
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Stabs Interface

Sun™ Studio 9



Please
Recycle

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.



3

Contents

1. Introduction 9

2. Overview 11

3. ELF Object File Format 15

4. Debugger Stabs 21

N_ALIAS - Symbol Alias (0x6c) 21

N_BCOMM — Begin Common Block (0xe2) 23

N_BINCL — Begin Include File (0x82) 24

N_BROWS — Source Browser (0x48) 25

N_CMDLINE - Compilation Command Line (0x34) 26

N_CODETAG - Code Generation Detail (0xd8) 27

CODETAG_BITFIELD 28

CODETAG_SPILL 28

CODETAG_SCOPY 29

CODETAG_STACK_PROBE 29

N_CONSTRUCT - Constructor Description (0xd2) 30

N_CPROF - Cache Profile Feedback (0xf0) 30

N_DESTRUCT - Destructor Description (0xd4) 31

N_ECOMM — End Common Block (0xe4) 31



Contents 4

N_EINCL — End Included File (0xa2) 32

N_EMOD - Fortran90 Module End 32

N_ENDM — End Module (0x62) 32

N_ENTRY — Fortran Alternate Entry (0xa4) 33

N_ESYM — Position-independent External Data Type (0xc8) 34

N_FLSYM -- Fragmented Data Symbol (0x2e) 35

N_FUN — Function or Procedure Definition (0x24) 36

N_FUN_CHILD -- Function Child (0xd9) 38

N_GSYM — Global Symbol (0x20) 39

N_ILDPAD - Incremental Link Padding (0x4c) 40

N_ISYM — Position-independent Internal Data Type (0xc6) 40

N_LBRAC — Begin Scope (0xc0) 41

N_LCSYM — Uninitialized Static Symbol (0x28) 42

N_LSYM — Local Symbol (0x80) 44

N_MAIN — Main Routine Name (0x2a) 45

N_MOD - Fortran 95 Module Begin 45

N_OBJ — Object Directory and File (0x38) 46

N_OPT — Options (0x3c) 47

N_OUTL - Outlined Function 48

N_PATCH - Patch Run Time Checker (0xd0) 48

P_BITFIELD 49

P_SPILL 50

P_SCOPY 50

N_PSYM — Formal Parameter (0xa0) 51

N_RBRAC — End Scope (0xe0) 52

N_READ_MOD - Fortran 95 Module Use 52

N_ROSYM — Read-Only Static Symbol (0x2c) 53

N_RSYM — Register Symbol (0x40) 54



Contents 5

N_SLINE — Source Line (0x44) 55

N_SO — Source Directory and File (0x64) 58

N_SOL — Included File (0x84) 59

N_STSYM — Initialized Static Symbol (0x26) 60

N_TCOMM — Begin Task Common Block (0xe3) 62

N_TFLSYM — Thread Local Storage (TLS) Fragmented Data Symbol (0x2f) 63

N_TLCSYM — Thread Local Storage (TLS) Uninitialized Static Symbol (0x29) 64

N_TSTSYM — Thread Local Storage (TLS) Initialized Static Symbol (0x27) 65

N_UNDF — Undefined (0x00) 66

N_USING — C++ USING statement (0xc4) 67

USING Declaration 67

Local USING Declaration, Position Dependent 67

Global, Namespace, or Class Scope USING Declaration, Position
Independent: 68

USING Directive 68

Local USING Directive, Position Dependent 68

Global, Namespace, or Class Scope USING Directives, Position
Independent 69

Summary of USING statement stabs 69

N_XLINE — Extended Line Number (0x45) 69

5. Symbol Descriptors 71

Local Variable (empty) 72

Automatic Variable (A) 73

Based Variable (b) 73

Constant  (c) 74

External Data (E) 75

Global Function or Procedure (F) 75

Local Function or Procedure (f) 76

Global Variable (G) 76



Contents 6

Interface Block (I) 77

Internal Procedure  (J) 77

Lines in Template (LT) 78

Literal  (l) 78

Module  (M) 79

Value Parameter (p) 79

Prototype (P) 80

Register Variable (r) 81

Static File Variable (S) 81

Enumeration, Structure or Union (T) 82

Type Name (t) 83

Class Declaration  (U) 84

Declaration Syntax 85

Example 86

Stabs 86

Common or Static Local Variable (V) 86

Variable Parameter by Reference (v) 87

Function Result Variable (X) 88

C++ Specification (Y) 88

Functions with Default Arguments 89

Inline Functions 90

Stabs for anonymous unions (Ya) 90

Stabs for classes, structs, and non-anonymous unions 91

Namespaces  (Yn) 96

Pointers to class members (YM, YD) 97

Templates (YT, YI) 99

Run Time Type Information (RTTI) (YR) 107

6. Type Specification 109



Contents 7

Array (a) 112

Volatile (B) 113

Basic Integer (b) 114

Dope Vector (D) 114

Dope Vector (d) 115

Enumeration (e) 116

Function Parameter (F) 117

Function (f) 118

Function With Prototype Info (g) 118

Restricted (K) 120

Const (k) 121

Floating Point (R) 121

Range (r) 122

Set (S) 123

Structure or Record (s) and Union (u) 124

Forward Reference (x) 125

C++ Types (Y) 126

C99 Variable Length Array (z) 126

Pointer (*) 126

Reference (&) 127

7. Auto-load Stab Processing 129

Introduction 129

Stabs Index 130

Stabs in Object Files 131

Stabs in Executable Files 132

Debugger Operation 132

Delayed Processing of a.out Files 133



Contents 8

8. Stabs Generation 135

Minimal Stabs Requirements 135

Stabs for Optimized Code 135

A. Stab Codes 137

B. Symbol Descriptors 145

C. Type Codes 147

D. Index Stabs 149

E. Fortran 95 Pointers and Array Descriptors 155

Terminology 155

Run-time Representations 155

Example 157

Subscripting 158

Whole Array Operations 158

Memory Management 159

F. Globalization 161

G. Differential Mangling 165

Glossary 169



9

CHAPTER 1

Introduction

The command line debugger, dbx, depends on two kinds of information generated
by compilers and the linker to aid the user in debugging programs. The first type of
information is exactly the same information that the linker uses to combine object
files and that the loader uses to execute a program. The second type is generated by
the compilers specifically to support debugging. This information is stored in a
format known as stabs, which stands for symbol table entries. This document
describes how these stabs are created, stored, modified, and interpreted.

The debugger supports the ELF format for object files (generated under the Solaris™
operating environment; for a description, see Chapter 3). In an ELF file, the stabs are
stored in separate sections from the symbol table generated by the compiler and
linker.

Although dbx is the most common interpreter of stabs, other programs (for example,
the Performance Analyzer) use the information in stabs in one form or another.

This document tells you:

■ How a compiler describes the program in stabs

■ How the stabs relate to the linker symbol table entries stored in the object file or
executable file

■ What happens to stabs when the linker processes an object file

■ How dbx interprets the stabs

A glossary is included to define the various terms used.

The examples of stab output from the compilers are not intended to define the stab
specification, but are provided for clarification of the specification.



10 Stabs Interface • June 2004



11

CHAPTER 2

Overview

dbx evolved from Pdx, a Pascal source debugger developed by Mark A. Linton as a
Master’s project at the University of California at Berkeley. Linton extended the
linker symbol table entry to contain descriptions of variables, functions, and types,
by encoding this information in the symbol name field. To avoid confusion with the
existing linker stabs, additional stabs description codes were defined.

Since type and variable information is encoded as strings, stabs are easy to extend to
support additional languages or other features. Additional stab types can be (and
have been) created to meet changing needs without affecting the processing of
existing stab types. Stabs have evolved significantly to:

■ Support C++, Fortran 77, Fortran 95, and C

■ Reduce the size of executable files

■ Support additional operating system features such as dynamically loaded shared
libraries

■ Improve debugger performance

Most compilers translate the source into assembler instructions and pass this to the
assembler. The assembler generates linker stab entries for files and non-local
symbols. The compilers generate debugging stabs when the -g option is specified by
including either .stabs or .stabn directives in the source passed to the assembler.
These have the following formats:

.stabs “string”, type, other, desc, value

and

.stabn type, other, desc, value

where:

string contains the name and description of a symbol and, in general, consists of a
name followed by a colon, a symbol descriptor (one or more characters), and
descriptor specific information.



12 Stabs Interface • June 2004

type specifies the type of the stab entry.

other is used in some stab types for miscellaneous inforamtion.

desc is used in some stab types to further describe the symbol.

value contains an offset or other value.

In an ELF file, debugging stabs are stored in the .stab section with the text of the
strings in .stabstr.

There are two additional assembler directives:

.xstabs "section", "string", type, other, desc, value

.xcstabs "section", "string", type, other, desc, value

where:

section is the name of the section in which to place the stab.

string, type, other, desc, and value have the same meanings described for the
.stabs and .stabn directives..

The .xstabs directive and .xcstabs directive can be used to direct the stab into a
different section in an ELF file. The .xstabs directive is usually used to create
index stabs, described in Chapter 3 and Appendix D, but is also used in other special
situations. The .xcstabs directive is used to create COMDAT index stabs, which
are described in Chapter 3.

The string in the stabs directives can be of any length, up to the string size limit
imposed by the assembler. ( Currently the assembler does not impose a limit, so the
compilers can generate a stab string of any length.) To ease generation of stabs
directives, the string may be continued from one stabs directive to the next by
terminating the string with a backslash (\). The continuation stabs directive must
have the same type, desc, and value. For example,

.stabs "boolean:t(0,2)=efalse:0,\\", 0x20, 0, 0, 0

.stabs "true:1,", 0x20, 0, 0, 0

is equivalent to

.stabs "boolean:t(0,2)=efalse:0,true:1,", 0x20, 0, 0, 0

There may be any number of continuation lines.

Each stabs directive contains a stab type that describes what is contained in the
string part of the stab. When the stab describes a symbol, the stab type specifies
whether the symbol is a local or global symbol, a function description, static
variable, and so forth. In the preceding example, the stab type of 0x20 indicates that
this stab describes a global symbol.



Chapter 2 Overview 13

The stabs that describe symbols use the string to contain three pieces of information:

■ Symbol name

■ Symbol descriptor

■ Type description

The name of the symbol starts the string and is followed by a colon. The symbol
descriptor immediately follows the colon and describes what the symbol represents.
In the example above, the symbol boolean is described to be a type definition by
the t symbol type. Descriptions of local variables omit the symbol descriptor.

The actual description of the type is contained following the symbol descriptor. This
may be a reference to a previously defined type or it may be a new definition of a
type as indicated by a type number pair followed by an equal sign, as is done in the
description of boolean.

Symbol names that also represent ELF level synbols normally retain their ELF
spellings. One exception is Fortran 77, which omits the trailing underscore on the
function names in the stabs.



14 Stabs Interface • June 2004



15

CHAPTER 3

ELF Object File Format

ELF is the Executable and Linking Format used in System V and is the native
executable file format for the Solaris operating environment. It is extensively
described in the System V ABI1. This chapter briefly describes the format, focusing
on the aspects that affect stabs.

Each symbol table entry has the following format (defined in stab.h):

struct stab {
unsigned n_strx; /* file String table index */
unsigned char n_type; /* Stab type */
char n_other; /* used by N_SLINE stab */
short n_desc; /* Desc value */
unsigned n_value; /* Offset or value */

};

The n_strx field is the offset of the string in the symbol string table. All strings are
terminated by a null byte. Previous stabs versions defined struct nlist in nlist.h.
This has been changed to avoid conflict with the system header file and struct of that
name. The fields of struct stab were also redefined so that their sizes would not
change when compiled for 64-bit programs.

An ELF file, whether an object file, an executable file, or a library file, is a highly
structured file that consists of a header, a program table, a section table, and a
number of named sections. The section table is an index to the sections, describing
each section’s name, type, storage address, length, and offset in the ELF file. Several
sections have predefined names and contents. For example, the .text section
contains the executable instructions of the program and the .data section contains
initialized data. An ELF file may contain additional sections that have contents
specified by the vendor, such as the .stab section. The following figure shows the
layout of an ELF executable file.

1. 1. AT&T: System V Application Binary Interface and SPARC Processor Supplement, Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1990



16 Stabs Interface • June 2004

The symbol table is in the section named .symtab and the strings are stored in the
.strtab section. Each entry in the symbol table consists of:

■ A name
■ A value (which is usually an address)
■ A size
■ Type and binding flags
■ A reference to the section to which it is related

Section 1 (.init) @ 0x0001caf8

  Type = 1 (PROGBITS),  Flags = 0x6 (EXEC-ALLOC)

  Addr = 0x00010074,    Offset = 0x00000074, Size = 12

  Link = 0,             Info = 0

  Align = 0x00000004,   Entry size = 0

Section 2 (.text) @ 0x0001cb20

  Type = 1 (PROGBITS),  Flags = 0x6 (EXEC-ALLOC)

Addr = 0x00010080, Offset = 0x00000080, Size = 62460

  Link = 0,             Info = 0

  Align = 0x00000004,   Entry size = 0

Section 3 (.fini) @ 0x0001cb48

  Type = 1 (PROGBITS),  Flags = 0x6 (EXEC-ALLOC)

  Addr = 0x0001f47c,    Offset = 0x0000f47c, Size = 12

  Link = 0,             Info = 0

  Align = 0x00000004,   Entry size = 0

Section 4 (.rodata) @ 0x0001cb70

  Type = 1 (PROGBITS),  Flags = 0x2 (ALLOC)

Addr = 0x0001f488, Offset = 0x0000f488, Size = 24314

  Link = 0,             Info = 0

  Align = 0x00000008,   Entry size = 0

Ident = “\x7fELF”, Class = 1 (32), Data = 2 (2MSB),

Id ver = 1 (CURRENT)

Type = 2 (EXEC), Machine = 2 (SPARC), Version = 1 (CURRENT

Start address = 0x00010080,   Phdr offset = 0x00000034

Shdr offset   = 0x0001cad0,   File flags = 0x00000000

Ehdr size = 52,       Phdr size = 32,     Num Phdrs = 2

Program Header 0:

  Entry type = 1 (LOAD), Segment Offset = 0x00000074

 Virt address= 0x00010074,Physical addr= 0x00000000

  Size in file = 86858,Size in memory = 86858

  Access flags = 0x5 (r-x), Alignment = 0x00010000

Program Header 1:

  Entry type = 1 (LOAD), Segment Offset = 0x000153c0

 Virt address= 0x000353c0,Physical addr= 0x00000000

  Size in file = 4832, Size in memory = 8060

  Access flags = 0x7 (rwx), Alignment = 0x00010000

ELF Header

Section Table

.text

.bss

.data

.stab

.stabstr

.stab.index

.stab.indexstr

.symtab

other sections

Executable text

Uninitialized data

Initialized data

Debugging stabs

Strings from stabs

Index to object files

Index strings

Symbol table

Program Table

ELF Executable Layout

.strtab

Symbol strings



Chapter 3 ELF Object File Format 17

The symbol table entries for an object file start with a symbol with the STT_FILE
type with the name of the source file used to create the object file (the file name only,
not the entire path to the source file). This is followed by local symbols which are
defined in the file, functions are identified with type STT_FUNC and variables with
type STT_OBJECT.

The symbol table entries for an executable file or shared library are concatenated
from the object files that were linked. The first STT_FILE type has the name of the
executable or shared library. The next STT_FILE should be the source file of the first
object file linked. The next STT_FILE should be the source file of the second object
file linked, and so on.

Following the last object file are the global symbols. Both function and variable
symbols are collected at the end in random order. The following figure shows parts
of the symbol table for a small “hello world” program. The STT_FILE entry for
hello.c is followed by two local data objects, sa and sb, while the STT_FUNC
entry for main appears much later in the symbol table. Nothing in the symbol table
indicates which source file contains any global function.

The organization of the debugging stabs in an ELF file is not defined in the ABI, but
is specific to the Solaris operating environment.

 Symbol table -- 479 entries  value    size         info      shndx

                   crti.s  00000000  00000000  LOCAL    FILE  ABS
                   crt1.s  00000000  00000000  LOCAL    FILE  ABS
              values-Xt.c  00000000  00000000  LOCAL    FILE  ABS
                  hello.c  00000000  00000000  LOCAL    FILE  ABS
                       sa  000353e0  00000004  LOCAL  OBJECT    6
                       sb  000353e4  00000004  LOCAL  OBJECT    6
                 atexit.c  00000000  00000000  LOCAL    FILE  ABS
                  exitfns  000366a0  00000094  LOCAL  OBJECT    8
               numexitfns  0003542c  00000004  LOCAL  OBJECT    6
                 printf.c  00000000  00000000  LOCAL    FILE  ABS
                 doprnt.c  00000000  00000000  LOCAL    FILE  ABS
                  _zeroes  00035465  00000015  LOCAL  OBJECT    6
                                .
                                .
                                .
                     .mul  00018a84  0000022c GLOBAL    FUNC    2
                    __iob  000363c8  00000140 GLOBAL  OBJECT    6
                     open  0001d7f0  00000000   WEAK    FUNC    2
                     main  00010120  00000044 GLOBAL    FUNC    2
                 getwidth  000196b4  00000064 GLOBAL    FUNC    2
                     read  0001cd54  00000000   WEAK    FUNC    2
        double_to_decimal  00018510  00000000   WEAK    FUNC    2
                   malloc  0001e400  00000298 GLOBAL    FUNC    2
                     _iob  000363c8  00000000   WEAK  OBJECT    6
                  __ctype  00035554  00000209 GLOBAL  OBJECT    6
                   wctomb  00019494  00000128 GLOBAL    FUNC    2
                   getpid  0001f440  00000000   WEAK    FUNC    2
                        a  000353c0  00000001 GLOBAL  OBJECT    6
                        b  000353c2  00000002 GLOBAL  OBJECT    6

ELF Symbol Table



18 Stabs Interface • June 2004

Debugging stabs may be stored in several sections in the ELF file. In an object file
(not an executable file or library) the stabs are stored in either the .stab section
(with strings in .stabstr) or in the .stab.excl (with strings in .stab.exclstr). If
auto-load stab processing is to be used (that is, the object file will be retained rather
than deleted after linking) then stabs are placed in the .stab.excl section. The
Solaris linker will not copy the .stab.excl or .stab.exclstr sections to the
executable. If the object file is not to be retained, stabs are stored in the .stab (and
.stabstr) section and will be copied to the executable file.

The .stab.index section (and .stab.indexstr containing the strings) contain a
reduced set of stabs that are used to support auto-load stab processing. These stabs
specify the names of global functions and data that are contained in the object file
(since this information is not available in the symbol table) and where to find the
object file so that the debugger can read the stabs. For a more complete description,
see Appendix D.

Stabs and the strings from each object file are concatenated to form these sections in
the executable file. The stabs from each object file are preceded with an N_UNDF stab.
The n_value field in this stab contains the total length of the strings for the object
file. The n_strx field of the N_UNDF stab contains the offset to the file name string
(usually a source file). The linker does not relocate or modify the offset to the strings.
The order of N_UNDF stabs and the Elf STT_FILE symbols should match, preserved
by the linker. dbx expects this order to be preserved.

When the COMDAT feature of the linker is used by a compiler, it is necessary to
place some index stabs in COMDAT sections: .stab.index%function and the
corresponding string section .stab.indexstr%function where function is the
linker name of the function as given by the compiler. Unlike all other stab sections in
an object file, these do not begin with an N_UNDF stab. Instead, each stab is encoded
with n_other == 1 to identify it as a COMDAT stab. If multiple sections with the
same name exist, the linker chooses one for the executable. The function’s code and
its index stab are always chosen together, so dbx always knows which function was
chosen.

The non-COMDAT .stab.index and .stab.indexstr sections must always
appear in the object file before any COMDAT stab sections, so that if the COMDAT
sections are chosen by the linker, they always follow the N_UNDF stab in the
.stab.index section. The order of the .stab.index%* COMDAT stab sections in
the object file dictates the order of the corresponding .stab.indexstr%*
COMDAT stab string sections.

The chosen COMDAT index stabs are concatenated into the executable along with
the regular index stabs; the chosen COMDAT index stab strings are concatenated
with the regular index stab strings. The N_UNDF stab count and string table size do
not include the COMDAT stabs. The debugger must explicitly look for former
COMDAT stabs when reading the index stabs of the executable. It must adjust for
incorrect n_strx fields, which neither the compiler nor linker can adjust.



Chapter 3 ELF Object File Format 19

The following figure shows the various stab sections in an executable file:

ELF Stabs Sections Excluded Stab table -- 38 entries

   0:  .stabs "busy.c",N_UNDF,0x0,0x25,0x309
   1:  .stabs "/usr/src/play/",N_SO,0x0,0x0,0x0
   2:  .stabs "busy.c",N_SO,0x0,0x3,0x0
   3:  .stabs "",N_OBJ,0x0,0x0,0x0
   4:  .stabs "",N_OBJ,0x0,0x0,0x0
   5:  .stabs "V=8.0;DBG_GEN=4.0.143;Xa;g;R=Forte Developer 7 C 5.4
2002/03/09;G=$XAY9kkBSUQm8ymc.",N_OPT,0x0,0x0,0x3c990512
   6:  .stabs "busy.c",N_SOL,0x0,0x0,0x0
   7:  .stabs "char:t(0,1)=bsc1;0;8",N_LSYM,0x0,0x0,0x0
   8:  .stabs "short:t(0,2)=bs2;0;16",N_LSYM,0x0,0x0,0x0
   9:  .stabs "int:t(0,3)=bs4;0;32",N_LSYM,0x0,0x0,0x0
                           .
                           .
23:  .stabs "float:t(0,17)=R1;4",N_LSYM,0x0,0x0,0x0
  24:  .stabs "double:t(0,18)=R2;8",N_LSYM,0x0,0x0,0x0
  25:  .stabs "long double:t(0,19)=R6;16",N_LSYM,0x0,0x0,0x0
  26:  .stabs "void:t(0,20)=bs0;0;0",N_LSYM,0x0,0x0,0x0
  27:  .stabs "main:F(0,3)",N_FUN,0x0,0x0,0x0
  28:  .stabs "main",N_MAIN,0x0,0x0,0x0
  29:  .stabn N_LBRAC,0x0,0x1,0x4
  30:  .stabs "i:(0,3)",N_LSYM,0x0,0x4,0xfffffff8
  31:  .stabs
"$XBY9kkBSUQm8ymc.main.__func__:V(0,21)=ar(0,4);0;4;(0,22)=k(0,1)",N_
ROSYM,0x0,0x5,0x0
  32:  .stabs "lazy:P(0,3)",N_FUN,0x0,0x0,0x0
  33:  .stabn N_SLINE,0x0,0x3,0x4
  34:  .stabn N_SLINE,0x0,0x4,0x10
  35:  .stabn N_SLINE,0x0,0x5,0x24
  36:  .stabn N_RBRAC,0x0,0x1,0x24

  37:  .stabn N_ENDM,0x0,0x0,0x0



20 Stabs Interface • June 2004

.

ELF Stabs Sections
(continued) Index Stab table -- 29 entries

   0:  .stabs "busy.c",N_UNDF,0x0,0x9,0x123
   1:  .stabs "/usr/src/play/",N_SO,0x0,0x0,0x0
   2:  .stabs "busy.c",N_SO,0x0,0x3,0x0
   3:  .stabs "/usr/src/play",N_OBJ,0x0,0x0,0x0
   4:  .stabs "busy.o",N_OBJ,0x0,0x0,0x0

5: .stabs "V=8.0;DBG_GEN=4.0.143;Xa;g;R=Forte Developer 7 C 5.4 2002/
03/09;G=$XAY9kkBSUQm8ymc.",N_OPT,0x0,0x0,0x3c990512
   6:  .stabs "/usr/src/play; /opt/SUNWspro/bin/../prod/bin/cc -c -g
busy.c -W0,-xp\$XAY9kkBSUQm8ymc.",N_CMDLINE,0x0,0x0,0x0
   7:  .stabs "main",N_MAIN,0x0,0x0,0x0
   8:  .stabs "main",N_FUN,0x0,0x0,0x0
   9:  .stabs "busy.c",N_SOL,0x0,0x0,0x0
  10:  .stabs "lazy.c",N_UNDF,0x0,0x8,0x11e
  11:  .stabs "/usr/src/play/",N_SO,0x0,0x0,0x0
  12:  .stabs "lazy.c",N_SO,0x0,0x3,0x0
  13:  .stabs "/usr/src/play",N_OBJ,0x0,0x0,0x0
  14:  .stabs "lazy.o",N_OBJ,0x0,0x0,0x0
  15:  .stabs "V=8.0;DBG_GEN=4.0.143;Xa;g;R=Forte Developer 7 C 5.4
2002/03/09;G=$XAY9kkBhUQm8Snc.",N_OPT,0x0,0x0,0x3c990521
  16:  .stabs "/usr/src/play; /opt/SUNWspro/bin/../prod/bin/cc -c -g
lazy.c -W0,-xp\$XAY9kkBhUQm8Snc.",N_CMDLINE,0x0,0x0,0x0
  17:  .stabs "lazy",N_FUN,0x0,0x0,0x0
  18:  .stabs "lazy.c",N_SOL,0x0,0x0,0x0
  19:  .stabn N_ILDPAD,0x0,0x0,0x0
  20:  .stabn N_ILDPAD,0x0,0x0,0x0
  21:  .stabn N_ILDPAD,0x0,0x0,0x0
  22:  .stabn N_ILDPAD,0x0,0x0,0x0
  23:  .stabn N_ILDPAD,0x0,0x0,0x0
  24:  .stabn N_ILDPAD,0x0,0x0,0x0
  25:  .stabn N_ILDPAD,0x0,0x0,0x0
  26:  .stabn N_ILDPAD,0x0,0x0,0x0
  27:  .stabn N_ILDPAD,0x0,0x0,0x0
  28:  .stabn N_ILDPAD,0x0,0x0,0x0



21

CHAPTER 4

Debugger Stabs

The stabs directives may be interspersed in the assembly code generated by a
compiler with relatively limited constraints on their ordering. These constraints are
described with each stab type and summarized in this chapter.

The stabs are described in alphabetic order by type name. For convenience, the
a.out linker stab codes are also listed.

N_ALIAS - Symbol Alias (0x6c)
The N_ALIAS stab introduces an alias for a function, variable, Fortran namelist,
“external redefine” or namespace. It does not make forward references. For example:

is used to indicate that newname is another name for the function named oldname.
The F prefix on oldname indicates it is a function name. Variables are treated
similarly and indicated by a V prefix, as in:

Fortran namelists are indicated by a N prefix to oldname. For example:

.stabs "newname:Foldname", N_ALIAS, 0, 0, 0

.stabs "newname:Voldname", N_ALIAS, 0, 0, 0

.stabs "newname:Noldname", N_ALIAS, 0, 0, 0



22 Stabs Interface • June 2004

Here, newname is the name of the namelist and oldname is the body of the namelist
definition. For example, the statement:

produces:

Note – Do not use the following descriptor unless you are sure you need to because
of unpredictable output. Do not use with C++.

