
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Fortran Programming Guide

Sun™ ONE Studio 8

Part No. 817-0929-10
May 2003 Revision A

Please
Recycle

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Portions of this product are derived in part
from Cray90, a product of Cray Research, Inc.

libdwarf and libredblack are Copyright 2000 Silicon Graphics, Inc. and are available under the GNU Lesser General Public License from
http://www.sgi.com.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Sun ONE Studio, the Solaris logo and the Sun ONE logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and
other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits reserves.

Droits du gouvernement americain, utlisateurs gouvernmentaux logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat
de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR (Federal Acquisition Regulations) et des
supplements a celles-ci.

Distribue par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants developpes par des tierces parties.

Des parties de ce produit pourront etre derivees Cray CF90, un produit de Cray Inc.

Des parties de ce produit pourront etre derivees des systemes Berkeley BSD licencies par l’Universite de Californie.UNIX est une marque
deposee aux Etats-Unis et dans d’autres pays et licenciee exclusivement par X/Open Company, Ltd.

libdwarf et libredblack sont déposent 2000 Silicon Graphics, Inc. et sont disponible sous le GNU Moins Général Public Permis de
http://www.sgi.com.

Sun, Sun Microsystems, le logo Sun, Java, Sun ONE Studio, le logo Solaris et le logo Sun ONE sont des marques de fabrique ou des marques
deposees de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-
Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisees sous licence et sont des marques de fabrique ou des marques deposees de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont bases sur une architecture developpee par Sun
Microsystems, Inc.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xiii

Typographic Conventions xiv

Shell Prompts xv

Accessing Compiler Collection Tools and Man Pages xvi

Accessing Compiler Collection Documentation xviii

Accessing Related Solaris Documentation xx

Resources for Developers xxi

Contacting Sun Technical Support xxi

Sun Welcomes Your Comments xxi

1. Introduction 1–1

1.1 Standards Conformance 1–1

1.2 Features of the Fortran 95 Compiler 1–2

1.3 Other Fortran Utilities 1–2

1.4 Debugging Utilities 1–3

1.5 Sun Performance Library 1–3

1.6 Interval Arithmetic 1–4

1.7 Man Pages 1–4

1.8 README Files 1–5

1.9 Command-Line Help 1–6
iii

2. Fortran Input/Output 2–1

2.1 Accessing Files From Within Fortran Programs 2–1

2.1.1 Accessing Named Files 2–1

2.1.2 Opening Files Without a Name 2–3

2.1.3 Opening Files Without an OPEN Statement 2–4

2.1.4 Passing File Names to Programs 2–5

2.2 Direct I/O 2–7

2.3 Binary I/O 2–8

2.4 Stream I/O 2–9

2.5 Internal Files 2–11

2.6 Additional I/O Considerations 2–12

3. Program Development 3–1

3.1 Facilitating Program Builds With the make Utility 3–1

3.1.1 The Makefile 3–1

3.1.2 make Command 3–3

3.1.3 Macros 3–3

3.1.4 Overriding of Macro Values 3–4

3.1.5 Suffix Rules in make 3–4

3.1.6 .KEEP_STATE and Special Dependency Checking 3–5

3.2 Version Tracking and Control With SCCS 3–6

3.2.1 Controlling Files With SCCS 3–6

3.2.2 Checking Files Out and In 3–8

4. Libraries 4–1

4.1 Understanding Libraries 4–1

4.2 Specifying Linker Debugging Options 4–2

4.2.1 Generating a Load Map 4–2

4.2.2 Listing Other Information 4–3
iv Fortran Programming Guide • May 2003

4.2.3 Consistent Compiling and Linking 4–4

4.3 Setting Library Search Paths and Order 4–4

4.3.1 Search Order for Standard Library Paths 4–5

4.3.2 LD_LIBRARY_PATH Environment Variable 4–5

4.3.3 Library Search Path and Order—Static Linking 4–6

4.3.4 Library Search Path and Order—Dynamic Linking 4–7

4.4 Creating Static Libraries 4–9

4.4.1 Tradeoffs for Static Libraries 4–9

4.4.2 Creation of a Simple Static Library 4–10

4.5 Creating Dynamic Libraries 4–12

4.5.1 Tradeoffs for Dynamic Libraries 4–13

4.5.2 Position-Independent Code and –xcode 4–13

4.5.3 Binding Options 4–14

4.5.4 Naming Conventions 4–15

4.5.5 A Simple Dynamic Library 4–15

4.5.6 Initializing Common Blocks 4–16

4.6 Libraries Provided With Sun Fortran Compilers 4–17

4.7 Shippable Libraries 4–17

5. Program Analysis and Debugging 5–1

5.1 Global Program Checking (-Xlist) 5–1

5.1.1 GPC Overview 5–1

5.1.2 How to Invoke Global Program Checking 5–2

5.1.3 Some Examples of -Xlist and Global Program Checking 5–4

5.1.4 Suboptions for Global Checking Across Routines 5–8

5.2 Special Compiler Options 5–12

5.2.1 Subscript Bounds (–C) 5–12

5.2.2 Undeclared Variable Types (–u) 5–12

5.2.3 Compiler Version Checking (–V) 5–13
Contents v

5.3 Debugging With dbx 5–13

6. Floating-Point Arithmetic 6–1

6.1 Introduction 6–1

6.2 IEEE Floating-Point Arithmetic 6–2

6.2.1 –ftrap=mode Compiler Options 6–3

6.2.2 Floating-Point Exceptions 6–3

6.2.3 Handling Exceptions 6–4

6.2.4 Trapping a Floating-Point Exception 6–4

6.2.5 Nonstandard Arithmetic 6–5

6.3 IEEE Routines 6–6

6.3.1 Flags and ieee_flags() 6–6

6.3.2 IEEE Extreme Value Functions 6–10

6.3.3 Exception Handlers and ieee_handler() 6–11

6.4 Debugging IEEE Exceptions 6–16

6.5 Further Numerical Adventures 6–18

6.5.1 Avoiding Simple Underflow 6–19

6.5.2 Continuing With the Wrong Answer 6–19

6.5.3 Excessive Underflow 6–20

6.6 Interval Arithmetic 6–21

7. Porting 7–1

7.1 Carriage-Control 7–1

7.2 Working With Files 7–2

7.3 Porting From Scientific Mainframes 7–2

7.4 Data Representation 7–3

7.5 Hollerith Data 7–3

7.6 Nonstandard Coding Practices 7–5

7.6.1 Uninitialized Variables 7–5
vi Fortran Programming Guide • May 2003

7.6.2 Aliasing and the -xalias Option 7–6

7.6.3 Obscure Optimizations 7–13

7.7 Time and Date Functions 7–14

7.8 Troubleshooting 7–17

7.8.1 Results Are Close, but Not Close Enough 7–17

7.8.2 Program Fails Without Warning 7–19

8. Performance Profiling 8–1

8.1 Sun ONE Studio Performance Analyzer 8–1

8.2 The time Command 8–2

8.2.1 Multiprocessor Interpretation of time Output 8–3

8.3 The tcov Profiling Command 8–3

8.3.1 Enhanced tcov Analysis 8–4

9. Performance and Optimization 9–1

9.1 Choice of Compiler Options 9–1

9.1.1 Performance Options 9–2

9.1.2 Other Performance Strategies 9–9

9.1.3 Using Optimized Libraries 9–9

9.1.4 Eliminating Performance Inhibitors 9–10

9.1.5 Viewing Compiler Commentary 9–12

9.2 Further Reading 9–13

10. Parallelization 10–1

10.1 Essential Concepts 10–1

10.1.1 Speedups—What to Expect 10–2

10.1.2 Steps to Parallelizing a Program 10–3

10.1.3 Data Dependence Issues 10–4

10.1.4 Compiling for Parallelization 10–6

10.1.5 Number of Threads 10–7
Contents vii

10.1.6 Stacks, Stack Sizes, and Parallelization 10–7

10.2 Automatic Parallelization 10–9

10.2.1 Loop Parallelization 10–9

10.2.2 Arrays, Scalars, and Pure Scalars 10–10

10.2.3 Automatic Parallelization Criteria 10–10

10.2.4 Automatic Parallelization With Reduction Operations 10–12

10.3 Explicit Parallelization 10–14

10.3.1 Parallelizable Loops 10–15

10.3.2 OpenMP Parallelization Directives 10–20

10.3.3 Sun-Style Parallelization Directives 10–21

10.3.4 Cray-Style Parallelization Directives 10–32

10.4 Environment Variables 10–36

10.4.1 PARALLEL and OMP_NUM_THREADS 10–36

10.4.2 SUNW_MP_WARN 10–36

10.4.3 SUNW_MP_THR_IDLE 10–37

10.5 Debugging Parallelized Programs 10–38

10.5.1 First Steps at Debugging 10–38

10.5.2 Debugging Parallel Code With dbx 10–40

10.6 Further Reading 10–42

11. C-Fortran Interface 11–1

11.1 Compatibility Issues 11–1

11.1.1 Function or Subroutine? 11–2

11.1.2 Data Type Compatibility 11–2

11.1.3 Case Sensitivity 11–3

11.1.4 Underscores in Routine Names 11–4

11.1.5 Argument-Passing by Reference or Value 11–5

11.1.6 Argument Order 11–5

11.1.7 Array Indexing and Order 11–5
viii Fortran Programming Guide • May 2003

11.1.8 File Descriptors and stdio 11–6

11.1.9 Libraries and Linking With the f95 Command 11–7

11.2 Fortran Initialization Routines 11–8

11.3 Passing Data Arguments by Reference 11–8

11.3.1 Simple Data Types 11–9

11.3.2 COMPLEX Data 11–10

11.3.3 Character Strings 11–10

11.3.4 One-Dimensional Arrays 11–12

11.3.5 Two-Dimensional Arrays 11–13

11.3.6 Structures 11–14

11.3.7 Pointers 11–16

11.4 Passing Data Arguments by Value 11–19

11.5 Functions That Return a Value 11–21

11.5.1 Returning a Simple Data Type 11–21

11.5.2 Returning COMPLEX Data 11–22

11.5.3 Returning a CHARACTER String 11–24

11.6 Labeled COMMON 11–25

11.7 Sharing I/O Between Fortran and C 11–26

11.8 Alternate Returns 11–26

11.9 Fortran 2000 Interoperability With C 11–27

Index Index–1
Contents ix

x Fortran Programming Guide • May 2003

Tables

TABLE 1-1 READMEs of Interest 1–5

TABLE 2-1 csh/sh/ksh Redirection and Piping on the Command Line 2–7

TABLE 4-1 Major Libraries Provided With the Compilers 4–17

TABLE 5-1 Basic Xlist Suboptions 5–9

TABLE 5-2 Complete List of -Xlist Suboptions 5–9

TABLE 6-1 ieee_flags(action, mode, in, out) Argument Values 6–7

TABLE 6-2 ieee_flags in, out Argument Meanings 6–7

TABLE 6-3 Functions Returning IEEE Values 6–10

TABLE 6-4 Arguments for ieee_handler(action, exception, handler) 6–12

TABLE 7-1 Maximum Characters in Data Types 7–4

TABLE 7-2 -xalias Keywords and What They Mean 7–7

TABLE 7-3 Fortran Time Functions 7–15

TABLE 7-4 Summary: Nonstandard VMS Fortran System Routines 7–17

TABLE 9-1 Some Effective Performance Options 9–2

TABLE 10-1 Parallelization Options 10–6

TABLE 10-2 Recognized Reduction Operations 10–13

TABLE 10-3 Explicit Parallelization Problems 10–17

TABLE 10-4 DOALL Qualifiers 10–24

TABLE 10-5 DOALL SCHEDTYPE Qualifiers 10–28

TABLE 10-6 DOALL Qualifiers (Cray Style) 10–34
xi

TABLE 10-7 DOALL Cray Scheduling 10–35

TABLE 11-1 Data Sizes and Alignment—(in Bytes) Pass by Reference (f95 and cc) 11–3

TABLE 11-2 Comparing I/O Between Fortran and C 11–7

TABLE 11-3 Passing Simple Data Types 11–9

TABLE 11-4 Passing COMPLEX Data Types 11–10

TABLE 11-5 Passing a CHARACTER String 11–11

TABLE 11-6 Passing a One-Dimensional Array 11–12

TABLE 11-7 Passing a Two-Dimensional Array 11–13

TABLE 11-8 Passing Legacy FORTRAN 77 STRUCTURE Records 11–14

TABLE 11-9 Passing Fortran 95 Derived Types 11–15

TABLE 11-10 Passing a FORTRAN 77 (Cray) POINTER 11–16

TABLE 11-11 Passing Simple Data Elements Between C and Fortran 95 11–19

TABLE 11-12 Functions Returning a REAL or Float Value 11–21

TABLE 11-13 Function Returning COMPLEX Data (SPARC V8) 11–22

TABLE 11-14 Function Returning COMPLEX Data (SPARC V9) 11–23

TABLE 11-15 A Function Returning a CHARACTER String 11–24

TABLE 11-16 Emulating Labeled COMMON 11–25

TABLE 11-17 Alternate Returns 11–27
xii Fortran Programming Guide • May 2003

Before You Begin

The Fortran Programming Guide gives essential information about the the Sun™ ONE
Studio Compiler Collection Fortran 95 compiler f95. It describes Fortran 95
input/output, program development, libraries, program analysis and debugging,
numerical accuracy, porting, performance, optimization, parallelization, and
interoperability.

This guide is intended for scientists, engineers, and programmers who have a
working knowledge of the Fortran language and wish to learn how to use the
Fortran compiler effectively. Familiarity with the Solaris™ operating environment or
UNIX® in general is also assumed.

See also the companion Fortran User’s Guide for information about the environment
and command-line options for the f95 compiler.
xiii

Typographic Conventions

■ The symbol ∆ stands for a blank space where a blank is significant:

■ The FORTRAN 77 standard used an older convention, spelling the name
“FORTRAN” capitalized. The current convention is to use lower case:
“Fortran 95”

■ References to online man pages appear with the topic name and section number.
For example, a reference to the library routine GETENV will appear as getenv(3F),
implying that the man command to access this man page would be:
man -s 3F getenv.

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.

∆∆36.001
xiv Fortran Programming Guide • May 2003

Shell Prompts

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
Before You Begin xv

Accessing Compiler Collection Tools and
Man Pages
The compiler collection components and man pages are not installed into the
standard /usr/bin/ and /usr/share/man directories. To access the compilers and
tools, you must have the compiler collection component directory in your PATH
environment variable. To access the man pages, you must have the compiler
collection man page directory in your MANPATH environment variable.

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note – The information in this section assumes that your Sun ONE Studio compiler
collection components are installed in the /opt directory. If your software is not
installed in the /opt directory, ask your system administrator for the equivalent
path on your system.

Accessing the Compilers and Tools
Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

% echo $PATH
xvi Fortran Programming Guide • May 2003

▼ To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable.

/opt/SUNWspro/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

▼ To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

% man dbx
Before You Begin xvii

Accessing Compiler Collection
Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.
xviii Fortran Programming Guide • May 2003

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Related Compiler Collection Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Release notes HTML at http://docs.sun.com/

Document Title Description

Fortran User’s Guide Describes the compile-time environment and
command-line options for the f95 compiler. Also
includes guidelines for migrating legacy f77
programs to f95.
Before You Begin xix

Accessing Related Solaris
Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Fortran Library Reference Details the Fortran library and intrinsic routines

OpenMP API User’s Guide Summary of the OpenMP multiprocessing API, with
specifics about the implementation.

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris operating environment.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris link-editor and runtime
linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Document Title Description
xx Fortran Programming Guide • May 2003

Resources for Developers
Visithttp://www.sun.com/developers/studioandclick theCompiler Collection
link to find these frequently updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compiler collection components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://www.sun.com/developers/.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (817-0929-10) of the document in the subject line of
your email.
Before You Begin xxi

xxii Fortran Programming Guide • May 2003

CHAPTER 1

Introduction

The Sun™ ONE Studio Fortran 95 compiler, f95, described here and in the
companion Fortran User’s Guide, is available under the Solaris™ operating
environment on SPARC® and UltraSPARC® platforms. The compiler conforms to
published Fortran language standards, and provides many extended features,
including multiprocessor parallelization, sophisticated optimized code compilation,
and mixed C/Fortran language support.

The f95 compiler also provides a Fortran 77 compatibility mode that accepts most
legacy Fortran 77 source codes. The compiler collection no longer includes a separate
Fortran 77 compiler. See Chapter 5 of the Fortran User’s Guide for information on
FORTRAN 77 compatibility and migration issues.

1.1 Standards Conformance
■ f95 was designed to be compatible with the ANSI X3.198-1992, ISO/IEC

1539:1991, and ISO/IEC 1539:1997 standards documents.

■ Floating-point arithmetic is based on IEEE standard 754-1985, and international
standard IEC 60559:1989.

■ f95 provides support for the optimization-exploiting features of SPARC V8, and
SPARC V9, including the UltraSPARC implementation. These features are defined
in the SPARC Architecture Manuals, Version 8 (ISBN 0-13-825001-4), and Version
9 (ISBN 0-13-099227-5), published by Prentice-Hall for SPARC International.

■ In this document, “Standard” means conforming to the versions of the standards
listed above. “Non-standard” or “Extension” refers to features that go beyond
these versions of these standards.
1-1

The responsible standards bodies may revise these standards from time to time. The
versions of the applicable standards to which these compilers conform may be
revised or replaced, resulting in features in future releases of the Sun Fortran
compilers that create incompatibilities with earlier releases.

1.2 Features of the Fortran 95 Compiler
The Sun ONE Studio Fortran 95 compiler provides the following features and
extensions:

■ Global program checking across routines for consistency of arguments, commons,
parameters, and the like.

■ Optimized automatic and explicit loop parallelization for multiprocessor systems.

■ VAX/VMS Fortran extensions, including:

■ Structures, records, unions, maps
■ Recursion

■ OpenMP parallelization directives.

■ Cray-style parallelization directives, including TASKCOMMON.

■ Global, peephole, and potential parallelization optimizations produce high
performance applications. Benchmarks show that optimized applications can run
significantly faster when compared to unoptimized code.

■ Common calling conventions on Solaris systems permit routines written in C or
C++ to be combined with Fortran programs.

■ Support for 64-bit enabled Solaris environments on UltraSPARC platforms.

■ Call-by-value using %VAL.

■ Compatibility between Fortran 77 and Fortran 95 programs and object binaries.

■ Interval Arithmetic programming.

■ Some “Fortran 2000” features, including Stream I/O.

See Appendix B of the Fortran User’s Guide for details on new and extended features
added to the compiler with each software release.

1.3 Other Fortran Utilities
The following utilities provide assistance in the development of software programs
in Fortran:
1-2 Fortran Programming Guide • May 2003

■ Sun ONE Studio Performance Analyzer — In depth performance analysis tool
for single threaded and multi-threaded applications. See analyzer(1).

■ asa — This Solaris utility is a Fortran output filter for printing files that have
Fortran carriage-control characters in column one. Use asa to transform files
formatted with Fortran carriage-control conventions into files formatted
according to UNIX line-printer conventions. See asa(1).

■ fdumpmod — A utility to display the names of modules contained in a file or
archive. See fdumpmod(1).

■ fpp — A Fortran source code preprocessor. See fpp(1).

■ fsplit — This utility splits one Fortran file of several routines into several files,
each with one routine per file. Use fsplit on FORTRAN 77 or Fortran 95 source
files. See fsplit(1)

1.4 Debugging Utilities
The following debugging utilities are available:

■ -Xlist — A compiler option to check across routines for consistency of
arguments, COMMON blocks, and so on.

■ Sun ONE Studio dbx—Provides a robust and feature-rich runtime and static
debugger, and includes a performance data collector.

1.5 Sun Performance Library
The Sun Performance Library™ is a library of optimized subroutines and functions
for computational linear algebra and Fourier transforms. It is based on the standard
libraries LAPACK, BLAS1, BLAS2, BLAS3, FFTPACK, VFFTPACK, and LINPACK
generally available through Netlib (www.netlib.org).

Each subprogram in the Sun Performance Library performs the same operation and
has the same interface as the standard library versions, but is generally much faster
and accurate and can be used in a multiprocessing environment.

See the performance_library README file, and the Sun Performance Library
User’s Guide for details. (Man pages for the performance library routines are in
section 3P.)
Chapter 1 Introduction 1-3

1.6 Interval Arithmetic
The Fortran 95 compiler provides the compiler flags -xia and -xinterval to
enable new language extensions and generate the appropriate code to implement
interval arithmetic computations.

See the Fortran 95 Interval Arithmetic Programming Reference for details.

1.7 Man Pages
Online manual (man) pages provide immediate documentation about a command,
function, subroutine, or collection of such things. See the Preface for the proper
setting of the MANPATH environment variable for accessing Sun ONE Studio man
pages.)

You can display a man page by running the command:

Throughout the Fortran documentation, man page references appear with the topic
name and man section number: f95(1) is accessed with man f95. Other sections,
denoted by ieee_flags(3M) for example, are accessed using the -s option on the
man command:

The Fortran library routines are documented in the man page section 3F.

The following lists man pages of interest to Fortran users:

demo% man topic

demo% man -s 3M ieee_flags

f95(1) The Fortran 95 command-line options

analyzer(1) Sun ONE Studio Performance Analyzer

asa(1) Fortran carriage-control print output post-processor

dbx(1) Command-line interactive debugger

fpp(1) Fortran source code pre-processor
1-4 Fortran Programming Guide • May 2003

1.8 README Files
The READMEs directory contains files that describe new features, software
incompatibilities, bugs, and information that was discovered after the manuals were
printed. The location of this directory depends on where your software was
installed. The path is: /opt/SUNWspro/READMEs/.

The README file for each compiler is easily viewed by the -xhelp=readme
command-line option. For example, the command:

will display the fortran_95 README file directly.

cpp(1) C source code pre-processor

fdumpmod(1) Display contents of a MODULE (.mod) file.

fsplit(1) Pre-processor splits Fortran source routines into single files

ieee_flags(3M) Examine, set, or clear floating-point exception bits

ieee_handler(3M) Handle floating-point exceptions

matherr(3M) Math library error handling routine

ild(1) Incremental link editor for object files

ld(1) Link editor for object files

TABLE 1-1 READMEs of Interest

README File Describes...

fortran_95 new and changed features, known limitations, documentation
errata for this release of the Fortran 95 compiler, f95.

fpp_readme overview of fpp features and capabilities

interval_arithmetic overview of the interval arithmetic features in f95

math_libraries optimized and specialized math libraries available.

profiling_tools using the performance profiling tools, prof, gprof, and
tcov.

runtime_libraries libraries and executables that can be redistributed under the
terms of the End User License.

performance_library overview of the Sun Performance Library

% f95 -xhelp=readme
Chapter 1 Introduction 1-5

1.9 Command-Line Help
You can view very brief descriptions of the f95 command line options by invoking
the compiler’s -help option as shown below:

%f95 -help=flags
Items within [] are optional. Items within < > are variable
parameters.
Bar | indicates choice of literal values.
-someoption[={yes|no}] implies -someoption is equivalent to
-someoption=yes

-a Collect data for tcov basic
block profiling
-aligncommon[=<a>] Align common block elements to the specified

boundary requirement; <a>={1|2|4|8|16}
-ansi Report non-ANSI extensions.
-autopar Enable automatic loop parallelization
-Bdynamic Allow dynamic linking
-Bstatic Require static linking
-C Enable runtime subscript range checking
-c Compile only; produce .o files but suppress

 linking
...etc.
1-6 Fortran Programming Guide • May 2003

CHAPTER 2

Fortran Input/Output

This chapter discusses the input/output features provided by the Sun ONE Studio
Fortran 95 compiler.

2.1 Accessing Files From Within Fortran
Programs
Data is transferred between the program and devices or files through a Fortran
logical unit. Logical units are identified in an I/O statement by a logical unit number,
a nonnegative integer from 0 to the maximum 4-byte integer value (2,147,483,647).

The character * can appear as a logical unit identifier. The asterisk stands for
standard input file when it appears in a READ statement; it stands for standard output
file when it appears in a WRITE or PRINT statement.

A Fortran logical unit can be associated with a specific, named file through the OPEN
statement. Also, certain preconnected units are automatically associated with
specific files at the start of program execution.

2.1.1 Accessing Named Files
The OPEN statement’s FILE= specifier establishes the association of a logical unit to
a named, physical file at runtime. This file can be pre-existing or created by the
program.

The FILE= specifier on an OPEN statement may specify a simple file name (FILE=
'myfile.out') or a file name preceded by an absolute or relative directory path
(FILE='../Amber/Qproj/myfile.out'). Also, the specifier may be a character
constant, variable, or character expression.
2-1

Library routines can be used to bring command-line arguments and environment
variables into the program as character variables for use as file names in OPEN
statements.

The following example (GetFilNam.f) shows one way to construct an absolute
path file name from a typed-in name. The program uses the library routines GETENV,
LNBLNK, and GETCWD to return the value of the $HOME environment variable, find
the last non-blank in the string, and determine the current working directory:

 CHARACTER F*128, FN*128, FULLNAME*128
 PRINT*, 'ENTER FILE NAME:'
 READ *, F
 FN = FULLNAME(F)
 PRINT *, 'PATH IS: ',FN
 END

 CHARACTER*128 FUNCTION FULLNAME(NAME)
 CHARACTER NAME*(*), PREFIX*128
C This assumes C shell.
C Leave absolute path names unchanged.
C If name starts with '~/', replace tilde with home
C directory; otherwise prefix relative path name with
C path to current directory.
 IF (NAME(1:1) .EQ. '/') THEN
 FULLNAME = NAME
 ELSE IF (NAME(1:2) .EQ. '~/') THEN
 CALL GETENV('HOME', PREFIX)
 FULLNAME = PREFIX(:LNBLNK(PREFIX)) //
 1 NAME(2:LNBLNK(NAME))
 ELSE
 CALL GETCWD(PREFIX)
 FULLNAME = PREFIX(:LNBLNK(PREFIX)) //
 1 '/' // NAME(:LNBLNK(NAME))
 ENDIF
 RETURN
 END
2-2 Fortran Programming Guide • May 2003

Compiling and running GetFilNam.f results in:

These routines are further described in “Passing File Names to Programs” on
page 2-5. See man page entries for getarg(3F), getcwd(3F), and getenv(3F) for
details; these and other useful library routines are also described in the Fortran
Library Reference.

2.1.2 Opening Files Without a Name
The OPEN statement need not specify a name; the runtime system supplies a file
name according to several conventions.

2.1.2.1 Opened as Scratch

Specifying STATUS='SCRATCH' in the OPEN statement opens a file with a name of
the form tmp.FAAAxnnnnn, where nnnnn is replaced by the current process ID,
AAA is a string of three characters, and x is a letter; the AAA and x make the file
name unique. This file is deleted upon termination of the program or execution of a
CLOSE statement. When compiling in FORTRAN 77 compatibility mode (-f77), you
can specify STATUS='KEEP' in the CLOSE statement to preserve the scratch file.
(This is a non-standard extension.)

2.1.2.2 Already Open

If the file has already been opened by the program, you can use a subsequent OPEN
statement to change some of the file’s characteristics; for example, BLANK and FORM.
In this case, you would specify only the file’s logical unit number and the
parameters to change.

demo% pwd
/home/users/auser/subdir
demo% f95 -o getfil GetFilNam.f
demo% getfil
 ENTER FILE NAME:
getfil
 PATH IS: /home/users/auser/subdir/atest.f

demo%
Chapter 2 Fortran Input/Output 2-3

2.1.2.3 Preconnected or Implicitly Named Units

Three unit numbers are automatically associated with specific standard I/O files at
the start of program execution. These preconnected units are standard input, standard
output, and standard error:

■ Standard input is logical unit 5
■ Standard output is logical unit 6
■ Standard error is logical unit 0

Typically, standard input receives input from the workstation keyboard; standard
output and standard error display output on the workstation screen.

In all other cases where a logical unit number but no FILE= name is specified on an
OPEN statement, a file is opened with a name of the form fort.n, where n is the
logical unit number.

2.1.3 Opening Files Without an OPEN Statement
Use of the OPEN statement is optional in those cases where default conventions can
be assumed. If the first operation on a logical unit is an I/O statement other than
OPEN or INQUIRE, the file fort.n is referenced, where n is the logical unit number
(except for 0, 5, and 6, which have special meaning).

These files need not exist before program execution. If the first operation on the file
is not an OPEN or INQUIRE statement, they are created.

Example: The WRITE in the following code creates the file fort.25 if it is the first
input/output operation on that unit:

The preceding program opens the file fort.25 and writes a single formatted record
onto that file:

demo% cat TestUnit.f
 IU=25
 WRITE(IU, '(I4)') IU
 END
demo%

demo% f95 -o testunit TestUnit.f
demo% testunit
demo% cat fort.25
 25
demo%
2-4 Fortran Programming Guide • May 2003

2.1.4 Passing File Names to Programs
The file system does not have any automatic facility to associate a logical unit
number in a Fortran program with a physical file.

However, there are several satisfactory ways to communicate file names to a Fortran
program.

2.1.4.1 Via Runtime Arguments and GETARG

The library routine getarg(3F) can be used to read the command-line arguments at
runtime into a character variable. The argument is interpreted as a file name and
used in the OPEN statement FILE= specifier:

demo% cat testarg.f
 CHARACTER outfile*40
C Get first arg as output file name for unit 51
 CALL getarg(1,outfile)
 OPEN(51,FILE=outfile)
 WRITE(51,*) 'Writing to file: ', outfile
 END
demo% f95 -o tstarg testarg.f
demo% tstarg AnyFileName
demo% cat AnyFileName
 Writing to file: AnyFileName
demo%
Chapter 2 Fortran Input/Output 2-5

2.1.4.2 Via Environment Variables and GETENV

Similarly, the library routine getenv(3F) can be used to read the value of any
environment variable at runtime into a character variable that in turn is interpreted
as a file name:

When using getarg or getenv, care should be taken regarding leading or trailing
blanks. (Fortran 95 programs can use the intrinsic function TRIM, or the older
FORTRAN 77 library routine LNBLNK()) Additional flexibility to accept relative
path names can be programmed along the lines of the FULLNAME function in the
example at the beginning of this chapter.

2.1.4.3 Command-Line I/O Redirection and Piping

Another way to associate a physical file with a program’s logical unit number is by
redirecting or piping the preconnected standard I/O files. Redirection or piping
occurs on the runtime execution command.

In this way, a program that reads standard input (unit 5) and writes to standard
output (unit 6) or standard error (unit 0) can, by redirection (using <, >, >>, >&,
|, |&, 2>, 2>&1 on the command line), read or write to any other named file.

demo% cat testenv.f
 CHARACTER outfile*40
C Get $OUTFILE as output file name for unit 51
 CALL getenv('OUTFILE',outfile)
 OPEN(51,FILE=outfile)
 WRITE(51,*) 'Writing to file: ', outfile
 END
demo% f95 -o tstenv testenv.f
demo% setenv OUTFILE EnvFileName
demo% tstenv
demo% cat EnvFileName
 Writing to file: EnvFileName
demo%
2-6 Fortran Programming Guide • May 2003

This is shown in the following table:

See the csh, ksh, and sh man pages for details on redirection and piping on the
command line.

2.2 Direct I/O
Direct or random I/O allows you to access a file directly by record number. Record
numbers are assigned when a record is written. Unlike sequential I/O, direct I/O
records can be read and written in any order. However, in a direct access file, all
records must be the same fixed length. Direct access files are declared with the
ACCESS='DIRECT' specifier on the OPEN statement for the file.

A logical record in a direct access file is a string of bytes of a length specified by the
OPEN statement’s RECL= specifier. READ and WRITE statements must not specify
logical records larger than the defined record size. (Record sizes are specified in
bytes.) Shorter records are allowed. Unformatted, direct writes leave the unfilled
part of the record undefined. Formatted, direct writes cause the unfilled record to be
padded with blanks.

Direct access READ and WRITE statements have an extra argument, REC=n, to specify
the record number to be read or written.

TABLE 2-1 csh/sh/ksh Redirection and Piping on the Command Line

Action Using C Shell Using Bourne or Korn Shell

Standard input —
read from mydata

myprog < mydata myprog < mydata

Standard output —
write (overwrite)
myoutput

myprog > myoutput myprog > myoutput

Standard output —
write/append to
myoutput

myprog >> myoutput myprog >> myoutput

Redirect standard error to
a file

myprog >& errorfile myprog 2> errorfile

Pipe standard output to
input of another program

myprog1 | myprog2 myprog1 | myprog2

Pipe standard error and
output to another program

myprog1 |& myprog2 myprog1 2>&1 | myprog2
Chapter 2 Fortran Input/Output 2-7

Example: Direct access, unformatted:

This program opens a file for direct access, unformatted I/O, with a fixed record
length of 200 bytes, then reads the thirteenth record into X and Y.

Example: Direct access, formatted:

This program opens a file for direct access, formatted I/O, with a fixed record length
of 200 bytes. It then reads the thirteenth record and converts it with the format
(I10,F10.3).

For formatted files, the size of the record written is determined by the FORMAT
statement. In the preceding example, the FORMAT statement defines a record of 20
characters or bytes. More than one record can be written by a single formatted write
if the amount of data on the list is larger than the record size specified in the FORMAT
statement. In such a case, each subsequent record is given successive record
numbers.

Example: Direct access, formatted, multiple record write:

The write to direct access unit 21 creates 10 records of 10 elements each (since the
format specifies 10 elements per record) these records are numbered 11 through 20.

2.3 Binary I/O
Sun ONE Studio Fortran 95 extends the OPEN statement to allow declaration of a
“binary” I/O file.

 OPEN(2, FILE='data.db', ACCESS='DIRECT', RECL=200,
& FORM='UNFORMATTED', ERR=90)
 READ(2, REC=13, ERR=30) X, Y

 OPEN(2, FILE='inven.db', ACCESS='DIRECT', RECL=200,
& FORM='FORMATTED', ERR=90)
 READ(2, FMT='(I10,F10.3)', REC=13, ERR=30) X, Y

 OPEN(21, ACCESS='DIRECT', RECL=200, FORM='FORMATTED')
 WRITE(21,'(10F10.3)',REC=11) (X(J),J=1,100)
2-8 Fortran Programming Guide • May 2003

Opening a file with FORM='BINARY' has roughly the same effect as FORM=
'UNFORMATTED', except that no record lengths are embedded in the file. Without
this data, there is no way to tell where one record begins, or ends. Thus, it is
impossible to BACKSPACE a FORM='BINARY' file, because there is no way of telling
where to backspace to. A READ on a 'BINARY' file will read as much data as needed
to fill the variables on the input list.

■ WRITE statement: Data is written to the file in binary, with as many bytes
transferred as specified by the output list.

■ READ statement: Data is read into the variables on the input list, transferring as
many bytes as required by the list. Because there are no record marks on the file,
there will be no “end-of-record” error detection. The only errors detected are
“end-of-file” or abnormal system errors.

■ INQUIRE statement: INQUIRE on a file opened with FORM=”BINARY” returns:
FORM=”BINARY”
ACCESS=”SEQUENTIAL”
DIRECT=”NO”
FORMATTED=”NO”
UNFORMATTED=”YES”
RECL= AND NEXTREC= are undefined

■ BACKSPACE statement: Not allowed—returns an error.

■ ENDFILE statement: Truncates file at current position, as usual.

■ REWIND statement: Repositions file to beginning of data, as usual.

