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Before You Begin

This manual describes the floating-point environment supported by software and 
hardware on SPARC® based systems and x86 based systems running the Solaris™ 
Operating System (Solaris OS). Although this manual discusses some general 
aspects of the SPARC and Intel architectures, it is primarily a reference manual 
designed to accompany Sun™ language products.

Certain aspects of the IEEE Standard for Binary Floating-Point Arithmetic are 
discussed in this manual. To learn about IEEE arithmetic, see the 18-page Standard. 
See Appendix F for a brief bibliography on IEEE arithmetic.

Who Should Use This Book
This manual is written for those who develop, maintain, and port mathematical and 
scientific applications or benchmarks. Before using this manual, you should be 
familiar with the programming language used (Fortran, C, etc.), dbx (the source-
level debugger), and the operating system commands and concepts.

How This Book Is Organized
Chapter 1 introduces the floating-point environment.

Chapter 2 describes the IEEE arithmetic model, IEEE formats, and underflow.

Chapter 3 describes the mathematics libraries provided with the Sun™ Studio 
compilers.
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Chapter 4 describes exceptions and shows how to detect, locate, and handle them. 

Appendix A contains example programs. 

Appendix B describes the floating-point hardware options for SPARC based 
workstations.

Appendix C lists x86 and SPARC compatibility issues related to the floating-point 
units used in Intel systems.

Appendix D is an edited reprint of a tutorial on floating-point arithmetic by David 
Goldberg.

Appendix E discusses standards compliance. 

Appendix F includes a list of references and related documentation. 

Glossary contains a definition of terms.

The examples in this manual are in C and Fortran, but the concepts apply to either 
compiler on a SPARC based or x86 based system. 

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, 
and directories; on-screen 
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted 
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms, 
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text; 
replace with a real name or value

To delete a file, type rm filename.
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Shell Prompts

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of 
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon 
EM64T. The supported systems for the version of the Solaris Operating System you 

TABLE P-2 Code Conventions 

Code 
Symbol Meaning Notation Code Example

[ ] Brackets contain arguments 
that are optional.

O[n] O4, O

{ } Braces contain a set of choices 
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol 
separates arguments, only one 
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is 
sometimes used to separate 
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission 
in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
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are running are available in the hardware compatibility lists at 
http://www.sun.com/bigadmin/hcl. These documents cite any implementation 
differences between the platform types.

In this document, the term "x86" refers to 64-bit and 32-bit systems manufactured 
using processors compatible with the AMD64 or Intel Xeon/Pentium product 
families. For supported systems, see the hardware compatibility lists. 

Accessing Sun Studio Software and Man 
Pages
The Sun Studio software and its man pages are not installed into the standard 
/usr/bin/ and /usr/share/man directories. To access the software, you must 
have your PATH environment variable set correctly (see “Accessing the Software” on 
page  xvi). To access the man pages, you must have the your MANPATH environment 
variable set correctly (see “Accessing the Man Pages” on page  xvii.).

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1) 
man pages. For more information about the MANPATH variable, see the man(1) man 
page. For more information about setting your PATH variable and MANPATH variables 
to access this release, see the installation guide or your system administrator.

Note – The information in this section assumes that your Sun Studio compilers and 
tools are installed in the /opt directory. If your software is not installed in the /opt 
directory, ask your system administrator for the equivalent path on your system.

Accessing the Software
Use the steps below to determine whether you need to change your PATH variable to 
access the compilers and tools.
xvi Numerical Computation Guide • January 2005
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To Determine Whether You Need to Set Your PATH 
Environment Variable

1. Display the current value of the PATH variable by typing the following at a 
command prompt.

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and 
tools. If you do not find the path, set your PATH environment variable by following 
the instructions in the next procedure.

To Set Your PATH Environment Variable to Enable Access to 
the Compilers and Tools

● Add the following to your PATH environment variable. If you have Forte 
Developer software, Sun ONE Studio software, or another release of Sun Studio 
software installed, add the following path before the paths to those installations.

/opt/SUNWspro/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH 
variable to access the man pages.

To Determine Whether You Need to Set Your MANPATH 
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the 
current version of the software installed, follow the instructions in the next 
procedure for setting your MANPATH environment variable.

% echo $PATH

% man dbx
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To Set Your MANPATH Environment Variable to Enable Access 
to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the 
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

Accessing the Integrated Development 
Environment
The Sun Studio integrated development environment (IDE) provides modules for 
creating, editing, building, debugging, and analyzing the performance of a C, C++, 
or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the 
sunstudio(1) man page. 

The correct operation of the IDE depends on the IDE being able to find the core 
platform. The sunstudio command looks for the core platform in two locations:

■ The command looks first in the default installation directory, 
/opt/netbeans/3.5V.

