column values as well as
whether column text strings are identified using single or double quotation marks.

Exporting to an XML Document
Use the XML Export Wizard to export the contents of a table to an XML document
adhering to the Canonical XML specification.

To export a table to an XML document:

1. Click the Data icon.

2. Under Data Import, click XML Export.

The XML Export Wizard appears.

3. Follow the on-screen instructions.

You select the schema and choose the table and columns to be exported.

Using SQL Workshop to Manage Database Objects 5-1

5
Using SQL Workshop to Manage Database

Objects

This section provides information on how to use SQL Workshop to view and
manage database objects as well as browse the data dictionary.

This section contains the following sections:

■ About SQL Workshop

■ Viewing Database Objects

■ Managing Database Objects

■ Managing User Interface Defaults

■ Browsing the Data Dictionary

About SQL Workshop
You can use SQL Workshop to view and manage database objects from a Web
browser. SQL Workshop includes the following navigation tabs:

■ SQL Workshop. Offers quick access to the SQL Command Processor, SQL
Script Repository, and Database Browser. Includes links to the Query By
Example, Generate DDL (data definition language), and Create Table wizards.

■ SQL. Access the SQL Command Processor to run SQL or PL/SQL statements.

■ Scripts. Access the SQL Script Repository and Control Files Repository.

See Also:

■ Chapter 1, "What is Oracle HTML DB?"

■ Chapter 2, "Quick Start"

About SQL Workshop

5-2 Oracle HTML DB User’s Guide

■ Browse. Use the Database Browser to view existing database objects and the
data dictionary.

To access SQL Workshop:

1. Click the SQL icon. (See Figure 5–1).

Figure 5–1 SQL Icon

2. Under SQL Workshop, select the appropriate link, or click the SQL, Scripts, or
Browse tabs at the top of the page.

About Transaction Support
Oracle HTML DB is a browser based development environment which
communicates over HTTP. Because HTTP is a stateless protocol, any command you
issue using SQL Workshop is automatically followed by a database COMMIT. There
is no support for transactions that span multiple pages in the SQL Workshop. For
example, it not possible issue an UPDATE statement on one page in the SQL
Workshop and then revert it on a subsequent page using a ROLLBACK command.

Since the commands COMMIT, ROLLBACK and SAVEPOINT are executed as one
transaction, you can include these commands in SQL Workshop by using scripts

About Support for SQL*Plus Commands
SQL Workshop does not support SQL*Plus commands. If you attempt to enter a
SQL*Plus command in SQL Workshop an error message displays. The following are
examples of unsupported SQL*Plus commands:

SET ECHO OFF
SET ECHO ON
SET VERIFY ON
SET LONG 600

See Also: Using the SQL Script Repository on page 5-8 for
information on running scripts

Viewing Database Objects

Using SQL Workshop to Manage Database Objects 5-3

COLUMN dummy NOPRINT
COLUMN name FORMAT A20
DEFINE
ACCEPT
PROMPT
REMARK
SHOW

Viewing Database Objects
You can use SQL Workshop to view database objects. For example, you can view
details about database objects by querying the Oracle dictionary. You can also run
SQL commands and SQL scripts in the SQL Command Processor or view database
objects in the Database Browser.

Topics in this section include:

■ Using the SQL Command Processor

■ Browsing Database Objects

■ Viewing Database Objects by Object Type

Using the SQL Command Processor
You can use the SQL Command Processor to run SQL commands and SQL scripts
on any Oracle database schema for which you have privileges.

To use the SQL Command Processor:

1. Click the SQL icon and select the SQL tab.

The SQL Command Processor appears.

2. Select a schema from the list and follow the on-screen instructions.

3. To run entered commands, click Run SQL.

4. To save entered commands, click Save.

See Also: "Accessing Saved Commands in the SQL Archive" on
page 5-11 for more information on viewing saved commands and
queries

Viewing Database Objects

5-4 Oracle HTML DB User’s Guide

About Command Termination
You can terminate commands in the Command Processor using either a semicolon
(;) or forward slash (/). Consider the following examples:

INSERT INTO emp
 (50,'John Doe','Developer',10,SYSDATE,1000,10);

INSERT INTO emp
 (50,'John Doe','Developer',10,SYSDATE,1000,10)
/

The first example demonstrates the use of a semicolon (;). The second example
demonstrates the use of forward slash (/).

Using Explain Plan
Use the Explain Plan link to view the plan the Oracle Optimizer uses to run your
SQL Command.

To view the Explain Plan:

1. Click the SQL icon.

2. Select the SQL tab and then Plan.

Explain Plan appears.

3. Enter a command in the field provided and click Explain Plan.

Browsing Database Objects
You can use the Data Browser to view database objects. To find a database object,
select the schema you would like to view. The values available in the schema
depend upon your resource privileges.

To browse database objects:

1. Click the SQL icon and select the Browse tab.

The Data Browser appears.

2. To view details about a specific object, click the view icon.

To search for database objects:

1. Click the SQL icon.

2. Select the Browse tab and then Search Objects.

Managing Database Objects

Using SQL Workshop to Manage Database Objects 5-5

3. Enter search criteria in the fields provided and click Go.

You can search for columns within tables or text within source code by entering a
search string in the Search field and selecting a Search Option at the top of the page.
Searches are case insensitive and no wildcards or quotes are necessary.

Querying by Example
Once you have located a specific table you can query the Oracle data dictionary to
discover more details.

To Query by Example:

1. Click the SQL icon and select the Browse tab.

The Data Browser appears.

2. To view details about a specific object, click the view icon.

The Object Detail appears.

3. Select Query by Example from the Tasks list.

4. Follow the on-screen instructions.

Viewing Database Objects by Object Type
You can also use the Data Browser to view database objects by type.

To view database objects by object type:

1. Click the SQL icon.

2. Under the Data Browser, select an object type.

The Data Browser appears.

3. To view details about a specific object, click the view icon.

4. Follow the on-screen instructions.

Managing Database Objects
You can use SQL Workshop to manage database objects. For example, you can
create new database objects, manage script files and control files, or alter a table.

Topics in this section include:

■ Browsing Database Objects

Managing Database Objects

5-6 Oracle HTML DB User’s Guide

■ Creating Database Objects

■ Dropping Database Objects

■ Restoring Dropped Database Objects

■ Using the SQL Script Repository

■ Accessing Saved Commands in the SQL Archive

■ Accessing the SQL Command History

■ Generating DDL

■ Managing Control Files

■ Managing Tables

Browsing Database Objects
You can use the Data Browser to view existing database objects.

To view or edit existing database objects:

1. Click the SQL icon.

2. s, select the type of database object you would like to view.

3. To search for an object, select a schema, an object type, type a search string in
the Search field, and click Go.

4. To view object details, click the view icon adjacent to the appropriate name.

5. Optionally, select a task from the Tasks list on the right side of the page.

Creating Database Objects
You can create new database objects using the Create Database Object Wizard.

To create new database objects in SQL Workshop:

1. Click the SQL icon.

2. From the Tasks list on the right side of the page, select Create a database object.

The Create Database Object Wizard appears.

3. Follow the on-screen instructions.

Managing Database Objects

Using SQL Workshop to Manage Database Objects 5-7

Dropping Database Objects
You can drop database objects using the Drop Database Object Wizard. When you
drop a table using this wizard, you also remove all related triggers and indexes.

To drop a database object:

1. Click the SQL icon.

2. From the Tasks list on the right side of the page, select Drop database object.

The Drop Database Object Wizard appears.

3. Select a schema and then an object type.

4. Follow the on-screen instructions.

Restoring Dropped Database Objects
If you are running Oracle HTML DB with an Oracle 10g database, you can use the
Recycle Bin to view and restore dropped database objects. When you drop a table,
the space associated with the table is not immediately removed. Oracle renames the
table and places it and any associated objects in the Recycle Bin where it can be
recovered at a later time.

To use the Recycle Bin:

1. Click the SQL icon.

2. Under SQL Workshop, click Recycle Bin.

The Recycle Bin appears.

3. To search for an object, select a schema, an object type, type a search string in
the Search field, and click Go.

4. To view object details, click the view icon adjacent to the appropriate name.

5. On the Object Summary page you can:

■ Click Restore Object to restore the current object

■ Click Purge to permanently delete the current object

To empty the Recycle Bin without viewing the objects:

Note: The Recycle Bin feature is only available if you are running
Oracle HTML DB with an Oracle 10g database.

Managing Database Objects

5-8 Oracle HTML DB User’s Guide

1. Click the SQL icon.

2. Under SQL Workshop, click Recycle Bin.

The Recycle Bin appears.

3. From the Tasks list on the right side of the page, select Purge Recycle Bin.

Using the SQL Script Repository
You can use the SQL Script Repository to view, edit, and run uploaded script files.
For example, you can upload new script file as well as create and edit your create
table, create index, and create PL/SQL package scripts.

Topics in this section include:

■ Managing Script Files in the SQL Script Repository

■ Uploading and Creating Script Files

■ Using Parameters in a Script

■ Including SQL Queries in a Script

■ Exporting a Script File

Managing Script Files in the SQL Script Repository
To view scripts in the SQL Script Repository:

1. Click the SQL icon and select the Scripts tab.

SQL Script Repository appears. Scripts are stored based on HTML DB
username.

2. To search for a script, select a username from the Show list, enter a search string
in the Find field (optional), and click Go.

3. While in the Script Repository you can:

■ Reorder a list by clicking the column heading

■ View details about a specific file by clicking the view icon

■ Edit a script by clicking the edit icon

■ Parse a script to be run by clicking Parse

■ Run a script by clicking Run in the Actions column

■ Delete a script by selecting it and clicking Delete Checked

Managing Database Objects

Using SQL Workshop to Manage Database Objects 5-9

■ Upload a script by clicking Upload

■ Create a script by clicking Create

To view script details:

1. In the Script Repository, click the view icon.

The Script - Files Details page appears.

2. Under View Links, you can:

■ Click Native file format to download the file locally

■ Click View document as text to view the file in your Web Browser

■ Click Parse this script to parse the script to run

To run a script in the Script Repository:

1. In the Actions column, click Run.

The Script - Run page appears.

If you have parameters in your script you must define them. You can define up
to ten different parameters in each script.

2. Enter a parameter name and value in the fields provided.

3. To view the script file, click View File.

4. To run the script file, click Run Script.

The Script - Run Results page appears displaying the number of success, failure
and the elapsed time. RED indicates that errors occurred while executing the
file.

5. To view the script file source, click View Source.

6. To run the file again, click Run Script in the left navigation pane.

Once you have run a script file, you can view a history of previous executions
by clicking Previous Runs on the Script - Run page.

To delete a script file from the Script Repository:

1. In the Script Repository, select the script to be deleted.

2. Click Delete Checked.

Managing Database Objects

5-10 Oracle HTML DB User’s Guide

Uploading and Creating Script Files
To upload a script file into the Script Repository:

1. In the Script Repository, click Upload.

The Upload Script page appears.

2. Follow the on-screen instructions.

If the script file you upload has a valid file extension, SQL Workshop recognizes the
file as a script and automatically parses it. Table 5–1 describes the file extensions
SQL Workshop considers to be valid for script files.

To create a script file while in the Script Repository:

1. In the Script Repository, click Create.

The Create Script page appears.

2. Follow the on-screen instructions.

Using Parameters in a Script
You can parameterize a script using a pound (#) or ampersand (&). The following
two examples demonstrate valid parameter syntax.

CREATE TABLE #OWNER#.xyz (X INT)
/

Table 5–1 Valid Script File Extensions

Extension Description

pkh Package headers

plb Package bodies

sql Scripts

con Constraints

ind Indexes

sqs Sequences

tab Tables

trg Triggers

pkb Package bodes

pks Package specs

Managing Database Objects

Using SQL Workshop to Manage Database Objects 5-11

CREATE TABLE #OWNER#.abc (Y NUMBER)
/

CREATE TABLE &OWNER.xyz (X INT)
/
CREATE TABLE &OWNER.abc (Y NUMBER)
/

Including SQL Queries in a Script
If you include SELECT statements in a script, the script will run without errors, but
the result set will not display.

Exporting a Script File
You can export SQL Script Repository scripts using the Export Import Wizard in
Application Builder.

To export a script from SQL Workshop:

1. Click the Build icon.

2. When Application Builder appears, click Export/Import.

The Export/Import Wizard appears.

3. Select Export and click Next.

4. Click the Export Script tab and follow the -screen instructions.

If you export a UNIX format, the wizard generates a file with rows delimited by
CHR (10) (that is, line feeds). If you export a DOS format then each row is
terminated with CHR(13)||CHR(10) (that is, CR LF or carriage return line feed).

Accessing Saved Commands in the SQL Archive
When you click Save in SQL Command Processor, SQL Workshop saves entered
commands and scripts to the SQL Archive.

SQL Archive is different from SQL Script Repository. By saving frequently used
SQL commands in the SQL Archive, you can run the commands again without
retyping. When you save a SQL command to SQL Archive, the saved command
does not appear in Script Repository.

See Also: "Exporting an Application and Related Files" on
page 10-4

Managing Database Objects

5-12 Oracle HTML DB User’s Guide

To view the SQL Archive:

1. Click the SQL icon.

2. Select the SQL tab and select Archive.

The SQL Archive appears.

3. Follow the on-screen instructions.

Accessing the SQL Command History
SQL Command History displays the 200 most recent commands and scripts run in
the SQL Command Processor.

To view the SQL Command History:

1. Click the SQL icon.

2. Select the SQL tab and select History.

SQL Command History appears.

3. To run a command again, click the appropriate link.

The SQL command or the script displays in the SQL Command Processor.

Generating DDL
You can use DDL statements to create, alter, and drop schema objects when they are
no longer needed. You can also use DDL statements to grant and revoke privileges
and roles, to analyze table, index, or cluster information, to establish auditing
options, or to add comments to the data dictionary.

To generate DDL statement in SQL Workshop:

1. Click the SQL icon.

2. Under SQL Workshop, click Generate DDL.

The Generate DDL Wizard appears.

3. Follow the on-screen instructions.

Managing Database Objects

Using SQL Workshop to Manage Database Objects 5-13

Managing Control Files
Control files enable you to run a series of scripts in a predefined order. From the
Control Files Repository, you can create, edit, delete or run control files.

To access the Control Files Repository:

1. Click the SQL icon.

2. Select the Scripts tab and then Control Files.

Control Files Repository appears.

3. To search for a script, select a username from the Show list, enter a search string
in the Find field (optional), and click Go.

4. While in the Control Files Repository you can:

■ Reorder a list by clicking the column heading

■ Edit a file by clicking the edit icon

■ Run a file by clicking Run

■ Delete a script by selecting it and clicking Delete Checked

To create a control file:

1. In the Control Files Repository, click Create.

The Control File Create page appears.

2. Enter a name for the control file, select the script files you would like to include,
and click Create.

3. Specify the execution order and click Done.

To edit a control file:

1. In the Control Files Repository, click the edit icon.

The Edit File page appears.

2. On the Edit File page you can:

See Also:

■ Oracle Database SQL Reference for more information on DDL
statements

■ Oracle Database Concepts for more information on the data
dictionary

Managing Database Objects

5-14 Oracle HTML DB User’s Guide

■ Change the order in which files are executed by clicking Edit Execution
Order

■ Add additional script files by clicking Add More Files

■ Delete a script by selecting it and clicking Delete Checked

To run a control file in the Control Files Repository:

1. In the Action Column, click Run.

The Run File page appears.

2. Select an Oracle Schema from the Parse As list.

If your script files include parameters you must define them. You can define up
to ten different parameters in each script.

3. Enter a parameter name and value in the fields provided.

4. Click Run File.

The Run Results page appears displaying the number of success, failures, and
the elapsed time. RED indicates that errors occurred while executing the file.

If you wish to run the control file in the background, select Run in Background.
Running a control file in the background means that Oracle HTML DB submits
it as a job. The advantage of this approach is that you do not have to wait for it
to finish to continue using SQL Workshop.

5. To run the file again, click Run File in the left navigation pane.

Viewing the Control File Run History
Once you have run a file, you can view a history of previous executions by clicking
Previous Runs on the Run File page.

To view the Control File Run History:

1. Run the control file as described in the previous procedure.

2. Click Run Script in the left navigation pane.

3. On the Script - Run page, click Previous Runs.

Viewing Control File Job Status
You can view control file job status from either the Edit File or Run File page.

To view the status of a job:

Managing User Interface Defaults

Using SQL Workshop to Manage Database Objects 5-15

1. Run the control file as described in the previous section with the Run in
Background option selected.

2. Click Job Status in the left navigation pane.

Managing Tables
You can also use SQL Workshop to create new tables or edit existing tables.

To create a new table:

1. Click the SQL icon.

2. Under SQL Workshop, click Create Object.

The Create Table Wizard appears.

3. Select an object and click Next.

4. Follow the on-screen instructions.

To edit an existing table, you must first navigate to it using the Data Browser.

To edit an existing table:

1. Click the SQL icon.

2. Under Data Browser, select Tables.

3. To search for a table, select a schema, table type, type a search string in the
Search field, and click Go.

4. To view table details, click the view icon adjacent to the appropriate table name.

5. Select task from the Tasks list on the right side of the page.

Managing User Interface Defaults
UI (user interface) defaults enable developers to assign default user interface
properties to a table, column, or view within a specified schema. When a developer
creates a form or report using a wizard, the wizard uses this information to create
default values for region and item properties.

Note that UI defaults are associated with a table and can be used in an application
created from a form and report wizards. This means that you cannot use shared list
of values to define UI defaults, since shared list of values are associated with a
single application.

Topics in this section include:

Managing User Interface Defaults

5-16 Oracle HTML DB User’s Guide

■ Managing Tables Using UI Defaults

■ Applying UI Defaults to a Table or View

■ Exporting UI Defaults

Managing Tables Using UI Defaults
To view tables using UI Defaults:

1. Click the SQL icon.

2. Select the Browse tab and then UI Defaults.

3. To edit the UI Defaults associated with a specific table, click the edit icon next to
the table name.

The following table-level UI defaults display at the top of the page:

■ Schema is the schema that owns the table.

■ Table Name is the name of the selected table.

■ Title is a modified version of Table Name in which the first letter is
capitalized and any underscores are replaced with spaces.

Column-level UI Defaults appear next. You can edit attributes for all displayed
columns, by clicking Grid Edit.

4. To edit a specific column, click the edit icon adjacent to the column name.

The Edit Column-level UI Defaults page appears.

The top of the Column-level UI Defaults page displays the table and column name.
Column Name is the name of the selected column. Use Default for Label to specify
a label for reports and forms. By default, this field displays a modified version of
Column Name in which the first letter is capitalized and any underscores are
replaced with spaces. Default attributes for reports and forms appear next.

Available Display for Reports attributes include:

■ Display - Indicates whether the column displays in a report. The default is Yes.

■ Display Seq - Specifies the display sequence of items in a report. The default
value is based on the column ID, which is based on the order of the columns in
the table.

See Also: "Application Builder Concepts" and "Using Application
Builder" for more information on regions and item properties

Managing User Interface Defaults

Using SQL Workshop to Manage Database Objects 5-17

■ Mask - Indicates if a mask should be applied against the data. Not used for
character based items.

■ Alignment - Specifies report alignment (Left, Center, or Right). If the column is
a number, the default is Right. Otherwise, the default is Left.

■ Searchable - Indicates whether the column should be searchable in reports. If
the column is VARCHAR2 or CHAR, the default is Yes. If not, the default is No.

■ Group By - Indicates whether this column should be used for Group By and
then the sequence of the grouping. The default is Yes.

Available Defaults for Reports attributes include:

■ Display - Indicates whether this column displays in a form. The default is Yes.

■ Display Seq - Specifies the sequence of items in a form. The default is based on
the column ID, which is based on the order of the columns in the table.

■ Display As - Indicates how items in a form display. The default selection is Text
Field.

■ Mask - Indicates a mask to be applied against the data in a form. Not used for
character based items.

■ LOV Query - Generates a LOV (list of values). Only valid for certain Display As
types.

■ Default Value - Specifies the default value associated with this column.

■ Width - Specifies the display width.

■ maxWidth - Specifies the maximum string length a user is allowed to enter in
this item.

■ Height - Specifies the display height of an item.

■ Required - Used to generate a validation in which the resulting item must not
be null. If resulting item is not null, select Yes.

■ Help Text - Becomes Item help. By default, this text is pulled from the column
hint (if applicable).

Applying UI Defaults to a Table or View
You can view a listing of tables without UI Defaults on the Default Table &
Column-level UI Defaults page.

To view the Default Table & Column-level UI Defaults page:

Browsing the Data Dictionary

5-18 Oracle HTML DB User’s Guide

1. Click the SQL icon.

2. Select the Browse tab and then UI Defaults.

3. From the Tasks list, select Apply UI Defaults.

4. Follow the on-screen instruction.

Exporting UI Defaults
When you export UI Defaults, all UI Defaults for the selected schema are exported
to a single SQL*Plus script. When prompted by your browser, save this file to your
hard drive. The file contains an API call to create table hints by making calls to the
application PL/SQL API. All work is performed in a single transaction.

To export UI Default HInts:

1. Click the SQL icon.

2. Select the Browse tab and then UI Defaults.

3. From the Tasks list, select Export UI Defaults.

4. Follow the on-screen instruction.

Browsing the Data Dictionary
Each Oracle database has a data dictionary. An Oracle data dictionary is a set of
tables and views that are used as a read-only reference about the database. For
example, a data dictionary stores information about both the logical and physical
structure of the database. A data dictionary also stores information about valid
Oracle database users, integrity constraints for tables in the database, and the
amount of space allocated for a schema object as well as how much of it is being
used.

To browse the data dictionary:

1. Click the SQL icon

2. Select the Browse tab and then Data Dictionary Browser.

The Data Dictionary Browser appears.

3. Click the view icon to display the Query By Example (QBE) form. Use this form
to query the Oracle data dictionary for details about database objects.

Browsing the Data Dictionary

Using SQL Workshop to Manage Database Objects 5-19

To view data dictionary reports:

1. Click the SQL icon

2. Select the Browse tab and then Dictionary Reports.

The Data Dictionary Reports page appears.

3. Make a selection from the list and follow the on-screen instructions.

See Also: Oracle Database Concepts for more information on the
data dictionary

Browsing the Data Dictionary

5-20 Oracle HTML DB User’s Guide

Application Builder Concepts 6-1

6
Application Builder Concepts

This section provides basic conceptual information about Application Builder.
Application Builder is the core component within Oracle HTML DB that enables
you to build database centric Web applications.

 This section contains the following topics:

■ About Page Rendering and Page Processing

■ How Page Processing and Page Rendering Work

■ Understanding Session State Management

■ Managing Session State Values

■ Understanding URL Syntax

■ Using Substitution Strings

About Page Rendering and Page Processing
In Oracle HTML DB you use Application Builder to build dynamically rendered
applications. An application is a collection of database-driven Web pages. You can
link pages together using tabs, buttons, or hypertext links. Each page can have
buttons and items and can include application logic. You can branch from one page
to the next using conditional navigation, perform calculations, validations, and
display reports, calendars, and charts. You can generate reports, charts, and forms
using built-in wizards, static HTML, or deliver more custom rendering with
PL/SQL programming.

See Also:

■ Chapter 1, "What is Oracle HTML DB?"

■ Chapter 7, "Using Application Builder"

About Page Rendering and Page Processing

6-2 Oracle HTML DB User’s Guide

What is a Page?
A page is the basic building block of an application. When you build an application
in Application Builder you can include a number of common user interface
elements, including standard tabs, navigation bar icons, buttons, items, and regions.
Figure 6–1 illustrates the use of some of these elements.

Figure 6–1 Sample Application

You can view all the elements that make up a page by accessing the Page Definition.

To view the Page Definition for an existing page:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages appears at the bottom of the page.

3. To edit a specific page, enter the page ID in the Edit Page field and click Go, or
click the page name.

The Page Definition appears. (See Figure 6–2.)

About Page Rendering and Page Processing

Application Builder Concepts 6-3

Figure 6–2 Page Definition

By default, the Page Definition is divided into three sections:

■ Page Rendering

■ Page Processing

■ Shared Components

The left section, Page Rendering, lists page level attributes as well as any UI
controls and logic that is executed at the time the page is rendered. The middle
section, Page Processing, lists the logic controls (such as computations and
processes) that are evaluated and executed when the page is processed. The far
right section, Shared Components, lists common components that display on
every page within an application.

The following list briefly describes Page Rendering components:

■ Page. Defines page level attributes such as the page name, title and
template.

■ Regions. Defines regions. A region is an area of a page that uses a specific
template to generate HTML content. Each page can have any number of
regions. You can use regions to group other controls, such as buttons and

About Page Rendering and Page Processing

6-4 Oracle HTML DB User’s Guide

items, together. You can create simple regions that do not generate
additional HTML, or create elaborate regions that frame content within
HTML tables or images. The HTML DB engine displays regions in sequence
within columns. You can choose whether a region displays conditionally.

■ Buttons. Lists the buttons on the current page. Buttons are used to submit a
page. When you submit a page, the HTML DB engine processes it, or
redirects users to another page without any processing. Buttons can be
implemented as an HTML button, an image, or by using a template.

■ Items. Lists the items grouped by region. Items are HTML form elements
such as text fields, select lists and check boxes with an associated session
state.

■ Computations. Lists the computations that are executed at the time the
page is rendered. Computations are units of logic used to assign session
state to items.

■ Processes. Lists the processes that are executed at the time the page is
rendered. Processes are logic controls used to execute data manipulation
language (DML) or PL/SQL. For example, you can use a process to
populate session state at the time the page is rendered.

The following list describes Page Processing components:

■ Computations. Lists the computations that are executed at the time the
page is processed. Computations are units of logic used to assign session
state to items.

■ Validations. Enables you to create logic controls to verify whether user
input is valid. For example, a validation can check whether a value has
been typed into a mandatory field.

■ Processes. Lists the processes that are executed after the page is submitted.
Processes are logic controls used to execute data manipulation language
(DML) or PL/SQL.

■ Branching. Enables you to create logic controls that determine how the user
navigates through the application.

See Also:

■ "Viewing Page Attributes" on page 7-37 and "Editing a Page
Definition" on page 7-38 for more information on viewing and
editing Page Rendering and Page Processing components

■ "Understanding Shared Components" on page 6-7

About Page Rendering and Page Processing

Application Builder Concepts 6-5

How Application Builder Uses Templates
The HTML DB engine constructs the look and feel of each page using templates.
Templates contains contain HTML and variables that are substituted with dynamic
values at runtime. Using templates, the HTML DB engine dynamically renders
pages from data stored in tables. You can specify a template for each page. If you do
not specify a template, the HTML DB engine uses the default application level
template. Application Builder also includes templates for regions, rows, lists,
reports, labels, menus, list of values, and buttons.

The use of templates offers a number of advantages:

■ Templates can be shared by multiple components

■ A single change to a template will affect all components using that template at
once

The separation of the user interface definition from data access and application
logic ensures that the application and user interface can be built concurrently by
different people. The following sections describe the different types of templates
available in Oracle HTML DB.

Page Templates
Each page is rendered using a page template. Every application has a default page
template which applies to all pages in the application, unless you specify a different
template.

Page templates control the appearance of navigation bars, parent tabs, and standard
tabs. To change an application's default page template, select Edit Attributes from
the Application Builder home page. An asterisk (*) indicates that a template in
another application subscribes to (or is using) this template. Page templates are
divided into component areas. Each area supports specific substitution strings.

See Also:

■ "Working with Templates" on page 7-16

■ "About User Interface Templates" on page 7-34

■ "About Template Defaults" on page 7-35

See Also: "Using Substitution Strings" on page 6-22

How Page Processing and Page Rendering Work

6-6 Oracle HTML DB User’s Guide

Region Templates
Region templates control the appearance of regions. For example, you could use a
region template to place a box around some content. Region templates can also be
used to control the placement of buttons and region titles. An asterisk (*) indicates
that a template in another application subscribes to (or is using) this template.

List Templates
List templates control the appearance of lists. For example, you could create a list to
add a list of icons on a home page or third level tabs, or to include a progress
indicator. An asterisk (*) indicates that a template in another application subscribes
to (or is using) this template.

Report Templates
Report templates control the format of database queries. These templates format the
results of reports. An asterisk (*) indicates that a template in another application
subscribes to (or is using) this template.

Label Templates
Label templates control the appearance of item labels. For example, you could use
label templates to determine how required field labels display. An asterisk (*)
indicates that a template in another application subscribes to (or is using) this
template.

Menu Templates
Menu templates control the display of menus. You select a menu template when
you create a region. For example, menu templates can be used to create breadcrumb
style navigation links. An asterisk (*) indicates that a template in another
application subscribes to (or is using) this template.

Popup List of Values Templates
Popup List of Values templates control the appearance of popup list of values (or
items having the type POPUP LOV). You can create as many popup LOVs as you
want, but you can only specify one popup LOV template for each application.

How Page Processing and Page Rendering Work
The HTML DB engine dynamically renders and process pages based on data stored
in database tables. To view a rendered version of your application, you run or

How Page Processing and Page Rendering Work

Application Builder Concepts 6-7

submit it to the HTML DB engine. When you run an application, the HTML DB
engine relies on two processes:

■ Show Page is the page rendering process. It assembles all the page attributes
(including regions, items, and buttons) into a viewable HTML page.

■ Accept Page takes care of page processing. It performs any computations,
validations, processes, and branching.

When you call a page using a URL, the HTML DB engine is running the Show page
or page rendering process. When you submit a page, the HTML DB engine saves
the submitted values in the session cache and then performs any computations,
validations, or processes.

Understanding Shared Components
Shared components are common components that display on every page within an
application. Examples of shared components include:

■ Parent and standard tabs

■ Navigation bars

■ List of values

■ Menus

■ Lists

■ Templates

About Standard Tabs and Parent Tabs
Application Builder includes two different types of tabs:

■ Standard tabs

■ Parent tabs

An application having only one level of tabs uses standard tabs. An application
having two levels of tabs uses a parent and standard tabs. A standard tab set is
associated with a specific page and page ID. You can use standard tabs to link users
to a specific page.

Parent tabs give users another level of navigation. Parent tabs function as a
container to hold a group of standard tabs. You can use parent tabs to link users to a
specific URL associated with a specific page. When the target page appears, it
displays its own standard tab set.

How Page Processing and Page Rendering Work

6-8 Oracle HTML DB User’s Guide

About Navigation Bars
Use navigation bars to link users to various pages within an application. Typically
navigation bars are used to enable users to log in and log out or link to help text.
The location of a navigation bar depends upon the associated page template. A
navigation bar icon enables you to display a link from an image or text. When you
create a navigation bar icon you can specify an image name, text, a display
sequence, and a target location (an URL or page).

About List of Values
A list of values (LOV) is a static or dynamic definition used to display a specific
type of page item, such as a radio group, check box, or select list. LOVs can be static
(that is, based on a set of predefined display and return values) or dynamic (based
on SQL queries that select values from tables).

You define LOVs at the application level by running the LOV Wizard and adding
them to the Named List of Values repository.

About Menus
A menu is a hierarchical list of links that is rendered using a template. For example,
you can display menus as a list of links or as a breadcrumb path.

About Lists
A list is a collection of links that is rendered using a template. For each list entry,
you specify display text, a target URL, and other attributes that can control when
and how the list entry displays. You control the display of the list by linking it to a
template. This template controls the appearance of all list entries.

See Also: "Creating Tab Sets" on page 8-2 for more information on
creating standard and parent tabs

See Also: "Creating a Navigation Bar" on page 8-4 for more
information on creating navigation bars

See Also: "Creating LOVs" on page 8-21

See Also: "Creating Menus" on page 8-7 for more information on
creating menus

See Also: "Creating Lists" on page 8-11 for more information on
creating lists

How Page Processing and Page Rendering Work

Application Builder Concepts 6-9

About Templates
Templates control the look and feel of the pages in your application. As you create
your application you specify templates for pages, regions, reports, lists, labels,
menus, buttons, and popup list of values.

Understanding Conditional Rendering and Processing
A condition is a small unit of logic that helps you control the display of regions,
items, buttons, and tabs as well the execution of processes, computations, and
validations. For example, when you apply a condition to a button, the rendering
engine evaluates the condition during the rendering (or Show page) process.
Whether the condition passes or fails determines whether the component (such as a
button) displays.

You specify a condition by selecting a condition type when you create the
component (that is, the region, item, button, or tab) or by making a selection from
the component's conditional display attribute. (See Figure 6–3 on page 6-9.) The
condition evaluates to true or false based on the values you enter in the Expression
fields.

Figure 6–3 Conditional Display Attribute

To view a complete listing of all available conditions for a given component, click
the view icon to the right of the Conditional Display Type list. Shortcuts to common

See Also: "Working with Templates" on page 7-16 for more
information on viewing, creating, and editing templates

How Page Processing and Page Rendering Work

6-10 Oracle HTML DB User’s Guide

selections appear directly beneath the Type list. If your condition requires an
expression, type it in the appropriate field.

The sections that follow offer examples of some commonly used condition types.

Current Page In Expression 1
Current page = Expression 1 evaluates to true if the current page matches
the page ID listed in the Expression 1 field. For example:

100,101,102

If the current page is 100, 101, or 102, then this condition evaluates to true and the
condition passes.

Exists
Exists (SQL query returns at least one row) is expressed as a SQL
query. If the query returns at least one row, then the condition evaluates as true. For
example:

SELECT 1 FROM emp WHERE deptno = :P101_DEPTNO

This example references item P101_DEPTNO as a bind variable. You can use bind
variables within application processes and SQL query regions to reference item
session state. If one or more employees are in the department identified by the
value of P101_DEPTNO, then the condition evaluates as true.

PLSQL Expression
Use PLSQL Expression to specify an expression in valid PL/SQL syntax that
evaluates to true or false. For example:

NVL(:MY_ITEM,'NO') = 'YES'

If the value of :MY_ITEM is YES, then the condition evaluates as true. Otherwise it
evaluates as false.

See Also: "About Bind Variables" on page 6-18 for more
information

See Also: Appendix A, "Available Conditions" on page A-1 for a
detailed listing of all conditional types available in Oracle HTML
DB

How Page Processing and Page Rendering Work

Application Builder Concepts 6-11

Using Build Options to Control Configuration
Build options enable you to conditionally display specific functionality within an
application. Using build options you can control which features of an application
are turned on for each application deployment. If you specify a build option at the
application level, you do not need to specify it for each attribute (for example, each
page, branch, button, item, or tab).

Build options have two possible values: INCLUDE and EXCLUDE. If you specify an
attribute as being included, then the HTML DB engine considers it part of the
application definition at runtime. Reversely, if you specify an attribute as being
excluded then the HTML DB engine treats it as if it does not exist.

Creating Build Options
Before you can specify a build option, you must create it.

To create a build option:

1. Click the Build icon.

2. When Application Builder appears, select the Builds tab.

3. To create a new build option, click Create.

4. Follow the on-screen instructions.

Viewing Build Option Reports
Oracle HTML DB includes a report detailing build option utilization in the current
application.

To view a report of build option utilization:

1. Click the Build icon.

2. When Application Builder appears, select the Builds tab.

3. Click Navigate in the left navigation pane and then select Build Opt
Utilization.

4. Make a selection from the Build Options list and click Go.

See Also: "Editing Application Attributes" on page 7-29 and
"Editing Page Attributes" on page 7-52 for more information on
specifying build options

Understanding Session State Management

6-12 Oracle HTML DB User’s Guide

Verifying User Identity
Authentication is the process of establishing users' identities before they can access
an application. Authentication may require a user enter a username and password
or may involve the use of a digital certificate or a secure key.

Oracle HTML DB supports authentication. You can establish a user's identity by
selecting from a number of built-in authentication methods, or by using a wizard to
create your own custom authentication approach.

Controlling Access to Components
While conditions control the rendering and processing of specific components on a
page, authorizations control user access to specific components. Authorization is a
broad term for controlling access to resources based on predefined user privileges.

Authorization schemes extend the security of your application's authentication
scheme. You can specify an authorization scheme for an entire application, a page,
or specific component such as a region, item, or button. For example, you could use
an authorization scheme to selectively determine which tabs, regions, or
navigations bars a users sees.

Understanding Session State Management
HTTP, the protocol over which HTML pages are most often delivered, is a stateless
protocol. A Web browser is only connected to the server for as long as it takes to
download a complete page. In addition, each page request is treated by the server
as an independent event, unrelated to any page requests that have happened
previously or may occur in the future. This means that to access form values
entered on one page on a subsequent page, some form of session state management
needs to occur. Typically, when a user enters values into a form on one page, those
values are not accessible on later pages. Oracle HTML DB transparently maintains
session state and provides developers with the ability to get and set session state
values from any page in the application.

A session is a logical construct that establishes persistence (or stateful behavior)
across page views. Each session is assigned a unique identifier within the Oracle
HTML DB installation. The HTML DB engine uses this identifier (or session ID) to

See Also: "Establishing User Identity Through Authentication" on
page 10-9 for more information

See Also: "Providing Security Through Authorization" on
page 10-17

Understanding Session State Management

Application Builder Concepts 6-13

store and retrieve an application's working set of data (or session state) before and
after each page view.

Because sessions are entirely independent of one another, any number of sessions
can exist in the database at the same time. Since sessions persist in the database
until purged by an administrator, a user can return to an old session and continue
running an application long after first launching it. A user can also run multiple
instances of an application simultaneously in different browser sessions.

Oracle HTML DB sessions are logically and physically distinct from the Oracle
database sessions used to service page requests. A user runs an application in a
single Oracle HTML DB session from log in to log out with a typical duration
measured in minutes or hours. Each page requested during that session results in
the HTML DB engine creating or reusing an Oracle database session to access
database resources. Each of these sessions lasts just a fraction of a second.

Understanding Session IDs
The HTML DB engine establishes the identity (or anonymity) of the user for each
page request and the session ID in order to fetch session state from the database.
The most visible location of the session ID is in the URL for a page request. Another
visible location is in the page's HTML POST structures or in a session cookie sent by
the HTML DB engine during authentication and maintained for the life of the
application (or browser) session.

Oracle HTML DB assigns new session IDs during authentication processing,
records the authenticated user's identity with the session ID, and continually checks
the session ID in each page request's URL or POST data with the session cookie and
the session record in the database. These checks provide users with both flexibility
and security.

While the session ID is the key to session state, the session cookie (where
applicable) and the session record safeguard the integrity of the session ID and the
authentication status of the user.

Viewing Session State
The behavior of an HTML DB application is usually driven by values in session
state. For example, a button may display conditionally based on the value of an
item session state. You can view the session state for a page by clicking Session on
the Developer toolbar.

Managing Session State Values

6-14 Oracle HTML DB User’s Guide

Figure 6–4 Developer Toolbar

The Session State page provides valuable information about the page. Table 6–1
describes the various types of information available on the Session State page.

Managing Session State Values
When building interactive, data driven Web applications, the ability to access and
manage session state values with ease is critical. In Oracle HTML DB, session state
is automatically managed for every page and easily referenced in static HTML or
logic controls such as processes or validations.

Table 6–1 Information Available on the Session State Page

Heading Description

Application, Page,
Session

Identifies the application name, page ID, and session ID.

Page Items Identify attributes of the page, including the item name, how
the item displays (hidden, popup, button, display only
HTML), the state or session ID, and status.

The Status column indicates the status of the session state.
Available values include:

■ I - Inserted

■ U - Updated

■ R - Reset

Application Items Application items are items that do not reside on a page.
Application items are session state variables without the
associated user interface properties.

See Also: "Using Substitution Strings" on page 7-38 for more
information on referencing item values

Application
Environment

Identifies the session ID, current user, security ID, and browser
language.

Session State Indicates the user's entire session state. The section at the top
indicates the state for the current page.

See Also: "Using the Developer Toolbar" on page 7-10 for more
information about the Developer toolbar

Managing Session State Values

Application Builder Concepts 6-15

Topics in this section include:

■ Referencing Session State

■ Setting Session State

■ Clearing Session State

■ About Bind Variables

Referencing Session State
Referencing the value of an item is one of the most common examples of referencing
session state. In Oracle HTML DB, an item can be a field, a text area, a password, a
select list, or checkbox. Table 6–2 describes the supported syntax for referencing
item values.

Setting Session State
When a user submits a page in Oracle HTML DB, the HTML DB engine
automatically stores values typed into fields (items) in session state. For example,
suppose you have an application containing two pages. The first page of the
application contains a form in which a user can enter a phone number. You have

See Also: "About Items" on page 7-43 and "Referencing Item
Values" on page 7-47 for more information

Table 6–2 Syntax for Referencing Item Values

Type Syntax Description

SQL :MY_ITEM Standard bind variable syntax for items no longer than 30
bytes. Use this syntax for references within a SQL query
and within PL/SQL.

PL/SQL v('MY_ITEM') PL/SQL syntax referencing the item value using the v
function.

See Also: "Oracle HTML DB APIs" on page 13-1

PL/SQL nv('MY_NUMERIC_ITEM') Standard PL/SQL syntax referencing the numeric item
value using the nv function.

See Also: "Oracle HTML DB APIs" on page 13-1

Static Text &MY_IITEM Static text.

Static Text (exact) &MY_IITEM. Static text. Exact Substitution.

Managing Session State Values

6-16 Oracle HTML DB User’s Guide

defined this form by creating an item named P2_PhoneNo. On the second page you
want to display the information the user enters in the form.

When the page is submitted, Oracle HTML DB captures the value typed in the
phone number field and stores the value for future use. The phone number typed
by the user can then be retrieved from session state by referencing the item
associated with the field on the page.

Clearing Session State
As you develop your applications, you may find it useful to clear the cached value
for specific items, all items on a page, all pages in an application, or the current user
session. Clearing a cached value resets the value to null. The topics that follow offer
specific examples of clearing session state.

Clearing Cache by Item
Clearing cache for a single item resets the value of the item to null. For example,
you might use this approach to make sure a specific item's value is null when a
page is prepared for rendering.

The following example uses standard f?p syntax to clear the cache for an item. This
example calls page 5 of application 100. Placing MY_ITEM in the ClearCache
position of the f?p syntax resets the value of MY_ITEM to NULL.

f?p=100:5:&SESSION.::NO::MY_ITEM:

The following example resets the value of the items THE_EMPNO and THE_DEPTNO.

f?p=100:5:&SESSION.::NO::THE_EMPNO,THE_DEPTNO:,

Clearing Cache by Page
Caching application items provides a very effective way to maintain session state.
However, there are occasions when you may want to clear the cache for all items on
a page. For example, suppose you needed to clear all fields on page when a user
clicks a link the creates a new order. By clearing cache for an entire page you set the
value of all items on the page to null.

Clearing Session Cache for Two Pages While Resetting Pagination This example clears the
session cache for two pages and resets pagination.

f?p=6000:6003:&SESSION.::NO:RP,6004,6014

Managing Session State Values

Application Builder Concepts 6-17

This example:

■ Runs page 6003 of application 6000 and uses the current session ID

■ Indicates to not show debug information (NO)

■ Clears all values maintained by the current session's cache for items of pages
6004 and 6014

■ Resets region pagination (RP) on page 6003 (the requested page)

Clearing Session Cache on a Page and Passing an Item Value This example demonstrates
a good way to implement an update form. It clears existing information and sets the
item's value (typically a primary key).

f?p=6000:6003:&SESSION.::NO:6003:MY_ITEM:1234

 Specifically this example:

■ Runs page 6003 of application 6000 and use the current session ID

■ Indicates to not show debug information (NO)

■ Clears all values maintained by the current session's cache for items on page
6003

■ Sets the session state of an item called MY_ITEM to the value 1234

Clearing Session Cache on a Page and Passing Values to Multiple Items This example is
similar to the previous one except it passes values to multiple items.

f?p=6000:6004:&SESSION.::NO:6003:MY_ITEM1,MY_ITEM2,MY_ITEM3:1234,,5678

 Specifically this example:

■ Runs page 6004 of application 6000 and use the current session ID

■ Clears the current session's cache for items on page 6003

■ Indicates debug information should be hidden (NO)

■ Sets the value of MY_ITEM1 to 1234, sets the value of MY_ITEM2 to null
(indicated by the commas used as placeholder), and set the value of MY_ITEM3
to 5678

See Also: Creating a Report with Pagination on page 8-35

Managing Session State Values

6-18 Oracle HTML DB User’s Guide

Clearing Cache for an Entire Application
You can also clear application cache by using f?p syntax by creating a REQUEST
argument using the keyword APP using the following syntax:

f?p=App:Page:Session::NO:APP

Clearing Cache for the Current User Session
You can also clear application cache by using f?p syntax. Create a REQUEST
argument using the keyword SESSION. For example:

f?p=6000:6004:12507785108488427528::NO:SESSION

About Bind Variables
You can use bind variables within an application process or SQL query to reference
session state of a specified item. For example:

SELECT * FROM emp WHERE name like '%' || :SEARCH_STRING || '%'

In this example, the search string is a page item. If the region type is defined as SQL
Query, you can reference the value using standard SQL bind variable syntax. Using
bind variables ensures that parsed representations of SQL queries are reused by the
database, optimizing memory usage by the server.

When using bind variable syntax remember the following rules:

■ Bind variable names must correspond to an item name

Note: Resetting the cache for an entire application does not
actually restore the application to a completely reset state. For
example, if an application includes on-new instance computations
or on-new instance processes, the HTML DB engine runs these
computations and processes when the application session is
created. Then, it processes the clear cache request and displays the
requested page.

The only way to reset the application completely is to request it
using a URL without a session ID, or by calling HTMLDB_
APPLICATION.CLEAR_APP_CACHE from another application. If the
session ID is set using a cookie, you will need to logout in order to
reset the state.

Understanding URL Syntax

Application Builder Concepts 6-19

■ Bind variable names are not case sensitive

■ Bind variable names cannot be longer than 30 characters (that is, they must be a
valid Oracle identifier)

Although application items can be up to 255 characters, if you intend to use an
application items within SQL using bind variable syntax, the item name must
be 30 characters or less.

Using Bind Variables in Regions Based on a SQL Query or LOV
If your region type is defined as a SQL Query, SQL Query (plsql function body
returning SQL query), or list of values (LOV) you can reference session state using
the syntax:

:MY_ITEM

One common way to do this is to incorporate a session state variable in a WHERE
clause. The following example demonstrates how to bind the value of the item
THE_DEPTNO into a region defined from a SQL Query.

SELECT ename, job, sal
FROM emp
WHERE deptno = :THE_DEPTNO

Using Bind Variables in PL/SQL Procedures
For region types defined as a PL/SQL Procedure, regions are constructed using
PL/SQL anonymous block syntax. In other words, the beginning and ending are
added automatically around the PL/SQL. For example:

INSERT INTO emp (empno, ename, job)
VALUES (:P1_empno, :P1_name, :P1_job);

In this example, the values of the empno, ename, and job are populated by the
values of P1_empno, P1_name, and P1_job.

Understanding URL Syntax
Each application has a number (called an application ID) or alphanumeric alias
which uniquely identifies it. Similarly, each page also has a unique number (called a

See Also: Creating Regions on page 8-14 for more information on
creating different types of regions

Understanding URL Syntax

6-20 Oracle HTML DB User’s Guide

page ID) or an alphanumeric alias. When you run an application, the HTML DB
engine generates a session number that serves as a key to the user's session state.

The URL that displays for each page indicates the location of Oracle HTML DB and
identifies the application ID, page ID, and session ID. For example:

http://marvel.oracle.com/pls/otn/f?p=4350:1:220883407765693447

This example indicates that:

■ The address of Oracle HTML DB is:

http://marvel.oracle.com/pls/otn/

■ The application ID is 4350

■ The page ID is 1

■ The session ID is 220883407765693447

Using f?p Syntax to Link Pages
You can create links between pages in your application using the following syntax:

f?p=App:Page:Session:Request:Debug:ClearCache:itemNames:itemValues:PrinterFriend
ly

Table 6–3 describes the possible arguments you can pass when using f?p syntax.

Table 6–3 f?p Syntax Arguments

Syntax Description

App Indicates an application ID or alphanumeric alias.

Page Indicates a page ID or alphanumeric alias.

Session Identifies a session ID. You can reference a session ID to create
hypertext links to other pages that maintain the same session state by
passing the session number. You can reference the session ID using
the syntax:

■ Short substitution string: &SESSION.

■ PL/SQL: v('SESSION')

■ Bind variable: :APP_SESSION

Understanding URL Syntax

Application Builder Concepts 6-21

Although it is important to understand how f?p syntax works, you rarely have to
construct this syntax yourself. Oracle HTML DB includes many wizards that
automatically create these references for you. The sections that follow describe a
number of specific instances that utilize f?p syntax to link pages.

Request Sets the value of REQUEST. Each application button sets the value of
REQUEST to the name of the button. This enables accept processing to
reference the name of the button when a user clicks it. You can
reference REQUEST using the syntax:

■ Substitution string: &REQUEST.

■ PL/SQL: v('REQUEST')

■ Bind variable: :REQUEST

Debug Displays application processing details. Valid values for the DEBUG
flag are YES or NO. Setting this flag to YES displays details about
application processing. You can reference the Debug flag using the
following syntax:

■ Short substitution string: &DEBUG.

■ PL/SQL: v('DEBUG')

■ Bind variable: :DEBUG

ClearCache Clears cache. Clearing cache for a single item simply sets the value of
the item to null. To clear cached items, use a comma delimited list of
page numbers. Comma delimited lists can also contain collections to
be reset or the keyword RP, which resets region pagination on the
requested page.

itemNames Comma delimited list of item names used to set session state with an
URL.

itemValues Comma delimited list of item values used to set session state with an
URL.

PrinterFriendly Identifies the printer friendly preference of YES or NO (default). You
can use this item when preparing a page view with minimal graphics
and a layout suitable for printing. You can reference the printer
friendly preference by using the syntax:

v('PRINTER_FRIENDLY')

When referenced, the HTML DB engine will not display tabs or
navigation bars and all items will be displayed as text and not as
form elements.

Table 6–3 f?p Syntax Arguments

Syntax Description

Using Substitution Strings

6-22 Oracle HTML DB User’s Guide

Calling a Page Using an Application and Page Alias
The following example calls a page using an application and a page alias from
within an Oracle HTML DB application. It runs the page home of the application
myapp and uses the current session ID.

f?p=myapp:home:&SESSION.

Calling a Page from a Button URL
When you create a button, you can specify a URL to redirect to when the user clicks
the button. This example runs page 6001 of application 6000 and uses the current
session ID.

f?p=6000:6001:&SESSION.

Using Substitution Strings
You can use substitution strings within a page template or region source to replace a
character string with another value. As you design your application and enable
users to edit items, you will need to use substitution strings in order to pass
information.

You can use substitution strings in Oracle HTML DB in the following ways.

■ Include a substitution string within a template.

■ Create an item at the application or page level.

■ Use built-in substitution strings to achieve a specific type of functionality.

Substitution strings used within a template contains the pound symbol (#). For
example:

#ABC#

Substitution strings created at the application level do not display, but are used as
variable to maintain session state. You can define page items as an attribute of a
page. You can use this type of session state substitution at the application or page
level. For example:

&MY_ITEM.

Using Substitution Strings

Application Builder Concepts 6-23

Built-in Substitution Strings
Application Builder supports a number of built-in substitution strings. You may
need to reference these values in order to achieve specific types of functionality.
Built-in substitution strings available in Oracle HTML DB include:

The sections that follow describe these substitution strings, when to use them, and
what supported syntax is currently available. Note that no short syntax exists for
SESSION or USER since both are Oracle reserved words.

Topics in this section include:

■ APP_SESSION

■ APP_USER

■ IMAGE_PREFIX

■ WORKSPACE_IMAGES

■ APP_IMAGES

■ BROWSER_LANGUAGE

■ PRINTER_FRIENDLY

■ HOME_LINK

■ PROXY SERVER

■ REQUEST

■ SYSDATE_YYYYMMDD

■ DEBUG

■ APP_ID

■ APP_PAGE_ID

■ APP SCHEMA OWNER

■ SQLERRM

■ AUTHENTICATED_URL_PREFIX

■ LOGOUT_URL

■ PUBLIC_URL_PREFIX

■ CURRENT_PARENT_TAB_TEXT

■ APP_ALIAS

Using Substitution Strings

6-24 Oracle HTML DB User’s Guide

■ APP_UNIQUE_PAGE_ID

APP_SESSION
APP_SESSION is one of the most commonly used built-in substitution string. You
can use this substitution string to create hypertext links between application pages
that maintain a session state by passing the session number. Table 6–4 describes the
supported syntax for referencing APP_SESSION.

