
Compiling the Linux kernel

Section 1. Tutorial tips

Should I take this tutorial?
Do I need experience?

If you're relatively new to Linux, or any other UNIX or UNIX-like operating system, and
would like to learn how to configure, compile, and install the Linux kernel, then this
tutorial is for you. In it, you'll learn what the Linux kernel is, what modules are, and how
to download, compile, and install a new kernel. This tutorial will walk you through the
complete kernel compilation process.

If you have previously compiled a Linux kernel yourself, you may find this tutorial to be
a good refresher course.

Navigation
Navigating through the tutorial is easy:

1. Use the Next and Previous buttons to move forward and backward through the
tutorial.

2. Use the Menu button to return to the tutorial menu.
3. If you'd like to tell us what you think, use the Feedback button.
4. If you have a question for the author about the content of the tutorial, use the

Contact button.

Compiling the Linux kernel Page 1

Contact
For technical questions about the content of this tutorial, contact the author, Daniel
Robbins, at drobbins@gentoo.org.

Daniel resides in Albuquerque, New Mexico. He is the President/CEO of Gentoo
Technologies, Inc., the Chief Architect of the Gentoo Project and a contributing author
of several books published by MacMillan: Caldera OpenLinux Unleashed, SuSE Linux
Unleashed, and Samba Unleashed. Daniel has been involved with computers in some
fashion since the second grade, when he was first exposed to the Logo programming
language as well as a potentially dangerous dose of Pac Man. This probably explains
why he has since served as a Lead Graphic Artist at SONY Electronic
Publishing/Psygnosis. Daniel enjoys spending time with his wife, Mary, and his new
baby daughter, Hadassah.

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 2

Section 2. Introducing the kernel

The kernel is...Linux!
What do you think of when you hear the word "Linux"? When I hear it, I typically think
of an entire Linux distribution and all the cooperating programs that make the
distribution work.

However, you may be surprised to find out that, technically, Linux is a kernel, and a
kernel only. While the other parts of what we commonly call "Linux" (such as a shell
and compiler) are essential parts of a distribution, they are technically separate from
Linux (the kernel). While many people use the word "Linux" to mean "Linux-based
distribution," everyone can at least agree that the Linux kernel is the heart of every
distribution.

Interfacing with hardware
The primary role of the Linux kernel is to interface directly with the hardware in your
system. The kernel provides a layer of abstraction between the raw hardware and
application programs. This way, the programs themselves do not need to know the
details of your specific motherboard chipset or disk controller -- they can instead
operate at the higher level of reading and writing files to disk, for example.

CPU abstraction
The Linux kernel also provides a level of abstraction on top of the processor(s) in your
system -- allowing for multiple programs to appear to run simultaneously. Linux does
this by allowing several UNIX processes to run at once -- and the kernel takes care of
giving each one a fair share of the processor(s).

A Linux kernel can support either a single or multiple CPUs -- and the kernel that you
are using now is either uniprocessor-aware (UP-aware) or symmetric
multiprocessor-aware (SMP-aware). If you happen to have an SMP motherboard, but
you're using a UP kernel, Linux won't "see" your extra processors! To fix this, you'll
want to compile a special SMP kernel for your hardware. Currently, SMP kernels will
also work on uniprocessor systems, but at a slight performance hit.

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 3

Abstracting I/O
The kernel also handles the much-needed task of abstracting all forms of file I/O.
Imagine what would happen if every program had to interface with your particular
hardware directly -- if you changed disk controllers, all your programs would stop
working! Fortunately, the Linux kernel follows the UNIX model of providing a simple
abstraction of disk I/O that all programs can use. That way, your favorite database
doesn't need to be concerned whether it is storing data on an IDE disk, a SCSI RAID
array, or a network-mounted file system.

Networking Central
One of Linux's main claims to fame is its robust networking, especially TCP/IP support.
And, if you guessed that the TCP/IP stack is in the Linux kernel, you're right! The
kernel provides a nice, high-level interface for programs that want to send data over
the network. Behind the scenes, the Linux kernel interfaces directly with your particular
ethernet card or modem, and handles the low-level Internet communication details.