■ If the command does not find the core platform in the default directory, it 
assumes that the directory that contains the IDE and the directory that contains 
the core platform are both installed in or mounted to the same location. For 
example, on Solaris platforms, if the path to the directory that contains the IDE is 
/foo/SUNWspro, the command looks for the core platform in 
/foo/netbeans/3.5V. 

■ If the core platform is not installed or mounted to either of the locations where 
the sunstudio command looks for it, then each user on a client system must set 
the environment variable SPRO_NETBEANS_HOME to the location where the core 
platform is installed or mounted (/installation_directory/netbeans/3.5V). 

Each user of the IDE also must add /installation_directory/SUNWspro/bin to their 
$PATH in front of the path to any other release of Forte Developer software, Sun 
ONE Studio software, or Sun Studio software. 

The path /installation_directory/netbeans/3.5V/bin should not be added to the 
user’s $PATH.
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Accessing Sun Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed 
with the software on your local system or network at 
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system 
administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following 
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as 
well as through Help buttons on many windows and dialogs, in the IDE.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print, 
and buy Sun Microsystems manuals through the Internet. If you cannot find a 
manual, see the documentation index that is installed with the software on your 
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned 
in this document. Sun does not endorse and is not responsible or liable for any 
content, advertising, products, or other materials that are available on or through 
such sites or resources. Sun will not be responsible or liable for any actual or alleged 
damage or loss caused by or in connection with use of or reliance on any such 
content, goods, or services available on or through any such sites or resources.
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Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive 
technologies for users with disabilities. You can find accessible versions of 
documentation as described in the following table. If your software is not installed 
in the /opt directory, ask your system administrator for the equivalent path on your 
system. 

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party 
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class 

Reference
• Standard C++ Library 

User’s Guide
• Tools.h++ Class Library 

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation 
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation 
index at file:/opt/SUNWspro/docs/index.html

Online help HTML available through the Help menu in the IDE

Release notes HTML at http://docs.sun.com
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Accessing Related Solaris 
Documentation
The following table describes related documentation that is available through the 
docs.sun.com web site.

Resources for Developers
Visit http://developers.sun.com/prodtech/cc to find these frequently 
updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compilers and tools components, as well as corrections to the 
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at 
http://developers.sun.com.

Document Collection Document Title Description

Solaris Reference Manual 
Collection

See the titles of man page 
sections.

Provides information about the 
Solaris operating environment.

Solaris Software Developer 
Collection

Linker and Libraries Guide Describes the operations of the 
Solaris link-editor and runtime 
linker.

Solaris Software Developer 
Collection

Multithreaded Programming 
Guide

Covers the POSIX® and Solaris 
threads APIs, programming 
with synchronization objects, 
compiling multithreaded 
programs, and finding tools for 
multithreaded programs.
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Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this 
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and 
suggestions. Submit your comments to Sun at this URL

http://www.sun.com/hwdocs/feedback

Please include the part number (819-0499-10) of your document.
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CHAPTER 1

Introduction

Sun’s floating-point environment on SPARC® and Intel systems enables you to 
develop robust, high-performance, portable numerical applications. The floating-
point environment can also help investigate unusual behavior of numerical 
programs written by others. These systems implement the arithmetic model 
specified by IEEE Standard 754 for Binary Floating Point Arithmetic. This manual 
explains how to use the options and flexibility provided by the IEEE Standard on 
these systems. 

1.1 Floating-Point Environment 
The floating-point environment consists of data structures and operations made 
available to the applications programmer by hardware, system software, and 
software libraries that together implement IEEE Standard 754. IEEE Standard 754 
makes it easier to write numerical applications. It is a solid, well-thought-out basis 
for computer arithmetic that advances the art of numerical programming. 

For example, the hardware provides storage formats corresponding to the IEEE data 
formats, operations on data in such formats, control over the rounding of results 
produced by these operations, status flags indicating the occurrence of IEEE numeric 
exceptions, and the IEEE-prescribed result when such an exception occurs in the 
absence of a user-defined handler for it. System software supports IEEE exception 
handling. The software libraries, including the math libraries, libm and 
libsunmath, implement functions such as exp(x) and sin(x) in a way that 
follows the spirit of IEEE Standard 754 with respect to the raising of exceptions. 
(When a floating-point arithmetic operation has no well-defined result, the system 
communicates this fact to the user by raising an exception.) The math libraries also 
provide function calls that handle special IEEE values like Inf (infinity) or NaN (Not 
a Number).
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The three constituents of the floating-point environment interact in subtle ways, and 
those interactions are generally invisible to the applications programmer. The 
programmer sees only the computational mechanisms prescribed or recommended 
by the IEEE standard. In general, this manual guides programmers to make full and 
efficient use of the IEEE mechanisms so that they can write application software 
effectively. 

Many questions about floating-point arithmetic concern elementary operations on 
numbers. For example,

■ What is the result of an operation when the infinitely precise result is not 
representable in the computer system?