Consider the following examples:

■ From within an HTML Region:

click me

■ Using PL/SQL:

htf.anchor('f?p=100:5:'||v('SESSION'),'click me');

■ Using a SQL query:

SELECT htf.anchor('f?p=100:5:'||:app_session,'clickme') FROM DUAL;

See Also:

■ "About Static Substitution Strings" on page 7-36 for more
information on defining static substitution strings as an
application attribute

■ "Providing Security Through Authorization" on page 10-17 for
more information on authentication

Table 6–4 APP_SESSION Syntax

Reference Type Syntax

Bind variable :APP_SESSION

PL/SQL v('APP_SESSION')

Short PL/SQL v('SESSION')

Short substitution string &SESSION.

Substitution string &APP_SESSION.

Using Substitution Strings

Application Builder Concepts 6-25

APP_USER
The APP_USER is the current user running the application. Depending upon your
authentication model, the value of the user set differently. If the application is
running using database authentication, then the value of the user is the same as the
database pseudo column USER. Table 6–5 describes the supported syntax for
referencing APP_USER.

Consider the following examples:

■ From within an HTML Region:

Hello you are logged in as &USER.

■ Using PL/SQL:

htp.p('Hello you are logged in as'||v('USER'));

■ As a bind variable:

SELECT * FROM some_table WHERE user_id = :app_user

IMAGE_PREFIX
The Image Prefix attribute is defined on the Edit Application Attributes page. By
default the image prefix is "/i/". Use this prefix when referencing images
distributed with Oracle HTML DB. If you wish to reference uploaded images, use
WORKSPACE_IMAGES and APP_IMAGES. Table 6–6 describes the supported syntax
for referencing IMAGE_PREFIX.

Table 6–5 APP_USER Syntax

Reference Type Syntax

Bind variable :APP_USER

PL/SQL v('APP_USER')

Short PL/SQL v('USER')

Substitution string &USER.

See Also: "Editing Application Attributes" on page 7-29 for more
information on application attributes

Using Substitution Strings

6-26 Oracle HTML DB User’s Guide

WORKSPACE_IMAGES
The workspace images prefix is derived from the IMAGE_PREFIX (see "IMAGE_
PREFIX"). Workspace images differ from application images in that workspace
images are not specific to a given application and can be shared among multiple
applications. Table 6–7 describes the supported syntax for referencing WORKSPACE_
IMAGES.

APP_IMAGES
 The application images prefix is derived from the IMAGE_PREFIX (see previous
section). Oracle HTML DB stores uploaded images in the database. Workspace
images are specific to a given application and are not shared over many
applications. If you uploaded an image and make it specific to an application, then
you must use this substitution string, or bind prefix. Table 6–8 describes the
supported syntax for referencing APP_IMAGES.

Table 6–6 IMAGE_PREFIX Syntax

Reference Type Syntax

Bind variable :IMAGE_PREFIX

Direct PL/SQL HTMLDB_APPLICATION.G_IMAGE_PREFIX

PL/SQL v('IMAGE_PREFIX')

Substitution string &IMAGE_PREFIX.

Template Substitution #IMAGE_PREFIX#

Table 6–7 WORKSPACE_IMAGES Syntax

Reference Type Syntax

Bind variable :WORKSPACE_IMAGES

Direct PL/SQL Not available.

PL/SQL v('WORKSPACE_IMAGES')

Substitution string &WORKSPACE_IMAGES.

Template Substitution #WORKSPACE_IMAGES#

Table 6–8 APP_IMAGES Syntax

Reference Type Syntax

Bind variable :APP_IMAGES

Using Substitution Strings

Application Builder Concepts 6-27

BROWSER_LANGUAGE
BROWSER_LANGUAGE refers to the Web browser's current language preference.
Table 6–9 describes the supported syntax for referencing BROWSER_LANGUAGE.

PRINTER_FRIENDLY
The value of PRINTER_FRIENDLY determines whether the HTML DB engine is
running in print view mode. This setting can be referenced in conditions to
eliminate elements not desired in a printed document from a page. Table 6–10
describes the supported syntax for referencing PRINTER_FRIENDLY.

Direct PL/SQL Not available.

PL/SQL v('APP_IMAGES')

Substitution string &APP_IMAGES.

Template Substitution #APP_IMAGES#

Table 6–9 BROWSER_LANGUAGE Syntax

Reference Type Syntax

Bind variable :BROWSER_LANGUAGE

Direct PL/SQL HTMLDB_APPLICATION.G_BROWSER_LANGUAGE

PL/SQL v('BROWSER_LANGUAGE')

Substitution string :BROWSER_LANGUAGE.

Substitution string &BROWSER_LANGUAGE.

Table 6–10 PRINTER_FRIENDLY Syntax

Reference Type Syntax

Direct PL/SQL HTMLDB_APPLICATION.G_PRINTER_FRIENDLY
(VARCHAR2 DATATYPE)

PL/SQL v('PRINTER_FRIENDLY')

Substitution string &PRINTER_FRIENDLY.

Table 6–8 APP_IMAGES Syntax

Reference Type Syntax

Using Substitution Strings

6-28 Oracle HTML DB User’s Guide

HOME_LINK
HOME_LINK is the home page of an application. The HTML DB engine will redirect
to location if no page is given. Table 6–11 describes the supported syntax for
referencing HOME_LINK.

PROXY SERVER
PROXY SERVER is an application attribute. The attribute may be used by regions
whose source comes from a URL. The following is the correct syntax for a direct
PL/SQL reference used when you are writing PL/SQL to access remote Web
servers from within the database (for example, when using the utl_http
package shipped with the database).

HTMLDB_APPLICATION.G_PROXY_SERVER

REQUEST
Each application button sets the value of REQUEST to the name of the button. This
enables accept processing to reference the name of the button when a user clicks it.
In the f?p syntax, REQUEST may be set using the fourth argument.

Referencing the Value of REQUEST REQUEST is typically referenced during Accept
processing (that is, the processing that occurs when you post a page). Table 6–12
describes the supported syntax for referencing REQUEST.

Table 6–11 HOME_LINK Syntax

Reference Type Syntax

Direct PL/SQL HTMLDB_APPLICATION.G_HOME_LINK

PL/SQL v('HOME_LINK')

Template Reference #HOME_LINK#

Substitution String &HOME_LINK.

Table 6–12 REQUEST Syntax

Reference Type Syntax

Bind variable :REQUEST

Direct PL/SQL HTMLDB_APPLICATION.G_REQUEST

PL/SQL v('REQUEST')

Using Substitution Strings

Application Builder Concepts 6-29

Scope and Value of REQUEST for Posted Pages When you post a page, you initiate
Accept processing. Accept processing consists of computations, validations,
processes, and branches. The value of request is available during each phase of the
Accept processing. Once Oracle HTML DB branches to a different page then
REQUEST is set to NULL.

The value of REQUEST is the name of the button the user clicks, or the name of the
tab the user selects. For example, suppose you have a button with a name of
"CHANGE", and a label of "Apply Change." When a user clicks the button the value
of REQUEST will be CHANGE.

Referencing REQUEST Using Declarative Conditions It is common to reference REQUEST
using conditions. For example, you may wish to reset pagination when a user clicks
Go on a report page. You can reset pagination by creating a on-submit page process.
The page process can be made conditional using the condition Request =
Expression 1.

To create an on-submit page process:

1. Under Conditional Display, select the condition type Request = Expression 1.

2. In Expression 1, enter GO.

Using REQUEST for Show Processing You can also use REQUEST for Show processing
when navigating to a page using f?p syntax. For example:

f?p=100:1:&SESSION.:GO

Remember that the fourth argument is in the f?p syntax is REQUEST. This example
goes to application 100, page 1 for the current session and sets the value of
REQUEST to GO. Any process or region can reference the value of REQUEST using
Show processing.

The following is a similar example using PL/SQL:

IF v ('REQUEST') = 'GO' THEN
 htp.p('hello');
END IF;

Substitution string &REQUEST

&REQUEST. (exact syntax match)

Table 6–12 REQUEST Syntax

Reference Type Syntax

Using Substitution Strings

6-30 Oracle HTML DB User’s Guide

Note that htp.p('hello') is a call to a PL/SQL Web Toolkit package in order to
print out the specified text string.

SYSDATE_YYYYMMDD
SYSDATE_YYYYMMDD represents the current date on the database server, with the
YYYYMMDD format mask applied. You may use this value instead of repeated calls to
the SYSDATE() function. The following list describes the supported syntax for
referencing SYSDATE_YYYYMMDD.

■ Bind variable:

:SYSDATE_YYYYMMDD

■ PL/SQL:

v('SYSDATE_YYYYMMDD')

■ Direct PL/SQL:

HTMLDB_APPLICATION.G_SYSDATE (DATE DATATYPE)

DEBUG
Valid values for the DEBUG flag are YES or NO. Turning debug on shows details
about application processing. If you write your own custom code, you may wish to

See Also:

■ Oracle Database Application Developer's Guide - Fundamentals for
more information on developing Web applications with
PL/SQL

■ PL/SQL Packages and Types Reference for more information on
htp packages

Table 6–13 SYSDATE_YYYYMMDD Syntax

Reference Type Syntax

Bind variable :SYSDATE_YYYYMMDD

Direct PL/SQL HTMLDB_APPLICATION.G_SYSDATE (DATE DATATYPE)

PL/SQL v('SYSDATE_YYYYMMDD')

Using Substitution Strings

Application Builder Concepts 6-31

generate debug information only if the debug mode is set to YES. Table 6–14
describes the supported syntax for referencing DEBUG.

The following is an example of a substitution string reference that preserves the
current value of DEBUG:

f?p=100:1:&SESSION.::&DEBUG

APP_ID
APP_ID identifies the application ID of the currently executing application.
Table 6–15 describes the supported syntax for referencing APP_ID.

The following is an example of a substitution string reference:

f?p=&APP_ID.:40:&SESSION.

APP_PAGE_ID
APP_PAGE_ID is the current application Page ID. For example, if your application
was on page 3 then the result would be 3. Using this syntax is useful when writing

Table 6–14 DEBUG Syntax

Reference Type Syntax

Bind variable :DEBUG

Direct PL/SQL HTMLDB_APPLICATION.G_DEBUG

PL/SQL v('DEBUG')

Substitution string &DEBUG.

Table 6–15 APP_ID Syntax

Reference Type Syntax

Bind variable :APP_ID

Direct PL/SQL HTMLDB_APPLICATION.G_FLOW_ID (A NUMBER)

PL/SQL nv('APP_ID')

Substitution string &APP_ID.

Using Substitution Strings

6-32 Oracle HTML DB User’s Guide

application components that need to work generically in multiple applications.
Table 6–16 describes the supported syntax for referencing APP_PAGE_ID.

The following is an example of a substitution string reference:

f?p=&APP_ID.:&APP_PAGE_ID.:&SESSION.

APP SCHEMA OWNER
If you are generating calls to applications from within your PL/SQL code, you may
need to reference the owner of the Oracle application schema. The following
describes the correct syntax for direct PL/SQL reference:

HTMLDB_APPLICATION.G_FLOW_SCHEMA_OWNER

SQLERRM
SQLERRM is template substitution only available in the Applications Region Error
Message. The following describes the correct syntax for a region template
substitution reference:

#SQLERRM#

AUTHENTICATED_URL_PREFIX
This application level attribute identifies a valid authenticated prefix (that is, a
logged in URL prefix). You can use a relative path or a full path beginning with
http. This item is useful if your application can be run in both authenticated
(logged in) and public (not logged in) modes. You can use AUTHENTICATED_URL_
PREFIX to construct a link to an authenticated page. This item is most useful when
using basic database authentication since changes to the URL can require

Table 6–16 APP_PAGE_ID Syntax

Reference Type Syntax

Bind variable :APP_PAGE_ID

Direct PL/SQL HTMLDB_APPLICATION.G_FLOW_STEP_ID (A NUMBER)

Direct PL/SQL :APP_PAGE_ID

PL/SQL nv('APP_PAGE_ID')

Substitution string &APP_PAGE_ID.

Using Substitution Strings

Application Builder Concepts 6-33

authentication. Table 6–17 describes the supported syntax for referencing
AUTHENTICATED_URL_PREFIX.

LOGOUT_URL
LOGOUT_URL is application level attribute used to identify the logout URL. This is a
URL that navigates the user to a logout page or optionally directly logs a user out.
To create a logout navigation bar icon, use &LOGOUT_URL for the navigation bar
link. If you are coding a page template use #LOGOUT_URL#. Table 6–18 describes
the supported syntax for referencing LOGOUT_URL.

PUBLIC_URL_PREFIX
PUBLIC_URL_PREFIX is an application level attribute that identifies an URL to
toggle out of a logged in mode to a public view. Table 6–19 describes the supported
syntax for referencing PUBLIC_URL_PREFIX.

Table 6–17 AUTHENTICATED_URL_PREFIX Syntax

Reference Type Syntax

Bind variable :AUTHENTICATED_URL_PREFIX

PL/SQL v('AUTHENTICATED_URL_PREFIX')

Substitution string &AUTHENTICATED_URL_PREFIX.

Table 6–18 LOGOUT_URL Syntax

Reference Type Syntax

Bind variable :LOGOUT_URL

PL/SQL V('LOGOUT_URL')

Substitution string &LOGOUT_URL.

Template Substitution #LOGOUT_URL#

Table 6–19 PUBLIC_URL_PREFIX Syntax

Reference Type Syntax

Bind variable :PUBLIC_URL_PREFIX

PL/SQL v('PUBLIC_URL_PREFIX')

Substitution string &PUBLIC_URL_PREFIX.

Template Substitution #PUBLIC_URL_PREFIX#

Using Substitution Strings

6-34 Oracle HTML DB User’s Guide

CURRENT_PARENT_TAB_TEXT
CURRENT_PARENT_TAB_TEXT is most useful in page templates, but is only
relevant for applications that use two level tabs (that is, parent and standard tabs).
Use this string to reference the parent tab label. This substitution string enables you
to repeat the currently selected parent tab within the page template. Table 6–20
describes the supported syntax for referencing CURRENT_PARENT_TAB_TEXT.

APP_ALIAS
APP_ALIAS is alphanumeric name for the current application. APP_ALIAS is
different from the APP_ID in that the APP_ID must be unique over all companies
and all applications hosted in one database. In contrast, APP_ALIAS must be
unique within a workspace. Using the same APP_ALIAS you can create an
application called ABC in two workspaces. You can use APP_ALIAS almost
anywhere a APP_ID can be used. For example, f?p Syntax can use an APP_ALIAS
or an application ID as demonstrated in this example:

f?p=ABC:1:&SESSION.

This example runs application ABC, page 1 using the current session.

Table 6–21 describes the supported syntax for referencing APP_ALIAS.

The following is an HTML example:

Click me to go to page 1 of the current
application

Table 6–20 CURRENT_PARENT_TAB_TEXT Syntax

Reference Type Syntax

Bind variable Not Available.

Substitution string &CURRENT_PARENT_TAB_TEXT.

Table 6–21 APP_ALIAS Syntax

Reference Type Syntax

Bind variable :APP_ALIAS

PL/SQL v('APP_ALIAS')

Substitution string &APP_ALIAS.

Using Substitution Strings

Application Builder Concepts 6-35

APP_UNIQUE_PAGE_ID
APP_UNIQUE_PAGE_ID is an integer generated from an Oracle sequence which is
unique for each page view. This number is used by applications to prevent
duplicate page submissions and can be used for other purposes. For example, if you
wish to make a unique URL to avoid browser caching issues, you can embed this
number in the request or debug column in calls to the f procedure. Table 6–22
describes the supported syntax for referencing APP_UNIQUE_PAGE_ID.

The following is an HTML example:

SELECT 'f?p=100:1:'||:APP_SESSION||':'||:APP_UNIQUE_PAGE_ID||
 ':::P1_EMPNO:'||empno,
 ename,
 job
FROM emp

Note the use of the APP_UNIQUE_PAGE_ID in the request column. This makes this
URL unique and may avoid excessive browser caching problems.

Table 6–22 APP_UNIQUE_PAGE_ID Syntax

Reference Type Syntax

Bind variable :APP_UNIQUE_PAGE_ID

PL/SQL v('APP_UNIQUE_PAGE_ID')

Substitution string &APP_UNIQUE_PAGE_ID.

Using Substitution Strings

6-36 Oracle HTML DB User’s Guide

Using Application Builder 7-1

7
Using Application Builder

This section provides information on how to use Application Builder. Application
Builder is the tool you use to build the pages that comprise an application.

 This section contains the following topics:

■ Understanding the Definition of a Page

■ Creating an Application

■ Creating a New Page Using a Wizard

■ Working with Templates

■ Viewing Application Attributes

■ Editing Application Attributes

■ Viewing Page Attributes

■ Editing a Page Definition

■ Running a Page

See Also:

■ Chapter 1, "What is Oracle HTML DB?"

■ Chapter 2, "Quick Start"

■ Chapter 6, "Application Builder Concepts"

■ Chapter 8, "Building Application Components"

Understanding the Definition of a Page

7-2 Oracle HTML DB User’s Guide

Understanding the Definition of a Page
You use Application Builder to build dynamically rendered applications in Oracle
HTML DB. An application is a collection of database-driven Web pages linked
together using tabs, buttons, or hypertext links.

A page is the basic building block of an application. Each page can have buttons
and fields (called items) and can include application logic (or processes). You can
branch from one page to the next using conditional navigation, perform calculations
(called computations), validations (such as edit checks), and display reports,
calendars, and charts.

Topics in this section include:

■ Accessing Application Builder

■ Viewing a Page Definition

■ Viewing Page Reports

■ Using the Developer Toolbar

Accessing Application Builder
An application is a collection of pages that share a common session state definition
and authentication method. Application Builder is the tool you use to build the
pages that comprise an application.

To access the Application Builder home page, navigate to the Development tab and
click Application Builder. The Application Builder home page appears. The
sections that follow describe the Application Builder home page.

About the Available Applications List
Use the Available Applications list (see Figure 7–1 on page 7-3) to select an existing
application and then click Go.

Understanding the Definition of a Page

Using Application Builder 7-3

Figure 7–1 Available Applications List

The current application ID, last update date, application authentication scheme, the
application alias, the application owner, and selected template display directly
beneath the list. You can run an existing application, create a new application, edit
application attributes, or export information by clicking the following icons:

■ Run submits the pages in the current application to the HTML DB engine to
render viewable HTML.

■ Create Application creates a new application using the Create Application
Wizard.

■ Edit Attributes displays the Edit Application Attributes page.

■ Export/Install links you to the Export Import Wizard.

About the Edit Page List
As shown in Figure 7–2 on page 7-4, a page list displays at the bottom of the page.
To access a specific page, enter a page ID in the Edit Page field and click Go. To
change the view mode, select List or Detail.

See Also:

■ "Running a Page" on page 7-57

■ "Creating a New Page Using a Wizard" on page 7-13

■ "Editing Application Attributes" on page 7-29

■ "Exporting and Importing Applications" on page 10-2

Understanding the Definition of a Page

7-4 Oracle HTML DB User’s Guide

Figure 7–2 Page List

List view displays only the page ID and page name. To edit a page, drill down on
the page name. Detail view displays a report of all pages that comprise your
application. To sort, click the column headings. The report displays the page ID,
name, and counts of all components on the page.

About the Application Navigation Pane
The Application Navigation pane displays on the left side of the page. Click
Navigate to expand or collapse the list.

Figure 7–3 Application NavigatIon Pane

As shown in Figure 7–3 on page 7-4, the available links include:

■ Application list displays all applications in your workspace to which you have
edit access. Change the view by selecting List or Detail at the top of the page. To
edit an application in Detail view, click the edit icon. To edit an application in
List view, select the application name.

Understanding the Definition of a Page

Using Application Builder 7-5

■ Page grid edit displays an editable table of all pages in the currently selected
application. To apply your edits, click Apply Changes. To create a new page
using the Create Page Wizard, click Create New. To edit a page, click the edit
icon.

■ History displays counts of changes to applications aggregated by user by day.

■ Reports displays links to summary application reports. Summary Reports offer
interesting summary information such as details about customized regions,
component counts, and related pages in the current application. Utilization
Reports offer information specific to how components are utilized on each page.

■ Application Utilities offers quick access utilities that enable you to manage
translations, cascading style sheets, images, and export and import applications.

Viewing a Page Definition
You can view, create, and edit the components that define a page by accessing a
Page Definition.

To view the Page Definition for an existing page:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. To edit a specific page, you can either:

■ Enter the page ID in the Edit Page field and click Go

■ Click the page name

Understanding the Definition of a Page

7-6 Oracle HTML DB User’s Guide

Figure 7–4 Page Definition

As shown in Figure 7–4, the Page Definition appears.

Every Page Definition is divided into four sections as described in Table 7–1.

Table 7–1 Page Definition Page

Section Description

Navigation Pane Enables you to link to another page, run the current page, edit
item help as well as display navigation links and page reports.

See Also: "Using the Page Navigation Pane" on page 7-7 for
more information

Page Rendering Defines all attributes for the page, regions, buttons, items, page
rendering computations and page level processes.

See Also: "Viewing Page Attributes" on page 7-37 and
"Managing Page Rendering Components" on page 7-39 for
more information

Page Processing Specifies page level application logic such as computations,
validations, processes, and branching.

See Also: "About Page Processing Components" on page 7-50
for more information

Understanding the Definition of a Page

Using Application Builder 7-7

Using the Page Navigation Pane
The Page Navigation pane displays on the left side of the page. Available options
include:

■ Page. Use this field to link to other pages. To access a page directly, enter a page
ID and click Go. To access the previous or next page ID, click the arrow buttons.

■ Run Page. Submits the pages in the current application to the HTML DB
engine. The HTML DB engine then renders the pages into viewable HTML.

■ Edit Item Help. Enables you to edit help text associated with all items on the
current page. Item help text serves as context sensitive help for users of an
application.

■ Navigate. Expandable list offering quick access to wizards for creating lists, lists
of values, menus, security, tabs, and templates. Click Navigate to expand or
collapse the list.

■ Page Reports. Expandable list offering access to page reports. Click Page
Reports to expand or collapse the list.

Viewing Page Reports
Every Page Definition includes a Page Reports list in the left navigation pane. Each
report offers a different presentation of the components that define the page.

To access the Page Reports link:

Shared Components Displays application components that can be shared among
multiple pages.

See Also: "Creating Tab Sets" on page 8-2, "Creating a
Navigation Bar" on page 8-4, "Creating Menus" on page 8-7,
"Creating Lists" on page 8-11, and "Editing Templates" on
page 7-17

See Also:

■ "Creating a Help Page" on page 8-41 for more information on
creating item help

■ "Creating Reports" on page 8-28 for more information on page
reports

Table 7–1 Page Definition Page

Section Description

Understanding the Definition of a Page

7-8 Oracle HTML DB User’s Guide

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. To access the Page Definition for a specific page, you can either:

■ Enter the page ID in the Edit Page field and click Go

■ Click the page name

4. Click Page Reports in the left navigation pane to expand the list.

5. Click the appropriate page report link.

The sections that follow describe available page reports.

About All Conditions
Clicking All Conditions displays the Conditions Report. This report describes all
currently defined conditions on the current page for regions, buttons, items,
computations, validations, processes, and branches.

A condition is a small unit of logic that enables you to control the display of regions,
items, buttons, and tabs and the execution of processes, computations, and
validations. When you apply a condition to a component, the condition is
evaluated. Whether the condition passes or fails determines whether the component
displays, or whether a logic control (process, computation, validation) is executed.

About Event View
Clicking Event View displays the Page Event View report. This report details all
currently defined page components and processes. It provides a chronological view
of how and in what order the HTML DB engine renders the page, invokes logic, and
runs processes. A graphical legend in the left navigation pane identifies the
component type. You can choose from two view options:

■ Show All displays all possible page components and processes, including those
not currently defined.

■ Show Used displays currently used page components and processes (Default).

To view details about a specific page component or process, click the appropriate
hypertext link.

See Also: "Understanding Conditional Rendering and
Processing" on page 6-9

Understanding the Definition of a Page

Using Application Builder 7-9

To run the current page, click Run. To create a new page, click Create.

About History
History displays the Recent Changes report. Recent Changes displays recent edits
for the current page by developer, application, page ID, modification date, attribute,
and action. History lists a history of edited pages by page ID, page name, developer,
and edit date.

About Page Detail
Page Detail displays the detailed report describing all currently defined page
components and processes. Select the following options at the top of the page to
display or hide information:

■ All. Enabled by default. Displays detailed information about the current page
including defined regions, items, buttons, processes, validations, branches, and
computations.

■ Regions, Items, and Buttons. Displays detailed information of all items and
button defined in each region of the page.

■ Processes. Displays details about defined processes including source code.

■ Validations. Displays any defined validations performed on the current page.

■ Branches. Displays information about branching performed on the current
page.

■ Computations. Displays details about computations on the current page
defined at the page or application level.

About Related Pages
Related Pages displays the Related Pages and Components report. This report
displays all components that point to the current page, including menus, branches,
tabs, navigation bar icons, and list entries. To edit a component, click the component
name.

About Summary of All Pages
Summary of All Pages displays the Page Component Counts report. This report lists
all defined components by page.

Understanding the Definition of a Page

7-10 Oracle HTML DB User’s Guide

About Tree View
Clicking Tree View displays the Page Tree report. Use this page to view and edit
page attributes using the following hierarchy:

. Page

. . . Regions

. Items

. Buttons

. . . Process

. . . Computations

. . . Validations

. . . Branches

To edit an attribute, simply select it.

Using the Developer Toolbar
Users who log in to Oracle HTML DB having developer privileges have access to
the Developer toolbar. The Developer toolbar offers a quick way to edit the
currently selected page, create a new page, control, or component, view session
state, or turn edit links on an off.

As shown in Figure 7–5, the Developer toolbar displays at the bottom of every page
in a running application. It offers a quick way to edit the currently selected page,
create a new page, control, or component, view session state, or toggle edit links on
or off.

Figure 7–5 Developer Toolbar

The Developer toolbar consists of the following links:

■ Edit Application links you to the Application Builder home page. (See
"Viewing a Page Definition" on page 7-5.)

■ Edit Page.accesses the Page Definition for the currently running page. (See
"Editing Page Attributes" on page 7-52.)

Creating an Application

Using Application Builder 7-11

■ New links to a wizard that enables you to create a new blank page, component
(report, chart, or form), page control (region, button, or item), or a shared
component (menu, list, or tab).

■ Session links you to session state information for the current page. (See
"Viewing Session State" on page 6-13.)

■ Debug runs the current page in debug mode. (See "Accessing Debug Mode" on
page 9-2.)

■ Show edit links toggles between Show edit links and Hide edit links. Clicking
Show edit links displays an edit link (resembling four gray dots) to the right of
most page components or controls. By clicking an edit link you can edit the
selected component or control.

Creating an Application
You create a new application in Oracle HTML DB using the Create Application
Wizard. You delete an application from the Application Builder home page.

Topics in this section include:

■ Creating a New Application

■ Deleting an Application

Creating a New Application
You can use the Create Application Wizard to create a new application having up to
nine pages.

To create an application using the Create Application Wizard:

1. Click the Build icon.

Application Builder appears.

2. Click the Create Application icon.

3. Choose the method by which you want to create your application:

■ From Scratch. Enables you to define tabs, select a user interface (UI), and
many other options.

See Also: "Viewing Application Attributes" on page 7-28 and
"Editing Application Attributes" on page 7-29 for more information
on application attributes

Creating an Application

7-12 Oracle HTML DB User’s Guide

■ Based on an Existing Application. Creates a copy of another application,
including any authentication settings, but without any the pages. Select this
option to create an application using the same user interface templates as
the application you are copying.

■ Based on Existing Tables. Creates a complete application based on existing
tables you specify. Includes a menu, breadcrumb menus, report page, form
page, and a chart page. Select this option if you have a single table from
which you would like to create a report and insert, update and delete rows.

4. Follow the on-screen instructions.

Deleting an Application
You can delete an application from the Application Builder home page, or while
editing application attributes. If you delete an application you also delete all
defined attributes including templates, processes, buttons, and pages.

To delete an application from Application Builder home page:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. From the Tasks list, select Delete this Application.

4. Follow the on-screen instructions.

To delete an application while editing application attributes:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Select the Edit Attributes icon.

The Edit Application Attributes page appears.

4. Verify the application ID.

5. To delete the current application, click Delete.

Creating a New Page Using a Wizard

Using Application Builder 7-13

Creating a New Page Using a Wizard
You can create a new page in your application by clicking Create on the Page
Definition page, selecting the New... link on the Developer toolbar, or by using a
page wizard.

Topics in this section include:

■ About SVG Charting Support

■ Creating a Page While Viewing the Page Definition

■ Creating a Page from the Developer Toolbar

■ Creating a Page Using a Wizard

■ Deleting a Page

About SVG Charting Support
Oracle HTML DB supports two types of graphical charts:

■ HTML

■ SVG

SVG (Scalable Vector Graphics) is an XML-based language for Web graphics from
the World Wide Web Consortium (W3C). SVG charts are defined using an embed
tag.

When evaluating whether an SVG chart is appropriate chart type for your
application remember that:

■ Some Web browsers do not support SVG charts

■ Most Web browsers that support SVG charts require users download an SVG
plug-in

You define charts in Oracle HTML DB using a wizard in which you define a SQL
query using the following syntax:

SELECT LINK, LABEL, VALUE
FROM ...

LINK is an URL, LABEL is the text that displays in the bar, and VALUE is the
numeric column that defines the bar size.

For example:

SELECT null, ename, sal

Creating a New Page Using a Wizard

7-14 Oracle HTML DB User’s Guide

FROM scott.emp
WHERE deptno = :P101_DEPTNO

Creating a Page While Viewing the Page Definition
To create a new page while viewing a Page Definition:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Navigate to a specific page, by either:

■ Entering the page ID in the Edit Page field and click Go

■ Clicking the page name

4. Under Page in Page Rendering, click Create.

5. Follow the on-screen instructions.

Creating a Page from the Developer Toolbar
Users who log in to Oracle HTML DB having developer privileges have access to
the Developer toolbar. The Developer toolbar displays at the bottom every page and
offers a quick way create a new page.

To create a new page from the Developer toolbar:

1. On the Developer toolbar, select New.

The Create New Component Wizard appears.

2. Select Page and follow the on-screen instructions.

Creating a Page Using a Wizard
Oracle HTML DB includes the following types of wizards for creating pages:

■ Wizards that add discrete controls such as regions, items, and validations to an
existing page

See Also: Editing a Page Definition on page 7-38 for more
information on editing page attributes

See Also: "Using the Developer Toolbar" on page 7-10

Creating a New Page Using a Wizard

Using Application Builder 7-15

■ Wizards that add an entire component (such as a report or chart) to an existing
page

■ Wizards that create one or more new pages with components on them

To create a new page using a page wizard:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Select the Wizards tab.

The Create Page(s) Wizards page appears.

4. Select the type of page or pages you would like to create.

5. Follow the on-screen instructions.

Deleting a Page
You can delete a page while editing page attributes.

To delete a page:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Navigate to a specific page, by either:

■ Entering the page ID in the Edit Page field and click Go

■ Clicking the page name

4. Under Page, click Edit.

5. Under Primary Page Attributes, verify the page and application ID.

6. To delete the page, click Delete at the top of the page.

7. Follow the on-screen instructions.

See Also: "Editing a Page Definition" on page 7-38 for more
information on editing page attributes

Working with Templates

7-16 Oracle HTML DB User’s Guide

Working with Templates
Templates control the look and feel of the pages in your application. Oracle HTML
DB includes a number of templates each of which has a distinctive theme.

Topics in this section include:

■ Viewing Existing Templates

■ Creating Custom Templates

■ Editing Templates

Viewing Existing Templates
You view and edit templates on the Templates page.

To view a template from the Templates tab:

1. Click the Build icon.

2. Select the Templates tab.

The Templates page appears.

3. To view an existing template, click the template name.

You can also access the Templates page from the Shared Components section of
Page Definition.

About Cascading Style Sheets
A cascading style sheet (CSS) provides a way to control the style of a Web page
without changing its structure. When used properly, a CSS separates visual

See Also: "Editing a Page Definition" on page 7-38 for more
information on editing page attributes

See Also:

■ "How Application Builder Uses Templates" on page 6-5

■ "About User Interface Templates" on page 7-34

■ "About Template Defaults" on page 7-35

See Also: "Viewing a Page Definition" on page 7-5

Working with Templates

Using Application Builder 7-17

attributes such as color, margins, and fonts from the structure of the HTML
document.

Oracle HTML DB includes page templates with built-in UI themes which reference
their own CSS. The style rules defined in each CSS for a particular theme also
determine the way reports and regions look. When you copy templates from the
Oracle HTML DB gallery, make sure you select templates that match the UI theme
you are currently using.

Creating Custom Templates
If you need to create a custom template, it is generally simplest to start with an
existing template and then modify it. Once you have created one or more default
templates, you can modify those templates to fit your specific needs. The Templates
page is grouped by UI themes.

To create a custom template:

1. Click the Build icon.

2. Select the Templates tab.

3. At the top of the Templates page, click Create.

4. Select the type of template you would like to create.

5. Select a creation method:

■ Start with a default template

■ From scratch

■ As a copy of an existing template

6. Follow the on-screen instructions.

You can also make a copy of an existing template by scrolling down to the
appropriate template type and click Create/copy.

Editing Templates
Once you create a custom template, you can quickly edit it by clicking the edit icon.

To edit an existing template:

1. Click the Build icon.

2. Select the Templates tab.

Working with Templates

7-18 Oracle HTML DB User’s Guide

3. Locate the template you wish to edit and click the edit icon.

4. Follow the on-screen instructions.

As you edit templates, you can make changes in one window and run your
application in another by selecting Return to page. Selecting this check box, keeps
the page you are editing current after you click Apply Changes.

Topics in this section include:

■ Editing Page Templates

■ Editing Region Templates

■ Editing Report Templates

■ Editing List Templates

■ Editing Label Templates

■ Editing Menu Templates

■ Editing Button Templates

■ Editing Popup LOV Templates

Editing Page Templates
Templates define the appearance of a page. Each template consists of a header
template, a body template, a footer template, and a number of subtemplate
definitions. If you do not specify a page template as a page level attribute, then the
HTML DB engine uses the default page template defined on the Edit Application
Attributes page.

Page templates combine static HTML with substitution strings which are replaced
at runtime. You use substitution strings to indicate the existence and placement of a
component within a page template. You can further specify how a component
should display using subtemplates.

Table 7–2 describes the available page template substitution strings. Note that all
template substitution strings must be in upper case and begin and end with a
pound sign (#).

Working with Templates

Using Application Builder 7-19

Table 7–2 Page Template Substitution Strings

Substitution String Description

#ONLOAD# May be used in the Header and Footer section of the page
template and should be placed inside the <body> html
tag. For example:

<body #ONLOAD#>

Use this string as substitute in a JavaScript call to be
executed when a page is loaded by the Web browser. The
JavaScript to be called can vary for each page.

#TITLE# Defines the page title. Typically included within HTML
title tags.

#NAVIGATION_BAR# Defines the existence of navigation bar icons. A
navigation bar will appear on every page in your
application that uses a template which includes this
substitution string.You can expand this substitution
string using the Navigation bar subtemplate.

#FORM_OPEN# Specifies where the HTML open form tag <form> is
placed. You must include this substitution string in order
to submit a form.

You do not need to code your own form open, the HTML
DB engine does it for you.

#NOTIFICATION_MESSAGE# Enables developers to communicate messages to the user.
Defines where a summary of inline error messages is
displayed. Inline error message that can be displayed
next to a field, or inline in the notification area or both.

#SUCCESS_MESSAGE# Defines where in the page success and error message
appear. If the page process runs without raising an error,
then this text displays.

You can customize the display of the success message for
each template by adding HTML to be displayed before
and after the success message.

#BOX_BODY# Identifies where the Body displays. If the Body is null,
then #BOX_BODY# will be used instead.

#TAB_CELLS# Identifies the display of standard tabs.

See Also: "About Standard Tab Attributes" on page 7-22
for more information on defining Standard Tab
Attributes

Working with Templates

7-20 Oracle HTML DB User’s Guide

#PARENT_TAB_CELLS# Identifies the display of parent tabs. Parent tabs require
standard tabs. If your application only has one level tabs,
you do not need this substitution string.

See Also: "About Standard Tab Attributes" on page 7-22
for more information on defining Parent Tab Attributes

#NAVIGATION_BAR# Identifies the display of navigation bar icons. Does not
require an HTML table or row to be opened. The
navigation bar is intended to display icons for use in
meta navigation such as a help or log out icon. You can
expand #NAVIGATION_BAR# using the Navigation Bar
subtemplate.

See Also: "About Subtemplate Definitions" on page 7-21
for more information on Navigation Bar subtemplate

#FORM_CLOSE# If a #FORM_OPEN# is included, then you must include a
#FORM_CLOSE# in the header, body, or footer template.
#FORM_OPEN# must appear before the #BOX_BODY# and
#FORM_CLOSE# must appear after the #BOX_BODY#
substitution string.

#REGION_POSITION_NN# Identifies the exact placement of regions within a page. If
no region is specified (for example, #REGION_
POSITION_01#) then #REGION_POSITION_01# will be
replaced with nothing.

#GLOBAL_NOTIFICATION# Displays the Global Notification attribute. Global
notifications are intended to communicate system status,
such as a pending system downtime. You can also use
HTMLDB_APPLICATION.G_GLOBAL_NOTIFICATION to
set this value if you wish to set it programmatically

See Also: "About Global Notifications" on page 7-36 for
more information on the Global Notification attribute

#HEAD# Used after the <head> open tag, but before the </head>
close tag. You can optionally define the contents of
#HEAD# for each page (for example, to reference
additional style sheets or JavaScript libraries).

See Also:

■ "Using Substitution Strings" on page 6-22

■ "Creating a New Page Using a Wizard" on page 7-13

Table 7–2 Page Template Substitution Strings

Substitution String Description

Working with Templates

Using Application Builder 7-21

The sections that follow describe specific sections of the Edit Page Template page.

About Template Identification Application ID identifies the application to which this
template corresponds. Name identifies the template name used by application
developers to identify the template.

About Template Subscription Enables you to apply an existing template to the current
application. When you select an existing template, you become a subscriber to that
template.

To load a new copy of a master template, click Refresh.

About Header, Body, and Footer Definitions Each template consists of a header, a body, a
footer, and subtemplate definitions. Use substitution strings to indicate the
existence of a component on a page template. All template substitution strings must
be in upper case and begin and end with a pound sign (#). You can include the
substitution strings listed.

Header is the first section of the page template. When displaying regions or
executing processes or computations AFTER HEADER, they will display or execute
immediately after this section in the template is rendered.

Body is the second section in the page template and is rendered after the header
and before the footer section. At a minimum, you must include the #BOX_BODY#
substitution string.

Footer is the third section.

About Subtemplate Definitions Use Subtemplate Definitions to specify how a
component should display. Available subtemplate definitions include:

■ Success Message. Expands the #SUCCESS_MESSAGE# substitution string. You
can define a success message either programmatically, or as an attribute of a
process. If a success message exists and if the page template includes the
#SUCCESS_MESSAGE# substitution string, then this subtemplate is used to
render the message.

■ Navigation Bar. Controls the display of navigation bar icons. This subtemplate
is only relevant if the #NAVIGATION_BAR# substitution string is identified in
your page template. Use the #BAR_BODY# substitution string to identify where
each navigation bar icon should display.

■ Notification. Alerts the user that validation errors have occurred. This
subtemplate expands the #NOTIFICATION _MESSAGE# substitution string.

Working with Templates

7-22 Oracle HTML DB User’s Guide

Notification messages will not be display unless the #NOTIFICATION_
MESSAGE# substitution string is included in the page template.

About Standard Tab Attributes You MUST populate this attribute if your application
includes standard tabs. Standard tabs may be placed in the header, body, or footer
sections of the page template using the #TAB_CELLS# substitution string. The page
template Header/Body/Footer defines the HTML table and rows. This subtemplate
defines how these tabs display by defining the specific cell. Available attributes
include:

■ Current Tab. Defines the subtemplate to use for standard tabs that are selected
(or current) Whether or not a tab is current is determined by standard tab
attributes and the page displays. Use #TAB_TEXT# to position a tab's label and
link within the template.

■ Non Current Standard Tab. Defines the subtemplate to use for standard tabs
that are not current. Use #TAB_TEXT# to position a tab's label and link within
the template.

About Parent Tab Attributes You MUST populate this attribute if your application
includes two levels of tabs. Parent tabs may be placed in the header, body, or footer
section of the page template using the #PARENT_TAB_CELLS# substitution string.
Parent tabs only display in conjunction with standard tabs. Available attributes
include:

■ Current Parent Tab. Defines the subtemplate to use for parent tabs that are
selected (or current). Whether or not a tab is current is determined by the page
that displays and the standard tab set the page uses. Use #TAB_TEXT# to
position a tab's label and link within the template.

■ Non Current Parent Tab. Defines the subtemplate to use for parent tabs that are
not current. Use #TAB_TEXT# to position a tab's label and link within the
template.

About Image Based Tab Attributes Use this subtemplate for tabs that are entirely based
on images.

About Multi Column Region Table Attribute Each region is assigned a column and a
display sequence within that column. When regions are placed in more than one
column, Oracle HTML DB renders the regions using an HTML table. This attribute
will be used in the <table> tag used for the layout.

Working with Templates

Using Application Builder 7-23

About Error Page Template Control Use this attribute only when a page template will be
designated as an error template. Use #MESSAGE# to place the error message and
#BACK_LINK# to display a link back to the previous page. A template can be
designated as an error template by editing the application attributes. For example:

#MESSAGE#

back

About Configuration Management You can use build options to enable or disable
functionality. Most application attributes have a build option attribute.

Build Options have two possible values: INCLUDE and EXCLUDE. A component
that is excluded is not considered part of the application definition at runtime.

About Comments Use this attribute to record developer comments.

Editing Region Templates
Regions templates control the appearance and placement of region attributes.
Region templates frequently use HTML tables to arrange content.

Region templates apply style elements to regions. Region templates display
substitution strings. #BODY# (the only required substitution string) identifies where
the source of the region should be placed. All other substitution strings are optional.
You can use these substitution strings to indicate the existence and placement of a
component (such as a button) within the region.

The topics that follow describe specific sections of the Edit Region Template page.

About Region Template Identification Application ID Identifies the application to
which this template corresponds. Name identifies the template name used by
developers to identify the template.

About Template Subscription Applies an existing template to the current application.
When you select an existing template, you become a subscriber to that template.

To load a new copy of a master template, click Refresh.

See Also: "Using Build Options to Control Configuration" on
page 6-11

Working with Templates

7-24 Oracle HTML DB User’s Guide

About Region Template #BODY# (the only required substitution string) identifies
where the source of the region should be placed. All other substitution strings are
optional.

When you create a button in a region position, the positions you have defined will
appear in a select list. Use the following substitution strings to define positions for
placement of buttons in a region:

■ #EDIT#

■ #CLOSE#

■ #CREATE#

■ #EXPAND#

■ #HELP#

■ #DELETE#

■ #COPY#

■ #NEXT#

■ #PREVIOUS#

About Form Table Attributes Page items display within regions. Items are rendered as
HTML form elements in an HTML table. With this template property, you can
define attributes that will be placed in the <table> tag. For example:

class="tanBox"

About Comments Use this attribute to record developer comments.

Editing Report Templates
Report templates are used to apply formatting and style elements to reports. Each
report template identifies column names using the syntax #1#, #2#, #3# and so
on. You can also name columns using column name substitution syntax such as
#ENAME# or #EMPNO#. You can reference any item from your application within
your template. For example, to reference an item called ABC. in your template, you
could include the exact substitution string &ABC.. The actual value of ABC. would
be provided by an end user editing an item in your application named ABC.

Oracle HTML DB includes two types of report templates:

See Also: "Using Substitution Strings" on page 6-22

Working with Templates

Using Application Builder 7-25

■ Generic Column Templates

■ Named Column Templates

The sections that follow describe generic column templates, named column
templates, as well as how to use report templates conditionally, incorporate Oracle
tags, and add JavaScript to row templates.

About Generic Column Templates You can use generic column templates for most
queries. This template defines the look of each column. You can conditionally
display one-column templates for rows that meet a specific condition and use
another column template for other rows. You cannot use this type of template to
display multiple columns on the same row differently. If you want each column to
use a specific style, you could define the column template similar to the following:

<td class="tabledata" align="#ALIGN#">#COLUMN_VALUE#</td>

This example assumes your page template includes a CSS containing the class
tabledata. This example also demonstrates the use the substitution strings
#ALIGN# and #COLUMN_VALUE#. If you actually ran this report, these substitution
strings would be replaced with values generated by the results of a SQL query.

If your query uses an expression in the select list, it is a good idea to create an alias
for the columns to avoid runtime errors. For example, suppose your query was as
follows:

SELECT ename, (sal + comm) * 12 FROM emp

You could rewrite the query to alias the columns as follows:

SELECT ename, (sal + comm) * 12 yearly_comp FROM emp

About Named Column Templates Although named column templates offer a great deal
of flexibility, you may need to create a new template for each query. When you use a
named column template, you specify the column name in the template. For
example:

<tr><td>#ENAME#</td><td>#SAL#</td></tr>

You can also include a position notation. The following example demonstrates how
to use following HTML and substitution strings:

See Also: Online help for more information on using specific
sections of the Edit Report Template page

Working with Templates

7-26 Oracle HTML DB User’s Guide

<tr><td>#ENAME#</td><td>#SAL#</td></tr>

<tr><td>#1#</td><td>#2#</td></tr>

About Conditional Use of Report Templates By creating conditions, you can create a
report that displays rows differently depending upon who runs the report. You can
conditionally use up to four report templates for each query and can refer to specific
rows using the syntax #1#, #2#, #3#. For example, to display a row in bold if the
salary was greater then 2000 you could include the following row template
condition:

#5# > 2000

About Using JavaScript in Row Templates You can conditionally display HTML
depending upon values in the database using JavaScript. The following example
displays an HTML row only if the GROUP_DESC query column is not null.

<script language="javascript">
IF ("#GROUP_DESC#" != "")
document.writeln("<TR>;
<TD BGCOLOR=#336699>;Group
Description</TD>
</TR>
</TR>
<TD>#GROUP_DESC#</TD>
 </TR>");
</TR>");

Editing List Templates
A list is a shared collection of links. You control the appearance of a list through list
templates. Using template attributes, you can also define a list element to be either
current or non current for a specific page.

See Also:

■ Online help for more information on using specific sections of
the Edit Report Template page

■ "Creating Regions" on page 8-14

Working with Templates

Using Application Builder 7-27

Editing Label Templates
Label templates are designed to centrally manage HTML markup of page item
labels. Each item can have an optional label. You can control how these labels
display using label templates. For example, you could create a label template called
"Required Field" which references an image (such as an asterisk) to indicate to the
user that the field is required.

Label templates enable you to define a before and after text string that gets
prepended and appended to the item.

Editing Menu Templates
A menu template controls the display of menus. You select a menu template when
you create a region.

Breadcrumb Style Menu Navigation Breadcrumb style menus usually indicate where the
current page is relative to other pages in the application. In addition, users can click
a specific page to instantly view it. Oracle HTML DB includes breadcrumb paths
beneath the standard tabs (or second level navigation tabs) at the top of each page
as shown in the following example:

Figure 7–6 Breadcrumb Style Menu

See Also:

■ Online help for more information on using specific sections of
the Edit List Template page

■ "Creating Lists" on page 8-11

See Also: Online help for more information on using specific
sections of the Edit Label Template page

Viewing Application Attributes

7-28 Oracle HTML DB User’s Guide

Editing Button Templates
Button templates enable application developers to customize the look and feel of a
button. To build a button, you can use multiple images or HTML tags. Using button
templates is optional.

Editing Popup LOV Templates
Popup LOV template controls how popup lists display for all items defined as
POPUP. You can only specify one popup LOV template for each application.

Viewing Application Attributes
Application attributes are not specific to one page, but apply to all pages in an
application. Once you create an application the next step is to specify application
attributes.

To view application attributes:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Click the Edit Attributes icon. (See Figure 7–7.)

See Also:

■ Online help for more information on using specific sections of
the Edit Menu Template page

■ "Creating a Menu Template" on page 8-8

■ "Creating Menus" on page 8-7

See Also:

■ Online help for more information on using specific sections of
the Edit LOV Template page

■ "Creating Lists of Values" on page 8-20

Editing Application Attributes

Using Application Builder 7-29

Figure 7–7 Edit Attributes Icon

The Edit Application Attributes page appears.

Editing Application Attributes
Application attributes apply to all pages in an application. Once you create an
application the next step is to specify application attributes.

To edit application attributes:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Select the Edit Attributes icon.

The Edit Application Attributes page appears.

Oracle HTML DB creates a unique application ID when you create a new
application. The application ID displays at the top of the page. Beneath the
application ID are links to various sections of the page. Required values are
marked with a red asterisk (*).

The topics that follow describe the specific sections of the Edit Application
Attributes page.

Topics in this section include:

■ About Application Definition

■ About Authorization

■ About Session Management

See Also:

■ "Editing Application Attributes" on page 7-29

■ "Editing a Page Definition" on page 7-38

Editing Application Attributes

7-30 Oracle HTML DB User’s Guide

■ About User Interface Templates

■ About Template Defaults

■ About Globalization

■ About Application Availability

■ About Global Notifications

■ About Virtual Private Database (VPD)

■ About Static Substitution Strings

■ About Build Options

■ About Application Comments

About Application Definition
Use this section to define basic characteristics of your application, including the
application name, an optional alphanumeric alias, a version number, and the
application owner. Table 7–3 describes all Application Definition attributes.

Table 7–3 Application Definition Attributes

Attribute Description

Name Provides a short descriptive name for the application to
distinguish it from other applications in select lists and reports.

Application Alias Assigns an alternate alphanumeric application identifier. You
can use this identifier in place of the application ID.

For example, suppose you create an alias of myapp for
application 105. Using f?p syntax, you could call application
105 as either:

■ f?p=105:1

■ f?p=myapp:1

Editing Application Attributes

Using Application Builder 7-31

Version Enables application versioning. You can also automatically tie
the version to the date of last modification using the following
format masks:

■ YYYY.MM.DD

■ MM.DD.YYYY

■ DD.MM.YYYY

If your application version uses YYYY.MM.DD then Oracle
HTML DB replaces this format mask with the date of last
modification of any application attribute.

Image Prefix Enter virtual directory set up during installation that points to
the actual path to the file system that contains images for your
application. Ask your administrator if you are unsure. By
default, it is configured as '/i/', your administrator may have
customized this option after installation. Do not include a full
image path only the virtual directory name.

When embedding an image in static text (for example, in page
or region headers or footers) you can reference an image using
the substitution string #IMAGE_PREFIX#. For example, to
reference the image go.gif you would use the following syntax:

Proxy Server Use this field when you specify a proxy server. You can
reference a proxy server using the PL/SQL package variable
HTMLDB_APPLICATION.G_PROXY_SERVER. For example:

www-proxy.us.oracle.com

Application Builder may require a proxy server when using a
region source type of URL. The URL region source embeds the
results of the URL (that is, the page returned by navigating to
the URL) as the region source. If you use a firewall and the
target of a URL is on the opposite side of the firewall from
where Oracle HTML DB is installed, you may need this proxy
setting.

Default Parsing Schema Specifies the schema that all SQL and PL/SQL in the
application will be parsed as. You may use #OWNER# to
reference this value in SQL queries and PL/SQL (for example,
in a region or a process).

Table 7–3 Application Definition Attributes

Attribute Description

Editing Application Attributes

7-32 Oracle HTML DB User’s Guide

About Authorization
Use the Authorization field to specify an authorization scheme for your application.
You may assign only one authorization to a given application.

When you use an authorization scheme, users can only view those pages that pass
the specified authorization scheme. An authorization scheme is a binary operation
that either succeeds (equals true) or fails (equals false). If it succeeds then the
component can be viewed, if it fails then the component cannot be viewed or
processed. If you have attached an authorization scheme to a page and it fails then
an error message displays. When you attach an authorization scheme to any other
component (such regions, button, or items) and it fails, no error page displays.
Instead, the component either does not display or is not processed or executed.

