»
2 Sun

microsystems

Stabs Interface

Sun™ Studio 9

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054 U.S.A.
650-960-1300

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company;, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Ce produit est soumis & la Iégislation américaine en matiére de controle des exportations et peut étre soumis a la reglementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de maniére non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une facon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matiére de contréle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L"’ABSENCE DE CONTREFACON.

D At 9

Adobe PostScript

Contents

Introduction 9

Overview 11

ELF Object File Format 15

Debugger Stabs 21
N_ALI AS - Symbol Alias (Ox6c) 21
N_BCOMM— Begin Common Block (0xe2) 23
N_BI NCL — Begin Include File (0x82) 24
N_BROWS — Source Browser (0x48) 25
N_CMDLI NE - Compilation Command Line (0x34) 26
N_CODETAG- Code Generation Detail (Oxd8) 27
CODETAG BI TFI ELD 28
CODETAG SPI LL 28
CODETAG_SCOPY 29
CODETAG_STACK_PROBE 29
N_CONSTRUCT - Constructor Description (0xd2) 30
N_CPROF - Cache Profile Feedback (Oxf 0) 30
N_DESTRUCT - Destructor Description (0xd4) 31
N_ECOVM— End Common Block (Oxe4) 31

N_EI NCL — End Included File (Oxa2) 32
N_EMOD - Fortran90 Module End 32
N_ENDM— End Module (0x62) 32
N_ENTRY — Fortran Alternate Entry (Oxa4) 33
N_ESYM— Position-independent External Data Type (0xc8) 34
N_FLSYM-- Fragmented Data Symbol (0x2e) 35
N_FUN— Function or Procedure Definition (0x24) 36
N_FUN_CHI LD-- Function Child (0xd9) 38
N_GSYM— Global Symbol (0x20) 39
N_I LDPAD - Incremental Link Padding (Ox4c) 40
N_I SYM— Position-independent Internal Data Type (0xc6) 40
N_LBRAC — Begin Scope (0xc0) 41
N_LCSYM— Uninitialized Static Symbol (0x28) 42
N_LSYM— Local Symbol (0x80) 44
N_MAI N— Main Routine Name (0x2a) 45
N_MOD - Fortran 95 Module Begin 45
N_OBJ — Obiject Directory and File (0x38) 46
N_OPT — Options (0x3c) 47
N_QUTL - Outlined Function 48
N_PATCH - Patch Run Time Checker (0xd0) 48

P_BI TFI ELD 49

P_SPILL 50

P_SCOPY 50
N_PSYM— Formal Parameter (Oxa0) 51
N_RBRAC — End Scope (0xe0) 52
N READ MOD - Fortran 95 Module Use 52
N_ROSYM— Read-Only Static Symbol (Ox2c) 53
N_RSYM— Register Symbol (0x40) 54

Contents

N_SLI NE — Source Line (0x44) 55
N_SO— Source Directory and File (0x64) 58
N_SOL — Included File (0x84) 59
N_STSYM— Initialized Static Symbol (0x26) 60
N_TCOWM— Begin Task Common Block (Oxe3) 62
N_TFLSYM— Thread Local Storage (TLS) Fragmented Data Symbol (0x2f) 63
N_TLCSYM— Thread Local Storage (TLS) Uninitialized Static Symbol (0x29) 64
N_TSTSYM— Thread Local Storage (TLS) Initialized Static Symbol (0x27) 65
N_UNDF — Undefined (0x00) 66
N_USI NG— C++ USI NGstatement (Oxc4) 67
USI NG Declaration 67
Local USI NG Declaration, Position Dependent 67

Global, Namespace, or Class Scope USI NG Declaration, Position
Independent: 68

USI NGDirective 68
Local USI NG Directive, Position Dependent 68

Global, Namespace, or Class Scope USI NG Directives, Position
Independent 69

Summary of USI NGstatement stabs 69
N_XLI NE— Extended Line Number (0x45) 69

Symbol Descriptors 71

Local Variable (empty) 72
Automatic Variable (A) 73

Based Variable (b) 73

Constant (c) 74

External Data (E) 75

Global Function or Procedure (F) 75
Local Function or Procedure (f) 76

Global Variable (G 76

Contents 5

Interface Block (1) 77
Internal Procedure (J) 77
Lines in Template (LT) 78
Literal (1) 78
Module (M 79
Value Parameter (p) 79
Prototype (P) 80
Register Variable (r) 81
Static File Variable (S) 81
Enumeration, Structure or Union (T) 82
Type Name (t) 83
Class Declaration (U) 84
Declaration Syntax 85
Example 86
Stabs 86
Common or Static Local Variable (V) 86
Variable Parameter by Reference (v) 87
Function Result Variable (X) 88
C++ Specification (Y) 88
Functions with Default Arguments 89
Inline Functions 90
Stabs for anonymous unions (Ya) 90
Stabs for classes, structs, and non-anonymous unions 91
Namespaces (Yn) 96
Pointers to class members (YM YD) 97
Templates (YT, YI') 99
Run Time Type Information (RTTI) (YR) 107

6. Type Specification 109

Contents 6

Array (a) 112

Volatile (B) 113

Basic Integer (b) 114

Dope Vector (D) 114

Dope Vector (d) 115

Enumeration (e) 116

Function Parameter (F) 117

Function (f) 118

Function With Prototype Info (g) 118
Restricted (K) 120

Const (k) 121

Floating Point (R) 121

Range (r) 122

Set (S) 123

Structure or Record (s) and Union (u) 124
Forward Reference (x) 125

C++ Types (Y) 126

C99 Variable Length Array (z) 126
Pointer (*) 126

Reference (&) 127

Auto-load Stab Processing 129
Introduction 129

Stabs Index 130

Stabs in Object Files 131

Stabs in Executable Files 132
Debugger Operation 132

Delayed Processing of a. out Files 133

Contents 7

Stabs Generation 135
Minimal Stabs Requirements 135

Stabs for Optimized Code 135

Stab Codes 137

Symbol Descriptors 145

Type Codes 147

Index Stabs 149

Fortran 95 Pointers and Array Descriptors 155
Terminology 155
Run-time Representations 155
Example 157
Subscripting 158
Whole Array Operations 158