■ Are elementary operations like multiplication and addition commutative?

Another class of questions is connected to exceptions and exception handling. For 
example, what happens when you:

■ Multiply two very large numbers?
■ Divide by zero?
■ Attempt to compute the square root of a negative number?

In some other arithmetics, the first class of questions might not have the expected 
answers, or the exceptional cases in the second class are treated the same: the 
program aborts on the spot; in some very old machines, the computation proceeds, 
but with garbage.

The IEEE Standard 754 ensures that operations yield the mathematically expected 
results with the expected properties. It also ensures that exceptional cases yield 
specified results, unless the user specifically makes other choices.

In this manual, there are references to terms like NaN or subnormal number. The 
Glossary defines terms related to floating-point arithmetic. 
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CHAPTER 2 

IEEE Arithmetic 

This chapter discusses the arithmetic model specified by the ANSI/IEEE Standard 
754-1985 for Binary Floating-Point Arithmetic (“the IEEE standard” or “IEEE 754” 
for short). All SPARC® and x86 processors use IEEE arithmetic. All Sun compiler 
products support the features of IEEE arithmetic. 

2.1 IEEE Arithmetic Model 
This section describes the IEEE 754 specification.

2.1.1 What Is IEEE Arithmetic? 
IEEE 754 specifies: 

■ Two basic floating-point formats: single and double. 

The IEEE single format has a significand precision of 24 bits and occupies 32 bits 
overall. The IEEE double format has a significand precision of 53 bits and 
occupies 64 bits overall.

■ Two classes of extended floating-point formats: single extended and double extended. 

The standard does not prescribe the exact precision and size of these formats, but 
it does specify the minimum precision and size. For example, an IEEE double 
extended format must have a significand precision of at least 64 bits and occupy 
at least 79 bits overall.

■ Accuracy requirements on floating-point operations: add, subtract, multiply, divide, 
square root, remainder, round numbers in floating-point format to integer values, convert 
between different floating-point formats, convert between floating-point and integer 
formats, and compare.
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The remainder and compare operations must be exact. Each of the other 
operations must deliver to its destination the exact result, unless there is no such 
result or that result does not fit in the destination’s format. In the latter case, the 
operation must minimally modify the exact result according to the rules of 
prescribed rounding modes, presented below, and deliver the result so modified 
to the operation’s destination.

■ Accuracy, monotonicity and identity requirements for conversions between 
decimal strings and binary floating-point numbers in either of the basic floating-
point formats. 

For operands lying within specified ranges, these conversions must produce exact 
results, if possible, or minimally modify such exact results in accordance with the 
rules of the prescribed rounding modes. For operands not lying within the 
specified ranges, these conversions must produce results that differ from the exact 
result by no more than a specified tolerance that depends on the rounding mode.

■ Five types of IEEE floating-point exceptions, and the conditions for indicating to 
the user the occurrence of exceptions of these types. 

The five types of floating-point exceptions are invalid operation, division by zero, 
overflow, underflow, and inexact.

■ Four rounding directions: toward the nearest representable value, with “even” values 
preferred whenever there are two nearest representable values; toward negative 
infinity (down); toward positive infinity (up); and toward 0 (chop).

■ Rounding precision; for example, if a system delivers results in double extended 
format, the user should be able to specify that such results are to be rounded to 
the precision of either the single or double format.

The IEEE standard also recommends support for user handling of exceptions.

The features required by the IEEE standard make it possible to support interval 
arithmetic, the retrospective diagnosis of anomalies, efficient implementations of 
standard elementary functions like exp and cos, multiple precision arithmetic, and 
many other tools that are useful in numerical computation.

IEEE 754 floating-point arithmetic offers users greater control over computation than 
does any other kind of floating-point arithmetic. The IEEE standard simplifies the 
task of writing numerically sophisticated, portable programs not only by imposing 
rigorous requirements on conforming implementations, but also by allowing such 
implementations to provide refinements and enhancements to the standard itself. 
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2.2 IEEE Formats 
This section describes how floating-point data is stored in memory. It summarizes 
the precisions and ranges of the different IEEE storage formats. 

2.2.1 Storage Formats 
A floating-point format is a data structure specifying the fields that comprise a 
floating-point numeral, the layout of those fields, and their arithmetic interpretation. 
A floating-point storage format specifies how a floating-point format is stored in 
memory. The IEEE standard defines the formats, but it leaves to implementors the 
choice of storage formats. 

Assembly language software sometimes relies on using the storage formats, but 
higher level languages usually deal only with the linguistic notions of floating-point 
data types. These types have different names in different high-level languages, and 
correspond to the IEEE formats as shown in TABLE 2-1. 