Logging Determines whether user activity is recorded in the Oracle
HTML DB activity log. When set to Yes, every page view will
be logged, allowing a Workspace administrator to monitor user
activity for each application.

Exact Substitutions Select whether or not to use exact substitutions. For optimal
runtime performance, it is recommended you use exact
substitutions.

Exact substitutions use the following sytnax:

&ITEM.

Non-exact substitutions use the following sytnax.

&ITEM

See Also:

■ "Using Substitution Strings" on page 6-22

■ "Using f?p Syntax to Link Pages" on page 6-20 for more
information on linking pages

See Also: "Creating an Authentication Scheme" on page 10-10
authorization schemes

Table 7–3 Application Definition Attributes

Attribute Description

Editing Application Attributes

Using Application Builder 7-33

About Session Management
Use these attributes when establishing your authentication and session
management infrastructure. Table 7–4 describes all session management attributes.

Table 7–4 Session Management Attributes

Attribute Description

Home Link This is the relative URL used to display the home page of your
application. For example, f?p=6000:600 could be for
application 6000 with a home page ID of 600.

The value you enter here replaces #HOME_LINK# substitution
string in application templates.

You can also use this attribute to name a procedure. For
example, you could create a procedure such as personal_
calendar which calls an HTML page to serve as the
application home.

Login URL Specifies the location of the application login page.

See Also: "Using Substitution Strings" on page 6-22 and
"Creating an Authorization Scheme" on page 10-17 for more
information

Public User Identifies the Oracle schema (that is, the user) used to connect
to the database when generating unprotected pages.

When a user logs in as this user then the HTML DB engine
considers this to be a "public user" session. The HTML DB
engine supports the following built -in display conditions:

■ USER_IS_PUBLIC_USER

■ USER_IS_NOT_PUBLIC_USER

If the current application user (or v('USER') equals the value
of this attribute, then the user is logged on as a public user.
Some applications have public (not logged in) and a private
(logged in) modes. By determining if the user is a public user,
you can conditionally display or hide information.

See Also: "Establishing User Identity Through Authentication"
on page 10-9 for more information

For example you can show a login button if the user is a public
user and a logout link if the user is not the public user. The
public user (if null) defaults to "PUBLIC_USER". Reference this
value using HTMLDB_APPLICATION.G_PUBLIC_USER. The
HTML DB engine also has built in condition types 'USER_IS_
PUBLIC_USER' and 'USER_IS_NOT_PUBLIC' user.

Editing Application Attributes

7-34 Oracle HTML DB User’s Guide

To view details about a selected authentication scheme, click mange next to
Authentication: SCHEME.

About User Interface Templates
Use these attributes to control the look and feel of the pages in your application. An
application can have any number of page templates. You can specify a unique
template for each page, or if you do not specify a template the HTML DB engine
uses the template specified here. Table 7–5 describes the available user interface
templates attributes.

Table 7–5 User Interface Templates Attributes

Attribute Description

Default Page Template Specifies the default page template for displaying pages. If a
page developer does not explicitly choose a template then the
HTML DB engine uses the template specified here.

Print Mode Page Template Identifies the template to be used when the HTML DB engine
is in printer friendly mode.

When calling the HTML DB engine to render a page, you have
the option to identify a printer friendly attribute with values of
YES and NO.

If you specify YES, then the page displays using a printer
friendly template. The HTML DB engine displays all text
within HTML Form Fields as text. The printer friendly
template does not need to have the #FORM_OPEN# or #FORM_
CLOSE# tag. The objective is to be able to display information
with few tables and in a format suitable for printing.

Error Page Template Optional. Specifies a page template to use for errors that
display on a separate page as opposed to those that display
inline.

Body Width When Application Builder creates a table to display the body of
the application, this attribute specifies the width it should it
use. The default is 98 percent (98%).

Typically the developer controls all table creations using region
templates. In the event that such templates are unavailable,
Oracle HTML DB uses this value.

See Also: "Working with Templates" on page 7-16 and "Editing
Templates" on page 7-17

Editing Application Attributes

Using Application Builder 7-35

About Template Defaults
Use the following attributes to specify the default template when you create new
regions, labels, reports, lists, menus, and buttons. You can override these settings on
the edit page for each component.

About Globalization
The attributes described in Table 7–6 enable you to specify globalization options
such as the primary application language.

See Also:

■ Online help for more information on each default template
setting

■ "Working with Templates" on page 7-16 and "Editing
Templates" on page 7-17

Table 7–6 Globalization Attributes

Attribute Description

Application Primary
Language

Identifies the language in which an application is developed.
This language is the base language from which all translations
are made. For example, suppose application 100 was authored
in English and then translated it into French and published as
application 101. The application ID would be transparent to the
end user.

All modifications to the application should be made to the
primary language specified here.

Application Language
Derived From

When running an application, the HTML DB engine needs to
know the user's language preference so it can set the database
language and run the translated application. The database
language setting determines date display and sorting
characteristics.

This option enables you to disable browser derived language
support. You also have the option of having the application
language derived from an application preference.

See Also: "About Translating an Application and Globalization
Support" on page 16-1 for more information on translating an
application and globalization support

Editing Application Attributes

7-36 Oracle HTML DB User’s Guide

About Application Availability
Use these attributes to manage your application by defining an application status
and build status. For example, if you select the status Restricted Access, you can
specify which users who have access and can run this application.

About Global Notifications
You can use a global notification to communicate system status. If your page
template contains a #GLOBAL_NOTIFICATION# substitution string, then the text
entered here displays on each page.

About Virtual Private Database (VPD)
VPD provides an application programmatic interface (API) which enables
developers to assign security policies to database tables and views. Using PL/SQL,
developers can create security policies with stored procedures and bind the
procedures to a table or view by means of a call to an RDBMS package. Such
policies are based on the content of application data stored within the database, or
based on context variables provided by Oracle database. In this way, VPD permits
access security mechanisms to be removed from applications, and centralized.

The PL/SQL you enter in this field is executed immediately after the user is
authenticated. v('USER') is accessible from this function. Session state for the
current call is not yet initialized when this call is made. If your application does not
need to employ VPD to support multiple customers in the same database then leave
this attribute null.

About Static Substitution Strings
Static substitution string are strings that are defined centrally. They are typically
used for phrases or labels that occur in many places within an application. Defining

See Also: Online help for more information on each Application
Availability attribute

See Also: "Using Substitution Strings" on page 6-22

See Also:

■ "Providing Security Through Authorization" on page 10-17

■ Oracle Label Security Administrator's Guide

Viewing Page Attributes

Using Application Builder 7-37

Static substitution strings centrally enables you to affect multiple changes to labels
by making a single change to a substitution string.

About Build Options
Use build options to enable or disable functionality. Most application attributes
have a build option attribute. Do not specify a build option unless you plan on
excluding that object from specific installations. Build Options have two possible
values: INCLUDE and EXCLUDE. An attribute that is excluded is treated as if it does
not exist.

About Application Comments
Use this attribute to record developer comments about the current application.

Viewing Page Attributes
Page attributes only apply to a specific page. Once you have defined application
attributes the next step is to specify page attributes. You access page attributes from
the Page Definition page.

To view page attributes:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Navigate to a specific page, by either:

■ Entering the page ID in the Edit Page field and click Go

■ Clicking the page name

The Page Definition appears.

By default, each page is divided into three sections.

See Also: "Using Substitution Strings" on page 6-22 for more
information on the built-in substitution strings available in Oracle
HTML DB

See Also: "Using Build Options to Control Configuration" on
page 6-11

Editing a Page Definition

7-38 Oracle HTML DB User’s Guide

■ Page Rendering. Includes all attributes for the page, regions, buttons,
items, as well as page rendering computations and processing.

■ Page Processing. Enables you to specify page level application logic such as
computations, validations, processes, and branching.

■ Shared Components. Displays common components that display on every
page within an application. Parent tabs, standard tabs, navigation bars, list
of values, menus, lists, and templates are examples of shared components.
You can hide shared components by disabling the Shared Components
customization option.

Attributes found under the section Page are the actual attributes of the page.
Page Rendering contains attributes that are subordinate to the page (such
Regions, Buttons, Items, Computations and Processes). You define these
attributes on their own respective pages.

Editing a Page Definition
A page is the basic building block of an application. You create a new application
using the Create Application Wizard. Once created, each page has page ID, a name,
and typically some text attributes such as a header, title and footer. You add content
to your page by creating regions, items and buttons. Page templates and page
region templates control the exact look and feel of each page.

You can view the details about a specific component by selecting the component
name. You can view, edit, and create new page components by clicking the
following buttons:

■ View. Click this button to view and edit details about currently defined
components.

■ Copy. Click this button to make a copy of current component.

■ Create. Click this button to create a new component.

Topics in this section include:

■ Managing Page Rendering Components

See Also:

■ "Editing a Page Definition" on page 7-38 for more information
on editing page attributes

■ "Building Application Components" on page 8-1

Editing a Page Definition

Using Application Builder 7-39

■ About Page Processing Components

■ Editing Page Attributes

Managing Page Rendering Components
Under Page Rendering, you specify all page attributes as well as attributes for
defined regions, buttons, items, page rendering computation, and page processes.

Topics in this section include:

■ About Page

■ About Regions

■ About Buttons

■ About Items

■ About Page Computations

■ About Page Processes

About Page
Use Page to edit high-level page attributes such as the page name, an optional name
alias, and view information about defined tab sets, specified templates, and
authorization schemes.

About Regions
A region is a section of a page that contains content. The content of a region is
determined by the region source. For example, a region may contain a report based
on a SQL query you define, or it may contain static HTML.

For more information on specific region attributes, see the on-screen instructions.

See Also:

■ "Understanding the Definition of a Page" on page 7-2

■ "Creating an Application" on page 7-11

■ "Creating a New Page Using a Wizard" on page 7-13

See Also: Editing Page Attributes on page 7-52

Editing a Page Definition

7-40 Oracle HTML DB User’s Guide

Understanding Region Source Types Each region has a region source type. The HTML
DB engine interprets a region differently based the type you select. Table 7–7
describes available region types.

Table 7–7 Region Types

Region Type Description

HTML HTML regions contain HTML you provide. They are
also used as containers for items. Any HTML you type
may contain substitution strings.

Report Report regions can be defined by a SQL query you
write, or by using a wizard to guide you through the
steps needed to write a query.

See Also: "Creating Reports" on page 8-28

Chart Chart regions contain line, bar, or pie charts based on
SQL queries.

See Also: "Creating Charts" on page 8-35

List List regions are used for navigation and may consist of
links or images. Individual list entries can be
conditionally displayed.

See Also: "Creating Lists" on page 8-11

Menu Menu regions are navigational controls consisting of
predefined, hierarchically organized links.

See Also: "Creating Menus" on page 8-7

PL/SQL Dynamic Content Regions based on PL/SQL enable you to render any
HTML or text using the PL/SQL Web Toolkit.

Other, HTML Text (escape special
characters).

Same as HTML region, but the HTML DB engine
escapes special characters before they are rendered.

Other, HTML Text (with shortcuts) Same as HTML region, but with support for shortcuts.

See Also: "Utilizing Shortcuts" on page 8-40

Other, Help Text Help regions enable you to provide page level help.

See Also: "Creating a Help Page" on page 8-41

Other, URL URL based regions obtain their content by calling a
Web server using a predefined URL.

See Also: "About Regions Based on an URL" on
page 8-17

Editing a Page Definition

Using Application Builder 7-41

Controlling Region Positioning When you create a region, you must specify its
position or Display Point on the page. Regions are rendered in order of sequence
number within a Display Point. You can choose either a default position (such as
Page Template Body) or a user defined position in the template (such as Page
Template Region Position 1.) In addition to Display Point, you can specify which
column the region will be placed in. When you place regions in multiple columns,
Oracle HTML DB automatically renders the necessary HTML to produce a multi
column layout.

Displaying a Region Conditionally Whether a region is displayed can be based on
conditions defined at the region level. Conditions may reference session state, the
currently logged in user, or HTML DB engine settings (such as whether or not a
page is in Print View mode).

Specifying a Region Header and Footer In addition to the body content of a region
(which can be a report, a chart, or HTML with form elements), you can specify
additional HTML to be placed above and below a region or in its header and footer.
The region footer supports the following substitution strings:

Other, Web Service Result Web service based regions call a predefined Web
service to obtain an XML document. An optional XSLT
style sheet may be applied.

See Also: "Implementing Web Services" on page 12-15

Other, Tree Trees are a hierarchical navigational control based on a
SQL query executed at runtime. It enables the user to
expand and collapse nodes.

See Also: "Creating Trees" on page 8-10

See Also:

■ "Creating Regions" on page 8-14 for more information on
creating specific types of regions

■ Oracle Database Application Developer's Guide - Fundamentals for
more information on developing Web applications with
PL/SQL

■ PL/SQL Packages and Types Reference for more information on
htp packages

Table 7–7 Region Types

Region Type Description

Editing a Page Definition

7-42 Oracle HTML DB User’s Guide

■ #TIMING# shows the elapsed time in seconds used when rendering a region.
You may use this for debugging purposes.

■ #ROWS_FETCHED# shows the number of rows fetched by the Oracle HTML DB
reporting engine. You may use these substitution strings to display customized
messages to the user. For example:

Fetched #ROWS_FETCHED# rows in #TIMING# seconds.

■ #TOTAL_ROWS# displays the total number of rows that satisfy a SQL query
used for a report.

■ #FIRST_ROW_NUMBER# and #LAST_ROW_NUMBER# displays the range of rows
displayed. For example:

Row(s) #FIRST_ROW_NUMBER# through #LAST_ROW_NUMBER# of #ROWS_FETCHED#
displayed

About Buttons
As you design your application you can use buttons to direct users to a specific
page or URL, or to post or process information. Buttons can be placed in predefined
region template positions or among items in a form.

For more information on specific button attributes, see the on-screen instructions.

About Branching with Buttons Each page can include any number of branches. A
branch links to another page in your application or to an URL. The HTML DB
engine considers branching at different times during page processing. You can
choose to branch before processing, before computation, before validation, and after
processing. Like any other component in Application Builder, branching can be
conditional. For example, you can branch when a user clicks a button. When you
create a branch, you associate it with a specific button. The branch will only be
considered if a user clicks the button.

Understanding the Relationship Between Button Names and REQUEST The name you give
a button determines the value of the built-in attribute REQUEST. You can reference

See Also:

■ "About Branching" on page 7-42

■ "Creating a Branch" on page 8-13

■ "Using the Create Button Wizard" on page 8-19

Editing a Page Definition

Using Application Builder 7-43

the value of REQUEST from within PL/SQL using the bind variable :REQUEST. By
using this bind variable, you can conditionally process, validate, or branch based on
which button the user clicks. You can also create processes that execute when the
user clicks a button. You can also use a more complex condition as demonstrated in
the following examples:

If :REQUEST in ('EDIT','DELETE') then ...
If :REQUEST != 'DELETE' then ...

These examples assume the existence of buttons named EDIT and DELETE. You can
also use this syntax in PL/SQL Expression conditions. Be aware, however, that the
button name case is preserved. In other words, if you name a button "LOGIN" then
a request looking for the name "Login" will fail. For example:

<input type="BUTTON" value="Finish" onClick="javascript:doSubmit('Finish');">

Note that Finish is the name of the REQUEST and in this example is case
sensitive.

Displaying Buttons Conditionally You can choose to have a button display conditionally
by making a selection from the Conditional Display Type list and entering an
expression.

About Items
An item is part of an HTML form and can be a text field, text area, password,
combobox, checkbox, and so on. There are two types of items, page items and
application items. Page items are placed on a page and have associated user
interface properties, such as Display As, Label and Label Template. Application
items are not associated with a page and therefore have no user interface properties.
An application item can be used as a global variable.

For more information on specific item attributes, see the on-screen instructions.

Understanding Item Display As Options For each item, you specify a type by making a
selection from the Display As list. Table 7–8 describes many available Display As
options.

See Also: "Creating Buttons" on page 8-19 for more information
on creating specific types of buttons

See Also: "Using Substitution Strings" on page 6-22

Editing a Page Definition

7-44 Oracle HTML DB User’s Guide

Table 7–8 Item Display As Options

Display As Option Description

Button Used to build forms in Oracle HTML DB. Use an Item Button when you
want to place a button among other fields (or items) in a form. When clicked,
this type of button will automatically switch the HTML DB engine to
processing mode, enabling you to perform validations, execute processes, or
branch the user to another page.

See Also: "About Buttons" on page 7-42

Check box Displayed using a list of values. A list of values is required for items
displayed as check boxes. The value corresponding to a checked box is
returned in a single colon (:) delimited string.

The following example demonstrates how to create a single check box that
returns YES. This example would display both a check box and a field label.

SELECT NULL display_text, 'YES' return_value FROM DUAL;

This example includes the additional text "Click to select."

SELECT 'Click to select' display_text, 'YES' return_value FROM
DUAL;

See Also: "HTMLDB_UTIL" on page 13-1 for more information on breaking
up returned values

Date Picker Displays a text field with a calendar icon next to it. When clicked, this icon
displays a small calendar from which the user can select a date and a time
(optional).

If the format you need is not included in the Display As list, select Date
Picker (use applications format mask). When using a format mask, your
application looks for the format in an item called PICK_DATE_USING_APP_
FORMAT_MASK. Note that you need to populate this item before this item
type will work.

Display as Text (based on LOV,
does not save state)

Displays a read-only version of a display value from a list of values by using
the item's value in session state to look up the corresponding display value
in the associated list of values. The value displayed on the screen is not
saved in session state upon submit.

Display as Text (based on LOV,
saves state)

Displays a read-only version of a display value from a list of values by using
the item's value in session state to look up the corresponding display value
in the associated list of values.

Display as Text (escape special
characters, does not save state)

Displays a read-only version of the value in session state, escaping special
characters. Session state is not saved.

Display as Text (saves text) Displays a read-only version of the value in session state. Upon submit, the
value displayed is saved in session state.

Editing a Page Definition

Using Application Builder 7-45

File Displays a text field with a "Browse..." button. This enables the user to locate
a file on a local file system and upload it. Oracle HTML DB provides a table
for these files to be uploaded to as well as an API to retrieve the files.

Hidden Renders an HTML hidden form element. Session state can be assigned and
referenced just like a text field.

List Managers Based on a list of values. This item enables you to manage a list of items by
selecting and adding to a list. The list of values display as a popup.

Multiselect List Renders as a multiselect HTML form element. When submitted, selected
values are returned in a single colon delimited string. You can break up the
values using the HTMLDB_UTIL API.

See Also: "HTMLDB_UTIL" on page 13-1

Password Renders as an HTML password form element.

Popup LOV Renders as a text field with an icon next to it from which a user can select a
value from a popup window. The list in the popup window is driven by a list
of values. There are two types of Popup LOVs, one that fetches a set of rows
when the window pops up and one that does not.

Popup LOV values must select two columns. For example:

SELECT ename, empno FROM emp

If one of the columns is an expression, remember to use an alias. For
example:

SELECT ename||' '||job display_value, empno FROM emp

Radio Group Renders as an HTML radio group form element, based on a list of values.
Choose Radiogroup with Submit to have the page submitted when the
radio button is selected.

The following example displays employee names (ename), but returns
employee number (empno)s:

SELECT ename, empno FROM emp

Table 7–8 Item Display As Options

Display As Option Description

Editing a Page Definition

7-46 Oracle HTML DB User’s Guide

Select List Displays using a list of values. A list of values is required for items displayed
as a select list. Select lists are rendered using the HTML form element
<select>. The values in a select list are determined using a shared list of
values or a list of values defined at the item level. You may specify the NULL
display value and NULL return value.

The following example would return employee names (ename) and
employee numbers (empno) from the emp table. Note that column aliases are
not required and are included in this example for clarity.

SELECT ename display_text, empno return_value FROM emp

Oracle HTML DB provides additional enhancements to a standard HTML
select list:

■ Select List with Submit - Submits the page when the user changes its
selected value. Upon submit, the REQUEST will be set to the name of
the item that represents the select list, allowing you to execute
conditional computations, validations, processes, and branches.

■ Select List with Redirect - Redirects the user back to the same page,
setting ONLY the newly selected value of the select list in session state.

■ Select List Returning URL redirect - Based on a list of values with URLs
as the return values. Changing the value of the select list causes the
browser to redirect to the corresponding URL.

■ Select List with Branch to Page - Based on list of values with page IDs
as return values. Changing the selected value in the select list causes the
HTML DB engine to branch to the corresponding page.

Stop and Start HTML Table
(Displays label only)

Oracle HTML DB uses HTML tables to render items. This item may be used
to control the layout of items in forms by closing a table and starting a new
one.

Table 7–8 Item Display As Options

Display As Option Description

Editing a Page Definition

Using Application Builder 7-47

Referencing Item Values You can reference item values stored in session state in
regions, computations, processes, validation, and branches. Table 7–9 describes the
supported syntax for referencing item values.

Text Displays as an HTML text field containing a maximum of 30,000 bytes of
text. You control the maximum length and display width by editing the
Height and Width item attribute.

Text Area Renders as an HTML text area. This is no maximum length for an item
displayed as a text area. You control the height and width by editing the
Height and Width item attribute. Additional available Text Area Display As
options include:

■ Text Area (auto height) - Varies the height based on the amount of text.
Use this option to have a large text area when you have a lot of data and
a smaller text area when you have little or no data.

■ Text Area with Counter - Includes a counter that displays the number of
bytes entered in the field.

■ Text Area with Spell Checker - Provides a popup English language
spell checker.

■ Text Area with HTML Editor - Provides basic text formatting controls.
Note that these controls may not work in all Web browsers.

Text with Calculator Renders as a text field with an icon next to. When clicked, the icon displays a
small window containing a calculator. Calculations are placed back in the
text field.

See Also: "Managing Session State Values" on page 6-14

Table 7–8 Item Display As Options

Display As Option Description

Editing a Page Definition

7-48 Oracle HTML DB User’s Guide

You can set the value of an item in your application using any of the following
methods:

■ For page items, use the Source Attribute to set the item value.

From the Page Definition, select the item name to view the item attributes
(called Edit Page Item). Scroll down to the Source attribute and edit the
appropriate fields.

You can also set the value of an item in any region based on PL/SQL or a
process using the following syntax:

BEGIN
 :MY_ITEM := 'new value';
END;

■ Pass the value on an URL reference using f?p syntax. For example:

f?p=100:101:10636547268728380919::NO::MY_ITEM:ABC

■ Set the value using a computation. Computations are designed to set item
values. For example:

TO_CHAR(SYSDATE,'Day DD Month, YYYY');

■ Use the PL/SQL API to set an item value within a PL/SQL context. For
example:

Table 7–9 Syntax for Referencing Item Values

Type Syntax Description

SQL :MY_ITEM Standard bind variable syntax for items no longer than 30
bytes. Use this syntax for references within a SQL query
and within PL/SQL.

PL/SQL v('MY_ITEM') PL/SQL syntax referencing the item value using the v
function.

See Also: "Oracle HTML DB APIs" on page 13-1

PL/SQL nv('MY_NUMERIC_ITEM') Standard PL/SQL syntax referencing the numeric item
value using the nv function.

See Also: "Oracle HTML DB APIs" on page 13-1

Static Text &MY_IITEM Static text.

Static Text (exact) &MY_IITEM. Static text. Exact Substitution.

Editing a Page Definition

Using Application Builder 7-49

HTMLDB_UTIL.SET_SESSION_STATE('MY_ITEM',SYSDATE);

Displaying Conditional or Read-only Items You can choose to have an item display
conditionally by making a selection from the Conditional Display, Conditional
Display Type list and entering an expression.

You can define an item a read-only by making selections under Items Is Read-only
When.

About Page Computations
You can use page computations to assign a value to an identified item when a page
is submitted or displayed. Application level computations can also be used to
assign values to items. Most application level computations are performed for every
page in an application. In contrast, computations created at the page level only
execute when that page is rendered or processed.

Specifying an Item and Computation Type For each computation, specify the item for
which you are creating the computation as well as a computation type.

Defining a Computation Point and Computation Source You control when a computation
executes under Computation Points attributes by specifying a sequence number
and a computation point. The computation point On New Instance executes the
computation when a new session (or instance) is generated.

Under Computation Source, enter an expression or query to compute an item's
value. In the event a computation fails, you can optionally define an error message
in Computation Error Message field.

Creating Conditional Computations You can make a computation conditional by
making a selection from the Conditional Type list and entering text in the
expression fields.

See Also:

■ "Clearing Session State" on page 6-16

■ "Oracle HTML DB APIs" on page 13-1

Editing a Page Definition

7-50 Oracle HTML DB User’s Guide

About Page Processes
You create a page process to execute some type of code (such as SQL or PL/SQL) or
to make a call to the rendering engine. You would typically create a page process to
alter data in some way (for example, to perform an UPDATE, INSERT, or DELETE).

A page process is a unit of logic that runs when a specific event occurs, such as
loading or submitting page, resetting session state, and automatic row processing.
From a functional perspective, there is no difference between page level and
application level processes. The difference lies in the point at which the process
occurs.

For more information on specific page processing attributes, see the online help.

Creating a Page Process You create a process by running the Create Page Process
Wizard. During the page creation process, you define a process name, specify a
sequence, the point at which process will execute, and a process type. You can
change nearly all of these attributes on the Edit Page Process page.

Defining Processing Points and Source You control when a process executes under
Process Firing Point attributes by specifying a sequence number and a process
point. You can prevent a process from running during subsequent visits to a page
by selecting one of the following options under Run Process:

■ Once for each page visit

■ Once for each session or when reset

Under Source, enter the appropriate code for SQL or PL/SQL process types. In the
event a process fails, you can optionally define an error message in the Process
Error Message field.

Creating Conditional Processes

You can make a process conditional by selecting a conditional type and entering an
expression under Conditional Processing attributes.

About Page Processing Components
Under Page Processing, you specify application logic such as computations,
validations, processes, and branching. The HTML DB engine runs this logic in the
order it appears on the Page Definition.

For more information on specific page processing attributes, see the online help.
Topics in this section include:

Editing a Page Definition

Using Application Builder 7-51

■ About Validations

■ About Branching

About Validations
You can define a validation declaratively by selecting a built-in validation type or
by entering custom SQL or PL/SQL. You enter the actual validation edit check in
the Validation Messages field. Keep in mind that the validation you enter must be
consistent with validation type you selected. For more information on validation
types, see online help.

Defining How Validation Error Messages Display You can choose to have validation error
messages display inline (that is, on the page where the validation is performed) or
on a separate error page.

To define how a validation error message displays:

1. In the Error Message field, enter your error message text.

2. From the Error message display location list, select a display location.

3. If you selected either Inline with Field or Inline with Field and in Notification
in step 2, select the item associated with the error message from the Associated
Item list.

Processing Validations Conditionally You can control when and if a validation is
performed under Conditional Validation Processing. To have a validation
performed when a user clicks a button, make a selection from the When Button
Pressed list.

You can add other conditions by making a selection from the Conditional Type list
and entering text in the expression fields.

About Branching
A branch is an instruction to link to a specific page, procedure, or URL. For example
you can branch from page 1 to page 2 after page 1 is submitted.

About Branch Types You create a new branch by running the Create Page Branch
Wizard and specifying Branch Point and Branch Type. The Branch Type defines the
type of branch you are creating. For more information on Branch Types, see online
help.

Editing a Page Definition

7-52 Oracle HTML DB User’s Guide

Defining a Branch Point and Branch Action You specify when to create a branch by
making a selection from the Branch Point list. Valid options include:

■ On Submit: Before Computation - Occurs before computations, validations, or
processing. Use this option for buttons that do not need to invoke any
processing, for example, a "Cancel" button.

■ On Submit: Before Validation - Occurs after computations, but before
validations or processing. If a validation fails, page processing stops, a rollback
is issued, and the page displays the error. Because of this default behavior, you
do not need to create branches to accommodate validations. However, you
might want to branch based on the result of a computation (for example, to the
previous branch point).

■ On Submit: Before Processing - Occurs after computations and validations, but
before processing. Use this option to branch based on a validated session state,
but before performing any page processing.

■ On Submit: After Processing - Occurs after computations, validations, and
processing. This option branches to an URL or page after performing
computations, validations, and processing. When using this option, remember
to sequence your branches if you have multiple branches for a given branch
point.

■ On Load: Before Header - Occurs before a page is rendered. This option
displays another page instead of the current page or redirects the user to
another URL or procedure.

Depending upon the Branch Type you select, you can specify the following
additional information in Branch Action attributes:

■ The page ID of the page you wish to branch to

■ PL/SQL code

■ An URL address

Branching Conditionally Like other Application Builder components, branches can be
made conditional. To create a conditional branch, make a selection from the
Conditional Type list and enter text in the expression fields to implement the
condition type you choose.

Editing Page Attributes
Page attributes only apply to a specific page. You access page attributes from the
Page Definition page.

Editing a Page Definition

Using Application Builder 7-53

To edit page attributes:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Navigate to a specific page, by either:

■ Entering the page ID in the Edit Page field and clicking Go

■ Clicking the page name

4. Under Page, click Edit to modify existing page attributes.

Required values are marked with a red asterisk (*). For more information on specific
page attributes, see the online help.

Topics in this section include:

■ About Primary Page Attributes

■ About HTML Header

■ About Page Header, Footer and Text Attributes

■ About On Load JavaScript

■ About Security

■ About Duplicate Page Submission Checks

■ About On Error Text

■ About Page Help Text

■ About Comments

About Primary Page Attributes
Use these attributes to define general attributes for the current page such as a page
name, an optional alphanumeric alias, and a browser title. Table 7–10 describes
editable Primary Page attributes.

See Also: "Creating a New Page Using a Wizard" on page 7-13 for
more information on creating a new page

Editing a Page Definition

7-54 Oracle HTML DB User’s Guide

About HTML Header
Use this attributes to replace the #HEAD# substitution string in the page template
header. The values entered here are inserted after the HTML <HEAD> tag. You can
use attribute to:

■ Code page specific inline cascading style classes

■ Add additional style sheets for a specific page

■ Code page specific JavaScript

■ Code page specific meta tag page refresh

About Page Header, Footer and Text Attributes
Use these attributes to define page header, body header, body footer, and page
footer text. Table 7–11 describes editable primary page attributes.

Table 7–10 Primary Page Attributes

Attributes Descriptions

Name Identifies the name of the current page. This name is used in
numerous Oracle HTML DB pages and reports, along with the
page ID and page title.

Page Alias Enter an alphanumeric alias for this page. For example, if you
were working on page 1 of application 100, you could create an
alias called "home." You could then access this page from other
pages using the following f?p syntax:

f?p=100:home

Standard Tab Set Select a tab set to be used for the first level of tabs for this page.

Title Enter the title used that displays in the browser window. This
title is inserted between the following HTML title tags:

<TITLE></TITLE>

First Item Select AUTO_FIRST_ITEM to enable JavaScript that sets the
focus to the first item on the page when the page displays.
Select NO_FIRST_ITEM to bypass this behavior

Page Template Select a page template to control the appearance of this page.
This overrides the application template.

Editing a Page Definition

Using Application Builder 7-55

About On Load JavaScript
Use this attribute to add onload events such as calls to JavaScript. To use this
feature, your page template must include #ONLOAD#.

You can use the Page HTML Body Attribute to exercise exact control over generated
HTML. Use this feature to write into the contents of the BODY tag. For example,
your page template could define the following:

<html.
<head>
...
</head.
<body #ONLOAD# >

About Security
Use this attribute to specify an authorization scheme and an authentication method
for the current page.

Select the authorization scheme to be applied to the page from the Authorization
Scheme list. Authorization schemes are defined at the application level and can be
applied to many elements within the application. A given authorization scheme is
set up to be evaluated either once for each application session (at session creation)
or once for each page view. If the selected authorization scheme evaluates to true,
then the page displays (that is, subject to other defined conditions). If it evaluates to
false, then the page will not display and an error message appears.

From the Authentication list, specify whether this page has been defined as public
or requires authentication. If a page is identified as public, the page can be viewed
before authentication. This attribute only applies if the application uses SCHEME

Table 7–11 Page Header, Footer and Text Attributes

Attribute Description

Header Text Displays after the page template header and before page
template body.

Body Header Displays before showing regions. Displays before the page
template #BOX_BODY# substitution string.

Body Footer Displays after showing regions. Displays after page template
#BOX_BODY# substitution string.

Footer Displays after page template body and before page template
footer.

Editing a Page Definition

7-56 Oracle HTML DB User’s Guide

authentication. The application's page sentry function may access this page
attribute to identify pages that do not require prior authentication to view. The
implementation of the authentication scheme's page sentry function determines
whether this PAGE_IS_PUBLIC page attribute has any effect.

About Duplicate Page Submission Checks
Use the Allow duplicate page submissions list to specify whether Oracle HTML DB
allows users to process a page multiple times. This can happen when a user clicks
the browser's back button and then submits the page again, or if the user clicks the
browser's reload button.

Setting this attribute to No, prevents duplicate page submissions.

About Configuration Management
Build options allow you to enable or disable functionality. Most application
attributes have a build option attribute. Do not specify a build option unless you
plan on excluding that object from specific installations. Build Options have two
possible values: INCLUDE and EXCLUDE. An attribute that is excluded is treated as
if it does not exist.

About On Error Text
Use this attribute to specify the error text that displays in the #NOTIFICATION_
MESSAGE# substitution string included in the page template.

About Page Help Text
Use this attribute to enter help text for the current page. Page level help supports
shortcuts using the following syntax:

"SHORTCUT_NAME"

Help text is displayed using a help system that you must develop. To show the help
for a specific page, call the WWV_APPLICATION.HELP procedure from a page that
you create for displaying help text. For example, you could use a navigation bar
icon similar to:

f?p=4000:4600:&SESSION::&DEBUG::LAST_STEP:&APP_PAGE_ID

See Also: "Using Build Options to Control Configuration" on
page 6-11

See Also: "Editing Page Templates" on page 7-18

Running a Page

Using Application Builder 7-57

In the previous example, page 4600 calls the HTMLDB_APPLICATION.HELP
procedure and passes the page ID for which help will be displayed.

About Comments
Use this attribute to record developer comments about the current page.

Running a Page
The HTML DB engine dynamically renders and process pages based on data stored
in database tables. To view a rendered version of your application, you run or
submit it to the HTML DB engine. As you create new pages you can run them
individually, or run an entire application.

To run page from the Page Definition:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Navigate to a specific page.

The Page Definition appears.

4. In the left navigate pane, click Run Page.

To run an entire application:

1. Click the Build icon.

2. From the Available Applications list, select the application and click Go.

3. Click the Run icon.

See Also: "Creating a Help Page" on page 8-41

Running a Page

7-58 Oracle HTML DB User’s Guide

Building Application Components 8-1

8
Building Application Components

This section provides information about how to build different types application
components in Application Builder.

 This section contains the following topics:

■ Displaying Components on Every Page

■ Adding Navigation

■ Creating Regions

■ Creating Buttons

■ Creating Lists of Values

■ Creating Forms

■ Creating Reports

■ Creating Charts

■ Creating Calendars

■ Specifying Layout and User Interface

■ Creating a Help Page

■ Sending E-mail from an Application

Displaying Components on Every Page
Page zero of your application functions as a master page. The HTML DB engine
renders all components you add to page zero on every page within your
application. You can further control whether the HTML DB engine renders a
component or runs a computation, validation, or process by defining conditions.

Adding Navigation

8-2 Oracle HTML DB User’s Guide

To create a page zero:

1. Create a new page.

2. Specify the page ID as zero (0).

Adding Navigation
When you build an application you can include a number of different types of
navigation including tab sets, navigation bars, menus, trees, and lists. This section
describes how to implement navigation in your application.

Topics in this section include:

■ Creating Tab Sets

■ Creating a Navigation Bar

■ Creating Menus

■ Creating Trees

■ Creating Lists

■ Creating a Branch

Creating Tab Sets
Tabs are an effective way to navigate users between pages of an application. You
can create a tabbed application look by using parent tabs, standard tabs, and Oracle
HTML DB lists.

Application Builder includes two different types of tabs:

■ Standard tabs

■ Parent tabs

See Also:

■ "Creating a New Page Using a Wizard" on page 7-13 for more
information on creating a page

■ "Understanding Conditional Rendering and Processing" on
page 6-9

■ "Available Conditions" on page A-1

Adding Navigation

Building Application Components 8-3

An application having only one level of tabs uses a standard tab set. A standard tab
set is associated with a specific page and page ID. You can use standard tabs to link
users to a specific page. A parent tab set functions as a container to hold a group of
standard tabs. Parent tabs give users another level of navigation as well as a context
(or sense of place) within the application. You can use parent tabs link users to a
specific URL associated with a specific page.

The topics that follow describe how to add tab sets to your application.

About Template Support
Before you can create parent and standard tabs, you need to check that your
application level template has positions defined for both standard and parent tabs
using the appropriate substitution strings. You also need to make sure you do not
override this template at the page level.

Using Tab Manager to Manage Tab Information
You manage tab information using Tab Manager. You can access Tab Manager from
the Tabs tab or by clicking View from the Page Definition.

To access Tab Manager directly from Application Builder:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Tabs tab.

Note: When running the Create Application Wizard, you have the
option of creating an application with tabs. The following
procedures assume you have already created an application that
does not have any tabs.

See Also: "Creating a New Application" on page 7-11

See Also:

■ "About User Interface Templates" on page 7-34 for more
information on setting a default page template at the
application level

■ "About Primary Page Attributes" on page 7-53 for more
information on setting a template at the page level

Adding Navigation

8-4 Oracle HTML DB User’s Guide

Tab Manager appears displaying a graphical representation of the tabs defined
in your application.

4. To make another tab current, click the tab.

Note the two Add buttons. Use the Add button on the upper right side of the
graphic to add Parent tabs. Use the Add button at the lower left side of the
graphic to add standard tabs.

5. To add a new tab, click Add adjacent to the appropriate tab type.

Think of parent tabs as a container to hold standard tabs. For example, in order
to add two levels of tabs you first create a parent tab and then add standard
tabs to it.

To access Tab Manager from the Page Definition:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

4. Under Shared Components, click View to the right of the Parent Tabs or
Standard Tabs heading.

Tab Manager appears displaying a graphical representation of the tabs defined
in your application. The currently selected standard or parent tab is
highlighted.

5. To make another tab current, click the tab.

6. To add a new tab, click Add adjacent to the appropriate tab type.

About the Standard Tab Tasks List
You can also edit tabs from within Tab Manager by selecting an option from the
Standard Tab Tasks list located in the bottom right of the page. For example, to add
a new set of standard tabs, select Create a new tab set. To add a new standard tab,
select Create new tab.

Creating a Navigation Bar
Navigation bars (see Figure 8–1) offer an easy way for users to move between pages
in an application. The location of a navigation bar depends upon the associated
page template. A navigation bar icon enables you to display a link from an image or
text. A navigation bar entry can be an image, an image with text beneath it, or text.

Adding Navigation

Building Application Components 8-5

You must supply navigation bar entry images and text. When you create a
navigation bar entry, you can specify an image, text, a display sequence, or an URL.

Figure 8–1 Navigation Bar Entry

The topics that follow describe how to create a navigation bar entry containing
icons and a navigation bar without icons.

Creating a Navigation Bar Entry
Before you can add a navigation bar, you must create a navigation bar entry.

To create a navigation bar entry referencing an icon:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the NavBar tab.

4. Run the Create NavBar Entry Wizard by clicking Create.

5. Specify the following NavBar entry attributes:

■ Sequence

■ Alt Tag Text

■ Icon Image Name

■ Image Height and Image Width

■ Text

Adding Navigation

8-6 Oracle HTML DB User’s Guide

Specify the target location.

6. If the target location is an URL:

■ From Target type, select URL

■ In URL Target, type an URL

7. If the target location is a page:

■ From Target type, select Page in this application

■ In Page, specify the page number

8. If the navigation bar entry will display conditionally, specify the appropriate
conditional information and click Create NavBar Entry.

To create a navigation bar entry without icons:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the NavBar tab.

4. Run the Create NavBar Entry Wizard by clicking Create.

5. Specify the following icon attributes:

■ Sequence

■ Text

6. Specify the target location:

■ If the target is an URL, use f?p syntax to specify the location in the URL
Target field. For example:

f?p=160:5:&SESSION.

■ If the target is another page, enter the page number in the Page field.

7. If the navigation bar entry will display conditionally, specify the appropriate
conditional information and click Create NavBar Entry.

To manage navigation bar information:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Click View to the right of the Navigation Bar heading.

The Navigation Bar page appears.

Adding Navigation

Building Application Components 8-7

3. On the Navigation Bar page you can:

■ View details about a specific entry by clicking the edit icon

■ Access a grid view, by clicking Grid View

■ Create a new icon, by clicking Create

Creating Menus
Menus provide users with hierarchical navigation. A menu is a hierarchical list of
links that display using templates. You can display menus as a list of links, or as a
breadcrumb path.

As shown in Figure 8–2, a breadcrumb style menu indicates where the user is from
a hierarchical perspective within the application. In addition, users can click a
specific page to instantly view it. You can include a breadcrumb menu that
functions as second level of navigation and displays beneath the standard tabs at
the top of each page.

Figure 8–2 Breadcrumb Style Menu

Creating a Menu
Before you can add a menu to your application you must create it by running the
Menu Wizard.

Adding Navigation

8-8 Oracle HTML DB User’s Guide

To create a menu:

1. Click the Build icon.

2. When Application Builder appears, select the Menus tab.

3. To create a new menu, click Create and follow the on-screen instructions.

Once your menu has been created, you need to add options to it.

4. From the menu list, select the menu you just created and click Create Menu
Options.

5. On the Menu Options page, specify the following:

■ Page ID - Specify the page on which this menu will be current.

■ Display Sequence - Indicate the order in which menu options appear.

■ Parent Menu Option - Identify the parent of this menu entry.

■ Short Name - Specify the short name of this menu option (referenced in the
menu template).

■ Long Name - Specify the long name of this menu option (referenced in the
menu template).

6. Specify a target location.

If the target location is an URL:

■ From Target type, select URL

■ In URL Target, type an URL

If the target location is a page:

■ From Target type, select Page in this application

■ In Page, specify the page number

7. When you are finished defining menu attributes, click Create.

Repeat these procedures for each menu option you need to create.

Creating a Menu Template
A menu displays using a template.

To create a menu template:

1. Click the Build icon.

Adding Navigation

Building Application Components 8-9

2. When Application Builder appears, select the Templates tab.

3. Scroll down to Menu Templates, click Create/Copy.

The Create Menu Template Wizard appears.

4. From Create Menu Templates, select whether to create the template from
scratch or by copying another template.

5. If prompted, enter the appropriate HTML for your menu using the substitution
strings:

■ #LINK# - The anchor target of the menu option.

■ #NAME# - The short name of the menu option.

■ #LONG_NAME# - The long name of the menu option.

Adding a Menu to a Page
Once you create a menu and a menu template, the next step is to add it a page by
creating a region and specifying the region type as Menu.

To add a menu to a page:

1. Click the Build icon.

2. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

3. Under Regions, click Create.

4. While running the Create Region Wizard:

■ Select Menu for the region type.

■ Enter a title.

■ Select a menu and menu template.

5. Click Create Menu Region.

Repeat these procedures for each page on which you would like to add a menu.

About Creating a Dynamic Menu
To give users a more exact context, you may include session state in a menu,
making your menus dynamic. For example, suppose a page in your application
displays a list of orders for a particular company and you want to include the
following breadcrumb menu:

Adding Navigation

8-10 Oracle HTML DB User’s Guide

Home > Orders > Orders for ACME Inc

In this example, ACME Inc not only indicates the page a user is on, but also the
navigation path. The HTML DB engine stores the value of ACME Inc. in session
state.

To create this type of dynamic menu, you must include a reference to a session state
item in the menu's short name or long name, for example:

&COMPANY_NAME.

Creating Trees
You can create a tree in your application to effectively communicate hierarchical or
multiple level data.

To create a tree:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Trees tab and click Create.

4. Follow the on-screen instructions to enter basic page information.

5. Enter a Tree Name and specify the Default Expanded Levels.

6. Under Start Tree, specify how the starting tree node is created:

■ Based on new item with popup list of values - Creates a tree based on a
new item with a popup list of values (LOV). Requires an LOV query that
selects, displays, and returns values from a tree table. Use this method to
select a different starting point each time you visit a page.

■ Based on a SQL Query - Creates a tree based on a SQL query. Requires a
SQL query that selects a primary key from a tree table.

■ Static value - Creates a tree based on a static value.

Keep in mind that the option Based on new item with popup list of values
enables you to select a different starting point each time you visit a page. The
starting point for the last two options always remains the same.

You build a tree based on a table that contains the node data. This base table
must have an ID (a primary key) and a parent ID that functions as a foreign key
of the table. These IDs determine the number of tree levels.

Adding Navigation

Building Application Components 8-11

7. Follow the on-screen instructions and specify the owner and name of the table
from which the tree will be based.

8. Under Link Option, select Existing flows item to make leaf node text a link.

Creating Lists
As shown in Figure 8–3, a list is a shared collection of links. You control the
appearance of a list through list templates. Each list element has a display condition
which enables you to control when it displays. You can define a list element to be
either current or non current for a specific page. You further specify what current
looks like using template attributes. You add a list to a page by creating a region
and specifying the region type as List.

Figure 8–3 List

Creating a List
Before you can add a list to your application you must create it by running the Lists
Wizard.

To create a list:

1. Click the Build icon.

2. When Application Builder appears, select the Lists tab.

3. To create a new list, click Create List and follow the on-screen instructions.

Once your list has been created, you need to add items to it.

Adding Navigation

8-12 Oracle HTML DB User’s Guide

4. Select a list and click Create List Item.

5. On the List Item page, specify the Label and Sequence attributes.

6. Specify a target location.

If the target location is an URL:

■ From Target type, select URL

■ In URL Target, type an URL

If the target location is a page:

■ From Target type, select Page in this application

■ In Page, specify the page number

7. When you are finished defining list attributes, click Create or Create and Create
Another.

Adding a List on a Page
Once you created a list, the next step is to add it a page by creating a region and
specifying the region type as List.

To add a list to a page:

1. Click the Build icon.

2. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

3. Under Regions, click Create to run the Create Region Wizard.

4. Select List as the region type.

5. Specify region attributes:

■ Enter a title

■ Select a region template

■ Specify a display point

■ Specify a sequence

6. Click Create List Region.

Repeat these procedures for each page on which you would like to add a list.

Adding Navigation

Building Application Components 8-13

About Creating a List Template
You control the appearance a list through list templates.

To create a new list template:

1. Click the Build icon.

2. When Application Builder appears, select the Templates tab.

3. Scroll down to List Templates, click Create/Copy.

The Create Menu Template Wizard appears.

4. Specify how to create a new list template and follow the on-screen instructions.

Creating a Branch
A branch is an instruction to link to a specific page, procedure, or URL. For example
you can branch from page 1 to page 2 after page 1 is submitted.

You create a new branch by running the Create Page Branch Wizard and specifying
Branch Point and Branch Type. The Branch Type defines the type of branch you are
creating.

To create a branch:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

4. Under Branching, click Create to run the Create Page Branch Wizard.

5. Select a Branch Point:

■ On Submit: Before Computation - Occurs before computations,
validations, or processing. Use this option for a Cancel button.

■ On Submit: Before Validation - Occurs after computations, but before
validations or processing. Typically not used. If a validation fails, page
processing stops, a rollback is issued, and the page displays the error.
Because of this default behavior, you do not need to create branches to
accommodate validations. However, you might want to branch based on
the result of a computation (for example, to the previous branch point).

Creating Regions

8-14 Oracle HTML DB User’s Guide

■ On Submit: Before Processing - Occurs after computations and
validations, but before processing. Use this option to branch based on a
validated session state, but before performing any page processing.

■ On Submit: After Processing - Occurs after computations, validations, and
processing. This option branches to an URL or page after performing
computations, validations, and processing. When using this option,
remember to sequence your branches if you have multiple branches for a
given branch point.

■ On Load: Before Header - Occurs before a page rendered. This option
displays another page instead of the current page or redirects the user to
another URL or procedure.

6. Select a Branch Type.

Depending upon the Branch Type, specify the following types of information on
the pages that follows:

■ A page ID of the page you wish to branch to

■ PL/SQL code

■ An URL address

7. Follow the on-screen instructions.

Creating Regions
A region is an area of a page that uses a specific template to generate HTML
content. Each page can have any number of regions. You can use regions to group
page components (such as items or buttons). You can create simple regions that do
not generate additional HTML, or create elaborate regions that frame content within
HTML tables or images.

Regions display in sequence within HTML table columns. You can also explicitly
place regions in positions defined in the page template. You can also choose to
display regions conditionally.

Topics in this section include:

■ Creating New Regions

■ Building a Form Using a Region

■ Building a Report Using a Region

■ About Regions Based on an URL

Creating Regions

Building Application Components 8-15

■ About Regions Based on PL/SQL Dynamic Content

Creating New Regions
You create new regions by running the Create Region Wizard.

To create a new region:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Regions, click Create.

The Create Region Wizard appears.

3. Select a region type and follow the on-screen instructions.

When you create a region you select a region type. The HTML DB engine interprets
a region differently based the type you select. Table 8–1 describes available region
types.

Table 8–1 Region Types

Region Type Description

HTML HTML regions contain HTML you provide. They are
also used as containers for items. Any HTML you type
may contain substitution strings.

Report Report regions can be defined by a SQL query you
write, or by using a wizard to guide you through the
steps needed to write a query.

See Also: "Creating Reports" on page 8-28

Chart Chart regions contain line, bar, or pie charts based on
SQL queries.

See Also: "Creating Charts" on page 8-35

List List regions are used for navigation and may consist of
links or images. Individual list entries can be
conditionally displayed.

See Also: "Creating Lists" on page 8-11

Menu Menu regions are navigational controls consisting of
predefined, hierarchically organized links.

See Also: "Creating Menus" on page 8-7

Creating Regions

8-16 Oracle HTML DB User’s Guide

Building a Form Using a Region
The easiest way to create a region that contains a form is to use the Form on Table or
View Wizard. This wizard creates one item for each column in a table. It also

PL/SQL Dynamic Content Regions based on PL/SQL enable you to render any
HTML or text using the PL/SQL Web Toolkit.

Other, HTML Text (escape special
characters).

Same as HTML region, but the HTML DB engine
escapes special characters before they are rendered.

Other, HTML Text (with shortcuts) Same as HTML region, but with support for shortcuts.

See Also: "Utilizing Shortcuts" on page 8-40

Other, Help Text Help regions enable you to provide page level help.

See Also: "Creating a Help Page" on page 8-41

Other, URL URL based regions obtain their content by calling a
Web server using a predefined URL.

See Also: "About Regions Based on an URL" on
page 8-17

Other, Web Service Result Web service based regions call a predefined Web
service to obtain an XML document. An optional XSLT
style sheet may be applied.

See Also: "Implementing Web Services" on page 12-15

Other, Tree Trees are a hierarchical navigational control based on a
SQL query executed at runtime. It enables the user to
expand an collapse nodes.

See Also: "Creating Trees" on page 8-10

See Also:

■ "Creating Regions" on page 8-14 for more information on
creating specific types of regions

■ Oracle Database Application Developer's Guide - Fundamentals for
more information on developing Web applications with
PL/SQLs

■ PL/SQL Packages and Types Reference for more information on
htp packages

Table 8–1 Region Types

Region Type Description

Creating Regions

Building Application Components 8-17

includes the necessary buttons and processes required to insert, update, and delete
rows from the table using a primary key. Each region has a defined name and
display position all other attributes are items, buttons, processes, and branches.

You can also create a form manually by performing the following steps:

■ Create an HTML region (to serve as a container for your page items)

■ Create items to display in the region

■ Create processes and branches

Building a Report Using a Region
When you define a Report region, you must select one of the following options:

■ Easy Report - This report does not require any SQL knowledge. You simply
select the appropriate schema, table, columns, and result set display.

■ SQL Report - This report requires some SQL knowledge. When prompted, you
enter a SQL query.

■ PL/SQL Function Returning SQL Query - This report requires some PL/SQL
knowledge. When prompted, you enter a function that returns a SQL query.

This method of defining a report is used when the structure of the query varies
based on user input or another session state (for example, if the query is
determined at runtime rather than beforehand).

The following example returns all employees from the emp table whose name is
similar to the value typed into an page item called search_string.

