
by James Mendelsohn

Copyright 2001 Sun Microsystems, Inc.,

901 San Antonio Road, Palo Alto, CA 94303 USA.

All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Java Developer Connection,

JavaServer Pages, JSP, J2EE, Solaris, and Solaris Developer Connection are

trademarks or registered trademarks of Sun Microsystems, Inc. in the United

States and other countries. UNIX is a registered trademark in the United States

and other countries, exclusively licensed through X/Open Company, Ltd.

Building a Web Site: A Developer’s Guide 2

Table of Contents

Building a Web Site: A Developer’s Guide

Overview and First Principles . 6

Organization of the guide

Reading this guide

First principles for designing a Web site

The site as a system

Critical objectives

Practical design issues throughout the building process

Content on your site

Sizing and anticipating growth

Sequestering applications and segmenting content

Building Block 1. A Data Center .. 10

Budget issues for data centers

In-house or outsourced data center

Other budget factors

General considerations for all data centers

Scalable space

Secure environment

Multiple data centers

Air conditioning

Redundant power supply

Sufficient and redundant bandwidth

Round-the-clock support

Outsourcing issues for data centers

Degree of outsourcing

Firewalls

Scalable, redundant bandwidth

Building a Web Site: A Developer’s Guide 3

Table of Contents

Building Block 2. The Network Infrastructure . 17

Connections needed for network infrastructure

Sizing bandwidth

Routers and switches

Router issues

Network cards and connections

Virtual LANs

Firewalls

Load balancing

Building Block 3. Server Hardware . 24

Four areas of importance for all servers

Matching servers to content, recognizing the importance of size

Two-tiered versus three-tiered architecture

Matching servers to application architecture

Allocation, load balancing, and Web farms

Sizing servers

Server configurations

Disk configurations

Memory

Power supply for servers

Building Block 4. The OS and Database Layer . 34

Securing the operating system

Hardening the OS upon installation

Tracking and patching

Secure Telnet and FTP

Securing and configuring mail

Securing your mail server

Configuring your mail server: mail routing issues

Selecting and configuring a platform

Selecting a platform

Configuring the platform

Building a Web Site: A Developer’s Guide 4

Table of Contents

(Building Block 4. The OS and Database Layer, Continued)

Choosing a database

Integration

Redundancy

Databases with multiple data centers

Building Block 5. Identity and Security Policy . 39

General abilities of an identity and security policy

Authenticating: passwords versus digital certificates

Maintaining persistence and entitlements

Integrating the policy: identity issues

Integrating the policy: security issues

Managing entitlements on your site

Building Block 6. Application Servers and Content Management 43

Application servers

Application servers vs. applications on Web servers

Choosing application servers

Building with application servers: consistency

Configuring application servers

Content management

Workflow process: the template model

Creating documents

Re-generating and customizing documents

A final note on XML

Building Block 7. Development and Staging Environments . 53

Goals for deployment

Principles of deployment

The development server

Back-end development software

Content management software revisited

The staging server

QA and bugs

Building a Web Site: A Developer’s Guide 5

Table of Contents

(Building Block 7. Development and Staging Environments, Continued)

The production server: going live

Mirroring via manual FTP, Rsync and Perl scripts, or content management software

The logistics of modifying content

Building Block 8. Metrics, Monitoring, and Performance . 60

Goals of metrics and monitoring

Host monitoring

Application and database monitoring

URL monitoring

Traffic analysis

Number of raw hits and page views

Number of site visitors

Click-through analysis

Backup systems and network monitoring

Reports and management

Acknowledgments . 66

Building a Web Site: A Developer’s Guide 6

Overview and First Principles

At first glance, nothing could make expert developers more impatient than a description of the basics of

building a Web site. But time and again, our experts report that even the best developers feel that they

are better in some areas of site creation than in others. Or they tend to neglect some of the more basic

elements for building a good site. Instead, they focus with considerable brilliance on details but miss the

larger view. They don’t see the forest for the trees.

Hence the purpose of this guide, which provides a view of the forest for the aspiring and the expert

developer. The point is to ensure that the fundamentals of creating a Web site are covered, freeing you

to consider without worry the details — which other Dot-Com Builder articles address. This is a view

from above: a comprehensive — but not excessively detailed — view.

This overview of the entire guide covers the following topics:

Organization of the guide

Reading this guide

First principles for designing a Web site

The site as a system

Critical objectives

Practical design issues throughout the building process

Content on your site

Sizing and anticipating growth

Sequestering applications and segmenting content

Organization of the Guide

We proceed as if we were architects building a house, and we describe site building in eight discrete

sections or “building blocks.” First, we address the creation of a data center, whether in-house or

outsourced. Then we move to the contents of “the house,” from network infrastructure to server hard-

ware, and so on. The building blocks are as follows:

Data centers

Network infrastructure

Server hardware

The OS and database layer

Building a Web Site: A Developer’s Guide 7

Overview and First Principles

Identity and security policy

Application servers and content management

Development and staging environments

Metrics, monitoring, and performance

Reading This Guide

The eight blocks of the guide are designed to be read consecutively, but they do not exactly identify a

step-by-step procedure for creating a Web site. Each block builds upon those before it, describing an

order by which you might proceed. But that order should not be taken strictly. Nor would you make all of

your decisions consecutively, in the order the building blocks are presented, because you should con-

sider some elements of the later blocks from the beginning. For example, truly good performance and

monitoring (the subject of the last block) must be built into the data center, the server hardware, and —

where applicable — the application servers (the subjects of the first, third, and sixth blocks). You need to

be aware of the contents of each building block as you plan a site. Thus you may find it wise to read

through all of the blocks before acting.

If you are well-versed in all but a few of the subjects covered here, you can of course feel free to skip

around. Each building block is also designed to be read as an independent unit.

First Principles for Designing a Web Site

While the eight building blocks address interrelated components, there are also principles, critical

objectives, and practical design issues to bear in mind throughout the process of creating a Web site.

The Site as a System

A basic principle of site design underlies this guide: A Web site is a system. By its very nature, all the

pieces of the site fit together like a puzzle, all of them interrelated. So the kind of system you decide

upon in one area will determine the kinds of choices you make in another area. For example, the deci-

sions you make about data centers will affect your choices in network infrastructure. If you decide to use

a co-location facility, you will need a network to upload content and code to the site; but if not, you may

not need a VPN. The choices you make in network infrastructure will determine the kinds of decisions

you make in server hardware, and so on until, like a machine, all the parts build together into a site

functioning as a whole — without incongruous or spare parts.

Building a Web Site: A Developer’s Guide 8

Overview and First Principles

Critical Objectives

While we do not state it explicitly, every aspect of site building requires you to bear in mind these design

objectives:

Security. In every element of building and policy, you should protect the site and plan against the

possibility of site failure.

Reliability. Your site should be as continuously available to users as possible, as free of downtime as

you can make it.

Performance. Your site should respond to users as quickly and accurately as possible, and you

should plan so that it continues to do so as it grows.

Supportability. Your site should be as easy to maintain as possible, for which simplicity of design is

an important principle.

Practical Design Issues Throughout the Building Process

From abstract objectives, we move to practical matters. As you design, a few considerations are so

often influential that they should be before you throughout the process. Two are characteristics of your

site, its content and its size. One is an element of design that promotes performance and security,

namely sequestering applications and segmenting content.

Content on Your Site

Content determines the ways in which the site interacts with users, so content will strongly influence

many of the decisions you make about your site, from hardware and software to policy. For example, the

kind of content affects whether you have considerable demand for applications, which in turn affects

network architecture, choices about server hardware, and the configurations of that hardware. So as

you plan the site — as you read each section of this guide — bear in mind these questions:

Is your site producing mostly static content? Is it a more personalized site, directed toward providing

custom applications?

Is it producing user-generated content? Is your site transaction-oriented, as is e-commerce?

Sizing and Anticipating Growth

Your decisions about nearly everything on the site vary according to its size — whether it is medium,

large, or super-large — and the growth for which you need to plan. Scalability is but one element here.

For your server hardware and database, for the architecture of your applications, for your data center

and more, assess how much capacity you need at present and how to create the added capacity you

will need in the future.

Building a Web Site: A Developer’s Guide 9

Overview and First Principles

Sequestering Applications and Segmenting Content

As you create a network architecture, the security of your site and its performance are enhanced if you

sequester applications and segment content:

Sequestering applications. You should place each functional unit or application — such as the

database, the Web server, and the mail server — in a chrooted environment on its own piece of

hardware or the equivalent of such an environment on non-UNIX® systems. Hackers will have a

much more difficult time infiltrating your system beyond the specific area they manage to compro-

mise. The amount of damage a hacker might do is thereby contained.

Segmentation of content. If you write your own applications so they are not separable, then your

options for load balancing later will be reduced because you won’t be able to balance according to

the kind of application. In general, segmenting the content on your site so that its forums and various

applications are all autonomous groups of files (so that you can navigate between them without

breaking links) gives you the greatest flexibility for improving performance.

Building a Web Site: A Developer’s Guide 10

Building Block 1: A Data Center

You first need a physical home for your Web site, a location for its equipment and connections: a data

center. And as with any housing, the choices you make are never simple. The most obvious and com-

plex decision is whether to create a data center in-house or to outsource all or part of it. In this building

block, we’ll cover the basic issues you’ll want to address:

Budget issues for data centers

In-house or outsourced data center

Other budget factors

General considerations for all data centers

Scalable space

Secure environment

Multiple data centers

Air conditioning

Redundant power supply

Sufficient and redundant bandwidth

Round-the-clock support

Outsourcing issues for data centers

Degree of outsourcing

Firewalls

Scalable, redundant bandwidth

Budget Issues for Data Centers

You may want to think only in technical terms, but your budget is not going to let you do so. Budget

issues will affect how you create a data center.

Building a Web Site: A Developer’s Guide 11

Building Block 1: A Data Center

In-House vs. Outsourced

Data Center Decision Table

Requirement In-House: Pro In-House: Con Outsourced: Pro Outsourced: Con

Building a Web Site: A Developer’s Guide 12

Building Block 1: A Data Center

In-House or Outsourced Data Center

Budget issues are never simply a matter of how much money you have but of how you are financed and

how you can best balance costs. While for some developers housing and creating an in-house data

center sounds ridiculously expensive, for others outsourcing seems wildly extravagant. To call forth a bit

of well-worn advice, only you know what best fits your organization.

It is not that one of these two solutions is more expensive than the other. They are differently expensive.