Memory Management 159

Globalization 161

Differential Mangling 165

Glossary 169

Contents 8

CHAPTER 1

Introduction

The command line debugger, dbx, depends on two kinds of information generated
by compilers and the linker to aid the user in debugging programs. The first type of
information is exactly the same information that the linker uses to combine object
files and that the loader uses to execute a program. The second type is generated by
the compilers specifically to support debugging. This information is stored in a
format known as stabs, which stands for symbol table entries. This document
describes how these stabs are created, stored, modified, and interpreted.

The debugger supports the ELF format for object files (generated under the Solaris™
operating environment; for a description, see Chapter 3). In an ELF file, the stabs are
stored in separate sections from the symbol table generated by the compiler and
linker.

Although dbx is the most common interpreter of stabs, other programs (for example,
the Performance Analyzer) use the information in stabs in one form or another.
This document tells you:

= How a compiler describes the program in stabs

= How the stabs relate to the linker symbol table entries stored in the object file or
executable file

= What happens to stabs when the linker processes an object file
= How dbx interprets the stabs

A glossary is included to define the various terms used.

The examples of stab output from the compilers are not intended to define the stab
specification, but are provided for clarification of the specification.

10 Stabs Interface ¢ June 2004

CHAPTER 2

Overview

dbx evolved from Pdx, a Pascal source debugger developed by Mark A. Linton as a
Master’s project at the University of California at Berkeley. Linton extended the
linker symbol table entry to contain descriptions of variables, functions, and types,
by encoding this information in the symbol name field. To avoid confusion with the
existing linker stabs, additional stabs description codes were defined.

Since type and variable information is encoded as strings, stabs are easy to extend to
support additional languages or other features. Additional stab types can be (and
have been) created to meet changing needs without affecting the processing of
existing stab types. Stabs have evolved significantly to:

= Support C++, Fortran 77, Fortran 95, and C
= Reduce the size of executable files

= Support additional operating system features such as dynamically loaded shared
libraries

= Improve debugger performance

Most compilers translate the source into assembler instructions and pass this to the
assembler. The assembler generates linker stab entries for files and non-local
symbols. The compilers generate debugging stabs when the - g option is specified by
including either . st abs or . st abn directives in the source passed to the assembler.
These have the following formats:

.stabs “string”, type, other, desc, value
and

.stabn type, other, desc, value

where:

string contains the name and description of a symbol and, in general, consists of a
name followed by a colon, a symbol descriptor (one or more characters), and
descriptor specific information.

11

12

type specifies the type of the stab entry.
other is used in some stab types for miscellaneous inforamtion.
desc is used in some stab types to further describe the symbol.
value contains an offset or other value.

In an ELF file, debugging stabs are stored in the . st ab section with the text of the
strings in . stabstr.

There are two additional assembler directives:

. Xstabs "section", "string", type, other, desc, value
. Xcst abs "section", "string", type, other, desc, value
where:

section is the name of the section in which to place the stab.

string, type, other, desc, and value have the same meanings described for the
. stabs and . st abn directives..

The . xst abs directive and .xcst abs directive can be used to direct the stab into a
different section in an ELF file. The . xst abs directive is usually used to create
index stabs, described in Chapter 3 and Appendix D, but is also used in other special
situations. The . xcst abs directive is used to create COMDAT index stabs, which
are described in Chapter 3.

The string in the stabs directives can be of any length, up to the string size limit
imposed by the assembler. (Currently the assembler does not impose a limit, so the
compilers can generate a stab string of any length.) To ease generation of stabs
directives, the string may be continued from one stabs directive to the next by
terminating the string with a backslash (\). The continuation stabs directive must
have the same type, desc, and value. For example,

.stabs "bool ean:t(0, 2)=efal se:0,\\", 0x20, 0, 0, O
.stabs "true:1,", 0x20, 0, 0, O

is equivalent to
.stabs "bool ean:t(0,2)=efal se:0,true:1,", 0x20, 0, 0, O
There may be any number of continuation lines.

Each stabs directive contains a stab type that describes what is contained in the
string part of the stab. When the stab describes a symbol, the stab type specifies
whether the symbol is a local or global symbol, a function description, static
variable, and so forth. In the preceding example, the stab type of 0x20 indicates that
this stab describes a global symbol.

Stabs Interface ¢ June 2004

The stabs that describe symbols use the string to contain three pieces of information:
= Symbol name

= Symbol descriptor

= Type description

The name of the symbol starts the string and is followed by a colon. The symbol
descriptor immediately follows the colon and describes what the symbol represents.
In the example above, the symbol bool ean is described to be a type definition by
the t symbol type. Descriptions of local variables omit the symbol descriptor.

The actual description of the type is contained following the symbol descriptor. This
may be a reference to a previously defined type or it may be a new definition of a
type as indicated by a type number pair followed by an equal sign, as is done in the
description of bool ean.

Symbol names that also represent ELF level synbols normally retain their ELF
spellings. One exception is Fortran 77, which omits the trailing underscore on the
function names in the stabs.