Networking goodies
One of the greatest things about Linux is all of the useful features that are available in
the kernel, especially those related to networking. For example, you can configure a
kernel that will allow your entire home network to access the Internet via your Linux
modem -- this is called IP Masquerading, or IP NAT.

Additionally, the Linux kernel can be configured to export or mount network-based
NFS file systems, allowing for other UNIX machines on your LAN to easily share data
with your Linux system.

Booting, part 1
When you turn on your Linux-based system, the kernel is loaded from disk to memory
by a boot loader, such as LILO. At this point, the kernel takes control of your system.
The first thing it does is detect and initialize all the hardware that it finds -- and it has
been compiled to support. Once the hardware has been initialized properly, it is then
ready to run processes. The first process it runs is called "init", which is located in /sbin.
Then, "init" starts additional processes, as specified in /etc/inittab.

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 4

Booting, part 2
"init" typically starts several copies of a program called "getty," which waits for logins
from the console. After getty successfully processes a login request, your default shell
is loaded (which is typically bash). Once you're in bash, you have the power to launch
any program you'd like.

While all these new processes are started, the kernel is still in control, carefully
time-slicing the CPU so that each process has a fair share. In addition, the kernel
continues to provide hardware abstraction and networking services for the various
running processes.

Introducing...modules!
All recent Linux kernels support kernel modules. Kernel modules are really neat things
-- they're pieces of the kernel that reside on disk, until needed. As soon as the kernel
needs the functionality of a particular module, it's loaded from disk, automatically
integrated with the kernel, and available for use. In addition, if a kernel module hasn't
been used for several minutes, the kernel can voluntarily unload it from memory --
something that's called "autocleaning."

Modules, part deux
Kernel modules live in /lib/modules, and each module has a ".o" at the end of its name.
As you may guess, modules each represent a particular component of kernel
functionality -- one module may provide FAT filesystem support, while another may
support a particular ISA ethernet card.

Modules allow you to have a low kernel memory footprint. You can create a kernel that
contains only the features necessary for booting your computer, and all other features
can be loaded from modules on demand. Because the kernel autocleans any modules
it loads, your system's memory can be put to good use.

Modules -- important stuff!
You can't put everything in a module. Because modules are stored on disk, your
bootable kernel image needs to have compiled-in support for your disk controller as
well as for your native file system (typically the ext2 filesystem). If you don't have these
essential components compiled into your kernel image (but compile them as modules
instead), then your kernel won't have the necessary ability to load these modules from
disk -- creating a rather ugly chicken-and-egg problem!

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 5

Progress quiz
It's time for a quick quiz. True or false: It's not a good idea to put your primary disk
controller driver in a loadable module.

A. True
B. False

(The correct answer is "A. True")

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 6

Section 3. Locating and downloading sources

Kernel versions
To compile a recent kernel, you need to download the sources first. But before you
download the kernel sources, you need to know what you're looking for. The first
question to ask yourself is this -- do you want to use a stable or experimental kernel?

Stable kernels always have an even second digit -- for example, 2.0.38, 2.2.15,
2.2.18, and 2.4.1 are all considered "stable" kernels (due to the 0, 2, 2, and 4,
respectively.) If you'd like to test out an experimental kernel, you'll typically look for the
highest-numbered kernel that has an odd second number. For example, 2.3.99 and
2.1.38 are both experimental kernels (due to their 3 and 1, respectively).

Kernel version history
The 2.2 series is considered a modern, stable kernel. If "modern" and "stable" are
things that sound good to you, look for a 2.2 kernel with the highest third number you
can find (2.2.16 is the most recent version at the moment).

While the 2.2 series kernel was being developed, the 2.3 series began. This series was
created to serve as a testing ground for new, advanced features that would eventually
show up in the stable 2.4 series. As of right now, the 2.3 series has already reached
2.3.99, and 2.3 development has stopped. These days, developers are working on
getting the 2.4.0 test kernels into shape. If you'd like to be on the cutting-edge, you'll
want to try the most recent 2.4.0-test kernel you can get your hands on.