External redefines are indicated by a R prefix to sourcename. In the following:

externalname is the name of an existing external symbol, function, or variable.
sourcename is the new name by which that external may be referenced. The primary
difference between this and the F descriptor is that the externalname may exist in a
different object file from this stab, and that the name translation applies to the
complete load object in which the externalname exists.

This stab is a no-op when:

■ The externalname does not exist.

■ This stab is a second (or further) occurrence with the same externalname specified.
If the specified sourcename already exists, then overloading will occur.

Namespace aliases result from a statement of the form:

This makes foo a namespace alias for bar. Namespace aliases are handled by
N_ALIAS stabs with a prefix S. The stabs can be position dependent or position
independent, depending on the scopes in which the aliases occur.

1. (Function) Local namespace alias, position dependent

.stabs “newname:S typeid-of-newname=typeid-of-oldname”, N_ALIAS, 0,0,0

2. namespace, class, global namespace alias, position independent

namelist /xx/a,b,c

.stabs “xx:Na,b,c”, N_ALIAS, 0, 0, 0

.stabs “externalname:Rsourcename”, N_ALIAS, 0, 0, 0

 namespace foo = bar;



Chapter 4 Debugger Stabs 23

.stabs “mangled_newname:Stypeid-of-newname=typeid-of-oldname:typeid-of
enclosing-scope”, N_ALIAS, 0,0,0

Fortran OpenMP threadprivate variables are indicated by a T prefix to sourcename.
The format is:

.stabs " compname : T sourcename ", N_ALIAS, 0, 0, 0

where:

compname is a compiler-generated pointer to the threadprivate value(s) of
sourcename, the user-defined source variable. For example, in the following stab,
xxx_ is the linker name of a user-defined OpenMP threadprivate variable, and
__tls_ptr_xxx_ is the compiler-generated linker symbol that points to a static
area that contains addresses for all the threadprivate copies of xxx_.

.stabs "__tls_ptr_xxx_:Txxx_", N_ALIAS, 0, 0, 0

N_BCOMM — Begin Common Block
(0xe2)

A N_BCOMM stab introduces a named common block and precedes the listing of
symbols contained in the common block. The common block is named BlockName.
Subsequent stabs preceding an N_ECOMM stab specify the variables in the common
block. On the Solaris operating environment, the address of the common block is
found in the ELF symbol table.

An N_ECOMM stab terminates the listing of symbols within the named common block.

Only N_GSYM stabs with V symbol type may appear between the N_BCOMM and
N_ECOMM.

N_BCOMM and N_ECOMM may not be nested.

HashValue is a hash value which, with BlockName, uniquely identifies the common
block. If HashValue is zero, no N_XCOMM stab may reference this common block.

Unnamed common is given a BlockName of "__BLNK__".

.stabs "BlockName", N_BCOMM, 0, 0, HashValue



24 Stabs Interface • June 2004

The following common declaration:

generates the following stabs:

The first stab is the N_BCOMM, which starts the common block. The next three stabs
are N_GSYM (global symbol) stabs, which describe the three variables defined in the
common block. The last stab is the N_ECOMM, which ends the common block.

N_BINCL — Begin Include File (0x82)

The N_BINCL stab begins the symbol information defined in an include file. FilePath
is the path to the file from the source directory specified in the N_SO stab. Stabs
following the N_BINCL are generated by statements in the include file.

The stabs for the include file are terminated by an N_EINCL stab.

The N_BINCL stab must follow an N_SO stab for a source file and precede the
matching N_ENDM stab. N_BINCL stabs and N_EINCL stabs may be nested within
other N_BINCL/N_EINCL pairs.

The HashValue is a number computed by the linker that is unique to this occurrence
of this named include file. Since different occurrences of an include file may actually
define different symbols (most commonly as the result of #ifdef/#endif
statements in the include file), the HashValue will be different for occurrences of an
include file that are not identical.

It is an error for two N_BINCL stabs to appear in the same executable or shared
library with the same FilePath and HashValue.

common /blk/ a, b, c

.stabs  "blk_",N_BCOMM,0,0,0

.stabs  "a:V6",N_GSYM,0,0,0

.stabs  "b:V6",N_GSYM,0,0,4

.stabs  "c:V6",N_GSYM,0,0,8

.stabs  "blk_",N_ECOMM,0,0,0

.stabs "FilePath", N_BINCL, 0, 0, HashValue



Chapter 4 Debugger Stabs 25

If file h.h in the compilation directory contains the following:

when it is included the object file will contain the following stabs:

The first stab is the N_BINCL stab, which specifies the path to the include file h.h
from the source compilation directory. The HashValue of 0x151 is calculated by the
linker, the stab generated by the compiler contains a zero.

The next two stabs are the N_GSYM (global symbol) stabs for the two variables in the
include file. The last stab is the N_EINCL stab, which ends the include file.

N_BROWS — Source Browser (0x48)

The N_BROWS stab specifies the path to the .bd file created to support the Source
Browser. In the Solaris operating environment, this stab is entered into the
.stab.sbfocus section.

int a;
float b;

.stabs "./h.h",N_BINCL,0x0,0x0,0x151

.stabs "a:G(0,1)",N_GSYM,0x0,0x4,0x0

.stabs "b:G(0,9)",N_GSYM,0x0,0x4,0x0

.stabn N_EINCL,0x0,0x0,0x0

.stabs "bdfile", N_BROWS, 0, 0, 0



26 Stabs Interface • June 2004

N_CMDLINE - Compilation Command
Line (0x34)
To support fix and continue, the N_CMDLINE stab stores the command line for
compilation:

where:

Together, driver options prefix, make up a complete reconstructs the complete
command line. This command line was passed to /bin/sh, so all special characters
must have been quoted with a backslash (for example., “/$”).

For example, if myfile.cc was compiled in /tmp as follows:

the resulting string for this stab would look something like:

.stabs “cwd;driver options prefix”, N_CMDLINE, 0, 0, 0

cwd is the full path name of the working directory as specified by the -cwd option
from the compiler driver.

driver is a full path to the compiler driver.

options is the list of options passed into the compiler. This list should be modified to
contain only the current source file and to use the -c option to cause a .o file to
be produced.

prefix is the set of options of the form needed to pass the current global prefix back
into the compiler. This is usually done via -Qoption, as in the example below.
Ensure that multiple fix and continue runs do not keep duplicating prefix.

CC -I../include -g -o myprog mtfile.cc

“/tmp;/path/CC -I../include -g myfile.cc -c -Qoption ccfe
-prefix -Qoption ccfe prefix



Chapter 4 Debugger Stabs 27

N_CODETAG - Code Generation Detail
(0xd8)
The N_CODETAG stab provides information about the generated code needed for
certain kinds of debugging. A subset of its functionality replaces the N_PATCH stab
for run time checking information (load/store and structure copy).

where:

marker is:

addr is a byte offset of an instruction from the function label. In addition, for any
module that emitted one or more N_CODETAG stabs, one index stab should be
emitted of the form:

For modules that have emitted no N_CODETAG stabs, an N_CODETAG index stab
should not be emitted. Currently, there are four types of N_CODETAG stabs in use:

.stabn N_CODETAG, marker, 0, addr

0x1 CODETAG_BITFIELD Load/store of a bit field

0x2 CODETAG_SPILL Spill of registers

0x3 CODETAG_SCOPY Structure copy load/store

0x4 CODETAG_FSTART (not used) Points to first inst of new frame (0==leaf)

0x5 CODETAG_END_CTORS (not used) End of calls to super-class constructors

0x6 (not used in stabs) *** DW_ATCF_SUN_branch_target in dwarf ***

0x7 CODETAG_STACK_PROBE Marks insns that probe the stack memory

.xstabs "", N_CODETAG, marker, 0x0, 0x0



28 Stabs Interface • June 2004

CODETAG_BITFIELD

The CODETAG_BITFIELD stab gives the byte offset of the address of a load
instruction from the function label to which the instruction belongs. This is very
similar to the N_SLINE stab, but instead of the source line offset from the beginning
of the function, the byte offset from the beginning of the function is emitted.
Emitting a CODETAG_BITFIELD N_CODETAG stab allows runtime checking not to
check for Read Uninitialized Data for that load.

Consider this C example:

which generates the following N_CODETAG stabs:

The statement s1.a = 1 is considered a Bitfield Insertion, while the statement
i = s1.a is considered a Bitfield Extraction. An N_CODETAG stab should be issued
for each load instruction that is part of bitfield operation (either insertion or
extraction) that load more data than the bitfield in question. That is, if the load is for
the exact size of the bitfield, then an N_CODETAG stab need not be emitted.

If an insertion does not involve a load (because a store of the exact size can be done),
then no N_CODETAG stab should be emitted.

CODETAG_SPILL

For each load or store instruction that is generated for register spills and unspills,
one N_CODETAG stab should be emitted. This includes floating-point spills and
unspills as well. These should always be emitted in matched pairs (for the spill and
unspill). Emitting a CODETAG_SPILL N_CODETAG stab allows runtime checking not
to perform any checking on these load or store instructions.

N_CODETAG stabs should be grouped among all the other stabs for a given function,
just like N_SLINE stabs. If there are N_LBRAC and N_RBRAC stabs for a given
function, then the N_CODETAG stabs should be between those stabs, as appropriate.

struct s { int a:1; char b; } s1;
int i;
i = s1.a;
s1.a = 1;

.stabs "",N_CODETAG,0x1,0x0,0x0 # index stab

.stabn N_CODETAG,0x1,0x0,0x4

.stabn N_CODETAG,0x1,0x0,0x1c



Chapter 4 Debugger Stabs 29

CODETAG_SCOPY

For each load instruction that is generated to do a structure copy, one N_CODETAG
stab should be emitted. Emitting a CODETAG_SCOPY N_CODETAG stab allows
runtime checking not to perform any checking on these load instructions.

N_CODETAG stabs should be grouped among all the other stabs for a given function,
just like N_SLINE stabs. If there are N_LBRAC and N_RBRAC stabs for a given
function, then the N_CODETAG stabs should be between those stabs, as appropriate.
For example, the following C program:

generates the following N_CODETAG stabs:

for the two loads in the structure copy of tmp = ss.

CODETAG_STACK_PROBE

For each instruction that probes stack memory before creating a frame, one
N_CODETAG stab should be emitted. Emitting a CODETAG_STACK_PROBE
N_CODETAG stab allows runtime checking not to perform any checking on these
stack-checking instructions.

N_CODETAG stabs should be grouped among all the other stabs for a given function,
just like N_SLINE stabs. If there are N_LBRAC and N_RBRAC stabs for a given
function, then the N_CODETAG stabs should be between those stabs, as appropriate.

struct s {
char c;
int i;

}

main() {
struct s ss, tmp;
ss.c = 0;
ss.i = 1;
tmp = ss;

}

.stabs "",N_CODETAG,0x3,0x0,0x0 # index stab

.stabn N_CODETAG,0x3,0x0,0x18

.stabn N_CODETAG,0x3,0x0,0x20



30 Stabs Interface • June 2004

N_CONSTRUCT - Constructor Description
(0xd2)

Each local variable whose destruction requires a call to a destructor will cause the
generation of a pair of stabs (N_CONSTRUCT and N_DESTRUCT) describing the
lifetime of this variable. This includes constructor and destructor calls which are
inlined. dbx needs this information in order to implement its fix and continue
feature. The N_CONSTRUCT stab is associated with the location just after the
construction of the variable, and the N_DESTRUCT stab is associated with the
location immediately before the object’s destruction is begun.

For the N_CONSTRUCT stab:

When more than one local variable exists, the N_CONSTRUCT, N_DESTRUCT pairs are
nested and the state is incremented by 1 as each constructor is seen. After executing
a particular constructor, the state is State.

N_CPROF - Cache Profile Feedback
(0xf0)
(Reserved for future use)

.stabs  "Var:State",N_CONSTRUCT,0,End-Start,Start-Func

Var is the name (if any) of the variable being constructed

State is the new destructor state number (the state is mapped by dbx into a unique set of
destructors that must be called). This is the state after the specified instructions
have been executed

End is the location of the instruction immediately following the object’s construction
(regardless of whether it’s a call or is done inline)

Start is the location of the first instruction of the construction. So End–Start is the
number of bytes of constructor code at this spot.

Func is the name of the current function—thus, the expression Start–Func is a function-
relative offset.



Chapter 4 Debugger Stabs 31

N_DESTRUCT - Destructor Description
(0xd4)

The N_DESTRUCT stab does not mention the variable being destroyed. Instead, it
merely indicates the new “destructor state” after completion of the destruction
described here.

For the N_DESTRUCT stab:

State is the new destructor state number (the state is mapped by dbx into a unique
set of destructors that must be called to implement its pop instruction or to do some
kinds of continue operations).

End is the address of the instruction following the last instruction of destructor code.

Start is the address of the first instruction of destructor code. Thus, End - Start
specifies the number of bytes of destructor code.

Func is the name of the current function—thus, the expression Start – Func is a
function-relative offset.

N_ECOMM — End Common Block (0xe4)

A N_ECOMM stab terminates the listing of symbols defined within the named
common block that was begun by an N_BCOMM stab.

N_BCOMM and N_ECOMM stabs may not be nested.

Unnamed common is given a BlockName of "__BLNK__".

For an example, see “N_BCOMM — Begin Common Block (0xe2)” on page 23.

.stabs “FromState:ToState”,N_DESTRUCT,0,End-Start,Start-Func

.stabs "BlockName", N_ECOMM, 0, 0, 0



32 Stabs Interface • June 2004

N_EINCL — End Included File (0xa2)

The N_EINCL stab terminates the specification of stabs contained within an include
file specified by the closest preceding N_BINCL stab. N_BINCL and N_EINCL stabs
may be nested.

For an example, see “N_BINCL — Begin Include File (0x82)” on page 24.

N_EMOD - Fortran90 Module End

The N_EMOD stab ends the sequence of stabs that belong to the named module,
which must start with a corresponding N_MOD stab.

See “N_MOD - Fortran 95 Module Begin” on page 45 for an example.

N_ENDM — End Module (0x62)

The N_ENDM stab terminates the stabs for the source file started by an N_SO. It must
follow all of the stabs for the source file; no file-related stabs may follow the N_ENDM.
This stab is required even if no other debugging stabs are generated.

The C file:

.stabn N_EINCL, 0, 0, 0

.stabs "Name", N_EMOD, 0, 0, 0

.stabn N_ENDM, 0, 0, 0

foo()
{
}



Chapter 4 Debugger Stabs 33

generates (in part) the following stabs:

The first two N_SO stabs give the compilation directory and file name. The last stab
is the N_ENDM, which ends the stab listing for the object file.

N_ENTRY — Fortran Alternate Entry
(0xa4)

The N_ENTRY stab is generated for an alternate entry into a Fortran function named
Name. RtnType is the type of the value returned from the function. FunName is the
name of the function that contains this entry point. If Line is not zero, this is the line
number of the ENTRY statement.

Parameters passed to the entry are represented by N_PSYM (parameter) stabs
following the N_ENTRY stab.

The following Fortran subroutine:

.stabs "/tmp/",N_SO,0x0,0x0,0x0

.stabs "c.c",N_SO,0x0,0x3,0x0

.stabn N_ENDM,0x0,0x0,0x0

.stabs "Name : e RtnType; FunName ; ;", N_ENTRY, 0, Line, 0

subroutine a(i)
print *, i
return

entry b(f)
print *, f
return
end



34 Stabs Interface • June 2004

generates the following stabs:

The first N_FUN stab describes the subroutine a and is followed by an N_PSYM stab
for its argument i. The third stab is generated, by convention, with the special name
__entry. This specially named variable contains the address through which this
procedure was entered (useful in determining a correct traceback) . This special
symbol is present only in procedures with secondary entry points. The fourth stab is
the N_ENTRY stab, which indicates that b is an entry point within the subroutine a.
The name given in the stab is that of the label generated for the function, rather than
the name that the user entered. It is followed by an N_PSYM stab for the argument to
the entry.

N_ESYM — Position-independent
External Data Type (0xc8)

The N_ESYM stab is used in place of the N_LSYM stab in situations where the position
of the stab in relation to the other stabs does not reflect the proper scoping. This
occurs for C++ 5.0 templates and is a consequence of the compiler’s “on-demand”
method of generating stabs for types. For example, if template instance stack<int>
references a type “ctype” that is defined outside the template (in another file), an
N_LSYM stab could not properly convey the scope in which ctype was defined.

The N_ESYM stab is used for data types that have external linkage (class, struct,
union, enum). There is a similar N_ISYM stab for types with internal linkage.
N_ESYM stabs, being external, also appear in the index stabs section.

N_ESYM uses the same syntax as N_LSYM; it differs only in that its name is always
mangled. The name is demangled to obtain the scope information. If there is no “::”
in the demangled name, the data type is in the global scope.

.stabs "a:F14",N_FUN,0,0,_a_

.stabs "i:v3",N_PSYM,0,0,-8

.stabs “__entry:3”,N_LSYM,0,4,0xffffffb0

.stabs "b:e14;a_;;",N_ENTRY,0,5,0

.stabs "f:v6",N_PSYM,0,0,-4

.stabs "Name : SymDesc Type", N_ESYM, 0, Desc, Value



Chapter 4 Debugger Stabs 35

N_FLSYM -- Fragmented Data Symbol
(0x2e)

The N_FLSYM stab defines a global symbol with the name Name. The symbol
represents a static local variable that has become global to the linker because it has
been placed in a separate ELF section by the compiler.

SymDesc is a symbol descriptor and may be one of the following:

If the N_FLSYM stab appears outside of a function, only SymDesc S is permitted.

OpenMP is equal to N_SYM_OMP_TLS (see stab.h) when an OpenMP variable has
been declared THREAD_PRIVATE. It is zero otherwise.

Size is the size of the variable in bytes.

The following C function, compiled with -xF=lcldata:

generates the following stab for x:

where $XBY9kkB4DBZ_SXV.foo.x is the globalized name for x.

 .stabs " Name : SymDesc Type ", N_FLSYM, OpenMP, Size, 0

G Global weak (C++)

S File

V Local

void foo ()
{
static int x;
}

 .stabs "$XBY9kkB4DBZ_SXV.foo.x:V(0,3)",N_FLSYM,0x0,0x4,0x0



36 Stabs Interface • June 2004

N_FUN — Function or Procedure
Definition (0x24)

An N_FUN stab defines the beginning of a function or procedure, or it describes a
prototype for the specified function or procedure.

For the N_FUN stab:

Name is the name of the function or procedure.

SymDesc is a symbol descriptor and may be one of the following:

RtnType is the type of the returned value.

An optional list of ArgType entries separated by semicolons may follow the RtnType.
These are the (possibly) promoted types of the formal arguments to the function,
starting with the left-most argument. A 0 (zero) may be entered as the last ArgType to
specify that this and subsequent argument types are unspecified and that all
following types or number of arguments are valid.

ArgType is the (possibly) promoted type of the formal argument to the function.
These may be different from the type of the formal argument. For example, in non-
ANSI C, when not using prototypes, integer types shorter than an int are promoted
to int. The ArgType shows that an int is passed to the function while the N_PSYM
stab for the formal argument shows the formal argument’s declared type.

FunKind is currently used to qualify the kinds of Fortran 95 subprograms as follows:

.stabs "Name : SymDesc RtnType [ ; ArgType ]*", N_FUN, FunKind,
Line, 0

F Global function or procedure

f Local function or procedure

M Module function (Fortran 95)

J Internal procedure (Fortran 95)

P Prototype for function or procedure

Y C++ specification (see “C++ Specification (Y)” on page 88)



Chapter 4 Debugger Stabs 37

1 = Pure
2 = Elemental
4 = Recursive

More than one kind may be specified, they are not all mutually exclusive.

In an index stab, FunKind == 1 indicates that the stab came from a COMDAT
section.

FunKind is normally zero, and all other possible values are reserved for future use.

Line is the source line on which the function definition begins.

All of the stabs that follow the N_FUN stab describe symbols and types that are
defined within the function. The function’s stabs are ended by the next N_FUN,
N_ENDM, N_ENTRY stab or by the closing N_RBRAC for the function (one that specifies
level zero).

The following C program:

generates the following stabs:

The first stab is an N_FUN stab, which describes main as a function that returns an
int (type (0,3)) and takes two arguments: an int, and a pointer to a pointer to
a char (type (0,1)). The next two stabs are N_PSYM (parameter) stabs that
describe the two arguments. The last N_FUN stab gives a prototype of the function
printf.

#include <stdio.h>

int main (int argc, char **argv)
{

printf ("%d %s\n", argc, *argv);
}

.stabs  "main:F(0,3);(0,3);(0,20)=*(0,21)=*(0,1)",
N_FUN,0,0,_main

.stabs  "argc:p(0,3)",N_PSYM,0,4,68

.stabs  "argv:p(0,20)",N_PSYM,0,4,72

.stabs  "printf:P(0,3);(0,22)=*(0,1);0",N_FUN,0,0,0



38 Stabs Interface • June 2004

N_FUN_CHILD -- Function Child (0xd9)

The N_FUN_CHILD stab is created when a nesting relationship between functions
needs to be communicated to the debugger. This stab should appear after the parent
function N_FUN stab and the Name in this N_FUN_CHILD stab should refer to the
nested (child) function. This child function’s definition would appear in a separate
N_FUN stab set. Any function’s stabs set can contain any number of N_FUN_CHILD
stabs, one for every unique child function.

The following Fortran95 program:

.stabs "Name", N_FUN_CHILD, 0, 0, 0

call sub
end

subroutine sub
real a(100,100)
integer i, j, k
i = 100
j = i
k = i*j

!$omp parallel
!$omp do

do i = 1,100
do j = 1,100

a(i,j) = i + j*100
enddo

enddo
$omp end do

print *,i
$omp end parallel

print *,k
end



Chapter 4 Debugger Stabs 39

when compiled with -g -xopenmp=noopt, produces (in part) these stabs:

which shows that _$p1B10.sub_ is a child of sub_ (stab 41) and _$d1A11.sub_ is
a child of _$p1B10.sub_ (stab 64). Both of these are compiler-generated OpenMP
functions.

N_GSYM — Global Symbol (0x20)

The N_GSYM stabs defines a global symbol with the name Name. A symbol may be a
type name or a variable name. The Name field is followed by a colon and type
specification.

The exact meaning of the Desc and Value fields depends on the value of SymDesc.

The C statements (outside of a function):

39:  .stabs "sub_:F1",N_FUN,0x0,0x4,0x0
40:  .stabn N_LBRAC,0x0,0x1,0x0
41:  .stabs "_$p1B10.sub_",N_FUN_CHILD,0x0,0x0,0x0
51:  .stabn N_RBRAC,0x0,0x1,0x214
52:  .stabs "_$d1A11.sub_:f1",N_FUN,0x0,0x0,0x0
53:  .stabn N_LBRAC,0x0,0x1,0x0
61:  .stabn N_RBRAC,0x0,0x1,0x170
62:  .stabs "_$p1B10.sub_:f1",N_FUN,0x0,0x0,0x0
63:  .stabn N_LBRAC,0x0,0x1,0x0
64:  .stabs "_$d1A11.sub_",N_FUN_CHILD,0x0,0x0,0x0
67:  .stabn N_RBRAC,0x0,0x1,0x17c

.stabs "Name : SymDesc Type", N_GSYM, 0, Desc, Value

struct S {
int a;
int b;
} Z;

int X;



40 Stabs Interface • June 2004

generate the following stabs:

The first stab is an N_LSYM (local symbol) stab, which describes the structure. The
next two N_GSYM stabs specify that Z is an occurrence of that structure and that X is
an int (type (0,3)).

N_ILDPAD - Incremental Link Padding
(0x4c)
The N_ILDPAD stab is a linker stab that indicates that the string table position
should be modified.

The stab indicates that the string table position should be adjusted by
BytesOfStringTable bytes.

N_ISYM — Position-independent
Internal Data Type (0xc6)

The N_ISYM stab is used in place of the N_LSYM stab in situations where the position
of the stab in relation to the other stabs does not reflect the proper scoping. This
occurs for C++ 5.0 templates and is a consequence of the compiler’s “on-demand”
method of generating stabs for types. For example, if template instance stack<int>
references a type “ctype” that is defined outside the template (in another file), an
N_LSYM stab could not properly convey the scope in which ctype was defined.

.stabs  "S:T(0,20)=s8a:(0,3),0,32;b:(0,3),32,32;",N_LSYM,0,8,1

.stabs  "Z:G(0,20)",N_GSYM,0,8,0

.stabs  "X:G(0,3)”,N_GSYM,0,4,0

.stabs “Objname”, N_ILDPAD, 0, 0, BytesOfStringTable

.stabs "Name : SymDesc Type", N_ISYM, 0, Desc, Value



Chapter 4 Debugger Stabs 41

The N_ISYM stab is used for data types that have internal linkage (typedefs). There is
a similar N_ESYM stab for types with external linkage.

N_ISYM uses the same syntax as N_LSYM; it differs only in that its name is always
mangled. The name is demangled to obtain the scope information. If there is no “::”
in the demangled name, the data type is in file scope.

N_LBRAC — Begin Scope (0xc0)

The N_LBRAC stab indicates the start of a scope. This is usually a group of
statements delimited by curly braces in C or by BEGIN and END in Pascal. The scope
is terminated by an N_RBRAC stab, or by an N_FUN stab which implicitly closes all
scopes opened by a N_LBRAC.

Level is the nesting level of the scope, with the outermost scope considered to be
level zero. Level will always be one or more.

The N_LBRAC stab must appear within a function (started by an N_FUN stab). All
stabs that appear between the N_LBRAC and N_RBRAC stabs are considered to be
within the defined scope (with the exception of global scope stabs, such as N_GSYM).

N_LBRAC and N_RBRAC stabs may be nested.

Nested functions (Pascal, Fortran 95) are linearized nested-most first, because an
N_FUN stab of a nested function would cancel the N_LBRAC stab of the enclosing
function. The Level of such a nested function’s N_LBRAC stab is always 1.

In an a.out file, Offset is the byte offset from the start of the object file; in an ELF
file, it is the byte offset from the start of the function.

The following program:

.stabn N_LBRAC, 0, Level, Offset

main ()
{

int i = 5;
{

float i = 5.5;
printf ("%f\n", i);

}
printf ("%d\n", i);

}



42 Stabs Interface • June 2004

generates the following stabs:

The first stab is an N_FUN (function) stab, which starts stabs for the function main. It
is followed by an N_MAIN stab, which indicates that this is the main function. These
are followed by an N_LBRAC stab, which specifies level one and gives the address
of the first instruction in the scope. This is followed by an N_LSYM (local symbol)
stab of the int variable i defined in this scope, and an N_SLINE (line number) stab
for the line containing the first call to printf.

The sixth stab is a second N_LBRAC stab, indicating scoping-level two. It is followed
by another N_LSYM stab for a new declaration of i and two N_SLINE stabs. These
are followed by an N_RBRAC (end scope) stab for level two, more N_SLINE stabs,
and a final N_RBRAC stab for scope-level one.

N_LCSYM — Uninitialized Static Symbol
(0x28)

An N_LCSYM stab describes an uninitialized static variable.