2.4 Stream I/O
A new “stream” I/O scheme has been proposed as part of the Fortran 2000 draft
standard, and is implemented in f95. Stream I/O access treats a data file as a
continuous sequence of bytes, addressable by a positive integer starting from 1.
Declare a stream I/O file with the ACCESS=’STREAM’ specifier on the OPEN
statement. File positioning to a byte address requires a POS=scalar_integer_expression
specifier on a READ or WRITE statement. The INQUIRE statement accepts ACCESS=
’STREAM’, a specifier STREAM=scalar_character_variable, and POS=
scalar_integer_variable.
Chapter 2 Fortran Input/Output 2-9

Stream I/O is very useful when interoperating with files created or read by C
programs, as is shown in the following example:

The C program writes 1024 32-bit integers to a file using C fwrite(). The Fortran
95 reader reads them once as an array, and then reads them individually going
backwards through the file. The pos= specifier in the second read statement
illustrates that positions are in bytes, starting from byte 1 (as opposed to C, where
they start from byte 0).

Fortran 95 program reads files created by C fwrite()

program reader
integer:: a(1024), i, result
open(file="test", unit=8, access="stream",form="unformatted")
! read all of a
read(8) a
do i = 1,1024

if (a(i) .ne. i-1) print *,’error at ’, i
enddo
! read the file backward
do i = 1024,1,-1

read(8, pos=(i-1)*4+1) result
if (result .ne. i-1) print *,’error at ’, i

enddo
close(8)
end

C program writes to a file

#include <stdio.h>
int binary_data[1024];

/* Create a file with 1024 32-bit integers */
int
main(void)
{
 int i;
 FILE *fp;

 for (i = 0; i < 1024; ++i)
 binary_data[i] = i;
 fp = fopen("test", "w");
 fwrite(binary_data, sizeof(binary_data), 1, fp);
 fclose(fp);
}

2-10 Fortran Programming Guide • May 2003

2.5 Internal Files
An internal file is an object of type CHARACTER such as a variable, substring, array,
element of an array, or field of a structured record. Internal file READ can be from a
constant character string. I/O on internal files simulates formatted READ and WRITE
statements by transferring and converting data from one character object to another
data object. No file I/O is performed.

When using internal files:

■ The name of the character object receiving the data appears in place of the unit
number on a WRITE statement. On a READ statement, the name of the character
object source appears in place of the unit number.

■ A constant, variable, or substring object constitutes a single record in the file.

■ With an array object, each array element corresponds to a record.

■ Direct I/O on internal files. (The Fortran 95 standard includes only sequential
formatted I/O on internal files.) This is similar to direct I/O on external files,
except that the number of records in the file cannot be changed. In this case, a
record is a single element of an array of character strings. This non-standard
extension is only available in FORTRAN 77 compatibility mode by compiling
with the -f77 flag.

■ Each sequential READ or WRITE statement starts at the beginning of an internal
file.

Example: Sequential formatted read from an internal file (one record only):

demo% cat intern1.f
 CHARACTER X*80
 READ(*, '(A)') X
 READ(X, '(I3,I4)') N1, N2 ! This codeline reads the internal file X
 WRITE(*, *) N1, N2
 END
demo% f95 -o tstintern intern1.f
demo% tstintern
 12 99
 12 99
demo%
Chapter 2 Fortran Input/Output 2-11

Example: Sequential formatted read from an internal file (three records):

Example: Direct access read from an internal file (one record), in -f77 compatibility
mode:

2.6 Additional I/O Considerations
Fortran 95 and legacy Fortran 77 programs are I/O compatible. Executables
containing intermixed f77 and f95 compilations can do I/O to the same unit from
both the f77 and f95 parts of the program.

However, Fortran 95 provides some additional features:

demo% cat intern2.f
 CHARACTER LINE(4)*16
 DATA LINE(1) / ' 81 81 ' /
 DATA LINE(2) / ' 82 82 ' /
 DATA LINE(3) / ' 83 83 ' /
 DATA LINE(4) / ' 84 84 ' /
 READ(LINE,'(2I4)') I,J,K,L,M,N
 PRINT *, I, J, K, L, M, N
 END
demo% f95 intern2.f
demo% a.out
 81 81 82 82 83 83
demo%

demo% cat intern3.f
 CHARACTER LINE(4)*16
 DATA LINE(1) / ' 81 81 ' /
 DATA LINE(2) / ' 82 82 ' /
 DATA LINE(3) / ' 83 83 ' /
 DATA LINE(4) / ' 84 84 ' /
 READ (LINE, FMT=20, REC=3) M, N
20 FORMAT(I4, I4)
 PRINT *, M, N
 END
demo% f95 -f77 intern3.f
demo% a.out
 83 83
demo%
2-12 Fortran Programming Guide • May 2003

■ ADVANCE='NO' enables nonadvancing I/O, as in:

■ NAMELIST input features:

■ f95 allows the group name to be preceded by $ or & on input. The Fortran 95
standard accepts only & and this is what a NAMELIST write outputs.

■ f95 accepts $ as the symbol terminating an input group unless the last data
item in the group is CHARACTER, in which case the $ is treated as input data.

■ f95 allows NAMELIST input to start in the first column of a record.

■ ENCODE and DECODE are recognized and implemented by f95 just as they were
by f77.

See the Fortran User’s Guide for additional information about Fortran 95 I/O
extensions and compatibility between f95 and f77.

 write(*,'(a)',ADVANCE='NO') 'Enter size= '
 read(*,*) n
Chapter 2 Fortran Input/Output 2-13

2-14 Fortran Programming Guide • May 2003

CHAPTER 3

Program Development

This chapter briefly introduces two powerful program development tools, make and
SCCS, that can be used very successfully with Fortran programming projects.

A number of good, commercially published books on using make and SCCS are
currently available, including Managing Projects with make, by Andrew Oram and
Steve Talbott, and Applying RCS and SCCS, by Don Bolinger and Tan Bronson. Both
are from O’Reilly & Associates.

3.1 Facilitating Program Builds With the
make Utility
The make utility applies intelligence to the task of program compilation and linking.
Typically, a large application consists of a set of source files and INCLUDE files,
requiring linking with a number of libraries. Modifying any one or more of the
source files requires recompilation of that part of the program and relinking. You can
automate this process by specifying the interdependencies between files that make
up the application along with the commands needed to recompile and relink each
piece. With these specifications in a file of directives, make ensures that only the files
that need recompiling are recompiled and that relinking uses the options and
libraries you need to build the executable. The following discussion provides a
simple example of how to use make. For a summary, see make(1S).

3.1.1 The Makefile
A file called makefile tells make in a structured manner which source and object
files depend on other files. It also defines the commands required to compile and
link the files.
3-1

For example, suppose you have a program of four source files and the makefile:

Assume both pattern.f and computepts.f have an INCLUDE of commonblock,
and you wish to compile each.f file and link the three relocatable files, along with a
series of libraries, into a program called pattern.

The makefile looks like this:

The first line of makefile indicates that making pattern depends on pattern.o,
computepts.o, and startupcore.o. The next line and its continuations give the
command for making pattern from the relocatable.o files and libraries.

Each entry in makefile is a rule expressing a target object’s dependencies and the
commands needed to make that object. The structure of a rule is:

target: dependencies-list
TAB build-commands

■ Dependencies. Each entry starts with a line that names the target file, followed by
all the files the target depends on.

■ Commands. Each entry has one or more subsequent lines that specify the Bourne
shell commands that will build the target file for this entry. Each of these
command lines must be indented by a tab character.

demo% ls
makefile
commonblock
computepts.f
pattern.f
startupcore.f
demo%

demo% cat makefile
pattern: pattern.o computepts.o startupcore.o
 f95 pattern.o computepts.o startupcore.o –lcore95 \
 –lcore –lsunwindow –lpixrect –o pattern
pattern.o: pattern.f commonblock
 f95 –c –u pattern.f
computepts.o: computepts.f commonblock
 f95 –c –u computepts.f
startupcore.o: startupcore.f
 f95 –c –u startupcore.f
demo%
3-2 Fortran Programming Guide • May 2003

3.1.2 make Command
The make command can be invoked with no arguments, simply:

The make utility looks for a file named makefile or Makefile in the current
directory and takes its instructions from that file.

The make utility:

■ Reads makefile to determine all the target files it must process, the files they
depend on, and the commands needed to build them.

■ Finds the date and time each file was last changed.

■ Rebuilds any target file that is older than any of the files it depends on, using the
commands from makefile for that target.

3.1.3 Macros
The make utility’s macro facility allows simple, parameterless string substitutions.
For example, the list of relocatable files that make up the target program pattern
can be expressed as a single macro string, making it easier to change.

A macro string definition has the form:

NAME = string

Use of a macro string is indicated by:

$(NAME)

which is replaced by make with the actual value of the macro string.

This example adds a macro definition naming all the object files to the beginning of
makefile:

demo% make

OBJ = pattern.o computepts.o startupcore.o
Chapter 3 Program Development 3-3

Now the macro can be used in both the list of dependencies as well as on the f95
link command for target pattern in makefile:

For macro strings with single-letter names, the parentheses may be omitted.

3.1.4 Overriding of Macro Values
The initial values of make macros can be overridden with command-line options to
make. For example:

Now a simple make command without arguments uses the value of FFLAGS set
above. However, this can be overridden from the command line:

Here, the definition of the FFLAGS macro on the make command line overrides the
makefile initialization, and both the -O flag and the -u flag are passed to f95.
Note that "FFLAGS=" can also be used on the command to reset the macro to a null
string so that it has no effect.

3.1.5 Suffix Rules in make

To make writing a makefile easier, make will use its own default rules depending on
the suffix of a target file.

pattern: $(OBJ)
 f95 $(OBJ) –lcore95 –lcore –lsunwindow \
 –lpixrect –o pattern

FFLAGS=–u
OBJ = pattern.o computepts.o startupcore.o
pattern: $(OBJ)
 f95 $(FFLAGS) $(OBJ) –lcore95 –lcore –lsunwindow \
 –lpixrect –o pattern
pattern.o: pattern.f commonblock
 f95 $(FFLAGS) -c pattern.f
computepts.o:
 f95 $(FFLAGS) –c computepts.f

demo% make "FFLAGS=–u –O"
3-4 Fortran Programming Guide • May 2003

The default rules are in the file /usr/share/lib/make/make.rules. When
recognizing default suffix rules, make passes as arguments any flags specified by the
FFLAGS macro, the -c flag, and the name of the source file to be compiled. Also, the
make.rules file uses the name assigned by the FC macro as the name of the Fortran
compiler to be used.

The example below demonstrates this rule twice:

make uses default rules to compile computepts.f and startupcore.f.

There are default suffix rules for .f90 files that will invoke the f95 compiler.

However, unless you define the FC macro to be f95, the default suffix rules for .f
and .F files call f77 and not f95.

Furthermore, there are no suffix rules currently defined for .f95 and .F95 files, and
.mod Fortran 95 module files will invoke the Modula compiler. To remedy this
requires creating your own local copy of the make.rules file in the directory in
which make is called, and modifying the file to add .f95 and .F95 suffix rules,
and delete the suffix rules for .mod. See the make(1S) man page for details.

3.1.6 .KEEP_STATE and Special Dependency Checking
Use the special target .KEEP_STATE to check for command dependencies and
hidden dependencies.

When the .KEEP_STATE: target is effective, make checks the command for building
a target against the state file. If the command has changed since the last make run,
make rebuilds the target.

When the .KEEP_STATE: target is effective, make reads reports from cpp(1) and
other compilation processors for any "hidden" files, such as #include files. If the
target is out of date with respect to any of these files, make rebuilds it.

FC = f95
OBJ = pattern.o computepts.o startupcore.o
FFLAGS=–u
pattern: $(OBJ)
 f95 $(OBJ) –lcore95 –lcore –lsunwindow \
 –lpixrect –o pattern
pattern.o: pattern.f commonblock
 f95 $(FFLAGS) –c pattern.f
computepts.o: computepts.f commonblock
startupcore.o: startupcore.f
Chapter 3 Program Development 3-5

3.2 Version Tracking and Control With SCCS
SCCS stands for Source Code Control System. SCCS provides a way to:

■ Keep track of the evolution of a source file—its change history
■ Prevent a source file from being simultaneously changed by other developers
■ Keep track of the version number by providing version stamps

The basic three operations of SCCS are:

■ Putting files under SCCS control
■ Checking out a file for editing
■ Checking in a file

This section shows you how to use SCCS to perform these tasks, using the previous
program as an example. Only basic SCCS is described and only three SCCS
commands are introduced: create, edit, and delget.

3.2.1 Controlling Files With SCCS
Putting files under SCCS control involves:

■ Making the SCCS directory
■ Inserting SCCS ID keywords into the files (this is optional)
■ Creating the SCCS files

3.2.1.1 Creating the SCCS Directory

To begin, you must create the SCCS subdirectory in the directory in which your
program is being developed. Use this command:

SCCS must be in uppercase.

3.2.1.2 Inserting SCCS ID Keywords

Some developers put one or more SCCS ID keywords into each file, but that is
optional. These keywords are later identified with a version number each time the
files are checked in with an SCCS get or delget command. There are three likely
places to put these strings:

demo% mkdir SCCS
3-6 Fortran Programming Guide • May 2003

■ Comment lines
■ Parameter statements
■ Initialized data

The advantage of using keywords is that the version information appears in the
source listing and compiled object program. If preceded by the string @(#), the
keywords in the object file can be printed using the what command.

Included header files that contain only parameter and data definition statements do
not generate any initialized data, so the keywords for those files usually are put in
comments or in parameter statements. In some files, like ASCII data files or
makefiles, the SCCS information will appear in comments.

SCCS keywords appear in the form %keyword% and are expanded into their values by
the SCCS get command. The most commonly used keywords are:

%Z% expands to the identifier string @(#) recognized by the what command.
%M% expands to the name of the source file.
%I% expands to the version number of this SCCS maintained file.
%E% expands to the current date.

For example, you could identify the makefile with a make comment containing these
keywords:

The source files, startupcore.f, computepts.f, and pattern.f, can be
identified by initialized data of the form:

When this file is processed by SCCS, compiled, and the object file processed by the
SCCS what command, the following is displayed:

%Z%%M% %I% %E%

 CHARACTER*50 SCCSID
 DATA SCCSID/"%Z%%M% %I% %E%\n"/

demo% f95 -c pattern.f
...
demo% what pattern
pattern:
 pattern.f 1.2 96/06/10
Chapter 3 Program Development 3-7

You can also create a PARAMETER named CTIME that is automatically updated
whenever the file is accessed with get.

INCLUDE files can be annotated with a Fortran comment containing the SCCS
stamp:

Note – Use of single letter derived type component names in Fortran 95 source code
files can conflict with SCCS keyword recognition. For example, the Fortran 95
structure component reference X%Y%Z when passed through SCCS will become XZ
after an SCCS get. Care should be taken not to define structure components with
single letters when using SCCS on Fortran 95 programs. For example, had the
structure reference in the Fortran 95 program been to X%YY%Z, the %YY% would not
have been interpreted by SCCS as a keyword reference. Alternatively, the SCCS get
-k option will retrieve the file without expanding SCCS keyword IDs.

3.2.1.3 Creating SCCS Files

Now you can put these files under control of SCCS with the SCCS create
command:

3.2.2 Checking Files Out and In
Once your source code is under SCCS control, you use SCCS for two main tasks: to
check out a file so that you can edit it, and to check in a file you have finished editing.

Check out a file with the sccs edit command. For example:

 CHARACTER*(*) CTIME
 PARAMETER (CTIME="%E%")

C %Z%%M% %I% %E%

demo% sccs create makefile commonblock startupcore.f \
 computepts.f pattern.f
demo%

demo% sccs edit computepts.f
3-8 Fortran Programming Guide • May 2003

SCCS then makes a writable copy of computepts.f in the current directory, and
records your login name. Other users cannot check the file out while you have it
checked out, but they can find out who has checked it out.

When you have completed your editing, check in the modified file with the sccs
delget command. For example:

This command causes the SCCS system to:

■ Make sure that you are the user who checked out the file by comparing login
names

■ Prompt for a comment from you on the changes

■ Make a record of what was changed in this editing session

■ Delete the writable copy of computepts.f from the current directory

■ Replace it by a read-only copy with the SCCS keywords expanded

The sccs delget command is a composite of two simpler SCCS commands, delta
and get. The delta command performs the first three tasks in the list above; the
get command performs the last two tasks.

demo% sccs delget computepts.f
Chapter 3 Program Development 3-9

3-10 Fortran Programming Guide • May 2003

CHAPTER 4

Libraries

This chapter describes how to use and create libraries of subprograms. Both static
and dynamic libraries are discussed.

4.1 Understanding Libraries
A software library is usually a set of subprograms that have been previously
compiled and organized into a single binary library file. Each member of the set is
called a library element or module. The linker searches the library files, loading object
modules referenced by the user program while building the executable binary
program. See ld(1) and the Solaris Linker and Libraries Guide for details.

There are two basic kinds of software libraries:

■ Static library. A library in which modules are bound into the executable file before
execution. Static libraries are commonly named libname.a. The .a suffix refers
to archive.

■ Dynamic library. A library in which modules can be bound into the executable
program at runtime. Dynamic libraries are commonly named libname.so. The
.so suffix refers to shared object.

Typical system libraries that have both static (.a) and dynamic (.so) versions are:

■ Fortran 95 libraries: libfsu, libfui, libfai, libfai2, libfsumai,
libfprodai, libfminlai, libfmaxlai, libminvai, libmaxvai, libifai,
libf77compat

■ C libraries: libc

There are two advantages to the use of libraries:

■ There is no need to have source code for the library routines that a program calls.
■ Only the needed modules are loaded.
4-1

Library files provide an easy way for programs to share commonly used
subroutines. You need only name the library when linking the program, and those
library modules that resolve references in the program are linked and merged into
the executable file.

4.2 Specifying Linker Debugging Options
Summary information about library usage and loading can be obtained by passing
additional options to the linker through the LD_OPTIONS environment variable. The
compiler calls the linker with these options (and others it requires) when generating
object binary files.

Using the compiler to call the linker is always recommended over calling the linker
directly because many compiler options require specific linker options or library
references, and linking without these could produce unpredictable results.

Example: Using LD_OPTIONS to create a load map:

Some linker options do have compiler command-line equivalents that can appear
directly on the f95 command. These include –Bx, –dx, –G, –hname, –Rpath, and –
ztext. See the f95(1) man pages or the Fortran User’s Guide for details.

More detailed examples and explanations of linker options and environment
variables can be found in the Solaris Linker and Libraries Guide.

4.2.1 Generating a Load Map
The linker –m option generates a load map that displays library linking information.
The routines linked during the building of the executable binary program are listed
together with the libraries that they come from.

demo% setenv LD_OPTIONS ’–m –Dfiles’
demo% f95 –o myprog myprog.f
4-2 Fortran Programming Guide • May 2003

Example: Using –m to generate a load map:

4.2.2 Listing Other Information
Additional linker debugging features are available through the linker’s –Dkeyword
option. A complete list can be displayed using –Dhelp.

Example: List linker debugging aid options using the –Dhelp option:

demo% setenv LD_OPTIONS ’-m’
demo% f95 any.f
any.f:
 MAIN:
 LINK EDITOR MEMORY MAP

output input virtual
section section address size

.interp 100d4 11
 .interp 100d4 11 (null)
.hash 100e8 2e8
 .hash 100e8 2e8 (null)
.dynsym 103d0 650
 .dynsym 103d0 650 (null)
.dynstr 10a20 366
 .dynstr 10a20 366 (null)
.text 10c90 1e70
.text 10c90 00 /opt/SUNWspro/lib/crti.o
.text 10c90 f4 /opt/SUNWspro/lib/crt1.o
.text 10d84 00 /opt/SUNWspro/lib/values-xi.o
.text 10d88 d20 sparse.o
...

demo% ld –Dhelp
 …
debug: args display input argument processing
debug: bindings display symbol binding;
debug: detail provide more information
debug: entry display entrance criteria descriptors
 …
demo%
Chapter 4 Libraries 4-3

For example, the –Dfiles linker option lists all the files and libraries referenced
during the link process:

See the Linker and Libraries Guide for further information on these linker options.

4.2.3 Consistent Compiling and Linking
Ensuring a consistent choice of compiling and linking options is critical whenever
compilation and linking are done in separate steps. Compiling any part of a program
with some options requires linking with the same options. Also, a number of options
require that all source files be compiled with that option, including the link step.

The option descriptions in the Fortran User’s Guide identify such options.

Example: Compiling sbr.f with –fast, compiling a C routine, and then linking in
a separate step:

4.3 Setting Library Search Paths and Order
The linker searches for libraries at several locations and in a certain prescribed order.
Some of these locations are standard paths, while others depend on the compiler
options -Rpath, –llibrary, and –Ldir and the environment variable
LD_LIBRARY_PATH.

demo% setenv LD_OPTIONS ’-Dfiles’
demo% f95 direct.f
direct.f:
 MAIN direct:
debug: file=/opt/SUNWspro/lib/crti.o [ET_REL]
debug: file=/opt/SUNWspro/lib/crt1.o [ET_REL]
debug: file=/opt/SUNWspro/lib/values–xi.o [ET_REL]
debug: file=direct.o [ET_REL]
debug: file=/opt/SUNWspro/lib/libM77.a [archive]
debug: file=/opt/SUNWspro/lib/libF77.so [ET_DYN]
debug: file=/opt/SUNWspro/lib/libsunmath.a [archive]
 …

demo% f95 -c -fast sbr.f
demo% cc -c -fast simm.c
demo% f95 -fast sbr.o simm.o link step; passes -fast to the linker
4-4 Fortran Programming Guide • May 2003

4.3.1 Search Order for Standard Library Paths
The standard library search paths used by the linker are determined by the
installation path, and they differ for static and dynamic loading. A standard install
puts the Sun ONE Studio compiler software under /opt/SUNWspro/.

4.3.1.1 Static Linking

While building the executable file, the static linker searches for any libraries in the
following paths (among others), in the specified order:

These are the default paths used by the linker.

4.3.1.2 Dynamic Linking

The dynamic linker searches for shared libraries at runtime, in the specified order:

■ Paths specified by user with -Rpath
■ /opt/SUNWspro/lib/
■ /usr/lib standard UNIX default

The search paths are built into the executable.

4.3.2 LD_LIBRARY_PATH Environment Variable
Use the LD_LIBRARY_PATH environment variable to specify directory paths that the
linker should search for libraries specified with the –llibrary option.

Multiple directories can be specified, separated by a colon. Typically, the
LD_LIBRARY_PATH variable contains two lists of colon-separated directories
separated by a semicolon:

dirlist1;dirlist2

The directories in dirlist1 are searched first, followed by any explicit –Ldir directories
specified on the command line, followed by dirlist2 and the standard directories.

That is, if the compiler is called with any number of occurrences of –L, as in:

/opt/SUNWspro/lib Sun ONE Studio shared libraries

/usr/ccs/lib/ Standard location for SVr4 software

/usr/lib Standard location for UNIX software
Chapter 4 Libraries 4-5

f95 ... –Lpath1 ... –Lpathn ...

then the search order is:

dirlist1 path1 ... pathn dirlist2 standard_paths

When the LD_LIBRARY_PATH variable contains only one colon-separated list of
directories, it is interpreted as dirlist2.

In the Solaris operating environment, a similar environment variable,
LD_LIBRARY_PATH_64 can be used to override LD_LIBRARY_PATH when searching
for 64-bit dependencies. See the Solaris Linker and Libraries Guide and the ld(1) man
page for details.

■ On a 32-bit SPARC processor, LD_LIBRARY_PATH_64 is ignored.

■ If only LD_LIBRARY_PATH is defined, it is used for both 32-bit and 64-bit linking.

■ If both LD_LIBRARY_PATH and LD_LIBRARY_PATH_64 are defined, 32-bit
linking will be done using LD_LIBRARY_PATH, and 64-bit linking with
LD_LIBRARY_PATH_64.

Note – Use of the LD_LIBRARY_PATH environment variable with production
software is strongly discouraged. Although useful as a temporary mechanism for
influencing the runtime linker’s search path, any dynamic executable that can
reference this environment variable will have its search paths altered. You might see
unexpected results or a degradation in performance.

4.3.3 Library Search Path and Order—Static Linking
Use the -llibrary compiler option to name additional libraries for the linker to search
when resolving external references. For example, the option –lmylib adds the
library libmylib.so or libmylib.a to the search list.

The linker looks in the standard directory paths to find the additional libmylib
library. The –L option (and the LD_LIBRARY_PATH environment variable) creates a
list of paths that tell the linker where to look for libraries outside the standard paths.

Were libmylib.a in directory /home/proj/libs, then the option
–L/home/proj/libs would tell the linker where to look when building the
executable:

demo% f95 –o pgram part1.o part2.o –L/home/proj/libs –lmylib
4-6 Fortran Programming Guide • May 2003

4.3.3.1 Command-Line Order for –llibrary Options

For any particular unresolved reference, libraries are searched only once, and only
for symbols that are undefined at that point in the search. If you list more than one
library on the command line, then the libraries are searched in the order in which
they are found on the command line. Place –llibrary options as follows:

■ Place the –llibrary option after any .f, .for, .F, .f95, or .o files.

■ If you call functions in libx, and they reference functions in liby, then place –lx
before –ly.

4.3.3.2 Command-Line Order for –Ldir Options

The –Ldir option adds the dir directory path to the library search list. The linker
searches for libraries first in any directories specified by the –L options and then in
the standard directories. This option is useful only if it is placed preceding the
–llibrary options to which it applies.

4.3.4 Library Search Path and Order—Dynamic Linking
With dynamic libraries, changing the library search path and order of loading differs
from the static case. Actual linking takes place at runtime rather than build time.

4.3.4.1 Specifying Dynamic Libraries at Build Time

When building the executable file, the linker records the paths to shared libraries in
the executable itself. These search paths can be specified using the –Rpath option.
This is in contrast to the -Ldir option which indicates at buildtime where to find the
library specified by a -llibrary option, but does not record this path into the binary
executable.

The directory paths that were built in when the executable was created can be
viewed using the dump command.

Example: List the directory paths built into a.out:

demo% f95 program.f -R/home/proj/libs -L/home/proj/libs -lmylib
demo% dump –Lv a.out | grep RPATH
[5] RPATH /home/proj/libs:/opt/SUNWspro/lib
Chapter 4 Libraries 4-7

4.3.4.2 Specifying Dynamic Libraries at Runtime

At runtime, the linker determines where to find the dynamic libraries that an
executable needs from:

■ The value of LD_LIBRARY_PATH at runtime
■ The paths that had been specified by –R at the time the executable file was built

As noted earlier, use of LD_LIBRARY_PATH can have unexpected side-effects and is
not recommended.

4.3.4.3 Fixing Errors During Dynamic Linking

When the dynamic linker cannot locate a needed library, it issues this error message:

ld.so: prog: fatal: libmylib.so: can’t open file:

The message indicates that the libraries are not where they are supposed to be.
Perhaps you specified paths to shared libraries when the executable was built, but
the libraries have subsequently been moved. For example, you might have built
a.out with your own dynamic libraries in /my/libs/, and then later moved the
libraries to another directory.

Use ldd to determine where the executable expects to find the libraries:

If possible, move or copy the libraries into the proper directory or make a soft link to
the directory (using ln -s) in the directory that the linker is searching. Or, it could
be that LD_LIBRARY_PATH is not set correctly. Check that LD_LIBRARY_PATH
includes the path to the needed libraries at runtime.

demo% ldd a.out
libfui.so.1 => /opt/SUNWspro/lib/libfui.so.1
 libfai.so.1 => /opt/SUNWspro/lib/libfai.so.1
 libfai2.so.1 => /opt/SUNWspro/lib/libfai2.so.1
 libfsumai.so.1 => /opt/SUNWspro/lib/libfsumai.so.1
 libfprodai.so.1 => /opt/SUNWspro/lib/libfprodai.so.1
 libfminlai.so.1 => /opt/SUNWspro/lib/libfminlai.so.1
 libfmaxlai.so.1 => /opt/SUNWspro/lib/libfmaxlai.so.1
 libfminvai.so.1 => /opt/SUNWspro/lib/libfminvai.so.1
 libfmaxvai.so.1 => /opt/SUNWspro/lib/libfmaxvai.so.1
 libfsu.so.1 => /opt/SUNWspro/lib/libfsu.so.1
 libsunmath.so.1 => /opt/SUNWspro/lib/libsunmath.so.1
 libm.so.1 => /usr/lib/libm.so.1
 libc.so.1 => /usr/lib/libc.so.1
 libdl.so.1 => /usr/lib/libdl.so.1
 /usr/platform/SUNW,Ultra-5_10/lib/libc_psr.so.1
4-8 Fortran Programming Guide • May 2003

4.4 Creating Static Libraries
Static library files are built from precompiled object files (.o files) using the ar(1)
utility.

The linker extracts from the library any elements whose entry points are referenced
within the program it is linking, such as a subprogram, entry name, or COMMON block
initialized in a BLOCKDATA subprogram. These extracted elements (routines) are
bound permanently into the a.out executable file generated by the linker.

4.4.1 Tradeoffs for Static Libraries
There are three main issues to keep in mind regarding static, as compared to
dynamic, libraries and linking:

■ Static libraries are more self-contained but less adaptable.

If you bind an a.out executable file statically, the library routines it needs become
part of the executable binary. However, if it becomes necessary to update a static
library routine bound into the a.out executable, the entire a.out file must be
relinked and regenerated to take advantage of the updated library. With dynamic
libraries, the library is not part of the a.out file and linking is done at runtime.
To take advantage of an updated dynamic library, all that is required is that the
new library be installed on the system.

■ The “elements” in a static library are individual compilation units, .o files.

Since a single compilation unit (a source file) can contain more than one
subprogram, these routines when compiled together become a single module in
the static library. This means that all the routines in the compilation unit are
loaded together into the a.out executable, even though only one of those
subprograms was actually called. This situation can be improved by optimizing
the way library routines are distributed into compilable source files. (Still, only
those library modules actually referenced by the program are loaded into the
executable.)

■ Order matters when linking static libraries.

The linker processes its input files in the order in which they appear on the
command line—left to right. When the linker decides whether or not to load an
element from a library, its decision is determined by the library elements that it
has already processed. This order is not only dependent on the order of the
elements as they appear in the library file but also on the order in which the
libraries are specified on the compile command line.
Chapter 4 Libraries 4-9

Example: If the Fortran program is in two files, main.f and crunch.f, and only the
latter accesses a library, it is an error to reference that library before crunch.f or
crunch.o:

4.4.2 Creation of a Simple Static Library
Suppose that you can distribute all the routines in a program over a group of source
files and that these files are wholly contained in the subdirectory test_lib/.

Suppose further that the files are organized in such a way that they each contain a
single principal subprogram that would be called by the user program, along with
any “helper” routines that the subprogram might call but that are called from no
other routine in the library. Also, any helper routines called from more than one
library routine are gathered together into a single source file. This gives a reasonably
well-organized set of source and object files.

Assume that the name of each source file is taken from the name of the first routine
in the file, which in most cases is one of the principal files in the library:

The lower-level “helper” routines are gathered together into the file etc.f. The
other files can contain one or more subprograms.

First, compile each of the library source files, using the –c option, to generate the
corresponding relocatable .o files:

demo% f95 main.f –lmylibrary crunch.f –o myprog

(Incorrect)
demo% f95 main.f crunch.f –lmylibrary –o myprog

(Correct)

demo% cd test_lib
demo% ls
total 14 2 dropx.f 2 evalx.f 2 markx.f
 2 delte.f 2 etc.f 2 linkz.f 2 point.f

demo% f95 –c *.f
demo% ls
total 42
 2 dropx.f 4 etc.o 2 linkz.f 4 markx.o
2 delte.f 4 dropx.o 2 evalx.f 4 linkz.o 2 point.f
4 delte.o 2 etc.f 4 evalx.o 2 markx.f 4 point.o
demo%
4-10 Fortran Programming Guide • May 2003

Now, create the static library testlib.a using ar:

To use this library, either include the library file on the compilation command or use
the –l and –L compilation options. The example uses the .a file directly:

Notice that the main program calls only two of the routines in the library. You can
verify that the uncalled routines in the library were not loaded into the executable
file by looking for them in the list of names in the executable displayed by nm:

In the preceding example, grep finds entries in the list of names only for those
library routines that were actually called.

Another way to reference the library is through the –llibrary and –Lpath options.
Here, the library’s name would have to be changed to conform to the libname.a
convention:

demo% ar cr testlib.a *.o

demo% cat trylib.f
C program to test testlib routines
 x=21.998
 call evalx(x)
 call point(x)
 print*, 'value ',x
 end
demo% f95 –o trylib trylib.f test_lib/testlib.a
demo%

demo% nm trylib | grep FUNC | grep point
[146] | 70016| 152|FUNC |GLOB |0 |8 |point_
demo% nm trylib | grep FUNC | grep evalx
[165] | 69848| 152|FUNC |GLOB |0 |8 |evalx_
demo% nm trylib | grep FUNC | grep delte
demo% nm trylib | grep FUNC | grep markx
demo% ..etc

demo% mv test_lib/testlib.a test_lib/libtestlib.a
demo% f95 –o trylib trylib.f –Ltest_lib –ltestlib
Chapter 4 Libraries 4-11

The –llibrary and –Lpath options are used with libraries installed in a commonly
accessible directory on the system, like /usr/local/lib, so that other users can
reference it. For example, if you left libtestlib.a in /usr/local/lib, other
users could be informed to compile with the following command:

4.4.2.1 Replacement in a Static Library

It is not necessary to recompile an entire library if only a few elements need
recompiling. The –r option of ar permits replacement of individual elements in a
static library.

Example: Recompile and replace a single routine in a static library:

4.4.2.2 Ordering Routines in a Static Library

To order the elements in a static library when it is being built by ar, use the
commands lorder(1) and tsort(1):

4.5 Creating Dynamic Libraries
Dynamic library files are built by the linker ld from precompiled object modules
that can be bound into the executable file after execution begins.

Another feature of a dynamic library is that modules can be used by other executing
programs in the system without duplicating modules in each program’s memory. For
this reason, a dynamic library is also a shared library.

A dynamic library offers the following features:

■ The object modules are not bound into the executable file by the linker during the
compile-link sequence; such binding is deferred until runtime.

demo% f95 –o myprog myprog.f –L/usr/local/lib –ltestlib

demo% f95 –c point.f
demo% ar -r testlib.a point.o

demo% ar -cr mylib.a 'lorder exg.o fofx.o diffz.o | tsort'
4-12 Fortran Programming Guide • May 2003

■ A shared library module is bound into system memory when the first running
program references it. If any subsequent running program references it, that
reference is mapped to this first copy.

■ Maintaining programs is easier with dynamic libraries. Installing an updated
dynamic library on a system immediately affects all the applications that use it
without requiring relinking of the executable.

4.5.1 Tradeoffs for Dynamic Libraries
Dynamic libraries introduce some additional tradeoff considerations:

■ Smaller a.out file

Deferring binding of the library routines until execution time means that the size
of the executable file is less than the equivalent executable calling a static version
of the library; the executable file does not contain the binaries for the library
routines.

■ Possibly smaller process memory utilization

When several processes using the library are active simultaneously, only one copy
of the library resides in memory and is shared by all processes.

■ Possibly increased overhead

Additional processor time is needed to load and link-edit the library routines
during runtime. Also, the library’s position-independent coding might execute
more slowly than the relocatable coding in a static library.

■ Possible overall system performance improvement

Reduced memory utilization due to library sharing should result in better overall
system performance (reduced I/O access time from memory swapping).

Performance profiles among programs vary greatly from one to another. It is not
always possible to determine or estimate in advance the performance improvement
(or degradation) between dynamic versus static libraries. However, if both forms of
a needed library are available to you, it would be worthwhile to evaluate the
performance of your program with each.