IEEE 754 specifies exactly the single and double floating-point formats, and it 
defines a class of extended formats for each of these two basic formats. The long 
double and REAL*16 types shown in TABLE 2-1 refer to one of the class of double 
extended formats defined by the IEEE standard. 

The following sections describe in detail each of the storage formats used for the 
IEEE floating-point formats on SPARC and x86 platforms. 

2.2.2 Single Format
The IEEE single format consists of three fields: a 23-bit fraction, f; an 8-bit biased 
exponent, e; and a 1-bit sign, s. These fields are stored contiguously in one 32-bit 
word, as shown in FIGURE 2-1. Bits 0:22 contain the 23-bit fraction, f, with bit 0 being 
the least significant bit of the fraction and bit 22 being the most significant; bits 23:30 

TABLE 2-1 IEEE Formats and Language Types

IEEE Precision C, C++ Fortran (SPARC only)

single float REAL or REAL*4

double double DOUBLE PRECISION or REAL*8

double extended long double REAL*16
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contain the 8-bit biased exponent, e, with bit 23 being the least significant bit of the 
biased exponent and bit 30 being the most significant; and the highest-order bit 31 
contains the sign bit, s.

FIGURE 2-1 Single-Storage Format

TABLE 2-2 shows the correspondence between the values of the three constituent 
fields s, e and f, on the one hand, and the value represented by the single- format 
bit pattern on the other; u means don’t care, that is, the value of the indicated field is 
irrelevant to the determination of the value of the particular bit patterns in single 
format. 

Notice that when e < 255, the value assigned to the single format bit pattern is 
formed by inserting the binary radix point immediately to the left of the fraction’s 
most significant bit, and inserting an implicit bit immediately to the left of the binary 
point, thus representing in binary positional notation a mixed number (whole 
number plus fraction, wherein 0 ≤ Ò3fraction < 1). 

The mixed number thus formed is called the single-format significand. The implicit bit 
is so named because its value is not explicitly given in the single- format bit pattern, 
but is implied by the value of the biased exponent field.

TABLE 2-2 Values Represented by Bit Patterns in IEEE Single Format 

Single-Format Bit Pattern Value

0 < e < 255 (–1)s × 2e–127 × 1.f (normal numbers)

e = 0; f ≠ 0
(at least one bit in f is nonzero) 

(–1)s × 2–126 × 0.f (subnormal numbers)

e = 0; f = 0
(all bits in f are zero)

(–1)s × 0.0 (signed zero)

s = 0; e = 255; f = 0  
(all bits in f are zero)

+INF (positive infinity)

s = 1; e = 255; f = 0  
(all bits in f are zero)

–INF (negative infinity)

s = u; e = 255; f ≠ 0
(at least one bit in f is nonzero)

NaN (Not-a-Number)

31 30 23 22 0

s e[30:23] f[22:0]
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For the single format, the difference between a normal number and a subnormal 
number is that the leading bit of the significand (the bit to left of the binary point) of 
a normal number is 1, whereas the leading bit of the significand of a subnormal 
number is 0. Single-format subnormal numbers were called single-format 
denormalized numbers in IEEE Standard 754.

The 23-bit fraction combined with the implicit leading significand bit provides 24 
bits of precision in single-format normal numbers.

Examples of important bit patterns in the single-storage format are shown in 
TABLE 2-3. The maximum positive normal number is the largest finite number 
representable in IEEE single format. The minimum positive subnormal number is 
the smallest positive number representable in IEEE single format. The minimum 
positive normal number is often referred to as the underflow threshold. (The 
decimal values for the maximum and minimum normal and subnormal numbers are 
approximate; they are correct to the number of figures shown.)

A NaN (Not a Number) can be represented with any of the many bit patterns that 
satisfy the definition of a NaN. The hex value of the NaN shown in TABLE 2-3 is just 
one of the many bit patterns that can be used to represent a NaN.

TABLE 2-3 Bit Patterns in Single-Storage Format and Their IEEE Values

Common Name Bit Pattern (Hex) Decimal Value

+0 00000000 0.0

–0 80000000 –0.0

1 3f800000 1.0

2 40000000 2.0

maximum normal number 7f7fffff 3.40282347e+38

minimum positive normal 
number

00800000 1.17549435e–38 

maximum subnormal number 007fffff 1.17549421e–38

minimum positive subnormal 
number 

00000001 1.40129846e–45 

+ 7f800000 Infinity

– ff800000 –Infinity

Not-a-Number 7fc00000 NaN

∞
∞
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2.2.3 Double Format
The IEEE double format consists of three fields: a 52-bit fraction, f; an 11-bit biased 
exponent, e; and a 1-bit sign, s. These fields are stored contiguously in two 
successively addressed 32-bit words, as shown in FIGURE 2-2. 

In the SPARC architecture, the higher address 32-bit word contains the least 
significant 32 bits of the fraction, while in the x86 architecture the lower address 
32-bit word contains the least significant 32 bits of the fraction. 