SELECT ename, job, deptno, sal
FROM emp
WHERE upper(ename) LIKE '%'||upper(:search_string)||'%';

Both the ename column of the emp table and the page item search_string
are converted into upper case. Using the like operator and appending a percent
sign to each side of value of the search_string creates a wild card search

About Regions Based on an URL
Typically, pages in an application are based on data stored in an Oracle database. To
incorporate content from other servers, you can use regions based on a URL. For
example, suppose you wanted to reference the current Oracle stock price. You could
create a region of type URL based on an URL such as the following:

Creating Regions

8-18 Oracle HTML DB User’s Guide

http://quote.yahoo.com/q?d=b&s=ORCL

You could then create a item called STOCK_SYMBOL and base your region on a
stock price entered by the user. For example:

http://quote.yahoo.com/q?d=b&s=&STOCK_SYMBOL.

Sometimes (as is the case with the previous example) the HTML returned to the
region is more than is needed. To restrict the HTML displayed you can use the
following region attributes:

■ URL (discard until but not including this text)

■ URL (discard after and including this text)

Note that the previous example may require that you set the Proxy Server
application attribute. If you do not set the Proxy Server application attribute, you
will get an error message. Oracle HTML DB uses the Oracle utl_http.request_
pieces function to obtain the HTML generated from the given URL.

About Regions Based on PL/SQL Dynamic Content
If you need to generate specific HTML content not handled by Oracle HTML DB
forms, reports, and charts, you can use the region type PL/SQL. To generate HTML
in this type of region, you need to use the PL/SQL Web Toolkit. You can reference
session state using bind variable syntax. Keep in mind that when you generate
HTML in this way you do not get the same consistency and control provided with
templates.

To give you more control over HTML dynamically generated within a region, you
can use PL/SQL. For example, to print the current date you could create a region
with the following source:

See Also: "Editing Application Attributes" on page 7-29 for more
information on setting the Proxy Server application attribute

See Also:

■ Oracle Database Application Developer's Guide - Fundamentals for
more information on developing Web applications with
PL/SQL

■ PL/SQL Packages and Types Reference for more information on
htp packages

Creating Buttons

Building Application Components 8-19

htp.p(TO_CHAR(SYSDATE,'Day Month DD, YYYY'));

This next example accesses tables:

DECLARE
 l_max_sal NUMBER;
BEGIN
 SELECT max(sal) INTO l_max_sal FROM emp;
 htp.p('The maximum salary is: '||TO_CHAR(l_max_sal,'999,999.00'));
END;

Creating Buttons
As you design your application you can use buttons to direct users to a specific
page or URL, or to post or process information (for example, by creating Create,
Cancel, Next, Previous, or Delete buttons).

Using the Create Button Wizard
You create a button by running the Create Button Wizard from the Page Definition.

To create a new button:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Create an HTML region. (See "Creating New Regions" on page 8-15.)

3. Under Button, click Create.

The Create Button Wizard appears.

4. Select a Task:

■ Create a button displayed among this region's items

■ Create a button in a region position

Select Create a button displayed among this region's items to add a button to a
region as if it was an item (for example, to add a button directly to the right of a
form field).

5. Select an Action:

See Also: "About Buttons" on page 7-42 for more information on
button naming, branching, and defining other button attributes

Creating Lists of Values

8-20 Oracle HTML DB User’s Guide

■ Submit page and redirect to URL - Selecting this action submits the current
page to the HTML DB engine whenever a user clicks the button.

■ Redirect to URL - Selecting this option avoids submitting the page. Choose
this action when submitting the page for processing is not necessary (for
example, a Cancel button). This action avoids processing in the database
and therefore reduces the load.

6. Select a Button Type:

■ HTML Button (Default)

■ Image

■ Template Driven

7. Select Button is Reset to create an Undo button. When enabled, this type of
button resets the page values to the state they were in when the page was
initially rendered.

The sections that follow offer brief descriptions of how to create specific types of
buttons.

Creating an HTML Button
Buttons can be placed in predefined region template positions or among items in a
form. To create an HTML button, select one of the following while running the
Create Button Wizard:

■ Under Task, select Create a button in a region position

■ Under Button Type, select a button type and then HTML Button (default)

Creating Lists of Values
A list of values (LOV) is a static or dynamic definition used to display the following
types of items:

■ Popup lists of values

■ Select list

■ Check boxes

■ Radio groups

■ Multiple select lists

Creating Lists of Values

Building Application Components 8-21

Creating LOVs
You define shared (or named) LOVs at the application level by running the LOV
Wizard and adding them to the Named List of Values repository. All LOVs can be
defined as static or dynamic. Static lists are based on predefined pairs of display
and return values. Dynamic lists are based on a SQL query you write that selects
values from a table.

To create a named LOV:

1. Click the Build icon.

2. When Application Builder appears, select the LOVs tab.

3. To create a new LOV, click Create.

4. Follow the on-screen instructions.

Referencing Session State within a LOV
You can reference session state by using bind variables. In the following example,
this LOV only works if the item called my_deptno contains a valid department
number.

SELECT ename, empno FROM emp WHERE deptno = :my_deptno

Inline Static LOV
Static LOVs are based on a static list of display and return values you specify when
you run the LOV Wizard. To create a static LOV you run the LOV Wizard and select
the LOV type Static. Oracle HTML DB stores the display values, return values, and
sort sequence you specify in the Named List of Values repository. Once you add a
static LOV to the repository you can create an item and display it as a check box,
radio group, select list, or popup lists based on this definition.

You can also use a shorthand syntax to create a static LOV. Simply provide a comma
delimited string of values prefaced by the text STATIC:. The following example
creates a static list containing the options Yes and No.

STATIC:Yes,No

In this next example, the LOV would display Yes and No, but would return 1 and
2.

STATIC:Yes;1,No;0

Creating Forms

8-22 Oracle HTML DB User’s Guide

Instead of using a semicolon (;) to delimit values, you can indicate your own
delimiters. This is useful approach when the values themselves contain commas.
Keep in mind, using your own delimiters can be problematic if your application
needs to be translated. The following example uses a tilde (~) and a percent sign
(%).

STATIC(~,%):Run and Build Flow%RUN_AND_BUILD~Run Flow Only%RUN_ONLY

To sort the results in the order they were typed, using the following syntax:

STATIC2:1,5,10,20,30

Popup LOV
Using a popup LOV is a good choice for lists of values that are too large to return on
a single page. Popup LOVs create an icon to the right of a standard text field. When
the user clicks this icon a popup window appears with a list of values represented
as a series of links. When the user selects from this searchable list, the selected value
will be placed in the text field. You control popup LOVs through templates. You can
only specify one popup LOV template for each application.

Popup LOVs must be based on a query that selects two columns with different
column aliases. For example:

SELECT ename name, empno id
 FROM emp

Creating Forms
You can include a variety of different types of forms in your applications. You can
include forms that enable users to update just a single row in a table or multiple
rows at once. Oracle HTML DB includes a number of wizards you can use to create
forms automatically, or you can create forms manually.

Topics in this section include:

■ Using a Wizard to Build a Form

■ Creating a Form Manually

■ Processing a Form

■ Validating User Input in Forms

Creating Forms

Building Application Components 8-23

Using a Wizard to Build a Form
Oracle HTML DB includes the number of wizards for creating forms. These wizards
create complete pages you can later customize.

To create a form using a wizard:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Click the Wizards tab.

4. Under Forms, select a wizard.

Table 8–2 describes the available wizards you can use to create forms.

5. Follow the on-screen instructions.

Creating a Form Manually
To create a form manually:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Create an HTML region:

Table 8–2 Forms Wizards

Wizard Description

Form on Table or View Creates a form users can use to update a single row in a
database table.

Form on Procedure Builds a form based on a stored procedure arguments. Use this
approach when you have implemented logic or DML (Data
Manipulation Language) in a stored procedure or package.

Form on SQL Query Creates a form based on the columns returned by a SQL query
such as an equijoin.

Form on a Table with
Report

Creates two pages. One page displays a report. Each row
provides a link to the second page to enable users to update
each record.

Summary Page Creates a read-only version of a form. Typically used to
provide a confirmation page at the end of a wizard.

Tabular Form Creates a form in which users can update multiple rows in a
database.

Creating Forms

8-24 Oracle HTML DB User’s Guide

■ Under Regions, click Create

■ Select the region type HTML

■ Follow the on-screen instructions.

3. Start adding items to the page:

■ Under Items, click Create

■ Follow the on-screen instructions

Processing a Form
Once you create a form, the next step is to process the data a user types by inserting
into or updating the underlying database tables or views. There are three ways to
process a form:

■ Create one or more processes containing INSERT, UPDATE and DELETE (DML)
statements.

■ Call an API using a PL/SQL package you create to pass values.

■ Use a built-in Automatic Row Processing (DML) process.

Creating an Automatic Row Processing Process
One common way to implement a form is to manually create an Automatic Row
Processing (DML) process. This approach offers two primary advantages. First, you
are not required to provide any SQL coding. Second, Oracle HTML DB performs
DML processing for you.

In order to implement this approach you need to:

■ Add items and define the Item Source Type as Database Column and specify a
case sensitive column name.

■ Select the option Always overrides the cache value.

To create an Automatic Row Processing (DML) process:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Processes, click Create.

The Create Page Process Wizard appears.

3. In the Name field, type a name to identify the process.

Creating Forms

Building Application Components 8-25

4. In the Sequence field, specify a sequence number.

5. From the Point list, select the appropriate processing point. In most instances,
select Onload - After Header.

6. From the Type list, select Automated Row Processing (DML).

7. Follow the on-screen instructions.

Creating a Process Containing One or More Insert Statements
In this approach to form handling, you create one or more processes to handle
insert, update and delete actions. Instead of having the HTML DB engine handling
everything transparently, you are in complete control.

For example, suppose you have a form with three items:

■ P1_ID - A hidden item to store the primary key of the currently displayed row
in a table.

■ P1_FIRST_NAME - A text field for user input.

■ P1_LAST_NAME - A text field for user input.

Assume also there are three buttons labeled Insert, Update, and Delete. Also assume
you have a table T which contains three columns, ID, FIRST_NAME, and LAST_
NAME. The table has a trigger which automatically populates the ID column when
there is no value supplied.

To process the insert of a new row, you create a conditional process of type PL/SQL
that executes when the user clicks the Insert button. For example:

BEGIN
 INSERT INTO T (first_name, last_name)
 VALUES (:P1_FIRST_NAME, :P1_LAST_NAME);
END;

To process the update of a row, you create another conditional process of type
PL/SQL. For example:

BEGIN
 UPDATE T
 SET first_name = :P1_FIRST_NAME,
 last_name = :P1_LAST_NAME
 WHERE ID = :P1_ID;
END;

Creating Forms

8-26 Oracle HTML DB User’s Guide

To process the deletion of a row, you create a conditional process that executes
when the user clicks the Delete button. For example:

BEGIN
 DELETE FROM T
 WHERE ID = :P1_ID;
END;

Using a PL/SQL API to Process Form Values
For certain types of applications it is appropriate to centralize all access to tables in
a single or few PL/SQL packages. If you have created a package to handle DML
operations, you can call procedures and functions within this package from a After
Submit PL/SQL process to process insert, update and delete requests.

Populating Forms
Oracle HTML DB populates a form on load, or when the page is being rendered.
You can populate a form in the following ways:

■ Create a process and define the type as Automated Row Fetch.

■ Populate the form manually by referencing a hidden session state item.

To create an Automated Row Fetch process:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Processes, click Create.

The Create Page Process Wizard appears.

3. In the Name field, type a name to identify the process.

4. In the Sequence field, specify a sequence number.

5. From the Point list, select the appropriate processing point.

6. From the Type list, select Automated Row Fetch.

7. Follow the on-screen instructions.

You can also populate a form manually by referencing a hidden session state item.
For example, the following code in an Oracle HTML DB process of type PL/SQL

See Also: "Oracle HTML DB APIs" on page 13-1

Creating Forms

Building Application Components 8-27

would set the values of ename and sal. The example also demonstrates how to
manually populate a form by referencing a hidden session state item named P2_ID.

FOR C1 in (SELECT ename, sal
FROM emp WHERE ID=:P2_ID)
LOOP
 :P2_ENAME := C1.ename;
 :P2_SAL := C1.sal;
END LOOP;

In this example:

■ C1 is an implicit cursor

■ The value of P2_ID has already been set

■ The process point for this process would be set to execute (or fire) on or before
Onload - Before Regions

Validating User Input in Forms
You can use validations to check data a user types prior to processing. Once you
create a validation and the associated error message, you can associate it with a
specific item. You can choose to have validation error messages display inline (that
is, on the page where the validation is performed) or on a separate error page.

Creating an inline error message involves these steps:

■ Create a new validation and specify error message text

■ Associate the validation with a specific item

To create a new validation:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Validations, click Create.

3. When the Create Validations Wizard appears, follow the on-screen instructions.

Validations Types are divided into two categories:

■ Item. These validations start with the phrase "Item" and provide common
checks you may want to perform on the item that the validation is
associated with.

■ Code. These validations require you provide either a piece of PL/SQL code
or SQL query that defines the validation logic. Use this type of validation to

Creating Reports

8-28 Oracle HTML DB User’s Guide

perform custom validations that require verifying values of more than one
item or accessing additional database tables.

4. Follow the on-screen instructions.

To associate an item with a validation and specify error message text:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Validations, select the validation item you want to associate.

3. Scroll down to Error Messaging:

■ In Error message display location, verify the display location

■ In Associated Item, select the item you want to associate with this
validation

Creating Reports
In Oracle HTML DB a report is simply the formatted result of a SQL query. You can
generate reports by:

■ Selecting and running a built-in wizard

■ Defining a report region based on a SQL query

Topics in this section include:

■ Using a Wizard to Create a Report

■ Managing Report Attributes

■ Creating a Report with Pagination

Using a Wizard to Create a Report
Oracle HTML DB includes the number of built-in wizards for generating reports.

To create a report using a wizard:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

See Also: "Building a Report Using a Region" on page 8-17 for
more information on defining a report region

Creating Reports

Building Application Components 8-29

3. Click the Wizards tab.

4. Under Reports, select a wizard.

Table 8–3 describes the available wizards you can use to create reports.

5. Follow the on-screen instructions.

Managing Report Attributes
Application Builder offers a great deal of flexibility in defining report attributes.
Using the Report Attributes page, you can specify the column display sequence,
display report headings, column and heading alignments, column formatting, and
sort order. You can further refine attributes of a specific column using the Column
Attributes page.

Topics in this section include:

■ Accessing Report Attributes

■ Enabling Column Sorting

■ Exporting a Report

■ Creating a Column link

■ Defining Updatable Columns

■ Defining a Column as a List of Values

■ Controlling When Columns Display

■ Controlling Column Breaks

Table 8–3 Reports Wizards

Wizard Description

Easy Report Builds a report page based on the owner, table, columns, and
templates you specify. This report does not require any manual
SQL coding.

SQL Report Builds a report page based on a custom SQL statement you
provide.

Report with link to form
on table (2 pages)

Builds a two page report. The first page enables users to
specify the row to be updated. The second page provides users
with a form to update or insert the selected row.

Creating Reports

8-30 Oracle HTML DB User’s Guide

Accessing Report Attributes
Using the Report Attributes and Column Attributes pages you can precisely control
the look and feel of reports.

To access the Report Attributes page:

1. From the Available Applications list, select an application and click Go.

2. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

3. Under Regions, click Q next to the name of the report region you want to edit.

The Report Attributes page appears.

4. Under Report Column Attributes, you can:

■ Click the arrows to change the column display sequence.

■ Under Heading, specify different column headings.

■ Under Column Align., select the column alignment.

■ Under Heading Align., select the heading alignment.

■ Select Show to determine whether the column displays.

■ Click Sum to enable the sum of a column.

■ Click Sort and select a sequence number from Sort Sequence to specify a
unique sort sequence.

You can further refine attributes of a specific column on the Column Attributes
page.

5. Under the Report Column Attributes, click the edit icon adjacent to the
appropriate column name.

The Column Attributes page appears, containing the following sections:

■ Column Definition

■ Column Formatting

■ Column Link

■ Updatable Column Attributes

■ List of Values

■ Authorization

Creating Reports

Building Application Components 8-31

■ Conditional Display

About Column Definition The Column Definition section of the Column Attributes
page contains the same options available on the Report Attributes page. For
example, you can specify a column heading, determine whether a column should
display in the report, whether to calculate and display a column sum, enable
sorting, as well as specify column and column heading alignment.

About Column Formatting You can use the following Column Formatting properties to
further customize column display:

■ Number/Date Format defines a number and date format mask to be applied to
a numerical column.

■ CSS Class defines CSS classes to be applied to a column value.

■ CSS Style defines a CSS style to be applied to a column value.

■ Highlight Words specifies text strings to be highlighted in a report column. For
multiple highlighted words, use a comma delimited list. Application or page
items can be referenced using &ITEM. syntax. (For example, to highlight strings
entered into a search field.)

■ HTML Expression specify an HTML expression to be displayed in the column.
Use #COLUMN# syntax to show column values in HTML.

Enabling Column Sorting
You enable column sorting on either Report Attributes or Column Attributes pages.

To enable column sorting on the Report Attributes page:

1. Navigate to the Report Attributes page. (See "Accessing Report Attributes" on
page 8-30.)

2. Under Report Column Attributes, click Sort adjacent to the column to be sorted.

3. Under Sorting, specify ascending and descending image attributes or click set
defaults.

Exporting a Report
You can export a report as either a comma delimited file (.csv) or XML file. You
specify an export format by selecting a report template.

To specify an export report template:

Creating Reports

8-32 Oracle HTML DB User’s Guide

1. Navigate to the appropriate Report Attributes page. (See "Accessing Report
Attributes" on page 8-30.)

2. Under Layout and Pagination, select one of the following from the Report
Template list:

■ export: CSV exports the report as a CSV file

■ export: XML exports the report as a XML file

Selecting either option prevents the HTML DB engine from rendering the page
and dumps the content to either a CSV or XML file.

You can use the options under CSV Output to create a link that downloads the
content of the report.

3. Scroll down CSV Output.

4. To create a link that downloads the content of a report:

■ From the Enable comma separated values (CSV) output list, select Yes.

■ In the CSV download link label field, specify link text. This text will display
in your report and enable users to invoke a download.

Creating a Column link
Using Column Link attributes, you can create a link from a report to another page.

To create a column link:

1. Navigate to the appropriate Column Attributes page. (See "Accessing Report
Attributes" on page 8-30.)

The Column Attributes page appears.

2. Scroll down to Column Link.

3. In Application, specify the target application ID. To specify the current
application, use the following substitution string:

&APP_ID.

4. In Request, specify the request to be used.

5. In Clear Cache, specify the pages (that is, the page ID) on which to clear cache.
You can specify multiple pages by listing the page ID in a comma delimited list.

6. Use the Name and Value fields to specify session state for a specific item.

Creating Reports

Building Application Components 8-33

7. In Link Text, enter text to be displayed as a link, specify an image tag, or pick
from the list of default images.

8. Click Generate Link.

Defining Updatable Columns
You can define how updatable forms display on the Column Attributes page.

To define updatable column attributes:

1. Navigate to the appropriate Column Attributes page. (See "Accessing Report
Attributes" on page 8-30.)

The Column Attributes page appears.

2. Scroll down to Updatable Column Attributes.

3. From Display As, select a type of updatable column.

4. In Width and Height, specify the width and height of the form item.

5. In Element Attribute, define a style or standard form element attribute.

6. In Element Option, specify form element attributes for items in a radio group or
check box.

Defining a Column as a List of Values
Report columns may be rendered as lists of values. For example, a column can be
rendered using a select list or a popup list of values.

To specify column LOV attributes:

1. Navigate to the appropriate Column Attributes page. (See "Accessing Report
Attributes" on page 8-30.)

The Column Attributes page appears.

2. Scroll down to Updatable Column Attributes.

3. From Named LOV, select a named LOV from the Named List of Values
repository.

4. In Display Null, specify whether to include a display null value.

5. In Null Text, specify the value to be returned if Display NULL is selected.

6. If you have not already selected a named LOV, specify a query used to display a
select list in LOV Query.

Creating Reports

8-34 Oracle HTML DB User’s Guide

Controlling When Columns Display
You can use the Authorization and Conditional Display attributes to control when a
column displays.

Authorization enables you to control access to resources (such as a report column)
based on predefined user privileges. For example, you could create an authorization
scheme in which only managers can view a specific report column. Before you can
select an authorization scheme, you must first create it.

A condition is a small unit of logic that enables you to control the display of a
column based on a predefined condition type. The condition evaluates to true or
false based on the values you enter in the Expressions fields.

To specify Authorization and Conditional Display attributes:

1. Navigate to the appropriate Column Attributes page. (See "Accessing Report
Attributes" on page 8-30.)

2. From Named LOV, select a named LOV from the Named List of Values
repository.

3. Under Authorization, make a selection from the Authorization Scheme list.

4. Under Conditional Display, make a selection from the Type list and depending
upon the selected type, enter an expression or value in the appropriate
Expression fields.

Controlling Column Breaks
You can control whether a specific column repeats and how column breaks appear
when printed using Break Formatting attributes. For example, suppose your report
displays employee information by department number. If multiple employees are
members of the same department, you can increase the readability by specifying the
department number only appears once.

To create this type of column break:

See Also: "Creating Lists of Values" on page 8-20

See Also:

■ "Providing Security Through Authorization" on page 10-17

■ "Understanding Conditional Rendering and Processing" on
page 6-9

■ Appendix A, "Available Conditions" on page A-1

Creating Charts

Building Application Components 8-35

1. Navigate to the appropriate Report Attributes page. (See "Accessing Report
Attributes" on page 8-30.)

2. Scroll down to Break Formatting.

3. Make a selection from the Breaks list.

Creating a Report with Pagination
The HTML DB engine can paginate result sets of a report region in the following
ways:

1. Use of conditional buttons and branches, such as Next and Previous buttons to
create a custom pagination scheme.

2. Page result sets (that is "Internet style" pagination).

3. Row ranges paginated by set (for example, Row(s) 1-10, 11-20, and 21-23).

4. Row ranges in a self submitted select list (paginated by page).

5. Row ranges paginated by page (for example, 1 - 10 of 23).

You can control options 2, 3, and 4 using report templates, specifically the
#PAGINATION# substitution string in the After Rows report template attribute.

You can implement options 2, 3, 4, and 5 by configuring report region attributes to
enable pagination.

To configure report region attributes to enable pagination:

1. Create a region based on a SQL query. (See "Building a Report Using a Region"
on page 8-17.)

2. Under Regions, click Q next to the name of the report region you want to edit.

The Report Attributes page appears.

3. To change pagination, scroll down to Layout and Pagination and select a new
Pagination Scheme.

4. To save your changes, click Apply Changes.

Creating Charts
Oracle HTML DB includes built-in wizards for generating HTML and SVG (Scalable
Vector Graphics) charts.

To create a chart using a built-in wizard:

Creating Calendars

8-36 Oracle HTML DB User’s Guide

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Click the Wizards tab.

4. Under Charts, select a wizard.

■ HTML Chart creates a single page containing an HTML horizontal or
vertical bar chart.

■ SVG Chart creates a SVG (Scalable Vector Graphics) chart.

5. Follow the on-screen instructions.

Creating Calendars
Oracle HTML DB includes a built-in wizard for generating a monthly calendar.
Once you specify the table on which the calendar is based you can create drill down
links to information stored in specific columns.

To create a calendar using a built-in wizard:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Click the Wizards tab.

4. Under Calendar, select Monthly Calendar.

5. Follow the on-screen instructions.

Specifying Layout and User Interface
This section describes how to implement common application layout and user
interface techniques.

Topics in this section include:

■ Creating a Multiple Column Layout

■ Using a LOV to Drive Another LOV

■ Specifying Print Preview Mode

■ Utilizing Shortcuts

Specifying Layout and User Interface

Building Application Components 8-37

Creating a Multiple Column Layout
A region is an area of a page that uses a specific template to format HTML content.
You use regions to group page components and items. To create a multiple column
layout, you create two regions that display in adjacent cells of the same table.

You can create a multiple column layout by either:

■ Manually creating the two adjacent regions

■ Defining a page template that contains a multiple column table

Creating Regions in Multiple Columns
You create new regions using the Create Region Wizard. To create a two column
page, you create two regions. Oracle HTML DB replaces #BOX_BODY# within a two
column table and displays the regions in two separate cells.

To create a two column page by creating regions:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

4. Create the first region:

■ Under Regions, click Create.

The Create Region Wizard appears.

■ Select a region type.

■ From the Column field, select 1.

■ Follow the on-screen instructions.

5. Create the second region:

■ Under Regions, click Create.

The Create Region Wizard appears.

■ Select a region type.

■ From the Column field, select 2.

■ Follow the on-screen instructions.

Specifying Layout and User Interface

8-38 Oracle HTML DB User’s Guide

Creating a Multiple Column Page Template
Page templates define the appearance of individual pages, including the placement
of page components. Each page template is divided into three sections: Header,
Body, and Footer. The most basic template must include the substitution string
#BOX_BODY# in the Body attribute. When the page is rendered, the HTML DB
engine replaces #BOX_BODY# with HTML to display the regions on that page.

You can create a multiple column page by defining a page template that contains a
multiple column table. You then explicitly place regions within specific table cells.

The following example demonstrates how to create a two column page and specify
a region position using the #REGION_POSITION_XX# substitution string in each
column. You would enter this code in the Body section of the page level template.

<body #ONLOAD#>
 #FORM_OPEN#
 <table style="width:100%">
 <tr>
 <td style="width:50%;padding:5px;">#REGION_POSITION_01#</td>
 <td style="width:50%; border-left:2px #bbbbbb dashed;
padding:5px;">#REGION_POSITION_02#</td>
 </tr>

 #BOX_BODY#
 #FORM_CLOSE#
</body>

Once you create this page level template, the newly defined positions would be
available as Display Point options when you run the Create Region Wizard.

Using a LOV to Drive Another LOV
You may use a select list to determine the range of values of another select list on
the same page. You can achieve this functionality by having a driving select list
submit values to a subsequent select list. You incorporate these values in the
subsequent select list as a bind variable in the WHERE clause of its query.

You can have one LOV drive another LOV by:

■ Creating a basic form.

■ Defining two list of values. Note that the driving LOV must submit the page
after a value is chosen.

■ Defining a branch that branches back to the current page.

Specifying Layout and User Interface

Building Application Components 8-39

Specifying Print Preview Mode
You can optimize a page for printing by creating a specific Print Mode template and
specifying that template in the User Template Defaults section of the Edit
Application Attributes page. Generally, a Print Mode template optimizes a page for
printing. For example, this template might:

■ Not display tabs or navigation bars

■ Have items display as text instead of form elements

If the UI theme you select does not include a printer friendly template, you can
create a Print Mode template by creating a new page template. Although you can
create a new page template from scratch, it is generally easier to make a copy of an
existing template and then customize it to meet your needs.

To create a new page template:

1. Click the Build icon.

2. Select the Templates tab.

3. Scroll down to the appropriate template type and click Create/copy

4. Follow the on-screen instructions.

Setting a Print Mode Template for an Application
You enable your Print Mode template by selecting it in User Template Defaults
section of the Edit Application Attributes page.

To enable Print Mode mode:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Edit Attributes icon.

The Edit Application Attributes page appears.

See Also:

■ "Creating Forms" on page 8-22

■ "Creating Lists of Values" on page 8-22

■ "Creating a Branch" on page 8-13

See Also: "Working with Templates" on page 7-16

Specifying Layout and User Interface

8-40 Oracle HTML DB User’s Guide

4. Scroll down to User Interface Templates.

5. From Print Mode Page Template, select your Print Mode template.

Using f?p Syntax to Toggle to Print Mode
Once you create a Print Mode template and select it as an application attribute, you
can use f?p syntax to toggle to Print Mode. The ninth f?p syntax argument
(PrinterFriendly) enables you turn to this preference on or off. For example,
you could include this argument when coding a link, or creating navigation bar
icon.

Utilizing Shortcuts
By using shortcuts you can avoid repetitive coding of HTML or PL/SQL functions.
You can use a shortcut to define a component such as a button, HTML text, a
PL/SQL procedure, or HTML. Once defined, you can invoke a shortcut using
specific syntax unique to the location in which the shortcut is used. Shortcuts can be
referenced many times, thus reducing code redundancy.

Defining Shortcuts
Before you can incorporate a shortcut in your application, you must define it and
add it to the Shortcuts repository. You reference new shortcuts using the following
syntax:

"MY_SHORTCUT"

Note that the shortcut name must be capitalized and enclosed in quotes.

To define a new shortcut:

1. Click the Build icon.

2. Select the Shortcuts tab.

3. Click Create.

4. Follow the on-screen instructions.

New shortcuts are added to the Shortcut repository and are available for use within
the following locations:

■ The Region Source attribute of regions defined as HTML (with shortcuts). (See
"Creating Regions" on page 8-14)

See Also: "Using f?p Syntax to Link Pages" on page 6-20

Creating a Help Page

Building Application Components 8-41

■ Region Header and Footer Text attribute (See "Specifying a Region Header and
Footer" on page 7-41)

■ Item Label attributes and Item Default Value attribute (See "About Items" on
page 7-43)

■ Region Templates attributes (See "Editing Templates" on page 7-17)

Creating a Help Page
Oracle HTML DB includes built-in attributes to make creating help for your
application quick and easy. Creating help for your application involves the
following steps:

■ Create a dedicated help page and help region

■ Define page help text

■ Define item help text

■ Create a navigation bar icon to link to your help page

Help created in Oracle HTML DB displays on a dedicated help page. To access help,
users click a link that takes them to a dedicated help page. This help page displays
page and item help topics specific to the page they are viewing.

Topics in this section include:

■ Creating a Help Page and Region

■ Defining Help Text

■ Creating a Help Navigation Bar Icon

Creating a Help Page and Region
The first step in creating a help for your application it to create a dedicated page
and Help Text region.

To create a new help page:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Navigate to a specific page, by either:

■ Entering the page ID in the Edit Page field and click Go

Creating a Help Page

8-42 Oracle HTML DB User’s Guide

■ Clicking a page name

4. Under Page in Page Rendering, click Create.

5. When prompted to select a region type, click Other and then select Help Text.

6. Follow the on-screen instructions.

To create a new Help Text region:

1. Navigate to the Page Definition of your help page.

2. Under Regions, Create.

3. When prompted to select a region type, click Other and then select Help Text.

4. Follow the on-screen instructions.

Defining Help Text
You define page and item help text as an attribute of the page and item. Ideally, you
would define these attributes as you create your application. For simplicity,
however, the following procedures describe how to define this text after the fact.

To define page help text:

1. Navigate to the Page Definition for the page for which you want to add page
help.

2. Under Page, click Edit to view the existing page attributes.

3. Scroll down to Page Help Text.

4. Enter your help text in the field provided.

5. Click Apply Changes.

Repeat the previous procedure for each page requiring page help text.

To define item help text:

1. Navigate to the Page Definition for the page for which you want to add item
help.

2. Under Items, click name of the item you want to edit.

3. Scroll down to Help Text.

4. Enter your help text in the field provided.

5. Click Apply Change.

Sending E-mail from an Application

Building Application Components 8-43

Repeat the previous procedure for each item requiring help text.

Creating a Help Navigation Bar Icon
Once you have created your help, the next step is to create a navigation bar icon so
users can link to it.

To create a navigation bar icon:

1. Navigate to the Page Definition.

2. Under Navigation Bar, click Create.

3. Specify the appropriate NavBar entry attributes:

■ Sequence

■ Alt Tag Text

■ Icon Image Name

■ Image Height and Image Width

■ Text

Specify the target location.

4. To specify the target location:

■ From Target type, select Page in this application.

■ In Page, specify the page number.

■ In Request, type:

&APP_PAGE_ID.

By specifying substitution string &APP_PAGE_ID as the Request, you are
instructing the HTML DB engine to display help text for the current page when
the user clicks this icon.

Sending E-mail from an Application
You can send an e-mail from an Oracle HTML DB application by calling a PL/SQL
package called HTMLDB_MAIL. This package is built on top of the Oracle supplied
UTL_SMTP package. Because of this dependence, in order to use HTMLDB_MAIL, the
UTL_SMTP package must be installed and functioning.

Sending E-mail from an Application

8-44 Oracle HTML DB User’s Guide

The most efficient approach to sending mail is to create a background job (or DBMS_
JOB package) to periodically send all mail messages stored in the active mail queue.
DBMS_JOB package is automatically created when you install Oracle HTML DB.
This package pushes the mail queue every 15 minutes. DBMS_JOB package has two
parameters: The default p_smtp_host is localhost and the default p_smpt_
portno is 25 on install.

■ p_smtp_portno is the hostname of your SMTP gateway. The default value is
localhost.

■ p_smtp_host is the port number of your SMTP gatway. The default value is
25.

To enable a user to send an outbound e-mail message from your application, you
invoke the HTMLDB_MAIL.SEND procedure.

Oracle HTML DB stores unsent e-mail messages in a table named HTMLDB_MAIL_
QUEUE. You can deliver mail messages stored in this queue to the specified SMTP
gateway by invoking the procedure HTMLDB_MAIL.PUSH_QUEUE. This procedures
requires two input parameters:

■ p_smtp_hostname defines the hostname of your SMTP gateway

■ p_smtp_portno defines port number of your SMTP gateway (for example, 25)

Oracle HTML DB logs successfully submitted message in the table HTMLDB_MAIL_
LOG with the timestamp reflecting your server's local time.

The most efficient approach to sending mail is to create a background job (or DBMS_
JOB package) to periodically send all mail messages stored in the active mail queue.

The following example demonstrates the use of the HTMLDB_MAIL.PUSH_
QUEUE procedure using a shell script. This example only applies to UNIX/LINUX
installations. In this example, the SMTP gateway hostname is defined as
smtp01.oracle.com and the SMTP gateway port number is 25.

See Also: PL/SQL Packages and Types Reference for more
information about the UTL_SMTP package

See Also: "Managing Engine Settings" on page 15-5 for more
information on changing these default values

See Also: Oracle Database Administrator's Guide for more
information managing job queues

Sending E-mail from an Application

Building Application Components 8-45

SQLPLUS / <<EOF
EXEC FLOWS.HTMLDB_MAIL.PUSH_QUEUE('smtp01.oracle.com','25');
DISCONNECT
EXIT
EOF

Sending E-mail from an Application

8-46 Oracle HTML DB User’s Guide

Debugging an Application 9-1

9
Debugging an Application

This section describes a number of approaches to debugging your application
including viewing Debug Mode, enabling SQL tracing, viewing page reports, and
how to manually remove a component to isolate a problem.

 This section contains the following topics:

■ About Tuning Performance

■ Remembering to Review Session State

■ Accessing Debug Mode

■ Enabling SQL Tracing and Using TKPROF

■ Monitoring Application and Page Resource Use

■ Viewing Page Reports

■ Debugging Problematic SQL Queries

■ Removing Components to Isolate a Problem

About Tuning Performance
For applications having a large number of concurrent users, maintaining optimal
performance is critical. To optimize your application's performance, remember to
utilize the following Oracle HTML DB features:

■ Use bind variables within your application whenever possible. You can
reference session state values using bind variable syntax in SQL queries and
application logic such as processes and validations. Accessing session state
using bind variables is the most efficient way to reference session state.

Remembering to Review Session State

9-2 Oracle HTML DB User’s Guide

■ Include a #TIMING# substitution string in the region footer so that you can
view the timing of each region.

Remembering to Review Session State
Many application are based on data contained within application items. For
example, buttons may display conditionally based on a value stored in session state.
You can view current session state for a page in your application by clicking the
Session link on the Developer Toolbar.

Accessing Debug Mode
Viewing a page in Debug Mode is effective way to track what the HTML DB engine
is doing as it renders a page. You access Debug mode by clicking the Debug link in
the Developer Toolbar.

Debug Mode displays time codes that correspond to specific HTML DB engine
functions. This can be useful if you want to determine when the engine is setting
session state. The bottom of the page displays an augmented version of the Page
Definition. In addition to enabling you to link to page and component attributes,
you can view additional details about item names and computation and processing
points. To exit Debug mode, click No Debug in the Developer Toolbar.

You can also use f?p syntax run a application in Debug mode. Simply call the page
and set the Debug argument to YES. For example:

See Also:

■ "About Bind Variables" on page 6-18

■ "Using Substitution Strings" on page 6-22

See Also:

■ "Using the Developer Toolbar" on page 7-10

■ "Viewing Session State" on page 6-13

■ "Managing Session State Values" on page 6-14

■ "Administering Session State and User Preferences" on
page 11-4

See Also: "Using the Developer Toolbar" on page 7-10

Viewing Page Reports

Debugging an Application 9-3

f?p=100:1:&SESSION::YES

Enabling SQL Tracing and Using TKPROF
Tracing your session can be a very effective way to debug an application. From a
database perspective, each page request is a single database session. If you enable
SQL tracing, then Oracle HTML DB creates a temporary file you can then analyze
using the TKPROF utility.

You enable SQL tracing in Oracle HTML DB by using f?p syntax to set the
argument p_trace=YES. For example, to trace the display of page 1 in application
100 you would use the syntax:

http:/.../f?p=100:1&p_trace=YES

To use the TKPROF utility:

■ Navigate to the directory in which the trace file is created.

■ Type the following to view instructions about using TKPROF utility:

tkprof help=yes

Monitoring Application and Page Resource Use
You can monitor the resource use of Oracle HTML DB applications and pages by
calling the built-in package DBMS_APPLICATION_INFO. Whenever the HTML DB
engine renders or processes a page, the module is set to HTML DB and includes the
application ID and page ID. Once set, you can use the V$SESSION and V$SQLAREA
views to monitor transactions.

Viewing Page Reports
Every Page Definition includes a Page Reports list in the left navigation pane. Each
report offers a different presentation of the components that define the page. In

See Also: "Using f?p Syntax to Link Pages" on page 6-20

See Also: Oracle Database Performance Tuning Guide for more
information on using the TKPROF program or contact your
database administrator

Debugging Problematic SQL Queries

9-4 Oracle HTML DB User’s Guide

particular, the Page Detail Report describes all currently defined page components
and processes.

To access the Page Detail Report:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Navigate to the appropriate Page Definition.

4. Click Page Reports in the left navigation pane to expand the list.

5. Click Page Detail (popup page).

Once the Page Detail Report appears, you can select the following options at the
top of the page to display or hide information:

■ All. Enabled by default. Displays detailed information about the current
page including defined regions, items, buttons, processes, validations,
branches, and computations.

■ Regions, Items, and Buttons. Displays detailed information of all items and
buttons defined in each region of the page.

■ Processes. Displays details about defined processes including source code.

■ Validations. Displays any defined validations performed on the current
page.

■ Branches. Displays information about branching performed on the current
page.

■ Computations. Displays details about computations on the current page
defined at the page or application level.

Debugging Problematic SQL Queries
If your query does not seem to be running correctly, try running it in SQL Plus or in
SQL Workshop. Either approach will test your query outside of the context of your
application, making it easier to determine what the problem is.

See Also: "Viewing Page Reports" on page 7-7

Removing Components to Isolate a Problem

Debugging an Application 9-5

Removing Components to Isolate a Problem
If you have problems running a page, try removing components one at time. Using
this approach, you can quickly determine which components may be the source of
your problem. You can quickly disable a component by selecting the conditional
display attribute NEVER.

To remove a component using conditional display attributes:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Navigate to the appropriate Page Definition and then to the attributes page for
the component you wish to disable.

4. Scroll down to the Conditional Display attribute and select NEVER.

5. Click Apply Changes and return to the Page Definition.

6. Try running the page again.

7. Continue to remove components until the page runs correctly.

See Also:

■ "Viewing a Page Definition" on page 7-5

■ "Viewing Page Attributes" on page 7-37

■ "Understanding Conditional Rendering and Processing" on
page 6-9

■ "Running a Page" on page 7-57

Removing Components to Isolate a Problem

9-6 Oracle HTML DB User’s Guide

Managing an Application 10-1

10
Managing an Application

This section provides information about Application Builder utilities, how to export
and import an application, and how to manage application security.

 This section contains the following topics:

■ Accessing Application Builder Utilities

■ Exporting and Importing Applications

■ Uploading CSS, Images, and Static Files

■ Understanding Security

■ Establishing User Identity Through Authentication

■ Providing Security Through Authorization

Accessing Application Builder Utilities
Application Builder includes a number of utilities to help you manage your
application. You can access these utilities from the Application Builder Utilities tab.

To access Application Builder utilities:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Utilities tab.

The Application Builder Utilities page appears displaying the following
utilities:

■ Translate Application

■ Manage CSS and Image Files

Exporting and Importing Applications

10-2 Oracle HTML DB User’s Guide

■ Export/Import

■ View Export Repository

Viewing Application Summary and Utilization Reports
The bottom of the Application Builder Utilities page displays the following two
lists:

■ Application Summary Reports

■ Utilization Reports

To view a specific report:

1. Click the appropriate list to expand it.

2. Select a report title.

3. Follow the on-screen instructions.

Be aware that you can also access application reports by making selections in the
Application Navigation Pane.

Exporting and Importing Applications
To move an application from one instance of Oracle HTML DB to another, you must
export the application definition to a file. Exporting your application definition is
the first step toward deploying it outside of your development environment.

You export and import application definitions and all associated files using the
following utilities:

■ Export. If you are an administrator, you can use Export to export an application,
a workspace (Workspace administrator's only), and other related files such as
cascading style sheets, images, static files, and script files.

See Also:

■ About Translating an Application and Globalization Support
on page 16-1

■ "Exporting and Importing Applications" on page 10-2

See Also:

■ "About the Application Navigation Pane" on page 7-4

■ "Viewing Page Reports" on page 7-7

Exporting and Importing Applications

Managing an Application 10-3

■ View Export Repository. Use View Export Repository to store and install export
files imported into Oracle HTML DB. Once imported, you can view imported
files in this repository and then install them into your workspace.

Topics in this section include:

■ How Exporting an Application Works

■ About Managing Database Objects

■ Exporting an Application and Related Files

■ Importing Exported Application Files

■ Installing Files from the View Export Repository

How Exporting an Application Works
Whether you are moving an application to another workspace or just making a
copy of it, the export process involves the following steps:

■ Export the application and all related files using Export.

■ Import the exported files into the target Oracle HTML DB instance. Note that if
the target instance is a different database, you also need to export and import
any required database objects.

■ Install the exported files from View Export Repository

You can import an application into your workspace regardless of the workspace in
which it was developed.

About Managing Database Objects
Before you export an application and the appropriate related files, you need to
determine if you also need to migrate the database objects referenced by the
application.

If the target Oracle HTML DB instance is different from the development
environment, you will need to migrate the database objects referenced by the
application. In many cases this process can be as simple as using Oracle database
export and import utilities to copy the application schema from the development
environment to target Oracle HTML DB instance. The following are two common
scenarios where this approach would not work:

■ When the object development schema refers to tablespaces to which the target
instance schema does not have access

Exporting and Importing Applications

10-4 Oracle HTML DB User’s Guide

■ When the development instance schema has sample data that you do not to
want migrate to the target instance schema

If a database administrator or an Oracle HTML DB administrator is the person
responsible for exporting Oracle HTML DB applications, be sure to clearly
communicate if he or she:

■ Should include all data when exporting your application

■ Should not include data from specific tables you identify

Exporting an Application and Related Files
Use Export to export an application and all related files. When you export a
application, Oracle HTML DB generates a text file containing PL/SQL calls.

To export an application:

1. Click the Build icon and select the Utilities tab.

The Application Builder Utilities page appears.

2. Click Export Import.

3. When prompted to select a task, select Export and click Next.

Export appears. To view a list of existing applications, expand the Existing
Applications list at the bottom of the page.

4. From the Application list, select an application.

5. From File Format, select how rows in the export file will be formatted by
choosing one of the following:

■ UNIX. Results in a file containing rows delimited by line feeds.

■ DOS. Results in a file containing rows delimited by carriage returns and
line feeds.

6. From Owner Override, select an optional overriding owner for this application.

Entries made here replace the Owner attribute when the application is imported
into the target instance. As discussed in "About Application Definition" on
page 7-30, the Owner attribute indicates the schema against which all of the
application's SQL and PL/SQL will be parsed. This feature is useful when the
development version of an application runs against a differently named schema
then the one in the target instance.

7. From Build Status Override, select one of the following:

Exporting and Importing Applications

Managing an Application 10-5

■ Run Application Only

■ Run and Build Application

Only select Run Application Only if you wish to run the application in the
target instance but make it inaccessible to developers.

8. Use As of to export your application as it was previously defined. Specify the
number of minutes in the field provided.

This utility uses the DBMS_FLASHBACK package. Because the timestamp to
System Change Number (SCN) mapping is refreshed approximately every five
minutes, you may have to wait that amount of time to locate the version you are
looking for. The time undo information is retained and influenced by the
startup parameter UNDO_RETENTION (the default is three hours). However, this
only influences the size of the undo tablespace. While two databases may have
the same UNDO_RETENTION parameter, you will be able to go back further in
time on a database with fewer transactions since it is not filling the undo
tablespace, forcing older data to be archived.

9. Click Export Application.

Exporting Related Application Files
In addition to exporting the actual application file, you also use Export to export
other related files such cascading style sheets, images, and script files.

To export related application files:

1. Click the Build icon and then select the Utilities tab.

The Application Builder Utilities page appears.

2. Click Export Import.

3. When prompted to select a task, select Export and click Next.

4. To export cascading style sheets, images, files, and script files, select one of the
following tabs.

■ CSS

■ Images

■ Files

■ Script Files

Exporting and Importing Applications

10-6 Oracle HTML DB User’s Guide

Note that when you choose to export cascading style sheets, images, files, or
script files, this utility exports all files of the selected type in the workspace. Be
aware that exporting workspace images only exports those images in your
repository that are not associated with a specific application. If all of your
images are associated with specific applications then the workspace image
export file will be empty.

5. Follow the on-screen instructions

Importing Exported Application Files
Once you export an application and any related files, you need to import them into
the target Oracle HTML DB instance before you can install them.

To import an application and related files:

1. Click the Build icon and then select the Utilities tab.

The Application Builder Utilities page appears.

2. Click Export Import.

3. When prompted to select a task, select Import and click Next.

4. In Import file, specify the file you are importing.

5. From File Type, select the type of file you are importing and click Next.

Once you have imported a file, you have the option to install it. You can also
install it later from the View Export Repository.

Installing Files from the View Export Repository
Once you have imported files into the target Oracle HTML DB instance, you must
install them before they become active in Application Builder.

To install files stored in the View Export Repository:

1. Click the Build icon and then select the Utilities tab.

The Application Builder Utilities page appears.

See Also: "Exporting and Importing Applications" on page 10-2
for more information on using the Export Workspace tab

See Also: Installing Files from the View Export Repository on
page 10-6

Exporting and Importing Applications

Managing an Application 10-7

2. Click View Export Repository.

3. To install a file, select it and click Install adjacent to the file you wish to install.

In addition to installing files, you can also use this page to:

■ Import an application and related files into the View Export Repository, by
clicking Import File.

■ Delete an export file by selecting it and clicking Delete File.

To import an application and related files into the View Export Repository:

1. Click the Build icon and then select the Utilities tab.

The Application Builder Utilities page appears.

2. Click Import File.

3. Follow the on-screen instructions.

Once you have imported your application and the related files into the View
Export Repository, you have the option of installing it.

4. To install your application, click Install.

The Install Application page appears.

5. From Parse as Schema, select a schema. This is the schema against which all of
the application's SQL and PL/SQL will be parsed

6. From Build Status, select one of the following:

■ Run Application Only

■ Run and Build Application

Only select Run Application Only if you wish to run the application in the
target instance but make it inaccessible to developers.

7. From Install As Application, select one of the following:

■ Reuse Application ID from Export File

■ Auto Assign New Application ID

■ Change Application ID

Use these options to avoid application ID conflicts. These options come in
handy when you need to have two versions of the same application in the same
workspace. For example, if you are migrating an application to a production
instance but still need to maintain development version.

Uploading CSS, Images, and Static Files

10-8 Oracle HTML DB User’s Guide

Uploading CSS, Images, and Static Files
You can upload cascading style sheets, images, and static files to your workspace
using the CSS Repository, Image Repository, and Static File Repository.

To upload cascading style sheets, images, and static files to your workspace:

1. Click the Build icon and then select the Utilities tab.

2. Click Manage CSS and Image Files.

The CSS Repository appears.

3. Select the appropriate tab:

■ Cascading Style Sheets (CSS)

■ Images

■ Static Files

4. Click Create.

5. Follow the on-screen instructions.

Understanding Security
You can provide security for your application through authentication and
authorization. Authentication is the process of establishing users' identities before
they can access an application. Authorization controls user access to specific
components based on predefined user privileges. You create and manage both
authentication and authorization on the Security Home page.

To access the Security Home page:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Security tab.

4. When the Security Home page appears, select either Authentication or
Authorization.

See Also:

■ "Establishing User Identity Through Authentication" on
page 10-9

■ "Providing Security Through Authorization" on page 10-17

Establishing User Identity Through Authentication

Managing an Application 10-9

Using the Security Navigation Pane
The Security Navigation pane displays on the left side of the Security Home page
and offers quick access to a number a security functions.

To access the Security Navigation pane:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Security tab.

The Security Navigation pane displays on the left side of the page.

4. Click Navigate to expand the list.

Establishing User Identity Through Authentication
Authentication is the process of establishing each user's identify before they can
access your application. Authentication may require a user identify a username and
password or could involve the use of digital certificates or a secure key.

When you create an authentication scheme, you have the option of choosing from a
number of preconfigured authentication schemes, copying an authentication
scheme from an existing application, or creating your own custom authentication
scheme.

Topics in this section include:

■ Understanding How Authentication Works

■ Creating an Authentication Scheme

■ Using the Authentication Scheme Repository

■ Viewing the Current Authentication Scheme for an Application

■ About Preconfigured Authentication Schemes

■ About Creating an Authentication Scheme from Scratch

Understanding How Authentication Works
You determine how your application interacts with users. If all users have the same
rights and privileges they are referred to as public users. However, if your
application needs to track each user individually, you need to specify an
authentication method.

Establishing User Identity Through Authentication

10-10 Oracle HTML DB User’s Guide

Authentication establishes the identity of each user who accesses your application.
Many authentication processes require a user provide some type of credentials such
as a username and password. These credentials are then evaluated and they either
pass or fail. If the credentials pass, the user has access to the application. Otherwise,
access is denied.

Once a user has been identified, the HTML DB engine keeps track of each user by
setting the value of a built-in substitution string. As a user navigates from page to
page, the HTML DB engine sets the value of APP_USER to identify who they are.
The HTML DB engine uses APP_USER as one component of a key for tracking each
user's session state.

From a programming perspective, you can access APP_USER using the following
syntax:

■ From PL/SQL:

v('APP_USER')

■ As a bind variable from either PL/SQL or SQL:

:APP_USER

You can use APP_USER to perform your own security checks and conditional
processing. For example, suppose you created the following table:

CREATE TABLE my_security_table (
 user_id VARCHAR2(30),
 privilege VARCHAR2(30));

Once created, you could populate this table with user privilege information and
then use it to control the display of application pages, tabs, navigation bars, buttons,
regions, or any other application component.

Creating an Authentication Scheme
As you create your application, you need to determine whether to include
authentication. You can:

■ Choose to not require authentication.

Oracle HTML DB does not check any user credentials. All pages of your
application are accessible to all users.

■ Select a built-in authentication scheme.

See Also: "Using Substitution Strings" on page 6-22

Establishing User Identity Through Authentication

Managing an Application 10-11

Create an authentication method based on available preconfigured
authentication schemes. Depending on which scheme you choose, you may also
have to configure the corresponding components of Oracle 9iAS, Oracle
Internet Directory, or other external services.

■ Create custom authentication scheme.

Create a custom authentication method, giving you complete control over the
authentication interface. To implement this approach, you must provide a
PL/SQL function the HTML DB engine executes before processing each page
request. This function's Boolean return value determines whether the HTML DB
engine processes the page normally or displays a failure page.

To create an authentication scheme:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Security tab.

4. Select Authentication.

The Authentication Schemes page appears.

5. To create a new authentication scheme, click Create Scheme.

6. Specify how the scheme should be created by selecting one of the following:

■ Based on preconfigured scheme

■ As a copy of an existing scheme

■ From Scratch

7. Follow the on-screen instructions

Using the Authentication Scheme Repository
Once created, available authentication schemes display in the Authentication
Schemes Repository.

