0?7,

r
S’ 7
L/

BEAWebLogic
Server-

Programming WebLogic
Security

Version 8.1
Revised: August 2005

Copyright

Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document

Audience for ThisGuideot e e e xii
€-doCs Web Site . ..ot xiii
How to Printthe Document i ie e Xiv
Related Information i e Xiv
Contact Us! ..o XV
Documentation CONVENtIONSo vv vttt ettt ettt e e eeens XVi

1. Introduction to Programing WebLogic Security

Audience for This GUidettt 1-1
What Is Security?.o e 1-3
Types of Security Supported by WebLogic Server.................. ..., 1-4
AUthentication. it 1-4
AUthOTIZAtioNo 1-5
J2EE SeCUIILY . o oottt e e 1-5
SecUrity APIS . ..o e 1-5
JAAS Client Application APIS. e 1-6
Java JAAS Client Application APIs 1-6
WebLogic JAAS Client Application APIs 1-6

SSL Client Application APIs i 1-6
Java SSL Client Application APIs. 1-7
WebLogic SSL Client Application APIs.....................coiin.... 1-7

Programming WebLogic Security iii

Other APIs . ..o 1-7
Administration Console and Securityt 1-8

Security Tasks and Code Examples 0., 1-8

2. Securing Web Applications

J2EE Security Model.o 2-2
Declarative Authorizationo. ittt 2-2
Programmatic Authorizationc.. i 2-3
Declarative Versus Programmatic Authorization. 2-4

Authentication With Web Browsers 2-4
User Name and Password Authentication, 2-5
Digital Certificate Authenticationttt 2-6

Multiple Web Applications, Cookies, and Authentication........................ 2-8
Using Secure Cookies to Prevent Session Stealing 2-9

Developing Secure Web Applicationsot .. 2-10
Developing BASIC Authentication Web Applications 2-10

Using HttpSessionListener to Account for Browser Caching of Credentials. . 2-15
Developing FORM Authentication Web Applications 2-16
Using Identity Assertion for Web Application Authentication 2-23
Using Two-Way SSL for Web Application Authentication. 2-24
Developing Swing-Based Authentication Web Applications 2-24
Deploying Web Applications.ottt e 2-25

Using Declarative Security With Web Applications. 2-26

Web Application Security-Related Deployment Descriptors 2-27
Web.xml Deployment Descriptors.ovue i 2-27

auth-ConStrainto e 2-27

SECUIItY-CONSLIAINL. oottt et e e et 2-28

SECUIILY-TOLE it 2-29

iv Programming WebLogic Security

security-role-ref. 2-30

user-data-Constraint.ottt 2-31
web-resource-collection 2-31
Weblogic.xml Deployment Descriptorsoovtnienn ... 2-32
externally-defined 2-33
ruN-as-principal-namettt 2-35
run-as-role-assignmentoiuitii i 2-36
SECULIEY-PEIMISSION . &+ v vttt et ettt ettt e et e et e s 2-37
SECUIItY-PEIMISSION=-SPEC. + + e vt vt ettt et e e e et e e e eenas 2-37
SECUrity-role-assignmentttt 2-38

Using Programmatic Security With Web Applications. 2-39
Using the Programmatic Authentication APT 2-41

3. Using JAAS Authentication in Java Clients

JAAS and WebLogIiC SerVerottt e e e 3-1
JAAS Authentication Development Environment. 3-3
JAAS Authentication APIs. 3-3
JAAS Client Application Components.vuuieuneeneeneeneennen.. 3-7
WebLogic LoginModule Implementation 3-9
JVM-Wide Default User and the runAs() Method 3-9
Writing a Client Application Using JAAS Authentication 3-10
Using JINDI Authenticationtutrntnt et 3-22
Java Client JAAS Authentication Code Examples 3-23

4. Using SSL Authentication in Java Clients

JSSE and WebLogic Server.ttt e 4-1
Using JNDI Authenticationo ottt 4-2
SSL Certificate Authentication Development Environment. 4-4

Programming WebLogic Security

SSL Authentication APIS. 4-4

SSL Client Application COMPONENtS.ovvvrer et ee e, 4-8
Writing Applications that Use SSL. i i 4-9
Communicating Securely From WebLogic Server to Other WebLogic Servers . . . 4-10
Writing SSL CHentsottt e e e e et 4-10
SSLClient Sample.t 4-11
SSLSocketClient Samplettt 4-15
SSLClientServlet Sample 4-18

Using Two-Way SSL Authentication.cviiiiinenen.... 4-19
Two-Way SSL Authentication with JNDI 4-20

Writing a User Name Mapper.ooiiiin i 4-23

Using Two-Way SSL Authentication Between WebLogic Server Instances . . 4-24

Using Two-Way SSL Authentication with Servlets 4-25

Using a Custom Host Name Verifier, 4-26
Using a Trust Manager. vttt e et 4-28
Using a Handshake Completed Listenerccoiiiuon... 4-30
Using an SSLCONtEXt. . ..ot vttt e e e e e 4-31
Using an SSL Server Socket Factory., 4-32
Using URLSs to Make Outbound SSL Connections 4-33
SSL Client Code EXamples.ottt it et 4-35

5. Securing Enterprise JavaBeans (EJBs)

J2EE Architecture Security Model 5-1
Declarative Authorizationo. ittt 5-2
Programmatic Authorization i 5-2
Declarative Versus Programmatic Authorization. 5-4

Using Declarative Security With EJBs i 5-4

EJB Security-Related Deployment Descriptorsc.oovininenn.... 5-6

vi Programming WebLogic Security

method. o 5-7
method-permissionot 5-8
TOLE-NAIME. . . o oottt 5-9
TUNSAS .+ o et ettt e e e e e e e e e e e e e e 5-9
SECUNIty-1dentity.ot 5-9
SECUIILY-TOlC. . . o\ ottt e e 5-10
security-role-ref. 5-10
unchecked 5-12
use-caller-identity 5-12
weblogic-ejb-jar.xml Deployment Descriptorsccovuie.... 5-13
client-authentication it 5-14
client-cert-authentication. i 5-15
confidentialityttt 5-15
externally-defined 5-16
1dentity-asSertion v vttt 5-18
HOP-SECUTIItY-AeSCIIPLOT . . . o\ vttt ettt e e 5-19
117 4 o L2 5-20
Principal-name.oi i 5-20
TOLE-NAME. . . . o oottt e e e 5-21
run-as-identity-principal 5-21
ruN-as-principal-namettt 5-23
run-as-role-assignmentiuiriin it 5-23
SECULIEY-PEIMISSION . & o\ vt vt et ettt ettt e e ettt 5-26
SECULItY-PEIMISSION-SPEC. + + e vt vt et e ettt e e e et e ee e nanns 5-26
SECUrity-role-assignmentttt 5-27
tranSPOrt-reqUITCIMENES . . . ottt t e e e ettt e et e et 5-27
Using Programmatic Security With EJBs 5-28

Programming WebLogic Security vii

6. Using Network Connection Filters

The Benefits of Using Network Connection Filters 6-1
Network Connection Filter APT 6-2
Connection Filter Interfaces. i 6-2
ConnectionFilter Interface i, 6-2
ConnectionFilterRulesListener Interface 6-3
Connection Filter Classes.ottt e 6-3
ConnectionFilterImpl Class i 6-3
ConnectionEvent Class.o.ti e 6-4
Guidelines for Writing Connection Filter Rules. 6-4
Connection Filter Rules Syntax 6-4
Types of Connection Filter Rules. i it 6-5
How Connection Filter Rules are Evaluated 6-6
Configuring the WebLogic Connection Filter 6-7
Developing Custom Connection Filters 6-7
Connection Filter Examples i 6-8
SimpleConnectionFilter Example i i 6-8
SimpleConnectionFilter2 Example i ... 6-9
Example of the accept Method Used in Filtering Network Connections 6-9

/. Using Java Security to Protect WebLogic Resources

Using J2EE Security to Protect WebLogic Resources 7-1
Using the Java Security Manager to Protect WebLogic Resources 7-2
Setting Up the Java Security Manager.o i, 7-3
Modifying the weblogic.policy file for General Use 7-3

Setting Application-Type Security Policies 7-4

Setting Application-Specific Security Policies. 7-5

Using the Recording Security Manager Utility 7-6

viii Programming WebLogic Security

A. Deprecated Security APIs
Index

Programming WebLogic Security

Programming WebLogic Security

About This Document

This document is organized as follows:

m Chapter 1, “Introduction to Programing WebLogic Security,” discusses the
audiences of this document, the need for security, and the WebLogic Security
application programming Interfaces (APIs).

m Chapter 2, “Securing Web Applications,” describes how to implement security in
Web applications.

m Chapter 3, “Using JAAS Authentication in Java Clients,” describes how to
implement JAAS authentication in Java clients.

m Chapter 4, “Using SSL Authentication in Java Clients,” describes how to
implement SSL and digital certificate authentication in Java clients.

m Chapter 5, “Securing Enterprise JavaBeans (EJBs),” describes how to implement
security in Enterprise JavaBeans.

m Chapter 6, “Using Network Connection Filters,” describes how to implement
network connection filters.

m Chapter 7, “Using Java Security to Protect WebLogic Resources,” discusses
using Java security to protect WebLogic resources.

m Appendix A, “Deprecated Security APIs,” provides a list of
weblogic.security packages in which APIs have been deprecated.

Note: This document does not provide instructions on how to configure WebLogic
Security providers and custom security providers. For information on
configuring WebLogic security providers and custom security providers, see
Managing WebLogic Security.

Programming WebLogic Security Xi

http://e-docs.bea.com/wls/docs81/secmanage/index.html

Note: This document is not intended for developers who want to write custom security providers

for use with WebLogic Server. It does not describe how to write custom security
providers. For information on developing custom security providers, see Developing
Security Providers for WebLogic Server.

Audience for This Guide

Xii

This document is intended for the following audiences:

m Application Developers

Developers who are Java programmers that focus on developing client applications, adding
security to Web applications and Enterprise JavaBeans (EJBs). They work with other
engineering, Quality Assurance (QA), and database teams to implement security features.
Application Developers have in-depth/working knowledge of Java (including J2EE
components such as servlets/JSPs and JSEE) and Java security.

Application developers use the WebLogic security and Java 2 security application
programming interfaces (APIs) to secure their applications. Therefore, this document
provides instructions for using those APIs for securing Web applications, Java applications,
and Enterprise JavaBeans (EJBs).

Security Developers

Developers who focus on defining the system architecture and infrastructure for security
products that integrate into WebLogic Server and on developing custom security providers
for use with WebLogic Server. They work with Application Architects to ensure that the
security architecture is implemented according to design and that no security holes are
introduced. They also work with Server Administrators to ensure that security is properly
configured. Security Developers have a solid understanding of security concepts, including
authentication, authorization, auditing (AAA), in-depth knowledge of Java (including Java
Management eXtensions (JMX), and working knowledge of WebLogic Server and security
provider functionality.

Security developers use the Security Service Provider Interfaces (SSPIs) to develop custom
security providers for use with WebLogic Server, however, this document does not address
this task. For information on how to use the SSPIs to develop custom security providers, see
Developing Security Providers for WebLogic Server.

m Server Administrators

Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html

Administrators who work closely with Application Architects to design a security scheme
for the server and the applications running on the server, to identify potential security risks,
and to propose configurations that prevent security problems. Related responsibilities may
include maintaining critical production systems, configuring and managing security realms,
implementing authentication and authorization schemes for server and application resources,
upgrading security features, and maintaining security provider databases. Server
Administrators have in-depth knowledge of the Java security architecture, including Web
application and EJB security, Public Key security, and SSL.

m Application Administrators

Administrators who work with Server Administrators to implement and maintain security
configurations and authentication and authorization schemes, and to set up and maintain
access to deployed application resources in defined security realms. Application
Administrators have general knowledge of security concepts and the Java Security
architecture. They understand Java, XML, deployment descriptors, and can identify security
events in server and audit logs.

While administrators typically use the Administration Console to deploy, configure, and
manage applications when they put the applications into production, application developers
may also use the Administration Console to test their applications before they are put into
production. At a minimum, testing requires that applications be deployed and configured.
This document does not cover some aspects of administration as it relates to security, rather,
it references Managing WebLogic Security, Securing WebLogic Resources, and
Administration Console Online Help for descriptions of how to use the Administration
Console to perform security tasks.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation.

Programming WebLogic Security Xiii

http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/secwlres/index.html
http://e-docs.bea.com/wls/docs81ConsoleHelp/index.html

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time, by using the
File—Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

Xiv

In addition to this document, Programming WebLogic Security, the following documents provide
information on the WebLogic Security Service:

m [ntroduction to WebLogic Security—This document summarizes the features of the
WebLogic Security Service and presents an overview of the architecture and capabilities of
the WebLogic Security Service. It is the starting point for understanding the WebLogic
Security Service.

m Securing a Production Environment—This document highlights essential security measures
for you to consider before you deploy WebLogic Server into a production environment.

m Developing Security Providers for WebLogic Server—This document provides security
vendors and application developers with the information needed to develop custom security
providers that can be used with WebLogic Server.

m Managing WebLogic Security—This document explains how to configure security for
WebLogic Server and how to use Compatibility security.

m Securing WebLogic Resources—This document introduces the various types of WebLogic
resources, and provides information that allows you to secure these resources using
WebLogic Server.

