
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

OpenMP API User’s Guide

Sun™ Studio 10

Part No.819-0501-10
January 2005, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin ix

Typographic Conventions ix

Shell Prompts x

Supported Platforms x

Accessing Sun Studio Software and Man Pages xi

Accessing Compilers and Tools Documentation xiv

Accessing Related Solaris Documentation xvi

Resources for Developers xvi

Contacting Sun Technical Support xvii

Sending Your Comments xvii

1. OpenMP API Summary 1–1

1.1 Where to Find the OpenMP Specifications 1–1

1.2 Special Conventions Used Here 1–2

1.3 Directive Formats 1–2

1.4 Conditional Compilation 1–3

1.5 PARALLEL - Parallel Region Construct 1–4

1.6 Work-Sharing Constructs 1–5

1.6.1 DO and for Constructs 1–5

1.6.2 SECTIONS Construct 1–7
 iii

1.6.3 SINGLE Construct 1–7

1.6.4 Fortran WORKSHARE Construct 1–8

1.7 Combined Parallel Work-sharing Constructs 1–8

1.7.1 PARALLEL DO and parallel for Constructs 1–9

1.7.2 PARALLEL SECTIONS Construct 1–9

1.7.3 PARALLEL WORKSHARE Construct 1–10

1.8 Synchronization Constructs 1–10

1.8.1 MASTER Construct 1–11

1.8.2 CRITICAL Construct 1–11

1.8.3 BARRIER Construct 1–12

1.8.4 ATOMIC Construct 1–12

1.8.5 FLUSH Construct 1–13

1.8.6 ORDERED Construct 1–14

1.9 Data Environment Directives 1–15

1.9.1 THREADPRIVATE Directive 1–15

1.10 OpenMP Directive Clauses 1–16

1.10.1 Data Scoping Clauses 1–16

1.10.2 Scheduling Clauses 1–19

1.10.3 NUM_THREADS Clause 1–20

1.10.4 Placement of Clauses on Directives 1–20

1.11 OpenMP Runtime Library Routines 1–22

1.11.1 Fortran OpenMP Routines 1–22

1.11.2 C/C++ OpenMP Routines 1–22

1.11.3 Run-time Thread Management Routines 1–23

1.11.4 Routines That Manage Synchronization Locks 1–26

1.11.5 Timing Routines 1–29

2. Nested Parallelism 2–1

2.1 The Execution Model 2–1
iv OpenMP API User’s Guide • January 2005

2.2 Control of Nested Parallelism 2–2

2.2.1 OMP_NESTED 2–2

2.2.2 SUNW_MP_MAX_POOL_THREADS 2–3

2.2.3 SUNW_MP_MAX_NESTED_LEVELS 2–4

2.3 Using OpenMP Library Functions Within Nested Parallel Regions 2–7

2.4 Some Tips on Using Nested Parallelism 2–10

3. Automatic Scoping in Fortran 3–1

3.1 The Autoscoping Data Scope Clause 3–1

3.1.1 __AUTO Clause 3–1

3.1.2 DEFAULT(__AUTO) Clause 3–2

3.2 Scoping Rules 3–2

3.2.1 Scoping Rules For Scalar Variables 3–2

3.2.2 Scoping Rules for Arrays 3–3

3.3 General Comments About Autoscoping 3–3

3.4 Checking the Results of Autoscoping 3–4

3.5 Known Limitations of the Current Implementation 3–8

4. Implementation-Defined Behaviors 4–1

5. Compiling for OpenMP 5–1

5.1 Compiler Options To Use 5–1

5.2 Fortran 95 OpenMP Validation 5–3

5.3 OpenMP Environment Variables 5–5

5.4 Processor Binding 5–7

5.5 Stacks and Stack Sizes 5–9

6. Converting to OpenMP 6–1

6.1 Converting Legacy Fortran Directives 6–1

6.1.1 Converting Sun-Style Fortran Directives 6–1
Contents v

6.1.2 Converting Cray-Style Fortran Directives 6–3

6.2 Converting Legacy C Pragmas 6–4

6.2.1 Issues Between Legacy C Pragmas and OpenMP 6–5

7. Performance Considerations 7–1

7.1 Some General Recommendations 7–1

7.2 False Sharing And How To Avoid It 7–4

7.2.1 What Is False Sharing? 7–4

7.2.2 Reducing False Sharing 7–5

7.3 Operating System Tuning Features 7–5

Index Index–1
vi OpenMP API User’s Guide • January 2005

Tables

TABLE 1-1 Pragmas Where Clauses Can Appear 1–21

TABLE 5-1 OpenMP Environment Variables 5–5

TABLE 5-2 Multiprocessing Environment Variables 5–6

TABLE 6-1 Converting Sun Parallelization Directives to OpenMP 6–1

TABLE 6-2 DOALL Qualifier Clauses and OpenMP Equivalent Clauses 6–2

TABLE 6-3 SCHEDTYPE Scheduling and OpenMP schedule Equivalents 6–2

TABLE 6-4 OpenMP Equivalents for Cray-Style DOALL Qualifier Clauses 6–3

TABLE 6-5 Converting Legacy C Parallelization Pragmas to OpenMP 6–4

TABLE 6-6 taskloop Optional Clauses and OpenMP Equivalents 6–5

TABLE 6-7 SCHEDTYPE Scheduling and OpenMP schedule Equivalents 6–5
 vii

viii OpenMP API User’s Guide • January 2005

Before You Begin

The OpenMP API User’s Guide summarizes the OpenMP Fortran 95, C, and C++
application program interface (API) for building multiprocessing applications. Sun™
Studio compilers support the OpenMP API.

This guide is intended for scientists, engineers, and programmers who have a
working knowledge of the Fortran, C, or C++ languages, and the OpenMP parallel
programming model. Familiarity with the Solaris™ operating environment or
UNIX® in general is also assumed.

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.
 ix

Shell Prompts

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon
EM64T. The supported systems for the version of the Solaris Operating System you
are running are available in the hardware compatibility lists at
http://www.sun.com/bigadmin/hcl. These documents cite any implementation
differences between the platform types.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
x OpenMP API User’s Guide • January 2005

http://www.sun.com/bigadmin/hcl

In this document, the term "x86" refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product
families. For supported systems, see the hardware compatibility lists.

Accessing Sun Studio Software and Man
Pages
The compilers and tools and their man pages are not installed into the standard
/usr/bin/ and /usr/share/man directories. To access the compilers and tools,
you must have your PATH environment variable set correctly (see “Accessing the
Compilers and Tools” on page xi). To access the man pages, you must have the your
MANPATH environment variable set correctly (see “Accessing the Man Pages” on
page xii.).

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note – The information in this section assumes that your Sun Studio compilers and
tools are installed in the /opt directory. If your software is not installed in the /opt
directory, ask your system administrator for the equivalent path on your system.

Accessing the Compilers and Tools
Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

% echo $PATH
Before You Begin xi

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

▼ To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable. If you have Forte
Developer software, Sun ONE Studio software or another release of Sun Studio
software installed, add the following path before the paths to those installations.

/opt/SUNWspro/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

▼ To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

% man dbx
xii OpenMP API User’s Guide • January 2005

Accessing the Integrated Development
Environment
The Sun Studio integrated development environment (IDE) provides modules for
creating, editing, building, debugging, and analyzing the performance of a C, C++,
or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the
sunstudio(1) man page.

The correct operation of the IDE depends on the IDE being able to find the core
platform. The sunstudio command looks for the core platform in two locations:

■ The command looks first in the default installation directory,
/opt/netbeans/3.5V.

■ If the command does not find the core platform in the default directory, it
assumes that the directory that contains the IDE and the directory that contains
the core platform are both installed in or mounted to the same location. For
example, if the path to the directory that contains the IDE is /foo/SUNWspro, the
command looks for the core platform in /foo/netbeans/3.5V.

If the core platform is not installed or mounted to either of the locations where the
sunstudio command looks for it, then each user on a client system must set the
environment variable SPRO_NETBEANS_HOME to the location where the core
platform is installed or mounted (/installation_directory/netbeans/3.5V).

Each user of the IDE also must add /installation_directory/SUNWspro/bin to their
$PATH in front of the path to any other release of Forte Developer software, Sun
ONE Studio software, or Sun Studio software.

The path /installation_directory/netbeans/3.5V/bin should not be added to the
user’s $PATH.
Before You Begin xiii

Accessing Compilers and Tools
Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as
well as through Help buttons on many windows and dialogs, in the IDE.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with use of or reliance on any such
content, goods, or services available on or through any such sites or resources.
xiv OpenMP API User’s Guide • January 2005

http://docs.sun.com

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Related Compilers and Tools Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Online help HTML available through the Help menu in the IDE

Release notes HTML at http://docs.sun.com

Document Title Description

Fortran Programming Guide Describes how to write effective Fortran code on
Solaris environments; input/output, libraries,
performance, debugging, and parallel processing.

Fortran Library Reference Details the Fortran library and intrinsic routines

Fortran User’s Guide Describes the compile-time environment and
command-line options for the f95 compiler. Also
includes guidelines for migrating legacy f77
programs to f95.
Before You Begin xv

http://docs.sun.com
http://docs.sun.com
http://docs.sun.com

Accessing Related Solaris
Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Resources for Developers
Visit http://developers.sun.com/prodtech/cc to find these frequently
updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

C User’s Guide Describes the compile-time environment and
command-line options for the cc compiler.

C++ User’s Guide Describes the compile-time environment and
command-line options for the CC compiler.

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris operating environment.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris link-editor and runtime
linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Document Title Description
xvi OpenMP API User’s Guide • January 2005

http://developers.sun.com/prodtech/cc

■ Documentation of compilers and tools components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://developers.sun.com.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL:

http://www.sun.com/hwdocs/feedback

Please include the part number (819-0501-10) of your document in the subject line of
your email.
Before You Begin xvii

http://www.sun.com/service/contacting
http://developers.sun.com
http://www.sun.com/hwdocs/feedback

xviii OpenMP API User’s Guide • January 2005

CHAPTER 1

OpenMP API Summary

The OpenMP™ Application Program Interface is a portable, parallel programming
model for shared memory multiprocessor architectures, developed in collaboration
with a number of computer vendors. The specifications were created and are
published by the OpenMP Architecture Review Board. For more information on
OpenMP, including tutorials and other resources, see their web site at:
http://www.openmp.org/.

The OpenMP API is the recommended parallel programming model for all Sun
Studio compilers on Solaris™ OS platforms. See Chapter 6 for guidelines on
converting legacy Fortran and C parallelization directives to OpenMP.

This chapter summarizes the directives, run-time library routines, and environment
variables comprising the OpenMP Version 2.0 Application Program Interfaces, as
implemented by the Sun Studio Fortran 95, C and C++ compilers.

1.1 Where to Find the OpenMP
Specifications
The material presented in this chapter is only a summary with many details left out
intentionally for the sake of brevity. In all cases, refer to the OpenMP specification
documents for complete details.

The Fortran and C/C++ OpenMP 2.0 specifications can be found on the official
OpenMP website, http://www.openmp.org/.
1-1

http://www.openmp.org/
http://www.openmp.org/

1.2 Special Conventions Used Here
In the tables and examples that follow, Fortran directives and source code are shown
in upper case, but are case-insensitive.

The term structured-block refers to a block of Fortran or C/C++ statements having no
transfers into or out of the block.

Constructs within square brackets, [...], are optional.

Throughout this manual, “Fortran” refers to the Fortran 95 language and compiler,
f95.

The terms “directive” and “pragma” are used interchangeably in this manual.

1.3 Directive Formats
Only one directive-name can be specified on a directive line, and applies to the
succeeding program statement.

Fortran:

Fortran fixed format accepts three directive “sentinels”, free format accepts only one.
In the Fortran examples that follow, free format will be used.

C/C++:

C and C++ use the standard preprocessing directive starting with #pragma omp.

OpenMP 2.0 Fortran

Fixed Format:

C$OMP directive-name optional_clauses...
!$OMP directive-name optional_clauses...
*$OMP directive-name optional_clauses...

The sentinel must start in column one; continuation lines must have a non-blank or non-
zero character in column 6.
Comments may appear after column 6 on the directive line, initiated by an exclamation
point (!). The rest of the line after the ! is ignored.
1-2 OpenMP API User’s Guide • January 2005

1.4 Conditional Compilation
The OpenMP API defines the preprocessor symbol _OPENMP to be used for
conditional compilation. In addition, OpenMP Fortran API accepts a conditional
compilation sentinel.

Free Format:

!$OMP directive-name optional_clauses...

May appear anywhere on a line, preceded only by whitespace; an ampersand (&) at the
end of the line identifies a continued line.
Comments may appear on the directive line, initiated by an exclamation point (!). The
rest of the line is ignored.

OpenMP 2.0 C/C++

#pragma omp directive-name optional_clauses...
Each pragma must end with a new-line character, and follows the conventions of
standard C and C++ for compiler pragmas.
Pragmas are case sensitive. The order in which clauses appear is not significant. White
space can appear after and before the # and between words.
The directive applies to the succeeding statement, which must be a structured block.

OpenMP 2.0 Fortran

Fixed Format:

!$ fortran_95_statement
C$ fortran_95_statement
*$ fortran_95_statement
c$ fortran_95_statement

The sentinel must start in column 1 and have no intervening blanks. With OpenMP
compilation enabled, the sentinel is replaced by two blanks. The rest of the line must
conform to standard Fortran fixed format conventions. Example:

C23456789

!$ 10 iam = OMP_GET_THREAD_NUM() +

!$ 1 index

OpenMP 2.0 Fortran
Chapter 1 OpenMP API Summary 1-3

1.5 PARALLEL - Parallel Region Construct
The PARALLEL directive defines a parallel region, which is a region of the program
that is to be executed by multiple threads in parallel.

Free Format:

!$ fortran_95_statement

This sentinel can appear in any column, preceded only by white space, and must
appear as a single word. Fortran free format conventions apply to the rest of the line.
Example:

C23456789

 !$ iam = OMP_GET_THREAD_NUM() + &

 !$& index

Fortran Preprocessor:

Compiling with OpenMP enabled defines the preprocessor symbol _OPENMP.

#ifdef _OPENMP

 iam = OMP_GET_THREAD_NUM()+index

#endif

OpenMP 2.0 C/C++

C/C++ Preprocessor:

Compiling with OpenMP enabled defines the macro _OPENMP.

