
312

Appendix B

B
Samba Performance
Tuning

This appendix discusses various ways of performance tuning and system sizing
with Samba. Performance tuning is the art of finding bottlenecks and adjusting to
eliminate them. Sizing is the practice of eliminating bottlenecks by spending
money to avoid having them in the first place. Normally, you won’t have to worry
about either with Samba. On a completely untuned server, Samba will happily
support a small community of users. However, on a properly tuned server, Samba
will support at least twice as many users. This chapter is devoted to outlining vari-
ous performance-tuning and sizing techniques that you can use if you want to
stretch your Samba server to the limit.

A Simple Benchmark
How do you know if you’re getting reasonable performance? A simple benchmark
is to compare Samba with FTP. Table B-1 shows the throughput, in kilobytes per
second, of a pair of servers: a medium-size Sun SPARC Ultra and a small Linux
Pentium server. Numbers are reported in kilobytes per second (KB/s).

If you run the same tests on your server, you probably won’t see the same num-
bers. However, you should see similar ratios of Samba to FTP, probably in the
range of 68 to 80 percent. It’s not a good idea to base all of Samba’s throughput

Table B-1. Sample Benchmark Benchmarks

Command FTP Untuned Samba Tuned Samba

Sparc get 1014.5 645.3 866.7

Sparc put 379.8 386.1 329.5

Pentium get 973.27 N/A 725

Pentium put 1014.5 N/A 1100

,appb.27799 Page 312 Friday, November 19, 1999 3:30 PM

Samba Tuning 313

against FTP. The golden rule to remember is this: if Samba is much slower than
FTP, it’s time to tune it.

You might think that an equivalent test would be to compare Samba to NFS. In
reality, however, it’s much less useful to compare their speeds. Depending entirely
on whose version of NFS you have and how well it’s tuned, Samba can be slower
or faster than NFS. We usually find that Samba is faster, but watch out; NFS uses a
different algorithm from Samba, so tuning options that are optimal for NFS may be
detrimental for Samba. If you run Samba on a well-tuned NFS server, Samba may
perform rather badly.

A more popular benchmark is Ziff-Davis’ NetBench, a simulation of many users on
client machines running word processors and accessing data on the SMB server.
It’s not a prefect measure (each NetBench client does about ten times the work of
a normal user on our site), but it is a fair comparison of similar servers. In tests
performed by Jeremy Allison in November 1998, Samba 2.0 on a SGI multiproces-
sor outperformed NT Server 4.0 (Patch Level 2) on an equivalent high-end Com-
paq. This was confirmed and strengthened by a Sm@rt Reseller test of NT and
Linux on identical hardware in February 1999.

In April 1999, the Mindcraft test lab released a report about a test showing that
Samba on a four-processor Linux machine was significantly slower than native file
serving on the same machine running Windows NT. While the original report was
slammed by the Open Source community because it was commissioned by
Microsoft and tuned the systems to favor Windows NT, a subsequent test was
fairer and generally admitted to reveal some areas where Linux needed to improve
its performance, especially on multiprocessors. Little was said about Samba itself.
Samba is known to scale well on multiprocessors, and exceeds 440MB/s on a four-
processor SGI O200, beating Mindcraft’s 310MB/s.

Relative performance will probably change as NT and PC hardware get faster, of
course, but Samba is improving as well. For example, Samba 1.9.18 was faster only
with more than 35 clients. Samba 2.0, however, is faster regardless of the number
of clients. In short, Samba is very competitive with the best networking software in
the industry, and is only getting better.

As we went to press, Andrew Tridgell released the alpha-test version suite of
benchmarking programs for Samba and SMB networks. Expect even more work on
performance from the Samba team in the future.

Samba Tuning
That being said, let’s discuss how you can take an already fast networking pack-
age and make it even faster.

,appb.27799 Page 313 Friday, November 19, 1999 3:30 PM

314 Appendix B: Samba Performance Tuning

Benchmarking

Benchmarking is an arcane and somewhat black art, but the level of expertise
needed for simple performance tuning is fairly low. Since the Samba server’s goal
in life is to transfer files, we will examine only throughput, not response time to
particular events, under the benchmarking microscope. After all, it’s relatively easy
to measure file transfer speed, and Samba doesn’t suffer too badly from response-
time problems that would require more sophisticated techniques.