2.4 kernel warning
Once a real 2.4 series kernel comes out (like 2.4.0), don't assume that the kernel is
ready for use on a mission-critical system like a server. Even though 2.4 is supposed
to be a stable series, early 2.4 kernels are likely to be not quite up to snuff. As is often
the case in the computer industry, the first version of anything can have fairly sizable
bugs. While this may not be a problem if you're testing the kernel on your home
workstation, it is a risk you may want to avoid when you machine provides valuable
services to others.

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 7

Downloading the kernel
If you simply want to compile a new version of your installed kernel (for example, to
enable SMP support), then no downloading is necessary -- skip past this and the next
panel.

You can find kernels at http://www.kernel.org/pub/linux/kernel. When you go there,
you'll find the kernel sources organized into several different directories, based on
kernel version (v2.2, v2.3, etc.) Inside each directory, you'll find files labelled
"linux-x.y.z.tar.gz" and "linux-x.y.z.tar.bz2". These are the Linux kernel sources. You'll
also see files labelled "patch-x.y.z.gz" and "patch-x.y.z.bz2". These files are patches
that can be used to update the previous version of complete kernel sources. If you
want to compile a new kernel release, you'll need to download one of the "linux" files.

Unpacking the kernel
If you downloaded a new kernel from kernel.org, now it's time to unpack it. To do so, cd
into /usr/src. If there is an existing "linux" directory there, move it to "linux.old" ("mv
linux linux.old", as root.)

Now, it's time to extract the new kernel. While still in /usr/src, type tar xzvf
/path/to/my/kernel-x.y.z.tar.gz or cat
/path/to/my/kernel-x.y.z.tar.bz2 | bzip2 -d | tar xvf -, depending
on whether your sources are compressed with gzip or bzip2. After typing this, your new
kernel sources will be extracted into a new "linux" directory. Beware -- the full kernel
sources typically occupy more than 50 megabytes on disk!

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 8

Section 4. Configuring the kernel

Let's talk configuration
Before you compile your kernel, you need to configure it. Configuration is your
opportunity to control exactly what kernel features are enabled (and disabled) in your
new kernel. You'll also be in control of what parts get compiled into the kernel binary
image (which gets loaded at boot-time), and what parts get compiled into
load-on-demand kernel module files.

The old-fashioned way of configuring a kernel was a tremendous pain, and involved
entering /usr/src/linux and typing make config. While make config still works, please
don't try to use this method to configure your kernel -- unless you like answering
hundreds (yes, hundreds!) of yes/no questions on the command line.

The New Way to configure
We more modern folks, instead of typing make config, type either make
menuconfig or make xconfig. If you'd like to configure your kernel, type one of
these options. If you type make menuconfig, you'll get a nice text-based color menu
system that you can use to configure the kernel. If you type make xconfig, you'll get
a very nice X-based GUI that can be used to configure various kernel options. Here's a
screenshot of "make menuconfig":

When using "make menuconfig", options that have a "< >" to their left can be compiled
as a module. When the option is highlighted, hit the space bar to toggle whether the
option is deselected ("< >"), selected to be compiled into the kernel image ("<*>") or
selected to be compiled as a module ("<M>").

Configuration tips
There are tons of kernel options, and there's no room to explain them all here -- so
please take advantage of the kernel's built-in help functionality. Almost every option is
described in at least some detail, and each one normally contains the line "If you don't
know what this means, type Y (or N)." These hints keep you out of trouble if you
happen to have no clue what a particular option actually does. To access help,
highlight the option you have a question about and press the "?" key.

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 9

Section 5. Compiling and installing the kernel

make dep; make clean
Once your kernel is configured, it's time to get it compiled. Before we can compile it, we
need to generate dependency information and also clean out any old "compiled stuff."
This can be accomplished by typing: make dep; make clean while in /usr/src/linux.

make bzImage
Now, it's time to compile the actual binary kernel image. Type make bzImage. After
several minutes, compilation will complete and you'll find the bzImage file in
/usr/src/linux/arch/i386/boot (for an x86 PC kernel). We'll show you how to install the
new kernel image in a bit, but now it's time for the modules.

