

901 San Antonio Road
Palo Alto, CA 94303
1 (800) 786.7638

Sun Microsystems, Inc.

1.512.434.1511

Sun ONE Architecture Guide

Delivering Services on Demand

Please

Recycle

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Java HotSpot, J2SE, Forte, iPlanet, NetBeans, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive
license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply
with Sun’s written license agreements.

RESTRICTED RIGHTS

: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH

DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux Etats-
Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Java HotSpot, J2SE, Forte, iPlanet, NetBeans, et Solaris sont des marques de fabrique ou des marques déposées,
ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC
sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés
de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT
LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE
DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

 Contents

i

Contents

Preface: About This Book . i

What’s in This Book . i
Who Should Read This Book . iv
What This Book Does Not Include. v

Part 1. Introduction . 1

Chapter 1: Delivering Services on Demand . 3

Evolution of Networked Computing . 4

Scope of Services on Demand . 6

The Web Application Model . 7

The Web Services Model . 8

Services and Registries . 10

ebXML: Enabling Integrated e-Commerce . 11

The Java Web Client Model . 13

Beyond Formal Standards . 13

Moving Forward . 13

Chapter 2: The Sun™ Open Net Environment (Sun ONE) Architecture 15

Service Stack . 15

Standards Associated with the Sun ONE Platform. 17

Product Mappings to the Service Stack . 18

Sun ONE Architecture Integration and Interoperability. 19

Interoperability with Existing Applications . 20

Interoperation with Microsoft .NET . 20

Phases of Adoption . 21

Part 2. Service Containers . 25

Chapter 3: J2EE™ Components and Containers . 27

Components . 28

Java Servlet API . 29

JavaServer Pages™ Technology . 29

Enterprise JavaBeans™ . 30

J2EE Platform Container Provided Services . 33

ii

Sun ONE Architecture Guide

Web Services . 34

XML Document Parsing API (JAXP) . 34

XML-to-Java Object Binding Facility (JAXB) . 35

SOAP RPC API (JAX-RPC) . 35

Business Registry and Repository (JAXR) . 35

SOAP Messaging API: JAXM. 35

Internet Mail API (JavaMail) . 36

Cross-platform and CORBA Interoperability. 36

Access to Database Servers . 37

Access to Name and Directory Servers . 38

Component and Container Interfaces . 38

The Application Server. 39

The iPlanet™ Application Server. 40

Deployment Options . 41

Scalability . 41

High Availability . 41

Management . 41

Tools Integration . 42

Component Life Cycle Optimizations . 42

Platform Integration. 42

Interchangeable Components. 42

Application Server Interfaces . 43

Part 3. Service Integration .45

Chapter 4: The J2EE™ Connector Architecture and Web-Service–Based Integration 47

Overview of the EIS Integration Facilities . 48

Overview of the Connector Architecture . 49

Advantages of the Connector Architecture . 49

Connector Architecture Contracts . 49

System-Level Contracts . 50

Application-Level Contract . 51

Packaging and Deployment. 51

Web-Service-Based Integration . 51

Support for Web Services in the Sun ONE Architecture. 52

Using Web Services from the Sun ONE Architecture. 52

Implementing Web Services with the Sun ONE Architecture 53

J2EE Connector Architecture Interfaces . 53

Chapter 5: Asynchronous Reliable Messaging . 55

Messaging Basics. 55

Existing Messaging Systems . 56

Asynchronous Reliable Messaging Systems . 56

The Java™ Message Service Technology . 57

 Contents

iii

Objectives of the JMS Technology. 57

Java Message Service Technology Provider (“JMS Provider”) 57

Java Message Service Technology Clients (“JMS Clients”) 58

Java Message Service Technology Messages (“JMS Messages”) 58

Java Message Service Technology Domains (“JMS Domains”) 58

Portability. 58

Java Message Service Does Not Include . 58

Java Message Service Requirements. 59

Requirements Beyond Java Message Service. 59

Multiple Queue Delivery Styles . 60

Multiple Protocol Support . 60

Security. 60

Object Management . 60

Pluggable Persistence. 61

Distributed Transaction Support . 61

iPlanet™ Message Queue for Java . 61

Administered Objects . 62

Client Runtime . 63

Message Production . 63

Message Consumption . 63

ConnectionFactory Administered Objects . 64

Destination Administered Objects . 65

The Message Service. 65

Broker Components and Functions. 65

Connection Services . 67

Message Router . 68

Basic Delivery Mechanisms . 68

Reliable Delivery . 69

Persistence Manager . 70

Security Manager . 70

Authentication . 71

Authorization . 71

Encryption . 71

Logger . 71

Multi-Broker Configurations (Clusters) . 72

Multi-Broker Architecture. 72

Physical Destinations . 73

Queue Destinations . 74

Topic Destinations . 75

Auto-Created (vs. Admin-Created) Destinations . 75

Chapter 6: Business Process Integration . 77

iv

Sun ONE Architecture Guide

The Integration Challenge. 78

Setting 1: Business Document Exchange. 78

Setting 2: Connecting Internal Applications . 78

Setting 3: Establishing New Partnerships and Businesses. 79

Existing Styles of Integration. 79

B2B Integration. 80

EAI Integration . 81

e-Commerce Integration . 82

ebXML . 82

ebXML Objectives and Architecture. 83

ebXML Messaging . 83

ebXML Collaboration Elements . 84

Collaboration Protocol Profiles . 84

Collaboration Protocol Agreements . 85

Document Exchange Processes. 85

Business Process Schema Specification . 86

Registry Repository . 86

ebXML Core Components Project . 86

ebXML Functional Overview . 87

Reliable Electronic Business Exchange . 88

Advantages over Fax Messaging. 88

Differentiation from Web Browser Messaging . 88

Importance of Quality of Service . 89

Authentication and Audit . 89

Profiles and Agreements in Practice . 89

Exchange Processes . 90

iPlanet™ Integration Server . 91

Controller/Coordination Layer . 92

Private Business Process Engine . 93

Message Routing Table. 94

Document Exchange Process Engine . 94

Data Transformation and Translation Layer . 94

Messaging Interface Layer . 95

Future Directions for Messaging . 96

Process Integration Interfaces . 96

Part 4. Service Creation, Assembly, and Deployment .99

Chapter 7: Development Tools . 101

Sun™ Open Net Environment (Sun ONE) Platform Tool Suite Requirements 102

NetBeans™ Software IDE . 102

NetBeans Software Core and APIs . 103

 Contents

v

Other Key Modules for Tool Developers. .106

API Support Module .106

Form Editor .107

The Metadata Repository .108

Other Tool-Related NetBeans Software Modules .109

NetBeans Software Interfaces. .109

Forte™ IDE .110

Primary Components .110

Partner and Third-Party Tools .113

Services Development in the Forte IDE .113

Services-Centric Functionality. .113

Integrated Architecture Capabilities. .114

Extensible Architecture Design. .115

Service Creation .115

Service Assembly .116

Service Deployment .117

Forte IDE Interfaces. .117

Part 5. Service Delivery . 119

Chapter 8: Presentation Frameworks. .121

Overview of Presentation Frameworks .121

The Model-View-Controller .122

The MVC Design Model .122

MVC1. .123

MVC2. .124

MVC2 and the Presentation Framework .124

Development Issues .125

Template and Non-Template-based MVC Architectures. .126

Template Engines .126

DOM Manipulation .127

Advantages of DOM and Template Approaches .128

Java Specification Request™ (JSR) 127 Architecture .128

JSR 127 Design Goals .129

Overview of the iPlanet™ Application Framework .130

The iPlanet Application Framework’s Implementation of MVC2131

The iPlanet Application Framework and JSR 127 .132

The iPlanet Application Framework’s Use of Design Patterns133

Types of iPlanet Application Framework Functionality .133

Technical Overview of the iPlanet Application Framework Core135

iPlanet Application Framework Features .136

Symmetrical Display/Submit Handling. .137

vi

Sun ONE Architecture Guide

Formal Model Entity . 137

Application Events. 138

Hierarchical Views and Component Scoping. 139

Efficient Object Management . 139

Support for Parallel Content . 140

Ready-to-Use, High-Level Features . 140

Tool-Readiness . 141

Scalability . 141

Presentation Framework Interfaces. 142

Chapter 9: The Portal Server . 143

Using the Portal to Deliver Web Applications . 143

Aggregation and Presentation . 144

Specialized Providers for Aggregation and Presentation 145

Personalization for Users and Applications . 146

Security for Users and Applications. 146

Management of Users and Applications . 147

Enhancing the Portal for Web Services . 147

Aggregation and Presentation of Web Services. 147

Delivery to End Users . 148

Delivery to Web Services and Applications . 148

Personalization for Web Services . 148

Supporting the Java Web Client Model . 149

System-Level Interfaces Supporting Personalization. 149

Location SPI . 149

Presence SPI . 149

Notification SPI . 149

Usage SPI . 150

Security for Web Services . 150

Management of Web Services. 150

Specialized Web Service Provider . 150

Portal Server Interfaces . 151

Chapter 10: The Java Web Client Model . 153

Design and Deployment Considerations . 154

Protocols and Payloads . 154

Environment . 155

MVC Design for Java Web Clients. 155

Supporting Architectural Elements . 156

XML Information Services and Device Interaction. 157

Client Device . 157

Java™ Virtual Machine (JVM™) and KVM Operating Environments 158

 Contents

vii

Mobile Devices .158

Extended Services .158

Telephony Access Mechanisms .159

Server-Side Provisioning .160

Java Web Client Model Interfaces .160

Part 6. Fundamental Services . 163

Chapter 11: Identity and Policy Services .165

Identity, Roles, and Security .166

iPlanet™ Directory Server Products .168

Identity: Authentication .168

Identity: Web Single Sign-On .170

Identity: Cross-Domain Single Sign-On .171

Identity Management: User Account Management and Provisioning 171

User Provisioning and Self-Registration .171

Profile API .172

User Organization and Integration. .172

Delegated Management. .172

Policy Management and Evaluation .172

Policy Framework .173

Plug-in SPIs .174

Management and Evaluation APIs .174

Privacy .175

Difference Between Policy and Privacy. .175

Security. .176

Public Key Infrastructure .176

Kerberos .177

UDDI .177

Logging and Audit. .178

Identity and Policy Services Interfaces .178

Federated Identity Systems .180

Liberty Alliance Project .180

Management Services. .181

The Sun ONE Platform Management Architecture .181

Sun ONE Platform Management Information and CIM Models.183

Use of the CIM Model for All Sun ONE Platform Components 183

Use of Standard Schema to Describe All Sun ONE Platform Components.184

Provision of CIM-Based APIs .184

Integration of Existing Management Schemes .185

Interoperation via Multiple, Pluggable Protocol Adapters185

Use of Standard CIM Mappings to Existing Schema .186

SNMP .186

viii

Sun ONE Architecture Guide

Java™ Management Extensions (JMX™) . 186

J2EE Platform Management . 187

Management Interfaces . 187

Chapter 12: Platform Services . 189

Hardware Platform and Resource Management . 190

Scaling and RAS . 190

Interfaces to Exploit Cluster Configurations . 191

Service and Application Failover. 191

High-speed Communication, Synchronization, and Checkpointing 192

Solaris™ Resource Manager . 192

Networking . 193

Networking in the Solaris Operating Environment . 193

Storage, Filing, and Data Access . 194

Solaris Operating Environment Storage, Filing, and Data Access 194

Name Service, Directory, and Registry Functions . 194

Naming, Registry, and Directory Services in the Solaris Operating Environment . . . 195

Security . 195

Authentication . 195

Secure Internet Transport . 196

Strong Random Numbers . 196

Interfaces . 197

Part 7. Core Web Services .201

Chapter 13: Core Web Services. 203

Portal-based Web Services. 203

Location Web Service . 204

Presence Web Service . 204

Notification Web Service. 204

Usage Web Service . 205

Search Web Service. 205

File Web Service . 205

Communications Applications Web Services . 205

Mail Web Service . 206

Calendar Web Service . 206

Contacts Web Service . 206

Conferencing Web Services . 207

Glossary .209

Bibliography .217

Index .225

 Preface: About This Book

i

Preface: About This Book

Sun™ Open Net Environment (Sun ONE) is Sun Microsystems’ standards-based software
vision, architecture, platform, and expertise for building and deploying Services on Demand.

What’s in This Book

This book provides developers with an understanding of the components and functionality
of the Sun ONE architecture. It also includes descriptions of the Sun technologies and tools
that map to each portion of that architecture, along with a listing of the interfaces that are
consumed or presented by each component.

This book contains the following information, presented in seven parts:

Part 1, Introduction

CCCChhhhaaaapppptttteeeerrrr 1111,,,, DDDDeeeellll iiiivvvveeeerrrr iiiinnnngggg SSSSeeeerrrrvvvviiiicccceeeessss oooonnnn DDDDeeeemmmmaaaannnndddd

, summarizes the history of networked
computing. After discussing the ways in which the dynamic concepts of Web services and
Services on Demand are transforming today’s networked computing environment, it explains
how the Sun ONE architecture is designed to implement those concepts.

CCCChhhhaaaapppptttteeeerrrr 2222,,,, TTTThhhheeee SSSSuuuunnnn OOOONNNNEEEE AAAArrrrcccchhhhiiii tttteeeeccccttttuuuurrrreeee

,

describes the various layers of the Sun ONE
architecture, along with their associated standards and integrated products. Taken together,
these elements provide a basis for the scalable, reliable, open-standards-based Web services
of today and for the Services on Demand of tomorrow.

ii

Sun ONE Architecture Guide

Part 2, Service Containers

CCCChhhhaaaapppptttteeeerrrr 3333,,,, JJJJaaaavvvvaaaa™™™™ 2222 PPPPllllaaaattttffffoooorrrrmmmm,,,, EEEEnnnntttteeeerrrrpppprrrr iiiisssseeee EEEEddddiiii tttt iiiioooonnnn ((((JJJJ2222EEEEEEEE™™™™ ppppllllaaaattttffffoooorrrrmmmm)))) CCCCoooommmmppppoooonnnneeeennnnttttssss
aaaannnndddd CCCCoooonnnnttttaaaaiiiinnnneeeerrrrssss

, explains how the J2EE platform defines the Service Container for the Sun
ONE architecture. In addition to the J2EE technology standard, the Service Container includes
a de facto standard based on the iPlanet™ Presentation Framework, along with various Web-
services-oriented APIs, tools, and technologies. This chapter concludes with a discussion of
iPlanet Application Server, a fifth-generation architecture that provides high levels of
performance, scalability, and reliability in a J2EE technology-conformant application server.

CCCChhhhaaaapppptttteeeerrrr 4444,,,, JJJJ2222EEEEEEEE CCCCoooonnnnnnnneeeeccccttttoooorrrr AAAArrrrcccchhhhiiii tttteeeeccccttttuuuurrrreeee aaaannnndddd WWWWeeeebbbb----SSSSeeeerrrrvvvviiiicccceeeessss ----BBBBaaaasssseeeedddd IIIInnnntttteeeeggggrrrraaaatttt iiiioooonnnn

,
explains how the J2EE Connector Architecture defines a standard way to extend the Service
Container for the Sun ONE platform to integrate applications with an existing Enterprise
Information System (EIS). It then explores the ways in which the Sun ONE architecture’s
native support for the Web-service distributed computing paradigm provides an efficient
EIS integration mechanism in itself.

Part 3, Service Integration

CCCChhhhaaaapppptttteeeerrrr 5555,,,, AAAAssssyyyynnnncccchhhhrrrroooonnnnoooouuuussss RRRReeeellll iiiiaaaabbbblllleeee MMMMeeeessssssssaaaaggggiiiinnnngggg

, compares existing messaging
technologies to asynchronous reliable messaging systems, which are essential to the
conduct of e-commerce between loosely integrated business partners. It goes on to
discuss the Java Message Service, a standard API for messaging that supports reliable
point-to-point messaging as well as the publish-subscribe model. This chapter concludes
with a description of the iPlanet Message Queue for Java software, a current example of
an asynchronous reliable messaging system.

CCCChhhhaaaapppptttteeeerrrr 6666,,,, BBBBuuuussssiiiinnnneeeessssssss PPPPrrrroooocccceeeessssssss IIIInnnntttteeeeggggrrrraaaatttt iiiioooonnnn

, explains the various types of business
process integration, including Business-to Business, Enterprise Application Integration,
and Electronic Commerce integration. It then discusses the Electronic Business eXtensible
Markup Language (ebXML) collection of Web-services specifications in the context of
process integration. In conclusion, the iPlanet Integration Server is described as an
example of an ebXML application that enterprises can use for both collaboration and
reliable messaging in the dynamic, international marketplace.

 Preface: About This Book

iii

Part 4, Service Creation, Assembly, and Deployment

CCCChhhhaaaapppptttteeeerrrr 7777,,,, DDDDeeeevvvveeeellllooooppppmmmmeeeennnntttt TTTToooooooollllssss

, describes the Sun ONE platform development tool
suite for the creation, assembly, and deployment of Web services and Services on Demand.
The Forte™ integrated development environment (IDE) and Netbeans™ software are
discussed at length. In addition, this chapter considers other Netbeans software modules
and APIs that provide value-add functionality on top of the Forte IDE, including the API
Support module, the Form Editor, and the Metadata Repository (MDR) component of
NetBeans software.

Part 5, Service Delivery

CCCChhhhaaaapppptttteeeerrrr 8888,,,, PPPPrrrreeeesssseeeennnnttttaaaatttt iiiioooonnnn FFFFrrrraaaammmmeeeewwwwoooorrrrkkkkssss,,,,

discusses the frameworks that are responsible for
gathering information from end users and the business layer of an application. A discussion of
presentation frameworks in terms of the Model-View-Controller design model is followed by a
consideration of Java Specification Request 127, which will provide the functionality on which
presentation frameworks can standardize. Finally, this chapter describes the iPlanet Application
Framework implementation of a presentation framework.

CCCChhhhaaaapppptttteeeerrrr 9999,,,, TTTThhhheeee PPPPoooorrrrttttaaaallll SSSSeeeerrrrvvvveeeerrrr,,,,

 outlines the mechanism that allows Web applications to
be displayed within a single page or set of pages that the user can view in a browser. It
then discusses how the capabilities that a portal server provides to Web applications can
be extended to the Web services world.

CCCChhhhaaaapppptttteeeerrrr 11110000,,,, TTTThhhheeee JJJJaaaavvvvaaaa WWWWeeeebbbb CCCCllll iiiieeeennnntttt MMMMooooddddeeeellll

, considers the Web client model enabled by
the Java technology (“Java Web client”) for delivery of Web services. Under the Web client
model, applications written in the Java programming language are provisioned over the
Web to a Web-enabled device—for example, a desktop computer, a PDA, or a Web-enabled
cell phone. After discussing the Java Web Client architecture in terms of the MVC design
model, this chapter focuses on the special challenges posed by the use of mobile devices,
telephony access, and server-side provisioning.

Part 6, Fundamental Services

CCCChhhhaaaapppptttteeeerrrr 11111111,,,, IIIIddddeeeennnntttt iiii ttttyyyy aaaannnndddd PPPPoooollll iiiiccccyyyy SSSSeeeerrrrvvvviiiicccceeeessss

, defines the Sun ONE architecture’s security
mechanisms, including single sign-on, account synchronization and provisioning, policy,
privacy, personalization, and the identity solutions provided by the Liberty Alliance Project.
These security mechanisms are included in the iPlanet Directory Server Access Management
Edition and Integration Edition. This chapter also examines Management Services, which
provide both the architectural framework and the collection of programmatic interfaces
needed to manage Web services and system resources throughout the Sun ONE platform.

iv

Sun ONE Architecture Guide

CCCChhhhaaaapppptttteeeerrrr 11112222

,

PPPPllllaaaattttffffoooorrrrmmmm SSSSeeeerrrrvvvviiiicccceeeessss

, describes the interface at the lowest level of the Sun
ONE architecture. It explains how Platform Services provide the functions needed to
allocate and manage the resources of the underlying network and hardware platform
required to host the higher-level services in the Sun ONE platform. In a large part, it
focuses on the Solaris™ Operating Environment, which provides hardware platform and
resource management; naming, registry, and directory services; networking; storage,
filing, and data access; and security.

Part 7, Core Web Services

CCCChhhhaaaapppptttteeeerrrr 11113333

,

CCCCoooorrrreeee WWWWeeeebbbb SSSSeeeerrrrvvvviiiicccceeeessss

, defines the manner in which Core Web Services will
make the functionality included in the infrastructure of the Sun ONE architecture and in
existing Web applications by Sun available for use by other Web services and applications.
The discussion focuses on two main categories of Core Web Services—Location Web Service
and Communications Applications Web Services.

This book concludes with a Glossary, Bibliography, and Index.

Who Should Read This Book

Although of interest to anyone involved with the creation and implementation of e-business
solutions, Web services, and Services on Demand, the Sun ONE architecture is specifically
intended for three primary audiences:

■

DDDDeeeevvvveeeellllooooppppeeeerrrrssss

 who want the shortest path to Web services and Services on Demand by
leveraging the tools and technologies that they already know.

■

CCCCTTTTOOOOssss,,,, ssssyyyysssstttteeeemmmmssss aaaarrrrcccchhhhiiii tttteeeeccccttttssss,,,, ssssyyyysssstttteeeemmmmssss iiiinnnntttteeeeggggrrrraaaattttoooorrrrssss,,,, aaaannnndddd pppprrrrooooggggrrrraaaammmmmmmmeeeerrrrssss

 involved
in the development of e-business initiatives, all of whom will benefit from a greater
understanding of the Sun ONE architecture and its role in the creation and implementation
of Services on Demand.

■

TTTTeeeecccchhhhnnnniiiiccccaaaallll aaaarrrrcccchhhhiiii tttteeeeccccttttssss

 who need to understand how the Sun ONE architecture can
help them achieve a technical architecture that supports their organization’s needs.

■

IIIInnnnddddeeeeppppeeeennnnddddeeeennnntttt ssssooooffffttttwwwwaaaarrrreeee vvvveeeennnnddddoooorrrrssss ((((IIIISSSSVVVVssss))))

who want to leverage the open nature of
the Sun ONE architecture by using it as a foundation to build new applications and
services or to incorporate major components such as directories or content
management systems.

 Preface: About This Book

v

What This Book Does Not Include

As a technical overview of the Sun ONE architecture, this book is necessarily limited in
scope. It does not deal with definitions of “architecture” that can be applied in various
domains, such as the architecture of a specific application, a computer room, or a network.
It also does not include:

■

Product features, detailed product road maps, marketing claims, or competitive analyses.

■

Best practices guidance for IT organizations in regards to sizing, installing, configuring,
or operating Sun ONE platform-based systems.

■

Business justifications such as TCO or ROI that are slanted to executive audiences.

■

Design guidance for developers of vertical industry services. Although some
components of the Sun ONE architecture can be applied to vertical industries such
as telecommunications, this book does not cover industry-specific standards,
interoperability requirements, or business rules.

For information regarding the topics listed above, refer to http://www.sun.com and
http://www.sun.com/sunone.

For definitions of the acronyms and technical terms used in this and other chapters, see the

Glossary

 at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the

Bibliography

that follows the

Glossary

.

vi

Sun ONE Architecture Guide

 Part 1. Introduction

1

Part 1. Introduction

2

Sun ONE Architecture Guide

 1 Delivering Services on Demand

3

CHAPTER

1

Delivering Services on Demand

The ability to rapidly develop and reliably deploy scalable, highly available business
systems based on Internet technology is a major IT industry focus. To be successful, these
systems must integrate with legacy applications and data. Furthermore, they must be
available across an organization’s many communities—including employees, partners, and
customers—and have the ability to run on a broad range of devices.

Today, the Web has emerged as a versatile platform for delivering high-value solutions.
Services can be accessed from virtually any device, including cellular phones, PDAs, and
desktops. Technologies and protocols have been developed to integrate existing business
processes and resources and make them available over the Web.

Businesses use a variety of distributed system alternatives to run their operations,
including:

■

LLLLooooccccaaaallll aaaappppppppllll iiiiccccaaaatttt iiiioooonnnnssss

 – Applications that run on dedicated workstations or PCs, such as
office applications.

■

CCCCllll iiiieeeennnntttt////sssseeeerrrrvvvveeeerrrr aaaappppppppllll iiiiccccaaaatttt iiiioooonnnnssss

 – Applications that are split, more or less, between
presentation logic on a client device and business logic on a server. Typically these
applications perform business-critical functions such as accounting, human resources,
and manufacturing. Because of this, they usually require large database back-ends and
require tight coordination between the programs running on the clients and servers.

■

WWWWeeeebbbb aaaappppppppllll iiiiccccaaaatttt iiiioooonnnnssss

 – Applications that run over the Web, such as shopping, financial
account management, and management information services. These applications are
based on client browsers and standard Web protocols such as HyperText Markup
Language (HTML) and HyperText Transfer Protocol (HTTP).

■

WWWWeeeebbbb sssseeeerrrrvvvviiiicccceeeessss

 – Services that run over the Web that can combine with other services to
create a more useful or powerful solution. Web services provide a modular, well-defined,
and encapsulated function, based on eXtensible Markup Language (XML), that is used
for loosely coupled integration between applications or systems.

■

WWWWeeeebbbb ccccllll iiiieeeennnnttttssss

 – Applications written in the Java™ programming language that are
delivered over the Web to Java technology-enabled devices such as personal computers,
cellular phones, and PDAs.

4

Sun ONE Architecture Guide

Sun uses the term “Services on Demand” to describe all of the above applications and
services.

Services on Demand constitute the manner in which enterprises use their information
assets to transact and report business operations and to communicate with others—
anywhere, anytime, on any device. The Services on Demand concept is the foundation
for modular, flexible, integratable, and automated access to digital assets—including
computing sources—from virtually anywhere.

The Services on Demand vision is of a comprehensive framework, encompassing traditional
Internet-based services, such as security, authentication, and directory, along with more
advanced capabilities, including virtualized storage and composite services (those created
by combining separate services). Services on Demand represent evolution, not revolution.
Therefore, it will not supersede other network and development approaches. In order to
make the Services on Demand model attractive, businesses must be able to leverage
existing application assets and expose them as services.

Rather than connecting with existing resources, Services on Demand can leverage and
extend them. Vendors are now offering tools and technologies that will reduce the cost,
risk, and complexity of moving to this new model. The Sun™ Open Net Environment (Sun
ONE) architecture includes one such set of tools, which can be easily integrated with
existing products from other vendors.

Section 1.2 explores the concept of Services in Demand in greater depth. To provide a
background for that discussion, Section 1.1 outlines the past, present, and immediate
future of network computing.

1.1 Evolution of Networked Computing

Networked computing has evolved in relatively self-contained and distinct stages. As
illustrated in Figure 1–1, each stage has introduced an entirely new set of protocols and
levels of integration. Each evolutionary shift is equivalent in complexity to the creation and
launch of a new operating system. At any point in time, an enterprise is likely to have
several instances of each generation of network computing—there are no complete and
precise transitions from earlier generations to successive ones. Sun ONE is designed to move
enterprises to the current generation of networked applications.

 1 Delivering Services on Demand

5

Although the introduction of client/server computing consisted a significant advancement
over the host-based, centralized computing model, the level of integration remained
essentially zero. Client front-ends provided a friendlier user interface, but actual access to
data, data flow, and the effectiveness of applications showed little improvement.

The current common architecture for networked applications, represented by “Legacy to
the Web,” illustrates that integration has taken a major step forward—various applications
can now be accessed simultaneously in the browser, and the client handles a major part of
the aggregation and assembly tasks. Because of these advances, the user experience has
improved considerably.

The fourth column of Figure 1–1 illustrates the rise of Web services that offer a new style of
loosely coupled integration between applications or systems. Web services can be processed
by desktop or server applications or by Java™ 2 Platform, Micro Edition (J2ME™ platform)
applications in a wide variety of handheld devices. The degree of networked interaction
increases as the primary service assembly point—the point of integration—moves from the
client devices into the server space. Standards, such as Universal Description, Discovery,
and Integration (UDDI), Simple Object Access Protocol (SOAP), and Web Services Description
Language (WSDL) enable the rapid identification, assembly, and interoperation of Web
services on the network. For further discussion of Web services, see Section 1.2.2.

The last two columns of Figure 1–1 represent the increasing numbers of network-addressable
devices, leading to architectures focused on dynamic, self-organizing systems, where peer-to-
peer transactions are as prevalent as server-centric communications in previous generations.
New standards and technologies such as Sun’s Jini™ network technology environment will
drive the adoption of these future architectures.

Figure 1–1:

Evolution of Networked Computing

6

Sun ONE Architecture Guide

The Sun ONE architecture is designed to accommodate the next generations of networked
computing that support Services on Demand, including Web applications and dynamic,
federated Web services. It provides a migration path from the Legacy to the Web phase of
networked applications to the world of Web services that are dynamically assembled.

1.2 Scope of Services on Demand

Services on Demand is an umbrella category that encompasses:

■

Past Web initiatives

■

Today’s Web applications, Web services, and Web clients enabled by the Java technology
(“Java Web clients”)

■

Tomorrow’s new services, including contextually enhanced Web services that are
aware of user context and identity to create a superior interactive, online experience

■

Potentially, new technologies such as peer-to-peer (JXTA) and dynamic configuration
infrastructure (Jini network technology)

In the Sun ONE architecture, Services on Demand can be delivered over the Web in the
three ways illustrated in Figure 1–2.

As shown in Figure 1–2, Web applications consist of markup language delivered over the
Web to a client application, frequently a Web browser. Web services, on the other hand,
consist of XML documents delivered over the Web by an application running on one
computer to an application running on another computer. Finally, Java Web Clients are Java
technology applications delivered over the Web to any device capable of running them.

Figure 1–2:

Three Ways of Delivering Services on Demand

 1 Delivering Services on Demand

7

Services on Demand have the flexibility to encompass new protocols and methods of
operation in order to deliver customized, personalized services whenever and wherever they
are needed.

1.2.1 The Web Application Model

Most of the Services on Demand delivered prior to the year 2002 fall under the heading of
Web applications. Web applications deliver dynamic content via Web browsers for human
interaction. The Sun ONE architecture includes a variety of standards, technologies, and
products for developing, deploying, and dynamically updating Web applications. For
example:

■

JavaServer Pages™ (JSP) and servlets are frequently used to generate dynamic content,
as described in Chapter 3, “J2EE™ Components and Containers.”

■

The J2EE™ Connector Architecture allows the rapid integration of existing Enterprise
Information Systems (EIS) to allow parts of them to be accessed via the Web, as
described in Chapter 4, “The J2EE™ Connector Architecture and Web-Service–Based
Integration.”

■

The iPlanet Message Queue for Java™ provides asynchronous reliable message delivery
among Web applications, as described in Chapter 5, “Asynchronous Reliable Messaging.”

■

The iPlanet™ Integration Server facilitates the integration of Web services and
applications, as described in Chapter 6, “Business Process Integration.”

■

The NetBeans architecture provides a set of tools that enables the rapid development
and deployment of Web services and applications, as described in Chapter 7,
“Development Tools.”

■

The Forte™ tools, which are based on Netbeans™ software framework, also support the
creation, assembly, and deployment of Web applications, as described in Chapter 7,
“Development Tools.”

■

Java 2 Platform, Enterprise Edition (J2EE™) and its presentation layer technologies
(servlets and JSPs) provide a portable and standards-based foundation for building Web
applications, as described in Chapter 8, “Presentation Frameworks.”

■

Web applications are typically delivered through a portal server, as described in
Chapter 9, “The Portal Server.”

■

Security and authentication services, along with systems and application management,
are provided to Web applications through the Sun ONE architecture’s identity and policy
services, as described in Chapter 11, “Identity and Policy Services.”

8

Sun ONE Architecture Guide

1.2.2 The Web Services Model

Within the realm of Services on Demand, the term “Web services” has acquired a specific
meaning that has been endorsed by industry vendors and analysts. Web services are
modular, encapsulated functions that can discover and engage other Web services to
complete complex tasks over the Internet. Unlike hard-wired applications—for example,
traditional client/server applications based on Remote Procedure Calls (RPCs), Common
Object Request Broker Architecture (CORBA), or Distributed COM (DCOM)—Web services are
loosely coupled. They can dynamically locate and interact with other components on the
Internet to provide services, and can themselves be dynamically located and used by other
Web services.

In other words, Web services transform services into clearly defined components and allow
those services to be easily interconnected. A Web service is usually invoked by a program,
not directly by a human user. It is used to integrate applications—either within the enterprise
or over the Internet—between the enterprise and its customers and business partners.

A Web service almost always passes an XML message, either synchronously by using a
remote-procedure-call style, or asynchronously in a reliable messaging-passing style. Some
vendors highlight their dependency on XML by using the alternative term “XML Web
services.” The reliable message-passing style can be over a message bus, such as Java™
Message Service, or through the emerging Electronic Business XML (ebXML) Messaging
Service.

Popular standards for transport include SOAP and ebXML. In addition, Web services may be
advertised and described in a service registry such as UDDI, which can store references to
service interfaces specified in WSDL, a framework for describing a Web service’s XML-based
interfaces.

The Web service can be composed of one or both of two styles of programs:

■

Programs composed of components written by the developer specifically to create the
Web service. These components can be written using technologies such as Enterprise
JavaBeans™ (EJB) or as part of J2EE, with a wrapper on the front end to convert the
component into XML format.

■

Programs that work with legacy systems, such as existing Customer-Relations
Management (CRM) or Enterprise Resource Planning (ERP) applications, to make
individual pieces of the application’s functionality directly available through the Web
service.

A Web service can be accessed programmatically by applications or other Web services. As
a result, a complex Web service can be developed from an assembly of several other Web
services. For example, a Web service designed to calculate an individual’s net worth, is pre-
programmed to access a number of Web sites—such as the person’s bank, brokerage house
and insurance company—in order to retrieve the necessary information. This example is
illustrated in Figure 1–3.

 1 Delivering Services on Demand

9

The process shown in Figure 1–3 points up a fundamental difference between Web services
and human-oriented services. For a human, it is fairly easy to access the Web sites and
calculate net worth by working through the relevant HTML pages. It is far more difficult to
write a program that dynamically accesses the requisite sites and parses through the HTML
pages. However, Web services allow the developer to write a relatively simple program that
parses XML messages in a particular format. The developer is isolated from the ambiguities
of HTML and the additional complications associated with Web sites that frequently change
their content and organization. In this example, the developer can construct a “portfolio”
that could be an application, a specialized channel in a portal server, or the Web service
itself.

Another reason Web services are considered an important development in the industry
is simplicity of integration. Although it is relatively easy to use Enterprise Application
Integration (EAI) or Java Connectors technology to connect any two applications together
within an enterprise, challenges arise going beyond this model:

■

When integration extends beyond the boundary of a single enterprise, complexities
increase as security, firewall access, and version control issues are introduced.

■ When integration changes from 1-to-1 to n-to-n, to multiple business partners
participating in more complex transactions together, it becomes difficult to scale the
custom solutions that may be necessary for each connection.

Figure 1–3: Web Services Example

10 Sun ONE Architecture Guide

■ In this second case, Web services can be considered as a trigger for an integration
“network effect.” (Also known as Metcalfe's Law—the usefulness, or utility, of a network
is proportional to the square of the number of users.) Just as the value of a network of
telephones increases as additional subscribers connect to the network, the existence of
new business partners employing simple integration interfaces could lead to a era of
dynamic supply chains and multi-party business arrangements that would be
uninteresting if only a few enterprises participated.

1.2.2.1 Services and Registries

The interconnections between the UDDI registry, tools, protocols, and Web services are
shown in Figure 1–4. The registry can be either a public or private enterprise registry.

At the center of the diagram is the UDDI registry containing information about the company
that provides or operates the Web service, the interfaces that the service provides, and
how an application can connect to the service. Interfaces to the Web services can be
described in WSDL format.

The UDDI directory can be accessed in the following ways:

■ SSSSttttaaaatttt iiiicccc llllooooooookkkkuuuupppp in which the developer uses various tools to browse through the
registry and extract the WSDL definition of the desired service. This interaction is
performed by commands expressed in XML and transported over SOAP.

■ DDDDyyyynnnnaaaammmmiiiicccc llllooooooookkkkuuuupppp in which the application dynamically browses through the directory
at runtime, selects the desired service, then binds that service. Once the application is
completed or compiled, communication with it is usually achieved using XML over SOAP,
although the UDDI registry entry can specify an alternative protocol.

Figure 1–4: Services and Registries

 1 Delivering Services on Demand 11

Unfortunately, the UDDI registry currently contains insufficient semantic information to make
the dynamic model described above a reality in the short term. Although trivial business-to-
consumer applications (order a pizza) are feasible, business-to-business transactions of
significant value are another matter. Human users may be able to use the registry
information to select appropriate business partners and understand the billing, registration,
service-level guarantees, and semantic content of the service, but programmatic access
would be challenging.

One solution for this problem is to reach agreements within vertical industries on portfolios
of Web services, what the interfaces mean, and what business arrangements will be used.
Another is to establish industry-wide standards for business processes, business terms, and
frameworks for reliable and secure interactions at runtime.

1.2.2.2 ebXML: Enabling Integrated e-Commerce

One of the important functions of the Sun ONE architecture is the support of integrated
e-commerce. The Sun ONE architecture embraces ebXML, an important emerging B2B
standard that is the result of a joint effort between the United Nations Center for the
Facilitation of Procedures and Practices for Administration, Commerce, and Transport
(UN/CEFACT) and OASIS, an XML standards body.

Using ebXML, an e-business can publish ebXML message formats, as well as an online
description of the steps necessary to conduct business processes. For example, to process a
purchase order over the Internet, the PO format is placed into the ebXML registry, along
with a description of each step needed to orchestrate the PO process between the partners.
A programmer at one of the business’ partner companies is able to access the repository
and find the information needed to write an application that interacts with the business
and its PO processes.

In Figure 1–5, the design-time portion above the dotted line diagrams the process described
in the purchase order example. This process includes the creation of a Collaborative
Protocol Profile (CPP), which spells out the terms that a company adheres to in order to do
business. When the CPPs of two companies that want to do business are coordinated, the
lowest common denominator of mutually acceptable business terms makes up the
Collaborative Protocol Agreement (CPA).

12 Sun ONE Architecture Guide

The runtime portion of the standard deals with the secure, reliable transport of messages
from one entity to another. Since commercial exchanges frequently require security and
reliability capabilities not provided by SOAP, ebXML messaging builds on the SOAP protocol
to provide those necessary capabilities.

The runtime portion of the standard is already being implemented in the industry. The
design time portion is being enhanced by OASIS through the creation of a new language
known as the Universal Business Language (UBL). UBL will be used by vertical industry
segments to describe the semantics associated with e-business XML documents. Many of
the industry standards bodies that use XML—for example, RosettaNet and the Online
Travel Association—have agreed to align the framework of their standards with ebXML. For
a further discussion of ebXML, refer to Section 6.3, “ebXML.”

Figure 1–5: ebXML

 1 Delivering Services on Demand 13

1.2.3 The Java Web Client Model

As described in more detail in Chapter 10, “The Java Web Client Model,” the Java Web client
model is a Services on Demand category that allows applications to be downloaded to
desktop computers, handheld devices, home gateway computers, or audiovisual devices
and set-top boxes. Included are desktop Java technology standards and the use of Java Web
Start software to download Java technology applications that, by extension, are being used
to create the Java Vending Machine concept. This concept is the basis of an emerging
standard that will allow users to purchase or rent applications appropriate to the device
they are using, their location, and their individual preferences. The Java Vending Machine
also allows service providers to bill for the use of the application and compensate the
application’s creator.

1.3 Beyond Formal Standards
The Sun ONE architecture is not limited to the formal standards for Services on Demand,
such as J2EE and XML. Instead it includes additional middleware interfaces and Core Web
services currently available in iPlanet software products—for example, user and group
schema definitions and policy, interfaces needed to populate a channel in the iPlanet Portal
Server (Portal Server), Sun office productivity functionality, and Sun e-commerce services.

Development tools relevant to Java and Web application services include wrapping legacy
languages like C++, or even Fortran, to enable them to speak to Web services. Also included
are Web applications/services systems and applications management capabilities that
provide control of the major elements of the stack from an operator’s console as well as
monitor and manage Quality of Service.

The fact that Platform Services are relevant to Web applications and services containers
means that Solaris™ Operating Environment based services, such as resource management,
cluster control, and security, are well integrated between the service containers and the
underlying OS platform. For a full description of Platform Services, see Chapter 12,
“Platform Services.”

1.4 Moving Forward
The world of computing is about to be transformed by the new computing model defined
by Services on Demand. Service providers and standards bodies are working to make
available the final pieces of infrastructure required to unleash the full potential of Web
services. ISVs and enterprise developers are conceptualizing the products and applications
that will define this phase in the evolution of networked computing.

Sun ONE is Sun’s architecture for delivering Services on Demand. The Sun ONE architecture
provides all of the tools and technologies needed for designing, creating, assembling,
deploying, executing, and maintaining Services on Demand.

14 Sun ONE Architecture Guide

The next chapter provides an overview of the Sun ONE architecture. The remainder of this
book provides a detailed description of the tools, technologies, and products that
implement it.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

 2 The Sun™ Open Net Environment (Sun ONE) Architecture 15

CHAPTER 2

The Sun™ Open Net Environment (Sun
ONE) Architecture

The Sun™ Open Net Environment (Sun ONE) architecture supports the creation and delivery
Services on Demand applications and services, as described in Chapter 1. This chapter
provides an overview of the components of the Sun ONE architecture.

2.1 Service Stack
The Sun ONE platform is the basis for achieving Web applications, Web services, and web
clients enabled with Java™ technology (“Java Web clients”), collectively referred to as
Services on Demand. Figure 2–1 depicts a high-level view of the architecture’s services
stack. The architecture is expressed in relatively generic terms because there are different
ways to use products to implement the depicted services. The specific Sun products that
implement the stack are shown in Section 2.3, “Product Mappings to the Service Stack.”

At the bottom of the figure are the operating system, hardware, storage, and networking
platform, and the directory technology required to provide identity, policy, and management
services that affect the entire stack. At the top are the tools used to create, assemble,
deploy, and test Services on Demand.

In the center of the stack are three layers that are familiar to application programmers as
the presentation logic, business logic, and the back-end data-access logic.

16 Sun ONE Architecture Guide

The Service Delivery Box contains the Portal and related services that focus on presentation
issues, such as:

■ Delivering personalized, context-aware content and services to any device.

■ Aggregating content and services.

■ Providing secure delivery services.

■ Providing knowledge management, content management, and synchronization services.

■ Provisioning (delivering) applications for the Java Web client model.

■ Providing an application framework for rapid development of complex Web applications.

The Service Container, hosting the business logic for Services on Demand, is typically a Web
application server configured with Java™ 2 Platform, Enterprise Edition (J2EE™) technology.
Core Web Services, which can be considered “pre-built Web services,” also may be located
inside the Service Container. As described in Chapter 13, “Core Web Services,” these services
are often exposed as Web services from an existing e-commerce or communications
application. Typical services include:

■ Large applications such as e-commerce

■ Communications services such as calendar and e-mail

■ Content services such as office productivity applications

Figure 2–1: Service Stack for Creating Services on Demand

 2 The Sun™ Open Net Environment (Sun ONE) Architecture 17

The Service Integration box uses Java technology based connectors (“Java connectors”) such
as Java DataBase Connectivity™ (JDBC™) technology, and Enterprise Application Integration
(EAI) to integrate legacy applications and databases, to access service registries, and to
perform Web services integration within and between enterprises.

2.2 Standards Associated with the Sun ONE
Platform
As indicated in Figure 2–2, the Sun ONE integratable platform is based on a number of
important standards for APIs and protocols, including a host of Java, eXtensible Markup
Language (XML), and Web standards. Note that the list of standards shown in the figure is
incomplete. Refer to the following sections for explicit requirements on interfaces. Some of
the standards listed in the figure appear in italics, which indicates that they are still
emerging from their standards committees. Future versions of the Sun ONE architecture
will align their interfaces with these standards as they are approved.

Figure 2–2: Standards Associated with the Sun ONE Platform

18 Sun ONE Architecture Guide

2.3 Product Mappings to the Service Stack
The Sun ONE Architecture is expressed in terms of the standards and services for delivering
Services on Demand. It does not dictate how actual products must be laid out across the
services stack diagram to achieve these services. For example, a single product based on
application server technology could implement the entire center row of boxes—service
container, delivery, and integration—and the Identity and Policy Services as well. However,
conformance to the architecture requires that all of the standards for APIs and protocols
used to interconnect and manage the boxes be implemented, regardless of the product
integration packaging. (Thus, in this single-product example, Light Weight Directory Access
Protocol (LDAP) interfaces to the identity information are required, even if that service is
implemented with a different underlying technology, such as a relational database
management system [RDBMS]).

Figure 2–3 shows how Sun products map to the categories of the services stack. Although
the products are available individually, they all share the characteristic of being well-
integrated with each other and the Solaris™ Operating Environment in terms of installation,
manageability, support, and other factors. Because the Sun ONE platform is integratable,
products from vendors that conform to open standards can be used interchangeably.
However, the integrated nature of the all-Sun stack is an important value proposition for
many developers and enterprise IT departments.

Figure 2–3: Products Delivering the Sun ONE platform

 2 The Sun™ Open Net Environment (Sun ONE) Architecture 19

The generic view of the services stack does not depict how real-world products are
distributed or connected. Therefore, each vendor will have its own means of describing
this. The Sun products are often shown in a diagram similar to Figure 2–4. In this figure,
the list of data, applications, reports, and transactions (often referred to as DART)
represents the information assets of the enterprise, which can be managed by the Identity
and Policy products. They can be created and delivered using the Service Container, Service
Integration, and Service Delivery products.

2.4 Sun ONE Architecture Integration and
Interoperability
The Sun ONE architecture is not simply a list of standards. It is an integrated product stack
from Sun that includes iPlanet™ software, the Solaris™ Operating Environment (“Solaris OE”),
Forte™ tools, and Java technology. It is also an integratable stack, based on open standards
for APIs and the protocols used by those products. The definition of this integrated
collection of products will be rigorously determined—an effort equivalent to creating a
formal standard such as POSIX or Java API’s.

Figure 2–4: The DART Model

20 Sun ONE Architecture Guide

Solaris OE is a valuable foundation of Sun’s integrated stack. iPlanet software takes full
advantage of the Solaris Operating Environment’s advanced features. However, Sun’s Java
technology and iPlanet and Forte software are committed to a multiplatform strategy. This
means that customers can select other operating systems, such as Windows, Linux, AIX, or
HPUX for their integratable stacks.

The Sun ONE architecture’s interoperability strategy is based on alignment with standard
Web interfaces. Connections to, or interoperability with, legacy systems or alternative
enterprise technologies such as Microsoft’s .NET, are based on the use of standard Web
services and integration adapters and connectors.

Interoperability allows customers to leverage their investments in existing software and
systems while simultaneously taking advantage of the benefits of the new architecture.

Ineroperability involves two primary dimensions:

■ Interoperation with existing applications

■ Interoperation with Microsoft .NET

These two dimensions are explained in the sections that follow.