Our basic strategy for this work will be:

• Find a reasonably-sized file to copy and a program that reports on copy
speeds, such as smbclient.

• Find a quiet (or typical) time to do the test.

• Pre-run each test a few times to preload buffers.

• Run tests several times and watch for unusual results.

• Record each run in detail.

• Compare the average of the valid runs to expected values.

After establishing a baseline using this method, we can adjust a single parameter
and do the measurements all over again. An empty table for your tests is provided
at the end of this chapter.

Things to Tweak

There are literally thousands of Samba setting combinations that you can use in
search of that perfect server. Those of us with lives outside of system administra-
tion, however, can narrow down the number of options to those listed in this sec-
tion, which are the most likely to affect overall throughput. They are presented
roughly in order of impact.

Log level

This is an obvious one. Increasing the logging level (log level or debug level
configuration options) is a good way to debug a problem, unless you happen to
be searching for a performance problem! As mentioned in Chapter 4, Disk Shares,
Samba produces a ton of debugging messages at level 3 and above, and writing
them to disk or syslog is a slow operation. In our smbclient/ftp tests, raising the
log level from 0 to 3 cut the untuned get speed from 645.3 to 622.2KB/s, or
roughly 5 percent. Higher log levels were even worse.

Socket options

The next thing to look at are the socket options configuration options. These
are really host system tuning options, but they’re set on a per-connection basis,

,appb.27799 Page 314 Friday, November 19, 1999 3:30 PM

Samba Tuning 315

and can be reset by Samba on the sockets it employs by adding socket options
= option to the [global] section of your smb.conf file. Not all of these options
are supported by all vendors; check your vendor’s manual pages on setsockopt(1)
or socket(5) for details.

The main options are:

TCP_NODELAY
Have the server send as many packets as necessary to keep delay low. This is
used on telnet connections to give good response time, and is used—some-
what counter-intuitively—to get good speed even when doing small requests
or when acknowledgments are delayed (as seems to occur with Microsoft
TCP/IP). This is worth a 30–50 percent speedup by itself. Incidentally, in
Samba 2.0.4, socket options = TCP_NODELAY became the default value for
that option.

IPTOS_LOWDELAY
This is another option that trades off throughput for lower delay, but which
affects routers and other systems, not the server. All the IPTOS options are
new; they’re not supported by all operating systems and routers. If they are
supported, set IPTOS_LOWDELAY whenever you set TCP_NODELAY.

SO_SNDBUF and SO_RCVBUF
The send and receive buffers can often be the reset to a value higher than that
of the operating system. This yields a marginal increase of speed (until it
reaches a point of diminishing returns).

SO_KEEPALIVE
This initiates a periodic (four-hour) check to see if the client has disappeared.
Expired connections are addressed somewhat better with Samba’s keepalive
and dead time options. All three eventually arrange to close dead connec-
tions, returning unused memory and process-table entries to the operating
system.

There are several other socket options you might look at, (e.g., SO_SNDLOWAT),
but they vary in availability from vendor to vendor. You probably want to look at
TCP/IP Illustrated if you’re interested in exploring more of these options for per-
formance tuning with Samba.

read raw and write raw

These are important performance configuration options; they enable Samba to use
large reads and writes to the network, of up to 64KB in a single SMB request. They
also require the largest SMB packet structures, SMBreadraw and SMBwriteraw,
from which the options take their names. Note that this is not the same as a Unix
raw read. This Unix term usually refers to reading disks without using the files sys-
tem, quite a different sense from the one described here for Samba.

,appb.27799 Page 315 Friday, November 19, 1999 3:30 PM

316 Appendix B: Samba Performance Tuning

In the past, some client programs failed if you tried to use read raw. As far as we
know, no client suffers from this problem any more. Read and write raw default to
yes, and should be left on unless you find you have one of the buggy clients.

Opportunistic locking

Opportunistic locks, or oplocks, allow clients to cache files locally, improving per-
formance on the order of 30 percent. This option is now enabled by default. For
read-only files, the fake oplocks provides the same functionality without actu-
ally doing any caching. If you have files that cannot be cached, oplocks can be
turned off.