To navigate to the Authentication Schemes Repository:

See Also:

■ "About Preconfigured Authentication Schemes" on page 10-12

■ "About Creating an Authentication Scheme from Scratch" on
page 10-15

Establishing User Identity Through Authentication

10-12 Oracle HTML DB User’s Guide

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Security tab.

4. Select Authentication.

From the Authentication Schemes Repository, you can:

■ Make an authentication scheme current by selecting the make current link

■ Edit an authentication scheme by clicking the edit icon

■ View a flow chart explanation of an authentication scheme by clicking the View
icon

■ Create a new authentication scheme by clicking Create Scheme and following
the on-screen instructions

Viewing the Current Authentication Scheme for an Application
To view the current authentication scheme for an application:

1. Click the Build icon.

The list of pages for the selected application appears at the bottom of the page.

2. Select the Edit Attributes icon.

The Edit Application Attributes page appears.

3. Scroll down to the Session Management attribute and click manage.

The Authentication Schemes page appears. Available authentication schemes
display in the Authentication Schemes Repository. You apply an authentication
scheme to an application by designating it as current.

4. To apply an authentication scheme to the current application, select the make
current link

About Preconfigured Authentication Schemes
When you select a preconfigured authentication scheme, Oracle HTML DB creates
an authentication scheme for your application that follows a standard behavior for
authentication and session management. The following list describes available
preconfigured authentication schemes:

Establishing User Identity Through Authentication

Managing an Application 10-13

■ Open Door Credentials enables anyone to access your application using a
built-in login page which captures a username. This can be useful during
application development.

■ HTML DB Account Credentials refers to the internal user accounts (also
known as "cookie user" accounts) created and managed in the Oracle HTML DB
user repository. Using this scheme authentication method, your application can
easily authenticate against these accounts.

■ LDAP Credentials Verification requires you specify configuration parameters
about the external LDAP directory you will be using.

■ No Authentication (using DAD) gets the username from the Database Access
Descriptor (DAD), either as the value stored in the DAD configuration or, if the
account information is not stored in the DAD configuration, as the username
captured using the basic authentication challenge.

■ Oracle 9iAS Single Sign-On (HTML DB engine as Partner App) delegates
authentication to the 9iAS Single Sign-On (SSO) Server. To you use
authentication scheme, your site must have already been registered as a partner
application with the SSO server. For more information, contact your
administrator.

■ Oracle 9iAS Single Sign-On (My application as Partner App) delegates
authentication to the SSO server. In this case, you must register an application
with SSO as a partner application. See the next page for more details.

About DAD Credentials Verification
Database Access Descriptor (DAD) database authentication uses the Oracle
database native authentication and user mechanisms to authenticate users using a
basic authentication scheme. To use DAD credentials verification:

■ Each application user must have a user account in the Oracle database.

■ You must configure a PL/SQL DAD for basic authentication (without account
information).

This results in one username/password challenge for browser session for your
application users. The user identity token is then made available in the APP_
USER item.

DAD database authentication is useful when you need to implement an
authentication method that requires minimal setup for a manageable number of
users. Ideally these users would already have self-managed accounts in the

Establishing User Identity Through Authentication

10-14 Oracle HTML DB User’s Guide

database and your use of this authentication method would be short lived (for
example, during the demonstration or prototyping stages of development).

The main drawback of this approach is burdensome account maintenance,
especially if users do not administer their own passwords, or if their database
accounts exist only to facilitate authentication to your application.

About HTML DB Account Credentials
HTML DB Account Credentials authentication uses internal user accounts (also
known as "cookie user" accounts) created and managed in the Oracle HTML DB
user repository. Workspace administrators can create and edit user accounts using
the Manage Users page. HTML DB Account Credentials is a good solution when:

■ You want control of the user account repository

■ Username and password based approach to security is sufficient

■ You do not need to integrate into a single sign-on framework

This is an especially good approach when you need to get a group of users up and
running on a new application quickly.

About LDAP Credentials Verification
Any authentication scheme that uses a login page may be configured to use
Lightweight Directory Access Protocol (LDAP) to verify the username and
password submitted on the login page. Application Builder includes wizards and
edit pages that explain how to configure this option. These wizards assume that an
LDAP directory accessible to your application for this purpose already exists and
that it can respond to a SIMPLE_BIND_S call for credentials verification. When you
create a LDAP Credentials authentication scheme, the wizard requests and saves
the LDAP host name, LDAP port, and the DN string. An optional pre-processing
function can be specified to adjust formatting of the username passed to the API.

About Single Sign-On Server Verification
Oracle HTML DB applications can operate as partner applications with Oracle
Application Server's Single Sign-On (SSO) infrastructure. To accomplish this, you
must register your application (or register the HTML DB engine) as the partner
application. To register your application or the HTML DB engine as a partner

See Also: "Managing Users" on page 11-2 for more information
on creating and managing user accounts

Establishing User Identity Through Authentication

Managing an Application 10-15

application, follow the Oracle Application Server instructions for registering partner
applications and install the Oracle9iAS Portal Developer Kit (PDK).

If you choose this approach, your application will not use an integrated login page.
Instead, when a user accesses your application in a new browser session, the HTML
DB engine redirects to the Single Sign-On login page. After the user is
authentication by SSO, the SSO components redirect back to your application,
passing the user identity and other information to the HTML DB engine. The user
can then continue to use the application until they log off, terminate their browser
session, or until some other session-terminating event occurs.

About Creating an Authentication Scheme from Scratch
Creating an authentication scheme from scratch gives you complete control over
your authentication interface. This is the best approach for applications when any of
the following is true:

■ Database authentication, or other methods are not adequate.

■ You want to develop your own login form and associated methods.

■ You want to delegate all aspects of user authentication to external services such
as Oracle 9iAS Single Sign-On.

■ You want to control security aspects of Oracle HTML DB session management.

■ You want to record or audit activity at the user or session level.

■ You want to enforce session activity or expiry limits.

■ You want to program conditional n-way redirection logic before Oracle HTML
DB page processing.

■ You want to integrate your application with non-Oracle HTML DB applications
using a common session management framework.

■ Your application consists of multiple applications that operate seamlessly (for
example, more than one Oracle HTML DB application ID).

About Session Management Security
When running custom authentication, Oracle HTML DB attempts to prevent two
improper situations:

See Also: "HTMLDB_CUSTOM_AUTH" on page 13-42 for more
information

Establishing User Identity Through Authentication

10-16 Oracle HTML DB User’s Guide

■ Intentional attempts by a user to access session state belonging to someone else.
However, users can still type in an arbitrary application session ID into the
URL.

■ Inadvertent access to a stale session state (probably belonging to the same user
from an earlier time). This would commonly result from using bookmarks to
application pages.

Oracle HTML DB checks that the user identity token set by the custom
authentication function matches the user identity recorded when the application
session was first created. If the user has not yet been authenticated and the user
identity is not yet known, the session state being accessed does not belong to
someone else. These checks determine whether the session ID in the request can be
used. If not, the HTML DB engine redirects back the same page using an
appropriate session ID.

Building a Login Page
When you create a new application in Oracle HTML DB, a login page is created.
The alias for the page is 'LOGIN'. You can use this page as the 'invalid session
page' in an authentication scheme. The page is constructed with processes that call
the Oracle HTML DB login API to perform credentials verification and session
registration.

You can also create a login page after you create your application by selecting the
Extend this Application link from the Tasks list on the Application Builder home
page. You can also build your own login pages using the pre-built pages as models
and tailoring all of the UI and processing logic to your requirements.

To create a login page after you create your application:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. From the Tasks list on the right side of the page, select Extend this Application.

4. Select A login page, click Next, and follow the on-screen instructions.

About Deep Linking
Deep linking refers to the ability to link to an Oracle HTML DB page out of context
(for example, from a hyperlink in an e-mail or workflow notification). When you
link to a page out of context and the application requires the user be authenticated,
the user will be taken to the login page. After credentials verification, the HTML DB

Providing Security Through Authorization

Managing an Application 10-17

engine automatically displays the page that was referenced in the original link.
Deep linking support is supported for applications that use authentication schemes.

Providing Security Through Authorization
Authorization is a broad term for controlling access to resources based on
predefined user privileges. While conditions control the rendering and processing
of specific page components, authorizations control user access to specific
components.

Topics in this section include:

■ How Authorization Schemes Work

■ Creating an Authorization Scheme

■ Attaching an Authorization Scheme to an Application, Page, or Component

■ Viewing the Authorization Scheme Utilization Report

How Authorization Schemes Work
An authorization scheme extends the security of your application's authentication
scheme. You can specify an authorization scheme for an entire application, a page,
or specific component such as a region, item, or button. For example, you could use
an authorization scheme to selectively determine which tabs, regions, or navigation
bars a user sees.

An authorization scheme either succeeds or fails. If a component level authorization
scheme succeeds, the user can view the component. If it fails, the user cannot view
the component. If an application or page level authorization scheme fails, then
Oracle HTML DB displays a previously defined message.

When you define an authorization scheme you give it a unique name. Once defined,
you can attach it to any component in your application. To attach an authorization
scheme to a component in your application, simply navigate to the appropriate
attributes page and select an authorization scheme from the Authorization Scheme
list.

Creating an Authorization Scheme
Before you can attach an authorization scheme to an application or an application
component, you must first create it.

To create an authorization scheme:

Providing Security Through Authorization

10-18 Oracle HTML DB User’s Guide

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Security tab.

4. When the Security Home page appears, select Authorization.

5. Click Create.

6. Specify how to create an authorization scheme by selecting one of the following:

■ From Scratch

■ As a Copy of an Existing Authorization Scheme

7. Follow the on-screen instructions.

To edit attributes of an existing authorization scheme:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Security tab.

4. When the Security Home page appears, select Authorization.

Existing Authorization Schemes display at the bottom of the page.

5. To edit attributes for an existing authorizations scheme, click the edit icon.

6. Follow the on-screen instructions.

About the Evaluation Point Attribute
You can specify when your authorization scheme is validated in the Evaluation
Point attribute. You can choose to have your authorization scheme validated once
for each session or once for each page view.

Keep in mind, that if you specify that an authorization scheme should be evaluated
once for each session and the authorization scheme passes, the underlying code,
test, or query will not be executed again for the duration of the application session.
If your authorization scheme consists of a test whose results might change if
evaluated at different times during the session, then you should specify that the
evaluation point be once for each page view.

About Resetting Authorization Scheme State
If an authorization scheme is validated once for each session, Oracle HTML DB
caches the validation results in each user's session cache. You can reset a session's

Providing Security Through Authorization

Managing an Application 10-19

authorization scheme state by calling the HTMLDB_UTIL.RESET_
AUTHORIZATIONS API:

Calling this procedure nulls out any previously cached authorization scheme results
for the current session. Be aware that this procedure takes no arguments and is part
of the publicly executable HTMLDB_UTIL package.

Attaching an Authorization Scheme to an Application, Page, or Component
Once you have created an authorization scheme you can attach it to an entire
application, page, or component.

To attach an authorization scheme to an application:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Edit Attributes icon.

The Edit Application Attributes page appears.

4. Scroll down to Authorization and make a selection from the Authorization
Scheme list.

To attach an authorization scheme to a page:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

The list of pages for the selected application appears at the bottom of the page.

3. Navigate to a specific page, by either:

■ Entering the page ID in the Edit Page field and clicking Go

■ Clicking the page name

4. Under Page, click Edit to view the page attributes.

5. Scroll down to Security and make a selection from the Authorization Scheme
list.

To attach an authorization scheme to a page component:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

See Also: "RESET_AUTHORIZATIONS Procedure" on page 13-9

Providing Security Through Authorization

10-20 Oracle HTML DB User’s Guide

The list of pages for the selected application appears at the bottom of the page.

3. Navigate to a specific page, by either:

■ Entering the page ID in the Edit Page field and clicking Go

■ Clicking the page name

4. Access the attributes for the component to which you want to apply the
authorization scheme. (See "Managing Page Rendering Components" on
page 7-39.)

5. Scroll down to the Authorization attribute and make a selection from the
Authorization Scheme list.

Viewing the Authorization Scheme Utilization Report
You can use the Authorization Scheme Utilization Report to view details about
authorization schemes included in your application.

To view Authorization Scheme Utilization Report:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select Security tab.

4. When the Security Home page appears, select Authorization.

The Security Navigation pane displays on the left side of the page.

5. Click Navigate to expand or collapse the list.

6. Select Utilization.

7. Make a selection from the Authorization Scheme list and click Go.

Managing Your Development Workspace 11-1

11
Managing Your Development Workspace

In the Oracle HTML DB development environment, developers log in to a shared
work area called a workspace. Users are divided into two primary roles: developer
and workspace administrator.

Developers can create and edit applications. Workspace administrators additionally
have access to tools and reports designed to help them manage their workspace.
Using the Workspace Administration page, Workspace administrators can create
and edit user accounts, monitor workspace activity, review log files, manage session
state, view reports, and manage development services. This section describes how
to perform these Workspace administrator tasks.

This section contains the following topics:

■ Understanding Administrator Roles

■ Managing Users

■ Monitoring Users

■ Administering Session State and User Preferences

■ Viewing Workspace Reports

■ Monitoring Developer Activity

■ Managing Log Files

■ Managing Development Services

Understanding Administrator Roles
In a Oracle HTML DB development environment there are two different
administrator roles:

Managing Users

11-2 Oracle HTML DB User’s Guide

■ Workspace administrator

■ Oracle HTML DB administrator

A Workspace administrator uses the Administration Services page and all the
functionality described in this chapter to manage their workspace. In contrast, an
Oracle HTML DB administrator manages a complete Oracle HTML DB
development environment instance containing multiple workspaces. In order to
become a Workspace administrator, an existing administrator must specify the
developer as an administrator.

Managing Users
Workspace administrators can create new user accounts, manage existing user
accounts, and change their passwords. User accounts are particularly useful if you
are using internal "Cookie User" authentication.

Topics in this section include:

■ Creating New User Accounts

■ Editing Existing User Accounts

■ Changing Your Password

Creating New User Accounts
Workspace administrators can use the Create User page to create new user
accounts.

To create a new user account:

1. From the Oracle HTML DB Home page select the Administration tab.

See Also:

■ "Creating New User Accounts" on page 11-2 and "Editing
Existing User Accounts" on page 11-3 for more information on
specifying a developer as an administrator

■ "Administering Workspaces" on page 14-1 for more information
administering a workspace as an Oracle HTML DB
administrator

See Also: "About HTML DB Account Credentials" on page 10-14
for more information on implementing internal Cookie User (or
HTML DB Account Credentials) authentication

Managing Users

Managing Your Development Workspace 11-3

2. Under Administration Services, click Manage Users and then Create New User.

The Create User page appears.

3. Under User Identification, enter the appropriate information.

4. Under Developer Privileges, specify whether the user is a developer or an
administrator.

Developers having Admin privilege have access to the Administration Services
page and all the functionality described in this section. These users can also
alter passwords of users within the same workspace.

5. Under User Groups, select an optional user group.

You can use User Groups to restrict access to various parts of an application.
Keep in mind, however, that user groups are not portable over different
authentication schemes. They are only useful when using Internal Cookie User
authentication.

6. Click Create User or Create and Create Another.

Editing Existing User Accounts
Workspace administrators can use the Edit User page to edit existing user accounts.

To edit an existing a user account:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Manage Users and then Edit Users.

The Edit Users page appears.

3. To create a new user, click Create.

4. To find and edit an existing user, enter a search condition and click Go. Once
the user appears, click the edit icon to edit the account.

The Edit User page appears.

5. Follow the on-screen instructions.

Changing Your Password
Workspace administrators can use the Change Password page to change their
password.

To change your password:

Monitoring Users

11-4 Oracle HTML DB User’s Guide

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Manage Users and then Change My
Password.

The Change Password page appears.

3. Type a new password in the fields provided and click Apply Changes.

Monitoring Users
As a Workspace administrator, you can monitor workspace utilization and user
activity by accessing a number of charts and reports on the Monitor page.

To view workspace utilization and user activity reports:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Monitor.

The Monitor page appears. It is divided into three sections:

■ Chart Activity

■ Activity Reports

■ Calendar of Activity

3. Select a chart or report to review.

Administering Session State and User Preferences
A session is a logical construct that establishes persistence (or stateful behavior)
across page views. Each session is assigned a unique ID which the HTML DB
engine uses to store and retrieve an application's working set of data (or session
state) before and after each page view. Sessions persist in the database until purged
by an administrator.

Workspace administrators can purge session state or user preferences within their
workspace on the Session State Management page.

Topics in this section include:

■ Managing Session State and User Preferences for the Current Session

■ Managing Recent Sessions

Administering Session State and User Preferences

Managing Your Development Workspace 11-5

Managing Session State and User Preferences for the Current Session
Use the Current Session page to manage session state and user preferences for the
current session.

To access the Current Session page:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Session State.

The Session State Management page appears.

3. Click Report, with an option to purge, your current session.

The Current Session Page appears

4. Under Session State you can:

■ Reset the session state for the current session by clicking Purge Session
State

■ View information about the current session by clicking View Session State

5. Under User Preferences, you can:

■ View preferences for the current user, by clicking View Preferences

■ Reset user preferences for the current user by clicking Reset Preferences

Managing Recent Sessions
Workspace administrators can determine whether to purge existing sessions by
either:

■ Purging sessions by age

■ First reviewing session details and then optionally purging selected sessions

To purge existing session by age:

See Also:

■ "Understanding Session State Management" on page 6-12

■ "Managing User Preferences" on page 12-18

■ "Managing Session State" on page 15-3

See Also: "Viewing Session State" on page 6-13

Viewing Workspace Reports

11-6 Oracle HTML DB User’s Guide

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Session State.

The Session State Management page appears.

3. Select Purge existing sessions by age.

4. From the Sessions older than list, select a time increment and click either:

■ Purge Sessions

■ Report Session

To first review session details and then purge the session:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Session State.

The Session State Management page appears.

3. Select Report recent sessions with drilldown to session details.

4. Select a session ID.

5. When Session Information appears you click either:

■ Remove State

■ Remove Session

Viewing Workspace Reports
Workspace administrators can view a variety of application and administrative
reports on the Administrative Reports page.

To view workspace administrative reports:

1. From the Application Builder Home page select the Administration tab.

2. Under Administration Services, click Reports.

The Administrative Reports page appears.

3. Select a report to review.

Monitoring Developer Activity
Workspace administrators can view a variety of application and administrative
reports on the Administrative Reports page.

Managing Log Files

Managing Your Development Workspace 11-7

To view workspace administrative reports:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Monitor.

The Monitor page appears.

3. Select a report to review.

Managing Log Files
Workspace administrators can manage the following log files:

■ Developer activity logs

■ External click counting log

To view developer activity:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Logs.

The Log Files page appears.

3. Click Monitor Developer Activity.

4. Specify a time frame and the appropriate number of rows and click Go.

5. To view additional details, select a developer.

To purge Developer activity logs:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Logs.

3. Click Purge Dev. Log.

To purge the External click counting log:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Logs.

3. Click Purge Click. Log.

Managing Development Services

11-8 Oracle HTML DB User’s Guide

Managing Development Services
Workspace administrators can use the Provisioning Services section of the
Administration Services page to:

■ View information and reports describing the current workspace

■ Submit a request to the Oracle HTML DB administrator for a new database
schema, additional storage, or to terminate workspace service

Topics in this section include:

■ Viewing Current Workspace Status

■ Requesting a Database Schema

■ Requesting Additional Storage

■ Requesting Service Termination

Viewing Current Workspace Status
Workspace administrators can view current workspace status on the Manage
Development Services page.

To view current workspace status:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Click Provisioning Services and then Manage Service.

The Manage Development Services page appears.

3. Select Report Utilization.

4. Follow the on-screen instructions.

Requesting a Database Schema
To submit a request to the Oracle HTML DB administrator for a new database
schema:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Click Provisioning Services and then Manage Service.

The Manage Development Services page appears.

3. Select Request Schema.

4. Follow the on-screen instructions.

Managing Development Services

Managing Your Development Workspace 11-9

Requesting Additional Storage
To submit a request to the Oracle HTML DB administrator for additional storage
space for your workspace:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Click Provisioning Services and then Manage Service.

The Manage Development Services page appears.

3. Select Request Storage.

4. Follow the on-screen instructions.

Requesting Service Termination
To submit a request to the Oracle HTML DB administrator to terminate workspace
service:

1. From the Oracle HTML DB Home page select Administration tab.

2. Click Provisioning Services and then Manage Service.

The Manage Development Services page appears.

3. Select Terminate Service.

4. Follow the on-screen instructions.

Managing Development Services

11-10 Oracle HTML DB User’s Guide

Advanced Programming Techniques 12-1

12
Advanced Programming Techniques

This section provides information about advanced programming techniques
including establishing database links, using collections, running background SQL,
utilizing Web Services and managing user preferences.

 This section contains the following topics:

■ Accessing Data with Database Links

■ Using Collections

■ Running Background PL/SQL

■ Implementing Web Services

■ Managing User Preferences

Accessing Data with Database Links
Since Oracle HTML DB runs on top of an Oracle database, you have access to all
distributed database capabilities. Typically, you perform distributed database
operations using database links.

To use database links, you must create a standard database link using the following
standard Oracle syntax:

CREATE DATABASE LINK linkname
CONNECT TO username IDENTIFIED BY password
USING 'tns_connect_string';

See Also: "Oracle HTML DB APIs" on page 13-1

Using Collections

12-2 Oracle HTML DB User’s Guide

The tns_connect_string entry on your local server should correspond to the
information in your SERVERS tnsnames.ora file. It is a good idea to name your
database link the global name of the remote database.

Using Collections
Collections enable you to temporarily capture one or more non-scalar values. You
can use collections to store rows and columns currently in session state so they can
be accessed, manipulated, or processed during a user's specific session. Think of a
collection as a bucket in which you can temporarily store and name rows of
information.

Examples of when you might use collections include:

■ When you are creating a data-entry wizard in which multiple rows of
information first need to be collected within a logical transaction. You can use
collections to temporarily store the contents of the multiple rows of information,
prior to performing the final wizard step when both the physical and logical
transactions are completed.

■ When your application includes an update page on which a user updates
multiple detail rows on one page. They can make many updates, apply these
updates to a collection, then call a final process to apply the changes to the
database.

■ When you are building a wizard where you are collecting an arbitrary number
of attributes. At the end of the wizard the user then performs a task that takes
the information temporarily stored in the collection and applies it to the
database.

Using the HTMLDB_COLLECTION API
You implement a collection using the PL/SQL API HTMLDB_COLLECTION. Using
this API you can insert, update, and delete collection information.

Topics in this section include:

■ Creating a Collection

■ Truncating a Collection

■ Deleting a Collection

■ Adding Members to a Collection

See Also: Oracle Database Administrator's Guide

Using Collections

Advanced Programming Techniques 12-3

■ Updating Collection Members

■ Deleting a Collection Member

■ Determining Collection Status

■ Merging Collections

■ Managing Collections

■ Clearing Collection Session State

About Collection Naming
When you create a new collection, you must give it a name that cannot exceed 255
characters. Note that collection names are not case sensitive and will be converted
to upper case.

Once named, you can access the values in a collection by running a SQL query
against the view HTMLDB_COLLECTION.

Creating a Collection
Every collection contains a named list of data elements (or members) which can
have up to 50 attributes (or columns). Use the following methods to create a
collection:

■ CREATE_COLLECTION

■ CREATE_OR_TRUNCATE_COLLECTION

■ CREATE_COLLECTION_FROM_QUERY

CREATE_COLLECTION raises an exception if the named collection already exists.
For example:

HTMLDB_COLLECTION.CREATE_COLLECTION(
 p_collection_name => collection name);

CREATE_OR_TRUNCATE_COLLECTION creates a new collection if the named
collection does not exist. If the named collection already exists, this method
truncates it. Truncating a collection empties it, but leaves it in place. For example:

HTMLDB_COLLECTION.CREATE_OR_TRUNCATE_COLLECTION(
 p_collection_name => collection name);

CREATE_COLLECTION_FROM_QUERY creates a collection then populates it with the
results of a specified query. For example:

Using Collections

12-4 Oracle HTML DB User’s Guide

HTMLDB_COLLECTION.CREATE_COLLECTION_FROM_QUERY(
 p_collection_name => collection name,
 p_query => your query);

Truncating a Collection
Truncating a collection removes all members from the specified collection, but
leaves the named collection in place. For example:

HTMLDB_COLLECTION.TRUNCATE_COLLECTION(
 p_collection_name => collection name);

Deleting a Collection
Deleting a collection deletes the collection and all of its members. Be aware that if
you do not delete a collection, it will eventually be deleted when the session is
purged. For example:

HTMLDB_COLLECTION.DELETE_COLLECTION (
 p_collection_name => collection name);

Deleting All Collections for the Current Application Use the method DELETE_ALL_
COLLECTIONS to delete all collections defined in the current application. For
example:

HTMLDB_COLLECTION.DELETE_ALL_COLLECTIONS;

Deleting All Collections in the Current Session Use the method DELETE_ALL_
COLLECTIONS_SESSION to delete all collections defined in the current session. For
example:

HTMLDB_COLLECTION.DELETE_ALL_COLLECTIONS_SESSION;

Adding Members to a Collection
When data elements (or members) are added to a collection, they are assigned a
unique sequence ID. As you add members to a collection, the sequence ID will
change in increments of 1 with the newest members having the largest ID.

Using Collections

Advanced Programming Techniques 12-5

You add new member to a collection using the function ADD_MEMBER. Calling this
method returns the sequence ID of the newly added member. The following
example demonstrates how to use the procedure ADD_MEMBER.

HTMLDB_COLLECTION.ADD_MEMBER(
 p_collection_name => collection name,
 p_c001 => [member attribute 1],
 p_c002 => [member attribute 2],
 p_c003 => [member attribute 3],
 p_c004 => [member attribute 4],
 p_c005 => [member attribute 5],
 p_c006 => [member attribute 6],
 p_c007 => [member attribute 7],
 ...
 p_c050 => [member attribute 50]);

The next example demonstrates how to use the function ADD_MEMBER. This
function returns the sequence number assigned to the newly created member.

l_id := HTMLDB_COLLECTION.ADD_MEMBER(
 p_collection_name => collection name,
 p_c001 => [member attribute 1],
 p_c002 => [member attribute 2],
 p_c003 => [member attribute 3],
 p_c004 => [member attribute 4],
 p_c005 => [member attribute 5],
 p_c006 => [member attribute 6],
 p_c007 => [member attribute 7],
 ...
 p_c050 => [member attribute 50]);

You can also add new members (or an array of members) to a collection using the
method ADD_MEMBERS. This method raises an exception if the specified collection
does not exist with the specified name of the current user and in the same session.
Also any attribute exceeding 4,000 characters will be truncated to 4,000 characters.
The number of members added is based on the number of elements in the first
array. For example:

HTMLDB_COLLECTION.ADD_MEMBERS(
 p_collection_name => collection name,
 p_c001 => member attribute array 1,
 p_c002 => member attribute array 2,
 p_c003 => member attribute array 3,
 p_c004 => member attribute array 4,

Using Collections

12-6 Oracle HTML DB User’s Guide

 p_c005 => member attribute array 5,
 p_c006 => member attribute array 6,
 p_c007 => member attribute array 7,
 ...
 p_c050 => member attribute array 50);

Updating Collection Members
You can update collection members by calling UPDATE_MEMBER and referencing the
desired collection member by its sequence ID. This procedure replaces an entire
collection member, not individual member attributes. This procedure raises an
exception if the named collection does not exist. For example:

HTMLDB_COLLECTION.UPDATE_MEMBER (
 p_collection_name => collection name,
 p_seq => member sequence number,
 p_c001 => member attribute 1,
 p_c002 => member attribute 2,
 p_c003 => member attribute 3,
 p_c004 => member attribute 4,
 p_c005 => member attribute 5,
 p_c006 => member attribute 6,
 p_c007 => member attribute 7,
 ...
 p_c050 => member attribute 50);

If you wish to update a single attribute of a collection member, use UPDATE_
MEMBER_ATTRIBUTE. Calling this procedure raises an exception if the named
collection does not exist. For example:

HTMLDB_COLLECTION.UPDATE_MEMBER_ATTRIBUTE(
 p_collection_name => collection name,
 p_seq => member sequence number,
 p_attr_number => number of attribute to be updated,
 p_attr_value => new attribute value);

Deleting a Collection Member
You can delete a collection member by calling DELETE_MEMBER and referencing the
desired collection member by its sequence ID. For example:

HTMLDB_COLLECTION.DELETE_MEMBER(
 p_collection_name => collection name,
 p_seq => member sequence number);

Using Collections

Advanced Programming Techniques 12-7

Be aware that this procedure leaves a gap in the sequence IDs in the specified
collection. Also, calling this procedure results in an error if the named collection
does not exist.

You can also delete all members from a collection by when an attribute matches a
specific value. For example:

HTMLDB_COLLECTION.DELETE_MEMBERS(
 p_collection_name => collection name,
 p_attr_number => number of attribute to be updated,
 p_attr_value => new attribute value);

Be aware that this procedure also leaves a gap in the sequence IDs in the specified
collection. Also, this procedure raises an exception if:

■ The named collection does not exist

■ The specified attribute number is outside the range of 1 to 50, or is in invalid

If the supplied attribute value is null, then all members of the named collection will
deleted.

Determining Collection Status
Each collection contains a flag to determine if the contents of the collection has
changed. This flag is set when you first create a collection by calling CREATE_
COLLECTION or CREATE_OR_TRUNCATE_COLLECTION. You can reset this flag
manually by calling RESET_COLLECTION_CHANGED. For example:

HTMLDB_COLLECTION.RESET_COLLECTION_CHANGED (
 p_collection_name => collection name)

Once this flag has been reset, you can determine if a collection has changed by
calling COLLECTION_HAS_CHANGED. For example:

l_changed := HTMLDB_COLLECTION.COLLECTION_HAS_CHANGED(
 p_collection_name => collection_name);

When you add a new member to a collection, an MD5 message is automatically
computed against all 50 attributes of the member. You can access this value from the
MD5_ORIGINAL column of the view HTMLDB_COLLECTION using the function
GET_MEMBER_MD5. For example:

HTMLDB_COLLECTION.GET_MEMBER_MD5 (
 p_collection_name => collection name,
 p_seq => member sequence number);

Using Collections

12-8 Oracle HTML DB User’s Guide

 RETURN VARCHAR2;

Merging Collections
You can merge members of collection with values passed in a set of arrays. By using
the argument p_init_query, you can create a collection from the supplied query.
Be aware, however, that if the collection exists, the following occurs:

■ Rows in the collection (not in the arrays) will be deleted

■ Rows in the collection and in the arrays will be updated

■ Rows in the array and not in the collection will be inserted

Any attribute value exceeding 4,000 characters will be truncated to 4,000 characters.
Table 12–1 describes the available arguments you can use when merging collections.

Table 12–1 Available Arguments for Merging Collections

Argument Description

p_c001 Array of first attribute values to be merged. Maximum length
can be 4,000 characters. If the maximum length is greater, it
will be truncated to 4,000 characters.

The count of elements in the P_C001 PL/SQL table is used as
the total number of items across all PL/SQL tables. For
example, if P_C001.count = 2 and P_C002.count = 10, only 2
members will be merged. Be aware that if P_C001 is null, an
application error will be raised.

p_c0xx Attribute of XX attributes values to be merged. Maximum
length can be 4,000 characters. If the maximum length is
greater, it will be truncated to 4,000 characters.

p_collection_name Name of the collection.

See Also: "About Collection Naming" on page 12-3

p_null_index Use this argument to identify rows the merge function should
ignore. This argument identifies an row as null. Null rows are
automatically removed from the collection. Use p_null_
index in conjunction with.

p_null_value Use this argument in conjunction with the p_null_index.
Identifies the null value. If used this value cannot be null. A
typical value for this argument is 0.

p_init_query Use the query defined by this argument to create a collection if
the collection does not exist.

Using Collections

Advanced Programming Techniques 12-9

Managing Collections
You can use the following utilities to manage collections.

Obtaining a Member Count Use COLLECTION_MEMBER_COUNT to return the total
count of all members in a collection. Be aware that this count does not imply the
highest sequence in the collection. For example:

l_count := HTMLDB_COLLECTION.COLLECTION_MEMBER_COUNT (
 p_collection_name => collection name);

Resequencing a Collection Use RESEQUENCE_COLLECTION to resequence a collection
to remove any gaps in sequence IDs while maintaining the same element order. For
example:

HTMLDB_COLLECTION.RESEQUENCE_COLLECTION (
 p_collection_name => collection name)

Verifying Whether a Collection Exists Use COLLECTION_EXISTS to determine if a
collection exists. For example:

l_exists := HTMLDB_COLLECTION.COLLECTION_EXISTS (
 p_collection_name => collection name);

Adjusting Member Sequence ID You can adjust the sequence ID of a specific member
within a collection by moving the ID up or down. When you adjust a sequence ID,
the specified ID is exchanged with another one. For example, if you were to move
the ID 2 up, 2 would become 3 and 3 would become 2.

Use MOVE_MEMBER_UP to adjust a member sequence ID up by one. Alternately, use
MOVE_MEMBER_DOWN to adjust a member sequence ID down by one. For example:

HTMLDB_COLLECTION.MOVE_MEMBER_DOWN(
 p_collection_name => collection name,
 p_seq => member sequence number);

Be aware that while using either of these methods an application error displays:

■ If the named collection does not exist for the current user in the current session

■ If the member specified by sequence ID p_seq does not exist

However, an application error will not be returned if the specified member already
has the highest or lowest sequence ID in the collection (depending on whether you
are calling MOVE_MEMBER_UP or MOVE_MEMBER_DOWN).

Running Background PL/SQL

12-10 Oracle HTML DB User’s Guide

Sorting Collection Members Use SORT_MEMBERS to reorder members of a collection
by the column number. This method not only sorts the collection by a particular
column number, but it also reassigns the sequence IDs for each member to remove
gaps. For example:

HTMLDB_COLLECTION.SORT_MEMBERS(
 p_collection_name => collection name,
 p_sort_on_column_number => column number to sort by);

Clearing Collection Session State
By clearing the session state of a collection, you remove the collection members. A
shopping cart is a good example of when you might need to clear collection session
state. When a user requests to empty his or her cart and start again, you would need
to clear the session state for a collection. You can remove session state of a collection
by calling the CREATE_OR_TRUNCATE_COLLECTION method or by using f?p
syntax.

Calling CREATE_OR_TRUNCATE_COLLECTION deletes the existing collection and
then recreates it. For example:

HTMLDB_COLLECTION.CREATE_OR_TRUNCATE_COLLECTION(
 p_collection_name => collection name,

You can also use the sixth f?p syntax argument to clear session state. For example:

f?p=App:Page:Session::NO:1,2,3,collection name

Running Background PL/SQL
You can use the HTMLDB_PLSQL_JOB package to run PL/SQL code in the
background of your application. This is an effective approach for managing long
running operations that do not need to complete in order for a user to continue
working with your application.

Topics in this section include:

■ Understanding the HTMLDB_PLSQL_JOB Package

■ About System Status Updates

■ Using a Process to Implement Background PL/SQL

See Also: "Understanding URL Syntax" on page 6-19

Running Background PL/SQL

Advanced Programming Techniques 12-11

Understanding the HTMLDB_PLSQL_JOB Package
HTMLDB_PLSQL_JOB is a wrapper package around DBMS_JOB functionality offered
in the Oracle database. Be aware that the HTMLDB_PLSQL_JOB package only
exposes that functionality which is necessary to run PL/SQL in the background.
The following is a description of the HTMLDB_PLSQL_JOB package.

SQL> DESC HTMLDB_PLSQL_JOB
FUNCTION JOBS_ARE_ENABLED RETURNS BOOLEAN
PROCEDURE PURGE_PROCESS
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P_JOB NUMBER IN
FUNCTION SUBMIT_PROCESS RETURNS NUMBER
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P_SQL VARCHAR2 IN
 P_WHEN VARCHAR2 IN DEFAULT
 P_STATUS VARCHAR2 IN DEFAULT
FUNCTION TIME_ELAPSED RETURNS NUMBER
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P_JOB NUMBER IN
PROCEDURE UPDATE_JOB_STATUS
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P_JOB NUMBER IN
 P_STATUS VARCHAR2 IN
 P_DESC

Table 12–1 describes the functions available in the HTMLDB_PLSQL_JOB package.

Table 12–2 HTMLDB_PLSQL_JOB Package Available Functions

Function Description

SUBMIT_PROCESS Use this procedure to submit background PL/SQL. This
procedure returns a unique job number. Since you can use this
job number as a reference point for other procedures and
functions in this package, it may be useful to store it in your
own schema.

UPDATE_JOB_STATUS Call this procedure to update the status of the currently
running job. This procedure is most effective when called from
the submitted PL/SQL.

Running Background PL/SQL

12-12 Oracle HTML DB User’s Guide

You can view all jobs submitted to the HTMLDB_PLSQL_JOB package using the
HTMLDB_PLSQL_JOBS view. The following is the description of HTMLDB_PLSQL_
JOBS view.

SQL> DESCRIBE HTMLDB_PLSQL_JOBS
 Name Null? Type
 --------------------------------- -------- ----------------------------
 ID NUMBER
 JOB NUMBER
 FLOW_ID NUMBER
 OWNER VARCHAR2(30)
 ENDUSER VARCHAR2(30)
 CREATED DATE
 MODIFIED DATE
 STATUS VARCHAR2(100)
 SYSTEM_STATUS VARCHAR2(4000)
 SYSTEM_MODIFIED DATE
 SECURITY_GROUP_ID NUMBER

Table 12–3 describes the columns available in HTMLDB_PLSQL_JOBS view.

TIME_ELAPSED Use this function to determine how much time has elapsed
since the job was submitted.

JOBS_ARE_ENABLED Call this function to determine whether or not that database is
currently in a mode which supports submitting jobs to the
HTMLDB_PLSQL_JOB package.

PURGE_PROCESS Call this procedure to clean up submitted jobs. Submitted jobs
stay in the HTMLDB_PLSQL_JOBS view until either Oracle
HTML DB cleans out those records, or you call PURGE_
PROCESS to manually remove them.

Table 12–3 HTMLDB_PLSQL_JOBS View Columns

Name Description

ID An unique identifier for each row.

JOB The job number assigned to each submitted PL/SQL job. The
HTMLDB_PLSQL_JOB.SUBMIT_PROCESS function returns
this value. This is also the value you pass into other
procedures and functions in the HTMLDB_PLSQL_JOB
package.

Table 12–2 HTMLDB_PLSQL_JOB Package Available Functions

Function Description

Running Background PL/SQL

Advanced Programming Techniques 12-13

About System Status Updates
Submitted jobs can contain any of the following system status settings:

■ SUBMITTED. Indicates the job has been submitted, but has not yet started.
DBMS_JOB does not guarantee immediate starting of jobs.

■ IN PROGRESS. Indicates that DBMS_JOB has started the process.

■ COMPLETED. Indicates the job has finished.

■ BROKEN (sqlcode) sqlerrm. Indicates there was a problem in your job that
resulted in an exception. The SQL code and SQL Error Message for the
exception should be included in the system status. Review this information to
determine what went wrong.

Using a Process to Implement Background PL/SQL
The simplest way to implement the HTMLDB_PLSQL_JOB package is to create a
page process that specifies the process type PLSQL DBMS JOB. By selecting this
process type, Application Builder will submit the PL/SQL code you specify as a job.
Since you are not calling the function directly, you can use the built-in substitution
item APP_JOB to determine the job number of any jobs you submit.

FLOW_ID The application from which this job was submitted.

OWNER The database schema that owns the application. This
identifies what schema will parse this code when DBMS_JOB
runs it.

ENDUSER The end user (that is, who logged into the application) that
caused this process to be submitted.

CREATED The date when the job was submitted.

MODIFIED The date when the status was modified.

STATUS The user defined status for this job. Calling HTMLDB_PLSQL_
JOB.UPDATE_JOB_STATUS updates this column.

SYSTEM_STATUS The system defined status for this job.

SYSTEM_MODIFIED The date when the system status was modified.

SECURITY_GROUP_ID The unique ID assigned to your workspace. Developers can
only see jobs submitted from their own workspace.

Table 12–3 HTMLDB_PLSQL_JOBS View Columns

Name Description

Running Background PL/SQL

12-14 Oracle HTML DB User’s Guide

The following example runs a PL/SQL job in the background for testing and
explanation.

001 BEGIN
002 FOR i IN 1 .. 100 LOOP
003 INSERT INTO emp(a,b) VALUES (:APP_JOB,i);
004 IF MOD(i,10) = 0 THEN
005 HTMLDB_PLSQL_JOB.UPDATE_JOB_STATUS(
006 P_JOB => :APP_JOB,
007 P_STATUS => i || 'rows inserted');
008 END IF;
009 HTMLDB_UTIL.PAUSE(2);
010 END LOOP;
011 END;

In this example, note that:

■ Lines 002 to 010 run a loop that inserts 100 records into the emp table.

■ APP_JOB is referenced as a bind variable inside the VALUES clause of the
INSERT, and specified as the P_JOB parameter value in the call to UPDATE_
JOB_STATUS.

■ APP_JOB represents the job number which will be assigned to this process as it
is submitted to HTMLDB_PLSQL_JOB. By specifying this reserved item inside
your process code, it will be replaced for you at execution time with the actual
job number.

■ Notice this example calls to UPDATE_JOB_STATUS every ten records, INSIDE
the block of code. Normally, Oracle transaction rules dictate updates made
inside code blocks will not be seen until the entire transaction is committed. The
HTMLDB_PLSQL_JOB.UPDATE_JOB_STATUS procedure, however, has been
implemented in such a way that the update will happen regardless of whether
or not the job succeeds or fails. This last point is important for two reasons:

1. Even if your status reads "100 rows inserted," it does not mean the entire
operation was successful. If an exception occurred at the time the block of
code tried to commit, the user_status column of HTMLDB_PLSQL_JOBS
would not be affected since status updates are committed separately.

2. These updates are performed autonomously. You can view the job status
before the job has completed. This gives you the ability to display status
text about ongoing operations in the background as they are happening.

Implementing Web Services

Advanced Programming Techniques 12-15

Implementing Web Services
Web services in Oracle HTML DB are based on SOAP (the Simple Object Access
Protocol). SOAP is a World Wide Web Consortium (W3C) standard protocol for
sending and receiving requests and responses across the Internet. SOAP messages
can be sent back and forth between a service provider and a service user in SOAP
envelopes. SOAP envelopes contain a request for some action and the result of that
action and are formatted in XML.

Because SOAP is based on XML and uses simple transport protocols such as HTTP,
SOAP messages are not blocked by firewalls and is very easy to use. A SOAP
message consists of the following:

■ An envelope that contains the message, defines how to process the message,
who should process the message, and whether processing is optional or
mandatory.

■ Encoding rules that describe the data types for the application. These rules
define a serialization mechanism that converts the application data types to
XML and XML to data types.

■ Remote procedure call definitions.

Note that the SOAP 1.1 specification is a W3C note. (The W3C XML Protocol
Working Group has been formed to create a standard that will supersede SOAP.)

Creating a Web Service
To create a Web service in Oracle HTML DB, you must provide:

■ The URL used to post the SOAP request over HTTP

■ An URI (Uniform Resource Identifier) identifying the SOAP HTTP request

■ A Proxy address

■ A SOAP envelope

To create a new Web service:

1. Click the Build icon.

See Also: For more information on Simple Object Access Protocol
(SOAP) 1.1 see:

http://www.w3.org/TR/SOAP/

Implementing Web Services

12-16 Oracle HTML DB User’s Guide

2. From the Available Applications list, select an application and click Go.

3. Select the WebServices tab.

The Web Services pages appears. Existing services display in the Web Services
Repository. You can test an existing service by clicking the service name.

4. To create a new Web service, click Create.

The Create/Edit Web Service page appears. Required attributes are identified
with a red asterisk (*).

5. In Web Service Identification, enter a name for this Web service. This name only
appears within the context of Application Builder.

6. Under Service Description, specify the following:

■ In URL, specify the URL used to post the SOAP request over HTTP. This
URL corresponds to the soap:address location of a service port in the WSDL
(Web Services Description Language). For example:

http://www.alethea.net/webservices/LocalTime.asmx

■ In Action, indicate the intent of the SOAP HTTP request. This value is a URI
(Uniform Resource Identifier) identifying the intent. SOAP places no
restrictions on the format or specificity of the URI or whether or not it is
resolvable. An HTTP client must use this header field when issuing a SOAP
HTTP Request.

■ In Proxy, enter a proxy using the following syntax:

http://host:port/

This proxy overrides the system defined HTTP proxy for your request and
may include an optional TCP/IP port number at which the proxy server
listens. For example,

www-proxy.myworkspace.com

7. In SOAP Envelope, specify the SOAP envelope to be used for the SOAP request
to the Web service. This envelope can contain item substitutions using the
syntax #ITEM_NAME#. For example:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

Implementing Web Services

Advanced Programming Techniques 12-17

 <SOAP-ENV:Body><LocalTimeByZipCode
xmlns="http://www.alethea.net/webservices/"><ZipCode
xsi:type="xsd:string">#Fxxxx_Pyyy_ZIP_
CODE#</ZipCode></LocalTimeByZipCode></SOAP-ENV:Envelope>

8. Under Style Sheet Rendering, enter an enter a valid XSL style sheet. This style
sheet:

■ Renders the result of the Web Service in a page region.

■ Is used to apply an XML transformation against the result of the SOAP
request.

■ Render the output in a Web Service page region.

9. Click Create.

Invoking a Web Service as a Process
You can also implement a Web Service as a process on the page. Running the
process submits the request to the service provider. You can then display the request
results in Web Service region and use a style sheet to render the output.

To invoke a Web Service as a process:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Page Processes, click Create.

The Create Page Computation Wizard appears.

3. Specify a process name, sequence, and processing point.

4. From Type, select Web Service.

5. Identify the Web Service.

6. Follow the on-screen instructions

To create a Web Service region:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Regions, click Create.

The Create Region Wizard appears.

3. Select the region type Other and then select Web Service Result.

Managing User Preferences

12-18 Oracle HTML DB User’s Guide

4. Follow the on-screen instructions.

Managing User Preferences
You can use preferences to set the session state for a specific user. Once set, these
preferences can only be removed by an Oracle HTML DB administrator. You can set
user preferences by creating a page process, by the calculation of a preference Item
Source Value, or programatically using the PL/SQL API.

Topics in this section include:

■ Viewing User Preferences

■ Setting User Preferences

■ Resetting User Preferences Manually

■ Resetting Preferences Using a Page Process

Viewing User Preferences
You view user preferences for a specific user on the Session State Management
page.

To view user preferences for a specific user:

1. From the Oracle HTML DB Home page select the Administration tab.

2. Under Administration Services, click Manage Users and then Session State.

The Session State Management page appears.

3. Click Report preferences for users.

4. Type a username in the field provided and click Go.

Setting User Preferences
You can set user preferences within your application through the creation of a page
process, by creating a preference item, or programatically.

Topics in this section include:

■ Setting User Preferences Using a Page Process

See Also: "Administering Session State and User Preferences" on
page 11-4 for more information on using the Session State
Management page

Managing User Preferences

Advanced Programming Techniques 12-19

■ Setting the Source of an Item Based on a User Preference

■ Setting User Preferences Programatically

Setting User Preferences Using a Page Process
To set user preference values by creating a page process:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Page Processes, click Create.

The Create Page Computation Wizard appears.

3. Specify a process name, sequence, and processing point.

4. From Type, select one of the following:

■ Set Preference to value of item

■ Set Preference to value of item if item is not NULL

5. Specify the preference value in the field provided using the format:

PreferenceName:Item

6. Click Page Items to see a list of available items.

7. Follow the on-screen instructions

Setting the Source of an Item Based on a User Preference
You can set the source of an item based on a user preference by defining the item
source type as Preference.

To define the source of item based on a user preference:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Item, click Create.

The Create Page Computation Wizard appears.

3. Specify the Item Name and Display Position Attributes and click Next.

4. Specify the Item Attributes click Next.

5. From the Item Source list, select Preferences.

6. In Item Source Value, enter the name of the preference.

Managing User Preferences

12-20 Oracle HTML DB User’s Guide

7. Follow the on-screen instructions

Setting User Preferences Programatically
To set or reference user preferences programatically, you must use a PL/SQL API.
User level caching is available programmatically. You can use the set_
preferences function to set a user level preference called NAMED_PREFERENCE.
For example:

HTMLDB_UTIL.SET_PREFERENCE(
 p_preference=>'NAMED_PREFERENCE',
 p_value =>v('ITEM_NAME'));

You can reference the value of a user preference using the function GET_
PREFERENCES. For example:

NVL(HTMLDB_UTIL.GET_PREFERENCE('NAMED_PREFERENCE'),15)

In the previous example, the preference would default to the value 15 if the
preference contained no value.

Resetting User Preferences Manually
You can manually purge user preferences for a specific user.

To manually purge preferences for a specific user:

1. From the Oracle HTML DB Home page select Administration tab.

2. Under Administration Services, click Manage Users and then Session State.

The Session State Management page appears.

3. Click Purge preferences for a selected user.

4. Specify a user and follow the on-screen instructions.

See Also: "GET_PREFERENCE Function" on page 13-6 and "SET_
PREFERENCE Procedure" on page 13-9

See Also: "Administering Session State and User Preferences" on
page 11-4 for more information on using the Session State
Management page

Managing User Preferences

Advanced Programming Techniques 12-21

Resetting Preferences Using a Page Process
You can reset user preferences by creating a page process and selecting the process
type Reset Preferences.

To reset user preferences using a page process:

1. Navigate to the appropriate Page Definition. (See "Viewing a Page Definition"
on page 7-5.)

2. Under Page Processes, click Create.

The Create Page Computation Wizard appears.

3. Specify a process name, sequence, and processing point.

4. From Type, select Reset Preferences.

5. Follow the on-screen instructions

Managing User Preferences

12-22 Oracle HTML DB User’s Guide

Oracle HTML DB APIs 13-1

13
Oracle HTML DB APIs

This section describes the APIs available in Oracle HTML DB.

This section contains the following topics:

■ HTMLDB_UTIL

■ HTMLDB_ITEM

■ HTMLDB_APPLICATION

■ HTMLDB_CUSTOM_AUTH

HTMLDB_UTIL
The HTMLDB_UTIL package provides utilities you can use when programming in
the Oracle HTML DB environment. You can use HTMLDB_UTIL to get and set
session state, get files, check authorizations for users, reset different states for users,
and also to get and set preferences for users.

Topics in this section include:

■ CLEAR_APP_CACHE Procedure

■ CLEAR_USER_CACHE Procedure

■ COUNT_CLICK Procedure

■ GET_FILE Procedure

■ GET_NUMERIC_SESSION_STATE Function

■ GET_PREFERENCE Function

■ GET_SESSION_STATE Function

■ PUBLIC_CHECK_AUTHORIZATION Function

HTMLDB_UTIL

13-2 Oracle HTML DB User’s Guide

■ REMOVE_PREFERENCE Procedure

■ REMOVE_SORT_PREFERENCES Procedure

■ RESET_AUTHORIZATIONS Procedure

■ SET_PREFERENCE Procedure

■ SET_SESSION_STATE Procedure

■ STRING_TO_TABLE Function

■ TABLE_TO_STRING Function

■ URL_ENCODE Function

CLEAR_APP_CACHE Procedure
This procedure removes session state for a given application for the current session.

Syntax
HTMLDB_UTIL.CLEAR_APP_CACHE (
 p_app_id IN VARCHAR2 DEFAULT NULL);

Parameters
Table 13–1 describes the parameters available in the CLEAR_APP_CACHE procedure.

Example
BEGIN
 HTMLDB_UTIL.CLEAR_APP_CACHE('100');
END;

Table 13–1 CLEAR_APP_CACHE Parameters

Parameter Description

p_app_id The ID of the application for which session state will
be cleared for current session.

HTMLDB_UTIL

Oracle HTML DB APIs 13-3

CLEAR_USER_CACHE Procedure
This procedure removes session state and application system preferences for the
current user's session. Run this procedure if you reuse session IDs and want to run
applications without the benefit of existing session state.

Syntax
HTMLDB_UTIL.CLEAR_USER_CACHE;

Example
BEGIN
 HTMLDB_UTIL.CLEAR_USER_CACHE;
END;

COUNT_CLICK Procedure
This procedure counts clicks from an Oracle HTML DB application to an external
site. You can also use the shorthand version procedure Z in place of HTMLDB_
UTIL.COUNT_CLICK.