2.4.1 Interoperability with Existing Applications

The Sun ONE architecture’s ability to interoperate with existing applications is made
possible using the following three models supported by the architecture:

■ Connectors (synchronous and/or asynchronous) to major applications, such as
Enterprise Resource Planning (ERP), Customer Relations Management (CRM),
and legacy mainframe. Such connectors to major applications are provided by the
application vendors. When appropriate, Sun assists the application vendors in the
construction of connectors.

■ Containers created with JavaServer Pages™ (JSP™) and Enterprise JavaBeans (EJB™)
technology that wrap applications inside components based on the EJB architecture.
Once “bean-ized,” the application is easily integrated into a Web Service.

■ Web services that completely wrap applications into a standard Web Service.

2.4.2 Interoperation with Microsoft .NET

Virtually all corporations have significant investments in Microsoft products and
technologies. As such, they are likely to deploy some Microsoft .NET Web services, either
intentionally or simply as a consequence of the normal use of Microsoft .NET server
products. The Sun ONE architecture is able to consume .NET Web services and provide Web
services that may be consumed by the .NET environment.

 2 The Sun™ Open Net Environment (Sun ONE) Architecture 21

The Sun ONE architecture’s support of XML, Simple Object Access Protocol (SOAP), Universal
Description, Discovery, and Integration(UDDI), and Web Services Description Language
(WSDL) has been demonstrated to be interoperable with Microsoft’s .NET implementations
of these same standards.

Web applications enabled by the Sun ONE platform can be delivered to any browser.
Furthermore, Web services enabled by the Sun ONE platform (“Sun ONE Web services”)
can be delivered to any browser supporting Java technology, including Internet Explorer.
Through third-party add-ons to Internet Information Server (IIS), JSP technology-based Web
services can be delivered to clients of IIS, even alongside Microsoft .NET services being
delivered by the same server.

On Microsoft platforms, Visual Studio .NET may be used to develop applications that
consume both .NET and Sun ONE Web services. On Forte IDE-supported platforms, Forte for
Java software may be used to develop applications that consume both .NET and Sun ONE
Web services.

ebXML and the emerging OASIS UBL schemas are likely to become the industry-standard
Business-to-Business (B2B) exchange mechanisms. The Sun ONE architecture supports these
schemas, and it is expected that Microsoft will support them in its BizTalk Server product.

Files generated by personal productivity applications—in particular those generated by
Microsoft’s Office suite—are an important component of interoperability. This is because
they are extensively used as data delivery vehicles both inside and outside businesses. The
office productivity functionality offered by the Sun ONE platform provides a high degree of
compatibility with Microsoft Office documents.

2.5 Phases of Adoption
Sun’s complete vision of Services on Demand is still evolving. Therefore, this book
anticipates that the future will arrive in phases as enterprises adopt the new models of
computing over time. The phases of adoption described below do not constitute a road
map of Sun product releases. Rather, product releases will adapt to the needs and schedules
of the adoption cycles.

PPPPhhhhaaaasssseeee 1111,,,, WWWWeeeebbbb sssseeeerrrrvvvviiiicccceeeessss,,,, consists of Web applications and basic XML services. This phase
is already here, as exemplified by Sun’s full spectrum of products in the form of iPlanet and
Forte software, Java technology, and the Solaris Operating Environment. Enough Web
services standards exist—including SOAP, UDDI and WSDL—that new Web services concepts
and applications can be prototyped and tested. For example, the iPlanet Integration Server
was deploying Web services even before the term was coined. Basic XML services are also a
part of the Forte for Java software tools.

22 Sun ONE Architecture Guide

PPPPhhhhaaaasssseeee 2222,,,, IIIInnnntttteeeerrrrnnnnaaaallll llllyyyy FFFFooooccccuuuusssseeeedddd WWWWeeeebbbb sssseeeerrrrvvvviiiicccceeeessss,,,, marks the beginning of the concerted
deployment of Web services within the enterprise. Although the enterprise still exerts a
high degree of centralized control, this phase uses Web services to integrate major
applications within the enterprise in an easier, more loosely coupled fashion than the
tightly coupled models of the past. Users, such as employees and business partners, are
defined in the enterprise directory, not discovered dynamically. Communications between
the enterprise and its business partners are based on bilateral agreements on what Web
services to use and how they work together. At this point, Web services depend on pre-
defined relationships stored in a service directory; services are not assembled dynamically
with unknown business partners.

PPPPhhhhaaaasssseeee 3333,,,, DDDDyyyynnnnaaaammmmiiiicccc WWWWeeeebbbb sssseeeerrrrvvvviiiicccceeeessss,,,, removes these restrictions by taking advantage of
emerging federated identity and context services and public service registries populated
with semantically rich service descriptions. These service descriptions allow customers and
business partners to find and conduct business dynamically. Key to this phase are two
pieces of technology: the Liberty Alliance Project methods of providing federated identity
service, and standards such as ebXML that provide the semantic definitions and business
orchestration that enable dynamic B2B.

The following figures show a simplified depiction of how Sun products have been or will be
used to deliver Web services in each of the three phases of implementation.

PPPPhhhhaaaasssseeee 1111 , shown in Figure 2–5, includes simple SOAP-based Web services. Developers can
create Web services with the Forte for Java software IDE. Web services can be deployed to
the iPlanet Portal Server and the iPlanet Application Server. A SOAP Client stub is generated,
but any on-the-wire SOAP client can be substituted. The SOAP client uses Synchronous SOAP
over HTTP to call the portal/application server. The application server then makes a
Synchronous SOAP call to the integration server.

Figure 2–5: Phase 1, Web services

 2 The Sun™ Open Net Environment (Sun ONE) Architecture 23

PPPPhhhhaaaasssseeee 2222 , shown in Figure 2–6, is the internally focused, enterprise-controlled model of
Web services. This phase depicts a UDDI registry server behind the firewall, implying that it
is used as a private, internal registry. However, external access is possible for prearranged
business partners. Forte for Java software can now deploy a service description to the UDDI
server. Developers use the UDDI server and its WDSL descriptions of a Web service to create
a Client stub automatically. Asynchronous SOAP is now introduced at each step, allowing
guaranteed asynchronous SOAP calls to other systems using iPlanet Message Queue for
Java for processing Java Message Service (JMS) messages.

Figure 2–6: Phase 2, Internally Focused Web Services

24 Sun ONE Architecture Guide

PPPPhhhhaaaasssseeee 3333 , shown in Figure 2–7, is the dynamic model in which all Web services crossing
boundaries are authenticated by the federated identity and authentication services
established by the Liberty Alliance Project. The UDDI server is shown outside the firewall to
imply that it is a public registry, also authenticated by Liberty. Forte for Java software now
includes a workflow definition tool integrated within its IDE framework. The iPlanet
Integration Server is able to integrate external Web services into its workflow definitions.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

Figure 2–7: Phase 3, Dynamic Web Services

 Part 2. Service Containers 25

Part 2. Service Containers

26 Sun ONE Architecture Guide

 3 J2EE™ Components and Containers 27

CHAPTER 3

J2EE™ Components and Containers

The Java™ 2 Platform, Enterprise Edition (J2EE™ platform) defines the Service Container
architecture for the Sun™ Open Net Environment (Sun ONE) architecture. The J2EE technology
offers the following advantages:

■ A standard, extensible, component-based application programming model.

■ Automation of access to many critical services, such as transaction management and
persistence.

■ Reliable access to a range of additional services, thereby reducing the complexity of
developing distributed applications.

■ The enabling of Web-services applications and the simplification of their development.

Applications developed with J2EE technology (“J2EE applications”) can integrate a variety of
clients, ranging from stand-alone applications on the desktop to Java Extensible Markup
Language (XML) and pure HyperText Markup Language (HTML) applications in browsers, as
well as to a variety of next generation clients for mobile and personal access to services.
J2EE applications can also integrate a range of back-end systems, J2EE applications from
relational database management systems (RDBMSs) connected through Java DataBase
Connectivity™ (“JDBC™”) interface to legacy Customer Relations Management (CRM) and
Enterprise Resource Planning (ERP) systems using the J2EE Connector Architecture.

The J2EE platform provides standard APIs for XML that support the features required for
Services on Demand. The supported services include dynamic lookup and access to Web
services with the Java API for XML Registries (“JAXR”); object-oriented, synchronous
interaction between well-defined application interfaces through the Java API for XML-based
RPC (“JAX-RPC”); and models for loosely coupled interaction between applications with the
Java API for XML Messaging (“JAXM”). The J2EE specification 1.3 provides these APIs
through the Java Web Services Developer Pack, while J2EE specification 1.4 provides them
as fully integrated features of the platform.

28 Sun ONE Architecture Guide

In addition to these Web-service-focused APIs, two other convenient APIs allow the
processing of XML data: the Java API for XML Processing™ (“JAXP”) and the Java Architecture
for XML Binding™ (“JAXB”). These APIs provide the ability to process data within a J2EE
application as well-defined structures of objects, rather than as raw XML. Combined
with the well-defined, component-based development model supported by J2EE, these APIs
enable developers to quickly deliver Web service applications. The J2EE platform’s architecture
simplifies the development of applications by introducing the concept of redeployable
components throughout the layers of multi-tier applications. The support for this architecture is
implemented as two fundamental parts: components and containers.

3.1 Components
Components represent units of development and deployment that are designed to be
simpler to build than other models. They provide standardized functionality, have well-
defined application interfaces, and can easily be developed and deployed for specific
business purposes. Containers that support the components represent reliable, standardized
services and a consistent environment from one product vendor to another. An example of
container structure is shown in Figure 3–1.

Containers provide automatic support for certain aspects of application behavior, such as
HyperText Transfer Protocol (HTTP) interaction, transaction management, and security.
They also offer a set of standardized services that components can employ to perform
useful work.

Figure 3–1: J2EE in the Service Container

 3 J2EE™ Components and Containers 29

By enabling developers to focus on creating components that encapsulate application
specifics—such as graphic look and feel, navigation, and business logic—the J2EE platform
reduces the amount of coding and debugging required to develop fully functional
applications.

For access to Internet services, the J2EE platform supports the HyperText Transfer Protocol
(HTTP), Transmission Control Protocol/Internet Protocol (TCP/IP), and Secure Socket Layer
(SSL) protocol. In addition, the J2EE platform supports new eXtensible Markup Language
(XML) functionality. XML provides tagged data similar to HTML, but the tags describe the
data itself rather than the way the data is displayed. XML can be used to transfer formatted
data between applications or servers on the Internet—for example, to support transactions
between businesses (B2B). Support for parsing XML and for representing XML as objects is
implemented and is being standardized at the time of this writing.

3.1.1 Java Servlet API

The Java Servlet API provides a basic mechanism for generating dynamic Web content.
Servlets were developed as an improvement over CGI scripts, which are generally platform-
specific and are limited in their ability to support rich interaction.

Like all J2EE software components, servlets run in a container implemented by the J2EE
platform provider. This container manages a servlet’s interaction with its client and provides
a rich environment by which the servlet can access various services based on Java
technology. A servlet container implements the Java 2 Platform, Standard Edition (J2SE™
platform). This provides servlets with a variety of technologies based on the Java
programming language, including the JDBC API, Java Naming and Directory Interface™
(“JNDI”) API, Remote Method Invocation (RMI), a component based on the JavaBeans™
architecture (“JavaBeans component”), and others.

The container also implements features that allow servlets to share information about a
particular client and session, overcoming the obstacles generally presented by the stateless
HTTP protocol. The flexibility of servlets is enabled through the servlet API, which
implements a mechanism for more complex interaction with the requesting client than is
possible with CGI. Various servlet methods provide information to the servlet and allow it
to respond. Because of the object-oriented programming model, items key to servlet
behaviors are provided as objects with a well-defined API.

3.1.2 JavaServer Pages™ Technology

JavaServer Pages™ (JSP™) technology is an extension of the servlet technology created to
simplify the development of dynamic Web content. Building on the services and JSP
software pages presented in this chapter, additional services such as a presentation
framework may run in a J2EE technology-based application server.

30 Sun ONE Architecture Guide

The iPlanet™ Application Framework performs the functions of a presentation framework.
This book treats the iPlanet Application Framework as part of the Service Delivery Layer.
The iPlanet Application Framework is discussed in detail in Chapter 8, “Presentation
Frameworks.”

JSP technology supports a page-based metaphor that separates dynamic and static Web
content. The page created with the JavaServer Pages technology (“JSP page”) defines a
static HTML template with embedded calls to code written in the Java programming
language to fill in dynamic portions of the page. JSP pages contain the following four types
of elements, each with a specific role in the presentation of dynamic content.

■ Text elements are normally content that is formatted through standard HTML or XML.
These represent the static portion of the page.

■ Directives are instructions to the JSP page processor. A JSP page container processes
these directives when compiling the page into an efficient executable form.

■ Tags invoke JavaBeans components to generate dynamic content or perform other
computations. Tag libraries are a powerful feature of JSP technology, which are used to
encapsulate specific functionality invoked via HTML tags. These allow the JSP technology
to be easily extended in a portable fashion. For example, tag libraries can be implemented
to support embedded database queries for an application.

■ Scripting elements may be declarations, scriptlets, or expressions. Like tags, scripting
elements can be used to perform computations to generate dynamic content. They are
useful when standard tags are inappropriate or have not been defined.

The combination of these four elements makes it easy to generate Web pages for client
browsers.

3.1.3 Enterprise JavaBeans™

In addition to servlets and JSP software components for providing a rich user experience,
the J2EE platform includes the Enterprise JavaBeans™ (“EJB™”) component model for
transaction-processing support. This component model provides a standard component
architecture for building distributed, object-oriented business applications.

EJB technology allows the developer to focus on business logic without having to manage
the details of transaction processing, security, load balancing, connection pooling, and
other performance concerns in an application server system. These details are automatically
handled by the container for EJB technology-based components (“EJB container”)
implemented by the J2EE platform provider. The EJB specification is designed to make it easy
for container providers to build on legacy systems by “wrapping and embracing” existing
technologies.

 3 J2EE™ Components and Containers 31

The EJB specification clearly defines the life cycle of an enterprise bean, from development
to deployment to runtime, and clearly divides the responsibility for relieving most concerns
about such issues. By interceding between clients and components at the method-call
level, containers can manage transactions that propagate across calls and components,
and even across containers running on different servers and different machines. The EJB
architecture also has the following advantages:

■ The EJB technology model can be implemented by known programmers who encode
business logic, guaranteeing the integrity of corporate data. Then different user
interfaces can be built on top. They are client-neutral: a single EJB may be accessed from
a Web client through JSP page or servlets, or it may be invoked directly by a Java
application client in a standard two-tier model. Component developers are free to focus
on business logic, since containers provide services automatically by interceding in
component method calls. A simple set of callback interfaces is all a developer must
implement to participate in container-provided services.

■ The EJB technology allows the developer to develop business logic without regard to the
details of a particular installation. A separate deployment descriptor is used to make
customizations when they are assembled and deployed. Deployment descriptors are
XML-based text files whose elements declaratively describe how transactions, security,
and other installation specifics are to be handled in an EJB technology-based
application. A variety of EJB attributes, including the default component transaction
type, can be specified at either development or deployment time and enforced through
mechanisms built into the container architecture.

A client’s view of an EJB remains the same, regardless of the container in which the EJB is
deployed. Any container in which it is deployed presents the same interfaces to the client.
This extends to containers from various vendors, running against different servers and
databases, on diverse systems on a network. This client transparency ensures wide
scalability for multi-tier applications. The client view of components based on the EJB
specification (“EJB components”) is provided through two interfaces—the home interface
and the remote one. These interfaces are provided by classes constructed by the container
when a bean is deployed, based on information provided by the bean.

Figure 3–2: EJB Container—Client Interaction

32 Sun ONE Architecture Guide

As shown in Figure 3–2, the home interface (cart home) provides methods for creating a
bean instance, while the remote (cart) interface provides the business logic methods for
the component. By implementing these interfaces, the container can intercede in client
operations on a bean and thereby offer the client a simplified view of the component.

To the client, there appears to be direct interaction with EJB components through the home
and remote interfaces. However, the EJB architecture is designed to enable clients and
components to exist in different runtimes on various systems on a network. The container
intercedes between client and component, completely concealing both the bean instance
and its own actions from the client.

Container intervention enables transaction management, security constraints, container-
managed persistence, and other important features of the EJB component model. The EJB
architecture provides automatic support for distributed transactions in component-based
applications. Such distributed transactions can atomically update data in multiple
databases, possibly even distributed across multiple sites. The EJB component model
shifts the complexities of managing these transactions from the application developer to
the container provider.

A container supports a variety of transaction properties for beans. Beans can be invoked
entirely outside the context of a transaction. They can be required to initiate a transaction
when they are called. Furthermore, they can be allowed to participate in an existing
transaction when they are called by another bean. In addition to container-managed
transactions, an EJB component can participate in client-managed transactions, or it can
manage its own transactions using the Java Transaction API specification (JTA).

The EJB component model supports session beans, entity beans, and message-driven
beans. Each is designed for specific, well-defined roles, so developers can easily pick the
appropriate bean type for each specific architectural requirement.

The three types of beans function as follows:

■ SSSSeeeessssssssiiiioooonnnn bbbbeeeeaaaannnnssss represent behaviors associated with client sessions. They are generally
implemented to perform a sequence of tasks within the context of a user session.

■ EEEEnnnntttt iiii ttttyyyy bbbbeeeeaaaannnnssss are intended to represent persistent objects, such as a record or a set of
related records in a database. Entity beans could be developed to represent business
records, such as a customer (name, address, phone) or a purchase order (customer,
items purchased, purchase price). Entity bean methods provide operations for acting on
the data represented by the bean. The entity bean provides a mechanism for multiple
users of an application to have shared transactional access to data. Because of their
transactional, data-specific nature, entity beans are designed to be persistent and robust.

■ MMMMeeeessssssssaaaaggggeeee----ddddrrrr iiiivvvveeeennnn bbbbeeeeaaaannnnssss provide a mechanism for constructing loosely coupled
applications that can communicate indirectly, using the queuing and subscription
models supported by the Java Message Service (JMS) API.

 3 J2EE™ Components and Containers 33

3.2 J2EE Platform Container Provided Services
J2EE software containers support the component-based application programming model in
two major ways. First, they automate much of the standard functionality that requires
programming expertise in other models, such as transaction management and security.
Second, they provide standardized APIs in the Java programming language for other features
of value to components, such as messaging (JMS) and database access (JDBC).

Because containers are based on the J2SE platform, they provide standard features of the
Java runtime environment automatically. These features include cross-platform development
support and memory management to simplify debugging. In addition, the J2EE platform and
component specifications define features and enhancements to containers that include
security management, transaction management, life-cycle management, and other features.

Containers provide a working environment for their components. They also offer a way for
services to be “injected” into the operations of the components, without the component
developer needing to write specific code. This is especially important in distributed
application development, in which the complexity of providing such services may be
daunting.

One example of container intervention in a component is container-managed transactions
in the EJB architecture. Container-managed transactions let multiple EJB components
automatically work together in the same transaction, without the developer of each
component needing to know or program any of the transaction details. This facilitates
assembling applications from preprogrammed components.

All J2EE software components can use security mechanisms that are built into the platform.
Containers can control access to components through these security mechanisms, checking
a client’s access privileges for individual methods or a whole interface. In addition,
components’ security attributes can be specified at deployment time to ensure that the
application’s security model maps to the deploying organization’s security environment.

The containers supporting the J2EE software components provide a number of standardized
services, specific to the needs of distributed, enterprise applications. These include:

■ Web services, including XML registry access, XML object interaction based on Simple
Object Access Protocol (SOAP), ebXML-based messaging, and XML data processing.

■ Communication services, including Remote Method Invocation/Internet Inter-ORB
Protocol (RMI-IIOP), Java IDL API, the Java Message Service, and JavaMail™.

■ Connection services, including the JNDI API for Java naming and directory services, JDBC
API for database access, and the Java connector architecture for accessing existing
enterprise components from Web components and EJB server side components.

■ Internet services, including support for HTTP, TCP/IP, SSL, and XML via a variety of APIs.

34 Sun ONE Architecture Guide

3.2.1 Web Services

The APIs for XML specified in the J2EE platform allow Web applications to be written
entirely in the Java programming language. These APIs fall into two broad categories: those
that deal directly with XML documents and those that deal with procedures.

J2EE platform support for XML is as follows:

■ Document-oriented JAXP processes XML documents using various parsers.

■ JAXB maps XML elements to classes in the Java programming language.

■ Procedure-oriented JAXM sends SOAP messages over the Internet in a standard way.

■ JAXR provides a standard method for accessing business registries and share information.

■ JAX-RPC sends SOAP method calls to remote parties over the Internet and receives the
results.

These J2EE platform XML APIs support industry standards to ensure interoperability and
flexibility. For example, JAXP code can use various tools for processing an XML document,
and JAXM code can use various messaging protocols on top of SOAP. These APIs for XML
define strict compatibility requirements to ensure that all implementations deliver the
standard functionality, but platform vendors are able to provide implementations tailored
to specific uses.

The Java APIs for XML support the following XML-based standards on which interoperable
Web services depend:

■ SOAP

■ WSDL

■ UDDI

The J2EE platform provides a variety of tools for developers creating Web services, as
described in the following subsections.

3.2.1.1 XML Document Parsing API (JAXP)

JAXP leverages the parser standards SAX (Simple API for XML Parsing) and DOM (Document
Object Model) so that the developer can choose either to parse data as a stream of events
or to build an object representation of it. JAXP also supports the XML Stylesheet Language
Transformations (XSLT) standard, providing control over the presentation of the data and
enabling developers to convert the data to other XML documents or to other formats, such
as HTML. In addition, JAXP provides namespace support in order to work with XML schemas
that might otherwise have naming conflicts.

Any XML-compliant parser can be used from within the application. A pluggability layer
allows the developer to plug in an implementation of the SAX or DOM APIs. The pluggability
layer also allows the developer to plug in an XSL processor to control how XML data is
displayed.

 3 J2EE™ Components and Containers 35

3.2.1.2 XML-to-Java Object Binding Facility (JAXB)

With the JAXB facility, the developer can create two-way mapping between XML documents
and Java objects. Given an XML schema, the JAXB compiler generates a set of Java class
files that contain all of the code to parse XML documents based on the schema. A
developer using the generated classes can build a Java object tree representing an XML
document, manipulate the content of the tree, and regenerate XML documents from the
tree.

3.2.1.3 SOAP RPC API (JAX-RPC)

JAX-RPC enables procedure calls between clients and remote servers. Servers define a
service as a collection of procedures callable by a remote client, and the client then calls
the procedures to make use of the service.

In JAX-RPC, remote procedure calls are represented using the SOAP XML-based protocol,
which defines a convention for representing remote procedure calls and responses. Web
services applications can define, describe, and export capabilities as RPC-based services.
The Web Service Description Language (WSDL) specifies the format for describing a service
as a set of endpoints on messages. An abstract description of such services can be bound to
an XML-based protocol and underlying transport.

By basing its procedure-calling mechanism on the SOAP XML standard, JAX-RPC enables
interaction between a variety of servers and clients, including both J2EE technology-
compatible and non-J2EE technology-compatible clients and servers.

3.2.1.4 Business Registry and Repository (JAXR)

JAXR provides a convenient way to access standard business registries over the Internet.
Business registries contain listings of businesses and the products or services they offer.
JAXR gives developers writing applications in the Java programming language a uniform
way to use business registries that are based on open standards such as ebXML or industry-
consortium-led specifications such as Universal Description, Discovery, and Integration
(UDDI).

Businesses can register themselves with a registry or discover other businesses with which
they might want to do business. In addition, they can submit material to be shared and
search for material that others have submitted. Because the schema is stored in a standard
business registry, both parties can use JAXR to access it.

3.2.1.5 SOAP Messaging API: JAXM

JAXM provides a standard way to send messages over the Internet from the Java platform.
Based on the SOAP 1.1 and SOAP with Attachments specifications, it can be extended to
work with higher-level messaging protocols such as ebXML or BizTalk. In order to do JAXM
messaging, a business uses a messaging provider service, which does the behind-the-
scenes work required to transport and route messages. The messaging provider implements
the JAXM API, much like the way in which a driver for a database implements the JDBC API.

36 Sun ONE Architecture Guide

All JAXM messages go through the messaging provider, so when a business sends a
message, it first goes to the sender’s messaging provider, then to the recipient’s messaging
provider, and finally to the intended recipient. It is also possible to route a message to go
to intermediate recipients, called actors, before it goes to the ultimate destination. Because
all messages go through a messaging provider, it can take care of housekeeping details
such as assigning message identifiers and keeping track of whether a message has been
delivered before. A messaging provider can also try resending a message that did not reach
its destination on the first attempt at delivery.

The client using JAXM technology is totally unaware of what the provider is doing in the
background. The JAXM client simply makes JAXM method calls, and the messaging
provider—working with the container, if there is one—makes everything happen.

Although it is not required, JAXM messaging usually takes place within an EJB container,
generally a servlet or a J2EE platform container. A container includes a listener, which
makes it possible to receive messages asynchronously. The listener receives the message as
one operation, and the recipient sends a reply as a subsequent operation, thus making the
messaging asynchronous.

A JAXM message is made up of two parts—a required SOAP part and an optional attachment
part. The SOAP part, which consists of a SOAPEnvelope object containing a SOAPHeader
object and a SOAPBody object, can hold XML data as the content of the message being sent.
To send one or more complete XML documents, or content that is not XML data, the
message will need to contain an attachment part. There is no limitation on the content in
the attachment part, allowing images or any other kind of Multipart Internet Mail Extension
(MIME)-encoded content to be sent.

3.2.1.6 Internet Mail API (JavaMail)

The JavaMail API supports a different kind of asynchronous messaging: electronic mail. The
JavaMail implementation supports widely used Internet mail protocols, allowing J2EE
software components to send mail to users—for example, to confirm an online order.
JavaMail abstract classes may be subclassed to support new protocols and functionality.

3.2.2 Cross-platform and CORBA Interoperability

To better support distributed applications with containers running on multiple machines,
as well as to enable enterprise applications to communicate with one another more
effectively, the J2EE platform supports several standard communication technologies.
These include Remote Method Invocation (RMI)-Internet Inter-ORB Protocol (RMI-IIOP), Java
IDL, JMS, and JavaMail as means of communicating on a network, sending messages, or
invoking services.

 3 J2EE™ Components and Containers 37

The Object Management Group (OMG) has defined the Common Object Request Broker
Architecture (CORBA) to allow object interfaces to be defined and invoked in a variety of
programming languages and environments on a network. CORBA objects are defined using
OMG’s IDL. OMG has standardized Java IDL API, allowing objects written in the Java
programming language to participate in a distributed CORBA environment.

Java IDL API is now required as part of both the J2SE and J2EE programming environments.
It allows objects written in the Java programming language to invoke other CORBA objects
written in other languages, and vice versa, via OMG’s Internet InterORB Protocol. The use
of Java IDL API requires that an IDL definition be compiled into Java programming language
stubs and skeletons to support Java technology clients and servers.

RMI-IIOP is a simpler alternative to Java IDL API. It allows interfaces to be defined in the
Java programming language instead of in IDL. The remote interface can be converted to IDL
and implemented or invoked in another language, since RMI-IIOP uses the same on-the-
wire protocol as does Java IDL API (namely, IIOP). RMI-IIOP thus provides interoperability
with CORBA objects implemented in any programming language. The J2EE platform allows
EJB components to be invoked via RMI-IIOP.

In contrast to Java IDL API and RMI-IIOP, the Java Message Service provides an API for
asynchronous messaging. Rather than invoke a service and wait for a response, a JMS
message is queued for delivery, and control returns to the invoker. In addition to supporting
specific message queues (for example, a queue for a specific EJB components), Java Message
Service supports publish-and-subscribe messaging. In this type of messaging, any number
of clients can subscribe to (that is, request messages on) well-known topics in a hierarchy
of topics, and any number of clients can publish to (that is, send messages to subscribers
of) a specific topic. Java Message Service supports reliable, guaranteed delivery of
messages.

3.2.3 Access to Database Servers

For access to database management systems and other existing enterprise computing
resources, the J2EE platform provides support for JDBC, JNDI, and connectors.

JDBC technology-based driver (“JDBC driver”) provides J2EE’s database connectivity.
Structured Query Language (SQL) commands or queries can be issued to a relational
database, and the results returned to any Java application environment. The JDBC API
supports stored procedures, transactions, connections, and user authentication. JDBC
drivers may support connection pooling, distributed transactions, and caching of rows from
the database.

For more information, refer to Chapter 6, “Business Process Integration.”

38 Sun ONE Architecture Guide

3.2.4 Access to Name and Directory Servers

The JNDI API provides access to a naming environment. It also provides methods for
performing directory operations, such as associating attributes with objects and searching
for objects using their attributes.

The purposes of the JNDI API are many. For example, JDBC data sources and JTA transaction
objects can be stored in a JNDI API naming environment. A container provides an environment
to its components via a JNDI naming context. Components in a distributed application can use
JNDI API to locate one another and initiate communications. Existing corporate directory
services can be accessed via JNDI API.

For more information, refer to Section 11.1.1, “iPlanet™ Directory Server Products.”

3.2.5 Component and Container Interfaces

The following table lists the requirements for the Sun ONE architecture conformance for
J2EE components and containers.

Interface Name Level Status Reference * Comments

J2EE 1.3 Specification Application
and System

Footnote 1 http://www.jcp.org/jsr/detail/58.jsp (JSR 58)

Java API for XML
Processing 1.1 (JAXP)

Application Footnote 1 http://www.jcp.org/jsr/detail/63.jsp (JSR 63)

Java API for XML
Binding (JAXB)

Application Footnote 3 http://www.jcp.org/jsr/detail/31.jsp (JSR 31)

Java API for XML
Messaging 1.0 (JAXM)

Application Footnote 2 http://www.jcp.org/jsr/detail/67.jsp (JSR 67)

Java API for XML
Registries 1.0 (JAXR)

Application Footnote 1 http://www.jcp.org/jsr/detail/93.jsp (JSR 93)
Expect specification
to be final in April
2002

Java API for XML-
based RPC (JAX-RPC)

Application Footnote 1 http://www.jcp.org/jsr/detail/101.jsp (JSR 101)
Expect specification
to be final in June
2002

J2EE Software
Management

System Footnote 3 http://www.jcp.org/jsr/detail/77.jsp (JSR 77)

J2EE Software
Application
Deployment

System Footnote 3 http://www.jcp.org/jsr/detail/88.jsp (JSR 88)

 3 J2EE™ Components and Containers 39

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

3.3 The Application Server
All platforms that conform to the Sun ONE architecture require a J2EE technology-
conformant service container to run and manage Java software applications, Web servers,
EJB components, and Web services. To satisfy this need, most enterprises choose a J2EE-
conformant application server, which performs all of the functions listed in the Service
Container box of Figure 3–3. In addition, it performs many of the functions of the Service
Integration box and may also perform some of the functions shown in the Service Delivery
box.

SOAP Version 1.1 System Footnote 1 http://www.w3.org/TR/2000/NOTE-
soap-20000508

Web Services
Description Language
(WSDL) 1.1

System Footnote 1 http://www.w3.org/TR/2001/note-wsdl-
20010315

UDDI Version 2.0 API System Footnote 1 http://www.uddi.org/

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

Footnote 2: This interface is a standard, but support of this standard is not required for products conforming to v1.0 of
the Sun ONE architecture. Support of this standard will be required in a future version of the architecture.

Footnote 3: A standard interface is being developed for this component, and that standard will be required in a future
version of the Sun ONE architecture.

Interface Name Level Status Reference * Comments

40 Sun ONE Architecture Guide

The J2EE platform standards permit application server vendors to add functionality to the
generic service container to create application server products that differ widely in terms of
feature sets. All application server products that conform to the J2EE specification perform
the functions of a Service Container as prescribed by that specification. At the same time,
each application server product offers a unique set of extended features, performance
characteristics, and price to meet the needs of the market segment for which it was intended.

As is the case with other architectural components such as portal servers, web servers,
integration servers, and directory servers, Sun offers a fully integrated application server
product—the iPlanet Application Server—that satisfies the architectural requirement for a
J2EE platform service container. Consistent with the generic description of application
servers given earlier, the iPlanet Application Server extends the basic service functionality
to provide a rich product offering, as described in the next section.

3.3.1 The iPlanet™ Application Server

The iPlanet Application Server is a fifth-generation architecture that provides high levels of
performance, scalability, and reliability in a J2EE technology-conformant application server.
For those customers who want to purchase all components of their Sun ONE platform from
Sun, the iPlanet Application Server offers a solution that is tightly integrated with the Sun
ONE platform. The following subsections describe specific attributes of the iPlanet
Application Server.

Figure 3–3: Position of the Application Server in the Sun ONE Architecture

 3 J2EE™ Components and Containers 41

3.3.1.1 Deployment Options

The J2EE specification offers the concept of a single Execution Container. The Service
Container is, however, an abstraction, and the J2EE specification is flexible enough to
permit it to be implemented in a variety of ways. Taking advantage of this flexibility, the
iPlanet Application Server supports four deployment modes:

■ A single logical container instance implemented on a single hardware node.

■ A single logical container instance implemented on multiple hardware nodes.

■ Multiple logical container instances implemented on a single hardware node.

■ Multiple logical container instances implemented on a multiple hardware nodes.

The last three deployment options offer opportunities for enhancing scalability,
performance, and high availability.

3.3.1.2 Scalability

When deployed across multiple hardware nodes while functioning as a single logical
container, the iPlanet Application Server performs internal load-balancing. In addition,
multiple instances of the iPlanet Application Server can be deployed behind an external
load balancer.

3.3.1.3 High Availability

For customers requiring high transaction integrity and continuous uptime, the iPlanet
Application Server eliminates single points of failure through application failover at multiple
levels for JSP framework, Java Servlet API, and EJB components. The iPlanet Application
Server also helps ensure that user information and application data are not lost during a
failure by distributing transaction state and session information across multiple servers.
The administration tools can also be used to facilitate hot upgrades of hardware or software.

3.3.1.4 Management

The iPlanet Application Server provides management tools for the following task groups:

■ Adding and configuring resources for use by databases, legacy enterprise information
systems, messaging-oriented middleware systems, and other applications. The application
server implements resource connection pooling.

■ Configuring, monitoring, and tuning the server itself.

■ Deploying, modifying, and managing deployed applications.

The iPlanet Application Server supports secure remote administration. It also provides
logging and alert management tools to facilitate administration.

42 Sun ONE Architecture Guide

3.3.1.5 Tools Integration

While many products can be integrated into the Sun ONE architecture as replacement
components, the Sun products provide the benefit of tighter integration, which provides
the following benefits:

■ Integration with Forte™ developer tools for efficient enterprise-class team
development using JSP and EJB technology and the Java Servlet API.

■ Support for “hot” redeployment of applications while debugging, which shortens the
develop-debug-deploy cycle. The application server can pick up certain types of application
changes, without requiring a restart.

■ Support of the iPlanet Application Framework, offering the development benefits of
using proven J2EE technology-based design patterns in conjunction with the Forte
integrated development environment (IDE).

■ Provision of plug-ins for integration between the iPlanet Application Server and third-
party development environments. Using the Java technology developers can choose
between several leading integrated development tools to build and deploy J2EE
applications rapidly on the iPlanet Application Server.

■ Provision of GUI-based interfaces for creating and modifying XML descriptors for
standard J2EE platform and iPlanet software value added features.

3.3.1.6 Component Life Cycle Optimizations

J2EE specifications allow some optional optimizations to the bean life cycle, such as various
commit options for Entity beans. Some vendors go even further and provide variations on
the life cycle that are not portable, but which provide better performance in specific
situations. The iPlanet Application Server product line supports component life-cycle
optimizations, and will add more in future releases.

3.3.1.7 Platform Integration

When running on the Solaris™ Operating Environment (“Solaris OE”), the iPlanet Application
Server will take advantage of the services that the Solaris OE provides for performance
and scalability. It will use the underlying logging, file, patching, and security facilities to
enhance administration. Platform integration reduces training and administration costs at a
data center, because administrators use familiar tools and patterns to accomplish common
tasks. Performance improvements in the Solaris OE will transparently benefit J2EE
technology-based applications.

3.3.1.8 Interchangeable Components

The iPlanet Application Server supports the use of add-on or replacement components.
Users of the iPlanet Application Server can choose between multiple providers for
subsystems for JDBC-compatible drivers, security and access policy managers, asynchronous
reliable messaging (JMS), and container-managed persistence.

 3 J2EE™ Components and Containers 43

3.3.2 Application Server Interfaces

The iPlanet Application Server supports all of the interfaces described in Section 3.2.5,
“Component and Container Interfaces.” In addition, it provides the extended functionality
described in Section 3.3.1, “The iPlanet™ Application Server.” Interfaces for this extended
functionality are not yet required parts of the Sun ONE architecture. However, interface
definitions for some or all of this extended functionality might be provided in a future version.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

44 Sun ONE Architecture Guide

 Part 3. Service Integration 45

Part 3. Service Integration

46 Sun ONE Architecture Guide

 4 The J2EE™ Connector Architecture and Web-Service–Based Integration 47

CHAPTER 4

The J2EE™ Connector Architecture and
Web-Service–Based Integration

The Sun™ Open Net Environment (Sun ONE) architecture provides three facilities for
integrating applications written for the Sun ONE platform (“Sun ONE applications”) with
existing Enterprise Information Systems (EISs). EISs include commercial systems such as
enterprise resource planning (ERP) and customer-relations management (CRM) systems
as well as the many custom systems that enterprises have developed to meet their special
business requirements.

Figure 4–1: Service Integration

48 Sun ONE Architecture Guide

4.0.1 Overview of the EIS Integration Facilities

EIS applications can be integrated through the following three Sun ONE architecture
integration facilities:

■ The J2EE™ Connector Architecture

■ Asynchronous reliable messaging

■ The Sun ONE architecture’s native support for Web services

The Java™ 2 Platform, Enterprise Edition Connector Architecture defines a standard way to
extend the service container within the Sun ONE platform (“Sun ONE Service Container”) to
include the functionality of an Enterprise Information System (EIS). With the appropriate
connector installed, a Sun ONE application is able to use the functionality of the EIS without
having to deal with the complexity of integrating EIS remote access, transactions, and
security. The functionality of the EIS appears to the developer as a new service provided by
the service container. The first part of this chapter concentrates on the EIS integration
capabilities of the connector architecture.

In cases where more loosely coupled integration is desired, Sun ONE architecture provides
the standard Java Message Service (JMS) API asynchronous reliable messaging mechanism
for integrating Sun ONE applications with an enterprise’s Message Oriented Middleware
(MOM) environment. This facility allows Sun ONE applications to exchange messages with
the EIS systems and other enterprise applications that form an enterprise’s existing
MOM infrastructure. Because the Sun ONE architecture recognizes that messaging is an
important integration facility, all Sun ONE Service Containers provide built-in asynchronous
reliable messaging systems. This allows Sun ONE applications to rely on the existence of
messaging facilities, even though such facilities may not be otherwise present in the
enterprise. For a full discussion of the Sun ONE architecture’s asynchronous reliable
messaging component, see Chapter 5, “Asynchronous Reliable Messaging.

The third Sun ONE architecture EIS integration facility is that provided by its native support
for the Web- service distributed computing paradigm. The Sun ONE Service Container
makes it simple both to use an existing Web service from a Sun ONE application and to
implement a Web service as a Sun ONE application.

By their nature, Web services easily cross machine and software boundaries. This is due to
the fact that they are based on the open protocols of the Internet. Consequently, Web
services are ideally suited for solving integration problems. However, it should be noted
that this technology is still evolving and should be used with caution. While it is potentially
powerful, the versions available at the time of this writing still have performance,
complexity, and security limitations that need to be factored into Sun ONE architecture
design decisions. The second part of this chapter focuses on the integration capabilities of
the Sun ONE architecture’s native support for Web services.

 4 The J2EE™ Connector Architecture and Web-Service–Based Integration 49

4.0.2 Overview of the Connector Architecture

The connector architecture defines a standard architecture for connecting the J2EE platform
to heterogeneous EISs. It addresses the key issues and requirements of EIS integration by
defining a set of scalable, secure, and transactional mechanisms that enable the integration
of EISs with service containers and enterprise applications.

4.0.3 Advantages of the Connector Architecture

Using the connector architecture reduces the scope of integration and simplifies application
development. It also makes it easier to use tools for EIS integration and avoids vendor lock-
in.

The connector architecture provides the most direct mechanism for integrating a Sun ONE
application with an EIS. This mechanism results in a close coupling between a Sun ONE
application and an EIS, which provides both high performance and high reliability. The
connector architecture achieves this close coupling by minimizing the layers of software
between the application and the EIS, and by directly coupling the service container
transaction and security services with those of the EIS.

Another advantage of the connector architecture is that it minimizes the complexity
needed to integrate an enterprise’s custom EISs with the Sun ONE Service Container. These
EISs are typically orphaned, because most middleware systems require arcane knowledge
to integrate with their proprietary architectures. The Sun ONE connector architecture is
specifically designed to make this “one-off’ integration job practical.

4.0.4 Connector Architecture Contracts

EIS vendors or third-party independent software vendors (ISVs) specializing in enterprise
application integration use the connector architecture to develop standard resource
adapters for different EIS types. Because these resource adapters conform to the connector
architecture specifications, they can plug into any J2EE technology-compliant service
container and can provide connectivity between the EIS, the service container, and the Sun
ONE application.

The connector architecture allows a service container and resource adapter (and its
underlying EIS) to collaborate to keep all system-level mechanisms—remote access,
transactions, security, and connection pooling—transparent to the application. As a result,
an application developer can focus on the development of business and presentation logic
for its application components, and does not need to get involved in the system-level
issues related to EIS integration.

50 Sun ONE Architecture Guide

To accomplish its goals, the connector architecture defines two types of contracts:

■ Three system-level contracts between a service container and a resource adapter.

■ An application contract between a Sun ONE architecture component and a resource
adapter.

These contracts are discussed in the sections that follow.

4.0.4.1 System-Level Contracts

The connector architecture’s system-level contracts define a “pluggability” standard
between service containers and EISs.

The EIS vendor or resource-adapter provider implements its side of the system-level
contracts in a resource adapter. A resource adapter is a Java programming language library
that is specific to the EIS. It is designed to provide connectivity to the EIS. By plugging a
resource adapter into a service container, the container’s functionality is extended with
connectivity to the resource adapter’s EIS. Examples of resource adapters include ERP
system resource adapters and CICS resource adapters.

In addition to a resource adapter’s system-level contracts with a container, each resource
adapter provides an EIS-specific interface that represents the EIS’s functionality as seen by
components. (Note that the connector architecture does not define this interface).

The resource adapter abstracts the details both of the interface and of the communication
between the underlying resource adapter library and the EIS system. Typically, the EIS and
the resource adapter communicate over an EIS-specific protocol. A resource adapter can
also use a native library as part of its implementation.

The service container is a J2EE technology-compliant server that hosts Web containers and
containers for Enterprise JavaBeans™ technology-based components (“EJB™ containers”). The
service container also provides a set of services—including transaction management,
security services, and connection pooling. The resource adapter uses the Connector Service
Provider Interface (SPI) to plug in to a service container by implementing the EIS side of
these contracts. The service container, through its Connector SPI, manages a resource
adapter’s transactions, security, and connection pooling.

Currently, the Connector SPI is composed of the three contracts listed below. They will be
extended in the next version of the connector architecture to provide support for thread
management and asynchronous communication with EISs.

CCCCoooonnnnnnnneeeecccctttt iiiioooonnnn mmmmaaaannnnaaaaggggeeeemmmmeeeennnntttt ccccoooonnnnttttrrrraaaacccctttt –––– This contract enables a service container to pool
connections to an underlying EIS. At the same time, it enables application components to
connect to an EIS. The pooling of connections is important to the creation of a scalable
application environment, particularly when large numbers of clients require access to the
underlying EIS.

 4 The J2EE™ Connector Architecture and Web-Service–Based Integration 51

TTTTrrrraaaannnnssssaaaacccctttt iiiioooonnnn mmmmaaaannnnaaaaggggeeeemmmmeeeennnntttt ccccoooonnnnttttrrrraaaacccctttt –––– This contract is between the transaction
manager that is provided with the service container and an EIS that supports transactions.
It gives a service container’s transaction manager the ability to manage transactions across
multiple EIS resource managers. (A resource manager provides access to a set of shared
resources.) The contract also supports transactions that do not involve an external
transaction manager; that is, local transactions that an EIS resource manager handles
internally.

SSSSeeeeccccuuuurrrr iiii ttttyyyy ccccoooonnnnttttrrrraaaacccctttt –––– This contract enables secure access to an EIS. It provides support for
a secure application environment and protects the EIS-managed resources.

4.0.4.2 Application-Level Contract

The connector architecture also defines an application-level contract between an application
component and a resource adapter. In particular, this contract defines the client API that an
application component uses for EIS access. The client API may be the Common Client
Interface (CCI), or it may be an API specific to the particular type of resource adapter and the
underlying EIS. Java DataBase Connectivity™ (JDBC™) technology is an example of a client API
specific to one type of resource adapter—in this case, a relational database.

The CCI defines a common client API for accessing multiple heterogeneous EISs. This API is
well suited for enterprise application integration (EAI) and enterprise tool vendors.

4.0.5 Packaging and Deployment

Because the connector architecture emphasizes the pluggability of resource adapters into
service containers, it also provides a standard packaging model for resource adapters and a
deployment model that enables such adapter pluggability.

A resource-adapter provider is expected to develop a resource adapter according to the
connector architecture’s packaging model. By adhering to this model, the server’s
deployment tools can easily deploy the packaged resource adapter in the service container’s
operational environment.

4.0.6 Web-Service-Based Integration

At first glance, the connector architecture and Web services appear to be on opposite ends
of the integration spectrum. From a functionality standpoint, this is true. Connectors allow
Sun ONE applications to interact with an EIS via fine-grained, closely coupled operations.
On the other hand, integration with a Web service typically occurs through coarse-grained,
loosely coupled operations.

52 Sun ONE Architecture Guide

The linkage between these two integration mechanisms is that the Sun ONE Service
Container plus a resource adapter is an ideal building block for putting a Web service
face in front of an EIS. The Web service is simply a Sun ONE Web service application that
provides a customized Web service view of EIS functionality. The EIS resource adapter is the
shortcut for customizing EIS functionality as a Web service.

A Web service is a new and evolving service delivery model that is based on the Simple
Object Access Protocol (SOAP) standard. The basic elements of this service model are
transport (SOAP/ HTTP), data encoding (XML Schema), service description (WSDL), and
service lookup (UDDI). This chapter will focus on the significance of this model for service
integration and on the facilities the Sun ONE architecture provides for supporting it.

Even though there is still much to be done in the standards arena to fully define Web
services, developers are using Web services today to solve some classes of integration
problems.

The promise of Web services is a secure, unified service delivery model that is based on
open, interoperable standards. The reality is that much of the security work has yet to be
done, and that the first generation of this technology is therefore best suited to coarse-
grained exchange of XML-structured data between trusted applications within a secure
environment.

Even with these limitations, Web services is still an important integration technology that
developers are already using to open up the flow of information within the enterprise.