Database files should never be cached, nor should any files that are updated both
on the server and the client and whose changes must be immediately visible. For
these files, the veto oplock files option allows you to specify a list of individ-
ual files or a pattern containing wildcards to avoid caching. oplocks can be turned
off on a share-by-share basis if you have large groups of files you don’t want
cached on clients. See Chapter 5, Browsing and Advanced Disk Shares, for more
information on opportunistic locks.

IP packet size (MTU)

Networks generally set a limit to the size of an individual transmission or packet
This is called the Maximum Segment Size, or if the packet header size is included,
the Maximum Transport Unit (MTU). This MTU is not set by Samba, but Samba
needs to use a max xmit (write size) bigger than the MTU, or throughput will be
reduced. This is discussed in further detail in the following note. The MTU is nor-
mally preset to 1500 bytes on an Ethernet and 4098 bytes on FDDI. In general,
having it too low cuts throughput, and having it too high causes a sudden perfor-
mance dropoff due to fragmentation and retransmissions.

If you are communicating over a router, some systems will assume
the router is a serial link (e.g., a T1) and set the MTU to more or less
536 bytes. Windows 95 makes this mistake, which causes nearby cli-
ents to perform well, but clients on the other side of the router to be
noticeably slower. If the client makes the opposite error and uses a
large MTU on a link which demands a small one, the packets will be
broken up into fragments. This slows transfers slightly, and any net-
working errors will cause multiple fragments to be retransmitted,
which slows Samba significantly. Fortunately, you can modify the
Windows MTU size to prevent either error. To understand this in
more detail, see “The Windows 95 Networking Frequently Asked
Questions (FAQ)” at http://www.stanford.edu/~llurch/win95netbugs/
faq.html, which explains how to override the Windows MTU and
Window Size.

,appb.27799 Page 316 Friday, November 19, 1999 3:30 PM

Samba Tuning 317

The TCP receive window

TCP/IP works by breaking down data into small packets that can be transmitted
from one machine to another. When each packet is transmitted, it contains a
checksum that allows the receiver to check the packet data for potential errors in
transmission. Theoretically, when a packet is received and verified, an acknowl-
edgment packet should be sent back to the sender that essentially says, “Every-
thing arrived intact: please continue.”

In order to keep things moving, however, TCP accepts a range (window) of pack-
ets that allows a sender to keep transmitting without having to wait for an
acknowledgment of every single packet. (It can then bundle a group of acknowl-
edgments and transmit them back to the sender at the same time.) In other words,
this receive window is the number of bytes that the sender can transmit before it
has to stop and wait for a receiver’s acknowledgment. Like the MTU, it is automat-
ically set based on the type of connection. Having the window too small causes a
lot of unnecessary waiting for acknowledgment messages. Various operating sys-
tems set moderate buffer sizes on a per-socket basis to keep one program from
hogging all the memory.

The buffer sizes are assigned in bytes, such as SO_SNDBUF=8192 in the socket
options line. Thus, an example socket options configuration option is:

socket options = SO_SNDBUF=8192

Normally, one tries to set these socket options higher than the default: 4098 in
SunOS 4.1.3 and SVR4, and 8192–16384 in AIX, Solaris, and BSD. 16384 has been
suggested as a good starting point: in a non-Samba test mentioned in Stevens’
book, it yielded a 40 percent improvement. You’ll need to experiment, because
performance will fall off again if you set the sizes too high. This is illustrated in
Figure B-1, a test done on a particular Linux system.

Setting the socket options O_SNDBUF and SO_RCVBUF to less than the default is
inadvisable. Setting them higher improves performance, up to a network-specific
limit. However, once you exceed that limit, performance will abruptly level off.

max xmit

In Samba, the option that is directly related with the MTU and window size is max
xmit. This option sets the largest block of data Samba will try to write at any one
time. It’s sometimes known as the write size, although that is not the name of the
Samba configuration option.