Compiling modules
Now that the bzImage is done, it's time to compile the modules. Even if you didn't
enable any modules when you configured the kernel, don't skip this step -- it's good to
get into the habit of compiling modules immediately after a bzImage. And, if you really
have no modules enabled for compilation, this step will go really quickly. Type make
modules; make modules_install. This will cause the modules to be compiled
and then installed into /usr/lib/<kernelversion>.

Congratulations! Your kernel is now fully compiled, and your modules are all compiled
and installed. Now, it's time to reconfigure LILO so that you can boot the new kernel.

Progress quiz
Let's see how well you were paying attention :) True or false: for compilation, "make
dep" is optional.

A. True
B. False

(The correct answer is "B. False")

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 10

Section 6. Boot configuration

LILO introduction
It's finally time to reconfigure LILO so that it loads the new kernel. LILO is the most
popular Linux boot loader, and is used by all popular Linux distributions. The first thing
you'll want to do is take a look at your /etc/lilo.conf file. It will contain a line that says
something like "image=/vmlinuz" This line tells LILO where it should look for the kernel.

Boot configuration, part 2
To configure LILO to boot the new kernel, you have two options. The first is to
overwrite your existing kernel -- this is risky unless you have some kind of emergency
boot method, such a boot disk with this particular kernel on it.

The safer option is to configure LILO so that it can boot either the new or the old kernel.
LILO can be configured to boot the new kernel by default, but still provide a way for you
to select your older kernel if you happen to run into problems. This is the recommended
option, and the one we'll show you how to perform.

Boot configuration, part 3
Your lilo.conf may look like this:

boot=/dev/hda delay=20 vga=normal root=/dev/hda1 read-only image=/vmlinuz
label=linux
To add a new boot entry to your lilo.conf, do the following. First, copy
/usr/src/linux/arch/i386/boot/bzImage to a file on your root partition, such as /vmlinuz2.
Once it's there, duplicate the last three lines of your lilo.conf and add them again to the
end of the file... we're almost there...

Boot configuration, part 4
Now, your lilo.conf should look like this:

boot=/dev/hda delay=20 vga=normal root=/dev/hda1 read-only image=/vmlinuz
label=linux image=/vmlinuz label=linux
Now, change the first "image=" line to read "image=/vmlinuz2". Next, change the
second "label=" line to read "label=oldlinux". Also, make sure there is a "delay=20" line
near the top of the file -- if not, add one. If there is, make sure the number is at least
twenty.

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 11

Boot configuration, part 5
Your final lilo.conf file will look something like this:

boot=/dev/hda delay=20 vga=normal root=/dev/hda1 read-only image=/vmlinuz2
label=linux image=/vmlinuz label=oldlinux
After doing all this, you'll need to run "lilo" as root. This is very important! If you don't do
this, the booting process won't work. Running "lilo" will give it an opportunity to update
its boot map.

Boot configuration, an explanation
Now for an explanation of our changes. This lilo.conf file was set up to allow you to
boot two different kernels. It'll allow you to boot your original kernel, located at /vmlinuz.
It'll also allow you to boot your new kernel, located at /vmlinuz2. By default, it will try to
boot your new kernel (because the image/label lines for the new kernel appear first in
the configuration file).

If, for some reason, you need to boot the old kernel, simply reboot your computer and
hold down the Shift key. LILO will detect this, and allow you to type in the label of the
image you'd like to boot. To boot your old kernel, you'd type "oldlinux", and hit enter. To
see a list of possible labels, you'd hit TAB.

Resources
Congratulations on compiling your own kernel! I hope everything went well. Here are
some related resources where you can learn more about kernel compilation:

1. The Linux Kernel HOWTO, another good resource for kernel compilation
instructions

2. The LILO, Linux Crash Rescue HOW-TO, which shows you how to create an
emergency Linux boot disk

3. www.kernel.org, the site that hosts the Linux Kernel archives

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 12

Section 7. Wrapup

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it
better. We'd also like to hear about other tutorial topics you'd like to see covered.
Thanks!

Presented by developerWorks, your source for great tutorials ibm.com/developer

Compiling the Linux kernel Page 13