Programming WebLogic Security

http://www.adobe.com
http://e-docs.bea.com/wls/docs81/secintro/index.html
http://e-docs.bea.com/wls/docs81/lockdown/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.htm
http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/secwlres/index.htm

WebLogic Server 8.1 Upgrade Guide—This document provides procedures and other
information you need to upgrade 6.x and earlier versions of WebLogic Server to WebLogic
Server 8.1. It also provides information about moving applications from a 6.x or earlier
version of WebLogic Server to 8.1. For specific information on upgrading WebLogic Server
security, see Security in the WebLogic Server 8.1 Upgrade Guide.

m Administration Console Online Help—This document describes how to use the
Administration Console to perform security tasks.

m Security FAQ—This document gives answers to frequently asked questions about WebLogic
Server security.

m Javadocs for WebLogic Classes—This document includes reference documentation for the
WebLogic security packages that are provided with and supported by the WebLogic Server
7.0 software.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at docsupport@bea.com
if you have questions or comments. Your comments will be reviewed directly by the BEA
professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic Server,
contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
® Your name, e-mail address, phone number, and fax number

® Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Programming WebLogic Security XV

http://e-docs.bea.com/wls/docs81/upgrade/index.html
http://e-docs.bea.com/wls/docs81/upgrade/upgrade6xto81.html#security
http://e-docs.bea.com/wls/docs81/upgrade/index.html
http://e-docs.bea.com/wls/docs81ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs81/faq/security.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace Code samples, commands and their options, Java classes, data types,
text directories, and filenames and their extensions. Monospace text also

indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.Java

config.xml

float

monospace Variables in code.
italic

Example:
text

String CustomerName;

UPPERCASE Device names, environment variables, and logical operators.

TEXT Examples:
LPT1
BEA _HOME
OR
{1} A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

Xvi Programming WebLogic Security

Convention Usage

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

Indicates one of the following in a command line:
® An argument can be repeated several times in the command line.
m The statement omits additional optional arguments.

® You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Programming WebLogic Security Xvii

Xviii Programming WebLogic Security

CHAPTERo

Introduction to Programing WebLogic
Security

The following topics are covered in this section:

“Audience for This Guide” on page 1-1

“What Is Security?” on page 1-3

“Types of Security Supported by WebLogic Server” on page 1-4
“Security APIs” on page 1-5

“Administration Console and Security” on page 1-8

“Security Tasks and Code Examples” on page 1-8

Audience for This Guide

This document is intended for the following audiences:

Application Developers

Developers who are Java programmers that focus on developing client applications, adding
security to Web applications and Enterprise JavaBeans (EJBs). They work with other
engineering, Quality Assurance (QA), and database teams to implement security features.
Application Developers have in-depth/working knowledge of Java (including J2EE
components such as servlets/JSPs and JSEE) and Java security.

Application developers use the WebLogic security and Java 2 security application
programming interfaces (APIs) to secure their applications. Therefore, this document

Programming WebLogic Security 1-1

Introduction to Programing WebLogic Security

1-2

provides instructions for using those APIs for securing Web applications, Java applications,
and Enterprise JavaBeans (EJBs).

Security Developers

Developers who focus on defining the system architecture and infrastructure for security
products that integrate into WebLogic Server and on developing custom security providers
for use with WebLogic Server. They work with Application Architects to ensure that the
security architecture is implemented according to design and that no security holes are
introduced. They also work with Server Administrators to ensure that security is properly
configured. Security Developers have a solid understanding of security concepts, including
authentication, authorization, auditing (AAA), in-depth knowledge of Java (including Java
Management eXtensions (JMX), and working knowledge of WebLogic Server and security
provider functionality.

Security developers use the Security Service Provider Interfaces (SSPIs) to develop custom
security providers for use with WebLogic Server, however, this document does not address
this task. For information on how to use the SSPIs to develop custom security providers,
see Developing Security Providers for WebLogic Server.

Server Administrators

Administrators who work closely with Application Architects to design a security scheme
for the server and the applications running on the server, to identify potential security risks,
and to propose configurations that prevent security problems. Related responsibilities may
include maintaining critical production systems, configuring and managing security realms,
implementing authentication and authorization schemes for server and application
resources, upgrading security features, and maintaining security provider databases. Server
Administrators have in-depth knowledge of the Java security architecture, including Web
application and EJB security, Public Key security, and SSL.

Application Administrators

Administrators who work with Server Administrators to implement and maintain security
configurations and authentication and authorization schemes, and to set up and maintain
access to deployed application resources in defined security realms. Application
Administrators have general knowledge of security concepts and the Java Security
architecture. They understand Java, XML, deployment descriptors, and can identify
security events in server and audit logs.

While administrators typically use the Administration Console to deploy, configure, and
manage applications when they put the applications into production, application developers
may also use the Administration Console to test their applications before they are put into
production. At a minimum, testing requires that applications be deployed and configured.

Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/dvspisec/index.html

What Is Security?

This document does not cover some aspects of administration as it relates to security,
rather, it references Managing WebLogic Security, Securing WebLogic Resources, and
Administration Console Online Help for descriptions of how to use the Administration
Console to perform security tasks.

This document does not provide instructions on how to configure WebLogic Security
providers and Custom security providers. For information on configuring WebLogic
security providers and Custom security providers, see Managing WebLogic Security.

Note: This document is not intended for developers who want to write Custom security
providers for use with WebLogic Server. It does not describe how to write Custom
security providers. For information on developing Custom security providers, see
Developing Security Providers for WebLogic Server.

What Is Security?

Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised. Most security measures involve proof material and data
encryption. Proof material is typically a secret word or phrase that gives a user access to a
particular application or system. Data encryption is the translation of data into a form that cannot
be interpreted without holding or supplying the same secret.

Distributed applications, such as those used for electronic commerce (e-commerce), offer many
access points at which malicious people can intercept data, disrupt operations, or generate
fraudulent input. As a business becomes more distributed the probability of security breaches
increases. Accordingly, as a business distributes its applications, it becomes increasingly
important for the distributed computing software upon which such applications are built to
provide security.

An application server resides in the sensitive layer between end users and your valuable data and
resources. WebLogic Server provides authentication, authorization, and encryption services with
which you can guard these resources. These services cannot provide protection, however, from
an intruder who gains access by discovering and exploiting a weakness in your deployment
environment.

Therefore, whether you deploy WebLogic Server on the Internet or on an intranet, it is a good
idea to hire an independent security expert to go over your security plan and procedures, audit
your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues and appropriate
security measures. The document Securing a Production Environment highlights essential
security measures for you to consider before you deploy WebLogic Server into a production

Programming WebLogic Security 1-3

http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/secwlres/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/lockdown/index.html

Introduction to Programing WebLogic Security

environment. The document Securing WebLogic Resources introduces the various types of
WebLogic resources, and provides information that allows you to secure these resources using
WebLogic Server. For the latest information about securing Web servers, BEA also recommends
reading the Security Improvement Modules, Security Practices, and Technical Implementations
information available from the CERT™ Coordination Center operated by Carnegie Mellon
University.

BEA suggests that you apply the remedies recommended in our security advisories. In the event
of a problem with a BEA product, BEA distributes an advisory and instructions with the
appropriate course of action. If you are responsible for security related issues at your site, please
register to receive future notifications. BEA has established an e-mail address
(security-report@bea.com) to which you can send reports of any possible security issues in
BEA products. In addition, you are advised to apply every Service Pack as they are released.
Service Packs include a roll up of all bug fixes for each version of the product, as well as each of
the previously released Service Packs.

Product provided by BEA partners can also help you in your effort to secure the WebLogic Server
production environment. For more information, see the BEA Partner’s Page.

Types of Security Supported by WebLogic Server

14

WebLogic Server supports the following security mechanisms:
e “Authentication” on page 1-4
e “Authorization” on page 1-5

e “J2EE Security” on page 1-5

Authentication

Authentication is the mechanism by which callers and service providers prove that they are acting
on behalf of specific users or systems. Authentication answers the question, "Who are you?"
using credentials. When the proof is bidirectional, it is referred to as mutual authentication.

WebLogic Server supports username and password authentication and certificate authentication.
For certificate authentication, WebLogic Server supports both one-way and two-way SSL
authentication. Two-way SSL authentication is a form of mutual authentication.

In WebLogic Server, Authentication providers are used to prove the identity of users or system
processes. Authentication providers also remember, transport, and make identity information
available to various components of a system (via subjects) when needed. You can configure the

Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/secwlres/index.html
http://www.cert.org/
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/partners

Security APIs

Authentication providers using the Web application and EJB deployment descriptor files, or the
Administration Console, or a combination of both.

Authorization

Authorization is the process whereby the interactions between users and WebLogic resources are
controlled, based on user identity or other information. In other words, authorization answers the
question, "What can you access?"

In WebLogic Server, a WebLogic Authorization provider is used to limit the interactions between
users and WebLogic resources to ensure integrity, confidentiality, and availability. You can
configure the Authorization provider using the Web application and EJB deployment descriptor
files, or the Administration Console, or a combination of both.

WebLogic Server also supports the use of programmatic authorization (also referred to in this
document as programmatic security) to limit the interactions between users and WebLogic
resources.

J2EE Security

For implementation and use of user authentication and authorization, BEA WebLogic Server
utilizes the security services of the SDK version 1.4.1 for the Java 2 Platform, Enterprise Edition
(J2EE). Like the other J2EE components, the security services are based on standardized,
modular components. BEA WebLogic Server implements these Java security service methods
according to the standard, and adds extensions that handle many details of application behavior
automatically, without requiring additional programming.

Security APIs

This section lists the Security packages and classes that are implemented and supported by
WebLogic Server. You use these packages to secure interactions between WebLogic Server and
client applications, Enterprise JavaBeans (EJBs), and Web applications.

Note: Several of the WebLogic security packages, classes, and methods are deprecated in this
release of WebLogic Server. For more detailed information on deprecated packages and
classes, see Appendix A, “Deprecated Security APIs.”

The following topics are covered in this section:
e “JAAS Client Application APIs” on page 1-6

e “SSL Client Application APIs” on page 1-6

Programming WebLogic Security 1-5

Introduction to Programing WebLogic Security

1-6

e “Other APIs” on page 1-7

JAAS Client Application APIs

You use Java APIs and WebLogic APIs to write client applications that use JAAS authentication.

The following topics are covered in this section:
e “Java JAAS Client Application APIs” on page 1-6

e “WebLogic JAAS Client Application APIs” on page 1-6

Java JAAS Client Application APIs
You use the following Java APIs to write JAAS client applications.
® javax.naming
® javax.security.auth
® javax.security.auth.Callback
® javax.security.auth.login
® javax.security.auth.SPI

For information on how to use these APIs, see “JAAS Authentication APIs” on page 3-3.

WebLogic JAAS Client Application APIs
You use the following WebLogic APIs to write JAAS client applications.

® weblogic.security
® weblogic.security.auth
® weblogic.security.auth.callback

For information on how to use these APIs, see “JAAS Authentication APIs” on page 3-3.

SSL Client Application APIs

You use Java and WebLogic APIs to write client applications that use SSL authentication.

The following topics are covered in this section:
e “Java SSL Client Application APIs” on page 1-7
e “WebLogic SSL Client Application APIs” on page 1-7

Programming WebLogic Security

http://java.sun.com/j2se/1.3/docs/api/index.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Security APIs

Java SSL Client Application APIs

You use the following Java APIs to write SSL client applications.
® java.security
® java.security.cert
® javax.crypto
® javax.naming
® javax.net
® javax.security
® javax.servlet
® javax.servlet.http

WebLogic Server also supports the javax.net.SSL API, but BEA recommends that you use the
weblogic.security.SSL package when you use SSL with WebLogic Server.

For information on how to use these APIs, see “SSL Authentication APIs” on page 4-4.

WebLogic SSL Client Application APIs

You use the following WebLogic APIs to write SSL client applications.
® weblogic.net.http
® weblogic.security.SSL

For information on how to use these APIs, see “SSL Authentication APIs” on page 4-4.

Other APIs

Additionally, you use the following APIs to develop WebLogic Server applications:
® weblogic.security.net

This API provides interfaces and classes that are used to implement network connection
filters. Network connection filters allow or deny connections to WebLogic Server based on
attributes such as the IP address, domain, or protocol of the initiator of the network
connection. For more information about how to use this API, see “Using Network
Connection Filters” on page 6-1.

® weblogic.security.service

This API includes interfaces, classes, and exceptions that support security providers. The
WebLogic Security Framework consists of interfaces, classes, and exceptions provided by

Programming WebLogic Security 1-1

http://java.sun.com/j2se/1.3/docs/api/index.html
http://java.sun.com/j2se/1.3/docs/api/index.html
http://java.sun.com/j2se/1.4/docs/api/index.html
http://java.sun.com/j2se/1.4/docs/api/index.html
http://java.sun.com/j2se/1.4/docs/api/index.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html
http://java.sun.com/j2se/1.4/docs/api/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Introduction to Programing WebLogic Security

this API. The interfaces, classes, and exceptions in this API should be used in conjunction
with those in the weblogic.security.spi package. For more information about how to
use this API, see Developing Security Providers for WebLogic Server.

weblogic.security.services

This API provides the server-side authentication class. This class is used to perform a local
login to the server. It provides login methods that are used with CallbackHandlers to
authenticate the user and return credentials using the default security realm.

weblogic.security.spi

This package provides the Security Service Provider Interfaces (SSPIs). It provides
interfaces, classes, and exceptions that are used for developing custom security providers.
In many cases, these interfaces, classes, and exceptions should be used in conjunction with
those in the weblogic.security.service APIL. You implement interfaces, classes, and
exceptions from this package to create runtime classes for security providers. For more
information about how to use the SSPIs, see Developing Security Providers for WebLogic
Server.

weblogic.servlet.security

This API provides a server-side API that supports programmatic authentication from within
a servlet application. For more about how to use this API, see, “Using the Programmatic
Authentication API” on page 2-41.

Administration Console and Security

With regard to security, you can use the Administration Console to define and edit deployment
descriptors for Web Applications, EJBs, J2EE Connectors, and Enterprise Applications. This
document, Programming WebLogic Security, does not describe how to use the Administration
Console to configure security. For information on how to use the Administration Console to
define and edit deployment descriptors, see Securing WebLogic Resources and Managing
WebLogic Security.

Security Tasks and Code Examples

1-8

The security tasks and code examples provided in this document assume that you are using the
WebLogic security providers that are included in the WebLogic Server distribution, not custom
security providers. The usage of the WebLogic security APIs does not change if you elect to use
custom security providers, however, the management procedures of your custom security
providers may be different.

Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/secwlres/index.html
http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/secmanage/index.html

Security Tasks and Code Examples

Note: This document does not provide comprehensive instructions on how to configure
WebLogic Security providers or custom security providers. For information on

configuring WebLogic security providers and custom security providers, see Managing
WebLogic Security.