.stabs "main:F(0,3)",N_FUN,0,0,main

.stabs "main", N_MAIN, 0,0,0

.stabn N_LBRAC,0,1,.LL1-main

.stabs "i:(0,3)",N_LSYM,0,4,-4

.stabn N_SLINE,0,3,.LL2-main

.stabn N_LBRAC,0,2,.LL3-main

.stabs "i:(0,16)",N_LSYM,0,4,-8

.stabn N_SLINE,0,6,.LL4-main

.stabn N_SLINE,0,7,.LL5-main

.stabn N_RBRAC,0,2,.LL6-main

.stabn N_SLINE,0,10,.LL7-main

.stabn N_SLINE,0,11,.LL8-main

.stabn N_RBRAC,0,1,.LL9-main

.stabs "Name : SymDesc Type", N_LCSYM, OpenMP, Size, Offset



Chapter 4 Debugger Stabs 43

SymDesc is a symbol descriptor and may be one of the following:

OpenMP is equal to N_SYM_OMP_TLS (see stab.h) when an OpenMP variable has
been declared THREAD_PRIVATE. It is zero otherwise.

Size is the size of the symbol in bytes.

In an ELF file, Offset is the number of bytes into the object file’s uninitialized data
(bss) area. This is identified by a linker symbol table entry for the local symbol
"Bbss.bss" that has the address of the first byte of the bss area used by the object
file. This symbol can be defined by the following assembly statements:

This creates a symbol table entry for Bbss.bss with the type STT_NOTYPE.

If the Name is globalized, as can happen when the object file has been built for the fix
and continue feature of dbx, the Name will be found in the ELF symbol table and the
Offset will be zero.

The only exception is for Fortran 95 pointer-based variables, where Name is the
simple user name and Offset is the number of bytes from the start of bss.

If the N_LCSYM stab appears outside of a function, only SymDesc S is permitted.

The following C function:

generates the following stab for x:

G Global weak (C++)

S File

V Local

b Fortran “based” variable

.section ".bss"
Bbss.bss:

foo ()
{

static int x;
}

.stabs "x:V(0,3)",N_LCSYM,0,4,.L15-Bbss.bss



44 Stabs Interface • June 2004

N_LSYM — Local Symbol (0x80)

The N_LSYM stab describes either a file local or a function local symbol. A symbol
may be a type name or a variable name. The Name field is a followed by a colon and
a type specification.

The exact meaning of the Desc and Value fields depend on the type descriptor Type.

In the following C file:

generates (in part) the following stabs:

The first three N_LSYM stabs describe standard int, short, and char types. Because
these stabs appear before the N_FUN (function) stab that starts the stabs for function
foo, they are file-local symbols. The N_LSYM stab for x appears after the N_FUN and
before the N_ENDM (end module) stab, so it is local to the function foo.

.stabs "Name : SymDesc Type", N_LSYM, 0, Desc, Value

foo ()
{

int x;
}

.stabs "char:t(0,1)=bsc1;0;8;",N_LSYM,0,0,0

.stabs "short:t(0,2)=bs2;0;16;",N_LSYM,0,0,0

.stabs "int:t(0,3)=bs4;0;32;",N_LSYM,0,0,0

.stabs "foo:F(0,3)",N_FUN,0,0,_foo

.stabs "x:(0,3)",N_LSYM,0,4,-4

.stabn N_ENDM, 0,0,0



Chapter 4 Debugger Stabs 45

N_MAIN — Main Routine Name (0x2a)

The N_MAIN stab specifies the name of the first user function executed in the
program. In a C program, this is usually "main"; in Pascal, "program"; in Fortran
"MAIN". This stab must always be generated for the main routine. It must also be
generated in the .stab.index section.

There may only be a single N_MAIN stab in any executable file.

N_MOD - Fortran 95 Module Begin

The N_MOD stab begins the definition of a Fortran 95 module. All stabs after an
N_MOD stab and before the terminating N_EMOD stab define the variables and
subprograms contained within the module.N_MOD/N_EMOD pairs cannot be nested.

MemberList is a sequence of members separated by semicolons. A double semicolon
";;" terminates the list. Each member consists of a ppp-code followed by the
member’s name. See “The Components of the Class Stab” on page 75 for a
description of ppp-codes. Currently, only ppp-codes "A" (private) and"C" (public)
are used with module members.

For example:

.stabs "Name", N_MAIN, 0, 0, 0

.stabs "Name: MemberList", N_MOD, 0, 0, 0

 module bbb
integer:: l_bbb=9, m_bbb=99, n_bbb=999, n1_bbb=9999

subroutine s1_bbb
print *, ’s1_bbb’
end subroutine s1_bbb
end module bbb



46 Stabs Interface • June 2004

produces the following stabs:

N_OBJ — Object Directory and File
(0x38)

Two N_OBJ stabs identify the current working directory where the linker was
executed and the path to the object file from that directory. The N_OBJ stabs are
generated by the compiler with null strings for the directory and file path. These are
later filled by the linker, which places the current working directory, without trailing
slash, in the first stab, and the file in the second.

When the linker brings in an object file from an archive library, ObjectDir is the name
of the directory for the archive library, and the name of the object file is the name of
archive library followed by the name of the object file in parentheses.

 .stabs
"bbb:Cbbb.l_bbb_;Cbbb.m_bbb_;Cbbb.n1_bbb_;Cbbb.n_bbb_;;",N_MOD,0
x0,0x0,0x0
.stabs "l_bbb:V(0,4)",N_STSYM,0x0,0x4,0x4
.stabs "m_bbb:V(0,4)",N_STSYM,0x0,0x4,0x8
.stabs "n1_bbb:V(0,4)",N_STSYM,0x0,0x4,0xc
.stabs "n_bbb:V(0,4)",N_STSYM,0x0,0x4,0x10
.stabs "bbb.s1_bbb:F(0,1)",N_FUN,0x0,0x0,0x0
.stabs "s1_bbb:W(0,0);bbb.s1_bbb_ ;;;",N_LSYM,0x0,0x0,0x0
.stabs "bbb.f90",N_SOL,0x0,0x0,0x0
.stabn N_SLINE,0x0,0x7,0x4
.stabn N_SLINE,0x0,0x8,0x48
.stabn N_LBRAC,0x0,0x1,0x0
.stabn N_RBRAC,0x0,0x1,0x48
.stabs "bbb",N_EMOD,0x0,0x0,0x0

.stabs "ObjectDir", N_OBJ, 0, 0, 0

.stabs "ObjectFile", N_OBJ, 0, 0, 0



Chapter 4 Debugger Stabs 47

N_OPT — Options (0x3c)

The N_OPT stab specifies various options that were used to compile the source file
and the time the object file was created. TimeStamp is in the format returned by
time(2).

The options are strings separated by semicolons. Options may have an argument
that is specified after an equal sign. Blanks may precede or follow the option.

The options that may be specified are listed below:

.stabs "Options", N_OPT, 0, 0, TimeStamp

A=2 Compiled ABI2 (the C++ 5.0 default)

dbl Fortran dbl flag

dm C++ differential mangling

cd COMDAT used

DBGGEN=version version of DBGGEN used

g Debugging stabs were generated for this object file

F Fragmented

G=<g> Global prefix is <g>

nu No underscores added to Fortran symbols

O Optimized code

p -Kpic used

P -KPIC used

R=xx.xx<r> Compiler release number is xx.xx (“r” is a version string)

r8 Fortran r8 flag

U Fortran mixed case variables

V=<v> Stab version is <v> (must be a numeric string)

Xa ANSI C promotions



48 Stabs Interface • June 2004

Every object file must have an N_OPT stab. If debugging stabs were generated for the
object file, the -g option must be specified. A version number must also be specified
(this example reflects version 2.0):

The same time stamp must be in the N_OPT stab in the .stab.index section.

N_OUTL - Outlined Function

The N_OUTL stab is produced by an optimizing code generator when a portion of the
generated code is separate from the main body of the function, and source line
information for the code exists in the form of N_SLINE stabs.

The offsets in the N_SLINE stabs are from the start of the outlined function "Name".

The Name, by convention, is related to the name of the original function.

N_PATCH - Patch Run Time Checker
(0xd0)
The N_PATCH stab provides information to the run time checker to inhibit the
checking of load and store instructions which are generated purely for internal
reasons (not associated with user code).

where:

.stabs "Xt ; g ; V=2.0", N_OPT, 0, 0, 0x02040608

.stabs "Name", N_OUTL, 0, 0, 0

.stabn N_PATCH, 0, patchtype, addr



Chapter 4 Debugger Stabs 49

patchtype is:

addr is a byte offset of an instruction from the function label. In addition, for any
module that emitted one or more N_PATCH stabs, one index stab should be emitted of
the form:

For modules which have emitted no N_PATCH stabs, an N_PATCH index stab should
not be emitted. Currently, there are three types of N_PATCH stabs:

P_BITFIELD

The P_BITFIELD stab gives the byte offset of the address of a load instruction from
the function label to which the instruction belongs. This is very similar to the
N_SLINE stab, but instead of the source line offset from the beginning of the
function, the byte offset from the beginning of the function is emitted. Emitting a
P_BITFIELD N_PATCH stab allows runtime checking not to check for “Read
Uninitialized Data” for that load.

Consider this C example:

The statement s1.a = 1 is considered a Bitfield Insertion, while the statement i =
s1.a is considered a Bitfield Extraction. An N_PATCH stab should be issued for each
load instruction which is part of bitfield operation (either insertion or extraction)
that load more data than the bitfield in question. That is:

■ If the load is for the exact size of the bitfield, then an N_PATCH stab need not be
emitted.

■ If an insertion does not involve a load (because a store of the exact size can be
done), then no N_PATCH stab should be emitted.

0x1 P_BITFIELD: read of bitfield container

0x2 P_SPILL: register spill or unspill

0x3 P_SCOPY: load used for structure copy

.xstabs ““, N_PATCH, 0x0, 0x0, 0x0

struct s { int a:1; char b; } s1;
int i;
i = s1.a;
s1.a = 1;



50 Stabs Interface • June 2004

P_SPILL

For each load or store instruction which is generated for register spills and unspills,
one N_PATCH stab should be emitted. This includes floating-point spills/unspills as
well. These should always be emitted in matched pairs (for the spill and unspill).
Emitting a P_SPILL N_PATCH stab will allow runtime checking not to perform any
checking on these load or store instructions.

N_PATCH stabs should be grouped among all the other stabs for a given function,
just like N_SLINE stabs. If there are N_LBRAC and N_RBRAC stabs for a given
function, then the N_PATCH stabs should be between those stabs, as appropriate.

P_SCOPY

For each load instruction which is generated to do a structure copy, one N_PATCH
stab should be emitted. Emitting a P_SCOPY N_PATCH stab will allow runtime
checking not to perform any checking on these load instructions.

N_PATCH stabs should be grouped among all the other stabs for a given function,
just like N_SLINE stabs. If there are L_BRAC and R_BRAC stabs for a given function,
then the N_PATCH stabs should be between those stabs, as appropriate. For
example, the following C program:

generates the following N_PATCH stabs:

for the two loads in the structure copy of tmp = ss.

struct s {
char c;
int i;

}

main() {
struct s ss, tmp;
ss.c = 0;
ss.i = 1;
tmp = ss;

}

.stabs ““,N_PATCH,0x0,0x0,0x0

.stabn N_PATCH,0x0,0x3,0x1c

.stabn N_PATCH,0x0,0x3,0x24



Chapter 4 Debugger Stabs 51

N_PSYM — Formal Parameter (0xa0)

An N_PSYM stab describes a procedure or function parameter, giving its name, kind,
type and argument offset.

SymDesc is a symbol descriptor that describes the type of the parameter. It may be
one of the following:

If the optional ;snumber is specified, it indicates a C99 static size situation such as
the following example, which means that x is passed as a pointer to the first
element, and is always guaranteed to be 33 elements long:

int foo(int x[static33]) {...}

The N_PSYM stab follows the N_FUN stab, which describes a function or procedure.
For register parameters an N_RSYM is also generated.

For an example of the N_PSYM stab, see “N_FUN — Function or Procedure Definition
(0x24)” on page 36.

.stabs "Name : SymDesc Type[;snumber}", N_PSYM, 0, 0, Offset

b Based variable (offset refers to address; implies an extra level of
indirection)

C Conformant array bound

d Allocatable array (dope vector)

p Value parameter

v Fortran variable parameter by reference

x Value parameter by reference

X Function result variable



52 Stabs Interface • June 2004

N_RBRAC — End Scope (0xe0)

The N_RBRAC stab ends a scope that was initiated by an N_LBRAC stab. Level is the
nesting level of the scope, and must be the same as the matching N_LBRAC stab. If an
N_LBRAC stab appears following an N_FUN (and subsequent N_PSYM stabs), it is
taken to start the scope of the function. The matching N_RBRAC ends the scope of the
function.

An N_SLINE stab should be generated before each N_RBRAC stab that ends a loop or
a function. This permits “stopping” before exiting the scope.

The N_LBRAC and N_RBRAC stabs may be nested.

In an a.out file, Offset is the number of bytes from the start of the object file; in an
ELF file, it is the number of bytes from the start of the function.

For an example of the N_RBRAC stab, see “N_LBRAC — Begin Scope (0xc0)” on
page 41.

N_READ_MOD - Fortran 95 Module Use

The N_READ_MOD stab describes a Fortran 95 use statement. It consists of the
Name of a module, an optional "only;" indicator, and an optional NameList. The colon
after the name is required if either or both of the optional parts are present.

NameList is a sequence of zero or more name associations separated by commas.
Each name association is either a single identifier, or a pair of identifiers separated
by a space. The pair is in the order "local_name" followed by "original_name". There
is no termination character.

For example:

.stabn N_RBRAC, 0, Level, Offset

.stabs "Name [ : ] [ only; ] [ NameList ]

 use aaa



Chapter 4 Debugger Stabs 53

produces:

produces:

N_ROSYM — Read-Only Static Symbol
(0x2c)

An N_ROSYM stab describes a read-only initialized static variable.

SymDesc is a symbol descriptor and may be one of the following:

If Flag is 0, Offset is the number of bytes into the object file’s read-only data area.
This is identified by a linker symbol table entry for the local symbol
Drodata.rodata that has the address of the first byte of the data area used by the
object file. This symbol can be defined by the following assembly statements:

.stabs "aaa",N_READ_MOD,0x0,0x0,0x0

use bbb,only: l_bbb, m_bbb, my_n=>n_bbb

 .stabs "bbb:only;l_bbb,m_bbb,my_n n_bbb",N_READ_MOD,0x0,0x0,0x0

.stabs "Name : SymDesc Type", N_ROSYM, Flag, 0, Offset

G Global weak (not used)

S File variable

V Local static variable

b FORTRAN based variables

.section ".rodata"
Drodata.rodata:



54 Stabs Interface • June 2004

If Flag is 1, Offset is the number of bytes into the object file’s position independent
area, identified by the linker symbol Dpicdata.picdata, which can be defined by
the following assembly statements:

This creates a symbol table entry with the type STT_NOTYPE.

If the Name is globalized, it will be found in the ELF symbol table and Offset will be
zero.

In an a.out file, Offset contains the address of the variable.

If the N_ROSYM stab appears outside of a function, only file variables (SymDesc is S)
are permitted. The address of the symbol is found from the linker stab with the same
name. Offset is ignored.

N_RSYM — Register Symbol (0x40)

An N_RSYM stab describes a register variable or parameter, giving its name, size in
bytes, type, and register number. A formal parameter also has an N_PSYM stab or an
N_RSYM stab with symbol descriptor p (parameter).

SymDesc is a symbol descriptor and may be one of the following:

The register numbers for the SPARC platform are assigned as follows:

.section “.picdata”
Dpicdata.picdata

.stabs "Name : SymDesc Type", N_RSYM, 0, Size, Number

p Register parameter

r Register variable

Integer global registers (g0-g7) 0 - 7

Integer out registers (o0-07) 8 - 15



Chapter 4 Debugger Stabs 55

The following C function

generates the following stabs:

The first stab is an N_FUN (function) stab that starts function foo. It is followed by
two N_RSYM stabs for the parameter j, the first of which describes it as a parameter,
and the second describes it as a register variable. The last stab describes x as a
register variable.

N_SLINE — Source Line (0x44)

The N_SLINE stab indicates the location of the leading instruction of a contiguous
block of instructions generated for a source line. Line specifies the number of the line
in the source file described by the closest preceding N_SO or N_SOL stab, numbering
from line one. In an ELF file, Offset is the number of bytes from the start of the
enclosing function described by the preceding N_FUN. In an a.out file, Offset is the
instruction address.

DestructorInfo is encoded into the other field of the stab, as a signed four-bit value,
the low-order four bits in that field. It indicates a change in the destructor state
number. This change should be added to the current state number to get the
destructor state at this location. See the N_CONSTRUCT section for context. [The other

Integer local registers (l0-l7) 16 - 23

Integer in registers (i0-i7) 24 - 31

Floating point registers (f0-f31) 32 - 63

foo(register int j)
{

register int x = j;
}

.stabs "foo:F(0,3);(0,3)",N_FUN,0,0,_foo

.stabs "j:p(0,3)",N_RSYM,0,4,24

.stabs "j:r(0,3)",N_RSYM,0,4,24

.stabs "x:r(0,3)",N_RSYM,0,4,29

.stabn N_SLINE, DestructorInfo, Line, Offset



56 Stabs Interface • June 2004

(upper) four bits of the other field are reserved for future use.] A value of 0x88 in the
entire field indicates an overflow in the DestructorInfo field; in that case, the correct
value is given as a decimal number in the string for this N_SLINE stab, along with
something else:

N_SLINE stabs may only appear within functions and must be in ascending order by
Offset. There may be more than one N_SLINE stab generated for a given source line,
and they may be in any order by line. If a source line does not have any executable
code associated with it, there may not be an N_SLINE stab generated for the line.

The number 0 is not allowed in the Line field. If the compiler cannot attribute an
instruction to any particular source line within a function, then the first source line
of the function definition should be used.

An N_SLINE stab offset must be generated for an N_RBRAC offset that represents the
end of a loop or end of a function. This supports stopping before exiting the scope.

Offset is the number of bytes from the start of the enclosing function described by the
preceding N_FUN stab or N_OUTL stab. N_SLINE stabs following an N_ENTRY are
associated with that entry, but the Offset is still from the N_FUN stab.

For example:

.stabs “0:DestructorInfo”,N_SLINE,0x88, Line, Offset

function fuzzy()
integer fuzzy, eeee
fuzzy = 0
return
entry eeee()
eeee = 1
return
end



Chapter 4 Debugger Stabs 57

produces the following stabs:

...

.stabs "/home/dmf/dbx_stuff/",N_SO,0x0,0x0,0x0

.stabs "sline.f",N_SO,0x0,0x7,0x0

.stabs "fuzzy:F(0,4)",N_FUN,0x0,0x0,0x0

.stabn N_SLINE,0x0,0x3,0x10

.stabn N_SLINE,0x0,0x4,0x14

.stabs "eeee:e(0,4);fuzzy_;;",N_ENTRY,0x0,0x2,0x0

.stabn N_SLINE,0x0,0x5,0x2c

.stabn N_SLINE,0x0,0x6,0x40

.stabn N_SLINE,0x0,0x7,0x48

.stabn N_SLINE,0x0,0x8,0x50

.stabn N_LBRAC,0x0,0x1,0x0

.stabs "__entry:(0,22)",N_LSYM,0x0,0x4,0xfffffffc

.stabs "fuzzy:(0,4)",N_LSYM,0x0,0x4,0xfffffff8

.stabs "eeee:(0,4)",N_LSYM,0x0,0x4,0xfffffff8

.stabn N_RBRAC,0x0,0x1,0x58

...



58 Stabs Interface • June 2004

N_SO — Source Directory and File
(0x64)

Two N_SO stabs identify the current working directory where the code was
compiled, and the path to the source file that produced this object code. They must
be the first two debugging stabs generated for an object file that contains debugging
stabs. The stabs for the object file are terminated by an N_ENDM stab.

For example, if the current working directory is /usr/example/test and we
compile the source file ../src/ex.cc, then the following stabs will be generated
before the start of the other stabs for the file:

There may only be a single pair of N_SO stabs generated for each object file; they
must precede all of the stabs for that object file except the N_UNDF stab, which is
always first.

.stabs "SourceDir", N_SO, 0, 0, 0

.stabs "SourceFile", N_SO, 0, LangCode, 0

SourceDir is the name of the directory, terminated by a slash.

SourceFile is the name of the source file in the form it was given to the
compiler.

LangCode describes the language of the source file. If it is zero, the debugger
is expected to identify the source language by other means, for
example, by the suffix of the source file name.

The language codes are as follows:

N_SO_AS
N_SO_C
N_SO_ANSI_C
N_SO_CC
N_SO_FORTRAN
N_SO_PASCAL
N_SO_FORTRAN90
N_SO_JAVA
N_SO_C99

1
2
3
4
5
6
7
8
9

assembler source
K & R C source
ANSI C source
C++ source
Fortran source
Pascal source (not used)
Fortran 95 source
Java source
C99 source

.stabs "/usr/example/test/",N_SO,0,0,0

.stabs"../src/ex.cc",N_SO,0,4,0



Chapter 4 Debugger Stabs 59

When using a translator with another compiler (such as cfront generating C code
for the C compiler), the translator and compiler need to insure that only one pair of
N_SO stabs is generated. In general, this means that the translator should generate
the N_SO stabs, and the compiler should not generate any N_SO stabs.

N_SOL — Included File (0x84)

The N_SOL stab specifies the actual source file that generated executable code, type
definitions, and variable definitions described by subsequent N_SLINE stabs. The
FilePath is relative to the SourceDir specified in the preceding N_SO stabs.

N_SOL index stabs appear only in the case of executable code, and do not have
subsequent stabs which depend upon them. These index stabs aid the debugger in
its algorithms for locating code in which to set breakpoints, etc.

Line is the source line number of the #include directive that caused this file to be
included. The line is assumed to be in the file specified by the preceding N_SOL or
N_SO stab. It is not used in an N_SOL index stab.

The N_SOL stab must be generated for code generated within an include file. It may
also be used to indicate that the original source is different from the source file
passed to the compiler, for example, to specify the name of a file processed by yacc.
It is usually generated immediately before any stab that contains a source line not
from the file named in the preceding N_SOL or N_SO stab. This includes, but is not
limited to, N_SLINE, N_FUN, N_ENTRY, and N_SOL stabs.

If the include file h.h contains the line:

and the C source file contains:

.stab "FilePath", N_SOL, 0, Line, 0

i = 5;

main()
{

int i;

#include "h.h"
}



60 Stabs Interface • June 2004

the following stabs are generated:

The first stab is an N_BINCL (start include file) that starts the include file. This is
followed by an N_SOL stab that indicates that the following executable code
appeared in h.h. The third stab is an N_SLINE (source line) for the assignment in
the include file. The fourth stab is an N_EINCL (end include file) stab. The last stab
indicates that subsequent source is from c.c, the original source file.

N_STSYM — Initialized Static Symbol
(0x26)

An N_STSYM stab describes an initialized static variable.

SymDesc is a symbol descriptor. It may be one of the following:

OpenMP is equal to N_SYM_OMP_TLS (see stab.h) when an OpenMP variable has
been declared THREAD_PRIVATE. It is zero otherwise.

Size is the size of the symbol in bytes.

.stabs "./h.h",N_BINCL,0,0,0

.stabs "./h.h",N_SOL,0,5,0

.stabn N_SLINE,0,1,4

.stabn N_EINCL,0,0,0

.stabs "c.c",N_SOL,0,0,0

.stabs "Name : SymDesc Type", N_STSYM, OpenMP, Size, Offset

G Global weak (C++)

S File variable

V Local static variable

b FORTRAN-based variables



Chapter 4 Debugger Stabs 61

In an ELF file, Offset is the number of bytes into the object file’s data area. This is
identified by a by a linker symbol table entry for the local symbol Ddata.data,
which has the address of the first byte of the data area used by the object file. This
symbol can be defined by the following assembly statements:

This creates a symbol table entry with the type STT_NOTYPE.

If the N_STSYM stab appears outside of a function, only file variables (SymDesc is S)
are permitted. The address of the symbol is found from the linker stab with the same
name. Offset is ignored.

In an ELF file, if the N_STSYM stab appears within a function, Offset contains the
offset in bytes into the data area for the object file. The start address of the data area
allocated by the object file is defined in the STT_NOTYPE entry for Ddata.data,
which appears in the symbol table following the STT_FILE for this object file.

If the Name is globalized, as can happen when the object file has been built for the fix
and continue feature of dbx, the Name will be found in the ELF symbol table and the
Offset will be zero.

The only exception is for Fortran 95 pointer-based variables, where Name is the
simple user name of the variable and Offset is the number of bytes from the start of
the .data section.

C source file:

generates the following stabs:

The first N_STSYM (initialized static) stab indicates that y is a static global variable. It
appears before the N_FUN (function) stab for foo. The last stab is the N_STSYM for
the local static variable x.

.section ".data"
Ddata.data:

static int y = 1;
foo()
{
static int x = 6;

}

.stabs "y:S(0,3)",N_STSYM,0,4,y

.stabs "foo:F(0,3)",N_FUN,0,0,foo

.stabs "x:V(0,3)",N_STSYM,0,4,.L16-Ddata.data



62 Stabs Interface • June 2004

N_TCOMM — Begin Task Common Block
(0xe3)

Note – This is currently an unsupported stab. It is only partially documented here.
The primary reason for its inclusion is to reserve it for future use.

A N_TCOMM stab introduces a task common block and precedes the listing of symbols
contained in the task common block. The task common block is named BlockName.
Subsequent stabs up to an N_ECOMM stab specify the variables in the task common
block.

A N_ECOMM stab terminates the listing of symbols within the named task common
block.

Only N_GSYM stabs with V symbol type may appear between the N_TCOMM and
N_ECOMM.

N_TCOMM and N_ECOMM may not be nested.

The following common declaration:

would generate the following stabs:

The first stab is the N_TCOMM, which starts the task common block. The next three
stabs are N_GSYM (global symbol) stabs, which describe the three variables defined
in the task common block. The last stab is the N_ECOMM, which ends the task
common block.

.stabs "BlockName", N_TCOMM, ...unspecified

task common /blk/ a, b, c

.stabs  "blk_",N_TCOMM, ...

.stabs  "a:V6",N_GSYM,0,0,0

.stabs  "b:V6",N_GSYM,0,0,4

.stabs  "c:V6",N_GSYM,0,0,8

.stabs  "blk_",N_ECOMM,0,0,0



Chapter 4 Debugger Stabs 63

N_TFLSYM — Thread Local Storage
(TLS) Fragmented Data Symbol (0x2f)

The N_TFLSYM stabs defines a global symbol with the name Name. The symbol
represents a TLS static local variable that has become global to the linker because it
has been placed in a separate ELF section by the compiler. The ELF symbol contains
an offset used to compute the address of the symbol at runtime.

SymDesc is a symbol descriptor and may be one of the following:

If the N_TFLSYM stab appears outside of a function, only SymDesc S is permitted.