Syntax
HTMLDB_UTIL.COUNT_CLICK (
 p_url IN VARCHAR2,
 p_cat IN VARCHAR2,
 p_id IN VARCHAR2 DEFAULT NULL,
 p_user IN VARCHAR2 DEFAULT NULL,
 p_company IN VARCHAR2 DEFAULT NULL);

Parameters
Table 13–2 describes the parameters available in the COUNT_CLICK procedure.

Table 13–2 COUNT_CLICK Parameters

Parameter Description

p_url The URL to redirect to.

p_cat A category to classify the click.

p_id Secondary ID to associate with the click (optional).

HTMLDB_UTIL

13-4 Oracle HTML DB User’s Guide

Example

BEGIN
htp.p('Click
here');
END;

GET_FILE Procedure
This procedure downloads files from the Oracle HTML DB file repository.

Syntax
HTMLDB_UTIL.GET_FILE (
 p_file_id IN VARCHAR2,
 p_mime_type IN VARCHAR2 DEFAULT NULL,
 p_inline IN VARCHAR2 DEFAULT 'NO');

Parameters
Table 13–3 describes the parameters available in GET_FILE procedure.

p_user The application user ID (optional).

p_company The workspace associated with the application
(optional).

Table 13–3 GET_FILE Parameters

Parameter Description

p_file_id ID in HTMLDB_APPLICATION_FILES of the file to
be downloaded.

p_mime_type Mime type of the file to download.

p_inline Valid values include YES and NO. YES to display
inline in a browser. NO to download as attachment.

Table 13–2 COUNT_CLICK Parameters

Parameter Description

HTMLDB_UTIL

Oracle HTML DB APIs 13-5

Example
BEGIN
 HTMLDB_UTIL.GET_FILE(
 p_file_id => '8675309',
 p_mime_type => 'text/xml',
 p_inline => 'YES');
END;

GET_NUMERIC_SESSION_STATE Function
This function returns a numeric value for a numeric item. You can use this function
in Oracle HTML DB applications wherever you can use PL/SQL or SQL. You can
also use the shorthand, function NV, in place of HTMLDB_UTIL.GET_NUMERIC_
SESSION_STATE.

Syntax
HTMLDB_UTIL.GET_NUMERIC_SESSION_STATE (
 p_item IN VARCHAR2)
 RETURN NUMBER;

Parameters
Table 13–4 describes the parameters available in the GET_NUMERIC_SESSION_
STATE function.

Example
DECLARE
 l_item_value Number;
BEGIN
 l_item_value := HTMLDB_UTIL.GET_NUMERIC_SESSION_STATE('my_item');
END;

Table 13–4 GET_SESSION_STATE Parameters

Parameter Description

p_item Case insensitive name of the item for which you
wish to have the session state fetched.

HTMLDB_UTIL

13-6 Oracle HTML DB User’s Guide

GET_PREFERENCE Function
This function retrieves the value of a previously saved preference for a given user.

Syntax
HTMLDB_UTIL.GET_PREFERENCE (
 p_preference IN VARCHAR2 DEFAULT NULL,
 p_user IN VARCHAR2 DEFAULT V('USER'))
 RETURN VARCHAR2;

Parameters
Table 13–5 describes the parameters available in the GET_PREFERENCE function.

Example
DECLARE
 l_default_view VARCHAR2(255);
BEGIN
 l_default_view := HTMLDB_UTIL.GET_PREFERENCE(
 p_preference => 'default_view',
 p_user => :APP_USER);
END;

GET_SESSION_STATE Function
This function returns the value for an item. You can use this function in your Oracle
HTML DB applications wherever you can use PL/SQL or SQL. You can also use the
shorthand, function V, in place of HTMLDB_UTIL.GET_SESSION_STATE.

Syntax
HTMLDB_UTIL.GET_SESSION_STATE (
 p_item IN VARCHAR2)
 RETURN VARCHAR2;

Table 13–5 GET_PREFERENCE Parameters

Parameter Description

p_preference Name of the preference to retrieve the value.

p_value Value of the preference.

p_user User for whom the preference is being retrieved.

HTMLDB_UTIL

Oracle HTML DB APIs 13-7

Parameters
Table 13–6 describes the parameters available in the GET_SESSION_STATE
function.

Example
DECLARE
 l_item_value VARCHAR2(255);
BEGIN
 l_item_value := HTMLDB_UTIL.GET_SESSION_STATE('my_item');
END;

PUBLIC_CHECK_AUTHORIZATION Function
Given the name of a security scheme, this function determines if the current user
passes the security check.

Syntax
HTMLDB_UTIL.PUBLIC_CHECK_AUTHORIZATION (
 p_security_scheme IN VARCHAR2)
 RETURN BOOLEAN;

Parameters
Table 13–7 describes the parameters available in the PUBLIC_CHECK_
AUTHORIZATION function.

Table 13–6 GET_SESSION_STATE Parameters

Parameter Description

p_item Case insensitive name of the item for which you
wish to fetch session state.

Table 13–7 PUBLIC_CHECK_AUTHORIZATION Parameters

Parameter Description

p_security_name Name of the security scheme that determines if the
user passes the security check.

HTMLDB_UTIL

13-8 Oracle HTML DB User’s Guide

Example
DECLARE
 l_check_security boolean;
BEGIN
 l_check_security := HTMLDB_UTIL.PUBLIC_CHECK_AUTHORIZATION('my_auth_
scheme');
END;

REMOVE_PREFERENCE Procedure
This function returns removes the preference for the supplied user.

Syntax
HTMLDB_UTIL.REMOVE_PREFERENCE(
 p_preference IN VARCHAR2 DEFAULT NULL,
 p_user IN VARCHAR2 DEFAULT V('USER'));

Parameters
Table 13–8 describes the parameters available in the REMOVE_PREFERENCE
procedure.

Example
BEGIN
 HTMLDB_UTIL.REMOVE_PREFERENCE(
 p_preference => 'default_view',
 p_user => :APP_USER);
END;

REMOVE_SORT_PREFERENCES Procedure
This procedure removes the user's column heading sorting preference value.

Table 13–8 REMOVE_PREFERENCE Parameters

Parameter Description

p_preference Name of the preference to remove.

p_user User for whom the preference is for.

HTMLDB_UTIL

Oracle HTML DB APIs 13-9

Syntax
HTMLDB_UTIL.REMOVE_SORT_PREFERENCES (
 p_user IN VARCHAR2 DEFAULT V('USER'));

Parameters
Table 13–9 describes the parameters available in the REMOVE_SORT_PREFERENCES
procedure.

Example
BEGIN
 HTMLDB_UTIL.REMOVE_SORT_PREFERENCES(:APP_USER);
END;

RESET_AUTHORIZATIONS Procedure
To increase performance, Oracle HTML DB caches security checks. You can use this
procedure to undo caching thus requiring all security checks be revalidated for the
current user. Use this procedure if you wish users to have the ability to change their
responsibilities (their authorization profile) within your application.

Syntax
HTMLDB_UTIL.RESET_AUTHORIZATIONS;

Example
BEGIN
HTMLDB_UTIL.RESET_AUTHORIZATIONS;
END;

SET_PREFERENCE Procedure
This procedure sets a preference that will persist beyond the user's current session.

Table 13–9 REMOVE_SORT_PREFERENCES Parameters

Parameter Description

p_user User for whom sorting preference will be removed.

HTMLDB_UTIL

13-10 Oracle HTML DB User’s Guide

Syntax
HTMLDB_UTIL.SET_PREFERENCE (
 p_preference IN VARCHAR2 DEFAULT NULL,
 p_value IN VARCHAR2 DEFAULT NULL,
 p_user IN VARCHAR2 DEFAULT NULL);

Parameters
Table 13–10 describes the parameters available in the SET_PREFERENCE procedure.

Example
BEGIN
 HTMLDB_UTIL.SET_PREFERENCE(
 p_preference => 'default_view',
 p_value => 'WEEKLY',
 p_user => :APP_USER);
END;

SET_SESSION_STATE Procedure
This procedure sets session state for a current Oracle HTML DB session.

Syntax
HTMLDB_UTIL.SET_SESSION_STATE (
 p_name IN VARCHAR2 DEFAULT NULL,
 p_value IN VARCHAR2 DEFAULT NULL);

Parameters
Table 13–11 describes the parameters available in the SET_SESSION_STATE
procedure.

Table 13–10 SET_PREFERENCE Parameters

Parameter Description

p_preference Name of the preference (case sensitive).

p_value Value of the preference.

p_user User for whom the preference is being set.

HTMLDB_UTIL

Oracle HTML DB APIs 13-11

Example
BEGIN
HTMLDB_UTIL.SET_SESSION_STATE('my_item','myvalue');
END;

STRING_TO_TABLE Function
Given a string, this function returns a PL/SQL array of type HTMLDB_
APPLICATION_GLOBAL.VC_ARR2. This array is a VARCHAR2(32767) table.

Syntax
HTMLDB_UTIL.STRING_TO_TABLE (
 p_string IN VARCHAR2,
 p_separator IN VARCHAR2 DEFAULT ':')
 RETURN HTMLDB_APPLICATION_GLOBAL.VC_ARR2;

Parameters
Table 13–12 describes the parameters available in the STRING_TO_TABLE function.

Example
DECLARE
 l_vc_arr2 HTMLDB_APPLICATION_GLOBAL.VC_ARR2;
BEGIN
 l_vc_arr2 := HTMLDB_UTIL.STRING_TO_TABLE('One:Two:Three');

Table 13–11 SET_SESSION_STATE Parameters

Parameter Description

p_name Name of the application or page level item for which
you are setting sessions state.

p_value Value of session state to set.

Table 13–12 STRING_TO_TABLE Parameters

Parameter Description

p_string String to be converted into a PL/SQL table of type
HTMLDB_APPLICATION_GLOBAL.VC_ARR2.

p_separator String separator. The default is a colon.

HTMLDB_UTIL

13-12 Oracle HTML DB User’s Guide

 FOR z IN 1..l_vc_arr2.count LOOP
 htp.p(l_vc_arr2(z));
 END LOOP;
END;

TABLE_TO_STRING Function
Given a a PL/SQL table of type HTMLDB_APPLICATION_GLOBAL.VC_ARR2, this
function returns a delimited string separated by the supplied separator, or by the
default separator, a colon (:).

Syntax
HTMLDB_UTIL.TABLE_TO_STRING (
 p_table IN HTMLDB_APPLICATION_GLOBAL.VC_ARR2,
 p_string IN VARCHAR2 DEFAULT ':')
 RETURN VARCHAR2;

Parameters
Table 13–13 describes the parameters available in the TABLE_TO_STRING function.

Example
DECLARE
 l_string VARCHAR2(255);
 l_vc_arr2 HTMLDB_APPLICATION_GLOBAL.VC_ARR2;
BEGIN
 l_vc_arr2 := HTMLDB_UTIL.STRING_TO_TABLE('One:Two:Three');

 l_string := HTMLDB_UTIL.TABLE_TO_STRING(l_vc_arr2);
END;

Table 13–13 TABLE_TO_STRING Parameters

Parameter Description

p_string String separator. Default separator is a colon (:).

p_table PL/SQL table that is to be converted into a
delimited string.

HTMLDB_ITEM

Oracle HTML DB APIs 13-13

URL_ENCODE Function
This function encodes (into HEX) all special characters that include spaces, question
marks, ampersands, and so on.

Syntax
HTMLDB_UTIL.URL_ENCODE (
 p_url IN VARCHAR2)
 RETURN VARCHAR2;

Parameters
Table 13–14 describes the parameters available in the URL_ENCODE function.

Example
DECLARE
 l_url VARCHAR2(255);
BEGIN
 l_url := HTMLDB_UTIL.URL_ENCODE('http://www.myurl.com?id=1&cat=foo');
END;

HTMLDB_ITEM
You can use the HTMLDB_ITEM package to create form elements dynamically based
on a SQL query instead of creating individual items page by page.

Topics in this section include:

■ CHECKBOX Function

■ DATE_POPUP Function

■ HIDDEN Function

■ MD5_CHECKSUM Function

■ MD5_HIDDEN Function

Table 13–14 URL_ENCODE Parameters

Parameter Description

p_string The string you would like to have encoded.

HTMLDB_ITEM

13-14 Oracle HTML DB User’s Guide

■ MULTI_ROW_UPDATE Procedure

■ SELECT_LIST Function

■ SELECT_LIST_FROM_LOV Function

■ SELECT_LIST_FROM_LOV_XL Function

■ SELECT_LIST_FROM_QUERY Function

■ SELECT_LIST_FROM_QUERY_XL Function

■ TEXT Function

■ TEXT_FROM_LOV Function

■ RADIOGROUP Function

■ POPUP_FROM_LOV Function

■ POPUP_FROM_QUERY Function

■ POPUPKEY_FROM_LOV Function

■ POPUPKEY_FROM_QUERY Function

CHECKBOX Function
This function creates check boxes.

Syntax
HTMLDB_ITEM.CHECKBOX(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_attributes IN VARCHAR2 DEFAULT,
 p_checked_values IN VARCHAR2 DEFAULT,
 p_checked_values_delimitor IN VARCHAR2 DEFAULT)
 RETURN VARCHAR2;

Parameters
Table 13–15 describes the parameters available in the CHECKBOX function.

HTMLDB_ITEM

Oracle HTML DB APIs 13-15

Examples of Default Check Box Behavior
The following example demonstrates how to create a selected check box for each
employee in the emp table.

SELECT HTMLDB_ITEM.CHECKBOX(1,empno,'CHECKED') " ",
 ename,
 job
FROM emp
ORDER BY 1

The next example demonstrates how to have all check boxes for employees display
without being selected.

SELECT HTMLDB_ITEM.CHECKBOX(1,empno) " ",
 ename,
 job
FROM emp
ORDER BY 1

The next example demonstrates how to select the check boxes for employees who
work in department 10.

SELECT HTMLDB_ITEM.CHECKBOX(1,empno,DECODE(deptno,10,'CHECKED',null)) " ",
 ename,
 job
FROM emp
ORDER BY 1

Table 13–15 CHECKBOX Parameters

Parameter Description

p_idx Number which determines which HTMLDB_
APPLICATION global will be used. Valid range of
values is 1 to 50. For example 1 creates F01 and 2
creates F02.

p_value Value of a check box, hidden field, or input form
item.

p_attributes Controls HTML tag attributes (such as disabled).

p_checked_values Values to be checked by default.

p_checked_values_delimitor Delimits the values in the previous parameter, p_
checked_values.

HTMLDB_ITEM

13-16 Oracle HTML DB User’s Guide

The next example demonstrates how to select the check boxes for employees who
work in department 10 or department 20.

SELECT HTMLDB_ITEM.CHECKBOX(1,deptno,NULL,'10:20',':') " ",
 ename,
 job
FROM emp
ORDER BY 1

Creating a On-Submit Process
If you are using check boxes in your application, you might need to create an On
Submit process to perform a specific type of action on the selected rows. For
example, you could have a Delete button that utilizes the following logic:

SELECT HTMLDB_ITEM.CHECKBOX(1,empno) " ",
 ename,
 job
FROM emp
ORDER by 1

Consider the following sample on-submit process:

FOR I in 1..HTMLDB_APPLICATION.G_F01.COUNT LOOP
 DELETE FROM emp WHERE empno = to_number(HTMLDB_APPLICATION.G_F01(i));
END LOOP;

DATE_POPUP Function
Use this function with forms that include date fields. DATE_POPUP dynamically
generates a date field that has popup calendar button.

Syntax
HTMLDB_ITEM.DATE_POPUP(
 p_idx IN NUMBER,
 p_row IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_date_format IN DATE DEFAULT,
 p_size IN NUMBER DEFAULT,
 p_maxlength IN NUMBER DEFAULT,
 p_attributes IN VARCHAR2 DEFAULT)
 RETURN VARCHAR2;

HTMLDB_ITEM

Oracle HTML DB APIs 13-17

Parameters
Table 13–16 describes the parameters available in the DATE_POPUP function.

Example
The following example demonstrates how to use HTMLDB_ITEM.DATE_POPUP to
create popup calendar buttons for the hiredate column.

SELECT
 empno,
 HTMLDB_ITEM.HIDDEN(1,empno)||
 HTMLDB_ITEM.TEXT(2,ename) ename,
 HTMLDB_ITEM.TEXT(3,job) job,
 mgr,
 HTMLDB_ITEM.DATE_POPUP(4,rownum,hiredate,'dd-mon-yyyy') hd,
 HTMLDB_ITEM.TEXT(5,sal) sal,
 HTMLDB_ITEM.TEXT(6,comm) comm,
 deptno
FROM emp
ORDER BY 1

Table 13–16 DATE_POPUP Parameters

Parameter Description

p_idx Number which determines which HTMLDB_
APPLICATION global will be used.Valid range of
values is 1 to 50. For example 1 creates F01 and 2
creates F02.

p_value Value of a field item.

p_date_format Valid database date format.

p_size Controls HTML tag attributes (such as disabled).

p_maxlength Determine the maximum number of enterable
characters. Becomes the maxlength attribute of the
<input > HTML tag.

p_attributes Extra HTML parameters you wish to add.

See Also: Oracle Database SQL Reference for more information on
the TO_CHAR or TO_DATE functions

HTMLDB_ITEM

13-18 Oracle HTML DB User’s Guide

HIDDEN Function
This function dynamically generates hidden form items.

Syntax
HTMLDB_ITEM.HIDDEN(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT)
 RETURN VARCHAR2;

Parameters
Table 13–17 describes the parameters available in the HIDDEN function.

Example
Typically, the primary key of a table is stored as a hidden column and used for
subsequent update processing. Consider the following sample SLQ query:

SELECT
 empno,
 HTMLDB_ITEM.HIDDEN(1,empno)||
 HTMLDB_ITEM.TEXT(2,ename) ename,
 HTMLDB_ITEM.TEXT(3,job) job,
 mgr,
 HTMLDB_ITEM.DATE_POPUP(4,rownum,hiredate,'dd-mon-yyyy') hiredate,
 HTMLDB_ITEM.TEXT(5,sal) sal,
 HTMLDB_ITEM.TEXT(6,comm) comm,
 deptno
FROM emp
ORDER BY 1

The previous query could use the following page process to process the results:

BEGIN

Table 13–17 HIDDEN Parameters

Parameter Description

p_idx Number to identify the item you wish to generate.
The number will determine which G_FXX global is
populated.

See Also: "HTMLDB_APPLICATION" on page 13-40

p_value Value of the hidden input form item.

HTMLDB_ITEM

Oracle HTML DB APIs 13-19

 FOR i IN 1..HTMLDB_APPLICATION.G_F01.COUNT LOOP
 UPDATE emp
 SET
 ename=HTMLDB_APPLICATION.G_F02(i),
 job=HTMLDB_APPLICATION.G_F03(i),
 hiredate=to_date(HTMLDB_APPLICATION.G_F04(i),'dd-mon-yyyy'),
 sal=HTMLDB_APPLICATION.G_F05(i),
 comm=HTMLDB_APPLICATION.G_F06(i)
 WHERE empno=to_number(HTMLDB_APPLICATION.G_F01(i));
 END LOOP;
END;

Note that the G_F01 column (which corresponds to the hidden EMPNO) is used as
the key to update each row.

MD5_CHECKSUM Function
This function passes values to HTMLDB_ITEM.MULTI_ROW_UPDATE and is used for
lost update detection. Lost update detection ensures data integrity in applications
where data can be accessed concurrently.

Syntax
HTMLDB_ITEM.MD5_CHECKSUM(
 p_value01 IN VARCHAR2 DEFAULT,
 p_value02 IN VARCHAR2 DEFAULT,
 p_value03 IN VARCHAR2 DEFAULT,
 ...
 p_value50 IN VARCHAR2 DEFAULT,
 p_col_sep IN VARCHAR2 DEFAULT,
 RETURN VARCHAR2;

Parameters
Table 13–19 describes the parameters available in the MD5_CHECKSUM function.

Table 13–18 MD5_HIDDEN Parameters

Parameter Description

p_value01

...

p_value50

Fifty available inputs. Parameters that are not supplied default to null.

HTMLDB_ITEM

13-20 Oracle HTML DB User’s Guide

Example
SELECT HTMLDB_ITEM.MD5_CHECKSUM(ename,job,sal)
FROM emp

MD5_HIDDEN Function
This function is used for lost update detection which ensures data integrity in
applications where data can be accessed concurrently.

This function produces a hidden form field and includes 50 inputs. HTMLDB_
ITEM.MD5_HIDDEN also produces an MD5 checksum using the Oracle database
DBMS_OBFUSCATION_TOOLKIT:

UTL_RAW.CAST_TO_RAW(DBMS_OBFUSCATION_TOOLKIT.MD5())

An MD5 checksum provides data integrity through hashing and sequencing to
assure that data is not altered or stolen as it is transmitted over a network

Syntax
HTMLDB_ITEM.MD5_HIDDEN(
 p_idx IN NUMBER,
 p_value01 IN VARCHAR2 DEFAULT,
 p_value02 IN VARCHAR2 DEFAULT,
 p_value03 IN VARCHAR2 DEFAULT,
 ...
 p_value50 IN VARCHAR2 DEFAULT,
 p_col_sep IN VARCHAR2 DEFAULT,
 RETURN VARCHAR2;

Parameters
Table 13–19 describes the parameters available in the MD5_HIDDEN function.

p_col_sep String used to separate p_value inputs. Defaults to the pipe symbol (|).

Table 13–18 MD5_HIDDEN Parameters

Parameter Description

HTMLDB_ITEM

Oracle HTML DB APIs 13-21

Example
p_idx specifies the FXX form element to be generated. In the following example, 7
generates F07. Also note that an HTML hidden form element will be generated.

SELECT HTMLDB_ITEM.MD5_HIDDEN(7,ename,job,sal), ename, job, sal FROM emp

MULTI_ROW_UPDATE Procedure
Use this procedure within a Multi Row Update process type. This procedure takes a
string containing a multiple row update definition in the following format:

OWNER:TABLE:pk_column1,pk_idx:pk_column2,pk_idx2|col,idx:col,idx...

Syntax
HTMLDB_ITEM.MULTI_ROW_UPDATE(
 p_mru_string IN VARCHAR2 DEFAULT)
 RETURN VARCHAR2;

Example
To use this procedure indirectly within application level process, you need to create
a query to generate a form of database data. The following example demonstrates
how to create a multiple row update on the emp table.

SELECT
empno,
HTMLDB_ITEM.HIDDEN(1,empno),
HTMLDB_ITEM.HIDDEN(2,deptno),

Table 13–19 MD5_HIDDEN Parameters

Parameter Description

p_idx Indicates the form element to be generated. For example, 1 equals F01
and 2 equals F02. Typically the p_idx parameter is constant for a given
column.

p_value01

...

p_value50

Fifty available inputs. Parameters not supplied default to null.

p_col_sep String used to separate p_value inputs. Defaults to the pipe symbol (|).

HTMLDB_ITEM

13-22 Oracle HTML DB User’s Guide

HTMLDB_ITEM.TEXT(3,ename),
HTMLDB_ITEM.SELECT_LIST_FROM_QUERY(4,job,'SELECT DISTINCT job FROM emp'),
HTMLDB_ITEM.TEXT(5,sal),
HTMLDB_ITEM.TEXT(7,comm),
HTMLDB_ITEM.MD5_CHECKSUM(ename,job,sal,comm),
deptno
FROM emp
WHERE deptno = 20

Note the call to HTMLDB_ITEM.MD5_CHECKSUM instead of HTMLDB_ITEM.MD5_
HIDDEN. Since HTMLDB_ITEM.MULTI_ROW_UPDATE gets the checksum from
HTMLDB_APPLICATION.G_FCS, you need to call HTMLDB_ITEM.MD5_CHECKSUM
in order to populate HTMLDB_APPLICATION.G_FCS when the page is submitted.
Additionally, the columns in HTMLDB_ITEM.MD5_CHECKSUM must be in the same
order those in the MULTI_ROW_UPDATE process. These updates can then processed
(or applied to the database) using an after submit page process of Multi Row
Update in a string similar to the following:

SCOTT:emp:empno,1:deptno,2|ename,3:job,4:sal,5:comm,7:,:,:,:,

SELECT_LIST Function
This function dynamically generates a static select list. Similar to other functions
available in the HTMLDB_ITEM package, these select list functions are designed to
generate forms with F01 to F50 form array elements.

Syntax
HTMLDB_ITEM.SELECT_LIST(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_list_values IN VARCHAR2 DEFAULT,
 p_attributes IN VARCHAR2 DEFAULT,
 p_show_null IN VARCHAR2 DEFAULT,
 p_null_value IN VARCHAR2 DEFAULT,
 p_null_text IN VARCHAR2 DEFAULT)
 RETURN VARCHAR2;

Parameters
Table 13–20 describes the parameters available in the SELECT_LIST function.

HTMLDB_ITEM

Oracle HTML DB APIs 13-23

Example
The following example demonstrates a static select list that displays Yes, returns Y,
defaults to Y, and generates a F01 form item.

SELECT HTMLDB_ITEM.SELECT_LIST(1,'Y','Yes;Y,No;N')
FROM emp

SELECT_LIST_FROM_LOV Function
This function dynamically generates select lists from a shared list of values (LOV).
Similar to other functions available in the HTMLDB_ITEM package, these select list
functions are designed to generate forms with F01 to F50 form array elements.

Syntax
HTMLDB_ITEM.SELECT_LIST_FROM_LOV(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_lov IN VARCHAR2,
 p_attributes IN VARCHAR2 DEFAULT,
 p_show_null IN VARCHAR2 DEFAULT,
 p_null_value IN VARCHAR2 DEFAULT,
 p_null_text IN VARCHAR2 DEFAULT)
 RETURN VARCHAR2;

Table 13–20 SELECT_LIST Parameters

Parameter Description

p_idx Form element name. For example, 1 equals F01 and 2 equals F02.
Typically the P_IDX parameter is constant for a given column.

p_value Current value. This value should be a value in the P_LIST_VALUES
parameter.

p_list_values List of static values separated by commas. Display values and return
values are separated by semicolons.

Note that this is only available in the SELECT_LIST function.

p_attributes Extra HTML parameters you wish to add.

p_show_null Extra select option to enable the NULL selection. Range of values is YES
and NO.

p_null_value Value to be returned when a user selects the null option. Only relevant
when P_SHOW_NULL equals YES.

HTMLDB_ITEM

13-24 Oracle HTML DB User’s Guide

Parameters
Table 13–21 describes the parameters available in the SELECT_LIST_FROM_LOV
function.

Example
The following demonstrates a select list based on a LOV defined in the application.

SELECT HTMLDB_ITEM.SELECT_LIST_FROM_LOV(2,job,'JOB_FLOW_LOV')
FROM emp

SELECT_LIST_FROM_LOV_XL Function
This function dynamically generates very large select lists (greater than 32K) from a
shared list of values (LOV). Similar to other functions available in the HTMLDB_
ITEM package, these select list functions are designed to generate forms with F01 to
F50 form array elements.

Syntax
HTMLDB_ITEM.SELECT_LIST_FROM_LOV_XL(

Table 13–21 SELECT_LIST_FROM_LOV Parameters

Parameter Description

p_idx Form element name. For example, 1 equals F01 and 2 equals F02.
Typically the p_idx parameter is constant for a given column.

p_value Current value. This value should be a value in the p_list_values
parameter.

p_lov Text name of a flow list of values. This list of values must be defined in
your flow. This parameter is used only by the select_list_from_
lov function.

p_attributes Extra HTML parameters you wish to add.

p_show_null Extra select option to enable the NULL selection. Range of values is YES
and NO.

p_null_value Value to be returned when a user selects the null option. Only relevant
when p_show_null equals YES.

p_null_text Value to be displayed when a user selects the null option. Only relevant
when p_show_null equals YES.

HTMLDB_ITEM

Oracle HTML DB APIs 13-25

 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_lov IN VARCHAR2,
 p_attributes IN VARCHAR2 DEFAULT,
 p_show_null IN VARCHAR2 DEFAULT,
 p_null_value IN VARCHAR2 DEFAULT,
 p_null_text IN VARCHAR2 DEFAULT)
 RETURN CLOB;

Parameters
Table 13–22 describes the parameters available in the SELECT_LIST_FROM_LOV_
XL function.

Example
The following demonstrates a select list based on a LOV defined in the application.

SELECT HTMLDB_ITEM.SELECT_LIST_FROM_LOV_XL(2,job,'JOB_FLOW_LOV')
FROM emp

Table 13–22 SELECT_LIST_FROM_LOV_XL Parameters

Parameter Description

p_idx Form element name. For example, 1 equals F01 and 2 equals F02.
Typically the p_idx parameter is constant for a given column.

p_value Current value. This value should be a value in the p_list_values
parameter.

p_lov Text name of a flow list of values. This list of values must be defined in
your flow. This parameter is used only by the select_list_from_
lov function.

p_attributes Extra HTML parameters you wish to add.

p_show_null Extra select option to enable the NULL selection. Range of values is YES
and NO.

p_null_value Value to be returned when a user selects the null option. Only relevant
when p_show_null equals YES.

p_null_text Value to be displayed when a user selects the null option. Only relevant
when p_show_null equals YES.

HTMLDB_ITEM

13-26 Oracle HTML DB User’s Guide

SELECT_LIST_FROM_QUERY Function
This function dynamically generates a select list from a query. Similar to other
functions available in the HTMLDB_ITEM package, these select list functions are
designed to generate forms with F01 to F50 form array elements.

Syntax
HTMLDB_ITEM.SELECT_LIST_FROM_QUERY(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_query IN VARCHAR2,
 p_attributes IN VARCHAR2 DEFAULT,
 p_show_null IN VARCHAR2 DEFAULT,
 p_null_value IN VARCHAR2 DEFAULT,
 p_null_text IN VARCHAR2 DEFAULT)
 RETURN VARCHAR2;

Parameters
Table 13–23 describes the parameters available in the SELECT_LIST_FROM_QUERY
function.

Table 13–23 SELECT_LIST_FROM_QUERY Parameters

Parameter Description

p_idx Form element name. For example, 1 equals F01 and 2 equals F02.
Typically the p_idx parameter is constant for a given column.

p_value Current value. This value should be a value in the p_list_values
parameter.

p_query SQL query that is expected to select two columns, a display column,
and a return column. For example:

SELECT dname, deptno FROM dept

Note that this is used only by the SELECT_LIST_FROM_QUERY
function.

p_attributes Extra HTML parameters you wish to add.

p_show_null Extra select option to enable the NULL selection. Range of values is
YES and NO.

p_null_value Value to be returned when a user selects the null option. Only relevant
when p_show_null equals YES.

HTMLDB_ITEM

Oracle HTML DB APIs 13-27

Example
The following demonstrates a select list based on a SQL query.

SELECT HTMLDB_ITEM.SELECT_LIST_FROM_QUERY(3,job,'SELECT DISTINCT job FROM emp')
FROM emp

SELECT_LIST_FROM_QUERY_XL Function
This function dynamically generates very large select lists (greater than 32K) from a
query. Similar to other functions available in the HTMLDB_ITEM package, these
select list functions are designed to generate forms with F01 to F50 form array
elements.

Syntax
HTMLDB_ITEM.SELECT_LIST_FROM_QUERY_XL(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_query IN VARCHAR2,
 p_attributes IN VARCHAR2 DEFAULT,
 p_show_null IN VARCHAR2 DEFAULT,
 p_null_value IN VARCHAR2 DEFAULT,
 p_null_text IN VARCHAR2 DEFAULT)
 RETURN CLOB;

Parameters
Table 13–24 describes the parameters available in the SELECT_LIST_FROM_
QUERY_XL function.

p_null_text Value to be displayed when a user selects the null option. Only relevant
when p_show_null equals YES.

Table 13–24 SELECT_LIST_FROM_QUERY_XL Parameters

Parameter Description

p_idx Form element name. For example, 1 equals F01 and 2 equals F02.
Typically the p_idx parameter is constant for a given column.

Table 13–23 SELECT_LIST_FROM_QUERY Parameters

Parameter Description

HTMLDB_ITEM

13-28 Oracle HTML DB User’s Guide

Example
The following demonstrates a select list based on a SQL query.

SELECT HTMLDB_ITEM.SELECT_LIST_FROM_QUERY_XL(3,job,'SELECT DISTINCT job FROM
emp')
FROM emp

TEXT Function
This function generates text fields (or text input form items) from a SQL query.

Syntax
HTMLDB_ITEM.TEXT(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT NULL,
 p_size IN NUMBER DEFAULT NULL,
 p_maxlength IN NUMBER DEFAULT NULL,
 p_attributes IN VARCHAR2 DEFAULT NULL,
 p_item_id IN VARCHAR2 DEFAULT NULL,
 p_item_label IN VARCHAR2 DEFAULT NULL)

p_value Current value. This value should be a value in the p_list_values
parameter.

p_query SQL query that is expected to select two columns, a display column,
and a return column. For example:

SELECT dname, deptno FROM dept

Note that this is used only by the SELECT_LIST_FROM_QUERY_XL
function.

p_attributes Extra HTML parameters you wish to add.

p_show_null Extra select option to enable the NULL selection. Range of values is
YES and NO.

p_null_value Value to be returned when a user selects the null option. Only relevant
when p_show_null equals YES.

p_null_text Value to be displayed when a user selects the null option. Only relevant
when p_show_null equals YES.

Table 13–24 SELECT_LIST_FROM_QUERY_XL Parameters

Parameter Description

HTMLDB_ITEM

Oracle HTML DB APIs 13-29

Parameters
Table 13–25 describes the parameters available in the TEXT function.

Example
The following sample query demonstrates how to generate one update field for
each row. Note that the ename, sal, and comm columns use the HTMLDB_
ITEM.TEXT function to generate an HTML text field for each row. Also, notice that
each item in the query is passed an unique p_idx parameter to ensure that each
column is stored in its own array.

SELECT
 empno,
 HTMLDB_ITEM.HIDDEN(1,empno)||
 HTMLDB_ITEM.TEXT(2,ename) ename,
 HTMLDB_ITEM.TEXT(3,job) job,
 mgr,
 HTMLDB_ITEM.DATE_POPUP(4,rownum,hiredate,'dd-mon-yyyy') hiredate,
 HTMLDB_ITEM.TEXT(5,sal) sal,
 HTMLDB_ITEM.TEXT(6,comm) comm,
 deptno
FROM emp
ORDER BY 1

Table 13–25 TEXT Parameters

Parameter Description

p_idx Number to identify the item you wish to generate.
The number will determine which G_FXX global is
populated.

See Also: "HTMLDB_APPLICATION" on page 13-40

p_value Value of a text field item.

p_size Controls HTML tag attributes (such as disabled).

p_maxlength Maximum number of characters that can be entered
in the text box.

p_attributes Extra HTML parameters you wish to add.

p_item_id HTML attribute ID for the <input> tag.

p_item_label Label of the text field item.

HTMLDB_ITEM

13-30 Oracle HTML DB User’s Guide

TEXT_FROM_LOV Function
This function returns the display value of a LOV given its value.

Syntax
HTMLDB_ITEM.TEXT_FROM_LOV (
 p_value IN VARCHAR2 DEFAULT NULL,
 p_lov IN VARCHAR2,
 p_null_text IN VARCHAR2 DEFAULT '%')
 RETURN VARCHAR2;

Parameters
Table 13–26 describes the parameters available in the TEXT_FROM_LOV function.

Example
Suppose you have an LOV called DEPARTMENTS_LOV as shown in the following
example:

SELECT dname, deptno FROM dept;

Next, assume you have a SQL Query region and you wish to query the emp table.
However, instead of displaying the deptno column (which contains numbers), you
wish to show the department name. You can accomplish this by using HTMLDB_
ITEM.TEXT_FROM_LOV function. For example:

SELECT ename, job, sal, comm, HTMLDB_ITEM.TEXT_FROM_LOV(deptno,'DEPARTMENTS_
LOV') d FROM emp;

RADIOGROUP Function
This function generates a radio group from a SQL query.

Table 13–26 TEXT_FROM_LOV Parameters

Parameter Description

p_value Display value of the LOV you are retrieving.

p_lov Name of the LOV in your application.

p_null_text Text to display if the value is null.

HTMLDB_ITEM

Oracle HTML DB APIs 13-31

Syntax
HTMLDB_ITEM.RADIOGROUP(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_selected_value IN VARCHAR2 DEFAULT,
 p_display IN VARCHAR2 DEFAULT,
 p_attributes IN VARCHAR2 DEFAULT,
 p_onblur IN VARCHAR2 DEFAULT,
 p_onchange IN VARCHAR2 DEFAULT,
 p_onfocus IN VARCHAR2 DEFAULT,)
 RETURN VARCHAR2;

Parameters
Table 13–27 describes the parameters available in the RADIOGROUP function.

Example
The following example demonstrates how to select department 20 from the emp
table as a default in a radio group.

SELECT HTMLDB_ITEM.CHECKBOX(1,deptno,'20',dname) dt
FROM dept
ORDER BY 1

Table 13–27 RADIOGROUP Parameters

Parameter Description

p_idx Number which determines which HTMLDB_APPLICATION
global will be used. Valid range of values is 1 to 50.For example
1 creates F01 and 2 creates F02.

p_value Value of the radio group.

p_selected_value Value that should be "on", or selected.

p_display Text to display next to the radio option.

p_attributes Extra HTML parameters you wish to add.

p_onblur JavaScript to execute in the onBlur event.

p_onchange JavaScript to execute in the onChange event.

p_onfocus JavaScript to execute in the onFocus event.

HTMLDB_ITEM

13-32 Oracle HTML DB User’s Guide

POPUP_FROM_LOV Function
This function generates an HTML popup select list from an application list of values
(LOV). Like other available functions in the HTMLDB_ITEM package, POPUP_FROM_
LOV is designed to generate forms with F01 to F50 form array elements.

Syntax
HTMLDB_ITEM.POPUP_FROM_LOV(

 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_lov_name IN VARCHAR2,
 p_width IN VARCHAR2 DEFAULT,
 p_max_length IN VARCHAR2 DEFAULT,
 p_form_index IN VARCHAR2 DEFAULT,
 p_escape_html IN VARCHAR2 DEFAULT,
 p_max_elements IN VARCHAR2 DEFAULT,
 p_attributes IN VARCHAR2 DEFAULT,
 p_ok_to_query IN VARCHAR2 DEFAULT,
 p_item_id IN VARCHAR2 DEFAULT NULL,
 p_item_label IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters
Table 13–28 describes the some parameters in the POPUP_FROM_LOV function.

Table 13–28 POPUP_FROM_LOV Parameters

Parameter Description

p_idx Form element name. For example, 1 equals F01 and 2 equals
F02. Typically, p_idx is a constant for a given column.

p_value Form element current value. This value should be one of the
values in the p_lov_name parameter.

p_lov_name Named LOV used for this popup.

p_width Width of the text box.

p_max_length Maximum number of characters that can be entered in the
text box.

HTMLDB_ITEM

Oracle HTML DB APIs 13-33

Example
The following example demonstrates a sample query the generates a popup from a
LOV named DEPT.

SELECT HTMLDB_ITEM.POPUP_FROM_LOV (1,deptno,'DEPT_LOV') dt
FROM emp

p_form_index HTML form on the page in which an item is contained.
Defaults to 0 and rarely used.

Only use this parameter when it is necessary to embed a
custom form in your page template (such as a search field
which posts to a different Web site). If this form comes before
the #FORM_OPEN# substitution string, then its index is zero
and the form opened automatically by Oracle HTML DB
must be referenced as form 1. This functionality supports the
JavaScript used in the popup LOV which passes a value back
to a form element.

p_escape_html Replacements for special characters that require an escaped
equivalent.

■ < for <

■ > for >

■ & for &

This parameter is useful if you know your query will return
illegal HTML.

p_max_elements Limit on the number of rows that can be returned by your
query. Limits the performance impact of user searches. By
entering a value in this parameter, you force the user to
search for a more narrow set of results.

p_attributes Additional HTML attributes to use for the form item.

p_ok_to_query Range of values is YES and NO. If YES, a popup returns first
set of rows for the LOV. If NO, a search is initiated to return
rows.

p_item_id ID attribute of the form element.

p_item_label Invisible label created for the item.

Table 13–28 POPUP_FROM_LOV Parameters

Parameter Description

HTMLDB_ITEM

13-34 Oracle HTML DB User’s Guide

POPUP_FROM_QUERY Function
This function generates an HTML popup select list from a query. Like other
available functions in the HTMLDB_ITEM package, POPUP_FROM_QUERY is designed
to generate forms with F01 to F50 form array elements.

Syntax
HTMLDB_ITEM.POPUP_FROM_QUERY(

 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_lov_query IN VARCHAR2,
 p_width IN VARCHAR2 DEFAULT,
 p_max_length IN VARCHAR2 DEFAULT,
 p_form_index IN VARCHAR2 DEFAULT,
 p_escape_html IN VARCHAR2 DEFAULT,
 p_max_elements IN VARCHAR2 DEFAULT,
 p_attributes IN VARCHAR2 DEFAULT,
 p_ok_to_query IN VARCHAR2 DEFAULT,
 p_item_id IN VARCHAR2 DEFAULT NULL,
 p_item_label IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters
Table 13–29 describes the parameters in the POPUP_FROM_QUERY function.

Table 13–29 POPUP_FROM_QUERY Parameters

Parameter Description

p_idx Form element name. For example, 1 equals F01 and 2 equals
F02. Typically, p_idx is a constant for a given column.

p_value Form element current value. This value should be one of the
values in the p_lov_query parameter.

p_lov_query SQL query that is expected to select two columns (a display
column and a return column). For example:

SELECT dname, deptno FROM dept

p_width Width of the text box.

p_max_length Maximum number of characters that can be entered in the text
box.

HTMLDB_ITEM

Oracle HTML DB APIs 13-35

Example
The following example demonstrates a sample query the generates a popup select
list from the emp table.

SELECT HTMLDB_ITEM.POPUP_FROM_QUERY (1,deptno,'SELECT dname, deptno FROM dept')
dt
FROM emp

p_form_index HTML form on the page in which an item is contained.
Defaults to 0 and rarely used.

Only use this parameter when it is necessary to embed a
custom form in your page template (such as a search field
which posts to a different Web site). If this form comes before
the #FORM_OPEN# substitution string, then its index is zero
and the form opened automatically by Oracle HTML DB must
be referenced as form 1. This functionality supports the
JavaScript used in the popup LOV which passes a value back
to a form element.

p_escape_html Replacements for special characters that require an escaped
equivalent.

■ < for <

■ > for >

■ & for &

This parameter is useful if you know your query will return
illegal HTML.

p_max_elements Limit on the number of rows that can be returned by your
query. Limits the performance impact of user searches. By
entering a value in this parameter, you force the user to search
for a more narrow set of results.

p_attributes Additional HTML attributes to use for the form item.

p_ok_to_query Range of values is YES and NO. If YES, a popup returns first set
of rows for the LOV. If NO, a search is initiated to return rows.

p_item_id ID attribute of the form element.

p_item_label Invisible label created for the item.

Table 13–29 POPUP_FROM_QUERY Parameters

Parameter Description

HTMLDB_ITEM

13-36 Oracle HTML DB User’s Guide

POPUPKEY_FROM_LOV Function
This function generates a popup key select list from a shared list of values (LOV).
Like other available functions in the HTMLDB_ITEM package, POPUPKEY_FROM_
LOV is designed to generate forms with F01 to F50 form array elements.

Syntax
HTMLDB_ITEM.POPUPKEY_FROM_LOV(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_lov_name IN VARCHAR2,
 p_width IN VARCHAR2 DEFAULT,
 p_max_length IN VARCHAR2 DEFAULT,
 p_form_index IN VARCHAR2 DEFAULT,
 p_escape_html IN VARCHAR2 DEFAULT,
 p_max_elements IN VARCHAR2 DEFAULT,
 p_attributes IN VARCHAR2 DEFAULT,
 p_ok_to_query IN VARCHAR2 DEFAULT,
 RETURN VARCHAR2;

Although the text field associated with the popup displays in the first column in the
LOV query, the actual value is specified in the second column in the query.

Parameters
Table 13–30 describes the some parameters in the POPUPKEY_FROM_LOV function.

Table 13–30 POPUPKEY_FROM_LOV Parameters

Parameter Description

p_idx Identifies a form element name. For example, 1 equals F01 and 2
equals F02. Typically, p_idx is a constant for a given column

Because of the behavior of POPUPKEY_FROM_QUERY, the next index
value should be p_idx + 1. For example:

SELECT HTMLDB_ITEM.POPUPKEY_FROM_LOV (1,deptno,'DEPT') dt,
HTMLDB_ITEM.HIDDEN(3,empno) eno

p_value Indicates the current value. This value should be one of the values
in the P_LOV_NAME parameter.

p_lov_name Identifies a named LOV used for this popup.

p_width Width of the text box.

p_max_length Maximum number of characters that can be entered in the text box.

HTMLDB_ITEM

Oracle HTML DB APIs 13-37

Example
The following example demonstrates how to generate a popup key select list from a
shared list of values (LOV).

SELECT HTMLDB_ITEM.POPUPKEY_FROM_LOV (1,deptno,'DEPT') dt
FROM emp

POPUPKEY_FROM_QUERY Function
This function generates a popup key select list from a SQL query. Like other
available functions in the HTMLDB_ITEM package, POPUPKEY_FROM_QUERY is
designed to generate forms with F01 to F50 form array elements.

p_form_index HTML form on the page in which an item is contained. Defaults to 0
and rarely used.

Only use this parameter when it is necessary to embed a custom
form in your page template (such as a search field which posts to a
different Web site). If this form comes before the #FORM_OPEN#
substitution string, then its index is zero and the form opened
automatically by Oracle HTML DB must be referenced as form 1.
This functionality supports the JavaScript used in the popup LOV
which passes a value back to a form element.

p_escape_html Replacements for special characters that require an escaped
equivalent.

■ < for <

■ > for >

■ & for &

This parameter is useful if you know your query will return illegal
HTML.

p_max_elements Limit on the number of rows that can be returned by your query.
Limits the performance impact of user searches. By entering a value
in this parameter, you force the user to search for a more narrow set
of results.

p_attributes Additional HTML attributes to use for the form item.

p_ok_to_query Range of values is YES and NO. If YES, a popup returns first set of
rows for the LOV. If NO, a search is initiated to return rows.

Table 13–30 POPUPKEY_FROM_LOV Parameters

Parameter Description

HTMLDB_ITEM

13-38 Oracle HTML DB User’s Guide

Syntax
HTMLDB_ITEM.POPUPKEY_FROM_QUERY(
 p_idx IN NUMBER,
 p_value IN VARCHAR2 DEFAULT,
 p_lov_query IN VARCHAR2,
 p_width IN VARCHAR2 DEFAULT,
 p_max_length IN VARCHAR2 DEFAULT,
 p_form_index IN VARCHAR2 DEFAULT,
 p_escape_html IN VARCHAR2 DEFAULT,
 p_max_elements IN VARCHAR2 DEFAULT,
 p_attributes IN VARCHAR2 DEFAULT,
 p_ok_to_query IN VARCHAR2 DEFAULT,
 p_item_id IN VARCHAR2 DEFAULT NULL,
 p_item_label IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters
Table 13–31 describes the some parameters in the POPUPKEY_FROM_QUERY
function.

Table 13–31 POPUPKEY_FROM_QUERY Parameters

Parameter Description

p_idx Form element name. For example, 1 equals F01 and 2 equals F02.
Typically, p_idx is a constant for a given column.

Because of the behavior of POPUPKEY_FROM_QUERY, the next index
value should be p_idx + 1. For example:

SELECT HTMLDB_ITEM.POPUPKEY_FROM_QUERY (1,deptno,'SELECT
dname, deptno FROM dept') dt,
HTMLDB_ITEM.HIDDEN(3,empno) eno

p_value Form element current value. This value should be one of the values
in the P_LOV_QUERY parameter.

p_lov_query LOV query used for this popup.

p_width Width of the text box.

p_max_length Maximum number of characters that can be entered in the text box.

HTMLDB_ITEM

Oracle HTML DB APIs 13-39

Example
The following example demonstrates how to generate a popup select list from a
SQL query.

SELECT HTMLDB_ITEM.POPUPKEY_FROM_QUERY (1,deptno,'SELECT dname, deptno FROM
dept') dt
FROM emp

p_form_index HTML form on the page in which an item is contained. Defaults to 0
and rarely used.

Only use this parameter when it is necessary to embed a custom
form in your page template (such as a search field which posts to a
different Web site). If this form comes before the #FORM_OPEN#
substitution string, then its index is zero and the form opened
automatically by Oracle HTML DB must be referenced as form 1.
This functionality supports the JavaScript used in the popup LOV
which passes a value back to a form element.

p_escape_html Replacements for special characters that require an escaped
equivalent.

■ < for <

■ > for >

■ & for &

This parameter is useful if you know your query will return illegal
HTML.

p_max_elements Limit on the number of rows that can be returned by your query.
Limits the performance impact of user searches. By entering a value
in this parameter, you force the user to search for a more narrow set
of results.

p_attributes Additional HTML attributes to use for the form item.

p_ok_to_query Range of values is YES and NO. If YES, a popup returns first set of
rows for the LOV. If NO, a search is initiated to return rows.

p_item_id ID attribute of the form element.

p_item_label Invisible label created for the item.

Table 13–31 POPUPKEY_FROM_QUERY Parameters

Parameter Description

HTMLDB_APPLICATION

13-40 Oracle HTML DB User’s Guide

HTMLDB_APPLICATION
The HTMLDB_APPLICATION package is a PL/SQL package that implements the
Oracle HTML DB rendering engine. You can use this package to take advantage of a
number of global variables. Table 13–32 describes the global variables available in
HTMLDB_APPLICATION.

Topics in this section include:

■ Referencing Arrays

■ Referencing Values Within an On Submit Process

■ Converting an Array to a Single Value

Referencing Arrays
Items are typically HTML form elements such as text fields, select lists and check
boxes. When you create a new form item using a wizard, the wizard uses a standard
naming format. The naming format provides a handle so you can retrieve the value
of the item later on.

If you need to create your own items, you can access them after a page is submitted
by referencing HTMLDB_APPLICATION.G_F01 to HTMLDB_APPLICATION.G_F50
arrays. You can create your own HTML form fields by providing the input
parameters using the format F01, F02, F03 and so on. You can create up to 50 input
parameters ranging from F01 to F50. Consider the following example:

<INPUT TYPE="text" NAME="F01" SIZE="32" MAXLENGTH="32" VALUE="some value">

<TEXTAREA NAME="F02" ROWS=4 COLS=90 WRAP="VIRTUAL">this is the example of a text
area.</TEXTAREA>

<SELECT NAME="F03" SIZE="1">

Table 13–32 Global Variables Available in HTMLDB_APPLICATION

Global Variable Description

G_USER Specifies the currently logged in user.

G_FLOW_ID Specifies the ID of the currently running application.

G_FLOW_STEP_ID Specifies the ID of the currently running page.

G_FLOW_OWNER Specifies the schema to parse for the currently running
application.

HTMLDB_APPLICATION

Oracle HTML DB APIs 13-41

<OPTION VALUE="abc">abc
<OPTION VALUE="123">123
</SELECT>

Since the F01 to F50 input items are declared as PL/SQL arrays, you can have
multiple items named the same value. For example:

<INPUT TYPE="text" NAME="F01" SIZE="32" MAXLENGTH="32" VALUE="array element 1">
<INPUT TYPE="text" NAME="F01" SIZE="32" MAXLENGTH="32" ALUE="array element 2">
<INPUT TYPE="text" NAME="F01" SIZE="32" MAXLENGTH="32" VALUE="array element 3">

Note that following PL/SQL produces the same HTML as show in the previous
example.