If we denote f[31:0] the least significant 32 bits of the fraction, then bit 0 is the least 
significant bit of the entire fraction and bit 31 is the most significant of the 32 least 
significant fraction bits. 

In the other 32-bit word, bits 0:19 contain the 20 most significant bits of the fraction, 
f[51:32], with bit 0 being the least significant of these 20 most significant fraction 
bits, and bit 19 being the most significant bit of the entire fraction; bits 20:30 contain 
the 11-bit biased exponent, e, with bit 20 being the least significant bit of the biased 
exponent and bit 30 being the most significant; and the highest-order bit 31 contains 
the sign bit, s.

FIGURE 2-2 numbers the bits as though the two contiguous 32-bit words were one 
64-bit word in which bits 0:51 store the 52-bit fraction, f; bits 52:62 store the 11-bit 
biased exponent, e; and bit 63 stores the sign bit, s. 

FIGURE 2-2 Double-Storage Format

The values of the bit patterns in these three fields determine the value represented 
by the overall bit pattern. 

31 0

63 62 52 51 32

f[31:0]

s e[52:62] f[51:32]
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TABLE 2-4 shows the correspondence between the values of the bits in the three 
constituent fields, on the one hand, and the value represented by the double-format 
bit pattern on the other; u means don’t care, because the value of the indicated field is 
irrelevant to the determination of value for the particular bit pattern in double 
format. 

Notice that when e < 2047, the value assigned to the double-format bit pattern is 
formed by inserting the binary radix point immediately to the left of the fraction’s 
most significant bit, and inserting an implicit bit immediately to the left of the binary 
point. The number thus formed is called the significand. The implicit bit is so named 
because its value is not explicitly given in the double-format bit pattern, but is 
implied by the value of the biased exponent field.

For the double format, the difference between a normal number and a subnormal 
number is that the leading bit of the significand (the bit to the left of the binary 
point) of a normal number is 1, whereas the leading bit of the significand of a 
subnormal number is 0. Double-format subnormal numbers were called double-
format denormalized numbers in IEEE Standard 754.

The 52-bit fraction combined with the implicit leading significand bit provides 53 
bits of precision in double-format normal numbers.

Examples of important bit patterns in the double-storage format are shown in 
TABLE 2-5. The bit patterns in the second column appear as two 8-digit hexadecimal 
numbers. For the SPARC architecture, the left one is the value of the lower 
addressed 32-bit word, and the right one is the value of the higher addressed 32-bit 
word, while for the x86 architecture, the left one is the higher addressed word, and 
the right one is the lower addressed word. The maximum positive normal number is 
the largest finite number representable in the IEEE double format. The minimum 
positive subnormal number is the smallest positive number representable in IEEE 

TABLE 2-4 Values Represented by Bit Patterns in IEEE Double Format

Double-Format Bit Pattern Value

0 < e < 2047 (–1)s × 2e–1023 x 1.f (normal numbers)

e = 0; f ≠ 0
(at least one bit in f is nonzero) 

(–1)s × 2–1022 x 0.f (subnormal numbers)

e = 0; f = 0
(all bits in f are zero)

(–1)s × 0.0 (signed zero)

s = 0; e = 2047; f = 0  
(all bits in f are zero)

+INF (positive infinity)

s = 1; e = 2047; f = 0  
(all bits in f are zero)

–INF (negative infinity)

s = u; e = 2047; f ≠ 0
(at least one bit in f is nonzero)

NaN (Not-a-Number)
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double format. The minimum positive normal number is often referred to as the 
underflow threshold. (The decimal values for the maximum and minimum normal 
and subnormal numbers are approximate; they are correct to the number of figures 
shown.) 

A NaN (Not a Number) can be represented by any of the many bit patterns that 
satisfy the definition of NaN. The hex value of the NaN shown in TABLE 2-5 is just 
one of the many bit patterns that can be used to represent a NaN.

2.2.4 Double-Extended Format (SPARC)
The SPARC floating-point environment’s quadruple-precision format conforms to 
the IEEE definition of double-extended format. The quadruple-precision format 
occupies four 32-bit words and consists of three fields: a 112-bit fraction, f; a 15-bit 
biased exponent, e; and a 1-bit sign, s. These are stored contiguously as shown in 
FIGURE 2-3. 