4.5.2 Position-Independent Code and –xcode

Position-independent code (PIC) can be bound to any address in a program without
requiring relocation by the link editor. Such code is inherently sharable between
simultaneous processes. Thus, if you are building a dynamic, shared library, you
must compile the component routines to be position-independent by using the -
xcode compiler option.
Chapter 4 Libraries 4-13

In position-independent code, each reference to a global item is compiled as a
reference through a pointer into a global offset table. Each function call is compiled
in a relative addressing mode through a procedure linkage table. The size of the
global offset table is limited to 8 Kbytes on SPARC processors.

Use the compiler flag -xcode=v for specifying the code address space of a binary
object. With this flag, 32-, 44-, or 64-bit absolute addresses can be generated, as well
as small and large model position-independent code. (-xcode=pic13 is equivalent
to the legacy -pic flag, and -xcode=pic32 is equivalent to -PIC.)

The –xcode=pic32 compiler option is similar to –xcode=pic13, but allows the
global offset table to span the range of 32–bit addresses. See the f95(1) man page or
the Fortran User’s Guide, for details.

4.5.3 Binding Options
You can specify dynamic or static library binding when you compile. These options
are actually linker options, but they are recognized by the compiler and passed on to
the linker.

4.5.3.1 –Bdynamic | –Bstatic

–Bdynamic sets the preference for shared, dynamic binding whenever possible.
–Bstatic restricts binding to static libraries only.

When both static and dynamic versions of a library are available, use this option to
toggle between preferences on the command line:

f95 prog.f –Bdynamic –lwells –Bstatic –lsurface

4.5.3.2 –dy | –dn

Allows or disallows dynamic linking for the entire executable. (This option may
appear on the command line only once.)

–dy allows dynamic, shared libraries to be linked. –dn does not allow linking of
dynamic libraries.
4-14 Fortran Programming Guide • May 2003

4.5.3.3 Binding in 64-Bit Environments

Some static system libraries, such as libm.a and libc.a, are not available on 64-bit
Solaris operating environments. These are supplied as dynamic libraries only. Use of
-dn in these environments will result in an error indicating that some static system
libraries are missing. Also, ending the compiler command line with -Bstatic will
have the same effect.

To link with static versions of specific libraries, use a command line that looks
something like:

f95 -o prog prog.f -Bstatic -labc -lxyz -Bdynamic

Here the user’s libabc.a and libxyz.a file are linked (rather than libabc.so or
libxyz.so), and the final -Bdynamic insures that the remaining libraries,
including system libraries, and dynamically linked.

In more complicated situations, it may be necessary to explicitly reference each
system and user library on the link step with the appropriate -Bstatic or
-Bdynamic as required. First use LD_OPTIONS set to ’-Dfiles’ to obtain a listing
of all the libraries needed. Then perform the link step with -nolib (to suppress
automatic linking of system libraries) and explicit references to the libraries you
need. For example:

f95 -xarch=v9 -o cdf -nolib cdf.o -Bstatic -lsunmath \
-Bdynamic -lm -lc

4.5.4 Naming Conventions
To conform to the dynamic library naming conventions assumed by the link loader
and the compilers, assign names to the dynamic libraries that you create with the
prefix lib and the suffix .so. For example, libmyfavs.so could be referenced by
the compiler option –lmyfavs.

The linker also accepts an optional version number suffix: for example,
libmyfavs.so.1 for version one of the library.

The compiler’s –hname option records name as the name of the dynamic library
being built.

4.5.5 A Simple Dynamic Library
Building a dynamic library requires a compilation of the source files with the –
xcode option and linker options –G, –ztext, and –hname. These linker options are
available through the compiler command line.
Chapter 4 Libraries 4-15

You can create a dynamic library with the same files used in the static library
example.

Example: Compile with –pic and other linker options:

–G tells the linker to build a dynamic library.

–ztext warns you if it finds anything other than position-independent code, such
as relocatable text.

Example: Make an executable file a.out using the dynamic library:

Note that the example uses the -R option to bind into the executable the path (the
current directory) to the dynamic library.

The file command shows that the executable is dynamically linked.

4.5.6 Initializing Common Blocks
When building dynamic libraries, insure proper initialization of common blocks (by
DATA or BLOCK DATA) by gathering the initialized common blocks into the same
library, and referencing that library before all others.

For example:

demo% f95 –o libtestlib.so.1 –G –xcode=pic13 –ztext \
–hlibtestlib.so.1 *.f

demo% f95 –o trylib -R‘pwd‘ trylib.f libtestlib.so.1
demo% file trylib
trylib:ELF 32–bit MSB executable SPARC Version 1, dynamically
linked, not stripped
demo% ldd trylib
 libtestlib.so.1 => /export/home/U/Tests/libtestlib.so.1
 libfui.so.1 => /opt/SUNWspro/lib/libfui.so.1
 libfai.so.1 => /opt/SUNWspro/lib/libfai.so.1
 libc.so.1 => /usr/lib/libc.so.1

demo% f95 -G -xcode=pic32 -o init.so blkdat1.f blkdat2.f blkdat3.f
demo% f95 -o prog main.f init.so otherlib1.so otherlib2.so
4-16 Fortran Programming Guide • May 2003

The first compilation creates a dynamic library from files that define common blocks
and initialize them in BLOCK DATA units. The second compilation creates the
executable binary, linking the compiled main program with the dynamic libraries
required by the application. Note that the dynamic library that initializes all the
common blocks appears first before all the other libraries. This insures the blocks are
properly initialized.

4.6 Libraries Provided With Sun Fortran
Compilers
The table shows the libraries installed with the compilers.

4.7 Shippable Libraries
If your executable uses a Sun dynamic library that is listed in the
runtime.libraries README file, your license includes the right to redistribute
the library to your customer.

This README file is located in the READMEs directory:

/opt/SUNWspro/READMEs/

Do not redistribute or otherwise disclose the header files, source code, object
modules, or static libraries of object modules in any form.

Refer to your software license for more details.

TABLE 4-1 Major Libraries Provided With the Compilers

Library Name Options Needed

f95 support intrinsics libfsu None

f95 interface libfui None

f95 array intrinsics libraries libf*ai None

f95 interval arithmetic intrinsic library libifai -xinterval

Library of Sun math functions libsunmath None
Chapter 4 Libraries 4-17

4-18 Fortran Programming Guide • May 2003

CHAPTER 5

Program Analysis and Debugging

This chapter presents a number of compiler features that facilitate program analysis
and debugging.

5.1 Global Program Checking (-Xlist)
The –Xlist options provide a valuable way to analyze a source program for
inconsistencies and possible runtime problems. The analysis performed by the
compiler is global, across subprograms.

–Xlist reports errors in alignment, agreement in number and type for subprogram
arguments, common block, parameter, and various other kinds of errors.

–Xlist also can be used to make detailed source code listings and cross-reference
tables.

Programs compiled with -Xlist options have their analysis data built into the
binary files automatically. This enables global program checking over programs in
libraries.

5.1.1 GPC Overview
Global program checking (GPC), invoked by the –Xlistx option, does the
following:

■ Enforces type-checking rules of Fortran more stringently than usual, especially
between separately compiled routines

■ Enforces some portability restrictions needed to move programs between
different machines or operating systems

■ Detects legal constructions that nevertheless might be suboptimal or error-prone
5-1

■ Reveals other potential bugs and obscurities

In particular, global checking reports problems such as:

■ Interface problems

■ Conflicts in number and type of dummy and actual arguments

■ Wrong types of function values

■ Possible conflicts due to data type mismatches in common blocks between
different subprograms

■ Usage problems

■ Function used as a subroutine or subroutine used as a function
■ Declared but unused functions, subroutines, variables, and labels
■ Referenced but not declared functions, subroutines, variables, and labels
■ Usage of unset variables
■ Unreachable statements
■ Implicit type variables
■ Inconsistency of the named common block lengths, names, and layouts

5.1.2 How to Invoke Global Program Checking
The -Xlist option on the command line invokes the compiler’s global program
analyzer. There are a number of suboptions, as described in the sections that follow.

Example: Compile three files for basic global program checking:

In the preceding example, the compiler:

■ Produces output listings in the file any1.lst
■ Compiles and links the program if there are no errors

5.1.2.1 Screen Output

Normally, output listings produced by –Xlistx are written to a file. To display
directly to the screen, use –Xlisto to write the output file to /dev/tty.

Example: Display to terminal:

demo% f95 –Xlist any1.f any2.f any3.f

demo% f95 –Xlisto /dev/tty any1.f
5-2 Fortran Programming Guide • May 2003

5.1.2.2 Default Output Features

The –Xlist option provides a combination of features available for output. With no
other -Xlist options, you get the following by default:

■ The listing file name is taken from the first input source or object file that appears,
with the extension replaced by .lst

■ A line-numbered source listing

■ Error messages (embedded in listing) for inconsistencies across routines

■ Cross-reference table of the identifiers

■ Pagination at 66 lines per page and 79 columns per line

■ No call graph

■ No expansion of include files

5.1.2.3 File Types

The checking process recognizes all the files in the compiler command line that end
in .f, .f90, .f95, .for, .F, .F95, or .o. The .o files supply the process with
information regarding only global names, such as subroutine and function names.
Chapter 5 Program Analysis and Debugging 5-3

5.1.3 Some Examples of -Xlist and Global Program
Checking
Here is a listing of the Repeat.f source code used in the following examples:

demo% cat Repeat.f
 PROGRAM repeat
 pn1 = 27.005
 CALL subr1 (pn1)
 CALL newf (pn1)
 PRINT *, pn1
 END

 SUBROUTINE subr1 (x)
 IF (x .GT. 1.0) THEN
 CALL subr2 (x * 0.5)
 END IF
 END

 SUBROUTINE newf(ix)
 INTEGER PRNOK
 IF (ix .eq. 0) THEN
 ix = -1
 ENDIF
 PRINT *, prnok (ix)
 END

 INTEGER FUNCTION prnok (x)
 prnok = INT (x) + .05
 END

 SUBROUTINE unreach_sub()
 CALL sleep(1)
 END

 SUBROUTINE subr2 (x)
 CALL subr1(x+x)
 END
5-4 Fortran Programming Guide • May 2003

Example: Use –XlistX to show errors, warnings, and cross-reference

demo% f95 -XlistX Repeat.f
demo% cat Repeat.lst
Repeat.f Mon Mar 18 18:08:27 2002 page 1

FILE "Repeat.f"
program repeat
 4 CALL newf (pn1)
 ^
**** ERR #418: argument "pn1" is real, but dummy argument is
integer
 See: "Repeat.f" line #14
 5 PRINT *, pn1
 ^
**** ERR #570: variable "pn1" referenced as real but set as
integer in
 line #4
subroutine newf
 19 PRINT *, prnok (ix)
 ^
**** ERR #418: argument "ix" is integer, but dummy argument is
real
 See: "Repeat.f" line #22
function prnok
 23 prnok = INT (x) + .05
 ^
**** WAR #1024: suspicious assignment a value of type "real*4"
to a
 variable of type "integer*4"
subroutine unreach_sub
 26 SUBROUTINE unreach_sub()
 ^
**** WAR #338: subroutine "unreach_sub" never called from program
subroutine subr2
 31 CALL subr1(x+x)
 ^
**** WAR #348: recursive call for "subr1". See dynamic calls:
 "Repeat.f" line #10
 "Repeat.f" line #3

Cross Reference Mon Mar 18 18:08:27 2002 page 2
Chapter 5 Program Analysis and Debugging 5-5

 C R O S S R E F E R E N C E T A B L E

 Source file: Repeat.f

Legend:
D Definition/Declaration
U Simple use
M Modified occurrence
A Actual argument
C Subroutine/Function call
I Initialization: DATA or extended declaration
E Occurrence in EQUIVALENCE
N Occurrence in NAMELIST
L Use Module

Cross Reference Mon Mar 18 15:40:57 2002 page 3

P R O G R A M F O R M

 Program

repeat <repeat> D 1:D

Cross Reference Mon Mar 18 15:40:57 2002 page 4

 Functions and Subroutines

INT intrinsic
 <prnok> C 23:C

newf <repeat> C 4:C
 <newf> D 14:D

prnok int*4 <newf> DC 15:D 19:C
 <prnok> DM 22:D 23:M

sleep <unreach_sub> C 27:C

subr1 <repeat> C 3:C
 <subr1> D 8:D
 <subr2> C 31:C
5-6 Fortran Programming Guide • May 2003

subr2 <subr1> C 10:C
 <subr2> D 30:D

unreach_sub <unreach_sub> D 26:D

Cross Reference Mon Mar 18 15:40:57 2002 page 5

 Variables and Arrays

ix int*4 dummy
<newf> DUMA 14:D 16:U 17:M 19:A

pn1 real*4 <repeat> UMA 2:M 3:A 4:A 5:U

x real*4 dummy
 <subr1> DU 8:D 9:U 10:U
 <subr2> DU 30:D 31:U 31:U
 <prnok> DA 22:D 23:A

--

STATISTIC Mon Mar 18 15:40:57 2002 page 6

Date: Mon Mar 18 15:40:57 2002
Options: -XlistX
Files: 2 (Sources: 1; libraries: 1)
Lines: 33 (Sources: 33; Library subprograms:1)
Routines: 6 (MAIN: 1; Subroutines: 4; Functions: 1)
Messages: 6 (Errors: 3; Warnings: 3)
Chapter 5 Program Analysis and Debugging 5-7

5.1.4 Suboptions for Global Checking Across Routines
The basic global cross-checking option is –Xlist with no suboption. It is a
combination of suboptions, each of which could have been specified separately.

The following sections describe options for producing the listing, errors, and cross-
reference table. Multiple suboptions may appear on the command line.

5.1.4.1 Suboption Syntax

Add suboptions according to the following rules:

■ Append the suboption to –Xlist.
■ Put no space between the –Xlist and the suboption.
■ Use only one suboption per -Xlist.

5.1.4.2 -Xlist and its Suboptions

Combine suboptions according to the following rules:

■ The most general option is –Xlist (listing, errors, cross-reference table).

■ Specific features can be combined using –Xlistc, –XlistE, –XlistL, or
–XlistX.

■ Other suboptions specify further details.

Example: Each of these two command lines performs the same task:

demo% f95 –Xlistc –Xlist any.f

demo% f95 -Xlistc any.f
5-8 Fortran Programming Guide • May 2003

The following table shows the reports generated by these basic -Xlist suboptions
alone:

The following table shows all –Xlist suboptions.

TABLE 5-1 Basic Xlist Suboptions

Generated Report Option

Errors, listing, cross-reference –Xlist

Errors only –XlistE

Errors and source listing only –XlistL

Errors and cross-reference table only –XlistX

Errors and call graph only –Xlistc

TABLE 5-2 Complete List of -Xlist Suboptions

Option Action

–Xlist (no suboption) Shows errors, listing, and cross-reference table

–Xlistc Shows call graphs and errors
Used alone, -Xlistc does not show a listing or cross-reference.
It produces the call graph in a tree form, using printable
characters. If some subroutines are not called from MAIN, more
than one graph is shown. Each BLOCKDATA is printed separately
with no connection to MAIN.
The default is not to show the call graph.

–XlistE Shows errors
Used alone, -XlistE shows only cross-routine errors and does
not show a listing or a cross-reference.

–Xlisterr[nnn] Suppresses error nnn in the verification report
Use -Xlisterr to suppress a numbered error message from the
listing or cross-reference.
For example: -Xlisterr338 suppresses error message 338. To
suppress additional specific errors, use this option repeatedly. If
nnn is not specified, all error messages are suppressed.

–Xlistf Produces output faster
Use -Xlistf to produce source file listings and a cross-checking
report and to check sources without full compilation.

–Xlisth Shows errors from cross-checking stop compilation
With -Xlisth, compilation stops if errors are detected while
cross-checking the program. In this case, the report is redirected
to stdout instead of the *.lst file.
Chapter 5 Program Analysis and Debugging 5-9

–XlistI Lists and cross-checks include files
If –XlistI is the only suboption used, include files are shown
or scanned along with the standard –Xlist output (line
numbered listing, error messages, and a cross-reference table).
Listing—If the listing is not suppressed, then the include files
are listed in place. Files are listed as often as they are included.
The files are: Source files, #include files, INCLUDE files
Cross-Reference Table—If the cross reference table is not
suppressed, the following files are all scanned while the cross
reference table is generated: Source files, #include files,
INCLUDE files
The default is not to show include files.

–XlistL Shows the listing and errors
Use -XlistL to produce only a listing and a list of cross routine
errors. This suboption by itself does not show a cross reference
table. The default is to show the listing and cross reference table

–Xlistln Sets page breaks
Use -Xlistl to set the page length to something other than the
default page size. For example, -Xlistl45 sets the page length
to 45 lines. The default is 66.
With n=0 (-Xlistl0) this option shows listings and cross-
references with no page breaks for easier on-screen viewing.

-XlistMP Check consistency of OpenMP directives
Use -XlistMP to report on any inconsistencies in the OpenMP
directives specified in the source code file. See also the OpenMP
API User’s Guide for details.

–Xlisto name Specify the –Xlist output report file
Use -Xlisto to specify the generated report output file. (A space
between o and name is required.) With -Xlisto name, the
output is to name and not to file.lst.
To display directly to the screen, use the option:
–Xlisto /dev/tty

–Xlists Suppresses unreferenced symbols from cross-reference
Use -Xlists to suppress from the cross reference table any
identifiers defined in the include files but not referenced in the
source files.
This suboption has no effect if the suboption -XlistI is used.
The default is not to show the occurrences in #include or
INCLUDE files.

TABLE 5-2 Complete List of -Xlist Suboptions (Continued)

Option Action
5-10 Fortran Programming Guide • May 2003

–Xlistvn Sets checking “strictness” level
n is 1,2, 3, or 4. The default is 2 (–Xlistv2):
• –Xlistv1

Shows the cross-checked information of all names in summary
form only, with no line numbers. This is the lowest level of
checking strictness—syntax errors only.
• –Xlistv2

Shows cross-checked information with summaries and line
numbers. This is the default level of checking strictness and
includes argument inconsistency errors and variable usage errors.
• –Xlistv3

Shows cross-checking with summaries, line numbers, and
common block maps. This is a high level of checking strictness
and includes errors caused by incorrect usage of data types in
common blocks in different subprograms.
• –Xlistv4

Shows cross-checking with summaries, line numbers, common
block maps, and equivalence block maps. This is the strictest
level of checking with maximum error detection.

–Xlistw[nnn] Sets the width of output lines
Use -Xlistw to set the width of the output line. For example,
-Xlistw132 sets the page width to 132 columns. The default is
79.

–Xlistwar[nnn] Suppresses warning nnn in the report
Use -Xlistwar to suppress a specific warning message from the
output reports. If nnn is not specified, then all warning messages
are suppressed from printing. For example, -Xlistwar338
suppresses warning message number 338. To suppress more than
one, but not all warnings, use this option repeatedly.

–XlistX Shows just the cross-reference table and errors
-XlistX produces a cross reference table and cross routine error
list but no source listing.

TABLE 5-2 Complete List of -Xlist Suboptions (Continued)

Option Action
Chapter 5 Program Analysis and Debugging 5-11

5.2 Special Compiler Options
Some compiler options are useful for debugging. They check subscripts, spot
undeclared variables, show stages of the compile-link sequence, display versions of
software, and so on.

The Solaris linker has additional debugging aids. See ld(1), or run the command
ld –Dhelp at a shell prompt to see the online documentation.

5.2.1 Subscript Bounds (–C)
If you compile with –C, the compiler adds checks at runtime for out-of-bounds
references on each array subscript, and array conformance. This action helps catch
some situations that cause segmentation faults.

Example: Index out of range:

5.2.2 Undeclared Variable Types (–u)
The –u option checks for any undeclared variables.

The –u option causes all variables to be initially identified as undeclared, so that all
variables that are not explicitly declared by type statements, or by an IMPLICIT
statement, are flagged with an error. The –u flag is useful for discovering mistyped
variables. If –u is set, all variables are treated as undeclared until explicitly declared.
Use of an undeclared variable is accompanied by an error message.

demo% cat range.f
 REAL a(10,10)
 k = 11
 a(k,2) = 1.0
 END
demo% f95 -o range range.f
demo% range

 ****** FORTRAN RUN-TIME SYSTEM ******
Subscript out of range. Location: line 3 column 9 of ’range.f’
Subscript number 1 has value 11 in array ’A’
Abort
demo%
5-12 Fortran Programming Guide • May 2003

5.2.3 Compiler Version Checking (–V)
The –V option causes the name and version ID of each phase of the compiler to be
displayed. This option can be useful in tracking the origin of ambiguous error
messages and in reporting compiler failures, and to verify the level of installed
compiler patches.

5.3 Debugging With dbx
Sun ONE Studio provides a tightly integrated development environment for
debugging applications written in Fortran, C, and C++.

The dbx program provides event management, process control, and data inspection.
You can watch what is happening during program execution, and perform the
following tasks:

■ Fix one routine, then continue executing without recompiling the others
■ Set watchpoints to stop or trace if a specified item changes
■ Collect data for performance tuning
■ Monitor variables, structures, and arrays
■ Set breakpoints (set places to halt in the program) at lines or in functions
■ Show values—once halted, show or modify variables, arrays, structures
■ Step through a program, one source or assembly line at a time
■ Trace program flow—show sequence of calls taken
■ Invoke procedures in the program being debugged
■ Step over or into function calls; step up and out of a function call
■ Run, stop, and continue execution at the next line or at some other line
■ Save and then replay all or part of a debugging run
■ Examine the call stack, or move up and down the call stack
■ Program scripts in the embedded Korn shell
■ Follow programs as they fork(2) and exec(2)

demo% f95 -V wh.f
f95: Sun Fortran 95 7.0 DEV 2002/01/30
f90comp: Sun Fortran 95 7.0 DEV 2002/01/30
f90comp: 9 SOURCE LINES
f90comp: 0 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
ld: Solaris Link Editors: 5.8-1.272
Chapter 5 Program Analysis and Debugging 5-13

To debug optimized programs, use the dbx fix command to recompile the routines
you want to debug:

1. Compile the program with the appropriate –On optimization level.

2. Start the execution under dbx.

3. Use fix –g any.f without optimization on the routine you want to debug.

4. Use continue with that routine compiled.

Some optimizations will be inhibited by the presence of -g on the compilation
command. See the dbx documentation for details.

For details, see the Sun ONE Studio Debugging a Program With dbx manual, and the
dbx(1) man pages.
5-14 Fortran Programming Guide • May 2003

CHAPTER 6

Floating-Point Arithmetic

This chapter considers floating-point arithmetic and suggests strategies for avoiding
and detecting numerical computation errors.

For a detailed examination of floating-point computation on SPARC processors, see
the Numerical Computation Guide.

6.1 Introduction
The Fortran 95 floating-point environment on SPARC processors implements the
arithmetic model specified by the IEEE Standard 754 for Binary Floating Point
Arithmetic. This environment enables you to develop robust, high-performance,
portable numerical applications. It also provides tools to investigate any unusual
behavior by a numerical program.

In numerical programs, there are many potential sources for computational error:

■ The computational model could be wrong
■ The algorithm used could be numerically unstable
■ The data could be ill-conditioned
■ The hardware could be producing unexpected results

Finding the source of the errors in a numerical computation that has gone wrong can
be extremely difficult. The chance of coding errors can be reduced by using
commercially available and tested library packages whenever possible. Choice of
algorithms is another critical issue. Using the appropriate computer arithmetic is
another.

This chapter makes no attempt to teach or explain numerical error analysis. The
material presented here is intended to introduce the IEEE floating-point model as
implemented by Fortran 95.
6-1

6.2 IEEE Floating-Point Arithmetic
IEEE arithmetic is a relatively new way of dealing with arithmetic operations that
result in such problems as invalid operand, division by zero, overflow, underflow, or
inexact result. The differences are in rounding, handling numbers near zero, and
handling numbers near the machine maximum.

The IEEE standard supports user handling of exceptions, rounding, and precision.
Consequently, the standard supports interval arithmetic and diagnosis of anomalies.
IEEE Standard 754 makes it possible to standardize elementary functions like exp
and cos, to create high precision arithmetic, and to couple numerical and symbolic
algebraic computation.

IEEE arithmetic offers users greater control over computation than does any other
kind of floating-point arithmetic. The standard simplifies the task of writing
numerically sophisticated, portable programs. Many questions about floating-point
arithmetic concern elementary operations on numbers. For example:

■ What is the result of an operation when the infinitely precise result is not
representable in the computer hardware?

■ Are elementary operations like multiplication and addition commutative?

Another class of questions concerns floating-point exceptions and exception
handling. What happens if you:

■ Multiply two very large numbers with the same sign?
■ Divide nonzero by zero?
■ Divide zero by zero?

In older arithmetic models, the first class of questions might not have the expected
answers, while the exceptional cases in the second class might all have the same
result: the program aborts on the spot or proceeds with garbage results.

The standard ensures that operations yield the mathematically expected results with
the expected properties. It also ensures that exceptional cases yield specified results,
unless the user specifically makes other choices.

For example, the exceptional values +Inf, -Inf, and NaN are introduced intuitively:

big*big = +Inf Positive infinity
big*(-big) = -Inf Negative infinity
num/0.0 = +Inf Where num > 0.0

num/0.0 = -Inf Where num < 0.0

0.0/0.0 = NaN Not a Number
6-2 Fortran Programming Guide • May 2003

Also, five types of floating-point exception are identified:

■ Invalid. Operations with mathematically invalid operands—for example, 0.0/0.0,
sqrt(-1.0), and log(-37.8)

■ Division by zero. Divisor is zero and dividend is a finite nonzero number—for
example, 9.9/0.0

■ Overflow. Operation produces a result that exceeds the range of the exponent— for
example, MAXDOUBLE+0.0000000000001e308

■ Underflow. Operation produces a result that is too small to be represented as a
normal number—for example, MINDOUBLE * MINDOUBLE

■ Inexact. Operation produces a result that cannot be represented with infinite
precision—for example, 2.0 / 3.0, log(1.1) and 0.1 in input

The implementation of the IEEE standard is described in the Numerical Computation
Guide.

6.2.1 –ftrap=mode Compiler Options
The –ftrap=mode option enables trapping for floating-point exceptions. If no signal
handler has been established by an ieee_handler() call, the exception terminates
the program with a memory dump core file. See the Fortran User’s Guide for details
on this compiler option. For example, to enable trapping for overflow, division by
zero, and invalid operations, compile with -ftrap=common. (This is the f95
default.)

Note – You must compile the application’s main program with –ftrap= for
trapping to be enabled.

6.2.2 Floating-Point Exceptions
f95 programs do not automatically report on exceptions. An explicit call to
ieee_retrospective(3M) is required to display a list of accrued floating-point
exceptions on program termination. In general, a message results if any one of the
invalid, division-by-zero, or overflow exceptions have occurred. Inexact exceptions
do not generate messages because they occur so frequently in real programs.
Chapter 6 Floating-Point Arithmetic 6-3

6.2.2.1 Retrospective Summary

The ieee_retrospective function queries the floating-point status registers to
find out which exceptions have accrued and a message is printed to standard error
to inform you which exceptions were raised but not cleared. The message typically
looks like this; the format may vary with each compiler release:

A Fortran 95 program would need to call ieee_retrospective explicitly and
compile with -xlang=f77 to link with the f77 compatibility library.

Compiling with the -f77 compatibility flag will enable the Fortran 77 convention of
automatically calling ieee_retrospective at program termination.

You can turn off any or all of these messages with ieee_flags() by clearing
exception status flags before the call to ieee_retrospective.

6.2.3 Handling Exceptions
Exception handling according to the IEEE standard is the default on SPARC and x86
processors. However, there is a difference between detecting a floating-point
exception and generating a signal for a floating-point exception (SIGFPE).

Following the IEEE standard, two things happen when an untrapped exception
occurs during a floating-point operation:

■ The system returns a default result. For example, on 0/0 (invalid), the system
returns NaN as the result.

■ A flag is set to indicate that an exception is raised. For example, 0/0 (invalid), the
system sets the “invalid operation” flag.

6.2.4 Trapping a Floating-Point Exception
f95 differs significantly from the earlier f77 compiler in the way it handles floating-
point exceptions.

Note: IEEE floating-point exception flags raised:
 Division by Zero;
IEEE floating-point exception traps enabled:
 inexact; underflow; overflow; invalid operation;
See the Numerical Computation Guide, ieee_flags(3M),
 ieee_handler(3M)
6-4 Fortran Programming Guide • May 2003

The default with f95 is to automatically trap on division by zero, overflow, and
invalid operation. With f77, the default was not to automatically generate a signal to
interrupt the running program for a floating-point exception. The assumption was
that trapping would degrade performance while most exceptions were insignificant
as long as expected values are returned.

The f95 command-line option -ftrap can be used to change the default. The
default for f95 is -ftrap=common. To follow the earlier f77 default, compile the
main program with -ftrap=%none.

6.2.5 Nonstandard Arithmetic
One aspect of standard IEEE arithmetic, called gradual underflow, can be manually
disabled. When disabled, the program is considered to be running with nonstandard
arithmetic.

The IEEE standard for arithmetic specifies a way of handling underflowed results
gradually by dynamically adjusting the radix point of the significand. In IEEE
floating-point format, the radix point occurs before the significand, and there is an
implicit leading bit of 1. Gradual underflow allows the implicit leading bit to be
cleared to 0 and shifts the radix point into the significand when the result of a
floating-point computation would otherwise underflow. With a SPARC processor
this result is not accomplished in hardware but in software. If your program
generates many underflows (perhaps a sign of a problem with your algorithm), you
may experience a performance loss.

Gradual underflow can be disabled either by compiling with the –fns option or by
calling the library routine nonstandard_arithmetic() from within the program
to turn it off. Call standard_arithmetic() to turn gradual underflow back on.

Note – To be effective, the application’s main program must be compiled with
–fns. See the Fortran User’s Guide.

For legacy applications, take note that:

■ The standard_arithmetic() subroutine replaces an earlier routine named
gradual_underflow().

■ The nonstandard_arithmetic() subroutine replaces an earlier routine named
abrupt_underflow().

Note – The –fns option and the nonstandard_arithmetic() library routine are
effective only on some SPARC systems.
Chapter 6 Floating-Point Arithmetic 6-5

6.3 IEEE Routines
The following interfaces help people use IEEE arithmetic and are described in man
pages. These are mostly in the math library libsunmath and in several .h files.

■ ieee_flags(3m)—Controls rounding direction and rounding precision; query
exception status; clear exception status

■ ieee_handler(3m)—Establishes an exception handler routine

■ ieee_functions(3m)—Lists name and purpose of each IEEE function

■ ieee_values(3m)—Lists functions that return special values

■ Other libm functions described in this section:

■ ieee_retrospective
■ nonstandard_arithmetic
■ standard_arithmetic

The SPARC processors conform to the IEEE standard in a combination of hardware
and software support for different aspects.

The newest SPARC processors contain floating-point units with integer multiply and
divide instructions and hardware square root.

Best performance is obtained when the compiled code properly matches the runtime
floating-point hardware. The compiler’s –xtarget= option permits specification of
the runtime hardware. For example, –xtarget=ultra would inform the compiler
to generate object code that will perform best on an UltraSPARC processor.

The utility fpversion displays which floating-point hardware is installed and
indicates the appropriate –xtarget value to specify. This utility runs on all Sun
SPARC architectures. See fpversion(1), the Fortran User’s Guide, and the Numerical
Computation Guide for details.

6.3.1 Flags and ieee_flags()

The ieee_flags function is used to query and clear exception status flags. It is part
of the libsunmath library shipped with Sun compilers and performs the following
tasks:

■ Controls rounding direction and rounding precision
■ Checks the status of the exception flags
■ Clears exception status flags
6-6 Fortran Programming Guide • May 2003

The general form of a call to ieee_flags is:

Each of the four arguments is a string. The input is action, mode, and in. The output
is out and flags. ieee_flags is an integer-valued function. Useful information is
returned in flags as a set of 1-bit flags. Refer to the man page for ieee_flags(3m)
for complete details.

Possible parameter values are shown in the following table

Note that these are literal character strings, and the output parameter out must be at
least CHARACTER*9. The meanings of the possible values for in and out depend on
the action and mode they are used with. These are summarized in the following
table:

flags = ieee_flags(action, mode, in, out)

TABLE 6-1 ieee_flags(action, mode, in, out) Argument Values

Argument Values Allowed

action get, set, clear, clearall

mode direction, exception

in, out nearest, tozero, negative, positive, extended, double
single, inexact, division, underflow, overflow, invalid
all, common

TABLE 6-2 ieee_flags in, out Argument Meanings

Value of in and out Refers to

nearest, tozero, negative, positive Rounding direction

extended, double, single Rounding precision

inexact, division, underflow, overflow,
invalid

Exceptions

all All five exceptions

common Common exceptions:
invalid, division, overflow
Chapter 6 Floating-Point Arithmetic 6-7

For example, to determine what is the highest priority exception that has a flag
raised, pass the input argument in as the null string:

Also, to determine if the overflow exception flag is raised, set the input argument
in to overflow. On return, if out equals overflow, then the overflow exception flag
is raised; otherwise it is not raised.

Example: Clear the invalid exception:

Example: Clear all exceptions:

Example: Set rounding direction to zero:

Example: Set rounding precision to double:

6.3.1.1 Turning Off All Warning Messages With ieee_flags

Calling ieee_flags with an action of clear, as shown in the following example,
resets any uncleared exceptions. Put this call before the program exits to suppress
system warning messages about floating-point exceptions at program termination.

 CHARACTER *9, out
 ieeer = ieee_flags('get', 'exception', '', out)
 PRINT *, out, ' flag raised'

ieeer = ieee_flags('get', 'exception', 'overflow', out)
 IF (out.eq. 'overflow') PRINT *,'overflow flag raised'

ieeer = ieee_flags('clear', 'exception', 'invalid', out)

 ieeer = ieee_flags('clear', 'exception', 'all', out)

 ieeer = ieee_flags('set', 'direction', 'tozero', out)

 ieeer = ieee_flags('set', 'precision', 'double', out)
6-8 Fortran Programming Guide • May 2003

Example: Clear all accrued exceptions with ieee_flags():

6.3.1.2 Detecting an Exception With ieee_flags

The following example demonstrates how to determine which floating-point
exceptions have been raised by earlier computations. Bit masks defined in the
system include file floatingpoint.h are applied to the value returned by
ieee_flags.

In this example, DetExcFlg.F, the include file is introduced using the #include
preprocessor directive, which requires us to name the source file with a .F suffix.
Underflow is caused by dividing the smallest double-precision number by 2.

Example: Detect an exception using ieee_flags and decode it:

 i = ieee_flags('clear', 'exception', 'all', out)

#include "floatingpoint.h"
 CHARACTER*16 out
 DOUBLE PRECISION d_max_subnormal, x
 INTEGER div, flgs, inv, inx, over, under

 x = d_max_subnormal() / 2.0 ! Cause underflow

flgs=ieee_flags('get','exception','',out) ! Which are raised?

 inx = and(rshift(flgs, fp_inexact) , 1) ! Decode
 div = and(rshift(flgs, fp_division) , 1) ! the value
 under = and(rshift(flgs, fp_underflow), 1) ! returned
 over = and(rshift(flgs, fp_overflow) , 1) ! by
 inv = and(rshift(flgs, fp_invalid) , 1) ! ieee_flags

 PRINT *, "Highest priority exception is: ", out
 PRINT *, ' invalid divide overflo underflo inexact'
 PRINT '(5i8)', inv, div, over, under, inx
 PRINT *, '(1 = exception is raised; 0 = it is not)'

i = ieee_flags('clear', 'exception', 'all', out) ! Clear all
 END
Chapter 6 Floating-Point Arithmetic 6-9

Example: Compile and run the preceding example (DetExcFlg.F):

6.3.2 IEEE Extreme Value Functions
The compilers provide a set of functions that can be called to return a special IEEE
extreme value. These values, such as infinity or minimum normal, can be used directly
in an application program.