#ifdef _OPENMP

 iam = omp_get_thread_num() + index;

#endif

OpenMP 2.0 Fortran

!$OMP PARALLEL [clause[[,]clause]...]
 structured-block
!$OMP END PARALLEL

OpenMP 2.0 Fortran
1-4 OpenMP API User’s Guide • January 2005

There are many special conditions and restrictions. Programmers are urged to refer
to the appropriate OpenMP specification document for the details.

TABLE 1-1 identifies the clauses that can appear with this construct.

1.6 Work-Sharing Constructs
Work-sharing constructs divide the execution of the enclosed code region among the
members of the team of threads that encounter it. Work sharing constructs must be
enclosed within a parallel region for the construct to execute in parallel.

There are many special conditions and restrictions on these directives and the code
they apply to. Programmers are urged to refer to the appropriate OpenMP
specification document for the details.

1.6.1 DO and for Constructs
Specifies that the iterations of the DO or for loop that follows should be executed in
parallel.

OpenMP 2.0 C/C++

#pragma omp parallel [clause[[,]clause]...]
 structured-block

OpenMP 2.0 Fortran

!$OMP DO [clause[[,] clause]...]
 do_loop
[!$OMP END DO [NOWAIT]]

The DO directive specifies that the iterations of the DO loop that immediately follows
should be executed in parallel. The iterations of the loop are distributed across threads
already existing in the team of threads executing the parallel region that binds the loop.
This directive must appear within a parallel region to be effective.
Chapter 1 OpenMP API Summary 1-5

TABLE 1-1 identifies the clauses that can appear with this construct.

OpenMP 2.0 C/C++

#pragma omp for [clause[[,]clause]...]
 for-loop

The for pragma specifies that the iterations of the for-loop that immediately follows
should be executed in parallel. The iterations of the loop are distributed across threads
already existing in the team of threads executing the parallel region that binds the loop.
This pragma must appear within a parallel region to be effective. The for pragma places
restrictions on the structure of the corresponding for loop, and it must have canonical
shape:
 for (initexpr; var logicop b; increxpr)
where:
• initexpr is one of the following:
 var = lb
 integer_type var = lb
• increxpr is one of the following expression forms:
 ++var
 var++
 --var
 var--
 var += incr
 var -= incr
 var = var + incr
 var = incr + var
 var = var - incr
• var is a signed integer variable, made implicitly private for the range of the for. var

must not be modified within the body of the for statement. Its value is indeterminate
after the loop, unless specified lastprivate.

• logicop is one of the following logical operators:
 < <= > >=

• lb, b, and incr are loop invariant integer expressions.

There are further restrictions on the use of < or <= and > or >= as logicalop in the for
statement. See the OpenMP C/C++ specifications for details.
1-6 OpenMP API User’s Guide • January 2005

1.6.2 SECTIONS Construct
The SECTIONS construct encloses a set of structured blocks of code to be divided
among threads in the team. Each block is executed once by a thread in the team.

Each section is preceded by a SECTION directive, which is optional for the first
section.

TABLE 1-1 identifies the clauses that can appear with this construct.

1.6.3 SINGLE Construct
The structured block enclosed by SINGLE is executed by only one thread in the
team. Threads in the team that are not executing the SINGLE block wait at the end of
the block unless NOWAIT is specified.

OpenMP 2.0 Fortran

!$OMP SECTIONS [clause[[,] clause]...]
[!$OMP SECTION]
 structured-block
[!$OMP SECTION
 structured-block]
...
!$OMP END SECTIONS [NOWAIT]

OpenMP 2.0 C/C++

#pragma omp sections [clause[[,]clause]...]
 {

 [#pragma omp section]
 structured-block
 [#pragma omp section
 structured-block]
 ...
 }

OpenMP 2.0 Fortran

!$OMP SINGLE [clause[[,] clause]...]
 structured-block
!$OMP END SINGLE [end-modifier]
Chapter 1 OpenMP API Summary 1-7

TABLE 1-1 identifies the clauses that can appear with this construct.

1.6.4 Fortran WORKSHARE Construct
The WORKSHARE construct divides the work of executing the enclosed code block
into separate units of work, and causes the threads of the team to share the work
such that each unit is executed only once.

There is no C/C++ equivalent to the Fortran WORKSHARE construct.

1.7 Combined Parallel Work-sharing
Constructs
The combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains one work-sharing construct.

There are many special conditions and restrictions on these directives and the code
they apply to. Refer to the appropriate OpenMP specification document for the
complete details. The description that follows is intended only as a summary and is
not complete.

TABLE 1-1 identifies the clauses that can appear with these constructs.

OpenMP 2.0 C/C++

#pragma omp single [clause[[,] clause]...]
 structured-block

OpenMP 2.0 Fortran

!$OMP WORKSHARE

 structured-block
!$OMP END WORKSHARE [NOWAIT]
1-8 OpenMP API User’s Guide • January 2005

1.7.1 PARALLEL DO and parallel for Constructs
Shortcut for specifying a parallel region that contains a single DO or for loop.
Equivalent to a PARALLEL directive followed immediately by a DO or for directive.
clause can be any of the clauses accepted by the PARALLEL and DO/for directives,
except the NOWAIT modifier.

1.7.2 PARALLEL SECTIONS Construct
Shortcut for specifying a parallel region that contains a single SECTIONS directive.
Equivalent to a PARALLEL directive followed by a SECTIONS directive. clause can be
any of the clauses accepted by the PARALLEL and SECTIONS directives, except the
NOWAIT modifier.

OpenMP 2.0 Fortran

!$OMP PARALLEL DO [clause[[,] clause]...]
 do_loop
[!$OMP END PARALLEL DO]

OpenMP 2.0 C/C++

#pragma omp parallel for [clause[[,] clause]...]
 for-loop

OpenMP 2.0 Fortran

!$OMP PARALLEL SECTIONS [clause[[,] clause]...]
[!$OMP SECTION]
 structured-block
[!$OMP SECTION
 structured-block]
...
!$OMP END PARALLEL SECTIONS
Chapter 1 OpenMP API Summary 1-9

1.7.3 PARALLEL WORKSHARE Construct
The Fortran PARALLEL WORKSHARE construct provides a shortcut for specifying a
parallel region that contains a single WORKSHARE directive. clause can be one of the
clauses accepted by the PARALLEL directive.

There is no C/C++ equivalent.

1.8 Synchronization Constructs
The following constructs specify thread synchronization. There are many special
conditions and restrictions regarding these constructs that are too numerous to
summarize here. Programmers are urged to refer to the appropriate OpenMP
specification document for the complete details.

OpenMP 2.0 C/C++

#pragma omp parallel sections [clause[[,] clause]...]
 {
 [#pragma omp section]
 structured-block
 [#pragma omp section
 structured-block]
 ...
 }

OpenMP 2.0 Fortran

!$OMP PARALLEL WORKSHARE [clause[[,] clause]...]
 structured-block
!$OMP END PARALLEL WORKSHARE
1-10 OpenMP API User’s Guide • January 2005

1.8.1 MASTER Construct
Only the master thread of the team executes the block enclosed by this directive. The
other threads skip this block and continue. There is no implied barrier on entry to or
exit from the master construct.

1.8.2 CRITICAL Construct
Restrict access to the structured block to only one thread at a time. The optional name
argument identifies the critical region. All unnamed CRITICAL directives map to the
same name. Critical section names are global entities of the program and must be
unique. For Fortran, if name appears on the CRITICAL directive, it must also appear
on the END CRITICAL directive. For C/C++, the identifier used to name a critical
region has external linkage and is in a name space which is separate from the name
spaces used by labels, tags, members, and ordinary identifiers.

OpenMP 2.0 Fortran

!$OMP MASTER

 structured-block
!$OMP END MASTER

OpenMP 2.0 C/C++

#pragma omp master

 structured-block

OpenMP 2.0 Fortran

!$OMP CRITICAL [(name)]
 structured-block
!$OMP END CRITICAL [(name)]

OpenMP 2.0 C/C++

#pragma omp critical [(name)]
 structured-block
Chapter 1 OpenMP API Summary 1-11

1.8.3 BARRIER Construct
Synchronizes all the threads in a team. Each thread waits until all the others in the
team have reached this point.

After all threads in the team have encountered the barrier, each thread in the team
begins executing the statements after the BARRIER directive in parallel.

Note that because the barrier pragma does not have a C/C++ statement as part of
its syntax, there are restrictions on its placement within a program. See the C/C++
OpenMP specifications for details.

1.8.4 ATOMIC Construct
Ensures that a specific memory location is to be updated atomically, rather than
exposing it to the possibility of multiple, simultaneous writing threads.

OpenMP 2.0 Fortran

!$OMP BARRIER

OpenMP 2.0 C/C++

#pragma omp barrier

OpenMP 2.0 Fortran

!$OMP ATOMIC

 expression-statement

The directive applies only to the expression-statement immediately following the directive,
which must be in one of these forms:
 x = x operator expression
 x = expression operator x
 x = intrinsic(x, expr-list)
 x = intrinsic(expr-list, x)
where:
• x is a scalar of intrinsic type
• expression is a scalar expression that does not reference x
• expr-list is a non-empty, comma-separated list of scalar expressions that do not reference

x (see the OpenMP 2.0 Fortran specifications for details)
• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.
• operator is one of + - * / .AND. .OR. .EQV. .NEQV.
1-12 OpenMP API User’s Guide • January 2005

This implementation replaces all ATOMIC directives by enclosing the expression-statement
in a critical section.

1.8.5 FLUSH Construct
Thread-visible Fortran variables or C objects are written back to memory at the point
at which this directive appears. The FLUSH directive only provides consistency
between operations within the executing thread and global memory. The optional
variable-list consists of a comma-separated list of variables or objects that need to be
flushed. A FLUSH directive without a variable-list synchronizes all thread-visible
shared variables or objects.

Note that because the flush pragma does not have a C/C++ statement as part of its
syntax, there are restrictions on its placement within a program. See the C/C++
OpenMP specifications for details.

OpenMP 2.0 C/C++

#pragma omp atomic

 expression-statement

The directive applies only to the expression-statement immediately following the directive,
which must be in one of these forms:
 x binop = expr
 x++
 ++x
 x--
 --x
where:
• x in an lvalue expression with scalar type.
• expr is an expression with scalar type that does not reference x.
• binop is not an overloaded operator and one of: +, *, -, /, &, ^, |, <<, or >>.

OpenMP 2.0 Fortran

!$OMP FLUSH [(variable-list)]

OpenMP 2.0 C/C++

#pragma omp flush [(variable-list)]
Chapter 1 OpenMP API Summary 1-13

1.8.6 ORDERED Construct
The enclosed block is executed in the order that iterations would be executed in a
sequential execution of the loop.

OpenMP 2.0 Fortran

!$OMP ORDERED

 structured-block
!$OMP END ORDERED

The enclosed block is executed in the order that iterations would be executed in a
sequential execution of the loop. It can appear only in the dynamic extent of a DO or
PARALLEL DO directive. The ORDERED clause must be specified on the closest DO directive
enclosing the block.
A loop to which a DO directive applies must not execute the same ordered directive more
than once per iteration, and it must not execute more than one ordered directive.

OpenMP 2.0 C/C++

#pragma omp ordered

 structured-block

The enclosed block is executed in the order that iterations would be executed in a
sequential execution of the loop. It can appear only in the dynamic extent of a for or
parallel for directive with the ordered clause specified.
A loop with a for construct must not execute the same ordered directive more than
once per iteration, and it must not execute more than one ordered directive.
1-14 OpenMP API User’s Guide • January 2005

1.9 Data Environment Directives
The following directives control the data environment during execution of parallel
constructs.

1.9.1 THREADPRIVATE Directive
Makes the list of objects (Fortran common blocks and named variables, C and C++
named variables) private to a thread but global within the thread.

See the OpenMP specifications for the complete details and restrictions.

OpenMP 2.0 Fortran

!$OMP THREADPRIVATE(list)

Common block names must appear between slashes. To make a common block
THREADPRIVATE, this directive must appear after every COMMON declaration of that
block.

OpenMP 2.0 C/C++

#pragma omp threadprivate (list)

Each variable in list at file, namespace, or block scope must refer to a variable
declaration at file, namespace, or block scope that lexically preceeds the pragma.
Chapter 1 OpenMP API Summary 1-15

1.10 OpenMP Directive Clauses
This section summarizes the data scoping and scheduling clauses that can appear on
OpenMP directives.

1.10.1 Data Scoping Clauses
Several directives accept clauses that allow a user to control the scope attributes of
variables within the extent of the construct. If no data scope clause is specified for a
directive, the default scope for variables affected by the directive is SHARED.

Fortran: list is a comma-separated list of named variables or common blocks that are
accessible in the scoping unit. Common block names must appear within slashes (for
example, /ABLOCK/).

There are important restrictions on the use of these scoping clauses. Refer to the
appropriate sections of the OpenMP specifications for complete details.

TABLE 1-1 identifies the directives on which these clauses can appear.

1.10.1.1 PRIVATE Clause

private(list)

Declares the variables in the optional comma-separated list to be private to each
thread in a team.

1.10.1.2 SHARED Clause

shared(list)

All the threads in the team share the variables that appear in list, and access the
same storage area.

1.10.1.3 DEFAULT Clause

Fortran

DEFAULT(PRIVATE | SHARED | NONE)
1-16 OpenMP API User’s Guide • January 2005

C/C++

default(shared | none)

Specify scoping attributes for all variables within a parallel region. THREADPRIVATE
variables are not affected by this clause. If not specified, DEFAULT(SHARED) is
assumed. A variable’s default data-sharing attribute can be overridden by using the
private, firstprivate, lastprivate, reduction, and shared clauses.

1.10.1.4 FIRSTPRIVATE Clause

firstprivate(list)

The variables in list are PRIVATE. In addition, private copies of the variables are
initialized from the original object existing before the construct.

1.10.1.5 LASTPRIVATE Clause

lastprivate(list)

The variables in the list are PRIVATE. In addition, when the LASTPRIVATE clause
appears on a DO or for directive, the thread that executes the sequentially last
iteration updates the original object. On a SECTIONS directive, the thread that
executes the lexically last SECTION updates the original object.