4.0.7 Support for Web Services in the Sun ONE Architecture

The Sun ONE architecture provides full support for implementing and using Web services.
This is an integral part of the Sun ONE architecture service delivery model. Web services
are used for integrating service tiers within the Sun ONE architecture. It also uses Web
services for service integration between Sun ONE architecture and other environments. For
a discussion of the J2EE tools for creating Web services, see Chapter 3, “J2EE™ Components
and Containers.”

4.0.7.1 Using Web Services from the Sun ONE Architecture

The Sun ONE architecture provides the Java API for XML-based RPC (“JAX-RPC”), which is a
full-featured API for using Web services. It can be used uniformly to invoke a Web service
within the same service container or across the globe. If a Web service provides a WSDL
description of its capabilities, JAX-RPC tools will generate a customized Java API for the
service that minimizes the complexity of using it. JAX-RPC also provides lower-level facilities
for using services in more dynamic scenarios.

 4 The J2EE™ Connector Architecture and Web-Service–Based Integration 53

4.0.7.2 Implementing Web Services with the Sun ONE Architecture

The primary Sun ONE architecture service delivery model is the broader definition of the
Web services model. This definition includes both service delivery to browser-based clients,
and service delivery to SOAP-based applications, which is the focus of this section.

Implementing a Web service is as simple as implementing the methods of a JAX-RPC
interface. This interface may have been generated by a JAX-RPC tool from a WSDL service
description, or it may have been provided as a Java interface from which a JAX-RPC tool will
generate its WSDL description. In both cases, the result is an interoperable, SOAP RPC Web
service.

The Sun ONE Service Container provides two service component models—servlets and
components based on the Enterprise JavaBeans™ specification (“EJB™ components”).
Servlets are an informal service component preferred by Web developers. EJB components
are a more formal business component model with more support for transactions and state
management. Both servlets and EJB components provide direct support for implementing a
JAX-RPC interface.

When an EJB component that implements a JAX-RPC interface is deployed in a service
container, it is a Web service. The configuration of the service determines how broadly
accessible it is. Part of this configuration information is provided by its standard J2EE
software application packaging information, while part of it is site-specific and customized
by the deployer.

Due to lack of Web service-specific security standards, the security of a Web service is
currently limited to the basic link-level authorization, privacy, and integrity facilities of the
HyperText Transfer Protocol Secure (HTTPS) protocol. In the not-too-distant future, standards
for the use of digital signatures (XMLDSIG) with Web services will provide the basis for Web
service non-repudiation facilities.

4.0.8 J2EE Connector Architecture Interfaces

The following table lists the requirements for the Sun ONE architecture conformance for
connectors based on J2EE technology.

Interface Name Level Status Reference * Comments

J2EE 1.3 specification
(JSR 58)

Application
and System

Footnote 1 http://www.jcp.org/jsr/detail/58.
jsp

Defines the J2EE 1.3
specification

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

54 Sun ONE Architecture Guide

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

 5 Asynchronous Reliable Messaging 55

CHAPTER 5

Asynchronous Reliable Messaging

In an era of e-commerce between loosely integrated business partners, asynchronous
operation is an absolute necessity. This is because traditional synchronous messaging
has the serious limitation of requiring that all infrastructure elements between distributed
components be available at the time of the transaction. Ensuring constant availability is
difficult enough within single enterprises; it becomes much more difficult between
communities of business partners. Even if all of the business partners agree to high
standards of availability and implement costly fault-tolerant systems, the result is to simply
reduce, not eliminate, down-time.

The problem of unavailability is an annoyance to customers who try unsuccessfully to
access services over the Internet through a Web browser. Unavailability results in lost
business when customers give up or make their purchases from another seller whose
service is available. However, in the coming age of Web services in which operations will
be conducted between machines automatically and without human interaction, the risks
related to unavailability are even more daunting without the ability to communicate
asynchronously.

5.1 Messaging Basics
The term “messaging” is quite broadly defined in computing. It is used for describing
systems such as the following:

■ Various operating system concepts

■ E-mail and FAX products

■ Asynchronous communication between enterprise applications

This chapter employs the latter meaning of “messaging.” Messages, as described here, are
asynchronous requests, reports or events that are consumed by enterprise applications, not
humans. They contain vital information needed to coordinate these systems. In addition,
they contain precisely formatted data that describe specific business actions. Through the
exchange of these messages, each application tracks the progress of the enterprise.

56 Sun ONE Architecture Guide

5.1.1 Existing Messaging Systems

Messaging systems are peer-to-peer facilities. In general, each client can send messages to,
and receive messages from, any client. Each client connects to a messaging agent that
offers facilities for creating, sending, and receiving messages.

Each system provides a way of addressing messages and furnishes a way to create a
message and fill it with data. Some systems are capable of broadcasting a message to many
destinations. Others only support sending a message to a single destination.

Some systems provide facilities for asynchronous receipt of messages. In such systems,
messages are delivered to a client as they arrive. Others support only synchronous receipt
in which a client must request each message.

Each messaging system typically provides a range of service that can be selected on a per-
message basis. One important attribute is the lengths to which the system will go to
ensure delivery. This varies from simple best effort to guaranteed, only-once delivery. Other
important attributes are message time-to-live, priority, and whether a response is required.

The iPlanet™ Message Queue for Java™ software messaging system is an example of an
existing asynchronous reliable messaging system. The manner in which it is implemented
is discussed in Section 5.4, “iPlanet™ Message Queue for Java.”

5.1.2 Asynchronous Reliable Messaging Systems

A prerequisite for asynchronous operations within and between enterprises is an
asynchronous reliable messaging system. An asynchronous reliable messaging system
allows an application to interact with other applications using a local message queue,
regardless of whether the remote application is actually available when the application
initiates the interaction. The only requirement is for the application to be able to write
to its local message queue; it needs to deliver each message exactly once.

The message is delivered by the reliable-messaging provider when the service at the other
end is receiving. The application does not need to maintain an open thread waiting for the
remote application to receive the message. The availability of asynchronous messaging
increases the reliability of systems during periods of peak demand, which is an important
consideration for e-commerce applications.

The Enterprise JavaBeans™ (EJB™) 2.0 specification recognizes the importance of asynchronous
operation by introducing the message-driven EJB components, which allows EJB components
to spawn threads, respond to asynchronous requests, and initiate multiple concurrent
actions. The Java Message Service (JMS) API is a natural adjunct to the Message Driven
Bean (MDB).

 5 Asynchronous Reliable Messaging 57

5.2 The Java™ Message Service Technology
To address the needs of enterprises for asynchronous reliable messaging, the Java Community
created the JMS, which became an integral part of the Java 2 Platform, Enterprise Edition
(J2EE™ platform). JMS is a standard API for messaging that supports reliable point-to-point
messaging as well as the publish-subscribe model.

The asynchronous reliable messaging component of the Sun ONE architecture is built upon
the JMS API specification. The Java Message Service provides a common way for Java
programs to create, send, receive, and read an enterprise messaging system's messages.

Enterprise messaging products or, as they are sometimes called, Message-Oriented
Middleware (MOM) products, are becoming an essential component for integrating intra-
company operations. They allow separate business components to be combined into a
reliable yet flexible system. In addition to the traditional MOM vendors, enterprise
messaging products are provided by several database vendors and a number of Internet-
related companies.

Enterprise messaging provides a reliable, flexible service for the asynchronous exchange of
critical business data and events throughout an enterprise. The JMS API adds to this a
common API and provider framework that enables the development of portable, message
based applications in the Java programming language.

The JMS API improves programmer productivity by defining a common set of messaging
concepts and programming strategies that will be supported by all JMS technology-
compliant messaging systems.

5.2.1 Objectives of the JMS Technology

If Java Message Service provided a union of all the existing features of messaging systems,
it would be much too complicated for its intended users. On the other hand, JMS is more
than an intersection of the messaging features common to all products. It is crucial that
Java Message Service include the functionality needed to implement sophisticated
enterprise applications.

The JMS API defines a common set of enterprise messaging concepts and facilities. It
attempts to minimize the set of concepts a Java language programmer must learn to use
enterprise messaging products. It strives to maximize the portability of messaging
applications.

5.2.1.1 Java Message Service Technology Provider (“JMS Provider”)

A JMS provider is the entity that implements the JMS API for a messaging product. Ideally,
JMS providers run in applets, simplify installation, and work across architectures and
operating systems. An important goal of the JMS API is to minimize the work needed to
implement a provider.

58 Sun ONE Architecture Guide

5.2.1.2 Java Message Service Technology Clients (“JMS Clients”)

JMS clients are the programs or components written in the Java™ programming language
that produce and consume messages.

5.2.1.3 Java Message Service Technology Messages (“JMS Messages”)

JMS defines a set of message interfaces. Clients use the message implementations supplied
by their JMS provider. A major goal of JMS is that clients have a consistent API for creating
and working with messages that is independent of the JMS provider.

5.2.1.4 Java Message Service Technology Domains (“JMS Domains”)

Messaging products can be broadly classified as either point-to-point (PTP) or publish-
subscribe (Pub/Sub) systems.

PTP products are built around the concept of message queues. Each message is addressed
to a specific queue; clients extract messages from the queue(s) established to hold their
messages.

Pub/Sub clients address messages to some node in a content hierarchy. Publishers and
subscribers are generally anonymous and may dynamically publish or subscribe to the
content hierarchy. The system takes care of distributing the messages arriving from a node's
multiple publishers to its multiple subscribers. The Java Message Service provides client
interfaces tailored for each domain.

5.2.1.5 Portability

The primary portability objective is that new, JMS-only applications must be portable
across products within the same messaging domain. This is in addition to the expected
portability of a JMS client across machine architectures and operating systems (when using
the same JMS provider).

Although JMS is designed to allow clients to work with existing message formats used in a
mixed-language application, portability of such clients is not generally achievable. This is
because porting a mixed language application from one product to another is beyond the
scope of the JMS technology.

5.2.2 Java Message Service Does Not Include

The JMS specification does not address the following areas of functionality:

LLLLooooaaaadddd BBBBaaaallllaaaannnncccciiiinnnngggg////FFFFaaaauuuulllltttt TTTToooolllleeeerrrraaaannnncccceeee – Many products provide support for multiple,
cooperating clients implementing a critical service. The Java Message Service does not
specify how such clients cooperate to appear to be a single, unified service.

 5 Asynchronous Reliable Messaging 59

EEEErrrrrrrroooorrrr////AAAAddddvvvviiiissssoooorrrryyyy NNNNooootttt iiii ffff iiiiccccaaaatttt iiiioooonnnn – Most messaging products define system messages that
provide asynchronous notification of problems or system events to clients. Java Message
Service does not attempt to standardize these messages. By following the guidelines
defined by the JMS specification, clients can avoid using these messages, thus
preventing the portability problems introduced by their use.

AAAAddddmmmmiiiinnnniiiissssttttrrrraaaatttt iiiioooonnnn –––– Java Message Service does not define an API for administering
messaging products.

SSSSeeeeccccuuuurrrr iiii ttttyyyy –––– Java Message Service does not specify an API for controlling the privacy and
integrity of messages. It also does not specify how digital signatures or keys are distributed
to clients. Security is considered to be a JMS provider-specific feature that is configured by
an administrator rather than controlled via the JMS API by clients.

WWWWiiiirrrreeee PPPPrrrroooottttooooccccoooollll –––– Java Message Service does not define a wire protocol for messaging.

MMMMeeeessssssssaaaaggggeeee TTTTyyyyppppeeee RRRReeeeppppoooossssiiii ttttoooorrrryyyy – Java Message Service does not define a repository for
storing message type definitions and it does not define a language for creating message
type definitions.

5.2.2.1 Java Message Service Requirements

The functionality discussed in the JMS specification is required of all JMS providers
unless it is explicitly noted otherwise. Providers of Java Message Service point-to-point
functionality are not required to provide publish/subscribe functionality and vice versa.
The following table provides information relevant to the JMS specification.

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

5.3 Requirements Beyond Java Message Service
In order to conform with the Sun™ Open Net Environment (Sun ONE) architecture, an
asynchronous reliable messaging product must implement all of the JMS API specification.
Further more, it must implement the functionality described in the following sections.

Interface Name Level Status Reference * Comments

Java Message
Service (JMS)
Specification

Application
and System

Footnote 1 http://www.jcp.org/aboutJava/community
process/maintenance/JMS/index.html

Supports message-
driven EJBs and Java
Transaction API (JTA)
transactions.

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

60 Sun ONE Architecture Guide

5.3.1 Multiple Queue Delivery Styles

The JMS API specification does not define specific behaviors when multiple receivers attach
to a queue. In fact, the only required capability is that a single receiver be able to attach to
a queue. In reality, it is quite common for an enterprise to want to dynamically adjust the
number of processing agents consuming messages on a queue. Therefore, it is a requirement
that a Sun ONE architecture compliant asynchronous messaging provider be able to support
multiple receivers on a queue. That provider must also have the capacity to support at
least the following two models for message delivery:

Failover – A queue has a primary receiver defined for it, as well as failover receivers. If
delivery to the primary receiver fails, messages are routed to a secondary receiver until the
primary reconnects to the system.

Round-robin – Messages are delivered to all the subscribing clients in a balanced, round-
robin fashion.

5.3.2 Multiple Protocol Support

Asynchronous messaging systems are useful in both the intranet and extranet world.
Because of the firewalls and other hurdles placed between cooperating enterprises in an
Internet-style deployment (and between divisions in large intranet situations), it is important
for a reliable messaging provider to be able to support multiple protocols. In addition to a
sockets-based protocol, a Sun ONE platform provider should support an HTTP mode of
transport.

5.3.3 Security

The JMS API specification does not require that communication between clients be secure.
The Sun ONE architecture requires that it be possible to configure the asynchronous
messaging system to make the transmission of data secure.

5.3.4 Object Management

A Sun ONE architecture compliant messaging system must support Light Weight Directory
Access Protocol (LDAP) as a store for its administered objects. Furthermore, its schema
must be integratable with Sun ONE architecture compliant naming systems.

 5 Asynchronous Reliable Messaging 61

5.3.5 Pluggable Persistence

A compliant JMS technology system must allow the developer or deployer to specify high
levels of reliability for certain sets of messages in the system. The highest levels of
reliability require a media-based persistence mechanism to allow the data to survive across
software crashes and errors, or even hardware faults. A Sun ONE architecture compliant
implementation must allow the pluggable use of a customer’s existing database software
instead of a closed, proprietary system delivered with the messaging software.

5.3.6 Distributed Transaction Support

While a compliant JMS provider can make a choice about whether to support the XA
interfaces for distributed transactions, the Sun ONE architecture requires that these
interfaces be supported for compliance.

5.4 iPlanet™ Message Queue for Java
The iPlanet Message Queue for Java software messaging system, whose architecture is
shown in Figure 5–1, is a current example of an asynchronous reliable messaging system.
It implements many of the functionalities described in the previous sections of this chapter.

The iPlanet Message Queue for Java software provides asynchronous reliable messaging
through the coordination of the following main components:

■ Administered Objects

■ Client Runtime

■ Message Service

The rest of this chapter contains an in-depth description of these components and the ways
in which they work together to provide asynchronous reliable message delivery.

62 Sun ONE Architecture Guide

5.4.1 Administered Objects

Administered Objects encapsulate provider-specific implementation and configuration
information in objects that are used by client applications. Such objects are created and
configured by an administrator, stored in a name service, accessed by client applications
through standard Java Naming and Directory Services™ (“JNDI”) lookup code, then used in a
provider-independent manner.

iPlanet Message Queue for Java software provides two types of administered objects:
ConnectionFactory and Destination. While both encapsulate provider-specific information,
they have very different uses within a client application. ConnectionFactory objects are
used to create connections to the Message Service, while Destination objects (which
represent physical destinations) are used to identify physical destinations.

Administered Objects make it easy to control and manage a Message Service. That is
because the behavior of connections can be controlled by requiring client applications to
access preconfigured ConnectionFactory objects through a JNDI API lookup. The proliferation
of physical destinations can be controlled by requiring client applications to access only
Destination objects that correspond to existing physical destinations. The broker’s auto-
create capability may have to be disabled, as explained in Section 5.4.3.7.3, “Auto-Created
(vs. Admin-Created) Destinations.”

This arrangement therefore provides control over Message Service configuration details. At
the same time, it allows client applications to be provider-independent. They do not need
to know about provider-specific syntax and object naming or provider-specific configuration
properties.

Figure 5–1: Messaging System Architecture

 5 Asynchronous Reliable Messaging 63

5.4.2 Client Runtime

As the second main component of the Messaging System, the Client Runtime provides
client applications with an interface to the Message Service by supplying them with all the
JMS programming objects. It supports all operations necessary to enable clients to send
messages to destinations and to receive messages from them.

Figure 5–2 illustrates how message production and consumption involve an interaction
between client applications and the Client Runtime, while message delivery involves an
interaction between the Client Runtime and the Message Service.

5.4.2.1 Message Production

In message production, a message is created by the client, then sent over a connection to
a destination on a broker. If the message delivery mode of the MessageProducer object has
been set to persistent (guaranteed delivery, once and only once), the client thread blocks
until the broker acknowledges that the message was delivered to its destination and
stored in the broker’s persistent data store. If the message is not persistent, a broker
acknowledgement message (referred to as “Ack” in property names) is not returned by the
broker, and the client thread does not block.

5.4.2.2 Message Consumption

Message consumption is more complex than production. Messages arriving at a destination
on a broker are delivered over a connection to the Client Runtime under the following
conditions:

■ The client has set up a consumer for the given destination.

■ The selection criteria for the consumer, if any, match that of messages arriving at the
given destination.

■ The connection has been told to start delivery of messages.

Figure 5–2: Messaging Operations

64 Sun ONE Architecture Guide

Messages delivered over the connection are distributed to the appropriate sessions in
which they are queued to be consumed by the appropriate MessageConsumer objects,
as shown in Figure 5–3. Messages are retrieved off each session queue one at a time
(a session is-single threaded). They are consumed either synchronously (by a client thread
invoking the receive method) or asynchronously (by the session thread invoking the
onMessage method of a MessageListener object).

When a broker delivers messages to the client runtime, it marks them accordingly.
However, it does not really know if they have been received or consumed. Therefore, the
broker waits for the client to acknowledge receipt of a message before deleting the
message from the broker’s destination.

5.4.2.3 ConnectionFactory Administered Objects

A ConnectionFactory object is used to create physical connections between a client application
and a Message Service. A ConnectionFactory object has no physical representation in a broker.
Instead, it is used simply to enable the client application to establish connections with a broker.
A ConnectionFactory object is also used to specify behaviors of the connection and of the client
runtime that is using it to access a broker. By configuring a ConnectionFactory administered
object, the administrator can specify the attribute values (that is, the properties) common to all
the connections that it produces.

ConnectionFactory attributes can be grouped into a number of categories, depending on
the behaviors they affect, including:

■ Connection specification

■ Auto-reconnect behavior

■ Client identification

■ Reliability and flow control

■ Queue browser behavior

Figure 5–3: Message Delivery to Client Runtime

 5 Asynchronous Reliable Messaging 65

■ Application server support

■ Java Message Service technology-defined properties support

Because they impact client application design and performance, each of these categories
and its corresponding attributes is discussed in some detail in the iPlanet Message Queue
for Java Developer’s Guide.

While the Messaging System administrator might be called upon to adjust the values of
these attributes, it is normally an application developer who decides which attributes need
adjustment to tune the performance of client applications.

5.4.2.4 Destination Administered Objects

A Destination administered object represents a queue or topic physical destination in a
broker to which the publicly named Destination object corresponds. By creating a
Destination object, the administrator allows a client application’s MessageConsumer
and/or MessageProducer objects to access the corresponding physical destination.

5.4.3 The Message Service

The Message Service provides the core functionality of the asynchronous reliable
messaging system. It is made up of the following main components:

One or More Brokers –––– A broker provides delivery services for the messaging system.
Message delivery relies upon a number of supporting components that handle connection
services, message routing and delivery, persistence, security, and logging. A Message
Service can employ a single- or multi-broker configuration. Section 5.4.3.1, “Broker
Components and Functions,” describes broker connection services, the Persistence
Manager, the Security Manager, and the Logger. Section 5.4.3.6, “Multi-Broker
Configurations (Clusters),” discusses multi-broker Message Services, which allow
client connections to be distributed among a number of brokers.

Physical Destinations –––– Delivery of a message is a two-phase process-delivery from a
producing client to a physical destination maintained by a broker, followed by delivery
from the destination to one or more consuming clients. Physical destinations represent
locations in a broker’s physical memory and/or persistent storage. Section 5.4.3.7,
“Physical Destinations,” discusses the two main types of physical destinations—queue
destinations and topic destinations.

5.4.3.1 Broker Components and Functions

Message delivery in the Messaging System—from producing clients to destinations, and
then from destinations to one or more consuming clients—is performed either by a single
broker or a cluster of brokers working in tandem. This lengthy section describes the
features and functions of a single broker. Multiple broker configurations are discussed in
the briefer Section 5.4.3.6.

66 Sun ONE Architecture Guide

In order to perform message delivery, a broker must set up communication channels
with clients, perform authentication and authorization, route messages appropriately,
guarantee reliable delivery, and provide data for monitoring system performance.

As the broker executes this complex set of functions, it uses a number of different
components, each with a specific role in the delivery process. These internal components
can be configured to optimize the performance of the broker, depending on load conditions,
application complexity, and so on. The main broker components are illustrated in
Figure 5–4 and described briefly in Table 5–1.

Table 5–1: Main Broker Components and Their Functions

Figure 5–4: Broker Components

Component Description/Function

Connection Services Manage the physical connections between a broker and clients, providing transport
for incoming and outgoing messages.

Message Router Manages the routing and delivery of messages. These include JMS messages as well
as control messages used by the iPlanet Message Queue for Java software
messaging system to support Java Message Service technology based message
delivery (“JMS Message Delivery”).

Persistence Manager Manages the writing of data to persistent storage so that system failure does not
result in failure to deliver JMS messages.

Security Manager Provides authentication services for users requesting connections to a broker and
authorization services (access control) for authenticated users.

Logger Writes monitoring and diagnostic information to log files or the console so that an
administrator can monitor and manage a broker.

 5 Asynchronous Reliable Messaging 67

Section 5.4.3.2 through Section 5.4.3.5.4 more fully describe the functions performed by the
different broker components and the properties that can be configured to affect their
behavior.

5.4.3.2 Connection Services

A broker supports communication with both (JMS) clients and iPlanet Message Queue for
Java software administration clients via connection services that manage the physical
connections between that broker and its clients. A broker can be configured to run a wide
variety of connection services. Each service has a Thread Pool Manager and registers itself
with a common Port Mapper service, as shown in Figure 5–5.

Each connection service is defined by its service type and connection type. The service type
specifies whether the connection service provides JMS message delivery (NORMAL) or
broker administration (ADMIN) services. The connection type indicates the underlying
transport protocol layer that supports the connection service.

The port from which each connection service is available is specified by the broker’s host
name and a port number. That port can be statically or dynamically allocated. iPlanet
Message Queue for Java software provides a Port Mapper that maps dynamically allocated
ports to the different connection services. The Port Mapper itself resides at standard port
number 7676.

When a client sets up a connection with the broker, it first contacts the Port Mapper to
request the port number of the connection service it desires. Note that a static port
number can be assigned for each service when configuring broker connection services, but
this is not recommended.

Figure 5–5: Connection Services Support

68 Sun ONE Architecture Guide

Each connection service is multi-threaded, supporting multiple connections. Each
connection to the broker requires two threads: one to manage incoming messages and one
to manage outgoing messages. To conserve resources, a Thread Pool Manager component
allocates threads to connections from a shared thread pool, as they are needed. The Thread
Pool Manager can be configured to optimize connection resources. For example, it is
possible to set the minimum number and maximum number of threads in a thread pool.

Note that each connection service also supports specific authentication and authorization
(access control) features.

5.4.3.3 Message Router

Once connections have been established between clients and a broker using the supported
connection services, the routing and delivery of messages can proceed via the Message
Router. In addition to JMS messages, the Message Router can manage the routing and
delivery of control messages used by the iPlanet Message Queue for Java software
messaging system to support JMS message delivery.

5.4.3.3.1 Basic Delivery Mechanisms

Broadly speaking, the messages handled by the Message Router fall into the following two
categories:

■ JMS messages sent by producer clients, destined for consumer clients-payload
messages.

■ Control messages that are sent to and from clients in order to support the delivery of
the JMS messages.

If the incoming message is a JMS message, the broker routes it to consumer clients, based
on whether it will go to a queue or topic destination:

■ If the destination is a topic, the Message Router immediately routes the JMS message to
all active subscribers to the topic. In the case of inactive durable subscribers, the
Message Router holds the message until the subscriber becomes active, then delivers
the message to that subscriber.

■ If the destination is a queue, the Message Router places the JMS message in the
corresponding queue, then delivers it to the appropriate consumer when the message
reaches the front of the queue. The order in which messages reach the front of the
queue depends on the order of their arrival and on their priority.

Once the Message Router has delivered a message to all its intended consumers, it clears
it from memory. If the message is persistent, it removes it from the broker’s persistent data
store.

This relatively straightforward delivery mechanism becomes more complicated with the
addition of reliability requirements. Mechanisms for providing reliability are discussed
below.

 5 Asynchronous Reliable Messaging 69

5.4.3.3.2 Reliable Delivery

Reliable delivery has two requirements: ensuring that delivery of messages to and from a
broker is successful, and ensuring that the broker does not lose messages or delivery
information before the messages are actually delivered. The first requirement is filled
through the mechanisms of acknowledgements and transactions. The second one is filled
through the mechanism of persistence. Both requirements are supported by the efficient
allocation of router system resources.

Acknowledgements

To ensure that messages are successfully delivered to and from a broker, the Messaging
Service uses a number of control messages called acknowledgements. For example, when a
producer sends a JMS message (a payload message as opposed to a control message) to a
destination, the broker sends back a control message, which is a broker acknowledgement
of the fact that it received the JMS message. (In practice, the Messaging Service does this
only if the producer specifies the JMS message as persistent.) The producing client uses the
broker acknowledgement to guarantee delivery to the destination.

Transactions

The client and broker acknowledgement processes described above also apply to
JMS message deliveries grouped into transactions. In such cases, client and broker
acknowledgements operate on the level of a transaction rather than on the level of individual
JMS message sends or receives. When a transaction commits, a broker acknowledgement is
sent automatically. The broker employs a transaction manager to commit transactions or roll
them back should they fail.

Persistence

Persistence ensures that the broker does not lose messages or delivery information before
messages are actually delivered. In general, messages remain in memory until they have
been delivered or they expire. However, if the broker should fail, these messages would be
lost.

Efficient Allocation of Router System Resources

The performance of a broker depends on the system resources available and how efficiently
resources such as memory are utilized. For example, the Message Router includes a
mechanism for locally swapping messages to disk when memory resources become scarce.

The broker’s memory management functions can be configured using properties that
perform the following functions:

■ Governance of how often memory reclamation takes place.

■ Setting of limits on the total number and total size of messages in memory.

70 Sun ONE Architecture Guide

■ Control of the swapping of messages to disk. For example, thresholds for the number of
messages or the total size of messages that will trigger swapping (whichever is reached
first will trigger the operation) can be set. In addition, the percentage of messages
remaining after swapping takes place can be set.

5.4.3.4 Persistence Manager

In order for a broker to recover in case of failure, it must recreate the state of its message
delivery operations. This requires it to save all persistent messages, as well as essential
routing and delivery information, to a data store. A Persistence Manager component
manages the writing and retrieval of this information.

To recover a failed broker requires more than simply restoring undelivered messages. The
broker must also be able to:

■ Re-create destinations.

■ Restore the list of durable subscribers for each topic.

■ Restore the acknowledge list for each message.

■ Reproduce the state of all committed transactions.

The Persistence Manager manages the storage and retrieval of all of this state information.
When a broker restarts, it recreates destinations and durable subscriptions, recovers
persistent messages, restores the state of all transactions, and recreates its routing table
for undelivered messages. It can then resume message delivery.

iPlanet Message Queue for Java software supports both built-in and plugged-in persistence
modules. Built-in persistence is based on a flat file data store. Plugged-in persistence uses
a Java DataBase Connectivity™ (JDBC) interface and requires a JDBC interface-compliant data
store. The built-in persistence is generally faster than plugged-in persistence. However,
some users prefer the redundancy and administrative features gained through the use of a
JDBC interface-compliant database system.

5.4.3.5 Security Manager

iPlanet Message Queue for Java software provides authentication and authorization (access
control) features, as well as encryption capabilities.

The authentication and authorization features depend upon a user repository. This consists
of a file, directory, or database that information about the users of the messaging system,
including their names, passwords, and group memberships. The names and passwords are
used to authenticate a user when a connection to a broker is requested. The user names
and group memberships are used, in conjunction with an access control file, to authorize
operations such as producing or consuming messages for destinations.

 5 Asynchronous Reliable Messaging 71

5.4.3.5.1 Authentication

iPlanet Message Queue for Java software security supports password-based authentication.
When a client requests a connection to a broker, the client must submit a user name and
password. The Security Manager compares the name and password submitted by the client
to those stored in the user repository. On transmitting the password from client to broker,
the passwords are encoded using either base64 encoding or message digest, MD5. In a
separate manner, the type of encoding used by each connection service configured or
encoding on a broker-wide basis can be set.

5.4.3.5.2 Authorization

Once the user of a client application has been authenticated, that user can be authorized
to perform various Message System-related activities. The Security Manager supports both
user-based and group-based access control. Depending on a user’s name or the groups to
which the user is assigned in the user repository, that user has permission to perform
certain operations. As shown in Figure 5–6, these access controls are specified in an
access control properties file.

5.4.3.5.3 Encryption

To encrypt messages sent between clients and broker, a connection service based on the
Secure Socket Layer (SSL) standard is used. SSL provides security at a connection level by
establishing an encrypted connection between an SSL-enabled broker and an SSL-enabled
client.

5.4.3.5.4 Logger

The broker includes a number of components for monitoring and diagnosing its operation.
Among these are components that generate data (a Metrics Generator) and a Logger
component that writes out data (metrics information as well as error messages and
warnings) through a number of output channels. The scheme is illustrated in Figure 5–7.

Figure 5–6: Security Manager Support

72 Sun ONE Architecture Guide

5.4.3.6 Multi-Broker Configurations (Clusters)

iPlanet Message Queue for Java software supports the implementation of a Message
Service using multiple interconnected brokers known as a broker cluster. Cluster support
provides for scalability of the Message Service.

As the number of clients connected to a broker increases, and as the number of messages
being delivered grows, a broker will eventually exceed its limitations for such resources
such as file descriptor and memory. One way to accommodate increasing loads is to add
more brokers to a Message Service, thus distributing client connections and message
delivery across multiple brokers.

Multiple brokers may also be used to optimize network bandwidth. For example, slower,
long-distance network links can be used between a set of remote brokers, while reserving
higher speed links for connecting clients to their respective brokers.

5.4.3.6.1 Multi-Broker Architecture

A multi-broker Message Service allows client connections to be distributed among a
number of brokers, as shown in Figure 5–8. From a client point of view, each client
connects to an individual broker (its home broker) and sends and receives messages as if
the home broker were the only broker in the cluster. However, from a Message Service
point of view, the home broker is working in tandem with other brokers in the cluster to
provide delivery services to the message producers and consumers to which it is directly
connected.

Figure 5–7: Logging Scheme

 5 Asynchronous Reliable Messaging 73

In a multi-broker configuration, instances of each destination reside on all of the brokers in
a cluster. In addition, each broker knows about message consumers that are registered
with all other brokers. Each broker can therefore route messages from its own directly
connected message producers to remote message consumers. It can also deliver messages
from remote producers to its own directly connected consumers.

In a cluster configuration, the broker to which each message producer is directly connected
performs the routing for messages sent to it by that producer. Hence, a persistent message
is both stored and routed by the message’s home broker.

Whenever an administrator creates or destroys a destination on a broker, this information
is automatically propagated to all other brokers in a cluster. Similarly, whenever a message
consumer is registered with its home broker, or whenever a consumer is disconnected from
its home broker—either explicitly or because of a client or network failure, or because its
home broker goes down—the relevant information about the consumer is propagated
throughout the cluster. In a similar fashion, information about durable subscribers is also
propagated to all brokers in a cluster.

5.4.3.7 Physical Destinations

iPlanet Message Queue for Java software messaging is based on a two-phase delivery of
messages:

■ Delivery of a message from a producer client to a destination on the broker.

■ Delivery of the message from the destination on the broker to one or more consumer
clients.

Figure 5–8: Cluster Architecture

74 Sun ONE Architecture Guide

There are two main types of physical destinations: queues (point-to-point delivery model)
and topics (publish/subscribe delivery model). These destinations represent locations in a
broker’s physical memory where incoming messages are marshaled before being routed to
consumer clients. In addition, auto-created and temporary destinations must be taken into
consideration.

The sections below describe the properties and behaviors the various types of physical
destinations.

5.4.3.7.1 Queue Destinations

Queue destinations are used in point-to-point messaging, wherein a message is meant for
ultimate delivery to only one of a number of consumers that has registered an interest in
the destination. As messages arrive from producer clients, they are queued and delivered
to a consumer client.

The routing of queued messages depends on the queue’s delivery policy. iPlanet Message
Queue for Java software implements the following three queue delivery policies:

Single –––– This queue can only route messages to one message consumer. If a second
message consumer attempts to register with the queue, it is rejected. If the registered
message consumer disconnects, routing of messages no longer takes place, and messages
are saved until a new consumer is registered.

Failover –––– This queue can route messages to more than one message consumer, but it
will only do so if its primary message consumer (the first to register with the broker)
disconnects. In that case, the routing goes to the next message consumer to register. It
continues to be routed to that consumer until such time as that consumer fails, and so on.
If no message consumer is registered, messages are saved until a consumer registers.

Round-Robin –––– This queue can route messages to more than one message consumer.
Assuming that a number of consumers are registered for a queue, the first message into
that queue will be routed to the first message consumer to have registered, the second
message to the second consumer to have registered, and so on. Additional messages are
routed to the same set of consumers in the same order. If a number of messages are
queued up before consumers register for a queue, the messages are routed in batches to
avoid flooding any one consumer. If any message consumer disconnects, the messages
routed to that consumer are redistributed among the remaining active consumers. Due to
such redistributions, there is no guarantee that the order of delivery of messages to
consumers is the same as the order in which they are received in the queue.

 5 Asynchronous Reliable Messaging 75

5.4.3.7.2 Topic Destinations

Topic destinations are used in publish/subscribe messaging, wherein a message is meant
for ultimate delivery to all of the consumers that have registered an interest in the
destination. As messages arrive from producers, they are routed to all consumers
subscribed to the topic. If consumers have registered a durable subscription to the topic,
they do not have to be active at the time the message is delivered to the topic. Instead the
broker will store the message until the consumer is once again active, then deliver the
message.

5.4.3.7.3 Auto-Created (vs. Admin-Created) Destinations

There may be situations in which it is desirable to create destinations dynamically. For
example, during a development and test cycle, it may be desirable for the broker to
automatically create destinations as they are needed, without requiring the intervention of
an administrator.

iPlanet Message Queue for Java software supports this auto-create capability. When
auto-creation is enabled, a broker automatically creates a destination whenever a
MessageConsumer or MessageProducer attempts to access a nonexistent destination.
However, destinations that are created automatically instead of explicitly, can produce
clashes between different client applications that use the same destination name or
degraded system performance (due to the resources required to support a destination).
For this reason, an auto-created destination is automatically destroyed by the broker
when it is no longer being used, that is, when it no longer has message consumer clients
and no longer contains any messages. If a broker is restarted, it re-creates auto-created
destinations only if they contain persistent messages.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

76 Sun ONE Architecture Guide

 6 Business Process Integration 77

CHAPTER 6

Business Process Integration

Chapter 4 discussed the integration of Enterprise Information Systems (EISs) applications
via the Java™ 2 Platform, Enterprise Edition Connector Architecture and the Sun Open Net
Environment (Sun ONE) architecture’s native support for Web services. Chapter 5 considered
service integration via the asynchronous reliable messaging systems such as the iPlanet™
Message Queue for Java. This chapter explains the top-level federated software system
integration capability provided by the Sun ONE architecture.

The generally accepted industry definition of integration can be paraphrased as the
controlled sharing of data and business processes among any connected applications and
data sources within an enterprise and between trading partners. To make economic sense
for today's IT organizations, this must be possible without having to make sweeping
changes to the corporations existing information assets, including applications and data
structures.

Such flexible system integration of diverse clients and services requires a comprehensive
infrastructure, especially when those clients and services are defined and limited by others
outside the control of the local enterprise. Typical real-life examples are off-the-shelf
packages and vendor-supplied external services.

Because the needs of application systems are often as diverse as the source, age, and
technology of their implementations (as with programming languages such as, C++, CICS,
or Java), system integration product architectures often include a plug-in approach in the
data translation and messaging layers. This plug-in approach allows the basic framework to
be extended in the field to encompass a wide variety of situations.

For example, the system integration infrastructure must be capable of integrating services
and applications “within the firewall,” as well as those that are resident anywhere on the
Web. The iPlanet Integration Server product facilitates the integration of services and
applications in both types of locations. It is described in Section 6.4, “iPlanet™ Integration
Server.”

78 Sun ONE Architecture Guide

6.1 The Integration Challenge
Increasingly over the recent years, IT departments have focused less on building new
applications. Instead they have devoted more effort to connecting existing applications.
Mergers and acquisitions have increased, while corporations have found that they cannot
continue to leverage their accumulated IT assets.

New technologies and product releases often leave these business assets on orphaned,
legacy infrastructure islands. Over the next decade, integration will continue to be the
dominant challenge facing IT and corporate software development experts.

The following three example settings illustrate how integration plays a significant role in
all development projects, no matter how small:

■ Business document exchange

■ Connecting internal applications

■ Establishing new partnerships and businesses

6.1.1 Setting 1: Business Document Exchange

A corporate objective is to connect separate systems within an enterprise. For example, an
enterprise might need to make a Customer Relationship Management (CRM) package and a
financial application package such as Oracle Financials communicate with each other.

The development strategy here might be to devote IT resources toward reviewing each of
the application interface libraries for these packages, developing a connection strategy that
is unique to the two systems, and finally implementing the project. This strategy works well
until another, separate system needs to interact with one or more of the two integrated
systems. As new systems are added to the mix, the process can become unmanageable.

6.1.2 Setting 2: Connecting Internal Applications

In this setting, a corporation needs to establish connectivity between internal applications
within its own corporate environment. These applications have key corporate business
functionalities implemented in relatively isolated technology islands. These functionalities
may include, for example:

■ Typical transaction-style systems, perhaps running in large corporate data centers.

■ Systems built on specialized business-oriented technologies from various vendors such
as SAP, PeopleSoft, and Siebel.

■ Home-grown applications that provide unique business value such as financial portfolio
analysis, or insurance risk or rating applications.

 6 Business Process Integration 79

The corporate objective here is to tie these applications together to provide a more uniform
or expanded capability to a larger organizational or business function. Often the tasks are
driven by the need to simplify or regularize repetitive functions, such as updating customer
contact information, or using a single application to perform a common business function.

As in the Business Document Exchange setting, often these tasks are handled as unique
projects. Each project is concerned only with connecting the systems and applications
currently of interest to the project. Because the average enterprise has at least 50 unique
and disparate business applications, before long these types of projects become so
intertwined and complex that it is almost impossible to effectively manage them or predict
how changes at one end might impact another.

6.1.3 Setting 3: Establishing New Partnerships and
Businesses

As business becomes more global, the quantity of available partners has dramatically
increased in recent years. It is now possible to interact with consumers and suppliers
across the globe as if they were around the corner. In addition to the usual business
relationship concerns, global associations are often dramatically affected by rapidly
changing and often unforeseen events, such as public policy, monetary fluctuations, and
available labor. As the available marketplace of consumers and suppliers grows, so do the
possibilities for creating partnerships. From an electronic exchange perspective, effectively
managing and supporting global associations and partnerships is an enormous challenge
to any company.

At the time of this writing, only one reliable and effective integration strategy can address
this type of a dynamic, international marketplace of collaboration. That strategy is
embodied by the Electronic Business for eXtensible Markup Language (XML) Interchange
collection of specifications, referred to as ebXML. For more information, see Section 6.3,
“ebXML.”

The Sun ONE architecture embraces both the Web service native specifications and the
business extensions offered by ebXML. In many cases, these standards can coexist, but
certain compromises may not be acceptable for a reliable business.

6.2 Existing Styles of Integration
Integration-based products can be categorized into a number of useful types. The following
three are of primary interest to the discussions in this chapter:

■ Integration between businesses, often called Business to Business, or B2B.

■ Integration between applications within a business, often called Application to Application
or A2A. When A2A is coupled with a process-oriented sequencing engine, it is often
referred to as Enterprise Application Integration (EAI).

80 Sun ONE Architecture Guide

■ E-Commerce Integration, an emerging new style of integration whereby businesses establish
and change collaborations in a highly dynamic and rapidly changing environment.

These three styles of integration are discussed in the sections that follow.

6.2.1 B2B Integration

B2B integration provides some methodology that allows businesses to share data between
their respective information systems This data-sharing generally consists of the exchange of
documents between business partners. Typically accomplished using pre-defined documents
or forms, this type of integration is referred to as Electronic Document Interchange (EDI).

While there are many specification standards, the most prominent is the X.12 standard,
which is defined by the Accredited Standards Committee or http://www.x12.org.This
committee defines a collection of documents that can be used as exchange media between
partners. Many categories of documents are standardized by this organization and their
international partner, which is part of the UN/EDIFACT (United Nations rules for Electronic
Data Interchange for Administration, Commerce, and Transport). These organizations define
the document to be exchanged—including the format, fields and their contextual relationship—
with extensions and updates are released annually.

Widely varying messaging protocol formats have grown up as technologies have advanced.
Support for private Value Added Networks (VANs), simple File Transfer Protocol (FTP),
Multipart Internet Mail Extension (MIME), and other formats are commonly used. Originally
the exchange documents were pure text. As technologies have evolved, however, they have
evolved to use XML.

B2B integration, or document exchange, tends to be relatively static—businesses know the
identity of their partners beforehand. Based on these partnerships, mutual interest drives
both sides to invest in the information infrastructure to support this exchange.

How each company chooses to implement its business behind the exchange end-points is
entirely up to that company. The standards say nothing about this. Further, with the
exception of efforts such as RosettaNet PIPs, the standards generally do not attempt to
describe how or in what context the exchanges could or might fit into the overall
application.

However, the dividing lines are clear. Each organization has its inputs and outputs. Each is
free to implement and host these exchanges in any fashion they desire. So long as the
overall partnership remains in good business health, so do these exchanges.

 6 Business Process Integration 81

6.2.2 EAI Integration

Within an enterprise, applications have been developed to provide various service functions
for the organization. These may include functions such as customer tracking or account
management systems, or they may be more inwardly focused employee management
systems. Even in a conservative organization, applications that were once considered
completely isolated from the rest of the business eventually interact with other systems
and information technology assets within it. Adding mergers and acquisitions into this mix
simply increases the certainty that there will be overlap, redundancy, and a need for
interconnections between information systems.

Traditionally, systems connections have been built on a per-project basis. Often, the first
effort combines all the applications that reference customers using the common element
(or abstraction) of the customer, along with a customer-tracking system. These projects
start with a team of IT staff that research the combination of the application interfaces.
This effort might then be followed by a project that connects abstractions like Orders,
Claims, or Trades.

As enterprises are forced to grapple with the ever-increasing need to respond to business
changes, they must come to terms with this legacy of information assets and the need to
maintain these connections in a fashion that allows for dynamic, agile system upgrades.
Maintaining agile and dynamic connections between corporate assets is critical to an
organization’s ability to rapidly respond to business climate changes. To effectively support
such requirements, systems must be loosely connected. Furthermore, the process
specifications must have the capacity to support migration from today's processes to
tomorrow’s as-yet unknown needs.

The personnel that are most uniquely positioned to understand how the enterprise
accomplishes its business are most often domain experts, sometimes called business
analysts. They have expertise in how the enterprise accomplishes its goals. Typically valued
for their ability to understand what is important and to provide key business value to the
particular enterprise, these business analysts often have little or no software development
background. Nonetheless, they have expertise in core aspects of the business such as
Medical Management, Portfolio Risk Analysis, or Claims Administration. They work with
concepts that are even more abstract than the collaboration exchange documents of B2B
integration systems. These abstractions may not even have a real-world analog.

A graphical process-specification tool is essential to effective management of information
assets in conjunction with business abstractions. Such a tool can specify how the system is
to manage, coordinate, and drive to conclusion all the information and personnel aspects
of a system. Graphical process specifications allow domain experts to route work to
automated services such as credit check and print check, as well as to send messages to
human users based on events such as documents received and pending deadlines.

EAI is the overall term that encompasses this effort to draw together, manage, and control
the overall enterprise application as a collection of independent yet loosely connected
system components and services.

82 Sun ONE Architecture Guide

6.2.3 e-Commerce Integration

When B2B and EAI integration are combined, then confronted by the need to integrate with
partners rapidly, reliably, and securely, the result is Electronic Commerce (e-Commerce)
integration. In this environment, partners rapidly move in and out of business collaborations
via the dynamic relationships that are commonplace across the Internet.

The e-Commerce flavor of integration relies on utilization and ubiquity of common standards
that allow for reliable interaction and discovery between partners. These standards must
provide complete business functions with authentication, signatures, nonrepudiation, and
business context. Furthermore, they must be ubiquitous, reliable, and well-understood
across the entire class of potential partners.

When working with standards for the Web, open forum standards committees with
corporate sponsorship are the norm for developing this part of the interconnection
requirements. These processes can take months or possibly years to complete. It is
important to choose standards that perform to the requirements of the enterprise in order
to accomplish reliable, predictable, and safe interactions can be accomplished. While many
proposed specifications for XML-based interactions are in development, the Sun ONE
architecture and emerging ebXML standard are the only collection of e-Commerce
standards that are ready for business use at the time of this writing.

6.3 ebXML
Initiated in 1999, the Electronic Business eXtensible Markup Language (ebXML) collection
of specifications was initiated by a consortium of businesses, vendors, and governments.
The 1.0 set of completed standards was released in 2001, and many of them are well into
their second revision.

ebXML is sponsored by UN/CEFACT and OASIS. UN/CEFACT is the acronym for United Nations
Centre for Trade Facilitation and Electronic Business, headquartered in Geneva. OASIS is
the Organization for the Advancement of Structured Information Standards, a nonprofit
organization dedicated to the creation of international interoperability specifications based
open, public standards.

As a collection of standards, ebXML builds on top of the same collection of requirements
and prerequisites that have driven other Web-services standards, such as Simple Object
Access Protocol (SOAP), Web Services Description Language (WSDL), and Universal
Description, Discovery, and Integration (UDDI). However ebXML picks up where these
standards leave off, providing many features that are still only in the formative stages as
alternative specifications.

ebXML comprises a collection of key system components, each of which can be implemented
or adopted independently or in conjunction with the other components. This allows for easy
adoption of the technology in a gradual, controlled fashion.