On the one hand, building and maintaining a data center requires significant capital expenditures and

resources; on the other hand, the monthly cost of outsourcing will astonish you. At a well-known co-

location facility on the West Coast, the 2001 list price for floor space alone was $127 per square foot per

month. While no one ever pays full list price, no one ever buys simply the floor space. In addition,

outsourcing may mean the expense of providing and expanding a data center is subject to changes in

the market. It’s hard to lock in a cost with this solution.

As a general rule, if you have the money for capital expenditures and a well-developed IT staff, building

in-house may be the best choice; if you don’t have either the resources or the capital, outsourcing may

be your best and certainly quickest option. But those of you with capital and resources may still find a

co-location facility that is nearby and inexpensive; or you may have little capital and resources but find

an inexpensive means of creating a data center in-house: You may well find a solution that breaks this

general rule but works.

Other Budget Factors

Building in-house or outsourcing is just one budget decision to consider. So, too, are a number of

factors that affect that decision, including space, security, and location.

Amount of Space

Once you decide how much space you need now and in the future, the costs of that space will strongly

affect where you can locate your data center. If, for example, the prices for space in a co-location facility

are high and skyrocketing as they did in 1998, you might lean toward an in-house center rather than lock

yourself into a lease at an exorbitant rate. If those prices are dropping precipitously, as in 2001, a lease

from a co-location facility may be more attractive to you. The cost of expansion may also affect you. If

you will need x amount of square feet now but 10 times x in only a year, a co-location facility may be

less costly in the long run than that much additional office space.

Degree of Security

The costs of security vary according to where the data center is located, the potential threats to your

center, and the value of the data and the equipment. The costs of securing the site may strain the

resources you have, leading you to outsource; or the level of security you demand may make you

Building a Web Site: A Developer’s Guide 13

Building Block 1: A Data Center

certain you want the center to be in-house. For example, your office space may be so open to all em-

ployees and visitors it is impossible to secure a site for the data center without hiring 24-hour security

and retrofitting the space at an unreasonable expense.

Or you may find the opposite to be the case: Many co-location facilities provide you with a wire-mesh

cage that you share with several other businesses. Your equipment is both visible to all within the facility

and exposed to the personnel of those other firms with which you share a cage. If your security needs

are greater, then you have to pay for added features, such as upgrading to a private wire-mesh cage, or

still more secure, a private, enclosed room, often equipped with a biometric scanner. Measuring the

costs of that added security against the costs of the existing or upgraded security in your office space

may lead you to decide that in-house is ultimately less expensive.

Location(s)

You may need more than one center (see the section on general considerations below). The costs of

building multiple centers can powerfully influence the solutions you devise.

General Considerations for All Data Centers

Whether in-house or outsourced, your data center needs to consider the following issues to ensure

your site functions well and securely.

Scalable Space

You need to judge how much physical space you require and also plan for additional space in the future,

as you upgrade or expand. You should house your growing data center in one place, so be far-sighted: If

in-house, make sure that the space you have is large enough to grow into, or that the areas adjacent to

that space can be taken over. If outsourcing, make sure you have enough room for the present and that

the space adjacent to what you’ve rented is also available. If the adjacent space isn’t yet available, you

want the right-of-first refusal when it becomes free.

Secure Environment

To guard against theft and loss, you need a secure space. For some developers, that may mean simply

a partitioned section of an office; for others, it means a secure room or a building. The range of choices

is immense, from KEVLAR-coated fortresses with state-of-the-art security to single rooms in a strip

mall. In between these extremes are several possibilities. Many facilities require both digital badges and

biometric scanners to enter. Some facilities not only use these badges and scanners but require ad-

vance notification and an authorization code before they will admit you to the facility. And still more

secure facilities have 24-hour guards behind bullet-proof glass and pass you through a so-called “dead-

man’s chamber” — a room trapping visitors between full entrance and full exit — to ensure that the

privileged visitor alone enters with each card and scanner authorization.

Building a Web Site: A Developer’s Guide 14

Building Block 1: A Data Center

Whichever your choice of physical security, you also want a space that is equipped for a variety of

natural disasters, from fires to floods to earthquakes (where applicable).

Physical Setup of Data Center

Building a Web Site: A Developer’s Guide 15

Building Block 1: A Data Center

Multiple Data Centers

Ideally, to enhance security and ensure the best performance and availability, you should have more

than one data center. Equipment in a data center can break down or be damaged. A second center

guards against significant downtime. Data centers also perform better — they provide a faster user

experience — if they are closer to the users they service. If, for example, your users are on the East and

West Coasts, a data center on each coast will have a considerable effect on network performance, in

particular on the speed with which Web pages load, and on overall site performance.

Air Conditioning

Data centers get very hot. You need to install central air conditioning to ensure your equipment runs

properly unless you’ve outsourced, in which case the co-location facility will provide it. To meet your

needs as you grow, be sure that the air-conditioning system you first purchase can handle an expanded

center.

Redundant Power Supply

Ideally, you should have not only a regular but two kinds of backup power supply: First, an uninterruptible

power supply (UPS), which automatically kicks in if the power goes out and doubles as continuous

protection against power surges.

Typically, a UPS lasts only a few hours, so your goal is to have a second, more capable backup, a

gasoline or diesel generator that can provide you with enough power for two to three days — power for

running both your equipment and the air conditioning. (A cautionary note: Gas or diesel generators may

conflict with zoning ordinances because many communities don’t want that much gasoline or diesel fuel

stored on site.)

Sufficient and Redundant Bandwidth

You should ensure that your supplier can provide you with enough bandwidth for now and greater band-

width in the future. In addition, as with a power supply, you need redundancy, which means multiple

lines. Those lines should enter into your data center at different locations, in case someone accidentally

cuts a line in one location. You should have the bandwidth come from different suppliers in case one

supplier suddenly goes down.

Round-the-Clock Support

Whether at your own facility or outsourced, your data center must be maintained and watched. You

need a clear sense of who will monitor both your equipment and the bandwidth. You should know who is

on call in case there is a problem in the middle of the night. The need for support should figure into your

budget and administrative planning.

Building a Web Site: A Developer’s Guide 16

Building Block 1: A Data Center

Outsourcing Issues for Data Centers

Virtually all of these general considerations apply to outsourcing. You must either provide for these

concerns yourself or ensure that the co-location facility is doing so. But outsourcing has its own, spe-

cial considerations, including the extent of outsourcing, firewalls, and bandwidth issues.

Degree of Outsourcing

You need to decide how much of the data center you wish to outsource. At a minimum, the co-location

facility should provide you with physical security, power, and bandwidth. (Power and bandwidth are likely

to be separate fees.)

At the maximum, for which you will pay dearly, the facility does nearly everything: You put the content on

the machines; the facility runs and manages the machines as well as takes care of the firewalls and the

backups. Then there’s everything between these two extremes. For example, you may want the facility

to monitor the machines, back them up, and when necessary, reboot them. A co-location facility should

provide you with a menu of services and fees.

Firewalls

While the co-location facility is likely to have security, it’s less likely to provide you with firewalls between

the data center and any private connection you have to your office, such as a T1 line. You need to

establish those firewalls.

Scalable, Redundant Bandwidth

You should determine if there is indeed enough megabits-per-second bandwidth available for you now

and as you expand. If the co-location facility is so built out that it can’t meet the bandwidth you will

require in a year, then you have a serious problem. Our experts predict that it will be hard to get such

information from a facility, but it is worth pursuing as best you can. Just as with your own data center,

you should ask the co-location facility if they have redundant bandwidth connections and multiple suppli-

ers of that bandwidth.

Building a Web Site: A Developer’s Guide 17

Building Block 2: The Network Infrastructure

From housing, we move to connections, a subject that experts know well. For them, this chapter will

likely be a review of the basics. Much else could be said on this topic, and indeed, there are as many

network infrastructure issues as there are thoughts in a day. But this building block provides a bird’s

eye perspective of the fundamental and readily identifiable areas you need to address.

With network infrastructure, we look at the communication layers between the components of your

system, including those that connect to the Internet and those between components. To explain the

basics, it is useful to work back from the Internet to the parts of your system, or “from the Internet in.”

Network infrastructure divides into these topics:

Connections needed for network infrastructure

Sizing bandwidth

Routers and switches

Router issues

Network cards and connections

Virtual LANs

Firewalls

Load balancing

Connections Needed for Network Infrastructure

First and foremost, your infrastructure must connect multiple locations and parts of your system. In the

most general terms, those locations and parts include:

The data center or centers, where your production machines are located.

The staging area machines, which may be where your production machines are, or just as typically,

may be located with your development team.

Your development team offices, which often are close to your development servers. Note well,

however: Those offices could be in a number of nearby buildings or in a number of locations around

the world.

The various machines within your production environment, which may be in-house or at a co-location

facility but could include database machines, Web servers, and dedicated application servers, as

well as separate machines for LDAP, mail, and chat.

Building a Web Site: A Developer’s Guide 18

Building Block 2: The Network Infrastructure

Basic Network Infrastructure

Building a Web Site: A Developer’s Guide 19

Building Block 2: The Network Infrastructure

Sizing Bandwidth

We begin with the element of your network infrastructure that is closest to the Internet: bandwidth. Then

we work “back” into your system, so to speak.

If your data center is in-house, you need first to determine how much bandwidth your site requires. That

is likely to mean choosing whether your site needs one or more T1 lines, T3 lines, or DSL. While T1 and

T3 lines are more typical, some symmetric DSL lines provide three to four times the bandwidth of a T1

line.

As you size bandwidth, you should also consider sudden, predictable increases in usage. For example,

a sports site might have such a spike at Super Bowl time; a golf site might have one during the US

Open. If anything in your business model predicts a spike, factor it into your decision.

Many co-location facilities provide a 10-MB Ethernet drop. If that describes your situation, you should

pursue an agreement with the facility that allows you to upgrade easily to a 100-MB or even a 1-Gb drop.

At the risk of being repetitive — see Building Block 1: A Data Center — be sure to include backup band-

width for failover.

Routers and Switches

Your bandwidth settled, the first connections to your system are routers and switches. Routers link the

system to the Internet and connect networks on your system; switches provide connections within the

same network. Of these two kinds of connections, routers require more discussion.

Comparative Line Speeds for Internet Connections

Bandwidth Network Connection

Building a Web Site: A Developer’s Guide 20

Building Block 2: The Network Infrastructure

Router Issues

To be sure, routers deserve several articles to address properly, but here are the fundamental issues,

which apply whether you’re handling the routing in-house or outsourcing its management.