FOR i IN 1..3 LOOP
HTMLDB_ITEM.TEXT(P_IDX => 1,
 p_value =>'array element '||i ,
 p_size =>32,
 p_maxlength =>32);
END LOOP;

Referencing Values Within an On Submit Process
You can reference the values posted by an HTML form using the PL/SQL variable
HTMLDB_APPLICATION.G_F01 to HTMLDB_APPLICATION.G_F50. Since this
element is an array you can reference values directly. For example:

FOR i IN HTMLDB_APPLICATION.G_F01.COUNT LOOP
 htp.p('element '||I||' has a value of '||HTMLDB_APPLICATION.G_F01(i));
END LOOP;

Converting an Array to a Single Value
You can also use Oracle HTML DB public utility functions to convert an array into a
single value. For example:

htp.p(HTMLDB_UTIL.TABLE_TO_STRING(HTMLDB_APPLICATION.G_F01));

This function is enables you to reference G_F01 to G_F50 values in an application
process that performs actions on data. The following sample process demonstrates
the insertion of values into an table:

FOR i IN 1..HTMLDB_APPLICATION.G_F01.COUNT LOOP
 INSERT INTO my_table (my_column) VALUES HTMLDB_APPLICATION.G_F01(i);

HTMLDB_CUSTOM_AUTH

13-42 Oracle HTML DB User’s Guide

END LOOP;

HTMLDB_CUSTOM_AUTH
You can use HTMLDB_CUSTOM_AUTH to perform various operations related to
authentication and session management.

Topics in this section include:

■ APPLICATION_PAGE_ITEM_EXISTS Function

■ CURRENT_PAGE_IS_PUBLIC Function

■ DEFINE_USER_SESSION Procedure

■ GET_NEXT_SESSION_ID Function

■ GET_SECURITY_GROUP_ID Function

■ GET_SESSION_ID Function

■ GET_USER Function

■ SESSION_ID_EXISTS Function

■ SET_USER Procedure

■ SET_SESSION_ID Procedure

■ SET_SESSION_ID_TO_NEXT_VALUE Procedure

APPLICATION_PAGE_ITEM_EXISTS Function
This function checks for the existence of page level item within an application. This
function requires the parameter p_item_name. This function returns a boolean
value (true or false).

Syntax
FUNCTION APPLICATION_PAGE_ITEM_EXISTS(
 p_item_name IN VARCHAR2)
RETURN BOOLEAN;

HTMLDB_CUSTOM_AUTH

Oracle HTML DB APIs 13-43

CURRENT_PAGE_IS_PUBLIC Function
This function checks whether the current page's authentication attribute is set to
Page Is Public and returns a boolean value (true or false)

Syntax
FUNCTION CURRENT_PAGE_IS_PUBLIC
RETURN BOOLEAN;

DEFINE_USER_SESSION Procedure
This procedure combines the SET_USER and SET_SESSION_ID functions to create
one call.

Syntax
PROCEDURE DEFINE_USER_SESSION(
 p_user IN VARCHAR2)
 p_session_id IN NUMBER);

GET_NEXT_SESSION_ID Function
This function generates the next session ID from the Oracle HTML DB sequence
generator. This function returns a number.

Syntax
FUNCTION GET_NEXT_SESSION_ID
RETURN NUMBER;

GET_SECURITY_GROUP_ID Function
This function returns a number with the value of the security group ID that
identifies the workspace of the current user.

See Also: "Editing Page Attributes" on page 7-52 and "About
Security" on page 7-55 for more information on setting this page
attribute

HTMLDB_CUSTOM_AUTH

13-44 Oracle HTML DB User’s Guide

Syntax
FUNCTION GET_SECURITY_GROUP_ID
RETURN NUMBER;

GET_SESSION_ID Function
This function returns HTMLDB_APPLICATION.G_INSTANCE global variable. GET_
SESSION_ID returns a number.

Syntax
PROCEDURE GET_SESSION_ID
RETURN NUMBER;

GET_USER Function
This function returns the HTMLDB_APPLICATION.G_USER global variable
(VARCHAR2).

Syntax
FUNCTION GET_USER
RETURN VARCHAR2;

SESSION_ID_EXISTS Function
This function determines whether HTMLDB_APPLICATION.G_INSTANCE is set.
SESSION_ID_EXISTS returns a BOOLEAN value (true or false).

Syntax
FUNCTION SESSION_ID_EXISTS
RETURN BOOLEAN;

SET_USER Procedure
This procedure sets the HTMLDB_APPLICATION.G_USER global variable. SET_
USER requires the parameter P_USER (VARCHAR2) which defines a user ID.

HTMLDB_CUSTOM_AUTH

Oracle HTML DB APIs 13-45

Syntax
PROCEDURE SET_USER(
 p_user IN VARCHAR2)

SET_SESSION_ID Procedure
This procedure sets HTMLDB_APPLICATION.G_INSTANCE global variable. SET_
SESSION_ID returns a number. This procedure requires the parameter P_
SESSION_ID (NUMBER) which specifies a session ID.

Syntax
PROCEDURE SET_SESSION_ID(
 p_session_id IN NUMBER)

SET_SESSION_ID_TO_NEXT_VALUE Procedure
This procedure combines the operation of GET_NEXT_SESSION_ID and SET_
SESSION_ID in one call.

Syntax
PROCEDURE SETsN_ID_TO_NEXT_VALUE;

HTMLDB_CUSTOM_AUTH

13-46 Oracle HTML DB User’s Guide

Part III
Administration

Part III describes all tasks performed by an Oracle HTML DB administrator. An
Oracle HTML DB administrator manages an entire Oracle HTML DB development
environment instance through the Oracle HTML DB Administration Services
application. Common Oracle HTML DB administrator tasks include creating and
managing workspaces, translating an application, and managing activities, log files,
and sessions.

Part III contains the following chapters:

■ Chapter 14, "Administering Workspaces"

■ Chapter 15, "Managing Services"

■ Chapter 16, "Managing Globalization"

Administering Workspaces 14-1

14
Administering Workspaces

This section describes tasks an Oracle HTML DB administrator performs when
administering workspaces.

 This section contains the following topics:

■ About the Oracle HTML DB Administrator

■ Viewing Workspace Reports

■ Creating a Workspace

■ Managing Users in a Workspace

■ Managing the Schemas Associated with a Workspace

■ Removing a Workspace

■ Exporting and Importing a Workspace

About the Oracle HTML DB Administrator
In the Oracle HTML DB development environment, users log in to a shared work
area called a workspace. Users are divided into three primary roles:

■ Developer

■ Workspace administrator

■ Oracle HTML DB administrator

A developer can create and edit applications. A Workspace administrator performs
administrator tasks specific to their workspace such as managing user accounts,
monitoring workspace activity, and viewing log files. An Oracle HTML DB
administrator manages an entire Oracle HTML DB development environment
instance. To perform these tasks, an Oracle HTML DB administrator logs into the

Viewing Workspace Reports

14-2 Oracle HTML DB User’s Guide

Oracle HTML DB Administration Services application. Your Oracle HTML DB
Administration Services application can be found at the following location:

 http://server:port/pls/Database Authentication Descriptor/htmldb_admin

Viewing Workspace Reports
Oracle HTML DB administrators can view detailed information about a specific
workspace by viewing the Workspace Utilization Report.

To view a workspace report:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage Workspaces, select Report Workspace Attributes.

3. Select a workspace from the Workspace list and click Go.

The Workspace Utilization Report appears. Table 14–1 describes the various
sections of the Workspace Utilization Report.

See Also: Oracle HTML DB Quick Installation Guide for your
platform for more information on installing Oracle HTML DB

Table 14–1 Workspace Utilization Report

Report Description

Workspace Information Enables administrators to edit workspace information.

Workspace Schemas and Default
Tablespaces

Enables administrators to manage workspace to schema
mappings.

See Also: "Managing the Schemas Associated with a
Workspace" on page 14-8

Workspace Schemas Utilizing
Space in Tablespaces

Displays a report that details tablespace utilization.

Applications Displays a report that lists all applications within the
current workspace.

Application Developers Displays a report that lists all application developers
within the current workspace.

Cookie Users Enables administrators to manage user accounts.

See Also: "Managing Users in a Workspace" on
page 14-6

Creating a Workspace

Administering Workspaces 14-3

Creating a Workspace
When a user logs into the Oracle HTML DB they log in to a shared work area called
a workspace. Each workspace is an area within the Oracle HTML DB development
environment where multiple developers can create applications. Each workspace
has a unique ID and name. In order to make changes to their workspace, Workspace
administrators submit change request to an Oracle HTML DB administrator. Only
an Oracle HTML DB administrator can create a new workspace.

Topics in this section include:

■ Specifying a Provisioning Mode

■ Managing a Service and Change Request

■ Creating a Workspace Without a Request

Specifying a Provisioning Mode
As an Oracle HTML DB administrator, you determine how the process of creating
(or provisioning) a workspace works for your Oracle HTML DB development
environment.

In manual provision mode, an Oracle HTML DB administrator creates new
workspaces and notifies the Workspace administrator of the login information. In
request provision mode, users request workspaces directly using an automated
process. In this scenario, users use a link on the login page to access a request form.
Once the workspace request has been granted, they are e-mailed the appropriate
login information.

Objects Used By Workspace Displays a report that lists objects used in the current
workspace.

Service Change Requests Enables administrators to manage change requests for
the current workspace, or to view a report of all change
requests in an Oracle HTML DB development instance.

See Also: "Managing a Service and Change Request" on
page 14-4

Developer Activity Displays a report that details developer activity by date.

See Also: "Managing Development Services" on page 11-8

Table 14–1 Workspace Utilization Report

Report Description

Creating a Workspace

14-4 Oracle HTML DB User’s Guide

To specify a provisioning mode:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage HTML DB Service, select Toggle Provisioning Status.

3. Select one of the following:

■ Manual

■ Request

4. Click Apply Changes.

Managing a Service and Change Request
Oracle HTML DB administrators can make modifications to a workspace (such as
such as adding an additional schema or increasing the disk space limit) by
approving a change request from a Workspace administrator.

Viewing a Pending Service or Change Request
You can view a summary of pending service requests and change requests in the
Notifications list on the Administration home page.

To view pending service and change requests:

1. Log in to Oracle HTML DB Administration Services.

2. Locate the Notifications list on the lower right side of the page (See
Figure 14–1).

Figure 14–1 Notifications List

Note: Before users can request a workspace or change their
passwords, an Oracle HTML DB administrator must configure
engine settings. For more information, see "Managing Engine
Settings" on page 15-5.

Creating a Workspace

Administering Workspaces 14-5

The Notifications list displays a summary of total and pending service and
change requests.

3. To view additional details, click the appropriate service request or change
request number.

The appropriate Change Request page appears.

To view pending requests from the Workspace Administration tab:

1. Log in to Oracle HTML DB Administration Services.

2. Select the Workspace Administration tab.

3. Locate a workspace as follows:

■ To locate a specific workspace, type the workspace name in the Search field
and click Go.

■ To view all workspaces, leave the Search field blank and click Go.

4. Click the view icon to the left of the appropriate workspace name.

The Workspace Utilization Report appears.

5. Under Available Reports, click Service Change Requests.

6. Select a specific request, or click View All Change Requests.

Approving a Service or Change Request
To approve a pending service request:

1. Navigate to the Service Change Request page as described in "Viewing a
Pending Service or Change Request" on page 14-4.

2. Click Provision.

The Provisioning Administration page appears.

3. Select one of the following:

■ To approve the request, click Approve.

■ To decline the request, click Decline.

4. Follow the on-screen instructions.

To approve a pending change request:

1. Navigate to the Service Change Request page as described in "Viewing a
Pending Service or Change Request" on page 14-4.

Managing Users in a Workspace

14-6 Oracle HTML DB User’s Guide

2. Click View Request.

The Process Change Request page appears.

3. Review the displayed reports.

4. Select one of the following:

■ To approve a request for a schema, click Create Schema.

■ To approve a request for additional disk space, click Provision Space.

■ To approve a request to terminate the service, click Terminate Service

5. To deny a request, click Deny Request.

6. Follow the on-screen instructions.

Creating a Workspace Without a Request
Administrators can create a workspace manually by running the Provision
Workspace Wizard. You can access this wizard from either the Oracle HTML DB
Administration Services Home page or the Workspace Administration tab.

To create a workspace manually:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage Workspaces, select Create New Workspace.

The Provision Workspace Wizard appears.

3. Specify a workspace name, ID, and description and click Next.

4. Select a schema, or enter the name for a new schema, followed by a password,
and initial disk space quota.

5. Click Next.

6. Specify a Workspace administrator by providing a username, password, and
e-mail address and click Next.

7. Confirm your selections and click Provision.

Managing Users in a Workspace
Oracle HTML DB administrators can manage all user accounts within an Oracle
HTML DB instance on the Manage Application Developers and Users page. User

Managing Users in a Workspace

Administering Workspaces 14-7

accounts are particularly useful if a workspace utilizes internal "Cookie User"
authentication.

To create a new user account:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage Workspaces, select Manage Application Developers.

The Manage Application Developers and Users page appears.

3. Click Create.

4. Under User Attributes, enter the appropriate information. Fields marked with a
red asterisk (*) are required.

5. Under Password, type a case sensitive password for this account.

6. Under Developer Privileges, specify the developer's privileges.

Developers having the Admin privilege have access to the Administration
Services page and all the functionality described in "Managing Your
Development Workspace" on page 11-1.

7. Click Create or Create and Create Another.

To edit an existing user account:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage Workspaces, select Manage Application Developers.

The Manage Application Developers and Users page appears.

3. Locate a user as follows:

■ To locate a specific user, type a username in the Search field and click Go.

■ To view all users, leave the Search field blank and click Go

4. Click the edit icon adjacent to appropriate username.

5. Follow the on-screen instructions.

See Also:

■ "Managing Your Development Workspace" on page 11-1

■ "About HTML DB Account Credentials" on page 10-14 for more
information on implementing internal Cookie User (or HTML
DB Account Credentials) authentication.

Managing the Schemas Associated with a Workspace

14-8 Oracle HTML DB User’s Guide

Managing the Schemas Associated with a Workspace
 A workspace can have multiple associated schemas. By associating a workspace
with a schema, you can:

■ Build applications that interact with the database objects in that schema.

■ Create new database objects in that schema.

To view the schema associated with a workspace:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage Workspaces, select Manage Schema to Workspace
Assignments.

The Schemas Provisioned by Workspace page appears.

3. To view information about an existing schema, click the edit icon.

4. To create a new schema association, click Create.

5. Follow the on-screen instructions.

Removing a Workspace
Removing a workspace does not remove the associated schema or schemas. To
remove the associated schemas, a database administrator (DBA) must use a
standard database administration tool such as Oracle Enterprise Manager or
SQL*Plus.

To remove a workspace:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage Workspaces, select Remove Workspace.

3. Select a workspace name and click Next.

4. Follow the on-screen instructions.

See Also:

■ Oracle Enterprise Manager Administrator's Guide

■ SQL*Plus User's Guide and Reference

Exporting and Importing a Workspace

Administering Workspaces 14-9

Exporting and Importing a Workspace
To move a workspace and all associated users to a new Oracle HTML DB
development instance, you must export the workspace. When you export a
workspace, Oracle HTML DB generates a text file. This file contains information
about your workspace, all the users in your workspace, and any groups in your
workspace (if applicable). You can use this file to import your workspace into
another Oracle HTML DB instance.

Keep in mind, this method only imports workspace, users, and groups. This file
does not contain:

■ The schemas associated with this workspace, or the objects in those schemas.

■ Any applications, images, cascading style sheets and static text files.

All of these items must be exported separately.

To export a workspace:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage Workspaces, select Export Workspace.

3. Select a workspace name and click Export.

4. To export the selected workspace, click Save File.

5. Follow the on-screen instructions.

To import a workspace:

1. Log in to Oracle HTML DB Administration Services.

2. Under Manage Workspaces, select Import Workspace.

3. Select a workspace name and click Next.

4. To install the workspace, click Install.

5. Follow the on-screen instructions.

See Also:

■ "Exporting and Importing Applications" on page 10-2

■ "About Managing Database Objects" on page 10-3

■ "Uploading CSS, Images, and Static Files" on page 10-8

Exporting and Importing a Workspace

14-10 Oracle HTML DB User’s Guide

Managing Services 15-1

15
Managing Services

This section provides information about managing Oracle HTML DB services.
Oracle HTML DB administrators can use the Manage HTML DB Services
application to manage log files, purge session state, monitor developer activities,
and manage engine settings.

 This section contains the following topics:

■ Managing Logs

■ Managing Session State

■ Monitoring Activities

■ Managing Engine Settings

Managing Logs
Oracle HTML DB administrators can manage the following log files on the Manage
Logs and Files page:

■ Developer activity logs

■ External click counting log

■ SQL Workshop logs

■ Page View Activity logs

To manage log files:

1. Log in to Oracle HTML DB Administration Services. (See "About the Oracle
HTML DB Administrator" on page 14-1.)

See Also: "About the Oracle HTML DB Administrator" on
page 14-1 for more information on different administrator roles

Managing Logs

15-2 Oracle HTML DB User’s Guide

2. Under Manage HTML DB Service, select Manage Logs.

The Manage Logs page appears.

3. Select one of the following:

■ Developer activity logs, review with option to delete entries

■ External click counting log, review with option to truncate

■ Review SQL Workshop logs

■ Review page view activity log, with option to truncate

Deleting Developer Activity Log Entries
Clicking Developer activity logs, review with option to delete entries links you to
the Developer Activity Log.

To delete a specific number of log entries:

1. Click Manage.

2. Specify the age of the entries to be deleted and click Delete Entries.

Deleting Click Counting Log Entries
Clicking External click counting log, review with option to truncate links you to
the Click Counting Log.

To delete a specified number of log entries:

1. Click Manage.

2. Specify the age of the entries to be deleted and click Delete Entries.

Deleting SQL Workshop Logs
Clicking Review SQL Workshop logs links you to SQL Workshop logs. These logs
maintain a history of recent commands and scripts run in the SQL Command
Processor.

To delete or truncate log files entries:

1. Select one of the following:

■ Script File executions log entries

■ Control File execution log entries

Managing Session State

Managing Services 15-3

■ SQL Command Processor history log entries

■ SQL Archives entries

2. To delete entries by age:

■ Specify the age of the entries to deleted

■ Click Delete Entries

3. To delete all entries, click Truncate Log.

Deleting User Activity Log Entries
Clicking Review page view activity log, with option to truncate links you to the
Manage Activity Logs page. Activity logs track user activity for an application.
Developers enable logging within their application on the Edit Application
Attributes page.

The HTML DB engine actually uses two logs to track user activity. At any given
time, one log is designated as current. For each rendered page view, the HTML DB
engine inserts one row into the log file. A log switch occurs at the interval listed on
the Manage Activity Logs page. At that point, the HTML DB engine removes all
entries in the noncurrent log and designates it as current.

To truncate the activity logs manually:

1. Click Truncate Logs.

2. Click either Truncate Log 1 or Truncate Log 2.

Managing Session State
A session is a logical construct that establishes persistence (or stateful behavior)
across page views. Each session is assigned a unique ID which the HTML DB
engine uses to store and retrieve an application's working set of data (or session
state) before and after each page view. Sessions persist in the database until purged
by an administrator.

An Oracle HTML DB administrator can view session state statistics and purge
session state on the Session State Management page.

See Also: "Accessing the SQL Command History" on page 5-12

See Also: "About Application Definition" on page 7-30 for more
information on enabling logging on an application

Managing Session State

15-4 Oracle HTML DB User’s Guide

Topics in this section include:

■ Purging Sessions by Age

■ Viewing Session Details Before Purging

■ Viewing Session Statistics Before Purging

Purging Sessions by Age
Using the Purge Session page, administrators can purge sessions by age.

To view specific session details:

1. Log in to Oracle HTML DB Administration Services.

2. Select the Service Administration tab.

3. Select Purge old sessions by age.

4. On the Purge Session page, specify:

■ The maximum number of sessions to be purged

■ The age of session to be purged

5. To view a report of session statistics, click Count Sessions.

6. To purge the selected sessions, click Purge Sessions.

Viewing Session Details Before Purging
Before purging sessions, administrators can use the Recent Sessions page to first
view a listing of recent sessions and then drill down on session details.

To purge sessions by age:

1. Log in to Oracle HTML DB Administration Services.

2. Select the Service Administration tab.

3. Select Report recent sessions with drill down to session details.

4. On the Recent Sessions page, you can:

■ Click a session ID to view additional details.

■ Click Purge Session to delete the displayed sessions.

See Also: "Understanding Session State Management" on
page 6-12

Managing Engine Settings

Managing Services 15-5

Viewing Session Statistics Before Purging
On the Session State Statistics page, administrators can view statistics about current
sessions prior to purging.

To view session state statistics:

1. Log in to Oracle HTML DB Administration Services.

2. Select the Service Administration tab.

3. Select Report session counts.

4. Click Purge Sessions to delete the current sessions.

Monitoring Activities
Oracle HTML DB administrators can monitor user activity by accessing a number of
charts and reports on the Monitoring page.

To monitor user activity:

1. Log in to Oracle HTML DB Administration Services.

2. Select the Monitoring tab.

The Monitoring page appears.

3. Select a chart or report to review.

Managing Engine Settings
HTML DB engine settings are named substitution value pairs defined by an Oracle
HTML DB administrator. Engine setting are used internally by the HTML DB
engine to determine a provisioning mode and to configure the HTML DB engine to
send mail.

SERVICE_REQUEST_FLOW determines whether Oracle HTML DB is in manual
provision mode or request provision mode. When in request provision mode, users
can use a link on the login page to request a workspace.

When an administrator logs into Oracle HTML DB Administration Services, they
can create and delete this engine setting by selecting Toggle Provisioning Mode.
Clicking this link and selecting Request creates a preference named SERVICE_
REQUEST_FLOW that has a value of 4700. Reversely, selecting Manual removes this
engine setting.

Managing Engine Settings

15-6 Oracle HTML DB User’s Guide

If you enable request provision mode or enable users to reset their passwords using
a link on the login page, your must configure Oracle HTML DB to send mail. In
order to enable Oracle HTML DB to send mail, you must configure the following
engine settings.

■ DEVELOPMENT_SERVICE_URL - If you are running in request provisioning
mode, the value of this setting is used in the e-mail when the request is
approved. This setting defines the URL for the service. If this setting is not
present, the URL will be derived from your environment.

■ SMTP_HOST_ADDRESS - Defines the server address of the SMTP server. On
installation, this will be set to localhost. If you are using another server for
SMTP relaying, change localhost to that server's address.

■ SMTP_HOST_PORT - Defines the port the SMTP server listens to for mail
requests. By default, this setting will be set to 25 at the time of installation.

■ SMTP_FROM - Defines the "from" address when an administrative tasks such as
approving a provision request, or resetting a password generates an e-mail.

Managing Globalization 16-1

16
Managing Globalization

This section describes how to translate an application built in Oracle HTML DB.

 This section contains the following topics:

■ About Translating an Application and Globalization Support

■ Specifying the Primary Language for an Application

■ Understanding the Translation Process

■ Translating Messages Used in PL/SQL Procedures

■ Translating Data that Supports List of Values

■ About Oracle HTML DB Globalization Codes

About Translating an Application and Globalization Support
In Oracle HTML DB you can develop applications that can run concurrently in
different languages. A single Oracle database instance and Oracle HTML DB can
support multiple database sessions customized to support different language.

In general, translating an Oracle HTML DB application involves the following steps:

■ Map primary and target application IDs

■ Seed and export text to a file for translation

■ Translate the text in the file

■ Apply and publish the translated file

See Also: "Understanding the Translation Process" on page 16-6

About Translating an Application and Globalization Support

16-2 Oracle HTML DB User’s Guide

About Language Identification
After you create an application, you specify a language preference on the Edit
Application Attributes page. Under Globalization, you select a primary application
language and select how the HTML DB engine determines the application
language. You can specify to have the application language based on the user's
browser language preference, an application preference, or an item preference.

How Translated Applications Are Rendered
Once Oracle HTML DB determines the language for an application, the HTML DB
engine alters the database language for a specific page request. It then looks for a
translated application in the appropriate language. If the HTML DB engine finds
that language, it render the application using that definition. Otherwise, it renders
the application in the base (or primary) application language.

Note that the text that displays within an application is not translated on the fly.
Oracle HTML DB dynamically collects page attributes from either a base language
application definition or an alternative application definition.

About Translatable Components
When you build an application in Oracle HTML DB, you define a large number of
declarative attributes such as field labels, region headings, page header text, and so
on. Using the steps described in this chapter, you can make all the application
definition attributes within your application translatable.

About Messages
If your application includes PL/SQL regions or PL/SQL processes, you may need
to translate any generated HTML or text. Within Oracle HTML DB this type of
generated HTML and text are called "messages." You can define all messages and
translate them on the Translatable Messages page. You can use the HTMLDB_
LANG.MESSAGE API to translate text strings from PL/SQL stored procedures,
functions, triggers, packaged procedures and functions.

See Also: "Specifying the Primary Language for an Application"
on page 16-4

See Also: "About Dynamic Translation Text Strings" on page 16-3
and "Translating Data that Supports List of Values" on page 16-14

About Translating an Application and Globalization Support

Managing Globalization 16-3

About Dynamic Translation Text Strings
Dynamic translations are used for database data that needs to be translated at
runtime. For example, you might use a dynamic translation to translate a list of
values based on a database query. A dynamic translation consists of a
"translate-from" language string, a language code, and a "translate-to" string. You
can also use the HTMLDB_LANG.LANG API to retrieve dynamic translations
programmatically.

About Translating Templates
By default, templates in Oracle HTML DB are not translatable and therefore not
included in the generated translation file. Generally, templates do not and should
not contain translatable text. However, if you need to mark a template as
translatable, mark the Translatable check box on the Edit Page Template page.

To identify a template as translatable:

1. Click the Build icon.

2. Select the Templates tab.

3. Locate the template you wish to edit and click the edit icon.

4. Under Template Identification, select Translatable.

One way to include translatable text at the application level is to define the
translatable text using static substitution strings. Since application level attributes
are translated any text defined as a static substitution strings will be included in the
generated translation file.

See Also: "Translating Messages Used in PL/SQL Procedures" on
page 16-12

See Also: "Translating Data that Supports List of Values" on
page 16-14

See Also:

■ "Editing Templates" on page 7-17

■ "About Static Substitution Strings" on page 7-36

Specifying the Primary Language for an Application

16-4 Oracle HTML DB User’s Guide

Specifying the Primary Language for an Application
Globalization attributes specify how the HTML DB engine determines the primary
language of an application.

To edit Globalization attributes:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Edit Attributes icon.

The Edit Application Attributes page appears.

4. Scroll down to Globalization.

5. From Application Primary Language, select the language in which the
application is being developed.

6. From Application Language Derived From, specify how the HTML DB engine
determines (or derives) the application language. Available options are
described in Table 16–1.

Table 16–1 Application Language Derived From Options

Option Description

No NLS (Application not
translated)

Select this option if the application will not be
translated.

Use Application Primary
Language

Determines the application primary language based on
the Application Primary Language attribute (see step 5).

Browser (use browser language
preference)

Determines the application primary language based on
the user's browser language preference.

Application Preference (use FSP_
LANGUAGE_PREFERENCE)

Determines the application primary language based a
value defined using the HTMLDB_UTIL.SET_
PREFERENCE API. Select this option to maintain the
selected language preference across multiple log ins.

See Also: "SET_PREFERENCE Procedure" on page 13-9

Item Preference (use item
containing preference)

Determines based on an application level item called
FSP_LANGUAGE_PREFERENCE. Using this option
requires Oracle HTML DB to determine the appropriate
language preference every time the user logs in.

Specifying the Primary Language for an Application

Managing Globalization 16-5

Using Format Masks for Items
The HTML DB engine applies Globalization settings for each rendered page. This
default behavior can impact the display of certain items such as numbers and dates.

For example, suppose your application determines the application language based
on the user's browser language preference. If the HTML DB engine determines the
users's browser language preference is French, it displays dates and numbers in a
format that conforms to French standards. You can override this default behavior
and explicitly control how items display by applying a format mask. You apply a
format mask by making a selection from the Display As list:

■ When you create the item

■ After you create the item by editing the item attributes

To edit item attributes

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Navigate to the appropriate page.

4. Under Items, drill down on the item name.

The Edit Page Item page appears.

5. Under Identification, make a select from the Display As list.

Translating Applications for Multibyte Languages
If your application needs to run in several languages (such as Chinese or Japanese)
simultaneously, you should consider configuring your database with a character set
to support all of the languages. The same character set has to be configured in the
corresponding DAD (Data Access Description) in mod_plsql. UTF8 and AL32UTF8
are the character sets you can use to support almost all languages around the world.

See Also:

■ "Editing Application Attributes" on page 7-29

■ "About Globalization" on page 7-35

■ "About Oracle HTML DB Globalization Codes" on page 16-16

See Also: "About Items" on page 7-43 for more information on
item attributes.

Understanding the Translation Process

16-6 Oracle HTML DB User’s Guide

Understanding the Translation Process
To translate an application developed in Oracle HTML DB, you must map the
primary and target application IDs, seed and export text to a translation file,
translate the text, and then apply and publish the translation file.

Topics in this section include:

■ Navigating to the Translate Application Page

■ Mapping Primary and Target Application IDs

■ Seeding and Exporting Text to a Translation File

■ Translating the XLIFF File

■ Uploading and Publishing a Translated XLIFF Document

Navigating to the Translate Application Page
You perform the translation process on the Translate Application page.

To navigate to the Translate Application page:

1. Click the Build icon.

2. From the Available Applications list, select an application and click Go.

3. Select the Utilities tab.

4. Click Translate Application.

The Translate Application page appears.

Mapping Primary and Target Application IDs
The first step in translating an application is to map the primary and target
application IDs. The primary application is the application to be translated. The
target application is the resulting translated application.

To map the primary and target application IDs:

1. Navigate to the Translate Application page. (See "Navigating to the Translate
Application Page".)

See Also: Oracle Database Globalization Support Guide

Understanding the Translation Process

Managing Globalization 16-7

2. On the Translate Application page, select Map your primary language
application to a translated application ID.

The Application Mappings page appears.

3. Click Create.

4. On the Translation Application Mapping page:

■ In Translation Application, type a numeric application ID to identify the
target application.

■ From Translation Application Language Code, select the language you are
translating to.

■ In Image Directory, enter the directory where images will be obtained.

This attribute determines the virtual directory for translated images. For
example, if your primary language application had an image prefix of
'/images/', you could define additional virtual directories for other
languages such as '/images/de/' for German or '/images/es/' for
Spanish.

5. Click Create.

Seeding and Exporting Text to a Translation File
The second step in translating an application is to seed the translation table and
then export the translation text to a translation file.

Seeding Translatable Text
Seeding translatable text copies all strings that may require translation to an Oracle
HTML DB database table that contains that contains the original language version
and the possibility of storing the translated version.

To seed translatable text:

1. Navigate to the Translate Application page. (See "Navigating to the Translate
Application Page" on page 16-6.)

2. On the Translate Application page, select Seed and export the translation text
of your application into a translation file.

3. From Language Mapping, select the appropriate primary and target application
ID map.

4. Click Seed Translatable Text.

Understanding the Translation Process

16-8 Oracle HTML DB User’s Guide

The XLIFF Export page appears.

Exporting Text to a Translation File
Once you have seeded translatable text, a status box displays at the top of the XLIFF
Export page indicating the total number of attributes that may require translation as
well as the number of:

■ Existing updated attributes that may require translation

■ New attributes that may require translation

■ Purged attributes that no longer require translation

You can use this information to determine whether you need to export translatable
text for an entire application or just a specific page.

The XLIFF Export page is divided into two sections. Use the upper half of the page
to export translatable text for an entire application (that is, all pages, lists of values,
messages, and so on). Use the lower section to export translatable text for a specific
page.

To export translatable text for an entire application:

1. Seed the translatable text as described in the previous procedure, "Seeding
Translatable Text" on page 16-7.

2. Under Step 2, Export XLIFF:

■ From Application, select the appropriate primary and target application ID
map

■ Specify whether to include XLIFF target elements

■ Under Export, specify what translation text is included in your XLIFF file

■ Click Export XLIFF for Application

3. Follow the on-screen instructions.

To export translatable text for a specific page:

1. Seed translatable text as described in "Seeding Translatable Text" on page 16-7.

Note: XML Localization Interchange File Format (XLIFF) is a
XML-based format for exchanging localization data. For more
information on the XLIFF, or to view the XLIFF specification see:

http://www.xliff.org

Understanding the Translation Process

Managing Globalization 16-9

2. Under Export XLIFF for specific Page:

■ From Application, select the appropriate primary and target application ID
map

■ Specify whether to include XLIFF target elements

■ Under Export, specify what translation text is included in your XLIFF file

■ Click Export XLIFF for Page

3. Follow the on-screen instructions.

About Include XLIFF Target Elements When Oracle HTML DB generates an XLIFF
document, each document contains multiple translation units. Each translation unit
consists of a source element and a target element. If you have not previously
translated an application, you must include source and target elements. However, if
you have a previous translation, you have the option of disabling this option and
only generating a file containing source elements.

About Export Use Export to specify what translation text is included in your XLIFF
file. Select All translatable elements to include all translation text for an
application. In contract, select Only those elements requiring translation to
include only new elements that have not yet been translated.

Translating the XLIFF File
After you export a translatable file to XLIFF format, you can translate it into the
appropriate languages. Since XLIFF is an open standard XML file for exchanging
translation, most translation vendors should support it. Oracle HTML DB only
supports XLIFF files encoded in UTF-8 character sets. In other words, it exports
XLIFF files for translation in UTF-8 and assumes that the translated XLIFF files will
be in the same character set.

Translation is a time consuming task. Oracle HTML DB supports incremental
translation so that application development can be done in parallel with the
translation. An XLIFF file can be translated and uploaded to Oracle HTML DB even
when only part of the XLIFF file is translated. For strings that have no translation in
the corresponding translated application, Oracle HTML DB uses the corresponding
ones in the primary language.

Understanding the Translation Process

16-10 Oracle HTML DB User’s Guide

Uploading and Publishing a Translated XLIFF Document
Once your XLIFF document has been translated, the next step is to upload it back
into Oracle HTML DB.

To upload a translated XLIFF document:

1. Navigate to the Translate Application page. (See "Navigating to the Translate
Application Page".)

2. On the Translate Application page, select Apply your translation file and
publish.

3. Click Upload XLIFF.

4. On the XLIFF Upload page:

■ Specify a title

■ Enter a description

■ Click Browse and locate the file to be uploaded

■ Click Upload XLIFF File

The uploaded document appears in the XLIFF Files repository.

Once you upload an XLIFF document, the next step is to apply the XLIFF document
and then publish the translated application. When you apply an XLIFF document,
the HTML DB engine parses the file and then updates the translation tables with the
new translatable text.

Publishing your application creates a copy of the base language application,
substituting the translated text strings from your translations table. This published
application can then be used to render your application in alternate languages.

Remember that in order to run an application in an alternative language, you need
to run it with Globalization settings that will cause an alternative language version
to display. For example, if the language is derived from the browser language, you
must set the browser language to the same language as the translated application.

See Also: For more information on the XLIFF, or to view the
XLIFF specification see:

http://www.xliff.org

Understanding the Translation Process

Managing Globalization 16-11

To apply and publish a translated XLIFF document:

1. Navigate to the Translate Application page. (See "Navigating to the Translate
Application Page".)

2. On the Translate Application page, select Apply your translation file and
publish.

3. In the XLIFF Files repository, click the view icon.

4. From Apply to, select the appropriate primary and target application ID map.

5. Click Apply XLIFF Translation File.

6. Click Publish Application.

To delete an uploaded XLIFF document:

1. Navigate to the Translate Application page. (See "Navigating to the Translate
Application Page".)

2. On the Translate Application page, select Apply your translation file and
publish.

3. In the XLIFF Files repository, select the check box to the left of the document
title.

4. Click Delete Checked.

You should verify the existence of the translated application once it is published.
Translated applications do not display in the Available Applications list on the
Application Builder home page. Instead, use the Application Navigation pane on
the left side of the page.

Note that in order for a translated application to appear in Application Builder, you
need to make sure the you have correctly configured the application Globalization
attributes.

See Also: "Specifying the Primary Language for an Application"
on page 16-4

Note: "Specifying the Primary Language for an Application" on
page 16-4

Translating Messages Used in PL/SQL Procedures

16-12 Oracle HTML DB User’s Guide

Translating Messages Used in PL/SQL Procedures
If your application includes PL/SQL regions or PL/SQL processes or calls PL/SQL
package, procedures, or functions, you may need to translate generated HTML.
First, you define each message on the Translatable Messages page. Second, you use
the HTMLDB_LANG.MESSAGE API to translate the messages from PL/SQL stored
procedures, functions, triggers, or packaged procedures and functions.

Defining Translatable Messages
You create translatable messages on the Translate Messages page.

To define a new translation message:

1. Navigate to the Translate Application page. (See "Navigating to the Translate
Application Page".)

2. On the Translate Application page, select Optionally translate messages which
are used by PL/SQL procedures and functions.

3. On the Translate Messages page, click Create.

4. On the Identify Text Message page:

■ In Name, type a name to identify the text message

■ In Language, select the language for which the message would be used

■ In text, type the text to be returned when the text message is called.

For example, you could define the message GREETING_MSG in English as:

Good morning %0

Or, you could define the message GREETING_MSG in German as:

Guten Tag %0

5. Click Create.

HTMLDB_LANG.MESSAGE API
Use the HTMLDB_LANG.MESSAGE API to translate text strings (or messages)
generated from PL/SQL stored procedures, functions, triggers, packaged
procedures and functions.

Translating Messages Used in PL/SQL Procedures

Managing Globalization 16-13

Syntax
HTMLDB_LANG.MESSAGE (
 p_name IN VARCHAR2 DEFAULT NULL,
 p0 IN VARCHAR2 DEFAULT NULL,
 p1 IN VARCHAR2 DEFAULT NULL,
 p2 IN VARCHAR2 DEFAULT NULL,
 ...
 p9 IN VARCHAR2 DEFAULT NULL,
 p_lang IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters
Table 16–2 describes the parameters available in the HTMLDB_LANG.MESSAGE.

Example
The following example assumes you have defined a message called GREETING_MSG
in your application in English as Good morning%0 and in German as Guten
Tag%1. The following example demonstrates how you could invoke this message
from PL/SQL:

BEGIN
 --
 -- Print the greeting
 --
 HTMLDB_LANG.MESSAGE('GREETING_MSG', v('APP_USER'));
END;

Table 16–2 HTMLDB_LANG.MESSAGE Parameters

Parameter Description

p_name Name of the message as defined in Oracle HTML DB.

p0

...

p9

Dynamic substitution value. p0 corresponds to 0% in the
message. p1 corresponds to 1% in the message. p2 corresponds
to2% in the message and so on.

p_lang Language code for the message to be retrieved. If not specified,
Oracle HTML DB uses the current language for the user as
defined in the Application Language Derived From attribute.

See Also: "Specifying the Primary Language for an
Application" on page 16-4

Translating Data that Supports List of Values

16-14 Oracle HTML DB User’s Guide

How p_lang attribute is defined depends on how the HTML DB engine derives the
Application Primary Language. For example, if you are running the application in
German and the previous call is made HTMLDB_LANG.MESSAGE, the HTML DB
engine first looks for a message called GREETING_MSG with a LANG_CODE of de. If
it does not find anything, then it will revert to the Application Primary Language
attribute. If it still does not find anything, the HTML DB engine looks for a message
by this name with a language code of en-us.

Translating Data that Supports List of Values
You create a dynamic translation to translate dynamic pieces of data. For example,
you might use a dynamic translation on a list of values based on a database query.

Dynamic translations differ from messages in that you query a specific string rather
then a message name. You define dynamic translations on the Dynamic Translations
page. You then use the HTMLDB_LANG.LANG API to return the dynamic translation
string identified by the parameter p_primary_text_string.

Defining a Dynamic Translation
You define dynamic translations on the Dynamic Translations page. A dynamic
translation consists of a "translate-from" language string, a language code, and a
"translate-to" string.

To define a dynamic translation:

1. Navigate to the Translate Application page. (See "Navigating to the Translate
Application Page".)

2. On the Translate Application page, select Optionally identify any data that
needs to be dynamically translated to support SQL based lists of values.

3. On the Dynamic Translations page, click Create and specify the following:

■ In Language, select a target language

■ In Translate From Text, type the source text to be translated

■ In Translate To, type the translated text

4. Click Create.

See Also: "Specifying the Primary Language for an Application"
on page 16-4 for more information on the Application Primary
Language attribute.

Translating Data that Supports List of Values

Managing Globalization 16-15

HTMLDB_LANG.LANG API

Syntax
HTMLDB_LANG.LANG (
 p_primary_text_string IN VARCHAR2 DEFAULT NULL,
 p0 IN VARCHAR2 DEFAULT NULL,
 p1 IN VARCHAR2 DEFAULT NULL,
 p2 IN VARCHAR2 DEFAULT NULL,
 ...
 p9 IN VARCHAR2 DEFAULT NULL,
 p_primary_language IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters
Table 16–3 describes the parameters available in the HTMLDB_LANG.LANG.

Example
Suppose you have a table that defines all primary colors. You could define a
dynamic message for each color and then apply the LANG function to the defined
values in a query. For example:

SELECT HTMLDB_LANG.LANG(color)
 FROM my_colors

Table 16–3 HTMLDB_LANG.LANG Parameters

Parameter Description

p_primary_string Text string of the primary language. This will be the value
of the Translate From Text in the dynamic translation.

p0

...

p9

Dynamic substitution value. p0 corresponds to 0% in the
in the translation string. p1 corresponds to 1% in the in
the translation string. p2 corresponds to 2% in the in the
translation string and so on.

p_primary_language Language code for the message to be retrieved. If not
specified, Oracle HTML DB uses the current language for
the user as defined in the Application Language Derived
From attribute.

See Also: "Specifying the Primary Language for an
Application" on page 16-4

About Oracle HTML DB Globalization Codes

16-16 Oracle HTML DB User’s Guide

For example, suppose you were running the application in German andRED was a
value for the color column in my_colors table. If you defined the German word
for red, the previous example would return ROT.

About Oracle HTML DB Globalization Codes
If you are building a multilingual application, it is important to understand how
Oracle HTML DB globalization codes impact the way in which your application
runs. These codes are set automatically based on the application-level Globalization
attributes you select.

NLS_LANGUAGE and NLS_TERRITORY determine the default presentation of
number, dates, and currency.

Table 16–4 describes the globalization codes in Oracle HTML DB.

See Also: "Specifying the Primary Language for an Application"
on page 16-4

Table 16–4 Oracle HTML DB Globalization Codes

Language Name
Language
Code NLS_LANGUAGE NLS_TERRITORY

Arabic ar ARABIC

Assamese as ASSAMESE INDIA

Bengali bn BANGLA

Bulgarian bg BULGARIAN BULGARIA

Catalan ca CATALAN CATALONIA

Chinese (China) zh-cn SIMPLIFIED CHINESE CHINA

Chinese (Hong Kong
SAR)

zh-hk TRADITIONAL CHINESE HONG KONG

Chinese (Singapore) zh-sg SIMPLIFIED CHINESE SINGAPORE

Chinese (Taiwan) zh-tw TRADITIONAL CHINESE TAIWAN

Chinese zh SIMPLIFIED CHINESE CHINA

Croatian hr CROATIAN CROATIA

Czech cs CZECH CZECH REPUBLIC

Danish da DANISH DENMARK

About Oracle HTML DB Globalization Codes

Managing Globalization 16-17

Dutch (Netherlands) nl DUTCH THE NETHERLANDS

English (United States) en-us AMERICAN AMERICA

English en ENGLISH

Estonian et ESTONIAN ESTONIA

Finnish fi FINNISH FINLAND

French (Canada) fr-ca CANADIAN FRENCH CANADA

French (France) fr FRENCH FRANCE

German (Germany) de GERMAN GERMANY

Greek el GREEK GREECE

Gujarati gu GUJARATI

Hebrew he HEBREW ISRAEL

Hindi hi HINDI INDIA

Hungarian hu HUNGARIAN HUNGARY

Icelandic is ICELANDIC ICELAND

Indonesian id INDONESIAN INDONESIA

Italian (Italy) it ITALIAN ITALY

Japanese ja JAPANESE JAPAN

Kannada kn KANNADA INDIA

Korean ko KOREAN KOREA

Latvian lv LATVIAN LATVIA

Lithuanian lt LITHUANIAN LITHUANIANA

Malay (Malaysia) ms MALAY MALAYSIA

Malayalam ml MALAYALAM

Marathi mr MARATHI

Norwegian no NORWEGIAN NORWAY

Oriya or ORIYA

Table 16–4 Oracle HTML DB Globalization Codes

Language Name
Language
Code NLS_LANGUAGE NLS_TERRITORY

About Oracle HTML DB Globalization Codes

16-18 Oracle HTML DB User’s Guide

Polish pl POLISH POLAND

Portuguese (Brazil) pt-br BRAZILIAN PORTUGUESE BRAZIL

Portuguese (Portugal) pt PORTUGUESE PORTUGAL

Punjabi pa PUNJABI

Romanian ro ROMANIAN ROMANIA

Russian ru RUSSIAN

Slovak sk SLOVAK SLOVAKIA

Slovenian sl SLOVENIAN SLOVENIA

Spanish es SPANISH SPAIN

Spanish (Mexico) es-mx MEXICAN SPANISH MEXICO

Swedish sv SWEDISH SWEDEN

Tamil ta TAMIL

Telugu te TELUGU

Thai th THAI THAILAND

Turkish tr TURKISH TURKEY

Ukrainian uk UKRAINIAN UKRAINE

Vietnamese vi VIETNAMESE VIETNAM

Table 16–4 Oracle HTML DB Globalization Codes

Language Name
Language
Code NLS_LANGUAGE NLS_TERRITORY

Available Conditions A-1

A
Available Conditions

A condition is a small unit of logic that helps you control the display of regions,
items, buttons, and tabs as well execute processes, computations and validations.
When you apply a condition to a control or component, the condition is evaluated.
Whether the condition passes or fails determines whether the control or component
displays.

You can specify conditions by selecting a condition type when you create the control
or component (that is, the region, item, button, or tab) or by making a selection
under the conditional display attribute.

Conditions Available in Oracle HTML DB
The following table describes some commonly used conditions. To view a complete
listing of all available conditions for a given component, click the flashlight icon to
the right of the Conditional Display Type list. Shortcuts to common selections
appear directly beneath the Type list. If your condition requires an expression, type
it in the appropriate field.

Table A–1 describes the conditions available in Oracle HTML DB.

See Also: "Understanding Conditional Rendering and
Processing" on page 6-9

Conditions Available in Oracle HTML DB

A-2 Oracle HTML DB User’s Guide

Table A–1 Available Conditions

Condition Description

Current Language != Expression 1 Verifies the language setting in which the client browser is not currently running.
Evaluates to true if the current language is contained within the string entered in
Expression 1.

Current Language = Expression Verifies the language setting in which the client browser is currently running.
Evaluates to true if the current language matches the value entered in Expression
1.

Current Language is contained within
Expression 1

Determines whether the browser current language is contained within a string.
Evaluates to true if the current language matches the string entered in
Expression 1.

For example, to check if the current language is either en-US or en-UK, choose
this condition and enter the following string in Expression 1:

en-us,en-uk

Current Language is not contained within
Expression 1

Verifies the application's current language is not contained within a specified
string. Evaluates to true if the current language is not contained within the string
entered in Expression 1.

Current page != Expression 1 Evaluates to true if the current page does not equal the page you specify in
Expression 1.

Current Page != Page Submitted (this page
was not the page posted)

Determines if the specified page was not posted. Evaluates to true if the current
page does not match the value entered in Expression 1.

Current page = Expression 1 Evaluates as true if the current page is in a list of pages found in Expression 1.

Current page = Expression 1 Evaluates to true if the current page equals the page you specify in Expression 1.

Current Page = Page Submitted (this page
was posted)

Verifies the whether the specified page was posted. Evaluates to true if the
current page matches the value entered in Expression 1.

Current Page is contained within
Expression 1 (comma delimited list of
pages)

Verifies if the current page is part of the list of pages you specify in Expression 1.
To check if the current page is in either page 1, 2, 3 or 4, select this condition type
and enter the following string in Expression 1:

1,2,3,4

Current page is in Printer Friendly mode Only displays certain page components when the user has selected printer
friendly mode. If the current page is in printer friendly mode, then the condition
evaluates to true. Use f?p syntax to specify printer friendly mode.

Current page is not in Printer Friendly
mode

Hides page components when printer friendly mode is selected. Use f?p syntax
to specify printer friendly mode.

See Also: "Using f?p Syntax to Link Pages" on page 6-20 for more information on
f?p syntax

Current Page not in Expression 1 (comma
delimited list of pages)

Verifies if the current page is not part of the comma separated list of pages
specified in Expression 1.

Conditions Available in Oracle HTML DB

Available Conditions A-3

Exists (SQL query returns at least one
row)

This condition is expressed as a SQL query. If the query returns at least one row
then the condition evaluates as true. For example:

select 1 from emp where deptno = :P101_DEPTNO

This example references item P101_DEPTNO as a bind variable. You can use bind
variables a within an application processes and SQL query regions to reference
item session state. If one or more employees are in the department identified by
the value of P101_DEPTNO then the condition evaluates as true.

See Also: "About Bind Variables" on page 6-18 for more information on bind
variables

Never This condition type is hard wired to always fail. It is useful in temporarily
preventing components (such as regions, buttons, or items) from being rendered
on a page, or to prevent processes, computations and validations from running.

NOT Exists (SQL query returns no rows) This condition is expressed as a SQL query. If the query does not return any
rows, it evaluates as true.

PLSQL Expression A PL/SQL expression is any expression in valid PL/SQL syntax that evaluates
to true or false. For example:

nvl(:MY_FLOW_ITEM,'NO') = 'YES'

If the value of MY_FLOW_ITEM is YES then the condition evaluates as true.
Otherwise it evaluates as false.

PLSQL Function Body returning a boolean The body of a PL/SQL function that returns true or false. For example:

BEGIN
IF :P1_DAY = 'MONDAY' THEN
 RETURN TRUE;
ELSE
 RETURN FALSE;
END;

Table A–1 Available Conditions

Condition Description

Conditions Available in Oracle HTML DB

A-4 Oracle HTML DB User’s Guide

Request != Expression 1 REQUEST is an internal attribute that tracks of how a page is submitted. By
default, when a page is submitted, the value of the application attribute
REQUEST is set according the name of the object that caused the page to be
submitted. For a regular button, REQUEST is set as the name of the button (such
as CANCEL or SAVE) not the label of the button. For buttons of type Item or
those that appear inline with other items, there is an attribute called REQUEST.
You can also set request using f?p syntax.

For example, the event could be when a user clicks a button or selects a tab
menu. Depending upon the event, you can perform different operations by
referencing the value of the REQUEST application attribute.

This condition evaluates as true if REQUEST does not equal the value entered in
Expression 1.

See Also: "Understanding URL Syntax" on page 6-19, "REQUEST" on page 6-28,
and "Understanding the Relationship Between Button Names and REQUEST" on
page 7-42

Request = Expression 1 This condition is the opposite of Request != Expression 1.

This condition evaluates as true if REQUEST equals the value entered in
Expression 1. From PL/SQL you can also reference the application attribute
using the following syntax:

v('REQUEST')

See Also: "Understanding URL Syntax" on page 6-19, "REQUEST" on page 6-28,
and "Understanding the Relationship Between Button Names and REQUEST" on
page 7-42

Request is contained within Expression 1 REQUEST is an internal application attribute that tracks of how a page is
submitted. By default, when a page is submitted, the value of REQUEST is set
according to the event that caused the page to be submitted. For example, the
event could be when a user clicks a button or selects a tab. Depending upon the
event, you can perform different operations by referencing the value of the
REQUEST application attribute.

Use this condition to specify a list of allowed requests (such as SAVE or
UPDATE) in Expression 1. The condition evaluates to true if the value of
REQUEST is contained in the list.

See Also: "REQUEST" on page 6-28, and "Understanding the Relationship
Between Button Names and REQUEST" on page 7-42

Request is not contained within
Expression 1

This condition is the opposite of Request is contained within
Expression 1. Evaluates to true if the value of the REQUEST is not contained
within Expression 1.

See Also: "REQUEST" on page 6-28, and "Understanding the Relationship
Between Button Names and REQUEST" on page 7-42

Table A–1 Available Conditions

Condition Description

Conditions Available in Oracle HTML DB

Available Conditions A-5

SQL Expression SQL Expressions are evaluated as a WHERE clause in a SQL statement. For
example suppose your expression is :MY_ITEM = 'ABC'.

The HTML DB engine processes the following:

select 1 from dual where :MY_ITEM = 'ABC'

This condition evaluates to true if a row is returned.

SQL Reports (OK to show the back
button)

Use this condition for reports having pagination. It automatically determines
when it is appropriate to include a button that pages back in the result set.