Example: A convergence test based on the smallest number supported by the
hardware would look like:

The values available are listed in the following table:

The two NaN values (quiet and signaling) are unordered and should not be used
in comparisons such as IF(X.ne.r_quiet_nan())THEN... To determine whether
some value is a NaN, use the function ir_isnan(r) or id_isnan(d).

The Fortran names for these functions are listed in these man pages:

demo% f95 DetExcFlg.F
demo% a.out
 Highest priority exception is: underflow
 invalid divide overflo underflo inexact
 0 0 0 1 1
 (1 = exception is raised; 0 = it is not)
demo%

 IF (delta .LE. r_min_normal()) RETURN

TABLE 6-3 Functions Returning IEEE Values

IEEE Value Double Precision Single Precision

infinity d_infinity() r_infinity()

quiet NaN d_quiet_nan() r_quiet_nan()

signaling NaN d_signaling_nan() r_signaling_nan()

min normal d_min_normal() r_min_normal()

min subnormal d_min_subnormal() r_min_subnormal()

max subnormal d_max_subnormal() r_max_subnormal()

max normal d_max_normal() r_max_normal()
6-10 Fortran Programming Guide • May 2003

■ libm_double(3f)
■ libm_single(3f)
■ ieee_functions(3m)

Also see:

■ ieee_values(3m)
■ The floatingpoint.h header file and floatingpoint(3f)

6.3.3 Exception Handlers and ieee_handler()

Typical concerns about IEEE exceptions are:

■ What happens when an exception occurs?

■ How do I use ieee_handler() to establish a user function as an exception
handler?

■ How do I write a function that can be used as an exception handler?

■ How do I locate the exception—where did it occur?

Exception trapping to a user routine begins with the system generating a signal on a
floating-point exception. The standard UNIX name for signal: floating-point exception
is SIGFPE. The default situation on SPARC platforms is not to generate a SIGFPE
when an exception occurs. For the system to generate a SIGFPE, exception trapping
must first be enabled, usually by a call to ieee_handler().

6.3.3.1 Establishing an Exception Handler Function

To establish a function as an exception handler, pass the name of the function to
ieee_handler(), together with the name of the exception to watch for and the
action to take. Once you establish a handler, a SIGFPE signal is generated whenever
the particular floating-point exception occurs, and the specified function is called.
Chapter 6 Floating-Point Arithmetic 6-11

The form for invoking ieee_handler() is shown in the following table:

A Fortran 95 routine compiled with f95 that calls ieee_handler() should also
declare:

#include 'floatingpoint.h'

The special arguments SIGFPE_DEFAULT, SIGFPE_IGNORE, and SIGFPE_ABORT
are defined in these include files and can be used to change the behavior of the
program for a specific exception:

6.3.3.2 Writing User Exception Handler Functions

The actions your exception handler takes are up to you. However, the routine must
be an integer function with three arguments specified as shown:

handler_name(sig, sip, uap)

■ handler_name is the name of the integer function.
■ sig is an integer.
■ sip is a record that has the structure siginfo.
■ uap is not used.

TABLE 6-4 Arguments for ieee_handler(action, exception, handler)

Argument Type Possible Values

action character get, set, or clear

exception character invalid, division, overflow, underflow, or
inexact

handler Function name The name of the user handler function or
SIGFPE_DEFAULT, SIGFPE_IGNORE, or
SIGFPE_ABORT

Return value integer 0 =OK

SIGFPE_DEFAULT or
SIGFPE_IGNORE

No action taken when the specified exception occurs.

SIGFPE_ABORT Program aborts, possibly with dump file, on exception.
6-12 Fortran Programming Guide • May 2003

Example: An exception handler function:

This example would have to be modified to run on SPARC V9 architectures
(-xarch=v9 or v9a) by replacing all INTEGER declarations within each STRUCTURE
with INTEGER*8.

If the handler routine enabled by ieee_handler() is in Fortran as shown in the
example, the routine should not make any reference to its first argument (sig). This
first argument is passed by value to the routine and can only be referenced as
loc(sig). The value is the signal number.

Detecting an Exception by Handler

The following examples show how to create handler routines to detect floating-point
exceptions.

 INTEGER FUNCTION hand(sig, sip, uap)
INTEGER sig, location

 STRUCTURE /fault/
 INTEGER address
 INTEGER trapno
 END STRUCTURE
 STRUCTURE /siginfo/
 INTEGER si_signo
 INTEGER si_code
 INTEGER si_errno
 RECORD /fault/ fault
 END STRUCTURE
 RECORD /siginfo/ sip
 location = sip.fault.address
 ... actions you take ...
 END
Chapter 6 Floating-Point Arithmetic 6-13

Example: Detect exception and abort:

SIGFPE is generated whenever that floating-point exception occurs. When the
SIGFPE is detected, control passes to the myhandler function, which immediately
aborts. Compile with –g and use dbx to find the location of the exception.

demo% cat DetExcHan.f
 EXTERNAL myhandler
 REAL :: r = 14.2 , s = 0.0
 i = ieee_handler ('set', 'division', myhandler)
 t = r/s
 END

 INTEGER FUNCTION myhandler(sig,code,context)
 INTEGER sig, code, context(5)
 CALL abort()
 END
demo% f95 DetExcHan.f
demo% a.out
Abort
demo%
6-14 Fortran Programming Guide • May 2003

Locating an Exception by Handler

Example: Locate an exception (print address) and abort:

In SPARC V9 environments, replace the INTEGER declarations within each
STRUCTURE with INTEGER*8, and the i4 formats with i8. (Note that this example
relies on extensions to the f95 compiler to accept VAX Fortran STRUCTURE
statements.)

demo% cat LocExcHan.F
#include "floatingpoint.h"
 EXTERNAL Exhandler
 INTEGER Exhandler, i, ieee_handler
 REAL:: r = 14.2 , s = 0.0 , t
C Detect division by zero
 i = ieee_handler('set', 'division', Exhandler)
 t = r/s
 END

 INTEGER FUNCTION Exhandler(sig, sip, uap)
 INTEGER sig
 STRUCTURE /fault/
 INTEGER address
 END STRUCTURE
 STRUCTURE /siginfo/
 INTEGER si_signo
 INTEGER si_code
 INTEGER si_errno
 RECORD /fault/ fault
 END STRUCTURE
 RECORD /siginfo/ sip

WRITE (*,10) sip.si_signo, sip.si_code, sip.fault.address
10 FORMAT('Signal ',i4,' code ',i4,' at hex address ', Z8)
 Exhandler=1
 CALL abort()
 END
demo% f95 -g LocExcHan.F
demo% a.out
Signal 8 code 3 at hex address 11230
Abort
demo%
Chapter 6 Floating-Point Arithmetic 6-15

In most cases, knowing the actual address of the exception is of little use, except with
dbx:

Of course, there are easier ways to determine the source line that caused the error.
However, this example does serve to show the basics of exception handling.

6.4 Debugging IEEE Exceptions
Locating where the exception occurred requires exception trapping be enabled. This
can be done by either compiling with the –ftrap=common option (the default when
compiling with f95) or by establishing an exception handler routine with
ieee_handler(). With exception trapping enabled, run the program from dbx,
using the dbx catch FPE command to see where the error occurs.

The advantage of compiling with –ftrap=common is that the source code need not
be modified to trap the exceptions. However, by calling ieee_handler() you can
be more selective as to which exceptions to look at.

demo% dbx a.out
(dbx) stopi at 0x11230 Set breakpoint at address
(2) stopi at &MAIN+0x68
(dbx) run Run program
Running: a.out
(process id 18803)
stopped in MAIN at 0x11230
MAIN+0x68: fdivs %f3, %f2, %f2
(dbx) where Shows the line number of the exception
=>[1] MAIN(), line 7 in "LocExcHan.F"
(dbx) list 7 Displays the source code line
 7 t = r/s
(dbx) cont Continue after breakpoint, enter handler routine
Signal 8 code 3 at hex address 11230
abort: called
signal ABRT (Abort) in _kill at 0xef6e18a4
_kill+0x8: bgeu _kill+0x30
Current function is exhandler
 24 CALL abort()
(dbx) quit
demo%
6-16 Fortran Programming Guide • May 2003

Example: Compiling for and using dbx:

If you find that the program terminates with overflow and other exceptions, you can
locate the first overflow specifically by calling ieee_handler() to trap just
overflows. This requires modifying the source code of at least the main program, as
shown in the following example.

Example: Locate an overflow when other exceptions occur:

demo% f95 -g myprogram.f
demo% dbx a.out
Reading symbolic information for a.out
...
(dbx) catch FPE
(dbx) run
Running: a.out
(process id 19739)
signal FPE (floating point divide by zero) in MAIN at line 212 in
file "myprogram.f"
 212 Z = X/Y
(dbx) print Y
y = 0.0
(dbx)

demo% cat myprog.F
#include “floatingpoint.h”
 program myprogram
...
 ier = ieee_handler(‘set’,’overflow’,SIGFPE_ABORT)
...
demo% f95 -g myprog.F
demo% dbx a.out
Reading symbolic information for a.out
...
(dbx) catch FPE
(dbx) run
Running: a.out
(process id 19793)
signal FPE (floating point overflow) in MAIN at line 55 in file
"myprog.F"

55 w = rmax * 200. ! Cause of the overflow
(dbx) cont ! Continue execution to completion
execution completed, exit code is 0
(dbx)
Chapter 6 Floating-Point Arithmetic 6-17

To be selective, the example introduces the #include, which required renaming the
source file with a .F suffix and calling ieee_handler(). You could go further and
create your own handler function to be invoked on the overflow exception to do
some application-specific analysis and print intermediary or debug results before
aborting.

6.5 Further Numerical Adventures
This section addresses some real world problems that involve arithmetic operations
that may unwittingly generate invalid, division by zero, overflow, underflow, or
inexact exceptions.

For instance, prior to the IEEE standard, if you multiplied two very small numbers
on a computer, you could get zero. Most mainframes and minicomputers behaved
that way. With IEEE arithmetic, gradual underflow expands the dynamic range of
computations.

For example, consider a 32-bit processor with 1.0E-38 as the machine’s epsilon, the
smallest representable value on the machine. Multiply two small numbers:

In older arithmetic, you would get 0.0, but with IEEE arithmetic and the same word
length, you get 1.40130E-45. Underflow tells you that you have an answer smaller
than the machine naturally represents. This result is accomplished by “stealing”
some bits from the mantissa and shifting them over to the exponent. The result, a
denormalized number, is less precise in some sense, but more precise in another. The
deep implications are beyond this discussion. If you are interested, consult Computer,
January 1980, Volume 13, Number 1, particularly J. Coonen’s article, “Underflow and
the Denormalized Numbers.”

Most scientific programs have sections of code that are sensitive to roundoff, often in
an equation solution or matrix factorization. Without gradual underflow,
programmers are left to implement their own methods of detecting the approach of
an inaccuracy threshold. Otherwise they must abandon the quest for a robust, stable
implementation of their algorithm.

For more details on these topics, see the Numerical Computation Guide.

 a = 1.0E-30
 b = 1.0E-15
 x = a * b
6-18 Fortran Programming Guide • May 2003

6.5.1 Avoiding Simple Underflow
Some applications actually do a lot of computation very near zero. This is common
in algorithms computing residuals or differential corrections. For maximum
numerically safe performance, perform the key computations in extended precision
arithmetic. If the application is a single-precision application, you can perform key
computations in double precision.

Example: A simple dot product computation in single precision:

If a(i) and b(i) are very small, many underflows occur. By forcing the
computation to double precision, you compute the dot product with greater
accuracy and do not suffer underflows:

You can force a SPARC processor to behave like an older system with respect to
underflow (Store Zero) by adding a call to the library routine
nonstandard_arithmetic() or by compiling the application’s main program
with the -fns option.

6.5.2 Continuing With the Wrong Answer
You might wonder why you would continue a computation if the answer is clearly
wrong. IEEE arithmetic allows you to make distinctions about what kind of wrong
answers can be ignored, such as NaN or Inf. Then decisions can be made based on
such distinctions.

For an example, consider a circuit simulation. The only variable of interest (for the
sake of argument) from a particular 50-line computation is the voltage. Further,
assume that the only values that are possible are +5v, 0, -5v.

 sum = 0
 DO i = 1, n

sum = sum + a(i) * b(i)
 END DO

 DOUBLE PRECISION sum
 DO i = 1, n

sum = sum + dble(a(i)) * dble(b(i))
 END DO
 result = sum
Chapter 6 Floating-Point Arithmetic 6-19

It is possible to carefully arrange each part of the calculation to coerce each sub-
result to the correct range:

■ if computed value is greater than 4.0, return 5.0
■ if computed value is between -4.0 and +4.0, return 0
■ if computed value is less than -4.0, return -5.0

Furthermore, since Inf is not an allowed value, you need special logic to ensure that
big numbers are not multiplied.

IEEE arithmetic allows the logic to be much simpler. The computation can be written
in the obvious fashion, and only the final result need be coerced to the correct
value—since Inf can occur and can be easily tested.

Furthermore, the special case of 0/0 can be detected and dealt with as you wish. The
result is easier to read and faster in executing, since you don’t do unneeded
comparisons.

6.5.3 Excessive Underflow
If two very small numbers are multiplied, the result underflows.

If you know in advance that the operands in a multiplication (or subtraction) may be
small and underflow is likely, run the calculation in double precision and convert the
result to single precision later.

For example, a dot product loop like this:

where the a(*) and b(*) are known to have small elements, should be run in
double precision to preserve numeric accuracy:

 real sum, a(maxn), b(maxn)
 ...
 do i =1, n
 sum = sum + a(i)*b(i)
 enddo

 real a(maxn), b(maxn)
 double sum
 ...
 do i =1, n
 sum = sum + a(i)*dble(b(i))
 enddo
6-20 Fortran Programming Guide • May 2003

Doing so may also improve performance due to the software resolution of excessive
underflows caused by the original loop. However, there is no hard and fast rule here;
experiment with your intensely computational code to determine the most profitable
solutions.

6.6 Interval Arithmetic
The Fortran 95 compiler f95 supports intervals as an intrinsic data type. An interval
is the closed compact set: [a, b] ={z | a ≤ z ≤ b} defined by a pair of numbers, a ≤ b.
Intervals can be used to:

■ Solve nonlinear problems
■ Perform rigorous error analysis
■ Detect sources of numerical instability

By introducing intervals as an intrinsic data type to Fortran 95, all of the applicable
syntax and semantics of Fortran 95 become immediately available to the developer.
Besides the INTERVAL data types, f95 includes the following interval extensions to
Fortran 95:

■ Three classes of INTERVAL relational operators:

■ Certainly
■ Possibly
■ Set

■ Intrinsic INTERVAL-specific operators, such as INF, SUP, WID, and HULL

■ INTERVAL input/output edit descriptors, including single-number input/output

■ Interval extensions to arithmetic, trigonometric, and other mathematical functions

■ Expression context-dependent INTERVAL constants

■ Mixed-mode interval expression processing

The f95 command-line option -xinterval enables the interval arithmetic features
of the compiler. See the Fortran User’s Guide.

For detailed information on interval arithmetic in Fortran 95, see the Fortran 95
Interval Arithmetic Programming Reference.
Chapter 6 Floating-Point Arithmetic 6-21

6-22 Fortran Programming Guide • May 2003

CHAPTER 7

Porting

This chapter discusses the some issues that may arise when porting “dusty deck”
Fortran programs from other platforms to Fortran 95.

Fortran 95 extensions and Fortran 77 compatibility features are described in the
Fortran User’s Guide.

7.1 Carriage-Control
Fortran carriage-control grew out of the limited capabilities of the equipment used
when Fortran was originally developed. For similar historical reasons, operating
systems derived from the UNIX do not have Fortran carriage control, but you can
simulate it with the Fortran 95 compiler in two ways.

■ Use the asa filter to transform Fortran carriage-control conventions into the UNIX
carriage-control format (see the asa (1) man page) before printing files with the
lpr command.

■ The FORTRAN 77 compiler f77 allowed OPEN(N, FORM='PRINT') to enable
single or double spacing, formfeed, and stripping of column one. This is still
available by compiling programs using FORM='PRINT'with the f95 -f77
compatibility flag. The compiler allows you to reopen unit 6 to change the form
parameter to PRINT, when compiling with -f77. For example:

You can use lp(1) to print a file that is opened in this manner.

 OPEN(6, FORM='PRINT')
7-1

7.2 Working With Files
Early Fortran systems did not use named files, but did provide a command line
mechanism to equate actual file names with internal unit numbers. This facility can
be emulated in a number of ways, including standard UNIX redirection.

Example: Redirecting stdin to redir.data (using csh(1)):

7.3 Porting From Scientific Mainframes
If the application code was originally developed for 64-bit (or 60-bit) mainframes
such as CRAY or CDC, you might want to compile these codes with the following
options when porting to an UltraSPARC-II platform, for example:

-fast -xarch=v9a -xchip=ultra2 \
-xtypemap=real:64,double:64,integer:64

These options automatically promote all default REAL variables and constants to
REAL*8, and COMPLEX to COMPLEX*16. Only undeclared variables or variables
declared as simply REAL or COMPLEX are promoted; variables declared explicitly (for
example, REAL*4) are not promoted. All single-precision REAL constants are also
promoted to REAL*8. (Set -xarch and -xchip appropriately for the target
platform.) To also promote default DOUBLE PRECISION data to REAL*16, change the
double:64 to double:128 in the -xtypemap example.

See the Fortran User’s Guide or the f95(1) man page for details.

demo% cat redir.data The data file
 9 9.9

demo% cat redir.f The source file
 read(*,*) i, z The program reads standard input
 print *, i, z
 stop
 end

demo% f95 -o redir redir.f The compilation step
demo% redir < redir.data Run with redirection reads data file
 9 9.90000
demo%
7-2 Fortran Programming Guide • May 2003

7.4 Data Representation
The Fortran User’s Guide, and the Numerical Computation Guide discuss in detail the
hardware representation of data objects in Fortran. Differences between data
representations across systems and hardware platforms usually generate the most
significant portability problems.

The following issues should be noted:

■ Sun adheres to the IEEE Standard 754 for floating-point arithmetic. Therefore, the
first four bytes in a REAL*8 are not the same as in a REAL*4.

■ The default sizes for reals, integers, and logicals are described in the Fortran 95
standard, except when these default sizes are changed by the -xtypemap option.

■ Character variables can be freely mixed and equivalenced to variables of other
types, but be careful of potential alignment problems.

■ f95 IEEE floating-point arithmetic will raise exceptions on overflow or divide by
zero and signal SIGFPE or trap by default (-ftrap=common is the default with
f95). It does deliver IEEE indeterminate forms in cases where exceptions would
otherwise be signaled. This is explained in Chapter 6.

■ The extreme finite, normalized values can be determined. See libm_single(3F)
and libm_double(3F). The indeterminate forms can be written and read, using
formatted and list-directed I/O statements.

7.5 Hollerith Data
Many “dusty-deck” Fortran applications store Hollerith ASCII data into numerical
data objects. With the 1977 Fortran standard (and Fortran 95), the CHARACTER data
type was provided for this purpose and its use is recommended. You can still
initialize variables with the older Fortran Hollerith (nH) feature, but this is not
Chapter 7 Porting 7-3

standard practice. The following table indicates the maximum number of characters
that will fit into certain data types. (In this table, boldfaced data types indicate
default types subject to promotion by the -xtypemap command-line flag.)

TABLE 7-1 Maximum Characters in Data Types

Maximum Number of Standard ASCII Characters

Data Type Default INTEGER:64 REAL:64 DOUBLE:128

BYTE 1 1 1 1

COMPLEX 8 8 16 16

COMPLEX*16 16 16 16 16

COMPLEX*32 32 32 32 32

DOUBLE COMPLEX 16 16 32 32

DOUBLE PRECISION 8 8 16 16

INTEGER 4 8 4 8

INTEGER*2 2 2 2 2

INTEGER*4 4 4 4 4

INTEGER*8 8 8 8 8

LOGICAL 4 8 4 8

LOGICAL*1 1 1 1 1

LOGICAL*2 2 2 2 2

LOGICAL*4 4 4 4 4

LOGICAL*8 8 8 8 8

REAL 4 4 8 8

REAL*4 4 4 4 4

REAL*8 8 8 8 8

REAL*16 16 16 16 16
7-4 Fortran Programming Guide • May 2003

Example: Initialize variables with Hollerith:

If needed, you can initialize a data item of a compatible type with a Hollerith and
then pass it to other routines.

If you pass Hollerith constants as arguments, or if you use them in expressions or
comparisons, they are interpreted as character-type expressions. Use the compiler
option -xhasc=no to have the compiler treat Hollerith constants as typeless data in
arguments on subprogram calls. This may be needed when porting older Fortran
programs.

7.6 Nonstandard Coding Practices
As a general rule, porting an application program from one system and compiler to
another can be made easier by eliminating any nonstandard coding. Optimizations
or work-arounds that were successful on one system might only obscure and
confuse compilers on other systems. In particular, optimized hand-tuning for one
particular architecture can cause degradations in performance elsewhere. This is
discussed later in the chapters on performance and tuning. However, the following
issues are worth considering with regards to porting in general.

7.6.1 Uninitialized Variables
Some systems automatically initialize local and COMMON variables to zero or some
“not-a-number” (NaN) value. However, there is no standard practice, and programs
should not make assumptions regarding the initial value of any variable. To assure
maximum portability, a program should initialize all variables.

demo% cat FourA8.f
 double complex x(2)
 data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
 write(6, '(4A8, "!")') x
 end

demo% f95 -o FourA8 FourA8.f
demo% FourA8
abcdefghijklmnopqrstuvwxyz012345!
demo%
Chapter 7 Porting 7-5

7.6.2 Aliasing and the -xalias Option
Aliasing occurs when the same storage address is referenced by more than one
name. This typically happens with pointers, or when actual arguments to a
subprogram overlap between themselves or between COMMON variables within
the subprogram. For example, arguments X and Z refer to the same storage
locations, as do B and H:

Many “dusty deck” Fortran programs utilized this sort of aliasing as a way of
providing some kind of dynamic memory management that was not available in the
language at that time.

Avoid aliasing in all portable code. The results could be unpredictable on some
platforms and when compiled with optimization levels higher than -O2.

The f95 compiler assumes it is compiling a standard-conforming program.
Programs that do not conform strictly to the Fortran standard can introduce
ambiguous situations that interfere with the compiler’s analysis and optimization
strategies. Some situations can produce erroneous results.

For example, overindexing arrays, use of pointers, or passing global variables as
subprogram arguments when also used directly, can result in ambiguous situations
that limit the compiler’s ability to generate optimal code that will be correct in all
situations.

If you know that your program does contain some apparent aliasing situations you
can use the -xalias option to specify the degree to which the compiler should be
concerned. In some cases the program will not execute properly when compiled at
optimization levels higher than -O2 unless the appropriate -xalias option is
specified.

 COMMON /INS/B(100)
 REAL S(100), T(100)
 ...
 CALL SUB(S,T,S,B,100)
 ...
 SUBROUTINE SUB(X,Y,Z,H,N)
 REAL X(N),Y(N),Z(N),H(N)
 COMMON /INS/B(100)
 ...
7-6 Fortran Programming Guide • May 2003

The option flag takes a comma-separated list of keywords that indicate a type of
aliasing situation. Each keyword can be prefixed by no% to indicate an aliasing that
is not present.

TABLE 7-2 -xalias Keywords and What They Mean

-xalias= keyword Aliasing situation

dummy Dummy subprogram arguments can alias each other and global
variables.

no%dummy The Fortran standard is followed and dummy arguments do not
alias each other or global variables in the actual call. (This is the
default.)

craypointer The program uses Cray pointers that can point anywhere. (This is
the default.)

no%craypointer Cray pointers always point at distinct memory areas, or are not
used.

ftnpointer Any Fortran 95 pointer can point to any target variable, regardless
of type, kind, or rank.

no%ftnpointer Fortran 95 pointers follow the rules of the standard. (This is the
default.)

overindex There are four overindexing situations that can be caused by
violating the subscript bounds in an array reference, and any one or
more of these may appear in the program:
• A reference to an element of an array in a COMMON block could

refer to any element in a COMMON block or equivalence group.
• Passing an element of a COMMON block or equivalence group as

an actual argument to a subprogram gives access to any element
of that COMMON block or equivalence group.

• Variables of a sequence derived type are treated as if they were
COMMON blocks, and elements of a such a variable may alias
other elements of that variable.

• Individual array subscript bounds may be violated, even though
the array reference stays within the array.

overindex does not apply to array syntax, WHERE, and FORALL
statements. If overindexing occurs in these constructs, they should
be rewritten as DO loops.

no%overindex Array bounds are not violated. Array references do not reference
other variables. (This is the default.)

actual The compiler treats actual subprogram arguments as if they were
global variables. Passing an argument to a subprogram may result in
aliasing through Cray pointers.

no%actual Passing an argument to a subprogram does not cause further
aliasing. (This is the default.)
Chapter 7 Porting 7-7

Here some examples of typical aliasing situations. At the higher optimization levels
(-O3 and above) the f95 compiler can generate better code if your program does not
contain the aliasing syndromes shown below and you compile with -xalias=
no%keyword.

In some cases you will need to compile with -xalias=keyword to insure that the
code generate will produce the correct results.

7.6.2.1 Aliasing Through Dummy Arguments and Global Variables

The following example needs to be compiled with -xalias=dummy

7.6.2.2 Aliasing Introduced With Cray Pointers

This example works only when compiled with -xalias=craypointer, which is
the default:

parameter (n=100)
integer a(n)
common /qq/z(n)
call sub(a,a,z,n)
...
subroutine sub(a,b,c,n)
integer a(n), b(n)
common /qq/z(n)
a(2:n) = b(1:n-1)
c(2:n) = z(1:n-1)
The compiler must assume that the dummy variables and the common variable may overlap.

parameter (n=20)
integer a(n)
integer v1(*), v2(*)
pointer (p1,v1)
pointer (p2,v2)
p1 = loc(a)
p2 = loc(a)
a = (/ (i,i=1,n) /)
...
v1(2:n) = v2(1:n-1)
The compiler must assume that these locations can overlap.
7-8 Fortran Programming Guide • May 2003

Here is an example of Cray pointers that do not overlap. In this case, compile with -
xalias=no%craypointer for possibly better performance:

7.6.2.3 Aliasing Introduced With Fortran 95 Pointers

Compile the following example with -xalias=ftnpointer

parameter (n=10)
integer a(n+n)
integer v1(n), v2(n)
pointer (p1,v1)
pointer (p2,v2)
p1 = loc(a(1))
p2 = loc(a(n+1))
...
v1(:) = v2(:)
The Cray pointers to not point to overlapping memory areas.

parameter (n=20)
integer, pointer :: a(:)
integer, target :: t(n)
interface

subroutine sub(a,b,n)
integer, pointer :: a(:)
integer, pointer :: b(:)

end subroutine
end interface

a => t
a = (/ (i, i=1,n) /)
call sub(a,a,n)
....
end
subroutine sub(a,b,n)
integer, pointer :: a(:)
real, pointer :: b(:)
integer i, mold

forall (i=2:n)
a(i) = transfer(b(i-1), mold)

The compiler must assume that a and b can overlap.
Chapter 7 Porting 7-9

Note that in this example the compiler must assume that a and b may overlap, even
though they point to data of different data types. This is illegal in standard Fortran.
The compiler gives a warning if it can detect this situation.

7.6.2.4 Aliasing By Overindexing

Compile the following example with -xalias=overindex

Overindexing appears in many legacy Fortran 77 programs and should be avoided.
In many cases the result will be unpredictable. To insure correctness, programs
should be compiled and tested with the -C (runtime array bounds checking) option
to flag any array subscripting problems.

In general, the overindex flag should only be used with legacy Fortran 77
programs. -xalias=overindex does not apply to array syntax expressions, array
sections, WHERE, and FORALL statements.

Fortran 95 programs should always conform to the subscripting rules in the Fortran
standard to insure correctness of the generated code. For example, the following
example uses ambiguous subscripting in an array syntax expression that will always
produce an incorrect result due to the overindexing of the array:

integer a,z
common // a(100),z
z = 1
call sub(a)
print*, z
subroutine sub(x)

integer x(10)
x(101) = 2

The compiler may assume that the call to sub may write to z
The program prints 2, and not 1, when compiled with -xalias=
overindex
7-10 Fortran Programming Guide • May 2003

The xalias=overindex flag will not help in this situation since the overindex
flag does not extend to array syntax expressions. The example compiles, but will not
give the correct results. Rewriting this example by replacing the array syntax with
the equivalent DO loop will work when compiled with -xalias=overindex. But
this kind of programming practice should be avoided entirely.

This example of array syntax overindexing DOES NOT GIVE CORRECT RESULTS!

parameter (n=10)
integer a(n),b(n)
common /qq/a,b
integer c(n)
integer m, k
a = (/ (i,i=1,n) /)
b = a
c(1) = 1
c(2:n) = (/ (i,i=1,n-1) /)

m = n
k = n + n

C
C the reference to a is actually a reference into b
C so this should really be b(2:n) = b(1:n-1)
C

a(m+2:k) = b(1:n-1)

C or doing it in reverse
a(k:m+2:-1) = b(n-1:1:-1)

Intuitively the user might expect array b to now look like array c, but the result is unpredictable
Chapter 7 Porting 7-11

7.6.2.5 Aliasing By Actual Arguments

The compiler looks ahead to see how local variables are used and then makes
assumptions about variables that will not change over a subprogram call. In the
following example, pointers used in the subprogram defeat the compiler’s
optimization strategy and the results are unpredictable. To make this work properly
you need to compile with the -xalias=actual flag:

take_loc takes the address of i and saves it away. use_loc uses it. This is a
violation of the Fortran standard.

Compiling with the -xalias=actual flag informs the compiler that all arguments
to subprograms should be considered global within the compilation unit, causing
the compiler to be more cautious with its assumptions about variables appearing as
actual arguments.

Programming practices like this that violate the Fortran standard should be avoided.

7.6.2.6 -xalias Defaults

Specifying -xalias without a list assumes that your program does not violate the
Fortran aliasing rules. It is equivalent to asserting no% for all the aliasing keywords.

 program foo
 integer i
 call take_loc(i)
 i = 1
 print * , i
 call use_loc()
 print * , i
 end

 subroutine take_loc(i)
 integer i
 common /loc_comm/ loc_i
 loc_i = loc(i)
 end subroutine take_loc

 subroutine use_loc()
 integer vi1
 pointer (pi,vi)
 common /loc_comm/ loc_i
 pi = loc_i
 vi1 = 3
 end subroutine use_loc
7-12 Fortran Programming Guide • May 2003

The compiler default, when compiling without specifying -xalias, is:

-xalias=no%dummy,craypointer,no%actual,no%overindex,no%ftnpointer

If your program uses Cray pointers but conforms to the Fortran aliasing rules
whereby the pointer references cannot result in aliasing, even in ambiguous
situations, compiling with -xalias may result in generating better optimized code.

7.6.3 Obscure Optimizations
Legacy codes may contain source-code restructurings of ordinary computational DO
loops intended to cause older vectorizing compilers to generate optimal code for a
particular architecture. In most cases, these restructurings are no longer needed and
may degrade the portability of a program. Two common restructurings are strip-
mining and loop unrolling.

7.6.3.1 Strip-Mining

Fixed-length vector registers on some architectures led programmers to manually
“strip-mine” the array computations in a loop into segments:

Strip-mining is no longer appropriate with modern compilers; the loop can be
written much less obscurely as:

 REAL TX(0:63)
 ...
 DO IOUTER = 1,NX,64
 DO IINNER = 0,63
 TX(IINNER) = AX(IOUTER+IINNER) * BX(IOUTER+IINNER)/2.
 QX(IOUTER+IINNER) = TX(IINNER)**2
 END DO
 END DO

 DO IX = 1,N
 TX = AX(I)*BX(I)/2.
 QX(I) = TX**2
 END DO
Chapter 7 Porting 7-13

7.6.3.2 Loop Unrolling

Unrolling loops by hand was a typical source-code optimization technique before
compilers were available that could perform this restructuring automatically. A loop
written as:

should be rewritten the way it was originally intended:

7.7 Time and Date Functions
Library functions that return the time of day or elapsed CPU time vary from system
to system.

 DO K = 1, N-5, 6
 DO J = 1, N
 DO I = 1,N
 A(I,J) = A(I,J) + B(I,K) * C(K ,J)
 * + B(I,K+1) * C(K+1,J)
 * + B(I,K+2) * C(K+2,J)
 * + B(I,K+3) * C(K+3,J)
 * + B(I,K+4) * C(K+4,J)
 * + B(I,K+5) * C(K+5,J)
 END DO
 END DO
 END DO
 DO KK = K,N
 DO J =1,N
 DO I =1,N
 A(I,J) = A(I,J) + B(I,KK) * C(KK,J)
 END DO
 END DO
 END DO

 DO K = 1,N
 DO J = 1,N
 DO I = 1,N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
 END DO
7-14 Fortran Programming Guide • May 2003

The time functions supported in the Fortran library are listed in the following table:

TABLE 7-3 Fortran Time Functions

Name Function Man Page

time Returns the number of seconds elapsed since
January, 1, 1970

time(3F)

date Returns date as a character string date(3F)

fdate Returns the current time and date as a
character string

fdate(3F)

idate Returns the current month, day, and year in
an integer array

idate(3F)

itime Returns the current hour, minute, and second
in an integer array

itime(3F)

ctime Converts the time returned by the time
function to a character string

ctime(3F)

ltime Converts the time returned by the time
function to the local time

ltime(3F)

gmtime Converts the time returned by the time
function to Greenwich time

gmtime(3F)

etime Single processor: Returns elapsed user and
system time for program execution
Multiple processors: Returns the wall clock
time

etime(3F)

dtime Returns the elapsed user and system time
since last call to dtime

dtime(3F)

date_and_time Returns date and time in character and
numeric form

date_and_time(3F)
Chapter 7 Porting 7-15

For details, see Fortran Library Reference Manual or the individual man pages for
these functions. Here is a simple example of the use of these time functions
(TestTim.f):

 subroutine startclock
 common / myclock / mytime
 integer mytime, time
 mytime = time()
 return
 end
 function wallclock()
 integer wallclock
 common / myclock / mytime
 integer mytime, time, newtime
 newtime = time()
 wallclock = newtime – mytime
 mytime = newtime
 return
 end
 integer wallclock, elapsed
 character*24 greeting
 real dtime, timediff, timearray(2)
c print a heading
 call fdate(greeting)
 print*, " Hello, Time Now Is: ", greeting
 print*, "See how long 'sleep 4' takes, in seconds"
 call startclock
 call system('sleep 4')
 elapsed = wallclock()

print*, "Elapsed time for sleep 4 was: ", elapsed," seconds"
c now test the cpu time for some trivial computing
 timediff = dtime(timearray)
 q = 0.01
 do 30 i = 1, 100000
 q = atan(q)
30 continue
 timediff = dtime(timearray)

print*, "atan(q) 100000 times took: ", timediff ," seconds"
 end
7-16 Fortran Programming Guide • May 2003

Running this program produces the following results:

The routines listed in the following table provide compatibility with VMS Fortran
system routines idate and time. To use these routines, you must include the -lV77
option on the f95 command line, in which case you also get these VMS versions
instead of the standard f95 versions.

Note – The date(3F) routine and the VMS version of idate(3F) cannot be Year 2000
safe because they return 2-digit values for the year. Programs that compute time
duration by subtracting dates returned by these routines will compute erroneous
results after December 31, 1999. The Fortran 95 routine date_and_time(3F) should
be used instead. See the Fortran Library Reference Manual for details.

7.8 Troubleshooting
Here are a few suggestions for what to try when programs ported to Fortran 95 do
not run as expected.