Size is the size of the variable in bytes.

The following C function, compiled with -xF=lcldata:

generates the following stab for x:

where $XBY9kkBSHBZ_CZV.foo.x is the globalized name for x.

.stabs " Name : SymDesc Type ", N_TFLSYM, 0, Size, 0

G Global weak (C++)

S File

V Local

foo ()
{
__thread static int x;
}

 .stabs "$XBY9kkBSHBZ_CZV.foo.x:V(0,3)",N_TFLSYM,0x0,0x4,0x0



64 Stabs Interface • June 2004

N_TLCSYM — Thread Local Storage
(TLS) Uninitialized Static Symbol (0x29)

An N_TLCSYM stab describes an uninitialized TLS static variable.

SymDesc is a symbol descriptor and may be one of the following:

If the N_TLCSYM stab appears outside of a function, only SymDesc S is permitted.

Size is the size of the variable in bytes.

In an ELF file, Offset is the number of bytes into the object file’s uninitialized TLS
data (tbss) area. This is identified by a linker symbol table entry for the local TLS
symbol Ttbss.bss that has the address of the first byte of the tbss area used by
the object file. This symbol can be defined by the following assembly statements:

This creates a symbol table entry for Ttbss.bss with the type STT_TLS .

If the Name is globalized, as can happen when the object file has been built for the fix
and continue feature of dbx, the Name can be found in the ELF symbol table and the
Offset is zero.

The following C function:

.stabs " Name : SymDesc Type ", N_TLCSYM, 0, Size, Offset

G Global weak (C++)

S File

V Local

.section ".tbss"
Ttbss.bss:

foo ()
{
__thread static int x;
}



Chapter 4 Debugger Stabs 65

generates the following stab for x:

where $XBY9kkBGKBZ_yZV.foo.x is the globalized name for x.

N_TSTSYM — Thread Local Storage
(TLS) Initialized Static Symbol (0x27)

An N_TSTSYM stab describes an initialized TLS static variable.

SymDesc is a symbol descriptor. It may be one of the following:

If the N_TSTSYM stab appears outside of a function, only file variables (SymDesc is S)
are permitted. The address of the symbol is found from the linker stab with the same
name. Offset is ignored.

Size is the size of the variable in bytes.

In an ELF file, Offset is the number of bytes into the object file’s data area. This is
identified by a linker symbol table entry for the local symbol Ddata.data, which
has the address of the first byte of the data area used by the object file. This symbol
can be defined by the following assembly statements:

This creates a symbol table entry with the type STT_TLS .

.stabs "$XBY9kkBGKBZ_yZV.foo.x:V(0,3)",N_TLCSYM,0x0,0x4,.
L15-Ttbss.bss

 .stabs " Name : SymDesc Type ", N_TSTSYM, 0, Size, Offset

G Global weak (C++)

S File variable

V Local static variable

b Fortran-based variables

.section ".tdata"
Ttdata.data:



66 Stabs Interface • June 2004

In an ELF file, if the N_TSTSYM stab appears within a function, Offset

contains the offset in bytes into the data area for the object file. The start address of
the data area allocated by the object file is defined in the STT_TLS entry for
Ttdata.data, which appears in the symbol table following the STT_FILE for this
object file.

If the Name is globalized, as can happen when the object file has been built for the fix
and continue feature of dbx, the Name is found in the ELF symbol table and the
Offset is zero.

The C source file:

generates the following stab:

where $XBY9kkBXNBZ_ycV.foo.x is the globalized name for x.

N_UNDF — Undefined (0x00)
N_UNDF is a linker stab that indicates that the symbol has undefined type. It is used
to contain the name of the object file and occasional other purposes.

Filename is a source file name, when one exists. Filename can be an object file name
when the object file is compiler generated, such as in the C++ template repository.
Filename should match the name supplied to the Elf LOCL FILE symbol or the
assembly .file directive.

This stab is used in the Solaris Operating Environment to indicate that
BytesOfStringTable size will be needed in the string for the following NumStabs stabs.

 foo()
{
__thread static int x = 6;
}

.stabs "$XBY9kkBXNBZ_ycV.foo.x:V(0,3)",N_TSTSYM,0x0,0x4,.L16-
Ttdata.data

.stabs “Filename”, N_UNDF, 0, NumStabs, BytesOfStringTable



Chapter 4 Debugger Stabs 67

N_USING — C++ USING statement
(0xc4)
The C++ USING statement has two different forms (called USING declarations and
USING directives), depending on whether the argument is a single name or a
namespace.

USING statements may be either position dependent or position independent. The
C++ compiler will issue local (function local, or block local) USING stabs in a
position dependent manner. In these cases, dbx needs to know the scope of the
USING statement. Position independent USING stabs are used for those USING
statements occurring inside other namespaces, class or global scope. Stab types are
used to distinguish these two forms. For position independent USING statements,
scope information is encoded in the stab itself.

USING Declaration
The USING declaration selects a particular name from a namespace and makes it
known in the current scope. For example:

where N is a previously defined namespace that contains a member named sname.

Local USING Declaration, Position Dependent
These USING declarations are found in function or local block scopes:

They must be produced at the site of declaration to allow dbx to know the proper
scope.

In this form of N_USING, the simple name being made known is spelled out
(mangled). If the name refers to an overloaded function, one stab is issued per name.

 using N::sname;

.stabs “P:<mangled_{N::sname}>”,N_USING,0,0,0



68 Stabs Interface • June 2004

Global, Namespace, or Class Scope USING
Declaration, Position Independent:

In this form of N_USING, the simple name being made known is spelled out
(mangled). If the name refers to an overloaded function, one stab is issued per name.

EnclTypeId is the typeid of the enclosing scope (for USING nested in a namespace or
class), if any. The field is left blank if the USING occurs in global scope (for which
there is no EnclTypeId).

These stabs are produced by the compiler wherever it finds a need. Position is not an
issue, and should not be taken as an indication of scope.

USING Directive

The USING directive opens a previously declared namespace.

Again, stabs here are either position independent (global, namespace, or class
scope), or position dependent (function, or local block scope).

Local USING Directive, Position Dependent
These USING directives are found in functions. The stabs for this form of USING look
like this:

.stabs “N:<mangled_{N::sname}>:<EnclTypeId>”,N_USING,0,0,0

 using namespace NAMESPACE;

.stabs “Q:<NamespaceTypeId>”, N_USING , 0, 0, 0



Chapter 4 Debugger Stabs 69

Global, Namespace, or Class Scope USING
Directives, Position Independent
If a USING directive or declaration occurs inside a namespace, class, the N_USING
stab will also contains the typeid of that namespace, or class. If it occurs in global
scope, the field will be left blank.

Summary of USING statement stabs

Prefixes

Other Fields

Position independent stabs for namespace or class scope all have an additional field
for the typeid of the enclosing scope.

N_XLINE — Extended Line Number
(0x45)
For line numbers greater than 65535, the N_XLINE stab is used to set a state variable
in dbx that left-shifted 16 bits and bitwise ORed with all subseqeuent N_SLINE line
numbers:

.stabs “O:<NamespaceTypeId>:<EnclTypeId>”,N_USING,0,0,0

func local
position-dependent

class/namespace/global
position-independent

directives Q O

declarations P N

.stabn N_XLINE, 0, Hi16bitsLineMask, 0



70 Stabs Interface • June 2004



71

CHAPTER 5

Symbol Descriptors

In the stab string that describes a symbol, the name of a variable or type is followed
by a colon, a symbol descriptor, and a type specification. Some redundancy and
interaction exist between the stab types and the symbol descriptors, so not all
symbol descriptors can be used with each stab type.

The symbol descriptors describe what the symbol represents and may be one of the
following.

empty Local variable, no symbol descriptor has defaul

A Automatic variable (Fortran 95)

b Based variable

c Constant symbol (Fortran 95)

E External data

F Global function or procedure

f Local function or procedure

G Global variable

I Interface block

J Internal procedure (Fortran 95)

LT Lines in Template

l Literal

M Module (Fortran 95)

P Prototype

p Value parameter

r Register variable

S Static file variable



72 Stabs Interface • June 2004

These symbol descriptors are described in alphabetical order, specifying which stab
types may contain them.

Local Variable (empty)
The absence of a symbol descriptor is used to describe a variable that is local to a
function or procedure. It can appear only in an N_LSYM (local symbol) stab. The
desc field of the stab specifies the length of the variable and the value field specifies
its offset from the frame pointer.

For example, the local declaration within a C function:

generates the following stab:

The type number for the symbol a is (0,3), which was assigned to the type int in
a preceding stab. The variable is four bytes long and is located four bytes before the
function’s frame pointer.

T Enumeration, structure or union

t Type name

U Class declaration

V Common or static local variable

v Fortran variable parameter by reference

X Function result variable

x Value parameter by reference (aka, Array value parameter)

Y C++ specification (C++ 4.0 and later)

int a;

.stabs "a:(0,3)",N_LSYM,0,4,-4



Chapter 5 Symbol Descriptors 73

Automatic Variable (A)
The A symbol descriptor is used to describe a Fortran automatic variable. It appears
in N_LSYM (function local) stabs. The value field of the stab contains the address of
the variable (in an a.out file) or the offset within the statics generated for this
compilation (in an ELF file). For further description of the value field, see “N_LSYM
— Local Symbol (0x80)” on page 31.

The following Fortran program:

generates (in part) the following stab:

The stab describes that a is an automatic variable whose address is stored at the
address specified in the value field.

Based Variable (b)
The b symbol descriptor is used to describe a Fortran based variable. It can appear
in N_STSYM (initialized static), N_LCSYM (uninitialized static), N_PSYM (parameter),
N_ROSYM (read-only initialized static), or N_LSYM (Fortran function local) stabs. The
value field of the stab contains the address of the variable (in an a.out file) or the
offset within the statics generated for this compilation (in an ELF file). For further
description of the value field, see the relevant stab description in Chapter 1.

subroutine s(n)
real a(n)
print *,a

end

.stabs "a:A(0,18)=ar(0,3);1;T-8;(0,5)”,N_LSYM,0x0,0x4,0xfffffff4



74 Stabs Interface • June 2004

The following Fortran program

generates (in part) the following stabs:

The first stab describes that i is a based variable whose address is stored at the
address specified in the value field. The second stab describes a simple variable j.
The third describes the pointer variable p, which has the same address as is specified
for i.

Constant (c)
The c symbol descriptor is used to describe a constant symbol (for example, a
Fortran parameter). It may appear only in an N_LSYM stab. The Desc and the Value
fields of the stab are unused.

For example:

could generate either of the following stabs:

This describes intwo as a constant of type int (type number 3), with the value of
the constant being hexidecimal 1f (ie, 31). The value of the constant is separated
from the type number by a ‘;’ in the string. The value is a hexidecimal
representation of the binary value.

pointer (p,i)
p = loc(j)
j = 100
print *,i,j
end

.stabs  "i:b3",N_LCSYM,0,0,VAR_SEG1+4

.stabs  "j:V3",N_LCSYM,0,0,VAR_SEG1+0

.stabs  "p:V3",N_LCSYM,0,0,VAR_SEG1+4

parameter (intwo=31)

.stabs "intwo:c3;1f",N_LSYM,0,0,0

.stabs "intwo:c40=3;1f;",N_LSYM,0,0,0



Chapter 5 Symbol Descriptors 75

External Data (E)
The E symbol descriptor is used to describe global variables referenced but not
defined by an ELF file. It can appear only in an N_GSYM stab. There is no
corresponding index stab for this type of N_GSYM stab. The purpose is to provide
dbx with type information for symbols that may be defined in system libraries or
other object files that were stripped or were not compiled with the -g option.

The following stab is generated for var:

Global Function or Procedure (F)
The F symbol descriptor is used to describe a global function or subroutine. In an
ELF file, the address of the function is found in the symbol table.

The function:

generates the following stab for the function main:

This describes main as a global function that returns an int (type (0,3)).

extern int var;
int example()
{

return var;
}

.stabs "var:E(0,3)",N_GSYM,0x0,0x0,0x0

main ()
{

int a;
}

.stabs "main:F(0,3)",N_FUN,0,0,_main



76 Stabs Interface • June 2004

Local Function or Procedure (f)
The f symbol descriptor is used to describe a local function or subroutine. It can
appear only in an N_FUN stab. In an ELF file, the address of the function is found in
the symbol table.

The function:

generates the following stab for the function foo:

This describes foo as a local function that returns an int (type (0,3)).

Global Variable (G)
The G symbol descriptor is used to describe a global variable. This descriptor can
appear only in an N_GSYM stab. The address of the variable is found in the symbol
table. The Desc field of the stab contains the length of the variable.

The global declaration

generates the following stab:

This describes a variable x, which is a global int (type (0,3)).

static int foo ()
{
int a;
}

.stabs "foo:f(0,3)",N_FUN,0,0,_foo

int x;

.stabs "x:G(0,3)",N_GSYM,0,4,0



Chapter 5 Symbol Descriptors 77

Interface Block (I)
The I symbol descriptor is used to describe a Fortran 95 interface block. It was
formerly implemented as Generic Name (W). It can be used with the N_LSYM stab.

The Value and Desc fields of the stab are unused. For example, when a generic name
cube_root is used for the specific names d_cube_root and s_cube_root, the
following stab is generated:

This describes cube_root as being a generic name for either d_cube_root_ or
s_cube_root_. The string “;;;” must be provided at the end (it’s reserved for future
use). To determine which specific is intended, a comparison to the type/prototype
information for each must be made.

Internal Procedure (J)
The J symbol descriptor is used to describe a Fortran 95 internal procedure. It can
appear only in an N_FUN stab. In an a.out file, the value field of the stab is the
entry point address of the internal procedure. In an ELF file, the address of the
internal procedure is found in the symbol table.

For example:

.stabs "cube_root:I14;d_cube_root_ s_cube_root_ ;;;",
N_LSYM,0x0,0x0,0x0

subroutine s
integer x,y
call t
contains
subroutine t
integer x
end subroutine t
end



78 Stabs Interface • June 2004

generates the following stab for subroutine t:

This describes t as a procedure that returns void which is internal to (tht is, nested
in) the procedure s.

An additional W stab (nested subprogram name) should be generated in conjuction with
this stab.

Lines in Template (LT)

Note – This stab is not used in Forte Developer 7, but is documented to support
versions of Sun WorkShop in which it was used

In addition to the type information (see “Templates (YT, YI)” on page 99), each
template definition causes an LT stab to be output. The LT descriptor may appear in
a N_LSYM stab. This descriptor allows dbx to tell if you try to stop at a line in a
function template, even if it’s never been instantiated in this program. There are two
kinds of LT stabs—LTf for function templates and LTm for member function
templates.

The line-stabs for function templates look like:

LTf is replaced by LTm for member function templates.The empty field between the
starting and ending line numbers is reserved for future use.

The template name is mangled.

Literal (l)
The l symbol descriptor is used to describe literals, such as true and false of bool
type. Although it can be used in N_LSYM and N_GSYM stabs, so far only the use in
N_LSYM stabs is identified and supported.

.stabs "s.t:J14",N_FUN,0,0,0

 Template_name:LTfStarting_line;;Ending_line”, N_LSYM



Chapter 5 Symbol Descriptors 79

For example, in:

(0,3) is the type number of bool.

Module (M)
The M symbol descriptor is used to describe a Fortran 95 module. It can appear only
in an N_FUN stab. The Value field of the stab has no meaning with this descriptor.
The return type of the module should always be equivalent to void.

In Sun WorkShop 6, the use of N_MOD replaces this symbol descriptor.

The module:

generates the following stab for module m1:

This describes m1 as a module (with return type of void).

Each the time a module is used, all relevant stabs for that module should be emitted.

Value Parameter (p)
The p descriptor specifies that the symbol is a parameter that is passed to a
subroutine or function by value. It can appear in an N_PSYM (parameter) or N_RSYM
(register symbol) stab. The Desc field contains the length of the variable and the
value field contains its offset from the frame pointer.

 .stabs “true:l(0,3);1”,N_LSYM,0,0,0

module m1
real p,q
end module m1

.stabs "m1:M14",N_FUN,0,0,0



80 Stabs Interface • June 2004

The C function:

generates (in part) the following stabs:

The first stab is an N_FUN (function) stab that defines func to return type int
(0,3), and has one parameter of type int. The second stab defines parameter i to
be an int passed by value..

Prototype (P)
The P symbol descriptor specifies that the name is a function or procedure that
appears elsewhere in the program. It can appear only in an N_FUN (function) stab.

There may or may not be an N_FUN stab where the function is actually defined.

The following C program:

generates the following stab for sin:

This N_FUN (function) stab indicates that sin is a function that takes a double (type
(0,17)) as an argument and returns a double as a result.

int func(int i) { return i; }

 9:  .stabs "int:t(0,3)=bs4;0;32",N_LSYM,0x0,0x0,0x0
27:  .stabs "func:F(0,3);(0,3)",N_FUN,0x0,0x0,0x0
28:  .stabs "i:p(0,3)",N_PSYM,0x0,0x4,0x44

#include <math.h>

int main ()
{

float f;

f = sin(.345);
}

.stabs "sin:P(0,17);(0,17)",N_FUN,0,0,0



Chapter 5 Symbol Descriptors 81

Register Variable (r)
The r symbol descriptor specifies that the name is a register variable. It can appear
in an N_RSYM stab. The symbol may either be a local variable or a parameter. If a
parameter, the N_RSYM stab is immediately preceded by a stab that contains a p
symbol type. The Value field of the stab specifies which register contains the variable.

The following function:

generates (in part) the following stabs:

The first N_FUN stab describes the function foo, which takes a float as an argument
and returns an integer (types (0,16) and (0,3) respectively). The second and third
N_RSYM stabs specify that x is a parameter and that it is assigned to register 63. The
last stab N_RSYM indicates that y is an integer register variable that is assigned to
register 29.

Static File Variable (S)
The S symbol descriptor specifies that the name is a static file variable. It can appear
only in an N_LCSYM (uninitialized static), N_STSYM (initialized static), or N_ROSYM
(read-only initialized static) stabs. The Desc field has the length of the variable. In an
a.out file, the Value field has the address of the variable. In an ELF file, the Value
field contains the offset from a file local symbol (see the description for N_LCSYM,
N_STSYM, and N_ROSYM stabs).

int foo (register float x)
{
register int y;
y = x;
return y;
}

.stabs "foo:F(0,3);(0,16)",N_FUN,0,0,_foo

.stabs "x:p(0,16)",N_RSYM,0,4,63

.stabs "x:r(0,16)",N_RSYM,0,4,63

.stabs "y:r(0,3)",N_RSYM,0,4,29



82 Stabs Interface • June 2004

The following program:

generates (in part) the following stabs when generating an a.out file:

The first two stabs describe y and z as initialized static variables (since they are
described in N_STSYM stabs) with type integer (type (0,3)). The third N_LCSYM
stab describes x as an uninitialized static variable. The Value field in each of these
stabs contains the address of the variable.

In an ELF file, the stabs generated are as follows:

The second stab is an N_ROSYM stab, indicating that the variable is a read-only
symbol. The Value fields in each contain the offset from a file local symbol that has
the starting address of data allocated for this file in the appropriate section.

Enumeration, Structure or Union (T)
The T symbol descriptor specifies that the symbol is either an enumeration,
structure, or union tag name. It can appear only in an N_LSYM (file or function local)
stab. If there is no tag name (an anonymous enumeration, structure or union) then
the name is omitted.

static int x;
static int y = 5;
static const int z = 10;

int main ()
{
}

.stabs "y:S(0,3)",N_STSYM,0,4,_y

.stabs "z:S(0,3)",N_STSYM,0,4,_z

.stabs "x:S(0,3)",N_LCSYM,0,4,_x

.stabs "y:S(0,3)",N_STSYM,0,4,Ddata.data-_y

.stabs "z:S(0,3)",N_ROSYM,0,4,Drodata.rodata-_z

.stabs "x:S(0,3)",N_LCSYM,0,4,Bbss.bss-_x



Chapter 5 Symbol Descriptors 83

The following code:

generates (in part) the following stabs:

Each of these stabs is an N_LSYM stab, which indicates that the symbol is either file
local (if the stab appears outside of a function) or function local (if it appears within
a function). The first three stabs give tag names for the symbol and are followed by
type descriptions. The last three stab have the names omitted (the types are
anonymous) and have different type numbers, although their descriptions have
similar structure.

Type Name (t)
The t symbol descriptor specifies that the symbol is a new type name. It can be used
in either N_LSYM or N_GSYM stabs.

enum color {red, blue, green} farbe;
struct S { int a, b; } SS;
union U { int a, b; } UU;

enum {small, avg, big} X;
struct { int j, k; } XS;
union { int j, k; } XU;

.stabs "color:T(0,20)=ered:0,blue:1,green:2,;",N_LSYM,0,4,1

.stabs "S:T(0,21)=s8a:(0,3),0,32;b:(0,3),32,32;",N_LSYM,0,8,1

.stabs "U:T(0,22)=u4a:(0,3),0,32;b:(0,3),0,32;",N_LSYM,0,4,1

.stabs ":T(0,23)=esmall:0,avg:1,big:2,;",N_LSYM,0,4,1

.stabs ":T(0,24)=s8j:(0,3),0,32;k:(0,3),32,32;",N_LSYM,0,8,1

.stabs ":T(0,25)=u4j:(0,3),0,32;k:(0,3),0,32;",N_LSYM,0,4,1



84 Stabs Interface • June 2004

Most compilers will generate a “canned” list of standard types. For example, the Sun
WorkShop C compiler generates the following:

This symbol descriptor is also used to describe type equivalences, such as the C
typedef. The C statements:

Generates the following N_LSYM (local symbol) stab, which describes colour as a
new type that is equivalent to the previous enum color type:

Class Declaration (U)
Currently types defined in a class are not entered into the right scope. In order to
achieve this a stab declaring the class needs to be put out before the type stabs. This
declaration stab can be applied to struct, class or union. The declaration stab is
similiar to the definition stab but its stab string only contains the class name & type

.stabs "char:t(0,1)=bsc1;0;8;",N_LSYM,0,0,0

.stabs "short:t(0,2)=bs2;0;16;",N_LSYM,0,0,0

.stabs "int:t(0,3)=bs4;0;32;",N_LSYM,0,0,0

.stabs "long:t(0,4)=bs4;0;32",N_LSYM,0,0,0

.stabs "long long:t(0,5)=bs8;0;64;",N_LSYM,0,0,0

.stabs "signed char:t(0,6)=bsc1;0;8;",N_LSYM,0,0,0

.stabs "signed short:t(0,7)=bs2;0;16;",N_LSYM,0,0,0

.stabs "signed int:t(0,8)=bs4;0;32;",N_LSYM,0,0,0

.stabs "signed long:t(0,9)=bs4;0;32;",N_LSYM,0,0,0

.stabs "signed long long:t(0,10)=bs8;0;64;",N_LSYM,0,0,0

.stabs "unsigned char:t(0,11)=buc1;0;8;",N_LSYM,0,0,0

.stabs "unsigned short:t(0,12)=bu2;0;16;",N_LSYM,0,0,0

.stabs "unsigned int:t(0,13)=bu4;0;32;",N_LSYM,0,0,0

.stabs "unsigned long:t(0,14)=bu4;0;32;",N_LSYM,0,0,0

.stabs "unsigned long long:t(0,15)=bu8;0;64;",N_LSYM,0,0,0

.stabs "float:t(0,16)=R1;4;",N_LSYM,0,0,0

.stabs "double:t(0,17)=R2;8;",N_LSYM,0,0,0

.stabs "long double:t(0,18)=R6;16;",N_LSYM,0,0,0

.stabs "void:t(0,19)=bs0;0;0",N_LSYM,0,0,0

enum color { red, green, blue };
typedef enum color colour;

.stabs "colour:t(0,26)=(0,20)",N_LSYM,0,4,16



Chapter 5 Symbol Descriptors 85

id. Also when appropriate this declaration stab can be generated instead of
generating forward reference stab. These declaration stabs will not be generated for
all struct/class/union, they are generated only when necessary, such as when types
are defined in a class.

Declaration Syntax

The U symbol descriptor is used for declaration and the T symbol descriptor is used
for definition.

“ Name : U (filenum, typenum)”



86 Stabs Interface • June 2004

Example

Stabs

Common or Static Local Variable (V)
The V symbol descriptor describes a static local variable. It can appear in N_STSYM
(initialized static), N_LCSYM (uninitialized static), N_ALIAS (symbol alias), or
N_ROSYM (read-only initialized static) stabs. The Desc field contains the length of the
symbol. The Value field contains either the address of the variable (in an a.out file)
or the offset from the start of the statics for this compilation (in an ELF file). When
used to represent Fortran common blocks, this descriptor may be used in a N_GSYM
(global symbol) stab enclosed by N_BCOMM and N_ECOMM stabs. In this usage, the
Desc field is usually zero, and the Value field is the offset within the common block.
See the respective stab descriptions for further details.

class x {
  typedef int myint;

public:
  myint a;
};

main()
{
x xv;

}

.stabs "__1nBx_:U(0,19)",N_ESYM,0x0,0x0,0x0

.stabs "nFmyint(0,19):t(0,20)=(0,3)",N_ISYM,0x0,0x0,0x0

.stabs
"__1nBx_:T(0,19)=Yc4x;;CcBa:(0,20),0,32;;;;;;;;;000;",N_ESYM,0x0
,0



Chapter 5 Symbol Descriptors 87

In 64-bit programs, it is possible for the offset within the common block to be larger
than the Value field can represent. When this happens, two N_GSYM stabs, identical
except for the Value fields, are generated; the first contains the upper 32 bits of the
offset on the Value field, the second contains the lower 32 bits of the offset.

The following program:

generates (in part) the following stabs:

The first stab is an N_LCSYM (uninitialized static) stab. The second is an N_STSYM
(initialized static) stab. Since these examples were taken from an a.out file, the
value field points to the actual location of the variable.

Variable Parameter by Reference (v)
The v symbol descriptor is used to describe a function or subroutine parameter that
is passed by reference. It can be used only in an N_PSYM (parameter) stab. The Value
field is the offset of the address of the parameter from the frame pointer.

The following Fortran program

generates the following stab for the parameter j:

int main ()
{

static int x;
static int y = 5;

}

.stabs "x:V(0,3)",N_LCSYM,0,4,L15

.stabs "y:V(0,3)",N_STSYM,0,4,L16

function ifun (j)
return j * 2
end

.stabs "j:v3",N_PSYM,0,0,68



88 Stabs Interface • June 2004

This N_PSYM stab describes the parameter j, which is passed by reference. The
address of j is stored at offset 68 from the frame pointer.

Function Result Variable (X)
The X symbol descriptor describes the function result variable used by Fortran It can
appear only in an N_PSYM (parameter) stab. The Value field of the stab contains the
offset from the frame pointer where the return value is stored.

The following function:

generates the following stab for the result of ifun:

This N_PSYM stab describes ifun as a result variable that is stored at -16 from the
frame pointer.