Because the percentage of each block required for overhead falls as the blocks get
larger, max xmit is conventionally set as large as possible. It defaults to the

,appb.27799 Page 317 Friday, November 19, 1999 3:30 PM

318 Appendix B: Samba Performance Tuning

protocol’s upper limit, which is 64 kilobytes. The smallest value that doesn’t cause
significant slowdowns is 2048. If it is set low enough, it will limit the largest packet
size that Samba will be able to negotiate. This can be used to simulate a small
MTU if you need to test an unreliable network connection. However, such a test
should not be used in production for reducing the effective MTU.

read size

If max xmit is commonly called the write size, you’d expect read size to be the
maximum amount of data that Samba would want to read from the client via the
network. Actually, it’s not. In fact, it’s an option to trigger write ahead. This means
that if Samba gets behind reading from the disk and writing to the network (or
vice versa) by the specified amount, it will start overlapping network writes with
disk reads (or vice versa).

The read size doesn’t have a big performance effect on Unix, unless you set its
value quite small. At that point, it causes a detectable slowdown. For this reason, it
defaults to 2048 and can’t be set lower than 1024.

read prediction

Besides being counterintuitive, this option is also obsolete. It enables Samba to
read ahead on files opened read only by the clients. The option is disabled in
Samba 2.0 (and late 1.9) Because it interferes with opportunistic locking.

Figure B-1. SO_SNDBUF size and performance

570

470

370

270
2048 4096 8192 16384 32768

Samba Reads
Samba Writes

Buffer Size in KB

Buffer Size -vs- Performance

,appb.27799 Page 318 Friday, November 19, 1999 3:30 PM

Samba Tuning 319

Other Samba Options

The following Samba options will affect performance if they’re set incorrectly,
much like the debug level. They’re mentioned here so you will know what to look
out for:

hide files
Providing a pattern to identify files hidden by the Windows client hide files
will result in any file matching the pattern being passed to the client with the
DOS hidden attribute set. It requires a pattern match per file when listing
directories, and slows the server noticeably.

lpq cache time
If your lpq (printer queue contents) command takes a long time to complete,
you should increase lpq cache time to a value higher than the actual time
required for lpq to execute, so as to keep Samba from starting a new query
when one’s already running. The default is 10 seconds, which is reasonable.

strict locking
Setting the strict locking option causes Samba to check for locks on every
access, not just when asked to by the client. The option is primarily a bug-
avoidance feature, and can prevent ill-behaved DOS and Windows applica-
tions from corrupting shared files. However, it is slow and should typically be
avoided.

strict sync
Setting strict sync will cause Samba to write each packet to disk and wait
for the write to complete whenever the client sets the sync bit in a packet.
Windows 98 Explorer sets the bit in all packets transmitted, so if you turn this
on, anyone with Windows 98 will think Samba servers are horribly slow.

sync always
Setting sync always causes Samba to flush every write to disk. This is good if
your server crashes constantly, but the performance costs are immense. SMB
servers normally use oplocks and automatic reconnection to avoid the ill
effects of crashes, so setting this option is not normally necessary.

wide links
Turning off wide links prevents Samba from following symbolic links in one
file share to files that are not in the share. It is turned on by default, since fol-
lowing links in Unix is not a security problem. Turning it off requires extra
processing on every file open. If you do turn off wide links, be sure to turn on
getwd cache to cache some of the required data.

,appb.27799 Page 319 Friday, November 19, 1999 3:30 PM

320 Appendix B: Samba Performance Tuning

There is also a follow symlinks option that can be turned off to prevent fol-
lowing any symbolic links at all. However, this option does not pose a perfor-
mance problem.

getwd cache
This option caches the path to the current directory, avoiding long tree-walks
to discover it. It’s a nice performance improvement on a printer server or if
you’ve turned off wide links.

Our Recommendations

Here’s an smb.conf file that incorporates the recommended performance enhance-
ments so far. Comments have been added on the right side.

[global]
log level = 1 # Default is 0
socket options = TCP_NODELAY IPTOS_LOWDELAY
read raw = yes # Default
write raw = yes # Default
oplocks = yes # Default
max xmit = 65535 # Default
dead time = 15 # Default is 0
getwd cache = yes
lpq cache = 30

[okplace]
veto oplock files = this/that/theotherfile

[badplace]
oplocks = no

Sizing Samba Servers
Sizing is a way to prevent bottlenecks before they occur. The preferred way to do
this is to know how many requests per second or how many kilobytes per second
the clients will need, and ensure that all the components of the server provide at
least that many.