7.8.1 Results Are Close, but Not Close Enough
Try the following:

demo% TimeTest
 Hello, Time Now Is: Thu Feb 8 15:33:36 2001
 See how long ’sleep 4’ takes, in seconds
 Elapsed time for sleep 4 was: 4 seconds
 atan(q) 100000 times took: 0.01 seconds
demo%

TABLE 7-4 Summary: Nonstandard VMS Fortran System Routines

Name Definition Calling Sequence Argument Type

idate Date as day, month, year call idate(d, m, y) integer

time Current time as hhmmss call time(t) character*8
Chapter 7 Porting 7-17

■ Pay attention to the size and the engineering units. Numbers very close to zero
can appear to be different, but the difference is not significant, especially if this
number is the difference between two large numbers. For example, 1.9999999e-30
is very near -9.9992112e-33, even though they differ in sign.

VAX math is not as accurate as IEEE math, and even different IEEE processors
may differ. This is especially true if the mathematics involves many trigonometric
functions. These functions are much more complicated than one might think, and
the standard defines only the basic arithmetic functions. There can be subtle
differences, even between IEEE machines. Review Chapter 6 in this guide.

■ Try running with a call nonstandard_arithmetic(). Doing so can also
improve performance considerably, and make your Sun workstation behave more
like a VAX system. If you have access to a VAX or some other system, run it there
also. It is quite common for many numerical applications to produce slightly
different results on each floating-point implementation.

■ Check for NaN, +Inf, and other signs of probable errors. See Chapter 6 in this
guide, or the man page ieee_handler(3m) for instructions on how to trap the
various exceptions. On most machines, these exceptions simply abort the run.

■ Two numbers can differ by 6 x 1029 and still have the same floating-point form.
Here is an example of different numbers, with the same representation:

The output is:

In this example, the difference is 6 x 1029. The reason for this indistinguishable,
wide gap is that in IEEE single-precision arithmetic, you are guaranteed only six
decimal digits for any one decimal-to-binary conversion. You may be able to
convert seven or eight digits correctly, but it depends on the number.

 real*4 x,y
 x=99999990e+29
 y=99999996e+29
 write (*,10) x, x
 10 format('99,999,990 x 10^29 = ', e14.8, ' = ', z8)
 write(*,20) y, y
 20 format('99,999,996 x 10^29 = ', e14.8, ' = ', z8)
 end

99,999,990 x 10^29 = 0.99999993E+37 = 7CF0BDC1
99,999,996 x 10^29 = 0.99999993E+37 = 7CF0BDC1
7-18 Fortran Programming Guide • May 2003

7.8.2 Program Fails Without Warning
If the program fails without warning and runs different lengths of time between
failures, then:

■ Compile with minimal optimization (–O1). If the program then works, compile
only selective routines with higher optimization levels.

■ Understand that optimizers must make assumptions about the program.
Nonstandard coding or constructs can cause problems. Almost no optimizer
handles all programs at all levels of optimization. (See “Aliasing and the -
xalias Option” on page 7-6)
Chapter 7 Porting 7-19

7-20 Fortran Programming Guide • May 2003

CHAPTER 8

Performance Profiling

This chapter describes how to measure and display program performance. Knowing
where a program is spending most of its compute cycles and how efficiently it uses
system resources is a prerequisite for performance tuning.

8.1 Sun ONE Studio Performance Analyzer
Developing high performance applications requires a combination of compiler
features, libraries of optimized routines, and tools for performance analysis.

Sun ONE Studio software provides a sophisticated pair of tools for collecting and
analyzing program performance data:

■ The Collector collects performance data on a statistical basis called profiling. The
data can include call stacks, microstate accounting information, thread-
synchronization delay data, hardware-counter overflow data, address space data,
and summary information for the operating system.

■ The Performance Analyzer displays the data recorded by the Collector, so you can
examine the information. The Analyzer processes the data and displays various
metrics of performance at program, function, caller-callee, source-line, and
disassembly-instruction levels. These metrics are classed into three groups: clock-
based metrics, synchronization delay metrics, and hardware counter metrics.

The Performance Analyzer can also help you to fine-tune your application’s
performance, by creating a mapfile you can use to improve the order of function
loading in the application address space.

These two tools help to answer the following kinds of questions:

■ How much of the available resources does the program consume?
■ Which functions or load objects are consuming the most resources?
■ Which source lines and disassembly instructions consume the most resources?
■ How did the program arrive at this point in the execution?
■ Which resources are being consumed by a function or load object?
8-1

The main window of the Performance Analyzer displays a list of functions for the
program with exclusive and inclusive metrics for each function. The list can be
filtered by load object, by thread, by light-weight process (LWP) and by time slice.
For a selected function, a subsidiary window displays the callers and callees of the
function. This window can be used to navigate the call tree—in search of high metric
values, for example. Two more windows display source code annotated line-by-line
with performance metrics and interleaved with compiler commentary, and
disassembly code annotated with metrics for each instruction. Source code and
compiler commentary are interleaved with the instructions if available.

The Collector and Analyzer are designed for use by any software developer, even if
performance tuning is not the developer’s main responsibility. They provide a more
flexible, detailed and accurate analysis than the commonly used profiling tools prof
and gprof, and are not subject to an attribution error in gprof.

Command-line equivalents of the Collector and Analyzer are available:

■ Data collection can be done with the collect(1) command.

■ The Collector can be run from dbx using the collector subcommands.

■ The command-line utility er_print(1) prints out an ASCII version of the various
Analyzer displays.

■ The command-line utility er_src(1) displays source and disassembly code
listings annotated with compiler commentary but without performance data.

Details can be found in the Sun ONE Studio Program Performance Analysis Tools
manual.

8.2 The time Command
The simplest way to gather basic data about program performance and resource
utilization is to use the time (1) command or, in csh, the set time command.

Running the program with the time command prints a line of timing information
on program termination.

demo% time myprog
 The Answer is: 543.01
6.5u 17.1s 1:16 31% 11+21k 354+210io 135pf+0w
demo%
8-2 Fortran Programming Guide • May 2003

The interpretation is:

user system wallclock resources memory I/O paging

■ user – 6.5 seconds in user code, approximately

■ system – 17.1 seconds in system code for this task, approximately

■ wallclock – 1 minute 16 seconds to complete

■ resources – 31% of system resources dedicated to this program

■ memory – 11 Kilobytes of shared program memory, 21 kilobytes of private data
memory

■ I/O – 354 reads, 210 writes

■ paging – 135 page faults, 0 swapouts

8.2.1 Multiprocessor Interpretation of time Output
Timing results are interpreted in a different way when the program is run in parallel
in a multiprocessor environment. Since /bin/time accumulates the user time on
different threads, only wall clock time is used.

Since the user time displayed includes the time spent on all the processors, it can be
quite large and is not a good measure of performance. A better measure is the real
time, which is the wall clock time. This also means that to get an accurate timing of
a parallelized program you must run it on a quiet system dedicated to just your
program.

8.3 The tcov Profiling Command
The tcov(1) command, when used with programs compiled with the -xprofile=
tcov option, produces a statement-by-statement profile of the source code showing
which statements executed and how often. It also gives a summary of information
about the basic block structure of the program.

Enhanced statement level coverage is invoked by the -xprofile=tcov compiler
option and the tcov -x option. The output is a copy of the source files annotated
with statement execution counts in the margin.

6.5u 17.1s 1:16 31% 11+21k 354+210io 135pf+0w
Chapter 8 Performance Profiling 8-3

Note – The code coverage report produced by tcov will be unreliable if the
compiler has inlined calls to routines. The compiler inlines calls whenever
appropriate at optimization levels above -O3, and according to the -inline option.
With inlining, the compiler replaces a call to a routine with the actual code for the
called routine. And, since there is no call, references to those inlined routines will
not be reported by tcov. Therefore, to get an accurate coverage report, do not enable
compiler inlining.

8.3.1 Enhanced tcov Analysis
To use tcov, compile with -xprofile=tcov. When the program is run, coverage
data is stored in program.profile/tcovd, where program is the name of the
executable file. (If the executable were a.out, a.out.profile/tcovd would be
created.)

Run tcov -x dirname source_files to create the coverage analysis merged with each
source file. The report is written to file.tcov in the current directory.

Running a simple example:

Environment variables $SUN_PROFDATA and $SUN_PROFDATA_DIR can be used to
specify where the intermediary data collection files are kept. These are the *.d and
tcovd files created by old and new style tcov, respectively.

These environment variables can be used to separate the collected data from
different runs. With these variables set, the running program writes execution data
to the files in $SUN_PROFDATA_DIR/$SUN_PROFDATA/.

demo% f95 -o onetwo -xprofile=tcov one.f two.f
demo% onetwo

 ... output from program
demo% tcov -x onetwo.profile one.f two.f
demo% cat one.f.tcov two.f.tcov
 program one
 1 -> do i=1,10
 10 -> call two(i)
 end do
 1 -> end

.....etc
demo%
8-4 Fortran Programming Guide • May 2003

Similarly, the directory that tcov reads is specified by tcov -x $SUN_PROFDATA.
If $SUN_PROFDATA_DIR is set, tcov will prepend it, looking for files in
$SUN_PROFDATA_DIR/$SUN_PROFDATA/, and not in the working directory.

Each subsequent run accumulates more coverage data into the tcovd file. Data for
each object file is zeroed out the first time the program is executed after the
corresponding source file has been recompiled. Data for the entire program is zeroed
out by removing the tcovd file.

For the details, see the tcov(1) man page.
Chapter 8 Performance Profiling 8-5

8-6 Fortran Programming Guide • May 2003

CHAPTER 9

Performance and Optimization

This chapter considers some optimization techniques that may improve the
performance of numerically intense Fortran programs. Proper use of algorithms,
compiler options, library routines, and coding practices can bring significant
performance gains. This discussion does not discuss cache, I/O, or system
environment tuning. Parallelization issues are treated in the next chapter.

Some of the issues considered here are:

■ Compiler options that may improve performance
■ Compiling with feedback from runtime performance profiles
■ Use of optimized library routines for common procedures
■ Coding strategies to improve performance of key loops

The subject of optimization and performance tuning is much too complex to be
treated exhaustively here. However, this discussion should provide the reader with a
useful introduction to these issues. A list of books that cover the subject much more
deeply appears at the end of the chapter.

Optimization and performance tuning is an art that depends heavily on being able
to determine what to optimize or tune.

9.1 Choice of Compiler Options
Choice of the proper compiler options is the first step in improving performance.
Sun compilers offer a wide range of options that affect the object code. In the default
case, where no options are explicitly stated on the compile command line, most
options are off. To improve performance, these options must be explicitly selected.

Performance options are normally off by default because most optimizations force
the compiler to make assumptions about a user’s source code. Programs that
conform to standard coding practices and do not introduce hidden side effects
9-1

should optimize correctly. However, programs that take liberties with standard
practices might run afoul of some of the compiler’s assumptions. The resulting code
might run faster, but the computational results might not be correct.

Recommended practice is to first compile with all options off, verify that the
computational results are correct and accurate, and use these initial results and
performance profile as a baseline. Then, proceed in steps—recompiling with
additional options and comparing execution results and performance against the
baseline. If numerical results change, the program might have questionable code,
which needs careful analysis to locate and reprogram.

If performance does not improve significantly, or degrades, as a result of adding
optimization options, the coding might not provide the compiler with opportunities
for further performance improvements. The next step would then be to analyze and
restructure the program at the source code level to achieve better performance.

9.1.1 Performance Options
The compiler options listed in the following table provide the user with a repertoire
of strategies to improve the performance of a program over default compilation.
Only some of the compilers’ more potent performance options appear in the table. A
more complete list can be found in the Fortran User’s Guide.

Some of these options increase compilation time because they invoke a deeper
analysis of the program. Some options work best when routines are collected into
files along with the routines that call them (rather than splitting each routine into its
own file); this allows the analysis to be global.

TABLE 9-1 Some Effective Performance Options

Action Option

Uses a combination of optimization options together -fast

Sets compiler optimization level to n -On (-O = -O3)

Specifies general target hardware -xtarget=sys

Specifies a particular Instruction Set Architecture -xarch=isa

Optimizes using performance profile data (with -O5) -xprofile=use

Unrolls loops by n -unroll=n

Permits simplifications and optimization of floating-point -fsimple=1|2

Performs dependency analysis to optimize loops -depend

Performs interprocedural optimizations -xipo
9-2 Fortran Programming Guide • May 2003

9.1.1.1 -fast

This single option selects a number of performance options.

Note – This option is defined as a particular selection of other options that is subject
to change from one release to another, and between compilers. Also, some of the
options selected by –fast might not be available on all platforms. Compile with the
-v (verbose) flag to see the expansion of -fast.

-fast provides high performance for certain benchmark applications. However, the
particular choice of options may or may not be appropriate for your application. Use
-fast as a good starting point for compiling your application for best performance.
But additional tuning may still be required. If your program behaves improperly
when compiled with -fast, look closely at the individual options that make up
-fast and invoke only those appropriate to your program that preserve correct
behavior.

Note also that a program compiled with -fast may show good performance and
accurate results with some data sets, but not with others. Avoid compiling with
-fast those programs that depend on particular properties of floating-point
arithmetic.

Because some of the options selected by -fast have linking implications, if you
compile and link in separate steps be sure to link with -fast also.

–fast selects the following options:

■ –dalign
■ –depend
■ –fns
■ –fsimple=2
■ -ftrap=common
■ –libmil
■ –xtarget=native
■ –O5
■ –xlibmopt
■ -pad=local
■ -xvector=yes
■ -xprefetch=yes
■ -xprefetch_level=2

-fast provides a quick way to engage much of the optimizing power of the
compilers. Each of the composite options may be specified individually, and each
may have side effects to be aware of (discussed in the Fortran User’s Guide).
Following -fast with additional options adds further optimizations. For example:

f95 -fast -xarch=v9a ...
Chapter 9 Performance and Optimization 9-3

compiles for a 64-bit enabled, UltraSPARC Solaris platform.

Because -fast invokes -dalign, -fns, -fsimple=2, programs compiled with
-fast can result in nonstandard floating-point arithmetic, nonstandard alignment
of data, and nonstandard ordering of expression evaluation. These selections might
not be appropriate for most programs.

9.1.1.2 -On

The compiler performs no optimizations unless a -O option is specified explicitly (or
implicitly with macro options like -fast). In nearly all cases, specifying an
optimization level at compilation improves program execution performance. On the
other hand, higher levels of optimization increase compilation time and may
significantly increase code size.

For most cases, level -O3 is a good balance between performance gain, code size,
and compilation time. Level -O4 adds automatic inlining of calls to routines
contained in the same source file as the caller routine, among other things. (See the
Fortran User’s Guide for further information about subprogram call inlining.)

Level -O5 adds more aggressive optimization techniques that would not be applied
at lower levels. In general, levels above -O3 should be specified only to those
routines that make up the most compute-intensive parts of the program and thereby
have a high certainty of improving performance. (There is no problem linking
together parts of a program compiled with different optimization levels.)

9.1.1.3 PRAGMA OPT=n

Use the C$ PRAGMA SUN OPT=n directive to set different optimization levels for
individual routines in a source file. This directive will override the -On flag on the
compiler command line, but must be used with the -xmaxopt=n flag to set a
maximum optimization level. See the f95(1) man page for details.

9.1.1.4 Optimization With Runtime Profile Feedback

The compiler applies its optimization strategies at level O3 and above much more
efficiently if combined with -xprofile=use. With this option, the optimizer is
directed by a runtime execution profile produced by the program (compiled with
-xprofile=collect) with typical input data. The feedback profile indicates to the
9-4 Fortran Programming Guide • May 2003

compiler where optimization will have the greatest effect. This may be particularly
important with -O5. Here’s a typical example of profile collection with higher
optimization levels:

The first compilation in the example generates an executable that produces
statement coverage statistics when run. The second compilation uses this
performance data to guide the optimization of the program.

(See the Fortran User’s Guide for details on -xprofile options.)

9.1.1.5 -dalign

With -dalign the compiler is able to generate double-word load/store instructions
whenever possible. Programs that do much data motion may benefit significantly
when compiled with this option. (It is one of the options selected by -fast.) The
double-word instructions are almost twice as fast as the equivalent single word
operations.

However, users should be aware that using -dalign (and therefore -fast) may
cause problems with some programs that have been coded expecting a specific
alignment of data in COMMON blocks. With -dalign, the compiler may add
padding to ensure that all double (and quad) precision data (either REAL or
COMPLEX) are aligned on double-word boundaries, with the result that:

■ COMMON blocks might be larger than expected due to added padding.

■ All program units sharing COMMON must be compiled with -dalign if any one
of them is compiled with -dalign.

For example, a program that writes data by aliasing an entire COMMON block of
mixed data types as a single array might not work properly with -dalign because
the block will be larger (due to padding of double and quad precision variables)
than the program expects.

9.1.1.6 -depend

Adding -depend to optimization levels -O3 and higher (on the SPARC platform)
extends the compiler’s ability to optimize DO loops and loop nests. With this option,
the optimizer analyzes inter-iteration data dependences to determine whether or not

demo% f95 -o prg -fast -xprofile=collect prg.f ...
demo% prg
demo% f95 -o prgx -fast -O5 -xprofile=use:prg.profile prg.f ...
demo% prgx
Chapter 9 Performance and Optimization 9-5

certain transformations of the loop structure can be performed. Only loops without
data dependences can be restructured. However, the added analysis might increase
compilation time.

9.1.1.7 -fsimple=2

Unless directed to, the compiler does not attempt to simplify floating-point
computations (the default is -fsimple=0). -fsimple=2 enables the optimizer to
make aggressive simplifications with the understanding that this might cause some
programs to produce slightly different results due to rounding effects. If -fsimple
level 1 or 2 is used, all program units should be similarly compiled to ensure
consistent numerical accuracy. See the Fortran User’s Guide for important information
about this option.

9.1.1.8 -unroll=n

Unrolling short loops with long iteration counts can be profitable for some routines.
However, unrolling can also increase program size and might even degrade
performance of other loops. With n=1, the default, no loops are unrolled
automatically by the optimizer. With n greater than 1, the optimizer attempts to
unroll loops up to a depth of n.

The compiler’s code generator makes its decision to unroll loops depending on a
number of factors. The compiler might decline to unroll a loop even though this
option is specified with n>1.

If a DO loop with a variable loop limit can be unrolled, both an unrolled version and
the original loop are compiled. A runtime test on iteration count determines if it is
appropriate to execute the unrolled loop. Loop unrolling, especially with simple one
or two statement loops, increases the amount of computation done per iteration and
provides the optimizer with better opportunities to schedule registers and simplify
operations. The tradeoff between number of iterations, loop complexity, and choice
of unrolling depth is not easy to determine, and some experimentation might be
needed.
9-6 Fortran Programming Guide • May 2003

The example that follows shows how a simple loop might be unrolled to a depth of
four with -unroll=4 (the source code is not changed with this option):

This example shows a simple loop with a fixed loop count. The restructuring is more
complex with variable loop counts.

9.1.1.9 -xtarget=platform

The performance of some programs might improve if the compiler has an accurate
description of the target computer hardware. When program performance is critical,
the proper specification of the target hardware could be very important. This is
especially true when running on the newer SPARC processors. However, for most
programs and older SPARC processors, the performance gain could be negligible
and a generic specification might be sufficient.

The Fortran User’s Guide lists all the system names recognized by -xtarget=. For
any given system name (for example, ultra2, for UltraSPARC-II), -xtarget
expands into a specific combination of -xarch, -xcache, and -xchip that properly
matches that system. The optimizer uses these specifications to determine strategies
to follow and instructions to generate.

The special setting -xtarget=native enables the optimizer to compile code
targeted at the host system (the system doing the compilation). This is obviously
useful when compilation and execution are done on the same system. When the
execution system is not known, it is desirable to compile for a generic architecture.
Therefore, -xtarget=generic is the default, even though it might produce
suboptimal performance.

Original Loop:
 DO I=1,20000
 X(I) = X(I) + Y(I)*A(I)
 END DO

Unrolled by 4 compiles as if it were written:
 DO I=1, 19997,4
 TEMP1 = X(I) + Y(I)*A(I)
 TEMP2 = X(I+1) + Y(I+1)*A(I+1)
 TEMP3 = X(I+2) + Y(I+2)*A(I+2)
 X(I+3) = X(I+3) + Y(I+3)*A(I+3)
 X(I) = TEMP1
 X(I+1) = TEMP2
 X(I+2) = TEMP3
 END DO
Chapter 9 Performance and Optimization 9-7

UltraSPARC-III Support

Both the -xtarget and -xchip flags accept ultra3 and will generate optimized
code for the UltraSPARC-III processor. When compiling and running an application
on an UltraSPARC-III platform, specify the -fast flag to automatically select the
proper compiler optimization options for that platform.

For cross-compilations (compiling on a platform other than UltraSPARC-III, but
generating binaries intended to run on an UltraSPARC-III processor), use these flags:

-fast -xtarget=ultra3 -xarch=v8plusb (or -xarch=v9b)

Use -xarch=v9b to compile for 64-bit code generation.

Note that programs compiled specifically for the UltraSPARC-III platform with
-xarch=v8plusb or v9b will not operate on platforms other than UltraSPARC-III.
Use -xarch=v8plusa (or v9a for 64-bit code generation) to compile programs to
run compatibly on UltraSPARC-I, UltraSPARC-II, and UltraSPARC-III.

Performance profiling, with -xprofile=collect: and -xprofile=use:, is
particularly effective on the UltraSPARC-III platform because it allows the compiler
to identify the most frequently executed sections of the program and perform
localized optimizations to best advantage.

9.1.1.10 Interprocedural Optimization With -xipo

This new f95 compiler flag, introduced with the release of Forte Developer 6
update 2, performs whole-program optimizations by invoking an interprocedural
analysis pass. Unlike -xcrossfile, -xipo optimizes across all object files at the
link step and is not limited to just the source files on the compile command.

-xipo is particularly useful when compiling and linking large multi-file
applications. Object files compiled with -xipo have analysis information saved
within them. This enables interprocedural analysis across source and pre-compiled
program files.

For details on how to use interprocedural analysis effectively, see the Fortran User’s
Guide.

9.1.1.11 Add PRAGMA ASSUME Assertions

By adding ASSUME directives at strategic points in the source code you can help
guide the compiler’s optimization stragegy by revealing important information
about the program that is not determinable any other way. For example, you can let
the compiler know that the trip count of a DO loop is always greater than a value, or
that there is a high probability that an IF branch will not be taken. The compiler can
use this information to generate better code, based on these assertions.
9-8 Fortran Programming Guide • May 2003

As an added bonus, the programmer can use the ASSUME pragma to validate the
exectution of the program by enabling warning messages to be issued whenever an
assertion turns out to be false at run time.

For details, see the description of the ASSUME pragma in Chapter 2 of the Fortran
User’s Guide, and the -xassume_control compiler command-line option in
Chapter 3 of that manual.

9.1.2 Other Performance Strategies
Assuming that you have experimented with using a variety of optimization options,
compiling your program and measuring actual runtime performance, the next step
might be to look closely at the Fortran source program to see what further tuning
can be tried.

Focusing on just those parts of the program that use most of the compute time, you
might consider the following strategies:

■ Replace handwritten procedures with calls to equivalent optimized libraries.
■ Remove I/O, calls, and unnecessary conditional operations from key loops.
■ Eliminate aliasing that might inhibit optimization.
■ Rationalize tangled, spaghetti-like code to use block IF.

These are some of the good programming practices that tend to lead to better
performance. It is possible to go further, hand-tuning the source code for a specific
hardware configuration. However, these attempts might only further obscure the
code and make it even more difficult for the compiler’s optimizer to achieve
significant performance improvements. Excessive hand-tuning of the source code
can hide the original intent of the procedure and could have a significantly
detrimental effect on performance for different architectures.

9.1.3 Using Optimized Libraries
In most situations, optimized commercial or shareware libraries perform standard
computational procedures far more efficiently than you could by coding them by
hand.

For example, the Sun Performance Library™ is a suite of highly optimized
mathematical subroutines based on the standard LAPACK, BLAS, FFTPACK,
VFFTPACK, and LINPACK libraries. Performance improvement using these routines
can be significant when compared with hand coding. See the Sun Performance Library
User’s Guide for details.
Chapter 9 Performance and Optimization 9-9

9.1.4 Eliminating Performance Inhibitors
Use the Sun WorkShop Performance Analyzer to identify the key computational
parts of the program. Then, carefully analyze the loop or loop nest to eliminate
coding that might either inhibit the optimizer from generating optimal code or
otherwise degrade performance. Many of the nonstandard coding practices that
make portability difficult might also inhibit optimization by the compiler.

Reprogramming techniques that improve performance are dealt with in more detail
in some of the reference books listed at the end of the chapter. Three major
approaches are worth mentioning here:

9.1.4.1 Removing I/O From Key Loops

I/O within a loop or loop nest enclosing the significant computational work of a
program will seriously degrade performance. The amount of CPU time spent in the
I/O library might be a major portion of the time spent in the loop. (I/O also causes
process interrupts, thereby degrading program throughput.) By moving I/O out of
the computation loop wherever possible, the number of calls to the I/O library can
be greatly reduced.

9.1.4.2 Eliminating Subprogram Calls

Subroutines called deep within a loop nest could be called thousands of times. Even
if the time spent in each routine per call is small, the total effect might be substantial.
Also, subprogram calls inhibit optimization of the loop that contains them because
the compiler cannot make assumptions about the state of registers over the call.

Automatic inlining of subprogram calls (using -inline=x,y,..z, or -O4) is one way
to let the compiler replace the actual call with the subprogram itself (pulling the
subprogram into the loop). The subprogram source code for the routines that are to
be inlined must be found in the same file as the calling routine.

There are other ways to eliminate subprogram calls:

■ Use statement functions. If the external function being called is a simple math
function, it might be possible to rewrite the function as a statement function or set
of statement functions. Statement functions are compiled in-line and can be
optimized.

■ Push the loop into the subprogram. That is, rewrite the subprogram so that it can
be called fewer times (outside the loop) and operate on a vector or array of values
per call.
9-10 Fortran Programming Guide • May 2003

9.1.4.3 Rationalizing Tangled Code

Complicated conditional operations within a computationally intensive loop can
dramatically inhibit the compiler’s attempt at optimization. In general, a good rule
to follow is to eliminate all arithmetic and logical IF’s, replacing them with block
IF’s:

Using block IF not only improves the opportunities for the compiler to generate
optimal code, it also improves readability and assures portability.

Original Code:
 IF(A(I)-DELTA) 10,10,11
10 XA(I) = XB(I)*B(I,I)
 XY(I) = XA(I) - A(I)
 GOTO 13
11 XA(I) = Z(I)
 XY(I) = Z(I)
 IF(QZDATA.LT.0.) GOTO 12
 ICNT = ICNT + 1
 ROX(ICNT) = XA(I)-DELTA/2.
12 SUM = SUM + X(I)
13 SUM = SUM + XA(I)

Untangled Code:
 IF(A(I).LE.DELTA) THEN
 XA(I) = XB(I)*B(I,I)
 XY(I) = XA(I) - A(I)
 ELSE
 XA(I) = Z(I)
 XY(I) = Z(I)
 IF(QZDATA.GE.0.) THEN
 ICNT = ICNT + 1
 ROX(ICNT) = XA(I)-DELTA/2.
 ENDIF
 SUM = SUM + X(I)
 ENDIF
 SUM = SUM + XA(I)
Chapter 9 Performance and Optimization 9-11

owing line
olling

s, and 0

olling

s, and 0
9.1.5 Viewing Compiler Commentary
If you compile with the -g debugging option, you can view source code annotations
generated by the compiler by using the er_src(1) utility, part of the Sun ONE Studio
Performance Analysis Tools. This utility can also be used to view the source code
annotated with the generated assembly language. Here is an example of the
commentary produced by er_src on a simple do loop:

Commentary messages detail the optimization actions taken by the compiler. In the
example we can see that the compiler has inlined the call to the subroutine and
unrolled the loop 5 times. Reviewing this information might provide clues as to
further optimization strategies you can use.

For detailed information about compiler commentary and disassembled code, see
the Sun ONE Studio Program Performance Analysis Tools manual.

demo% f95 -c -g -O4 do.f
demo% er_src do.o
Source file: /home/user21/do.f
Object file: do.o
Load Object: do.o

 1. program do
 2. common aa(100),bb(100)

Function x inlined from source file do.f into the code for the foll
 Loop below pipelined with steady-state cycle count = 3 before unr
 Loop below unrolled 5 times
 Loop below has 2 loads, 1 stores, 0 prefetches, 1 FPadds, 1 FPmul
FPdivs per iteration
 3. call x(aa,bb,100)
 4. end
 5. subroutine x(a,b,n)
 6. real a(n), b(n)
 7. v = 5.
 8. w = 10.

 Loop below pipelined with steady-state cycle count = 3 before unr
 Loop below unrolled 5 times
 Loop below has 2 loads, 1 stores, 0 prefetches, 1 FPadds, 1 FPmul
FPdivs per iteration
 9. do 1 i=1,n
 10. 1 a(i) = a(i)+v*b(i)
 11. return
 12. end
9-12 Fortran Programming Guide • May 2003

9.2 Further Reading
The following reference books provide more details:

■ High Performance Computing, by Kevin Dowd and Charles Severance, O’Reilly &
Associates, 2nd Edition, 1998

■ Techniques for Optimizing Applications: High Performance Computing, by Rajat Garg
and Ilya Sharapov, Sun Microsystems Press Blueprint, 2001
Chapter 9 Performance and Optimization 9-13

9-14 Fortran Programming Guide • May 2003

CHAPTER 10

Parallelization

This chapter presents an overview of multiprocessor parallelization and describes
the capabilities of Fortran 95 on SPARC multiprocessor platforms.

See also Techniques for Optimizing Applications: High Performance Computing by Rajat
Garg and Ilya Sharapov, a Sun Microsystems BluePrints publication
(http://www.sun.com/blueprints/pubs.html)

10.1 Essential Concepts
Parallelizing (or multithreading) an application compiles the program to run on a
multiprocessor system or in a multithreaded environment. Parallelization enables a
single task, such as a DO loop, to run over multiple processors (or threads) with a
potentially significant execution speedup.

Before an application program can be run efficiently on a multiprocessor system like
the Ultra™ 60, Sun Enterprise™ Server 6500, or Sun Enterprise Server 10000, it needs
to be multithreaded. That is, tasks that can be performed in parallel need to be
identified and reprogrammed to distribute their computations across multiple
processors or threads.

Multithreading an application can be done manually by making appropriate calls to
the libthread primitives. However, a significant amount of analysis and
reprogramming might be required. (See the Solaris Multithreaded Programming Guide
for more information.)

Sun compilers can automatically generate multithreaded object code to run on
multiprocessor systems. The Fortran compilers focus on DO loops as the primary
language element supporting parallelism. Parallelization distributes the
computational work of a loop over several processors without requiring modifications
to the Fortran source program.
10-1

The choice of which loops to parallelize and how to distribute them can be left
entirely up to the compiler (-autopar), specified explicitly by the programmer with
source code directives (-explicitpar), or done in combination (-parallel).

Note – Programs that do their own (explicit) thread management should not be
compiled with any of the compiler’s parallelization options. Explicit multithreading
(calls to libthread primitives) cannot be combined with routines compiled with
these parallelization options.

Not all loops in a program can be profitably parallelized. Loops containing only a
small amount of computational work (compared to the overhead spent starting and
synchronizing parallel tasks) may actually run more slowly when parallelized. Also,
some loops cannot be safely parallelized at all; they would compute different results
when run in parallel due to dependencies between statements or iterations.

Implicit loops (IF loops and Fortran 95 array syntax, for example) as well as explicit
DO loops are candidates for automatic parallelization by the Fortran compilers.

f95 can detect loops that might be safely and profitably parallelized automatically.
However, in most cases, the analysis is necessarily conservative, due to the concern
for possible hidden side effects. (A display of which loops were and were not
parallelized can be produced by the -loopinfo option.) By inserting source code
directives before loops, you can explicitly influence the analysis, controlling how a
specific loop is (or is not) to be parallelized. However, it then becomes your
responsibility to ensure that such explicit parallelization of a loop does not lead to
incorrect results.

The Fortran 95 compiler provides explicit parallelization by implementing the
OpenMP 2.0 Fortran API directives. For legacy programs, f95 also supports the
older Sun and Cray style directives. OpenMP has become an informal standard for
explicit parallelization in Fortran 95, C, and C++ and is recommended over the older
directive styles.

For information on OpenMP, see the OpenMP API User’s Guide, or the OpenMP web
site at http://www.openmp.org/.

For a discussion of legacy parallelization directives, see “Sun-Style Parallelization
Directives” on page 10-21, and “Cray-Style Parallelization Directives” on page 10-32.

10.1.1 Speedups—What to Expect
If you parallelize a program so that it runs over four processors, can you expect it to
take (roughly) one fourth the time that it did with a single processor (a fourfold
speedup)?
10-2 Fortran Programming Guide • May 2003

Probably not. It can be shown (by Amdahl’s law) that the overall speedup of a
program is strictly limited by the fraction of the execution time spent in code
running in parallel. This is true no matter how many processors are applied. In fact, if p
is the percentage of the total program execution time that runs in parallel mode, the
theoretical speedup limit is 100/(100–p); therefore, if only 60% of a program’s
execution runs in parallel, the maximum increase in speed is 2.5, independent of the
number of processors. And with just four processors, the theoretical speedup for this
program (assuming maximum efficiency) would be just 1.8 and not 4. With
overhead, the actual speedup would be less.

As with any optimization, choice of loops is critical. Parallelizing loops that
participate only minimally in the total program execution time has only minimal
effect. To be effective, the loops that consume the major part of the runtime must be
parallelized. The first step, therefore, is to determine which loops are significant and
to start from there.

Problem size also plays an important role in determining the fraction of the program
running in parallel and consequently the speedup. Increasing the problem size
increases the amount of work done in loops. A triply nested loop could see a cubic
increase in work. If the outer loop in the nest is parallelized, a small increase in
problem size could contribute to a significant performance improvement (compared
to the unparallelized performance).

10.1.2 Steps to Parallelizing a Program
Here is a very general outline of the steps needed to parallelize an application:

1. Optimize. Use the appropriate set of compiler options to get the best serial
performance on a single processor.

2. Profile. Using typical test data, determine the performance profile of the program.
Identify the most significant loops.

3. Benchmark. Determine that the serial test results are accurate. Use these results
and the performance profile as the benchmark.

4. Parallelize. Use a combination of options and directives to compile and build a
parallelized executable.

5. Verify. Run the parallelized program on a single processor and single thread and
check results to find instabilities and programming errors that might have crept
in. (Set $PARALLEL or $OMP_NUM_THREADS to 1; see “Number of Threads” on
page 10-7).

6. Test. Make various runs on several processors to check results.
Chapter 10 Parallelization 10-3

7. Benchmark. Make performance measurements with various numbers of processors
on a dedicated system. Measure performance changes with changes in problem
size (scalability).

8. Repeat steps 4 to 7. Make improvements to your parallelization scheme based on
performance.

10.1.3 Data Dependence Issues
Not all loops are parallelizable. Running a loop in parallel over a number of
processors usually results in iterations executing out of order. Moreover, the multiple
processors executing the loop in parallel may interfere with each other whenever
there are data dependencies in the loop.

Situations where data dependence issues arise include recurrence, reduction, indirect
addressing, and data dependent loop iterations.

10.1.3.1 Data Dependent Loops

You might be able to rewrite a loop to eliminate data dependencies, making it
parallelizable. However, extensive restructuring could be needed.

Some general rules are:

■ A loop is data independent only if all iterations write to distinct memory locations.