Programming WebLogic Security 1-9

http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/secmanage/index.html

Introduction to Programing WebLogic Security

1-10 Programming WebLogic Security

Securing Web Applications

WebLogic Server supports the J2EE architecture security model for securing Web applications,
which includes support for declarative authorization (also referred to in this document as
declarative security) and programmatic authorization (also referred to in this document as
programmatic security).

This section covers the following topics:

“J2EE Security Model” on page 2-2

“Authentication With Web Browsers” on page 2-4

“Multiple Web Applications, Cookies, and Authentication” on page 2-8
“Developing Secure Web Applications” on page 2-10

“Using Declarative Security With Web Applications” on page 2-26

“Web Application Security-Related Deployment Descriptors” on page 2-27
“Using Programmatic Security With Web Applications” on page 2-39

“Using the Programmatic Authentication API” on page 2-41

Note: You can use deployment descriptor files and the Administration Console to secure Web

applications. This document describes how to use deployment descriptor files. For
information on using the Administration Console to secure Web applications, see
Securing WebLogic Resources.

Programming WebLogic Security 2-1

http://e-docs.bea.com/wls/docs81/secwlres/index.html

Securing Web Applications

J2EE Security Model

2-2

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., states in Section 9.3 Authorization:

“In the J2EE architecture, a container serves as an authorization boundary between the
components it hosts and their callers. The authorization boundary exists inside the
container's authentication boundary so that authorization is considered in the context of
successful authentication. For inbound calls, the container compares security attributes
from the caller's credential with the access control rules for the target component. If the
rules are satisfied, the call is allowed. Otherwise, the call is rejected.”

“There are two fundamental approaches to defining access control rules: capabilities and
permissions. Capabilities focus on what a caller can do. Permissions focus on who can do
something. The J2EE application programming model focuses on permissions. In the J2EE
architecture, the job of the deployer is to map the permission model of the application to
the capabilities of users in the operational environment.”

The same document then discusses two ways to control access to application resources using the
J2EE architecture, declarative authorization and programmatic authorization.

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., in available online at
http://java.sun.com/blueprints/guidelines/designing enterprise application

s _2e/security/security4.html.

Declarative Authorization

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., states in Section 9.3.1 Authorization:

“The deployer establishes the container-enforced access control rules associated with a
J2EE application. The deployer uses a deployment tool to map an application permission
model, which is typically supplied by the application assembler, to policy and mechanisms
specific to the operational environment. The application permission model is defined in a
deployment descriptor.”

WebLogic Server supports the use of deployment descriptors to implement declarative
authorization in Web applications.

Note: Declarative authorization is also referred to in this document as declarative security.

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., in available online at

Programming WebLogic Security

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/security/security4.html
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/security/security4.html

J2EE Security Model

http://java.sun.com/blueprints/guidelines/designing enterprise application
s 2e/security/security4.html.

Programmatic Authorization

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., states in Section 9.3.2 Programmatic Authorization:

“A J2EE container makes access control decisions before dispatching method calls to a
component. The logic or state of the component doesn't factor in these access decisions.
However, a component can use two methods, EJBContext .isCallerInRole (for use by
enterprise bean code) and HttpServletRequest . isUserInRole (for use by Web
components), to perform finer-grained access control. A component uses these methods to
determine whether a caller has been granted a privilege selected by the component based
on the parameters of the call, the internal state of the component, or other factors such as
the time of the call.”

“The application component provider of a component that calls one of these functions must
declare the complete set of distinct roleName values to be used in all calls. These
declarations appear in the deployment descriptor as security-role-ref elements. Each
security-role-ref element links a privilege name embedded in the application as a
roleName to a security role. Ultimately, the deployer establishes the link between the
privilege names embedded in the application and the security roles defined in the
deployment descriptor. The link between privilege names and security roles may differ for
components in the same application.”

“In addition to testing for specific privileges, an application component can compare the
identity of its caller, acquired using EJBContext.getCallerPrincipal or
HttpServletRequest.getUserPrincipal, to the distinguished caller identities
embedded in the state of the component when it was created. If the identity of the caller is
equivalent to a distinguished caller, the component can allow the caller to proceed. If not,
the component can prevent the caller from further interaction. The caller principal returned
by a container depends on the authentication mechanism used by the caller. Also,
containers from different vendors may return different principals for the same user
authenticating by the same mechanism. To account for variability in principal forms, an
application developer who chooses to apply distinguished caller state in component access
decisions should allow multiple distinguished caller identities, representing the same user,
to be associated with components. This is recommended especially where application
flexibility or portability is a priority.”

WebLogic Server supports the use of the HttpServletRequest.isUserInRole and
HttpServletRequest.getUserPrincipal methods and the use of the security-role-ref

Programming WebLogic Security 2-3

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/security/security4.html
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/security/security4.html

Securing Web Applications

element in deployment descriptors to implement programmatic authorization in Web
applications.

Note: Programmatic authorization is also referred to in this document as programmatic
security.

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., in available online at
http://java.sun.com/blueprints/guidelines/designing enterprise application

s _2e/security/security4.html.

Declarative Versus Programmatic Authorization

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., states in Section 9.3.3 Declarative Versus Programmatic
Authorization:

“There is a trade-off between the external access control policy configured by the deployer
and the internal policy embedded in the application by the component provider. The
external policy is more flexible after the application has been written. The internal policy
provides more flexible functionality while the application is being written. In addition, the
external policy is transparent and completely comprehensible to the deployer, while
internal policy is buried in the application and may only be completely understood by the
application developer. These trade-offs should be considered in choosing the authorization
model for particular components and methods.”

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., in available online at
http://java.sun.com/blueprints/guidelines/designing enterprise application

s_2e/security/security4.html.

Authentication With Web Browsers

24

Web browsers can connect to WebLogic Server over either a HyperText Transfer Protocol
(HTTP) port or an HTTP with SSL (HTTPS) port. The benefits of using an HTTPS port versus
an HTTP port is two-fold. With HTTPS connections:

e All communication on the network between the Web browser and the server is encrypted.
None of the communication, including the user name and password, flows in clear text.

e As a minimum authentication requirement, the server is required to present a digital
certificate to the Web browser client to prove its identity.

Programming WebLogic Security

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/security/security4.html
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/security/security4.html
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/security/security4.html
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/security/security4.html

Authentication With Web Browsers

If the server is configured for two-way SSL authentication, both the server and client are required
to present a digital certificate to each other to prove their identity.

User Name and Password Authentication

WebLogic Server performs user name and password authentication when users use a Web
browser to connect to the server via the HTTP port. In this scenario, the browser and an instance
of WebLogic Server interact in the following manner to authenticate a user (see Figure 2-1):

1. A user invokes a WebLogic resource in WebLogic Server by entering the URL for that
resource in a Web browser. The URL contains HTTP and the HTTP listen port, for example,
http://myserver:7001.

2. The Web server in WebLogic Server receives the request.

Note: WebLogic Server provides its own Web server but also supports the use of Apache
Server, Microsoft Internet Information Server, and Netscape Enterprise Server as
Web servers.

3. The Web server checks whether the WebLogic resource is protected by a security policy. If
the WebLogic resource is protected, the Web server uses the established HTTP connection
to request a user name and password from the user.

4. When the user’s Web browser receives the request from the Web server, it prompts the user
for a user name and password.

5. The Web browser sends the request to the Web server again, along with the user name and
password.

6. The Web server forwards the request to the Web server plug-in. WebLogic Server provides
the following plug-ins for Web servers:

— Apache-WebLogic Server plug-in
— Netscape Server Application Programming Interface (NSAPI)
— Internet Information Server Application Programming Interface (ISAPI)

The Web server plug-in performs authentication by sending the request, via the HTTP
protocol, to WebLogic Server, along with the authentication data (user name and password)
received from the user.

7. Upon successful authentication, WebLogic Server proceeds to determine whether the user is
authorized to access the WebLogic resource.

Programming WebLogic Security 2-5

Securing Web Applications

2-6

8. Before invoking a method on the WebLogic resource, the WebLogic Server instance
performs a security authorization check. During this check, the server security extracts the
user’s credentials from the security context, determines the user’s security role, compares
the user’s security role to the security policy for the requested WebLogic resource, and
verifies that the user is authorized to invoke the method on the WebLogic resource.

9. If authorization succeeds, the server fulfills the request.

Figure 2-1 Secure Login for Web Browsers

WebLogic Server

Security Realm

A
/

Web

Browser » Web Server Users, Groups,
-

Security Roles,
and Security
A Policies

A J

Y

Web Server WebLogic
Plug-in (Apache, |« > Eﬁr\;:aet < Resources
NSAPI, or ISAPI) 9

Note: Username/Password authentication can be required for HTTP and one-way SSL authentication.
HTTPS connections can be configured for one-way or two-way SSL authentication.

Digital Certificate Authentication

WebLogic Server uses encryption and digital certificate authentication when Web browser users
connect to the server via the HTTPS port. In this scenario, the browser and WebLogic Server
instance interact in the following manner to authenticate and authorize a user (see Figure 2-1):

1. A user invokes a WebLogic resource in WebLogic Server by entering the URL for that
resource in a Web browser. The URL contains the SSL listen port and the HTTPS schema, for
example, https://myserver:7002.

2. The Web server in WebLogic Server receives the request.

Note: WebLogic Server provides its own Web server but also supports the use of Apache
Server, Microsoft Internet Information Server, and Netscape Enterprise Server as
Web servers.

Programming WebLogic Security

10.

Authentication With Web Browsers

The Web server checks whether the WebLogic resource is protected by a security policy. If
the WebLogic resource is protected, the Web server uses the established HTTPS connection
to request a user name and password from the user.

When the user’s Web browser receives the request from WebLogic Server, it prompts the
user for a user name and password. (This step is optional.)

The Web browser sends the request again, along with the user name and password. (Only
supplied if requested by the server.)

WebLogic Server presents its digital certificate to the Web browser.

The Web browser checks that the server’s name used in the URL (for example, myserver)
matches the name in the digital certificate and that the digital certificate was issued by a
trusted third party, that is, a trusted CA

If two-way SSL authentication is in force on the server, the server requests a digital
certificate from the client.

Note: Even though WebLogic Server cannot be configured to enforce the full two-way SSL
handshake with Web Server proxy plug-ins, proxy plug-ins can be configured to
provide the client certificate to the server if it is needed. To do this, configure the
proxy plug-in to export the client certificate in the HTTP Header for WebLogic
Server. For instructions on how to configure proxy plug-ins to export the client
certificate to WebLogic Server, see the configuration information for the specific
plug-in in Using Web Server Plug-Ins With WebLogic Server.

The Web server forwards the request to the Web server plug-in. If secure proxy is set (this is
the case if the HTTPS protocol is being used), the Web server plug-in also performs
authentication by sending the request, via the HTTPS protocol, to the WebLogic resource in
WebLogic Server, along with the authentication data (user name and password) received
from the user.

Note: When using two-way SSL authentication, you can also configure the server to do
identity assertion based on the client’s certificate, where, instead of supplying a user
name and password, the server extracts the user name and password from the client’s
certificate.

Upon successful authentication, WebLogic Server proceeds to determine whether the user is
authorized access the WebLogic resource.

Programming WebLogic Security 2-1

http://e-docs.bea.com/wls/docs81/plugins/index.html

Securing Web Applications

11. Before invoking a method on the WebLogic resource, the server performs a security
authorization check. During this check, the server extracts the user’s credentials from the
security context, determines the user’s security role, compares the user’s security role to the
security policy for the requested WebLogic resource, and verifies that the user is authorized
to invoke the method on the WebLogic resource.

12. If authorization succeeds, the server fulfills the request.

For more information, see the following documents:
e Managing WebLogic Security
e Installing and Configuring the Apache HTTP Server Plug-In
e Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

e Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

Multiple Web Applications, Cookies, and Authentication

2-8

By default, WebLogic Server assigns the same cookie name (JSESSIONID) to all Web
applications. When you use any type of authentication, all Web applications that use the same
cookie name use a single sign-on for authentication. Once a user is authenticated, that
authentication is valid for requests to any Web Application that uses the same cookie name. The
user is not prompted again for authentication.

If you want to require separate authentication for a Web application, you can specify a unique
cookie name or cookie path for the Web application. Specify the cookie name using the
CookieName parameter and the cookie path with the CookiePath parameter, defined in the
WebLogic-specific deployment descriptor weblogic.xml <session-descriptor> element.
For more information, see session-descriptor in Assembling and Configuring Web Applications.

If you want to retain the cookie name and still require independent authentication for each Web
application, you can set the cookie path parameter (CookiePath) differently for each Web
application.

As of Service Pack 1, BEA Systems added a new capability to WebLogic Server that allows a
user to securely access HTTPS resources in a session that was initiated using HTTP, without loss
of session data. This feature enables Web site designers to prevent session stealing. For more
information on this feature, see “Using Secure Cookies to Prevent Session Stealing” on page 2-9.

Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/plugins/apache.html
http://e-docs.bea.com/wls/docs81/plugins/isapi.html
http://e-docs.bea.com/wls/docs81/plugins/nsapi.html

Multiple Web Applications, Cookies, and Authentication

Using Secure Cookies to Prevent Session Stealing

A common Web security problem is session stealing. This happens when an attacker manages to
get a copy of your session cookie, generally while the cookie is being transmitted over the
network. This can only happen when the data is being sent in clear-text, that is, it is not encrypted.

As of Service Pack 1, BEA Systems added a new capability to WebLogic Server that allows a
user to securely access HTTPS resources in a session that was initiated using HTTP, without loss
of session data. To enable this new feature, add AuthCookieEnabled="true" to the WebServer
element in config.xml:

<WebServer Name="myserver" AuthCookieEnabled="true"/>

Setting AuthCookieEnabled to true, which is the default setting, causes the WebLogic Server
instance to send a new secure cookie, _wl_authcookie_, to the browser when authenticating
via an HTTPS connection. Once the secure cookie is set, the session is allowed to access other
security-constrained HTTPS resources only if the cookie is sent from the browser.