 6 Business Process Integration 83

6.3.1 ebXML Objectives and Architecture

The core objectives of ebXML are to build a collection of standards that lower the expense
associated with reliable electronic interchange for small- and medium-sized business.
Implementation of these standards will allow organizations that may not have dedicated
development staff (and may have only a single desktop platform) to participate in these
electronic business exchanges. Another goal of ebXML is to allow these exchanges to be
performed across the open Internet and provide an alternative to using EDI VANs.

Figure 6–1 illustrates the overall architecture of ebXML.

Each of these blocks is discussed in the following sections.

6.3.2 ebXML Messaging

As discussed in Chapter 5, “Asynchronous Reliable Messaging,” messaging is the heart of
any business exchange. Exchanging messages can take many forms. These include sending
application binary, text, or XML payloads within EDI, MIME, or SOAP envelopes sent via
e-mail, FTP, or HTTP, with or without encryption.

Reliable messaging requires that message deliveries are acknowledged and delivered once-
and-only-once per message. Reliable messages may need to be processed in the order they
were sent. They also depend on security mechanisms to prevent inadvertent or intentional
modification, to validate the source and sender, and to provide an audit trail of what was
sent and received prevent a partner from repudiating a transaction.

Figure 6–1: ebXML System Architecture

84 Sun ONE Architecture Guide

Secure messaging requires that the message contents cannot be revealed to unintended
recipients. Secure messaging includes encrypting application data as well as message
routing metadata.

The ebXML messaging specification provides the framework for reliable messaging, allowing
for a wide range of service levels, authentication, and record-keeping options. Key elements
of the ebXML specification include:

■ DDDDeeeellll iiiivvvveeeerrrryyyy gggguuuuaaaarrrraaaannnntttteeeeeeeessss – These guarantees range from best-effort delivery to
guaranteed once-and-only-once delivery. They include support for missing
acknowledgement timeouts, retransmissions, retry intervals, maximum retry attempts,
and duplicate elimination as necessary.

■ OOOOrrrrddddeeeerrrreeeedddd mmmmeeeessssssssaaaaggggeeee ddddeeeellll iiiivvvveeeerrrryyyy – This messaging element guarantees that messages with
sequence identifiers will be delivered to the partner application in the proper sequence.

■ SSSSeeeeccccuuuurrrr iiii ttttyyyy pppprrrrooooffff iiii lllleeeessss – These profiles range from none to various combinations of digital
signing and encryption.

■ CCCCoooonnnntttteeeennnntttt aaaaggggnnnnoooosssstttt iiiicccc ssssppppeeeecccciiii ffff iiiiccccaaaatttt iiiioooonnnnssss – This messaging infrastructure can be used by
collaborators for exchanging any data they like, from EDI X.12 documents to XML
documents to the more mundane business documents, often binary, such as drawings,
spreadsheets, or scanned images”

■ MMMMuuuulllltttt iiiippppaaaarrrrtttt mmmmeeeessssssssaaaaggggeeeessss – These types of messages allow multiple documents to be
“clipped” together into a single message package.

6.3.3 ebXML Collaboration Elements

In order to effectively perform electronic commerce, it is critical to know the capabilities of
each collaborator, how to exchange messages, and, most importantly, when the specified
exchanges are appropriate. Once these capabilities are reviewed and the collaboration
begins, a record of the agreement used during the collaboration is required. This agreement
contains the subset of the intersection of two capability profiles and defines exactly how
the exchanges are going to take place.

6.3.3.1 Collaboration Protocol Profiles

The first collaboration element is the Collaboration Protocol Profile (CPP). This document,
as described in the ebXML specification, defines the capabilities of a specific partner. It can
simply describe what forms of messaging can be utilized, or it can contain a complete,
detailed view of an entire collaboration offering.

For example, a simple CPP document might specify:

■ An end-point URL

■ The types of messaging capabilities that business wants to use (for example, encrypted
Multipart SOAP messages with trusted signatures)

 6 Business Process Integration 85

A more complex CPP might also specify:

■ Once-and-only-once delivery

■ Sequence ordering

■ The process specification

■ The business document schemas to be exchanged

These profiles can list alternatives supported. For example, a business might accept
messages over a specific HTTP port, or via FTP or via SMTP.

6.3.3.2 Collaboration Protocol Agreements

When businesses come together to engage in business, they form agreements. These
agreements can comprise technical and mechanical details, as well as describe business
issues, response time-frames, problem remediation, and other matters.

With ebXML, the business-technical aspects of these agreements are described in the
Collaboration Protocol Agreement (CPA). This document refines the profile capabilities found
in the CPP document for each business. It also establishes an agreement that provides
resolution to any optional or mismatched capability provisions. For example, if Partner A's
profile lists HTTP and FTP as allowable messaging protocols, but partner B's profile
identifies only HTTP, then the CPA would identify only HTTP as the messaging transport.

Beyond messaging details, CPAs can contain response timeframes. An example response
timeframe is: Whenever document A is received, the recipient must send a message
acknowledgment within 30 seconds, or the document will be sent again. After five re-tries,
the message will be considered undeliverable and the exchange will be aborted.

CPAs can also specify the business documents that will be used for exchange. Such
business documents can even specify complete multi-exchange process descriptions.

6.3.3.3 Document Exchange Processes

Document exchange processes are an important facet of e-Commerce system design. This is
a key differentiator between ebXML and other currently approved standards available for
general Web-services development. The process specification allows collaborators to
provide contextual organization for collaboration sequences. These sequences can be as
simple as describing a single document exchange as outlined above. Alternatively, they can
be as complex as describing a complete process such as bid, acceptance, purchase order,
funding, type of auction, and means of exchange.

86 Sun ONE Architecture Guide

6.3.3.4 Business Process Schema Specification

Business process definitions and descriptions are captured in the ebXML Business Process
Specification Schema (BPSS). While this XML schema document can describe arbitrarily
complex processes, in practice the BPSS often merely describes simple exchange procedures
such as how to send and acknowledge a document, and what to do if certain error
conditions occur.

6.3.3.5 Registry Repository

It is a given that any company will participate in any number of CPAs. These collaborations
may be with one or more organizations and may describe one or more related or unique
business opportunities. Users have the need to store and categorize these CPAs in a logical
and extensible manner that allows their applications to reference these documents when
messages arrive. For example, when a message containing document X arrives, the
message references a CPA ID. The system can consult the corresponding CPA to determine
how to process the document, how to respond, how to ascertain if the message has been
properly sequenced, and how to acknowledge receipt.

ebXML provides a complete specification for a repository that can store and retrieve these
documents and artifacts. The documents may contain the public, advertised portions of the
system or the private portions of the system that describe, for example, how a particular
company adds its own unique business value.

Another core value that ebXML adds to the e-Commerce palette of system development is a
framework that allows collaborations to be established with the same type of dynamic
behavior characteristic of the Internet (with respect to Business to Consumer or B2C styles
of interactions). ebXML provides specifications for the repository that allow public access to
the artifacts that the corporation wants to make public. Unlike UDDI, these specifications
provide facilities for determining who has access to what.

The goal is to develop a framework that provides dynamic advertisement and collaboration
so that businesses can enter into partnerships with little or no coding or IT-centric
overhead. This would allow each business system to read, interpret, and respond to
documents with a much higher level of automation than ever possible.

6.3.4 ebXML Core Components Project

The final objective of the ebXML initiative is to solve the vertical impedance mismatch
between documents and terminology of one business domain to another. As an example,
purchase orders for the medical industry are not readily transferable to the automotive
industry. The Core Components project seeks to simplify the crosstalk between different
business vertical industries. The Core Components group has focused on definitions of
schema elements and hierarchies, finding definitions for concepts common across different
industries.

 6 Business Process Integration 87

Another approach to solving this problem is being promoted under the guise of Unified
Business Language (UBL). At the time of this writing. UBL is being run as an OASIS
Technical Committee effort. UBL is an extension to the XML Common Business Library
(xCBL). More information on UBL can be found at http://www.oasis-open.org and
http://www.xcbl.org.

6.3.5 ebXML Functional Overview

As shown in Figure 6–2, systems developers construct specialized business logic, interface
elements, and interconnections between existing and new information technology assets.
Business analysts and contracts administrators, on the other hand, specify the business
profiles (CPPs), agreements, Business Documents (BD), Workflow and Collaboration
definitions (BPSS), Core Components, and other elements. These are all stored in a
repository that allows them to be referenced at runtime, reused for new collaborations,
and referenced for historical and statistical work. All the actors can work with development
parallelism to achieve optimum system development performance.

Global-sized organizations might implement their own business logic, applications and
components by developing Java and other applications. On the other hand, a small business
may simply use the ebXML messaging for document exchange, creating and manipulating
documents with off-the-shelf forms and page editors.

Figure 6–2: ebXML Functional View

88 Sun ONE Architecture Guide

6.3.5.1 Reliable Electronic Business Exchange

A reliable electronic system for exchanging messages is essential to an enterprise’s process
of engaging in business with partners. Reliability is absolutely critical. For any system to
become widely accepted by an enterprise, it must reliably solve the needs of that enterprise
and do so at a cost that is attractive, especially when compared to current systems for doing
business.

For enterprises, reliability includes not only the standard features associated with highly
scalable systems, but also extends to the ability to reliably track, reconstruct, and drive
business exchanges. Message tracking, guaranteed-once delivery, message sequencing,
and nonrepudiation must all be available to assure collaborators that their processes will
work smoothly. Collaborators also demand assurance that they will be able to reliably
defend their actions if needed, as well as to reliably find and track down problems easily.

While content is critical to the ultimate success of any business system, the designers of
ebXML had the foresight to focus on the internal infrastructure and architecture, regardless
of the document payloads that are to be exchanged.

6.3.5.1.1 Advantages over Fax Messaging

ebXML messaging is, by its definition, multi-point aware. Transmission, Reliability, and
Packaging (TRP) specifications provide a complete suite of specifications that define the
spectrum of available options that must be supported for any compliant messaging service.
While server-side services require high-volume, multi-staged routing capabilities, smaller
scale businesses are more concerned that their messages are secure and can be reliably
exchanged with their partners using a simple, straightforward methodology.

The most common messaging solution in use by business today is the FAX machine.
Because most business have at least one desktop computer, ebXML messaging can replace
this functionality at similar or lower cost. The messaging infrastructure can add levels of
tracking, authentication, nonrepudiation, and secrecy that are simply not possible via FAX
documents. When XML documents are exchanged, the added benefits of an easily machine-
readable exchange medium make this a combination that has clear compelling value to
business of any size, so long as the price of entry is sufficiently low.

6.3.5.1.2 Differentiation from Web Browser Messaging

It is important to differentiate the solutions discussed in this chapter from today's
most common, Internet-based messaging solution—the Web Browser form. Easy and
straightforward to implement, for many user-style consumers (and even corporate users),
the Web Browser form offers a sufficient level of quality. However, these exchanges have low
reliability and add little, if any, of the additional value that ebXML messaging specifications
provide. Basing an automated exchange on the reliability level of browser-based forms is
simply not a reasonable starting point.

 6 Business Process Integration 89

6.3.5.1.3 Importance of Quality of Service

Guaranteed once-delivery of messages is a critical feature of ebXML TRP. Additional features
provide for scaling back this option to levels such as best effort (if it fails, try it again) and
at least once (if duplicates are received, the receiver can eliminate them).

When people drive the end-point applications, the elimination of duplicates, the confirmation
of messages, and message missing (NAK) procedures are relatively easy for people to sort
out—but problems do occur. For example, customers submit orders from HTML forms and
receive duplicate shipments or nothing and critical documents get lost in FAX hoppers.

Businesses have become accustomed to these types of problems and have developed
management processes and procedures in the face of these issues. However, building
automation systems that must react to such low service quality are difficult to design and
hard to maintain. The ebXML messaging system can reliably deliver messages at nearly any
level of service quality necessary for efficient, automated operation. Furthermore, they can
do this with complete security.

6.3.5.2 Authentication and Audit

Users must be certain that the message has actually been received from the party that is
expected to have sent it. Messages need to have secure authentication schemes for the
message packages, the payload documents need to be authenticated, and message exchange
must be accomplished using secure encryption.

Furthermore, audit tracking must be an integral part of the messaging system. Tracking
must extend to each of the collaboration partners as well. Message exchanges must be
monitored and tracked even after the container package has been received. Each payload
section may have a unique destination within the ebXML application. Furthermore, the
messaging system must be able to provide a complete record of what was received, how it
was processed, and what the credentials of the message actually were.

This is critical to the support of nonrepudiation. However, nonrepudiaton is not as simple as
archiving each and every step of the message-processing chain. Some businesses operate in
environments in which documents can be rescinded. For example, a customer may sign a
contract for a loan, then decide that he or she does not want the loan. (In certain
jurisdictions, rescinding a loan is legal within a cooling-off period.) Such requirements must
be allowed in order to support effective commerce. In other words, the systems need to
support the business, rather than making the business alter its practices to conform to the
demands of the systems.

6.3.6 Profiles and Agreements in Practice

It is unlikely that corporations will quickly accept the notion of rapid dynamic collaboration
environments. However, if there is sufficient value, it is quite possible that users will rapidly
adopt this strategy.

90 Sun ONE Architecture Guide

In any case, the results of profile lookup must be reliable, consistent, and well understood.
At present, a competing technology, Web Services Description Language (WSDL), is also
designed to provide capability descriptions. However, at the time of this writing, there is
insufficient specification and common agreement about how exactly to define a service
and, perhaps more interestingly, no common mechanism for reliably searching and finding
a service. Much of the selection criteria has been reserved and may be withheld from the
specification so that the repository service providers can choose how to respond to under-
specified queries.

With ebXML, there is a clear specification of how to describe the service, as well as of how
to retrieve the service definition. Messaging specifications are clearly defined; exchange
procedures can be described and used in automated systems; and business documents can
be written in formats that can be readily interpreted electronically.

6.3.7 Exchange Processes

Once the appropriate set of collaboration profiles are assembled, the stage is set for the
actual business exchange. With the ebXML specifications included in this architecture, it is
always possible to determine when and how it is appropriate to perform this interaction in
a reliable and automated fashion. Generally, the exchange processes can be of a simple
pattern: Send document, await acknowledgment, finish. However as outlined above, these
transaction processes can be arbitrarily complex.

With SOAP and UDDI alone, the interactions must be implemented independently by the
separate applications. If there are discrepancies between these implementations, error
signals and system administrators must be used to sort it out. WSDL can help, but it does
not identify the roles nor the documents to be exchanged in the collaboration.

Table 6–1 summarizes the level of capabilities associated with each of the methodologies
and standards that have been discussed above.

Table 6–1:

Function or
Quality of Service

Human Agent Paper Contract FAX Web Service ebXML

Machine
Readable

N/A N N Y Y

Audit Trail N Y Y ? Y

Authenticated Y N N ? Y

Choreography Y N N N Y

Nonrepudiation N N N N Y

Reliable N N N ? Y

 6 Business Process Integration 91

Given time, Web services specifications will undoubtedly provide equivalent features and
functions to ebXML. However, ebXML is ready for business use today.

6.4 iPlanet™ Integration Server
The iPlanet Integration Server is designed and built to incorporate many of the features
described by the ebXML specifications discussed in previous sections. It is described here as
an example of an ebXML application that enterprises can use for both collaboration and
reliable messaging in the dynamic, international marketplace.

Note that the iPlanet Integration Server is an optional component of the Sun ONE
architecture. The facilities needed by the clients and servers can be provided by any
software that meets the messaging, data, and delivery requirements of the enterprise.
From an external perspective, this can be as simple as XML and HTTP Web-service-only
integration, using, for example, integration based on Simple Object Access Protocol
(SOAP), Universal Description, Discovery, and Integration (UDDI), and Web Services
Description Language (WSDL). However, this could be a completely arbitrary collection of
collaborations for e-commerce, internal applications with specialized API requirements, or
business logic available from a suite of Java components. The architecture described in this
book presents this integration structure and illustrates how to select the proper building
blocks for runtime and tools to meet the requirements of any type of integration
architecture.

The externally visible architecture of the iPlanet Integration Server appears in Figure 6–3.

Secure N N N ? Y

Tamperproof N N N ? Y

Validation Y N N ? Y

Function or
Quality of Service

Human Agent Paper Contract FAX Web Service ebXML

92 Sun ONE Architecture Guide

As Figure 6–3 shows, the main components of the iPlanet Integration Server architecture
are as follows:

■ Controller/Coordination Layer

■ Transformation and Translation Layer

■ Messaging Interface Layer

■ Clients and servers

These components are discussed in the following sections.

6.4.1 Controller/Coordination Layer

This layer includes three separate controllers that can be deployed and used separately or
concurrently:

■ Private Business Process Engine

■ Message Routing Table

■ Document Exchange Process Engine, operating in accordance with Business Process
Specification Schema (BPSS) Business Signals

Figure 6–3: iPlanet Integration Server Architecture

 6 Business Process Integration 93

6.4.1.1 Private Business Process Engine

A business process is a sequence of operations and the associated data. The classic
example is order processing. In this case, the operations may include steps such as:

■ Credit check

■ Order validation

■ Inventory check

■ Back order hold

■ Shipping

■ Customer notification

The above sequence of operations includes decisions such as “if a part is not in inventory,
generate a back-order request.” It also may also include timers, which can be either
periodic, such as “wait until 8 AM to notify shipping” or elapsed, such as “if the part is on
back-order for more than two days, send an e-mail to the customer.” While most operations
are automatic and carried out by services, some may be manual. “If the amount is large,
send to a manager for further verification” is an example of a manual operation.

The data associated with a business process typically includes:

■ Order details, which consist of a description of the order, including line items and the
name of the customer.

■ Data that changes as the order is processed; for example, the order status and the name
of the order processing clerk.

Each business process is defined using a graphical tool that allows a business analyst to
specify the complete map or sequence of operations, as well as the data that is needed to
complete every operation. That tool also allows the analyst to make decisions about which
path in the map is to be performed. A map may be named, for example, “Shoe Order,” and
stored in a repository that is available to the engine.

Either a client or a service that specifies both the name of the business process and its
associated data can initiate a business process. The engine uses the name to find the map
for the process and saves a copy of the data in a database. It then begins to interpret the
process definition, starting at the defined entry point. Each operation is invoked in its turn.
As this occurs, decisions are made that select various paths within the process. The process
terminates when the exit point is encountered.

The role of the Private Business Process Engine is to act as the central “traffic cop” of the
application system. It invokes services and interacts with clients in a controlled manner, as
specified by the business analyst. Each of these services and clients simply responds to the
process engine; it does not communicate directly with any other service or client. This
enables effective encapsulation of the services and clients, thus providing maximum reuse
of these software components.

94 Sun ONE Architecture Guide

6.4.1.2 Message Routing Table

The Message Routing Table is simpler than the Private Business Process Engine in several
ways:

■ It employs the “fire and forget” paradigm, which means that the Message Routing Table
does not maintain any state associated with the operation or sequence of operation.

■ The service or application invoked does not return a result. Therefore, the process map
that is interpreted by the Private Business Process Engine is absent. Instead, the business
analyst creates a simple table of operations. Each entry in this table contains:

■ An optional identification of one or more message senders

■ A message content pattern

■ A message destination, which is almost always a service

When a message is received, the integration server consults the Message Routing Table.
For each row that matches the identity of the sender, the message content is compared to
the corresponding content pattern. If a match is found, the message is sent to the specified
message destination.

6.4.1.3 Document Exchange Process Engine

The Document Exchange Process Engine manages document flow between the integration
server and external sources according to rules specified using ebXML. Most often, these
rules are used to control information passed among trading partners. They can also be
used for information flow between departments or entities in a single business. These rules
are constructed by a business analyst or imported from definitions supplied by industry
trade groups.

Exchange processes, or choreography, are published as BPSS and are available for use by
the partner as well. Typically these are associated with specific CPAs, but choreography can
be used independently if needed.

6.4.2 Data Transformation and Translation Layer

If necessary, messages are passed through the Message Transformation layer. This layer is
responsible for converting data from one dialect to another. A unity transform requires will
bypass this layer. Simple transformations may consist of stripping out unnecessary data for
the next action, or simple reorganization of the fields into an alternate schema. Complex
transformation may require splitting elements apart or performing lookup operations to
convert from one series to another.

 6 Business Process Integration 95

This layer is typically used to transform data to and from the end-point applications into
the common, regular format that is used within the enterprise. This canonical
transformation is useful in the following scenarios:

■ Messages arriving from clients and services

■ Messages sent to clients and services

The Data Transformation and Translation Layer solves the problem of matching the data
format and content requirements of the service or application to the available data format
and content. Consider this example: In the order-processing scenario described above, the
data provided by the initiator of the order includes order details comprised of the customer
identity, the list of shoes being ordered, and the total value of the order. This is encoded in
XML. The credit check service expects only the customer's credit number and the amount
of the purchase. In such a situation, the Data Transformation and Translation Layer would
be used to perform three operations:

■ Remove the extraneous data and pass only the customer's credit number and total
purchase amount.

■ Change the field names as needed in the likely situation that the order details XML
document contained different field names compared to the credit check service.

■ Convert the information from the XML document maintained by the process engine into
the EDI format needed by the credit check service.

In addition, the response from the credit check service would be translated and then
merged with data held in the Private Business Process Engine:

■ Convert the arriving Electronic Document Interchange (EDI) format to XML.

■ Translate the simple numeric response (1 means yes and 0 means no) into Good or Bad.

■ Move the translated value into the CreditStatus field of the XML document held by the
Private Business Process Engine.

Because most messages can be translated using XML Stylesheet Language Transformations
(XSLT), this is the primary data translation and transformation facility. In cases where more
complex translations are needed, the architecture provides for a general-purpose plug-in
capability.

6.4.3 Messaging Interface Layer

Just as with the Data Transformation and Translation Layer, all received and transmitted
messages pass through the Messaging Interface Layer. Three message interface types are
supported:

■ Java API for XML Messaging (“JAXM”)

■ Extended JAXM for ebXML

96 Sun ONE Architecture Guide

■ Java API for XML-based RPC (“JAX-RPC”)

■ Java Message Service

A variety of message handling plug-ins are provided for each, including the capability for
customers to provide additional custom plug-ins.

For outbound messages, the layer uses a destination descriptor attached to the message by
the Controller/Coordination Layer to select a message interface type and plug-in. Inbound
messages are tagged by the Message Interface Layer to identify the sender. In both cases,
the information in the tag varies according to the particular plug-in. For example, a
message arriving via Java Message Service would include the name of queue it was retrieved
from and other associated information.

6.5 Future Directions for Messaging
Universal Business Language (UBL) is an emerging standard for providing a more canonical
framework for the document payloads for electronic commerce. At the time of this writing,
the architecture neither includes nor excludes use of UBL documents. For more information,
refer to the discussion of “The Next Step for Global e-Commerce” white paper at
http://www.oasis-open.org.

6.6 Process Integration Interfaces
The following table lists the requirements for the Sun ONE architecture conformance for
process integration components.

Interface Name Level Status Reference Comments

EbXML Messaging
Specification, 2.0

Application Footnote 2 http://www.oasis-
open.org/committees/ebxml-
msg/documents/ebMS_v2_0.pdf

Approved in January
2002

CPP and CPA
Specifications

Application Footnote 2 http://www.oasis-
open.org/committees/ebxml-
cppa/documents/working_drafts/inde
x.shtml

Index of draft
Specifications and
Schemas

Collaboration
Exchange Processes

Application Footnote 2 http://www.ebxml.org EbXML Business
Process Schema
Specification (BPSS)
is currently at
version 1.01 and was
approved in May
2001.

Enterprise Process
Exchange

Application Footnote 2 UMM - Published by UN/CEFACT, July
2001 at http://www.unece.org and
Wf-XML - Published by the Workflow
Management Collation (WfMC).
Published January 2002 at
http://www.wfmc.org

EbXML Business
Process Schema
Specification (BPSS)
is currently at
version 1.01 and was
approved in May
2001.

 6 Business Process Integration 97

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

Registry - Repository Application Footnote 2 http://www.oasis-
open.org/committees/regrep/docume
nts/2.0/specs/ebrs.pdf

2.0 specification was
approved in Dec.
2001.

XML Digital Signatures Application Footnote 1 http://www.w3.org/TR/xmldsig-core/ See Chapter 11

Java API for XML
Registries™ 1.0
(“JAXR”) (JSR 93)

Application Footnote 1 http://www.jcp.org/jsr/detail/93.jsp See Chapter 3.
Supporting
Specifications
Provides an API for a
set of distributed
Registry Services
that enables
business-to-business
integration between
business
enterprises, using
the protocols being
defined by
ebXML.org, Oasis,
ISO 1117

Java API for XML-based
RPC (JAX-RPC) (JSR 101)

Application Footnote 1 http://www.jcp.org/jsr/detail/101.jsp See Chapter 3

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

Footnote 2: This interface is a standard, but support of this standard is not required for products conforming to v1.0 of
the Sun ONE architecture. Support of this standard will be required in a future version of the architecture.

Footnote 3: A standard interface is being developed for this component, and that standard will be required in a future
version of the Sun ONE architecture.

Footnote 4. This is a published proprietary interface, and support of this interface is required for products conforming to
v1.0 of the Sun ONE architecture.

Footnote 5. This is an unpublished proprietary interface. A published definition for this interface will be provided in a
future version of the Sun ONE architecture.

Footnote 6. This interface is not yet defined. A definition for this interface will be provided in a future version of the
Sun ONE architecture.

Interface Name Level Status Reference Comments

98 Sun ONE Architecture Guide

 Part 4. Service Creation, Assembly, and Deployment 99

Part 4. Service Creation, Assembly, and
Deployment

100 Sun ONE Architecture Guide

 7 Development Tools 101

CHAPTER 7

Development Tools

The Sun™ Open Net Environment (Sun ONE) platform development tools enable the creation,
assembly and deployment of applications and services designed to maximize the facilities
available on the Sun ONE platform. Such services and applications are designed to be
available on a wide range of client devices—from desktop PCs to PDAs to mobile phones.
They are meant to be provided by any number of back-end server platforms—from databases
to application servers to high-performance server environments.

To conform to version 1.0 of the Sun ONE architecture, a development environment or tool
must either:

■ Provide support for:

■ The creation, assembly, and deployment of Sun ONE architecture compliant
applications and services.

■ The use of compliant servers, applications, and services for the creation, assembly,
and deployment of conforment applications and services.

■ Be deliverable as a plug-in module for NetBeans™ software or the Forte™ IDE, conforming
to the NetBeans software Open API specification.

A development tool suite can choose either of these approaches to deliver the capabilities
needed to create, assemble, deploy, debug, and maintain applications enabled by the Sun
ONE platform (“Sun One applications”) and Services on Demand.

The fully capable NetBeans software and Forte IDE are strong platforms that can be used to
deliver useful developer tools, enabling vendors to concentrate on their core competencies
rather than on becoming full-blown IDE vendors. The underlying NetBeans software Open
APIs provide a rich, open set of interfaces that allow vendors to easily deliver tools that
target the Sun ONE architecture and integratable stack. Alternatively, vendors that have pre-
existing toolsets can opt to include their own solutions for Sun ONE platform development,
providing tools that can deliver the support for the rich set of APIs and server technologies
required for Sun ONE applications and services.

102 Sun ONE Architecture Guide

7.1 Sun™ Open Net Environment (Sun ONE)
Platform Tool Suite Requirements
A development tool suite conforming to the Sun ONE architecture specification is required
to support the creation, assembly, and deployment of Sun ONE platform compliant services
and applications. In principle, this implies a large number of standards supported by the
Sun ONE architecture, although some are evolving and thus not required initially. In
general, a tool suite needs to provide support for the primary components of the Sun ONE
platform, namely:

■ Service Delivery (See Chapter 8, “Presentation Frameworks,” Chapter 9, “The Portal
Server,” and Chapter 10, “The Java Web Client Model.”)

■ Service Containers (See Chapter 3, “J2EE™ Components and Containers.”)

■ Service Integration (See Chapter 6, “Business Process Integration.”)

■ Identity and Policy (See Chapter 11, “Identity and Policy Services.”)

■ Platform support (See Chapter 12, “Platform Services.”)

For details on the required supported interfaces, see the relevant chapters for the above
components.

While modern tool suites generally may provide a number of the required features for Sun
ONE platform development, service providers and product vendors frequently do not have
such tool suites available for deployment with their applications or services. As such, the
Sun ONE architecture provides a rich, extensible tools platform that developers can use to
create, assemble, and deploy Sun ONE applications and services. In addition, vendors
who want to integrate into the platform can use the same underlying tools platform
available in NetBeans software and the Forte product line as a foundation for modular
tools that can be plugged into that architecture. As a result, tools can augment the rich
functionality already available in the Forte tools suite for Java™ 2 Platform, Enterprise
Edition (J2EE™ platform)/Web Services development with their own customized solutions for
specific development tasks needed for integrated products.

7.1.1 NetBeans™ Software IDE

The NetBeans software integrated development environment (IDE) is open source, modular,
standards-based, and integrated. Because it is written in the Java programming language,
it can run on any platform with a Java™ Virtual Machine (JVM™) that is compliant with the
J2EE platform. Based on NetBeans software, the Forte IDE provides the additional tools
necessary to create, assemble, and deploy Sun ONE applications and Services on Demand.
Tools that will be used to create applications and services can be based on either NetBeans
software or the Forte IDE. While both provide the same set of APIs, the Forte IDE provides a
richer set of functionality. This is because it already ships with a full set of tools designed
to support the Sun ONE architecture and products developed for the Sun One platform.

 7 Development Tools 103

Because NetBeans software and the Forte IDE are modular, developers can:

■ Add modules that provide editing, debugging, syntax coloring, error highlighting, and
additional functions for the Java programming language as well as other languages. The
IDE works with C, C++, Unified Modeling Language (UML), Interface Definition Language
(IDL), eXtensible Markup Language (XML), and others, as well as with Java programing
language.

■ Switch any of the IDE modules on or off. By switching off unneeded modules, the IDE
consumes less memory and no longer offers unnecessary information and actions.

■ Write modules that add new features or replace functionality in the IDE.

■ Update the IDE online through the Update Center.

The new, standards-based Metadata Repository component of the NetBeans software
architecture makes it easier to build modules that support other programming languages,
in addition to enhancing performance and features that are related to re-factoring. By
supporting standardized models for metadata in a language-neutral way, the Metadata
Repository also makes it easier to integrate third-party products, such as UML tools.

7.1.2 NetBeans Software Core and APIs

The NetBeans software IDE is based on a thin core that is responsible for basic services and
infrastructure, such as windowing, actions, and file management. This core implements
the NetBeans Software Open APIs, to which the modules are written.

104 Sun ONE Architecture Guide

This core can be extended with plug-in modules written to the NetBeans software Open APIs.
In fact, the basic functions of the IDE—including editor, Java programming language support,
compilation execution, and debugging services—are implemented in modules written to
these APIs. Virtually every aspect of the NetBeans software IDE is extensible. At the center of
the architecture, the APIs cleanly abstract the IDE’s functionality, creating a modular,
dynamic environment. More than 400 classes are shipped in 15 API sets, along with use
instructions and Javadoc™ software documentation. The NetBeans software Open APIs are
illustrated in Figure 7–1.

The NetBeans software APIs all share the following characteristics:

■ They are standalone—none of the classes contained therein refer to any other parts of
the IDE. There is no reference to code outside the APIs, except to code contained in the
standard Java runtime environment and a couple of basic libraries—such as XML parsing
and regular expressions.

■ Most APIs have what are essentially inner and outer components. This refers to the
concept that APIs can be used to either create new functionality (called the service
provider interface [SPI]), or use the functionality accessible through the client API.

■ The APIs create a dynamic environment—that is, new functionality can be added or
removed simply by adding or removing modules without recompiling or even restarting
the IDE on any platform. The module author builds a module, then the user installs and
uses it.

■ Because the APIs are provided in separate Java Archive (JAR) files, they can be easily used
as standalone libraries. For example, writing a Java application using the FileSystems
library does not affect that application’s independence. Instead, its functionality is
enhanced, client code is simplified, and development time is reduced.

Figure 7–1: NetBeans software API Implementation

 7 Development Tools 105

This chapter focuses on the NetBeans software Open APIs rather than the specific capabilities
within the IDE or the NetBeans software runtime other than for general descriptions. For
detailed information regarding the specific implementation issues surrounding the NetBeans
software runtime or the IDE, refer to http://www.netbeans.org.

All of the NetBeans software Open APIs are designed for use in implementing modules.
Modules permit dynamic extension of the IDE. By abstracting functionality into a well-
defined API, module authors and users alike are assured that new functionality can be
added quickly and easily.

Modules may range in complexity from a single Java class library, which may do something
as elementary as adding a menu item, to new actions or analyses that can be performed
on Java source files. Likewise, a module can contain a full-scale integration of a major
external application, such as a Java profiling suite. All modules are distributed and installed
as JAR files, with special entries in the JAR manifest that are recognized by the IDE.

For example, the FileSystems API is a storage-neutral abstraction of a hierarchical file system.
It is the only part of the IDE that knows about the physical storage of data. Therefore, other
modules in the IDE can use it to access files in a store such as a JAR archive, an FTP site, or a
database-based repository. The physical storage area remains transparent to the modules
requesting access.

Figure 7–2 shows the NetBeans software FileSystems API in relation to other modules. The
model for other NetBeans software APIs is similar to this one.

Note that modules can publish additional APIs. Module authors may choose to build a public
interface to the modules that they develop, so others can add to or extend the functionality
of their products.

106 Sun ONE Architecture Guide

The primary APIs in NetBeans software Open APIs are described in Table 7–1, which follows the
figure.

7.2 Other Key Modules for Tool Developers
A number of other NetBeans software modules and APIs aid developers by delivering
additional value-add functionality on top of NetBeans software or the Forte IDE. While not a
part of the core API set, they are valuable tools that can be used to facilitate the creation of
new modules, extending existing tools or modules, or providing custom solutions. Examples
include the API Support module, the Form Editor, and the Metadata Repository, which are
discussed below.

7.2.1 API Support Module

The API Support module can help the developer work with the API classes, including local
documentation, templates, and testing tools. It is designed for people using the NetBeans
software IDE to write other NetBeans software modules using the Open APIs. Because of
the dynamic nature of Java technology and of the IDE in particular, it is possible to speed
development time of new modules, as well as the testing and maintenance of existing
ones. Features include:

■ TTTTeeeesssstttt mmmmoooodddduuuulllleeee – This allows the developer to install a module in test mode. After
changing some code, he or she can simply hit Execute again to recompile, rebuild the
JAR, and reinstall the module. The changes can be seen without restarting the IDE.

■ TTTTeeeemmmmppppllllaaaatttteeeessss –––– Thorough templates are included for many common types of objects
created as part of a module. These help demonstrate the APIs and handle the
boilerplate code.

Figure 7–2: NetBeans software FileSystem API

 7 Development Tools 107

■ TTTTeeeesssstttteeeerrrrssss – Various special executors permit the developer to test individual classes (or
objects) inside the IDE without bundling them into a module.

■ DDDDooooccccuuuummmmeeeennnnttttaaaatttt iiiioooonnnn aaaannnndddd ccccooooddddeeee ccccoooommmmpppplllleeeetttt iiiioooonnnn – These include full local API documentation
with convenient searching options, as well as code completion for API classes, to make
editing quicker.

■ XXXXMMMMLLLL llllaaaayyyyeeeerrrr ssssuuuuppppppppoooorrrrtttt –––– This type of support allows the developer to interactively edit
“files” in an XML layer as if they were files on disk. It also provides tools to help fix
folder ordering, give files special icons, and perform other useful functions.

■ BBBBeeeeaaaannnn BBBBrrrroooowwwwsssseeeerrrr – This handy tool allow for the inspection of many details of the running
IDE from the Explorer. It be used for such functions as debugging, exploring, and testing.
It shows the structure of the IDE presented as JavaBeans™ component architecture, with
special annotations for items of interest to the API developer.

For more details, refer to http://apisupport.netbeans.org/.

7.2.2 Form Editor

The form module lets developers visually create forms with AWT, Swing, and JavaBeans
component support. Often referred to as the Form Editor, this module includes the following
features:

■ Support for both visual and nonvisual forms.

■ Fully WYSIWYG designer with the “Test Form” feature.

■ Extensible Component Palette with pre-installed Swing and Abstract Window Toolkit
(AWT) components.

■ The Component Inspector that shows a component’s tree and properties.

■ Automatic, fully customizable, one-way code generation.

■ Support for all AWT/Swing layout managers with full drag and drop.

■ A powerful GridBagLayout visual customizer.

■ Support for null layout.

■ In-place editing of text labels of components such as labels, buttons, and text fields
directly in the designer area.

■ Full JavaBeans component support, including the installation, use, and customization of
beans; the support of properties, property editors, custom property editors, events and
event handlers, bean customizers, and other tools.

■ Visual beans customization that allows the creation of forms from any JavaBean
component classes.

■ The ability to connection beans using the Connection Wizard.

108 Sun ONE Architecture Guide

By using the Form Editor in combination with other facilities within the environment (such
as the API Support module), tool integrators can rapidly create and integrate custom
solutions for Sun ONE platform application and service development.

For more information, see http://form.netbeans.org/.

7.2.3 The Metadata Repository

The Metadata Repository (MDR), which has recently been added to the NetBeans software
source code, provides support for modules that must create, store, and retrieve metadata.
Metadata refers to data that describes the structure and characteristics of program elements
or data; for example, the structure and method signatures of the Java programming
language’s class file. Another example of metadata is a model of the Java programming
language’s class structures that determines such characteristics as the set of members that
any element can contain and specifies the fact that classes can contain inner classes and
methods.

The MDR contains an implementation of the Meta Object Facility (MOF), an abstract
language for describing metamodels defined by the Object Management Group (OMG).
The set of constructs used by the MOF for metamodeling is based on the Unified Modeling
Language (UML) model.

The MDR offers the following benefits:

■ Support for developers who implement modules that generate or use metadata; for
example, modules that support a programming or modeling language.

■ Interoperability with tools that support the open standards on which the MDR is based
(e.g., MOF, XMI, and OCL). For example, many UML modelers already support XMI.

■ Generation of all the interfaces representing an API for support of a given language
model within the IDE. In other words, MDR provides a language-neutral standard that
saves developers the effort of writing their own APIs for each language.

■ Similarity in appearance of all generated APIs. The developer can become familiar with
the API by simply examining the metamodel.

The MOF standard can be used to integrate various types of tools for functions such as
modeling, code generation, code analysis, and dependency management. By using the
reflective package contained in the MOF, developers can write generic, language-neutral
tools for working with metadata, such as class browsers, search tools, and others
specialized tools.

For more information, see http://mdr.netbeans.org/.

 7 Development Tools 109

7.2.4 Other Tool-Related NetBeans Software Modules

In addition to the Open APIs and the key modules listed above, NetBeans software includes
a large number of modules which may be useful for tool integrators and developers. While
not complete, the following table provides an example of the types of functionality that
are available, usable, and extensible by integrated modules. For the complete list, see
http://www.netbeans.org/modules.html.

Table 7–1: Other Tool-Related NetBeans Software Modules*

*This is a third party site: Sun has no responsibility, and makes no representation or
warranties, regarding information on this third party site.

7.2.5 NetBeans Software Interfaces

The following table lists the requirements for the Sun ONE architecture conformance for
IDEs.

Module Location

CORBA CORBA development support. See http://corba.netbeans.org/

Database Explorer Database explorer. See http://db.netbeans.org/

JINI™ Architecture
Support

Jini architecture support module. See http://jini.netbeans.org/

Java Naming and
Directory
Interface™(“J.N.D.I.”)
Support

J.N.D.I. API support module. See http://jndi.netbeans.org/

RMI Support Remote Method Invocation support. See http://rmi.netbeans.org/

Projects Projects development framework. See http://projects.netbeans.org/

Autoupdate IDE auto-update feature. See http://autoupdate.netbeans.org/

J2EE Platform Server J2EE Platform Deployment API integration. See http://j2eeserver.netbeans.org/

Tomcat Integration Tomcat Server integration. See http://tomcatint.netbeans.org/

XML Services Generic XML tools and infrastructure. See http://xml.netbeans.org/

Interface Name Level Status Reference * Comments

NetBeans software
Open APIs
ver 3.3.1

Application Footnote 1 http://openide.netbeans.org/

NetBeans software
Specification ver. 3.3

System Footnote 1 http://java.netbeans.org/docs.html

110 Sun ONE Architecture Guide

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

7.3 Forte™ IDE
The Forte Tools integrated development environment (IDE) is used to create, assemble, and
deploy Services on Demand for the Sun ONE platform. Based on the NetBeans software IDE
and runtime, the Forte IDE shares the same set of basic features as well as the extensibility
available as part of the NetBeans software Open API. As a result, developers creating tools
that target products to be integrated into the Sun ONE platform will likely find that basing
these tools on the Forte IDE will provide an easy solution for meeting the requirements for
Sun ONE platform compliance.

Forte Tools is an integrated development environment that opens the era of Web services
to Java developers. The tool suite delivers the modules, wizards, templates, and generators
that enable development and deployment of robust J2EE platform-based applications and
standards-based Web services in a team-oriented environment. Furthermore, the tools
provide support for teams of developers building database-aware applications and JavaServer
Page™ (JSP™) technology-based applications. Its fully modular environment also delivers
integrated graphic user interface (GUI) design, editing, compilation, and debugging
capabilities for cross-platform development of Java technology applications and applets.

7.3.1 Primary Components

The primary components of the Forte IDE provide direct support for a wide variety of
standards and products that are defined by the Sun ONE architecture. These include:

■ J2EE platform 1.3 Support

■ Support for the EJB 2.0 specification (including Message Driven Beans and Container
Managed Persistence)

■ Java Servlet

■ JavaServer Pages™(JSP™)

■ J2EE Connector Architecture support

■ XML Support in the Java programming language

■ Java API for XML Processing (JAXP)

■ Java API for XML-based RPC (JAX-RPC)

■ Java API for XML Messaging (JAXM)

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

 7 Development Tools 111

■ Java API for XML Registries (JAXR)

■ Java Architecture for XML Binding (JAXB)

■ Web Services Support

■ Tools that enable the use of Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), and Universal Description, Discovery, and Integration
(UDDI) for applications and services.

■ The Java Web Service Designer that enables the creation of standards-based Web
Services from Java Enterprise and Web tier components.

■ In conjunction with the Web Service Designer and the Native Connector Tool,
mechanisms that provide the ability to generate Web services from native (C/C++)
Solaris™ Operating Environment libraries.

112 Sun ONE Architecture Guide

■ Legacy Integration

■ Java DataBase Connectivity™ (JDBC™).

■ J2EE Connector Architecture integration for Enterprise Information Systems (EIS) and
Enterprise Resource Planning (ERP) systems.

■ Native connector architecture (binding of native C/C++ applications to the Java
runtime environment and Web services).

■ iPlanet™ Integration Server, which includes Business Process integration via the
Process Design tool.

■ Interoperability

■ Common Object Request Broker Architecture (CORBA) integration.

■ Integration using J2EE platform or Native Connectors.

■ Integration using Java Message Service technology, specifically through the iPlanet™
Messaging Server.

■ Client support

■ Mobile device application development using Java 2 Platform, Micro Edition (J2ME™
platform).

■ Rich client development using GUI elements which are part of the Java 2 Platform,
Standard Edition (J2SE™ platform).

■ Rich client development using the NetBeans Software Applications Framework (the
NetBeans software core libraries).

■ Highly dynamic clients using the iPlanet Applications Framework and JavaServer
Faces™ specification.

■ Applications that take advantage of portal services, such as iPlanet Portal Server.

■ Clients based on the standard JavaServer Pages™ (JSP™) software tag library Java
Specification Request (JSR) 52.

■ Server Integration

■ Broadened application server support, including seamless integration with iPlanet
Application Server for deployment.

■ Implementation of JSR-88: Server Integration APIs.

■ Open-source server integration, such as the J2EE platform reference implementation
and Apache Tomcat.

■ Expose application server administration facilities (JSR-77).

■ Support for additional iPlanet servers, including the portal and integration servers,
and others iPlanet software.

 7 Development Tools 113

■ Solaris Operating Environment Support

■ Forte IDE Developer Compilers for C, C++, and Fortran.

■ High-performance computing support for the latest Sun hardware.

■ Advanced native development tools including analysis tools and debugging tools that
allow for the debugging of mixed native and Java programming language
applications in the Solaris Operating Environment.

7.3.2 Partner and Third-Party Tools

As part of a rich external-partner support program, Sun and its partners provide plug-in
modules for published APIs and products, including all public Java platform APIs, as well
as products and APIs from iPlanet. Third-party vendors can provide plug-in modules for
their products as part of their distributable products. Such plug-ins are dynamic and
modular, allowing for “on-the-fly” upgrades and/or fixes as well as configurations that can
allow system administrators and project managers to control module versions, features,
or entitlement. Forte tools assembles certified collections of plug-ins as part of IDE
configurations or products.

7.3.3 Services Development in the Forte IDE

Forte Tools provide the fundamental capabilities to create, assemble, and deploy Sun ONE
applications and services that target the Sun ONE architecture and stack. To fulfill these
requirements, Forte software provides:

■ Services-centric functionality

■ Assembling solutions from services

■ Building services from components

■ Building modern client access to services

■ Integrated architecture capabilities

■ An extensible architecture design

■ Services creation

■ Services assembly

■ Services deployment

7.3.3.1 Services-Centric Functionality

Forte Tools provide services-centric functionality to perform the following tasks:

114 Sun ONE Architecture Guide

Assembling Solutions from Services

Since solving a business problem or creating a new application has come to be done as a
collection of loosely coupled services, the Forte Tools enable services by:

■ Providing integration facilities to translate existing applications such as C, C++, Fortran,
and ERP packages into XML services.

■ Enabling these XML packages to be sequenced together after they have been translated
or wrappered. This sequencing is accomplished either through the use of a business
process or workflow metaphor or through simple service-to-service sequencing.

■ Providing XSLT rules to do data transformation, since not all XML schemas are the same.

Building Services from Components

Because Services on Demand are created from a collection of Enterprise JavaBeans™ (EJB™)
or other components, Forte software provides:

■ Facilities to search and share components between teams across the Internet, build new
components, and graphically assemble components to form services.

■ Facilities to automatically generate the component bindings and XML interfaces such as
UDDI and WSDL.

Building Modern Client Access to Services

In the traditional computing environment, each device type uses its own tools with a device-
specific markup language to create the appropriate user interface. To fill the growing needs
of the Services on Demand computing world, more and more tools will draw upon the
Services Grid for core business functionality. Forte’s device-specific tools enable their users
(usually graphic artists rather than XML service creators) to browse Services on Demand and
easily attach to XML data streams via XML tags.

7.3.3.2 Integrated Architecture Capabilities

An integrated architecture means that a tool can be knowledgeable about the specifics of
the underlying architecture, thus shielding the developer from the need to understand how
and where to deploy the different components. In this way, the tasks of the developer are
greatly simplified, and a rapid iterative development style can be deployed.

Forte Tools leverage the top-level functions of the Sun ONE platform—Service Creation,
Assembly, and Deployment. For example, the tools can generate out components that bind
into the application server and Web server. These components can be defined as services
using XML and SOAP, then sequenced together using the Process Manager. In addition,
they can utilize the directory and Policy Manager for such functions as checking user
credentials and performing security processing.