Router Basics

You need routing capability if you have more than one network address. Most ISPs have routers — you

can simply have the ISP drop a wire to your system and leave them to handle the basics — but that is

likely to be insufficient for the complexity of your system.

The actual degree of routing capability you need varies with your system architecture. If you have a

multitiered architecture and/or load balancing, for example, you probably need more sophisticated

abilities.

Redundancy: Failover Philosophy and Logistics

Whether you rent a cage at a co-location facility or run a data center in your own building, you have to

decide whether you want two different bandwidth feeds with two different routers.

Therein lies a question of failover philosophy: Routers are expensive, and don’t fail as often as other

devices, for example, disks. For failover, you may decide in favor of building two networks using different

ISPs but decide against a second router. Ultimately, your decision depends on your level of comfort with

redundancy and with risk, which should lead you to ask: “At what point do I stop adding equipment to this

system — equipment that increases the complexity of the system, which in itself can cause failover?”

If you decide to have a second router with a second feed, one basic issue is determining how your

routers handle failover, including whether or not they require additional network cards to enable failover.

Security: Static versus Dynamic Routing

You must choose between static and dynamic routing. Of course you want the router to act as dynami-

cally as possible, to ensure that a packet gets routed to the proper part of the network. But spoofed

routing is a concern, and static routing may well be a good means of avoiding that security problem.

While your decision depends on how you set up the router, you may find it best to use the default set-

tings. A cautionary note: If you use static routing and have failover, you must check that the routers

support a failover protocol that works with static routing.

Building a Web Site: A Developer’s Guide 21

Building Block 2: The Network Infrastructure

Network Cards and Connections

The routers direct traffic to the networks on your system, which should distinctly separate public and

private use. For that purpose, it is important that all machines have two Ethernet cards:

The first card for public/front-end access, which should be well protected with a firewall and should

allow truly limited access on specific ports.

The second card for a back-end, private network, a discrete network that should not allow communi-

cation or traffic with the public network. The private network enables intercommunication between the

various machines on the network as well as provides secure access for the developers. Access to it

could be through a dedicated private line and/or a VPN tunneling through the Internet.

For better performance and security, it is especially effective to connect your database machine to the

Web server on the back-end network. In this way, the public end has less network traffic and no access

to the database.

An important note: However you back up data on your system, your concerns for good performance

should lead you to use the back-end network to run the backup. Backing up data creates a lot of net-

work traffic. You want this traffic to be on the back-end network rather than the public front-end network.

Virtual LANs

In some cases, you may have only one Ethernet card on your machines but create a second, virtual

network on it, which will be non-routable. If you find it necessary to do so, you should expect that the V-

LAN will decrease the performance of your system.

Building a Web Site: A Developer’s Guide 22

Building Block 2: The Network Infrastructure

Firewalls

Next in, the firewalls. No one argues the importance of firewalls, which usually sit behind the router and

in front of the load balancer. But people do argue about which firewalls to choose, especially the de-

grees of security and performance they provide.

Hardware firewalls commonly reduce performance unless you spend considerably more for a higher-

end solution. You may therefore decide to create firewalls on the individual servers. Or you could choose

still greater security, selecting a hardware solution as well as hardening — that is, securing via firewalls

— the individual servers.

In addition, router configurations can add to the collective firewall capability by providing packet-level

filtering to your network.

Load Balancing

If more than one machine is performing the same task on your system, load balancing is essential for

scalability, reliability, and security. It is most common to load balance a Web server farm, for which you

purchase a load balancer (a hardware or software solution). The process of load balancing, however,

may take place on application servers and even between multiple database machines, which either

Comparison of Software and Hardware Firewalls

Software Pro Hardware Pro

Building a Web Site: A Developer’s Guide 23

Building Block 2: The Network Infrastructure

have the ability to balance built into their software or require code to be written. For example, an online

brokerage business would load balance a cluster of application servers to handle buy-and-sell transac-

tions.

Load-balancing considerations include:

Kinds of load distribution. You need first to decide whether to use load balancing to distribute

overall load on your Web or application servers, or to distribute demand according to the kind of task

to be performed. If, for example, you have a variety of dedicated applications and hence different

application servers, you might load balance according to the kind of application the user requests.

Geographic load balancing. If you have multiple data centers, you should consider an altogether

different kind of load balancing, geographic load balancing. Geographic load balancing distributes

load according to demand, site capacity, and whichever site is closest to the user. Moreover, if one

center should go down, the geographic load balancer provides failover ability.

Location on your system. But the most common form of load balancing — load balancers on Web

farms — requires still more attention. In the sections on load balancing to follow, we focus exclusively

on them, beginning with their location on your system. You place hardware load balancers in front of

the servers and behind the routers because they direct routed traffic to the appropriate servers.

Software solutions reside on the Web servers themselves. With software solutions, one of the

servers typically acts as traffic scheduler.

Packet-reading abilities. A good load-balancing solution is able to read the headers and the con-

tents of incoming packets, enabling you to balance not only according to brute load but according to

the information within the packet, including the kind of user and the type of request. That allows you

to identify privileged users and to direct requests to servers handling specific tasks.

Performance. As you evaluate load-balancing performance, be sure to investigate how dynamically

the load balancer communicates with all the servers on your cluster — whether the scheduler pings

each server or creates “live” agents that reside on the servers. You should also examine how the

load balancer parses TCP packets, paying particular attention to how quickly it can process a packet.

Some load balancers will be more efficient than others. That efficiency is typically measured in

throughput.

Hardware or software. Load-balancing solutions can be easily divided into software and hardware

options, but these alternatives are less easily decided between.

Some experts argue that hardware solutions have better performance and reliability. Others note that

the hardware solutions require you to buy a second load balancer if you want redundancy, while the

software solutions automatically shift distribution to another server on the cluster if there is a failure.

Building a Web Site: A Developer’s Guide 24

Building Block Three: Server Hardware

And now the appliances: You’ve chosen your house, identified and established your connections; finally

comes the hardware. If there are scads of issues about infrastructure, there are infinitely more when it

comes to server hardware. But in this section, we provide a framework from which to evaluate those

very issues. Once again, the idea is to offer a view from above, a guide that allows you to concentrate

on the welter of details about server hardware as they arise, comfortable that the larger-scale concerns

have been addressed.

In this block, those larger-scale issues divide into the following areas:

Four areas of importance for all servers

Matching servers to content, recognizing the importance of size

Two-tiered versus three-tiered architecture

Matching servers to application architecture

Allocation, load balancing, and Web farms

Sizing servers

Server configurations

Disk configurations

Memory

Power supply for servers

Four Areas of Importance for All Servers

Before and while you explore hardware configurations, you should consider four factors that are impor-

tant to all servers.

Matching Servers to Content, Recognizing the Importance of Size

Choosing servers first depends on what you are serving. Static content requires fewer CPUs than

dynamic content, which uses such technologies as JavaServer Pages[tm] (JSP[tm]), Active Server

Pages, and CGI scripts. The general rule — which will be implied or repeated throughout this building

block — is that content underlies many of the choices you will make.

To be sure, the size of the site matters, especially for server configuration. Servers with single CPUs are

inadequate. A single CPU can handle a decent amount of traffic, but with a spike in load, its performance

becomes erratic. To gauge the effect of size, consider the following example. At Sun, the Java Devel-

Building a Web Site: A Developer’s Guide 25

Building Block 3: Server Hardware

oper Connection[sm], Solaris Developer Connection[sm], and Dot-Com Builder share engineering

resources. The three sites have a large but not huge load. The group runs a dozen four-CPU servers

delivering Web pages, chat, forums, mail, and search, as well as four six-CPU servers covering back-

end operations, from database to search indexing. This server count includes failover machines for all

servers.

Some super-large sites use as many as 200 CPUs on their application servers alone. (We define a

medium-sized site as one that serves anywhere from 100,000 to 1 million page views per day. A large

site serves from 1 to 10 million page views per day, and any site that serves above 10 million page

views per day qualifies as super-large.)

But the size of your site is not the determining factor for server configuration. As the next two sections

imply, content is often the most significant and underlying influence.

Two-Tiered versus Three-Tiered Architecture

Although multilayered systems are commonplace, it is worth considering what best fits your site rather

than assuming you should create multiple tiers.

Three-Tiered Architecture

Building a Web Site: A Developer’s Guide 26

Building Block 3: Server Hardware

Occasionally, you will decide on a Web server alone. Most often, you will choose between these

two options:

A Web server or server farm with a database, where dynamic content is created by, say, JSP pages

A three-tiered configuration of Web server, application server(s), and a database back end, which is

typical when you need to integrate legacy systems or perform transactions. (For the purposes of our

conversation, “three-tiered” represents any n-tiered network.)

You should determine whether to use multiple servers according to what gives you the most functional-

ity, aids scalability, and facilitates administration and security: What works best now and allows you to

grow in the future. That decision depends in part on whether your site is driven by content or by dynamic

applications.

If you aren’t using application servers and don’t plan to, two tiers make sense. In general, however,

three-tiered solutions are more scalable than two-tiered ones and are probably the best choice with

complex applications or legacy systems.

Matching Servers to Application Architecture

The kind of servers you choose varies according to the architecture of your system and the needs of

each tier. (And content is once again the underlying influence: It affects how tasks are divided on the site

and how much load exists on the server, application, and database layers.) Architecture determines still

more precisely the number of CPUs needed and the size of the server in each tier, including RAM,

server configuration, and disk configuration.

At the most basic level, you should consider separate machines for the following:

Multiple Web servers (static content, JSP pages, ASPs, and CGI scripts typically run on

each machine.)

A database machine, if you have a database, with the appropriate number of CPUs for the size

of the database and your performance requirements

Application server or servers in the middle, to run anything from e-commerce to bank balances,

according to the kind of site you have

LDAP server to perform user authentication

Instant messaging server

Forum/discussion group servers

Personalization servers

Building a Web Site: A Developer’s Guide 27

Building Block 3: Server Hardware

Note well: you’re not done buying machines once you make these decisions about your production

environment. You need to create development and staging environments that replicate the production

area (Building Block 7 addresses development and staging environments). Replicating, however, is

unlikely to mean duplicating hardware because it’s too expensive. Nonetheless, it is important to dupli-

cate enough of the production environment that you can reliably test whether the site will work once you

go live. The closer you come to exact duplication, the more you can predict the performance and

scalability of the production environment.

Allocation, Load Balancing, and Web Farms

Your general considerations of server hardware must also include allocation, load balancing, and Web

farms.