1.10.1.6 COPYIN Clause

Fortran

COPYIN(list)

The COPYIN clause applies only to variables, common blocks, and variables in
common blocks that are declared as THREADPRIVATE. In a parallel region,
COPYIN specifies that the data in the master thread of the team be copied to the
threadprivate copies at the beginning of the parallel region.

C/C++

copyin(list)

The COPYIN clause applies only to variables that are declared as
THREADPRIVATE. In a parallel region, COPYIN specifies that the data in the
master thread of the team be copied to the threadprivate copies at the beginning
of the parallel region.
Chapter 1 OpenMP API Summary 1-17

1.10.1.7 COPYPRIVATE Clause

Fortran

COPYPRIVATE(list)

Uses a private variable to broadcast a value, or a pointer to a shared object, from
one member of a team to the other members. COPYPRIVATE clause can only
appear on the END SINGLE directive. The broadcast occurs after the execution of
the structured block associated with the single construct, and before any
threads in the team have left the barrier at the end of the construct. The variables
in list must not appear in a PRIVATE or FIRSTPRIVATE clause of the SINGLE
construct specifying COPYPRIVATE.

C/C++

copyprivate(list)

Uses a private variable to broadcast a value from one member of a team to the
other members. The copyprivate clause can only appear on the single
directive. The broadcast occurs after the execution of the structured block
associated with the single construct, and before any threads in the team have
left the barrier at the end of the construct. The variables in list must not appear in
a private or firstprivate clause for the same single directive.

1.10.1.8 REDUCTION Clause

Fortran

REDUCTION(operator|intrinsic:list)

 operator is one of: +, *, -, .AND., .OR., .EQV., .NEQV.

 intrinsic is one of: MAX, MIN, IAND, IOR, IEOR

Variables in list must be named variables of intrinsic type.

C/C++

reduction(operator:list)

operator is one of: +, *, -, &, ^, |, &&, ||

The REDUCTION clause is intended to be used on a region in which the reduction
variable is used only in reduction statements. The variables in list must be SHARED
in the enclosing context. A private copy of each variable is created for each thread as
if it were PRIVATE. At the end of the reduction, the shared variable is updated by
combining the original value with the final value of each of the private copies.

See the appropriate sections of the OpenMP specifications for complete details and
restrictions on REDUCTION clauses and constructs.
1-18 OpenMP API User’s Guide • January 2005

1.10.2 Scheduling Clauses
The SCHEDULE clause specifies how iterations in a Fortran DO loop or C/C++ for
loop are divided among the threads in a team. TABLE 1-1 shows which directives
allow the SCHEDULE clause.

There are important restrictions on the use of these scheduling clauses. Refer to
section 2.3.1 in the Fortran specification, and section 2.4.1 in the C/C++ specification
for complete details.

schedule(type [,chunk])

Specifies how iterations of the DO or for loop are divided among the threads of the
team. type can be one of STATIC, DYNAMIC, GUIDED, or RUNTIME. In the absence of
a SCHEDULE clause, Sun Studio compilers use STATIC scheduling. chunk must be an
integer expression.

1.10.2.1 STATIC Scheduling

schedule(static[,chunk])

Iterations are divided into pieces of a size specified by chunk. The pieces are
statically assigned to threads in the team in a round-robin fashion in the order of the
thread number. If not specified, chunk is chosen so that the iterations divide into
contiguous chunks nearly equal in size with one chunk assigned to each thread.

1.10.2.2 DYNAMIC Scheduling

schedule(dynamic[,chunk])

Iterations are divided into pieces of a size specified by chunk, and assigned to a
waiting thread. As each thread finishes its piece of the iteration space, it dynamically
obtains the next set of iterations. When no chunk is specified, it defaults to 1.

1.10.2.3 GUIDED Scheduling

schedule(guided[,chunk])

With GUIDED, the chunk size is reduced in an exponentially decreasing manner with
each dispatched piece of the iterations. chunk specifies the minimum number of
iterations to dispatch each time. (The size of the chunks is determined by a formula
that is implementation dependent; see “GUIDED: Determination of Chunk Sizes” on
page 4-2.). When no chunk is specified, it defaults to 2.0.
Chapter 1 OpenMP API Summary 1-19

1.10.2.4 RUNTIME Scheduling

schedule(runtime)

Scheduling is deferred until runtime. Schedule type and chunk size will be
determined from the value of the OMP_SCHEDULE environment variable. (Default is
SCHEDULE(STATIC).

1.10.3 NUM_THREADS Clause
The OpenMP API provides a NUM_THREADS clause on the PARALLEL, PARALLEL
SECTIONS, PARALLEL DO, PARALLEL for,and PARALLEL WORKSHARE directives.

num_threads(scalar_integer_expression)

Specifies the number of threads in the team created when a thread enters a parallel
region. scalar_integer_expression is the number of threads requested, and supersedes
the number of threads defined by a prior call to the OMP_SET_NUM_THREADS library
function, or the value of the OMP_NUM_THREADS environment variable. If dynamic
thread management is enabled, the request is the maximum number of threads to use.

Note that num_threads does not apply to subsequent regions.

1.10.4 Placement of Clauses on Directives
TABLE 1-1 shows the clauses that can appear on these directives and pragmas:

■ PARALLEL
■ DO
■ for
■ SECTIONS
■ SINGLE
■ PARALLEL DO
■ parallel for
■ PARALLEL SECTIONS
■ PARALLEL WORKSHARE
1-20 OpenMP API User’s Guide • January 2005

1. Fortran only: COPYPRIVATE can appear on the END SINGLE directive.

2. For Fortran, a NOWAIT modifier can only appear on the END DO, END SECTIONS,
END SINGLE, or END WORKSHARE directives.

3. Only Fortran supports WORKSHARE and PARALLEL WORKSHARE.

TABLE 1-1 Pragmas Where Clauses Can Appear

Clause/Pragma PARALLEL DO/for SECTIONS SINGLE
PARALLEL
DO/for

PARALLEL
SECTIONS

PARALLEL
WORKSHARE3

IF • • • •

PRIVATE • • • • • • •

SHARED • • • •

FIRSTPRIVATE • • • • • • •

LASTPRIVATE • • • •

DEFAULT • • • •

REDUCTION • • • • • •

COPYIN • • • •

COPYPRIVATE •1

ORDERED • •

SCHEDULE • •

NOWAIT •2 •2 •2

NUM_THREADS • • • •
Chapter 1 OpenMP API Summary 1-21

1.11 OpenMP Runtime Library Routines
OpenMP provides a set of callable library routines to control and query the parallel
execution environment, a set of general purpose lock routines, and two portable
timer routines. Full details appear in the Fortran and C/C++ OpenMP specifications.

1.11.1 Fortran OpenMP Routines
The Fortran run-time library routines are external procedures. In the following
summary, int_expr is a scalar integer expression, and logical_expr is a scalar logical
expression.

The OMP_ functions returning INTEGER(4) and LOGICAL(4) are not intrinsic and
must be declared properly, otherwise the compiler will assume REAL. Interface
declarations for the OpenMP Fortran runtime library routines summarized below
are provided by the Fortran include file omp_lib.h and a Fortran MODULE
omp_lib, as described in the Fortran OpenMP specifications.

Supply an INCLUDE 'omp_lib.h' statement or #include "omp_lib.h"
preprocessor directive, or a USE omp_lib statement in every program unit that
references these library routines.

Compiling with -Xlist will report any type mismatches.

The integer parameter omp_lock_kind defines the KIND type parameters used for
simple lock variables in the OMP_*_LOCK routines.

The integer parameter omp_nest_lock_kind defines the KIND type parameters
used for the nestable lock variables in the OMP_*_NEST_LOCK routines.

The integer parameter openmp_version is defined as a preprocessor macro
_OPENMP having the form YYYYMM where YYYY and MM are the year and month
designations of the version of the OpenMP Fortran API.

1.11.2 C/C++ OpenMP Routines
The C/C++ run-time library functions are external functions.

The header <omp.h> declares two types, several functions that can be used to
control and query the parallel execution environment, and lock functions that can be
used to synchronize access to data.
1-22 OpenMP API User’s Guide • January 2005

The type omp_lock_t is an object type capable of representing that a lock is
available, or that a thread owns a lock. These locks are referred to as simple locks.

The type omp_nest_lock_t is an object type capable of representing that a lock is
available, or that a thread owns a lock. These locks are referred to as nestable locks.

1.11.3 Run-time Thread Management Routines
For details, refer to the appropriate OpenMP specifications.

1.11.3.1 OMP_SET_NUM_THREADS Routine

Sets the number of threads to use for subsequent parallel regions not specified with
a num_threads() clause. This call affects only the subsequent parallel regions
encountered by the calling thread at the same or inner nesting level.

Fortran

SUBROUTINE OMP_SET_NUM_THREADS(int_expr)

C/C++

#include <omp.h>
void omp_set_num_threads(int num_threads);

1.11.3.2 OMP_GET_NUM_THREADS Routine

Returns the number of threads currently in the team executing the parallel region
from which it is called.

Fortran

INTEGER(4) FUNCTION OMP_GET_NUM_THREADS()

C/C++

#include <omp.h>
int omp_get_num_threads(void);

1.11.3.3 OMP_GET_MAX_THREADS Routine

Returns maximum number of threads that would be used to form a team if an active
paralel region specified without a num_threads() clause were to be encountered at
this point in the program.
Chapter 1 OpenMP API Summary 1-23

Fortran

INTEGER(4) FUNCTION OMP_GET_MAX_THREADS()

C/C++

#include <omp.h>
int omp_get_max_threads(void);

1.11.3.4 OMP_GET_THREAD_NUM Routine

Returns the thread number, within its team, of the thread executing the call to this
function. This number lies between 0 and OMP_GET_NUM_THREADS()-1, with 0
being the master thread.

Fortran

INTEGER(4) FUNCTION OMP_GET_THREAD_NUM()

C/C++

#include <omp.h>
int omp_get_thread_num(void);

1.11.3.5 OMP_GET_NUM_PROCS Routine

Return the number of processors available to the program.

Fortran

INTEGER(4) FUNCTION OMP_GET_NUM_PROCS()

C/C++

#include <omp.h>
int omp_get_num_procs(void);

1.11.3.6 OMP_IN_PARALLEL Routine

Determine whether or not thread is executing within the dynamic extent of a parallel
region.

Fortran

LOGICAL(4) FUNCTION OMP_IN_PARALLEL()

Returns .TRUE. if called within the dynamic extent of an active parallel region,
.FALSE. otherwise.
1-24 OpenMP API User’s Guide • January 2005

C/C++

#include <omp.h>
int omp_in_parallel(void);

Returns nonzero if called within the dynamic extent of an active parallel region,
zero otherwise.

An active parallel region is a parallel region where the IF clause evaluates to TRUE.

1.11.3.7 OMP_SET_DYNAMIC Routine

Enables or disables dynamic adjustment of the number of available threads.
(Dynamic adjustment is enabled by default.) This call affects only the subsequent
parallel regions encountered by the calling thread at the same or inner nesting level.

Fortran

SUBROUTINE OMP_SET_DYNAMIC(logical_expr)

Dynamic adjustment is enabled when logical_expr evaluates to .TRUE., and is
disabled otherwise.

C/C++

#include <omp.h>
void omp_set_dynamic(int dynamic);

If dynamic evaluates to nonzero, dynamic adjustment is enabled; otherwise it is
disabled.

1.11.3.8 OMP_GET_DYNAMIC Routine

Determine whether or not dynamic thread adjustment is enabled at this point in the
program.

Fortran

LOGICAL(4) FUNCTION OMP_GET_DYNAMIC()

Returns .TRUE. if dynamic thread adjustment is enabled, .FALSE. otherwise.

C/C++

#include <omp.h>
int omp_get_dynamic(void);

Returns nonzero if dynamic thread adjustment is enabled, zero otherwise.
Chapter 1 OpenMP API Summary 1-25

1.11.3.9 OMP_SET_NESTED Routine

Enables or disables nested parallelism.This call affects only the subsequent parallel
regions encountered by the calling thread at the same or inner nesting level.

Fortran

SUBROUTINE OMP_SET_NESTED(logical_expr)

Nested parallelism is enabled if logical_expr evaluates to .TRUE., and is disabled
otherwise.

C/C++

#include <omp.h>
void omp_set_nested(int nested);

Nested parallelism is enabled if nested evaluates to non-zero, and is disabled
otherwise.

Nested parallelism is disabled by default. See Chapter 2 for information on nested
parallelism.

1.11.3.10 OMP_GET_NESTED Routine

Determine whether or not nested parallelism is enabled at this point in the program.

Fortran

LOGICAL(4) FUNCTION OMP_GET_NESTED()

Returns .TRUE. if nested parallelism is enabled, .FALSE. otherwise.

C/C++

#include <omp.h>
int omp_get_nested(void);

Returns nonzero if nested parallelism is enabled, zero otherwise.

See Chapter 2 for information on nested parallelism.

1.11.4 Routines That Manage Synchronization Locks
Two types of locks are supported: simple locks and nestable locks. Nestable locks
may be locked multiple times by the same thread before being unlocked; simple
locks may not be locked if they are already in a locked state. Simple lock variables
may only be passed to simple lock routines, and nested lock variables only to nested
lock routines.
1-26 OpenMP API User’s Guide • January 2005

Fortran:

The lock variable var must be accessed only through these routines. Use the
parameters OMP_LOCK_KIND and OMP_NEST_LOCK_KIND (defined in
omp_lib.h INCLUDE file and the omp_lib MODULE) for this purpose. For
example,

INTEGER(KIND=OMP_LOCK_KIND) :: var
INTEGER(KIND=OMP_NEST_LOCK_KIND) :: nvar

C/C++:

Simple lock variables must have type omp_lock_t and must be accessed only
through these functions. All simple lock functions require an argument that
points to omp_lock_t type.

Nested lock variables must have type omp_nest_lock_t, and similarly all
nested lock functions require an argument that points to omp_nest_lock_t
type.

1.11.4.1 OMP_INIT_LOCK and OMP_INIT_NEST_LOCK Routines

Initialize a lock variable for subsequent calls.

Fortran

SUBROUTINE OMP_INIT_LOCK(var)

SUBROUTINE OMP_INIT_NEST_LOCK(nvar)

C/C++

#include <omp.h>
void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

1.11.4.2 OMP_DESTROY_LOCK and OMP_DESTROY_NEST_LOCK
Routines

Removes a lock variable.