 7 Development Tools 115

7.3.3.3 Extensible Architecture Design

The foundation for all Sun tools is an open tools platform designed to support C, C++,
Fortran, and the Java programming language, among others. Sun’s open tools platform,
in turn, is built upon the NetBeans Software Open Source Code project. This architecture
ensures partners and developers that the framework will be a stable environment, thereby
facilitating the development of plug-ins by the open-source community, Sun, and Sun’s
partners.

7.3.3.4 Service Creation

As shown in Figure 7–3, the Forte IDE provides a comprehensive set of service creation
tools. These tools are so flexible and intuitive that developers can use them to build new
intelligent services. Likewise, business professionals can rapidly assemble them for
personalized user experience and have them deployed to the range of different network-
connected products.

Service creation can be implemented through some of the following strategies:

■ Through the use of the Java Web Service Designer (JWSD), existing Java class libraries,
Beans and Enterprise JavaBeans are exposed as SOAP-based Web services via the creation
of XML Operations (XOP).

■ Through the use of the Native Connector Tool (NCT) and the Native Connector Architecture
(NCA), existing legacy/native libraries written in C, C++, Fortran, or even Microsoft CLR-
compliant languages are exposed as either Java platform-based classes/beans or as SOAP-
based Web-services.

■ Through the use of the Metadata Repository (MDR), existing code and services can be
incorporated into new applications and services.

Figure 7–3: Service Creation

116 Sun ONE Architecture Guide

■ Using the XML Designer tool, developers can build adapters for existing application
components.

■ Content and content delivery logic can be incorporated using:

■ The JAXB or JAXP APIs, which can be used to create the content-management logic
necessary for the service or service-based application.

■ JDO (Java Data Objects), which can be used to create the data-management logic
necessary for services or service-based applications.

■ Modeling and design tools, which can be integrated into the development
environment, thus facilitating service and application creation.

7.3.3.5 Service Assembly

In addition to assembling complete applications, it is important to be able to integrate
services created on the Microsoft .NET and other platforms. For the service-driven network,
these services will be dynamically discovered via UDDI and initially contacted via SOAP/XML.
Actual invocation will be determined by the service properties.

The ability to integrate legacy applications into the Service Grid is another key function.
This can be viewed as “dis-integrating” monolithic applications into dynamic services. For
example, the Telco industry is rethinking its monolithic order-entry systems and creating
services that allow the procurement of Telco services via XML over the Internet.

As shown in Figure 7–4, Process Definition tools assemble and determine the activities
needed for coordinated service-based applications.

Figure 7–4: Service Assembly

 7 Development Tools 117

7.3.3.6 Service Deployment

As shown in Figure 7–5, services are deployed to Sun ONE platform servers, primarily
those that adhere to the J2EE specification. Service-based applications use SOAP/WSDL and
UDDI for discovery, but soon they will also be comprised of application and business logic
encapsulated as EJB technology, Message Driven Beans, JavaServer Pages technology, and
Java Servlet APIs.

Deployed applications will integrate with other services within the Service Grid, connect to
legacy/ERP systems via the J2EE Connector Architecture API, and integrate with database
servers and services via APIs such as JDBC. In addition, orchestration tools will orchestrate
Web services within an enterprise.

7.3.4 Forte IDE Interfaces

The Forte IDE supports all of the interfaces described in Section 7.1.1, “NetBeans™ Software
IDE” and Section 7.2.4, “Other Tool-Related NetBeans Software Modules.” In addition,
the Forte IDE provides the extended functionality described in Section 7.2.5, “NetBeans
Software Interfaces.” Interfaces for this extended functionality are not yet required parts of
the Sun ONE architecture. However, interface definitions for some or all of this extended
functionality may be provided in a future version of the Sun ONE architecture.

Figure 7–5: Service Deployment

118 Sun ONE Architecture Guide

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

 Part 5. Service Delivery 119

Part 5. Service Delivery

120 Sun ONE Architecture Guide

 8 Presentation Frameworks 121

CHAPTER 8

Presentation Frameworks

Presentation frameworks gather information from both end users and the business layer of
an application. They then generate the user interface and process the user’s interaction
with it.

The iPlanet™ Application Framework is the iPlanet implementation of a presentation
framework. It will be described following a general discussion of presentation frameworks,
including their adherence to the Model-View-Controller (MVC) design model.

8.1 Overview of Presentation Frameworks
Java™ 2 Platform, Enterprise Edition (J2EE™ platform) and its presentation layer technologies
(JavaServer Pages™ (JSP™) and the Java Servlet™ API) provide a portable and standards-based
foundation for building Web applications. These technologies address the issues involved in
using a language to generate markup that was originally intended for publishing static
documents. Pages created with the JavaServer Pages technology (“JSP pages”), and servlets,
do not, however, address the before and after issues of client-type detection, form validation,
localization, and other well-known presentation layer tasks. Instead, these tasks are addressed
by presentation frameworks. In doing so, they present a consistent model and set of interfaces
for providing a consistent application development environment.

Presentation frameworks are responsible for gathering information from end users and the
business layer of an application. They also generate the user interface (UI) from that
information, and process the user interaction with the delivered user interface.

Swing is a standard presentation framework that makes it easier for developers to work
with the presentation layer in a traditional desktop-bound application environment.
Currently there is no standard presentation framework for presentation-layer development
in a Web application environment.

122 Sun ONE Architecture Guide

The J2EE platform, while providing the core technologies for building Web applications and
their presentation layers, is not a presentation framework in itself. Presentation frameworks
based on J2EE technology have appeared to address developer needs for building small- and
medium-scale Web applications. These frameworks, which utilize the MVC (Model-View-
Controller) design model discussed in the Section 8.2, vary in their implementation and
capabilities. While standards-based, they do not provide a standardized approach to
presentation layer development for Web applications.

Java Specification Request (JSR) 127 will provide the functionality on top of the J2EE
architecture and its core technologies on which these MVC-based presentation frameworks
may standardize.

8.2 The Model-View-Controller
As mentioned in Section 8.1, presentation frameworks based on J2EE technology typically
adopt modified versions of MVC called MVC1 and MVC2, which are described in the 0.91
version of the JSP specification and J2EE Blueprints respectively. To view the “J2EE
Blueprints” document, go to the Web page referenced in this chapter’s section of the
Bibliography.

8.2.1 The MVC Design Model

In terms of presentation frameworks, the idea behind the Model-View-Controller design
model (MVC) is that an application consists of three things: a Model, some Views of the
Model, and some Controllers. The Model is the part of the application that contains the
actual application logic. The Model does the database access, computes numbers, and
manipulates data structures. The View and Controller represent the user interface of the
application. The user interface is conceptually split into input and output components. The
Controller is an input component that supplies information to the Model. The View is an
output component which displays information from the Model. The View typically
communicates with the Model by registering itself as a callback and responding to events
generated by the Model. The iPlanet Presentation Framework’s implementation of the MVC
design model is considered in Section 8.7.1 of this chapter. For a different approach, see
the applied discussion of the MVC design in Chapter 10, “The Java Web Client Model”.

The architecture of the MVC triad enforces the independence of the Model from the external
representation of its information. The factoring-out of code from content enables flexibility
of design and reuse of code. This is the primary reason for its adoption by desktop
presentation layer frameworks such as Swing.

 8 Presentation Frameworks 123

8.2.2 MVC1

MVC1 was a first generation approach that used JSP pages and the JavaBeans component
architecture to implement the MVC architecture for the Web. As shown in Figure 8–2, HTTP
requests are sent to a JSP page that implements Controller logic and calls out to the “Model”
for data to update the “View.” This approach combines Controller and View functionality
within a JSP page and therefore breaks the MVC paradigm. MVC1 is appropriate for simple
development and prototyping. It is not, however, recommended for serious development.

FIGURE 8–1: Classic MVC

FIGURE 8–2: MVC 1

124 Sun ONE Architecture Guide

8.2.3 MVC2

MVC2 is a term invented by Sun to describe an MVC architecture for Web-based applications
in which HTTP requests are passed from the client to a “Controller” servlet which updates the
“Model” and then invokes the appropriate “View” renderer—for example, JSP technology,
which in turn renders the View from the updated Model. Model 2 is well documented in “J2EE
Blueprints.” The hallmark of the MVC2 approach is the separation of Controller code from
content. Current implementations of presentation frameworks, including Struts and Sun’s
iPlanet Application Framework, adhere to the MVC2 approach, which is shown in Figure 8–3.

8.3 MVC2 and the Presentation Framework
The MVC2 architecture is actually a modified MVC implementation. The major modification
is that the Model no longer fires events to its Views.

The central issue is that the life cycle of the servlet (the Controller and View) is not
necessarily the life cycle of the application, as it is with desktop applications. The servlet
begins with a user request, typically generated by a Web browser, and ends with the
response. The Model, however, may, and typically does, persist across the life of multiple
servlets. Therefore, it cannot reliably notify View objects of internal state changes. This has
the following consequences:

■ The Model is now more “generic,” because it no longer implements the logic for
registering and unregistering listeners, nor does it need to implement logic to generate
events.

■ The View is now responsible for capturing Model state changes.

■ The Controller now notifies the View of state changes to the Model.

■ The Controller must manipulate the Model before notifying the View.

FIGURE 8–3: MVC2

 8 Presentation Frameworks 125

These consequences, coupled with the unidirectional HTTP (client-initiated) request-response
protocol, can potentially lock the developer into a coarse-grained cyclical program flow—as
opposed to the fine-grained, widget-based event Model of a desktop implementation of MVC
such as Swing. A major goal of Sun’s iPlanet Application Framework is to provide an MVC2
implementation that more closely approximates desktop implementations of MVC.

8.4 Development Issues
When developing a presentation framework, it is important to consider the following
issues:

CCCCooooddddeeee aaaannnndddd ccccoooonnnntttteeeennnntttt ccccoooouuuuppppllll iiiinnnngggg – Creating content on the server involves some degree of
coupling between code and content. Depending on the technologies used, this coupling
can be reduced. In some cases, it can be totally eliminated.

PPPPrrrroooottttooooccccoooollll llll iiiimmmmiiiittttaaaatttt iiiioooonnnnssss – HypterText Transfer Protocol (HTTP) is a client-initiated request-
response protocol that prevents server-side code from initiating unsolicited callbacks to the
client. This makes it difficult to implement realtime user interfaces such as those found in
Swing.

CCCCoooouuuuppppllll iiiinnnngggg ooooffff eeeevvvveeeennnnttttssss ttttoooo HHHHTTTTTTTTPPPP aaaannnndddd MMMMVVVVCCCC – Events at the granularity of an HTTP request
couple the event Model to the MVC implementation. This makes it difficult for the
framework to support a Swing-like hierarchical component Model.

CCCCoooommmmppppoooonnnneeeennnntttt MMMMooooddddeeeellll – Components can be anything from a reusable piece of code to a
Swing-like user interface widget.

FFFFlllloooowwww ccccoooonnnnttttrrrroooollll – Desktop implementations of MVC focus on flow at the level of component
interfaces. Hence they provide more granular approaches to application development than
is typically found in MVC2 implementations that focus on flow at the application level.

FIGURE 8–4: Desktop vs. Web-based MVC Implementations

126 Sun ONE Architecture Guide

8.5 Template and Non-Template-based MVC
Architectures
The MVC model for the Web can be implemented with either a template engine or a
Document Object Model (DOM)-based approach.

8.5.1 Template Engines

As shown in Figure 8–5, template engines take a page-based approach that allows Java
technology developers and page designers to “pull” data from Java objects from within an
HTML page. Templates, and more specifically taglibs, encourage but do not enforce the
separation of content from code. JSP technology is the standard for generating content in
this manner.

Template approaches typically involve some degree of coupling between code and content.
Implementations of the template approach use variations of software patterns, including
“Mediator-View” and “Service-to-Workers” to reduce this coupling.

Events in the template approach tend to be coarse grained and nonhierarchical. This is
because the event Model is typically tied to the MVC implementation, which makes it
difficult to decompose the problem domain below the page level—that is, into individual
components.

FIGURE 8–5: Template-Based Approach to Content Generation

 8 Presentation Frameworks 127

The combination of coarse-grained events and a page-centric view limits the complexity
of flow within this type of framework. Hence, it limits the amount of functional complexity
applications based on this approach can effectively handle. Sun’s iPlanet Application
Framework is a notable exception that provides fine-grained events coupled to widget-like
UI components. As explain in Section 8.7.2, iPlanet Application Framework’s implementation
anticipates JSR 127 functionality, which will provide a standardized event and component
Model that provides Swing-like behavior to template-based approaches.

8.5.2 DOM Manipulation

DOM manipulation is a standards-based, non-template approach that “pushes” data into
the DOM representation of an HTML page. In other words, instead of taking the template
approach of calling out to code from the HTML page, this approach uses code to manipulate
the HTML page, thereby enforcing the separation of code from content. The W3C DOM
specification is the standard for representing HTML pages.

The DOM approach eliminates the coupling of code and content, and results in presentation
markup that is logic-free—which means that it is completely valid HTML, XML, and so
forth. The resulting handshake between page designer and developer is thus simplified,
which makes it easier to maintain and extend Web pages.

Pages in the DOM approach are represented as trees. Components are represented by
widgets that are logically bound to various portions of that tree. The DOM approach allows
fine-grained event handling. This is because the event Model is no longer tied to the MVC
implementation but rather is implemented as an independent layer within the MVC
framework. Typical implementations use inner classes like Swing that integrate easily with
the component Model—that is, listeners can be added to the components.

Events in the DOM approach are hierarchical. This means that an event can generate other
events, each of which is potentially handled by multiple listeners. Hence, program flow
occurs at the component interface level, which enables this approach to have a more
Swing-like behavior.

128 Sun ONE Architecture Guide

8.5.3 Advantages of DOM and Template Approaches

The template and DOM approaches to MVC implementations reflect their MVC “pull” and
MVC “push” heritages respectively. Each has its advantages.

The JSP pages and taglibs provide a ready-made framework for calling code from a page in
order to pull data into the markup. The DOM tree and CSS IDs provide a ready made
framework for pushing data into an in-memory representation of the markup from Java
code. Both approaches, however, are broad and applicable to a large range of applications.
Therefore, they vary widely in their implementations. Developers are faced with having to
learn the implementations of each framework that they use. This is because there are no
standards for building, for example, a button, or registering an event listener to that button.

8.6 Java Specification Request™ (JSR) 127
Architecture
JSR 127, or JavaServer Faces™ specification, will provide an architecture and functionality
that both the template and DOM approaches may standardize upon. The requirements of
the architecture reflect the above issues that developers have encountered when building
MVC-based frameworks that use these approaches as a foundation. Basically, the
architecture must:

FIGURE 8–6: DOM-Based Approach to Content Generation

 8 Presentation Frameworks 129

■ Simplify development.

■ Encourage/enforce separation of code from content.

■ Define a model for connecting events in the UI to application behavior.

■ Allow tools integration.

■ Support diversity, that is, simplify usage of multiple presentation layers in the same
application—for example, HyperText Markup Language (HTML) and Wireless Markup
Language (WML)

8.6.1 JSR 127 Design Goals

The focus of JSR 127 is to create a graphical user interface (GUI) component framework that
MVC-based implementations may standardize on. Its main goals are to:

■ Create a standard GUI component framework which can be leveraged by development
tools to make it easier for tool users to both create high quality GUIs and manage the
GUI's connections to application behavior.

■ Define a set of simple lightweight Java base classes for GUI components, component
state, and input events. These classes will address GUI life cycle issues, notably managing
a component's persistent state for the lifetime of its page.

■ Provide a set of common GUI components, including the standard HTML form input
elements. These components will be derived from the simple set of base classes that
can be used to define new components.

■ Provide a JavaBeans™ component model for dispatching events from client-side GUI
controls to server-side application behavior.

■ Provide a fine-grained object Model for dispatching events from client side GUI controls
to server-side application behavior.

■ Define APIs for input validation, including support for client-side validation.

■ Specify a Model for internationalization and localization of the GUI.

■ Automatic generation of appropriate output for the target client, taking account all
available client configuration data, such as browser version.

■ Provide for the automatic generation of output containing required hooks for supporting
accessibility.

For a discussion of iPlanet Application Framework’s anticipation of JSR 127, see
Section 8.7.2.

130 Sun ONE Architecture Guide

8.7 Overview of the iPlanet™ Application
Framework
The iPlanet Application Framework is Sun’s implementation of a presentation framework. As
a standards-based application framework for enterprise Web application development, it
unites familiar concepts such as display fields, application events, component hierarchies,
and a page-centric development approach with a state-of-the-art design based on both MVC
and Service-to-Workers patterns. Although it is primarily intended to address the needs of
J2EE technology developers building medium-sized applications, the iPlanet Application
Framework also supports large- and massive-scale Web applications.

The iPlanet Application Framework provides core facilities for reusable components, making
it useful to third-party developers who want to provide off-the-shelf components that can be
easily integrated into Web applications. It is used as a platform for building vertical Web
offerings, particularly because its extension capabilities provide a well-defined way for both
end users and original developers to extend and leverage existing vertical features.

As shown in Figure 8-7, the iPlanet Application Framework provides a design-pattern-based
skeleton for use by enterprise architects and Web application developers. It also provides a
clearly delineated design that integrates in a well-defined way with other enterprise tiers
and components.

Using the iPlanet Application Framework, developers can build reusable components by
providing both low- and high-level infrastructure and design patterns. Developer-defined
components are first-class objects that interact with the iPlanet Application Framework as
if they were native components. Components can be arbitrarily combined and reused
throughout an application, across applications, and across projects and companies.

FIGURE 8–7: The iPlanet Application Framework Platform Stack

 8 Presentation Frameworks 131

The iPlanet Application Framework is not an enterprise tier framework, meaning that it does
not directly assist developers in creating components based on the EJB specification (“EJB
components”), Web services, or other types of enterprise resources. Although the iPlanet
Application Framework is geared toward enterprise application development, it is properly
a client of these enterprise tier resources, and thus provides a formal mechanism to access
these resources.

8.7.1 The iPlanet Application Framework’s Implementation
of MVC2

The iPlanet Application Framework currently implements the template approach to MVC,
which is discussed in Section 8.3 above. The iPlanet Application Framework overcomes
many of the limitations of MVC2 by formally defining View and Model entities that are
independent of the technologies such as JSP technology that is used to implement them.
JSP pages are, however, currently used to implement Views, and the iPlanet Application
Framework makes use of the “Services-to-Work” pattern to factor code from content in this
implementation.

Instead of a single servlet, the iPlanet Application Framework uses multiple servlets as
entry points to a Web application. These servlets extend from a base Controller servlet
which contains business and validation logic common to all Controllers.

The iPlanet Application Framework adheres to the MVC2 rule for updating Models before
notifying Views. Servlets, after validating a request, pass the request to a “command” class
for execution of its interface’s “perform” method—which updates the Model. Commands
then specify an appropriate View which is rendered by a JSP page taglib, which in turn pulls
the data from a “ViewBean” which is tied to the Model.

The iPlanet Application Framework provides a number of Model implementations that
make it easy to connect to back-end data sources. The iPlanet Application Framework also
addresses basic security issues inherent with their current JSP technology implementations
that prevents direct access of the JSP pages by the clients. Finally, in anticipation of JSR
127, the iPlanet Application Framework provides “events” at the application level as well as
the component level. The component level events provide a fine-grained component flow
similar to that of Swing.

132 Sun ONE Architecture Guide

8.7.2 The iPlanet Application Framework and JSR 127

The iPlanet Application Framework and JSR 127 share many of the same design goals. For
example, the iPlanet Application Framework’s “core” provides an implementation of a set
of simple lightweight Java base class files for GUI components. Included in the iPlanet
Application Framework core are View-based primitives such as ContainerViews, TiledViews,
and TreeViews. The iPlanet Application Framework builds on these primitives and provides
a set of generic (horizontal) components that are extensible, as well as a set of vertical
components that, while being less extensible, provide a particular look and feel.

JSR 127 recognizes that a severe limitation of template implementations of the MVC2
paradigm is the coupling of the event Model to its implementation. It therefore proposes to
provide a fine-grained, object-based event Model for this paradigm.

The iPlanet Application Framework provides an implementation of this event Model. Typical
MVC2 implementations provide only application level requests events. The iPlanet
Application Framework provides three classes of events: general level events, specific
requests events, and display events.

The general level events are used to respond to general application and request life cycle
occurrences. Specific requests events occur based on a users action—for example, a button
is pressed, and code is executed on the server corresponding to that button press. Field
level display events are generated during the rendering of a page. These give the developer
fine-grained hooks into the actual rendering process.

The main difference between the iPlanet Application Framework’s handling of events and
those of other MVC2 implementations is that the event is invoked on the component to
which it pertains and can be as fine-grained as a button or a display field. Typical template
approaches provide only one coarse-grained handler per page, which ties event-handling to
the page and allows no decomposition of the problem domain into more finely grained
components.

The iPlanet Application Framework will continue to track and incorporate into its
implementation features of JSR 127. The main strength of the iPlanet Application Framework
for the future is that its features have been designed around interfaces and object contracts,
and are not tied to the implementation itself. Hence new capabilities, such as tool-readiness,
will be easily accommodated into the framework.

 8 Presentation Frameworks 133

8.7.3 The iPlanet Application Framework’s Use of Design
Patterns

The iPlanet Application Framework is based on state-of-the-art design patterns and
techniques, including MVC, Service-to-Workers, Hierarchical View, Command, Business
Delegate, and others. Furthermore, it is based on an N-tier JSP/Servlet architecture. The
iPlanet Application Framework has been designed entirely around interfaces and object
contracts that reflect these patterns. It is primarily an integrated set of cooperating design
patterns and secondarily an implementation of those patterns.

Primary among these patterns is MVC. The iPlanet Application Framework addresses all
three tiers of the MVC pattern. It defines formal View and Model entities with concrete
relationships. It also provides an advanced logical Controller role that allows applications
to scope Controller logic in appropriate ways. The iPlanet Application Framework’s View tier
incorporates JSP technology but is not synonymous with it. In the same way, the iPlanet
Application Framework’s Model tier incorporates other J2EE technologies, but is not
synonymous with any of them. For these and other reasons explained below, the iPlanet
Application Framework provides unprecedented extensibility for developers that other
frameworks cannot match.

8.8 Types of iPlanet Application Framework
Functionality
There are three logical groupings of iPlanet Application Framework functionality: the
iPlanet Application Framework core, components, and extensions.

The iPlanet Application Framework core defines fundamental interfaces, object contracts, and
primitives, as well as the minimal infrastructure required for iPlanet Application Framework
applications. The iPlanet Application Framework core does not provide a component library,
but provides the enabling technology for component authors.

Included in the iPlanet Application Framework core are View-based primitives like
ContainerViews, TiledViews, and TreeViews, as well as Model-based primitives like
DatasetModels, QueryModels, and TreeModels. The iPlanet Application Framework core also
provides primitives for request dispatching and for reusable Command objects. Using these
primitives, developers can easily create application-specific or reusable components that can
be shared within or across projects. The iPlanet Application Framework core also includes
high-level features that allow developers to immediately begin building highly functional
applications.

The iPlanet Application Framework components leverage the iPlanet Application Framework
core infrastructure to provide high-level, reusable components for application development.
These components can come in a variety of flavors intended for different usage scopes.

134 Sun ONE Architecture Guide

For example, horizontal iPlanet Application Framework components will tend to be the
most generic ones available, with their strengths being flexibility and customizability.
These types of components will be usable by many different iPlanet Application Framework
user populations, across projects and companies. Generally they will not be biased toward
any particular look and feel.

Vertical iPlanet Application Framework components are tailored to a particular usage
scenario, allowing them to provide high-level features and high ease-of-use. These types of
components will be less broadly usable, but because their scope is better defined. This is
because they can keep parameterization to a minimum and use a particular look and feel.
All iPlanet Application Framework components can use all of the facilities provided by the
iPlanet Application Framework core and can build upon its high-level features such as
WebActions, SQL-based model implementations, and TreeViews.

The iPlanet Application Framework extensions provide access to facilities outside the J2EE
platform in a way that is compatible with the iPlanet Application Framework. In many cases,
iPlanet Application Framework extensions allow container-specific features to be used from
iPlanet Application Framework applications seamlessly. Extensions differ from iPlanet
Application Framework components in that they focus on technology integration rather than
application development.

 8 Presentation Frameworks 135

8.8.1 Technical Overview of the iPlanet Application
Framework Core

The iPlanet Application Framework core is pure Java technology. Presented as an industry-
standard Java Archive Software (JAR) file, it defines the following top-level packages:

■ com.iplanet.jato – Request-handling infrastructure

■ com.iplanet.jato.command – Command-related interfaces and implementations

■ com.iplanet.jato.taglib – Custom JSP page tag library

■ com.iplanet.jato.model – General Model-related interfaces and implementations

■ com.iplanet.jato.view – General View-related interfaces and implementations

Each of these packages contains subpackages of more specific derivations, such as HTML-
specific View implementations and Structured Query Language (SQL)-specific Model
implementations. There are no formal packages or classes for iPlanet Application Framework
components or iPlanet Application Framework extensions, which are purely logical classifications.

In writing an iPlanet Application Framework application, developers derive application-
specific subclasses from existing iPlanet Application Framework classes or implement certain
iPlanet Application Framework interfaces in an application-specific way. In most cases,
developers will use the existing iPlanet Application Framework core implementations as
superclasses, thus inheriting a great deal of useful behavior. (Component developers may be
more likely to implement a set of iPlanet Application Framework interfaces directly.)

Application objects are organized around the central concept of a page. Each page consists
of a rendering specification—normally a JSP page containing static content and markup
plus custom iPlanet Application Framework tags—and one class comprising the root of the
page’s view hierarchy. Each request to the server returns a page as the result. The page
flow through an application is determined by the control logic written by the developer.
There is no fixed relationship between one page and another beyond that provided by the
developer.

In HTML, each rendered page generally contains one or more links or buttons which the
end user can activate. Each activation of a link or button sends data back to the server,
which results in invocation of a Command object specific to that activation. This Command
object can take action itself or can delegate handling of the request to developer-defined
event methods. Ultimately, the request is forwarded to a resource that is responsible for
rendering a response to the client.

In most cases, this resource is an HTML-based JSP page that uses iPlanet Application
Framework tag library to render dynamic content. The tag library uses iPlanet Application
Framework View components to obtain the data it renders. These View objects are
associated with one or more Model objects and draw data from them as needed. Thus,
iPlanet Application Framework Views act as a hierarchical facade to any number of Models.
These Views can be reused across multiple pages and with different Models. Models can
generally be used by any number of Views since they have no display or View dependencies.

136 Sun ONE Architecture Guide

Once the user receives a response in a form of a page, he or she activates a link or button,
which sends a request back to the iPlanet Application Framework application. The request
is sent back to the same objects that rendered the page. This allows the iPlanet Application
Framework infrastructure to map the submitted data back into the same Views (and thus
Models) from which it originated, providing virtual persistence of this data. The developer
interacts with his application objects and the submitted data as if there had never been an
intervening response-request cycle. Once the data has been mapped back into the
originating objects, the Command object specific to that link or button press is activated,
and the cycle begins again.

The iPlanet Application Framework directly embraces J2EE technology standards like
servlets and JavaServer Pages, while still allowing developers to freely use the features J2EE
technology provides. The iPlanet Application Framework is not a container within a
container, nor is it a layer meant to abstract the developer from J2EE technology. Instead,
it adds to J2EE platform features that facilitate enterprise Web application development,
while still letting developers interact with as much as or as little J2EE platform/iPlanet
Application Framework as they like.

8.9 iPlanet Application Framework Features
The iPlanet Application Framework provides display fields, application events, component
hierarchies, and a page-centric development approach, all of which will be familiar to
developers using Swing, Delphi, Visual Basic, or PowerBuilder for client-side application
development. iPlanet Application Framework integrates with application builders, such as
Forte™ for Java software or JBuilder.

The iPlanet Application Framework provides an implicit, proven direction for both Web
application architecture and application development, without precluding the use of other
approaches. It does this by providing well-defined points of interaction with an application,
as well as providing clearly defined ways in which to extend, augment, or override existing
behavior.

Applications written in the iPlanet Application Framework will resemble one another more
so than applications written using other frameworks. They will be more consistent, in their
use of both high-level and low-level features, and will thus be more maintainable.

 8 Presentation Frameworks 137

8.9.1 Symmetrical Display/Submit Handling

The iPlanet Application Framework assists with both the display and submit cycles in a
symmetrical fashion, by virtue of its formal View tier. Whereas other frameworks loosely
define their View tier as a JSP pages or some other kind of content-rendering technology,
the iPlanet Application Framework makes a distinction between rendering specification (JSP
pages) and View components. Only together are these considered the full View tier. An
iPlanet Application Framework application defines primarily a hierarchy of View components,
and then references these components from the rendering specification. The developer
interacts with these View components in the same way during both display and submit
cycles. The View components are the canonical View form.

8.9.2 Formal Model Entity

The iPlanet Application Framework allows the application to represent its data in a View-
agnostic way. It also provides a formal mechanism for obtaining that data without implying
a particular data format. Therefore, the iPlanet Application Framework provides a formal
Model entity that defines a handful of standard methods that all Models must implement.
Using an arbitrary, Model-specific key, Model consumers (including iPlanet Application
Framework Views) can obtain Model data in a standard way, without any assumptions
about how that Model internally represents its data.

For this reason, iPlanet Application Framework components can interact with any Model
in the same way, allowing a different Model to be plugged into the same View. Models
become interchangeable, and by this virtue, so does the data that they represent. The
marshaling of data to a particular format purely for display becomes unnecessary, and the
View tier need not understand the specific type of data with which it interacts. Different
types of Models can coexist within an application, without the View tier being cognizant of
any difference between their native data formats. XML/XPath, Java DataBase Connectivity™
(JDBC™) API, Java Data Objects (JDO), and other enterprise data all look the same to a Model
consumer, and thus the iPlanet Application Framework is able to subsume the development
approach of any framework concentrating on one of these data formats.

The interposition of a Model structure on an enterprise-tier resource enforces a level of
abstraction that makes the application design more consistent and eases maintenance.
In formally defining the data available from the enterprise tier, developers also define a
formal, yet loosely coupled, contract between tiers of the application. This contract allows
the application to be easily modified in the future, and in a well-defined way. The incidence
of regressions is lower, and regressions are more readily apparent if they occur.

138 Sun ONE Architecture Guide

8.9.3 Application Events

The iPlanet Application Framework provides developers with a number of events for
application-related occurrences. There are three types of events: general request events,
specific request events, and display events.

General request events include events like onBeforeRequest(), onSessionTimeout(), and
onUncaughtException(). Developers can use these events to respond to general application
and request life cycle occurrences, as well as to error conditions. By default, error-related
events use a consistent, localized mechanism to report errors to users, and can be overridden
by developers to take application-specific action.

Specific request events occur based on user action. When a user activates a link or button
(also known as a CommandField in the iPlanet Application Framework) on a page, the
request results in the invocation of a Command object on the server corresponding to that
activation. Although users can provide their own Command objects in response to such
actions, the default Command implementation delegates handling of the request to a
request-handling event method of the form handle<name>Request(), where <name> is the
name of the CommandField the user activated. This event is invoked on the parent
container of the CommandField, and thus is scoped to the component that originally
rendered the link or button. Within this event handler, developers can take any action they
like, either handling the request as they wish, or delegating the handling of the request to
another object.

The main difference between this iPlanet Application Framework feature and similar
request-handling features provided by other Web application frameworks is that the event
is invoked on the component to which it pertains, and is fine-grained per link or button.
Other frameworks generally provide only one coarse-grained event handler per HTML form,
and the developer is left to conditionalize that code based on the user’s action. This is both
messy and hard to maintain as the set of fields changes. That approach also makes use of
modular, self-contained components difficult, because the single event handler must be
changed each time a new link or button is added to, or removed from, the form—regardless
of whether it is contained within a component.

The iPlanet Application Framework provides fine-grained, field-level display events. Display
events, which are invoked during the rendering of a page, give the developer hooks into
the rendering process that simply would not otherwise be possible. From these events,
developers can access the tag handlers as well as the JSP page context and output stream.
Display events can be used to skip rendering of a field or to abort the currently rendering
page altogether. They can also be used to tweak the outgoing content rendered by the JSP
page, providing advanced content-filtering capabilities. Furthermore, display events
encapsulate display logic pertinent to a component inside that component, thus providing
a high degree of reusability for components even if they use advanced rendering
techniques.

 8 Presentation Frameworks 139

Display events keep Java code or program-like structures out of the JSP page. Any kind of
programmatic construct in the JSP page is generally a maintenance problem, both because
it exposes application functionality to the JSP page author and because parallel content
must duplicate this functionality in potentially many places.

8.9.4 Hierarchical Views and Component Scoping

The iPlanet Application Framework provides a hierarchical namespace for HTML form fields
that is not based on tightly coupled form-object concordance. Each display field view is
created separately as a child of a parent container view and uses a simple local name
within that container. It thus implicitly inherits a qualified, unique global name. These
qualified field names are guaranteed never to conflict with other field names, even if local
names are identical in other containers. Therefore, independent view components can be
arbitrarily combined and will never conflict with one another. The iPlanet Application
Framework automatically manages the mapping of form data associated with these
qualified field names back into components during the submit cycle, so developers never
have to think about how they combine components.

Developers do not use these qualified names during authoring of a JSP page. Instead, the
iPlanet Application Framework provides what are called “context tags.” These tags define
nested container and component scopes. Developers use local names in the JSP page
within these scopes. These names are automatically and transparently translated to
qualified names at runtime, using the current context. Not only can view components then
be arbitrarily combined, but rendering specification fragments (JSP page fragments and
pagelets) can be arbitrarily combined in a parent page. Thus, iPlanet Application Framework
developers have two types of view component reuse at their disposal, and these types can
be combined in several permutations.

8.9.5 Efficient Object Management

The iPlanet Application Framework reuses objects where it makes sense to do so but allows
other objects to be allocated as needed. The common request-handling infrastructure of
the iPlanet Application Framework relies on shared object instances managed by the
container, but objects used by the developer during normal request handling are allocated
as needed. Not only does this approach reduce complexity and eliminate an entire class of
potential bugs for the iPlanet Application Framework itself, it does the same for application
code.

This approach is maximally effective in production deployments, in which hundreds of
requests per second are handled without significant latency or memory effects due to object
allocation.

140 Sun ONE Architecture Guide

8.9.6 Support for Parallel Content

The iPlanet Application Framework provides full support for parallel content, which is the
use of parallel sets of JSP pages, with each JSP page in the set customized to a particular
language, target device, output markup (for example, XML, HTML, or WML), or any
combination of these. Each of these JSP pages references the same view components, and
thus contains only variations of content and markup. The application can then choose the
most appropriate JSP page to render at runtime, based on user preference or any other
desired criteria.

Parallel content works very well when trying to localize content for both Western and Asian
languages, where page layout may diverge heavily, or when trying to render to different
device types like a standard browser and an Internet-enabled cell phone. The advantage is
that the business logic and View structure remain consistent across localized versions of
the page, while allowing for sometimes significant rendering differences.

Some frameworks assume a static association between JSP pages and application
component, or try to automate page flow using a declarative specification of the component-
JSP page relationship. While this latter approach has its advantages in certain limited cases
(yet many more significant drawbacks), it does not allow the flexibility needed for use of
parallel content. Other frameworks that emphasize programmatic constructs in the JSP pages
make the use of parallel content extremely difficult. Developers using these frameworks must
copy and maintain programmatic constructs across multiple parallel JSP pages. Because the
iPlanet Application Framework provides display events to keep programmatic constructs out
of the JSP page, display logic never has to be replicated across parallel JSP pages in an iPlanet
Application Framework application.

The iPlanet Application Framework provides full support for parallel content, making it
extremely easy for applications to select a JSP page to render at runtime, based on any
developer-defined criteria. The lookup for parallel JSP pages is also developer-defined, so
parallel content can be organized in a way that makes sense to the application.

8.9.7 Ready-to-Use, High-Level Features

The iPlanet Application Framework provides high-level features that developers can use to
rapidly build the following highly functional applications:

■ WebActions allow developers to perform common, high-level tasks with a minimum of
code. For example, developers can invoke the Next and Previous WebActions to
automatically paginate through rows of data in a DatasetModel across requests. The
dataset position is automatically managed across requests by the WebAction
infrastructure, with no additional code necessary from the developer. Any model
implementing the DatasetModel interface can be used with these WebActions.

 8 Presentation Frameworks 141

■ A set of SQL-based model implementations that automatically manage model-oriented
access to JDBC technology resources. These implementations use SQL queries and stored
procedures to retrieve and persist data in an RDBMS, all without the developer worrying
about detailed JDBC technology use or the inconsistencies in JDBC technology-enabled
driver (“JDBC driver”) usage. Of course, developers can use JDBC driver directly from
within an iPlanet Application Framework application if they wish, but the presence of
these value-added implementations in the iPlanet Application Framework core allows
developers to very rapidly build functional, enterprise applications out of the box.

■ The iPlanet Application Framework provides TreeView and TreeModel primitives that
drastically simplify development of hierarchical data displays. These primitives are
complemented by a set of custom tags that are agnostic about look and feel. This allows
developers to structure a JSP page into portions that will be selectively rendered for a
given tree node. Since these tags output no markup themselves, they can be used in JSP
page fragments and pagelets to provide pluggable and customizable component look
and feel.

8.9.8 Tool-Readiness

At the time of this writing, the iPlanet Application Framework does not yet provide tool-
readiness. It has been designed around interfaces and object contracts. GUI-builder support
will be added at a later stage. The result will be a framework that both provides development
productivity using application builders and also supports advanced uses that make the
framework ready for the enterprise.

8.9.9 Scalability

Because the iPlanet Application Framework has been optimized to eliminate all
synchronization points, applications built on iPlanet Application Framework are as scalable
as the J2EE platform container in which they run. iPlanet Application Framework introduces
only a small, fixed amount of overhead to each application request.

142 Sun ONE Architecture Guide

8.10 Presentation Framework Interfaces
The following table lists the requirements for the Sun ONE architecture conformance for
presentation frameworks.

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

Interface Name Level Status Reference * Comments

JavaServer Faces™
(JSR 127)

Application Footnote 3 http://www.jcp.org/jsr/detail/127.jsp This standard will provide
APIs for encapsulating and
manipulating GUI
components
programmatically for both
JSP and non-JSP software
applications in a future
version of the Sun ONE
architecture.

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

Footnote 2: This interface is a standard, but support of this standard is not required for products conforming to v1.0 of
the Sun ONE architecture. Support of this standard will be required in a future version of the architecture.

Footnote 3: A standard interface is being developed for this component, and that standard will be required in a future
version of the Sun ONE architecture.

 9 The Portal Server 143

CHAPTER 9

The Portal Server

The Sun™ Open Net Environment (Sun ONE) platform Service Delivery components enable
the delivery of user-facing Web applications and Web services running in the Service
Container to end users using a variety of client devices—from desktop PCs to PDAs to mobile
phones. One important Service Delivery component is the portal server. The portal provides
a single access point to diverse types of information originating from many sources. It offers
several features to end users, as well as to the Web applications and services that they are
using. These features include aggregation, presentation, personalization, and security.

In order to provide these features, the portal makes use of internal services for location,
presence, notification, and usage. These internal services can also be quite useful to Web
services and applications outside the context of the portal. Therefore, they are exposed as
public services.

The aggregation, presentation, personalization, and security features of the portal can be
extended to the Web services world to control the delivery of one or more source Web
services to a client Web service, rather than to a client device. Thus, as an enterprise
deploys Web services throughout its organization, the portal can provide a useful way to
aggregate, personalize, and deliver those services in a secure manner.

A portal server offering the interfaces described in this chapter—such as the iPlanet™
Portal Server —provides a comprehensive infrastructure for developers who are building
many different types of portals. To conform to Version 1.0 of the Sun ONE architecture, a
portal server must provide all the interfaces to support delivery of Web applications
described in Section 9.1. Future versions of the architecture will add further requirements
affecting delivery of both Web applications and Web services, as described in Section 9.2.

9.1 Using the Portal to Deliver Web Applications
As shown in Figure 9-1, today portal servers are primarily used to deliver content from Web
applications. A portal allows multiple sources of information (typically Web
applications) to be displayed within a single page or set of pages that the user can view in
a browser. The page that includes the content is known as the desktop. The various sources
of content appear in regions of the desktop called channels.

144 Sun ONE Architecture Guide

In a portal that is part of the Sun ONE platform, a Java™ class file called a Provider is
responsible for converting the content in a file or the output of a Web application into the
proper format for a channel. Content Providers for the portal can be developed using the
Content Provider API, and several pre-built specialized providers are included with the portal.
Content is delivered to client devices in one or more markup languages such as HyperText
Markup Language (HTML), HTML for cell phones and PDAs (cHTML), Wireless Markup
Language (WML), or eXtensible Markup Language (XML). Authentication, authorization, and
user management, along with storage of user profile information, is accomplished via
Identity and Policy APIs, typically implemented on top of a directory server. Identity and
Policy Services are discussed in Chapter 11, “Identity and Policy Services”.

9.1.1 Aggregation and Presentation

The portal aggregates information available from different data sources, including:

■ HTML and XML content from different legacy application sources, such as mainframe,
Enterprise Resource Planning (ERP), and database systems.

■ Web applications, such as calendar and e-mail.

The portal must accommodate a variety of content sources aggregated from inside and
outside an enterprise or from vertical or specialty portals. It provides for page layout and
the creation of a customizable graphical user interface (GUI).

Figure 9–1: Delivering Content for Web Applications

 9 The Portal Server 145

As briefly mentioned earlier, components responsible for translating and making content
available for aggregation are called Providers. A Provider API is defined to abstract out the
Provider functionality such as getting, editing, and processing content. In Version 1.0 of
the Sun ONE architecture, a conforming portal server must implement the iPlanet Portal
Server Content Provider API. Under the Java Community Process, the Java Specification
Request (JSR) 168 Expert Group is working to define a Portlet API that will offer a standard
programming interface for developing Providers. Providers that are built with this API
should be able to run in portal server products from different vendors. A future version of
the Sun ONE architecture will add a requirement to implement this Portlet API.

Using the iPlanet Portal Server Provider API, a developer can write a Content Provider that
plugs into the portal desktop. The desktop delegates the rendering of information to a set
of Providers. A Front Provider presents the user's home page and navigational links to
other Providers. It uses the Provider API to invoke Content Providers to display source-
specific content in the form of channels. For HTML devices such as browsers, these
channels appear as table cells. On WML devices, these channels appear as links to WML
cards containing the content of the channel. Content and Layout Providers present
interfaces that allow the selection, ordering, and positioning of channels within the
desktop. iPlanet Portal Server uses XML Stylesheet Language Transformations (XSLT)
translation/formatting capability to generate appropriate format for a client device. For
further information on the iPlanet Portal Server Provider API, see the interface table at the
end of this chapter.

The types of clients that can access a Version 1.0-compliant portal must include desktop PC
browsers, PDAs, and mobile phones and their associated markup languages: HTML, XML,
WML, and cHTML.

9.1.1.1 Specialized Providers for Aggregation and Presentation

The portal offers the following four pre-defined Provider implementations that simplify the
aggregation and presentation of common types of data sources:

■ TTTThhhheeee UUUURRRRLLLLSSSSccccrrrraaaappppeeeerrrr PPPPrrrroooovvvviiiiddddeeeerrrr allows the creation of channels by obtaining and rendering
data. The data indicated by a URL must be in a format appropriate to the client device.

■ TTTThhhheeee JJJJaaaavvvvaaaaSSSSeeeerrrrvvvveeeerrrr PPPPaaaaggggeeeessss™™™™ ((((JJJJSSSSPPPP™™™™)))) TTTTeeeecccchhhhnnnnoooollllooooggggyyyy PPPPrrrroooovvvviiiiddddeeeerrrr allows the use of files
provided by JavaServer Pages technology (“JSP files”) to create the content for a channel
and the logic for processing requests.

■ TTTThhhheeee XXXXMMMMLLLL////XXXXSSSSLLLL PPPPrrrroooovvvviiiiddddeeeerrrr enables the creation of channels from any valid XML source
using an XSL template. This Provider retrieves the XML data from the location indicated
by a URL and transforms it using an XSLT engine to the specific markup language of the
client device.

146 Sun ONE Architecture Guide

9.1.2 Personalization for Users and Applications

The portal maintains a multi-level profile (organizations, roles, and users) that allows
comprehensive personalization and customization for both end users and applications.
Personalization data enables context-sensitive interactions to tailor content delivered to the
user according to the time, place, and type of transaction. This profile data reflects the
choices made by users and applications regarding how they interact.

Users can customize their content and layout in a device-independent way, then let
the portal attempt to determine how best to render the final output based on these
customizations. But they can also customize according to specific devices. Similarly,
services and applications can adjust their content or actions, depending on the device and
its properties.

The portal allows end users and administrators to customize the desktop view layout and
look and feel via a GUI that enables the editing of attributes such as colors and themes of
the desktop and the selection of channels. In addition, custom Content Providers can be
selected for different devices, and the selection of channels can be made on a per-device
basis. In iPlanet Portal Server, the look and feel of the desktop can be changed completely
by replacing appropriate JSP files.

Application developers can customize channels by implementing custom Providers. Four
pre-defined specialized Provider implementations are outlined in Section 9.1.1.1.

9.1.3 Security for Users and Applications

The portal must support secure access for end users and applications both inside and
outside the enterprise. In doing so, it must:

■ Offer the flexibility to support an enterprise's existing authentication mechanisms and
provide single sign-on capabilities.

■ Utilize the Identity and Policy components of the Sun ONE architecture to provide single
sign-on, authentication, authorization, access control, and session management for all
its users and applications.

■ In addition, the portal may optionally:

■ Provide a Virtual Private Network (VPN) solution for accessing intranet resources
without any specialized client software in the device, other than a Web browser.

■ Include a reverse proxy that rewrites HTML documents, thereby allowing all intranet
Web sites to be accessed without exposing them directly to the Internet.

 9 The Portal Server 147

9.1.4 Management of Users and Applications

The portal offers an administration console accessible via a Web browser that allows the
customization and management of both users and applications.

9.2 Enhancing the Portal for Web Services
The aggregation, presentation, personalization, and security capabilities that the portal
provides to Web applications can be extended to the Web services world. First, the portal
can offer a single point of access to user-facing Web services. In addition, it can be used as
the access point for delivering aggregated and personalized Web services to other Web
services (as opposed to an end user). Furthermore, internal services of the portal such as
location, presence, notification, and usage can be made available as public Web services to
other Web services and applications.

This section describes portal interfaces beyond those described in Section 9.1. As shown in
Figure 9-2, these interfaces enhance the portal so it can offer the above features for Web
services. Future versions of the Sun ONE architecture will specify these interfaces in greater
detail.

9.2.1 Aggregation and Presentation of Web Services

There are two use cases for the aggregation and presentation of Web services:

Figure 9–2: Delivering Content for Web Applications and Web services

148 Sun ONE Architecture Guide

■ The consumer of the aggregation is an end user.