SQL Reports (OK to show the forward
button)

Use this condition for reports having pagination. It automatically determines
when it is appropriate to include a button that pages forward in the result set.

Text in Expression 1 != Expression 2
(includes &ITEM substitutions)

Use this expression to compare two expressions containing strings. Either
expression may contain references to session state using &MY_ITEM syntax.

See Also: "Using Substitution Strings" on page 6-22 for more information on
&MY_ITEM syntax

Text in Expression 1 = Expression 2
(includes &ITEM substitutions)

This condition is the opposite of Text in Expression 1 != Expression
2 (includes &ITEM substitutions). Compares two expressions containing
strings. Either expression may contain references to session state using the
&ITEM. syntax.

To check if the item F100_P2_DAY_DATE equals "Wednesday", select this
condition enter the following in Expression 1 and Expression 2:

■ Expression 1: F100_P2_DAY_DATE

■ Expression 2: Wednesday

See Also: "Using Substitution Strings" on page 6-22 for more information on
&MY_ITEM syntax

User is authenticated (not public) Verifies whether the current user was authenticated using one of the built-in
authentication schemes or a custom authentication scheme.

See Also: "Providing Security Through Authorization" on page 10-17 for more
information on authentication

User is the public user (user has not
authenticated)

The public user is defined as an application attribute. To set the public user for a
specific application, navigate to the Application Builder home page and click the
edit link corresponding to your application.

A public user is a user used for multiple users. Sometimes applications have
pages that are public and thus require authentication and log in. This condition
returns true if the user is the public user (that is, the user is authenticated as
themselves or some other user not equal to the public user identified in the
application attribute Public User.

See Also: "About Session Management" on page 7-33

Value of Item in Expression 1 != zero Verifies if the value of the item in Expression 1 does not equal zero.

Table A–1 Available Conditions

Condition Description

Conditions Available in Oracle HTML DB

A-6 Oracle HTML DB User’s Guide

Value of item in Expression 1 = Expression
2

Compares the value of an item with a specific string. Comparisons using this
condition are case sensitive.

For example, to verify whether the value of an item F100_P2_WORD is contained
within the string "the quick brown fox", enter the following in the Expression 1
and Expression 2 fields:

■ Expression 1: F100_P2_WORD

■ Expression 2: the quick brown fox

Value of Item in Expression 1 = zero Verifies if the value of the item in Expression 1 does equal zero.

Value of item in Expression 1 contains no
spaces

Evaluate to true if the value of the item specified in Expression 1 contains no
spaces.

Value of Item in Expression 1 is
alphanumeric

Evaluates to true when the string in Expression 1 contains only alphanumeric
characters.

Value of Item in Expression 1 is contained
within colon delimited list in Expression 2

Use this condition type to check whether a certain string is contained within the
value of a session state item. Verifies whether the string specified in Expression 1
is contained in the value of the item specified in Expression 2.

Value of Item in Expression 1 is NOT
contained within colon delimited list in
Expression 2

Evaluates to true when the value specified in Expression 1 contains a string that
lists elements delimited by colons.

To check if the item F100_P1_TODAY is either "Monday", "Tuesday", or
"Wednesday", select this condition and enter the following in Expression 1 and
Expression 2:

■ Expression 1: P1_TODAY

■ Expression 2: Monday: Tuesday:Wednesday

Value of Item in Expression 1 is NOT
NULL

In Expression 1, enter the name (upper case) of the application or page item.
Evaluates as true, if the current cache value of the item is not null and has a
value. If not, the condition evaluates as false.

Value of Item in Expression 1 is NULL Evaluates as true if the item in Expression 1 has no value.

Value of Item in Expression 1 is NULL or
zero

Evaluates as true if the item in Expression is either NULL or zero.

Value of item in Expression 1 is numeric Evaluates to true if the value of the Item in Expression 1 is numeric.

Value of user preference in Expression 1 !=
Expression 2

This condition is the opposite of Value of user preference in
Expression 1 = Expression 2. Evaluates to true if the name of the user
preference specified in Expression 1 is not equal to the string in Expression 2.

Value of user preference in Expression 1 =
Expression 2

Verifies the value of a user preferences. Evaluates to true if the name of the user
preference specified in Expression 1 is equal to the string in Expression 2.

When any item in comma delimited list of
items has changed

Evaluates to true when the value of any non NULL session state item in the list
of items specified in Expression 1 has changed.

When any item in comma delimited list of
pages has changed

Evaluates to true when the value of any non NULL session state item in the list
of pages specified in Expression 1 has changed.

Table A–1 Available Conditions

Condition Description

Conditions Available in Oracle HTML DB

Available Conditions A-7

When any item in current application has
changed

This condition passes when the value of any non NULL session state item in the
current application has changed.

When any item in current page has
changed

Evaluate to true when the value of any non NULL session state item in the
current page has changed.

When any item in current session has
changed

Evaluates to true when the value of any non NULL session state item in the
current session has changed.

When cgi_env DAD_NAME != Expression
1

This condition is the opposite of When cgi_env DAD_NAME = Expression
1.

Checks for the DAD (Database Access Descriptor) that is being used in the URL
to call the current page in the application and compares it to Expression 1.
Evaluate to true, when the DAD is not the same as Expression 1.

When cgi_env DAD_NAME = Expression
1

Checks for the DAD (Database Access Descriptor) that is being used in the URL
to call the current page in the application and compares it to Expression 1.
Evaluate to true, when the DAD is the same as Expression 1.

When cgi_env HTTP_HOST != Expression
1

This condition is the opposite of When cgi_env HTTP_HOST = Expression
1.

Checks for the value of the CGI environment variable HTTP_HOST that is the
value returned by owa_util.get_cgi_env ('HTTP_HOST'). Evaluate to
true, when this value is not equal to the string in Expression 1.

When cgi_env HTTP_HOST = Expression
1

Checks for the value of the CGI environment variable HTTP_HOST that is the
value returned by owa_util.get_cgi_env ('HTTP_HOST'). Evaluate to
true, when this value is equal to the string in Expression 1.

When cgi_env SERVER_NAME !=
Expression 1

This condition is the opposite of When cgi_env SERVER_NAME =
Expression 1.

This condition checks for the value of the CGI environment variable SERVER_
NAME, that is the value returned by owa_util.get_cgi_env ('SERVER_
NAME'). Evaluate to true, when this value is not equal to the string in
Expression 1.

When cgi_env SERVER_NAME =
Expression 1

This condition checks for the value of the CGI environment variable SERVER_
NAME, that is the value returned by owa_util.get_cgi_env ('SERVER_
NAME'). Evaluate to true, when this value is equal to the string in Expression 1.

Table A–1 Available Conditions

Condition Description

Conditions Available in Oracle HTML DB

A-8 Oracle HTML DB User’s Guide

Index-1

Index
Symbols
#BOX_BODY#, 7-19
#FORM_CLOSE#, 7-20
#FORM_OPEN#, 7-19
#GLOBAL_NOTIFICATION#, 7-20
#HEAD#, 7-20
#NAVIGATION_BAR#, 7-19, 7-20
#NOTIFICATION_MESSAGE#, 7-19
#ONLOAD#, 7-19
#PARENT_TAB_CELLS#, 7-20
#REGION_POSITION_NN#, 7-20
#SUCCESS_MESSAGE#, 7-19
#TAB_CELLS#, 7-19
#TITLE#, 7-19

A
Accept Page, 6-7
administrator

roles, 11-1
API

HTMLDB_APPLICATION, 13-40
HTMLDB_COLLECTION, 12-2
HTMLDB_CUSTOM_AUTH, 13-42
HTMLDB_ITEM package, 13-13
HTMLDB_LANG, 16-12, 16-15
HTMLDB_PLSQL_JOB, 12-11
HTMLDB_UTIL, 13-1

APP SCHEMA OWNER substitution string, 6-32
APP_ALIAS substitution string, 6-34
APP_ID substitution string, 6-31
APP_IMAGES substitution string, 6-26
APP_PAGE_ID substitution string, 6-31

APP_SESSION substitution string, 6-24
APP_UNIQUE_PAGE_ID substitution string, 6-35
APP_USER substitution string, 6-25
application

attributes, 7-28, 7-29
build status, 7-36
creating, 7-11
debugging, 9-1
defining primary language, 16-4
definition, 6-1
deleting, 7-12
demonstration, 3-1
exporting, 10-3
globalization, 7-35
language identification, 7-35
language preference, 16-2
performance tuning, 9-1
resource use, 9-3
running, 2-8
sending e-mail from, 8-43
status, 7-36
summary reports, 10-2
translatable components, 16-2
translating, 16-1
translating components, 16-2
translating multibye languages, 16-5
translation rendering, 16-2

application attributes
editing, 7-29
viewing, 7-28

Application Availability attributes, 7-36
Application Builder

about, 1-2
accessing, 7-2

Index-2

Available Applications list, 7-2
concepts, 6-1
Page Definition, 6-2
running demonstration application, 3-3
templates, 6-5
utilities, 10-1

Application Builder home page, 7-2
Application Builder utilities

Export/Import, 10-2
Manage CSS and Image Files, 10-1
Translate Application, 10-1
View Export Repository, 10-2

application components
building, 8-1

Application Definition attributes, 7-30
Application Language Derived From

attribute, 16-4
application layout, 8-36

LOV driving another LOV, 8-38
multiple columns, 8-37
print preview mode, 8-39
shortcuts, 8-40

Application Navigation pane, 7-4
Application list, 7-4
Application Utilities, 7-5
History, 7-5
Page grid edit, 7-5
Reports, 7-5

Application Primary Language attribute, 16-4
Application Summary Reports, 10-2
application user interface, 8-36
AUTHENTICATED_URL_PREFIX substitution

string, 6-32
authentication, 6-12, 10-9

Authentication Schemes Repository, 10-11
creating a scheme from scratch, 10-15
creating an authentication scheme, 10-10
preconfigured authentication schemes, 10-12
viewing current scheme, 10-12

authorization, 6-12
Authorization attributes, 7-32
authorization schemes, 10-17

attaching, 10-19
creating, 10-17
utilization report, 10-20

Available Applications list
using, 7-2

B
background PL/SQL, 12-10

HTMLDB_PLSQL_JOB, 12-11
using a process, 12-13

bind variables, 6-18
using in PL/SQL procedures, 6-19
using in regions, 6-19

branch
creating, 8-13

branching, 7-51
branch action, 7-52
branch point, 7-52
Branch Point list, 7-52
on load, before header, 7-52
on submit, after processing, 7-52
on submit, before computation, 7-52
on submit, before processing, 7-52
on submit, before validation, 7-52
using buttons, 7-42

breadcrumb menu, 7-27
BROWSER_LANGUAGE substitution string, 6-27
build options, 6-11

creating, 6-11
reports, 6-11

Build Options attribute, 7-37
build status, 7-36
built-in substitution strings, 6-23
button, 7-42, 7-44

creating, 8-19
displaying conditionally, 7-43
names, 7-42
template, 7-28

C
caching

undo, 13-9
calendar

creating, 8-36
icon, 7-44

cascading style sheet

Index-3

about, 7-16
uploading, 10-8

change requests
managing, 14-4

charts
creating, 8-35
support, 7-13

check box, 7-44
creating, 13-14

clicks
counting, 13-3

Collection Showcase, 3-2
collections, 12-2

adding members, 12-4
clearing session state, 12-10
creating, 12-3
deleting members, 12-6
determining status, 12-7
HTMLDB_COLLECTION API, 12-2
managing, 12-9
merging, 12-8
naming, 12-3
truncating, 12-4
updating members, 12-6

command termination
in SQL Command Processor, 5-4

Comments attribute, 7-57
components

about translating, 16-2
controlling access to, 6-12
displaying on all pages, 8-1
translating, 16-2
translating messages, 16-12

condition types
common, 6-10

conditional
processing, 6-9
rendering, 6-9

conditions
displaying regions, 7-41
list of, A-1
using, 6-9
using with buttons, 7-43

configuration
controlling, 6-11

Configuration Management attribute, 7-23, 7-56
control file

creating, 5-13
editing, 5-13
managing, 5-13
running, 5-14
viewing a history, 5-14

Control Files Repository
accessing, 5-13
creating a control file, 5-13
editing a control file, 5-13
running a control file, 5-14
using, 5-13
viewing a history, 5-14

Create Application icon, 7-3
Create Application Wizard, 2-6, 7-11
Create Button Wizard, 8-19
Create Menu Template Wizard, 8-9
Create NavBar Entry Wizard, 8-5
Create New Component Wizard, 7-14
Create Page Branch Wizard, 8-13
Create Page Computation Wizard, 12-17
Create Page Process Wizard, 7-50
Create Region Wizard, 8-9, 8-15
Create Validations Wizard, 8-27
CURRENT_PARENT_TAB_TEXT substitution

string, 6-34

D
DAD Credentials Verification, 10-13
data

exporting, 4-3
importing, 4-2

Data Browser
viewing by object type, 5-5
viewing objects, 5-4

data dictionary
browsing, 5-18
Query by Example, 5-5

Data Workshop
about, 1-3, 4-1
importing data, 4-1

database definition language
generating DDL statements, 5-12

Index-4

database links, 12-1
Database Object Wizard, 5-6
database objects

browsing, 5-4
creating, 5-6
dropping, 5-7
managing, 5-5, 5-6
purging, 5-7
restoring, 5-7
viewing, 3-9, 5-3
viewing by object type, 5-5

DBMS_APPLICATION_INFO, 9-3
DDL

generating, 5-12
Debug Mode, 9-2
DEBUG substitution string, 6-30
debugging, 9-1

debug mode, 9-2
isolating a problem, 9-5
SQL queries, 9-4
SQL tracing, 9-3
viewing page reports, 9-3

deep linking, 10-16
demonstration application, 3-1

about Collection Showcase, 3-2
about Presidential Inaugural Addresses, 3-2
about Sample Application, 3-2, 3-4
editing, 3-6, 3-7
installing, 3-1
modifying, 3-6, 3-7
re-installing, 3-2
running from Application Builder, 3-3
running from Demonstration Applications

page, 3-2
viewing, 3-1
Web Services, 3-2

Demonstration Applications page, 3-2
editing an application, 3-7
re-installing application, 3-2
running an application, 3-2

Developer activity logs, 11-7
deleting, 15-2

Developer toolbar
about, 3-7
creating a page, 7-14

Debug, 7-11
Edit Application, 7-10
Edit Page, 7-10
Hide edit links, 7-11
New, 7-11
Session, 6-13, 7-11
Show edit links, 7-11
using, 7-10

DEVELOPMENT_SERVICE_URL, 15-6
Dropping Database Object Wizard, 5-7
Duplicate Page Submission Checks attributes, 7-56
dynamic translation, 16-14

E
Edit Application Attributes page, 7-29

Application Availability, 7-36
Application Definition, 7-30
Authorization, 7-32
Build Options, 7-37
Global Notifications, 7-36
Globalization, 7-35
Session Management, 7-33
Static Substitution Strings, 7-36
Template Defaults, 7-35
User Interface Templates, 7-34
Virtual Private Database, 7-36

Edit Attributes icon, 7-3
Edit Page list

using, 7-3
e-mail

configuring Oracle HTML DB, 15-5
engine settings, 15-5

defining, 15-5
DEVELOPMENT_SERVICE_URL, 15-6
SMTP_FROM, 15-6
SMTP_HOST_ADDRESS, 15-6
SMTP_HOST_PORT, 15-6

Error Page Template Control attribute, 7-23
escaping special characters, 7-40
Excel

importing, 4-3
Explain Plan

using, 5-4
export

Index-5

an application, 10-4
data, 4-1
managing database objects, 10-3
related files, 10-4
text for translations, 16-7
translation options, 16-9
workspace, 14-9

exported application
importing, 10-6

exported files
installing, 10-6

Export/Install icon, 7-3
External click counting log, 11-7

deleting, 15-2

F
f?p syntax, 6-20
F01, 13-40
files

downloading from repository, 13-4
footer

substitution strings, 7-41
Form Table Attributes, 7-24
forms

Automatic Row Processing (DML) process, 8-24
building from a region, 8-16
creating, 8-22
creating from a wizard, 8-23
creating manually, 8-23
populating, 8-26
understanding processing, 8-24
validating input, 8-27

G
Generic Column Templates, 7-25
Global Notifications attribute, 7-36
globalization

format masks, 16-5
understanding, 16-1

globalization attributes, 7-35, 16-4
graphical charts

HTML, 7-13
SVG, 7-13

H
Header / Body / Footer Definitions attribute, 7-21
help

about, 2-5
creating, 8-41
creating navigation bar icon, 8-43
defining text, 8-42

help text
defining, 8-42

HTML DB Account Credentials, 10-13, 10-14
HTML Header attribute, 7-54
HTMLDB_APPLICATION

global variables, 13-40
package, 13-40

HTMLDB_APPLICATION.G_F01
referencing, 13-40

HTMLDB_COLLECTION, 12-2
ADD_MEMBER, 12-5
COLLECTION_EXISTS, 12-9
COLLECTION_MEMBER_COUNT, 12-9
CREATE_COLLECTION, 12-3
CREATE_COLLECTION_FROM_QUERY, 12-4
CREATE_OR_TRUNCATE_

COLLECTION, 12-3, 12-10
DELETE_ALL_COLLECTIONS, 12-4
DELETE_ALL_COLLECTIONS_SESSION, 12-4
DELETE_COLLECTION, 12-4
DELETE_MEMBER, 12-6
DELETE_MEMBERS, 12-7
GET_MEMBER_MD5, 12-7
MOVE_MEMBER_DOWN, 12-9
RESEQUENCE_COLLECTION, 12-9
RESET_COLLECTION_CHANGED, 12-7
SORT_MEMBERS, 12-10
TRUNCATE_COLLECTION, 12-4
UPDATE_MEMBER, 12-6
UPDATE_MEMBER_ATTRIBUTE, 12-6

HTMLDB_CUSTOM_AUTH, 13-42
APPLICATION_PAGE_ITEM_EXISTS

function, 13-42
CURRENT_PAGE_IS_PUBLIC function, 13-43
DEFINE_USER_SESSION procedure, 13-43
GET_NEXT_SESSION_ID function, 13-43
GET_SECURITY_GROUP_ID function, 13-43

Index-6

GET_SESSION_ID function, 13-44
GET_USER function, 13-44
SESSION_ID_EXISTS function, 13-44
SET_SESSION_ID procedure, 13-45
SET_SESSION_ID_TO_NEXT_VALUE

procedure, 13-45
SET_USER procedure, 13-44

HTMLDB_ITEM, 13-13
CHECKBOX function, 13-14
DATE_POPUP function, 13-16
HIDDEN function, 13-18
MD5_CHECKSUM function, 13-19
MD5_HIDDEN function, 13-20
MULTI_ROW_UPDATE procedure, 13-21
POPUP_FROM_LOV function, 13-32
POPUP_FROM_QUERY function, 13-34
POPUPKEY_FROM_LOV function, 13-36
POPUPKEY_FROM_QUERY function, 13-37
RADIOGROUP function, 13-30
SELECT_LIST function, 13-22
SELECT_LIST_FROM_LOV function, 13-23
SELECT_LIST_FROM_LOV_XL function, 13-24
SELECT_LIST_FROM_QUERY function, 13-26
SELECT_LIST_FROM_QUERY_XL

function, 13-27
TEXT function, 13-28
TEXT_FROM_LOV function, 13-30

HTMLDB_LANG
LANG, 16-15
MESSAGE API, 16-12

HTMLDB_PLSQL_JOB, 12-11
HTMLDB_UTIL, 13-1

CLEAR_APP_CACHE procedure, 13-2
CLEAR_USER_CACHE procedure, 13-3
COUNT_CLICK procedure, 13-3
GET_FILE procedure, 13-4
GET_NUMERIC_SESSION_STATE

function, 13-5
GET_PREFERENCE function, 13-6
GET_SESSION_STATE function, 13-6
PUBLIC_CHECK_AUTHORIZATION

function, 13-7
REMOVE_PREFERENCE procedure, 13-8
REMOVE_SORT_PREFERENCES

procedure, 13-8

RESET_AUTHORIZATIONS, 10-19
RESET_AUTHORIZATIONS procedure, 13-9
SET_PREFERENCE procedure, 13-9
SET_SESSION_STATE procedure, 13-10
STRING_TO_TABLE function, 13-11
TABLE_TO_STRING function, 13-12
URL_ENCODE function, 13-13

I
Image Based Tab Attributes, 7-22
IMAGE_PREFIX substitution string, 6-25
images

uploading, 10-8
Import Text Data Wizard, 4-2
Import Text Wizard, 4-2
importing

exported application files, 10-6
installing

demonstration applications, 3-1
exported files, 10-6

item
about, 7-43
default values, 5-15
Display As options, 7-43
referencing item values, 7-48
using format masks when translating, 16-5

Item Display As options
Button, 7-44
calendar icon

creating, 7-44
Check box, 7-44
Date Picker, 7-44
Display as text (based on LOV), 7-44
File, 7-45
Hidden, 7-45
List Managers, 7-45
Multiselect List, 7-45
Password form element, 7-45
Popup LOV, 7-45
Radio Group, 7-45
Select list, 7-46
Stop and Start HTML Table, 7-46
Text, 7-47
Text Area, 7-47

Index-7

Text with Calculator, 7-47
item help, 2-5

J
JavaScript, 7-19

in row templates, 7-26
libraries, 7-20
on load events, 7-55
page specific, 7-54
setting focus on item, 7-54

L
label templates

about, 6-6
editing, 7-27

language
defining for application, 16-4
multibyte, 16-5
preference, 16-2

LDAP Credentials Verification, 10-13, 10-14
linking

deep, about, 10-16
list of values, 6-7

creating, 8-20
translating, 16-14

list of values (LOV), 6-8
list templates, 6-6

editing, 7-26
lists, 6-7, 6-8

creating, 8-11
Lists Wizard, 8-11
login credentials, 2-3
login page, 2-2

building, 10-16
understanding login credentials, 2-3

LOGOUT_URL
substitution string, 6-33

LOV, 8-21
inline static, 8-21
popup, 8-22
referencing session state, 8-21

M
menu template

about, 6-6
editing, 7-27

Menu Wizard, 8-7
menus, 6-7, 6-8

breadcrumb style, 7-27
creating, 8-7
shared components, 6-7

messages
translating, 16-12

Multi Column Region Table Attribute, 7-22

N
named column templates, 7-25
navigation

adding, 8-2
branch, 8-13
lists, 8-11
menus, 8-7
navigation bars, 8-4
parent tabs, 8-2
standard tabs, 8-2
tab sets, 8-2
trees, 8-10

navigation bar, 6-7, 6-8, 8-4
creating icons, 8-5
creating without icons, 8-6

No Authentication (using DAD), 10-13

O
objects

creating, 5-6
dropping, 5-7
managing, 5-6
purging, 5-7
restoring, 5-7

On Error Text attributes, 7-56
On Load JavaScript attribute, 7-55
online help, 2-5
Open Door Credentials, 10-13
Oracle 9iAS Single Sign-On, 10-13
Oracle HTML DB

Index-8

about, 1-1
about user interface, 2-4
commonly used conditions, A-1
logging in, 2-2
user roles, 2-1

Oracle HTML DB administrator, 2-1, 11-2, 14-1
approving a change request, 14-5
approving a service request, 14-5
creating a workspace, 14-3
creating a workspace without a request, 14-6
deleting logs, 15-1
e-mail settings, 15-5
exporting and importing a workspace, 14-9
managing engine settings, 15-5
managing logs, 15-1
managing session state, 15-3
managing user activity, 15-5
managing users, 14-6
managing workspace schemas, 14-8
removing a workspace, 14-8
viewing pending change requests, 14-4
viewing pending service requests, 14-4
viewing workspace reports, 14-2

Oracle Optimizer
Explain Plan, 5-4

P
page

about, 6-2, 7-2
calling from a button, 6-22
calling with an alias, 6-22
creating from Developer toolbar, 7-14
creating from Page Definition, 7-14
creating using a wizard, 7-14
deleting, 7-15
linking with f?p syntax, 6-20
Navigation pane, 7-7
resource use, 9-3
viewing attributes, 7-37
zero, 8-1

page attributes
Comments, 7-57
Configuration Management, 7-56
Duplicate Page Submission Checks, 7-56

editing, 7-52
HTML Header, 7-54
On Error Text, 7-56
On Load JavaScript, 7-55
Page Header, Footer and Text Attributes, 7-54
Page Help Text, 7-56
Primary Page Attributes, 7-53
Security, 7-55
viewing, 7-37

Page Definition
about, 6-2
creating a page, 7-14
editing, 7-38
Navigation Pane, 7-6
Page Processing, 7-6
Page Rendering, 7-6
Shared Components, 7-7
viewing, 7-5

Page Header, Footer and Text attributes, 7-54
page help, 2-5

creating, 8-41
Page Help Text attribute, 7-56
Page Navigation pane, 7-7

Edit Item Help, 7-7
Navigate, 7-7
Page, 7-7
Page Reports, 7-7
Run Page, 7-7

page processing, 6-7
about, 6-1
understanding, 6-6

page processing components, 6-4, 7-50
branching, 6-4
computations, 6-4
processes, 6-4
validations, 6-4

page rendering, 6-7
about, 6-1
Page, 7-39
Regions, 7-39
understanding, 6-6

page rendering components, 6-3
buttons, 6-4
computations, 6-4
items, 6-4

Index-9

managing, 7-39
page, 6-3
processes, 6-4
regions, 6-3

page reports
All Conditions, 7-8
Event View, 7-8
History, 7-9
Page Detail, 7-9
Related Pages, 7-9
Summary of All Pages, 7-9
Tree View, 7-10
viewing, 7-7, 9-3

page template, 6-5
Configuration Management, 7-23
editing, 7-18
Error Page Template Control, 7-23
Header / Body / Footer Definitions, 7-21
Image Based Tab Attributes, 7-22
Multi Column Region Table Attribute, 7-22
Parent Tab Attributes, 7-22
Standard Tab Attributes, 7-22
substitution strings, 7-18
Subtemplate Definitions, 7-21
Template Identification, 7-21
Template Subscription, 7-21

page template substitution strings, 7-18
#BOX_BODY#, 7-19
#FORM_CLOSE#, 7-20
#FORM_OPEN#, 7-19
#GLOBAL_NOTIFICATION#, 7-20
#HEAD#, 7-20
#NAVIGATION_BAR#, 7-19, 7-20
#NOTIFICATION_MESSAGE#, 7-19
#ONLOAD#, 7-19
#PARENT_TAB_CELLS#, 7-20
#REGION_POSITION_NN#, 7-20
#SUCCESS_MESSAGE#, 7-19
#TAB_CELLS#, 7-19
#TITLE#, 7-19

Page View Activity logs
truncating, 15-3

page zero, 8-1
Parent Tab Attributes, 7-22
parent tabs, 6-7

creating, 8-2
password

resetting, 2-3
performance tuning, 9-1
PL/SQL

running in background, 12-10
Popup List of Values templates, 6-6
Popup LOV, 7-45
popup LOV template

editing, 7-28
preconfigured authentication schemes, 10-12
Presidential Inaugural Addresses, 3-2
Previous runs

control file, 5-14
Primary Page attributes, 7-53
Print Mode template, 8-39
Printer Friendly mode, 3-6
PRINTER_FRIENDLY substitution string, 6-27
process

implementing background PL/SQL, 12-13
programming techniques

collections, 12-2
database links, 12-1
implementing Web services, 12-15
running background PL/SQL, 12-10

Provision Workspace Wizard, 14-6
PROXY SERVER substitution string, 6-28
PUBLIC_URL_PREFIX substitution string, 6-33

Q
Query by Example, 5-5

R
radio group, 7-45

generate, 13-30
Recycle Bin

purging, 5-7
searching, 5-7
using, 5-7
viewing objects, 5-7

region
based on an URL, 8-17
based on PL/SQL dynamic content, 8-18

Index-10

building a form, 8-16
building a report, 8-17
controlling positioning, 7-41
creating, 8-14
default values, 5-15
displaying conditionally, 7-41
specifying header and footer, 7-41

region source types, 7-40
Chart, 7-40
Help Text, 7-40
HTML, 7-40
HTML Text (escape special characters), 7-40
HTML Text (with shortcuts), 7-40
List, 7-40
Menu, 7-40
Other, 7-40
PL/SQL Dynamic Content, 7-40
Report, 7-40
Tree, 7-41
URL, 7-40
Web Service Result, 7-41

region template
editing, 7-23
Form Table Attributes, 7-24
Region Template, 7-24
Region Template Identification, 7-23
Template Subscription, 7-23

Region Template attributes, 7-24
Region Template Identification attributes, 7-23
region templates, 6-6
re-installation

demonstration applications, 3-2
report

attributes, 8-29
report template

creating conditions, 7-26
editing, 7-24
Generic Column template, 7-25
Named Column templates, 7-25
using JavaScript, 7-26

report templates, 6-6, 7-24
conditional use, 7-26

reports
building from a region, 8-17
column breaks, 8-34

column display, 8-34
column link, 8-32
column sorting, 8-31
creating, 8-28
creating using a wizard, 8-28
defining a column as a list of values, 8-33
exporting, 8-31
managing attributes, 8-29
updatable, 8-33
with pagination, 8-35

REQUEST
button names, 7-42
referencing value of, 6-28
substitution string, 6-28

requests (change requests)
managing, 14-4

resource use
monitoring, 9-3

row templates
using JavaScript, 7-26

Run Application, 2-8
Run icon, 7-3

S
Sample Application, 3-2

about, 3-4
scripts

including SQL queries, 5-11
security

about, 10-8
Security attributes, 7-55
Security Navigation pane, 10-9
seeding, 16-7
select list, 7-46
service requests

managing, 14-4
SERVICE_REQUEST_FLOW, 15-5
session, 6-24
session ID, 6-13
Session Management attributes, 7-33
session state

clearing, 6-16
clearing application cache, 6-18
clearing cache by item, 6-16

Index-11

clearing cache by page, 6-16
clearing cache for current user session, 6-18
clearing cache for two pages, 6-16
management, 6-12
managing, 15-3
passing item value, 6-17
referencing, 6-15
remove for current session, 13-2
set, 13-10
setting, 6-15
viewing, 6-13

session state values
managing, 6-14

shared components
about, 6-7
list of values, 6-7
lists, 6-7
navigation bars, 6-7
parent and standard tabs, 6-7
templates, 6-7

shortcuts, 8-40
Show Page, 6-7
Single Sign-On (SSO) Server Verification, 10-14
SMTP_FROM, 15-6
SMTP_HOST_ADDRESS, 15-6
SMTP_HOST_PORT, 15-6
SOAP, 12-15
Spreadsheet Data Import Wizard, 4-3
Spreadsheet Import Wizard, 1-3
spreadsheets

importing, 4-3
SQL command

Explain Plan, running, 5-4
SQL Command History

viewing scripts and commands, 5-12
SQL Command Processor

command termination, 5-4
saving scripts and commands, 5-11
using, 5-3

SQL commands
running, 5-3
saving, 5-11
viewing a history, 5-12

SQL queries
including in scripts, 5-11

SQL script details
viewing, 5-9

SQL Script Repository
create a script, 5-10
deleting a script, 5-9
exporting scripts, 5-11
running a script, 5-9
uploading a script, 5-10
using, 5-8
using parameters, 5-10
viewing script details, 5-9
viewing scripts, 5-8

SQL scripts
creating, 5-10
creating a control file, 5-13
deleting, 5-9
editing a control file, 5-13
exporting, 5-11
running, 5-3, 5-9
running a control file, 5-14
running in a predefined order, 5-13
saving, 5-11
uploading, 5-10
using parameters, 5-10
viewing, 5-8
viewing a history, 5-12

SQL tracing
enabling, 9-3

SQL Workshop
about, 1-2, 5-1
creating tables, 5-15
editing tables, 5-15
SQL*Plus command support, 5-2
transaction support, 5-2

SQL Workshop logs
deleting, 15-2

SQL*Plus command support, 5-2
SQLERRM substitution strings, 6-32
Standard Tab Attributes, 7-22
standard tabs, 6-7

creating, 8-2
static files

uploading, 10-8
static substitution string, 7-36
style sheet, 7-16

Index-12

substitution strings
about, 6-22
about built-in, 6-23
APP SCHEMA OWNER, 6-32
APP_ALIAS, 6-34
APP_ID, 6-31
APP_IMAGES, 6-26
APP_PAGE_ID, 6-31
APP_SESSION, 6-24
APP_UNIQUE_PAGE_ID, 6-35
APP_USER, 6-25
AUTHENTICATED_URL_PREFIX, 6-32
BROWSER_LANGUAGE, 6-27
CURRENT_PARENT_TAB_TEXT, 6-34
DEBUG, 6-30
IMAGE_PREFIX, 6-25
in page templates, 7-18
LOGOUT_URL, 6-33
PRINTER_FRIENDLY, 6-27
PROXY SERVER, 6-28
PUBLIC_URL_PREFIX, 6-33
REQUEST, 6-28
SQLERRM, 6-32
static, 7-36
supported in region footer, 7-41
SYSDATE_YYYYMMDD, 6-30
WORKSPACE_IMAGES, 6-26

Subtemplate Definitions attributes, 7-21
SYSDATE_YYYYMMDD substitution string, 6-30

T
Tab Manager, 8-3
tab sets

adding, 8-2
tables

creating in SQL Workshop, 5-15
editing in SQL Workshop, 5-15
exporting UI Defaults, 5-18
not using UI Defaults, 5-17
querying by example, 5-5
using UI Defaults, 5-16

task list
using, 2-5

Template Defaults attributes, 7-35

Template Identification, 7-21
Template Subscription attribute, 7-21, 7-23
templates, 6-7, 6-9

button, 7-28
conditional use in reports, 7-26
custom, 7-17
defaults, 7-35
editing, 7-17
generic columns, 7-25
label, 6-6
labels, 7-27
lists, 6-6, 7-26
menu, 6-6
menus, 7-27
named columns, 7-25
page, 6-5, 7-18
popup list of values, 6-6
popup LOV, 7-28
region, 6-6
report, 6-6
reports, 7-24
rows, 7-26
user interface, 7-34
using, 6-5
viewing, 7-16

text, 7-47
text area, 7-47
text file

importing, 4-2
text strings

translating, 16-12
toolbar, 7-10
transaction support, 5-2
translatable messages

defining, 16-12
Translate Application page, 16-6
translation, 16-1

dynamic, 16-14
export options, 16-9
exporting text, 16-7
mapping primary application ID, 16-6
mapping target application ID, 16-6
seeding, 16-7
steps, 16-6
translation file, 16-8

Index-13

understanding, 16-6
understanding application rendering, 16-2
XLIFF, 16-8
XLIFF Target Elements, 16-9

translation file, 16-8
uploading and publishing, 16-10

trees
creating, 8-10

U
UI Defaults

about, 5-15
exporting, 5-18
tables using, 5-16
tables without, 5-17

URL syntax, 6-19
user

remove preference, 13-8
roles, 14-1

user identity
establishing, 10-9
verifying, 6-12

user interface
about, 2-4
specifying, 8-36

User Interface Templates attributes, 7-34
user preferences

resetting using a page process, 12-21
setting, 12-18
setting manually, 12-20
viewing, 12-18

user roles
developer, 2-1

Utilization Reports, 10-2

V
variables

global, 13-40
View Export Repository, 10-6
Virtual Private Database (VPD), 7-36
Virtual Private Database attribute, 7-36

W
Web service, 3-2

creating, 12-15
invoking as a process, 12-17

wizards
creating a button, 8-19
creating a calendar, 8-36
creating a chart, 8-35
creating a form, 8-23
creating a list, 8-11
creating a LOV, 8-21
creating a menu, 8-7
creating a new component, 7-14
creating a page, 7-5, 7-14
creating a page branch, 7-51, 8-13
creating a page computation, 12-17
creating a page process, 7-50
creating a region, 8-9, 8-15
creating an application, 2-6, 7-11
creating menu template, 8-9
creating NavBar entry, 8-5
creating reports, 8-28
creating validations, 8-27
exporting text, 4-4
exporting XML, 4-4
Form on Table or View, 8-16
importing a spreadsheet, 1-3
importing spreadsheet data, 4-3
importing text, 4-2
importing XML, 4-3
provisioning a workspace, 14-6

workspace
administration, 14-1
creating, 14-3
creating without a request, 14-6
exporting and importing, 14-9
logging in, 2-3
logging out, 2-4
managing, 11-1
removing, 14-8
requesting, 2-2
specifying a provisioning mode, 14-3

Workspace administrator, 2-1, 11-1, 11-2
changing password, 11-3

Index-14

creating new user accounts, 11-2
managing development services, 11-8
managing log files, 11-7
managing session state, 11-4
managing user preferences, 11-4
managing users, 11-2
monitoring developer activity, 11-6
monitoring users, 11-4
purging log files, 11-7
reports, 11-6
requesting a database schema, 11-8
requesting additional storage, 11-9
requesting service termination, 11-9
viewing workspace status, 11-8

WORKSPACE_IMAGES substitution string, 6-26

X
XLIFF, 16-8

Target Elements, 16-9
uploading and publishing, 16-10

XML document
exporting to, 4-4
importing, 4-3

XML Export Wizard, 4-4
XML Import Wizard, 4-3

	Contents
	Send Us Your Comments
	Preface
	Part I Getting Started with Oracle HTML DB
	1 What is Oracle HTML DB?
	About Oracle HTML DB
	About Application Builder
	About SQL Workshop
	About Data Workshop

	2 Quick Start
	Understanding Oracle HTML DB User Roles
	Logging in to Oracle HTML DB
	Requesting a Workspace
	Logging in to a Workspace
	Resetting Your Password
	Logging Out of Your Workspace

	About Oracle HTML DB User Interface
	About Using the Tasks List
	Other Sources of Information

	Creating an Application Using the Create Application Wizard
	Running Your Application

	3 Running a Demonstration Application
	Viewing and Installing a Demonstration Application
	Running a Demonstration Application
	Running an Application from Demonstration Applications
	Running an Application from Application Builder

	Understanding Sample Application
	About the Home Page
	About the Orders Page
	About the Products Page
	About the Customers Page
	Viewing Pages in Printer Friendly Mode

	Modifying a Demonstration Application
	About the Developer Toolbar
	Editing a Demonstration Application

	Viewing Underlying Database Objects

	Part II Using Oracle HTML DB
	4 Managing Data with Data Workshop
	About Data Workshop
	Importing Data
	Importing a Text File
	Importing an XML Document
	Importing Spreadsheet Data

	Exporting Data
	Exporting to a Text File
	Exporting to an XML Document

	5 Using SQL Workshop to Manage Database Objects
	About SQL Workshop
	About Transaction Support
	About Support for SQL*Plus Commands

	Viewing Database Objects
	Using the SQL Command Processor
	About Command Termination
	Using Explain Plan

	Browsing Database Objects
	Querying by Example

	Viewing Database Objects by Object Type

	Managing Database Objects
	Browsing Database Objects
	Creating Database Objects
	Dropping Database Objects
	Restoring Dropped Database Objects
	Using the SQL Script Repository
	Managing Script Files in the SQL Script Repository
	Uploading and Creating Script Files
	Using Parameters in a Script
	Including SQL Queries in a Script
	Exporting a Script File

	Accessing Saved Commands in the SQL Archive
	Accessing the SQL Command History
	Generating DDL
	Managing Control Files
	Viewing the Control File Run History
	Viewing Control File Job Status

	Managing Tables

	Managing User Interface Defaults
	Managing Tables Using UI Defaults
	Applying UI Defaults to a Table or View
	Exporting UI Defaults

	Browsing the Data Dictionary

	6 Application Builder Concepts
	About Page Rendering and Page Processing
	What is a Page?
	How Application Builder Uses Templates
	Page Templates
	Region Templates
	List Templates
	Report Templates
	Label Templates
	Menu Templates
	Popup List of Values Templates

	How Page Processing and Page Rendering Work
	Understanding Shared Components
	About Standard Tabs and Parent Tabs
	About Navigation Bars
	About List of Values
	About Menus
	About Lists
	About Templates

	Understanding Conditional Rendering and Processing
	Current Page In Expression 1
	Exists
	PLSQL Expression

	Using Build Options to Control Configuration
	Creating Build Options
	Viewing Build Option Reports

	Verifying User Identity
	Controlling Access to Components

	Understanding Session State Management
	Understanding Session IDs
	Viewing Session State

	Managing Session State Values
	Referencing Session State
	Setting Session State
	Clearing Session State
	Clearing Cache by Item
	Clearing Cache by Page
	Clearing Cache for an Entire Application
	Clearing Cache for the Current User Session

	About Bind Variables
	Using Bind Variables in Regions Based on a SQL Query or LOV
	Using Bind Variables in PL/SQL Procedures

	Understanding URL Syntax
	Using f?p Syntax to Link Pages
	Calling a Page Using an Application and Page Alias
	Calling a Page from a Button URL

	Using Substitution Strings
	Built-in Substitution Strings
	APP_SESSION
	APP_USER
	IMAGE_PREFIX
	WORKSPACE_IMAGES
	APP_IMAGES
	BROWSER_LANGUAGE
	PRINTER_FRIENDLY
	HOME_LINK
	PROXY SERVER
	REQUEST
	SYSDATE_YYYYMMDD
	DEBUG
	APP_ID
	APP_PAGE_ID
	APP SCHEMA OWNER
	SQLERRM
	AUTHENTICATED_URL_PREFIX
	LOGOUT_URL
	PUBLIC_URL_PREFIX
	CURRENT_PARENT_TAB_TEXT
	APP_ALIAS
	APP_UNIQUE_PAGE_ID

	7 Using Application Builder
	Understanding the Definition of a Page
	Accessing Application Builder
	About the Available Applications List
	About the Edit Page List
	About the Application Navigation Pane

	Viewing a Page Definition
	Using the Page Navigation Pane

	Viewing Page Reports
	About All Conditions
	About Event View
	About History
	About Page Detail
	About Related Pages
	About Summary of All Pages
	About Tree View

	Using the Developer Toolbar

	Creating an Application
	Creating a New Application
	Deleting an Application

	Creating a New Page Using a Wizard
	About SVG Charting Support
	Creating a Page While Viewing the Page Definition
	Creating a Page from the Developer Toolbar
	Creating a Page Using a Wizard
	Deleting a Page

	Working with Templates
	Viewing Existing Templates
	About Cascading Style Sheets

	Creating Custom Templates
	Editing Templates
	Editing Page Templates
	Editing Region Templates
	Editing Report Templates
	Editing List Templates
	Editing Label Templates
	Editing Menu Templates
	Editing Button Templates
	Editing Popup LOV Templates

	Viewing Application Attributes
	Editing Application Attributes
	About Application Definition
	About Authorization
	About Session Management
	About User Interface Templates
	About Template Defaults
	About Globalization
	About Application Availability
	About Global Notifications
	About Virtual Private Database (VPD)
	About Static Substitution Strings
	About Build Options
	About Application Comments

	Viewing Page Attributes
	Editing a Page Definition
	Managing Page Rendering Components
	About Page
	About Regions
	About Buttons
	About Items
	About Page Computations
	About Page Processes

	About Page Processing Components
	About Validations
	About Branching

	Editing Page Attributes
	About Primary Page Attributes
	About HTML Header
	About Page Header, Footer and Text Attributes
	About On Load JavaScript
	About Security
	About Duplicate Page Submission Checks
	About Configuration Management
	About On Error Text
	About Page Help Text
	About Comments

	Running a Page

	8 Building Application Components
	Displaying Components on Every Page
	Adding Navigation
	Creating Tab Sets
	About Template Support
	Using Tab Manager to Manage Tab Information
	About the Standard Tab Tasks List

	Creating a Navigation Bar
	Creating a Navigation Bar Entry

	Creating Menus
	Creating a Menu
	Creating a Menu Template
	Adding a Menu to a Page
	About Creating a Dynamic Menu

	Creating Trees
	Creating Lists
	Creating a List
	Adding a List on a Page
	About Creating a List Template

	Creating a Branch

	Creating Regions
	Creating New Regions
	Building a Form Using a Region
	Building a Report Using a Region
	About Regions Based on an URL
	About Regions Based on PL/SQL Dynamic Content

	Creating Buttons
	Using the Create Button Wizard
	Creating an HTML Button

	Creating Lists of Values
	Creating LOVs
	Referencing Session State within a LOV
	Inline Static LOV
	Popup LOV

	Creating Forms
	Using a Wizard to Build a Form
	Creating a Form Manually
	Processing a Form
	Creating an Automatic Row Processing Process
	Creating a Process Containing One or More Insert Statements
	Using a PL/SQL API to Process Form Values
	Populating Forms

	Validating User Input in Forms

	Creating Reports
	Using a Wizard to Create a Report
	Managing Report Attributes
	Accessing Report Attributes
	Enabling Column Sorting
	Exporting a Report
	Creating a Column link
	Defining Updatable Columns
	Defining a Column as a List of Values
	Controlling When Columns Display
	Controlling Column Breaks

	Creating a Report with Pagination

	Creating Charts
	Creating Calendars
	Specifying Layout and User Interface
	Creating a Multiple Column Layout
	Creating Regions in Multiple Columns
	Creating a Multiple Column Page Template

	Using a LOV to Drive Another LOV
	Specifying Print Preview Mode
	Setting a Print Mode Template for an Application
	Using f?p Syntax to Toggle to Print Mode

	Utilizing Shortcuts
	Defining Shortcuts

	Creating a Help Page
	Creating a Help Page and Region
	Defining Help Text
	Creating a Help Navigation Bar Icon

	Sending E-mail from an Application

	9 Debugging an Application
	About Tuning Performance
	Remembering to Review Session State
	Accessing Debug Mode
	Enabling SQL Tracing and Using TKPROF
	Monitoring Application and Page Resource Use
	Viewing Page Reports
	Debugging Problematic SQL Queries
	Removing Components to Isolate a Problem

	10 Managing an Application
	Accessing Application Builder Utilities
	Viewing Application Summary and Utilization Reports

	Exporting and Importing Applications
	How Exporting an Application Works
	About Managing Database Objects
	Exporting an Application and Related Files
	Exporting Related Application Files

	Importing Exported Application Files
	Installing Files from the View Export Repository

	Uploading CSS, Images, and Static Files
	Understanding Security
	Using the Security Navigation Pane

	Establishing User Identity Through Authentication
	Understanding How Authentication Works
	Creating an Authentication Scheme
	Using the Authentication Scheme Repository
	Viewing the Current Authentication Scheme for an Application
	About Preconfigured Authentication Schemes
	About DAD Credentials Verification
	About HTML DB Account Credentials
	About LDAP Credentials Verification
	About Single Sign-On Server Verification

	About Creating an Authentication Scheme from Scratch
	About Session Management Security
	Building a Login Page
	About Deep Linking

	Providing Security Through Authorization
	How Authorization Schemes Work
	Creating an Authorization Scheme
	About the Evaluation Point Attribute
	About Resetting Authorization Scheme State

	Attaching an Authorization Scheme to an Application, Page, or Component
	Viewing the Authorization Scheme Utilization Report

	11 Managing Your Development Workspace
	Understanding Administrator Roles
	Managing Users
	Creating New User Accounts
	Editing Existing User Accounts
	Changing Your Password

	Monitoring Users
	Administering Session State and User Preferences
	Managing Session State and User Preferences for the Current Session
	Managing Recent Sessions

	Viewing Workspace Reports
	Monitoring Developer Activity
	Managing Log Files
	Managing Development Services
	Viewing Current Workspace Status
	Requesting a Database Schema
	Requesting Additional Storage
	Requesting Service Termination

	12 Advanced Programming Techniques
	Accessing Data with Database Links
	Using Collections
	Using the HTMLDB_COLLECTION API
	About Collection Naming
	Creating a Collection
	Truncating a Collection
	Deleting a Collection
	Adding Members to a Collection
	Updating Collection Members
	Deleting a Collection Member
	Determining Collection Status
	Merging Collections
	Managing Collections
	Clearing Collection Session State

	Running Background PL/SQL
	Understanding the HTMLDB_PLSQL_JOB Package
	About System Status Updates
	Using a Process to Implement Background PL/SQL

	Implementing Web Services
	Creating a Web Service
	Invoking a Web Service as a Process

	Managing User Preferences
	Viewing User Preferences
	Setting User Preferences
	Setting User Preferences Using a Page Process
	Setting the Source of an Item Based on a User Preference
	Setting User Preferences Programatically

	Resetting User Preferences Manually
	Resetting Preferences Using a Page Process

	13 Oracle HTML DB APIs
	HTMLDB_UTIL
	CLEAR_APP_CACHE Procedure
	CLEAR_USER_CACHE Procedure
	COUNT_CLICK Procedure
	GET_FILE Procedure
	GET_NUMERIC_SESSION_STATE Function
	GET_PREFERENCE Function
	GET_SESSION_STATE Function
	PUBLIC_CHECK_AUTHORIZATION Function
	REMOVE_PREFERENCE Procedure
	REMOVE_SORT_PREFERENCES Procedure
	RESET_AUTHORIZATIONS Procedure
	SET_PREFERENCE Procedure
	SET_SESSION_STATE Procedure
	STRING_TO_TABLE Function
	TABLE_TO_STRING Function
	URL_ENCODE Function

	HTMLDB_ITEM
	CHECKBOX Function
	DATE_POPUP Function
	HIDDEN Function
	MD5_CHECKSUM Function
	MD5_HIDDEN Function
	MULTI_ROW_UPDATE Procedure
	SELECT_LIST Function
	SELECT_LIST_FROM_LOV Function
	SELECT_LIST_FROM_LOV_XL Function
	SELECT_LIST_FROM_QUERY Function
	SELECT_LIST_FROM_QUERY_XL Function
	TEXT Function
	TEXT_FROM_LOV Function
	RADIOGROUP Function
	POPUP_FROM_LOV Function
	POPUP_FROM_QUERY Function
	POPUPKEY_FROM_LOV Function
	POPUPKEY_FROM_QUERY Function

	HTMLDB_APPLICATION
	Referencing Arrays
	Referencing Values Within an On Submit Process
	Converting an Array to a Single Value

	HTMLDB_CUSTOM_AUTH
	APPLICATION_PAGE_ITEM_EXISTS Function
	CURRENT_PAGE_IS_PUBLIC Function
	DEFINE_USER_SESSION Procedure
	GET_NEXT_SESSION_ID Function
	GET_SECURITY_GROUP_ID Function
	GET_SESSION_ID Function
	GET_USER Function
	SESSION_ID_EXISTS Function
	SET_USER Procedure
	SET_SESSION_ID Procedure
	SET_SESSION_ID_TO_NEXT_VALUE Procedure

	Part III Administration
	14 Administering Workspaces
	About the Oracle HTML DB Administrator
	Viewing Workspace Reports
	Creating a Workspace
	Specifying a Provisioning Mode
	Managing a Service and Change Request
	Viewing a Pending Service or Change Request
	Approving a Service or Change Request

	Creating a Workspace Without a Request

	Managing Users in a Workspace
	Managing the Schemas Associated with a Workspace
	Removing a Workspace
	Exporting and Importing a Workspace

	15 Managing Services
	Managing Logs
	Deleting Developer Activity Log Entries
	Deleting Click Counting Log Entries
	Deleting SQL Workshop Logs
	Deleting User Activity Log Entries

	Managing Session State
	Purging Sessions by Age
	Viewing Session Details Before Purging
	Viewing Session Statistics Before Purging

	Monitoring Activities
	Managing Engine Settings

	16 Managing Globalization
	About Translating an Application and Globalization Support
	About Language Identification
	How Translated Applications Are Rendered
	About Translatable Components
	About Messages
	About Dynamic Translation Text Strings
	About Translating Templates

	Specifying the Primary Language for an Application
	Using Format Masks for Items
	Translating Applications for Multibyte Languages

	Understanding the Translation Process
	Navigating to the Translate Application Page
	Mapping Primary and Target Application IDs
	Seeding and Exporting Text to a Translation File
	Seeding Translatable Text
	Exporting Text to a Translation File

	Translating the XLIFF File
	Uploading and Publishing a Translated XLIFF Document

	Translating Messages Used in PL/SQL Procedures
	Defining Translatable Messages
	HTMLDB_LANG.MESSAGE API

	Translating Data that Supports List of Values
	Defining a Dynamic Translation
	HTMLDB_LANG.LANG API

	About Oracle HTML DB Globalization Codes

	A Available Conditions
	Conditions Available in Oracle HTML DB

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