Note: Prior to Service Pack 5, this feature requires that a browser uses cookies. If a browser
does not support cookies and this feature is enabled, a user will not be able to log in over
HTTPS. However, if Service Pack 5 is installed, this feature will work even when cookies
are disabled; WebLogic Server will use URL rewriting over secure connections to
rewrite secure URLSs in order to encode the authCookielD in the URL along with the
JSESSIONID.

Thus, WebLogic Server now uses two cookies: the JSESSTONID cookie and the
_wl_authcookie_ cookie. By default, the JSESSTIONID cookie is never secure, but the
_wl_authcookie_ cookie is always secure. A secure cookie is only sent when an encrypted
communication channel is in use. Assuming a standard HTTPS login (HTTPS is an encrypted
HTTP connection), your browser gets both cookies. For subsequent HTTP access, you are
considered authenticated if you have a valid SEsSTONID cookie, but for HTTPS access, you
must have both cookies to be considered authenticated. If you only have the JSESSTIONID cookie,
you must re-authenticate.

With this feature enabled, once you have logged in over HTTPS, the secure cookie is only sent
encrypted over the network and therefore can never be stolen in transit. The JSESSTIONID cookie
is still subject to in-transit hijacking. Therefore, a Web site designer can ensure that session
stealing is not a problem by making all sensitive data require HTTPS. While the HTTP session
cookie is still vulnerable to being stolen and used, all sensitive operations require the
_wl_authcookie_ cookie, which cannot be stolen, so those operations are protected.

Programming WebLogic Security 2-9

Securing Web Applications

Developing Secure Web Applications

WebLogic Server supports three types of authentication for Web browsers:

e BASIC

e FORM

CLIENT-CERT

The following sections cover the different ways to use these types of authentication:

“Developing BASIC Authentication Web Applications” on page 2-10
“Developing FORM Authentication Web Applications” on page 2-16
“Using Identity Assertion for Web Application Authentication” on page 2-23
“Using Two-Way SSL for Web Application Authentication” on page 2-24
“Developing Swing-Based Authentication Web Applications” on page 2-24

“Deploying Web Applications” on page 2-25

Developing BASIC Authentication Web Applications

With basic authentication, the Web browser pops up a login screen in response to a WebLogic
resource request. The login screen prompts the user for a user name and password. Figure 2-2

shows a typical login screen.

Figure 2-2 Basic Authentication Login Screen

Uzername and Pazzword RBequired

E nter uzername for default at powiz: 7007

Uzer Mame: I

FPazsword: I

ak I Cancel

To develop a Web application that provides basic authentication, perform these steps:

2-10

Programming WebLogic Security

Developing Secure Web Applications

1. Create the web.xml deployment descriptor. In this file you include the following information
(see Listing 2-1):

a. Define the welcome file. The welcome file name is welcome. jsp.

b. Define a security constraint for each set of Web application resources, that is, URL

resources, that you plan to protect. Each set of resources share a common URL. URL
resources such as HTML pages, JSPs, and servlets are the most commonly protected, but
other types of URL resources are supported. In Listing 2-1, the URL pattern points to the
welcome. jsp file located in the Web application’s top-level directory, the HTTP methods
that are allowed to access the URL resource, POST and GET, and the security role name,
webuser.

Note: When specifying security role names, observe the following conventions and

C.

restrictions:

e The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.0rg/TR/REC-xml#NT-Nmtoken.

e Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, <> #,|, &, ~, ?, (), { }.

e Security role names are case sensitive.

e The BEA suggested convention for security role names is that they be singular.

Use the <login-config> to define the type of authentication you want to use and the
security realm to which the security constraints will be applied. In Listing 2-1, the BASIC
type is specified and the realm is the default realm, which means that the security
constraints will apply to the active security realm when the WebLogic Server instance
boots.

Note: In this release of WebLogic Server, the realm name is defined using the

<login-config> tag and the <realm-name> sub-tag is ignored.

d. Define one or more security roles and map them to your security constraints. In our

sample, only one security role, webuser, is defined in the security constraint so only one
security role name is defined here (see the <security-role> tag in Listing 2-1).
However, any number of security roles can be defined.

Programming WebLogic Security 2-11

http://www.w3.org/TR/REC-xml#NT-Nmtoken

Securing Web Applications

Listing 2-1 Basic Authentication web.xml File

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DID Web Application
2.3//EN" "http://java.sun.com/dtd/web-app 2 3.dtd">
<web-app>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>

</welcome-file-list>

<security-constraint>
<web-resource-collection>
<web-resource-name>Success</web-resource-name>
<url-pattern>/welcome.jsp</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>webuser</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>default</realm-name>

</login-config>

<security-role>
<role-name>webuser</role-name>
</security-role>

</web-app>

2. Create the weblogic.xml deployment descriptor. In this file you map security role names
to users and groups. Listing 2-2 shows a sample weblogic.xml file that maps the webuser
security role defined in the <security-role> tag in the web.xm1l file to a group named
myGroup. Note that principals can be users or groups, so the <principal-tag> can be
used for either.With this configuration, WebLogic Server will only allow users in myGroup

2-12 Programming WebLogic Security

Developing Secure Web Applications

to access the protected URL resource—welcome. jsp. However, you can use the
Administration Console to modify the Web application’s security role so that other groups
can be allowed to access the protected resource.

Note: Creating the weblogic.xml deployment descriptor is optional. If you do not include
this file, or include the file but do not include mappings for all security roles, all
security roles without mappings will default to any user or group whose name
matches the role name. For example, if you name a security role “SampleTester,”
then any user or group with the name “SampleTester” will be included in that security
role.

Listing 2-2 BASIC Authentication weblogic.xml File

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web
Application 8.1//EN" "http://www.bea.com/servers/wls810/dtd/weblogic
810-web-jar.dtd">

<weblogic-web-app>

<security-role-assignment>
<role-name>webuser</role-name>
<principal-name>myGroup</principal-name>

</security-role-assignment>

</weblogic-web-app>

3. Create a file that produces the Welcome screen that displays when the user enters a user
name and password and is granted access. Listing 2-3 shows a sample welcome. jsp file.
Figure 2-3 shows the Welcome screen.

Listing 2-3 BASIC Authentication welcome.jsp File

<html>
<head>
<title>Browser Based Authentication Example Welcome Page</title>
</head>

<hl> Browser Based Authentication Example Welcome Page </hl>

<p> Welcome <%= request.getRemoteUser () %>!

Programming WebLogic Security 2-13

Securing Web Applications

</blockgquote>

</body>
</html>

Note:

In Listing 2-3, notice that the JSP is calling an API (request .getRemoteUser ())to get

the name of the user that logged in. A different API,

weblogic.security.Security.getCurrentSubject (), could be used instead. To
use this API to get the name of the user, use it with the Subjectutils API as follows:

String username = weblogic.security.SubjectUtils.getUsername (
weblogic.security.Security.getCurrentSubject()) ;

Figure 2-3 Welcome screen

4. Start WebLogic Server and define the users and groups that will have access to the URL
resource. In the weblogic.xml file (see Listing 2-2), the <principal-name> tag defines
myGroup as the group that has access to the welcome. jsp. Therefore, use the
Administration Console to define the myGroup group, define a user, and add that user to the
myGroup group. For information on adding users and groups, see Users and Groups in

a Browser Based Authentication Example Welcome Page - Mic_.. [lj[=] E3

J File Edit “iew Favortes | Tool: Help |

]@,#,@ »

Back Fanward Stop Fefrezh

J A ddress I@ hitp: #/localhost: 7007 AbasicauthAwelcame. jsp j @ Go “ Links *

| 7 2|} | Search |- | B Sonyal0 Offers -~ >

s

Browser Based Authentication
Example Welcome Page

Weloome Leel LI

|@ Daone l_l_ 25 Local intranet &

Securing WebLogic Resources.

5. Deploy the Web application and use the user defined in the previous step to access the

protected URL resource.

a. For deployment instructions, see “Deploying Web Applications” on page 2-25.

2-14 Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/secwlres/usrs_grps.html

Developing Secure Web Applications

b. Open a Web browser and enter this URL:
http://localhost:7001/basicauth/welcome. jsp

c. Enter the user name and password. The Welcome screen displays.

Using HttpSessionListener to Account for Browser Caching of Credentials

The browser caches user credentials and frequently resends them to the server automatically. This
can give the appearance that WebLogic Server sessions are not being destroyed after logout or
timeout. Depending on the browser, the credentials can be cached just for the current browser
session, or across browser sessions.

You can validate that a WebLogic Server's session was destroyed by creating a class that
implements the javax.servlet.http.HttpSessionListener interface. Implementations of
this interface are notified of changes to the list of active sessions in a web application. To receive
notification events, the implementation class must be configured in the deployment descriptor for
the web application in web . xm1.

To configure a session listener class:
1. Open the web.xml deployment descriptor of the Web application for which you are creating

a session listener class in a text editor. The web . xm1 file is located in the WEB-INF directory
of your Web application.

2. Add an event declaration using the listener element of the web.xml deployment descriptor.
The event declaration defines the event listener class that is invoked when the event occurs.
For example:

<listener>
<listener-class>myApp.MySessionListener</listener-class>
</listener>

See Configuring an Event Listener Class for additional information and guidelines.

Write and deploy the session listener class. The example shown in Listing 2-4 uses a simple
counter to track the session count.

Listing 2-4 Tracking the Session Count

package myApp;

import javax.servlet.http.HttpSessionListener;

import javax.servlet.http.HttpSessionEvent;

Programming WebLogic Security 2-15

http://e-docs.bea.com/wls/docs81/webapp/app_events.html

Securing Web Applications

public class MySessionListener implements HttpSessionListener {

private static int sessionCount = 0;

public void sessionCreated(HttpSessionEvent se) {
sessionCount++;

// Write to a log or do some other processing.

}

public void sessionDestroyed (HttpSessionEvent se) {
if (sessionCount > 0)
sessionCount--;

//Write to a log or do some other processing.

Developing FORM Authentication Web Applications

When using FORM authentication with Web applications, you provide a custom login screen that
the Web browser displays in response to a Web application resource request and an error screen
that displays if the login fails. The login screen can be generated using an HTML page, JSP, or
servlet. The benefit of form-based login is that you have complete control over these screens so
that you can design them to meet the requirements of your application or enterprise
policy/guideline.

The login screen prompts the user for a user name and password. Figure 2-4 shows a typical login
screen generated using a JSP and Listing 2-5 shows the source code.

2-16 Programming WebLogic Security

Developing Secure Web Applications

Figure 2-4 Form-Based Login Screen (login.jsp)

J%InstantMessage wiebhd ail R adio People Yellow Pages Download

wf " Bookmarks J‘ Location: I.f.flucalhust:?DD1 Azecuritylogin.jsp j ﬁl' What's B elated

Please enter your o
username and password:
Tsername: I
Password: I
Submit |
@|=‘|D'=| |D|:u:ument: Crans

Listing 2-5 Form-Based Login Screen Source Code (login.jsp)

<html>
<head>)
<title>Security WebApp login page</title>
</head>
<body bgcolor="#cccccc">
<blockquote>

<h2>Please enter your user name and password:</h2>
<p>
<form method="POST" action="j_security_ check">
<table border=1>
<tr>
<td>Username:</td>
<td><input type="text" name="j_username"></td>
</tr>
<tr>
<td>Password:</td>

<td><input type="password" name="j_password"></td>

Programming WebLogic Security

2-11

Securing Web Applications

</tr>
<tr>
<td colspan=2 align=right><input type=submit
value="Submit"></td>
</tr>
</table>
</form>
</blockgquote>
</body>
</html>

Figure 2-5 shows a typical login error screen generated using HTML and Listing 2-6 shows the
source code.

Figure 2-5 Login Error Screen

4 ¢ A 4 2 W <5 &N

Back Forward Reload Home Seach Metzoape Frint SecLrity

J%InstantMessage wiebhd ail R adio People Yellow Pages Downloa

wf " Bookmarks J‘ Location: It:?"EIEH Azecurnity/_security_check, j @T Wwhat's B elated

Sorry, your username and m‘
password were not

recognized.

=

Return to welcome page or logout

[[=B=] [Document: Done

Listing 2-6 Login Error Screen Source Code

<html>
<head>

<title>Login failed</title>

2-18 Programming WebLogic Security

Developing Secure Web Applications

</head>
<body bgcolor=#ffffff>
<blockguote>

<h2>Sorry, your user name and password were not recognized.</h2>
<p>
Return to welcome page or
logout

</blockguote>
</body>
</html>

To develop a Web application that provides FORM authentication, perform these steps:

1. Create the web.xml deployment descriptor. In this file you include the following information
(see Listing 2-7):

a. Define the welcome file. The welcome file name is welcome. jsp.

b. Define a security constraint for each set of URL resources that you plan to protect. Each
set of URL resources share a common URL. URL resources such as HTML pages, JSPs,
and servlets are the most commonly protected, but other types of URL resources are
supported. In Listing 2-7, the URL pattern points to /admin/edit.jsp, thus protecting
the edit. jsp file located in the Web application’s admin sub-directory, defines the HTTP
method that is allowed to access the URL resource, GET, and defines the security role
name, admin.

Note: Do not use hyphens in security role names. Security role names with hyphens cannot
be modified in the Administration Console. Also, the BEA suggested convention for
security role names is that they be singular.

c. Define the type of authentication you want to use and the security realm to which the
security constraints will be applied. In this case, the FORM type is specified and no realm
is specified, so the realm is the default realm, which means that the security constraints
will apply to the security realm that is activated when a WebLogic Server instance boots.

d. Define one or more security roles and map them to your security constraints. In our
sample, only one security role, admin, is defined in the security constraint so only one
security role name is defined here. However, any number of security roles can be defined.