■ The consumer of the aggregation is another Web service or a Web application.

These two use cases are discussed in the sections that follow.

9.2.1.1 Delivery to End Users

In this case, the source Web services are user-facing in the sense that they produce output
that is intended for human users with simple transformations required for presentation.
The Provider API must be able to handle sources that are Web services and define the
allowable transformations of Web service data. The capabilities required include identifying
and discovering services, formatting requests for services from the user, and translating
output to the appropriate format for the user.

Web services definitions are not yet standardized for different application segments such as
calendar, mail, and instant messaging. Until this happens, the portal can act as the
integration point that converts different Web services interfaces for similar services to a
common interface for delivery to users.

9.2.1.2 Delivery to Web Services and Applications

A Web services portal consolidates several Web services offered by an organization into a
single access point. In this manner, it acts as a Web services hub.

Such a portal can be the edge application (Internet-intranet bridge) for partner, vendor,
supplier, and customer applications and services. This function enables single sign-on (SSO)
for Web services and provides a simpler way of handling security and access control. The
portal is not the container running the Web services but a gateway to them.

9.2.2 Personalization for Web Services

A Web services portal can customize and personalize the delivery of Web services as well as
Web applications. Different client users, applications, and services can have access to
different Web services. Also, different clients can be connected with different back-end Web
services offering similar but differentiated services depending on personalized information.
The portal can manage what services are available to applications and other services based
on their roles by maintaining a profile for each client application and service.

 9 The Portal Server 149

9.2.2.1 Supporting the Java Web Client Model

An enhanced portal could support client devices with richer interfaces than a markup
language. Client devices may be provisioned with a Java application, applet, or midlet, as
described in Chapter 10, “The Java Web Client Model.” The portal can use the customized
information it has about the user, the device, the connection, and the application/service
being accessed to provision the device appropriately. The APIs that are under development
as part of JSR 124 - Java 2 Platform, Enterprise Edition (J2EE™ platform) Client Provisioning
Specification (also known as the Vending Machine specification for Java) may be used by
the portal to accomplish this.

9.2.2.2 System-Level Interfaces Supporting Personalization

The portal uses information about users, devices, applications, and services to personalize
the delivery of applications and services to end users. Some of this information is stored as
profile data that can be edited by users or administrators. Other information is more
dynamic and needs to be tracked by the portal. A future version of the Sun ONE architecture
will define system-level interfaces for the portal that allow vendors to plug in value-added
modules for enhancement of the personalization of application and service delivery.

9.2.2.2.1 Location SPI

The Location System Programming Interface (Location SPI) allows developers to provide
modules that enable the portal to determine the geographic location of a user. The portal
uses a collection of such modules to track users to provide personalized delivery based on
location.

9.2.2.2.2 Presence SPI

Presence refers to comprehensive information about the current context of the user,
including how the user is connected to the system, the user's availability, and the types of
applications in use. The Presence SPI allows the developer to provide modules that enable
the portal to gather Presence information. The portal uses a collection of such modules to
provide personalized delivery.

9.2.2.2.3 Notification SPI

The portal uses user profile information and current user context to choose the method
used to send messages to a user. The Notification SPI allows developers to provide modules
that enable the portal to send messages via various mechanisms. The portal uses a
collection of such modules to send messages in a personalized way.

150 Sun ONE Architecture Guide

9.2.2.2.4 Usage SPI

The portal can collect utilization information about a client's use of Web services or
applications. The Usage SPI allows developers to provide modules that gather usage
information. The portal uses a collection of such modules to track usage on behalf of
applications and services.

9.2.3 Security for Web Services

The portal enables single sign-on and access control for Web services and applications as
well as for end users. The Web services and applications do not need to be single-sign-on
aware. The portal simplifies the usage of Identity and Policy components by the Web
services it consolidates.

9.2.4 Management of Web Services

Management interfaces for the portal (beyond simple Web browser access) will be defined
in a future version of the Sun ONE architecture. The portal will allow management of Web
service and Web application clients as well as end users. It will also permit the
management of the Web services that it is currently aggregating.

9.2.5 Specialized Web Service Provider

The portal will offer a specialized Web Services Provider implementation to enable
automated user interfaces (UIs) to Web services. This provider will be able to dynamically
craft a UI for interactions with “simple” Web services for different types of client devices.
The tables that follow provide information relevant to the portal server.

 9 The Portal Server 151

9.3 Portal Server Interfaces
The following table lists the requirements for the Sun ONE architecture conformance for
portal servers.

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

Interface Name Level Status Reference * Comments

iPlanet Portal
Server Content
Provider API

Application Footnote 4 http://docs.iplanet.com/tech/ips/ iPlanet Portal Server
PAPI

Portlet API (JSR
168)

Application Footnote 3 http://www.jcp.org/jsr/detail/168.jsp Standard Provider API

Presence SPI System Footnote 6 N/A

Notification SPI System Footnote 6 N/A

Usage SPI System Footnote 6 N/A

Location SPI System Footnote 6 N/A

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

Footnote 2: This interface is a standard, but support of this standard is not required for products conforming to v1.0 of
the Sun ONE architecture. Support of this standard will be required in a future version of the architecture.

Footnote 3: A standard interface is being developed for this component, and that standard will be required in a future
version of the Sun ONE architecture.

Footnote 4. This is a published proprietary interface, and support of this interface is required for products conforming to
v1.0 of the Sun ONE architecture.

Footnote 5. This is an unpublished proprietary interface. A published definition for this interface will be provided in a
future version of the Sun ONE architecture.

Footnote 6. This interface is not yet defined. A definition for this interface will be provided in a future version of the Sun
ONE architecture.

152 Sun ONE Architecture Guide

 10 The Java Web Client Model 153

CHAPTER 10

The Java Web Client Model

This chapter describes the component that is most changed from traditional system
architectures: the Web client enabled with Java™ technology (“Java Web client”).

Services on Demand can be delivered through the Sun™ Open Net Environment (Sun ONE)
architecture in three ways, as shown in Figure 10–1.

The three delivery methods shown above can be defined as follows:

■ TTTThhhheeee WWWWeeeebbbb aaaappppppppllll iiiiccccaaaatttt iiiioooonnnn mmmmooooddddeeeellll :::: HTML, XML, or JavaScript™ technology sent from a
Web server to a browser. These delivery methods are designed for human interaction.

■ TTTThhhheeee WWWWeeeebbbb sssseeeerrrrvvvviiiicccceeeessss mmmmooooddddeeeellll :::: XML-based Web services transacted between two servers.
These services can be transactions completed by the servers without human interaction.

■ TTTThhhheeee WWWWeeeebbbb ccccllll iiiieeeennnntttt mmmmooooddddeeeellll :::: Applications built with Java technology, delivered over the
Web (provisioned) to a Web-enabled device—for example, a desktop computer, a PDA, a
Web-enabled cell phone, or an appliance or machine.

Figure 10–1: Delivering Services on Demand

154 Sun ONE Architecture Guide

This chapter explores the third option: applications written in the Java programming
language that are provisioned to Web client devices and executed on those devices.

10.1 Design and Deployment Considerations
Although many applications built with Java technology are intended to run on desktop
computers, the Web client model anticipates that many of them also will be delivered
to other devices with limited processing capability; limited memory; and unreliable,
intermittent Internet connectivity. The following sections describe the elements of the Sun
ONE architecture that address the environmental and device-related constraints that the
Web client model is designed to overcome.

10.1.1 Protocols and Payloads

The devices to which Java Web client applications are delivered are frequently hand-held,
wireless devices that are always on the move. Connecting to the Web in different ways,
these devices are typically separated by firewalls from the server delivering the Web client
application. Therefore, the developer of the Java Web client application cannot depend on
the availability of proprietary protocols when delivering services to client devices that can
connect anytime, anywhere.

Because the availability of proprietary protocols cannot be assumed, the Sun ONE
architecture provides the means to use a very few, very pervasive protocols to handle all
aspects of Web client transactions, including provisioning, data transfer, and asynchronous
reliable messaging.

Furthermore, the developer of the Java Web client application must plan for the application
to be delivered to a range of client devices with a wide variety of operating system versions,
physical capacities, and access protocols. Web client applications that demand an exact fit
between provider and consumer of a payload will succeed far less often than those that
can tolerate an approximate fit.

The Sun ONE architecture Java Web client payload is defined by an exposed XML message
schema that can be accessed at design time, during deployment, and at runtime. Because
these schemas allow for an inexact match, it is easier to provide robust support for a
variety of client device types, or for different versions of the same client device.

 10 The Java Web Client Model 155

10.1.2 Environment

The Java Web client operates in an environment that is distinctly different from that of the
traditional client. Often access must be provided with intermittently connected, low bandwidth,
high latency, indifferently secured, and relatively expensively tariffed communication. However,
in spite of such limitations in the underlying communication fabric, the Java Web client
application must provide secure, cost-effective access to services. It also must remain
responsive to user input despite intermittent connectivity.

Devices must be able to operate anywhere, including in store franchises, branch offices,
homes, and moving vehicles. Furthermore, this operability must be sustained where local
support is lacking, which is almost always the case. For example, even if the user is a direct
employee of an enterprise providing a service, first-level support for that user may be
outsourced to communication carriers with no knowledge of, and a limited stake in,
enterprise back-office operations.

Devices used for access are in a state of constant advancement, and the scale of services is
undergoing steady expansion. Therefore, users need to be readily provisioned with a set of
services whose implementation and deployment details can vary as new devices and services
become available.

10.1.3 MVC Design for Java Web Clients

Unreliable connectivity is a fact of life for Web client devices. For this reason, a robust Java
Web client application must:

■ Anticipate the loss of connectivity at any time.

■ Provide a graceful way to continue operating until the connection is restored.

■ Be capable of completing transactions that were interrupted by the loss of the
connection.

The Model-View-Controller (MVC) design model, discussed at greater length in Section 8.2,
“The Model-View-Controller,” has important implications for Java Web client applications.
Hence, it also has major impact on the Sun ONE architecture that supports their creation,
assembly, and deployment.

In a typical client-server transaction using a reliable network connection, the client
application can be exclusively concerned with the presentation of information—or, in MVC
terms, with the View. A Web client application, on the other hand, must be prepared to
manage some aspects of both the Model and Controller. The Sun ONE architecture supports
an MVC approach to Java Web client design.

156 Sun ONE Architecture Guide

The Sun ONE architecture model for Java Web clients assumes that the client device has the
inherent capability to display text, graphics, and controls such as buttons and fields. The
View can therefore be managed declaratively by using XML, rather than procedurally by
declaring what is to be displayed and leaving the client device to determine how to make
that happen.

As discussed earlier in Section 10.1.1, the information payload must be defined as loosely
as possible to support as wide a range of client devices as possible. Therefore, the Model,
like the View, is managed declaratively, with both the schema and the information content
delivered as XML.

If intermittent connectivity is the rule, some business logic must always be present on the
client device to maintain funtionality when the connection is lost. Therefore, the third
component of MVC, the Controller, must also be present in a Java Web client application.
The Controller is, of course, procedural in nature, rather than declarative. Furthermore,
given the demands of the Web client environment, the vehicle for delivering procedural
funtionality must be both platform-independent and scalable. Proprietary languages are
platform-specific, and the JavaScript programming language is unmanageable for anything
except very small applications. Therefore, the Sun ONE architecture specifies that the
Controller function be managed using Java technology byte codes. Java Web client
applications use Java technology byte codes to deliver the Controller elements of the
application, and XML to deliver the Model and View elements of it.

10.1.4 Supporting Architectural Elements

The Sun ONE architecture helps developers deal with the environmental challenges that
often confront Java Web client applications. For example:

■ Asynchronous reliable messaging, cache control, and synchronization facilities for local
stores help Web client applications deal with unreliable connectivity in the client
environment.

■ Encapsulation of signing and encryption services in devices provide secure, validated
communication. These same architectural elements reduce the risk of customers
repudiating transactions that have been completed using Web client applications.
Repudiation occurs when a customer attempts to deny having completed an online
transaction. The Java Web client infrastructure must be capable of providing proof of
transactions.

■ Abstraction of the client application development and deployment model makes it easier
to support a variety of client devices, even through semi-automatic interface generators.
Declarative configuration of runtimes provides predictable operation tuned to device
requirements by device-specific runtimes, rather than requiring separate applications
written for each device.

 10 The Java Web Client Model 157

■ The developer of a Web client application must frequently anticipate delivering it to any
of dozens—possibly even hundreds—of different client device types and versions.
Customization of runtime configurations using predefined device profiles provides a
scalable way to provision many different types of client devices over the Web.

■ Services that are accessed over the Web can be discontinued, moved to another URL, or
temporarily rendered unavailable by design or mishap. If this happens, the Java Web
client that cannot find another way to access the same or an equivalent service will fail.
Moreover, a change in the user’s personal profile might require a change in access
points. For example, when a user moves a stock portfolio from one brokerage firm to
another, the access point for finding the current value of the user’s portfolio probably
changes, too. By deferring the binding of access points until access is needed, the
application developer can help forestall the temporary unavailability of services.

10.1.5 XML Information Services and Device Interaction

Local storage in message queues, caches, and device-specific stores is implicit in a Java
Web client architecture. When the architecture for Java Web clients is considered through
the MVC design model, the store or “Model” is XML. Driving XML into the device means
that disconnected clients can present information collected while online and then update
server-side elements when reconnected.

However, the footprint limitations of high-volume Java Web client devices such as cell phones
and PDAs limit the capabilities of client device XML-processing to handle, for example, only
valid XML structures. Properly written Web client applications conserve limited device
memory by instantiating objects from XML structures only when they are needed. Another
way to save memory is to make the XML structures breadth-first cacheable by pieces rather
than the whole—that is, to keep only the top nodes of a tree in memory, instantiating lower
nodes only when necessary.

Another recommended practice is to use token-based compression of XML structures on the
server to conserve bandwidth, or on the client device to conserve storage. This practice
also requires that the portal customize compression schemes on the fly to accommodate
dynamically discovered device limitations. A lightweight XML parsing engine and document
object navigation interface support these design considerations, as discussed in more
detail in Section 3.2, “J2EE Platform Container Provided Services.”

10.1.6 Client Device

One of the most important considerations when developing Java Web client applications is
the range of client devices that will attempt to download the application. The following
sections discuss device-related issues.

158 Sun ONE Architecture Guide

10.1.6.1 Java™ Virtual Machine (JVM™) and KVM Operating Environments

Full-scale Java™ Virtual Machine (JVM™)1 software and reduced-capability Kernel Virtual
Machines (KVMs) are available on both traditional workstation-like machines and,
particularly for KVMs, on more limited and portable client devices.

JVM software and KVMs provide a common application and application library execution
environment that has been adopted by a diverse set of Web services client device
manufacturers. They offer secure operations for accessing underlying device-specific
capabilities in a way that insulates the developer from those interfaces while providing
device-specific integration. Section 10.2, “Java Web Client Model Interfaces,” provides
information relevant to the Java 2 Platform, Standard Edition (J2SE™ platform) release that
is aimed at workstation JVM operating environments.

10.1.6.2 Mobile Devices

Mobile devices represent a class of edge-node devices that are both limited in their capability
and potentially much more pervasive than traditional workstations. Their limitations and
their more personal character lead to trade-offs that require new sensitivities and different
architectural approaches. The user of a mobile device expects to log into the Internet and
access personal configurations both from multiple devices and from a single device that can
be carried along and used at various locations. Accommodating this dual expectation in the
limited storage, computation, and communications environment of mobile devices is the
architectural challenge.

As outlined earlier, mobile environments include two classes of operating environments—one
based on the JVM software and the other on the KVM. The JVM software environment
supports the Connected Device Configuration (CDC). In turn, the CDC supports the Foundation
Profile. This is extended by the Personal Basis Profile (used, for example by AutoJava and
JavaTV) and the Personal Profile (available, for instance, on iPAQ devices). The KVM supports
the Connected Limited Device Configuration (CLDC). In turn, the CLDC supports the Mobile
Information Device Profile, variants of which are provided by the harmonized HL7 Reference
Model (RIM) and NTT DoCoMo.

10.1.7 Extended Services

When written for mobile devices, Java Web client applications execute on top of the device’s
profile. They use the data access, presentation, user interaction, and communication
services provided by the profile.

1. The terms “Java Virtual Machine” and “JVM” mean a virtual machine for the Java platform.

 10 The Java Web Client Model 159

Mobile environments provide a different kind of user interface environment that is limited
to interaction with documents and very simple document creation. Without the more
capable document creation facilities characteristic of desktops, access to services must be
engineered using facilities for the service provision point for the device. This type of access
is discussed within the context of server-side provisioning in Section 10.1.9, “Server-Side
Provisioning.” However, the device must have the basic infrastructure—reliable messaging,
security, synchronization, and access to local storage—required to interact with the server-
side provisioning point.

Queuing interactions for intermittent connection are required for reasonable operation with
mobile devices. Java Message Service (JMS) provides this capability for the programming
interface. Furthermore, the JMS API allows for transacted operations on queues, including
those identified by name rather than location.

With JMS technology, multiple source and targets can be identified through a common
name, thus allowing information to be published without possessing lists of users who
subscribe to that information. The Electronic Business XML (ebXML) Trap (ebMS) Simple
Object Access Protocol (SOAP) extensions for reliable messaging create a Web service
interface that provides this capability.

Device stores are used both to allow disconnected operation and to provide a common form
of application intercommunication. Access to these stores, especially for application
intercommunication, must be controlled through keyed access permissions. Because a mobile
device must meet the user’s need to log on both from multiple devices and from a single
device that can be turned on and off in various locations, it must have device stores that are
bi-directionally synchronized with matching information held on servers. Changing from one
device to another requires that information on devices be viewed as caches. Operating while
disconnected requires that the caches be populated with current information. Meeting both
types of requirements leads to the need for compensating transactions. These can be as
simple as mailed or SMS notifications asking for resolution. They may also involve more
automated means requiring integration servers running long-lived transactions.

Offering the basic means for nonrepudiation of user transactions and the installation and
operation of trusted applications requires security support in the devices. Because such
support cannot be compromised, it must be isolated in its own environment with carefully
engineered access points to the device.

Note that the storage and communication mechanisms on devices are still evolving. New
mechanisms may introduce new capabilities.

10.1.8 Telephony Access Mechanisms

The convergence of communications and computation happens on the Web Service access
client device. Notifications arrive from a short message service (SMS) providing a Uniform
Resource Identifier (URI) for a service access point. In the other direction, a service may
provide an address book entry for a voice call and offer to dial it.

160 Sun ONE Architecture Guide

10.1.9 Server-Side Provisioning

Almost as a matter of course, Web pages are becoming customized for client support.
portal servers and gateways provide client customization of the data that is exchanged
with the client. They also customize the client-side behavior that provides local interaction
with the data that is stored and queued on the client. Therefore, the use of caches to scale
Web services requires the caching of fragments of data composed in all the variety that a
client might need, rather than sending the final page to some particular client.

Compiling JavaScript technology to Java technology byte codes is an easy way to reduce device
footprint and deal with legacy environments. In the Wireless Application Protocol (WAP)
environment, controllers are described by URLs. These de-reference as Java technology byte
codes if the WAP portal compiles JavaScript technology to them. The advantage is that already-
generated WAP pages already can be supported on devices without dedicating footprint to a
JavaScript programming language interpreter. Over time, as the burden of maintaining some
collection of JavaScript programming language files surpasses the value that it provides, its
behavior can instead be represented as Java class files for ease of maintenance.

In a more developed provisioning strategy, devices can obtain the Model-View-Controller
(MVC)-factored resources they need for local interaction with data and access privileges for
data supplied by Web clients, as described in Section 10.1.3, “MVC Design for Java Web
Clients.” They also get registration with identity, profile, and preferences for the services
they access and the way in which they access them.

Provisioning a device in this manner has implications for service billing. The “vending
machine” outlined in Java Specification Request (JSR) 124 can be connected, for example,
to the OSS/J systems of a carrier or directly to the billing systems of the appropriate service
providers.

10.2 Java Web Client Model Interfaces

Interface Name Level Status Reference * Comments

J2SE 1.4 Release
(JSR 59)

Application Footnote 1 http://www.jcp.org/jsr/detail/59.jsp Aimed at
workstation JVMs
Section 10.1.6.1

J2ME Platform
Specification (JSR
68)

Application Footnote 1 http://www.jcp.org/jsr/detail/68.jsp Aimed at mobile
devices
Section 10.1.6.2

J2ME CDC (JSR 36) Application Footnote 1 http://www.jcp.org/jsr/detail/36.jsp Alternative
configuration
Section 10.1.6.2

J2ME Foundation
Profile (JSR 46)

Application Footnote 1 http://www.jcp.org/jsr/detail/46.jsp Alternative profile
Section 10.1.6.2

Personal Basis
Profile (JSR 129)

Application Footnote 1 http://www.jcp.org/jsr/detail/129.jsp Alternative profile
Section 10.1.6.2

 10 The Java Web Client Model 161

Personal Profile
(JSR 62)

Application Footnote 1 http://www.jcp.org/jsr/detail/62.jsp Alternative profile
Section 10.1.6.2

MidP
(JSR 37, 118)

Application Footnote 1 http://www.jcp.org/jsr/detail/37.jsp and
http://www.jcp.org/jsr/detail/118.jsp

Alternative profile
Section 10.1.6.2

CLDC Next
Generation (JSR
139)

Application Footnote 3 http://www.jcp.org/jsr/detail/139.jsp Alternative
configuration
Section 10.1.6.2

PDA Profile for
the J2ME
Platform
(JSR 75)

Application Footnote 3 http://www.jcp.org/jsr/detail/75.jsp Alternative profile
Section 10.1.6.2

J2ME Widget
Sets, User
Events, and
Communication

Application Footnote 5 Several ISVs have
products with this
capability.
Section 10.1.7

Device JMS and
SOAP

Application Footnote 5 Several ISVs have
products with this
capability.
Section 10.1.7

JDBC (Native
Stores,
Application
Interconnection)

Application Footnote 5 Several ISVs have
products with this
capability.
Section 10.1.7

SyncML Application Footnote 2 http://www.syncml.org/technology.html Synchronization
Section 10.1.7

Device Cache
Management

Application Footnote 2 http://www.jcp.org/jsr/detail/107.jsp Section 10.1.7

Java APIs for
Bluetooth
(JSR 82)

Application Footnote 2 http://www.jcp.org/jsr/detail/82.jsp Section 10.1.7

Java APIs for
Security, Signing,
Trust, Signature,
Encryption, and
the Javacard

Application Footnote 2 http://java.sun.com/products/javacard/jav
acard21.html

Section 10.1.7

Javacard
Integration into
Phones, PDAs,
XML, Trust,
Signature,
Encryption, (JSRs
105-107)

Application Footnote 2 http://www.jcp.org/jsr/detail/105.jsp and
http://www.jcp.org/jsr/detail/106.jsp and
http://www.jcp.org/jsr/detail/107.jsp

Section 10.1.7

Wireless
Telephony on
J2ME (JSR 120)

Application Footnote 3 http://www.jcp.org/jsr/detail/120.jsp Wireless Telephony
Communication APIs
(WTCA)
Section 10.1.8

Phonelets (JSR
61)

Application Footnote 3 http://www.jcp.org/jsr/detail/61.jsp API to package,
deploy, and run
Computer Telephony
Integration (CTI)
applications
Section 10.1.8

Interface Name Level Status Reference * Comments

162 Sun ONE Architecture Guide

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

JAIN 3G MAP
Mobile
Application
Intercommunicat
ion (JSR 123)

Application Footnote 3 http://www.jcp.org/jsr/detail/123.jsp Service Provider
Presence and
Availability
Management API
Section 10.1.9

Service Location
Protocol (JSR 140)

Application Footnote 3 http://www.jcp.org/jsr/detail/140.jsp Service Location
Protocol Application
Programmer
Interface
Section 10.1.9

Service Provider
Presence (JSR
123)

Application Footnote 3 http://www.jcp.org/jsr/detail/123.jsp J2ME application
environment for
network-connected
devices
Section 10.1.9

J2EE Client
Provisioning
Specification (JSR
124)

Application Footnote 3 http://www.jcp.org/jsr/detail/124.jsp Abstracts details of
the provisioning
model
Section 10.1.9

JAIN Service
Creation
Environment

Application Footnote 3 http://www.jcp.org/jsr/detail/100.jsp API to support and
simplify the creation
of portable
telecommunication
services
Section 10.1.9

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

Footnote 2: This interface is a standard, but support of this standard is not required for products conforming to v1.0 of
the Sun ONE architecture. Support of this standard will be required in a future version of the architecture.

Footnote 3: A standard interface is being developed for this component, and that standard will be required in a future
version of the Sun ONE architecture.

Footnote 4. This is a published proprietary interface, and support of this interface is required for products conforming to
v1.0 of the Sun ONE architecture.

Footnote 5. This is an unpublished proprietary interface. A published definition for this interface will be provided in a
future version of the Sun ONE architecture.

Footnote 6. This interface is not yet defined. A definition for this interface will be provided in a future version of the Sun
ONE architecture.

Interface Name Level Status Reference * Comments

 Part 6. Fundamental Services 163

Part 6. Fundamental Services

164 Sun ONE Architecture Guide

 11 Identity and Policy Services 165

CHAPTER 11

Identity and Policy Services

Identity and Policy Services include three broad categories of services, all of which generally
have a dependency on directory services:

■ Identities, roles, and security for users, groups of users, and other system objects.

■ Federated identity systems such as the Liberty Alliance Project.

■ Management Services, which include both systems and applications management.

As shown in Figure 11–1, Identity and Policy Services are located at a lower level in the
Sun™ Open Net Environment (Sun ONE) platform. They are used by most of the higher-level
components.

The first category of services is directly related to existing directory server interfaces such as
those offered by the iPlanet™ Directory Server Access Management Edition and Integration
Edition products from Sun. Federated identity interfaces based on work underway in the
Liberty Alliance Project will extend services in this first category to operate across the Web.
The Sun ONE architecture also defines a common management infrastructure for all
components. Identity and Policy services leverage platform functionality whenever possible—
for example, in the incorporation of Kerberos security.

166 Sun ONE Architecture Guide

11.1 Identity, Roles, and Security
Identity and Policy Services provide the infrastructure for managing user identity, roles,
and security—as well as services and policies. They also provide fundamental basic services
such as discovery of Web services using Universal Description, Discovery, and Integration
(UDDI,) authentication, single sign-on (SSO), policy evaluation, and security. These
fundamental Core Services can be leveraged by other Web Services and applications to
perform the basic operations. For more information, see Chapter 13, “Core Web Services.”

Figure 11–2 shows the overall architecture of the Identity and Policy services. In that figure,
the architecture is broadly divided into:

■ Infrastructure management components

■ Core components

■ Web services

Figure 11–1: Identity and Policy Architecture

 11 Identity and Policy Services 167

As shown Figure 11–2, the infrastructure management modules provide interfaces to
manage users, policy, and services via a Web browser. The User Management component
creates, deletes, and modifies user identities It also provisions users for various services.

The Policy Management component provides interfaces to create, delete, and modify policy
rules that define the service and access privileges for users. For example, the protection of
a Web resource can be based on a user’s identity as well as on conditions such as “can be
accessed only from 9AM to 5PM, Monday through Friday.”

The Service Management component provides interfaces to manage Web services using UDDI
and interfaces to manage service configuration parameters. Additionally, administrative
operations can be performed on service instances such as starting and stopping the service
using Common Information Model/Web-Based Enterprise Management (CIM/WBEM).

Figure 11–2 also shows Core Services that provide the following two types of interfaces:

■ APIs that can be accessed directly by applications written in the Java™ programming
language.

■ Web services that can accessed via SOAP over http(s).

The following Core Services are provided:

■ Authentication

■ Single sign-on (SSO)

■ User personalization or preferences

Figure 11–2: Identity and Policy Architecture

168 Sun ONE Architecture Guide

■ Policy Evaluation and Privacy

■ Security through PKI and Kerberos

■ Logging or audit

11.1.1 iPlanet™ Directory Server Products

From the perspective of the Sun ONE platform, the Identity and Policy components are
provided by iPlanet Directory Server Access Management Edition and Integration Edition.

These two editions of the directory server are infrastructure products designed to meet the
complex and varying needs of Intranets, extranets, and Internet Service Providers (ISPs).
They provide the means for unifying identity and service management, as well as for
consolidating policy management for increased enterprise and Web security. Their
components and services integrate with iPlanet Directory Server, the MetaDirectory, UDDI,
Light Weight Directory Access Protocol (LDAP) Proxy, Web Server, Proxy Server, and
Certificate Management System to form a platform for managing the extranets, Intranets,
and portals. The UDDI registry is built using iPlanet Directory Server and will initially serve
the purpose of being a private UDDI registry. It will later be extended to become a public
registry.

Both the management and integration editions of the server provide interfaces that will be
compliant with the requirements of the Sun ONE architecture and any existing standards.
Additionally, the management edition provides proprietary interfaces either in the absence
of standard interfaces or when simple and easy-to-use convenience interfaces are needed.
Note that these additional interfaces are not mandatory for Sun ONE architecture
compliance.

11.1.2 Identity: Authentication

The Authentication component provides interfaces that can be accessed by:

■ Users via their browser to obtain authentication.

■ Web services and applications to authenticate users.

Figure 11–3 shows the architecture of the Authentication component. It uses the Java
Authentication and Authorization Service (JAAS) software as its framework, which is
part of the Java 2 Platform, Standard Edition (J2SE™) 1.4 specification. Refer to
http://java.sun.com/products/jaas for more information on JAAS interfaces and their
authentication mechanism.

 11 Identity and Policy Services 169

Java Authentication and Authorization Service provides the client authentication APIs, the
authentication framework, and plug-in Service Provider Interfaces (SPIs). The authentication
APIs can be used to authenticate users by programmers using the Java programming language.
The Authentication component also provides the Simple Object Access Protocol (SOAP)-based
Web services to authenticate users in a client-service environment and a HyperText Markup
Language (HTML)-based user interface (UI) that can be used by Web applications.

The Authentication service, which can be accessed via SOAP, provides constructs to
gather and submit user credentials. Hence it provides a means for the client to have a
conversation with the Authentication Service. This is a requirement for authentication
protocols that require challenge-responses.

At the time of this writing, iPlanet Directory Server and iPlanet Directory Server Access
Management Edition support centralized authentication, either through the directory or
through the addition of more authentication modules to the management edition’s server.
The additional authentication modules provided by the management edition are RADIUS,
Certificate Based Authentication (Public Key Infrastructure [PKI]), SafeWord, SecureID,
UNIX®, NT Domain, and LDAP. Furthermore, iPlanet Directory Server Access Management
Edition will provide convenience authentication APIs over Java Authentication and
Authorization Service interfaces that will include a synchronous mechanism to obtain
callback objects to gather user credentials. Java Authentication and Authorization Service
provides an asynchronous mechanism.

iPlanet Directory Server Access Management Edition stores authentication configuration
information in iPlanet Directory Server (compared to the files implementation provided by
Java Authentication and Authorization Service. Therefore, if there are multiple instances of
Authentication Service, the configuration must changed only once in the directory. For
more details on the management edition of the server, refer to http://www.iplanet.com.

Figure 11–3: Authentication Architecture

170 Sun ONE Architecture Guide

11.1.3 Identity: Web Single Sign-On

The SSO component provides interfaces that can be used by applications and Web services
to maintain a user’s authenticated session across multiple applications and Web services
without having to re-authenticate the user. Figure 11–4 shows the architecture of the SSO
component, which basically contains SSO Java technology APIs and a Session Manager. The
SSO APIs provide methods for Java programing language applications to establish a
SSO session for a user and to build a SSO service that can accessed by Web services.
Additionally, the Authentication service calls the SSO APIs to initially construct a SSO
session for an authenticated user. The Session Manager handles SSO session information
such as time of authentication, principal name, idle time, and maximum session time.

The SSO component also provides a Session Service that can be accessed by Web services
to validate SSO tokens and to obtain session-related information such as idle timeouts and
maximum timeout.

As shown in the figure, the architecture enhances the integration between the
Authentication component and the SSO component by providing a SSO token to an
authenticated user.

From the perspective of the Sun ONE platform, iPlanet Directory Server Access Management
Edition provides a secure Web SSO framework by extending Javax.servlet.http.HttpSession
to allow the user access different Web resources, processes, applications, and services in a
single user session without having to authenticate to each one of them. Furthermore, the
management edition supports signed exchange of Web SSO tokens and other user
credentials.

The Session Manager in the iPlanet Directory Server Access Management Edition provides a
pluggable architecture to support different implementations of session managers. The
default implementation provided by the management edition is based on
Javax.servlet.http.HttpSession.

Figure 11–4: Web SSO Solution Architecture

 11 Identity and Policy Services 171

11.1.4 Identity: Cross-Domain Single Sign-On

In the previous section, the SSO solution was discussed with respect to a single domain in
which the participating Web services and applications have a trust relationship. To enable
SSO across multiple domains, a trust relationship across these domains must be negotiated.
The Liberty Alliance Project, which is described in Section 11.2.1, will address this issue. It
will also provide a protocol specification to accomplish cross-domain SSO. Furthermore,
Liberty will address federation of user accounts across multiple domains.

The security services technical committee within the Organization for the Advancement of
Structured Information Standards (OASIS) is developing Security Assertion Markup Language
(SAML), which also will address cross-domain SSO. The Liberty Alliance Project is expected
to endorse the SAML protocol specification. In fact, it may enhance it to support federation
of user accounts. For further information regarding SAML, refer to the interface table.

From the perspective of the Sun ONE platform, iPlanet Directory Server Access
Management Edition currently supports a proprietary cross-domain Web SSO solution.
Future releases, however, will be based on SAML and Liberty specification.

11.1.5 Identity Management: User Account Management
and Provisioning

Identity management controls the flow of user information between the different systems
in an enterprise and extranet. It provides a common way for the administrator to manage
user information. Furthermore, it provides interfaces for users to self-register and configure
their preferences.

11.1.5.1 User Provisioning and Self-Registration

Administrators and account managers can create, delete, and modify user information
through Java technology APIs and XML interfaces. The XML interfaces follow the
recommendations of the OASIS Provisioning Working Group. For further information
regarding these recommendations, see the interface table.

The self-registration feature allows users to provision themselves with user attributes.
Some of these attributes are mandatory, while others are optional. For example, the
user must provide his or her first name and last name, but the phone number and e-mail
attributes may be optional. Also, the user can set up privacy rules regarding his or her
information. iPlanet Directory Server Access Management Edition provides GUI and
command line tools for the provisioning of users.

Note that the self-registration APIs are optional. At the time of this writing, a new Java
Specification Request (JSR) is being submitted to address self-registration. This JSR will be
incorporated in a future version of the Sun ONE architecture.

172 Sun ONE Architecture Guide

11.1.5.2 Profile API

Identity Management provides services that allow a user to customize such attributes as
his or her home address and preferred telephone number. Once the user has been
authenticated, he or she should be able to add, delete, and modify these attributes, which
are collectively called the user’s profile. Additionally, administrators should be able to
configure the preference attributes for the users and their default values. Java technology
APIs will be specified in a future edition of this book to allow applications and services to
set and get user preferences on behalf of the user.

11.1.5.3 User Organization and Integration

iPlanet Directory Server Access Management Edition provides APIs to set up organizations
(domains), sub-organizations (subdomains), and groups, then assign users to them.

iPlanet Directory Server Integration Edition provides a rich framework for the synchronization
of user information between disparate systems and the Sun ONE architecture’s Identity and
Policy Services. Connectors for Windows 2000, Windows NT, Oracle, and other platforms are
provided through the MetaDirectory service. This service supports both scheduled and on-
change synchronization of user and group data.

iPlanet Directory Server Integration Edition also includes the LDAP proxy service, which
supports fine-grained access control to permit and manage controlled access to directory
information from Web services and applications located across the enterprise and between
organizations. In conjunction with the multi-master replication provided by iPlanet
Directory Server, this ensures a secure and highly available directory service supporting
user, group, policy, business, and service information.

11.1.5.4 Delegated Management

Most aspects of Identity Management are regarded as privileged operations that must
be executed by what are generally called “administrator” users. iPlanet Directory Server
Access Management Edition supports delegated administration whereby administration of
identities can be delegated to appropriate administrators based on their roles or groups.
The granularity can extend from entities such as organization, domain, sub-organizations
and subdomains to finer distinctions such as roles, groups, and specific services. Note that
delegated management is optional for compliance with the Sun ONE architecture.

11.1.6 Policy Management and Evaluation

This section describes the Policy component of the Identity and Policy architecture shown
in Figure 11–5.

 11 Identity and Policy Services 173

The policy component broadly provides two kinds of interfaces:

■ An interface to obtain and set policy definitions as to who can access which resource
and the conditions for accessing it.

■ An interface to evaluate policies such as whether or not user A can perform action X on
resource Y.

The policy component follows the OASIS standards XACML and SAML for policy definition
and evaluation respectively. For more information on these standards, see the interface
table.

11.1.6.1 Policy Framework

The Policy Framework maintains a data store such as a directory server to persistently store
policies. It also provides the necessary infrastructure components that allow:

■ Applications and services to register policy schema.

■ Administrators to setup policies for users and for applications.

■ Services to obtain policy evaluation results.

Figure 11–5: Policy Component Architecture

174 Sun ONE Architecture Guide

Apart from a rule that specifies the actual authorization assertion on a resource, a policy
comprises a subject representing the principal(s) accessing the resource and conditions
that describe the circumstances under which the rule operates (for example, only from 1:00
PM to 6:00 PM on Fridays). A policy can be optionally be referred to an external policy
evaluation entity, in which case the framework delegates the policy evaluation function to
that entity and forwards the policy evaluation response to the client that requested it.
Multiple policies for a resource can cause conflicts that can be configured to be resolved
based on relative policy priorities and/or by specifying, for example, that a Deny result
always will override an Allow result.

Note that iPlanet Directory Server Access Management Edition provides GUIs and command
line interfaces (CLI) to administer the policy framework.

11.1.6.2 Plug-in SPIs

To accommodate the range of requirements that cannot be addressed via the default
providers, the policy framework provides SPIs for each of the policy aspects described in
Section 11.1.6.1. This allows service, application, and enterprise security designers to plug
in their own implementations by either entirely replacing the default providers or by
specifying them on a per resource and/or user characteristics basis.

As depicted in Figure 11–5, the pluggable components are as follows:

■ Policy Subject – A subject that identifies the user.

■ Policy Referral – Referral to forward the policy evaluation to another component or to an
external policy server.

■ Policy Conditions – Conditions to enforce constraints on the policy.

■ Conflict resolution.

Java technology API interfaces are provided for plug-in SPIs.

11.1.6.3 Management and Evaluation APIs

In the area of management and evaluation, both Java technology APIs and Web services are
provided.

The Java technology APIs include:

■ Java APIs for the creation and management of policies (Policy Definition APIs) based on
OASIS XACML standards.

■ Java APIs for policy evaluation based on OASIS SAML. Future APIs will be based on JSR
155 specifications.

■ J2SE platform support via implementations of the java.security.Policy and
javax.security.auth.Policy abstract classes.

■ java.security.Permissioncollection objects or the given subject and/or code base.
package. This is an optional API.

 11 Identity and Policy Services 175

■ APIs to construct java.security.Permission objects, including permission to enable
applications written in the Java programming language to obtain an instance of the
Permission object and to check permissions. This is an optional convenience API to
provide a concrete implementation of the java.security.Permission class for managed
entities.

■ Java 2 Platform, Enterprise Edition (J2EE™ platform) support via JSR 115 “Authorization
Service Provider Contract for Containers,” the SPI for supporting J2EE platform roles-
based authorization.

The Web service interfaces include:

■ Policy Evaluation Web service in line with the SAML specification.

■ Policy Definition Schema in line with the OASIS XACML specification.

11.1.6.4 Privacy

Privacy is a user-defined policy that determines who can access information and what can
be done with it. Specifically, it defines the policies for collection, dissemination, disclosure,
forwarding, storage, and selling of personal information on a per-vendor/merchant basis.

11.1.6.4.1 Difference Between Policy and Privacy

In a typical use-case flow, privacy is controlled and managed by the end user. Policy and
authorization, on the other hand, are controlled and managed by the service, resource
provider, or manager.

This distinction leads to different designs or architectures for not only the delivery of
services, but also for their implementation. Typically, in an authorization framework, roles
are used to define access control conditions or policy rules. Server/resource providers or
managers define these policy rules. End users are then assigned to the appropriate roles for
accomplishing roles-based access control or authorization. For scalability and manageability
reasons, the use of roles rather than users is encouraged when defining the access control
and policy rules.

In a privacy framework, the end user is presented with a list of potential vendors,
organizations, and other parties that would like to have access to his or her personal data.
Typically, roles are not used in such a context, although categories or groups of involved
third parties can be defined by the service provider to make it easier for the end user to
define rules for them. Furthermore, support for Policy Enforcement Points (PEP) can be
built into client systems such as the IE6.0 browser.

The other concern in privacy is more prevalent. Basically, it involves the ability of the end
user to control what a business can do with the personal information that he or she has
provided. This includes whether the business can store, forward, disclose, or sell it to other
third parties, which may in turn have policies on their ability to further store, forward,
disclose, or sell it.

176 Sun ONE Architecture Guide

The Liberty Alliance Project, which is described in Section 11.2.1, addresses the important
issue of privacy under the federated identity model in which a user’s personal data spans
across distributed enterprises.

iPlanet Directory Server Access Management Edition supports privacy to protect the public
and nonpublic personal information of individuals browsing or transacting over the
Internet.

11.1.7 Security

The Security services defined in this section are used throughout the infrastructure of the Sun
ONE architecture and by developers of Web services and Web applications. The definitions of
the relevant APIs, schemas, and protocols are collected here for simplicity of presentation.
However, the actual implementations of the services are distributed in various places such as
a directory server, the J2SE platform class libraries, or the Sun ONE platform.

Security is key to Sun ONE architecture. Therefore, it must be addressed at all tiers in the
Sun ONE platform in the following manner:

■ Tier 1 security should be addressed by firewalls, Web Server, Proxy Server, Load Balance,
and optionally by IP level security (like IPSec).

■ Tier 2 security should be addressed by Application Servers and the network operating
system (NOS).

■ Tier 3 security should be addressed by applications.

The Sun ONE architecture addresses security at various tiers by adopting current industry
standards and practices. It also supports evolving and emerging standards.

11.1.7.1 Public Key Infrastructure

A public-key infrastructure (PKI) consists of protocols, services, and standards supporting
applications of asymmetric and symmetric key cryptography. PKI provides mechanisms for:

■ Encryption and decryption of data.

■ Digital signing and verification of the documents.

■ Building trust hierarchy based on public keys with the use of Certification Authority (CA)
and Registration Authority (RA).

The Sun ONE architecture adopts industry standards such as PKIX and X.509 certificates. It
also adopts PKCS, TLS, XML Signature, XML Encryption, and XML Key Managements. For full
information on these standards, see the interface table.

 11 Identity and Policy Services 177

The Sun ONE architecture will provide the following security APIs: Java Cryptography
present in the J2SE platform, Java Crypto Extensions (JCE) and Generic Security Services
(GSS) API present in the J2SE 1.4 specification, and Java Secure Sockets Extension (JSSE)
software. Additionally, the Sun ONE architecture will adopt Java technology interfaces for
Public Key Cryptography Standards, XML Digital Signature APIs, and XML Digital Encryption
APIs. For full information on these security APIs, see the interface table.

From the perspective of the Sun ONE platform, iPlanet Directory Server Access Management
Edition provides a Certificate Management System (CMS) that implements a certificate
infrastructure for issuing X.509 v3 certificates (CA), registration authority (RA), key recovery
manager (KRM), on-line certificate status protocol (OCSP),and support for certificate
revocation lists (CRLs). Furthermore, the management edition of the server provides Java
Security Services (JSS) (reference the JSS information at http://www.mozilla.org) that
include Java technology APIs for symmetric and asymmetric key cryptography such as
encryption, authentication, tamper detection, and digital signatures.

11.1.7.2 Kerberos

The Sun ONE platform provides support for Kerberos, a network authentication protocol
that is designed to provide strong authentication for client/server application by using
secret-key cryptography.

To authenticate users using Kerberos, the J2SE 1.4 specification provides a Kerberos
authentication module that can be used within Java Authentication and Authorization
Service, which is discussed in Section 11.1.2. The Solaris™ Operating Environment bundles
Kerberos Key Distribution Service (KDC) and issues a Ticket Granting Ticket (TGT).

The iPlanet Directory Server Access Management Edition uses the Java Authentication and
Authorization Service Kerberos authentication module to support Kerberos.

11.1.8 UDDI

The UDDI specification is an integral part of the Sun ONE architecture. UDDI enables an
enterprise to describe its business and services, discover other enterprises that offer desired
services, and integrate with these other enterprises.

The iPlanet software implementation uses iPlanet Directory Server for UDDI data storage
and access. These functions enable logging and audit.

178 Sun ONE Architecture Guide

11.1.9 Logging and Audit

Logging facilities allow administrators to track resource usage and errors as well as to
diagnose problems. Audit trails are key to system security for tracking such activities as
failed and successful user authentications to help diagnose and resolve security threats
and to assure nonrepudiation. Logging is done as per the Extended Log format standard
defined by the W3C. Java technology APIs for logging are based on J2SE platform Logging
JSR 47 specifications. For full information on these resources, see the interface table.

iPlanet Directory Server Access Management Edition supports secure flat file and database
logging. Logging can be done on a per- service basis. The default is to log in Extended Log
format mode; however, the log format can be customized.

11.1.10 Identity and Policy Services Interfaces

This following table summarizes the interfaces that are related to Identity and Policy
Services.