For load balancing and Web farms in particular, scalability is an important, underlying issue. Effectively,

you must choose between vertical and horizontal scalability: whether to build more robust applications

and to place them on bigger machines, or to worry less about the efficiency of each application and to

scale by placing multiple copies of the application on separate, smaller machines.

Allocation

Certainly, the amount and kind of load on each tier requires different kinds of machines. The difference

between what an instant messaging server and a Web server needs is a useful example. A Web server

typically provides many, short-lived network connections, while an instant messaging server has fewer

but longer connections. For the Web server, therefore, the number of connections per second is most

important, while for an instant messaging server, the number of simultaneous connections is of greatest

value.

Load Balancing

Decisions about load balancing become more concrete when you consider server hardware. Deciding if

it makes sense to load balance your Web servers or to enable your application machines to load bal-

ance means deciding whether it is better to select a couple of larger machines or to load balance a

group of smaller machines. The answer depends on what hardware is readily available to you and the

kind of workload the machines will shoulder.

Web Farms

Your decision about load balancing is often a decision about creating a Web farm. Weigh the advan-

tages and disadvantages of a Web farm versus a single machine (presumably with a number of CPUs

equivalent to the sum of the CPUs in the farm). Multiple machines provide you with redundancy and

protect you better against downtime. But a farm of less expensive machines requires greater invest-

ment in resources to maintain them, and if you choose too small a machine to farm, the result won’t be

Building a Web Site: A Developer’s Guide 28

Building Block 3: Server Hardware

satisfying: What you save initially on less expensive machines will be noticeably smaller than what it

costs you in added resources to maintain them. For this reason, we safely predict that few of you will

select eight single-CPU machines over four two-CPU servers.

Sizing Servers

These general considerations in mind, you should match the function of the servers to the following

hardware characteristics:

Server configuration

Disk configuration

Memory

Server Configuration

Perhaps the most complex decision to be made about hardware is server configuration, and that de-

pends on answering these two questions:

What kind of machine(s) are you comfortable with?

What are the machine(s) doing?

Comfort is an unspoken but enormously influential factor. You’re likely to save a lot of time and re-

sources working with machines you are familiar with. It should be an important part of your choice.

Yet matching server configuration to function requires a more detailed explanation. While servers can

have up to 64 CPUs on one machine, cost and your precise need will probably result in your choosing

anywhere from two to eight CPUs, including two to four CPUs on Web servers and four to eight CPUs

on database machines. Server configurations require different considerations if they are database

machines, Web servers, or application servers.

Database Machines

Unless you’re a super-large site, where you might have a database farm, you’re likely to have only one

machine for your database layer because they’re expensive. You can’t split up a database over multiple

machines, so your single machine must have multiple CPUs to do the job.

Web Servers

Web servers have the opposite need for configuration. You can get better performance from multiple

Web servers with small numbers of CPUs rather than a single machine with many CPUs. A Web server

farm increases the number of TCP/IP connections and lessens the amount of traffic on a single network

Building a Web Site: A Developer’s Guide 29

Building Block 3: Server Hardware

card. Multiple Web servers can also have multiple disks, which will improve I/O performance. They are

more scalable — which makes it likely you’ll load balance — and they are less expensive to buy than a

single machine.

Application Servers

Like database servers, application machines function as discrete logical units. On larger sites, you

might have a number of (balanced) application servers.

Disk Configurations

Like server configurations, disk configurations vary greatly according to what gives you the best perfor-

mance. The key criteria are how much data storage is needed, how best to access that data, and the

kind of content being stored. This discussion of disk configurations has three parts:

Storage solutions

An instructive example

RAID, striping, and mirroring issues

Storage Solutions

The storage configurations of your servers divide into three general categories:

Large disk array. Larger machines have a separate box that handles multiple disks, a disk array that

can run anywhere from gigabytes to terabytes. Physically connected to only that one server, a disk

array offers maximum performance. It is the likely choice for a database machine.

Network storage device. In this configuration, the disks reside on the network and are available for

any machine to access their information. Writing to a network storage device is less efficient. This

device works best where the stored information is read-only, so static content is served well by this

solution.

Multiple disks. Rather than a separate array, this configuration typically uses one to three disks in a

machine.

An Instructive Example

While disk configurations are easier to select for a database machine than for most other servers, they

are harder for a Web farm. Consider a Web farm comprising machines that have two CPUs serving

mostly static content. For such a farm, you need to decide between the relative advantages and disad-

vantages of multiple disks on individual machines and a network storage device.

Building a Web Site: A Developer’s Guide 30

Building Block 3: Server Hardware

Weighing these two options reveals much about the compromise between performance and reliability:

Multiple disks require you to replicate content on each machine, which gives you good performance

but requires constant maintenance. You need to ensure that the content is the same on each ma-

chine, updated as updates occur. Therein lies an often-overlooked problem: This solution requires

you to pay special attention to machines that are down for maintenance while a content change

occurs. Offline machines need to be modified once brought back online.

The alternative, a network storage device to which all machines have access, solves the problem of

maintaining up-to-date content and is a little easier to maintain, but its performance is not quite that of

disks on individual machines.

RAID, Striping and Mirroring

All three kinds of storage solutions require you to decide on:

RAID states between 0 and 5.

Striping data across several disks to improve read and write performance.

Mirroring data to give you multiple copies of files on disks, which increases reliability and improves

your ability to recover data but at a cost to performance.

RAID Levels and Corresponding Functionality

Level Description Data Center Use

Raid Levels

Building a Web Site: A Developer’s Guide 31

Building Block 3: Server Hardware

Once again, your choices balance performance and reliability, and these balancing acts vary according

to the content and the machine. The key criteria will be whether the data being stored is read-only or

write-modified, and whether or not the storage solution should be hot swappable.

The differences between database and Web farm disk configurations are instructive here. The disk

array of your only database machine should be mirrored and hot swappable, allowing you to take a disk

out of the array without turning off the machine. In contrast, a Web farm — on which machines have

their own disks — should be striped, but it does not need to be mirrored because you have other copies

of the data residing on the different machines of the Web farm.

Memory

RAM is simply one of the most important areas of your hardware. While it is moderately expensive, it

powerfully affects performance on your servers. Therefore, the more memory, the better. Once you

evaluate your needs, you should not be stingy in the amount of RAM you provide your servers. Typically,

you want to pay close attention to the memory requirements of your application servers, where RAM

especially influences performance. Later, once your site is up and running, you can add still more RAM if

you find that your machines are using a lot of swap memory — that is, accessing the hard disk to

perform.

Building a Web Site: A Developer’s Guide 32

Building Block 3: Server Hardware

Sample Output from the vmstat Command

 procs memory page
 r b w swap free re mf pi po fr
 0 0 0 549664 20848 5 360 3 379 1027
 0 0 0 549664 21760 2 0 17 0 0
 0 0 0 549296 21384 0 126 0 1 1
 0 0 0 549264 20616 0 140 750 33 33
 0 0 0 548688 17368 6 262 25 56 56
 0 0 0 549664 17800 5 0 0 0 0
 0 0 0 549480 17616 0 125 0 8 8

Here are some definitions for the output of the vmstat command:

procs Report the number of processes in each of the three following states:

r in run queue

b blocked for resources I/O, paging, and so forth

w runnable but swapped

memory Report on usage of virtual and real memory.

swap amount of swap space currently available (Kbytes)

free size of the free list (Kbytes)

page Report information about page faults and paging activity. The
information on each of the following activities is given in units
per second.

re page reclaims

mf minor faults

p kilobytes paged in

po kilobytes paged out

fr kilobytes freed

de anticipated short-term memory shortfall (Kbytes)

sr pages scanned by clock algorithm

Configuring your database is an art unto itself, but at the most basic level, simple decisions about RAM

can be quite effective.

If, for example, your database is primarily read-only, you want the machine to have enough RAM to

locate the database in it if that is practical (which it won’t be if your database is huge). In such a circum-

stance, RAM optimizes the efficiency of your database machine. Because RAM is much faster than the

hard disk, the database performance dramatically improves if it is located there.

If you write often to the database, then locating the database in RAM is unimportant and expensive.

Building a Web Site: A Developer’s Guide 33

Building Block 3: Server Hardware

Power Supply for Servers

Beyond sizing your servers, their power supplies deserve a brief comment. While thereis not a lot of

variation in power supplies — your machine manufacturer will provide the appropriate unit for your

machine — you should ensure that your power supply has two abilities:

Redundancy. You don’t want a single transformer failure to force your system to go down.

Hot-swappable supply. You should have the ability to exchange one power supply for another without

having to turn off the machine.

Building a Web Site: A Developer’s Guide 34

Building Block Four: The OS and Database Layer

Software is its own house within a house of hardware, and it needs its own foundation: the operating

system and, to a lesser extent, the database layer. Ultimately your choices of an OS and database will

be strongly influenced by the ones with which you are most familiar and comfortable. But to state the

obvious, there is no such thing as simple selection in this case. Choosing an OS and database is only

the beginning of your efforts to establish these layers. Creating a software foundation is no less an art

than selecting and configuring hardware.

Nonetheless, the operating system and database have readily identifiable requirements. Security is the

paramount issue as you establish your OS and database, which should become abundantly clear in the

following sections:

Securing the operating system

Hardening the OS upon installation

Tracking and patching

Secure Telnet and FTP

Securing and configuring mail

Securing your mail server

Configuring your mail server: mail-routing issues

Selecting and configuring a platform

Selecting a platform

Configuring the platform

Choosing a database

Integration

Redundancy

Databases with multiple data centers

Building a Web Site: A Developer’s Guide 35

Building Block 4: The OS and Database Layer

Securing the Operating System

No matter what operating system you choose, security is the greatest concern. And so we begin there.

The means for hardening your operating system depends, of course, on the OS. But we identify three

principal ways in which you must both secure and remain vigilant about securing your operating sys-

tem:

Hardening the OS upon installation

Tracking and patching

Secure Telnet and FTP

Hardening the OS Upon Installation

As soon as you install the operating system, you’ll need to improve its security. Any OS has security

flaws that must be attended to. For example, with systems that use UNIX® or variations of UNIX, you

should harden the OS by removing everything from it that is not essential for what you’re doing on the

site. In effect, you are ridding the OS of unnecessary applications that would give hackers tools with

which to compromise your security. Among other things, you should remove compilers and strip out all

components related to X Windows, the windowing system for the Solaris[tm] Operating Environment

and other UNIX-based machines.

Tracking and Patching

Hardening the operating system also requires you to have all current patches and to remain vigilant

about the latest security holes to be discovered in operating systems, applications, and protocols. You

should regularly track CERT advisories on both patches and newly discovered holes.