The Bottlenecks

The three primary bottlenecks you should worry about are CPU, disk I/O, and the
network. For most machines, CPUs are rarely a bottleneck. A single Sun SPARC 10
CPU can start (and complete) between 700 and 800 I/O operations a second, giv-
ing approximately 5,600 to 6,400KB/s of throughput when the data averages
around 8KBs (a common buffer size). A single Intel Pentium 133 can do less only
because of somewhat slower cache and bus interfaces, not due to lack of CPU
power. Purpose-designed Pentium servers, like some Compaq servers, will be able
to start 700 operations per CPUs, on up to four CPUs.

,appb.27799 Page 320 Friday, November 19, 1999 3:30 PM

Sizing Samba Servers 321

Too little memory, on the other hand, can easily be a bottleneck; each Samba pro-
cess will use between 600 and 800KB on Intel Linux, and more on RISC CPUs.
Having less will cause an increase in virtual memory paging and therefore a per-
formance hit. On Solaris, where it has been measured, smbd will use 2.6 MB for
program and shared libraries, plus 768KB for each connected client. nmbd occu-
pies 2.1 MB, plus 496KB extra for its (single) auxiliary process.

Hard disks will always bottleneck at a specific number of I/O operations per sec-
ond: for example, each 7200 RPM SCSI disk is capable of performing 70 opera-
tions per second, for a throughput of 560KB/s; a 4800 RPM disk will perform
fewer than 50, for a throughput of 360KB/s. A single IDE disk will do still fewer. If
the disks are independent, or striped together in a RAID 1 configuration, they will
each peak out at 400 to 560KB/s and will scale linearly as you add more. Note that
this is true only of RAID 1. RAID levels other than 1 (striping) add extra overhead.

Ethernets (and other networks) are obvious bottleneck: a 10 Mb/s (megabits/sec-
ond) Ethernet will handle around 1100KB/s (kilobytes/s) using 1500-byte packets
A 100 Mb/s Fast Ethernet will bottleneck below 65,000KB/s with the same packet
size. FDDI, at 155 Mb/s will top out at approximately 6,250KB/s, but gives good
service at even 100 percent load and transmits much larger packets (4KB).

ATM should be much better, but as of the writing of this book it was too new to
live up to its potential; it seems to deliver around 7,125 Mb/s using 9KB packets.

Of course, there can be other bottlenecks: more than one IDE disk per controller
is not good, as are more than three 3600 SCSI-I disks per slow/narrow controller,
or more than three 7200 SCSI-II disks per SCSI-II fast/wide controller. RAID 5 is
also slow, as it requires twice as many writes as independent disks or RAID 1.

After the second set of Ethernets and the second disk controller, start worrying
about bus bandwidth, especially if you are using ISA/EISA buses.

Reducing Bottlenecks

From the information above we can work out a model that will tell us the maxi-
mum capability of a given machine. The data is mostly taken from Brian Wong’s
Configuration and Capacity Planning for Solaris Servers,* so there is a slight Sun
bias to our examples.

A word of warning: this is not a complete model. Don’t assume that this model
will predict every bottleneck or even be within 10 percent in its estimates. A
model to predict performance instead of one to warn you of bottlenecks would be

* See Wong. Brian L, Configuration and Capacity Planning for Solaris Servers, Englewood Cliffs, NJ (Sun/
Prentice-Hall), 1997, ISBN 0-13-349952-9.

,appb.27799 Page 321 Friday, November 19, 1999 3:30 PM

322 Appendix B: Samba Performance Tuning

much more complex and would contain rules like “not more than three disks per
SCSI chain”. (A good book on real models is Raj Jain’s The Art of Computer Sys-
tems Performance Analysis.*) With that warning, we present the system in
Figure B-2.