Interface Name Level Status Reference * Comments

JAAS Authentication API Application Footnote 1 http://java.sun.com/products/jaas/ind
ex-14.html

Section 11.1

JAAS Authentication SPI System Footnote 1 http://java.sun.com/products/jaas/ind
ex-14.html

Section 11.1

Authentication Web
Service

Application Footnote 5 Section 11.1

SSO API Application Footnote 4 http://docs.iplanet.com/docs/manuals
/dsame/50/html/prog/contents.htm

Section 11.1.3

SSO Web Service Application Footnote 5 http://www.oasis-
open.org/committees/security

Section 11.1.3

User Provisioning
Schema

Application Footnote 5 http://www.oasis-
open.org/committees/provision/

Section 11.1.5.1

Self-Registration API Application Footnote 5 Section 11.1.5.1

Profile API Application Footnote 5 Section 11.1.5.1

User Organization API Application Footnote 5 Section 11.1.5.2

Policy Evaluation API Application Footnote 3 http://www.jcp.org/jsr/detail/jsr155.js
p

OASIS-SAML JSR
155
Section 11.1.5.3

iPlanet Directory Server
Access Management
Edition Policy
Evaluation API

Application Footnote 5 Section 11.1.6.3

Policy Evaluation Web
service

Application Footnote 3 http://www.oasis-
open.org/committees/security/

OASIS-SAML
based.
Section 11.1.6.3

Policy Management API Application Footnote 5 Section 11.1.6.3

 11 Identity and Policy Services 179

Policy Definition
Schema

System Footnote 3 http://www.oasis-
open.org/committees/xacml

XACML is the
information
model for
defining policies.
Section 11.1.6.3

Policy Subject SPI System Footnote 5 Section 11.1.6.2

Policy Referral SPI System Footnote 5 Section 11.1.6.2

Policy Conditions SPI System Footnote 5 Section 11.1.6.2

Policy Conflict
Resolution SPI

System Footnote 5 Section 11.1.6.2

Security: PKIX and
X.509

Application Footnote 1 http://www.ietf.org/html.charters/pkix
-charter.html

Section 11.1.7.1

Security: PKCS Application Footnote 1 http://www.rsasecurity.com/rsalabs/pk
cs

Section 11.1.7.1

Security: TLS Application Footnote 1 http://www.ietf.org/html.charters/tls-
charter.html

Section 11.1.7.1

Security: XML Signature
Schema

Application Footnote 1 http://www.w3.org/TR/2002/REC-
xmldsig-core-20020212

Section 11.1.7.1

Security: XML
Encryption Schema

Application Footnote 3 http://www.w3.org/Encryption/2001 Section 11.1.7.1

Security: XML Key
Management Schema

Application Footnote 3 http://www.w3.org/2001/XKMS Section 11.1.7.1

Java Crypto Architecture
(JCA) API

Application Footnote 1 J2SE 1.3+ specification Section 11.1.7.1

Java Crypto Extension
(JCE) API

Application Footnote 1 J2SE 1.4 specification Section 11.1.7.1

Generic Security
Services (GSS) API

Application Footnote 1 2SE 1.4 specification IETF RFC 2854, JSR
72
Section 11.1.7.1

Java Secure Sockets
Extension (JSSE) API

Application Footnote 1 2SE 1.4 specification Section 11.1.7.1

Public Key
Cryptography Standards
(PKCS) API

Application Footnote 3 http://www.jcp.org/jsr/detail/74.jsp JSR 74
Section 11.1.7.1

XML Digital Signature
API

Application Footnote 3 http://www.jcp.org/jsr/detail/105.jsp JSR 105
Section 11.1.7.1

XML Digital Encryption
API

Application Footnote 3 http://www.jcp.org/jsr/detail/106.jsp JSR 106
Section 11.1.7.1

UDDI System Footnote 1 http://www.uddi.org/ Section 11.1.8

Logging API System Footnote 1 http://www.w3.org/TR/WD-
logfile.html
http://java.sun.com/j2se/1.4/docs/gui
de/util/logging/overview.html

Section 11.1.9

Interface Name Level Status Reference * Comments

180 Sun ONE Architecture Guide

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

11.2 Federated Identity Systems
Federated identity systems ensure that the use of critical personal information is managed
and distributed by the appropriate parties, rather than a central authority. Federated
identity enables the development of federated commerce.

Federated e-commerce allows businesses to maintain ownership of their customer directory,
leverage their directory more effectively to conduct affinity marketing, and partner with other
Internet properties who extend the overall value proposition to the customer. This also gives
businesses the ability to provide their customers or end users with more convenience, choice,
and control of their identity. Furthermore, a federated identity model allows businesses or
users to manage their own data.

11.2.1 Liberty Alliance Project

Many of the core Identity and Policy Services, including authentication, single sign-on, and
user personalization, are the subject of standardization efforts being undertaken by the
Liberty Alliance Project in order to enable federated identity systems. Specifications for
these standards are still under development and are not described in this version of the
Sun ONE architecture. Because these standard interfaces will be required in future versions
of the architecture, this section provides some background information on Liberty.

The Liberty Alliance Project is a business alliance formed to deliver and support an identity
solution for the Internet that enables single sign-on for both consumers and business users
in an open, federated way.

The Liberty Alliance has three main objectives:

■ Allow individual consumers and businesses to maintain personal information securely.

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

Footnote 2: This interface is a standard, but support of this standard is not required for products conforming to v1.0 of
the Sun ONE architecture. Support of this standard will be required in a future version of the architecture.

Footnote 3: A standard interface is being developed for this component, and that standard will be required in a future
version of the Sun ONE architecture.

Footnote 4. This is a published proprietary interface, and support of this interface is required for products conforming to
v1.0 of the Sun ONE architecture.

Footnote 5. This is an unpublished proprietary interface. A published definition for this interface will be provided in a
future version of the Sun ONE architecture.

 11 Identity and Policy Services 181

■ Provide a universal open standard for single sign-on with decentralized authentication
and open authorization from multiple providers.

■ Provide an open standard for network identity spanning all network devices.

For more information, refer to http://www.projectliberty.org.

11.3 Management Services
The purpose of Management Services is to provide both the architectural framework and the
collection of programmatic interfaces needed to manage Web services and system resources
throughout the Sun ONE platform. The Management Services included within the Sun ONE
architecture allow developers of Web services that integrate into the Sun ONE platform to
manage their components using the same methodology and interfaces as that used by Sun
in its integrated stack. Management Services provide both the system programming interfaces
and the application programming interfaces necessary to implement the management of Web
services and hardware resources operating within the Sun ONE platform.

Management interfaces provide a means for implementing both system management
applications such as management consoles, and system management services that can
monitor and/or control the hardware and software resources constituting a Sun ONE
services environment. Management interfaces are specifically intended to provide:

■ A means to instrument a managed component (whether a software service or a hardware
resource) so that it can be monitored by a management application or service.

■ A means to establish controls related to the managed component that allow a
management application or service to affect its behavior. It is important to reiterate
that the Sun ONE platform management conception applies both to software resources
(that is, services) as well as to hardware resources.

11.3.1 The Sun ONE Platform Management Architecture

The Sun ONE platform management architecture, illustrated in Figure 11–6, has a three-
tiered model which structures the management implementation into the following levels:

■ The Presentation Tier

■ The Management Services Tier

■ The Agent Tier

182 Sun ONE Architecture Guide

TTTThhhheeee PPPPrrrreeeesssseeeennnnttttaaaatttt iiiioooonnnn TTTTiiiieeeerrrr – Management applications that interact directly with users run
at this highest-level tier. These provide user interfaces and allow user access to the remotely
managed objects and/or lower level management services.

TTTThhhheeee MMMMaaaannnnaaaaggggeeeemmmmeeeennnntttt SSSSeeeerrrrvvvviiiicccceeeessss TTTTiiiieeeerrrr – The primary business logic of a management service
can be constructed at this mid-level tier. Management services at the this level implement
management functionality at a higher level than that offered by individual agents. They
may for example, implement a single logical service resulting from the orchestrated
management of a number of physically separate resources at the agent level. Alternatively,
they may provide for the aggregation and coordinated management of a diverse collection
of resources needed to implement the management a given logical service. In other words,
services at this level can import the management controls offered by a number of resources
at the Agent Tier. Furthermore, they can export the set of higher-level management
instrumentation and controls needed to monitor and manage the service abstracted from
these individual components.

Figure 11–6: System Management Architecture

 11 Identity and Policy Services 183

TTTThhhheeee AAAAggggeeeennnntttt TTTTiiiieeeerrrr – Mangement instrumentation for the remotely manageable components
(Sun ONE platform hardware resources and services) runs at this lowest-level tier. An agent
is a programmatically accessible entity (whether accessed directly by procedure-call
invocation or indirectly via management protocol) associated with a manageable resource.
It provides the instrumentation and control interfaces for a single resource, allowing it to
be monitored and controlled. At this level, there is one agent for each managed resource.

11.3.2 Sun ONE Platform Management Information and CIM
Models

The Management Services tier employs the Common Information Model (CIM) from the
Distributed Management Taskforce (DMTF) as its single unifying representation and native
description methodology for management information. Within the Sun ONE platform
mangement services tier, all management information is represented using CIM models.

One of the goals of the CIM model was to consolidate and extend existing management
standards and instrumentation such as that provided by Simple Network Management
Protocol (SNMP), Common Management Information Protocol (CMIP), and Java Management
Extensions (JMX™). This is accomplished through standard schema, schema-mapping, and
protocol adapters.

A collection of adapters is provided by the Sun ONE platform management services tier for
mapping to and from other management information representations and protocols at
both the Agent Tier and the Presentation Tier. This is described further in Section 11.3.2.3,
“Provision of CIM-Based APIs.”

11.3.2.1 Use of the CIM Model for All Sun ONE Platform Components

CIM is an implementation-neutral, object-oriented data model for describing overall
management information in an enterprise environment. The CIM model, which is comprised
of both the CIM Specification and the CIM Schema, is used to model the management
information for all Sun ONE platform components.

The CIM Specification defines the meta model, high-level concepts, rules, and a definition
language. The CIM definition language is called Managed Object Formation (MOF).

The CIM Schema provide the following set of models for managed resources:

■ CCCCoooorrrreeee MMMMooooddddeeeellll – This information model incorporates notions applicable to all
management domains.

184 Sun ONE Architecture Guide

■ CCCCoooommmmmmmmoooonnnn MMMMooooddddeeeellll – This information model incorporates notions common to specific
management domains. It does this independently of any particular implementation or
technology. At present, the following domains taxonomize the CIM Schema constituting
the DMTF Common Model: applications, devices, events, interoperability, metrics,
physical, policy, support, system, user, and networks. The information models provided
within these domains are the basis for the development of management applications.
They include a set of base classes for extension into application- or technology-specific
areas.

11.3.2.2 Use of Standard Schema to Describe All Sun ONE Platform
Components

While the DMTF has defined Core Schema and Common Schema that cover many of the
base platform underpinnings of the Sun ONE architecture, new components that are
specific to the Sun ONE platform will be defined as compliant extensions to these Core and
Common Schema. At present, more than 900 classes and 1800 properties are represented in
the DMTF schema. This scope provides a very rich foundation for developers who wish to
model additional manageable resources such as new Web services within the Sun ONE
platform.

The use of CIM-compliant extensions to model new Sun ONE platform components provides
developers with the basis of management for Services on Demand. It also enables the
deployment, monitoring, metering, and management of all Sun ONE platform services in a
uniform and consistent manner.

Sun ONE architecture schema are a compliant extension of the same DMTF standard used
by other base platform vendors. Thus developers who rely on the Sun ONE architecture
schema and management service model when developing management, configuration, or
performance application tools can expect these tools to interoperate with similarly
modeled components on those other platforms such as Microsoft’s .NET environment.

11.3.2.3 Provision of CIM-Based APIs

Because CIM/XML is the lingua franca for the Sun ONE platform management information
and operation, a set of native CIM-based APIs enables the development of both management
applications and instrumentation providers (agents) for the Sun ONE architecture. These APIs
define the standard Java interfaces for communicating with CIM-compliant systems such as
the Solaris Operating Environment and the Sun ONE platform over a number of protocols. For
a specification that provides full information on these Java interfaces, refer to the interface
table.

In the Sun ONE architecture version 1.0, supported protocols include CIM/XML and
CIM/Remote Method Invocation (RMI). Note also that these APIs, along with a reference
implementation of them, have been placed in Open Source. A C++ version of these APIs has
also been developed to enable non-Java management application developers to write
applications that can manage CIM-compliant systems.

 11 Identity and Policy Services 185

11.3.3 Integration of Existing Management Schemes

Sun ONE describes an architecture for multiplatform deployment. Since there are a number
of widely used historical schemes for representing the properties of remotely manageable
resources (which will be seen when Sun ONE platform services interact with services
running on other platforms), the Sun ONE platform management architecture provides
integration with the following predominant existing management technologies:

■ Simple Network Management Protocol (SNMP) (Internet Engineering Taskforce [IETF]
RFCs)

■ Java Management Extensions (JMX)—JSR-3 and JSR-160

■ J2EE Platform Management (Java Enterprise Management, MEJBs)—JSR-77

■ CIM objects on platforms other than Sun ONE

■ Directory-based management information schemes such as Light Weight Directory
Access Protocol (LDAP), Domain Name System (DNS), and Network Information Service
(NIS)

11.3.3.1 Interoperation via Multiple, Pluggable Protocol Adapters

Within the Sun ONE architecture for management, pluggable protocol adapters are the
connection components that provide the model and protocol mapping between:

■ Applications in the Presentation Tier and services in the Management Services Tier.

■ Agents in the Agent Tier and the services in the Management Services Tier.

A Presentation Tier adapter accepts client management requests or queries, translates
them into the appropriate CIM-related request, and routes them correctly using the Sun
ONE Platform Management Services Tier to the appropriate agent(s). Information from the
agent(s) is translated correspondingly by the adapter when returned to the initiating caller.
Any necessary modelling and protocol translations also occur in the appropriate Agent Tier
adapter.

The Sun ONE platform systems management architecture permits the use of as many
protocol adapters as needed. Those defined in the Sun ONE architecture version 1.0 at the
Presentation Tier (as illustrated at the top of Figure 11–6) are SNMP, LDAP, CIM/XML (Sun
ONE platform lingua franca), CIM/SOAP, and CIM/Remote Method Invocation (RMI). At the
Agent Tier (as illustrated at the bottom of Figure 11–6), the adapters provided are SNMP,
JMX, J2EE Management and CIM-XML (Sun ONE platform lingua franca). Note that the
Agent Tier also provides the J2EE Platform Management adapter, but this may be supported
via JSR-77’s defined mapping to CIM-XML rather than a separate specific adapter in the
Management Services Tier.

All the CIM adapters fall under the DMTF umbrella name of Web-Based Enterprise
Management (WBEM). Each of these protocols has a standard DMTF specification and a test
suite to verify its compliance.

186 Sun ONE Architecture Guide

The Sun ONE platform management architecture enables other protocol adapters to be
added dynamically. The management SDK gives examples of how to develop and register
new protocol adapters. Information relevant to the WBEM architecture and services
specification, which encompass Sun ONE platform adapters, is given in the interface table
in Section 11.3.4, “Management Interfaces.”

11.3.3.2 Use of Standard CIM Mappings to Existing Schema

The richness of the CIM model allows it to be used as a base model from which and to which
the developer can map existing schema from other management information description
methods. At present, such information is modeled using directory services (LDAP, NIS, and
DNS), SNMP, and Java technology.

At the time of this writing, the DMTF has defined explicit mappings to LDAP for the Core
Schema, as well as to some of the Common Schema. Eventually all the DMTF schema will
be mapped into LDAP. This will enable interoperability with existing configuration and
management tools that are currently directory-focused.

Similar mappings have been done for many SNMP Management Information Bases (MIBs).
A standard is being defined for many of the important ones in popular use. These mappings
will be registered with the DMTF to ensure interoperability between existing SNMP client
applications and new CIM-modeled environments such as the Sun ONE architecture. This
enables existing management application and/or agent vendors to transition their LDAP-
and SNMP-based applications over time to XML applications using the CIM model.

11.3.3.3 SNMP

Many existing management applications and agents operate on management information
descried using the methodology described in the IETF’s System and Network Management
Protocol (SNMP). The Sun ONE management architecture provides two protocol translators
for SNMP—one at the Agent Tier and one at the Presentation Tier—as the means to map
management information modeled in SNMP MIBs and transmitted using the SNMP message
protocol to information modeled with CIM. The relevant standards and interfaces are
identified in the interface table in Section 11.3.4, “Management Interfaces.”

11.3.3.4 Java™ Management Extensions (JMX™)

The Java Management Extensions define an architecture, the design patterns, the APIs, and
the services for application and network management in the Java programming language.

The JMX specification provides Java technology developers across all industries with
the means to instrument Java code, create smart Java agents, implement distributed
management middleware and managers, and smoothly integrate these solutions into
existing management systems. In addition, the JMX specification is referenced by a number
of Java APIs for existing standard management technologies.

The relevant standards and interfaces are identified in the interface table in Section 11.3.4,
“Management Interfaces.”

 11 Identity and Policy Services 187

11.3.3.5 J2EE Platform Management

The J2EE Platform Management Specification defines a management information model for
the J2EE platform, the J2EE Platform Management Model. The specification also includes
standard mappings of the model to:

■ The CIM model

■ An SNMP MIB

■ A Java API as a server-resident Enterprise JavaBeans™ (EJB™) component

■ The J2EE Platform Management EJB (MEJB) component

The MEJB component provides interoperable remote access to the model from any standard
J2EE application. The relevant standards and interfaces are identified in the interface table
in Section 11.3.4, “Management Interfaces.”

11.3.4 Management Interfaces

The following table lists the requirements for the Sun ONE architecture conformance for
management interfaces.

Interface Name Level Status Reference * Comments

WBEM Architecture System Footnote 3 www.dmtf.org DMTF
Section 11.3.3.1
See “Web-Based
Enterprise
Management” at
the dmtf web site

WBEM Services Spec System Footnote 3 www.jcp.org/jsr/detail./48.jsp JCP
Section 11.3.3.1

SNMP Architecture System Footnote 1 RFC 2571 IEFT
Section 11.3.3.3

SNMP v1 Protocol Footnote 1 Standard 15:
RFC 1157

IETF
Section 11.3.3.3

SNMP Operations v1 Footnote 1 Standard 15:
RFC 1157

IETF
Section 11.3.3.3

Structure of
Management
information (SMI v1)

System Footnote 1 Standard 16:
RFC 1155, RFC 1212, RFC 1215,

IETF
Section 11.3.3.3

Structure of
Management
information (SMI v2)

System Footnote 1 Standard 58:
RFC 2578, RFC 2579, RFC 2580

IETF
Section 11.3.3.3

SNMP v3 Protocol Footnote 1 RFC 1906, RFC 2572, RFC 2574 IETF
Section 11.3.3.3

SNMP Operations v2 Footnote 3 RFC 1905 IETF
Section 11.3.3.3

Fundamental Mgmt Apps Footnote 1 RFC 2573, RFC 2575 IETF
Section 11.3.3.3

188 Sun ONE Architecture Guide

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

JMX 1.0 System Footnote 1 www.jcp.org/jsr/detail./3.jsp JCP
Section 11.3.3.4

JMX 1.5 System Footnote 3 www.jcp.org/jsr/detail./60.jsp JCP
Section 11.3.3.4

J2EE Management 1.0 System Footnote 3 www.jcp.org/jsr/detail./77.jsp JCP
Section 11.3.3.5

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

Footnote 2: This interface is a standard, but support of this standard is not required for products conforming to v1.0 of
the Sun ONE architecture. Support of this standard will be required in a future version of the architecture.

Footnote 3: A standard interface is being developed for this component, and that standard will be required in a future
version of the Sun ONE architecture.

Interface Name Level Status Reference * Comments

 12 Platform Services 189

CHAPTER 12

Platform Services

The purpose of Platform Services—the interface at the lowest level of the Sun™ Open Net
Environment (Sun ONE) architecture—is to provide the functions needed to allocate and
manage the resources of the underlying network and hardware platform required to host
the higher-level service layers in the Sun ONE platform.

Platform Services’ primary focus is to provide the system programming interfaces to the
platform’s basic functionality that can be used by Web service execution middleware and
other lower-level Web services. It is important to note, however, that a product implementing
the Platform Services interface may also offer certain facilities—such as printing directly—as
Web services for use by higher-level Web services and Web applications.

Platform Services provide the following basic functions:

■ Management of the hardware platform and resources.

■ Network connection and data transport interfaces for Internet access, such as Internet
Protocol versions 4 and 6 (IPv4 and IPv6), and Transmission Control Protocol (TCP).

■ Filing and data access through interfaces such as Network File System (NFS), File Transfer
Protocol (FTP), and Simple Mail Transfer Protocol (SMTP, or Sendmail).

■ Low-level registry, directory, and name services such as Light Weight Directory Access
Protocol (LDAP)), and Domain Name System/Berkeley Internet Name Daemon
(DNS/BIND).

■ Security facilities such as Kerberos, ssh (secure shell), and IPsec (a collection of IP
security measures that comprise an optional tunneling protocol for IPv6).

■ Printing services.

■ System management and monitoring interfaces, as described in Chapter 11, “Identity
and Policy Services.”

190 Sun ONE Architecture Guide

One important aspect of the Sun ONE architecture is that the key layers can be hosted on a
variety of operating systems and network platforms. These key layers include Service
Delivery, Core Web Services, the Service Container, and Service Integration, as shown in
Figure 2–1 in Chapter 2. As one such complete implementation of the Sun ONE architecture,
a fully integrated Sun ONE platform is hosted on Sun’s Solaris™ Operating Environment
(“Solaris™ OE”) and SPARC® technology platform. This provides both Web service developers
and end-user customers the opportunity to buy a complete implementation from Sun if they
desire. It also provides an implementation of the Sun ONE architecture that is particularly
well suited to enterprise-scale and commercial-grade deployments. As a Platform Services
Layer implementation for the Sun ONE platform, Solaris OE provides many security, and
reliability, availability, and serviceability (RAS) as well as scalability features, as well as
various performance-focused capabilities that can be exploited by the Service Container and
other layers in the Sun ONE platform that it supports.

12.1 Hardware Platform and Resource
Management
Developers of higher-level services in the Sun ONE platform have the following goals:

■ Produce a service that scales to hardware platforms suitable for enterprise or
commercial deployment.

■ Develop highly available Web services.

■ Increase the reliability of the service and its execution environment.

■ Ensure known performance levels for the higher-level services.

The following sections discuss some specific platform-level interfaces that the Solaris
Operating Environment provides to help developers meet these goals.

12.1.1 Scaling and RAS

To allow developers to offer enterprise-level commercial scalability and make services highly
available, the Solaris Operating Environment provides a number of interfaces that allow
Web services and Web-service execution environments to run on configurations that exploit
multiple hardware nodes. This “horizontal” scalability can be exploited by a Web service
container implementation and by higher level Web service implementations to achieve both
greater total platform capacity and performance-range scaling of the underlying hardware
supporting them. Likewise, this type of scalability can be used to obtain greater overall
system reliability in the face of hardware or software failures on the platform.

The horizontal-scalability function is partially provided by interfaces that support cluster
and grid computing hardware configurations. These interfaces are described in the sections
that follow.

 12 Platform Services 191

12.1.1.1 Interfaces to Exploit Cluster Configurations

The Solaris ClusterOS software enables Web-services system software (such as a portal
server, application server, directory server, messaging service, or integration server) to run
on and exploit a hardware cluster configuration. In addition to providing the means to
make Web services highly available, the Cluster Interface Set offers the ability to increase
overall system performance via scaling the platform to run on multiple hardware nodes.
Services implemented to exploit these facilities allow the service to remain available for
both planned and unplanned downtime. Access to back-end data used by Web services
(such as those facilities afforded by the Sun ONE Architecture Service Integration Layer) can
also be made highly available as a side effect of such configurations.

In addition, the Cluster Interface Set provides a means to establish the configuration of
system software. This configuration includes the dependencies between components and
the issue of how, when, and where they get started—both initially and at times when
applications or services must be restarted during a failover event.

12.1.1.1.1 Service and Application Failover

The basic consideration in implementing highly available services on a cluster is the
failover of applications or services running on the platform—that is, the ability of the
platform software to restart these applications or services and/or other components of
system software when either a hardware or software failure occurs on the cluster.

The Cluster Interface Set allows system software running on a cluster to register with the
cluster framework and then receive callbacks that reflect any major life-cycle event on the
cluster. These events allow the system software to recognize and respond to cluster change
circumstances.

The Solaris ClusterOS™ software Resource Group Manager (RGM) provides the environment
to establish highly available and scalable software services. The benefits of the cluster RGM
include:

■ Easy management and monitoring of “agents” (applications or software services
implemented to be highly available).

■ End-to-end control of service or application failover and scalable agents.

■ Ease of use.

The elements that form the programming interface to the The Solaris ClusterOS software
RGM facility include:

■ A set of callback methods that the cluster RGM uses to control an application on the
cluster.

■ APIs, commands, and functions that callback methods use to access information about
the elements in the cluster.

■ Process management facilities for monitoring and restarting processes on the cluster.

192 Sun ONE Architecture Guide

12.1.1.1.2 High-speed Communication, Synchronization, and Checkpointing

The Cluster Interface Set includes interfaces that allow a software service or application
running across multiple nodes to commit session-level or other persistent state to a reliable,
fast-shared store such as shared memory accessible over high-speed interconnects. A set of
low-level interfaces called Remote Shared Memory (RSM) allows system software to exploit
remote shared memory. This facility also may be used to perform high-performance
checkpointing, inter-process, or inter-service synchronization.

RSM provides specific support for those cluster operations that require shared or persistent
state. The RSM library functions support the following:

■ Memory segment operations, including both segment management and data access

■ Interconnect controller operations

■ Cluster topology operations

■ Cluster event operations

12.1.2 Solaris™ Resource Manager

In order to address certain quality-of-service considerations for services running at higher
levels of the Sun ONE architecture, the Solaris Operating Environment provides some basic
facilities for the commitment of hardware and software resources. One of these facilities is
Solaris™ Resource Manager software.

The primary goal of the resource manager, available in the Solaris 9 Operating Environment,
is to improve the ability of both system administrators, and of the individual services running
on the platform, to manage the fundamental resources that the platform makes available to
them. These resources include CPU, physical and virtual memory, network bandwidth, i/o
bandwidth, shared memory and synchronization objects, and interrupt bindings.

To manage these resources, Solaris Resource Manager software provides a number of both
programming and administrative interfaces that enable server consolidation—that is, the
ability to run multiple workloads with different resource needs and priorities on a single
server while still controlling the resources allocated to the individual applications that
constitute those workloads. SRM offers a means to commit performance- or capacity-
related resources to each workload at a finer granularity than the commitment of the full
resources of a hardware server.

Solaris Resource Manager software’s focus on performance and the scalability of the platform
is somewhat analogous to that of the Cluster Interface Set. However, SRM concentrates more
specifically on the problem of provisioning the services or applications running on a shared
system with the necessary resources. SRM uses the concepts of processes, tasks, and projects
as the basis for structured aggregation of the executing software that represents a workload
such as a service or application. These concepts are also the basis of SRM’s resource control.

 12 Platform Services 193

Solaris Resource Manager software introduces the concept of a resource pool as the
collection of resources reserved for the exclusive use of a given workload (service or
application). Pools allow a server platform to be partitioned into a number of virtual
machines. Each virtual machine provides the resources for a single workload consisting
of one or more executables. The resource partitions represented by separate virtual
machines provide fixed boundaries between workloads, giving each workload the resources
it requires, regardless of resource contention on the rest of the physical machine.

Solaris Resource Manager software functionality complements that of the Clustering
functionality insofar as it provides a mechanism to allocate the resources on the network
and hardware platform. The resource management concepts offered by the SRM model are
independent of whether the underlying system configuration consists of one or multiple
hardware nodes.

12.2 Networking
The Sun ONE Platform Services offer a number of facilities for basic transport-level access
to the Internet, including:

■ HyperText Transfer Protocol (HTTP)

■ Internet Protocol (IP): IPv4 and IPv6, and the Internet protocols stack such as
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)

12.2.1 Networking in the Solaris Operating Environment

The basic interfaces for network data transport are standard parts of most contemporary
operating system products that implement the hardware and network platform. However,
certain aspects of the operating environment’s implementation afford greater performance
scalability and reliability to Web services and Web-service- execution environments.

One example of network reliability and scalability in the Solaris Operating Environment is IP-
multipathing. This implementation permits data transport using IP to be run transparently
over multiple network hardware interfaces to gain greater reliability. IP-multipathing
provides for failover in the event of a network interface outage or failure.

A second example of performance acceleration in Solaris OE networking is the Network
Cache Accelerator (NCA). NCA is a Solaris OE kernel module designed to provide improved
Web server performance.

The NCA kernel module, which services all HTTP requests, maintains an in-kernel cache of
Web pages that it examines when servicing an HTTP request. If the NCA kernel module
cannot service the request itself (directly from the cache), it then passes the request to an
appropriate user-level HTTP server such as httpd. The cache can improve Web server
performance significantly. An associated logging facility, ncalogd(1), logs all requests and
may be used to monitor, analyze, and tune system performance.

194 Sun ONE Architecture Guide

12.3 Storage, Filing, and Data Access
The Sun ONE Platform Services may offer a number of core facilities for basic access to
data, as well as to directly attached and network-attached storage and filing systems.
These are optional, since access to storage, files, and data by Web services executing on a
given platform can be achieved through the access to Web services that provide those
facilities but run on another platform. However, since at least some platforms must provide
such facilities, the optional interfaces for these facilities in Platform Services for this
version of the Sun ONE architecture include FTP, SMTP/Sendmail, and NFS.

12.3.1 Solaris Operating Environment Storage, Filing, and
Data Access

As with networking, many of the basic interfaces for filing, data access and storage are
standard parts of most contemporary operating system products that implement the
hardware and network platform. In this area too, however, certain aspects of the Solaris
Operating Environment implementation afford greater performance scalability and
reliability to Web services and Web services execution environments.

The Solaris Volume Manager software provides a means to make storage more scalable and
reliable, and to increase data-access performance. Solaris Volume Manager software
implements facilities for disk concatenation (logical volumes), striping, and mirroring. This
supports the implementation of storage fault tolerance and performance enhancement via
hot-spare diskpools, multi-homed disks, and various RAID storage configurations, as well as
the scaling of storage capacity via the attachment of additional disks to a logical volume.

12.4 Name Service, Directory, and Registry
Functions
The Sun ONE architecture’s focus on Web services means that registries and directories
to advertise and locate services (particularly UDDI as addressed in earlier chapters), are
a primary requirement. However, some implementations of such directories, as well as
implementations of other Web services may want to use lower-level directory facilities.

The Sun ONE architecture therefore allows certain interfaces for basic name service,
directory, and registry functions to be provided by the Platform Services Layer. In version
1.0 of the Sun ONE architecture these optional facilities include LDAP and DNS/BIND.

 12 Platform Services 195

12.4.1 Naming, Registry, and Directory Services in the Solaris
Operating Environment

The Solaris Operating Environment provides an implementation of both version 1.0 of the
Sun ONE architecture optional low-level directory services discussed above, as well as NIS
(Network Information Service), which is another widely used de-facto standard.

As for several other basic platform facilities, Solaris OE provides cache-based acceleration
for several of its name-service, directory and registry-service facilities. One example of this
is the Name Service Cache daemon (nscd), which accelerates many of the fundamental
name service lookups used for network-based operation such as hostname to IP-address
mapping and username to user-id.

12.5 Security
Security considerations must be taken into account when developing both Web services
and the broader execution environment for Web services such as the Service Container,
Directory servers, and Web servers. Developers who work in these areas must ask questions
such as:

■ How will users of Web applications and individual lower-level Web services be
authenticated?

■ How will services ensure that they are operating over known, secure channels of
communication?

■ How will the privacy of transmitted information be realized?

Comprehensive security in the Sun ONE platform requires attention at each level of the
architecture. However, Platform Services provides a set of basic facilities that serve as the
foundation for security. Using these facilities, developers of Web services execution
middleware and implementors of Liberty services (to enable open single sign-on) can:

■ Provide the ability to implement secure communication over the network.

■ Ensure authenticity of peer servers and services.

■ Encrypt and sign data for privacy and integrity.

Several of the security facilities provided by the Solaris Operating Environment’s
implementation of Platform Services are described in the sections that follow.

12.5.1 Authentication

The Solaris Operating Environment provides the following two standard interface sets that
may be used by Web-service system software and Web services to implement security:

196 Sun ONE Architecture Guide

TTTThhhheeee GGGGSSSSSSSS----AAAAPPPPIIII – This Generic Security Services interface consists of a security framework
and a set of interfaces that enable services or applications to protect the data that they
transmit.

KKKKeeeerrrrbbbbeeeerrrroooossss – A client/server architecture that offers strong user authentication, along with
data integrity and privacy, in order to provide secure transactions over networks.

In the Solaris Operating Environment, the Sun Enterprise Authentication Mechanism (SEAM)
is the Kerberos implementation. More specifically, SEAM implements the Kerberos version 5
network authentication protocol described below. It also provides an administrative
framework for it.

The Kerberos network-based authentication protocol is designed to provide strong
authentication for client/server applications by using secret-key cryptography. The protocol
implementation is available free from Massachusetts Institute of Technology, as well as from
other vendors. Services and applications can be “Kerberized” to take advantage of a system
running the Kerberos server, a security framework that enables applications to protect the
data that they transmit.

In the Solaris Operating Environment, a number of pre-Kerberized services already exist,
including utilities such as file transfer protocol (ftp), remote copy (rcp), remote login
(rlogin), remote shell (rsh), and telnet. An introduction to the Kerberos system is described
in [krb_man] Kerberos API: the Solaris OE manual pages: kerberos(1) and manual pages in
section (3krb). Sun Microsystems Inc., which are available via http://docs.sun.com.

12.5.2 Secure Internet Transport

Developers of Web-service-execution middleware and Liberty services require secure
transport of data over the Internet. IPsec provides a standard low-level means of ensuring
authenticity and confidentiality (privacy) of data transmitted using the IP as a result of the
encryption interface and certificate management framework that it provides. Internet Key
Exchange (IKE) is an automated key management standard for IPsec.

12.5.3 Strong Random Numbers

Secure protocols and services provided in the Sun ONE platform all ultimately rely upon
high-strength random numbers in order to provide effective cryptographic strength to the
security feature they offer. The random-number-generation facility is a particularly low-level
system programming interface. A Web service developer leveraging the Sun ONE platform
will most often rely indirectly on the random number generation facility by using other Web
services that provide a secure facility. However, in cases in which it is appropriate, the Solaris
random number interface may be used directly by a Web service system software developer.

 12 Platform Services 197

Sun’s Solaris OE includes the implementation of a strong-random-number generator.
Several of the other Solaris OE software services, including Kerberos, IPsec, Secure Socket
Layer (SSL), ssh, and Public Key Infrastructure (PKI) take advantage of this facility.

12.6 Interfaces

Interface Name Level Status Reference * Comments

Cluster Resource
Group Management
Interfaces

System Footnote 4 http://docs.sun.com/ab2/coll.572.9 “Sun Cluster 3.0
Concepts”,
“Sun Cluster 3.0
Data Services
Developer’s
Guide”, and
“Cluster Resource
Management API”
- man pages in
sections
(1HA) and (3HA).

Cluster RGM Admin
Cmds & Interfaces

System Footnote 4 http://docs.sun.com/ab2/coll.573.9 “Sun Cluster 3.0
Data Services
Installation and
Configuration
Guide”

Remote Shared
Memory

System Footnote 4 http://docs.sun.com/ab2/coll.40.7 Solaris 9
Operating
Environment man
pages: RSM API

Solaris Resource
Management (SRM):
Extended Accounting

System Footnote 4 http://docs.sun.com/ab2/coll.40.7 Solaris 9
Operating
Environment man
pages:
libexacct(3lib)

SRM: Tasks and
Projects

System Footnote 4 http://docs.sun.com/ab2/coll.40.7 Solaris 9
Operating
Environment man
pgs:
libproject(3lib)

SRM: Resource Pools System Footnote 4 http://docs.sun.com/ab2/coll.40.7 Solaris 9
Operating
Environment man
pgs: llibpool(3lib)

SRM: Admin Intfcs System Footnote 4 http://docs.sun.com/ab2/coll.47.13 Solaris 9
Operating
Environment
System Admin
Guide: Resource
Mgmt and Netwk
Svcs

IPv4 Protocol Footnote 1 http://www.ietf.org/rfc/rfc0791.txt IETF RFC 791

IPv6 Protocol Footnote 1 http://www.ietf.org/rfc/rfc2460.txt IETF RFC 2460

198 Sun ONE Architecture Guide

HTTP 1.1 Protocol Footnote 1 http://www.ietf.org/rfc/rfc2616.txt IETF RFC 2616

Solaris Volume
Manager

System Footnote 4 http://docs.sun.com/ab2/coll.260.2 DiskSuite 4.1.2

FTP Protocol Footnote 1 http://www.ietf.org/rfc/rfc0959.txt IETF RFC 959

SMTP Protocol Footnote 1 http://www.ietf.org/rfc/rfc0821.txt IETF RFC 821

NFS v.4 Protocol Footnote 1 http://www.ietf.org/rfc/rfc3010.txt IETF RFC 3010

LDAP v.3 Protocol Footnote 2 http://www.ietf.org/rfc/rfc2251.txt IETF RFC 2251 ..
RFC 2256

LDAP: APIs Protocol Footnote 4 http://docs.sun.com/ab2/coll.40.7 Solaris 9
Operating
Environment man
pgs: llibldapl(3lib)

LDAP: Admin
Interfaces

System Footnote 4 http://docs.sun.com/ab2/coll.47.13 Solaris 9
Operating
Environment
System Admin
Guide: Naming
and Directory Svcs
(DNS, NIS and
LDAP)

GSS-API System Footnote 1 http://www.ietf.org/rfc/rfc2744.txt IETF RFC 2744

Kerberos v.5 Protocol Footnote 1 http://www.rfc-editor.org IETF RFC 1510

Solaris Enterprise
Security

System Footnote 4 http://docs.sun.com/ab2/coll.384.2/SEAM Sun Enterprise
Authentication
Mechanism 1.0.1

IPsec Protocol Footnote 1 http://www.ietf.org/rfc/rfc2401.txt IETF RFC 2401

IKE Protocol Footnote 2 http://www.ietf.org/rfc/rfc2409.txt IETF RFC 2409

Random numbers Protocol Footnote 1 http://www.rfc-editor.org IETF RFC 1750

Random number API System Footnote 4 http://docs.sun.com/ab2/coll.40.7 Solaris 9
Operating
Environment man
pgs: random(3c)

Table Footnote Legend

Footnote 1: This interface is a standard, and support of this standard is required for products conforming to v1.0 of the
Sun ONE architecture.

Footnote 2: This interface is a standard, but support of this standard is not required for products conforming to v1.0 of
the Sun ONE architecture. Support of this standard will be required in a future version of the architecture.

Footnote 3: A standard interface is being developed for this component, and that standard will be required in a future
version of the Sun ONE architecture.

Footnote 4. This is a published proprietary interface, and support of this interface is required for products conforming to
v1.0 of the Sun ONE architecture.

Interface Name Level Status Reference * Comments

 12 Platform Services 199

*This table contains url’s to third party sites. Sun has no responsibility, and makes no
representation or warranties, regarding information on these third party sites.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

200 Sun ONE Architecture Guide

 Part 7. Core Web Services 201

Part 7. Core Web Services

202 Sun ONE Architecture Guide

 13 Core Web Services 203

CHAPTER 13

Core Web Services

The Sun™ Open Net Environment (Sun ONE) architecture defines several Web services called
Core Web Services. After they are developed, these services will make the functionality
included in the Sun ONE platform and in existing Sun Web applications available for use
by other Web services and Web applications.

These Core Web Services can be thought of as built-in Web services that will offer developers
a set of useful system-level and application-level services. At the time of this writing,
however, they have not been fully defined. Therefore, no interface specifications are cited
in this version of the Sun ONE architecture, and no interface tables are contained in this
chapter. Instead this chapter provides an indication of the kinds of Core Web Services that
will be specified in a future version of the architecture.

Note that, with the emergence of federated identity services such as the Liberty Alliance,
many of the Core Web Services outlined here are likely to form the basis for future Federated
Services. Such Federated Services will be offered by large service providers to furnish
ubiquitous access to these communications and information services, thus increasing the
utility of Services on Demand, particularly for users of mobile computing devices.

13.1 Portal-based Web Services
The following definitions of Web services are based on the functionality of the iPlanet™
Portal Server, which is described in Chapter 9, “The Portal Server.” In that chapter, the
Location, Presence, Notification, and Usage Web services described below are briefly
discussed as System Level Interfaces (SPIs) to support personalization. The following
sections provide more detailed descriptions of how these SPIs will perform when they
are fully developed as portal-based Web services.

Note that the portal-based Web services described below will be defined in more detail in
a future edition of this book.

204 Sun ONE Architecture Guide

13.1.1 Location Web Service

The Location Web service will provide geographic location information to the client. To
locate a user, the service will interact with a wide range of applications and services from
the portal infrastructure—for example, a wireless module, an instant-messaging module, a
badge reader system, or a desktop module.

Location-based services such as driving directions will be prime users of the Location Web
service. Many future providers and services will be location-sensitive.

13.1.2 Presence Web Service

The Presence Web service will provide comprehensive information on the current context of
the user, including the manner in which he or she is connected to the system. This service
will also indicate the user's geographical location, availability, and type of applications in
use. It will use location, user, calendar, and other data to infer all Presence information,
including location, status of the device being used, capabilities of the device, availability of
the user, activity of the user, communication address of the user, and device preference.

Presence information will be categorized into different access levels. Client applications
using the Presence Web service will have access only to Presence attributes authorized for
their access level.

13.1.3 Notification Web Service

The Notification Web service will provide a notification mechanism that takes advantage of
the user profile information and current user context available to the portal. Using this
information, the service will deliver messages to users in the most efficient and convenient
manner possible.

For example, applications and services such as a calendar can use the Notification Web
service to notify a user about events that have been added to his or her schedule or that
have been set by other applications. The service—using the user profile information, the
urgency of the message, and the data obtained from the Location and Presence Web
services—will notify the user by voice mail, e-mail, pager, notification channel, and other
means.

Applications and services must have knowledge only of the Notification Web service and its
relatively simple interface. The service determines the best way to reach the user and uses
the appropriate mechanism to do so—for example, notification via instant messaging, a
wireless module, or a channel in the user's desktop.

 13 Core Web Services 205

13.1.4 Usage Web Service

The Usage Web service will collect utilization information from the portal. This information
will be available to other services for planning, statistical, and billing purposes.

The portal will provide, as part of its infrastructure, a mechanism to plug in Usage
Collectors and associate Usage Collectors to the Web services being aggregated in the
portal. A Usage Collector will pass usage records to the Usage Web service, which will then
pass them to subscribed applications and services.

This model will allow the implementation of Usage Collectors that can introspect the
payload of a message to gather usage information or any other type of usage monitoring
without having to modify the portal. Out-of-the-box Usage Collectors may be provided to
meter the number of hits, determine the beginning and end of a session, and collect
common information for logging and auditing purposes.

13.1.5 Search Web Service

A future edition of this book may define a Search Web service based on the iPlanet Portal
Server Search Engine. This service would allow a client to specify search criteria based on
which references to matching query documents are returned.

13.1.6 File Web Service

A future edition of this book might define a File Web service based on the iPlanet Portal
Server Netfile component. This service would allow a client to upload, download, and
move files among different file systems.

13.2 Communications Applications Web Services
This section describes a set of Web services that will expose the main functionality of many
of the iPlanet software communications applications, including the main applications of
mail, calendar, address book, and conferencing. Developers can easily construct a Web
application or Web service that incorporates communications functionality using these
Web services.

Note that the iPlanet communications applications Web services described below will be
defined in more detail in a future edition of this book. For further information, see
http://www.iplanet.com.

206 Sun ONE Architecture Guide

13.2.1 Mail Web Service

The ability to read and send e-mail is traditionally implemented via the Post Office Protocol
(POP), Internet Message Access Protocol (IMAP), and Simple Mail Transfer Protocol (SMTP)
standards. In the Web services model, these protocols may be layered with a Simple Object
Access Protocol/eXtensible Markup Language (SOAP/XML) interface that will allow a general
client, not just a dedicated e-mail client, to access information that will be provided as XML
data. This will allow the exposure of the following functions as Web services:

■ Return of a counter of unread messages

■ Provision of a list of unread messages

■ Reading of an individual message

■ Reading, processing, and saving of message attachments

■ Creation of a new message

Beyond these basic services, folder and message management features may also be
provided. Using these features, an application would be able to list, add, remove, and move
folders, as well as move and delete messages.

In addition, a message store facility may be provided. Beyond its capability an e-mail
message store, it could be used as a general-purpose data store. Using this facility, an
application would be able to create, delete, copy, or move items.

Finally, a mailing list facility may be provided to deal with distribution lists. This facility
would allow an application to create and delete a list, then add, remove, or query a
specific list.

13.2.2 Calendar Web Service

The iPlanet Calendar Server provides key services relating to scheduling people, resources,
and events. Web services will be defined to expose calendar functionality for creating,
listing, and removing appointments.

13.2.3 Contacts Web Service

The iPlanet Contacts Server provides access to an end user’s contact information, which is
stored in a repository. This information includes the user’s name, address, phone number,
and e-mail address. The contracts core functionality will be exposed as a Web service to
allow an application to add, remove, modify, and query both contacts and groups.

 13 Core Web Services 207

13.2.4 Conferencing Web Services

Conferencing Web services will provide the key functionalities for initiating real-time
communications. Three functional components—chat, news, and conference—will be
exposed as Web services. The Chat Web service will allow applications to post and read
messages. The News Web service will allow applications to list and create news channels,
as well as to add and retrieve messages. The Conference Web service will allow applications
to list and create conferences, as well as to add messages to and retrieve messages from a
conference.

For definitions of the acronyms and technical terms used in this and other chapters, see the Glossary at the
end of this book.

For supporting references regarding the topics discussed in this and other chapters, see the Bibliography
that follows the Glossary.

208 Sun ONE Architecture Guide

 Glossary 209

Glossary

TERM DEFINITION

asynchron-ous
reliable
messaging

A messaging system that allows an application to interact with other applications using a local message
queue, regardless of whether the remote application is actually available when the first application
initiates the interaction. The message is delivered by the reliable messaging provider when the service at
the other end is receiving. The first application does not need to maintain an open thread waiting for the
remote application to receive the message.

BIND BIND (Berkeley Internet Name Daemon) is software that allows a user to type site names such as
www.sun.com, to connect to an IP address, instead of a string of numbers.

BPSS BPSS (Business Process Specification Schema) specification defines Business Signals as application
level documents that ‘signal’ the current state of the business transaction. These business signals
have specific business purpose and are separate from lower protocol and transport signals. Business
signals include receipt acknowledgements, acceptance acknowledgements and exceptions.

cHMTL A mark-up language used in cell phones and PDAs.

CIM CIM (Common Information Model) is the DMTF (Desktop Management Task Force) model for describing
management information to work with disparate systems.

CIM-SOAP A management protocol based on using SOAP to transmit CIM information.

CORBA CORBA (Common Object Request Broker Architecture) provides for standard, object-oriented interfaces
between ORBs, allowing for the interoperability of object-oriented software systems residing on
disparate platforms.

Core Web
Services

A set of built-in system-level and application-level Web services that Sun will offer developers. When Core
Web services are fully defined, they will include Portal-based services such as Presence, Notification, and
Usage. They will also include communications-application-based services such as Mail, Contacts, and
Conferencing.

DHCP DHCP (Dynamic Host Configuration Protocol) is a TCP/IP protocol that enables PCs and workstations to
get temporary or permanent IP addresses from centrally administered servers.

DOM Document Object Model is a platform- and language-neutral interface that allows programs and scripts
to access and update the content, structure and style of documents dynamically.

DSML DSML is a markup language for representing directory services in XML. DSML helps XML-based
applications make better use of directories. With a recognized standard, applications can be written to
make use of DSML and capture the scalability, replication, security and management strengths of
directory services.

ebXML A complete B2B framework, Electronic Business eXtensible Markup Language ebXML enables business
collaboration through the sharing of Web-based business services. B2B business processes re expressed
as a sequence of business service exchanges. Included are specifications for Message Service, Collaborative
Partner Agreements, Core Components, Business Process Methodology and Registry and Repository.