C++ Specification (Y)
The Y symbol descriptors are the C++-specific symbol descriptors. In Sun C++ 5.0
(ANSI C++), there is a new ABI (Application Binary Interface) which has some effect
on stabs. C++ 5.0 also has a compatibility mode in which it generates code (and
stabs) similar to that of the previous release, C++ 4.0. Where stabs differ because of
ABI, descriptions in this document will mention ABI1 (C++ 4.0) or ABI2 (C++ 5.0).
Releases prior to Sun C++ 4.0, which was released with SPARCworks 3.0.x used a
different encoding for C++ stabs, with a Z symbol descriptor.

The C++ system encodes (mangles) some type information about various externally
visible names into those names. For example, it encodes global functions so that
their parameter types are a part of the name as it appears in stabs. On systems that

function ifun (j)
ifun = j * j
return
end

.stabs "ifun:X3",N_PSYM,0,0,0xfffffff0



Chapter 5 Symbol Descriptors 89

use the ELF object format, this mangled name is the same name that is seen by the
linker (the linkername). The mangled names you see in examples in this document
are ABI1. The mangling for ABI2 is different.

In most cases, the user does not need to know about mangled names. For
information on mangled names, see the c++filt(1) and dem(1) man pages. For
information on differential mangling, a technique used to conserve string space, see
“Differential Mangling” on page 165.

C++ reference types are similar to pointer types — their type numbers are indicated
in a similar way, but using & instead of * . See “Reference (&)” on page 109.

C++ also generates some “hidden” functions, intended to be called only by the
debugger, for cases where some information is trivially available at compile-time,
but is much harder (for dbx) to find at runtime.

Functions with Default Arguments
dbx needs to have some indication when any of the parameters for a function have
default values. For each function with default arguments, Forte Developer C++
creates a set of helper functions, one for each default parameter. If the default value
is a simple integer literal, C++ uses the literal value instead of creating a helper
function.

When the user tells dbx to call a function that has default arguments, and does not
provide all of the args, dbx calls each of the helper functions or substitutes the
known literal value, until it has values for all of the arguments that the user omitted.
Then dbx calls the user’s function itself.

The N_FUN stab for the function prototype (a “:P” stab) or for the function definition
(a “:F” stab) (or both) indicates that this function has default arguments by following
the type indicator with the name of the helper function or the signed decimal literal
value for that parameter. For example:

might yield a stab like this:

int fo ( int a = 9, double b = 4.7 );

82:  .stabs
"__1cCfo6Fid_i_:F(0,3);(0,3)9;(0,15)_dflt_argA”,N_FUN,0x0,0x0,0x
0



90 Stabs Interface • June 2004

Inline Functions
When Sun WorkShop C++ is generating dbx information (compiling with the -g
option), it chooses automatically to ignore the “inlineness” of all functions—it will
not expand any function calls inline. Instead, it will compile into each translation
unit a static copy of each inline function used in that translation unit. These static
copies of inline functions are given N_FUN stabs marking them as static.

To avoid this extra code generation, the user can supply the -g0 flag. When given
-g0, the compiler does its normal inline expansion of function calls. In this case, it
is possible that the compiler will not generate any stabs for the inline function.

Stabs for anonymous unions (Ya)
In general, an anonymous union behaves as if it were a collection of independent
variables (the members of the union) which happen to have the same address. We
give each member its own Ya stab. The C++ language requires that file-level
anonymous unions must be static, so their stabs mark them as N_LCSYMs:

For example:

yields three N_LCSYM stabs with the strings:

Within functions, anonymous unions still get the letters Ya and have the same form
as above. Their location within a function tells dbx that they are local to that
function. An anonymous union that is declared static yields a N_LCYSM stab; a non-
static anonymous union gets a N_LSYM stab.

“MangledName:Ya Username(f,t)”, N_LCSYM, ...

static union {
int x;
float y;

};

.stabs "___SA:Yax(0,3)",N_LCSYM,0x0,0x4,0x0

.stabs "___SA:Yay(0,14)",N_LCSYM,0x0,0x4,0x0

.stabs "___SA:Ya__BASE_TABLE__(0,19)=ar(0,3);0;-1;(0,21)",
N_LCSYM,0x0,0x0,0x0



Chapter 5 Symbol Descriptors 91

Member anonymous unions

Within classes, anonymous unions are a little more detailed: since dbx must be able
to print out (“whatis -t”) the members of a class, there must be a way to indicate
of which anonymous union each union-member is a member. A single-digit code is
used (see DataMembers in “The Components of the Class Stab” on page 91).

Stabs for classes, structs, and non-anonymous
unions

Local classes (defined inside functions) simply show up in the relevant scope, and
are N_LSYM stabs instead of N_GSYM stabs. They are otherwise identical to file-level
classes.

The stabs for nested classes come out with the most deeply-nested ones first; the
Type will be upper-case for nested classes.

The Components of the Class Stab

Each list of members and each list of base classes is a space-separated list; each
member of each such list begins with a “ppp code” letter indicating what access this
member or base has, whether it is virtual, and whether it is static. The encoding for
these is ASCII ‘@’ (0x40) plus 1,2,3 for private/protected/public, 4 for static, and 8
for virtual. (An added 16 is also used, to indicate class members which are
anonymous unions.) Thus, a virtual public member has a code of K, and a non-
virtual non-static private member would have an A.

Y Type Size ClassName;
Bases;
DataMembers;
MemberFunctions;
StaticDataMembers;
Friends;
VirtualFunctionInfo;
NestedClassList;
AccessAdjustments;
VirtualBaseClassOffsets;
PassMethod;
;



92 Stabs Interface • June 2004

Type is a one-letter field indicating what kind of structure this type describes. The
possibilities are c,s,u,a, and o meaning class, struct, union, anonymous union,
and ObjectiveC interface/class, respectively. If this class is nested inside another one,
the type letter will be in upper case (C,S,U,A, or O). Note that o and O use the same
stab structure as c and C, so any description in the following that applies to c and C
can also be read as o and O.

Size is the total size in bytes of a “normal” instance of this class—a “leaf” or “most-
derived” instance.

ClassName is mangled (in case of nested and local classes). For file-level (i.e., global)
classes, the mangled-name is the same as the user-visible name.

Bases is the list of immediate base classes. Each entry begins with a ppp-code, telling
whether it’s virtual, and whether it’s public, protected, or private. All the
possibilities (base classes are never static):

Next, the entry includes the location (offset) of the embedded instance (if any) of this
base class, in decimal bytes. If the inheritance is virtual, the entry contains the offset
to the pointer which implements the virtual inheritance. This is followed by the base
class type number (pair). There are no delimiters separating entries in the list—the
closing parenthesis of the type number pair is sufficient. For example, a list like this:

says that the base class with type number (1,5) is a non-virtual private base class
at offset 10 within the current class; base class (2,9) is a virtual public base class
whose pointer is at offset 20; and (3,4) is a virtual private base class with a pointer
at offset 30.

DataMembers is the semicolon-separated list of non-static data members of the class.
As with bases, each name is preceded by a ppp-code; these are never virtual nor
static, so only A B or C occur. Following the member name is its type, offset, and size
information, in the same format as C-language struct stabs (See “Structure or Record
(s) and Union (u)” on page 106).

A Private non-static non-virtual

B Protected non-static non-virtual

C Public non-static non-virtual

I Private non-static virtual

J Protected non-static virtual

K Public non-static virtual

;A10(1,5)K20(2,9)I30(3,4);



Chapter 5 Symbol Descriptors 93

The mutable specifier on a class data member is indicated in the ppp-code of that
member by adding a 0xc0. This changes the three possible codes of A B or C to M N
or O.

Note – Each data member entry in this list ends with a semicolon, and the list itself
also ends with a semicolon. So the list usually (when non-null) appears to have two
terminating semicolons.

Members which are anonymous unions have their sub-members “elevated” to the
level of the class containing the anonymous union. In addition, they get an extra
(16) bit set in their ppp codes, and they get an extra digit, between the ppp-code and
the member name. The digit indicates which anonymous union the member belongs
to. (They can be re-used within a class; dbx needs them only to avoid merging
adjacent anonymous unions.)

MemberFunctions lists the mangled names of member functions. These have ppp-
codes, and can be virtual, static, or neither. So the first-character code will be A, B, C,
I, J, or K (as above), or

For virtual functions, the ppp-code will be followed by an optional minus sign
(indicating a pure virtual function), followed by a positive integer, the “virtual
function index”.

For explicit constructors add 0x08 to the ppp-code. Since a constructor has to be
static and non-virtual, the possible ppp-codes for a constructor are E, F, or G, so
explicit constructors become M, N, or O.

StaticDataMembers The mangled names of all of the static data members of this class
are listed here. Their “ppp” codes can be E,F, or G.

Friends is a space-separated list of classes and functions to which this class grants
access—the classes and functions declared to be the friends of the class being
defined in this stab. In this list, each friend class name is preceded by an @ character.
The friend functions are listed without an @.

VirtualFunctionInfo is two numbers. The first is the number of the virtual function
algorithm to be used. The second is the offset (in bytes) of the virtual table pointer in
the class layout. The field is empty (i.e., just the terminating semicolon) if the class
has no virtual functions.

E Private static non-virtual

F Protected static non-virtual

G Public static non-virtual



94 Stabs Interface • June 2004

Note – The algorithm number provides dbx with a small amount of insulation from
changes in the compiler’s virtual function calling algorithm. The compiler group
supplies a library to the dbx group, and when dbx wants to call a virtual function, it
calls into that library, supplying the virtual function algorithm number.

NestedClassList is a list of the type numbers for the classes nested within this class,
each one preceded by the relevant ppp- code.

AccessAdjustments is a space-separated list of the access adjustment declarations.
These consist of a ppp-code followed by the mangled name of the member whose
access is being adjusted. The type and size information (if any) are deduced from the
base class.

VirtualBaseClassOffsets lists where (by byte offset) each of this class’ virtual base
classes reside, when this is the “most derived” class. (This is in contrast to the Bases
field, described above, which lists the offset to the virtual base’s pointer.) This field
allows dbx to be able to “downcast” a virtual base pointer or reference back to
certain derived types. The form of this field is a list each of whose entries has the
decimal offset followed by the type number for the virtual base. No separator is
necessary within the list.



Chapter 5 Symbol Descriptors 95

Example

This code example assumes some previously-declared classes; it declares a
complicated but silly class called green:

class green : public blue, private black, public virtual bay {
int x;
virtual void purevirt() = 0;
// three anonymous unions:
union { float uf;  double ud; };
union { char *ucp; void *uvp; };
union { short stack; long  odds; };

protected:
blue::moon;                    // an access adjustment
static int z_static;
public:
blue::sky;
int mf( );
// a few friends:
friend class blue;
friend void frfn( );
friend class  bay;
friend int  sq( int );

};



96 Stabs Interface • June 2004

Given type numbers of (0,21) for class blue, (0,22) for black, and (0,23) for
bay, the above class green might generate a stab directive like this (broken apart
for readability and commentary):

Namespaces (Yn)
A Yn N_LSYM stab is generated for each namespace declaration. If the namespace has
a mangled name, that should be used.

40:.stabs "__1nFgreen_:T(0,20)=Yc32green; // size 32, name green
  C4(0,21)A12(0,22)K2(0,23);// 3 base classes
  AcBx:(0,3),96,32;// a private int data member x
  Q1cCuf:(0,14),128,32;// uf in lst anon union
  Q1cCud:(0,15),128,64;// ud in lst anon union
  Q2cDucp:(0,26),192,32;// ucp in 2nd anon union
  Q2cDuvp:(0,27),192,32;// uvp in 2nd anon union
  Q3cFstack:(0,2),224,16;// stack in 3rd anon union
  Q3cEodds:(0,4),224,32;// odds in 3rd anon union
  ; // second ’;’ ends data
  I-2cIpurevirt6M_v CcCmf6M_i;// 2 member functions
  FcIz_static;// 1 static data member
  __1cCsq6Fi_i_ @__1nDbay_ __1cEfrfn6F_v_  // a few friends
  @__1nEblue_;
  2 0;// virtual function algorithm #2 ("vtable"), and

// virtual function table pointer offset 0 bytes.
  A(0,24)A(0,25)A(0,28);// 3 nested classes (the anon. unions)
  AcDsky(0,21) AcEmoon(0,21);// 2 access adjustments
  32(0,23);010;",// virt. base offset
  N_ESYM,0x0,0x20,0x0// the rest of the stab

.stabs "NamespaceName:T(0,18)=Yn0username",N_LSYM,0x0,0x0,0x0



Chapter 5 Symbol Descriptors 97

For these namespaces:

The following stabs are generated:

This N_ISYM stab tells dbx the existence of the namespaces whose names are listed
after Yn. When a name like N1::i1 is encountered dbx can tell that N1 is a
namespace rather than a class. Each namespace’s N_ISYM stab must appear before
stabs of any of its members. In the example above, the N_ISYM stab for namespace
N1 must appear before the stab of i1 or f1. The stab for the name of a nested
namespace must appear after the stab for the name of the namespace that contains it.
The username in the N_ISYM stab is the unqualified username.

Pointers to class members (YM, YD)
Stabs for pointers to class data members and to member functions need not only the
type information of what the member is pointing to, but also the type information of
the class to which the member belongs. The YM and YD symbol types provide
sufficient information for C++ 5.0 pointers.

New stab for pointer to class member function type:

K is used when the function is const. B is used when the function is volatile.

namespace N1 {
int i1;
void f1(char);

};
namespace N2 {

int i2;
void f2(char);
namespaces N3 {

int i3;
};

};

.stabs "__1nCN1_:T(0,19)=Yn0N1;",N_ISYM,0x0,0x0,0x0

.stabs "__1nCN2_:T(0,20)=Yn0N2;",N_ISYM,0x0,0x0,0x0

.stabs "nCN3(0,20):T(0,21)=Yn0N3;",N_ISYM,0x0,0x0,0x0

YM [K][B] ClassType ReturnType [ArgumentType]#



98 Stabs Interface • June 2004

New stab for pointer to class data member type:

Use the following program as an example:

Old stabs for x, y and z :

Stabs for x and y convey same thing—pointer to function that returns integer. The
stab for z indicates pointer to void type, but has insufficient information for dbx.

New stabs for x, y, and z:

(0,19) is the type ID of class A.

YD ClassType DatamemberType

int foo(int x) {return x;}
class A {
public:

A(int arg) : d1(arg) {}
int d1;
int bar(int x) {return x+d1;};

};
int main()
{
A a(1);
A b(2);
int (A:: *x)(int) = &A::bar;
int (*y)(int) = &foo;
int A:: *z = &A::d1;
A *p = &a;
}

.stabs “x:(0,25)=*(0,26)=f(0,3)”,N_LSYM,0x0,0x8,0xffffffec

.stabs “y:(0,27)=*(0,28)=f(0,3)”,N_LSYM,0x0,0x4,0xffffffe8

.stabs “z:(0,29)=*(0,22)”,N_LSYM,0x0,0x4,0xffffffe4

.stabs "__1fEmain1ABx_:(0,20)=YM(0,19)(0,3)(0,21)=*(0,19)(0,3)#",
N_LSYM,0x0,0x8,0xffffffec
.stabs "__1fEmain1ABy_:(0,22)=*(0,23)=g(0,3)(0,3)#",N_LSYM,0x0,
0x4,0xffffffe8
.stabs "__1fEmain1ABz_:(0,24)=YD(0,19)(0,3)",N_LSYM,0x0,0x4,
0xffffffe4



Chapter 5 Symbol Descriptors 99

Templates (YT, YI)
There are several kinds of template stabs1. The template source line stabs (LT stabs)
are detailed under “Lines in Template (LT)” on page 78. The stabs describing the
templates and their instantiations are described here. These are the YT stabs (T for
Template) and YI stabs (I for Instantiation). There are the following kinds:

Since some templates are instantiated into the template repository (usually in the ./
Templates.DB directory for C++ 4.0, and ./SunWS_cache directory for C++ 5.0),
some of the template stabs will be generated in both the main object file and the
template instantiation object file.

In ABI2, template definition names are mangled and template formal parameters are
part of the mangled names. The resulting mangled names uniquely identify a
template definition. In ABI1, template definition names were not mangled.

Most template stabs include a TemplateParamList. This is a list of the parameters in
one of the following forms:

or

That is the parameter name is followed by a colon, an optional tYC, a type number,
and a semicolon. dbx will define a new type number for each “tYC” type; the
type_number given in these stabs should not be defined elsewhere in the file. For
non-type parameters, the type_number must be defined previously.

1. Because of continuing changes in the C++ language definition, the organization of the template stabs is
subject to possible change in some future release.

YTc or YTs class or struct template

YTC or YTS nested class or struct template

YTf function template

YIc or YIs template class or struct instance

YIC or YIS nested template class or struct instance

YIf template function (instantiation)

YIm template member function

@< and @> markers for “fake” index stabs

 name:tYC type_number ;   // “normal” parameters

 name:type_number ;       // non-type parameters



100 Stabs Interface • June 2004

For example, given a template definition like:

the TemplateParamList looks like:

where (0,3) means “int”, and (0,19) is not defined elsewhere in the file. The tYC
string indicates to dbx that this type is being defined here, so that it can be used
within the template and within the stabs for its member functions. This tYC is also
used for the main type defined in the YIc (instantiation) stabs.The p prevents dbx
from interpreting x as the name of the type (0,3).

Class templates (YTc, YTC, YTs, and YTS)

The stabs for class templates are largely made up of placeholders.

The fields in the stab for a template class were designed to make its structure similar
to those of the corresponding instantiation, and those of a non-template class.
However, at the time these stabs are created, the compiler knows very little about
the template—it has not even fully parsed its contents. Because of this, most of the
entries have no meaning in the stab for the template itself.

TemplateName is the name of the template; it is not a mangled name.

cCsS indicates whether this is a class template (c), nested class template (C), struct
template (s), or nested struct template (S).

TypeNumber is the (new) type number pair which this stab is defining to refer to this
template class.

TemplateParamList is as described above.

Size is always zero (it is not yet known).

ClassName is the same as the TemplateName; it is not mangled

The several trailing semicolons correspond to the fields of the non-template class
stab.

template<class A, int x> ... // template definition...

A:tYC(0,19);x:p(0,3)

TemplateName:YT cCsS TypeNumber TemplateParamList;@;
Size ClassName ;;;;;;;;;



Chapter 5 Symbol Descriptors 101

Example

The following code:

yields:

Template Member Function Instantiations (YIm)

Each member function of a template gets a fake instantiation. This is actually a
series of stabs generated to look somewhat like the set of stabs generated by a “real”
function. That is, there is a N_FUN stab (with a YIm descriptor), N_PSYM stabs for
each of the parameters for that member, and a pair of level one brackets (N_LBRAC
and N_RBRAC).

The YIm stab string consists of:

template<class T> class vector {
T* v;
int sz;

public:
vector(int a) {sz = a;};
T& operator[]( int );
T& elem(int i) { return v[i]; }
int size() { return sz; }
int size(int) { return sz; }
void dump( const char * );

};

.stabs "__1nGvector3CTA__:YTc(0,19);T:tYC(0,20);@;
0vector;;;;;;;;;",N_GSYM,0x0,0x0,0x0

MangledMemberFunctionName:YIm TemplateParamList;@;
m;
TemplateClassName:F ReturnType;ParamTypeList



102 Stabs Interface • June 2004

For example, given the vector class example of the previous section, each of its
member functions would get YIm and related stabs similar to this one (which is for
the vector<T>::elem member):

Function templates (YTf)

A function template has a single YTf stab, perhaps preceded by a source-file
(N_SOL) stab, and has an LTf stab, but no index stab. The LTf stabs are described in
“Lines in Template (LT)” on page 78. The YTf stab is a N_GSYM stab, with the
(unmangled) name of the template; it has three sections terminated by @; and then a
pair of line numbers. The YTf stab’s string is of this form:

TemplateName is the user’s (unmangled) name of the template.

The TemplateParamList is described above.

The list following the :T is just like the list of return-type-plus-arguments that are in
a normal N_FUN stab, although the parameters in this list might refer to the
“dummy” types defined within the template’s TemplateParamList.

The ParamNamesList is a list of entries like this:

The :p parts are similar to the strings that are contained in the N_PSYM stabs for
normal functions.

Finally, the line numbers are in decimal—the beginning and the ending of the
template source. These refer to lines in the source file most recently set by a N_SOL
stab.

Stabs generation for function templates is “lazy”, in the sense that the stabs for a
given template are not output until unless that template is actually used.

42:  .stabs "__1cGvector4Ci_Eelem6Mi_ri_:YImT:(0,3);@;m;
  cEelem6Mi_r0(0,19):F(0,23);(0,24);(0,3)",N_FUN,0x0,0x0,0x0

43:  .stabs "this:p(0,24)",N_PSYM,0x0,0x4,0x44
44:  .stabs "i:p(0,3)",N_PSYM,0x0,0x4,0x48

TemplateName:YTf TemplateParamList;@;
;TemplateName:T ReturnType;ParamTypesList;@;
ParamNamesList;@;
StartingLineNum;EndingLineNum

ParameterName:p type_number;



Chapter 5 Symbol Descriptors 103

Example

yields a function-template stab like this (split and annotated):

Instantiations

Instantiation of a template for a given type can be overridden (“specialized”) by the
user. For classes, the compiler can easily tell that this is happening, because the class
name has angle brackets in it. For functions, there is no way for the compiler to tell
that this is happening, because the corresponding function template might not be
#included in the source file that contains the overriding function definition.

With respect to stabs, neither user-specialized functions nor user-specialized classes
are treated as templates. For functions which are specializations of function
templates, the compiler just creates a normal, non-template N_FUN stab. For classes,
it creates a normal class stab.

Stabs for (Instantiated) template classes

Template classes that the compiler did instantiate from a template have YIc stabs of
this form:

 template<class A, class B> int tfex( B* x, A y ) { ... }

.stabs "__1cEtfex3CTACTB_6Fp10_i_:YTf
A:tYC(0,19);B:tYC(0,20);  // define template params A and B
@;;__1cEtfex3CTACTB_6Fp10_i_
:T(0,3);(0,21)=*(0,20);(0,19); // returns int, gets (B*, A)
@;
x:p(0,21);y:p(0,19);// name function params x and y
@;1;1;",// line number of template source.
N_GSYM,0x0,0x0,0x0// rest of stab



104 Stabs Interface • June 2004

ClassName is the mangled name of the instantiated class (for example, “stack<int>”).
In C++ 4.0 (Stabs 3.1), this was a specially constructed mangled name of one of the
member functions of the class. In C++ 5.0, however, there may not be any member
functions in the instantiation.

cCsS tells whether the template was declared using class (c) or struct (s), and
whether it was a nested class (C) or a nested struct (S).

TypeNumber is the (new) type number pair which this stab is defining to refer to this
template class.

ActualArguments is a list of the actual arguments that were supplied in this
instantiation. Normal <class T> parameters have the parameter name followed
by a colon and then a type number not previously defined in this object file. Non-
type parameters are represented either by a literal decimal number (for integral
parameters), or as the name of a global variable (for parameters which are
addresses). The types in the list are separated by semicolons.

Note – Non-type parameters are not currently implemented. They have the same
form as normal template parameters.

Size is the actual size in bytes of an object of this class.

TemplateName names the template of which this class is an instantiation (or the
template for which this class is an overriding specialization).

The rest of the stab for a template class looks a lot like the stab for a non-template
class; since this is an instantiation (or a user-supplied override), we now know the
sizes and offsets of everything.

ClassName:YI cCsS TypeNumber;@;
ActualArguments;@;g;
Size TemplateName;
Bases;DataMembers;MemberFunctions;
StaticDataMembers;Friends;
VirtualFunctionInfo;
NestedClassList;AccessAdjustments;
VirtualBaseClassOffsets;

Passmethod;



Chapter 5 Symbol Descriptors 105

Example

If we start with the vector template used in an above example, and instantiate it
with a declaration like

then the compiler will produce these stabs:

Stabs for (instantiated) template functions

These are similar to part of the stab that is generated for the function template; the
main difference is that the :p section is split off into separate N_PSYM stabs, as it is
for normal N_FUN stabs. So the sequence of stabs that will be generated for template
functions would look like this:

The template index stab for a template function is an N_FUN stab. Its name starts
with a special @> indicator, which is followed by the mangled name of the template
function.

On systems using the a.out object format, these @> index stabs are put out as
normal (non-index) stabs, and the mangled name has a colon at the end of it.

  vector<double> vw(12);

.stabs "__1nGvector4Cd__:YIc(0,21);
@;T:(0,15);@;g;8__1nGvector3CTA__;;
AcBv:(0,22)=*(0,15),0,32;
AcCsz:(0,3),32,32;
;
Cc2t6Mi_v Cc2F6Mi_rd
CcEelem6Mi_rd CcEsize6M_i
CcEsize6Mi_i CcEdump6Mpkc_v;
;;;;;;010;",N_GSYM,0x0,0x0,0x0

a “template index (@>) stab” for this generated function
the “YIf” stab (type is N_FUN)
some “:p” stabs (types are N_PSYM)
<the guts of a normal function:  LBRACs,RBRACs

SLINEs, local variable declarations, etc.>



106 Stabs Interface • June 2004

The YIf stab is an N_FUN stab, with a stab string like:

The TemplateActualList is a list of entries each of which consists of a parameter name,
a colon, and the type used in this instantiation.

Note – A function which is a specialization of a function template yields a normal,
non-template N_FUN stab.

The ReturnType list is like the one for the template, except that the correct
instantiation types have been substituted into it.

For example, given the template function:

And given an instantiation due to a call like this one:

The corresponding sequence of stabs for the instantiation might be (assuming that
char is (0,1) and int is (0,3)):

MangledFunctionName:YIf TemplateActualList;@;;
MangledTemplateName
:F ReturnType;FunctionArgList

 template<class A, class B> int tfex( B* x, A y ) { ... }

 int i = tfex( “str”, 9 );

28:  .stabs "__1cEtfex4CiCc_6FpTBTA_i_:YIfA:(0,3);B:(0,1);@;g;
__1cEtfex3CTACTB_6Fp10_i_:F(0,3);(0,22)=*(0,1);(0,3)",N_FUN,0x0,
0x0,0x0
  29:  .stabs "x:p(0,22)",N_PSYM,0x0,0x4,0x44
  30:  .stabs "y:p(0,3)",N_PSYM,0x0,0x4,0x48
  31:  .stabn N_LBRAC,0x0,0x1,0xc
  32:  .stabn N_SLINE,0x0,0x1,0xc
  33:  .stabn N_SLINE,0x0,0x1,0x18
  34:  .stabn N_RBRAC,0x0,0x1,0x18



Chapter 5 Symbol Descriptors 107

Run Time Type Information (RTTI) (YR)
The only stabs used for exception handling are the RTTI (YR) stabs. One of these is
generated for each type used in a throw expression. Its form is:

The RTTI_Symbol names a compiler-generated variable which contains a __RTTI
structure. That structure contains the type information for the thrown type. The
TypeNumber refers to the thrown type itself. For example, given the following
program:

the compiler will generate the following stabs (among others):

The mangled name __RTTI__1Ci indicates a builtin type (int), and the longer
name __RTTI__1nKtype2throw_ indicates the user-defined type in the second
throw.