Programming WebLogic Security 2-19

Securing Web Applications

Listing 2-7 FORM Authentication web.xml File

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>

</welcome-file-list>

<security-constraint>
<web-resource-collection>
<web-resource-name>AdminPages</web-resource-name>
<description>
These pages are only accessible by authorized
administrators.
</description>
<url-pattern>/admin/edit.jsp</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>
<auth-constraint>
<description>
These are the roles who have access.
</description>
<role-name>
admin
</role-name>
</auth-constraint>
<user-data-constraint>
<description>
This is how the user data must be transmitted.
</description>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>

<login-config>
<auth-method>FORM</auth-method>

<form-login-config>

2-20 Programming WebLogic Security

Developing Secure Web Applications

<form-login-page>/login. jsp</form-login-page>
<form-error-page>/fail_login.html</form-error-page>
</form-login-config>

</login-config>

<security-role>
<description>
An administrator
</description>
<role-name>
admin
</role-name>
</security-role>

</web-app>

2. Create the weblogic.xml deployment descriptor. In this file you map security role names
to users and groups. Listing 2-8 shows a sample weblogic.xml file that maps the admin
security role defined in the <security-role> tag in the web.xm1 file to the group
supportGroup. With this configuration, WebLogic Server will only allow users in the
supportGroup group to access the protected WebLogic resource. However, you can use
the Administration Console to modify the Web application’s security role so that other
groups can be allowed to access the protected WebLogic resource.

Listing 2-8 FORM Authentication weblogic.xml File

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web
Application 7.0//EN"
"http://www.bea.com/servers/wls700/dtd/weblogic700-web-jar.dtd">

<weblogic-web-app>

<security-role-assignment>
<role-name>admin</role-name>
<principal-name>supportGroup</principal-name>

</security-role-assignment>

</weblogic-web-app>

Programming WebLogic Security 2-21

Securing Web Applications

3. Create a Web application file that produces the welcome screen when the user requests the
protected Web application resource by entering the URL. Listing 2-9 shows a sample
welcome. jsp file. Figure 2-3 shows the Welcome screen.

Listing 2-9 Form Authentication welcome.jsp File

<html>
<head>
<title>Security login example</title>
</head>

<%

String bgcolor;
if ((bgcolor=(String)application.getAttribute ("Background")) ==
null)

bgcolor="#ccccce";

%>
<body bgcolor=<%="\""+bgcolor+"\""%>>

<blockquote>

<hl> Security Login Example </hl>

Q

<p> Welcome <%= request.getRemoteUser () %>!

<p> If you are an administrator, you can configure the background
color of the Web Application.

 Configure background.

<% if (request.getRemoteUser () != null) { %>
<p> Click here to logout.

<% } %>

</blockguote>
</body>
</html>

2-22 Programming WebLogic Security

Developing Secure Web Applications

Note: In Listing 2-3, notice that the JSP is calling an API (request . getRemoteUser ()) to get
the name of the user that logged in. A different API,
weblogic.security.Security.getCurrentSubject (), could be used instead. To
use this API to get the name of the user, use it with the Subjectutils API as follows:

String username = weblogic.security.SubjectUtils.getUsername (
weblogic.security.Security.getCurrentSubject()) ;

4. Start WebLogic Server and define the users and groups that will have access to the URL
resource. In the weblogic.xml file (see Listing 2-8), the <role-name> tag defines admin
as the group that has access to the edit . jsp, file and defines the user joe as a member of
that group. Therefore, use the Administration Console to define the admin group, and
define user joe and add joe to the admin group. You can also define other users and add
them to the group and they will also have access to the protected WebLogic resource. For
information on adding users and groups, see Users and Groups in Securing WebLogic
Resources.

5. Deploy the Web application and use the user(s) defined in the previous step to access the
protected Web application resource.

a. For deployment instructions, see “Deploying Web Applications” on page 2-25.
b. Open a Web browser and enter this URL:
http://hostname:7001/security/welcome. jsp

c. Enter the user name and password. The Welcome screen displays.

Using ldentity Assertion for Web Application Authentication

You use identity assertion in Web applications to verify client identities for authentication
purposes. When using identity assertion, the following requirements must be met:

1. The authentication type must be set to CLIENT-CERT.

2. An Identity Assertion provider must be configured in the server. If the Web browser or Java
client requests a WebLogic Server resource protected by a security policy, WebLogic Server
requires that the Web browser or Java client have an identity. The WebLogic Identity
Assertion provider maps the token from a Web browser or Java client to a user in a
WebLogic Server security realm. For information on how to configure an Identity Assertion
provider, see Configuring a WebLogic Identity Assertion Provider.

Programming WebLogic Security 2-23

http://e-docs.bea.com/wls/docs81/secwlres/usrs_grps.html
http://e-docs.bea.com/wls/docs81/secmanage/providers.html#weblogic_identity_asserter

Securing Web Applications

2-24

3.

The user corresponding to the token’s value must be defined in the server’s security realm;
otherwise the client will not be allowed to access a protected WebLogic resource. For
information on configuring users on the server, see Creating Users in Managing WebLogic
Security.

Using Two-Way SSL for Web Application Authentication

You use two-way SSL in Web applications to verify that clients are whom they claim to be. When
using two-way SSL, the following requirements must be met:

1.
2.

The authentication type must be set to CLIENT-CERT.

The server must be configured for two-way SSL. For information on using SSL and digital
certificates, see “Using SSL Authentication in Java Clients” on page 4-1. For information
on configuring SSL on the server, see Configuring SSL in Managing WebLogic Security.

The client must use HTTPS to access the Web application on the server.

An Identity Assertion provider must be configured in the server. If the Web browser or Java
client requests a WebLogic Server resource protected by a security policy, WebLogic Server
requires that the Web browser or Java client have an identity. The WebLogic Identity
Assertion provider allows you to enable a user name mapper in the server that maps the
digital certificate of a Web browser or Java client to a user in a WebLogic Server security
realm. For information on how to configure an Identity Assertion provider and a user name
mapper, see Configuring a WebLogic Identity Assertion Provider and Configuring a User
Name Mapper in Managing WebLogic Security.

The user corresponding to the Subject's Distinguished Name (SubjectDN) attribute in the
client’s digital certificate must be defined in the server’s security realm; otherwise the client
will not be allowed to access a protected WebLogic resource. For information on
configuring users on the server, see Creating Users in Managing WebLogic Security.

Note: When you use SSL authentication, it is not necessary to use web . xml and weblogic.xml

files to specify server configuration because you use the Administration Console to
specify the server’s SSL configuration. For information on configuring SSL on the
server, see Configuring SSL in Managing WebLogic Security.

Developing Swing-Based Authentication Web Applications

Web browsers can also be used to run graphical user interfaces (GUIs) that were developed using
Swing components. The Swing components, which are part of the Java Foundation Classes (JFC),
can be used with either JDK 1.1 or the Java 2 platform.

Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/secwlres/usrs_grps.html#1178696
http://e-docs.bea.com/wls/docs81/secmanage/providers.html#weblogic_identity_asserter
http://e-docs.bea.com/wls/docs81/secmanage/providers.html#user_name_mapper
http://e-docs.bea.com/wls/docs81/secmanage/providers.html#user_name_mapper
http://e-docs.bea.com/wls/docs81/secwlres/usrs_grps.html#1178696

Developing Secure Web Applications

For information on how to create a graphical user interface (GUI) for applications and applets
using the Swing components, see the Creating a GUI with JFC/Swing tutorial (also known as The
Swing Tutorial) produced by Sun Microsystems, Inc. You can access this tutorial on the Web at
http://java.sun.com/docs/books/tutorial/uiswing/.

After you have developed your Swing-based GUI, refer to “Developing FORM Authentication
Web Applications” on page 2-16 and use the Swing-based screens to perform the steps required
to develop a Web application that provides FORM authentication.

Note: When developing a Swing-based GUI, do not rely on the Java Virtual Machine-wide user
for child threads of the swing event thread. This is not J2EE compliant and does not work
in thin clients, or in IIOP in general. Instead, take either of the following approaches:

e Make sure an InitialContext is created before any Swing artefacts.

e Or, use the Java Authentication and Authorization Service (JAAS) to login and
then use the Security.runAs () method inside the Swing event thread and its
children.

Deploying Web Applications
To deploy a Web application on a server running in development mode, perform the following

steps:

Note: For more information about deploying Web applications in either development of
production mode, see Deploying Web Applications in Developing Web Applications for
WebLogic Server.

1. Set up a directory structure for the Web application’s files. Figure 2-6 shows the directory
structure for the Web application named basicauth. The top-level directory must be
assigned the name of the Web application and the sub-directory must be named WEB-INF.

Programming WebLogic Security 2-25

http://java.sun.com/docs/books/tutorial/uiswing/
http://e-docs.bea.com/wls/docs81/webapp/deployment.html#deploy-webapp

Securing Web Applications

Figure 2-6 Basicauth Web Application Directory Structure

basicauth
Dir
Welcome.jsp

WEB-INF
Sub_Dir

Web.xml
Weblogic.xml

\

2. To deploy the Web application in exploded directory format, that is, not in the Java archive
(jar) format, simply move your directory to the applications directory on your server. For
example, you would deploy the basicauth Web application in the following location:

WL_HOME\user_projects\domains\mydomain\applications\basicauth

If the WebLogic Server instance is running, the application should auto-deploy. Use the
Administration Console to verify that the application deployed.

If the WebLogic Server instance is not running, the Web application should auto-deploy
when you start the server.

3. Ifyou have not done so already, use the Administration Console to configure the users and
groups that will have access to the Web application. To determine the users and groups that
are allowed access to the protected WebLogic resource, examine the weblogic.xml file.
For example, the weblogic.xml file for the basicauth sample (see Listing 2-2) defines
myGroup as the only group to have access to the welcome. jsp file.

For more information on deploying secure Web applications, see Deploying Web Applications
in Developing Web Applications for WebLogic Server.

Using Declarative Security With Web Applications

To implement declarative security in Web applications, you use deployment descriptors
(web.xml and weblogic.xml) to define security requirements. The deployment descriptors map
the application’s logical security requirements to its runtime definitions. And at runtime, the
servlet container uses the security definitions to enforce the requirements. For a discussion of
using deployment descriptors, see “Developing Secure Web Applications” on page 2-10.

2-26 Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/webapp/deployment.html#deploy-webapp

Web Application Security-Related Deployment Descriptors

For information about how to use deployment descriptors and the externally-defined
element to configure security in Web applications declaratively, see “externally-defined” on
page 2-33.

For information about how to use the Administration Console to configure security in Web
applications, see Securing WebLogic Resources.

Web Application Security-Related Deployment Descriptors

The following topics describe the deployment descriptor elements that are used in the web . xm1
and weblogic.xnl files to define security requirements in Web applications:

e “Web.xml Deployment Descriptors” on page 2-27

e “Weblogic.xml Deployment Descriptors” on page 2-32

Web.xml Deployment Descriptors

The following web . xm1 security-related deployment descriptor elements are supported by
WebLogic Server:

e “auth-constraint” on page 2-27

e “security-constraint” on page 2-28
e “security-role” on page 2-29

e “security-role-ref” on page 2-30

e “user-data-constraint” on page 2-31

e “web-resource-collection” on page 2-31

The information in this section is based on the Document Type Descriptor (DTD) for web . xm1
provided by Sun Microsystems, Inc. The DTD for web.xm1 is available on the Web at
http://java.sun.com/dtd/web-app 2 3.dtd.

auth-constraint

The optional auth-constraint element defines which groups or principals have access to the
collection of Web resources defined in this security constraint.

Programming WebLogic Security 2-21

http://e-docs.bea.com/wls/docs81/secwlres/index.html
http://java.sun.com/dtd/web-app_2_3.dtd

Securing Web Applications

The following table describes the elements you can define within an auth-constraint element.

Element Required/ Description
Optional
<description> Optional A text description of this security constraint.
<role-name> Optional Defines which security roles can access resources defined in this

security-constraint. Security role names are mapped to principals using
the security-role-ref element. See “security-role-ref” on page 2-30.

Used Within

The auth-constraint element is used within the security-constraint element.

Example

See Listing 2-10 for an example of how to use the auth-constraint element in a web. xm1 file.

security-constraint

The security-constraint element is use in the web.xml file to define the access privileges to
a collection of resources defined by the web-resource-collection element.

The following table describes the elements you can define within a security-constraint

element.
Element Required/ Description
Optional

<web-resource- Required Defines the components of the Web Application to which this security

collection> constraint is applied. For more information, see
“web-resource-collection” on page 2-31.

<auth-constraint> Optional Defines which groups or principals have access to the collection of
web resources defined in this security constraint.For more information,
see “auth-constraint” on page 2-27.

<user-data- Optional Defines defines how data communicated between the client and

constraint>

the server should be protected. For more information, see
“user-data-constraint” on page 2-31.

2-28 Programming WebLogic Security

Web Application Security-Related Deployment Descriptors

Example

Listing 2-10 shows how to use the security-constraint element to defined security for the
SecureOrdersEast in a web.xml file.

Listing 2-10 Security Constraint Example

web.xml entries:
<security-constraint>

<web-resource-collection>
<web-resource-name>SecureOrdersEast</web-resource-name>
<description>

Security constraint for
resources in the orders/east directory

</description>
<url-pattern>/orders/east/*</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>
<description>
constraint for east coast sales
</description>
<role-name>east</role-name>
<role-name>manager</role-name>

</auth-constraint>

<user-data-constraint>

<description>SSL not required</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

security-role

The security-role element contains the definition of a security role. The definition consists of
an optional description of the security role, and the security role name.

Programming WebLogic Security 2-29

Securing Web Applications

The following table describes the elements you can define within a security-role element.

Element Required/ Description
Optional
<description> Optional A text description of this security role.
<role-name> Required The role name. The name you use here must have a corresponding

entry in the WebLogic-specific deployment descriptor,
weblogic.xml, which maps roles to principals in the security
realm. For more information, see “security-role-assignment” on
page 2-38.

Example

See Listing 2-13 for an example of how to use the security-role element in a web . xm1 file.

security-role-ref

The security-role-ref element links a security role name defined by <security-role> to an
alternative role name that is hard-coded in the servlet logic. This extra layer of abstraction allows the servlet
to be configured at deployment without changing servlet code.