Secure Telnet and FTP

Telnet and FTP are necessary but must be used in a secure way. You therefore should use SSH and

secure FTP at all times, and, if possible, open ports for these services only on the private, secure

network of your system.

Nonetheless, some sites use TCP wrappers, which are not the most secure option, but are worth

considering as a means of using and restricting FTP and Telnet. TCP wrappers have the added advan-

tage of reducing the number of rules your firewall must filter. With fewer rules, the firewall is less likely to

slow the processing of packets and to degrade service for an end user. TCP wrappers also allow you to

control access to such services on a per-host basis, which is a quick and easy means of adding or

changing hosts.

Building a Web Site: A Developer’s Guide 36

Building Block 4: The OS and Database Layer

Securing and Configuring Mail

Your ability to receive and to send mail is not only a vital function but also a means for someone to

wreak havoc on your network.

Securing Your Mail Server

If you’re serious about security, you should run a mail server only on a separate machine dedicated to

mail serving. The reason for doing so is simple enough and an important first principle: All mail applica-

tions have holes; the point is to minimize the holes as well as their effect. We have already addressed

the importance of sequestering each application on its own piece of hardware (and each application on

a machine in a chrooted environment). This principle bears repeating here: If you sequester your mail

server, then anyone who manages to hack into the mail server will have much more difficulty trying to

damage the system beyond that server.

Configuring Your Mail Server: Mail-Routing Issues

At the same time you secure your mail server, you must enable the system to send and to receive mail

for all of your applications. After all, users send mail and requests to various parts of your site while your

system generates important mail for internal use. Make sure that:

Applications that need to send, such as confirmations, are able to do so. All mail sent from an appli-

cation server and returned bounced is routed not to the application server but to a mailbox where it

can be read. To provide these abilities and to maintain security, you should forward all mail from each

application to the mail server — which then connects to users rather than the individual applications

doing so. To ensure proper routing, you should configure the “from” portion of the mailer headers so

that all replies to mail sent from applications go to some place where they will be read.

If you should use sendmail to enable your Web servers to mail, configure it so that it runs only

when called upon to send mail, after which it immediately shuts down.

If your system is UNIX-based, then system-generated mail such as cron errors or system mes-

sages should be routed not to the root on the individual machine — where no one would see it — but

to some administrator.

Selecting and Configuring a Platform

Selecting a Platform

In the simplest of terms, to choose a platform is to choose between UNIX (or a UNIX variation such as

Linux or Solaris) and Windows. In spite of the passion with which some people voice their preference,

there is no wrong selection for a platform, though you should always carefully review current security

guidelines and warnings in the course of the selection process. The most important factor in your

Building a Web Site: A Developer’s Guide 37

Building Block 4: The OS and Database Layer

decision-making should be which platform you are most expert and comfortable with. For example, you

should consider which programming languages the platform uses — Java[tm], C or C++, Visual Basic,

or Perl, among others — and with which of these programming languages you are comfortable.

But you should also consider the following as you make your choice:

Software selection: What software is available for that platform, and what

database servers, Web servers, chat servers, and application servers do you

want to run? Windows will of course run different software than UNIX. But each

UNIX variation will have different software available.

Hardware selection: What hardware is available for your platform? You should

investigate how expensive those machines are. You also should find out whether

the platform runs on big or little machines, if it is scalable to large machines, and

whether it clusters well.

Configuring the Platform

Your configuration of the platform should make security the first priority and performance nearly as

important. Configuring a platform for security and performance is strongly platform-specific and hence

resistant to generalization. But consider these properties and requirements as you configure:

The number of available TCP connections

The number of open file handles

The memory allocation for each application (bearing in mind the large demands on memory

your database will make)

Choosing a Database

The repository of information, database software is likely to be the centerpiece of any large, dynamic

Web site. While you may have the apparent luxury of several Web servers, cost considerations will

probably restrict you to only one database. Which database you choose — for example, Oracle,

Sybase, SQL server, mySQL, Informix, or DB2 — should depend on the performance, reliability, and

cost of the database. It should also depend on which database you have experience or expertise with

and, where applicable, which databases your company is already using.

Building a Web Site: A Developer’s Guide 38

Building Block 4: The OS and Database Layer

Integration

This last consideration is particularly important if you have legacy applications, such as HR, accounts

payable, and financial databases. Your ability to integrate the database you choose with your existing

applications may well be the determining factor. (For a few of you, the ability to migrate from one data-

base to another may also be important, in which case you’ll want to investigate how easily and at what

cost it can be done. In general, migration requires rewriting a lot of code.)

Redundancy

Beyond selecting a database, you should also provide some failover ability or replicate the software and

data.

Failover

With databases (and for that matter, with application servers, mail servers, and all other layers of your

system), redundancy requires you to make a careful calculation: What amount of downtime is accept-

able on your site? To answer that question is to decide among three types of standby:

Cold: a manual process that takes hours to restore function

Warm: a semiautomated process that takes minutes to restore function

Hot: an automated process that is seamless or takes mere seconds to restore function

This decision is a calculation because cost factors will play an important part in your choice. To keep

your network available 95 percent of the time will cost you so many dollars. To keep it available for 100

percent of the time — to achieve that final 5 percent — is likely to cost you 10 times that amount. You

therefore need to measure the cost of downtime on your system against this exponential difference in

the cost of providing standby. If you are an online brokerage firm, the cost of five minutes of downtime

may be millions of dollars. In that case, you probably should choose hot standby. But if your business is

likely to lose only $1,000 in those five minutes, you may want to consider a less expensive alternative.

Replication

While it is less likely, you might provide redundancy by creating a separate database. An additional

database requires you to shoulder not only the additional hardware and software costs but the increased

demand on resources for managing a more complex network.

Databases With Multiple Data Centers

Replication may also be something you consider if you have multiple data centers. There, too, you need

a kind of redundancy — database ability at multiple sites. Most often, however, businesses with multiple

data centers do not replicate under these circumstances but enable all of the data centers to draw from

a single database machine at one of them. If you decide to buy additional databases, database makers

have real-time replication software to synchronize them, but that software is likely to be expensive.

Building a Web Site: A Developer’s Guide 39

Building Block 5: Identity and Security Policy

From OS and database security, we move to the means by which you identify users and secure your

system as they use it. Your site needs a general identity and security policy that focuses on the user

because identity and security are obviously important and easily botched.

You should design that identity and security policy early in the process of building your Web site, so that

all parts of your system work together to create a coherent and unified policy. Doing so reduces security

risks. It also prevents a common problem: requiring users to repeatedly identify themselves as they

navigate different parts of the site where no additional identification should be necessary.

Swiftly defined, the purposes of such a policy are to manage the user experience smoothly and to

protect the system thoroughly. Those purposes translate into the following goals:

To manage user identity, authorize access, and store access information, such as user passwords.

To identify the types of information you have on your site, determine the value of that information, and

create from that evaluation a thorough understanding of your security risks and an appropriate policy

to address them.

We consider identity and security policy in the following sections:

General abilities of an identity and security policy

Authenticating: passwords versus digital certificates

Maintaining persistence and entitlements

Integrating the policy: identity issues

Integrating the policy: security issues

Managing entitlements on your site

General Abilities of an Identity and Security Policy

For your identity and security policy to be effective, you need some basic abilities, which can be divided

into three kinds:

Identifying a user and providing critical access.

Maintaining the user’s identity throughout the session, which involves both creating a means for

session persistence and repeatedly validating the user during the session.

Using that validated identity to grant access to the appropriate parts of the site according to the

privileges of that person.

Building a Web Site: A Developer’s Guide 40

Building Block 5: Identity and Security Policy

Identity and Security, People, Groups, Resources

Authenticating: Passwords Versus Digital Certificates

To identify your users, you will probably choose between two forms of authentication:

User names and passwords

Digital certificates

User names and passwords are of course simpler to use; digital certificates are more secure but more

technically complex for both users and administrators. Your decision between these two forms of

authentication depends on the kind of site you have and the kind of users. For example, a bank Web site

needs high security but serves a population of technically unsophisticated users: Bank sites usually opt

for user names and passwords because of their users. A Web site for military intelligence is likely to

choose digital certificates, which increases its security but requires resources for creating and manag-

ing the certificates as well as for training its users.

Building a Web Site: A Developer’s Guide 41

Building Block 5: Identity and Security Policy

Maintaining Persistence and Entitlements

To establish persistence on your site, you should use cookies or session identifiers embedded within

the URL. Whichever means you use, it is important to authenticate by the same mechanism on all

parts of the site, so that session persistence is maintained and users do not have to authorize each

time they use an application.

As users move around the site, you must identify them and allow them access to more secure areas

according to their privileges. In effect, you must create entitlements, a means of providing privileges to

the individual once he or she is authorized, whether those privileges are for reading sensitive content or

for administrative functions. The practical means for managing entitlements is addressed in the last

section of this building block.

Integrating the Policy: Identity Issues

Authenticating in the same way across your Web site is a start toward integrating identity policy

throughout your network. You should also integrate that policy into the dynamic parts of your site,

across all your machines and applications.

Your database, the repository of information for your site, deserves special attention. For integrating

security policy with your database, two alternatives come readily to mind:

You can use LDAP to identify, authenticate, and grant or deny access (effectively using LDAP

as the data repository).

You can use your database directly.

You must then evaluate how well each alternative integrates with the security policy you are trying to

establish and when to use those alternatives.

Your decisions about LDAP or a database — where and when you use each to integrate your identity

policy — should be strongly influenced by the kind of site you have. For example, LDAP performs well

with data that changes infrequently, such as a phone book or log-in information. Directly accessing a

database works well with data you modify often, such as shopping carts for e-commerce, transactions

for a bank site, or online stock trades.

But the choices may not be so clear-cut. If you already use the database directly for looking up user

authentication and storing access privileges, then continuing to do so may make more sense than

implementing LDAP. That means you should also be influenced by which data repository you have the

most experience with and how well each of these alternatives works with your legacy applications.

Building a Web Site: A Developer’s Guide 42

Building Block 5: Identity and Security Policy

Integrating the Policy: Security Issues

Integrating your policy is a matter of not only identity but security. You want to guard against a hacker

using the operating system and hardware of an individual server, such as an application server, to

attack the network beyond that individual server. In practical terms, that means all applications should

be sequestered on separate machines, and each application should run in a chrooted environment.

You also want to protect against a hacker taking on the identity of a specific user to steal or otherwise

damage that user’s account or the services available to that user. You should always encrypt user

names and passwords with SSL to prevent hackers from using packet sniffers to examine user names

and passwords sent in clear text. You should also monitor and protect carefully the database or LDAP

server on which you store user names and passwords.