Chapter 2 Overview 13

14 Stabs Interface » June 2004

CHAPTER 3

ELF Object File Format

ELF is the Executable and Linking Format used in System V and is the native
executable file format for the Solaris operating environment. It is extensively
described in the System V ABIL. This chapter briefly describes the format, focusing
on the aspects that affect stabs.

Each symbol table entry has the following format (defined in st ab. h):

struct stab {

unsi gned n_strx; /* file String table index */
unsi gned char n_type; /* Stab type */

char n_ot her; /* used by N_SLINE stab */
short n_desc; /* Desc value */

unsi gned n_val ue; /* OFfset or value */

I

The n_strx field is the offset of the string in the symbol string table. All strings are
terminated by a null byte. Previous stabs versions defined struct nl i st innli st. h.
This has been changed to avoid conflict with the system header file and struct of that
name. The fields of struct stab were also redefined so that their sizes would not
change when compiled for 64-bit programs.

An ELF file, whether an object file, an executable file, or a library file, is a highly
structured file that consists of a header, a program table, a section table, and a
number of named sections. The section table is an index to the sections, describing
each section’s name, type, storage address, length, and offset in the ELF file. Several
sections have predefined names and contents. For example, the .t ext section
contains the executable instructions of the program and the .dat a section contains
initialized data. An ELF file may contain additional sections that have contents
specified by the vendor, such as the .st ab section. The following figure shows the
layout of an ELF executable file.

1. 1. AT&T: System V Application Binary Interface and SPARC Processor Supplement, Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1990

15

ELF Executable Layout ELF Header Ident = “\x7fELF", Class = 1 (32), Data = 2 (2MBB),

Id ver = 1 (CURRENT)
Type = 2 (EXEC), Machine = 2 (SPARC), Version = 1 (CURRENT|

Program Table Start address = 0x00010080, Phdr offset = 0x00000034
Shdr of f set = 0x0001cado, File flags = 0x00000000
Section Table Ehdr size = 52, Phdr size = 32, Num Phdrs = 2
.text
Executable text Program Header 0:

Entry type = 1 (LOAD), Segment Offset = 0x00000074
Virt address= 0x00010074, Physi cal addr= 0x00000000
. bSS Size in file 86858, Size in nenory = 86858
T Access flags 0x5 (r-x), Alignment = 0x00010000

Uninitialized data

Program Header 1:

.data Entry type = 1 (LOAD), Segment Offset = 0x000153cO
L Virt address= 0x000353c0, Physi cal addr= 0x00000000
Initialized data Size in file = 4832, Size in menory = 8060

Access flags = 0x7 (rwx), Alignnent = 0x00010000

.stab
Debugging stabs

Section 1 (.init) @O0x0001caf8

.stabstr Type = 1 (PROGBITS), Flags = 0x6 (EXEC-ALLOC)
. Addr = 0x00010074, Offset = 0x00000074, Size = 12
Strings from stabs Link = 0, Info =0
Al'i gn = 0x00000004, Entry size = 0
.stab. i ndex
) . Section 2 (.text) @0x0001ch20
Index to object files Type = 1 (PROGBITS), Flags = 0x6 (EXEC ALLCQ)
Addr = 0x00010080, Offset = 0x00000080, Size = 62460
. stab.indexstr Link =0 Info =0

X Al'ign = 0x00000004, Entry size = 0
Index strings
Section 3 (.fini) @O0x0001ch48

.synt ab Type = 1 (PROGBITS), Flags = 0x6 (EXEC- ALLOC)
Addr = 0x0001f 47c, Of fset = 0x0000f47c, Size = 12
Symbol table Link = 0, Info =0
Al'i gn = 0x00000004, Entry size = 0
-strt at_) Section 4 (.rodata) @ 0x0001ch70
Symbol strings Type = 1 (PROGBITS), Flags = 0x2 (ALLOQ)

Addr = 0x0001f 488, Of fset = 0x0000f 488, Size = 24314
Link =0 Info =0

other sections Al'i gn = 0x00000008, Entry size = 0

The symbol table is in the section named .synt ab and the strings are stored in the
.st r tab section. Each entry in the symbol table consists of:

16 Stabs Interface

A name

A value (which is usually an address)

A size

Type and binding flags

A reference to the section to which it is related

« June 2004

The symbol table entries for an object file start with a symbol with the STT_FI LE
type with the name of the source file used to create the object file (the file name only,
not the entire path to the source file). This is followed by local symbols which are
defined in the file, functions are identified with type STT_FUNC and variables with
type STT_OBJECT.

The symbol table entries for an executable file or shared library are concatenated
from the object files that were linked. The first STT_FI LE type has the name of the
executable or shared library. The next STT_FI LE should be the source file of the first
object file linked. The next STT_FI LE should be the source file of the second object
file linked, and so on.

Following the last object file are the global symbols. Both function and variable
symbols are collected at the end in random order. The following figure shows parts
of the symbol table for a small “hello world” program. The STT_FI LE entry for
hel I o. c is followed by two local data objects, sa and sb, while the STT_FUNC
entry for mai n appears much later in the symbol table. Nothing in the symbol table
indicates which source file contains any global function.