Note – No RTTI structure is valid until its initialization function has been called.
This is normally done during the C++ static initialization phase.

.stabs “RTTI_Symbol:YR TypeNumber”,N_LSYM,0,0,0

struct type2throw { char *msg; } ;
main ( ) {

int x = 12;
type2throw var2throw;
var2throw.msg = "test exception to throw";
if( x < 20 ) throw x;
else throw var2throw;

}

.stabs "__1nKtype2throw_:T(0,19)=Ys4type2throw;;
 CcDmsg:(0,20)=*(0,1),0,32;;;;;;;;;000;",
 N_ESYM,0x0,0x4,0x0

.stabs "__RTTI__1Ci:YR(0,3)",N_LSYM,0x0,0x0,0x0

.stabs "__RTTI__1nKtype2throw_:YR(0,19)",N_LSYM,0x0,0x0,0x0



108 Stabs Interface • June 2004

Miscellaneous Stabs

Variadic (that is, varargs or stdarg) functions appear as if the ellipsis (“...”) had been
replaced with a parameter named __builtin_va_alist. The type for that
argument will be a new built-in type name “...”. For example, the final two entries
in each object file’s list of built-in types are:

The definition of a function declared as void etc(const char * fmt, ...)
will cause stabs like these to be generated:

followed by the normal LBRAC/RBRAC stabs for the function definition.

.stabs "void:t(0,13)=bs0;0;0",N_ISYM,0x0,0x0,0x0

.stabs "...:t(0,17)=buv4;0;32",N_ISYM,0x0,0x0,0x0

.stabs "__1cDetc6FpkcE_v_:F(0,13);// return type
(0,19)=*(0,20)=k(0,1);// ptr to const char *
(0,17)",// ellipsis "type"
N_FUN,0x0,0x0,0x0

.stabs "fmt:p(0,19)",N_PSYM,0x0,0x4,0x44

.stabs "__builtin_va_alist:p(0,17)",N_PSYM,0x0,0x48,0x4



109

CHAPTER 6

Type Specification

One major purpose of stabs is to describe the types of variables, parameters, or
function return values. Stabs provide a very flexible method of describing types and
defining variables and functions with these types. There are no predefined types;
every type used in a program must be described by the compiler. Types are defined
independently for each object file. There is no assumed relationship between the
types defined in one object file with those defined in another. The stabs description
also permits nameless or anonymous types.

A type described by stabs is a directed graph that ends in one of a few basic types:
integer, floating point, or enumerated type. These are described in terms of their
basic attributes (size, format, and so forth). All other types are described in terms of
constructs built on these basic types or other defined types. A graphic representation
of this directed graph is shown in FIGURE 6-1.

Each type, whether named or not, is given a unique type number. This type number
is usually a pair of numbers within parentheses; the first number represents the
sequence number of an include file and the second number represents the type
defined within that file. The file sequence number corresponds to the number of
N_BINCL or N_EXCL stabs in the object file. The original source file is given file
number zero.

Languages that do not support a nested input file organization (such as Fortran)
may use only a single number as the type number, or choose not to use the file
numbers. This number represents the type within the source file. The single type
number usage may appear in parentheses; For example, (n) is accepted as type n.



110 Stabs Interface • June 2004

In the stab string, the name of a variable or type is followed by a colon, a symbol
descriptor, and a type specification. This type specification may be a reference to a
previously defined type number, a new definition of a type number, or a type
description. This means that there are three variations in the format for the stab,
which can be seen from the following C program fragment:

This generates (in part) the following stabs:

The first stab is a description of the predefined type int. Symbol descriptor t
indicates that int is a type that is given type number (0,3) and defined (as
indicated by the equal sign followed by a type specification) as a basic integer.

The second stab describes Integer, also a type, which is given type number
(0,21) and defined to be the same as int (0,3).

The third stab describes pvar, a global variable (as indicated by the symbol
descriptor G). Its type, (0,22), is defined as a pointer (*) to type Integer (0,21).

The fourth stab describes var, also a global variable, of type Integer (0,21),
which was defined in the second stab.

The symbol descriptors are described in Chapter 5.

The first character of the type description describes the type and is one of the
following:

typedef int Integer;
Integer var;
Integer *pvar;

.stabs "int:t(0,3)=bs4;0;32",N_LSYM,0x0,0x0,0x0

.stabs "Integer:t(0,21)=(0,3)",N_LSYM,0x0,0x4,0x0

.stabs "pvar:G(0,22)=*(0,21)",N_GSYM,0x0,0x4,0x0

.stabs "var:G(0,21)",N_GSYM,0x0,0x4,0x0

empty Type reference

a Array

B Volatile

b Basic integer

D Dope vector (assumed shape array)

d Dope vector (allocated array)

e Enumeration



Chapter 6 Type Specification 111

These types are described below in alphabetical order.

A type is defined in terms of other types, which may in turn be defined in terms of
more primitive types. Each type number must be unique within an object module,
although the same numbers may appear in different object modules with completely
different definitions. A new type may be defined wherever a type is referenced by
following the new type number with an equal sign and the type definition.

There may be more than one type definition in a stab. This can be done by giving a
type that is itself a type definition. For example, the global definition:

generates the following stabs:

F Function parameter

f Function

g Function with prototype info

K Restricted

k Const

P Procedure parameter

R Floating point

r Range

s Structure or record

u Union

x Forward reference

Y C++ specification (C++ 4.0 and later, see page 61)

z C99 variable length array

* Pointer

& Reference

char **cptr;

.stabs "char:t(0,1)=bsc1;0;8;",N_LSYM,0,0,0

.stabs "cptr:G(0,20)=*(0,21)=*(0,1)",N_GSYM,0,4,0



112 Stabs Interface • June 2004

These stabs define char to be type number (0,1) and specify that it is a signed
integer occupying one byte. cptr is described to be a global variable with type
number (0,20), which is unnamed. This is defined to be a pointer to type number
(0,21), which has no name. This, in turn, is defined to be a pointer to type (0,1),
which is char. This type tree is illustrated in FIGURE 6-1.

FIGURE 6-1 Example Type Tree.

Array (a)

The a type describes an array type by giving the type of the index(es) and elements.
Multidimensional arrays are treated as if they were one-dimensional arrays of
arrays.

IndexType is the type of the index value. It is usually a range type. Type is the type of
the elements of the array.

The C statements:

a IndexType ; Type

char msg[5][10];
float array[15];

BaseInt
signed, char
1 byte, 8 bits,

cptr

GblVar

(0,20)

Pointer

(0,21)

Pointer

0 offset

char (0,1)



Chapter 6 Type Specification 113

generate the following stabs:

In the fourth stab, msg is defined as a global variable (with a new type number
(0,21) defined for it), which is an array. The first index is a range of 0 to 4 based on
type (0,3), which is defined as int in the second stab. The elements of this array
are a new type definition (given number (0,22)), which is itself an array with an
integer index with the range of 0 to 9. The elements of this array are each of type
(0,1), which are defined as char in the first stab.

The fifth stab declares ar, which is an array of fifteen elements (range zero to
fourteen) each of which is a float defined as type (0,16).

Normally the range supplied for an array type is respecified for each array.

Volatile (B)

Types which are volatile (or const, or const volatile) generate stabs which are
similar to pointer stabs (see “Pointer (*)” on page 126). Use the type descriptor B for
volatile. For example:

might look like:

.stabs "char:t(0,1)=bsc1;0;8;",N_LSYM,0,0,0

.stabs "int:t(0,3)=bs4;0;32;",N_LSYM,0,0,0

.stabs "float:t(0,16)=R1;4;",N_LSYM,0,0,0

.stabs "msg:G(0,21)=ar(0,3);0;4;(0,22)=ar(0,3);0;9;(0,1)",
N_GSYM,0,50,0

.stabs "array:G(0,23)=ar(0,3);0;14;(0,16)",N_GSYM,0,60,0

B Type

“volatile int x;  const volatile int y;”

44:  .stabs “x:(0,29)=B(0,3)”,...
45:  .stabs “y:(0,30)=k(0,31)=B(0,3)”,...



114 Stabs Interface • June 2004

Basic Integer (b)

The b type describes a binary integer. The value is an unsigned or twos-complement
integer that is Nbits wide and stored in Width bytes. Sign specifies u for an unsigned
value and s for a signed value. Display optionally specifies c, b, or v. This indicates
the default mode in which the value is to be displayed: character, Boolean (true or
false), or varargs (“...” or “__builtin_va_alist”). Offset specifies the starting
bit of the value from the left-most bit in the storage allocated to the value.

A stab defining an unsigned long integer in C would look like the following:

In most cases, Nbits will be eight times Width and Offset will be zero. In the case of a
16-bit value stored in the low-order half of a 32-bit word, the stab describing this is:

A binary integer of zero length is the normal representation for void in C and
comparable types in other languages:

Dope Vector (D)

The D type describes a Fortran 95 assumed shape array type, that is, an array that
must be accessed via a dope vector, a pointer, or an anonymous reference to an array
valued object. This specifier can be applied only to a Type that is an array or a
pointer to an array. The value field of the stab represents the offset into the global
dope vector table named dv_hdr .

b Sign [ Display ] Width ; Offset ; Nbits

.stabs  "unsigned long:t(0,14)=bu4;0;32;",N_LSYM,0,0,0

.stab "packed_val:t(0,21)=bs4;16;16",N_LSYM,0,0,0

.stab "void:t(0,19)=bs0;0;0",N_LSYM,0,0,0

D Type



Chapter 6 Type Specification 115

For example, the statements:

generate the following stabs:

where the first two stabs define types 1 (VOID) and 4 (INTEGER*4). The third stab
defines the subroutine sub_ with return type 1, and a parameter of type 25 that is a
pointer to type 26. Type 26 is an assumed shape dope vector (D) of type 27 that is an
array whose range has bounds of type 4, a lower bound of 1, an unknown variable
upper bound (J0), and whose elements are of type 4. The last stab defines a as a
parameter passed by reference (Symdesc v). It has type 26, a size in bytes of 0x14,
and an offset from the stack frame pointer of 0xfffffffc.

Dope Vector (d)

The d type describes a Fortran 95 allocatable array type, that is., an array which
must be accessed via a dope vector, a pointer, or an anonymous reference to an array
valued object. This specifier can be applied only to a Type which is an array or a
pointer to an array. The value field of the stab represents the offset into the global
dope vector table named dv_hdr.

subroutine sub(a)
integer a(:)

subroutine sub(a)
do i = 1, 100

a(i) = i
enddo
end subroutine sub

.stabs "VOID:t1=bs0;0;0",N_LSYM,0x0,0x0,0x0

.stabs "INTEGER*4:t4=bs4;0;32",N_LSYM,0x0,0x0,0x0

.stabs "sub_:F1;25=*26=D27=ar4;1;J0;4",N_FUN,0x0,0x2,0x0

.stabs "a:v26",N_PSYM,0x0,0x14,0xfffffffc

d Type



116 Stabs Interface • June 2004

For example, the statement:

generates the following stabs:

The first stab describes x as an allocatable array (the d specifier) of type real*4
(type number 6). It has two dimensions (the two ar specifiers), each having indices
of type integer (type number 3) with range of 1 to 1. The second stab is similar
except it defines a dope vector for a pointer to an array (the d* specifiers).

Note – For an allocatable array, the array dimensions specified in the stab represents
the dimensions of the array declaration. The actual dimensions at any point during
execution can be found in the dope vector for the array.

For a description of dope vectors, see Appendix E.

Enumeration (e)

The e type describes an enumeration type by giving zero or more pairs of Name (the
defined name) and Number (its value) separated by a colon. Each pair is followed by
a comma. The last pair is followed by a semicolon.

Type is the base type that the enumeration is based on. If it is omitted, the
enumeration is assumed to be based on 32-bit integers.

real, allocatable :: x(:,:)
target y(10,10)
pointer corners (:,:)
corners => y(1:10:9,1:10:9)

.stabs "x:42=dar3;1;1;ar3;1;1;6",N_LSYM,0,0,0,0x0

.stabs "corners:39=d*40=ar3;1;1;ar3;1;1;6",N_LSYM,0,0,
0xfffffe40

e [ Type ] { Name : Number , }∗  ;



Chapter 6 Type Specification 117

The statements:

generate the following stabs:

The first stab declares size to be a global variable with an unnamed enumeration
type, with the values specified. The Desc field of the stab gives the size of the
variable in bytes. The second stab declares color to be an enumeration type and
gives its values.

Function Parameter (F)

The F type describes a function passed as a parameter to a Fortran procedure or
function. Type specifies the return value of the function.

The following Fortran subroutine:

generates (in part) the following stabs:

The first stab describes a floating point type (type number 6).

enum { small, avg, big } size;
enum color { red, blue = 5, green };

.stabs "size:G(0,13)=esmall:0,avg:1,big:2,;",N_GSYM,0,4,0

.stabs "color:T(0,14)=ered:0,blue:5,green:6,;",N_LSYM,0,4,0

F Type

subroutine func(pfunc)
external pfunc
return
end

.stabs "REAL*4:t6=R1;4",N_LSYM,0x0,0x0,0x0

.stabs "func_:F1;22=*21=f6",N_FUN,0x0,0x0,0x0

.stabs "pfunc:pF24=*23=f6",N_PSYM,0x0,0x4,0xfffffffc



118 Stabs Interface • June 2004

The second stab describes subroutine func_, which takes a single argument of type
22, defined to be a pointer to type 21, which is defined to be a function (f) returning
type 6.

The third stab desribes pfunc, a value parameter (p), which is a function (F)
returning type 24, which is defined to be a pointer to type 6.

Function (f)

The f type describes a function value. Type is the return type of the function.

The C declaration:

generates the following stab:

This stab describes global variable f (symbol descriptor G), which has type (0,20).
This is defined to be a pointer (type ∗ ) to type (0,21), which in turn is defined to be
a function (type f) returning an integer (type (0,3)).

Function With Prototype Info (g)

The g type describes a function value with parameter prototype information. Type is
the return type of the function. For each function parameter, there is an
ArgumentType representing its type. The g type should be used in place of the f type
when prototype information is available. The f type is still supported and may even
be embedded in a g type stab (example below).

f Type

int (*f) ();

.stabs "f:G(0,20)=*(0,21)=f(0,3)",N_GSYM,0,4,0

g Type [ArgumentType]#



Chapter 6 Type Specification 119

Simple example:

produces stab:

The second (0,3) is for first argument int, and (0,17) is for second argument
float.

Another example:

produces the following stabs:

int (*fptr)(int,float);

.stabs “fptr:G(0,21)=*(0,22)=g(0,3)(0,3)(0,17)#”,N_GSYM,0,0,0

typedef int (*func_type)(int (*) (int, float),float);
struct a {
int x;
my_type* (*fptr1)(int (*) (int, float),float);
char y;
int (*xptr)( int (*)(), int (*)(void), int);
// Note int(*)() is function with unknown parameter types

.stabs “func_type:t(0,22)=*(0,23)=g(0,3)(0,50)=*(0,51)
=g(0,3)(0,3)(0,17)#(0,17)#”,N_LSYM,0x0,0x4,0x40

.stabs “a:T(0,24)=s12x:(0,3),0,32;fptr1:(0,25)=*(0,26)=g(0,27)
=*(0,3)(0,40)=*(0,41)=g(0,3)(0,3)(0,17)#(0,17)#,32,32;
y:(0,1),64,8;;”,N_LSYM,0x0,0xc,0x1

.stabs “xptr:G(0,28)=*(0,29)=g(0,3)(0,60)=*(0,61)=f(0,3)(0,62)=
*(0,63)=g(0,3)(0,20)#(0,3)#”,N_GSYM,0x0,0x4,0x0



120 Stabs Interface • June 2004

Restricted (K)

The K descriptor describes a C “restricted pointer”. This may only appear as a
modifier to a pointer Type, and directly supports the _Restrict keyword in C. For
example:

would produce:

The second stab defines bbptr to be a global variable of type (0,22) which is
unnamed. Type (0,22) is defined to be a type which is defined as a “restricted”
type (0,23) which is also unnamed. Finally, type (0,23) is defined as pointer to a
type (0,3) which is type named int. So you get a “restricted pointer to an integer”.

The third stab defines aaptr to be a global variable of type (0,24) which is
unnamed. Type (0,24) is defined as a “restricted” type (0,21) which was defined
by the first stab to be a pointer to an integer which was named int_p.

K Type

typedef int *int_p;
_Restrict int_paa_ptr;
int * _Restrictbb_ptr;

.stabs “int_p:t(0,21)=*(0,3)”,N_LSYM,0x0,0x4,0x40

.stabs “bbptr:G(0,22)=K(0,23)=*(0,3)”,N_GSYM,0x0,0x4,0x0

.stabs “aaptr:G(0,24)=K(0,21)”,N_GSYM,0x0,0x4,0x0



Chapter 6 Type Specification 121

Const (k)

Types which are const (or volatile, or const volatile) generate stabs which
are similar to pointer stabs (see “Pointer (*)” on page 126). Use the type descriptor k
for const. For example:

might look like:

Floating Point (R)

The R type describes a floating-point value. Format specifies the encoding used and
may have the following values:

k Type

const int x;  const volatile int y;

.stabs “x:(0,29)=k(0,3)”,...

.stabs “y:(0,30)=k(0,31)=B(0,3)”,...

R Format ; Nbytes

NF_SINGLE 1 IEEE 32-bit float value

NF_DOUBLE 2 IEEE 64-bit float value

NF_COMPLEX 3 Fortran complex (two 32-bit floats)

NF_COMPLEX16 4 Fortran double complex (two 64-bit doubles)

NF_COMPLEX32 5 Fortran quad complex (two 128-bit long doubles)

NF_LDOUBLE 6 Long double (one 128-bit float)

NF_INTERARITH 7 Interval (two 32-bit floats)

NF_DINTERARITH 8 Interval (two 64-bit doubles)



122 Stabs Interface • June 2004

Nbytes is the number of bytes of storage the value occupies.

The standard C floating point type may be described by the following stabs:

Range (r)

The r type describes a range of values based on Type.

MinValue and MaxValue are the smallest and largest values in the range. These
values may be preceded by a code character. If the code character is an A or T, the
number that follows is the run-time offset of the actual range value, either as an
argument (A) or within the frame (T). If the code character is an S, the number that
follows is the run-time offset of the size of the range (MaxValue - MinValue +1). A J
indicates that the value is adjustable at run time and may not be determinable (as for
Fortran array arguments). A J must be followed by a number (for example. J1). If
no code character is specified, the range bounds are constant.

One example of a range can be found in “Array (a)” on page 112.

In the following C code:

NF_QINTERARITH 9 Interval (two 128-bit long doubles)

NF_IMAGINARY 10 Imaginary (one 32-bit float)

NF_DIMAGINARY 11 Imaginary (one 64-bit double)

NF_QIMAGINARY 12 Imaginary (one 128-bit long double)

.stabs "float:t(0,16)=R1;4;",N_LSYM,0,0,0

.stabs "double:t(0,17)=R2;8;",N_LSYM,0,0,0

.stabs "long double:t(0,18)=R6;16;",N_LSYM,0,0,0

r Type ; MinValue ; MaxValue

int array[14];



Chapter 6 Type Specification 123

generates the following stabs, where the range stab is r(0,4);0;13:

The first two stabs describe types int (0,3) and long (0,4).

The third stab describes array, a global variable of type (0,21), defined to be an
array (a) whose range (r) has bounds of type long (0,4), a lower bound
(MinValue) of 0, and an upper bound (MaxValue) of 13. Each element of the array
is of type int (0,3).

Set (S)

The S type describes a set by giving its base type.

The Pascal statement:

generates the following stab:

This defines s to be a global variable of type set of char (type (0,3)).

.stabs "int:t(0,3)=bs4;0;32",N_LSYM,0x0,0x0,0x0

.stabs "long:t(0,4)=bs4;0;32",N_LSYM,0x0,0x0,0x0

.stabs "array:G(0,21)=ar(0,4);0;13;(0,3)",N_GSYM,0x0,0x38,0x0

S Type

var s: set of char;

.stabs  "s:GS(0,3)",N_GSYM,0x0,0x1,0



124 Stabs Interface • June 2004

Structure or Record (s) and Union (u)

This type describes a record or structure type, or a union type. A structure is
identified with the type s, a union with the type u. Size is the number of bytes the
object occupies in storage. FieldList is a list of one or more fields defined in the
record or union. It has the following format:

Each field description includes its name, FieldName, a Type description, the bit offset
(BitOffset) within the record, and the size of the field in bits (BitSize).

The C declaration for a structure:

generates the following stab:

This defines x to be a type (number (0,20)), which is defined as a structure of eight
bytes consisting of fields a (an int (type (0,3)) starting at bit 0, which is 32 bits
long, and b (a float type (0,16)) starting at bit 32, which is 32 bits long.

{ s | u } Size FieldList

FieldName : Type, BitOffset , BitSize ; }+

struct x {
int a;
float b;

};

.stabs "x:T(0,20)=s8a:(0,3),0,32;b:(0,16),32,32;;",N_LSYM,0,8,1



Chapter 6 Type Specification 125

Forward Reference (x)

This type specifies that a type is declared but will be fully defined later in the stabs.
It is an error to have a forward reference without an actual definition.

Name is the name of the enumeration, class, structure, or union, or other type that
will be defined later in the stabs. If a Type is given, it must be a type pair.

The characters e, s and u represent enumeration, class/structure and union,
respectively.

The following C code, which gives a forward reference for struct S:

generates the following stabs:

The first stab describes struct T, which contains a pointer to a struct S. Because
S has not been described, this pointer is given type (0,22), which is described as a
forward reference to a structure named S.

The second stab is the actual description of struct S, and gives the same type
number as appeared in the forward reference.

x [ e | s | u | Type ] name

struct S;

struct T {
struct S *s;

};

struct S {
struct T t;

};

.stabs "T:T(0,20)=s4s:(0,21)=*(0,22)=xsS:,0,32;;",N_LSYM,0,4,1

.stabs "S:T(0,22)=s4t:(0,20),0,32;;",N_LSYM,0,4,0



126 Stabs Interface • June 2004

C++ Types (Y)
The Y-stabs are used to represent various C++ types and symbols. For further
description, see “C++ Specification (Y)” on page 88.

C99 Variable Length Array (z)
The C99 Variable Length Array type specifier (z) is used very much like an Array
type specifier (a) only in situations where the array is a VLA.

For example, the declarations:

generate the following stab for the_table:

The stab defines the_table to be of type z (a VLA), with an integer range whose
MinValue is 0 and whose size (S) is given by the value stored at offset -16 from the
current frame pointer. See “Range (r)” on page 122 for more information.

Pointer (∗ )

This type describes a pointer type by giving its base type.

void foo()
{
int n=10;
char the_table[n];
the_table[2] = ’a’;
}

stabs  "the_table:(0,26)=zr(0,4);0;S-16;(0,1)",128,0,0,-20

* Type



Chapter 6 Type Specification 127

The C statement:

generates the following stab:

This defines p to be a global variable (type (0,13)), which is defined to be a pointer
to char (type (0,2)).

Reference (&)

In the stabs, reference types are “type makers” analogous to pointers. But where a
pointer type gets *(typeref), the corresponding reference type will have
&(typeref). A C++ program declaring some global variables

might yield stabs like these:

char ∗ p;

.stabs  "p:G(0,13)=*(0,2)",N_GSYM,0,1,0

& Type

int *ptrv;   // a pointer
int &refv = x // (assume an int x exists)

30:  .stabs "ptrv:G(0,24)=*(0,3)",N_GSYM,0x0,0x4,0x0
32:  .stabs "refv:G(0,25)=&(0,3)",N_GSYM,0x0,0x4,0x0



128 Stabs Interface • June 2004



129

CHAPTER 7

Auto-load Stab Processing

Introduction
Although it is possible to store all of the debugging stabs in the executable file this
has several undesirable results:

■ Large executable files
■ Slow debugger start-up
■ Longer link time

dbx was designed to load the executable file into memory and then read and process
the debugging stabs to build its internal tables. This meant that the stabs for all of a
program had to be processed, even if only a small part of the program would be
looked at using the debugger.

One natural compensation is to compile only selected files with the -g option. This
prevented the user from stepping through the entire program with the debugger.
The user could also discover that the error was in a file that was compiled without
the -g option, resulting in a time-consuming recompilation and relinking of the
program, followed by restarting the debugger.

Auto-load stabs processing addresses these problems in several ways:

■ dbx processes only the stabs necessary to display information at the time the
information is needed.

■ Debugging stabs are stored in the ELF object files, with only an index to the object
files in the executable file or shared library.

■ Debugging stabs may be stored in the executable file if no object file is saved or
by specifying a flag to the compiler.



130 Stabs Interface • June 2004

A somewhat different implementation of delayed stabs processing is used with
a.out files to improve debugger performance. This is described in the section
“Delayed Processing of a.out Files” on page 133.

Stabs Index
Each ELF object file created by a compiler must create a .stab.index section (and
corresponding .stab.indexstr section for string values) that contains stab entries
to support auto-load stab processing. This section must be created whether or not
the compiler generates debugging stabs. (System libraries are shipped with these
sections stripped away.)

The SPARCompiler assembler provides the .xstabs pseudo-operation, which
directs a stab entry to a special section, such as .stab.index:

Section is the name of the section where the stab entry is to be stored. The other
arguments are exactly the same as the .stabs directive. String will be stored in a
section formed from the section name with str appended.

The assembler precedes the stabs explicitly generated by the compiler with a
N_UNDF stab, which contains the number of characters in the corresponding string
section in the n_value field.

The minimal .stab.index section for an object file that is compiled without
debugging information looks like the following:

The two entries the compiler must supply are N_OPT and N_CMDLINE stabs.

If debugging stabs are generated (if -g is specified) or if the file was compiled to
permit function re-ordering (if -xF was specified) there are additional stab entries in
the .stab.index section. The first two stab entries in the .stab.index section
will then be N_SO stabs, the same as are generated for the debugging stabs. The next
two stabs are then N_OBJ stabs with null strings in the string field. The linker will
place the name of the link directory and object file name into these strings. There is
an N_FUN stab for each global function and an N_GSYM for each global symbol
defined in the file. The Desc and Value fields of these stabs are ignored and should be

.xstabs "Section", "String", StabType, 0, Desc, Value

.stabs "heap.c",N_UNDF,0x0,0xc,0xee

.stabs "Xt ; V=3.0 ; R=3.0",N_OPT,0x0,0x0,0x29f30999

.stabs “/ex; /opt/bin/cc -o heap.o -c heap.c”,N_CMDLINE,0,0,0



Chapter 7 Auto-load Stab Processing 131

set to zero. The N_OPT stab must also specify the -g option to indicate that
debugging stabs were generated. The previous source file, compiled with debugging
stabs, looks like this:

When appropriate an N_MAIN stab will also appear in the .stab.index section.