The flow of data should be obvious. For example, on a read, data flows from the
disk, across the bus, through or past the CPU, and to the network interface card
(NIC). It is then broken up into packets and sent across the network. Our strategy
here is to follow the data through the system and see what bottlenecks will choke
it off. Believe it or not, it’s rather easy to make a set of tables that list the maxi-
mum performance of common disks, CPUs, and network cards on a system. So
that’s exactly what we’re going to do.

Let’s take a concrete example: a Linux Pentium 133 MHz machine with a single
7200 RPM data disk, a PCI bus, and a 10-Mb/s Ethernet card. This is a perfectly
reasonable server. We start with Table B-2, which describes the hard drive—the
first potential bottleneck in the system.

Disk throughput is the number of kilobytes of data that a disk can transfer per sec-
ond. It is computed from the number of 8KB I/O operations per second a disk can
perform, which in turn is strongly influenced by disk RPM and bit density. In

* See Jain. Raj, The Art of Computer Systems Performance Analysis, New York, NY (John Wiley and Sons),
1991, ISBN 0-47-150336-3.

Figure B-2. Data flow through a Samba server, with possible bottlenecks

Table B-2. Disk Throughput

Disk RPM I/O Operations/second KB/second

7200 70 560

4800 60 480

3600 40 320

Bottleneck 1 Bottleneck 2 Bottleneck 3

Data Flow from Disk to Network

CPU NIC

,appb.27799 Page 322 Friday, November 19, 1999 3:30 PM

Sizing Samba Servers 323

effect, the question is: how much data can pass below the drive heads in one sec-
ond? With a single 7200 RPM disk, the example server will give us 70 I/O opera-
tions per second at roughly 560KB/s.

The second possible bottleneck is the CPU. The data doesn’t actually flow through
the CPU on any modern machines, so we have to compute throughput somewhat
indirectly.

The CPU has to issue I/O requests and handle the interrupts coming back, then
transfer the data across the bus to the network card. From much past experimenta-
tion, we know that the overhead that dominates the processing is consistently in
the filesystem code, so we can ignore the other software being run. We compute
the throughput by just multiplying the (measured) number of file I/O operations
per second that a CPU can process by the same 8K average request size. This
gives us the results shown in Table B-3.

Now we put the disk and the CPU together: in the Linux example, we have a sin-
gle 7200 RPM disk, which can give us 560KB/s, and a CPU capable of starting 700
I/O operations, which could give us 5600KB/s. So far, as you would expect, our
bottleneck is clearly going to be the hard disk.

The last potential bottleneck is the network. If the network speed is below 100
Mb/s, the bottleneck will be the network speed. After that, the design of the net-
work card is more likely to slow us down. Table B-4 shows us the average
throughput of many types of data networks. Although network speed is conven-
tionally measured in bits per second, Table B-4 lists bytes per second to make
comparison with the disk and CPU (Table B-2 and Table B-3) easier.

Table B-3. CPU Throughput

CPU I/O Operations/second KB/second

Intel Pentium 133 700 5,600

Dual Pentium 133 1,200 9,600

Sun SPARC II 660 5,280

Sun SPARC 10 750 6,000

Sun Ultra 200 2,650 21,200

Table B-4. Network Throughput

Network Type KB/second

 ISDN 16

 T1 197

 Ethernet 10m 1,113

 Token ring 1,500

,appb.27799 Page 323 Friday, November 19, 1999 3:30 PM

324 Appendix B: Samba Performance Tuning

In the running example, we have a bottleneck at 560KB/s due to the disk.
Table B-4 shows us that a standard 10 megabit per second Ethernet (1,113KB/s) is
far faster than the disk. Therefore, the hard disk is still the limiting factor. (This
scenario, by the way, is very common.) Just by looking at the tables, we can pre-
dict that small servers won’t have CPU problems, and that large ones with multi-
ple CPUs will support striping and multiple Ethernets long before they start
running out of CPU power. This, in fact, is exactly what happens.

Practical Examples

An example from Configuration and Capacity Planning for Solaris Servers (Wong)
shows that a dual-processor SPARCstation 20/712 with four Ethernets and six 2.1
GB disks will spend all its time waiting for the disks to return some data. If it was
loaded with disks (Brian Wong suggests as many as 34 of them), it would still be
held below 1,200KB/s by the Ethernet cards. To get the performance the machine
is capable of, we would need to configure multiple Ethernets, 100 Mbps Fast
Ethernet, or 155 Mbps FDDI.