Managing Entitlements on Your Site

The previous sections addressed how users are authorized and gain access to data on your site. But

to make entitlements work, you still need to keep track of what privileges each user is granted.

You need a software application to manage the information on your site and establish which pages and

what applications require what kinds of privileges. There are essentially two means of acquiring this

software:

You can build your own authorization model for applications, using JavaServer Pages[tm] technology

or ASPs as you go along, or you can use htaccess, which is built into Web servers such as

Apache.

You can install a purchased application or customize it to your needs.

Your choice here depends on the complexity of your site and your users. A bank site has many users

with approximately the same privileges. For such a site, the security portion of the application is fairly

simple, and you’re likely to build your own authorization model: It doesn’t require a lot of resources or

many changes once deployed, and site personnel aren’t actively modifying the pages on the site.

A large corporate Web site, however, is a likely candidate for a purchased solution. Such a site has

executives, salespeople, and other users, all with different privileges, many of them with the privilege of

changing content. It requires a complex system of entitlements. Building an application for such a site

goes beyond the resources of most businesses. A purchased application, whether or not customized,

has an easy-to-use interface for managing such complexity.

Building a Web Site: A Developer’s Guide 43

Building Block 6: Application Servers and

Content Management

You’ve established hardware and software foundations and created an identity and security policy. Now

functions on your site need to be addressed. And as discussion turns toward the function of your site,

the road divides. On one side are sites that are largely application-driven, on the other, sites that rely

mostly on content. Some sites partake equally of both, and if so, the two parts of this building block will

apply equally. But many Web sites consider themselves either application-driven or content-based —

closer in kind to either E*TRADE or CNN. For the former, application servers are vital; for the latter,

content management is essential.

Application-Driven Versus Content-Driven

Building a Web Site: A Developer’s Guide 44

Building Block 6: Application Servers and Content Management

Application servers and content management therefore demand separate attention, and we address

them in the following sections:

Application servers

Application servers vs. applications on Web servers

Choosing application servers

Building with application servers: consistency

Configuring application servers

Content management

Workflow process: the template model

Creating documents

Regenerating and customizing documents

A final note on XML

Application Servers

To use application servers is to build distributed applications. In the following sections, we discuss the

case for distributed applications and the advantages of using application servers.

Application Servers vs. Applications on Web Servers

You can of course run applications without application servers, in which case each of your Web servers

would have a copy of the application you want to make available to your users. If your applications are

not terribly complex — if, for example, they are small and don’t interact with other modules — then

installing applications on your Web servers may be a reasonable solution for the moment. An application

that fulfills a simple request for information, such as a simple look-up in a phone directory, is reasonably

handled by an application on a Web server.

But for complex applications, application servers are especially valuable. By “complex,” we mean

applications that have many different modules with discrete functions that interact with each other and

must integrate with legacy systems. They might also add functions over time. An online brokerage site

uses complex applications with interacting modules for making trades, creating personal trade histories,

and generating stock and bond information.

Building a Web Site: A Developer’s Guide 45

Building Block 6: Application Servers and Content Management

To no surprise, application servers are the wave of the future for large to super-large sites. The reasons

are clear enough. Application servers not only distribute applications across multiple machines but also:

Keep track of users and session states.

Maintain the database connection pool.

Provide transaction controls for multiple requests.

Ensure that the data from different forms gets to the database accurately.

Cache read-only information that is used repeatedly by different users.

Coordinate development and deployment when the application requires multiple development teams.

Facilitate deployment from the development server to multiple application servers on the front line.

Given these abilities, the advantages of an application server are easily summarized:

Scalability: You have greater scalability for your application because you can distribute it across

multiple servers.

Performance: You can create caching schemes to reduce hits to the database, thereby optimizing

database queries and schema designs. As a result, the database can be used more effectively for

tables or queries whose results cannot be cached, such as personalized customer data.

If your goal is to create a scalable, professional, and dynamic site, one that frees you from writing

unnecessary code for applications so that you can focus on creating the functions of the site, application

servers are simply necessary.

Building a Web Site: A Developer’s Guide 46

Building Block 6: Application Servers and Content Management

Choosing Application Servers

Your choice of application servers may be based on your individual requirements, or it may be con-

strained by the servers available for your operating system. Where you have a choice between servers,

consider performance and ease of implementation.

Application Servers Compliant* With J2EE[tm] 1.2 Technology

ATG Dynamo Application Server 5 for Solaris[tm] Operating Environment and Windows NT

BEA WebLogic Server 6.1 for Solaris, Windows NT/2000, HPUX, AIX, and Red Hat Linux

Borland AppServer 4.5 for Solaris and Windows 2000

Fujitsu INTERSTAGE for Solaris, Windows NT, and Linux

Hitachi Cosminexus Server Standard Edition for Windows NT

HP Bluestone Total-e-Server for Windows NT

IBM WebSphere Application Server 4.0 for Windows NT, Solaris, Linux, AIX,

HPUX Version A Release Level B.11.0, and iSeries

IBM WebSphere Application Server 4.0.1 for z/OS and OS/390

IONA iPortal Application Server 1.3 for Windows NT and Solaris

iPlanet[tm] Application Server 6.0 for Solaris

Macromedia JRun Server for Windows NT

Oracle9i Application Server for Windows NT and Solaris

Persistence PowerTier Application Server

SilverStream Application Server 3.7 for Solaris, Windows NT/2000, HPUX, AIX, and Linux

Sybase EAServer 3.6.1 for Solaris and Windows NT

TogetherSoft ControlCenter

Trifork Enterprise Application Server for Windows NT

* (As of December 2001; to get the latest list, see http://java.sun.com/j2ee/compatibility.html)

Performance

Some experts say performance should be the deciding factor. They argue as follows: All application

servers conform to the specifications of the Java[tm] 2 Platform, Enterprise Edition (J2EE[tm]) standard

or of its equivalent on other operating systems, such as Microsoft’s COM model. Therefore, your appli-

cations run on any server, in which case performance is the most important decision you have to make.

Building a Web Site: A Developer’s Guide 47

Building Block 6: Application Servers and Content Management

That advice may be particularly well-received by large, well-financed sites, where performance is almost

all that matters, and the difference between $10,000 and $17,000 for an application server is less

important.

In any case, performance varies significantly between servers, especially in how they scale. For ex-

ample, a noticeable difference exists in the performance of some application servers in clustered

environments when they are sharing the session states of users.

Ease of Implementation

Still other experts argue that ease of implementation should be equally if not more important to your

decision. You want to be able to use the server as easily as possible, with a minimum of training. That

ease of use may come from the server itself, including the ease of server installation, application deploy-

ment, integration with development tools, and maintenance. But that ease may also be the result of your

comfort and familiarity with the server.

Building With Application Servers: Consistency

As you begin to build functions on your application servers, commit all the way. That is, use the same

programming architecture throughout your site. Don’t create half of your functions by writing code in Perl

script and the other half using JSP[tm] technology. Instead, develop applications on application servers

throughout your site to avoid creating undue complexity in your system, which drains resources and

makes managing your applications a nightmare.

Stated as a principle, you should create functions on your site in a consistent manner. That implies you

should not only develop Web applications in the same way but use common tools for your system.

For example, use a single user-authentication and access-control module throughout the site. Develop

the same method for connecting to the database throughout your system.

Configuring Application Servers

As you configure your application servers, you should simplify the process of developing your applica-

tions, freeing you to focus on creating functionality. To that end, follow the specifications of your applica-

tion servers. Doing so reduces the amount of code you must write and in general minimizes the amount

of work needed to develop applications. You aren’t required to write code for generic communication

issues with the database because the application server automatically handles the storing of data and

the transfer of it to and from the database. As a result, you write only the programs for the specific

functions you want the application to perform. (Because you cluster a group of application servers, they

automatically communicate and load balance with each other, which requires you to write less code.)

Building a Web Site: A Developer’s Guide 48

Building Block 6: Application Servers and Content Management

Factors in Tuning an Application Server

Setting the Number of Threads

Your ultimate goal is to optimize the performance of the application servers while minimizing demand on

the database. To that end, the settings for the number of threads and the database connection pool

deserve particular attention. For each application server, you should set the number of threads — the

number of requests it can take from the Web server — to optimize performance. You want to maintain

the number of threads at the maximum figure that each application server can handle without impeding

Reactive

If regular monitoring of the database server computer reveals that the CPU

or memory is reaching maximum capacity —

Then you should decrease the size of the database connection pools.

If you notice the database server is showing abundant available capacity,

while the application server is showing heavy CPU or memory usage —

Then you should increase the database connection pool sizes, but only for the

applications shown to be spending much time waiting for database connections.

If HTTP requests to applications on front-end Web servers take too long to be serviced,

and the application server computer is showing available capacity —

Then one possibility is to increase the number of threads.

But if the application server machine is at its maximum capacity, it may be better to

decrease the number of threads serviced. There will be some delay for HTTP requests,

but the application server will run more smoothly.

Proactive

When you anticipate needing increased capacity, you can proactively make tuning changes to
the application-server software; for example, perhaps there has been a release of new software
more computationally intensive, or you expect increased traffic as a result of a new marketing
campaign.

A Final Note

These application-server tuning methods go hand-in-hand with the configuration of the comput-
ers. When you notice excessive CPU or memory usage, you must decide whether or not to
tune the application-server software to alleviate the problem. Of course, there are other options,
such as adding memory to the computer, modifying the amount of

available swap space, or migrating the application server software to a more powerful com-
puter.

Building a Web Site: A Developer’s Guide 49

Building Block 6: Application Servers and Content Management

performance. Set too small, the number of threads creates a bottleneck, hindering each application

server from handling the number of requests of which it is capable. Set too large, the number of threads

will overwhelm the server with requests, slowing performance.

That maximum number varies according to the hardware of your server, especially the number of CPUs

and other details specific to the hardware: The vendors of your application servers can help identify the

appropriate number of threads.

Setting the Database Connection Pool

The database connection pool is an invaluable way to keep connections to the database open. Your goal

is to configure it to preserve database resources while ensuring that the application server can efficiently

process all the necessary calls to the database. You vary the database connection pool according to the

number and the complexity of calls on each application server, whether it stands alone or is part of a

cluster. A simple call may be a price look-up for inventory, while a complex call would be one that re-

quires the merging of diverse database tables — personal information, address, financial information,

and so on — for a large number of people.