ELE Symbol Table Synmbol table -- 479 entries value si ze info shndx
crti.s 00000000 00000000 LOCAL FILE ABS
crtl.s 00000000 00000000 LOCAL FILE ABS

val ues- Xt.c 00000000 00000000 LOCAL FILE ABS

hello.c 00000000 00000000 LOCAL FILE ABS

sa 000353e0 00000004 LOCAL OBJECT 6

sb 000353e4 00000004 LOCAL OBJECT 6
atexit.c 00000000 00000000 LOCAL FILE ABS
exitfns 000366a0 00000094 LOCAL OBJECT 8
numexi tfns 0003542c 00000004 LOCAL OBJECT 6
printf.c 00000000 00000000 LOCAL FILE ABS
doprnt.c 00000000 00000000 LOCAL FILE ABS
_zeroes 00035465 00000015 LOCAL OBJECT 6

.mul 00018a84 0000022c GLOBAL FUNC
__iob 000363c8 00000140 GLOBAL OBJECT
open 0001d7f0 00000000 WEAK FUNC
main 00010120 00000044 GLOBAL FUNC
getwidth 000196b4 00000064 GLOBAL FUNC
read 0001cd54 00000000 WEAK FUNC
doubl e_to_deci mal 00018510 00000000 WEAK FUNC
malloc 0001400 00000298 GLOBAL FUNC
_iob 000363c8 00000000 WEAK OBJECT
__ctype 00035554 00000209 GLOBAL OBJECT
wectomb 00019494 00000128 GLOBAL FUNC
getpid 0001f440 00000000 WEAK FUNC
a 000353c0 00000001 GLOBAL OBJECT

b 000353c2 00000002 GLOBAL OBJECT

ODONNOOONNNNNNOON

The organization of the debugging stabs in an ELF file is not defined in the ABI, but
is specific to the Solaris operating environment.

Chapter 3 ELF Object File Format 17

18

Debugging stabs may be stored in several sections in the ELF file. In an object file
(not an executable file or library) the stabs are stored in either the .st ab section
(with strings in .st abst r) or in the .st ab. excl (with strings in .st ab. excl str). If
auto-load stab processing is to be used (that is, the object file will be retained rather
than deleted after linking) then stabs are placed in the .st ab. excl section. The
Solaris linker will not copy the .st ab. excl or .st ab. excl str sections to the
executable. If the object file is not to be retained, stabs are stored in the .st ab (and
.st abst r) section and will be copied to the executable file.

The .st ab. i ndex section (and .st ab. i ndexstr containing the strings) contain a
reduced set of stabs that are used to support auto-load stab processing. These stabs
specify the names of global functions and data that are contained in the object file
(since this information is not available in the symbol table) and where to find the
object file so that the debugger can read the stabs. For a more complete description,
see Appendix D.

Stabs and the strings from each object file are concatenated to form these sections in
the executable file. The stabs from each object file are preceded with an N_UNDF stab.
The n_val ue field in this stab contains the total length of the strings for the object
file. The n_str x field of the N_UNDF stab contains the offset to the file name string
(usually a source file). The linker does not relocate or modify the offset to the strings.
The order of N_UNDF stabs and the EIf STT_FI LE symbols should match, preserved
by the linker. dbx expects this order to be preserved.

When the COMDAT feature of the linker is used by a compiler, it is necessary to
place some index stabs in COMDAT sections: .st ab. i ndex% unct i on and the
corresponding string section . st ab. i ndexstr % uncti on where f uncti on is the
linker name of the function as given by the compiler. Unlike all other stab sections in
an object file, these do not begin with an N_UNDF stab. Instead, each stab is encoded
with n_ot her == 1 to identify it as a COMDAT stab. If multiple sections with the
same name exist, the linker chooses one for the executable. The function’s code and
its index stab are always chosen together, so dbx always knows which function was
chosen.

The non-COMDAT . st ab. i ndex and . st ab. i ndexst r sections must always
appear in the object file before any COMDAT stab sections, so that if the COMDAT
sections are chosen by the linker, they always follow the N_UNDF stab in the

. st ab. i ndex section. The order of the . st ab. i ndex% COMDAT stab sections in
the object file dictates the order of the corresponding . st ab. i ndexst r %
COMDAT stab string sections.

The chosen COMDAT index stabs are concatenated into the executable along with
the regular index stabs; the chosen COMDAT index stab strings are concatenated
with the regular index stab strings. The N_UNDF stab count and string table size do
not include the COMDAT stabs. The debugger must explicitly look for former
COMDAT stabs when reading the index stabs of the executable. It must adjust for
incorrect n_st r x fields, which neither the compiler nor linker can adjust.

Stabs Interface ¢ June 2004

The following figure shows the various stab sections in an executable file:

ELF Stabs Sections

table -- 38 entries

"busy. ¢", N_UNDF, 0x0, 0x25, 0x309
"/usr/src/play/", N SO, 0x0, 0x0, 0x0
"busy. c", N_SO, 0x0, 0x3, 0x0
" N_0OBJ, 0x0, 0x0, 0x0
, N_0OBJ, 0x0, 0x0, 0x0
V 8. 0; DBG_GEN=4. 0. 143; Xa; g; R=Forte Developer 7 C 5.4

2002/ 03/ 09; G—$XAY9kkBSUQT8ym: ", N_OPT, 0x0, 0x0, 0x3¢c990512

Excl uded St ab
0: .stabs
1. .stabs
2: .stabs
3: .stabs

4: .stabs "
5: .stabs
6: .stabs
7: .stabs
8: .stabs
9: .stabs

23: .stabs

24: . stabs
25: .stabs
26: .stabs
27: .stabs
28: .stabs
29: .stabn
30: .stabs
31: .stabs

$XBY9kkBSUQ"rBym: main. __func__:V(0,21)=ar(0,4);0;4;(0,22)=k(0,1)", N

"busy. c", N_SOL, OXO 0x0, 0x0

"char: t(O 1) =bsc1; 0; 8", N_LSYM 0x0, 0x0, 0x0
"short:t(0, 2)=bs2; 0; 16”, N_LSYM 0x0, 0x0, 0x0
"int:t(0,3)=bs4;0; 32", N_LSYM 0x0, 0x0, 0x0