The progression you’d work through to get that conclusion looks something like
Table B-5.

Initially, the bottleneck is the disk with only 560 MB/s of throughput available.
Our solution is to add five more disks. This gives us more throughput on the disks
than on the Ethernet, so then the Ethernet becomes the problem. Consequently, as

 FDDI 6,250

 Ethernet 100m 6,500a

 ATM 155 7,125a

a These will increase. For example, Crays, Sun Ultras, and DEC/Compaq Alphas already have bettered
these figures.

Table B-5. Tuning a Medium-Sized Server

Machine
Disk
Throughput

CPU
Throughput

Network
Throughput

Actual
Throughput

Dual SPARC 10, 1 disk 560 6000 1,113 560

Add 5 more disks 3,360 6000 1,113 1,113

Add 3 more Ethernets 3,360 16000 4,452 3,360

Change to using a 20-disk
array

11,200 6000 4,452 4,452

Use dual 100 Mbps ether 11,200 6000 13,000 11,200

Table B-4. Network Throughput (continued)

Network Type KB/second

,appb.27799 Page 324 Friday, November 19, 1999 3:30 PM

Sizing Samba Servers 325

we continue to expand, we go back and forth several times between these two. As
you add disks, CPUs, and network cards, the bottleneck moves. Essentially, the
strategy is to add more equipment to try to avoid each bottleneck until you reach
your target performance, or (unfortunately) you either can’t add any more or run
out of money.

Our experience bears out this kind of calculation; a large SPARC 10 file server that
one author maintained was quite capable of saturating an Ethernet plus about a
third of an FDDI ring when using two processors. It did nearly as well with a sin-
gle processor, albeit with a fast operating system and judicious over-optimization.

The same process applies to other brands of purpose-designed servers. We found
the same rules applied to DECstation 2100s as to the newest Alphas or Compaqs,
old MIPS 3350s and new SGI O2s. In general, a machine offering multi-CPU server
configurations will have enough bus bandwidth and CPU power to reliably bottle-
neck on hard disk I/O when doing file service. As one would hope, considering
the cost!

How Many Clients can Samba Handle?

Well, that depends entirely on how much data each user consumes. A small server
with three SCSI-1 disks, which can serve about 960KB/s of data, will support
between 36 and 80 clients in an ordinary office environment where they are typi-
cally loading, and saving equal-sized spreadsheets or word processing documents
(36 clients × 2.3 transfers/second × 12k file 1 MB/s).

On the same server in a development environment with programmers running a
fairly heavy edit-compile-test cycle, one can easily see requests for 1 MB/s, limit-
ing the server to 25 or fewer clients. To take this a bit further, an imaging system
whose clients each require 10 MB/s will perform poorly no matter how big a
server is if they’re all on a 10 MB/s Ethernet. And so on.

If you don’t know how much data an average user consumes, you can size your
Samba servers by patterning them after existing NFS, Netware, or LAN Manager
servers. You should be especially careful that the new servers have as many disks
and disk controllers as the ones you’ve copied. This technique is appropriately
called “punt and hope.”

If you know how many clients an existing server can support, you’re in much bet-
ter shape. You can analyze the server to see what its maximum capacity is and use
that to estimate how much data they must be demanding. For example, if serving
home directories to 30 PCs from a PC server with two IDE disks is just too slow,
and 25 clients is about right, then you can safely assume you’re bottlenecked on

,appb.27799 Page 325 Friday, November 19, 1999 3:30 PM

326 Appendix B: Samba Performance Tuning

Ethernet I/O (approximately 375KB) rather than disk I/O (up to 640KB). If so, you
can then conclude that the clients are demanding 15 (that is, 375/25)KB/s on aver-
age.

Supporting a new lab of 75 clients will mean you’ll need 1,125KB/s, spread over
multiple (preferably three) Ethernets, and a server with at least three 7200 RPM
disks and a CPU capable of keeping up. These requirements can be met by a Pen-
tium 133 or above with the bus architecture to drive them all at full speed (e.g.,
PCI).