Stabs in Object Files
The stabs entries generated by the .stabs directive are stored by the assembler in
one of two sections in the object file. These are the .stab and .stab.excl sections.
Strings are stored in the corresponding .stabstr and .stab.exclstr sections.

By default, the assembler stores stab entries in the .stab.excl section. When given
the -s command option, it places stab entries in the .stab section. Every object file
should have a .stab.index section and either a .stab or .stab.excl section,
along with their corresponding string sections.

Compiler drivers should pass the -s command option to the assembler when it
creates a temporary object file that will be deleted after the linker is invoked (for
example, when the -c option is not specified), or when the compiler is given the -xs
option, indicating that delayed stabs processing is to be suppressed for this
compilation.

.stabs "heap.c",N_UNDF,0x0,0xc,0xee

.stabs "/ex",N_SO,0x0,0x0,0x0

.stabs "heap.c",N_SO,0x0,0x2,0x0

.stabs "",N_OBJ,0x0,0x0,0x0

.stabs "",N_OBJ,0x0,0x0,0x0

.stabs "Xt ; V=3.0 ; R=3.0; g",N_OPT,0x0,0x0,0x29f30999

.stabs “/ex; /opt/bin/cc -g -o heap.o -c heap.c”,N_CMDLINE,0,0,0

.stabs "alloc",N_FUN,0x0,0x0,0x0

.stabs "free",N_FUN,0x0,0x0,0x0

.stabs "alloc__6Heap_tFUi",N_FUN,0x0,0x0,0x0

.stabs "errcode",N_GSYM,0x0,0x0,0x0



132 Stabs Interface • June 2004

Stabs in Executable Files
The Solaris linker ignores the .stab.excl and .stab.exclstr sections and does
not copy them to the executable or shared library. The .stab and .stab.index
(and their corresponding .stabstr and .stab.indexstr sections) are processed
like other sections: they are concatenated in the order in which the object files are
processed.

When the linker encounters a pair of N_OBJ stabs in the .stab.index or .stab
sections, it adds the directory and file name of the object file to the corresponding
string section and update the N_OBJ stab entries to point to the strings. These are
used by the debugger to locate the object file containing the stabs.

An executable or shared library file should contain a .stab.index section, which
contains entries from all of the object files. It may also contain a .stab section, but
it will never contain a .stab.excl section. If the stabs from an object file are
present in the .stab section, the debugger will not look for any corresponding
object file. If the -g option is not specified in the N_OPT stab, the debugger will not
look for the object file, either.

An N_MAIN stab must be present in the .stab.index section for the main function
in an executable file.

Debugger Operation
When the debugger reads an ELF executable file or shared library, it merges
information from the linker symbol table and the stabs index. Next, all of the stabs
that are contained in the executable or shared library are processed.

When the debugger requires information from the debugging stabs that have not
been read, it will attempt to locate the object file containing that information and
read the stabs from its .stab.excl section. The debugger uses the use path and
the N_OBJ stabs to locate the object file.



Chapter 7 Auto-load Stab Processing 133

Delayed Processing of a.out Files
Because the linker and debugger stabs for object files are merged, an a.out
executable file contains sets of stabs. As a result, delayed stabs processing for an
a.out file is somewhat different.

When the stabs are initially read by the debugger, only a small number are
processed. The debugger identifies the place in the a.out file where each object file’s
stabs are located, and where each function or global variable is defined. When the
debugger requires information that it has not read, it rereads the stabs from the a.out
or shared library, and then processes only the required object files.



134 Stabs Interface • June 2004



135

CHAPTER 8

Stabs Generation

Minimal Stabs Requirements
The compiler must generate a small number of debugging stabs even if the user has
not specified the -g option.

The compiler must generate N_SO, N_OBJ, N_MAIN, and N_OPT in the .stab.index
section.

The debugging stabs must include N_SO and N_ENDM stabs.

Stabs for Optimized Code
When the user requests both optimization and debugging, the compiler must
generate many of the same debugging stabs. Stabs for functions and global variables
are complete. An optimized function may often require more N_SLINE stabs because
the optimizer moves instructions around. Stabs for local variables are not used, since
the optmizer can often keep these values in registers for some or all of their
lifetimes.



136 Stabs Interface • June 2004



137

APPENDIX A

Stab Codes

TABLE A-1 Numerical Index

Stab Name Stab Code Described on
Page

Description
Model

N_UNDF 0x00 50 Start of object file
.stabs “Filename.o”, N_UNDF, 0,
NumberOfStabs, BytesOfStringTable

N_GSYM 0x20 26 Global symbol
.stabs "Name : SymDesc Type",

N_GSYM, 0, Desc, 0

N_OUTL 0x25 35 Outlined function
.stabs "Name", N_OUTL, 0, 0, 0

N_FUN 0x24 24 Function or procedure
.stabs "Name : SymDesc RtnType [ ;
ArgType ]*", N_FUN, 0, RtnSize, 0

N_STSYM 0x26 47 Initialized static symbol
.stabs "Name : SymDesc Type",

N_STSYM, 0, 0, Offset

N_TSTSYM 0x27 65 Initialized TLS static variable
.stabs " Name : SymDesc Type ",
N_TSTSYM, 0, Size, Offset

N_LCSYM 0x28 29 Unitialized static symbol
.stabs "Name : SymDesc Type",

N_LCSYM, 0, 0, Offset

N_TLCSYM 0x29 64 Uninitialized TLS static variable
.stabs " Name : SymDesc Type ",
N_TLCSYM, 0, Size, Offset

N_MAIN 0x2a 32 Name of main routine
.stabs "Name", N_MAIN, 0, 0, 0



138 Stabs Interface • June 2004

N_ROSYM 0x2c 40 Read-only static symbol
.stabs "Name : SymDesc Type",

N_ROSYM, 0, 0, Offset

N_FLSYM 0x2e 35 Global symbol
.stabs " Name : SymDesc Type ",
N_FLSYM, OpenMP, Size, 0

N_TFLSYM 0x2f 63 Global symbol
.stabs " Name : SymDesc Type ",
N_TFLSYM, 0, Size, 0

N_CMDLINE 0x34 17 .stabs “cd path;cc..etc”, 0, 0, 0

N_OBJ 0x38 33 Object file or path name
.stabs "ObjectDir", N_OBJ, 0, 0, 0
.stabs "ObjectFile", N_OBJ, 0, 0, 0

N_OPT 0x3c 34 Compiler options
.stabs "Options", N_OPT, 0, 0,

TimeStamp

N_RSYM 0x40 41 Register symbol
.stabs "Name : SymDesc Type",

N_RSYM, 0, Size, Number

N_SLINE 0x44 42 Source line
.stabn N_SLINE, 0, Line, Offset

N_XLINE 0x45 53 Source line
.stabn N_XLINE, 0, Hi16bitsLineMask, 0

N_BROWS 0x48 17 Path to associated .cb file
.stabs "bdfile", N_BROWS, 0, 0, 0
(Not used by dbx)

N_ILDPAD 0x4c 27 Pad string table (used by linker, not dbx)
.stabs “Objname”, N_ILDPAD,0,0, Len
(Formerly N_FLINE)

N_ENDM 0x62 21 End module
.stabn N_ENDM, 0, 0, 0

N_SO 0x64 45 Compilation source file or path name
.stabs "SourceDir", N_SO, 0, 0, 0
.stabs "SourceFile", N_SO, 0,

LangCode, 0

N_MOD 0x66 32 Fortran 95 module begin
.stabs "Name: MemberList", N_MOD,
0, 0, 0

TABLE A-1 Numerical Index (Continued)

Stab Name Stab Code Described on
Page

Description
Model



Appendix A Stab Codes 139

N_EMOD 0x68 21 Fortran 95 module end
.stabs "Name", N_EMOD, 0, 0, 0

N_READ_MOD 0x6a 39 Fortran 95 use statement
.stabs "Name [ : ] [ only; ] [
NameList ]

N_ALIAS 0x6c 13 .stabs "FNewname:Oldname",
N_ALIAS, 0, 0, 0
.stabs "VNewname:Oldname",
N_ALIAS, 0, 0, 0
.stabs “externalname:Rsourcename”,
N_ALIAS, 0, 0, 0
.stabs “newname:S<typeidof_newname>=
<typeidof_oldname>”, N_ALIAS, 0, 0, 0

N_LSYM 0x80 31 Local symbol
.stabs "Name : SymDesc Type",

N_LSYM, 0, Desc, Value

N_BINCL 0x82 16 Begin include file
.stabs "FilePath", N_BINCL, 0, 0,

HashValue

N_SOL 0x84 46 Included or referenced source file
.stab "FilePath", N_SOL, 0, 0, 0

N_PSYM 0xa0 38 Formal parameter
.stabs "Name : SymDesc Type",

N_PSYM, 0, 0, Offset

N_EINCL 0xa2 21 End of include file
.stabn N_EINCL, 0, 0, 0

N_ENTRY 0xa4 22 Fortram alternate entry
.stabs "Name : e RtnType ;

FunName ; ;", N_ENTRY, 0, Line, 0

N_LBRAC 0xc0 28 Start of scope (left bracket)
.stabn N_LBRAC, 0, Level, Offset

N_USING 0xc4 50 C++ USING statement
.stabs “P:<N::m>”, N_USING, 0,
0, 0
.stabs “N:<N::m>:<EnclTypeId>”,
N_USING, 0, 0 ,0
.stabs “Q:<NamespaceTypeId>”,
N_USING, 0, 0 0
.stabs “O:<NamespaceTypeId>:
<EnclTypeId>”, N_USING, 0, 0, 0

TABLE A-1 Numerical Index (Continued)

Stab Name Stab Code Described on
Page

Description
Model



140 Stabs Interface • June 2004

N_ISYM 0xc6 27 Position independent type, internal
.stabs "Name:SymDesc Type",
N_ISYM, 0, Desc, Value

N_ESYM 0xc8 23 Position independent type, external
.stabs "Name:SymDesc Type",
N_ESYM, 0, Desc, Value

N_PATCH 0xd0 35 .stabn N_PATCH, 0, 0, Addr

N_CONSTRUCT 0xd2 19 Constructor description
.stabs "Var:State",N_CONSTRUCT,

0,End-Start,Start-Func

N_DESTRUCT 0xd4 20 Destructor description
.stabs “FromState:ToState”,N_DESTRUCT,

0,End-Start,Start-Func

N_CODETAG 0xd8 18 Code generation detail
.stabn N_CODETAG, marker, 0, addr

N_FUN_CHILD 0xd9 38 Created when a nesting relationship
between functions needs to be
communicated to the debugger
.stabs "Name", N_FUN_CHILD, 0, 0,
0

N_RBRAC 0xe0 39 End of scope (right bracket)
.stabn N_RBRAC, 0, Level, Offset

N_BCOMM 0xe2 15 Begin common block
.stabs "BlockName", N_BCOMM, 0, 0,

HashValue

N_TCOMM 0xe3 49 Begin task common block
.stabs "BlockName", N_TCOMM, 0, 0,

Offset

N_ECOMM 0xe4 20 End common block
.stabs "BlockName", N_ECOMM, 0,0,0

TABLE A-1 Numerical Index (Continued)

Stab Name Stab Code Described on
Page

Description
Model



Appendix A Stab Codes 141

TABLE A-2 Alphabetical Index

Stab Name Stab Code Described on
Page

Description
Model

N_ALIAS 0x6c 13 .stabs "FNewname:Oldname",
N_ALIAS, 0, 0, 0
.stabs "VNewname:Oldname",
N_ALIAS, 0, 0, 0
.stabs “externalname:
Rsourcename”, N_ALIAS, 0, 0, 0
.stabs “newname:S<typeidof_newname>=
<typeidof_oldname>”, N_ALIAS, 0, 0, 0

N_BCOMM 0xe2 15 Begin common block
.stabs "BlockName", N_BCOMM, 0, 0,

HashValue

N_BINCL 0x82 16 Begin include file
.stabs "FilePath", N_BINCL, 0, 0,

HashValue

N_BROWS 0x48 17 Path to associated .cb file
.stabs "bdfile", N_BROWS, 0, 0, 0

N_CMDLINE 0x34 17 .stabs “cd path;cc..etc”, 0, 0, 0

N_CODETAG 0xd8 18 Code generation detail
.stabn N_CODETAG, marker, 0, addr

N_CONSTRUCT 0xd2 19 Constructor description
.stabs "Var:State",N_CONSTRUCT,

0,End-Start,Start-Func

N_CPROF 0xf0 19 Cache profile feedback (reserved for future
use)

N_DESTRUCT 0xd4 20 Destructor description
.stabs
“FromState:ToState”,N_DESTRUCT,

0,End-Start,Start-Func

N_ECOMM 0xe4 20 End common block
.stabs "BlockName", N_ECOMM, 0,0,0

N_EINCL 0xa2 21 End of include file
.stabn N_EINCL, 0, 0, 0

N_EMOD 0x68 21 Fortran 95 module end
.stabs "Name", N_EMOD, 0, 0, 0

N_ENDM 0x62 21 End module
.stabn N_ENDM, 0, 0, 0

N_ENTRY 0xa4 21 Fortran alternate entry
.stabs "Name : e RtnType ;

FunName ; ;", N_ENTRY, 0, Line, 0



142 Stabs Interface • June 2004

N_ESYM 0xc8 23 Position independent type, external
.stabs "Name:SymDesc Type", N_ESYM,
0, Desc, Value

N_FLSYM 0x2e 35 Global symbol
.stabs " Name : SymDesc Type ",
N_FLSYM, OpenMP, Size, 0

N_FUN 0x24 24 Function or procedure
.stabs "Name : SymDesc RtnType [ ;
ArgType ]*", N_FUN, 0, RtnSize, 0

N_FUN_CHILD 0xd9 38 Created when a nesting relationship
between functions needs to be
communicated to the debugger
.stabs "Name", N_FUN_CHILD, 0, 0,
0

N_GSYM 0x20 26 Global symbol
.stabs "Name : SymDesc Type",

N_GSYM, 0, Desc, Value

N_ILDPAD 0x4c 27 Pad string table (used by linker, not dbx)
.stabs “Objname”, N_ILDPAD,0,0,
Len
(Formerly N_FLINE)

N_ISYM 0xc6 27 Position independent type, internal
.stabs "Name:SymDesc Type", N_ISYM,
0, Desc, Value

N_LBRAC 0xc0 28 Start of scope (left bracket)
.stabn N_LBRAC, 0, Level, Offset

N_LCSYM 0x28 29 Unitialized static symbol
.stabs "Name : SymDesc Type",

N_LCSYM, 0, 0, Offset

N_LSYM 0x80 31 Local symbol
.stabs "Name : SymDesc Type",

N_LSYM, 0, Desc, Value

N_MAIN 0x2a 32 Name of main routine
.stabs "Name", N_MAIN, 0, 0, 0

N_MOD 0x66 32 Fortran 95 module begin
.stabs "Name: MemberList", N_MOD,
0, 0, 0

N_OBJ 0x38 33 Object file or path name
.stabs "ObjectDir", N_OBJ, 0, 0, 0
.stabs "ObjectFile", N_OBJ, 0, 0, 0

TABLE A-2 Alphabetical Index (Continued)

Stab Name Stab Code Described on
Page

Description
Model



Appendix A Stab Codes 143

N_OPT 0x3c 34 Compiler options
.stabs "Options", N_OPT, 0, 0,

TimeStamp

N_OUTL 0x25 35 Outlined function
.stabs "Name", N_OUTL, 0, 0, 0

N_PATCH 0xd0 35 .stabn N_PATCH, 0, 0, Addr

N_PSYM 0xa0 38 Formal parameter
.stabs "Name : SymDesc Type",

N_PSYM, 0, 0, Offset

N_RBRAC 0xe0 39 End of scope (right bracket)
.stabn N_RBRAC, 0, Level, Offset

N_READ_MOD 0x6a 39 Fortran 95 use statement
.stabs "Name [ : ] [ only; ] [
NameList ]

N_ROSYM 0x2c 40 Read-only static symbol
.stabs "Name : SymDesc Type",

N_ROSYM, 0, 0, Offset

N_RSYM 0x40 41 Register symbol
.stabs "Name : SymDesc Type",

N_RSYM, 0, Size, Number

N_SLINE 0x44 42 Source line
.stabn N_SLINE, 0, Line, Offset

N_SO 0x64 45 Compilation source file or path name
.stabs "SourceDir", N_SO, 0, 0, 0
.stabs "SourceFile", N_SO, 0,

LangCode, 0

N_SOL 0x84 46 Included or referenced source file
.stab "FilePath", N_SOL, 0, 0, 0

N_STSYM 0x26 47 Initialized static symbol
.stabs "Name : SymDesc Type",

N_STSYM, 0, 0, Offset

N_TCOMM 0xe3 49 Begin task common block
.stabs "BlockName", N_TCOMM, 0, 0,

Offset

N_TFLSYM 0x2f 63 Global symbol
.stabs " Name : SymDesc Type ",
N_TFLSYM, 0, Size, 0

TABLE A-2 Alphabetical Index (Continued)

Stab Name Stab Code Described on
Page

Description
Model



144 Stabs Interface • June 2004

N_TLCSYM 0x29 64 Uninitialized TLS static variable
.stabs " Name : SymDesc Type ",
N_TLCSYM, 0, Size, Offset

N_TSTSYM 0x27 65 Initialized TLS static variable
.stabs " Name : SymDesc Type ",
N_TSTSYM, 0, Size, Offset

N_UNDF 0x00 50 Undefined symbol

N_USING 0xc4 50 C++ USING statement
.stabs “P:<N::m>”, N_USING, 0,
0, 0
.stabs “N:<N::m>:<EnclTypeId>”,
N_USING, 0, 0 ,0
.stabs “Q:<NamespaceTypeId>”,
N_USING, 0, 0 0
.stabs “O:<NamespaceTypeId>:
<EnclTypeId>”, N_USING, 0, 0, 0

N_XLINE 0x45 64 Source line
.stabn N_XLINE, 0, Hi16bitsLineMask,
0

TABLE A-2 Alphabetical Index (Continued)

Stab Name Stab Code Described on
Page

Description
Model



145

APPENDIX B

Symbol Descriptors

TABLE B-1 Symbol descriptors — Alphabetical by character code

Code Description

empty Local variable, page 56

A Automatic variable (Fortran 90), page 57

b Based variable, page 57

c Constant symbol (Fortran), page 58

E External data, page 59

F Global function or procedure, page 59

f Local function or procedure, page 60

G Global variable, page 60

I Interface block, page 61

J Internal procedure (Fortran 90), page 61

LT C++ 4.0 Lines in template, page 62

l Literal, page 62

M Module (Fortran 90), page 63

P Prototype, page 64

p Value parameter, page 63

r Register variable, page 65

S Static file variable, page 65

T Enumeration, structure or union, page 66

t Type name, page 67



146 Stabs Interface • June 2004

U Class declaration, page 68

V Common or static local variable, page 68

v Variable parameter by reference, page 71

X Function result variable, page 72

Y C++ 4.0 specification (see below), page 72

TABLE B-2 C++ 5.0 Specification

Code characters Description

YA Anonymous union, nested, page 74

Ya Anonymous union, page 74

YC Class nested, page 75

Yc Class, page 75

YD Pointer to class data member, page 81

YI Template Instantiation, page 83

YM Pointer to class member function, page 81

YR Run Time Type Information (RTTI), page 91

YS Structure nested, page 75

Ys Structure, page 75

YT Template definition, page 83

YU Union, nested, page 75

Yu Union, page 74

TABLE B-1 Symbol descriptors — Alphabetical by character code (Continued)

Code Description



147

APPENDIX C

Type Codes

TABLE C-1 Type codes — Alphabetical by character code

Code character Description

empty Type reference, page 96

a Array, page 96

B Volatile, page 97

b Basic integer, page 98

D Dope vector, page 114

d Dope vector, page 98

e Enumeration, page 99

F Function parameter, page 100

f Function, page 101

g Function with prototype info, page 101

K Restricted, page 103

k Const, page 104

R Floating point, page 104

r Range, page 105

s Structure or record, page 106

u Union, page 106

x Forward reference, page 107



148 Stabs Interface • June 2004

Y C++ specification, page 108

* Pointer, page 109

& Reference, page 109

TABLE C-1 Type codes — Alphabetical by character code (Continued)

Code character Description



149

APPENDIX D

Index Stabs

Index stabs are used to support auto-load stab processing, where stabs are loaded on
demand from the object files (not an executable file or library), which must be kept
available for the debugger to use. The debugger knows which object file to open to
find the stabs for any global symbol by using the index stabs that are always copied
to the executable file.

The index stabs are similar to the regular stabs in form and in the ordering that
imparts file scoping. For every regular stab that describes a file or a global symbol,
there is a corresponding index stab. The index stab is often simplified, with less
information than the regular stab. Not all regular stabs have corresponding index
stabs.

The stabs that can be index stabs are:

N_SO

N_OBJ

N_OPT

N_CMDLINE

N_MAIN

N_FUN

N_MOD

N_GSYM

N_ESYM

N_ILDPAD

N_PATCH

N_UNDF



150 Stabs Interface • June 2004

N_SOL

N_CODETAG

In general, every such regular stab has a corresponding index stab. One exception is
the extern data Symdesc E, which is an N_GSYM stab but has no corresponding index
stabs. Another is the N_CMDLINE stab , which is only an index stab; it has no
corresponding regular stab. Some regular stabs like N_LCSYM, N_STSYM, and
N_FLSYM can have globalized names in their strings, and this globablization results
in a corresponding N_GSYM index stab. There is no correlation at all between N_SOL
index stabs and regular N_SOL stabs. N_SOL index stabs are used solely to identify
header files with executable code in them, while regular N_SOL stabs also indicate
the definitions of types and variables within headers files.

Simplified index stabs usually contain nothing more than the name of the symbol.
This applies to the stabs N_FUN, N_MOD, N_GSYM, N_ESYM, and N_PATCH. All other
index stabs (N_SO, N_OBJ, N_OPT, N_MAIN, N_ILDPAD, and N_UNDF) are identical to
their corresponding regular stabs. One exception is COMDAT index stabs, which
always have n_other == 1. N_OBJ index stab strings are filled in at link time,
while the regular N_OBJ stabs have null strings. All other index stabs (N_SO, N_OPT,
N_MAIN, N_ILDPAD, and N_UNDF) are identical to their corresponding regular stabs.

Here is an example of the index stabs and regular stabs for a hello world program:

#include <stdio.h>
int main(int argc, char* argv[])
{

printf("Hello world\n");
}

% cc -c -g hello.c
% cc -g hello.o
% dumpstabs -s a.out



Appendix D Index Stabs 151

Debugging Stab table -- 60 entries

   0:  .stabs "hello.c",N_UNDF,0x0,0x3b,0x567
   1:  .stabs "/home/ohair",N_SO,0x0,0x0,0x0
   2:  .stabs "hello.c",N_SO,0x0,0x3,0x0
   3:  .stabs "",N_OBJ,0x0,0x0,0x0
   4:  .stabs "",N_OBJ,0x0,0x0,0x0

5: .stabs "V=8.0;DBG_GEN=4.0.83;Xa;g;R=Forte Developer 7 C 5.4
EA1
2001/10/21;G=$XA28kkBin_H8CsY.",N_OPT,0x0,0x0,0x3c1fe9e2
   6:  .stabs "char:t(0,1)=bsc1;0;8",N_LSYM,0x0,0x0,0x0
   7:  .stabs "short:t(0,2)=bs2;0;16",N_LSYM,0x0,0x0,0x0
   8:  .stabs "int:t(0,3)=bs4;0;32",N_LSYM,0x0,0x0,0x0
   9:  .stabs "long:t(0,4)=bs4;0;32",N_LSYM,0x0,0x0,0x0
  10:  .stabs "long long:t(0,5)=bs8;0;64",N_LSYM,0x0,0x0,0x0
  11:  .stabs "signed char:t(0,6)=bsc1;0;8",N_LSYM,0x0,0x0,0x0
  12:  .stabs "signed short:t(0,7)=bs2;0;16",N_LSYM,0x0,0x0,0x0
  13:  .stabs "signed int:t(0,8)=bs4;0;32",N_LSYM,0x0,0x0,0x0
  14:  .stabs "signed long:t(0,9)=bs4;0;32",N_LSYM,0x0,0x0,0x0
  15:  .stabs "signed long
long:t(0,10)=bs8;0;64",N_LSYM,0x0,0x0,0x0
16: .stabs "unsigned char:t(0,11)=buc1;0;8",N_LSYM,0x0,0x0,0x0
17: .stabs "unsigned short:t(0,12)=bu2;0;16",N_LSYM,0x0,0x0,0x0

  18:  .stabs "unsigned:t(0,13)=bu4;0;32",N_LSYM,0x0,0x0,0x0
  19:  .stabs "unsigned int:t(0,14)=bu4;0;32",N_LSYM,0x0,0x0,0x0
20: .stabs "unsigned long:t(0,15)=bu4;0;32",N_LSYM,0x0,0x0,0x0

  21:  .stabs "unsigned long
long:t(0,16)=bu8;0;64",N_LSYM,0x0,0x0,0x0
  22:  .stabs "float:t(0,17)=R1;4",N_LSYM,0x0,0x0,0x0
  23:  .stabs "double:t(0,18)=R2;8",N_LSYM,0x0,0x0,0x0
  24:  .stabs "long double:t(0,19)=R6;16",N_LSYM,0x0,0x0,0x0
  25:  .stabs "void:t(0,20)=bs0;0;0",N_LSYM,0x0,0x0,0x0
  26:  .stabs "/usr/include/stdio.h",N_BINCL,0x0,0x0,0x0
  27:  .stabs "/usr/include/sys/
feature_tests.h",N_BINCL,0x0,0x0,0x0
  28:  .stabs "/usr/include/sys/isa_defs.h",N_BINCL,0x0,0x0,0x0
  29:  .stabn N_EINCL,0x0,0x0,0x0
  30:  .stabn N_EINCL,0x0,0x0,0x0
  31:  .stabs "/usr/include/sys/va_list.h",N_BINCL,0x0,0x0,0x0
  32:  .stabs "__va_list:t(4,1)=*(0,20)",N_LSYM,0x0,0x0,0x0
  33:  .stabn N_EINCL,0x0,0x0,0x0
  34:  .stabs "/usr/include/stdio_tag.h",N_BINCL,0x0,0x0,0x0
  35:  .stabs "__FILE:t(5,1)=xs__FILE:",N_LSYM,0x0,0x0,0x0
  36:  .stabn N_EINCL,0x0,0x0,0x0
  37:  .stabs "/usr/include/stdio_impl.h",N_BINCL,0x0,0x0,0x0
  38:  .stabs "ssize_t:t(6,1)=(0,3)",N_LSYM,0x0,0x4,0x0



152 Stabs Interface • June 2004

39:  .stabs
"__FILE:T(6,2)=s16_cnt:(6,1),0,32;_ptr:(6,3)=*(0,11),32,32;_base
:(6,3),64,32;_fl
ag:(0,11),96,8;_file:(0,11),104,8;__orientation:(0,14),112,2;__i
onolock:(0,14),1
14,1;__filler:(0,14),115,5;",N_LSYM,0x0,0x10,0x0
  40:  .stabn N_EINCL,0x0,0x0,0x0
  41:  .stabs "FILE:t(1,1)=(6,2)",N_LSYM,0x0,0x10,0x0
  42:  .stabs "size_t:t(1,2)=(0,14)",N_LSYM,0x0,0x4,0x0
  43:  .stabs "__longlong_t:t(1,3)=(0,5)",N_LSYM,0x0,0x8,0x0
  44:  .stabs "off_t:t(1,4)=(0,4)",N_LSYM,0x0,0x4,0x0
  45:  .stabs "off64_t:t(1,5)=(0,5)",N_LSYM,0x0,0x8,0x0
  46:  .stabs "fpos_t:t(1,6)=(0,4)",N_LSYM,0x0,0x4,0x0
  47:  .stabs "fpos64_t:t(1,7)=(0,5)",N_LSYM,0x0,0x8,0x0
  48:  .stabn N_EINCL,0x0,0x0,0x0
  49:  .stabs
"main:F(0,3);(0,3);(0,22)=*(0,21)=*(0,1)",N_FUN,0x0,0x0,0x0
  50:  .stabs "main",N_MAIN,0x0,0x0,0x0
  51:  .stabs "argc:p(0,3)",N_PSYM,0x0,0x4,0x44
  52:  .stabs "argv:p(0,22)",N_PSYM,0x0,0x4,0x48
  53:  .stabn N_LBRAC,0x0,0x1,0xc
  54:  .stabs
"$XB28kkBin_H8CsY.main.__func__:V(0,24)=ar(0,4);0;4;(0,23)=k(0,1
)",N_ROSYM,0x0,0
x5,0x0
  55:  .stabn N_SLINE,0x0,0x4,0xc
  56:  .stabn N_SLINE,0x0,0x5,0x24
  57:  .stabn N_RBRAC,0x0,0x1,0x24
  58:  .stabs
"printf:P(0,3);(0,26)=*(0,25)=k(0,1);0",N_FUN,0x0,0x0,0x0
  59:  .stabn N_ENDM,0x0,0x0,0x0

dumpstabs -s hello.c



Appendix D Index Stabs 153

Index Stab table -- 9 entries

   0:  .stabs "hello.c",N_UNDF,0x0,0x8,0xf7
   1:  .stabs "/home/ohair",N_SO,0x0,0x0,0x0
   2:  .stabs "hello.c",N_SO,0x0,0x3,0x0
   3:  .stabs "/home/ohair",N_OBJ,0x0,0x0,0x0
   4:  .stabs "hello.o",N_OBJ,0x0,0x0,0x0

5: .stabs "V=8.0;DBG_GEN=4.0.83;Xa;g;R=Forte Developer 7 C 5.4
EA1
2001/10/21;G=$XA28kkBin_H8CsY.",N_OPT,0x0,0x0,0x3c1fe9e2

6: .stabs "/home/ohair; /set/dist/sparc-S2/current/bin/../YNH/
bin/cc -g -c
hello.c -W0,-xp\$XA28kkBin_H8CsY.",N_CMDLINE,0x0,0x0,0x0
   7:  .stabs "main",N_MAIN,0x0,0x0,0x0
   8:  .stabs "main",N_FUN,0x0,0x0,0x0



154 Stabs Interface • June 2004



155

APPENDIX E

Fortran 95 Pointers and Array
Descriptors

This appendix describes the implementation of Fortran 95 pointers and array
pointers for the Solaris operating environment.