Fortran

SUBROUTINE OMP_DESTROY_LOCK(var)

SUBROUTINE OMP_DESTROY_NEST_LOCK(nvar)
Chapter 1 OpenMP API Summary 1-27

C/C++

#include <omp.h>

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_nest_lock_t *lock);

1.11.4.3 OMP_SET_LOCK and OMP_SET_NEST_LOCK Routines

Forces the executing thread to wait until the specified lock is available. The thread is
granted ownership of the lock when it is available.

Fortran

SUBROUTINE OMP_SET_LOCK(var)

SUBROUTINE OMP_SET_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest_lock(omp_nest_lock_t *lock);

1.11.4.4 OMP_UNSET_LOCK and OMP_UNSET_NEST_LOCK Routines

Releases the executing thread from ownership of the lock. Behavior is undefined if
the thread does not own that lock.

Fortran

SUBROUTINE OMP_UNSET_LOCK(var)

SUBROUTINE OMP_UNSET_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

1.11.4.5 OMP_TEST_LOCK and OMP_TEST_NEST_LOCK Routines

OMP_TEST_LOCK attempts to set the lock associated with lock variable. Call does not
block execution of the thread.
1-28 OpenMP API User’s Guide • January 2005

OMP_TEST_NEST_LOCK returns the new nesting count if the lock was set
successfully, otherwise it returns 0. Call does not block execution of the thread.

Fortran

LOGICAL(4) FUNCTION OMP_TEST_LOCK(var)

Returns .TRUE. if the lock was set, .FALSE. otherwise.

INTEGER(4) FUNCTION OMP_TEST_NEST_LOCK(nvar)

Returns nesting count if lock was set successfully, zero otherwise.

C/C++

#include <omp.h>
int omp_test_lock(omp_lock_t *lock);

Returns a nonzero value if lock was set successfully, zero otherwise.

int omp_test_nest_lock(omp_nest_lock_t *lock);

Returns lock nest count if lock was set successfully, zero otherwise.

1.11.5 Timing Routines
Two functions support a portable wall clock timer.

1.11.5.1 OMP_GET_WTIME Routine

Returns the elapsed wall clock time in seconds “since some arbitrary time in the
past”.

Fortran

REAL(8) FUNCTION OMP_GET_WTIME()

C/C++

#include <omp.h>
double omp_get_wtime(void);

1.11.5.2 OMP_GET_WTICK Routine

Returns the number of seconds between successive clock ticks.

Fortran
Chapter 1 OpenMP API Summary 1-29

REAL(8) FUNCTION OMP_GET_WTICK()

C/C++

#include <omp.h>
double omp_get_wtick(void);
1-30 OpenMP API User’s Guide • January 2005

CHAPTER 2

Nested Parallelism

This chapter discusses the features of OpenMP nested parallelism.

2.1 The Execution Model
OpenMP uses a fork-join model of parallel execution. When a thread encounters a
parallel construct, the thread creates a team composed of itself and some additional
(possibly zero) number of threads. The encountering thread becomes the master of
the new team. The other threads of the team are called slave threads of the team. All
team members execute the code inside the parallel construct. When a thread finishes
its work within the parallel construct, it waits at the implicit barrier at the end of the
parallel construct. When all team members have arrived at the barrier, the threads
can leave the barrier. The master thread continues execution of user code beyond the
end of the parallel construct, while the slave threads wait to be summoned to join
other teams.

OpenMP parallel regions can be nested inside each other. If nested parallelism is
disabled, then the new team created by a thread encountering a parallel construct
inside a parallel region consists only of the encountering thread. If nested
parallelism is enabled, then the new team may consist of more than one thread.

The OpenMP runtime library maintains a pool of threads that can be used as slave
threads in parallel regions. When a thread encounters a parallel construct and needs
to create a team of more than one thread, the thread will check the pool and grab
idle threads from the pool, making them slave threads of the team. The master
thread might get fewer slave threads than it needs if there is not a sufficient number
of the idle threads in the pool. When the team finishes executing the parallel region,
the slave threads return to the pool.
2-1

2.2 Control of Nested Parallelism
Nested parallelism can be controlled at runtime by setting various environment
variables prior to execution of the program.

2.2.1 OMP_NESTED

Nested parallelism can be enabled or disabled by setting the OMP_NESTED
environment variable or calling omp_set_nested() function (Section 1.11.3.9,
“OMP_SET_NESTED Routine” on page 1-26).

The following example shows a team of more than one thread executing a nested
parallel region when nested parallelism is enabled.

CODE EXAMPLE 2-1 Nested Parallelism Example

#include <omp.h>
#include <stdio.h>
void report_num_threads(int level)
{
 #pragma omp single
 {
 printf("Level %d: number of threads in the team - %d\n",
 level, omp_get_num_threads());
 }
}

int main()
{
 omp_set_dynamic(0);
 #pragma omp parallel num_threads(2)
 {
 report_num_threads(1);
 #pragma omp parallel num_threads(2)
 {
 report_num_threads(2);
 #pragma omp parallel num_threads(2)
 {
 report_num_threads(3);
 }
 }
 }
 return(0);
}

2-2 OpenMP API User’s Guide • January 2005

Compiling and running this program with nested parallelism enabled produces the
following output:

Compare with running the same program but with nested parallelism disabled:

2.2.2 SUNW_MP_MAX_POOL_THREADS
The OpenMP runtime library maintains a pool of threads that can be used as slave
threads in parallel regions. Setting the SUNW_MP_MAX_POOL_THREADS environment
variable controls the number of threads in the pool. The default value is 1023.

The thread pool consists of only non-user threads that the runtime library creates. It
does not include the master thread or any thread created explicitly by the user’s
program. If this environment variable is set to zero, the thread pool will be empty
and all parallel regions will be executed by one thread.

The following example shows that a parallel region can get fewer threads if there are
not sufficient threads in the pool.The code is the same as above. The number of
threads needed for all the parallel regions to be active at the same time is 8. The pool
needs to contain at least 7 idle threads. If we set SUNW_MP_MAX_POOL_THREADS to 5,

% setenv OMP_NESTED TRUE
% a.out
Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2

% setenv OMP_NESTED FALSE
% a.out
Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 1
Level 3: number of threads in the team - 1
Level 2: number of threads in the team - 1
Level 3: number of threads in the team - 1
Chapter 2 Nested Parallelism 2-3

two of the four inner-most parallel regions may not be able to get all the slave
threads they ask for. One possible result is shown below.

2.2.3 SUNW_MP_MAX_NESTED_LEVELS

Environment variable SUNW_MP_MAX_NESTED_LEVELS controls the maximum
depth of nested parallel regions that require more than one thread.

Any parallel region that has an active nested depth greater than the value of this
environment variable will be executed by only one thread. A parallel region is
considered not active if it is an OpenMP parallel region that has a false IF clause.

The following code will create 4 levels of nested parallel regions. If
SUNW_MP_MAX_NESTED_LEVELS is set to 2, then nested parallel regions at nested
depth of 3 and 4 are executed single-threaded.

% setenv OMP_NESTED TRUE
% setenv SUNW_MP_MAX_POOL_THREADS 5
% a.out
Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 1
Level 3: number of threads in the team - 1
2-4 OpenMP API User’s Guide • January 2005

Compiling and running this program with a maximum nesting level of 4 gives the
following possible output. (Actual results will depend on how the OS schedules
threads).

#include <omp.h>
#include <stdio.h>
#define DEPTH 5
void report_num_threads(int level)
{
 #pragma omp single
 {
 printf("Level %d: number of threads in the team - %d\n",
 level, omp_get_num_threads());
 }
}
void nested(int depth)
{
 if (depth == DEPTH)
 return;

 #pragma omp parallel num_threads(2)
 {
 report_num_threads(depth);
 nested(depth+1);
 }
}
int main()
{
 omp_set_dynamic(0);
 omp_set_nested(1);
 nested(1);
 return(0);
}

Chapter 2 Nested Parallelism 2-5

Running with the nesting level set at 2 gives the following as a possible result:

% setenv SUNW_MP_MAX_NESTED_LEVELS 4
% a.out |sort +2n
Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 4: number of threads in the team - 2
Level 4: number of threads in the team - 2
Level 4: number of threads in the team - 2
Level 4: number of threads in the team - 2
Level 4: number of threads in the team - 2
Level 4: number of threads in the team - 2
Level 4: number of threads in the team - 2
Level 4: number of threads in the team - 2

% setenv SUNW_MP_MAX_NESTED_LEVELS 2
% a.out |sort +2n
Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 3: number of threads in the team - 1
Level 3: number of threads in the team - 1
Level 3: number of threads in the team - 1
Level 3: number of threads in the team - 1
Level 4: number of threads in the team - 1
Level 4: number of threads in the team - 1
Level 4: number of threads in the team - 1
Level 4: number of threads in the team - 1
2-6 OpenMP API User’s Guide • January 2005

2.3 Using OpenMP Library Functions
Within Nested Parallel Regions
Calls to the following OpenMP routines within nested parallel regions deserve some
discussion.

- omp_set_num_threads()

- omp_get_max_threads()

- omp_set_dynamic()

- omp_get_dynamic()

- omp_set_nested()

- omp_get_nested()

The ’set’ calls affect only the parallel regions at the same or inner nesting levels
encountered by the calling thread. They do not affect parallel regions encountered
by other threads, and they do not affect parallel regions the calling thread will later
encounter in any outer levels.

The ’get’ calls will return the values set by the calling thread. When a team is
created, the slave threads will inherit the values from the master thread.
Chapter 2 Nested Parallelism 2-7

CODE EXAMPLE 2-2 OpenMP Function Calls Within Parallel Regions

#include <stdio.h>
#include <omp.h>
int main()
{
 omp_set_nested(1);
 omp_set_dynamic(0);
 #pragma omp parallel num_threads(2)
 {
 if (omp_get_thread_num() == 0)
 omp_set_num_threads(4); /* line A */
 else
 omp_set_num_threads(6); /* line B */

 /* The following statement will print out
 *
 * 0: 2 4
 * 1: 2 6
 *
 * omp_get_num_threads() returns the number
 * of the threads in the team, so it is
 * the same for the two threads in the team.
 */
 printf("%d: %d %d\n", omp_get_thread_num(),
 omp_get_num_threads(),
 omp_get_max_threads());

 /* Two inner parallel regions will be created
 * one with a team of 4 threads, and the other
 * with a team of 6 threads.
 */
 #pragma omp parallel
 {
 #pragma omp master
 {
 /* The following statement will print out
 *
 * Inner: 4
 * Inner: 6
 */
 printf("Inner: %d\n", omp_get_num_threads());
 }
 omp_set_num_threads(7); /* line C */
 }
2-8 OpenMP API User’s Guide • January 2005

Compiling and running this program gives the following as one possible result:

 /* Again two inner parallel regions will be created,
 * one with a team of 4 threads, and the other
 * with a team of 6 threads.
 *
 * The omp_set_num_threads(7) call at line C
 * has no effect here, since it affects only
 * parallel regions at the same or inner nesting
 * level as line C.
 */

 #pragma omp parallel
 {
 printf("count me.\n");
 }
 }
 return(0);
}

% a.out
0: 2 4
Inner: 4
1: 2 6
Inner: 6
count me.
count me.
count me.
count me.
count me.
count me.
count me.
count me.
count me.
count me.
Chapter 2 Nested Parallelism 2-9

2.4 Some Tips on Using Nested Parallelism
■ Nesting parallel regions provides an immediate way to allow more threads to

participate in the computation.

For example, suppose you have a program that contains two levels of parallelism
and the degree of parallelism at each level is 2. And, your system has four cpus
and you want use all four CPUs to speed up the execution of this program. Just
parallelizing any one level will use only two CPUs. You want to parallelize both
levels.

■ Nesting parallel regions can easily create too many threads and oversubscribe the
system. Set SUNW_MP_MAX_POOL_THREADS and SUNW_MP_MAX_NESTED_LEVELS
appropriately to limit the number of threads in use and prevent runaway
oversubscription.

■ Creating nested parallel regions adds overhead. If there is enough parallelism at
the outer level and the load is balanced, generally it will be more efficient to use
all the threads at the outer level of the computation than to create nested regions
at the inner levels.

For example, suppose you have a program that contains two levels of parallelism.
The degree of parallelism at the outer level is 4 and the load is balanced. You have
a system with four CPUs and want to use all four CPUs to speed up the execution
of this program. Then, in general, using all 4 threads for the outer level could
yield better performance than using 2 threads for the outer parallel region, and
using the other 2 threads as slave threads for the inner parallel regions.
2-10 OpenMP API User’s Guide • January 2005

CHAPTER 3

Automatic Scoping in Fortran

Declaring the scope attributes of variables in an OpenMP parallel region is called
scoping. In general, if a variable is scoped as SHARED, all threads share a single copy
of the variable. If a variable is scoped as PRIVATE, each thread has its own copy of
the variable. OpenMP has a rich data environment. In addition to SHARED and
PRIVATE, the scope of a variable can also be declared FIRSTPRIVATE, LASTPRIVATE,
REDUCTION, or THREADPRIVATE.

OpenMP requires the user to declare the scope of each variable used in a parallel
region. This is a tedious and error-prone process and many find this the hardest part
of using OpenMP to parallelize programs.

The Sun Studio 9 release of the Fortran 95 compiler, f95, provides an automatic
scoping feature. The compiler analyzes the execution and synchronization pattern of
a parallel region and determines what the scope of a variable should be, based on a
set of scoping rules.

3.1 The Autoscoping Data Scope Clause
The autoscoping data scope clause is a Sun extension to the Fortran OpenMP
specification. A user can specify a variable to be autoscoped by using one of the
following two clauses.

3.1.1 __AUTO Clause
__AUTO(list-of-variables)

The compiler will determine the scope of the variables listed within a parallel
region. (Note the two underscores before AUTO).
3-1

The __AUTO clause can appear on a PARALLEL, PARALLEL DO, PARALLEL
SECTIONS, or PARALLEL WORKSHARE directive.

If a variable is listed in the __AUTO clause, then it cannot be specified in any other
data scope clause.

3.1.2 DEFAULT(__AUTO) Clause
Set the default scoping in this parallel region to be __AUTO.

The DEFAULT(__AUTO) clause can appear on a PARALLEL, PARALLEL DO, PARALLEL
SECTIONS, or PARALLEL WORKSHARE directive.