■ Iterations may read from the same locations as long as no one iteration writes to
them.

These are general conditions for parallelization. The compilers’ automatic
parallelization analysis considers additional criteria when deciding whether
to parallelize a loop. However, you can use directives to explicitly force loops to be
parallelized, even loops that contain inhibitors and produce incorrect results.

10.1.3.2 Recurrence

Variables that are set in one iteration of a loop and used in a subsequent iteration
introduce cross-iteration dependencies, or recurrences. Recurrence in a loop requires
that the iterations to be executed in the proper order. For example:

 DO I=2,N
 A(I) = A(I-1)*B(I)+C(I)
 END DO
10-4 Fortran Programming Guide • May 2003

requires the value computed for A(I) in the previous iteration to be used (as A(I-1))
in the current iteration. To produce correct results, iteration I must complete before
iteration I+1 can execute.

10.1.3.3 Reduction

Reduction operations reduce the elements of an array into a single value. For
example, summing the elements of an array into a single variable involves updating
that variable in each iteration:

If each processor running this loop in parallel takes some subset of the iterations, the
processors will interfere with each other, overwriting the value in SUM. For this to
work, each processor must execute the summation one at a time, although the order
is not significant.

Certain common reduction operations are recognized and handled as special cases
by the compiler.

10.1.3.4 Indirect Addressing

Loop dependencies can result from stores into arrays that are indexed in the loop by
subscripts whose values are not known. For example, indirect addressing could be
order dependent if there are repeated values in the index array:

In the example, repeated values in ID cause elements in A to be overwritten. In the
serial case, the last store is the final value. In the parallel case, the order is not
determined. The values of A(L) that are used, old or updated, are order dependent.

 DO K = 1,N
 SUM = SUM + A(I)*B(I)
 END DO

 DO L = 1,NW
 A(ID(L)) = A(L) + B(L)
 END DO
Chapter 10 Parallelization 10-5

10.1.4 Compiling for Parallelization
The following table shows the f95 compilation options related to parallelization.

Notes on these options:

■ -reduction requires -autopar.

■ -autopar includes -depend and loop structure optimization.

■ -parallel is equivalent to -autopar -explicitpar.

■ -noautopar, -noexplicitpar, -noreduction are the negations.

■ Parallelization options can be in any order, but they must be all lowercase.

■ Reduction operations are not analyzed for explicitly parallelized loops.

■ -openmp also invokes -stackvar automatically.

■ The options -loopinfo, -vpara, and -mpmust be used in conjunction with one of
the parallelization options -autopar, -explicitpar, or -parallel.

The Sun ONE Studio compilers now support the OpenMP parallelization model
natively as the primary parallelization model. Sun and Cray-style parallelization, as
described in this chapter, applies to legacy applications. For information on OpenMP
parallelization, see the OpenMP API User’s Guide.

TABLE 10-1 Parallelization Options

Option Flag

Automatic (only) -autopar

Automatic and Reduction -autopar -reduction

Explicit (only) -explicitpar

Automatic and Explicit -parallel

Automatic and Reduction and Explicit -parallel -reduction

Show which loops are parallelized -loopinfo

Show warnings with explicit -vpara

Allocate local variables on stack -stackvar

Enable Sun-style MP directives -mp=sun

Enable Cray-style MP directives -mp=cray

Compile for OpenMP parallelization -openmp
10-6 Fortran Programming Guide • May 2003

10.1.5 Number of Threads
The PARALLEL (or OMP_NUM_THREADS) environment variable controls the maximum
number of threads available to the program. Setting the environment variable tells
the runtime system the maximum number of threads the program can use. The
default is 1. In general, set the PARALLEL or OMP_NUM_THREADS variable to the
available number of processors on the target platform.

The following example shows how to set it:

In this example, setting PARALLEL to four enables the execution of a program using
at most four threads. If the target machine has four processors available, the threads
will map to independent processors. If there are fewer than four processors
available, some threads could run on the same processor as others, possibly
degrading performance.

The SunOS™ operating system command psrinfo(1M) displays a list of the
processors available on a system:

10.1.6 Stacks, Stack Sizes, and Parallelization
The executing program maintains a main memory stack for the initial thread
executing the program, as well as distinct stacks for each helper thread. Stacks are
temporary memory address spaces used to hold arguments and AUTOMATIC
variables over subprogram invocations.

The default size of the main stack is about 8 megabytes. The Fortran compilers
normally allocate local variables and arrays as STATIC (not on the stack). However,
the -stackvar option forces the allocation of all local variables and arrays on the
stack (as if they were AUTOMATIC variables). Use of -stackvar is recommended
with parallelization because it improves the optimizer’s ability to parallelize

demo% setenv PARALLEL 4 C shell
-or-

demo$ PARALLEL=4 Bourne/Korn shell
demo$ export PARALLEL

demo% psrinfo
0 on-line since 03/18/99 15:51:03
1 on-line since 03/18/99 15:51:03
2 on-line since 03/18/99 15:51:03
3 on-line since 03/18/99 15:51:03
Chapter 10 Parallelization 10-7

subprogram calls in loops. -stackvar is required with explicitly parallelized loops
containing subprogram calls. (See the discussion of -stackvar in the Fortran User’s
Guide.)

Using the C shell (csh), the limit command displays the current main stack size as
well as sets it:

With Bourne or Korn shells, the corresponding command is ulimit:

Each helper thread of a multithreaded program has its own thread stack. This stack
mimics the initial thread stack but is unique to the thread. The thread’s PRIVATE
arrays and variables (local to the thread) are allocated on the thread stack. The
default size is 8 Megabytes on SPARC V9 (UltraSPARC) platforms, 4 Megabytes
otherwise. The size is set with the STACKSIZE environment variable:

demo% limit C shell example
cputime unlimited
filesize unlimited
datasize 2097148 kbytes
stacksize 8192 kbytes <- current main stack size
coredumpsize 0 kbytes
descriptors 64
memorysize unlimited
demo% limit stacksize 65536 <- set main stack to 64Mb
demo% limit stacksize
stacksize 65536 kbytes

demo$ ulimit -a Korn Shell example
time(seconds) unlimited
file(blocks) unlimited
data(kbytes) 2097148
stack(kbytes) 8192
coredump(blocks) 0
nofiles(descriptors) 64
vmemory(kbytes) unlimited
demo$ ulimit -s 65536
demo$ ulimit -s
65536

demo% setenv STACKSIZE 8192 <- Set thread stack size to 8 Mb C shell
 -or-
demo$ STACKSIZE=8192 Bourne/Korn Shell
demo$ export STACKSIZE
10-8 Fortran Programming Guide • May 2003

Setting the thread stack size to a value larger than the default may be necessary for
some parallelized Fortran codes. However, it may not be possible to know just how
large it should be, except by trial and error, especially if private/local arrays are
involved. If the stack size is too small for a thread to run, the program will abort
with a segmentation fault.

10.2 Automatic Parallelization
With the -autopar and -parallel options, the f95 compiler automatically finds
DO loops that can be parallelized effectively. These loops are then transformed to
distribute their iterations evenly over the available processors. The compiler
generates the thread calls needed to make this happen.

10.2.1 Loop Parallelization
The compiler’s dependency analysis transforms a DO loop into a parallelizable task.
The compiler may restructure the loop to split out unparallelizable sections that will
run serially. It then distributes the work evenly over the available processors. Each
processor executes a different chunk of iterations.

For example, with four CPUs and a parallelized loop with 1000 iterations, each
thread would execute a chunk of 250 iterations:

Only loops that do not depend on the order in which the computations are
performed can be successfully parallelized. The compiler’s dependence analysis
rejects from parallelization those loops with inherent data dependencies. If it cannot
fully determine the data flow in a loop, the compiler acts conservatively and does
not parallelize. Also, it may choose not to parallelize a loop if it determines the
performance gain does not justify the overhead.

Note that the compiler always chooses to parallelize loops using a static loop
scheduling—simply dividing the work in the loop into equal blocks of iterations.
Other scheduling schemes may be specified using explicit parallelization directives
described later in this chapter.

Processor 1 executes iterations 1 through 250

Processor 2 executes iterations 251 through 500

Processor 3 executes iterations 501 through 750

Processor 4 executes iterations 751 through 1000
Chapter 10 Parallelization 10-9

10.2.2 Arrays, Scalars, and Pure Scalars
A few definitions, from the point of view of automatic parallelization, are needed:

■ An array is a variable that is declared with at least one dimension.

■ A scalar is a variable that is not an array.

■ A pure scalar is a scalar variable that is not aliased—not referenced in an
EQUIVALENCE or POINTER statement.

Example: Array/scalar:

Both m and a are array variables; s is pure scalar. The variables u, x, z, and px are
scalar variables, but not pure scalars.

10.2.3 Automatic Parallelization Criteria
DO loops that have no cross-iteration data dependencies are automatically
parallelized by -autopar or -parallel. The general criteria for automatic
parallelization are:

■ Only explicit DO loops and implicit loops, such as IF loops and Fortran 95 array
syntax are parallelization candidates.

■ The values of array variables for each iteration of the loop must not depend on the
values of array variables for any other iteration of the loop.

■ Calculations within the loop must not conditionally change any pure scalar
variable that is referenced after the loop terminates.

■ Calculations within the loop must not change a scalar variable across iterations.
This is called a loop-carried dependence.

■ The amount of work within the body of the loop must outweigh the overhead of
parallelization.

 dimension a(10)
 real m(100,10), s, u, x, z
 equivalence (u, z)
 pointer (px, x)
 s = 0.0
 ...
10-10 Fortran Programming Guide • May 2003

10.2.3.1 Apparent Dependencies

The compilers may automatically eliminate a reference that appears to create a data
dependence in the loop. One of the many such transformations makes use of private
versions of some of the arrays. Typically, the compiler does this if it can determine
that such arrays are used in the original loops only as temporary storage.

Example: Using -autopar, with dependencies eliminated by private arrays:

In the example, the outer loop is parallelized and run on independent processors.
Although the inner loop references to array a appear to result in a data dependence,
the compiler generates temporary private copies of the array to make the outer loop
iterations independent.

10.2.3.2 Inhibitors to Automatic Parallelization

Under automatic parallelization, the compilers do not parallelize a loop if:

■ The DO loop is nested inside another DO loop that is parallelized
■ Flow control allows jumping out of the DO loop
■ A user-level subprogram is invoked inside the loop
■ An I/O statement is in the loop
■ Calculations within the loop change an aliased scalar variable

10.2.3.3 Nested Loops

In a multithreaded, multiprocessor environment, it is most effective to parallelize the
outermost loop in a loop nest, rather than the innermost. Because parallel processing
typically involves relatively large loop overhead, parallelizing the outermost loop
minimizes the overhead and maximizes the work done for each thread. Under
automatic parallelization, the compilers start their loop analysis from the outermost

 parameter (n=1000)
 real a(n), b(n), c(n,n)
 do i = 1, 1000 <--Parallelized
 do k = 1, n
 a(k) = b(k) + 2.0
 end do
 do j = 1, n-1
 c(i,j) = a(j+1) + 2.3
 end do
 end do
 end
Chapter 10 Parallelization 10-11

loop in a nest and work inward until a parallelizable loop is found. Once a loop
within the nest is parallelized, loops contained within the parallel loop are passed
over.

10.2.4 Automatic Parallelization With Reduction
Operations
A computation that transforms an array into a scalar is called a reduction operation.
Typical reduction operations are the sum or product of the elements of a vector.
Reduction operations violate the criterion that calculations within a loop not change
a scalar variable in a cumulative way across iterations.

Example: Reduction summation of the elements of a vector:

However, for some operations, if reduction is the only factor that prevents
parallelization, it is still possible to parallelize the loop. Common reduction
operations occur so frequently that the compilers are capable of recognizing and
parallelizing them as special cases.

Recognition of reduction operations is not included in the automatic parallelization
analysis unless the -reduction compiler option is specified along with -autopar
or -parallel.

If a parallelizable loop contains one of the reduction operations listed in TABLE 10-2,
the compiler will parallelize it if -reduction is specified.

 s = 0.0
 do i = 1, 1000

s = s + v(i)
 end do
 t(k) = s
10-12 Fortran Programming Guide • May 2003

10.2.4.1 Recognized Reduction Operations

The following table lists the reduction operations that are recognized by the
compiler.

All forms of the MIN and MAX function are recognized.

10.2.4.2 Numerical Accuracy and Reduction Operations

Floating-point sum or product reduction operations may be inaccurate due to the
following conditions:

■ The order in which the calculations are performed in parallel is not the same as
when performed serially on a single processor.

■ The order of calculation affects the sum or product of floating-point numbers.
Hardware floating-point addition and multiplication are not associative.
Roundoff, overflow, or underflow errors may result depending on how the
operands associate. For example, (X*Y)*Z and X*(Y*Z) may not have the same
numerical significance.

In some situations, the error may not be acceptable.

TABLE 10-2 Recognized Reduction Operations

Mathematical Operations Fortran Statement Templates

Sum s = s + v(i)

Product s = s * v(i)

Dot product s = s + v(i) * u(i)

Minimum s = amin(s, v(i))

Maximum s = amax(s, v(i))

OR do i = 1, n

b = b .or. v(i)

end do

AND b = .true.

do i = 1, n

b = b .and. v(i)

end do

Count of non-zero elements k = 0

do i = 1, n

if(v(i).ne.0) k = k + 1

end do
Chapter 10 Parallelization 10-13

Example: Roundoff, get the sum of 100,000 random numbers between –1 and +1:

Results vary with the number of processors. The following table shows the sum of
100,000 random numbers between –1 and +1.

In this situation, roundoff error on the order of 10-14 is acceptable for data that is
random to begin with. For more information, see the Sun Numerical Computation
Guide.

10.3 Explicit Parallelization
This section describes the source code directives recognized by f95 to explicitly
indicate which loops to parallelize and what strategy to use.

The Fortran 95 compiler now supports the OpenMP Fortran API as the primary
parallelization model. See the OpenMP API User’s Guide for additional information..

f95 will also accept legacy Sun-style and Cray-style parallelization directives to
facilitate porting explicitly parallelized programs from other platforms.

Explicit parallelization of a program requires prior analysis and deep understanding
of the application code as well as the concepts of shared-memory parallelization.

demo% cat t4.f
 parameter (n = 100000)

double precision d_lcrans, lb / -1.0 /, s, ub / +1.0 /, v(n)
 s = d_lcrans (v, n, lb, ub) ! Get n random nos. between -1 and +1
 s = 0.0
 do i = 1, n

s = s + v(i)
 end do
 write(*, '(" s = ", e21.15)') s
 end
demo% f95 -O4 -autopar -reduction t4.f

Number of Processors Output

1 s = 0.568582080884714E+02

2 s = 0.568582080884722E+02

3 s = 0.568582080884721E+02

4 s = 0.568582080884724E+02
10-14 Fortran Programming Guide • May 2003

DO loops are marked for parallelization by directives placed immediately before
them. Compile with -openmp to enable recognition of OpenMP Fortran 95 directives
and generation of parallelized DO loop code. (Compile with -parallel or
-explicitpar for legacy Sun or Cray directives.) Parallelization directives are
comment lines that tell the compiler to parallelize (or not to parallelize) the DO loop
that follows the directive. Directives are also called pragmas.

Take care when choosing which loops to mark for parallelization. The compiler
generates threaded, parallel code for all loops marked with parallelization directives,
even if there are data dependencies that will cause the loop to compute incorrect
results when run in parallel.

If you do your own multithreaded coding using the libthread primitives, do not
use any of the compilers’ parallelization options—the compilers cannot parallelize
code that has already been parallelized with user calls to the threads library.

10.3.1 Parallelizable Loops
A loop is appropriate for explicit parallelization if:

■ It is a DO loop, but not a DO WHILE or Fortran 95 array syntax.

■ The values of array variables for each iteration of the loop do not depend on the
values of array variables for any other iteration of the loop.

■ If the loop changes a scalar variable, that variable’s value is not used after the
loop terminates. Such scalar variables are not guaranteed to have a defined value
after the loop terminates, since the compiler does not automatically ensure a
proper storeback for them.

■ For each iteration, any subprogram that is invoked inside the loop does not
reference or change values of array variables for any other iteration.

■ The DO loop index must be an integer.

10.3.1.1 Scoping Rules: Private and Shared

A private variable or array is private to a single iteration of a loop. The value assigned
to a private variable or array in one iteration is not propagated to any other iteration
of the loop.

A shared variable or array is shared with all other iterations. The value assigned to a
shared variable or array in an iteration is seen by other iterations of the loop.

If an explicitly parallelized loop contains shared references, then you must ensure
that sharing does not cause correctness problems. The compiler does not
synchronize on updates or accesses to shared variables.
Chapter 10 Parallelization 10-15

If you specify a variable as private in one loop, and its only initialization is within
some other loop, the value of that variable may be left undefined in the loop.

10.3.1.2 Subprogram Call in a Loop

A subprogram call in a loop (or in any subprograms called from within the called
routine) may introduce data dependencies that could go unnoticed without a deep
analysis of the data and control flow through the chain of calls. While it is best to
parallelize outermost loops that do a significant amount of the work, these tend to
be the very loops that involve subprogram calls.

Because such an interprocedural analysis is difficult and could greatly increase
compilation time, automatic parallelization modes do not attempt it. With explicit
parallelization, the compiler generates parallelized code for a loop marked with a
PARALLEL DO or DOALL directive even if it contains calls to subprograms. It is still
the programmer’s responsibility to insure that no data dependencies exist within the
loop and all that the loop encloses, including called subprograms.

Multiple invocations of a routine by different threads can cause problems resulting
from references to local static variables that interfere with each other. Making all the
local variables in a routine automatic rather than static prevents this. Each invocation
of a subprogram then has its own unique store of local variables maintained on the
stack, and no two invocations will interfere with each other.

Local subprogram variables can be made automatic variables that reside on the stack
either by listing them on an AUTOMATIC statement or by compiling the subprogram
with the -stackvar option. However, local variables initialized in DATA statements
must be rewritten to be initialized in actual assignments.

Note – Allocating local variables to the stack can cause stack overflow. See “Stacks,
Stack Sizes, and Parallelization” on page 10-7 about increasing the size of the stack.

10.3.1.3 Inhibitors to Explicit Parallelization

In general, the compiler parallelizes a loop if you explicitly direct it to. There are
exceptions—some loops the compiler will not parallelize.

The following are the primary detectable inhibitors that might prevent explicitly
parallelizing a DO loop:

■ The DO loop is nested inside another DO loop that is parallelized.

This exception holds for indirect nesting, too. If you explicitly parallelize a loop
that includes a call to a subroutine, then even if you request the compiler to
parallelize loops in that subroutine, those loops are not run in parallel at runtime.
10-16 Fortran Programming Guide • May 2003

■ A flow control statement allows jumping out of the DO loop.

■ The index variable of the loop is subject to side effects, such as being
equivalenced.

By compiling with -vpara and -loopinfo, you will get diagnostic messages if the
compiler detects a problem while explicitly parallelizing a loop.

The following table lists typical parallelization problems detected by the compiler:

Example: Nested loops:

TABLE 10-3 Explicit Parallelization Problems

Problem Parallelized
Warning
Message

Loop is nested inside another loop that is parallelized. No No

Loop is in a subroutine called within the body of a
parallelized loop.

No No

Jumping out of loop is allowed by a flow control
statement.

No Yes

Index variable of loop is subject to side effects. Yes No

Some variable in the loop has a loop-carried
dependency.

Yes Yes

I/O statement in the loop—usually unwise, because the
order of the output is not predictable.

Yes No

 ...
!$OMP PARALLEL DO
 do 900 i = 1, 1000 ! Parallelized (outer loop)

do 200 j = 1, 1000 ! Not parallelized, no warning
...

200 continue
900 continue
 ...
Chapter 10 Parallelization 10-17

Example: A parallelized loop in a subroutine:

In the example, the loop within the subroutine is not parallelized because the
subroutine itself is run in parallel.

Example: Jumping out of a loop:

The compiler issues an error diagnostic if there is a jump outside a loop marked for
parallelization.

 program main
 ...
!$OMP PARALLEL DO
 do 100 i = 1, 200 <-parallelized

...
call calc (a, x)
...

100 continue
 ...
subroutine calc (b, y)
 ...
!$OMP PARALLEL DO
 do 1 m = 1, 1000 <-not parallelized

...
1 continue
 return
 end

!$omp parallel do
 do i = 1, 1000 ! ← Not parallelized, error issued

...
if (a(i) .gt. min_threshold) go to 20
...

 end do
20 continue
 ...
10-18 Fortran Programming Guide • May 2003

Example: A variable in a loop has a loop-carried dependency:

Here the loop is parallelized but the possible loop carried dependency is diagnosed
in a warning. However, be aware that not all loop dependencies can be diagnosed by
the compiler.

10.3.1.4 I/O With Explicit Parallelization

You can do I/O in a loop that executes in parallel, provided that:

■ It does not matter that the output from different threads is interleaved (program
output is nondeterministic.)

■ You can ensure the safety of executing the loop in parallel.

demo% cat vpfn.f
 real function fn (n,x,y,z)
 real y(*),x(*),z(*)
 s = 0.0
!$omp parallel do private(i,s) shared(x,y,z)

do i = 1, n
 x(i) = s
 s = y(i)*z(i)
 enddo
 fn=x(10)
 return
 end
demo% f95 -c -vpara -loopinfo -openmp -O4 vpfn.f
"vpfn.f", line 5: Warning: the loop may have parallelization
inhibiting reference
"vpfn.f", line 5: PARALLELIZED, user pragma used
Chapter 10 Parallelization 10-19

Example: I/O statement in loop

However, I/O that is recursive, where an I/O statement contains a call to a function
that itself does I/O, will cause a runtime error.

10.3.2 OpenMP Parallelization Directives
OpenMP is a parallel programming model for multi-processor platforms that is
becoming standard programming practice for Fortran 95, C, and C++ applications. It
is the preferred parallel programming model for Sun ONE Studio compilers.

To enable OpenMP directives, compile with the -openmp option flag. Fortran 95
OpenMP directives are identified with the comment-like sentinel !$OMP followed by
the directive name and subordinate clauses.

The !$OMP PARALLEL directive identifies the parallel regions in a program. The
!$OMP DO directive identifies DO loops within a parallel region that are to be
parallelized. These directives can be combined into a single !$OMP PARALLEL DO
directive that must be placed immediately before the DO loop.

!$OMP PARALLEL DO PRIVATE(k)
 do i = 1, 10 ! Parallelized

k = i
call show (k)

 end do
 end
 subroutine show(j)
 write(6,1) j
1 format('Line number ', i3, '.')
 end
demo% f95 -openmp t13.f
demo% setenv PARALLEL 4
demo% a.out

Line number 9.

Line number 10.

Line number 4.

Line number 5.

Line number 6.

Line number 1.

Line number 2.

Line number 3.

Line number 7.

Line number 8.
10-20 Fortran Programming Guide • May 2003

The OpenMP specification includes a number of directives for sharing and
synchronizing work in a parallel region of a program, and subordinate clauses for
data scoping and control.

One major difference between OpenMP and legacy Sun-style directives is that
OpenMP requires explicit data scoping as either private or shared.

For more information, including guidelines for converting legacy programs using
Sun and Cray parallelization directives, see the OpenMP API User’s Guide.

10.3.3 Sun-Style Parallelization Directives
Legacy Sun-style directives are enabled by default (or with the -mp=sun option)
when compiling with the -explicitpar or -parallel options.

10.3.3.1 Sun Parallelization Directives Syntax

A parallel directive consists of one or more directive lines. A Sun-style directive line is
defined as follows:

■ A directive line is case-insensitive.

■ A directive line begins with a five-character sentinel: C$PAR, *$PAR, or !$PAR.

■ With fixed-format source:
■ An initial directive line has a blank in column 6.
■ A continuation directive line has a nonblank in column 6.
■ Columns beyond 72 are ignored unless the -e option is specified.

■ With Fortran 95 free format source:
■ Leading blanks are allowed before the sentinel.
■ The only sentinel recognized is !$PAR.

■ Qualifiers, if any, follow directives—on the same line or continuation lines.

■ Multiple qualifiers on one line are separated by commas.

■ Spaces before, after, or within a directive or qualifier are ignored.

C$PAR Directive [Qualifiers] <- Initial directive line
C$PAR& [More_Qualifiers] <- Optional continuation lines
Chapter 10 Parallelization 10-21

The Sun-style parallel directives are:

Examples of Sun-style parallel directives:

10.3.3.2 TASKCOMMON Directive

The TASKCOMMON directive declares variables in a global COMMON block as thread-
private: Every variable declared in a common block becomes a private variable to the
thread, but remains global within the thread. Only named COMMON blocks can be
declared TASKCOMMON.

The syntax of the directive is:

C$PAR TASKCOMMON common_block_name

The directive must appear immediately after every COMMON declaration for that
named block.

This directive is effective only when compiled with -explicitpar or -parallel.
Otherwise, the directive is ignored and the block is treated as a regular COMMON
block.

Directive Action

TASKCOMMON Declares variables in a COMMON block to be thread-private

DOALL Parallelizes the next loop

DOSERIAL Does not parallelize the next loop

DOSERIAL* Does not parallelize the next nest of loops

C$PAR TASKCOMMON ALPHA Declare block private
 COMMON /ALPHA/BZ,BY(100)

C$PAR DOALL No qualifiers

C$PAR DOSERIAL

C$PAR DOALL SHARED(I,K,X,V), PRIVATE(A)
 This one-line directive is equivalent to the three-line directive that follows.
C$PAR DOALL
C$PAR& SHARED(I,K,X,V)
C$PAR& PRIVATE(A)
10-22 Fortran Programming Guide • May 2003

Variables declared in TASKCOMMON blocks are treated as thread-private variables in
all the DOALL loops and routines called from within the DOALL loops. Each thread
gets its own copy of the COMMON block, so data written by one thread is not
directly visible to other threads. During serial portions of the program, accesses are
to the initial thread’s copy of the COMMON block.

Variables in TASKCOMMON blocks should not appear on any DOALL qualifiers, such as
PRIVATE, SHARED, READONLY, and so on.

It is an error to declare a common block as task common in some but not all
compilation units where the block is defined. A check at runtime for task common
consistency can be enabled by compiling the program with the -xcommonchk=yes
flag. Enable the runtime check only during program development, as it can degrade
performance.

10.3.3.3 DOALL Directive

The DOALL directive requests the compiler to generate parallel code for the one DO
loop immediately following it (if compiled with the -parallel or -explicitpar
options).

Note – Analysis and transformation of reduction operations is not performed within
explicitly parallelized loops.

Example: Explicit parallelization of a loop:

demo% cat t4.f
 ...
C$PAR DOALL
 do i = 1, n

a(i) = b(i) * c(i)
 end do
 do k = 1, m

x(k) = x(k) * z(k,k)
 end do
 ...
demo% f95 -explicitpar t4.f
Chapter 10 Parallelization 10-23

10.3.3.4 DOALL Qualifiers

All qualifiers on the Sun-style DOALL directive are optional. The following table
summarizes them:

PRIVATE(varlist)

The PRIVATE(varlist)qualifier specifies that all scalars and arrays in the list varlist
are private for the DOALL loop. Both arrays and scalars can be specified as private. In
the case of an array, each thread of the DOALL loop gets a copy of the entire array. All
other scalars and arrays referenced in the DOALL loop, but not contained in the
private list, conform to their appropriate default scoping rules. (See “Scoping Rules:
Private and Shared” on page 10-15).

TABLE 10-4 DOALL Qualifiers

Qualifier Assertion Syntax

PRIVATE Do not share variables u1, …
between iterations

DOALL PRIVATE(u1,u2,…)

SHARED Share variables v1, v2, … between
iterations

DOALL SHARED(v1,v2,…)

MAXCPUS Use no more than n CPUs (threads) DOALL MAXCPUS(n)

READONLY The listed variables are not modified
in the DOALL loop

DOALL READONLY(v1,v2,…)

STOREBACK Save the last DO iteration values of
variables v1, …

DOALL STOREBACK(v1,v2,…)

SAVELAST Save the last DO iteration values of
all private variables

DOALL SAVELAST

REDUCTION Treat the variables v1, v2, … as
reduction variables.

DOALL REDUCTION(v1,v2,…)

SCHEDTYPE Set the scheduling type to t. DOALL SCHEDTYPE(t)
10-24 Fortran Programming Guide • May 2003

Example: Specify array a private in loop i:

SHARED(varlist)

The SHARED(varlist) qualifier specifies that all scalars and arrays in the list varlist are
shared for the DOALL loop. Both arrays and scalars can be specified as shared.
Shared scalars and arrays can be accessed in all the iterations of a DOALL loop. All
other scalars and arrays referenced in the DOALL loop, but not contained in the
shared list, conform to their appropriate default scoping rules.

Example: Specify a shared variable:

In the example, the variable y has been specified as a variable whose value should
be shared among the iterations of the i loop.

READONLY(varlist)

The READONLY(varlist) qualifier specifies that all scalars and arrays in the list varlist
are read-only for the DOALL loop. Read-only scalars and arrays are a special class of
shared scalars and arrays that are not modified in any iteration of the DOALL loop.
Specifying scalars and arrays as READONLY indicates to the compiler that it does not
need to use a separate copy of that scalar variable or array for each thread of the
DOALL loop.

C$PAR DOALL PRIVATE(a)
 do i = 1, n

a(1) = b(i)
do j = 2, n

a(j) = a(j-1) + b(j) * c(j)
end do
x(i) = f(a)

 end do

C$PAR DOALL SHARED(y)
 do i = 1,n

a(i) = y
 end do
Chapter 10 Parallelization 10-25

Example: Specify a read-only variable:

In the preceding example, x is a shared variable, but the compiler can rely on the
fact that its value will not be modified in any iteration of the i loop because of its
READONLY specification.

STOREBACK(varlist)

A STOREBACK scalar variable or array is one whose value is computed in a DOALL
loop. The computed value can be used after the termination of the loop. In other
words, the last loop iteration values of storeback scalars or arrays are visible after
the DOALL loop.

Example: Specify the loop index variable as storeback:

In the preceding example, both the variables x and i are storeback variables, even
though both variables are private to the i loop. The value of i after the loop is n+1,
while the value of x is whatever value it had at the end of the last iteration.

There are some potential problems for STOREBACK to be aware of.

The STOREBACK operation occurs at the last iteration of the explicitly parallelized
loop, even if this is not the same iteration that last updates the value of the
STOREBACK variable or array.

 x = 3
C$PAR DOALL SHARED(x),READONLY(x)
 do i = 1, n

b(i) = x + 1
 end do

C$PAR DOALL PRIVATE(x), STOREBACK(x,i)
 do i = 1, n

x = ...
 end do
 ... = i
 ... = x
10-26 Fortran Programming Guide • May 2003

Example: STOREBACK variable potentially different from the serial version:

In the preceding example, the value of the STOREBACK variable x that is printed out
might not be the same as that printed out by a serial version of the i loop. In the
explicitly parallelized case, the processor that processes the last iteration of the i
loop (when i = n) and performs the STOREBACK operation for x, might not be the
same processor that currently contains the last updated value of x. The compiler
issues a warning message about these potential problems.

SAVELAST

The SAVELAST qualifier specifies that all private scalars and arrays are STOREBACK
variables for the DOALL loop.

Example: Specify SAVELAST:

In the example, variables x, y, and i are STOREBACK variables.

REDUCTION(varlist)

The REDUCTION(varlist) qualifier specifies that all variables in the list varlist are
reduction variables for the DOALL loop. A reduction variable (or array) is one whose
partial values can be individually computed on various processors, and whose final
value can be computed from all its partial values.

C$PAR DOALL PRIVATE(x), STOREBACK(x)
 do i = 1, n

if (...) then
x = ...

end if
 end do
 print *,x

C$PAR DOALL PRIVATE(x,y), SAVELAST
 do i = 1, n

x = ...
y = ...

 end do
 ... = i
 ... = x
 ... = y
Chapter 10 Parallelization 10-27

The presence of a list of reduction variables requests the compiler to handle a DOALL
loop as reduction loop by generating parallel reduction code for it.

Example: Specify a reduction variable:

In the preceding example, the variable x is a (sum) reduction variable; the i loop is a
(sum) reduction loop.

SCHEDTYPE(t)

SCHEDTYPE(t) specifies the scheduling type t be used to schedule the DOALL loop.

C$PAR DOALL REDUCTION(x)
 do i = 1, n

x = x + a(i)
 end do

TABLE 10-5 DOALL SCHEDTYPE Qualifiers

Scheduling Type Action

STATIC Use static scheduling for this DO loop. (This is the default scheduling for
Sun-style DOALL.)
Distribute all iterations uniformly to all available threads.
Example: With 1000 iterations and 4 processors, each thread gets one
chunk of 250 contiguous iterations.

SELF[(chunksize)] Use self-scheduling for this DO loop.
Each thread gets one chunk of chunksize iterations at a time, distributed
in a nondeterministic order until all iterations are processed. Chunks of
iterations may not be distributed uniformly to all available threads.
• If chunksize is not provided, the compiler selects a value.
Example: With 1000 iterations and chunksize of 4, each thread gets 4
iterations at a time until all iterations are processed.
10-28 Fortran Programming Guide • May 2003

Multiple Qualifiers

Qualifiers can appear multiple times with cumulative effect. In the case of conflicting
qualifiers, the compiler issues a warning message, and the qualifier appearing last
prevails.

Example: A three-line Sun-style directive (note conflicting MAXCPUS, SHARED, and
PRIVATE qualifiers):

FACTORING[(m)] Use factoring scheduling for this DO loop.
With n iterations initially and k threads, all the iterations are divided
into groups of chunks of iterations, starting with the first group of k
chunks of n/(2k) iterations each; the second group has k chunks of
n/(4k) iterations, and so on. The chunksize for each group is the
remaining iterations divided by 2k. Because FACTORING is dynamic,
there is no guarantee that each thread gets exactly one chunk from each
group.
• At least m iterations must be assigned to each thread.
• There can be one final smaller residual chunk.
• If m is not provided, the compiler selects a value.
Example: With 1000 iterations and FACTORING(3), and 4 threads, the
first group has 4 chunks of 125 iterations each, the second has 4 chunks
of 62 iterations each, the third group has 4 chunks of 31 iterations each,
and so on.

GSS[(m)] Use guided self-scheduling for this DO loop.
With n iterations initially, and k threads, then:
• Assign n/k iterations to the first thread.
• Assign the remaining iterations divided by k to the second thread, and

so on until all iterations have been processed.
GSS is dynamic, so there is no guarantee that chunks of iterations are
uniformly distributed to all available threads.
• At least m iterations must be assigned to each thread.
• There can be one final smaller residual chunk.
• If m is not provided, the compiler selects a value.
Example: With 1000 iterations and GSS(10), and 4 threads, distribute 250
iterations to the first thread, then 187 to the second thread, then 140 to
the third thread, and so on.

C$PAR DOALL MAXCPUS(4), READONLY(S), PRIVATE(A,B,X), MAXCPUS(2)
C$PAR DOALL SHARED(B,X,Y), PRIVATE(Y,Z)
C$PAR DOALL READONLY(T)

TABLE 10-5 DOALL SCHEDTYPE Qualifiers (Continued)

Scheduling Type Action
Chapter 10 Parallelization 10-29

Example: A one-line equivalent of the preceding three lines:

10.3.3.5 DOSERIAL Directive

The DOSERIAL directive disables parallelization of the specified loop. This directive
applies to the one loop immediately following it.

Example: Exclude one loop from parallelization:

In the example, when compiling with -parallel, the j loop will not be parallelized
by the compiler, but the i or k loop may be.

10.3.3.6 DOSERIAL* Directive

The DOSERIAL* directive disables parallelization of the specified nest of loops. This
directive applies to the whole nest of loops immediately following it.