210 Sun ONE Architecture Guide

EDI EDI (Electronic Data Interchange) is a series of standards that provide computer-to-computer exchange
of business documents between different companies’ computers over phone lines and the Internet.

EJB EJB (Enterprise JavaBeans) provides a standard component architecture for building distributed, object
oriented business applications. EJBs allow a programmer to focus on business logic without having to
manage the details of transaction processing, security, load balancing, connection pooling, and other
performance concerns in an application server system.

ESMTP Extended Simple Mail Transport Protocol used primarily in the Unix community. Refer to SMTP.

Fibre Channel Fibre Channel refers to a set of standards developed by ANSI that are intended to provide a practical and
inexpensive means of rapidly transferring data between workstations, mainframes, supercomputers,
desktop computers, storage devices, displays and other peripherals.

Forte
Development
tools

Based on the NetBeans platform, Sun's Forte IDE provides the tools necessary to create, assemble,
and deploy Sun ONE applications and Services on Demand that target the Sun ONE architecture and
stack. Forte Tools provide services-centric functionality to assemble solutions from services, construct
services from components, and build modern client access to services.

FTP FTP (File Transfer Protocol) allows users to quickly transfer text and binary files to and from a distant
or local PC, list directories, delete and rename files on the foreign host, and perform wildcard
transfers between hosts.

GSS-API The Generic Security Service API (GSS-API) is a CAPI for distributed security services. It has the capacity to
handle session communication securely, including authentication, data integrity, and data confidentiality.
The GSS-API is designed to insulate its users from the specifics of underlying mechanisms. GSS-API
implementations have been constructed atop a range of secret-key and public-key technologies.

HTML HTML (HyperText Markup Language) is the authoring software language used on the World Wide Web.

HTTP HTTP (HyperText Transfer Protocol) is the basis of Internet browsers and Web servers. A client makes
an HTTP request to a server, and HTML HyperText is returned via HTTP.

HTTPS HTTPS (HyperText Transfer Protocol Secure) is a type of server software which provides the ability for
secure transactions over the World Wide Web.

iAF The iPlanet Application Framework (iAF) is iPlanet's implementation of a presentation framework. As a
standards-based application framework for enterprise Web application development, it unites familiar
concepts such as display fields, application events, component hierarchies, and a page-centric
development approach with a state-of-the-art design based on both MVC and Service-to-Workers
patterns. Although it is primarily intended to address the needs of J2EE developers building medium-
sized applications, iAF also supports large- and massive-scale Web applications. Also refer to Presentation
frameworks and Model-View-Controller.

iCAL iCAL (Internet Calendaring and Scheduling Core Object Specification) is a specification from the
Internet Engineering Task Force (IETF) designed to allow people to share and coordinate their
appointment calendars over the Internet.

Identity and
Policy Services

These services provide the infrastructure for managing user identities, services, and policies. They also
provides the fundamental basic services such as discovery of Web services (using UDDI), authentication,
single-sign-on, policy evaluations, and security. The core services can be leveraged by other Web
services and applications to perform the basic operations.

IFX IFX version 1.2 provides an XML-based communication protocol that enables the exchange of
information among financial institutions, financial institutions and their customers, and financial
institutions and their service providers. This latest version features a wide range of functions that
allow financial institutions and associated service providers to access account information, download
credit card statements, transfer funds, process consumer and business payments, enable bill
presentment, and improve customer service. The IFX specification supports a broad range of client
devices, such as any standard Web browser software, personal computers with personal financial
manager (PFM) software, voice response units (VRUs) that provide bank by phone services, automated
teller machines (ATMs), consumer handheld devices, or mobile telephones with data capabilities.

IKE IKE (Internet Key Exchange) is an automated key management standard for IPsec.

TERM DEFINITION

 Glossary 211

IMAP IMAP (Internet Messaging Access Protocol allows users to create and mange mail folders over the
WAN, as well as scan message headers and then download only selected messages. The ability to read
and send e-mail is traditionally implemented via the POP, IMAP, and SMTP standards. In the web
services model these protocols may be layered with a SOAP interface that will allow a general client,
not just a dedicated e-mail client, to access information that will be provided as XML data.

iMQ message
system

The iPlanet Message Queue (iMQ) is Sun's asynchronous reliable messaging product. It includes iMQ
Administered Objects, the iMQ Client Runtime, and iMQ Message Service. Also refer to asynchronous
reliable messaging.

InfiniBand Intel’s InfiniBand Architecture InfiniBand Technology will be used to connect servers with remote
storage and networking devices, and other servers. It will also be used inside servers for inter-
processor communication (IPC) in parallel clusters. InfiniBand features small form factors, greater
performance, lower latency, easier and faster sharing of data, built in security and quality of service,
improved usability (the new form factor will be far easier to add/remove/upgrade than today’s shared-
bus I/O cards).

IPsec A collection of IP security measures that comprise an optional tunneling protocol for IPv6.

IPv4 Refer to TCP/IP.

IPv6 IPv6 (Internet Protocol Version 6)is designed to replace and enhance TCP/IP (IPv4). IPv6 has 128-bit
addressing, auto configuration, new security features and support for real-time communications and
multi-casting.

J2EE J2EE (Java 2 Platform, Enterprise Edition) offers a standard, extensible, component-based application
programming model. Access to many critical services, such as transaction management and persistence,
are automated. In addition, J2EE provides reliable access to a range of additional services, thereby
reducing the complexity of developing distributed applications. J2EE enables Web Services applications
and simplifying their development.

J2EE Connector
architecture

This J2EE connector architecture defines a standard way to extend the Sun ONE Service Container to
include the functionality of an Enterprise Information System (EIS). With the appropriate connector
installed, a Sun ONE application is able to use the functionality of the EIS without having to deal with
the complexity of integrating EIS remote access, transactions, and security. The functionality of the
EIS appears to the Sun ONE developer as a new service provided by the Service Container.

J2ME Java technology for mobile and embedded devices is covered by the J2ME—Java 2 Micro Edition.
Because of different devices with different capabilities, J2ME is based on configurations and profiles. A
configuration defines the minimum set of class libraries available for a range of devices. A profile
defines the set of APIs available for a particular family of devices.

JAAS The Java Authentication and Authorization Service (JAAS) is a Java package that enables services to
authenticate and enforce access controls upon users. It implements a Java version of the standard
Pluggable Authentication Module (PAM) framework, and supports user-based authorization.

Java Invented in 1995 by Sun, Java is a programming language that enables software to run on any
machine (write once, run anywhere).

JavaCard Java Card API is an ISO 7816-4 compliant application environment focused on smart cards.

Java
Connectors

Java connectors provide standardized access to existing mainframe-based transactions from
environments compatible with J2EE. Also refer to J2EE Connector architecture.

JavaMail Java Mail is one of several J2EE supported standard communication technologies, including RMI-IIOP,
JavaIDL and JMS, that are used as a means to communicate on a network, sending messages or
invoking services.

Java Server
Pages

Refer to JSP.

Java Web
client model

This Services-on-Demand category allows applications to be downloaded to desktop computers,
handheld devices, home gateway computers, or audiovisual devices and set-top boxes. Included are
desktop Java standards and the use of Java Webstart to download Java applications that, by extension,
are being used to create the Java Vending Machine (JVM) concept.

TERM DEFINITION

212 Sun ONE Architecture Guide

JAX* Web Services J2EE’s APIs for XML allow web applications to be written entirely in the Java programming
language. These APIs fall into two broad categories: those that deal directly with XML documents and
those that deal with procedures.

Document-oriented Java API for XML Processing (JAXP) — processes XML documents using various
parsers.

Java Architecture for XML Binding (JAXB) —maps XML elements to classes in the Java programming
language.

Java API for XML Messaging (JAXM) — sends SOAP messages over the Internet in a standard way.

Java API for XML Registries (JAXR) — provides a standard way to access business registries and share
information.

Java API for XML-based RPC (JAX-RPC) — sends SOAP method calls to remote parties over the Internet
and receives the results.

JCA Java Cryptography Architecture

JDBC JDBC (Java Database Connectors) provides J2EE’s database connectivity. Structured Query Language
(SQL) commands or queries can be issued to a relational database, and the results returned to any
Java application. The JDBC API supports stored procedures, transactions, connections, and user
authentication. JDBC drivers may support connection pooling, distributed transactions, and caching of
rows from the database.

JMS The Java Message Service (JMS) provides an API for asynchronous messaging. Rather than invoke a
service and wait for a response, a JMS message is queued for delivery, and control returns to the
invoker. In addition to supporting specific message queues—for example, for a specific EJB, JMS
supports publish-and-subscribe messaging in which any number of clients can subscribe to (request
messages on) well-known topics in a hierarchy of topics, and any number of clients can publish to
(send messages to subscribers of) a specific topic. JMS supports reliable, guaranteed delivery of
messages.

JNDI Java Naming and Directory Services (JNDI) provides access to a naming environment. It provides
methods for performing directory operations, such as associating attributes with objects and
searching for objects using their attributes. JNDI is used for a variety of purposes. JDBC data sources
and JTA transaction objects can be stored in a JNDI naming environment. A container provides an
environment to its components via a JNDI naming context. JNDI can be used by components in a
distributed application to locate one another and initiate communications. Existing corporate
directory services can be accessed via JNDI.

JSP The Java Server Pages (JSP) technology builds on Java Servlet technology to simplify the development
of dynamic Web content. JSP supports a page-based metaphor that separates dynamic and static Web
content; the JSP page defines a static HTML template, with embedded calls to code written in the Java
programming language to fill in dynamic portions of the page.

JVM Java Virtual Machines (JVMs) provide a common application and application library execution
environment that has been adopted by a diverse set of Web services client device manufacturers. They
offer secure operations for accessing underlying device-specific capabilities in a way that insulates the
developer from those interfaces while providing device-specific integration.

Kerberos Kerberos is a network authentication protocol designed to provide strong authentication for
client/server applications by using secret-key cryptography.

KVM Kernel Virtual Machines (KVMs) are a reduced capacity versions of Java Virtual Machines for use on
limited-footprint portable client devices. For a more complete definition, refer to Java Virtual Machine
(JVM).

LDAP LDAP (Lightweight Directory Access Protocol) is a protocol for accessing directories.

Liberty The Liberty Alliance Project is a business alliance formed to deliver and support an identity solution
for the Internet that enables single sign-on for consumers as well as business users, in an open,
federated way. The role of the Liberty Alliance Project is to support the development, deployment and
evolution of an open, interoperable standard for network identity. Included is collaboration on
standards so that privacy, security, and trust are maintained.

TERM DEFINITION

 Glossary 213

Metadata
Repository

This component of the Netbeans architecture makes it easier to build modules that support other
programming languages, in addition to enhancing performance and features that are related to re-
factoring. By supporting standardized models for metadata in a language-neutral way, the Metadata
Repository also makes it easier to integrate third-party products, such as UML tools. Metadata refers
to data that describes the structure and characteristics of program elements or data—for example,
the structure and method signatures of a Java class file.

MIDP The Mobile Information Device Profile (MIDP) is a set of Java APIs which, together with the Connected,
Limited Device Configuration (CLDC), provides a complete J2ME application runtime environment
targeted at mobile information devices, such as cellular phones and two-way pagers.

Mobile IP Mobile IP is a set of extensions to the Internet Protocol for packet data transmission that serves
nomadic users connecting on a wireline, rather than a wireless, basis. The protocol is being developed
by the IETF.

MVC The Model-View-Controller (MVC) design model holds that an application consists a Model, some
Views of the Model, and some Controllers. The Model is the part of the application that contains the
actual application logic. The Model does the database access, computes numbers, and manipulates
data structures. The View and Controller represent the user interface of the application. The user
interface is conceptually split into input and output components. The Controller is an input
component that supplies information to the Model. The View is an output component which displays
information from the Model. The View typically communicates with the Model by registering itself as
a callback and responding to events generated by the Model.

NetBeans IDE Sun's integrated development environment (IDE) for creating, assembling, and deploying Sun ONE
applications and Web services. NetBeans is open source, modular, and standards-based. Because it is
written in the Java language, it can run on any platform with a Java Virtual Machine that is compliant
with the Java 2 platform.

NFS NFS (Network File System) is a distributed-file-system protocol that allows a computer on a network to
use the files and peripherals of another networked computer as if they were local. The protocol was
developed by Sun.

OBI OBI (Open Buying on the Internet) is a standard that provides a generic set of requirements, architecture,
and a technical specification for Internet purchasing solutions in the general context of e-commerce.

OCSP OCSP is a client-server based solution allowing a client to send a status request to the server for
obtaining revocation information about some particular certificate(s) in mind. In this way, OCSP may
be used for providing more timely revocation information than is possible with CRLs (certification
revocation lists).

P3P Platform for Privacy Preferences Project (P3P) standard establishes a complex computerized negotiation
that extends the information-gathering potential of the Web site and the privacy-protection possibilities
inherent in each user visit to the Web site.

Platform
Services

This interface is located at the lowest level of the Sun ONE architecture. It provides the functions
needed to allocate and manage the resources of the underlying network and hardware platform
required to host the higher-level services in the Sun ONE stack. Platform Services' primary focus is to
provide the system programming interfaces to the platform's basic functionality that can be used by
Web service execution middleware. It is important to note, however, that Platform Services may also
offer certain application interfaces directly in the form of Web Services for use by both Web
applications and higher level Web Services.

POP POP is the Point of Presence at which ISPs exchange traffic and routes at Layer 2 (Link Layer) of the OSI
model.

Portal Server This Service Delivery component of the Sun ONE architecture provides a single access point to diverse
types of information originating from many sources. It offers several features to end users, as well as
to the Web applications and services that they are using. These features include aggregation,
presentation, personalization, and security.

POSIX POSIX (Portable Operating System Interface) is an IEEE standard, based on historical UNIX systems, for
an application interface that will run on a variety of operating systems, such as Solaris.

TERM DEFINITION

214 Sun ONE Architecture Guide

Presentation
frameworks

These frameworks gather information from both end users and the business layer of an application.
They then generate the user interface and process the user's interaction with it. The iPlanet
Application Framework (iAF) is iPlanet's implementation of a presentation framework.

RDF The Resource Description Framework (RDF) integrates a variety of applications from library catalogs
and world-wide directories to syndication and aggregation of news, software, and content to personal
collections of music, photos, and events using XML as an interchange syntax. The RDF specifications
provide a lightweight ontology system to support the exchange of knowledge on the Web.

PKCS Public-Key Cryptography Standards (PKCS) are specifications produced by RSA Laboratories in
cooperation with secure systems developers worldwide for the purpose of accelerating the
deployment of public-key cryptography.

PKIX The goal of the Internet Public Key Infrastructure (PKI) standards effort is to meet the needs of
deterministic, automated identification, authentication, access control, and authorization functions.
Support for these services determines the attributes contained in the certificate as well as the
ancillary control information in the certificate such as policy data and certification path constraints.

PPP PPP (Point-to-point protocol) is a protocol that allows a computer to connect to the Internet with a
standard dial-up telephone line and a high-speed modem.

RSS RDF Site Summary (RSS) is a lightweight multipurpose extensible metadata description and
syndication format. RSS is an XML application, conforms to the W3C’s RDF Specification and is
extensible via XML-namespace and/or RDF based modularization.

SAML SAML (Security Assertion Markup Language) is an XML-based security standard for exchanging
authentication and authorization information.

SASL SASL (Simple Authentication and Security Layer) is a method for adding authentication support to
connection-based protocols. To use SASL, a protocol includes a command for identifying and authenticating
a user to a server and for optionally negotiating protection of subsequent protocol interactions. If its use is
negotiated, a security layer is inserted between the protocol and the connection.

SAX SAX, the Simple API for XML, is a standard interface for event-based XML parsing.

SCSI SCSI (Small Computer Systems Interface) allows devices such as hard disks, optical disk drives, tape
drives, CD-ROM drives, printers and scanners to communicate with the computer’s main processor.
SCSI is both a bus and an interface standard.

Sendmail Sendmail is the UNIX software that delivers electronic mail.

Services on
Demand

This umbrella category encompasses past Web initiatives, today's Web applications, Web services, and
Java Web clients. It also incudes tomorrow's new services, including contextually enhanced Web
services that are aware of user context and identity to create a superior interactive, online experience.
Potentially, Services on Demand will also include new technologies such as peer-to-peer (JXTA) and
dynamic configuration infrastructure (Jini). Services on Demand have the flexibility to encompass new
protocols and methods of operation in order to deliver customized, personalized services whenever
and wherever they are needed.

Servlets Java Servlet technology provides a basic mechanism for generating dynamic web content. Servlets
were developed as an improvement over CGI scripts, which are generally platform-specific, and are
limited in their ability to support rich interaction. Like all J2EE components, servlets run in a container
implemented by the J2EE platform provider. The container manages a servlet’s interaction with its
client and provides a rich environment for the servlet to use to access various services based on Java
technology. A servlet container implements the entire Java 2 Platform, Standard Edition APIs. This
makes a variety of technologies based on the Java programming language available to servlets,
including JDBC, Java Naming and Directory Interface, RMI, JavaBeans, and others.

S/MIME S/MIME (Secure Multipurpose Internet Mail Extensions) is a specification designed to be easily
integrated into e-mail and messaging products. S/MIME builds security on top of the industry
standard MIME protocol according to the Public Key Cryptography Standards (PKCS).

TERM DEFINITION

 Glossary 215

SMS SMS (Short Message Service) is a means to send or receive short alphanumeric messages to or from
mobile telephones.

SMTP Simple Mail Transport Protocol is a TCP/IP protocol for sending e-mail between servers.

SOAP SOAP (Simple Object Access Protocol) provides an extensible XML messaging protocol and also
supports an RPC programming model. A number of SOAP implementations are available.

SQL SQL (Structured Query Language) is a standard database language used for creating, maintaining and
viewing database data.

SSL SSL (Secure Socket Layer) provides a secure mechanism for clients to access hosts on the Internet,
without someone eavesdropping or tampering with the messages.

SSL/TLS SSL/TLS (Secure Socket Layer/Transparent LAN Service) is a secure high-speed VPN (Virtual Private
Network) that hides the complexity associated with wide area networks. SSL was invented by
Netscape Communications; TLS is the equivalent standard from the IETF.

Sun ONE Sun ONE (Open Net Environment) is Sun Microsystems’ standards-based software vision, architecture,
platform, and expertise for building and deploying Services on Demand.

SyncML SyncML is a standard, based on XML, used to synchronize the data between clients and servers.

TCP/IP TCP/IP (Transport Control Protocol/Internet Protocol) provides a mechanism to establish connections
and reliably deliver streams of data between Internet hosts.

UBL Universal Business Language (UBL) will be used by vertical industry segments to describe the
semantics associated with e-business XML documents. The language is being developed by OASIS, the
industry’s XML standards organization.

UDDI UDDI (Universal Description Discovery and Integration) is a project to create a platform-independent,
open framework for describing services, discovering businesses, and integrating business services
using the Internet, as well as an operational registry that is available public ally. The UDDI initiative is
an industry consortium lead by Accenture, Ariba, Commerce One, Compaq, Edifecs, Fujitsu, HP, I2,
IBM, Intel, Microsoft, Oracle, SAP, Sun Microsystems, and VeriSign. More than 130 companies have
joined the UDDI initiative.

vLIP A protocol developed by Sun, designed to support tighter integration of the directory with other
Sun/iPlanet applications.

VoiceXML VXML, or VoiceXML, technology allows a user to interact with the Internet through voice-recognition
technology by using a voice browser and/or the telephone. Using VXML, the user interacts with voice
browser by listening to audio output that is either pre-recorded or computer-synthesized and submitting
audio input through the user’s natural speaking voice or through a keypad, such as a telephone.

WBEM Web-Based Enterprise Management (WBEM) is a set of management and Internet standard technologies
developed to unify the management of enterprise computing environments. WBEM provides the ability
for the industry to deliver a well-integrated set of standard-based management tools leveraging the
emerging Web technologies.

Web
applications

This category includes most of the Services on Demand products delivered prior to the year 2002. Web
applications deliver dynamic content via Web browsers for human interaction. The Sun ONE architecture
includes a variety of tools for developing, deploying, and dynamically updating Web applications.

Web client
model

Refer to Java Web Client Model.

WebDAV WebDAV (Web Distributed Authoring and Versioning) provides a network protocol for creating
interoperable, collaborative applications. The stated goal of the WebDAV working group is to define the
HTTP extensions necessary to enable distributed Web authoring tools to be broadly interoperable, while
supporting user needs.î Features already developed include: Locking (concurrency control), Properties
(using SML properties to provide storage for arbitrary metadata; and Namespace Management (copying
or moving Web site resources).

TERM DEFINITION

216 Sun ONE Architecture Guide

Web services These self-describing, modular, encapsulated functions can discover and engage other Web services to
complete complex tasks over the Internet. Unlike traditional, hard-wired client/server applications,
Web services are loosely coupled. They can dynamically locate and interact with other components on
the Internet to provide services, and can themselves be dynamically located and used by other Web
services. In other words, Web services transform services into clearly defined components and allow
those services to be easily interconnected. A Web service is usually invoked by a program, not directly
by a human user. It is used to integrate applications—either within the enterprise or over the
Internet-between the enterprise and its customers and business partners.

WSDL Web Services Description Language is a technology developed by Ariba, IBM, and Microsoft that
specifies a common XML framework for describing the interfaces to a Web service.

WML Wireless Markup Language is the browser language used with WAP (Wireless Application Protocol).

X.509 A cryptography term, X.509 is part of the ITU-T X.500 Recommendation that deals with Authentication
Frameworks for Directories. Within X.509 is a specification for a certificate that binds an entity’s
distinguished name to its public key through the use of a digital signature.

XACML XACML (eXtensible Access Markup Language), an XML-based standard for expressing policies for
information access over the Internet.

XHTML XHTML is a reformulation of HTML 4.0 as an XML 1.0 application. The hybrid language allows users to
migrate from HTML to XML as users can create documents in HTML while mixing in XML functions.

XKMS XKMS (XML Key Management Specification) for distribution and registration of public keys.

XML eXtensible Markup Language is a standard developed by the World Wide Web Consortium (W3C). XML
permits structured exchanges of data between machines attached to the Web, allowing
heterogeneous Web servers to communicate.

XML DSIG XML digital signatures provide integrity, message authentication, and/or signer authentication
services for data of any type, whether located within the XML that includes the signature or
elsewhere.

XML Encrypt TBD

XSLT JAXP supports the XSLT (XML Stylesheet Language Transformations) standard, providing control over
the presentation of the data and enabling developers to convert the data to other XML documents or
to other formats, such as HTML.

TERM DEFINITION

 Bibliography 217

Bibliography

This Bibliography* provides a chapter-by-chapter list of references. Note that it does not
include all of the references that appear in the interface tables. For a complete listing of
references for each chapter, refer to the interface tables as a supplement to this
Bibliography.

Preface: About This Book

http://www.sun.com
http://www.sun.com/sunone

Chapter 1. Delivering Services on Demand

http://dcb.sun.com/practices/webservices

Chapter 2. The Sun ONE Architecture

http://www.sun.com

http://www.sun.com/sunone

Chapter 3. J2EE Components and Containers

http://www.Java.sun.com/j2ee

Chapter 4. J2EE Connector Architecture and Web-Service-
Based Integration

http://www.jcp.org/jsr/detail/58.jsp

Chapter 5. Asynchronous, Reliable Messaging

218 Sun ONE Architecture Guide

Web Pages

http://www.jcp.org/aboutJava/communityprocess/maintenance/JMS/index.html

Printed Documents

iPlanet Message Queue for Java Developers’ Guide

iPlanet Message Queue for Java Release Notes - Technical Notes section

Chapter 6. Business Process Integration

UMM - Published by UN/CEFACT, July 2001 at
http://www.unece.org/cefact/docum/download/01bp_n090.zip

Wf-XML - Published by the Workflow Management Collation (WfMC). Published January
2002 at http://www.wfmc.org/standards/docs/Wf-XML-11.pdf

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf

http://www.jcp.org/jsr/detail/93.jsp

http://www.w3.org/TR/xmldsig-core/

http://www.jcp.org/jsr/detail/93.jsp

http://www.jcp.org/jsr/detail/101.jsp

Chapter 7. Development Tools

Web Pages

http://www.netbeans.org

http://apisupport.netbeans.org/

http://form.netbeans.org/

http://mdr.netbeans.org/

http://www.netbeans.org/modules.html

http://www.corba.netbeans.org/

http://www.db.netbeans.org/

http://www.jini.netbeans.org/

http://www.projects.netbeans.org/

http://www.autoupdate.netbeans.org/

http://www.j2eeserver.netbeans.org/

 Bibliography 219

Printed Documents

JSR 30 - Connected, Limited Device Configuration

JSR 36 - Connected Device Configuration

JSR 36 - Mobile Information Device Profile for the J2ME Platform

JSR-40, the Java Metadata Interface (JMI) specification

JSR 46 - J2ME Foundation Profile

JSR 66 - J2ME RMI Profile

JSR 75 - PDA Profile for the J2ME Platform

JSR 118 - Mobile Information Device Next Generation

JSR 120 - Wireless Telephony Communication APIs (WTCA)

JSR 134 - Java Game Profile

JSR 139 - CLDC Next Generation

Chapter 8. Presentation Frameworks

Web Pages

http://www.jcp.org/jsr/detail/127.jsp

Printed Documents

JSP specification and the J2EE Blueprint

Chapter 9. The Portal Server

http://developer.iplanet.com/tech/ips/

http?//www.jcp.org/jsr/detail/168.jsp

Chapter 10. The Java Web Client Model

Web Pages

Device Cache Management, available via http//www.jcp.org/jsr/detail/107.jsp

J2EE Client Provisioning Specification (JSR 124), available via
http://www.jcp.org/jsr/detail/124.jsp

J2ME Platform Specification (JSR 68), available via http://www.jcp.org/jsr/detail/68.jsp

220 Sun ONE Architecture Guide

J2ME CDC (JSR 36):http://www.jcp.org/sr/detail/36.jsp

J2ME Foundation Profile (JSR 46), available via http://www.jcp.org/jsr/detail/46.jsp

J2SE Merlin Release (JSR 59), available via http://www.jcp.org/jsr/detail/59.jsp

JAIN 3G MAP Mobile Application Intercommunication (JSR 123), available via
http://www.jcp.org/jsr/detail/123.jsp

JAIN Service Creation Environment, available via http://www.jcp.org/jsr/detail/100.jsp

Java APIs for Bluetooth (JSR 82), available via http//www.jcp.org/jsr/detail/82.jsp

Java APIs for Security, Signing, Trust, Signature, Encryption, and the Javacard, available via
http://www.java.sun.com/products/javacard/javacard21.html

Javacard Integration into Phones, PDAs, XML, Trust, Signature, Encryption (JSRs 105 - 107),
available via http://www.jcp.org/jsr/detail/105.jsp and
http://www.jcp.org/jsr/detail/106.jsp and http://www.jcp.org/jsr/detail/107.jsp.

Personal Basis Profile (JSR 129), available via http://www.jcp.org/jsr/detail/129.jsp

Personal Profile (JSR 62): http://www.jcp.org/jsr/detail/162.jsp

P01honelets (JSR 61), available via http://www.jcp.org/jsr/detail/61.jsp

MidP (JSR 37, 118), available via http://www.jcp.org/jsr/detail/37.jsp and
http://www.jcp.org/jsr/detail/118.jsp

CLDC Next Generation (JSR 139), available via http://www.jcp.org/jsr/detail/139.jsp

PDA Profile for the J2ME platform (JSR 75), available via
http://www.jcp.org/jsr/detail/75.jsp

Service Location Protocol (JSR 140), available via http//www.jcp.org/jsr/detail/140.jsp

Service Provide Presence (JSR 123), available via http://www.jcp.org/jsr/detail/123.jsp

SyncML Information, available via http://www.synchml.org/technology.html

Wireless Telephony on J2ME (JSR 120); http:///jcp.org/jsr/detail/120.jsp

Printed Documents

StarOffice and StarPortal User Documentation

J2ME Widget Sets, User Events, and Communications

Chapter 11. Identity and Policy Services

Web Pages

http://java.sun.com/products/jaas

 Bibliography 221

http://www.iplanet.com

http://www.oasis-open.org/security-services

http://www.oasis-open.org/committees/security

http://www.oasis-open.org/committees/provision

http://www.oasis-open.org/committees/xacml

http://www.oasis-open.org/committees/security

http://www.projectliberty.org

dmtf.org/standards/standard_webem.php

http://www.jcp.org/jsr/detail/155.jsp

www.jcp.org/jsr/detail./48.jsp

www.jcp.org/jsr/detail./3.jsp

www.jcp.org/jsr/detail./60.jsp

http://www.ietf.org/html.charters/pkix-charter.html

http://www.rsasecurity.com/rsalabs/pkcs/

http://www.ietf.org/html.charters/tls-charter.html

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

http://www.w3.org/Encryption/2001/

http://www.w3.org/2001/XKMS/

http://java.sun.com/products/jsse/

http://www.w3.org/TR/WD-logfile.html

http://java.sun.com/j2se/1.4/docs/guide/util/logging/overview.html

http://www.projectliberty.org

Printed Documents

JETF RFC 2853

JSR 72 JSR 74

JSR 105

JSR 106

All of the following documents are from the Internet Engineering Taskforce (IETF).

222 Sun ONE Architecture Guide

RFC 2571

Standard 15: RFC 1157

Standard 16: RFC 115, RFC 1212, RFC 1215

Standard 58: RFC 2578, RFC 2579, RFC 2580

RFC 1906, RFC 2572, RFC 2574

RFC 1905

RFC 2573, RFC 2575

Chapter 12. Platform Services

Web Pages

http://docs.sun.com

[FTP] “File Transfer Protocol,” J. Postel, J.K. Reynolds, IETF RFC 959. Oct. 1985, available via
http://www.ietf.org/rfc/rfc0959.txt

[gss_doc] “GSS-API Programming Guide” (from Solaris 9 Software Developer Collection),
Sun Microsystems Inc., available via http://docs.sun.com

[gss_man] Generic Security Service API: Solaris 9 manual pages: libgss(3LIB), and manual
pages in section (3gss). Sun Microsystems Inc., available via http://docs.sun.com

[ike] “The Internet Key Exchange,” IETF RFC 2409, available via
http://www.ietf.org/rfc/rfc2409.txt

[ipsec] “Security Architecture for the Internet Protocol,” IETF RFC 2401, available via
http://www.ietf.org/rfc/rfc2401.txt

[ipsec_man] “IPsec protocol,” Solaris manual pages: ipsec(7p). Sun Microsystems Inc.,
available via http://docs.sun.com

[IP] “Internet Protocol, DARPA Internet Program Protocol Specification,” IETF RFC 791, Sept.
1981, available via http://www.ietf.org/rfc/rfc0791.txt

[IP_man] “IP protocol”, Solaris manual pages: ip(7p), Sun Microsystems Inc., available via
http://docs.sun.com

[IPv6_man] “IP protocol,” Solaris manual pages: ip(7p), Sun Microsystems Inc., available
via http://docs.sun.com

[IPv6] “Internet Protocol, Version 6 (IPv6) Specification,” IETF RFC 2460, December 1998,
available via http://www.ietf.org/rfc/rfc2460.txt

[krb_impl] Kerberos version 5 reference implementation, available via http://Web.mit.edu

 Bibliography 223

[krb_man] Kerberos API: Solaris manual pages: kerberos(1) and manual pages in section
(3krb). Sun Microsystems Inc., available via http://docs.sun.com

[krbv5] “Kerberos version 5”, RFC 1510 available via http://www.rcf-editor.org

[gss] “Generic Security Service API specification,” IETF RFC 2744, available via
http://www.ietf.org/rfc/rfc2744.txt

[ldap_doc] “System Administration Guide: Naming and Directory Services (DNS, NIS and
LDAP),” (part of Solaris 9 System Administrator Collection), Sun Microsystems Inc., available
via http://docs.sun.com

[ldap_man] “LDAP programming interfaces” Solaris manual pages: libldap(3lib) and
manual pages in section (3ldap), Sun Microsystems Inc., available via http://docs.sun.com

[random] “Randomness Recommendations for Security,” IETF RFC 1750, December 1994,
available via http://www.rfc-editor.org

[random_man] Random number API: Solaris manual pages: random(3c) and random(7d).
Sun Microsystems Inc., available via http://docs.sun.com

[rgm_admin1] “Sun Cluster 3.0 12/01 Data Services Installation and Configuration Guide”
(from Sun Cluster 3.0 12/01 Data Services Collection), Sun Microsystems Inc., available via
http://docs.sun.com

[rgm_admin2] “Sun Cluster 3.0 12/01 Software Installation Guide” (from Sun Cluster 3.0
12/01 Collection), Sun Microsystems Inc., available via http://docs.sun.com

[rgm_admin3] “Sun Cluster 3.0 12/01 System Administration Guide” (from Sun Cluster 3.0
12/01 Collection), Sun Microsystems Inc., available via http://docs.sun.com

[rgm_admin4] “Sun Cluster 3.0 12/01 Hardware Guide” (from Sun Cluster 3.0 12/01
Collection), Sun Microsystems Inc., available via http://docs.sun.com

m_doc1] “Sun Cluster 3.0 Data Services Developer’s Guide” (from Sun Cluster 3.0 12/01
Collection), Sun Microsystems Inc., available via http://docs.sun.com

[rgm_doc2] “Sun Cluster 3.0 Concepts” (from Sun Cluster 3.0 12/01 Collection), Sun
Microsystems Inc., available via http://docs.sun.com

[rgm_man] “Cluster Resource Management API” manual pages, sections (1HA) and (3HA),
Sun Microsystems Inc., available via http://docs.sun.com

[rsm_man] Remote Shared Memory API: Solaris 9 manual pages: librsm(3LIB), and manual
pages in section (3RSM). Sun Microsystems Inc., available via http://docs.sun.com

[seam] “Sun Enterprise Authentication Mechanism 1.0.1”, Programmer’s Guide, Sun
Microsystems Inc., available via http://docs.sun.com

[srm1.2] “Solaris Resource Manager 1.2 System Administration Guide,” Sun Microsystems
Inc., available via http://docs.sun.com

224 Sun ONE Architecture Guide

[srm9] “System Administration Guide: Resource Management and Network Services” (part
of Solaris 9 System Administrator Collection), Sun Microsystems Inc., available via
http://docs.sun.com

[srm_exacct] “Extended Accounting API,” Solaris 9 manual pages: libexacct(3lib) and
manual pages in section (3exacct), Sun Microsystems Inc., available via
http://docs.sun.com

[srm_project] “Project Database API,” Solaris 9 manual pages: libproject(3lib), project(4),
and manual pages in section (3project), Sun Microsystems Inc., available via
http://docs.sun.com

[SMTP] “NFS version 4 Protocol,” Shepler et.al., Dec. 2000, IETF RFC 3010, available via
http://www.ietf.org/rfc/rfc3010.txt

[SMTP] “Simple Mail Transfer Protocol,” J. Postel, Aug. 1982, IETF RFC 821, available via
http://www.ietf.org/rfc/rfc0821.txt

[socket_man] “Socket API”, Solaris manual pages: libsocket(3lib) and manual pages in
section (3socket), Sun Microsystems Inc., available via http://docs.sun.com.

Chapter 13. Core Web Services

http://www.iplanet.com

*This Bibliography contains url’s to third party sites. Sun has no responsibility, and makes
no representation or warranties, regarding information on these third party sites.

 Index 225

Index

A
account management and provisioning. See identity management.
adapters

pluggable 185
API Support module 106
application events

iPlanet Application Framework (iAF) 138
application server 39

J2EE standards 40
applications

integration challenges 81
integration via J2EE Connector architecture 47
interoperability with Sun ONE 20
J2EE

integration 27
personal productivity 21
types of business 3
Web services 27
See also Web applications

asynchronous reliable messaging 48
requirements beyond JMS 59–61

multiple distributed transaction support 61
multiple protocol support 60
multiple queue delivery styles 60
object management 60
pluggable persistence 61
security 60

requirements of 56
use of JMS 57–59
via ebXML 83–87

audit
via ebXML messaging 89

authentication 168–171, 178
Liberty Alliance Project 180

226 Sun ONE Architecture Guide

Solaris 195
via ebXML messaging 89

B
browser compatibility 21
C
calendar Core Web service 206
chat Core Web service 207
CIM model 183–186
client/server computing model 5
Cluster Interface Set, Solaris 191, 191–192
collaboration among businesses 79–91
conference Core Web service 207
connection management

via J2EEConnector architecture 50
contacts Core Web service 206
container-provided services, J2EE 33
contracts of J2EE Connector architecture 49–51
CORBA

interoperability with J2EE 37
Core Web Services 203–207

communications applications 205–207
Calendar 206
Conferencing 207
Contacts 206
Mail 206

defined 203
Portal-based 203–205

File 205
Location Web service 204
Presence Web service 204
Search 205
Usage 205

customization
via Portal Server 146

D
database servers

access through J2EE 37
development tools. See tools, development.
DMTF

schema 184
DOM manipulation

with MVC 127
E
ebXML 11, 21, 82–91

exchange processes 90
functional overview 87
messaging 83

 Index 227

reliable electronic business exchange 88
objectives and architecture ii, 82

efficient object management
iPlanet Application Framework (iAF) 139

e-mail
JavaMail API 36

e-mail Core Web service 206
Enterprise Information Systems (EIS)

integration with Sun ONE applications 47
Enterprise JavaBeans (EJB) 30–32
Enterprise JavaBeans (EJB) 2.0 specification 56
F
federated identity systems 180
federated identity systems. See also Liberty Alliance Project. 180
File Web service 205
Form Editor 107
Forte IDE 110–117

extensible architecture design 115
integrated architecture capabilities 114
interfaces 117
primary components 110
service assembly 116
service creation 115
service deployment 117
service development 113
services-centric functionality 113
third-party tools 113

G
Generic Security Services (GSS) API 196
GUI

customization via Portal Server 121, 146
relation to Portal Server 144
See also UI, presentation frameworks.

H
hardware

Platform Services 189–197
history of networked computing 4–6
host-based computing model, 5
I
identity

authentication 168
cross-domain single sign-on 171

Identity and Policy Services
interface table 178

Identity and Policy services 146, 165–187
federated identity systems 180
identity, roles, and security 166–178

228 Sun ONE Architecture Guide

interface tables 178
Management Services 181–187

identity management 171–172
delegated management 172
profile API 172
user organization and integration 172
user provisioning and self-registration 171

iDSAME 165
iDSIE 165
integration 77–96

challenges 78
See also process integration.

Internet Key Exchange (IKE) 196
iPlanet Application Framework (iAF) 30, 42, 130–141

features
application events 138
efficient object management 139
formal model entity 137
hierarchical views and component scoping 138
ready-to-use, high-level features 140
scalability 141
support for parallel content 140
symmetrical display/submit handling 137
tool readiness 141

implementation of MVC2 131
relationship to JSR 127 132
technical overview of iAF core 135
types of functionality 133
use of design patterns 133

iPlanet Application Server 40–43
component life cycle optimizations 42
deployment options 41
high availablity 41
interfaces 42
management 41
platform integration 42
scalability 41
tools integration 42

iPlanet Calender Server 206
iPlanet Contacts Server 206
iPlanet Integration Server 91–96

Controller/Coordination Layer 92
Data Transformation and Translation Layer 94
Document Exchange Process Engine 94
Message Routing Table 94
Messaging Interface Layer 95

iPlanet Message Queue for Java 61–75

 Index 229

iPlanet Portal Server 203
iPlanet Portal Server (iPS) Provider API 145
J
J2EE

relationship to presentation frameworks 141
See also J2EE Connector architecture.

J2EE components and containers 27–43
access to database servers 37
access to name and directory servers 38
advantages 27
container-provided services 33
cross-platform and CORBA interoperability 36
Enterprise JavaBeans (EJB) 30
interface tables 38
Java Server Pages (JSP) 29
Java Servlet technology 29
JavaMail API 36
JAXB 35
JAXM 35
JAXP 34
JAXR 35
JAX-RPC 35
Web services 34

J2EE Connector architecture
advantages 49
application-level contracts 51
packaging and deployment 51
system-level contracts 50
use in integration of EIS systems 47–53

Java 2 Platform, Enterprise Edition. See J2EE.
Java Message Service (JMS)

use in integrating MOM environments 48
Java Messaging Service. See JMS.
Java Server Pages (JSP) 29
Java Servlet technology 29
Java Specification Request 127. See JSR 127
Java Vending Machine (JVM) 13
Java Web client

support from Portal Server 149
Java Web client model 153–160

client device 157
defined 13
environment 155
extended services 158
interface table 160
mobile devices 158
MVC design 155

230 Sun ONE Architecture Guide

protocols and payloads 154
server-side provisioning 160
supporting architectural elements 156
telephony access mechanisms 159
XML information services and device interaction 157

JavaMail API 36
JAXB 35
JAXM 27, 35
JAXP 28, 34
JAXR 27, 35
JAX-RPC 27, 35
JAX-RPC tools 52–53
JDBC 37
JMS 57–59

defined 57
functions not included 58
JMS domains 58
JMS messages 58
JMS provider 57
objectives 57
portability 58
requirements 59

JMX specification 186
JNDI 38
JSR 127

iAF’s implementation 132
use with MVC-based presentation frameworks 128

JVM and KVM operating environments 158
K
Kerberos 177

Sun Enterprise Authentication Mechanism (SEAM) 196
KVM 158
L
Liberty Alliance Project 24, 180, 203
location monitoring

via Portal Server 149
Location Web service 204
logging and audit 177
M
management of applications

via Portal Server 147
management of users

via Portal Server 147
management of Web services

via Portal Server 150
Management Services 181–187

architecture 183

 Index 231

integration of existing management schemes 185
interface table 187
use of CIM model 183–184
use of SNMP 186

messaging
JMS 33
to user via Portal Server 149
via ebXML 83–87
via EJB 32
via SOAP messaging API (JAXM) 36

Metadata Repository (MDR) 108
Microsoft .NET 20, 21

interoperation with Sun ONE 20
mobile computing environments

challenges 155
JVM and KVM operating environments 158
telephony access mechanisms 159
XML information services and device interaction 157

mobile devices
challenges 158

Model-View-Controller (MVC) design model
DOM manipulation 127
JSR 127 architecture 128
template and non-template based architectures 126–128
template engines 126
use by Java Web clients 155
use by presentation frameworks 122–128
See also MCV1, MCV2.

MVC1 123
MVC2

iAF’s implementation 131–133
use by presentation frameworks 124

N
name and directory servers

access through JNDI 38
NetBeans IDE

Core and APIs 103
Netbeans IDE 102

interface table 109
network platform

Platform Services 189–197
networked computing

evolution of 4–6
news Core Web service 207
nonrepudiation 159, 178
Notification Web service 204

232 Sun ONE Architecture Guide

O
OASIS UBL 21
P
packaging and deployment

resource adapters 51
partnerships, business. See Collaboration among businesses
personalization

via Portal Server 146
Web services

via Portal Server 148, 149
Platform Services 13, 189–196

hardware platform and resource management 190
purpose and functions 189

policy management and evaluation 172–175
management and evaluation APIs 174
plug-in SPIs 174
Policy Framework 173

Portal Server 143
aggregation and presentation of Web applications 144
enhancement for Web services 147–150
interface tables 151

presence monitoring
via Portal Server 149

Presence Web service 204
presentation frameworks 121–141

development issues 125
interface tables 142
overview 121–122
See also iPlanet application framework, Model-View-Controller (MVC) design model

privacy 175–176
process integration 77–96

via ebXML ii, 82–91
Providers

used by Portal Server 145
Public Key Infrastructure (PKI) 176
R
resource adapters

packaging and deployment 51
use in integration of EIS systems 52
use in J2EE connector architecture 51

RMI-IIOP 37
S
scalability

horizontal hardware 190
iPlanet Application Framework (iAF) 141

security
all types

 Index 233

via Identity and Policy Services 165–178
application

via J2EE Connector architecture 51
via Portal Server 146

Kerberos 177
Liberty Alliance Project 180
logging and audit 177
place in Sun ONE architecture 176
privacy 175–176
Public Key Infrastructure (PKI) 176
strong random numbers 196
user

via Portal Server 146
Web services

via Portal Server 150
Service Container 16

architecture as defined by J2EE 27–43
components 53

service delivery
Portal Server 143–150
via J2EE Connector architecture 47–51

Service Delivery box 16, 39
Service Stack 15

product mappings to 18
Services on Demand

defined 4, 6
delivery methods 153
J2EE APIs 27
phases of adoption 21

single sign-on 170
cross-domain 171
Liberty Alliance Project 180

SNMP 186
SOAP 22, 52

messaging API (JAXM) 35
Solaris 190–197

Cluster Interface Set 191–192
Forte IDE support 113
naming, registry, and directory services 195
networking 193
resource management 192
security 195–197
storage, filing, and data access 194

Solaris Resource Management (SRM) 192
Solaris Volume Manager (SVM) 194
strong random numbers 196
Sun ONE architecture

234 Sun ONE Architecture Guide

development tools 101–117
elements that support the Java Web client model 156
hardware platform and resource management 190
integration and interoperability 18
iPlanet Application Framework (iAF) 130–141
J2EE components and containers 27–43
J2EE Connector architecture 47–53
Java Web client 153–160
layers hosted on variety of OS and network platforms 190
Management Services 181–187
overview 15–24
overview of delivery of Services on Demand 3–13
phases of adoption 21
Platform Services 189–197
Portal Server 143–150
Service Stack 15
support for Web services 52–53

Swing 121, 125
synchronous messaging

history 56
limitations 55

T
telephony access mechanisms 159
template engines

with MVC 126
tools, development 13, 101–117

API Support module 106
Form Editor 107
Forte IDE 110–117
integration via iPlanet Application Server 42
J2EE 34–36
Metadata Repository (MDR) 108
NetBeans IDE 102–106
requirements for Sun ONE tools 101
third party 113
third-party 101

transaction management
via J2EE Connector architecture 51

U
UDDI 35, 177
UI 121

automated via Portal Server 150
See also GUI.

Universal Business Language (UBL) 96
usage monitoring

via Portal Server 150
Usage Web service 205

 Index 235

W
Web applications

delivery
Portal Server 143–150

EIS
integration via J2EE Connector architecture 47

integration via Web services 51
model defined 7

Web client model. See Java Web client.
Web services

aggregation
via Portal Server 143, 144, 148

as integration mechanism 51
availability through Cluster Interface set 191–192
communications applications Core Web services 205–207
defined 5, 8–12
delivery

via Portal Server 143
differences from human-oriented services 9
dynamic 22
implementing with Sun ONE 53
integration simplicity 9
interactions with services and registries 10
internally focused 22
J2EE APIs 27
management

via Portal Server 147, 150
personalization

via Portal Server 143, 146, 148
phases of adoption 21
Portal-based Core Web services 203
presentation

via Portal Server 144, 148
relationship to J2EE Connector architecture 51
security 53

via Portal Server 146, 150
Sun ONE support 52–53
using from Sun ONE 52

Web services. See also Core Web Services.
Web single sign-on 170
WebActions

iPlanet Application Framework (iAF) 140
X
XML

Java APIs 27
XML information services and device interaction 157