3.2 Scoping Rules
Under automatic scoping, the compiler applies the following rules to determine the
scope of a variable in a parallel region.

These rules do not apply to variables scoped implicitly by the OpenMP Specification,
such as loop index variables of worksharing DO loops.

3.2.1 Scoping Rules For Scalar Variables
■ S1: If the use of the variable in the parallel region is free of data race1 conditions

for the threads in the team executing the region, then the variable is scoped
SHARED.

■ S2: If in each thread executing the parallel region, the variable is always written
before being read by the same thread, then the variable is scoped PRIVATE. The
variable is scoped as LASTPRIVATE if it can be scoped PRIVATE and is read before
it is written after the parallel region, and the construct is either a PARALLEL DO or
a PARALLEL SECTIONS.

■ S3: If the variable is used in a reduction operation that can be recognized by the
compiler, then the variable is scoped REDUCTION with that particular operation
type.

1. A data race exists when two threads can access the same shared variable at the same time with at least one
thread modifying the variable. To remove a data race condition, put the accesses in a critical section or
synchronize the threads.
3-2 OpenMP API User’s Guide • January 2005

3.2.2 Scoping Rules for Arrays
■ A1: If the use of the array in the parallel region is free of data race conditions for

the threads in the team executing the region, then the array is scoped as SHARED.

3.3 General Comments About Autoscoping
If a user specifies the following variables to be autoscoped by
__AUTO(list-of-variables) or DEFAULT(__AUTO), the compiler will scope the variable
according to the implicit scoping rules in the OpenMP Specification.

■ A THREADPRIVATE variable

■ A Cray pointee.

■ A loop iteration variable used only in sequential loops in the lexical extent of the
region or worksharing DO loops that bind to the region.

■ Implied DO or FORALL indices.

■ Variables used only in work-sharing constructs that bind to the region, and
specified in a data scope attribute clause for each such construct.

When autoscoping a variable that does not have implicit scope, the compiler checks
the use of the variable against the rules above, in the order shown. If a rule matches,
the compiler will scope the variable according to the matching rule. If a rule does not
match, the compiler tries the next rule. If the compiler is unable to find a match,
autoscoping fails for that variable.

When autoscoping of a variable fails, the variable is scoped as SHARED, and the
binding parallel region will be serialized as if an IF (.FALSE.) clause were
specified.

There are two reasons why autoscoping fails. One is that the use of the variable does
not match any of the rules. The other is that the source code is too complex for the
compiler to do a sufficient analysis. Function calls, complicated array subscripts,
memory aliasing, and user-implemented synchronization are some typical causes.
(See Section 3.5, “Known Limitations of the Current Implementation” on page 3-8.)
Chapter 3 Automatic Scoping in Fortran 3-3

3.4 Checking the Results of Autoscoping
Use compiler commentary to check autoscoping results and to see if any parallel
regions are serialized because autoscoping failed.

The compiler will produce an inline commentary when compiled with the -g debug
option. This generated commentary can be viewed with the er_src command, as
shown in CODE EXAMPLE 3-2. (The er_src command is provided as part of the Sun
Studio software; for more information, see the er_src(1) man page or the Sun
Studio Performance Analyzer manual.)

A good place to start is to compile with the -vpara option. A warning message will
be printed out if autoscoping fails, as shown in CODE EXAMPLE 3-1.

CODE EXAMPLE 3-1 Compiling With -vpara

>cat t.f
 INTEGER X(100), Y(100), I, T
C$OMP PARALLEL DO DEFAULT(__AUTO)
 DO I=1, 100
 T = Y(I)
 CALL FOO(X)
 X(I) = T*T
 END DO
C$OMP END PARALLEL DO
 END
>f95 -xopenmp -xO3 -vpara -c t.f
"t.f", line 3: Warning: parallel region is serialized

because the autoscoping of following variables failed
- x
3-4 OpenMP API User’s Guide • January 2005

CODE EXAMPLE 3-2 Using Compiler Commentary

>cat t.f
 INTEGER X(100), Y(100), I, T
C$OMP PARALLEL DO DEFAULT(__AUTO)
 DO I=1, 100
 T = Y(I)
 X(I) = T*T
 END DO
C$OMP END PARALLEL DO
 END

>f95 -xopenmp -xO3 -g -c t.f
>er_src t.o
Source file: ./t.f
Object file: ./t.o
Load Object: ./t.o

 1. INTEGER X(100), Y(100), I, T
 2.

Private variables in OpenMP construct below: t,i
Shared variables in OpenMP construct below: y,x
Variables autoscoped as PRIVATE in OpenMP construct below:

i, t
Variables autoscoped as SHARED in OpenMP construct below:

y, x
 3. C$OMP PARALLEL DO DEFAULT(__AUTO)

Loop below parallelized by explicit user directive
 4. DO I=1, 100

Loop below scheduled with steady-state cycle count = 3
Loop below unrolled 2 times
Loop below has 1 loads, 1 stores, 0 prefetches, 0 FPadds, 0 FPmuls, and
0 FPdivs per iteration
 5. T = Y(I)
 6. X(I) = T*T
 7. END DO
 8. C$OMP END PARALLEL DO
 9.
 10. END
Chapter 3 Automatic Scoping in Fortran 3-5

Next, a more complicated example to illustrate how the autoscoping rules work.

The function FOO() contains a parallel region, which contains a SINGLE construct, a
work-sharing DO construct and a CRITICAL construct. If we ignore all the OpenMP
parallel constructs, what the code in the parallel region does is:

CODE EXAMPLE 3-3 A More Complicated Example

 1. REAL FUNCTION FOO (N, X, Y)
 2. INTEGER N, I
 3. REAL X(*), Y(*)
 4. REAL W, MM, M
 5.
 6. W = 0.0
 7.
 8. C$OMP PARALLEL DEFAULT(__AUTO)
 9.
10. C$OMP SINGLE
11. M = 0.0
12. C$OMP END SINGLE
13.
14. MM = 0.0
15.
16. C$OMP DO
17. DO I = 1, N
18. T = X(I)
19. Y(I) = T
20. IF (MM .GT. T) THEN
21. W = W + T
22. MM = T
23. END IF
24. END DO
25. C$OMP END DO
26.
27. C$OMP CRITICAL
28. IF (MM .GT. M) THEN
29. M = MM
30. END IF
31. C$OMP END CRITICAL
32.
33. C$OMP END PARALLEL
34.
35. FOO = W - M
36.
37. RETURN
38. END
3-6 OpenMP API User’s Guide • January 2005

1. Copy the value in array X to array Y

2. Find the maximum positive value in X, and store it in M

3. Accumulate the value of some elements of X into variable W.

Let's see how the compiler uses the above rules to find the appropriate scopes for the
variables in the parallel region.

The following variables are used in the parallel region, I, N, MM, T, W, M, X, and Y. The
compiler will determine the following.

■ Scalar I is the loop index of the work-sharing DO loop. The OpenMP specification
mandates that I be scoped PRIVATE.

■ Scalar N is only read in the parallel region and therefore will not cause data race,
so it is scoped as SHARED following rule S1.

■ Any thread executing the parallel region will execute statement 14, which sets the
value of scalar MM to 0.0. This write will cause data race, so rule S1 does not apply.
The write happens before any read of MM in the same thread, so MM is scoped as
PRIVATE according to rule S2.

■ Similarly, scalar T is scoped as PRIVATE.

■ Scalar W is read and then written at statement 21, so rules S1 and S2 do not apply.
The addition operation is both associative and communicative, therefore, W is
scoped as REDUCTION(+) according to rule S3.

■ Scalar M is written in statement 11 which is inside a SINGLE construct. The
implicit barrier at the end of the SINGLE construct ensures that the write in
statement 11 will not happen concurrently with either the read in statement 28 or
the write in statement 29, while the latter two will not happen at the same time
because both are inside the same CRITICAL construct. No two threads can access
M at the same time. Therefore, the writes and reads of M in the parallel region do
not cause a data race, and, following rule S1, M is scoped SHARED.

■ Array X() is only read and not written in the region, so it is scoped as SHARED by
rule A1.

■ The writes to array Y() is distributed among the threads, and no two threads will
write to the same elements of Y(). As there is no data race, Y() is scoped SHARED
according to rule A1.
Chapter 3 Automatic Scoping in Fortran 3-7

3.5 Known Limitations of the Current
Implementation
Here are the known limitations to autoscoping in the Sun Studio 9 Fortran 95
compiler.

■ Only OpenMP directives are recognized and used in the analysis. OpenMP API
function calls are not recognized. For example, if a program uses
OMP_SET_LOCK() and OMP_UNSET_LOCK() to implement a critical section, the
compiler is not able to detect the existence of the critical section. Use CRITICAL
and END CRITICAL directives if possible.

■ Only synchronizations specified in OpenMP synchronization directives, such as
BARRIER and MASTER, are recognized and used in the analysis.
User-implemented synchronizations, such as busy-waiting, are not recognized.

■ Autoscoping is not supported when compiling with -xopenmp=noopt.
3-8 OpenMP API User’s Guide • January 2005

CHAPTER 4

Implementation-Defined Behaviors

This chapter notes specific issues in the OpenMP 2.0 Fortran and C/C++
specifications that are implementation dependent. For last-minute information
regarding the latest compiler releases, see the C, C++, and Fortran readme files.

■ Scheduling

The default, in the absence of an explicit OMP_SCHEDULE environment variable,
or an explicit SCHEDULE clause, is static scheduling.

■ Number of Threads

Without an explicit num_threads() clause, call to the
omp_set_num_threads() function, or an explicit definition of the
OMP_NUM_THREADS environment variable, the default number of threads in a
team is 1.

■ Dynamic Adjustment of Threads

If dynamic adjustment is enabled, the number of threads in the team is
adjusted to be the minimum of:

the number of threads the user requested

1 + the number of available threads in the pool

the number of available processors

If dynamic adjustment is disabled, then the number of threads in the team will
be the minimum of:

the number of threads the user requested

1 + the number of available threads in the pool

If the number of threads supplied is less than the number the user requested
and SUNW_MP_WARN is set to TRUE or a callback function is registered through
a call to sunw_mp_register_warn(), a warning message will be issued.
4-1

In exceptional situations, such as when there is lack of system resources, the
number of threads supplied will be less than described above. In these
situations, if dynamic adjustment is disabled and SUNW_MP_WARN is set to
TRUE or a callback function is registered via a call to
sunw_mp_register_warn(), a warning message will be issued.

Refer to Chapter 2 for more information about the pool of threads and the
nested parallelism execution model.

■ Nested Parallelism

Nested parallelism is supported. Nested parallel regions can be executed by
multiple threads. Nested parallelism is disabled by default. Set the
OMP_NESTED environment variable, or call the omp_set_nested() function
to enable it. See Chapter 2.

■ ATOMIC Directive

This implementation replaces all ATOMIC directives and pragmas by enclosing
the target statement in a critical region.

■ GUIDED: Determination of Chunk Sizes

The default chunk size for SCHEDULE(GUIDED) when chunksize is not specified
is 1. The OpenMP runtime library uses the following formula for computing
the chunk sizes for a loop with GUIDED scheduling:

chunksize = unassigned_iterations / (weight * num_threads)

where:

unassigned_iterations is the number of iterations in the loop that have not yet
been assigned to any thread;

weight is a floating-point constant that can be set by the user at runtime with
the SUNW_MP_GUIDED_WEIGHT environment variable (Section 5.3, “OpenMP
Environment Variables” on page 5-5). The current default, if not specified,
assumes weight is 2.0;

num_threads is the number of threads used to execute the loop.

Choice of the weighting value affects the size of the initial and subsequent
chunks of iterations assigned to threads in loops, and has a direct affect on load
balancing. Experimental results show that the default weight of 2.0 works well
generally. However some applications could benefit from a different weight
value.

■ Explicitly Threaded Programs

Programs using POSIX or Solaris threads can contain OpenMP directives or
call routines that contain OpenMP directives.
4-2 OpenMP API User’s Guide • January 2005

■ Runtime Warnings

■ Setting the SUNW_MP_WARN environment variable (Section 5.3, “OpenMP
Environment Variables” on page 5-5) enables runtime validity checking by the
OpenMP multitasking library.

For example, the following code will fall into an endless loop as threads wait at
different barriers, and must be terminated with a control-C from the terminal:

% cat bad1.c

#include <omp.h>
#include <stdio.h>

int
main(void)
{
 omp_set_dynamic(0);
 omp_set_num_threads(4);

 #pragma omp parallel
 {
 int i = omp_get_thread_num();

 if (i % 2) {
 printf("At barrier 1.\n");
 #pragma omp barrier
 }
 }
 return 0;
}
% cc -xopenmp -xO3 bad1.c
% ./a.out run the program
At barrier 1.
At barrier 1.
 program hung in endless loop
Control-C to terminate execution
Chapter 4 Implementation-Defined Behaviors 4-3

But if we set SUNW_MP_WARN before execution, the runtime library will detect
the problem:

■ The C compiler also provides a function that can be used to register a callback
function when errors are detected. The registered callback function is called
and passed a pointer to an error message string as an argument whenever an
error is detected

int sunw_mp_register_warn(void (*func) (void *))

Access to the prototype for this function requires adding
#include <sunw_mp_misc.h>

% setenv SUNW_MP_WARN TRUE
% ./a.out
At barrier 1.
At barrier 1.
WARNING (libmtsk): Threads at barrier from different directives.
 Thread at barrier from bad1.c:11.
 Thread at barrier from bad1.c:17.
 Possible Reasons:
 Worksharing constructs not encountered by all threads in the team in the
 same order.
 Incorrect placement of barrier directives.
4-4 OpenMP API User’s Guide • January 2005

For example:

handle_warn() is installed as the callback handler function when an error is
detected by the OpenMP runtime library. The handler in this example merely prints
the error message passed to it from the library, but could be used to trap certain
errors.