Example: Exclude a whole nest of loops from parallelization:

In the example, when compiling with -parallel, the j and k loops will not be
parallelized by the compiler, but the i loop may be.

C$PAR DOALL MAXCPUS(2), PRIVATE(A,Y,Z), SHARED(B,X), READONLY(S,T)

 do i = 1, n
C$PAR DOSERIAL

do j = 1, n
do k = 1, n

...
end do

end do
 end do

 do i = 1, n
C$PAR DOSERIAL*

do j = 1, n
do k = 1, n

...
end do

end do
 end do
10-30 Fortran Programming Guide • May 2003

10.3.3.7 Interaction Between DOSERIAL* and DOALL

If both DOSERIAL* and DOALL are specified for the same loop, the last one prevails.

Example: Specifying both DOSERIAL* and DOALL:

In the example, the i loop is not parallelized, but the j loop is.

Also, the scope of the DOSERIAL* directive does not extend beyond the textual loop
nest immediately following it. The directive is limited to the same function or
subroutine that it appears in.

Example: DOSERIAL* does not extend to a loop in a called subroutine:

In the preceding example, DOSERIAL* applies only to the i loop and not to the j
loop, regardless of whether the call to the subroutine callee is inlined.

C$PAR DOSERIAL*
 do i = 1, 1000
C$PAR DOALL

do j = 1, 1000
...

end do
 end do

 program caller
 common /block/ a(10,10)
C$PAR DOSERIAL*
 do i = 1, 10

call callee(i)
 end do
 end

 subroutine callee(k)
 common /block/a(10,10)
 do j = 1, 10

a(j,k) = j + k
 end do
 return
 end
Chapter 10 Parallelization 10-31

10.3.3.8 Default Scoping Rules for Sun-Style Directives

For Sun-style (C$PAR) explicit directives, the compiler uses default rules to
determine whether a scalar or array is shared or private. You can override the
default rules to specify the attributes of scalars or arrays referenced inside a loop.
(With Cray-style !MIC$ directives, all variables that appear in the loop must be
explicitly declared either shared or private on the DOALL directive.)

The compiler applies these default rules:

■ All scalars are treated as private. A local copy of a scalar is made available for each
thread executing the loop, and that local copy is used by that thread only.

■ All array references are treated as shared references. Any write of an array element
by one thread is visible to all threads. No synchronization is performed on
accesses to shared variables.

If inter-iteration dependencies exist in a loop, then the execution may result in
erroneous results. You must ensure that these cases do not arise. The compiler may
sometimes be able to detect such a situation at compile time and issue a warning,
but it does not disable parallelization of such loops.

Example: Potential problem through equivalence:

In the example, since the scalar variable y has been equivalenced to a(1), we have a
conflict with y as private and a(:) as shared by default, leading to possibly
erroneous results when the parallelized i loop is executed. No diagnostic is issued
in these situations.

You can fix the example by using C$PAR DOALL PRIVATE(y).

10.3.4 Cray-Style Parallelization Directives
To use legacy Cray-style parallelization directives, you must compile with -mp=cray.

Mixing program units compiled with both Sun and Cray directives can produce
incorrect results.

 equivalence (a(1),y)
C$PAR DOALL
 do i = 1,n

y = i
a(i) = y

 end do
10-32 Fortran Programming Guide • May 2003

A major difference between Sun and Cray directives is that Cray style requires explicit
scoping of every scalar and array in the loop as either SHARED or PRIVATE, unless
AUTOSCOPE is specified.

The following table shows Cray-style directive syntax.

10.3.4.1 Cray Directive Syntax

A parallel directive consists of one or more directive lines. A directive line is defined
with the same syntax as Sun-style (see “Sun-Style Parallelization Directives” on
page 10-21), except:

■ The sentinels are CMIC$, *MIC$, or !MIC$, but only !MIC$ is recognized with
f95 free-format.

■ Every variable or array referenced in the loop appears in a SHARED or PRIVATE
qualifier.

The Cray directives are similar to Sun-style:

!MIC$ DOALL
!MIC$& SHARED(v1, v2, …)
!MIC$& PRIVATE(u1, u2, …)
 ...optional qualifiers

Cray Directive Compared With Sun-Style

DOALL Different set of qualifiers and scheduling

TASKCOMMON Same as Sun-style

DOSERIAL Same as Sun-style

DOSERIAL* Same as Sun-style
Chapter 10 Parallelization 10-33

10.3.4.2 DOALL Qualifiers

For Cray-style DOALL, the PRIVATE qualifier is required. Each variable within the DO
loop must be qualified as private or shared, and the DO loop index must always be
private. The following table summarizes available Cray-style qualifiers.

AUTOSCOPE Automatic Scoping Rules

Specifying AUTOSCOPE directs the compiler to use the following rules to determine
the scoping of a variable or array not explicitly scoped as PRIVATE or SHARED.

For a variable or array to be SHARED, any of the following must be true:

■ The variable or array is read-only.
■ The array is indexed by the loop index.
■ The variable or array is read then written.

For a variable or array to be PRIVATE, the following must be true:

■ The variable or array is written then read.

Still, AUTOSCOPE cannot always determine the scope of variables or arrays at
compile time. Conditional paths through the loop, among other things, can alter the
scoping in ways that cannot be determined by the compiler. It is much safer to scope
variables explicitly with PRIVATE and SHARED qualifiers.

TABLE 10-6 DOALL Qualifiers (Cray Style)

Qualifier Assertion

SHARED(v1, v2, …) Share the variables v1, v2, … between iterations.

PRIVATE(x1, x2, …) Do not share the variables x1, x2, … between iterations. That is,
each thread has its own private copy of these variables.

AUTOSCOPE Unscoped variables and arrays not explicitly scoped by a PRIVATE
or SHARED qualifier are scoped according to the scoping rules listed
below.

SAVELAST Save the last DO-iteration values of all private variables in the loop.

MAXCPUS(n) Use no more than n threads.
10-34 Fortran Programming Guide • May 2003

Cray-Style Scheduling Qualifiers

For Cray-style directives, the DOALL directive allows a single scheduling qualifier,
for example, !MIC$& CHUNKSIZE(100). TABLE 10-7 shows the Cray-style DOALL
directive scheduling qualifiers:

The default scheduling type (when no scheduling type is specified on a Cray-style
DOALL directive) is the Sun-style STATIC, for which there is no Cray-style
equivalent.

TABLE 10-7 DOALL Cray Scheduling

Qualifier Assertion

GUIDED Distribute the iterations by use of guided self-scheduling.
This distribution minimizes synchronization overhead, with
acceptable dynamic load balancing. The default chunk size is 64.
GUIDED is equivalent to Sun-style GSS(64).

SINGLE Distribute one iteration to each available thread. SINGLE is
dynamic and equivalent to Sun-style SELF(1).

CHUNKSIZE(n) Distribute n iterations to each available thread.
n must be an integer expression. For best performance, n must be

an integer constant. CHUNKSIZE(n) is equivalent to Sun-style
SELF(n).
Example: With 100 iterations and CHUNKSIZE(4), each thread
gets 4 iterations at a time.

NUMCHUNKS(m) If there are n iterations, distribute n/m iterations to each available
thread. There can be one smaller residual chunk.
m is an integer expression. For best performance, m must be an
integer constant. NUMCHUNKS(m) is equivalent to Sun-style
SELF(n/m) where n is the total number of iterations.
Example: With 100 iterations and NUMCHUNKS(4), each thread
gets 25 iterations at a time.
Chapter 10 Parallelization 10-35

10.4 Environment Variables
There are four environment variables used with parallelization:

■ PARALLEL and OMP_NUM_THREADS
■ SUNW_MP_WARN
■ SUNW_MP_THR_IDLE

(See also the STACKSIZE discussion in “Stacks, Stack Sizes, and Parallelization” on
page 10-7.)

10.4.1 PARALLEL and OMP_NUM_THREADS

To run a parallelized program in a multithreaded environment, you must set either
the PARALLEL or OMP_NUM_THREADS environment variable prior to execution. This
tells the runtime system the maximum number of threads the program can create.
The default is 1. In general, set the PARALLEL or OMP_NUM_THREADS variable to the
available number of processors on the target platform.
Example: SETENV PARALLEL 4

10.4.2 SUNW_MP_WARN

Controls warning messages issued by the runtime multitasking library. If set TRUE,
the library issues warning messages to stderr; FALSE disables warning messages and
is the default. Example: SETENV SUNW_MP_WARN TRUE
10-36 Fortran Programming Guide • May 2003

10.4.3 SUNW_MP_THR_IDLE

Use the SUNW_MP_THR_IDLE environment variable to control the end-of-task status
of every thread, other than the master thread, executing the parallel part of the
program. You can set the value to one of the following values:

The default, without SUNW_MP_THR_IDLE explicitly specified, is SPIN.

Example:.

In this example, at most four threads are created by the program. After finishing a
parallel task, a thread spins for 50 ms. If within that time a new task has arrived for
the thread, it executes it. Otherwise, the thread goes to sleep until a new task arrives.

Value Meaning

SPIN Thread should spin (or busy-wait) after completing a parallel task,
until a new parallel task arrives. (Default)

SLEEP (time) Specifies the amount of time a thread should spin-wait after
completing a parallel task. If, while a thread is spinning, a new task
arrives for the thread, the tread executes the new task immediately.
Otherwise, the thread goes to sleep and is awakened when a new
task arrives.
time may be specified in seconds, (ns), or just (n), or milliseconds,
(nms).
SLEEP with no argument puts the thread to sleep immediately after
completing a parallel task. SLEEP, SLEEP (0), SLEEP (0s), and
SLEEP (0ms) are all equivalent.

% setenv SUNW_MP_THR_IDLE SLEEP (50ms)
% setenv PARALLEL 4
% myprog
Chapter 10 Parallelization 10-37

10.5 Debugging Parallelized Programs

Debugging parallelized programs requires some extra effort. The following schemes
suggest ways to approach this task.

10.5.1 First Steps at Debugging
There are some steps you can try immediately to determine the cause of errors.

■ Turn off parallelization.

You can do one of the following:

Fortran source code:
real x / 1.0 /, y / 0.0 /
print *, x/y
end
character string*5, out*20
double precision value
external exception_handler
i = ieee_handler('set', 'all', exception_handler)
string = '1e310'
print *, 'Input string ', string, ' becomes: ', value
print *, 'Value of 1e300 * 1e10 is:', 1e300 * 1e10
i = ieee_flags('clear', 'exception', 'all', out)
end

integer function exception_handler(sig, code, sigcontext)
integer sig, code, sigcontext(5)
print *, '*** IEEE exception raised!'
return
end

Runtime output:
*** IEEE exception raised!
 Input string 1e310 becomes: Infinity
 Value of 1e300 * 1e10 is: Inf
 Note: Following IEEE floating-point traps enabled;

see ieee_handler(3M):
 Inexact; Underflow; Overflow; Division by Zero; Invalid

Operand;
 Sun's implementation of IEEE arithmetic is discussed in

the Numerical Computation Guide.
10-38 Fortran Programming Guide • May 2003

■ Turn off the parallelization options—Verify that the program works correctly
by compiling with -O3 or -O4, but without any parallelization.

■ Set the number of threads to one and compile with parallelization on—run the
program with the environment variable PARALLEL set to 1.

If the problem disappears, then you can assume it was due to using multiple
threads.

■ Check also for out of bounds array references by compiling with -C.

■ Problems using -autopar may indicate that the compiler is parallelizing
something it should not.

■ Turn off -reduction.

If you are using the -reduction option, summation reduction may be occurring
and yielding slightly different answers. Try running without this option.

■ Use the DOSERIAL directive to selectively disable automatic parallelization of
individual loops.

■ Use fsplit.

If you have many subroutines in your program, use fsplit(1) to break them into
separate files. Then compile some files with and without -parallel, and use f95
to link the .o files. You must specify -parallel on this link step.

Execute the binary and verify results.

Repeat this process until the problem is narrowed down to one subroutine.

■ Use -loopinfo.

Check which loops are being parallelized and which loops are not.

■ Use a dummy subroutine.

Create a dummy subroutine or function that does nothing. Put calls to this
subroutine in a few of the loops that are being parallelized. Recompile and
execute. Use -loopinfo to see which loops are being parallelized.

Continue this process until you start getting the correct results.

■ Use explicit parallelization.

Add the C$PAR DOALL directive to a couple of the loops that are being
parallelized. Compile with -explicitpar, then execute and verify the results.
Use -loopinfo to see which loops are being parallelized. This method permits
the addition of I/O statements to the parallelized loop.

Repeat this process until you find the loop that causes the wrong results.

Note: if you need -explicitpar only (without -autopar), do not compile with
-explicitpar and -depend. This method is the same as compiling with
-parallel, which, of course, includes -autopar.

■ Run loops backward serially.
Chapter 10 Parallelization 10-39

Replace DO I=1,N with DO I=N,1,-1. Different results point to data
dependencies.

■ Avoid using the loop index.

10.5.2 Debugging Parallel Code With dbx

To use dbx on a parallel loop, temporarily rewrite the program as follows:

■ Isolate the body of the loop in a file and subroutine of its own.
■ In the original routine, replace loop body with a call to the new subroutine.
■ Compile the new subroutine with -g and no parallelization options.
■ Compile the changed original routine with parallelization and no -g.

Replace:
 DO I=1,N
 ...
 CALL SNUBBER(I)
 ...
 ENDDO

With:
 DO I1=1,N
 I=I1
 ...
 CALL SNUBBER(I)
 ...
 ENDDO
10-40 Fortran Programming Guide • May 2003

Example: Manually transform a loop to allow using dbx in parallel:

Original code:
demo% cat loop.f
C$PAR DOALL
 DO i = 1,10
 WRITE(0,*) 'Iteration ', i
 END DO
 END

Split into two parts: caller loop and loop body as a subroutine
demo% cat loop1.f
C$PAR DOALL
 DO i = 1,10
 k = i
 CALL loop_body (k)
 END DO
 END

demo% cat loop2.f
 SUBROUTINE loop_body (k)
 WRITE(0,*) 'Iteration ', k
 RETURN
 END

Compile caller loop with parallelization but no debugging
demo% f95 -O3 -c -explicitpar loop1.f

Compile the subprogram with debugging but not parallelized
demo% f95 -c -g loop2.f

Link together both parts into a.out
demo% f95 loop1.o loop2.o -explicitpar

Run a.out under dbx and put breakpoint into loop body subroutine
demo% dbx a.out ← Various dbx messages not shown
(dbx) stop in loop_body
(2) stop in loop_body
(dbx) run
Running: a.out
(process id 28163)

dbx stops at breakpoint
t@1 (l@1) stopped in loop_body at line 2 in file
 "loop2.f"
 2 write(0,*) 'Iteration ', k

Now show value of k
(dbx) print k
k = 1 ← Various values other than 1 are possible
(dbx)
Chapter 10 Parallelization 10-41

10.6 Further Reading
The following provide more information:

■ Techniques for Optimizing Applications: High Performance Computing, by Rajat Garg
and Ilya Sharapov, Sun Microsystems Press Blueprint, 2001.

■ High Performance Computing, by Kevin Dowd and Charles Severance, O’Reilly and
Associates, 2nd Edition, 1998.

■ Parallel Programming in OpenMP, by Rohit Chandra et al., Morgan Kaufmann
Publishers, 2001.

■ Parallel Programming, by Barry Wilkinson, Prentice Hall, 1999.

■ OpenMP Fortran 95/C/C++ API User’s Guide
10-42 Fortran Programming Guide • May 2003

CHAPTER 11

C-Fortran Interface

This chapter treats issues regarding Fortran and C interoperability and applies only
to the specifics of the Sun ONE Studio Fortran 95, and C compilers.

Section 11.9, “Fortran 2000 Interoperability With C” on page 11-27 discusses briefly
the C binding features proposed in Section 15 of the Fortran 2000 draft standard.
(The draft standard is available at the international Fortran standards web site,
http://www.j3-fortran.org). The Fortran 95 compiler implements these
features, as described in the draft standard.

11.1 Compatibility Issues
Most C-Fortran interfaces must agree in all of these aspects:

■ Function and subroutine definitions and calls
■ Data type compatibility
■ Argument passing, either by reference or by value
■ Order of arguments
■ Procedure name, either uppercase, lowercase, or with a trailing underscore (_)
■ Passing the right library references to the linker

Some C-Fortran interfaces must also agree on:

■ Array indexing and order
■ File descriptors and stdio
■ File permissions
11-1

11.1.1 Function or Subroutine?
The word function has different meanings in C and Fortran. Depending on the
situation, the choice is important:

■ In C, all subprograms are functions; however, some may return a null (void)
value.

■ In Fortran, a function passes a return value, but a subroutine does not.

When a Fortran routine calls a C function:

■ If the called C function returns a value, call it from Fortran as a function.
■ If the called C function does not return a value, call it as a subroutine.

When a C function calls a Fortran subprogram:

■ If the called Fortran subprogram is a function, call it from C as a function that
returns a compatible data type.

■ If the called Fortran subprogram is a subroutine, call it from C as a function that
returns a value of int (compatible to Fortran INTEGER*4) or void. A value is
returned if the Fortran subroutine uses alternate returns, in which case it is the
value of the expression on the RETURN statement. If no expression appears on the
RETURN statement, and alternate returns are declared on the SUBROUTINE
statement, a zero is returned.

11.1.2 Data Type Compatibility
The tables below summarize the data sizes and default alignments for Fortran 95
data types compared with C. In both tables, note the following:

■ C data types int, long int, and long are equivalent (4 bytes) in a 32-bit
environment. However, in a 64-bit environment and when compiling with -
xarch=v9 or v9a, long and pointers are 8 bytes. This is referred to as the LP64
data model.

■ REAL*16 and COMPLEX*32, in a 64-bit environment and when compiling with
-xarch=v9 or v9a, are aligned on 16-byte boundaries.

■ Alignments marked 4/8 indicate that alignment is 8-bytes by default, but on 4-
byte boundaries in COMMON blocks. The maximum alignment in COMMON is
4-bytes.

■ The elements and fields of arrays and structures must be compatible.

■ You cannot pass arrays, character strings, or structures by value.

■ You can pass arguments by value from a Fortran 95 routine to a C routine by
using %VAL(arg) at the call site. You can pass arguments by value from C to
Fortran 95 provided the Fortran routine has an explicit interface block that
declares the dummy argument with the VALUE attribute.
11-2 Fortran Programming Guide • May 2003

11.1.2.1 Fortran 95 and C Data Types

The following table compares Fortran 95 data types with C. It assumes no
compilation options affecting alignment or promoting default data sizes are applied.

11.1.3 Case Sensitivity
C and Fortran take opposite perspectives on case sensitivity:

■ C is case sensitive—case matters.
■ Fortran ignores case by default.

TABLE 11-1 Data Sizes and Alignment—(in Bytes) Pass by Reference (f95 and cc)

Fortran 95 Data Type C Data Type Size Alignment

BYTE x char x 1 1

CHARACTER x unsigned char x ; 1 1

CHARACTER (LEN=n) x unsigned char x[n] ; n 1

COMPLEX x struct {float r,i;} x; 8 4

COMPLEX (KIND=4) x

COMPLEX (KIND=8) x

COMPLEX (KIND=16) x

struct {float r,i;} x;

struct {double dr,di;} x;

struct {long double, dr,di;} x;

8
16
32

4
4/8
4/8/16

DOUBLE COMPLEX x struct {double dr, di;} x; 16 4/8

DOUBLE PRECISION x double x ; 8 4

REAL x float x ; 4 4

REAL (KIND=4) x

REAL (KIND=8) x

REAL (KIND=16) x

float x ;

double x ;

long double x ;

4
8
16

4
4/8
4/8/16

INTEGER x int x ; 4 4

INTEGER (KIND=1) x

INTEGER (KIND=2) x

INTEGER (KIND=4) x

INTEGER (KIND=8) x

signed char x ;

short x ;

int x ;

long long int x;

1
2
4
8

4
4
4
4

LOGICAL x int x ; 4 4

LOGICAL (KIND=1) x

LOGICAL (KIND=2) x

LOGICAL (KIND=4) x

LOGICAL (KIND=8) x

signed char x ;

short x ;

int x ;

long long int x;

1
2
4
8

4
4
4
4

Chapter 11 C-Fortran Interface 11-3

The f95 default is to ignore case by converting subprogram names to lowercase. It
converts all uppercase letters to lowercase letters, except within character-string
constants.

There are two usual solutions to the uppercase/lowercase problem:

■ In the C subprogram, make the name of the C function all lowercase.

■ Compile the Fortran program with the -U option, which tells the compiler to
preserve existing uppercase/lowercase distinctions on function/subprogram
names.

Use one of these two solutions, but not both.

Most examples in this chapter use all lowercase letters for the name in the C
function, and do not use the f95 –U compiler option.

11.1.4 Underscores in Routine Names
The Fortran compiler normally appends an underscore (_) to the names of
subprograms appearing both at entry point definition and in calls. This convention
differs from C procedures or external variables with the same user-assigned name.
Almost all Fortran library procedure names have double leading underscores to
reduce clashes with user-assigned subroutine names.

There are three usual solutions to the underscore problem:

■ In the C function, change the name of the function by appending an underscore to
that name.

■ Use the C() pragma to tell the Fortran compiler to omit those trailing
underscores.

■ Use the f95 -ext_names option to compile references to external names without
underscores.

Use only one of these solutions.

The examples in this chapter could use the C() compiler pragma to avoid
underscores. The C() pragma directive takes the names of external functions as
arguments. It specifies that these functions are written in the C language, so the
Fortran compiler does not append an underscore as it ordinarily does with external
names. The C()directive for a particular function must appear before the first
reference to that function. It must also appear in each subprogram that contains such
a reference. The conventional usage is:

 EXTERNAL ABC, XYZ !$PRAGMA C(ABC, XYZ)
11-4 Fortran Programming Guide • May 2003

If you use this pragma, the C function does not need an underscore appended to the
function name. (Pragma directives are described in the Fortran User’s Guide.)

11.1.5 Argument-Passing by Reference or Value
In general, Fortran routines pass arguments by reference. In a call, if you enclose an
argument with the nonstandard function %VAL(), the calling routine passes it by
value.

The standard Fortran 95 way to pass arguments by value is the VALUE attribute and
through INTERFACE blocks. See “Passing Data Arguments by Value” on page 11-19.

In general, C passes arguments by value. If you precede an argument by the
ampersand operator (&), C passes the argument by reference using a pointer. C
always passes arrays and character strings by reference.

11.1.6 Argument Order
Except for arguments that are character strings, Fortran and C pass arguments in the
same order. However, for every argument of character type, the Fortran routine
passes an additional argument giving the length of the string. These are long int
quantities in C, passed by value.

The order of arguments is:

■ Address for each argument (datum or function)

■ A long int for each character argument (the whole list of string lengths comes
after the whole list of other arguments)

Example:

11.1.7 Array Indexing and Order
Array indexing and order differ between Fortran and C.

This Fortran code fragment: Is equivalent to this in C:

CHARACTER*7 S

INTEGER B(3)

…

CALL SAM(S, B(2))

char s[7];

int b[3];

…

sam_(s, &b[1], 7L) ;
Chapter 11 C-Fortran Interface 11-5

11.1.7.1 Array Indexing

C arrays always start at zero, but by default Fortran arrays start at 1. There are two
usual ways of approaching indexing.

■ You can use the Fortran default, as in the preceding example. Then the Fortran
element B(2) is equivalent to the C element b[1].

■ You can specify that the Fortran array B starts at B(0) as follows:

This way, the Fortran element B(1) is equivalent to the C element b[1].

11.1.7.2 Array Order

Fortran arrays are stored in column-major order: A(3,2)

C arrays are stored in row-major order: A[3][2]

This does not present a problem for one-dimensional arrays. However, with multi-
dimensional arrays, be aware of how subscripts appear and are used in all references
and declarations—some adjustments might be necessary.

For example, it may be confusing to do part of a matrix manipulation in C and the
rest in Fortran. It might be preferable to pass an entire array to a routine in the other
language and perform all the matrix manipulation in that routine to avoid doing
part in C and part in Fortran.

11.1.8 File Descriptors and stdio

Fortran I/O channels are in terms of unit numbers. The underlying SunOS operating
system does not deal with unit numbers but with file descriptors. The Fortran runtime
system translates from one to the other, so most Fortran programs do not have to
recognize file descriptors.

 INTEGER B(0:2)

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

A[0][0] A[0][1] A[1][0] A[1][1] A[2][0] A[2][1]
11-6 Fortran Programming Guide • May 2003

Many C programs use a set of subroutines, called standard I/O (or stdio). Many
functions of Fortran I/O use standard I/O, which in turn uses operating system I/O
calls. Some of the characteristics of these I/O systems are listed in the following
table.

11.1.9 Libraries and Linking With the f95 Command
To link the proper Fortran and C libraries, use the f95 command to invoke the
linker.

Example 1: Use the compiler to do the linking:

TABLE 11-2 Comparing I/O Between Fortran and C

Fortran Units Standard I/O File Pointers File Descriptors

Files Open Opened for
reading and
writing

Opened for reading, or for
writing, or for both; or
opened for appending; See
open(2)

Opened for reading, or for
writing, or opened for both

Attributes Formatted or
unformatted

Always unformatted, but
can be read or written with
format-interpreting routines

Always unformatted

Access Direct or
sequential

Direct access if the physical
file representation is direct
access, but can always be
read sequentially

Direct access if the physical
file representation is direct
access, but can always be
read sequentially

Structure Record Byte stream Byte stream

Form Arbitrary
nonnegative
integers from
0-2147483647

Pointers to structures in the
user’s address space

Integers from 0-1023

demo% cc -c someCroutine.c
demo% f95 theF95routine.f someCroutine.o ← The linking step
demo% a.out
 4.0 4.5
 8.0 9.0
demo%
Chapter 11 C-Fortran Interface 11-7

11.2 Fortran Initialization Routines
Main programs compiled by f95 call dummy initialization routine f90_init in the
library at program start up. The routines in the library are dummies that do nothing.
The calls the compilers generate pass pointers to the program’s arguments and
environment. These calls provide software hooks you can use to supply your own
routines, in C, to initialize a program in any customized manner before the program
starts up.

One possible use of these initialization routines to call setlocale for an
internationalized Fortran program. Because setlocale does not work if libc is
statically linked, only Fortran programs that are dynamically linked with libc
should be internationalized.

The source code for the init routines in the library is

f90_init is called by f95 main programs. The arguments are set to the address of
argc, the address of argv, and the address of envp.

11.3 Passing Data Arguments by Reference
The standard method for passing data between Fortran routines and C procedures is
by reference. To a C procedure, a Fortran subroutine or function call looks like a
procedure call with all arguments represented by pointers. The only peculiarity is
the way Fortran handles character strings and functions as arguments and as the
return value from a CHARACTER*n function.

void f90_init(int *argc_ptr, char ***argv_ptr, Char ***envp_ptr) {}
11-8 Fortran Programming Guide • May 2003

11.3.1 Simple Data Types
For simple data types (not COMPLEX or CHARACTER strings), define or pass each
associated argument in the C routine as a pointer:

TABLE 11-3 Passing Simple Data Types

Fortran calls C C calls Fortran

integer i

real r

external CSim

i = 100

call CSim(i,r)

...

void csim_(int *i, float *r)

{

*r = *i;

}

int i=100;

float r;

extern void fsim_(int *i, float *r);

fsim_(&i, &r);

...

subroutine FSim(i,r)

integer i

real r

r = i

return

end
Chapter 11 C-Fortran Interface 11-9

11.3.2 COMPLEX Data
Pass a Fortran COMPLEX data item as a pointer to a C struct of two float or two
double data types:

In 64-bit environments and compiling with -xarch=v9, COMPLEX values are
returned in registers.

11.3.3 Character Strings
Passing strings between C and Fortran routines is not recommended because there is
no standard interface. However, note the following:

■ All C strings are passed by reference.

■ Fortran calls pass an additional argument for every argument with character type
in the argument list. The extra argument gives the length of the string and is
equivalent to a C long int passed by value. (This is implementation dependent.)
The extra string-length arguments appear after the explicit arguments in the call.

TABLE 11-4 Passing COMPLEX Data Types

Fortran calls C C calls Fortran

complex w

double complex z

external CCmplx

call CCmplx(w,z)

...

struct cpx {float r, i;};

struct dpx {double r,i;};

void ccmplx_(

struct cpx *w,

struct dpx *z)

{

w -> r = 32.;

w -> i = .007;

z -> r = 66.67;

z -> i = 94.1;

}

struct cpx {float r, i;};

struct cpx d1;

struct cpx *w = &d1;

struct dpx {double r, i;};

struct dpx d2;

struct dpx *z = &d2;

fcmplx_(w, z);

...

subroutine FCmplx(w, z)

complex w

double complex z

w = (32., .007)

z = (66.67, 94.1)

return

end
11-10 Fortran Programming Guide • May 2003

A Fortran call with a character string argument is shown in the next example with
its C equivalent:

If the length of the string is not needed in the called routine, the extra arguments
may be ignored. However, note that Fortran does not automatically terminate strings
with the explicit null character that C expects. This must be added by the calling
program.

The call for a character array looks identical to the call for a single character variable.
The starting address of the array is passed, and the length that it uses is the length of
a single element in the array.

TABLE 11-5 Passing a CHARACTER String

Fortran call: C equivalent:

CHARACTER*7 S

INTEGER B(3)

...

CALL CSTRNG(S, B(2))

...

char s[7];

int b[3];

...

cstrng_(s, &b[1], 7L);

...
Chapter 11 C-Fortran Interface 11-11

11.3.4 One-Dimensional Arrays
Array subscripts in C start with 0.

TABLE 11-6 Passing a One-Dimensional Array

Fortran calls C C calls Fortran

integer i, Sum

integer a(9)

external FixVec

...

call FixVec (a, Sum)

...

void fixvec_ (

int v[9], int *sum)

{

int i;

*sum = 0;

for (i = 0; i <= 8; i++)

*sum = *sum + v[i];

}

extern void vecref_

(int[], int *);

...

int i, sum;

int v[9] = ...

vecref_(v, &sum);

...

subroutine VecRef(v, total)

integer i, total, v(9)

total = 0

do i = 1,9

total = total + v(i)

end do

...
11-12 Fortran Programming Guide • May 2003

11.3.5 Two-Dimensional Arrays
Rows and columns between C and Fortran are switched.

TABLE 11-7 Passing a Two-Dimensional Array

Fortran calls C C calls Fortran

REAL Q(10,20)

...

Q(3,5) = 1.0

CALL FIXQ(Q)

...

void fixq_(float a[20][10])

{

...

a[5][3] = a[5][3] + 1.;

...

}

extern void

qref_(int[][10], int *);

...

int m[20][10] = ... ;

int sum;

...

qref_(m, &sum);

...

SUBROUTINE QREF(A,TOTAL)

INTEGER A(10,20), TOTAL

DO I = 1,10

DO J = 1,20

TOTAL = TOTAL + A(I,J)

END DO

END DO

...
Chapter 11 C-Fortran Interface 11-13

11.3.6 Structures
C and Fortran 95 derived types can be passed to each other’s routines as long as the
corresponding elements are compatible.(f95 accepts legacy STRUCTURE statements.)

TABLE 11-8 Passing Legacy FORTRAN 77 STRUCTURE Records

Fortran calls C C calls Fortran

STRUCTURE /POINT/

REAL X, Y, Z

END STRUCTURE

RECORD /POINT/ BASE

EXTERNAL FLIP

...

CALL FLIP(BASE)

...

struct point {

float x,y,z;

};

void flip_(struct point *v)

{

float t;

t = v -> x;

v -> x = v -> y;

v -> y = t;

v -> z = -2.*(v -> z);

}

struct point {

float x,y,z;

};

void fflip_ (struct point *) ;

...

struct point d;

struct point *ptx = &d;

...

fflip_ (ptx);

...

SUBROUTINE FFLIP(P)

STRUCTURE /POINT/

REAL X,Y,Z

END STRUCTURE

RECORD /POINT/ P

REAL T

T = P.X

P.X = P.Y

P.Y = T

P.Z = -2.*P.Z

...
11-14 Fortran Programming Guide • May 2003

Note that the Fortran 95 standard requires the SEQUENCE statement in the definition
of the derived type to insure that storage sequence order be preserved by the
compiler.

TABLE 11-9 Passing Fortran 95 Derived Types

Fortran 95 calls C C calls Fortran 95

TYPE point

SEQUENCE

REAL :: x, y, z

END TYPE point

TYPE (point) base

EXTERNAL flip

...

CALL flip(base)

...

struct point {

float x,y,z;

};

void flip_(struct point *v)

{

float t;

t = v -> x;

v -> x = v -> y;

v -> y = t;

v -> z = -2.*(v -> z);

}

struct point {

float x,y,z;

};

extern void fflip_ (

struct point *) ;

...

struct point d;

struct point *ptx = &d;

...

fflip_ (ptx);

...

SUBROUTINE FFLIP(P)

TYPE POINT

SEQUENCE
REAL :: X, Y, Z

END TYPE POINT

TYPE (POINT) P

REAL :: T

T = P%X

P%X = P%Y

P%Y = T

P%Z = -2.*P%Z

...
Chapter 11 C-Fortran Interface 11-15

11.3.7 Pointers
A FORTRAN 77 (Cray) pointer can be passed to a C routine as a pointer to a pointer
because the Fortran routine passes arguments by reference.

TABLE 11-10 Passing a FORTRAN 77 (Cray) POINTER

Fortran calls C C calls Fortran

REAL X

POINTER (P2X, X)

EXTERNAL PASS

P2X = MALLOC(4)

X = 0.

CALL PASS(P2X)

...

void pass_(p)

float **p;

{

**p = 100.1;

}

extern void fpass_(float**);

...

float *p2x;

...

fpass_(&p2x) ;

...

SUBROUTINE FPASS (P2X)

REAL X

POINTER (P2X, X)

X = 0.

...
11-16 Fortran Programming Guide • May 2003

C pointers are compatible with Fortran 95 scalar pointers, but not array pointers.

The major difference between Cray and Fortran 95 pointers is that the target of a
Cray pointer is always named. In many contexts, declaring a Fortran 95 pointer
automatically identifies its target. Also, an explicit INTERFACE block is required for
the called C routine.

Fortran 95 calls C with a scalar pointer

Fortran 95 routine:
INTERFACE

SUBROUTINE PASS(P)

REAL, POINTER :: P

END SUBROUTINE

END INTERFACE

REAL, POINTER :: P2X

ALLOCATE (P2X)

P2X = 0

CALL PASS(P2X)

PRINT*, P2X

END

C routine:
void pass_(p);

float **p;

{

**p = 100.1;

}

Chapter 11 C-Fortran Interface 11-17

To pass a Fortran 95 pointer to an array or array section requires a specific
INTERFACE block, as in this example:

Note that since the C routine S is not a Fortran 95 routine, you cannot define it to be
assumed shape (integer P(:)) in the interface block. If the C routine needs to
know the actual size of the array it must be passed as an argument to the C routine.

Again, keep in mind that subscripting between C and Fortran differs in that C arrays
start at subscript 0.

Fortran 95 routine:
INTERFACE

SUBROUTINE S(P)
integer P(*)

END SUBROUTINE S
END INTERFACE
integer, target:: A(0:9)
integer, pointer :: P(:)
P => A(0:9:2) !! pointer selects every other element of A
call S(P)
...

C routine:
void s_(int p[])
{

/* change middle element */
p[2] = 444;

}

11-18 Fortran Programming Guide • May 2003

11.4 Passing Data Arguments by Value
Fortran 95 programs should use the VALUE attribute in dummy arguments when
being called from C, and supply an INTERFACE block for C routines that are called
from Fortran 95.