The following table describes the elements you can define within a security-role-ref

element.
Element Required/ Description
Optional
<description> Optional Text description of the role.
<role-name> Required Defines the name of the security role or principal that is used in the
servlet code.
<role-link> Required Defines the name of the security role that is defined in a
<security-role> element later in the deployment descriptor.
Example
See Listing 2-16 for an example of how to use the security-role-ref element in a web.xml
file.

2-30 Programming WebLogic Security

Web Application Security-Related Deployment Descriptors

user-data-constraint

The user-data-constraint element defines how data communicated between the client and
the server should be protected.

The following table describes the elements you may define within a user-data-constraint
element.

Element Required/ Description
Optional

<description> Optional A text description.

<transport- Required Specifies data security requirements for communications between the
guarantee> client and the server.

Range of values:
NONE—The application does not require any transport guarantees.

INTEGRAL—The application requires that the data be sent between the
client and server in such a way that it cannot be changed in transit.

CONFIDENTIAL-The application requires that data be transmitted so
as to prevent other entities from observing the contents of the
transmission.

WebLogic Server establishes a Secure Sockets Layer (SSL)
connection when the user is authenticated using the INTEGRAL or
CONFIDENTIAL transport guarantee.

Used Within

The user-data-constraint element is used within the security-constraint element.

Example

See Listing 2-10 for an example of how to use the user-data-constraint element in a
web . xml file.

weh-resource-collection

The web-resource-collection element is used to identify a subset of the resources and HTTP
methods on those resources within a Web application to which a security constraint applies. If no
HTTP methods are specified, then the security constraint applies to all HTTP methods.

Programming WebLogic Security 2-31

Securing Web Applications

The following table describes the elements you can define within a web-resource-collection

element.
Element Required/ Description
Optional
<web-resource-name> Required The name of this web resource collection.
<description> Optional Text description of the Web resource.
<url-pattern> Required The mapping, or location, of the Web resource collection.
<http-method> Optional The HTTP methods to which the security constraint applies when
clients attempt to access the Web resource collection. If no HTTP
methods are specified, then the security constraint applies to
all HTTP methods.
Used Within

2-32

The web-resource-collection element is used within the security-constraint element.

Example

See Listing 2-10 for an example of how to use the web-resource-collection element in a

web . xml file.

Weblogic.xml Deployment Descriptors

The following weblogic.xml security-related deployment descriptor elements are supported by

WebLogic Server:

e “externally-defined” on page 2-33

e “run-as-principal-name” on page 2-35

e “run-as-role-assignment” on page 2-36

e “security-permission” on page 2-37

e ‘“security-permission-spec” on page 2-37

e “security-role-assignment” on page 2-38

Programming WebLogic Security

Web Application Security-Related Deployment Descriptors

For additional information on weblogic.xml deployment descriptions, see the Document Type
Descriptor (DTD) for weblogic.xml at
http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd.

externally-defined

In WebLogic Server 8.1 and later, the externally-defined element is supported for use in the
weblogic.xml deployment descriptors. You use this element, instead of the
<principal-name> tag, to explicitly indicate that you want the security roles defined by the
role-name element in the web . xm1 deployment descriptors to use the mappings that you specify
in the Administration Console.

Note: The externally-defined element replacesthe global-role element that wasused in
WebLogic Server 7.0 SP1. The externally-defined element has the same
functionality as the global-role element. The global-role element was deprecated
in WebLogic Server 8.1.

The externally-defined element gives you the flexibility of not having to specify a specific
security role mapping for each security role defined in the deployment descriptors for a particular
Web application. Rather, you can use the Administration Console to specify and modify a
specific role mapping for each defined role at anytime. Additionally, because you may elect to
use this element on some applications and not others, it is not necessary to select the ignore roles
and polices from DD option for the security realm. You select this option in the On Future
Redeploys: ficld on the General tab of the Security->Realms->myrealm control panel on the
Administration Console. Therefore, within the same security realm, deployment descriptors can
be used to specify and modify security for some applications while the Administration Console
can be used to specify and modify security for others.

Note: When specifying security role names, observe the following conventions and
restrictions:

e The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.0rg/TR/REC-xml#NT-Nmtoken.

e Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, <> #,|, &, ~, ?, (), { }.

e Security role names are case sensitive.

e The BEA suggested convention for security role names is that they be singular.

Programming WebLogic Security 2-33

http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd
http://www.w3.org/TR/REC-xml#NT-Nmtoken

Securing Web Applications

Used Within

The externally-defined element is used within the security-role-assignment element.

Example

Listing 2-11 and Listing 2-12 show by comparison how to use the externally-defined
element in the weblogic.xml file. In Listing 2-12, the specification of the "webuser"
externally-defined element in the weblogic.xml means that for security to be correctly
configured on the getReceipts method, the principals for webuser will have to be created in
the Administration Console.

Listing 2-11 Using the web.xml and weblogic.xml Files to Map Security Roles and Principals to a Security
Realm

web.xml entries:

<web-app>

<security-role>
<role-name>webuser</role-name>

</security-role>

</web-app>
<weblogic.xml entries:
<weblogic-web-app>

<security-role-assignment>
<role-name>webuser</role-name>
<principal-name>myGroup</principal-name>
<principal-name>Bill</principal-name>
<principal-name>Mary</principal-name>

</security-role-assignment>

</weblogic-web-app>

2-34 Programming WebLogic Security

Web Application Security-Related Deployment Descriptors

Listing 2-12 Using the externally-defined tag in Web Application Deployment Descriptors

web.xml entries:

<web-app>

<security-role>
<role-name>webuser</role-name>

</security-role>

</web-app>
<weblogic.xml entries:
<weblogic-web-app>

<security-role-assignment>
<role-name>webuser</role-name>
<externally-defined/>

</security-role-assignment>

For information about how to use the Administration Console to configure security for Web
applications, see Securing WebLogic Resources.

run-as-principal-name

The run-as-principal-name element specifies the name of a principal to used for a security
role defined by a run-as element in the companion web . xm1 file.

Used Within

The run-as-principal-name element is used within a run-as-role-assignment element.

Example

For an example of how to use the run-as-principal-name element, see Listing 2-13.

Programming WebLogic Security 2-35

http://e-docs.bea.com/wls/docs81/secwlres/index.html

Securing Web Applications

run-as-role-assignment

The run-as-role-assignment element maps a given role name, defined by a role-name
element in the companion web . xm1 file, to a valid user name in the system. The value can be
overridden for a given servlet by the run-as-principal-name element in the
servlet-descriptor. If the run-as-role-assignment element is absent for a given role name, the
Web application container chooses the first principal-name defined in the
security-role-assignment element.

The following table describes the elements you can define within a run-as-role-assignment

element.
Element Required Description
Optional

<role-name> Required Specifies the name of a security role name specified in a run-as
element in the companion web . xm1 file.

<run-as-principal-name> Required Specifies a principal for the security role name defined in a run-as
element in the companion web . xm1 file.

Example:

Listing 2-13 shows how to use the run-as-role-assignment element to have the
SnoopServlet always execute as a user joe.

Listing 2-13 run-as-role-assignment Element Example

web.xml:

<servlet>
<servlet-name>SnoopServlet</servlet-name>
<servlet-class>extra.SnoopServlet</servlet-class>
<run-as>
<role-name>runasrole</role-name>
</run-as>
</servlet>
<security-role>
<role-name>runasrole</role-name>
</security-role>

weblogic.xml:

2-36 Programming WebLogic Security

Web Application Security-Related Deployment Descriptors

<weblogic-web-app>
<run-as-role-assignment>
<role-name>runasrole</role-name>
<run-as-principal-name>joe</run-as-principal-name>
</run-as-role-assignment>
</weblogic-web-app>

security-permission

The security-permission element specifies a security permission that is associated with a
J2EE Sandbox.

Example

For an example of how to used the security-permission element, see Listing 2-14.

security-permission-spec

The security-permission-spec element specifies a single security permission based on the
Security policy file syntax. Refer to the following URL for Sun's implementation of the security
permission specification:

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

Note: Disregard the optional codebase and signedBy clauses.

Used Within

The security-permission-spec element is used within the security-permission element.

Example

Listing 2-14 shows how to use the security-permission-spec element to grant permission to the
java.net.SocketPermission class.

Listing 2-14 security-permission-spec Element Example

<weblogic-web-app>
<security-permission>

Programming WebLogic Security 2-31

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

Securing Web Applications

<description>Optional explanation goes here</description>
<security-permission-spec>
<=
A single grant statement following the syntax of
http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSynt
ax, without the “codebase” and “signedBy” clauses, goes here. For example:
—-—>
grant {
permission java.net.SocketPermission “*”, “resolve”;
bi
</security-permission-spec>
</security-permission>
</weblogic-web-app>

In Listing 2-14, permission java.net.SocketPermission isthe permission class name, "*"
represents the target name, and resolve (resolve host/ip name service lookups) indicates the
action.

security-role-assignment

The security-role-assignment element declares a mapping between a security role and one
or more principals in the WebLogic Server security realm,

Example

Listing 2-15 shows how to use the security-role-assignment element to assign principals to
the PayrollAdmin role.

Listing 2-15 security-role-assignment Element Example

<weblogic-web-app>
<security-role-assignment>
<role-name>PayrollAdmin</role-name>
<principal-name>Tanya</principal-name>
<principal-name>Fred</principal-name>
<principal-name>system</principal-name>
</security-role-assignment>
</weblogic-web-app>

2-38 Programming WebLogic Security

Using Programmatic Security With Web Applications

Using Programmatic Security With Web Applications

You can write your servlets to access users and security roles programmatically in your servlet
code. To do this, use the following methods in your servlet code:
javax.servlet.http.HttpServletRequest.getUserPrincipal and
javax.servlet.http.HttpServletRequest.isUserInRole (String role) methods.

getUserPrincipal

You use the getUserPrincipal () method to determine the current user of the Web application.
This method returns a WLSUser Principal if one exists in the current user. In the case of
multiple WLSUser Principals, the method returns the first in the ordering defined by the
Subject.getPrincipals () .iterator () method. If there are no WLSUser Principals, then
the getUserPrincipal () method returns the first non-wLSGroup Principal. If there are no
Principals or all Principals are of type WLSGroup, this method returns nul1. This behavior
is identical to the semantics of the
weblogic.security.SubjectUtils.getUserPrincipal () method

For more information about how to use the getUserPrincipal () method, see
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security5.html#80556.

isUserInRole

The javax.servlet.http.HttpServletRequest.isUserInRole (String role) method
returns a boolean indicating whether the authenticated user is granted the specified logical
security “role.” If the user has not been authenticated, this method returns false.

The isUserInRole () method maps security roles to the group names in the security realm.
Listing 2-16 shows the elements that are used with the <servlet> element to define the security
role in the web . xm1 file.

Listing 2-16 IsUserInRole web.xml and weblogic.xml Elements

Begin web.xml entries:

<servlet>
<security-role-ref>
<role-name>user-rolename</role-name>

<role-link>rolename-1link</role-1link>

Programming WebLogic Security 2-39

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security5.html#80556

Securing Web Applications

</security-role-ref>

</servlet>

<security-role>
<role-name>rolename-1ink</role-name>

</security-role>

Begin weblogic.xml entries:

<security-role-assignment>
<role-name>rolename-link</role-name>
<principal-name>groupname</principal>
<principal-name>username</principal>

</security-role-assignment>

The string role is mapped to the name supplied in the <role-name> element, which is nested
inside the <security-role-ref> element of a <servlet> declaration in the web.xml
deployment descriptor. The <role-name> element defines the name of the security role or
principal (the user or group) that is used in the servlet code. The <role-1ink> element maps
to @ <role-name> defined in the <security-role-assignment> element in the
weblogic.xml deployment descriptor.

Note: When specifying security role names, observe the following conventions and
restrictions:

e The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.0rg/TR/REC-xml1#NT-Nmtoken.

m Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, <> #, |, &, ~, 2, (), { }.

e Security role names are case sensitive.
e The BEA suggested convention for security role names is that they be singular.

For example, if the client has successfully logged in as user Bi11 with the security role of
manager, the following method would return true:

request.isUserInRole (“manager”)

2-40 Programming WebLogic Security

http://www.w3.org/TR/REC-xml#NT-Nmtoken

Using the Programmatic Authentication API

Listing 2-17 provides an example.

Listing 2-17 Example of Security Role Mapping

Servlet code:
out.println("Is the user a Manager? " +

request.isUserInRole ("manager")) ;
web.xml entries:

<servlet>

<role-name>manager</role-name>

<role-link>mgr</role-link>

</servlet>

<security-role>
<role-name>mgr</role-name>

</security-role>
weblogic.xml entries:

<security-role-assignment>
<role-name>mgr</role-name>
<principal-name>bostonManagers</principal-name>
<principal-name>Bill</principal-name>
<principal-name>Ralph</principal-name>

</security-role-ref>

Using the Programmatic Authentication API

There are some applications where programmatic authentication is appropriate.

WebLogic Server provides a server-side API that supports programmatic authentication from
within a servlet application:

weblogic.servlet.security.ServletAuthentication

Using this API, you can write servlet code that authenticates the user, logs in the user, and
associates the user with the current session so that the user is registered in the default (active)

Programming WebLogic Security 2-41

Securing Web Applications

security realm. Once the login is completed, it appears as if the user logged in using the standard
mechanism.

You have the option of using either of two WebLogic-supplied classes with the
ServletAuthentication API, the weblogic.security.SimpleCallbackHandler class or
the weblogic.security.URLCallbackHandler class. For more information on these classes,
see Javadocs for WebLogic Classes.

Listing 2-18 shows an example that uses SimpleCallbackHandler. Listing 2-19 shows an
example that uses URLCallbackHandler.

Listing 2-18 Programmatic Authentication Code Fragment Using the SimpleCallbackHandler Class

CallbackHandler handler = new SimpleCallbackHandler (username, password) ;
Subject mySubject = weblogic.security.services.Authentication.login (handler) ;
weblogic.servlet.security.ServletAuthentication.runAs (mySubject, request);

Where request is the httpservletrequest object.