% cat bad2.c
#include <omp.h>
#include <sunw_mp_misc.h>
#include <stdio.h>

void handle_warn(void *msg)
{
 printf("handle_warn: %s\n", (char *)msg);
}

void set(int i)
{
 static int k;
#pragma omp critical
 {
 k++;
 }
#pragma omp barrier
}

int main(void)
{
 int i, rc;
 omp_set_dynamic(0);
 omp_set_num_threads(4);
 if (sunw_mp_register_warn(handle_warn) != 0) {
 printf ("Installing callback failed\n");
 }
#pragma omp parallel for
 for (i = 0; i < 20; i++) {
 set(i);
 }
 return 0;
}

% cc -xopenmp -xO3 bad2.c
% a.out
handle_warn: WARNING (libmtsk): at bad2.c:21 Barrier is not permitted
in dynamic extent of for / DO.
Chapter 4 Implementation-Defined Behaviors 4-5

4-6 OpenMP API User’s Guide • January 2005

CHAPTER 5

Compiling for OpenMP

This chapter describes how to compile programs that utilize the OpenMP API.

To run a parallelized program in a multithreaded environment, you must set the
OMP_NUM_THREADS environment variable prior to program execution. This tells the
runtime system the maximum number of threads the program can create. The
default is 1. In general, set OMP_NUM_THREADS to a value no larger than the available
number of processors on the target platform. Set OMP_DYNAMIC to FALSE to use the
number of threads specified by OMP_NUM_THREADS.

The compiler readme files contain information about limitations and known
deficiencies regarding their OpenMP implementation. Readme files are viewable
directly by invoking the compiler with the -xhelp=readme flag, or by pointing an
HTML browser to the documentation index for the installed software at

file:/opt/SUNWspro/docs/index.html

5.1 Compiler Options To Use
To enable explicit parallelization with OpenMP directives, compile your program
with the cc, CC, or f95 option flag -xopenmp. This flag can take an optional
keyword argument. (The f95 compiler accepts both -xopenmp and -openmp as
synonyms.)
5-1

The -xopenmp flag accepts the following keyword sub-options.

Additional Notes:

■ If you do not specify -xopenmp on the command line, the compiler assumes
-xopenmp=none (disabling recognition of OpenMP pragmas).

■ If you specify -xopenmp but without a keyword sub-option, the compiler assumes
 -xopenmp=parallel.

■ Do not specify -xopenmp together with -xparallel or -xexplicitpar on the
command line.

■ Specifying -xopenmp=parallel or noopt will define the _OPENMP preprocessor
token to be YYYYMM (specifically 200203L for C/C++ and 200011 for Fortran
95).

■ When debugging OpenMP programs with dbx, compile with -xopenmp=noopt
-g

-xopenmp=parallel Enables recognition of OpenMP pragmas. The minimum
optimization level for -xopenmp=parallel is -xO3. The
compiler changes the optimization from a lower level to -xO3
if necessary, and issues a warning.

-xopenmp=noopt Enables recognition of OpenMP pragmas. The compiler does
not raise the level if it is lower than -xO3.
If you explicitly set the optimization levellower than -xO3, as
in -xO2 -openmp=noopt the compiler will issue an error.
If you do not specify an optimization level with
-openmp=noopt, the OpenMP pragmas are recognized, the
program is parallelized accordingly, but no optimization is
done.
(This sub-option applies to cc and f95 only; CC issues a
warning if specified, and no OpenMP parallelization is done.)

-xopenmp=stubs This option is no longer supported. An OpenMP stubs library
is provided for users' convenvience. To compile an OpenMP
program that calls OpenMP library functions but ignores the
OpenMP pragmas, compile the program without an
-xopenmp option, and link the object files with the
libompstubs.a library. For example,
 % cc omp_ignore.c -lompstubs

Linking with both libompstubs.a and the OpenMP runtime
library libmtsk.so is unsupported and may result in
unexpected behavior.

-xopenmp=none Disables recognition of OpenMP pragmas and does not
change the optimization level.
5-2 OpenMP API User’s Guide • January 2005

■ The default optimization level for -xopenmp might change in future releases.
Compilation warning messages can be avoided by specifying an appropriate
optimization level explicitly.

■ With Fortran 95, -xopenmp , -xopenmp=parallel, -xopenmp=noopt will add
-stackvar automatically.

■ If you compile with -xopenmp when building a dynamic (.so) library, you must
also specify -xopenmp when linking the executable, and the compiler used to
create the executable must be at least as new as the compiler that built the
dynamic library with -xopenmp. Using different compiler versions with -xopenmp
to create the executable and the library, can result in unexpected behavior.

5.2 Fortran 95 OpenMP Validation
You can obtain a static, interprocedural validation of a Fortran 95 program’s
OpenMP directives by using the f95 compiler’s global program checking feature.
Enable OpenMP checking by compiling with the -XlistMP flag. (Diagnostic
messages from -XlistMP appear in a separate file created with the name of the
source file and a .lst extension). The compiler will diagnose the following
violations and parallelization inhibitors:

■ Violations in the specifications of parallel directives, including improper nesting.

■ Parallelization inhibitors due to data usage, detected by interprocedural
dependence analysis.

■ Parallelization inhibitors detected by interprocedural pointer analysis.
Chapter 5 Compiling for OpenMP 5-3

For example, compiling a source file ord.f with -XlistMP produces a diagnostic
file ord.lst:

In this example, the ORDERED directive in subroutine WORK receives a diagnostic that
refers to the second DO directive because it lacks an ORDERED clause.

FILE "ord.f"
 1 !$OMP PARALLEL
 2 !$OMP DO ORDERED
 3 do i=1,100
 4 call work(i)
 5 end do
 6 !$OMP END DO
 7 !$OMP END PARALLEL
 8
 9 !$OMP PARALLEL
 10 !$OMP DO
 11 do i=1,100
 12 call work(i)
 13 end do
 14 !$OMP END DO
 15 !$OMP END PARALLEL
 16 end
 17 subroutine work(k)
 18 !$OMP ORDERED
 ^
**** ERR-OMP: It is illegal for an ORDERED directive to bind to a
directive (ord.f, line 10, column 2) that does not have the
ORDERED clause specified.
 19 write(*,*) k
 20 !$OMP END ORDERED
 21 return
 22 end
5-4 OpenMP API User’s Guide • January 2005

5.3 OpenMP Environment Variables
The OpenMP specifications define four environment variables that control the
execution of OpenMP programs. These are summarized in the following table.

Additional multiprocessing environment variables affect execution of OpenMP
programs and are not part of the OpenMP specifications. These are summarized in
the following table.

TABLE 5-1 OpenMP Environment Variables

Environment Variable Function

OMP_SCHEDULE Sets schedule type for DO, PARALLEL DO, parallel for,
for, directives/pragmas with schedule type RUNTIME
specified. If not defined, a default value of STATIC is used.
value is “type[,chunk]”
Example: setenv OMP_SCHEDULE “GUIDED,4”

OMP_NUM_THREADS or
PARALLEL

Sets the number of threads to use during execution of a
parallel region. This number can be overriden by a
NUM_THREADS clause, or a call to
OMP_SET_NUM_THREADS(). If not set, a default of 1 is used.
value is a positive integer. For compatibility with legacy
programs, setting the PARALLEL environment variable has
the same effect as setting OMP_NUM_THREADS. However, if
they are both set to different values, the runtime library will
issue an error message.
Example: setenv OMP_NUM_THREADS 16

OMP_DYNAMIC Enables or disables dynamic adjustment of the number of
threads available for execution of parallel regions. If not set,
a default value of TRUE is used. value is either TRUE or
FALSE.
Example: setenv OMP_DYNAMIC FALSE

OMP_NESTED Enables or disables nested parallelism.
value is either TRUE or FALSE. The default is FALSE.
Example: setenv OMP_NESTED FALSE
Chapter 5 Compiling for OpenMP 5-5

TABLE 5-2 Multiprocessing Environment Variables

Environment Variable Function

SUNW_MP_WARN Controls warning messages issued by the OpenMP
runtime library. If set to TRUE the runtime library
issues warning messages to stderr; FALSE disables
warning messages. The default is FALSE.
The OpenMP runtime library has the ability to check
for many common OpenMP violations, such as
incorrect nesting and deadlocks. Runtime checking
does add overhead to the execution of the program.
See “Runtime Warnings” on page 4-3.
Example:
setenv SUNW_MP_WARN TRUE

SUNW_MP_THR_IDLE Controls the end-of-task status of each helper thread
executing the parallel part of a program. You can set
the value to SPIN, SLEEP ns, or SLEEP nms. The
default is SLEEP — the thread sleeps after completing
a parallel task until a new parallel task arrives.
Choosing SLEEP time specifies the amount of time a
helper thread should spin-wait after completing a
parallel task. If, while a thread is spinning, a new task
arrives for the thread, the thread executes the new
task immediately. Otherwise, the thread goes to sleep
and is awakened when a new task arrives. time may be
specified in seconds, (ns) or just (n), or milliseconds,
(nms).
SLEEP with no argument puts the thread to sleep
immediately after completing a parallel task. SLEEP,
SLEEP (0), SLEEP (0s), and SLEEP (0ms) are all
equivalent.
Example:
 setenv SUNW_MP_THR_IDLE SLEEP(50ms)

SUNW_MP_PROCBIND The SUNW_MP_PROCBIND environment variable can be
used to bind LWPs (lightweight processes) of an
OpenMP program to processors. Performance can be
enhanced with processor binding, but performance
degradation will occur if multiple LWPs are bound to
the same processor. See Section 5.4, “Processor
Binding” on page 5-7 for details.
5-6 OpenMP API User’s Guide • January 2005

5.4 Processor Binding
Processor binding, when used along with static scheduling, benefits applications
that exhibit a certain data reuse pattern where data accessed by a thread in a parallel
region will be in the local cache from a previous invocation of a parallel region.

By default, lightweight processes, LWPs, are not bound to processors. It is left up to
the Solaris OS to schedule LWPs onto processors. The multitasking routines in the
OpenMP runtime library, libmtsk, always use a one-to-one threading model; that is,
each thread corresponds to a single LWP.

SUNW_MP_MAX_POOL_THREADS Specifies the maximum size of the thread pool. The
thread pool contains only non-user threads that the
OpenMP runtime library creates. It does not contain
the master thread or any threads created explicitly by
the user’s program. If this environment variable is set
to zero, the thread pool will be empty and all parallel
regions will be executed by one thread. The default, if
not specified, is 1023. See Section 2.2, “Control of
Nested Parallelism” on page 2-2 for details.

SUNW_MP_MAX_NESTED_LEVELS Specifies the maximum depth of active nested parallel
regions. Any parallel region that has an active nested
depth greater than the value of this environment
variable will be executed by only one thread. A
parallel region is considered not active if it is an
OpenMP parallel region that has a false IF clause. The
default, if not specified, is 4. See Section 2.2, “Control
of Nested Parallelism” on page 2-2 for details.

STACKSIZE Sets the stack size for each thread. The value is in
kilobytes. The default thread stack sizes are 4 Mb on
32-bit SPARC V8 and x86 platforms, and 8 Mb on
64-bit SPARC V9 and x86 platforms.
Example:
setenv STACKSIZE 8192
sets the thread stack size to 8 Mb

SUNW_MP_GUIDED_WEIGHT Sets the weighting factor used to determine the size of
chunks assigned to threads in loops with GUIDED
scheduling. The value should be a positive
floating-point number, and will apply to all loops with
GUIDED scheduling in the program. If not set, the
default value assumed is 2.0.

TABLE 5-2 Multiprocessing Environment Variables (Continued)

Environment Variable Function
Chapter 5 Compiling for OpenMP 5-7

The value specified by the SUNW_MP_PROCBIND environment variable denotes the
"logical" processor identifiers (IDs) to which the LWPs are to be bound. Logical
processor IDs are consecutive integers that start with 0, and may or may not be
identical to the actual processor IDs. If n processors are available online, then their
virtual processor IDs are 0, 1, ..., n-1, in the order presented by psrinfo(1M).

The mapping between logical processor IDs and real processor IDs is dependent on
the system. On most systems, real processor IDs are sequential; however, removing
system boards may cause holes in the range. On some systems, IDs are in groups of
4 with gaps of 32 between the beginning of each group; thus processors would be
numbered 0, 1, 2, 3, 32, 33, 34, 35 and so forth.

The number of threads created by libmtsk is determined by environment variables
and/or API calls in the user's program. SUNW_MP_PROCBIND specifies a set of logical
processors as described below. LWPs are bound to that set of logical processors in a
cyclic fashion. If the number of LWPs is less than the number of processors, then
some processors do not have LWPs bound to them. If the number of LWPs is greater
than the number of processors, them some processors will have more than one LWP
bound to them.

The value specified for SUNW_MP_PROCBIND can be one of the following:

■ The string TRUE or FALSE (or lower case). For example,
% setenv SUNW_MP_PROCBIND false

■ A non-negative integer. For example,
% setenv SUNW_MP_PROCBIND 2

■ A list of two or more non-negative integers separated by one or more spaces.
For example,
% setenv SUNW_MP_PROCBIND "0 2 4 6"

■ Two non-negative integers, n1 and n2, separated by a minus ("-"); n1 must be less
than or equal to n2. For example,
% setenv SUNW_MP_PROCBIND "0-6"

If the value specified for SUNW_MP_PROCBIND is FALSE, then no processor binding
is performed. This is the default behavior.

If the value specified for SUNW_MP_PROCBIND is TRUE, then it is as if it were the
integer 0.

If the value specified for SUNW_MP_PROCBIND is a non-negative integer, then that
integer specifies the starting logical processor ID to which LWPs should be bound.
LWPs will be bound to processors in a round-robin fashion, starting with the
specified logical processor ID, and wrapping around to logical processor ID 0 after
logical processor ID n-1.

If the value specified for SUNW_MP_PROCBIND is a list of two or more non-negative
integers, then LWPs will be bound in a round-robin fashion to the specified logical
processor IDs. No IDs other then those in the list will be used.
5-8 OpenMP API User’s Guide • January 2005

If the value specified for SUNW_MP_PROCBIND is two non-negative integers separated
by a minus ("-"), then LWPs will be bound in a round-robin fashion to processors in
the range that begins with the first logical processor ID and ends with the second
logical processor ID. No IDs other than those mentioned in the range will be used.

If the value specified for SUNW_MP_PROCBIND does not conform to one of the forms
described above, or if an invalid logical processor ID is given, then the environment
variable SUNW_MP_PROCBIND will be ignored and LWPs will not be bound to
processors. If warnings are enabled, a warning message will be issued in this case.