Note that if the C routine will be called with different data types as an actual
argument, you should include a !$PRAGMA IGNORE_TKR I in the interface block to
inhibit the compiler from requiring a match in type, kind, and rank between the
actual and dummy argument.

TABLE 11-11 Passing Simple Data Elements Between C and Fortran 95

Fortran 95 calls C C calls Fortran 95

PROGRAM callc
INTERFACE

INTEGER FUNCTION crtn(I)

!$pragma C(crtn)
INTEGER, VALUE, INTENT(IN) :: I
END FUNCTION crtn

END INTERFACE

M = 20
MM = crtn(M)
WRITE (*,*) M, MM

END PROGRAM

int crtn(int x)

{

int y;

printf("%d input \n", x);

y = x + 1;

printf("%d returning \n",y);

return(y);

}

Results:

20 input

21 returning

20 21

#include <stdlib.h>
int main(int ac, char *av[])
{

to_fortran_(12);

}

SUBROUTINE to_fortran(i)

INTEGER, VALUE :: i

PRINT *, i

END

Chapter 11 C-Fortran Interface 11-19

With legacy Fortran 77, call by value was available only for simple data, and only by
Fortran 77 routines calling C routines. There was no way for a C routine to call a
Fortran 77 routine and pass arguments by value. Arrays, character strings, or
structures are best passed by reference.

To pass a value to a C routine from a Fortran 77 routine, use the nonstandard Fortran
function %VAL(arg) as an argument in the call.

In the following example, the Fortran 77 routine passes x by value and y by
reference. The C routine incremented both x and y, but only y is changed.

Fortran calls C

Fortran routine:
REAL x, y

x = 1.

y = 0.

PRINT *, x,y

CALL value(%VAL(x), y)

PRINT *, x,y

END

C routine:
void value_(float x, float *y)

{

printf("%f, %f\n",x,*y);

x = x + 1.;

*y = *y + 1.;

printf("%f, %f\n",x,*y);

}

Compiling and running produces output:
1.00000 0. x and y from Fortran

1.000000, 0.000000 x and y from C
2.000000, 1.000000 new x and y from C

1.00000 1.00000 new x and y from Fortran
11-20 Fortran Programming Guide • May 2003

11.5 Functions That Return a Value
A Fortran function that returns a value of type BYTE , INTEGER, REAL, LOGICAL,
DOUBLE PRECISION, or REAL*16 is equivalent to a C function that returns a
compatible type (see TABLE 11-1). There are two extra arguments for the return values
of character functions, and one extra argument for the return values of complex
functions.

11.5.1 Returning a Simple Data Type
The following example returns a REAL or float value. BYTE, INTEGER, LOGICAL,
DOUBLE PRECISION, and REAL*16 are treated in a similar way:

TABLE 11-12 Functions Returning a REAL or Float Value

Fortran calls C C calls Fortran

real ADD1, R, S

external ADD1

R = 8.0

S = ADD1(R)

...

float add1_(pf)

float *pf;

{

float f ;

f = *pf;

f++;

return (f);

}

float r, s;

extern float fadd1_() ;

r = 8.0;

s = fadd1_(&r);

...

real function fadd1 (p)

real p

fadd1 = p + 1.0

return

end
Chapter 11 C-Fortran Interface 11-21

11.5.2 Returning COMPLEX Data
The situation for interoperability of COMPLEX data differs between SPARC V8 and
V9 implementations.

11.5.2.1 SPARC V8 Platforms

A Fortran function returning COMPLEX or DOUBLE COMPLEX on SPARC V8
platforms is equivalent to a C function with an additional first argument that points
to the return value in memory. The general pattern for the Fortran function and its
corresponding C function is:

11.5.2.2 SPARC V9 Platforms

In 64-bit environments and compiling with -xarch=v9, COMPLEX values are returned
in floating-point registers: COMPLEX and DOUBLE COMPLEX in %f0 and %f1, and
COMPLEX*32 in %f0, %f1, %f2, and %f3. For v9, a C function returning a structure

Fortran function C function

COMPLEX FUNCTION CF(a1, a2, ..., an) cf_ (return, a1, a2, ..., an)
struct { float r, i; } *return

TABLE 11-13 Function Returning COMPLEX Data (SPARC V8)

Fortran calls C C calls Fortran

COMPLEX U, V, RETCPX

EXTERNAL RETCPX

U = (7.0, -8.0)

V = RETCPX(U)

...

struct complex { float r, i; };

void retcpx_(temp, w)

struct complex *temp, *w;

{

temp->r = w->r + 1.0;

temp->i = w->i + 1.0;

return;

}

struct complex { float r, i; };

struct complex c1, c2;

struct complex *u=&c1, *v=&c2;

extern retfpx_();

u -> r = 7.0;

u -> i = -8.0;

retfpx_(v, u);

...

COMPLEX FUNCTION RETFPX(Z)

COMPLEX Z

RETFPX = Z + (1.0, 1.0)

RETURN

END
11-22 Fortran Programming Guide • May 2003

whose fields are all floating-point types will return the structure in the floating-point
registers if at most 4 such registers are needed to do so.The general pattern for the
Fortran function and its corresponding C function on V9 platforms is:

Fortran function C function

COMPLEX FUNCTION CF(a1, a2, ..., an) struct {float r,i;} cf_ (a1, a2, ..., an)

TABLE 11-14 Function Returning COMPLEX Data (SPARC V9)

Fortran calls C

COMPLEX U, V, RETCPX

EXTERNAL RETCPX

U = (7.0, -8.0)

V = RETCPX(U)

...

struct complex {float r, i; };

struct complex retcpx_(struct complex *w)

{

struct complex temp;

temp.r = w->r + 1.0;

temp.ii = w->i + 1.0;

return (temp);

}

C calls Fortran

struct complex { float r, i; };

struct complex c1, c2;

struct complex *u=&c1;

extern struct complex retfpx_(struct complex *);

u -> r = 7.0;

u -> i = -8.0;

retfpx_(u);

...

COMPLEX FUNCTION RETFPX(Z)

COMPLEX Z

RETFPX = Z + (1.0, 1.0)

RETURN

END
Chapter 11 C-Fortran Interface 11-23

11.5.3 Returning a CHARACTER String
Passing strings between C and Fortran routines is not encouraged. However, a
Fortran character-string-valued function is equivalent to a C function with two
additional first arguments—data address and string length. The general pattern for
the Fortran function and its corresponding C function is:

Here is an example:

Fortran function C function

CHARACTER*n FUNCTION C(a1, ..., an) void c_ (result, length, a1, ..., an)
char result[];

long length;

TABLE 11-15 A Function Returning a CHARACTER String

Fortran calls C C calls Fortran

CHARACTER STRING*16, CSTR*9

STRING = ’ ’

STRING = ’123’ // CSTR(’*’,9)

...

void cstr_(char *p2rslt,

long rslt_len,

char *p2arg,

int *p2n,

long arg_len)

{ /* return n copies of arg */

int count, i;

char *cp;

count = *p2n;

cp = p2rslt;

for (i=0; i<count; i++) {

*cp++ = *p2arg ;

}

}

void fstr_(char *, long,

char *, int *, long);

char sbf[9] = "123456789";

char *p2rslt = sbf;

int rslt_len = sizeof(sbf);

char ch = ’*’;

int n = 4;

int ch_len = sizeof(ch);
...
/* make n copies of ch in sbf

*/

fstr_(p2rslt, rslt_len,

&ch, &n, ch_len);

...

FUNCTION FSTR(C, N)

CHARACTER FSTR*(*), C

FSTR = ’’

DO I = 1,N

FSTR(I:I) = C

END DO

FSTR(N+1:N+1) = CHAR(0)

END
11-24 Fortran Programming Guide • May 2003

In this example, the C function and calling C routine must accommodate two initial
extra arguments (a pointer to the result string and the length of the string) and one
additional argument at the end of the list (length of character argument). Note that
in the Fortran routine called from C, it is necessary to explicitly add a final null
character. Fortran strings are not null-terminated by default.

11.6 Labeled COMMON
Fortran labeled COMMON can be emulated in C by using a global struct.

Note that the external name established by the C routine must end in an underscore
to link with the block created by the Fortran program. Note also that the C directive
#pragma pack may be needed to get the same padding as with Fortran.

f95 aligns data in common blocks to at most 4-byte boundaries by default. To obtain
the natural alignment for all data elements inside a common block and match the
default structure alignment, use -aligncommon=16 when compiling the Fortran
routines.

TABLE 11-16 Emulating Labeled COMMON

Fortran COMMON Definition C "COMMON" Definition

COMMON /BLOCK/ ALPHA,NUM

...

extern struct block {

float alpha;

int num;

};

extern struct block block_ ;

main ()

{

...

block_.alpha = 32.;

block_.num += 1;

...

}

Chapter 11 C-Fortran Interface 11-25

11.7 Sharing I/O Between Fortran and C
Mixing Fortran I/O with C I/O (issuing I/O calls from both C and Fortran routines)
is not recommended. It is better to do all Fortran I/O or all C I/O, not both.

The Fortran I/O library is implemented largely on top of the C standard I/O library.
Every open unit in a Fortran program has an associated standard I/O file structure.
For the stdin, stdout, and stderr streams, the file structure need not be explicitly
referenced, so it is possible to share them.

If a Fortran main program calls C to do I/O, the Fortran I/O library must be
initialized at program startup to connect units 0, 5, and 6 to stderr, stdin, and
stdout, respectively. The C function must take the Fortran I/O environment into
consideration to perform I/O on open file descriptors.

However, if a C main program calls a Fortran subprogram to do I/O, the automatic
initialization of the Fortran I/O library to connect units 0, 5, and 6 to stderr,
stdin, and stdout is lacking. This connection is normally made by a Fortran main
program. If a Fortran function attempts to reference the stderr stream (unit 0)
without the normal Fortran main program I/O initialization, output will be written
to fort.0 instead of to the stderr stream.

The C main program can initialize Fortran I/O and establish the preconnection of
units 0, 5, and 6 by calling the f_init() library routine at the start of the program
and, optionally, f_exit() at termination.

Remember: even though the main program is in C, you should link with f95.

11.8 Alternate Returns
Fortran 77’s alternate returns mechanism is obsolete and should not be used if
portability is an issue. There is no equivalent in C to alternate returns, so the only
concern would be for a C routine calling a Fortran routine with alternate returns.
Fortran 95 will accept Fortran 77 alternate returns, but its use should be
discouraged.
11-26 Fortran Programming Guide • May 2003

The implementation returns the int value of the expression on the RETURN
statement. This is implementation dependent and its use should be avoided.

11.9 Fortran 2000 Interoperability With C
The Fortran 2000 draft standard (available from http://www.j3-fortran.org)
provides a means of referencing procedures and global variables defined by the C
programming language from within a Fortran 95 program. And, conversely,
provides a means for defining Fortran subprograms or global variables so that they
can be referenced from C procedures.

By design, use of these features to accomplish interoperability between Fortran 95
and C programs insures portability across standards-conforming platforms.

Fortran 2000 provides the BIND attribute for derived types, and the
ISO_C_BINDING intrinsic module. The module makes accessible to the Fortran
program certain named constants, derived types, and procedures that support
specification of interoperable objects. The details can be found in the Fortran 2000
draft standard, Section 15.

TABLE 11-17 Alternate Returns

C calls Fortran Running the Example

int altret_ (int *);

main ()

{

int k, m ;

k =0;

m = altret_(&k) ;

printf("%d %d\n", k, m);

}

SUBROUTINE ALTRET(I, *, *)

INTEGER I

I = I + 1

IF(I .EQ. 0) RETURN 1

IF(I .GT. 0) RETURN 2

RETURN

END

demo% cc -c tst.c

demo% f95 -o alt alt.f tst.o

alt.f:

altret:

demo% alt

1 2

The C routine receives the return value 2 from
the Fortran routine because it executed the
RETURN 2 statement.
Chapter 11 C-Fortran Interface 11-27

11-28 Fortran Programming Guide • May 2003

Index
SYMBOLS
!$OMP, 10–20
!$OMP PARALLEL, 10–20

A
abrupt underflow, 6–5
ACCESS='STREAM', 2–9
accessible documentation, 1–xix
agreement across routines, -Xlist, 5–1
aliasing, 7–6
align

data types, Fortran 95 vs. C, 11–3
errors across routines, -Xlist, 5–1

analyzing performance, 8–1
ar to create static library, 4–9, 4–12
arguments

reference versus value, C–Fortran interface, 11–5
array

differences between C and Fortran, 11–6
asa, Fortran print utility, 1–3
ASCII characters

maximum characters in data types, 7–4
assertions, 9–8
ASSUME pragma, 9–8

B
-Bdynamic, -Bstatic options, 4–14
binary I/O, 2–8
BIND, 11–27
bindings

static or dynamic (-B, -d), 4–14

C
C directive, 11–4
-C option, 5–12
C$PAR Sun-style directives, 10–21
call

in parallelized loops, 10–16
inhibiting optimization, 9–10
passing arguments by reference or value, 11–5

call graphs, with -Xlistc option, 5–9
carriage-control, 7–1
case sensitivity, 11–4
catch FPE, 6–17
C–Fortran interface

array indexing, 11–5
call arguments and ordering, 11–5
case sensitivity, 11–3
comparing I/O, 11–6
compatibility issues, 11–1
function compared to subroutine, 11–2
function names, 11–4, 11–8
passing data by value, 11–19, 11–21, 11–25
sharing I/O, 11–26

CHUNKSIZE directive qualifier, 10–35
CMIC$ Cray-style directives, 10–32
Collector

defined, 8–1
command line

passing runtime arguments, 2–5
redirection and piping, 2–6

command-line
Index-1

help, 1–6
common block

maps, -Xlist, 5–11
task common, 10–22

compiler commentary, 9–12
compilers, accessing, 1–xvi

D
-dalign option, 9–5
data

Hollerith, 7–3
inspection, dbx, 5–13
maximum characters in data types, 7–4
representation, 7–3

data dependency
apparent, 10–11
parallelization, 10–4
restructuring to eliminate, 10–4

date, VMS, 7–17
debug, 5–1 to 5–14

arguments, agree in number and type, 5–1
common blocks, agree in size and type, 5–1
compiler options, 5–12
dbx, 5–13
exceptions, 6–16
index check of arrays, 5–12
linker debugging aids, 4–3
parameters, agree globally, 5–1
segmentation fault, 5–12
subscript array bounds checking, 5–12

debugging
utilities, 1–3
-Xlist, 1–3

declared but unused, checking, -Xlist, 5–2
denormalized number, 6–18
-depend option, 9–5
direct I/O, 2–7

to internal files, 2–11
directives

C() C interface, 11–4
OpenMP parallelization
OPT=n optimization levels, 9–4
Sun/Cray parallelization, 10–15

display to terminal, -Xlist, 5–2
division by zero, 6–3
-dn, -dy options, 4–14
DOALL directive, 10–23

qualifiers, 10–24
documentation index, 1–xviii
documentation, accessing, 1–xviii to 1–xix
DOSERIAL directive, 10–30
DOSERIAL* directive, 10–30
dynamic libraries, See libraries, dynamic

E
environment variables

for parallelization, 10–36
LD_LIBRARY_PATH, 4–5
OMP_NUM_THREADS, 10–7
PARALLEL, 10–7
passed to program, 2–6
STACKSIZE, 10–8

environment variables$SUN_PROFDATA, 8–4
equivalence block maps, -Xlist, 5–11
error

messages
suppress with -Xlist, 5–9

standard error
accrued exceptions, 6–4

error messages
listing with -XlistE, 5–9

establish a signal handler, 6–14
event management, dbx, 5–13
exceptions

accrued, 6–9
debugging, 6–16 to 6–18
detecting, 6–14
IEEE, 6–3
ieee_handler, 6–11
suppressing warnings with ieee_flags, 6–4,

6–8
trapping

with -ftrap=mode option, 6–3
extensions and features, 1–2
external

C functions, 11–4
names, 11–4

F
f90_init, 11–8
FACTORING, directive qualifier, 10–28
-fast option, 9–3
Index-2 Fortran Programming Guide • May 2003

features and extensions, 1–2
feedback, performance profiling, 9–4
file names

passing to programs, 2–5
files

internal, 2–11
opening scratch files, 2–3
passing file names to programs, 2–5, 7–2
preconnected, 2–4
standard error, 2–4
standard input, 2–4
standard output, 2–4

fix and continue, dbx, 5–13
floating-point arithmetic, 6–1 to 6–21

See also IEEE arithmetic
considerations, 6–18
denormalized number, 6–18
exceptions, 6–3
IEEE, 6–2
underflow, 6–18

-fns, disable underflow, 6–5
FORM='BINARY', 2–8
Forte Developer Performance Analyzer, 8–1
Fortran

features and extensions, 1–2
libraries, 4–17
utilities, 1–2

Fortran 2000
interoperability with C, 11–27
stream I/O, 2–9

FPE catch in dbx, 6–17
-fsimple option, 9–6
fsplit, Fortran utility, 1–3
-ftrap=mode option, 6–3
function

compared to subroutine, 11–2
data type of, checking, -Xlist, 5–2
names, Fortran vs. C, 11–4
unused, checking, -Xlist, 5–2
used as a subroutine, checking, -Xlist, 5–2

G
-G option, 4–16
GETARG library routine, 2–2, 2–5
GETENV library routine, 2–2, 2–6
global program checking, See -Xlist option
GSS, directive qualifier, 10–28

GUIDED directive qualifier, 10–35

H
help

command-line, 1–6
Hollerith data, 7–3

I
IEEE (Institute of Electronic and Electrical

Engineers), 6–2
IEEE arithmetic

754 standard, 6–2
continue with wrong answer, 6–19
exception handling, 6–4
exceptions, 6–3
excessive overflow, 6–20
gradual underflow, 6–5, 6–18
interfaces, 6–6
signal handler, 6–14
underflow handling, 6–5

ieee_flags, 6–4, 6–6, 6–7
ieee_functions, 6–6
ieee_handler, 6–6, 6–11
ieee_retrospective, 6–3, 6–4
ieee_values, 6–6
include files

list and cross checking with -XlistI, 5–10
inconsistency

arguments, checking, -Xlist, 5–2
named common blocks, checking, -Xlist, 5–2

indirect addressing
data dependency, 10–5

inexact
floating-point arithmetic, 6–3

information files, 1–5
initialization, 11–8
inlining calls with -O4, 9–4
input/output, 2–1 to 2–12

accessing files, 2–1
comparing Fortran and C I/O, 11–6
direct I/O, 2–7, 2–11
extensions

binary I/O, 2–8
stream I/O, 2–9

Fortran 95 considerations, 2–12
Index-3

in parallelized loops, 10–19
inhibiting optimization, 9–10
inhibiting parallelization, 10–17
initialize for Fortran from C main program, 11–

26
internal I/O, 2–11
logical unit, 2–1
opening files, 2–3
preconnect units 0, 5, 6 from C, 11–26
preconnected units, 2–4
random I/O, 2–7
redirection and piping, 2–6
scratch files, 2–3

installation, 1–5
interface

problems, checking for, -Xlist, 5–2
internal files, 2–11
interval arithmetic, 6–21
INTERVAL declaration, 6–21
ISO_C_BINDING, 11–27

L
-lx option, 4–7
labels, unused, -Xlist, 5–2
-Ldir option, 4–7
libF77, 4–17
libM77, 4–17
libraries, 4–1 to 4–17

dynamic
creating, 4–12
naming, 4–15
position-independent code, 4–13
specifying, 4–7, 4–8
tradeoffs, 4–13

in general, 4–1
linking, 4–2
load map, 4–2
optimized, 9–9
provided with Sun WorkShop Fortran, 4–17
redistributable, 4–17
search order

command line options, 4–7
LD_LIBRARY_PATH, 4–5
paths, 4–4

shared, See dynamic
static

creating, 4–9

on SPARC V9, 4–15
ordering routines, 4–12
recompile and replace module, 4–12
tradeoffs, 4–9

Sun Performance Library, 1–3, 9–9
line-numbered listing, -Xlist, 5–3
linking

binding options (-B, -d), 4–14
consistent compile and link, 4–4
libraries, 4–2

specifying static or dynamic, 4–14
mixing C and Fortran, 11–7
search order, 4–4

-lx, -Ldir, 4–7
troubleshooting errors, 4–8

lint-like checking across routines, -Xlist, 5–1
listing

cross-references with -Xlist, 5–11
line numbered with diagnostics, -Xlist, 5–1
-XlistL, 5–10

logical unit, 2–1
loop unrolling

and portability, 7–14
with -unroll, 9–6

M
-m linker option for load map, 4–3
macros

with make, 3–3
make, 3–1

command, 3–3
macros, 3–3
makefile, 3–1
suffix rules, 3–4

makefile, 3–1
man pages, 1–4
man pages, accessing, 1–xvi
MANPATH environment variable, setting, 1–xvii
maps

common blocks, -Xlist, 5–11
equivalence blocks, -Xlist, 5–11

MAXCPUS, directive qualifier, 10–24, 10–34
measuring program performance, See performance,

profiling
memory

usage, 8–3
multithreading, See parallelization
Index-4 Fortran Programming Guide • May 2003

N
nonstandard_arithmetic(), 6–5
number of

reads and writes, 8–3
swapouts, 8–3

number of threads, 10–7
NUMCHUNKS directive qualifier, 10–35

O
OMP_NUM_THREADS environment variable, 10–7,

10–36
OpenMP parallelization, 10–20

check directives with -XlistMP, 5–10
See also the OpenMP API User’s Guide

optimization
See also performance
with -fast, 9–3

options
debugging, useful, 5–12
for optimization, 9–2 to 9–8
parallelization, 10–6

order of
linker libraries search, 4–5
linker search, 4–5
-lx, -Ldir options, 4–7

output
to terminal, -Xlist, 5–2
-Xlist report file, 5–10

overflow
excessive, 6–20
floating-point arithmetic, 6–3
locating, example, 6–17
with reduction operations, 10–13

P
PARALLEL environment variable, 10–7, 10–36
parallelization, 10–1 to 10–42

automatic, 10–9, 10–10
CALL, loops with, 10–16
chunk distribution, 10–9
data dependency, 10–4
debugging, 10–38
default thread stack size, 10–8
definitions, 10–10
directives, 10–14, 10–15

environment variables, 10–36
explicit

criteria, 10–15
loop scheduling, 10–28
loop scheduling (Cray), 10–35
OpenMP
scoping rules, 10–15
scoping variables with Cray directives, 10–33

inhibitors
to automatic parallelization, 10–11
to explicit parallelization, 10–16

nested loops, 10–11
options summary, 10–6
private and shared variables, 10–15
reduction operations, 10–12
specifying number of threads, 10–7
specifying stack sizes, 10–7
-stackvar option, 10–7
steps to, 10–3
what to expect, 10–2

PATH environment variable, setting, 1–xvii
performance

optimization, 9–1 to 9–13
choosing options, 9–1
further reading, 9–13
hand restructurings and portability, 7–13
inhibitors, 9–10
inlining calls, 9–4
interprocedural, 9–8
libraries, 9–9
loop unrolling, 9–6
-On options, 9–4
OPT=n directive, 9–4
specifying target hardware, 9–7
with runtime profile, 9–4

profiling
tcov, 8–3
time, 8–2

Sun Performance Library, 1–3
performance analyzer, 8–1

compiler commentary, 9–12
performance library, 9–9
porting, 7–1 to 7–19

accessing files, 7–2
aliasing, 7–6
carriage-control, 7–1
data representation issues, 7–3
Hollerith data, 7–3
initializing with Hollerith, 7–4
Index-5

nonstandard coding, 7–5
obscure optimizations, 7–13
precision considerations, 7–2
strip-mining, 7–13
time functions, 7–14
troubleshooting guidelines, 7–17
uninitialized variables, 7–5
unrolled loops, 7–14

position-independent code
-xcode, 4–13

preconnected units, 2–4
preserve case, 11–4
preserving precision, 7–2
print

asa, 1–3
PRIVATE, directive qualifier, 10–24, 10–34
process control, dbx, 5–13
program analysis, 5–1 to 5–14
program development tools, 3–1 to 3–9

make, 3–1
SCCS, 3–6

program performance analysis tools, 8–1
psrinfo SunOS command, 10–7
pure scalar variable

defined, 10–10

R
random I/O, 2–7
README file, 1–5
READONLY, directive qualifier, 10–25
reads, number of, 8–3
recurrence

data dependency, 10–4
redistributable libraries, 4–17
reduction operations

data dependency, 10–5
numerical accuracy, 10–13
recognized by the compiler, 10–13

REDUCTION, directive qualifier, 10–27
referenced but not declared, checking, -Xlist, 5–2
retrospective summary of exceptions, 6–4
roundoff

with reduction operations, 10–13
runtime

arguments to program, 2–5

S
sampling collector, 8–1
SAVELAST, directive qualifier, 10–27, 10–34
scalar

defined, 10–10
SCCS

checking in files, 3–9
checking out files, 3–8
creating files, 3–8
creating SCCS directory, 3–6
inserting keywords, 3–6
putting files under SCCS, 3–6

SCHEDTYPE, directive qualifier, 10–28
scheduling, parallel loops, 10–28, 10–35
segmentation fault

due to out-of-bounds subscripts, 5–12
SELF, directive qualifier, 10–28
shared library, See libraries, dynamic
SHARED, directive qualifier, 10–25, 10–34
sharing I/O, C–Fortran interface, 11–26
shell prompts, 1–xv
shippable libraries, 4–17
SIGFPE signal

definition, 6–4, 6–11
when generated, 6–14

signal
with explicit parallelization, 10–38

SINGLE directive qualifier, 10–35
source code control, See SCCS
SPARC V9, 64-bit environments, 4–15
stack size and parallelization, 10–7
STACKSIZE environment variable, 10–8
-stackvar option, 10–7
standard files

error, 2–4
input, 2–4
output, 2–4
redirection and piping, 2–6

standard_arithmetic(), 6–5
standards

conformance, 1–1
statement checking, -Xlist, 5–2
static libraries, See libraries, static
STATIC, directive qualifier, 10–28
stdio, C-Fortran interface, 11–6
STOREBACK, directive qualifier, 10–26
stream I/O, 2–9
strip-mining

degrades portability, 7–13
Index-6 Fortran Programming Guide • May 2003

subroutine
compared to function, 11–2
names, 11–4
unused, checking, -Xlist, 5–2
used as a function, checking, -Xlist, 5–2

summing and reduction, automatic
parallelization, 10–12

Sun Performance Library, 9–9
SUNW_MP_THR_IDLE environment variable, 10–37
SUNW_MP_WARN environment variable, 10–36
swapouts, number of, 8–3
system time, 8–3

T
target

specifying hardware, 9–7
task common, 10–22
TASKCOMMON directive, 10–22
tcov, 8–3

and inlining, 8–4
new style, -xprofile=tcov option, 8–4

thread stack size, 10–7
time command, 8–2

multiprocessor interpretation, 8–3
time functions, 7–14

summarized, 7–15
VMS routines, 7–17

timing program execution, 8–2
trapping

exceptions with -ftrap=mode, 6–3
troubleshooting

program fails, 7–19
results not close enough, 7–17

type checking across routines, -Xlist, 5–1
typographic conventions, 1–xiv

U
-U option, upper/lower case, 11–4
UltraSPARC-III, 9–8
undeclared variables, -u option, 5–12
underflow

abrupt, 6–5
floating-point arithmetic, 6–3
gradual (IEEE), 6–5, 6–18
simple, 6–19

with reduction operations, 10–13
underscore, in external names, 11–4
uninitialized variables, 7–5
unit

preconnected units, 2–4
-unroll option, 9–6
unused functions, subroutines, variables, labels,

-Xlist, 5–2
uppercase, external names, 11–4
user time, 8–3
utilities, 1–2

V
-V option, 5–13
%VAL(), pass by value, 11–5
variables

aliased, 7–6
private and shared, 10–15, 10–33
undeclared, checking for with -u, 5–12
uninitialized, 7–5
unused, checking, -Xlist, 5–2
used but unset, checking, -Xlist, 5–2

version checking, 5–13
VMS Fortran

time functions, 7–17

W
watchpoints, dbx, 5–13
writes, number of, 8–3

X
-xalias option, 7–6
-xcode option, 4–13
-xipo option, 9–8
-Xlist option, global program checking, 5–1 to 5–

11
call graph, -Xlistc, 5–9
cross reference, -XlistX, 5–9
defaults, 5–3
examples, 5–4
suboptions, 5–8 to 5–11

-xmaxopt option, 9–4
-xprofile option, 9–4
Index-7

-xtarget option, 9–7

Y
Y2K (year 2000) considerations, 7–17

Z
-ztext option, 4–16
Index-8 Fortran Programming Guide • May 2003

	Fortran Programming Guide
	Contents
	Tables
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Accessing Compiler Collection Tools and Man Pages
	Accessing Compiler Collection Documentation
	Accessing Related Solaris Documentation
	Resources for Developers
	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	Introduction
	1.1 Standards Conformance
	1.2 Features of the Fortran 95 Compiler
	1.3 Other Fortran Utilities
	1.4 Debugging Utilities
	1.5 Sun Performance Library
	1.6 Interval Arithmetic
	1.7 Man Pages
	1.8 README Files
	1.9 Command-Line Help

	Fortran Input/Output
	2.1 Accessing Files From Within Fortran Programs
	2.1.1 Accessing Named Files
	2.1.2 Opening Files Without a Name
	2.1.3 Opening Files Without an OPEN Statement
	2.1.4 Passing File Names to Programs

	2.2 Direct I/O
	2.3 Binary I/O
	2.4 Stream I/O
	2.5 Internal Files
	2.6 Additional I/O Considerations

	Program Development
	3.1 Facilitating Program Builds With the make Utility
	3.1.1 The Makefile
	3.1.2 make Command
	3.1.3 Macros
	3.1.4 Overriding of Macro Values
	3.1.5 Suffix Rules in make
	3.1.6 .KEEP_STATE and Special Dependency Checking

	3.2 Version Tracking and Control With SCCS
	3.2.1 Controlling Files With SCCS
	3.2.2 Checking Files Out and In

	Libraries
	4.1 Understanding Libraries
	4.2 Specifying Linker Debugging Options
	4.2.1 Generating a Load Map
	4.2.2 Listing Other Information
	4.2.3 Consistent Compiling and Linking

	4.3 Setting Library Search Paths and Order
	4.3.1 Search Order for Standard Library Paths
	4.3.2 LD_LIBRARY_PATH Environment Variable
	4.3.3 Library Search Path and Order—Static Linking
	4.3.4 Library Search Path and Order—Dynamic Linking

	4.4 Creating Static Libraries
	4.4.1 Tradeoffs for Static Libraries
	4.4.2 Creation of a Simple Static Library

	4.5 Creating Dynamic Libraries
	4.5.1 Tradeoffs for Dynamic Libraries
	4.5.2 Position-Independent Code and –xcode
	4.5.3 Binding Options
	4.5.4 Naming Conventions
	4.5.5 A Simple Dynamic Library
	4.5.6 Initializing Common Blocks

	4.6 Libraries Provided With Sun Fortran Compilers
	4.7 Shippable Libraries

	Program Analysis and Debugging
	5.1 Global Program Checking (-Xlist)
	5.1.1 GPC Overview
	5.1.2 How to Invoke Global Program Checking
	5.1.3 Some Examples of -Xlist and Global Program Checking
	5.1.4 Suboptions for Global Checking Across Routines

	5.2 Special Compiler Options
	5.2.1 Subscript Bounds (–C)
	5.2.2 Undeclared Variable Types (–u)
	5.2.3 Compiler Version Checking (–V)

	5.3 Debugging With dbx

	Floating-Point Arithmetic
	6.1 Introduction
	6.2 IEEE Floating-Point Arithmetic
	6.2.1 –ftrap=mode Compiler Options
	6.2.2 Floating-Point Exceptions
	6.2.3 Handling Exceptions
	6.2.4 Trapping a Floating-Point Exception
	6.2.5 Nonstandard Arithmetic

	6.3 IEEE Routines
	6.3.1 Flags and ieee_flags()
	6.3.2 IEEE Extreme Value Functions
	6.3.3 Exception Handlers and ieee_handler()

	6.4 Debugging IEEE Exceptions
	6.5 Further Numerical Adventures
	6.5.1 Avoiding Simple Underflow
	6.5.2 Continuing With the Wrong Answer
	6.5.3 Excessive Underflow

	6.6 Interval Arithmetic

	Porting
	7.1 Carriage-Control
	7.2 Working With Files
	7.3 Porting From Scientific Mainframes
	7.4 Data Representation
	7.5 Hollerith Data
	7.6 Nonstandard Coding Practices
	7.6.1 Uninitialized Variables
	7.6.2 Aliasing and the -xalias Option
	7.6.3 Obscure Optimizations

	7.7 Time and Date Functions
	7.8 Troubleshooting
	7.8.1 Results Are Close, but Not Close Enough
	7.8.2 Program Fails Without Warning

	Performance Profiling
	8.1 Sun ONE Studio Performance Analyzer
	8.2 The time Command
	8.2.1 Multiprocessor Interpretation of time Output

	8.3 The tcov Profiling Command
	8.3.1 Enhanced tcov Analysis

	Performance and Optimization
	9.1 Choice of Compiler Options
	9.1.1 Performance Options
	9.1.2 Other Performance Strategies
	9.1.3 Using Optimized Libraries
	9.1.4 Eliminating Performance Inhibitors
	9.1.5 Viewing Compiler Commentary

	9.2 Further Reading

	Parallelization
	10.1 Essential Concepts
	10.1.1 Speedups—What to Expect
	10.1.2 Steps to Parallelizing a Program
	10.1.3 Data Dependence Issues
	10.1.4 Compiling for Parallelization
	10.1.5 Number of Threads
	10.1.6 Stacks, Stack Sizes, and Parallelization

	10.2 Automatic Parallelization
	10.2.1 Loop Parallelization
	10.2.2 Arrays, Scalars, and Pure Scalars
	10.2.3 Automatic Parallelization Criteria
	10.2.4 Automatic Parallelization With Reduction Operations

	10.3 Explicit Parallelization
	10.3.1 Parallelizable Loops
	10.3.2 OpenMP Parallelization Directives
	10.3.3 Sun-Style Parallelization Directives
	10.3.4 Cray-Style Parallelization Directives

	10.4 Environment Variables
	10.4.1 PARALLEL and OMP_NUM_THREADS
	10.4.2 SUNW_MP_WARN
	10.4.3 SUNW_MP_THR_IDLE

	10.5 Debugging Parallelized Programs
	10.5.1 First Steps at Debugging
	10.5.2 Debugging Parallel Code With dbx

	10.6 Further Reading

	C-Fortran Interface
	11.1 Compatibility Issues
	11.1.1 Function or Subroutine?
	11.1.2 Data Type Compatibility
	11.1.3 Case Sensitivity
	11.1.4 Underscores in Routine Names
	11.1.5 Argument-Passing by Reference or Value
	11.1.6 Argument Order
	11.1.7 Array Indexing and Order
	11.1.8 File Descriptors and stdio
	11.1.9 Libraries and Linking With the f95 Command

	11.2 Fortran Initialization Routines
	11.3 Passing Data Arguments by Reference
	11.3.1 Simple Data Types
	11.3.2 COMPLEX Data
	11.3.3 Character Strings
	11.3.4 One-Dimensional Arrays
	11.3.5 Two-Dimensional Arrays
	11.3.6 Structures
	11.3.7 Pointers

	11.4 Passing Data Arguments by Value
	11.5 Functions That Return a Value
	11.5.1 Returning a Simple Data Type
	11.5.2 Returning COMPLEX Data
	11.5.3 Returning a CHARACTER String

	11.6 Labeled COMMON
	11.7 Sharing I/O Between Fortran and C
	11.8 Alternate Returns
	11.9 Fortran 2000 Interoperability With C

	Index