Terminology
If a Fortran 95 object possesses the DIMENSION attribute, it is an array; otherwise, it
is a scalar. If an object possesses the POINTER attribute, it is a pointer. An object that
possesses both the DIMENSION attribute and the POINTER attribute is an array
pointer. An object that possesses the POINTER attribute but not the DIMENSION
attribute is a scalar pointer.

In Fortran 95, a pointer that references a data object is associated with that object. A
pointer that does not reference a data object is disassociated. A disassociated pointer
is the Fortran 95 equivalent of a null pointer. The data object referenced by an
associated pointer is the target of the pointer.

Run-time Representations
Some of the properties of a pointer object are known at compile time. The
declarations for a Fortran 95 data object determine its type. The declarations for a
character object also determine its length. The length of a character object need not
be constant; it can be an asterisk or an integer expression of a special form called a
specification expression. The declarations of an array object must include the



156 Stabs Interface • June 2004

DIMENSION attribute, which determines the rank of the array object. The declaration
of an array pointer does not determine the bounds of the arrays the pointer can
reference.

Fortran 95 represents a scalar pointer value as a single address. For the SPARC V8
architecture, a scalar pointer is 32 bits wide. For the SPARC V9 architecture, a scalar
pointer is 64 bits wide. An associated scalar pointer contains the address of the start
of the target object. A disassociated scalar pointer contains the address zero.

Fortran 95 represents a array pointer value as a structured value. If the rank of an
array pointer value is n, its representation consists of the following sequence of
fields:

The field named actual-origin contains the address of the array with which the
pointer value is associated. If the pointer value is not associated with a target object,
actual-origin contains the address zero and the rest of the fields are undefined.
For an associated pointer value, the value of actual-origin is the address of the
start of the first element referenced by the pointer value. The target array object
might be contained within a larger array object. In that case, the actual-origin

need not be the address of the first element of that larger object.

The field named extent contains the shape of the associated array object. The shape
is an n-element vector. The i-th element of extent is the extent of the i-th dimension
of the target array. The extent of a dimension is the number of elements in that
dimension.

The field named stride is used in address calculations. The i-th element of stride
contains the difference between the starting addresses of consecutive elements of the
i-th dimension of the array.

The field named virtual-origin contains the address of the start of the possibly
hypothetical element of the target array whose subscripts are all zeros. The field is
used to simplify address calculations. The value of virtual-origin can be
computed from the other fields of a pointer value.

Field Name Type

actual-origin Address

extent array[1:n] of unsigned integers

stride array[1:n] of unsigned integers

virtual-origin address

lower-bound array[1:n]] of signed integers



Appendix E Fortran 95 Pointers and Array Descriptors 157

The field named lower-bound contains the lower bounds of the target array. The i-
th element of virtual-origin is the lower bound of the i-th dimension. The upper
bounds can be computed from the lower bounds and the extents. The upper bound
of the i-th dimension of the target array is

lower-bound[i] + extent[i] - 1.

For SPARC V8, the addresses and integers in an array pointer are all 32 bits wide.
For SPARC V9, the addresses and integers in an array pointer are all 64 bits wide.
Fortran 95 allows integers wider than the default integer type to appear in bounds
expressions, but it allows implementations to restrict the range of acceptable values
for array bounds. Furthermore, the routines for querying the values of array bounds
return values of the default integer type.

The lengths of character pointers are not part of the pointer values. The lengths of
static character objects and of a character objects in structures are required to be
compile-time constants. The length of a character object that is local to a program
unit is evaluated on entry to that program unit and remains fixed until the program
unit is exited. Assignments and allocations do not affect the lengths of character
objects.

Example
Let A be an array pointer declared as

CHARACTER, POINTER, DIMENSION(:,:) :: A*11

The front-end allocates space for A either on the stack or in a static area. After
successful execution of the statement

ALLOCATE( A(-2:12, 0:9) )

the space allocated for A contains

actual-origin The address of a 1650-byte block of memory

extent[1] 15

extent[2] 10

stride[1] 11

stride[2] 165

virtual-origin actual-origin + 22

lower-bound[1] -2

lower-bound[2] 0



158 Stabs Interface • June 2004

Subscripting
Given a rank n array pointer that is associated with a target array, the address of an
element of the target array is

n
virtual-origin + SUM stride[i]*subscript[i]

i=1

where subscript[i], for 1 <= i <= n, is the index of the particular element.
The field actual-origin, the array extent, and the array lower-bound are not
involved in subscript calculations.

The same address could be calculated as

n
actual-origin + SUM stride[i]*(subscript[i] - lower-bound[i]).

i=1

The two expressions produce the same result because the virtual origin is set to

n
actual-origin - SUM stride[i]*lower-bound[i].

i=1

Since the virtual origin is determined by other elements of the dope vector, it could
be eliminated without loss of functionality. The reason for retaining it is to avoid
some loads and subtracts in subscript calculations.

Whole Array Operations
Whole array operations operate over all of the elements of an array. No particular
order of application is implied. A possible translation of a whole array operation
applied to a rank n array pointer is

address[n] = actual-origin;
for (i[n] = extent[n]; i[n] > 0; --i[n])
{

address[n-1] = address[n];
for (i[n-1] = extent[n-1]; i[n-1] > 0; --i[n-1])
{

...
address[1] = address[2];
for (i[1] = extent[1]; i[1] > 0; --i[1])
{



Appendix E Fortran 95 Pointers and Array Descriptors 159

Operation(address[1]);
address[1] += stride[1];

}
...
address[n-1] += stride[n-1];

}
address[n] += stride[n];

}

The loops are decremental rather than incremental to simplify the test for the end-
condition. The order of the loops was chosen to make the order of the addresses
presented to the operation monotonic increasing.

Memory Management
Fortran 95 dynamically allocates storage for automatic arrays, allocatable arrays,
pointer targets, and return values for array-valued functions. Sun Fortran 95
ultimately uses the routine malloc to allocate dynamic storage and the routine
free to free it. malloc and free are used because of the need for compatibility
with routines written in C. Both user codes and routines in the system libraries use
the set of routines based on malloc and free.

Fortran 95 normally uses the system library versions of malloc and free. Users are
allowed to substitute other versions of malloc and free if they choose to do so.



160 Stabs Interface • June 2004



161

APPENDIX F

Globalization

For the functions recompiled by fix and continue to be able to access the current
values in the executable, all file static variables in the executable must converted into
global values. The exception to this rule is nested static variables within a function,
which must instead generate a warning message. This globalization is performed by
the compiler.

The first time a file is compiled, the compiler creates a unique prefix and prepends it
to each file static variable. The unique symbol consists of the Internet address (or 0),
time of day, and process ID (16-bits only.) The globalization prefix is encoded into
the N_OPT stab (see “N_OPT — Options (0x3c)” on page 34) with the form:

The globalization prefix is of the form:

The 80-bits are encoded as 14 characters, where each character contains 6-bits of
information. The characters a-z, A-Z, 0-9, _, and $ are used to store the 6-bits.

The following code shows how various static variables are globalized:

G=prefix

.Internet_address time_of_day process_ID



162 Stabs Interface • June 2004

This code generates the following stabs:

int a; /* a */
static int b;/* .<prefix>.b */
int
main(void)
{

static int c;/* ..main.c */
{
static int d;/* Warning message */
}
return 0;

}
static void
foo(void)
{

static int e;/* .<prefix>.foo.e */
{
static int f;/* Warning message */
}

}

Index Stab table -- 11 entries

   0:  .stabs "ex4.c",N_UNDF,0x0,0xa,0xf2
   1:  .stabs "/home/ohair",N_SO,0x0,0x0,0x0
   2:  .stabs "ex4.c",N_SO,0x0,0x3,0x0
   3:  .stabs "",N_OBJ,0x0,0x0,0x0
   4:  .stabs "",N_OBJ,0x0,0x0,0x0

5: .stabs "V=8.0;DBG_GEN=4.0.83;Xa;g;R=Forte Developer 7 C 5.4
EA1
2001/10/21;G=$XA28kkBzr_H8StY.",N_OPT,0x0,0x0,0x3c1feaf3

6: .stabs "/home/ohair; /set/dist/sparc-S2/current/bin/../YNH/
bin/cc -g -c
ex4.c -W0,-xp\$XA28kkBzr_H8StY.",N_CMDLINE,0x0,0x0,0x0
   7:  .stabs "main",N_MAIN,0x0,0x0,0x0
   8:  .stabs "main",N_FUN,0x0,0x0,0x0
   9:  .stabs "$XA28kkBzr_H8StY.b",N_GSYM,0x0,0x0,0x0
  10:  .stabs "a",N_GSYM,0x0,0x0,0x0



Appendix F Globalization 163

Excluded Stab table -- 49 entries

   0:  .stabs "ex4.c",N_UNDF,0x0,0x30,0x392
   1:  .stabs "/home/ohair",N_SO,0x0,0x0,0x0
   2:  .stabs "ex4.c",N_SO,0x0,0x3,0x0
   3:  .stabs "",N_OBJ,0x0,0x0,0x0
   4:  .stabs "",N_OBJ,0x0,0x0,0x0

5: .stabs "V=8.0;DBG_GEN=4.0.83;Xa;g;R=Forte Developer 7 C 5.4
EA1
2001/10/21;G=$XA28kkBzr_H8StY.",N_OPT,0x0,0x0,0x3c1feaf3
   6:  .stabs "char:t(0,1)=bsc1;0;8",N_LSYM,0x0,0x0,0x0
   7:  .stabs "short:t(0,2)=bs2;0;16",N_LSYM,0x0,0x0,0x0
   8:  .stabs "int:t(0,3)=bs4;0;32",N_LSYM,0x0,0x0,0x0
   9:  .stabs "long:t(0,4)=bs4;0;32",N_LSYM,0x0,0x0,0x0
  10:  .stabs "long long:t(0,5)=bs8;0;64",N_LSYM,0x0,0x0,0x0
  11:  .stabs "signed char:t(0,6)=bsc1;0;8",N_LSYM,0x0,0x0,0x0
  12:  .stabs "signed short:t(0,7)=bs2;0;16",N_LSYM,0x0,0x0,0x0
  13:  .stabs "signed int:t(0,8)=bs4;0;32",N_LSYM,0x0,0x0,0x0
  14:  .stabs "signed long:t(0,9)=bs4;0;32",N_LSYM,0x0,0x0,0x0
  15:  .stabs "signed long
long:t(0,10)=bs8;0;64",N_LSYM,0x0,0x0,0x0
16: .stabs "unsigned char:t(0,11)=buc1;0;8",N_LSYM,0x0,0x0,0x0
17: .stabs "unsigned short:t(0,12)=bu2;0;16",N_LSYM,0x0,0x0,0x0

  18:  .stabs "unsigned:t(0,13)=bu4;0;32",N_LSYM,0x0,0x0,0x0
  19:  .stabs "unsigned int:t(0,14)=bu4;0;32",N_LSYM,0x0,0x0,0x0
20: .stabs "unsigned long:t(0,15)=bu4;0;32",N_LSYM,0x0,0x0,0x0

  21:  .stabs "unsigned long
long:t(0,16)=bu8;0;64",N_LSYM,0x0,0x0,0x0
  22:  .stabs "float:t(0,17)=R1;4",N_LSYM,0x0,0x0,0x0
  23:  .stabs "double:t(0,18)=R2;8",N_LSYM,0x0,0x0,0x0
  24:  .stabs "long double:t(0,19)=R6;16",N_LSYM,0x0,0x0,0x0
  25:  .stabs "void:t(0,20)=bs0;0;0",N_LSYM,0x0,0x0,0x0
  26:  .stabs "main:F(0,3)",N_FUN,0x0,0x0,0x0
  27:  .stabs "main",N_MAIN,0x0,0x0,0x0
  28:  .stabn N_LBRAC,0x0,0x1,0x4
29: .stabs "$XB28kkBzr_H8StY.main.c:V(0,3)",N_LCSYM,0x0,0x4,0x0

  30:  .stabs
"$XB28kkBzr_H8StY.main.__func__:V(0,22)=ar(0,4);0;4;(0,21)=k(0,1
)",N_ROSYM,0x0,0
x5,0x0
31:  .stabn N_LBRAC,0x0,0x2,0x4

  32:  .stabs "d:V(0,3)",N_LCSYM,0x0,0x4,0x4
  33:  .stabn N_RBRAC,0x0,0x2,0x4
  34:  .stabn N_SLINE,0x0,0xa,0x4



164 Stabs Interface • June 2004

The prefix format is a dot ’.’ or a dollar sign ’$’ followed by uppercase ’X’, one of the
letters ABC, a unique pattern of characters, an optional trailing function name, and
an optional variable name:

For example:

where:

35:  .stabn N_SLINE,0x0,0xb,0x14
  36:  .stabn N_RBRAC,0x0,0x1,0x14
  37:  .stabs "foo:f(0,20)",N_FUN,0x0,0x0,0x0
  38:  .stabn N_LBRAC,0x0,0x1,0x4
39: .stabs "$XB28kkBzr_H8StY.foo.e:V(0,3)",N_LCSYM,0x0,0x4,0x0

  40:  .stabs
"$XB28kkBzr_H8StY.foo.__func__:V(0,24)=ar(0,4);0;3;(0,23)=k(0,1)
",N_ROSYM,0x0,0x
4,0x0
  41:  .stabn N_LBRAC,0x0,0x2,0x4
  42:  .stabs "f:V(0,3)",N_LCSYM,0x0,0x4,0xc
  43:  .stabn N_RBRAC,0x0,0x2,0x4
  44:  .stabn N_SLINE,0x0,0x13,0xc
  45:  .stabn N_RBRAC,0x0,0x1,0xc
  46:  .stabs "$XA28kkBzr_H8StY.b:S(0,3)",N_LCSYM,0x0,0x4,0x0
  47:  .stabs "a:G(0,3)",N_GSYM,0x0,0x4,0x0
  48:  .stabn N_ENDM,0x0,0x0,0x0

{.$}X{ABC}uniquepattern[.function_name][EQUIVn][.variable_name]

$XA28kkBzr_H8StY.b
$XB28kkBzr_H8StY.main.c
$XC28kkBt1_H8CwY.funcEQUIV1_0.i

A Is for file static variables

B Is for function static variables

C Is for Fortran equivalence blocks (the value field of the stab indicates the offset
into the block) and the .variable_name should be removed from the name to find
the Elf symbol that represents this block of static data.



165

APPENDIX G

Differential Mangling

The C++ compiler generates "mangled" names to obtain unique symbols for linking
programs and for other reasons.

In stabs, some of these names are mangled further in order to conserve string
space—a technique called differential mangling. Here is an example:

The applicable stabs generated for a -compat=5 (ABI-2) compile are:

Note that names that appear in index stabs are not differentially mangled, while
names that appear in excluded stabs are (compare index stab 7 with stab 26). The
compiler constructs a differential name based on the member name and the type

namespace foo {
class bar {

void buz();
};

};
foo::bar obj;

Index Stab table -- 10 entries

   7:  .stabs "__1nDfooDbar_:U",N_ESYM,0x0,0x0,0x0

Excluded Stab table -- 33 entries

  25:  .stabs "__1nDfoo_:T(0,19)=Yn0foo;",N_ISYM,0x0,0x0,0x0
  26:  .stabs "nDbar(0,19):U(0,20)",N_ESYM,0x0,0x0,0x0
  27:  .stabs
"nDbar(0,19):T(0,20)=Yc1bar;;;AcDbuz6M_v;;;;;;;000;",N_ESYM,\
              0x0,0x1,0x0
  28:  .stabs
"cDbuz6M_v(0,20):P(0,13);(0,21)=*(0,20)",N_FUN,0x0,0x0,0x0
  31:  .stabs "obj:G(0,20)",N_GSYM,0x0,0x1,0x0



166 Stabs Interface • June 2004

number of the containing class or namespace (for example, cDbuz6M_v(0,20) in
stab 28). In class (struct) stabs themselves, the list of members is differentially
mangled without type number (for example, cDbuz6M_v in stab 27).

The analysis of mangled names for buz is:

The differential algorithm for ABI-1 is:

(The E is the number of characters (4) in outer portion of the mangled name. If the
length is ‘A’ (0), there is no separator.)

The differential algorithm for ABI-2 is:

ABI-2 ABI-1

prefix __1 __0

type c f

outer Dfoo Dfoo

separator 5

inner Dbar Dbar

member Dbuz6M_v Dbuzv

suffix _

container member differential

__0 __0

T6 f f

Dfoo Dfoo

5 E

Dbar Dbar

Dbuzv Dbuzv

container member differential

__1 __1

n c c



Appendix G Differential Mangling 167

Sun Microsystems, Inc has a patent pending for the differential mangling algorithm.

DfooDba DfooDbar

Dbuz6M_v Dbuz6M_v

_ _

container member differential



168 Stabs Interface • June 2004



Glossary 169

Glossary

ELF The Executable and Linking Format stores executable files, shared libraries,
and object files on the Solaris operating environment. The format is fully
described in the System V Application Binary Interface and the SPARC Processor
Supplement, both of which are produced by AT&T and published by Prentice-
Hall.

stab Symbol table entry, used throughout this document to refer to those generated
by the debugger.

.stabs Assembler pseudo-directive that generates a symbol table entry.

.stabn Assembler pseudo-directive that generates a symbol table entry similar to
.stabs, except with a null string.

symbol descriptor A character indicating the kind of symbol being described. It follows the name
of the symbol and is separated from it by a colon.

type A description of the ways in which a symbol can be used. Basic types are
integer and float. All other types are constructed from these basic types by
collecting them into arrays, structures, and so forth, or by adding modifiers,
such as pointer-to or constant attributes.

.xstabs Assembler pseudo-directive that generates a symbol table entry and permits
the user to specify which section in an ELF file the stab is to be stored.

24405Assembler pseudo-directive that generates a symbol table entry for a
COMDAT stab and permits the user to specify which section in an ELF file the
stab is to be stored.

type description A substring of characters within a stab that describes a type. The first character
of the substring determines the syntax of the characters that follow. Type
descriptions can be nested.

type number A compiler-generated unique identifier for a type used in stabs. It can take one
of the following forms: a number, (file_id, number), or (number).



170 Stabs Interface • June 2004

type specification A reference to a previously defined type number, a new definition of a type
number, or a type description.


	Contents
	Introduction
	Overview
	ELF Object File Format
	Debugger Stabs
	N_ALIAS - Symbol Alias (0x6c)
	N_BCOMM — Begin Common Block (0xe2)
	N_BINCL — Begin Include File (0x82)
	N_BROWS — Source Browser (0x48)
	N_CMDLINE - Compilation Command Line (0x34)
	N_CODETAG - Code Generation Detail (0xd8)
	CODETAG_BITFIELD
	CODETAG_SPILL
	CODETAG_SCOPY
	CODETAG_STACK_PROBE

	N_CONSTRUCT - Constructor Description (0xd2)
	N_CPROF - Cache Profile Feedback (0xf0)
	N_DESTRUCT - Destructor Description (0xd4)
	N_ECOMM — End Common Block (0xe4)
	N_EINCL — End Included File (0xa2)
	N_EMOD - Fortran90 Module End
	N_ENDM — End Module (0x62)
	N_ENTRY — Fortran Alternate Entry (0xa4)
	N_ESYM — Position-independent External Data Type (0xc8)
	N_FLSYM -- Fragmented Data Symbol (0x2e)
	N_FUN — Function or Procedure Definition (0x24)
	N_FUN_CHILD -- Function Child (0xd9)
	N_GSYM — Global Symbol (0x20)
	N_ILDPAD - Incremental Link Padding (0x4c)
	N_ISYM — Position-independent Internal Data Type (0xc6)
	N_LBRAC — Begin Scope (0xc0)
	N_LCSYM — Uninitialized Static Symbol (0x28)
	N_LSYM — Local Symbol (0x80)
	N_MAIN — Main Routine Name (0x2a)
	N_MOD - Fortran 95 Module Begin
	N_OBJ — Object Directory and File (0x38)
	N_OPT — Options (0x3c)
	N_OUTL - Outlined Function
	N_PATCH - Patch Run Time Checker (0xd0)
	P_BITFIELD
	P_SPILL
	P_SCOPY

	N_PSYM — Formal Parameter (0xa0)
	N_RBRAC — End Scope (0xe0)
	N_READ_MOD - Fortran 95 Module Use
	N_ROSYM — Read-Only Static Symbol (0x2c)
	N_RSYM — Register Symbol (0x40)
	N_SLINE — Source Line (0x44)
	N_SO — Source Directory and File (0x64)
	N_SOL — Included File (0x84)
	N_STSYM — Initialized Static Symbol (0x26)
	N_TCOMM — Begin Task Common Block (0xe3)
	N_TFLSYM — Thread Local Storage (TLS) Fragmented Data Symbol (0x2f)
	N_TLCSYM — Thread Local Storage (TLS) Uninitialized Static Symbol (0x29)
	N_TSTSYM — Thread Local Storage (TLS) Initialized Static Symbol (0x27)
	N_UNDF — Undefined (0x00)
	N_USING — C++ USING statement (0xc4)
	USING Declaration
	Local USING Declaration, Position Dependent
	Global, Namespace, or Class Scope USING Declaration, Position Independent:
	USING Directive
	Local USING Directive, Position Dependent
	Global, Namespace, or Class Scope USING Directives, Position Independent
	Summary of USING statement stabs
	Prefixes
	Other Fields


	N_XLINE — Extended Line Number (0x45)

	Symbol Descriptors
	Local Variable (empty)
	Automatic Variable (A)
	Based Variable (b)
	Constant (c)
	External Data (E)
	Global Function or Procedure (F)
	Local Function or Procedure (f)
	Global Variable (G)
	Interface Block (I)
	Internal Procedure (J)
	Lines in Template (LT)
	Literal (l)
	Module (M)
	Value Parameter (p)
	Prototype (P)
	Register Variable (r)
	Static File Variable (S)
	Enumeration, Structure or Union (T)
	Type Name (t)
	Class Declaration (U)
	Declaration Syntax
	Example
	Stabs

	Common or Static Local Variable (V)
	Variable Parameter by Reference (v)
	Function Result Variable (X)
	C++ Specification (Y)
	Functions with Default Arguments
	Inline Functions
	Stabs for anonymous unions (Ya)
	Member anonymous unions

	Stabs for classes, structs, and non-anonymous unions
	The Components of the Class Stab

	Namespaces (Yn)
	Pointers to class members (YM, YD)
	Templates (YT, YI)
	Class templates (YTc, YTC, YTs, and YTS)
	Template Member Function Instantiations (YIm)
	Function templates (YTf)
	Instantiations


	Run Time Type Information (RTTI) (YR)
	Miscellaneous Stabs


	Type Specification
	Array (a)
	Volatile (B)
	Basic Integer (b)
	Dope Vector (D)
	Dope Vector (d)
	Enumeration (e)
	Function Parameter (F)
	Function (f)
	Function With Prototype Info (g)
	Restricted (K)
	Const (k)
	Floating Point (R)
	Range (r)
	Set (S)
	Structure or Record (s) and Union (u)
	Forward Reference (x)
	C++ Types (Y)
	C99 Variable Length Array (z)
	Pointer (*)
	Reference (&)

	Auto-load Stab Processing
	Introduction
	Stabs Index
	Stabs in Object Files
	Stabs in Executable Files
	Debugger Operation
	Delayed Processing of a.out Files

	Stabs Generation
	Minimal Stabs Requirements
	Stabs for Optimized Code

	Stab Codes
	Symbol Descriptors
	Type Codes
	Index Stabs
	Fortran 95 Pointers and Array Descriptors
	Terminology
	Run-time Representations
	Example

	Subscripting
	Whole Array Operations
	Memory Management

	Globalization
	Differential Mangling
	Glossary