5.5 Stacks and Stack Sizes
The executing program maintains a main memory stack for the initial thread
executing the program, as well as distinct stacks for each slave thread. Stacks are
temporary memory address spaces used to hold arguments and automatic variables
during invocation of a subprogram or function reference.

In general, the default main stack size is 8 megabytes. Compiling Fortran programs
with the f95 -stackvar option forces the allocation of local variables and arrays on
the stack as if they were automatic variables. Use of -stackvar with OpenMP
programs is implied with explicitly parallelized programs because it improves the
optimizer’s ability to parallelize calls in loops. (See the Fortran User’s Guide for a
discussion of the -stackvar flag.) However, this may lead to stack overflow if not
enough memory is allocated for the stack.

Use the limit C-shell command, or the ulimit ksh/sh command, to display or set
the size of the main stack.

Each slave thread of an OpenMP program has its own thread stack. This stack
mimics the initial (or main) thread stack but is unique to the thread. The thread’s
PRIVATE arrays and variables (local to the thread) are allocated on the thread stack.
The default size is 4 megabytes on 32-bit SPARC V8 and x86 platforms, and 8
megabytes on 64-bit SPARC V9 and x86 platforms. The size of the helper thread
stack is set with the STACKSIZE environment variable.

Finding the best stack size might have to be determined by trial and error. If the
stack size is too small for a thread to run it may cause silent data corruption in
neighboring threads, or segmentation faults. If you are unsure about stack

demo% setenv STACKSIZE 16384 <-Set thread stack size to 16 Mb (C shell)

demo% STACKSIZE=16384 <-Same, using Bourne/Korn shell
demo% export STACKSIZE
Chapter 5 Compiling for OpenMP 5-9

overflows, compile your Fortran, C, or C++ programs with the -xcheck=stkovf flag
to force a segmentation fault on stack overflow. This stops the program before any
data corruption can occur.
5-10 OpenMP API User’s Guide • January 2005

CHAPTER 6

Converting to OpenMP

This chapter gives guidelines for converting legacy programs using Sun or Cray
directives and pragmas to OpenMP.

6.1 Converting Legacy Fortran Directives
Legacy Fortran programs use either Sun or Cray style parallelization directives. A
description of these directives can be found in the chapter Parallelization in the
Fortran Programming Guide.

6.1.1 Converting Sun-Style Fortran Directives
The following tables give OpenMP near equivalents to Sun parallelization directives
and their subclauses. These are only suggestions.

TABLE 6-1 Converting Sun Parallelization Directives to OpenMP

Sun Directive Equivalent OpenMP Directive

C$PAR DOALL [qualifiers] !$omp parallel do [qualifiers]
6-1

The DOALL directive can take the following optional qualifier clauses.

The SCHEDTYPE(spec) clause accepts the following scheduling specifications.

C$PAR DOSERIAL No exact equivalent. You can use:
 !$omp master

 loop
 !$omp end master

C$PAR DOSERIAL* No exact equivalent. You can use:
 !$omp master

 loopnest
 !$omp end master

C$PAR TASKCOMMON block[,...] !$omp threadprivate (/block/[,...])

TABLE 6-2 DOALL Qualifier Clauses and OpenMP Equivalent Clauses

Sun DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

PRIVATE(v1,v2,...) private(v1,v2,...)

SHARED(v1,v2,...) shared(v1,v2,...)

MAXCPUS(n) num_threads(n). No exact equivalent.

READONLY(v1,v2,...) No exact equivalent. You can achieve the same effect by using
firstprivate(v1,v2,...).

STOREBACK(v1,v2,...) lastprivate(v1,v2,...).

SAVELAST No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

REDUCTION(v1,v2,...) reduction(operator:v1,v2,...) Must supply the reduction
operator as well as the list of variables.

SCHEDTYPE(spec) schedule(spec) (See TABLE 6-3)

TABLE 6-3 SCHEDTYPE Scheduling and OpenMP schedule Equivalents

SCHEDTYPE(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

TABLE 6-1 Converting Sun Parallelization Directives to OpenMP (Continued)

Sun Directive Equivalent OpenMP Directive
6-2 OpenMP API User’s Guide • January 2005

6.1.1.1 Issues Between Sun-Style Fortran Directives and OpenMP
■ Scoping of private variables must be declared explicitly with OpenMP. With Sun

directives, the compiler uses its own default scoping rules for variables not
explicitly scoped in a PRIVATE or SHARED clause: all scalars are treated as
PRIVATE, and all array references are SHARED. With OpenMP, the default data
scope is SHARED unless a DEFAULT(PRIVATE) clause appears on the PARALLEL DO
directive. A DEFAULT(NONE) clause causes the compiler to flag variables not
scoped explicitly. However, see Chapter 3 for information on autoscoping in
Fortran.

■ Since there is no DOSERIAL directive, mixing automatic and explicit OpenMP
parallelization may have different effects: some loops may be automatically
parallelized that would not have been with Sun directives.

■ OpenMP provides a richer parallelism model by providing parallel regions and
parallel sections. It could be possible to get better performance by redesigning the
parallelism strategies of a program that uses Sun directives to take advantage of
these features of OpenMP.

6.1.2 Converting Cray-Style Fortran Directives
Cray-style Fortran parallelization directives are identical to Sun-style except that the
sentinel that identifies these directives is !MIC$. Also, the set of qualifier clauses on
the !MIC$ DOALL is different.

SCHEDTYPE(SELF(chunksize)) schedule(dynamic,chunksize)
Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No exact equivalent.

SCHEDTYPE(GSS(m)) schedule(guided, m)
Default m is 1.

TABLE 6-4 OpenMP Equivalents for Cray-Style DOALL Qualifier Clauses

Cray DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

SHARED(v1,v2,...) SHARED(v1,v2,...)

PRIVATE(v1,v2,...) PRIVATE(v1,v2,...)

AUTOSCOPE No equivalent. Scoping must be explicit, or with the DEFAULT
clause, or with the __AUTO clause

TABLE 6-3 SCHEDTYPE Scheduling and OpenMP schedule Equivalents (Continued)

SCHEDTYPE(spec) OpenMP schedule(spec) Clause Equivalent
Chapter 6 Converting to OpenMP 6-3

6.1.2.1 Issues Between Cray-Style Fortran Directives and OpenMP
Directives

The differences are the same as for Sun-style directives, except that there is no
equivalent for the Cray AUTOSCOPE.

6.2 Converting Legacy C Pragmas
The C compiler accepts legacy pragmas for explicit parallelization. These are
described in the C User’s Guide. As with the Fortran directives, these are only
suggestions.

The legacy parallelization pragmas are:

SAVELAST No exact equivalent. You can achieve the same effect by using
lastprivate.

MAXCPUS(n) num_threads(n). No exact equivalent.

GUIDED schedule(guided, m)
Default m is 1.

SINGLE schedule(dynamic,1)

CHUNKSIZE(n) schedule(dynamic,n)

NUMCHUNKS(m) schedule(dynamic,n/m) where n is the number of iterations

TABLE 6-5 Converting Legacy C Parallelization Pragmas to OpenMP

Legacy C Pragma Equivalent OpenMP Pragma

#pragma MP taskloop [clauses] #pragma omp parallel for [clauses]

#pragma MP serial_loop No exact equivalent. You can use
 #pragma omp master

 loop

#pragma MP serial_loop_nested No exact equivalent. You can use
 #pragma omp master

 loopnest

TABLE 6-4 OpenMP Equivalents for Cray-Style DOALL Qualifier Clauses (Continued)

Cray DOALL Clause OpenMP PARALLEL DO Equivalent Clauses
6-4 OpenMP API User’s Guide • January 2005

The taskloop pragma can take on one or more of the following optional clauses.

The schedtype(spec) clause accepts the following scheduling specifications.

6.2.1 Issues Between Legacy C Pragmas and OpenMP
■ OpenMP scopes variables declared within a parallel construct as private. A

default(none) clause on a #pragma omp parallel for directive causes the
compiler to flag variables not scoped explicitly.

■ Since there is no serial_loop directive, mixing automatic and explicit OpenMP
parallelization may have different effects: some loops may be automatically
parallelized that would not have been with legacy C directives.

TABLE 6-6 taskloop Optional Clauses and OpenMP Equivalents

taskloop Clause OpenMP parallel for Equivalent Clause

maxcpus(n) No exact equivalent. Use num_threads(n)

private(v1,v2,...) private(v1,v2,...)

shared(v1,v2,...) shared(v1,v2,...)

readonly(v1,v2,...) No exact equivalent. You can achieve the same effect by using
firstprivate(v1,v2,...).

storeback(v1,v2,...) You can achieve the same effect by using lastprivate(v1,v2,...).

savelast No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

reduction(v1,v2,...) reduction(operator:v1,v2,...). Must supply the reduction
operator as well as the list of variables.

schedtype(spec) schedule(spec) (See TABLE 6-7)

TABLE 6-7 SCHEDTYPE Scheduling and OpenMP schedule Equivalents

schedtype(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic,chunksize)
Note: Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No exact equivalent.

SCHEDTYPE(GSS(m)) schedule(guided, m)
Default m is 1.
Chapter 6 Converting to OpenMP 6-5

■ Because OpenMP provides a richer parallelism model, it is often possible to get
better performance by redesigning the parallelism strategies of a program that
uses legacy C directives to take advantage of these features.
6-6 OpenMP API User’s Guide • January 2005

CHAPTER 7

Performance Considerations

Once you have a correct, working OpenMP program, it is worth considering its
overall performance. There are some general techniques that you can utilize to
improve the efficiency and scalability of an OpenMP application, as well as
techniques specific to the Sun platforms. These are discussed briefly here.

For additional information, see Techniques for Optimizing Applications: High
Performance Computing, by Rajat Garg and Ilya Sharapov, which is available from
http://www.sun.com/books/catalog/garg.xml

Also, visit the Sun Developer portal for occasional articles and case studies
regarding performance analysis and optimization of OpenMP applications, at
http://developers.sun.com/prodtech/cc/.

7.1 Some General Recommendations
The following are some general techniques for improving performance of OpenMP
applications.

■ Minimize synchronization.

■ Avoid or minimize the use of BARRIER, CRITICAL sections, ORDERED regions,
and locks.

■ Use the NOWAIT clause where possible to eliminate redundant or unnecessary
barriers. For example, there is always an implied barrier at the end of a parallel
region. Adding NOWAIT to a final DO in the region eliminates one redundant
barrier.

■ Use named CRITICAL sections for fine-grained locking.

■ Use explicit FLUSH with care. Flushes can cause data cache restores to memory,
and subsequent data accesses may require reloads from memory, all of which
decrease efficiency.
7-1

http://www.sun.com/books/catalog/garg.xml
http://developers.sun.com/prodtech/cc/

■ If a SHARED variable in a parallel region is read by the threads executing the
region, but not written to by any of the threads, then specify that variable to be
FIRSTPRIVATE instead of SHARED. This avoids accessing the variable by
dereferencing a pointer, and avoids cache conflicts.

■ Avoid wasting resources by requesting more threads than you plan to use.
Experiment with SUNW_MP_THR_IDLE, to put spinning worker threads to sleep
when not needed. See Section 5.3, “OpenMP Environment Variables” on page 5-5.

■ Parallelize at the highest level possible, such as outer DO/FOR loops. Enclose
multiple loops in one parallel region. In general, make parallel regions as large as
possible to reduce parallelization overhead. For example:

This construct is less efficient:

!$OMP PARALLEL

 !$OMP DO

 !$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL

 !$OMP DO

 !$OMP END DO

!$OMP END PARALLEL

than this one:

!$OMP PARALLEL

 !$OMP DO

 !$OMP END DO

 !$OMP DO

 !$OMP END DO

!$OMP END PARALLEL
7-2 OpenMP API User’s Guide • January 2005

■ Use PARALLEL DO/FOR instead of worksharing DO/FOR directives in parallel
regions. The PARALLEL DO/FOR is implemented more efficiently than a general
parallel region containing possibly several loops. For example:

■ Use SUNW_MP_PROCBIND to bind lightweight processes (LWPs) to processors.
Processor binding, when used along with static scheduling, benefits applications
that exhibit a certain data reuse pattern where data accessed by a thread in a
parallel region will be in the local cache from a previous invocation of a parallel
region. See Section 5.4, “Processor Binding” on page 5-7.

■ Use MASTER instead of SINGLE wherever possible.

■ The MASTER directive is implemented as an IF-statement with no implicit
BARRIER :
 IF(omp_get_thread_num() == 0) {...}

■ The SINGLE directive is implemented similar to other worksharing constructs.
Keeping track of which thread reached SINGLE first adds additional runtime
overhead. There is an implicit BARRIER if NOWAIT is not specified. It is less
efficient.

■ Choose the appropriate loop scheduling.

■ STATIC causes no synchronization overhead and can maintain data locality
when data fits in cache. However, STATIC may lead to load imbalance.

■ DYNAMIC,GUIDED incurs a synchronization overhead to keep track of which
chunks have been assigned. And, while these schedules could lead to poor data
locality, they can improve load balancing. Experiment with different chunk
sizes.

■ Use LASTPRIVATE with care, as it has the potential of high overhead.

■ Data needs to be copied from private to shared storage upon return from the
parallel construct.

This construct is less efficient:

!$OMP PARALLEL
 !$OMP DO

 !$OMP END DO
!$OMP END PARALLEL

than this one:

!$OMP PARALLEL DO

!$OMP END PARALLEL
Chapter 7 Performance Considerations 7-3

■ The compiled code checks which thread executes the logically last iteration.
This imposes extra work at the end of each chunk in a parallel DO/FOR. The
overhead adds up if there are many chunks.

■ Use efficient thread-safe memory management.

■ Applications could be using malloc() and free() explicitly, or implicitly in
the compiler-generated code for dynamic/allocatable arrays, vectorized
intrinsics, and so on.

■ The thread-safe malloc() and free() in libc have a high synchronization
overhead caused by internal locking. Faster versions can be found in the
libmtmalloc library. Link with -lmtmalloc to use libmtmalloc.

7.2 False Sharing And How To Avoid It
Careless use of shared memory structures with OpenMP applications can result in
poor performance and limited scalability. Multiple processors updating adjacent
shared data in memory can result in excessive traffic on the multiprocessor
interconnect and, in effect, cause serialization of computations.