Clearly, the demand of fewer complex database calls is equal to that of many more simple calls. To

assess the demand on the database from each application server, you need to weigh the kind of calls in

the pool and the number of calls, avoiding the obvious extremes. Set arbitrarily at the highest level for

the number of concurrent calls, the database connection pool causes your application server to hoard

database resources, taking memory and additional resources from the database that other application

servers might need. If the pool is set too low, your application server’s performance slows considerably.

In general, the database connection pool should be large enough to handle traffic on the application

server but small enough to avoid placing unnecessary demands on the database. In practice, you

determine that setting by monitoring the CPU memory and utilization rates of your database server.

Content Management

Your site may be less centered on complex, interactive applications and more on the publishing of so-

called “static content” to users, such as words and images that make up stories on a news site. For

such a site, content management is important because it manages workflow, the process of authoring,

editing, approving, staging, and publishing content. It is possible to build this software yourself; it is more

likely that you purchase it. For that reason, the focus here is on how the software enables function on

content-driven sites.

Your goal with content management software is to solve three problems inherent to content-driven sites:

How to effectively manage hundreds if not thousands of documents that may require updating. You

need to create and then control the version of a particular document that is available. You may have

Building a Web Site: A Developer’s Guide 50

Building Block 6: Application Servers and Content Management

to coordinate the work of authors and editors scattered throughout the world, who may not be techni-

cally adept (or you can’t rely on them being so).

How to regenerate all the pages if you should decide to change the appearance of the site. It’s not

unusual to add, subtract, or modify a banner, logo, menu bar, or the layout of your pages. You need to

be able to re-generate the content of these pages easily as you make these design changes.

How to customize hundreds or thousands of pages, either to vary the language of the page or to

allow for personalized views of the data.

Workflow from Author Through Production

Building a Web Site: A Developer’s Guide 51

Building Block 6: Application Servers and Content Management

Workflow Process: The Template Model

Content management software solves these problems through two important functions:

Workflow process

Page generation

Whichever software you buy, you want its workflow process abilities to provide a template model for

framing and indeed containing the content.

Creating Documents

The workflow module facilitates the creation of content and its movement from the writer to the various

editors, regardless of where they are. For each individual article produced as content, this module

coordinates development from:

Authors creating content

Editors modifying the language of that content

HTML editors adding graphics or pictures and making the necessary technical additions

for Web viewing

The software should allow you to oversee the process by which the content is first written, next ap-

proved, and then scheduled for release with its associated graphics or pictures added to the template.

Re-Generating and Customizing Documents

The template model should also solve the problems of regenerating and customizing pages in the

following ways:

Whenever you create a new template, altering page appearance to suit your preferences for banners,

logos, or layout, content is regenerated with the new look you seek.

The template model allows for personalization because individuals or groups of users can have their

own templates for the mix of content specific to them. In effect, the individual user or group of users

can manage the content delivered to them within parameters you establish.

Page Generation

The second of the two modules in content management software, page generation, solves the problem

of version control and coordinates the actual production of the document. The document is generated

for review, whether that final review takes place on the development or staging server. If that review

takes place on the development server, the document automatically is added to the staging server and

— based on the publishing schedule — pushed automatically to the production side. Once at the pro-

duction server, all versions are synchronized.

Building a Web Site: A Developer’s Guide 52

Building Block 6: Application Servers and Content Management

Personalization

Content management software can provide you with still more precise and robust personalization

abilities: most systems allow you to offer users unique combinations of content based on one of two

basic models. Both forms of personalization increase your costs and the demand on your system, but

they are worth considering:

Explicit personalization: Users personally log in and are delivered content tailored to their explicit

demands, such as local weather or news.

Implicit personalization: This delivers content based on the pages you select as you navigate the site.

Commonly used in e-commerce, implicit personalization ranges from collaborative filtering to neural

networking.

A Final Note on XML

For both application-driven and content-centric sites, XML may play an important function. With applica-

tion servers, XML has two ready functions. If your site has data to share with application servers on

another site or system, you need a way to move data between them. XML is an excellent way to do just

this. In addition, XML is often used for deployment descriptors for the application servers — effectively

as an installation guide for the application on the application server.

For content-driven sites, XML or customized variations of XML are potentially useful for content syndica-

tion — that is, for publishing content on both your own site and on other sites. Some content manage-

ment systems have XML-enabled content syndication for when you want to license or distribute content.

Building a Web Site: A Developer’s Guide 53

Building Block 7: Development and Staging Environments

While we have focused attention on the production side of a Web site, there is another, equally impor-

tant part of your network to build: the environments in which you produce your site. The development

and staging environments require their own hardware and a carefully directed means by which all that

you develop is deployed to the production servers, from where the site goes live.

In this building block, we address the development, staging, and production environments in the follow-

ing sections:

Goals for deployment

Principles of deployment

The development server

Back-end development software

Content management software revisited

The staging server

QA and bugs

The production server: going live

Mirroring via manual FTP, Rsync and Perl scripts, or content management software

The logistics of modifying content

Goals for Deployment

Deployment, which includes the development and staging environments, has an overwhelmingly

important effect on the ability to create and to modify a site and on the likelihood a site performs accord-

ing to your expectations: Without proper attention, the result can be disastrous.

To move from developing to staging to producing a Web site requires:

Establishing a means and location for your authors to create and modify content — which involves

not only deploying a content management system but maintaining the integrity of the production

server.

Ensuring that your development and staging environments lead to a site that appears and behaves

as expected once it is live — which means comprehensively testing a site in advance.

Producing and modifying the actual site — which means facilitating the rapid and easy modification of

a site, from upgrading of features to changing, adding, or deleting content.

Building a Web Site: A Developer’s Guide 54

Building Block 7: Development and Staging Environments

Principles of Deployment

It is not unusual to use the same server for development and staging, but ideally you should have

three separate pieces of hardware for each environment:

A development server

A staging server, which is identical in kind if not in size and performance to the production server

One or more production servers

The scheme for replicating data to the production servers should be appropriate for the size of your

site and the complexity of updating it.

To maintain good security and avoid a logistical nightmare, limit access to the production servers to a

few engineers only; content authors should be segregated from the production servers. While de-

ploying new code, use only a secure connection to the production hardware, over a private network

card.

As you modify content, you should carefully manage the order in which those changes are pushed

through to the production server.

Building a Web Site: A Developer’s Guide 55

Building Block 7: Development and Staging Environments

Relationship of Development and Staging Environments

Building a Web Site: A Developer’s Guide 56

Building Block 7: Development and Staging Environments

The Development Server

Your development server is the shop in which you build your site. If the site is not too large, then you will

probably use FTP to transfer data files from this server to the next. For the development server, you are

certain to need back-end development software and likely to need content management software.

Back-End Development Software

For back-end development software, you must have source code control software, such as SCCS,

RCS, or CVS, as well as performance testing software. In addition, an integrated development environ-

ment (IDE) is helpful.

Content Management Software Revisited

Content management has already been addressed in Block 6 as a necessary component of content-

oriented sites. Here, however, we add greater detail and focus on its importance for development and

deployment. The same basic goals are met by content management software. It facilitates:

Publication of content

Development or modifications by people who may not have technical backgrounds

Functions for the Less Technical: Authoring

For less technical contributors, your choice of content management software may be more useful if it

includes presentation templates for converting and presenting content in formats such as HTML, XML,

WML, and PDF.

The software should provide the ability to:

Create presentation templates.

Centralize control of site design elements.

Easily define navigation rules and generate site navigation accordingly.

Select content criteria.

Define site hierarchy.

Functions for the Less Technical: Workflow

To segregate back-end issues and access from content publishing functions, the content management

solution should offer:

Ability to prepare and automatically post materials to the site (self-service authoring)

Browser-based authoring (so desktop authoring software is unnecessary)

Version archiving and audit trail

Building a Web Site: A Developer’s Guide 57

Building Block 7: Development and Staging Environments

Integrated workflow

Content scheduling

Functions for the Administrator

To enable you to administer site development, content management software should include the

capacity to:

Manage users remotely

Establish and monitor security

Categorize content both automatically and according to in-house rules (metadata).

Archive content, preferably in a repository that allows for its reuse.

The Staging Server

After development, your site needs to be moved to a staging server. Although this version of the site is

not live, the staging server should be identical in kind (if not in size and performance) to the production

server:

The software on your staging server should be configured identically to the production machine, so it

is a true basis for quality assurance testing.

Your staging server hardware should be comparable to the production hardware. In that way, your

site administrator can test performance on it, multiply for the number of machines deployed in pro-

duction, and thus forecast site capacity accurately.

If you take a production Web server out of commission for maintenance...

Remember that new content still flows to the remaining production servers,

so you must take care to resynch the machine that was off-line to “catch up” with

the latest content.

Building a Web Site: A Developer’s Guide 58

Building Block 7: Development and Staging Environments

QA and Bugs

On the staging server, you must test the site for QA and for bugs because it is that copy of the site you

send to your production servers when you go live. In particular, you want your QA on the staging server

to check the following:

Validity of all hyperlinks.

All other navigation on the site, including:

Landing pages for all sections of the site.

Links on each of the pages (including such standard sections as Help, Privacy Policy, Terms

and Conditions, Advertising Sales, About Us, and Contact Us).

Site search functions.

All other components, special functions, or features, from calculators and polling features to

applications.

All live feeds.

Appearance: All the pages look as you intend them to — including advertisements.

Performance: All pages load quickly.

Testing: The site passes any additional load testing, script testing, and database connection testing.

Spelling on each page.

Content: The content works well on the types of browsers you intend to support, including such

elements as the format and page layout.

Bugs

Bugs are inevitable; the efficient treatment of bugs is not. You should centralize knowledge about all

bugs, in effect creating a single database for your testers’ reports on problems. If you have a large site

that you administer in-house, you may want to assign a single person to oversee the record and verify

that all bugs are fixed.

Your process for fixing bugs should include:

Centralizing the reports of all fixes.

Determining which bugs are highest priority and scheduling corrections accordingly.

Meeting regularly about bugs.

Separating fixes from added features and functionality, which means using a separate process and

database for any modifications to the site.

Building a Web Site: A Developer’s Guide 59

Building Block 7: Development and Staging Environments

The Production Server: Going Live

Mirroring via Manual FTP, Rsync and Perl Scripts, or Content Management Software

Finally you reach the production servers, on which the live site resides. Here, you need some kind of

synchronizing protocol to mirror the site. Content management software often automates synchroniza-

tion.