“f]oat:t(0,17) =RL; 4", N_LSYM 0x0, 0x0, 0x0

"doubl e: t (0, 18) =R2; 8", N_LSYM 0x0, 0x0, 0x0
"l ong doubl e:t (0, 19)=R6; 16", N_LSYM 0x0, 0x0, 0x0
"voi d: t (0, 20) =bs0; 0; 0", N_LSYM 0x0, 0x0, 0x0
“mai n: F(0, 3)", N_FUN, 0x0, 0x0, 0x0
"mai n", N_MAI N, 0x0, 0x0, 0x0
N_LBRAC, 0x0, 0x1, Ox4
"i:(0,3)", N.LSYM Ox0, Ox4, Oxfffffff8

ROSYM 0x0, 0x5, 0x0

32:
33:
34:
35:
36:
37:

. stabs
. stabn
.stabn
.stabn
. stabn

. stabn

"lazy: P(0, 3)", N_FUN, 0x0, 0x0, 0x0
N_SLI NE, 0x0, Ox3, 0x4

N_SLI NE, 0x0, Ox4, 0x10

N_SLI NE, 0x0, 0x5, 0x24

N_RBRAC, 0x0, 0x1, 0x24

N_ENDM 0x0, 0x0, 0x0

Chapter 3 ELF Object File Format

19

ELF Stabs Sections
(continued)

20

Stabs Interface ¢ June 2004

Index Stab table -- 29 entries
0: .stabs "busy.c", N_UNDF, 0x0, 0x9, 0x123
1: .stabs "/usr/src/play/", N _SO 0x0, 0x0, 0x0
2: .stabs "busy.c", N_SO 0x0, 0x3, 0x0
3: .stabs "/usr/src/play", N OBJ, 0x0, 0x0, 0x0
4: .stabs "busy.o", N_0OBJ, 0x0, 0x0, 0x0
5: .stabs "V=8.0; DBG GEN=4. 0. 143; Xa; g; R=Fort e Devel oper 7 C5.4 2002/
03/ 09; G=$XAY9kkBSUQBynt. ", N_OPT, 0x0, 0x0, 0x3c990512
6: .stabs "/usr/src/play; /opt/SUNWpro/bin/../prod/bin/cc -c -g
busy. c -WD, - xp\ $XAY9kkBSUQmBynt. ", N_CMDLI NE, 0x0, 0x0, 0x0
7: .stabs "main", N_MAI N, 0x0, 0x0, 0x0
8: .stabs "main", N_FUN, 0x0, 0x0, 0x0
9: .stabs "busy.c", N_SO, 0x0, 0x0, Ox0
10: .stabs "lazy.c", N_UNDF, 0x0, 0x8, Ox1le
11: .stabs "/usr/src/play/", N_SO 0x0, 0x0, 0x0
12: .stabs "lazy.c", N_SO 0x0, 0x3, 0x0
13: .stabs "/ usr/src/play", N OBJ, 0x0, 0x0, 0x0
14: .stabs "l azy.o", N _OBJ, 0x0, 0x0, 0x0
15: .stabs "V=8.0; DBG GEN=4 0. 143; Xa; g; R=Forte Devel oper 7 C 5.4
2002/ 03/ 09; &$XAY9kthUQTBSnc , N_OPT, 0x0, 0x0, 0x3c990521
16: .stabs "/usr/src/play; /opt/ SUNWspro/bin/../prod/bin/cc -c -g
lazy.c -WD, - xp\ $XAY9kkBhUQmBSnc. ", N_CMVDLI NE, 0x0, 0x0, 0x0
17: .stabs "l azy", N_FUN, 0x0, 0x0, 0x0
18: .stabs "lazy.c", N_ SO, 0x0, 0x0, 0x0
19: .stabn N_I LDPAD, 0x0, 0x0, 0x0
20: .stabn N_| LDPAD, 0x0, 0x0, 0x0
21: .stabn N_I LDPAD, 0x0, 0x0, 0x0
22: .stabn N_I LDPAD, 0x0, 0x0, 0x0
23: .stabn N_| LDPAD, 0x0, 0x0, 0x0
24: . stabn N_I LDPAD, 0x0, 0x0, 0x0
25: .stabn N_I LDPAD, 0x0, 0x0, 0x0
26: .stabn N_| LDPAD, 0x0, 0x0, 0x0
27: .stabn N_I LDPAD, 0x0, 0x0, 0x0
28: .stabn N_|I LDPAD, 0x0, 0x0, 0x0

CHAPTER 4

Debugger Stabs

The stabs directives may be interspersed in the assembly code generated by a
compiler with relatively limited constraints on their ordering. These constraints are
described with each stab type and summarized in this chapter.

The stabs are described in alphabetic order by type name. For convenience, the
a. out linker stab codes are also listed.

N_ALI AS- Symbol Alias (Ox6c¢)

The N_ALI AS stab introduces an alias for a function, variable, Fortran namelist,
“external redefine” or namespace. It does not make forward references. For example:

. stabs "newname:Foldname", N ALIAS, 0, 0, O

is used to indicate that newname is another name for the function named oldname.
The F prefix on oldname indicates it is a function name. Variables are treated
similarly and indicated by a V prefix, as in:

. st abs "newname: Voldname", N ALIAS, 0, 0, O

Fortran namelists are indicated by a N prefix to oldname. For example:

. stabs "newname: Noldname", N ALIAS, 0, 0, O

21

22

Here, newname is the name of the namelist and oldname is the body of the namelist
definition. For example, the statement:

nanelist /xx/a,b,c

produces:

.stabs “xx:Na, b,c”, NALIAS, 0, 0, O

Note — Do not use the following descriptor unless you are sure you need to because
of unpredictable output. Do not use with C++,

External redefines are indicated by a R prefix to sourcename. In the following:

. st abs “externalname: Rsourcename”, N_ALIAS, 0, 0, O

externalname is the name of an existing external symbol, function, or variable.
sourcename is the new name by which that external may be referenced. The primary
difference between this and the F descriptor is that the externalname may exist in a
different object file from this stab, and that the name translation applies to the
complete load object in which the externalname exists.