Listing 2-19 Programmatic Authentication Code Fragment Using the URLCallbackHandler Class

CallbackHandler handler = new URLCallbackHandler (username, password) ;
Subject mySubject = weblogic.security.services.Authentication.login(handler) ;
weblogic.servlet.security.ServletAuthentication.runAs (mySubject, request);

\VhererequestiSthehttpservletrequest(ﬂject

2-42 Programming WebLogic Security

http://e-docs.bea.com/wls/docs81/javadocs/index.html

CHAPTERa

Using JAAS Authentication in Java
Clients

The following topics are covered in this section:

“JAAS and WebLogic Server” on page 3-1

“JAAS Authentication Development Environment” on page 3-3
“Writing a Client Application Using JAAS Authentication” on page 3-10
“Using JNDI Authentication” on page 3-22

“Java Client JAAS Authentication Code Examples” on page 3-23

JAAS and WebLogic Server

The Java Authentication and Authorization Service (JAAS) is a standard extension to the security
in the Java Software Development Kit version 1.4.1. JAAS provides the ability to enforce access
controls based on user identity. JAAS is provided in WebLogic Server as an alternative to the
JNDI authentication mechanism.

WebLogic Server clients use the authentication portion of the standard JAAS only. The JAAS
LoginContext provides support for the ordered execution of all configured authentication
provider LoginModule instances and is responsible for the management of the completion status
of each configured provider.

Note the following considerations when using JAAS authentication for Java clients:

e WebLogic Server clients can either use the JNDI login or JAAS login for authentication,

however JAAS login is the preferred method.

Programming WebLogic Security 3-1

Using JAAS Authentication in Java Clients

e While JAAS is the preferred method of authentication, the WebLogic-supplied
LOginMOdule (weblogic .security.auth.login. UsernamePasswordLoginModule)
only supports username and password authentication. Thus, for client certificate
authentication (also referred to as two-way SSL authentication), you should use JNDI. To
use JAAS for client certificate authentication, you must write a custom LoginModule that
does certificate authentication.

Note: If you are going to write your own LoginModule for use with WebLogic Server
clients, you must have it call
weblogic.security.auth.Authenticate.authenticate() to perform the
login.

e To perform a JAAS login from a remote Java client (that is, the Java client is not a
WebLogic Server client), you may use the WebLogic-supplied LoginModule to perform the
login. However, if you elect not to use the WebLogic-supplied LoginModule but decide to
write your own instead, you must have it call the
weblogic.security.auth.Authenticate.authenticate () method to perform the
login.

e Ifyou are using a remote, or perimeter, login system such as Security Assertion Markup
Language (SAML), you do not need to call
weblogic.security.auth.Authenticate.authenticate(). You only need to call the
authenticate () method if you are using WebLogic Server to perform the logon.

Note: WebLogic Server provides full container support for JAAS authentication and
supports full use of JAAS authentication and authorization in application code.

e Within WebLogic Server, JAAS is called to perform the login. Each Authentication
provider includes a LoginModule. This is true for servlet logins as well as Java client
logins via JNDI or JAAS. The method WebLogic Server calls internally to perform the
JAAS logon is weblogic.security.services.Authentication.authenticate().
When using the Authenticate class, weblogic.security.SimpleCallbackHandler may
be a useful helper class.

e WebLogic Server supports the full JAAS 1.0 Reference Implementation with respect to
authentication and authorization. While WebLogic Server does not protect any resources
using JAAS authorization (it uses WebLogic security), you can use JAAS authorization in
application code to protect the application’s own resources.

For more information about JAAS, see the Java Authentication and Authorization Service
Developer’s Guide on the Web at http://java.sun.com/security/jaas/doc/api.html.

3-2 Programming WebLogic Security

http://java.sun.com/security/jaas/doc/api.html

JAAS Authentication Development Environment

JAAS Authentication Development Environment

Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that requires
authentication, WebLogic Server uses the Java Authentication and Authorization Service (JAAS)
classes to reliably and securely authenticate to the server. JAAS implements a Java version of the
Pluggable Authentication Module (PAM) framework, which permits applications to remain
independent from underlying authentication technologies. Therefore, the PAM framework allows
the use of new or updated authentication technologies without requiring modifications to your
Java application.

WebLogic Server uses JAAS for remote Java client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and developers of
remote Java client applications need to be involved with JAAS directly. Users of Web browser
clients or developers of within-container Java client applications (for example, those calling an
Enterprise JavaBean (EJB) from a servlet) do not require the direct use or knowledge of JAAS.

Note: Both the Java Authentication and Authorization Service (JAAS) and the Java Naming
And Directory Interface (JNDI) can be used by Java clients running on WebLogic Server
to login to an instance of WebLogic Server in a secure manner, however, JAAS is
preferred.

Note: In order to implement security in a WebLogic client you must install the WebLogic
Server software distribution kit on the Java client.

The following topics are covered in this section:
e “JAAS Authentication APIs” on page 3-3
e “JAAS Client Application Components” on page 3-7

e “WebLogic LoginModule Implementation” on page 3-9

JAAS Authentication APIs

To implement Java clients that use JAAS authentication on WebLogic Server, you use a
combination of Java SDK 1.4.1 application programming interfaces (APIs) and WebLogic APIs.

Table 3-1 lists and describes the Java SDK APIs packages used to implement JAAS
authentication. The information in Table 3-1 is taken from the Java SDK API documentation and
annotated to add WebLogic Server specific information. For more information on the Java SDK
APIs, see the Javadocs at http://java.sun.com/j2se/1.4.1/docs/api/index.html and
http://java.sun.com/j2ee/1.4/docs/api/index.html.

Programming WebLogic Security 3-3

http://java.sun.com/j2se/1.4.1/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html

Using JAAS Authentication in Java Clients

Table 3-2 lists and describes the WebLogic APIs used to implement JAAS authentication. For
more information, see Javadocs for WebLogic Classes.

Table 3-1 Java SDK JAAS APIs

Java SDK JAAS API

Description

javax.security.auth.Subject

The Subject class represents the source of the request and can be an
individual user or a group. The Subject object is created only after the
user is successfully logged in.

javax.security.auth.login.
LoginContext

The LoginContext class describes the basic methods used to
authenticate Subjects and provides a way to develop an application
independent of the underlying authentication technology. A
Configuration specifies the authentication technology, or
LoginModule, to be used with a particular application. Therefore,
different LoginModules can be plugged in under an application without
requiring any modifications to the application itself.

Once the caller has instantiated a LoginContext, it invokes the
login method to authenticate a Subject. This 1ogin method
invokes the 1 ogin method from each of the LoginModules configured
for the name specified by the caller.

If the 1ogin method returns without throwing an exception, then the
overall authentication succeeded. The caller can then retrieve the newly
authenticated Subject by invoking the getSubject method.
Principals and credentials associated with the Subject may be
retrieved by invoking the Subject's respective getPrincipals,
getPublicCredentials, and getPrivateCredentials
methods.

To logout the Subject, the caller simply needs to invoke the Logout
method. As with the 1o0gin method, this 1ogout method invokes the
logout method for each LoginModule configured for this
LoginContext.

For a sample implementation of this class, see Listing 3-4.

Programming WebLogic Security

http://java.sun.com/j2ee/1.4/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Tahle 3-1 Java SDK JAAS APIs

JAAS Authentication Development Environment

Java SDK JAAS API

Description

javax.security.auth.login.

Configuration

This is an abstract class for representing the configuration of
LoginModules under an application. The Configuration specifies
which LoginModules should be used for a particular application, and in
what order the LoginModules should be invoked. This abstract class
needs to be subclassed to provide an implementation which reads and
loads the actual configuration.

In WebLogic Server, use a login configuration file instead of this class.
For a sample configuration file, see Listing 3-3. By default, WebLogic
Server uses the Sun Microsystems, Inc. configuration class, which
reads from a configuration file.

javax.security.auth.spi.
LoginModule

LoginModule describes the interface implemented by authentication
technology providers. LoginModules are plugged in under
applications to provide a particular type of authentication.

While application developers write to the LoginContext API,
authentication technology providers implement the LoginModule
interface. A configuration specifies the LoginModule(s) to be used with
a particular login application. Therefore, different LoginModules can
be plugged in under the application without requiring any modifications
to the application itself.

Note: WebLogic Server provides an implementation of the
LoginModule (weblogic.security.auth.login.
UsernamePasswordLoginModule). BEA recommends
that you use this implementation for JAAS authentication in
WebLogic Server Java clients, however, you can develop your
own LoginModule. Listing 3-3 shows how to call the
WebLogic Server LoginModule.

Programming WebLogic Security 3-5

http://java.sun.com/j2ee/1.4/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html

Using JAAS Authentication in Java Clients

Tahle 3-1 Java SDK JAAS APIs

Java SDK JAAS API

Description

javax.security.auth.
callback.Callback

Implementations of this interface are passed to a CallbackHandler,
allowing underlying security services the ability to interact with a
calling application to retrieve specific authentication data, such as
usernames and passwords, or to display certain information, such as
error and warning messages.

Callback implementations do not retrieve or display the information
requested by underlying security services. Callback implementations
simply provide the means to pass such requests to applications, and for
applications, if appropriate, to return requested information back to the
underlying security services.

For a sample implementation of this interface, see Listing 3-2.

javax.security.auth.
callback.CallbackHandler

An application implements a CallbackHandler and passes it to
underlying security services so that they may interact with the
application to retrieve specific authentication data, such as usernames
and passwords, or to display certain information, such as error and
warning messages.

CallbackHandlers are implemented in an application-dependent
fashion.

Underlying security services make requests for different types of
information by passing individual Callbacks to the
CallbackHandler. The CallbackHandler implementation
decides how to retrieve and display information depending on the
Callbacks passed to it. For example, if the underlying service needs
a username and password to authenticate a user, it uses a
NameCallback and PasswordCallback. The
CallbackHandler can then choose to prompt for a username and
password serially, or to prompt for both in a single window.

For a sample implementation of this interface, see Listing 3-2.

3-6

Programming WebLogic Security

http://java.sun.com/j2ee/1.4/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html

Table 3-2 WebLogic JAAS APIs

JAAS Authentication Development Environment

WebLogic JAAS API

Description

weblogic.security.auth. Authenticate

An authentication class that is used to authenticate user credentials.

The WebLogic implementation of the LoginModule
(weblogic.security.auth.login.
UsernamePasswordLoginModule) uses this class to authenticate
auser and add Principals to the Subject. User-written
LoginModules must also use this class for the same purpose.

weblogic.security.auth.
Callback.URLCallback

Underlying security services use this class to instantiate and pass a
URLCallback to the invokeCallback method of a
CallbackHandler to retrieve URL information.

The WebLogic implementation of the LoginModule
(weblogic.security.auth.login.
UsernamePasswordLoginModule) uses this class.

Note: Application developers should not use this class to retrieve
URL information. Instead, they should use the
weblogic.security.URLCallbackHandler.

weblogic.security.Security

This class implements the WebLogic Server client runAs methods.
Client applications use the runAs methods to associate their
Subject identity with the PrivilegedAction or
PrivilegedExceptionAction that they execute.

For a sample implementation, see Listing 3-6.

weblogic.security.
URLCallbackHandler

The class used by application developers for returning a username,
password and URL. Application developers should use this class to
handle the URLCallback to retrieve URL information.

JAAS Client Application Components

At a minimum, a JAAS authentication client application comprises the following components:

e Java client

The Java client instantiates a LoginContext object and invokes the login by calling the
object’s 1login () method. The 1ogin () method calls methods in each LoginModule to
perform the login and authentication.

Programming WebLogic Security 3-1

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/security/auth/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Using JAAS Authentication in Java Clients

3-8

The LoginContext also instantiates a new empty javax.security.auth.Subject object
(which represents the user or service being authenticated), constructs the configured
LoginModule, and initializes it with this new Subject and CallbackHandler.

The LoginContext subsequently retrieves the authenticated Subject by calling the
LoginContext's get Subject method. The LoginContext uses the
weblogic.security.Security class runas () method to associate the Subject identity
with the PrivilegedAction or PrivilegedExceptionAction to be executed on behalf
of the user identity.

LoginModule

The LoginModule utilizes the callbackHandler to obtain the user name and password
and checks that the name and password are the ones it expects.

If authentication is successful, the LoginModule populates the Subject with a Principal
representing the user. The Principal the LoginModule places in the Subject is an instance
of Principal, which is a class implementing the java.security.Principal interface.

LoginModule files can be written to perform different types of authentication, including
username/password authentication and certificate authentication. A client application can
include one LoginModule (the minimum requirement) or several LoginModules.

Note: Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic
Server applications do not associate the Subject with the client actions. You may use
the doas methods to implement J2SE security in WebLogic Server applications, but
such usage is independent of the need to use the Security.runas () method.

Callbackhandler

The callbackHandler implements the
javax.security.auth.callback.CallbackHandler interface. The LoginModule uses
the callbackHandler to communicate with the user and obtain the requested information,
such as the username and password.

Configuration file

This file configures the LoginModule(s) to be used in the application. It specifies the
location of the LoginModule(s) and, if there are multiple LoginModules, the order in which
they are to be executed. Use of this file enables Java applications to remain independent
from the authentication technologies, which are defined and implemented using the
LoginModule.

Action file

This file defines the operations that the client application will perform.

Programming WebLogic Security

JAAS Authentication Development Environment

e ant build script (build.xml)

This script compiles all the files required for the application and deploys them to the
WebLogic Server applications directories.

For a complete working JAAS authentication client that implements the components described
here, see the JAAS sample application in the

SAMPLES HOME\server\examples\src\examples\security\jaas directory provided with
WebLogic Server.

For more information on the basics of JAAS authentication, see Sun’s JAAS Authentication
Tutorial available at
http://java.sun.com/j2se/1.4/docs/guide/security/jaas/tutorials/GeneralAcn
Only.html.

WebLogic LoginModule Implementation

The WebLogic implementation of the LoginModule class is provided in the WebLogic Server
distribution in the weblogic.jar file, located in the WL_HOME\server\1ib directory.

Note: WebLogic Server supports all callback types defined by JAAS as well as all callback
types that extend the JAAS specification.