If you do not have automated synchronization, then you’ll have to develop your own protocol. For modest

changes to your site, you might be able to manually send an FTP version of each file from the staging to

the production server as a means of replicating. But most sites are too sophisticated for such a treat-

ment, and as the modifications increase, you will quickly find that manual replication is not practical.

Rsync, a home-grown Perl script, or some other program, will be necessary to ensure that mirroring

occurs fully.

Rsync and Perl scripts are more efficient means of synchronization than FTP. They can identify auto-

matically the changes in the directories and files, so they more efficiently select what you need to

synchronize than manual FTP does. File management will also be better with Rsync and Perl scripts

because they will automatically delete old files, thereby reducing load size on the Web server.

The Logistics of Modifying Content

No matter how carefully you design your system, deployment and staging issues will arise each time

you modify the site. You therefore need to pay special attention to the logistics of publishing to avoid a

broken site. If, for example, the publication process takes half an hour to transfer all the files for a new

article you are publishing, your Web site will have a broken link unless the Web page that contains that

link is the last page published. You may want to begin with the graphics, follow with the article, and once

everything else is synchronized, publish the Web page with the link.

Building a Web Site: A Developer’s Guide 60

Building Block 8: Metrics, Monitoring, and Performance

You’ve laid the foundations, added the functions, and created the means for developing and staging. But

your site functions only as well as the ability you have to monitor its operation and performance.

The capacity for monitoring, metrics, and performance analysis should be not an afterthought but built

into your site at each stage of its development. The more you do so, the more carefully you can observe

the functioning of your site, which in turn affects your ability to improve performance and locate any

problems precisely and quickly. Good monitoring and metrics save you considerable time, resources,

and hence money.

In this final block, we examine metrics, monitoring, and performance in these sections:

Goals of metrics and monitoring

Host monitoring

Application and database monitoring

URL monitoring

Traffic analysis

Number of raw hits and page views

Number of site visitors

Click-through analysis

Backup systems and network monitoring

Reports and management

Goals of Metrics and Monitoring

While you need to monitor all disks comprehensively, you also need to monitor and analyze what your

data indicates about the current and future performance of your network. And performance analysis

takes a number of forms — machine performance, application metrics, transaction rates, and stress

testing.

Metrics and monitoring should not only enable you to administer your site efficiently and comprehen-

sively but also contribute to building a strategy for the site. They should provide the following information:

Whether or not any or all parts of your site are down — and precisely which parts

Whether or not all parts of the site are popular and otherwise productive for you

Building a Web Site: A Developer’s Guide 61

Building Block 8: Metrics, Monitoring, and Performance

What your users are doing on the site

Where your visitors are having problems

What your future needs are

To acquire that information, you want metrics and monitoring ability in several areas, beginning with host

monitoring.

Host Monitoring

Monitor each piece of hardware on your site. At the very least, perform heartbeat monitoring to ensure

each machine is functioning. Of course, a more sophisticated form of this minimal monitoring would

come from an internal agent. But it pays off in the end to monitor the hardware comprehensively,

including:

CPU utilization — the percentage of the CPU utilized

Ethernet traffic — how much traffic is going in and out from each network interface

Disk utilization — which includes disk capacity and I/O performance

Memory utilization — which should include memory swapping

Building a Web Site: A Developer’s Guide 62

Building Block 8: Metrics, Monitoring, and Performance

Sample Output from the mpstat Command

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 296 2 881 2 0 127 1 15 13 0 576 2 3 4 91
 1 221 32 1183 246 44 193 2 12 37 0 614 6 4 28 63
 2 473 6 796 40 39 147 1 16 27 0 909 3 6 9 82
 3 230 8 670 341 339 201 2 13 28 0 664 4 4 10 82

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 165 70 1606 1 0 221 1 8 2 0 289 4 3 67 26
 1 37 6 668 242 42 105 1 7 2 0 411 6 2 9 83
 2 9 0 676 30 30 78 0 7 2 0 151 0 1 4 95
 3 234 23 363 475 473 101 2 6 2 0 631 12 3 26 59

The mpstat command reports the following information:

CPU processor ID

minf minor faults

mjf major faults

xcal interprocessor cross-calls

intr interrupts

ithr interrupts as threads (not counting clock interrupt)

csw context switches

icsw involuntary context switches

migr thread migrations (to another processor)

smtx spins on mutexes (lock not acquired on first try)

srw spins on readers/writer locks (lock not acquired on first try)

syscl system calls

usr percent user time

sys percent system time

wt percent wait time

All of these areas are important to monitor, but disk utilization is particularly noteworthy. It is common for

Web server disks to fill up rapidly and unexpectedly with log files, which may lead the site to crash. This

sudden filling of the disk is the result of any process on the machine that writes to the file system. (How

rapidly the disks fill up depends in part on how you have partitioned them.) For example, a forum server

keeping track of messages contributes to this build-up.

Building a Web Site: A Developer’s Guide 63

Building Block 8: Metrics, Monitoring, and Performance

Monitoring the disk utilization of the mail server and database server is critical for the same reason. On

the database server, for example, transaction logs are notorious for quickly filling up disks.

Host monitoring is a common service of co-location facilities, so you may want to outsource it. But of

course there are many products you can buy and many such products that come with the hardware.

Many of you will decide to build the monitoring tools yourselves.

Application and Database Monitoring

This monitoring should indicate whether or not the database and all parts of the applications are work-

ing. It should also indicate what their performance is, from which you can better scale your applications.

As you build your applications, you want to design monitoring metrics into them that measure each part

of the application. With this kind of instrumentation, you can pinpoint where you need to debug an

application. That precision is particularly important because as you add functions to an application,

some parts of the application may break.

Consider the instrumentation you want for an e-commerce application with modules for viewing prod-

ucts, shopping cart, order status, and credit card transactions. You want to know that each part of that

application is functioning. You also want to know how well each part is functioning and ultimately how

long it takes to execute transactions and queries.

Internal database monitoring varies in kind with the database you use, but it should include the following:

Transaction rates

Memory utilization rates (and other measurements of how the software is managing memory)

Cache hit rates

Amount of time for reading and writing to the database

Co-location facilities rarely provide application or database monitoring, so you must develop this ability

yourself.

URL Monitoring

With URL monitoring, you should evaluate not simply the home page but a sampling of all the Web

pages you produce. Many services will check all of your pages for broken links, but you want also to

assess network performance, especially response time to requests for pages, from different locations.

Building a Web Site: A Developer’s Guide 64

Building Block 8: Metrics, Monitoring, and Performance

Therefore, be sure that such monitoring is both external as well as internal: It is easy enough to check

the URL from within your system, to see if the URL is working for you. But you must also check from

outside the network, ideally from a number of remote locations. Many commercial products perform

URL monitoring.

Traffic Analysis

Your analysis should tell you what users are doing on the site and how often they come back. The

potential sources for traffic analysis are HTTP log analysis and session monitoring of usage, the latter

often a result of cookies. Of these two sources, log analysis is largely focused on IP addresses and

doesn’t easily distinguish between individual users. It is useful albeit more expensive to have real-time

monitoring and analysis of cookies or other header information.

Traffic analysis on your site falls into three kinds.

Number of Raw Hits and Page Views

Raw hits and page views are important information for assessing network bandwidth usage and predict-

ing future traffic for capacity planning. Public relations and advertising people for your site will also want

this information to prove just how big a site you have.

Number of Site Visitors

The number of different site visitors provides a useful metric for assessing stickiness, the length of time

someone stays on your site for each visit. Your marketing people will want this information, but so will

your site administrator because it may indicate the satisfaction level of your users as they visit or navi-

gate your site.

Click-Through Analysis

Click-through analysis, the sequence of pages a visitor follows, tells you still more accurately how users

navigate the site. Your analysis should provide you with information on the first and last pages users visit

as well as where they go between the two.

Of this information, the last page is particularly important. From it, you can assess whether users have

an easy navigation experience and other information about their site experience. For example, if the last

page many users click to is the search results page or the site index page, then the search engine of the

site or the index is likely to be frustrating rather than leading them to continue exploring the site. If many

visitors exit at a page that is a sign-up form, it may tell you that the form is discouraging users. If you

have an e-commerce site, the last page allows you to calculate how often people leave the site before

completing transactions.

Building a Web Site: A Developer’s Guide 65

Building Block 8: Metrics, Monitoring, and Performance

Backup Systems and Network Monitoring

Monitoring both your backup systems and your network should be part of your overall disaster recovery

plan. This monitoring and analysis should ensure that all of your standard operating procedures — that

is, your plans for how you do backups and monitor — actually function. (Many systems use their

failover networks to perform metrics.) Be sure that you audit tape backups and other storage elements,

which are sometimes forgotten elements in such monitoring. And include in your monitoring the people

who are part of these procedures: Monitor the technician who must change the tapes every day.

Reports and Management

Just as important as the specific monitoring functions is what you do with all of this information. To that

end, you want to create reports, centralize management, and establish clear alert and escalation proce-

dures:

Reports. Monitoring and metrics in all areas should lead to generating graphs, pictures, and reports

for system administrators and other managers.

Management. To make changes systemwide and to debug easily, handle error logging and session

management in one place.

Alert and escalation procedures. As part of management, these procedures should identify whom to

alert and what else to do with each malfunction. If an event is repeated a second or third time, or if a

repeat occurrence creates a more serious problem than the first, you want the chain of command to

be clear.

Acknowledgments

This guide could not have been developed without the help of many technical experts. To them, a

heartfelt thanks.

Sun experts provided the following assistance:

Felix Serna supplied valuable general commentary.

Ben Colborn gave critical explanations on selected OS security issues.

Eric D. Larson critiqued the general outline and offered important insights about identity policy.

Will Snow greatly enhanced the sections on server hardware; metrics, monitoring, and performance;

and identity and security policy.

John Hoffmann and the java.sun.com engineering group provided critical understanding on develop-

ment and staging environments as well as application servers and databases.

Warren Belfer provided insight and generosity (as well as patience beyond the call of duty) on server

hardware; operating systems; metrics, monitoring and performance; and network infrastructure issues.

And Charlotte Allen effectively pioneered the entire outline for the project, fundamentally influencing its

shape and providing all the other consultants with a set of ideas to which they reacted.

From outside of Sun, three experts provided invaluable help:

Rich Teer of Rite Online Inc. shepherded the writer through the intricacies of creating a data center.

Phil Bartholo of WaterWare Internet Services gave expert advice on application servers.

Finally, this project would not have happened without Mark Waters of WaterWare Internet Services, who

is virtually a second author, having provided countless hours of explanation on every block of the primer.

Thanks to Ghostdog Design for their artistic direction and the Dot-Com Builder production team.