This stab is a no-op when:

= The externalname does not exist.

= This stab is a second (or further) occurrence with the same externalname specified.
If the specified sourcename already exists, then overloading will occur.

Namespace aliases result from a statement of the form:

nanespace foo = bar;

This makes f 00 a namespace alias for bar. Namespace aliases are handled by
N_ALI AS stabs with a prefix S. The stabs can be position dependent or position
independent, depending on the scopes in which the aliases occur.

1. (Function) Local namespace alias, position dependent
. stabs “newname: S typeid-of-newname=typeid-of-oldname”, N_ALIAS, 0,0,0

2. namespace, class, global namespace alias, position independent

Stabs Interface ¢ June 2004

. stabs “mangled_newname: Stypeid-of-newname=typeid-of-oldname: typeid-of
enclosing-scope”, N_ALIAS, 0,0,0

Fortran OpenMP threadprivate variables are indicated by a T prefix to sourcename.
The format is:

. st abs compname : T sourcename ", N_ALIAS, 0, 0, O

where:

compname is a compiler-generated pointer to the threadprivate value(s) of
sourcename, the user-defined source variable. For example, in the following stab,
xxx__is the linker name of a user-defined OpenMP threadprivate variable, and
__tls_ptr_xxx_ is the compiler-generated linker symbol that points to a static
area that contains addresses for all the threadprivate copies of xxx_.

.stabs "__tls_ptr_xxx_:Txxx_", NALIAS, 0, 0, O

N BCOMM— Begin Common Block
(Oxe2)

. stabs "BlockName", N BCOW 0, 0, HashValue

A N_BCOWMstab introduces a named common block and precedes the listing of
symbols contained in the common block. The common block is named BlockName.
Subsequent stabs preceding an N_ECOW stab specify the variables in the common
block. On the Solaris operating environment, the address of the common block is
found in the ELF symbol table.

An N_ECOWIstab terminates the listing of symbols within the named common block.

Only N_GSYMstabs with V symbol type may appear between the N_BCOvWand
N_ECOW

N_BCOWand N_ECOVMmay not be nested.

HashValue is a hash value which, with BlockName, uniquely identifies the common
block. If HashValue is zero, no N_XCOwWMstab may reference this common block.

Unnamed common is given a BlockName of " _ BLNK__".

Chapter 4 Debugger Stabs 23

The following common declaration:

common /blk/ a, b, c

generates the following stabs:

.stabs "blk_", N BCOW 0,0, 0
.stabs "a:V6",N GSYMO0,0,0
.stabs "hb:V6",N GSYMO, 0, 4
.stabs "c:V6",N.GSYMO,O0, 8
.stabs "blk_",N_ECOW O, 0, 0

The first stab is the N_BCOWM which starts the common block. The next three stabs
are N_GSYM(global symbol) stabs, which describe the three variables defined in the
common block. The last stab is the N_ECOMM which ends the common block.

24

N Bl NCL — Begin Include File (0x82)

. stabs "FilePath", N _BINCL, 0, 0, HashValue

The N_BI NCL stab begins the symbol information defined in an include file. FilePath
is the path to the file from the source directory specified in the N_SOstab. Stabs
following the N_BI NCL are generated by statements in the include file.

The stabs for the include file are terminated by an N_EI NCL stab.

The N_BI NCL stab must follow an N_SOstab for a source file and precede the
matching N_ENDMstab. N_BI NCL stabs and N_EI NCL stabs may be nested within
other N_BI NCL/N_EI NCL pairs.

The HashValue is a number computed by the linker that is unique to this occurrence
of this named include file. Since different occurrences of an include file may actually
define different symbols (most commonly as the result of #i f def / #endi f
statements in the include file), the HashValue will be different for occurrences of an
include file that are not identical.

It is an error for two N_BI NCL stabs to appear in the same executable or shared
library with the same FilePath and HashValue.

Stabs Interface ¢ June 2004

If file h. h in the compilation directory contains the following:

int a;
float b;

when it is included the object file will contain the following stabs:

.stabs "./h.h", N BI NCL, 0x0, 0x0, Ox151
.stabs "a: 0, 1)", N.GSYM 0x0, 0x4, 0x0
.stabs "b: ¢ 0,9)", N.GSYM 0x0, 0x4, 0x0
. stabn N_EI NCL, 0x0, 0x0, 0x0

The first stab is the N_BI NCL stab, which specifies the path to the include file h. h
from the source compilation directory. The HashValue of 0x151 is calculated by the
linker, the stab generated by the compiler contains a zero.

The next two stabs are the N_GSYM(global symbol) stabs for the two variables in the
include file. The last stab is the N_EI NCL stab, which ends the include file.

N_BROWS — Source Browser (0x48)

. stabs "bdfile", N_BROA5, 0, 0, O

The N_BROWS stab specifies the path to the .bd file created to support the Source
Browser. In the Solaris operating environment, this stab is entered into the
. st ab. sbf ocus section.