The UsernamePasswordLoginModule that is part of the WebLogic Server product checks for
existing system user authentication definitions prior to execution and does nothing if they are
already defined.

For more information about implementing JAAS LoginModules, see the Java Authentication and
Authorization Service Developer’s Guide.

JVM-Wide Default User and the runAs() Method

The first time you use the implementation of the LoginModule provided by WebLogic Server
(weblogic.security.auth.login.UsernamePasswordLoginModule) to logon, the
specified user becomes the machine-wide default user for the JVM (Java virtual machine). When
you execute the weblogic.security.Security.runAs () method, it associates the specified
Subject with the current thread’s access permissions and then executes the action. If a specified
Subject represents a non-privileged user (users that are not assigned to any groups are
considered non-privileged), the JVM-wide default user is used. Therefore, it is important make
sure that the runas () method specifies the desired subject. You can do this using one of the
following options:

Programming WebLogic Security 3-9

http://java.sun.com/j2se/1.4/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html
http://java.sun.com/j2se/1.4/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html
http://java.sun.com/security/jaas/doc/api.html
http://java.sun.com/security/jaas/doc/api.html

Using JAAS Authentication in Java Clients

e Option I: If the client has control of main (), implement the wrapper code shown in
Listing 3-1 in the client code.

Listing 3-1 runAs() Method Wrapper Code

import java.security.PrivilegedAction;
import javax.security.auth.Subject;

import weblogic.security.Security;

public class client
{
public static void main(String[] args)
{
Security.runAs (new Subject(),
new PrivilegedAction() {
public Object run() {
//
//I1f implementing in client code, main() goes here.
//
return null;
}
1)
}

e Option 2: If the client does not have control of main (), implement the wrapper code
shown in Listing 3-1 on each thread's run () method.

Writing a Client Application Using JAAS Authentication

To use JAAS in a WebLogic Server Java client to authenticate a subject, perform the following
procedure:

1. Implement LoginModule classes for the authentication mechanisms you want to use with
WebLogic Server. You will need a LoginModule class for each type of authentication
mechanism. You can have multiple LoginModule classes for a single WebLogic Server
deployment. For information on how to implement the LoginModule class, see the Java

3-10 Programming WebLogic Security

Writing a Client Application Using JAAS Authentication

Authentication and Authorization Service (JAAS) 1.0 Developer's Guide available at
http://java.sun.com/security/jaas/doc/api.html

Note:

BEA recommends that you use the implementation of the LoginModule provided by
WebLogic Server
(weblogic.security.auth.login.UsernamePasswordLoginModule)ﬂn
username/password authentication. If you so desire, you can write your own
LoginModule for username/password authentication, however, do not attempt to
modify the WebLogic Server LoginModule and reuse it. If you are going to write
your own LoginModule, you must have it call the
weblogic.security.auth.Authenticate.authenticate () method to perform
the login. If you are using a remote login system such as SAML you do not need to
call the authenticate () method. You only need to call authenticate () if you are
using WebLogic Server to perform the logon.

The weblogic.security.auth.Authenticate class uses a JNDI Environment object
for initial context as described in Table 3-3.

2. Implement the callbackHandler class that the LoginModule will use to communicate
with the user and obtain the requested information, such as the username, password, and
URL. The URL can be the URL of a WebLogic cluster, providing the client with the
benefits of server failover. See Listing 3-2 for the sample CallbackHandler used in the
JAAS client sample provided in the WebLogic Server distribution.

Note:

Instead of implementing your own CallbackHandler class, you can use either of
two WebLogic-supplied callbackHandler classes,
weblogic.security.SimpleCallbackHandler Or
weblogic.security.URLCallbackHandler. For more information on these
classes, see Javadocs for WebLogic Classes.

Listing 3-2 Implementation of the CallbackHandler Interface

package examples.security.jaas;

import java.io.*;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import javax.security.auth.callback.TextOutputCallback;

import javax.security.auth.callback.PasswordCallback;

import javax.security.auth.callback.TextInputCallback;

Programming WebLogic Security 3-11

http://java.sun.com/security/jaas/doc/api.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/Environment.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Using JAAS Authentication in Java Clients

import javax.security.auth.callback.NameCallback;
import weblogic.security.auth.callback.URLCallback;
import examples.utils.common.ExampleUtils;
/**

* SampleCallbackHandler.java

* Implementation of the CallbackHandler Interface

*

* @author Copyright (c) 2000-2002 by BEA Systems, Inc. All Rights
* Reserved.

*/
class SampleCallbackHandler implements CallbackHandler
{

private String username = null;

private String password = null;

private String url = null;
public SampleCallbackHandler () { }

public SampleCallbackHandler (String pUsername, String pPassword,
String pUrl)

username = pUsername;
password = pPassword;
url = pUrl;

}

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException

for(int 1 = 0; 1 < callbacks.length; i++)
{
if (callbacks[i] instanceof TextOutputCallback)
{
// Display the message according to the specified type
TextOutputCallback toc = (TextOutputCallback)callbacks[i];
switch (toc.getMessageType ())
{
case TextOutputCallback.INFORMATION:
ExampleUtils.log(toc.getMessage()) ;

3-12 Programming WebLogic Security

Writing a Client Application Using JAAS Authentication

break;

case TextOutputCallback.ERROR:
ExampleUtils.log("ERROR: " + toc.getMessage());
break;

case TextOutputCallback.WARNING:
ExampleUtils.log ("WARNING: " + toc.getMessage());
break;

default:
throw new IOException ("Unsupported message type: " +

toc.getMessageType()) ;

}
else if (callbacks[i] instanceof NameCallback)

{

// If username not supplied on cmd line, prompt the user
// for the username.
NameCallback nc = (NameCallback)callbacks[i];
if (ExampleUtils.isEmpty (username)) {

System.err.print (nc.getPrompt ()) ;

System.err.flush() ;

nc.setName ((new BufferedReader (new

InputStreamReader (System.in))) .readLine()) ;

}

else {
ExampleUtils.log("username: "+username) ;

nc.setName (username) ;

}
else if(callbacks([1i] instanceof URLCallback)

{
// If url not supplied on cmd line, prompt the user for the

// url.
// This example requires the url.
URLCallback uc = (URLCallback)callbacks[i];

if (ExampleUtils.isEmpty (url)) {
System.err.print (uc.getPrompt ());\
System.err.flush() ;
uc.setURL((new BufferedReader (new

Programming WebLogic Security 3-13

Using JAAS Authentication in Java Clients

InputStreamReader (System.in))) .readLine()) ;\
}
else {
ExampleUtils.log ("URL: "+url);
uc.setURL (url) ;

}
else if(callbacks[i] instanceof PasswordCallback)
{
PasswordCallback pc = (PasswordCallback)callbacks[i];

// If password not supplied on cmd line, prompt the user
// for the password.
if (ExampleUtils.isEmpty (password)) {

System.err.print (pc.getPrompt ()) ;

System.err.flush() ;

// Note: JAAS specifies that the password is a char[]
// rather than a String.
String tmpPassword = (new BufferedReader (new
InputStreamReader (System.in))) .readLine () ;
int passLen = tmpPassword.length();
char[] passwordArray = new char[passLen];
for (int passIdx = 0; passIdx < passLen; passIdx++)
passwordArray [passIdx] = tmpPassword.charAt (passIdx) ;
pc.setPassword (passwordArray) ;
}
else {
String tPass = new String();
for(int p = 0; p < password.length(); p++)
tPass += "*";
ExampleUtils.log("password: "+tPass);

pc.setPassword (password.toCharArray()) ;

}
else if(callbacks[i] instanceof TextInputCallback)
{
// Prompt the user for the username
TextInputCallback callback =

3-14 Programming WebLogic Security

Writing a Client Application Using JAAS Authentication

(TextInputCallback)callbacks[i];

System.err.print (callback.getPrompt ()) ;

System.err.flush() ;

callback.setText ((new BufferedReader (new

InputStreamReader (System.in))) .readLine()) ;

}
else
{

throw new UnsupportedCallbackException(callbacks[i],

"Unrecognized Callback") ;

3. Write a configuration file that specifies which LoginModule classes should be used for your
WebLogic Server and in which order the LoginModule classes should be invoked. See
Listing 3-3 for the sample configuration file used in the JAAS client sample provided in the
WebLogic Server distribution.

Listing 3-3 sample_jaas.config Code Example

/** Login Configuration for the JAAS Sample Application **/

Sample {
weblogic.security.auth.login.UsernamePasswordLoginModule

required debug=false;

4. In the Java client, write code to instantiate a LoginContext. The LoginContext consults
the configuration file, sample_ jaas.config, to load the default LoginModule configured
for WebLogic Server. See Listing 3-4 for an example LoginContext instantiation.

Programming WebLogic Security 3-15

Using JAAS Authentication in Java Clients

Listing 3-4 LoginContext Code Fragment

import javax.security.auth.login.LoginContext;

LoginContext loginContext = null;

try

{
// Create LoginContext; specify username/password login module
loginContext = new LoginContext ("Sample",

new SampleCallbackHandler (username, password, url));

Note: If you use another means to authenticate the user such as an Identity Assertion
provider or a remote instance of WebLogic Server, the default LoginModule is
determined by the remote resource.

5. Invoke the login () method of the LoginContext instance. The 1login () method invokes
all the loaded LoginModules. Each LoginModule attempts to authenticate the subject. The
LoginContext throws a LoginException if the configured login conditions are not met.
See Listing 3-5 for an example of the 1ogin () method.

Listing 3-5 Login() Method Code Fragment

import javax.security.auth.login.LoginContext;

import javax.security.auth.login.LoginException;

import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.AccountExpiredException;

import javax.security.auth.login.CredentialExpiredException;

/**
* Attempt authentication
*/
try
{

3-16 Programming WebLogic Security

Writing a Client Application Using JAAS Authentication

// If we return without an exception, authentication succeeded

loginContext.login() ;
}
catch(FailedLoginException fle)

{
System.out.println("Authentication Failed, " +
fle.getMessage ()) ;
System.exit (-1);
}
catch (AccountExpiredException aee)
{
System.out.println("Authentication Failed: Account Expired");
System.exit (-1);
}
catch(CredentialExpiredException cee)
{
System.out.println("Authentication Failed: Credentials
Expired") ;
System.exit (-1);
}
catch (Exception e)
{
System.out.println("Authentication Failed: Unexpected
Exception, " + e.getMessage());
e.printStackTrace() ;

System.exit (-1);

6.

Write code in the Java client to retrieve the authenticated Subject from the LoginContext
instance using the javax.security.auth.Subject.getSubject () method and call the
action as the Subject. Upon successful authentication of a Subject, access controls can be
placed upon that Subject by invoking the weblogic.security.Security.runAs ()
method. The runas () method associates the specified Subject with the current thread’s
access permissions and then executes the action. See Listing 3-6 for an example
implementation of the getSubject () and runas () methods.

Programming WebLogic Security 3-17

Using JAAS Authentication in Java Clients

3-18

Note: Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic
Server applications do not associate the Subject with the client actions. You may use
the doas methods to implement J2SE security in WebLogic Server applications, but
such usage is independent of the need to use the Security.runas () method.

Listing 3-6 getSubject() and runAs() Methods Code Fragment

/*'k

* Retrieve authenticated subject, perform SampleAction as Subject
*/

Subject subject = loginContext.getSubject () ;
SampleAction sampleAction = new SampleAction(url) ;
Security.runAs (subject, sampleAction);

System.exit (0) ;

7.

Write code to execute an action if the Subject has the required privileges. See Listing 3-7
for a sample implementation of the javax.security.PrivilegedAction class that
executes an EJB to trade stocks.

Listing 3-7 Example of a PrivilegedAction Implementation

package examples.security.jaas;

import java.security.PrivilegedAction;

import javax.naming.Context;

import javax.naming.InitialContext;

import java.util.Hashtable;

import javax.ejb.CreateException;

import javax.ejb.EJBException;

import javax.ejb.FinderException;

import javax.ejb.ObjectNotFoundException;

import javax.ejb.RemoveException;

import java.rmi.RemoteException;

Programming WebLogic Security

Writing a Client Application Using JAAS Authentication

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import examples.ejb20.basic.statelessSession.TraderHome;
import examples.ejb20.basic.statelessSession.Trader;
import examples.utils.common.ExampleUtils;

/**

* SampleAction.java

*

* JAAS sample PrivilegedAction Implementation
*
* @author Copyright (c) 2000-2002 by BEA Systems, Inc. All Rights
* Reserved.
*/
public class SampleAction implements PrivilegedAction
{
private static final String JNDI_NAME =
"ejb20-statelessSession-TraderHome" ;

private String url;

public SampleAction(String url)
{
this.url = url;

}

public Object run()
{
Object obj = null;

try {
callTraderEJB() ;
}
catch (Exception e) {
e.printStackTrace() ;
}

return obj;

Programming WebLogic Security 3-19

Using JAAS Authentication in Java Clients

/*'k
* Call Trader EJB.
*/
public void callTraderEJB ()
throws NamingException, CreateException, RemoteException,

RemoveException

TraderHome home = lookupTraderHome () ;

// create a Trader
ExampleUtils.log("Creating a trader");
Trader trader = (Trader)ExampleUtils.narrow(home.create(),

Trader.class) ;
String [] stocks = {"BEAS", "MSFT", "AMZN", "HWP" };

// execute some buys
for (int 1=0; i<stocks.length; i++) {
int shares = (i+1) * 100;
ExampleUtils.log("Buying "+shares+" shares of
"+stocks[i]+".");
trader.buy (stocks[i], shares);

}

// execute some sells
for (int 1=0; i<stocks.length; i++) {
int shares = (i+1) * 100;
ExampleUtils.log("Selling "+shares+" shares of
"+stocks[i]+".");
trader.sell (stocks[i], shares);

}

// remove the Trader
ExampleUtils.log("Removing the trader");
trader.remove() ;

}

/*‘k

* Look up the bean's home interface using JNDI.
*/

private TraderHome lookupTraderHome ()

3-20 Programming WebLogic Security

Writing a Client Application Using JAAS Aut