A custom-built PC server or a multiprocessor-capable workstation like a Sun Sparc,
a DEC/Compaq Alpha, an SGI, or the like, would scale up easier, as would a
machine with fast Ethernet, plus a switching hub to drive the client machines on
individual 10 MB/s Ethernets.

How to guess

If you have no idea at all what you need, the best thing is to try to guess based on
someone else’s experience. Each individual client machine can average from less
than 1 I/O per second (normal PC or Mac used for sales/accounting) to as much
as 4 (fast workstation using large applications). A fast workstation running a com-
piler can happily average 3-4 MB/s in data transfer requests, and an imaging sys-
tem can demand even more.

Our recommendation? Spy on someone with a similar configuration and try to esti-
mate their bandwidth requirements from their bottlenecks and the volume of the
screams from their users. We also recommend Brian Wong’s Configuration and
Capacity Planning for Solaris Servers. While he uses Sun Solaris foremost in his
examples, his bottlenecks are disks and network cards, which are common among
all the major vendors. His tables for FTP servers also come very close to what we
calculated for Samba servers, and make a good starting point.

Measurement Forms

Table B-6 and Table B-7 are empty tables that you can use for copying and
recording data. The bottleneck calculation in the previous example can be done in
a spreadsheet, or manually with Table B-8. If Samba is as good as or better than
FTP, and if there aren’t any individual test runs that are much different from the
average, you have a well-configured system. If loopback isn’t much faster than
anything else, you have a problem with your TCP/IP software. If both FTP and
Samba are slow, you probably have a problem with your networking: a faulty
Ethernet card will produce this, as will accidentally setting an Ethernet card to half-
duplex when it’s not connected to a half-duplex hub. Remember that CPU and
disk speeds are commonly measured in bytes, network speeds in bits.

,appb.27799 Page 326 Friday, November 19, 1999 3:30 PM

Sizing Samba Servers 327

We’ve included columns for both bytes and bits in the tables. In the last column,
we compare results to 10 Mb/s because that’s the speed of a traditional Ethernet.

In Table B-8:

• CPU throughput = (KB/second from Figure 6-5) × (number of CPUs)

• Disk throughput = (KB/second from Figure 6-4) × (number of disks)

• Network throughput = (KB/second from Figure 6-6) × (number of networks)

• Total throughput = min (Disk, CPU, and Network throughput)

Table B-6. Ethernet Interface to Same Host: FTP

Run No Size in Bytes Time (sec) Bytes/sec Bits/sec % of 10 Mb/s

1

2

3

4

5

Average:

Deviation:

Table B-7. Ethernet Interface to Same Host: FTP

Run No Size in Bytes Time, sec Bytes/sec Bits/sec % of 10 Mb/s

1

2

3

4

5

Average:

Deviation:

Table B-8. Bottleneck Calculation Table

CPU
CPU
Throughput

Number
of Disks

Disk
Throughput

Numberof
Networks

Network
Throughput

Total
Throughput

,appb.27799 Page 327 Friday, November 19, 1999 3:30 PM

328 Appendix B: Samba Performance Tuning

A typical test, in this case for an FTP get, would be entered as in Table B-9:

The Sparc example we used earlier would look like Table B-10.

Table B-9. Ethernet Interface to Same Host: FTP

Run No Size in Bytes Time, sec Bytes/sec Bits/sec % of 10 Mb/s

1 1812898 2.3 761580

2 2.3 767820

3 2.4 747420

4 2.3 760020

5 2.3 772700

Average: 2.32 777310 6218480 62

Deviation: 0.04

Table B-10. Sparc 20 Example, Redux

CPU
CPU
Throughput

Number
of Disks

Disk
Throughput

Numberof
Networks

Network
Throughput

Total
Throughput

2 6,000 1 560 1 10base2 1,113 560

2 6,000 6 3,360 1 1,113 1,113

2 6,000 6 3,360 4 10base2 4,452 3,360

2 6,000 20 11,200 4 4,452 4,452

2 6,000 20 11,200 2
100base2

13,000 11,200

,appb.27799 Page 328 Friday, November 19, 1999 3:30 PM