Chapter 4 Debugger Stabs 25

26

N _CNVDLI NE - Compilation Command
Line (0x34)

To support fix and continue, the N_CIVDLI NE stab stores the command line for
compilation:

. stabs *“cwd; driver options prefix”, N_CVDLINE, 0, 0, O

where:

cwd is the full path name of the working directory as specified by the - cwd option
from the compiler driver.

driver is a full path to the compiler driver.

options is the list of options passed into the compiler. This list should be modified to
contain only the current source file and to use the - ¢ option to cause a .o file to
be produced.

prefix is the set of options of the form needed to pass the current global prefix back

into the compiler. This is usually done via - Qopt i on, as in the example below.
Ensure that multiple fix and continue runs do not keep duplicating prefix.

Together, driver options prefix, make up a complete reconstructs the complete
command line. This command line was passed to / bi n/ sh, so all special characters
must have been quoted with a backslash (for example., “/$”).

For example, if nyfil e. cc was compiled in /t np as follows:

CC -l../include -g -o nmyprog mfile.cc

the resulting string for this stab would look something like:

“/trmp;/path/CC -1../include -g nyfile.cc -c -Qoption ccfe
-prefix -Qoption ccfe prefix

Stabs Interface ¢ June 2004

N CODETAG- Code Generation Detail

(0xd8)

The N_CODETAG stab provides information about the generated code needed for
certain kinds of debugging. A subset of its functionality replaces the N_PATCH stab
for run time checking information (load/store and structure copy).

.stabn N_CODETAG, marker,

0, addr

where:

marker is:
Ox1 CODETAG BI TFI ELD
0x2 CODETAG_SPI LL
0x3 CODETAG_SCORY
0x4 CODETAG_FSTART
0x5 CODETAG END CTORS
0x6 (not used in stabs)

0x7 CODETAG STACK PROBE

Load/store of a bit field

Spill of registers

Structure copy load/store

(not used) Points to first inst of new frame (0==| eaf)
(not used) End of calls to super-class constructors

*** DW ATCF_SUN_br anch_t ar get in dwarf ***

Marks insns that probe the stack memory

addr is a byte offset of an instruction from the function label. In addition, for any
module that emitted one or more N_CODETAG stabs, one index stab should be

emitted of the form:

.xstabs "", N_CODETAG marker, 0x0, O0xO

For modules that have emitted no N_CODETAG stabs, an N_CODETAG index stab
should not be emitted. Currently, there are four types of N_CODETAG stabs in use:

Chapter 4 Debugger Stabs

27

28

CODETAG_BI TFI ELD

The CODETAG_BI TFI ELD stab gives the byte offset of the address of a load
instruction from the function label to which the instruction belongs. This is very
similar to the N_SLI NE stab, but instead of the source line offset from the beginning
of the function, the byte offset from the beginning of the function is emitted.
Emitting a CODETAG _BI TFI ELD N_CODETAG stab allows runtime checking not to
check for Read Uninitialized Data for that load.

Consider this C example:

struct s { int a:1l; char b; } s1;
int i;

i = sl.a;

sl.a = 1;

which generates the following N_CODETAG stabs:

.stabs "", N CODETAG 0x1, 0x0, OxO # i ndex stab
. stabn N_CODETAG, 0x1, 0x0, Ox4
. stabn N_CODETAG, 0x1, 0x0, Ox1c

The statement s1. a = 1 is considered a Bitfield Insertion, while the statement

i = sl.aisconsidered a Bitfield Extraction. An N_CODETAG stab should be issued
for each load instruction that is part of bitfield operation (either insertion or
extraction) that load more data than the bitfield in question. That is, if the load is for
the exact size of the bitfield, then an N_CODETAG stab need not be emitted.

If an insertion does not involve a load (because a store of the exact size can be done),
then no N_CODETAG stab should be emitted.

CODETAG_SPI LL

For each load or store instruction that is generated for register spills and unspills,
one N_CODETAG stab should be emitted. This includes floating-point spills and
unspills as well. These should always be emitted in matched pairs (for the spill and
unspill). Emitting a CODETAG_SPI LL N_CODETAGstab allows runtime checking not
to perform any checking on these load or store instructions.

N_CODETAG stabs should be grouped among all the other stabs for a given function,
just like N_SLI NE stabs. If there are N_LBRAC and N_RBRAC stabs for a given
function, then the N_CODETAG stabs should be between those stabs, as appropriate.

Stabs Interface ¢ June 2004

CODETAG_SCOPY

For each load instruction that is generated to do a structure copy, one N_CODETAG
stab should be emitted. Emitting a CODETAG_SCOPY N_CODETAG stab allows
runtime checking not to perform any checking on these load instructions.

N_CODETAG stabs should be grouped among all the other stabs for a given function,
just like N_SLI NE stabs. If there are N_LBRAC and N_RBRAC stabs for a given
function, then the N_CODETAG stabs should be between those stabs, as appropriate.
For example, the following C program:

struct s {
char c;
int i;
}
mai n() {
struct s ss, tnp;
ss.c = 0;
ss.i = 1;
tnp = ss;
}

generates the following N_CODETAG stabs:

.stabs "", N CODETAG, 0x3, 0x0, Ox0 # i ndex stab
. stabn N_CODETAG, 0x3, 0x0, 0x18
. stabn N_CODETAG, 0x3, 0x0, 0x20

for the two loads in the structure copy of t np = ss.

CODETAG _STACK_PROBE

For each instruction that probes stack memory before creating a frame, one
N_CODETAG stab should be emitted. Emitting a CODETAG_STACK _PROBE
N_CODETAG stab allows runtime checking not to perform any checking on these
stack-checking instructions.