The highest addressed 32-bit word contains the least significant 32-bits of the 
fraction, denoted f[31:0]. The next two 32-bit words contain f[63:32] and f[95:64], 
respectively. Bits 0:15 of the next word contain the 16 most significant bits of the 
fraction, f[111:96], with bit 0 being the least significant of these 16 bits, and bit 15 

TABLE 2-5 Bit Patterns in Double-Storage Format and Their IEEE Values 

Common Name Bit Pattern (Hex) Decimal Value 

+ 0 00000000 00000000 0.0

– 0 80000000 00000000 –0.0

1 3ff00000 00000000 1.0

2 40000000 00000000 2.0

max normal 
number

7fefffff ffffffff 1.7976931348623157e+308

min positive 
normal number

00100000 00000000 2.2250738585072014e–308

max subnormal 
number

000fffff ffffffff 2.2250738585072009e–308 

min positive 
subnormal number

00000000 00000001 4.9406564584124654e–324

+ 7ff00000 00000000 Infinity

– fff00000 00000000 –Infinity 

Not-a-Number 7ff80000 00000000 NaN 

∞
∞

2-8  Numerical Computation Guide • January 2005



being the most significant bit of the entire fraction. Bits 16:30 contain the 15-bit 
biased exponent, e, with bit 16 being the least significant bit of the biased exponent 
and bit 30 being the most significant; and bit 31 contains the sign bit, s.

FIGURE 2-3 numbers the bits as though the four contiguous 32-bit words were one 
128-bit word in which bits 0:111 store the fraction, f; bits 112:126 store the 15-bit 
biased exponent, e; and bit 127 stores the sign bit, s.

FIGURE 2-3 Double-Extended Format (SPARC) 

The values of the bit patterns in the three fields f, e, and s, determine the value 
represented by the overall bit pattern. 

TABLE 2-6 shows the correspondence between the values of the three constituent 
fields and the value represented by the bit pattern in quadruple-precision format. u 
means don’t care, because the value of the indicated field is irrelevant to the 
determination of values for the particular bit patterns. 

TABLE 2-6 Values Represented by Bit Patterns (SPARC) 

Double-Extended Bit Pattern (SPARC) Value

0 < e < 32767 (–1)s x 2e–16383 × 1.f (normal numbers)

e = 0, f ≠ 0
(at least one bit in f is nonzero)

(–1)s x 2–16382 × 0.f (subnormal numbers)

e = 0, f = 0
(all bits in f are zero)

(–1)s x 0.0 (signed zero)

127 126 112 111 96

95 64

63 32

31 0

s e[126:112] f[111:96]

f[95:64]

f[63:32]

f[31:0]
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Examples of important bit patterns in the quadruple-precision double-extended 
storage format are shown in TABLE 2-7. The bit patterns in the second column appear 
as four 8-digit hexadecimal numbers. The left-most number is the value of the 
lowest addressed 32-bit word, and the right-most number is the value of the highest 
addressed 32-bit word. The maximum positive normal number is the largest finite 
number representable in the quadruple precision format. The minimum positive 
subnormal number is the smallest positive number representable in the quadruple 
precision format. The minimum positive normal number is often referred to as the 
underflow threshold. (The decimal values for the maximum and minimum normal 
and subnormal numbers are approximate; they are correct to the number of figures 
shown.) 

s = 0, e = 32767, f = 0
(all bits in f are zero)

+INF (positive infinity)

s = 1, e = 32767; f = 0
(all bits in f are zero)

-INF (negative infinity)

s = u, e = 32767, f ≠ 0
(at least one bit in f is nonzero)

NaN (Not-a-Number)

TABLE 2-7 Bit Patterns in Double-Extended Format (SPARC) 

Common 
Name Bit Pattern (SPARC) Decimal Value 

+0 00000000 00000000 00000000 00000000 0.0 

–0 80000000 00000000 00000000 00000000 –0.0 

1 3fff0000 00000000 00000000 00000000 1.0

2 40000000 00000000 00000000 00000000 2.0

max 
normal

7ffeffff ffffffff ffffffff ffffffff 1.1897314953572317650857593266280070e+4932

min 
normal 

00010000 00000000 00000000 00000000 3.3621031431120935062626778173217526e–4932

max 
subnormal

0000ffff ffffffff ffffffff ffffffff 3.3621031431120935062626778173217520e–4932

min pos 
subnormal

00000000 00000000 00000000 00000001 6.4751751194380251109244389582276466e–4966

TABLE 2-6 Values Represented by Bit Patterns (SPARC) (Continued)

Double-Extended Bit Pattern (SPARC) Value
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The hex value of the NaN shown in TABLE 2-7 is just one of the many bit patterns that 
can be used to represent NaNs. 

2.2.5 Double-Extended Format (x86)
This floating-point environment’s double-extended format conforms to the IEEE 
definition of double-extended formats. It consists of four fields: a 63-bit fraction, f; 
a 1-bit explicit leading significand bit, j; a 15-bit biased exponent, e; and a 1-bit 
sign, s. 

In the family of x86 architectures, these fields are stored contiguously in ten 
successively addressed 8-bit bytes. However, the UNIX System V Application Binary 
Interface Intel 386 Processor Supplement (Intel ABI) requires that double-extended 
parameters and results occupy three consecutively addressed 32-bit words in the 
stack, with the most significant 16 bits of the highest addressed word being unused, 
as shown in FIGURE 2-4. 