7.2.1 What Is False Sharing?
Most high performance processors, such as UltraSPARC III, insert a cache buffer
between slow memory and the high speed registers of the CPU. Accessing a memory
location causes a slice of actual memory (a cache line) containing the memory
location requested to be copied into the cache. Subsequent references to the same
memory location or those around it can probably be satisfied out of the cache until
the system determines it is necessary to maintain the coherency between cache and
memory and restore the cache line back to memory.

However, simultaneous updates of individual elements in the same cache line
coming from different processors invalidates entire cache lines, even though these
updates are logically independent of each other. Each update of an individual
element of a cache line marks the line as invalid. Other processors accessing a
different element in the same line see the line marked as invalid. They are forced to
fetch a fresh copy of the line from memory, even though the element accessed has
not been modified. This is because cache coherency is maintained on a cache-line
basis, and not for individual elements. As a result there will be an increase in
interconnect traffic and overhead. Also, while the cache-line update is in progress,
access to the elements in the line is inhibited.

This situation is called false sharing, and could be a significant cause of poor
performance and scalability in OpenMP applications.
7-4 OpenMP API User’s Guide • January 2005

False sharing degrades performance when all of the following conditions occur.

■ Shared data is modified by multiple processors.
■ Multiple processors update data within the same cache line.
■ This updating occurs very frequently (for example, in a tight loop).

Note that shared data that is read-only in a loop does not lead to false sharing.

7.2.2 Reducing False Sharing
Careful analysis of those parallel loops that play a major part in the execution of an
application can reveal performance scalability problems caused by false sharing. In
general, false sharing can be reduced by

■ changing the structure and use of shared data into private data,

■ increasing the problem size (iteration length),

■ changing the mapping of iterations to processors to give each processor more
work per iteration (chunk size),

■ utilizing the compiler’s optimization features to eliminate memory loads and
stores.

7.3 Operating System Tuning Features
Starting with the Solaris 9 release, the operating system provides scalability and high
performance for the SunFire™ systems. New features introduced with Solaris 9 OS
that improve the performance of OpenMP programs without hardware upgrades are
Memory Placement Optimizations (MPO) and Multiple Page Size Support (MPSS),
among others.

MPO allows the OS to allocate pages close to the processors that access those pages.
SunFire 6800, SunFire 15K, and SunFire E25K systems have different memory
latencies within the same UniBoard™ versus between different UniBoards. The
default MPO policy, called first-touch, allocates memory on the UniBoard containing
the processor that first touches the memory. The first-touch policy can greatly
improve the performance of applications where data accesses are made mostly to the
memory local to each processor with first-touch placement. Compared to a random
memory placement policy where the memory is evenly distributed throughout the
system, the memory latencies for applications can be lowered and the bandwidth
increased, leading to higher performance.
Chapter 7 Performance Considerations 7-5

MPSS allows a program to use different page sizes for different regions of virtual
memory. The default page size for Solaris 9 OS is 8KB. With the 8KB page size,
applications that use large memory can have a lot of TLB misses, since the number of
TLB entries on UltraSPARC III Cu and UltraSPARC IV allow accesses to only a few
megabytes of memory. UltraSPARC III Cu and UltraSPARC IV support four different
page sizes: 8 KB, 64 KB, 512 KB, and 4MB. With MPSS, user processes can request
one of these four page sizes. Thus MPSS can significantly reduce the number of TLB
misses and lead to improved performance for applications that use a large amount of
memory.
7-6 OpenMP API User’s Guide • January 2005

Index
Symbols
__AUTO, 3-1

A
accessible documentation, -xv
automatic scoping, 3-1

B
barrier, 1-10
binding processors, 5-7

C
cache line, 7-4
common blocks

in data scoping clauses, 1-16
compilers, accessing, -xi
compiling for OpenMP, 5-1
conditional compilation, 1-3
converting to OpenMP

Cray-style Fortran directives, 6-3
legacy C pragmas, 6-4
Sun-style Fortran directives, 6-1

critical region, 1-10

D
data scoping clauses

COPYIN, 1-17
COPYPRIVATE, 1-18
DEFAULT, 1-17
FIRSTPRIVATE, 1-17
LASTPRIVATE, 1-17

PRIVATE, 1-16
REDUCTION, 1-18
SHARED, 1-16

directive
formats, 1-2
See pragma

directive clauses
data scoping, 1-16
scheduling, 1-19

directives
ATOMIC, 1-12, 4-2
BARRIER, 1-11
CRITICAL, 1-11
DO, 1-5
FLUSH, 1-13
for, 1-6
MASTER, 1-11
ORDERED, 1-14
PARALLEL, 1-3, 1-4
PARALLEL DO, 1-9
parallel for, 1-9
PARALLEL SECTIONS, 1-9
PARALLEL WORKSHARE, 1-10
SECTION, 1-7
SECTIONS, 1-7
SINGLE, 1-7
THREADPRIVATE, 1-15
validation (Fortran 95), 5-3
WORKSHARE, 1-8

documentation index, -xiv
documentation, accessing, -xiv to -xv
dynamic thread adjustment, 5-5
dynamic threads, 4-1
 Index-1

E
environment variables, 5-5
explicitly threaded programs, 4-2

F
false sharing, 7-4

G
guided scheduling, 5-7
guided weight, 4-2

H
header files

omp.h, 1-22
omp_lib.h, 1-22

I
idle threads, 5-6
implementation, 4-1

M
man pages, accessing, -xi
MANPATH environment variable, setting, -xii
master thread, 1-10
memory placement optimization (MPO), 7-5
multiple page size support in Solaris, 7-6

N
nested parallelism, 2-1, 2-2, 4-2, 5-5
NUM_THREADS, 1-20
number of threads, 1-20, 4-1

OMP_NUM_THREADS, 5-5

O
omp.h, 1-22
OMP_DESTROY_LOCK(), 1-27
OMP_DESTROY_NEST_LOCK(), 1-27
OMP_DYNAMIC, 5-5
OMP_GET_DYNAMIC(), 1-25
OMP_GET_MAX_THREADS(), 1-23
OMP_GET_NESTED(), 1-26
OMP_GET_NUM_PROCS(), 1-24
OMP_GET_NUM_THREADS(), 1-23
OMP_GET_THREAD_NUM(), 1-24

OMP_GET_WTICK(), 1-29
OMP_GET_WTIME(), 1-29
OMP_IN_PARALLEL(), 1-24
OMP_INIT_LOCK(), 1-27
OMP_INIT_NEST_LOCK(), 1-27
omp_lib.h, 1-22
OMP_NESTED, 2-2, 5-5
OMP_NUM_THREADS, 5-5
OMP_SCHEDULE, 5-5
OMP_SET_DYNAMIC(), 1-25
OMP_SET_LOCK(), 1-28
OMP_SET_NEST_LOCK(), 1-28
OMP_SET_NESTED(), 1-26
OMP_SET_NUM_THREADS(), 1-23
OMP_TEST_LOCK(), 1-28
OMP_TEST_NEST_LOCK(), 1-28
OMP_UNSET_LOCK(), 1-28
OMP_UNSET_NEST_LOCK(), 1-28
OpenMP 2.0 specifications, 1-1
ordered region, 1-14

P
parallel region, 1-3, 1-4
parallelism, nested, 2-1
PATH environment variable, setting, -xii
performance, 7-1
platforms, supported, -x
pragma

See directive
processor binding, 5-7

R
run-time

C/C++, 1-22
Fortran, 1-22

runtime checking, 4-3

S
scalability, 7-4
scheduling, 4-1, 4-2

OMP_SCHEDULE, 5-5
scheduling clauses

SCHEDULE, 1-19, 4-1, 4-2
scoping of variables, 3-3
Index-2 OpenMP API User’s Guide • January 2005

automatic, 3-1
autoscoping limitations, 3-8
compiler commentary, 3-4
rules, 3-2

shell prompts, -x
SLEEP, 5-6
Solaris OS tuning, 7-5
SPIN, 5-6
stack size, 5-7, 5-9
stacks, 5-9
STACKSIZE, 5-7
-stackvar, 5-9
SUNW_MP_GUIDED_WEIGHT, 4-2, 5-7
SUNW_MP_MAX_NESTED_LEVELS, 2-4, 5-7
SUNW_MP_MAX_POOL_THREADS, 2-3, 5-7
sunw_mp_misc.h, 4-4
SUNW_MP_PROCBIND, 5-6, 5-8
sunw_mp_register_warn(), 4-4
SUNW_MP_THR_IDLE, 5-6
SUNW_MP_WARN, 4-3, 5-6
supported platforms, -x
synchronization, 1-10
synchronization locks, 1-26

T
thread stack size, 5-7
timing routines, 1-29
typographic conventions, -ix

V
validation of directives (Fortran 95), 5-3

W
warning messages, 5-6
weighting factor, 4-2, 5-7
work-sharing, 1-5

combined directives, 1-8

X
-XlistMP, 5-3
-xopenmp, 5-1
Index-3

Index-4 OpenMP API User’s Guide • January 2005

	OpenMP API User’s Guide
	Contents
	Tables
	Before You Begin
	OpenMP API Summary
	1.1 Where to Find the OpenMP Specifications
	1.2 Special Conventions Used Here
	1.3 Directive Formats
	1.4 Conditional Compilation
	1.5 PARALLEL - Parallel Region Construct
	1.6 Work-Sharing Constructs
	1.6.1 DO and for Constructs
	1.6.2 SECTIONS Construct
	1.6.3 SINGLE Construct
	1.6.4 Fortran WORKSHARE Construct

	1.7 Combined Parallel Work-sharing Constructs
	1.7.1 PARALLEL DO and parallel for Constructs
	1.7.2 PARALLEL SECTIONS Construct
	1.7.3 PARALLEL WORKSHARE Construct

	1.8 Synchronization Constructs
	1.8.1 MASTER Construct
	1.8.2 CRITICAL Construct
	1.8.3 BARRIER Construct
	1.8.4 ATOMIC Construct
	1.8.5 FLUSH Construct
	1.8.6 ORDERED Construct

	1.9 Data Environment Directives
	1.9.1 THREADPRIVATE Directive

	1.10 OpenMP Directive Clauses
	1.10.1 Data Scoping Clauses
	1.10.1.1 PRIVATE Clause
	1.10.1.2 SHARED Clause
	1.10.1.3 DEFAULT Clause
	1.10.1.4 FIRSTPRIVATE Clause
	1.10.1.5 LASTPRIVATE Clause
	1.10.1.6 COPYIN Clause
	1.10.1.7 COPYPRIVATE Clause
	1.10.1.8 REDUCTION Clause

	1.10.2 Scheduling Clauses
	1.10.2.1 STATIC Scheduling
	1.10.2.2 DYNAMIC Scheduling
	1.10.2.3 GUIDED Scheduling
	1.10.2.4 RUNTIME Scheduling

	1.10.3 NUM_THREADS Clause
	1.10.4 Placement of Clauses on Directives

	1.11 OpenMP Runtime Library Routines
	1.11.1 Fortran OpenMP Routines
	1.11.2 C/C++ OpenMP Routines
	1.11.3 Run-time Thread Management Routines
	1.11.3.1 OMP_SET_NUM_THREADS Routine
	1.11.3.2 OMP_GET_NUM_THREADS Routine
	1.11.3.3 OMP_GET_MAX_THREADS Routine
	1.11.3.4 OMP_GET_THREAD_NUM Routine
	1.11.3.5 OMP_GET_NUM_PROCS Routine
	1.11.3.6 OMP_IN_PARALLEL Routine
	1.11.3.7 OMP_SET_DYNAMIC Routine
	1.11.3.8 OMP_GET_DYNAMIC Routine
	1.11.3.9 OMP_SET_NESTED Routine
	1.11.3.10 OMP_GET_NESTED Routine

	1.11.4 Routines That Manage Synchronization Locks
	1.11.4.1 OMP_INIT_LOCK and OMP_INIT_NEST_LOCK Routines
	1.11.4.2 OMP_DESTROY_LOCK and OMP_DESTROY_NEST_LOCK Routines
	1.11.4.3 OMP_SET_LOCK and OMP_SET_NEST_LOCK Routines
	1.11.4.4 OMP_UNSET_LOCK and OMP_UNSET_NEST_LOCK Routines
	1.11.4.5 OMP_TEST_LOCK and OMP_TEST_NEST_LOCK Routines

	1.11.5 Timing Routines
	1.11.5.1 OMP_GET_WTIME Routine
	1.11.5.2 OMP_GET_WTICK Routine

	Nested Parallelism
	2.1 The Execution Model
	2.2 Control of Nested Parallelism
	2.2.1 OMP_NESTED
	2.2.2 SUNW_MP_MAX_POOL_THREADS
	2.2.3 SUNW_MP_MAX_NESTED_LEVELS

	2.3 Using OpenMP Library Functions Within Nested Parallel Regions
	2.4 Some Tips on Using Nested Parallelism

	Automatic Scoping in Fortran
	3.1 The Autoscoping Data Scope Clause
	3.1.1 __AUTO Clause
	3.1.2 DEFAULT(__AUTO) Clause

	3.2 Scoping Rules
	3.2.1 Scoping Rules For Scalar Variables
	3.2.2 Scoping Rules for Arrays

	3.3 General Comments About Autoscoping
	3.4 Checking the Results of Autoscoping
	3.5 Known Limitations of the Current Implementation

	Implementation-Defined Behaviors
	Compiling for OpenMP
	5.1 Compiler Options To Use
	5.2 Fortran 95 OpenMP Validation
	5.3 OpenMP Environment Variables
	5.4 Processor Binding
	5.5 Stacks and Stack Sizes

	Converting to OpenMP
	6.1 Converting Legacy Fortran Directives
	6.1.1 Converting Sun-Style Fortran Directives
	6.1.1.1 Issues Between Sun-Style Fortran Directives and OpenMP

	6.1.2 Converting Cray-Style Fortran Directives
	6.1.2.1 Issues Between Cray-Style Fortran Directives and OpenMP Directives

	6.2 Converting Legacy C Pragmas
	6.2.1 Issues Between Legacy C Pragmas and OpenMP

	Performance Considerations
	7.1 Some General Recommendations
	7.2 False Sharing And How To Avoid It
	7.2.1 What Is False Sharing?
	7.2.2 Reducing False Sharing

	7.3 Operating System Tuning Features

	Index