N_CODETAG stabs should be grouped among all the other stabs for a given function,
just like N_SLI NE stabs. If there are N_LBRAC and N_RBRAC stabs for a given
function, then the N_CODETAG stabs should be between those stabs, as appropriate.

Chapter 4 Debugger Stabs 29

N_CONSTRUCT - Constructor Description
(0xd2)

.stabs "Var: State", N_CONSTRUCT, 0, End-Start, Start-Func

Each local variable whose destruction requires a call to a destructor will cause the
generation of a pair of stabs (N_CONSTRUCT and N_DESTRUCT) describing the
lifetime of this variable. This includes constructor and destructor calls which are
inlined. dbx needs this information in order to implement its fix and continue
feature. The N_CONSTRUCT stab is associated with the location just after the
construction of the variable, and the N_DESTRUCT stab is associated with the
location immediately before the object’s destruction is begun.

For the N_CONSTRUCT stab:

Var is the name (if any) of the variable being constructed

State is the new destructor state number (the state is mapped by dbx into a unique set of
destructors that must be called). This is the state after the specified instructions
have been executed

End is the location of the instruction immediately following the object’s construction
(regardless of whether it’s a call or is done inline)

Start is the location of the first instruction of the construction. So End-Start is the
number of bytes of constructor code at this spot.

Func is the name of the current function—thus, the expression Start-Func is a function-
relative offset.

When more than one local variable exists, the N_CONSTRUCT, N_DESTRUCT pairs are
nested and the state is incremented by 1 as each constructor is seen. After executing
a particular constructor, the state is State.

N CPROCF - Cache Profile Feedback
(Oxf 0)

(Reserved for future use)

30 Stabs Interface * June 2004

N _DESTRUCT - Destructor Description
(0xd4)

. st abs “ FromState: ToState” , N_DESTRUCT, 0, End-Start, Start-Func

The N_DESTRUCT stab does not mention the variable being destroyed. Instead, it
merely indicates the new “destructor state” after completion of the destruction
described here.

For the N_DESTRUCT stab:

State is the new destructor state number (the state is mapped by dbx into a unique
set of destructors that must be called to implement its pop instruction or to do some
kinds of continue operations).

End is the address of the instruction following the last instruction of destructor code.

Start is the address of the first instruction of destructor code. Thus, End - Start
specifies the number of bytes of destructor code.

Func is the name of the current function—thus, the expression Start — Func is a
function-relative offset.

N ECOMM— End Common Block (Oxe4)

. st abs "BlockName", N_ECOW 0, 0, O

A N_ECOWMstab terminates the listing of symbols defined within the named
common block that was begun by an N_BCOwW stab.

N_BCOWMand N_ECOVMstabs may not be nested.

Unnamed common is given a BlockName of "__BLNK__".

For an example, see “N_BCOVM— Begin Common Block (0xeZ2)” on page 23.

Chapter 4 Debugger Stabs 31

N _ElI NCL — End Included File (Oxa2)

.stabn N.EINCL, 0, 0, O

The N_EI NCL stab terminates the specification of stabs contained within an include
file specified by the closest preceding N_BI NCL stab. N_BI NCL and N_EI NCL stabs
may be nested.

For an example, see “N_BI NCL — Begin Include File (0x82)” on page 24.

N_EMOD - Fortran90 Module End

.stabs "Name", N EMOD, 0, 0, O

The N_EMOD stab ends the sequence of stabs that belong to the named module,
which must start with a corresponding N_MOD stab.

See “N_MOD - Fortran 95 Module Begin” on page 45 for an example.

N _ENDM— End Module (0x62)

.stabn N.ENDM 0, O, O

The N_ENDMstab terminates the stabs for the source file started by an N_SO. It must
follow all of the stabs for the source file; no file-related stabs may follow the N_ENDM
This stab is required even if no other debugging stabs are generated.

The C file:

foo()
{
}

Stabs Interface ¢ June 2004

generates (in part) the following stabs:

.stabs "/tnp/", N_SO, 0x0, 0x0, 0x0
.stabs "c.c", N SO 0x0, 0x3, 0x0
. stabn N_ENDM 0x0, 0x0, 0x0

The first two N_SOstabs give the compilation directory and file name. The last stab
is the N_ENDM which ends the stab listing for the object file.

N _ENTRY — Fortran Alternate Entry
(Oxa4)

.stabs "Name : e RtnType; FunName ; ;", N_ENTRY, O, Line, O

The N_ENTRY stab is generated for an alternate entry into a Fortran function named
Name. RtnType is the type of the value returned from the function. FunName is the
name of the function that contains this entry point. If Line is not zero, this is the line
number of the ENTRY statement.

Parameters passed to the entry are represented by N_PSYM (parameter) stabs
following the N_ENTRY stab.

The following Fortran subroutine:

subroutine a(i)
print *, i
return

entry b(f)
print *, f
return
end

Chapter 4 Debugger Stabs 33

generates the following stabs:

.stabs "a: F14",N FUN, 0,0, a_

.stabs "i:v3",N.PSYMO,O0, -8

.stabs “__entry:3",N.LSYMO, 4, Oxffffffbo
.stabs "b:el4;a_;;",N_ENTRY,0,5,0

.stabs "f:v6",N.PSYMO,O0, -4

The first N_FUN stab describes the subroutine a and is followed by an N_PSYMstab
for its argument i . The third stab is generated, by convention, with the special name

__entry. This specially named variable contains the address through which this

procedure was entered (useful in determining a correct traceback) . This special
symbol is present only in procedures with secondary entry points. The fourth stab is
the N_ENTRY stab, which indicates that b is an entry point within the subroutine a.
The name given in the stab is that of the label generated for the function, rather than
the name that the user entered. It i