The lowest addressed 32-bit word contains the least significant 32 bits of the fraction, 
f[31:0], with bit 0 being the least significant bit of the entire fraction and bit 31 being 
the most significant of the 32 least significant fraction bits. In the middle addressed 
32-bit word, bits 0:30 contain the 31 most significant bits of the fraction, f[62:32], 
with bit 0 being the least significant of these 31 most significant fraction bits, and bit 
30 being the most significant bit of the entire fraction; bit 31 of this middle addressed 
32-bit word contains the explicit leading significand bit, j.

In the highest addressed 32-bit word, bits 0:14 contain the 15-bit biased exponent, e, 
with bit 0 being the least significant bit of the biased exponent and bit 14 being the 
most significant; and bit 15 contains the sign bit, s. Although the highest order 16 
bits of this highest addressed 32-bit word are unused by the family of x86 
architectures, their presence is essential for conformity to the Intel ABI, as indicated 
above. 

FIGURE 2-4 numbers the bits as though the three contiguous 32-bit words were one 
96-bit word in which bits 0:62 store the 63-bit fraction, f; bit 63 stores the explicit 
leading significand bit, j; bits 64:78 store the 15-bit biased exponent, e; and bit 79 
stores the sign bit, s. 

+ 7fff0000 00000000 00000000 00000000 +  

– ffff0000 00000000 00000000 00000000 –  

Not-a-
Number

7fff8000 00000000 00000000 00000000 NaN 

TABLE 2-7 Bit Patterns in Double-Extended Format (SPARC) (Continued)

Common 
Name Bit Pattern (SPARC) Decimal Value 

∞ ∞
∞ ∞
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FIGURE 2-4 Double-Extended Format (x86) 

The values of the bit patterns in the four fields f, j, e and s, determine the value 
represented by the overall bit pattern. 

TABLE 2-8 shows the correspondence between the counting number values of the four 
constituent field and the value represented by the bit pattern. u means don’t care, 
because the value of the indicated field is irrelevant to the determination of value for 
the particular bit patterns. 

TABLE 2-8 Values Represented by Bit Patterns (x86)

Double-Extended Bit Pattern (x86) Value

j = 0, 0 < e <32767 Unsupported

j = 1, 0 < e < 32767 (–1)s x 2e–16383 x 1.f (normal numbers)

j = 0, e = 0; f ≠ 0
(at least one bit in f is nonzero) 

(–1)s x 2–16382 x 0.f (subnormal numbers)

j = 1, e = 0 (–1)s x 2–16382 x 1.f (pseudo-denormal numbers)

j = 0, e = 0, f = 0
(all bits in f are zero)

(–1)s x 0.0 (signed zero)

j = 1; s = 0; e = 32767; f = 0  
(all bits in f are zero)

+INF (positive infinity)

j = 1; s = 1; e = 32767; f = 0  
(all bits in f are zero)

–INF (negative infinity)

j = 1; s = u; e = 32767; f = .1uuu — uu QNaN (quiet NaNs)

j = 1; s = u; e = 32767; f = .0uuu — uu ≠ 0
(at least one of the u in f is nonzero)

SNaN (signaling NaNs)

31 0

63 62 32

96 80 79 78 64

f[31:0]

f[62:32]

s

j

e[78:64]
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Notice that bit patterns in double-extended format do not have an implicit leading 
significand bit. The leading significand bit is given explicitly as a separate field, j, in 
the double-extended format. However, when e ≠ 0, any bit pattern with j = 0 is 
unsupported in the sense that using such a bit pattern as an operand in floating-
point operations provokes an invalid operation exception.

The union of the disjoint fields j and f in the double extended format is called the 
significand. When e < 32767 and j = 1, or when e = 0 and j = 0, the significand is 
formed by inserting the binary radix point between the leading significand bit, j, 
and the fraction’s most significant bit.

In the x86 double-extended format, a bit pattern whose leading significand bit j is 0 
and whose biased exponent field e is also 0 represents a subnormal number, whereas 
a bit pattern whose leading significand bit j is 1 and whose biased exponent field e 
is nonzero represents a normal number. Because the leading significand bit is 
represented explicitly rather than being inferred from the value of the exponent, this 
format also admits bit patterns whose biased exponent is 0, like the subnormal 
numbers, but whose leading significand bit is 1. Each such bit pattern actually 
represents the same value as the corresponding bit pattern whose biased exponent 
field is 1, i.e., a normal number, so these bit patterns are called pseudo-denormals. 
(Subnormal numbers were called denormalized numbers in IEEE Standard 754.) 
Pseudo-denormals are merely an artifact of the x86 double-extended format’s 
encoding; they are implicitly converted to the corresponding normal numbers when 
they appear as operands, and they are never generated as results.

Examples of important bit patterns in the double-extended storage format appear in 
TABLE 2-9. The bit patterns in the second column appear as one 4-digit hexadecimal 
counting number, which is the value of the 16 least significant bits of the highest 
addressed 32-bit word (recall that the most significant 16 bits of this highest 
addressed 32-bit word are unused, so their value is not shown), followed by two 8-
digit hexadecimal counting numbers, of which the left one is the value of the middle 
addressed 32-bit word, and the right one is the value of the lowest addressed 32-bit 
word. The maximum positive normal number is the largest finite number 
representable in the x86 double-extended format. The minimum positive subnormal 
number is the smallest positive number representable in the double-extended 
format. The minimum positive normal number is often referred to as the underflow 
threshold. (The decimal values for the maximum and minimum normal and 
subnormal numbers are approximate; they are correct to the number of figures 
shown.)
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A NaN (Not a Number) can be represented by any of the many bit patterns that 
satisfy the definition of NaN. The hex values of the NaNs shown in TABLE 2-9 
illustrate that the leading (most significant) bit of the fraction field determines 
whether a NaN is quiet (leading fraction bit = 1) or signaling (leading fraction bit =
 0).

2.2.6 Ranges and Precisions in Decimal Representation
This section covers the notions of range and precision for a given storage format. It 
includes the ranges and precisions corresponding to the IEEE single and double 
formats and to the implementations of IEEE double-extended format on SPARC and 
x86 architectures. For concreteness, in defining the notions of range and precision we 
refer to the IEEE single format.

The IEEE standard specifies that 32 bits be used to represent a floating point number 
in single format. Because there are only finitely many combinations of 32 zeroes and 
ones, only finitely many numbers can be represented by 32 bits. 

One natural question is:

TABLE 2-9 Bit Patterns in Double-Extended Format and Their Values (x86)  

Common Name Bit Pattern (x86) Decimal Value 

+0 0000 00000000 00000000 0.0 

–0 8000 00000000 00000000 –0.0 

1 3fff 80000000 00000000 1.0

2 4000 80000000 00000000 2.0

max normal 7ffe ffffffff ffffffff 1.18973149535723176505e+4932

min positive normal 0001 80000000 00000000 3.36210314311209350626e–4932

max subnormal 0000 7fffffff ffffffff 3.36210314311209350608e–4932

min positive subnormal 0000 00000000 00000001 3.64519953188247460253e–4951

+ 7fff 80000000 00000000 +  

– ffff 80000000 00000000 –  

quiet NaN with greatest fraction 7fff ffffffff ffffffff QNaN 

quiet NaN with least fraction 7fff c0000000 00000000 QNaN 

signaling NaN with greatest fraction 7fff bfffffff ffffffff SNaN 

signaling NaN with least fraction 7fff 80000000 00000001 SNaN 

∞ ∞
∞ ∞
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What are the decimal representations of the largest and smallest positive numbers 
that can be represented in this particular format? 

Rephrase the question and introduce the notion of range:

What is the range, in decimal notation, of numbers that can be represented by the 
IEEE single format?

Taking into account the precise definition of IEEE single format, one can prove that 
the range of floating-point numbers that can be represented in IEEE single format (if 
restricted to positive normalized numbers) is as follows:

1.175... × (10-38) to 3.402... × (10+38)

A second question refers to the precision (not to be confused with the accuracy or 
the number of significant digits) of the numbers represented in a given format. These 
notions are explained by looking at some pictures and examples.

The IEEE standard for binary floating-point arithmetic specifies the set of numerical 
values representable in the single format. Remember that this set of numerical 
values is described as a set of binary floating-point numbers. The significand of the 
IEEE single format has 23 bits, which together with the implicit leading bit, yield 24 
digits (bits) of (binary) precision. 

One obtains a different set of numerical values by marking the numbers:

x = (x1.x2 x3...xq) × (10n)

(representable by q decimal digits in the significand) on the number line. 

FIGURE 2-5 exemplifies this situation:

FIGURE 2-5 Comparison of a Set of Numbers Defined by Digital and Binary Representation
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Notice that the two sets are different. Therefore, estimating the number of significant 
decimal digits corresponding to 24 significant binary digits, requires reformulating 
the problem. 

Reformulate the problem in terms of converting floating-point numbers between 
binary representations (the internal format used by the computer) and the decimal 
format (the format users are usually interested in). In fact, you may want to convert 
from decimal to binary and back to decimal, as well as convert from binary to 
decimal and back to binary. 

It is important to notice that because the sets of numbers are different, conversions 
are in general inexact. If done correctly, converting a number from one set to a 
number in the other set results in choosing one of the two neighboring numbers 
from the second set (which one specifically is a question related to rounding).

Consider some examples. Suppose one is trying to represent a number with the 
following decimal representation in IEEE single format:

x = x1.x2 x3... × 10n

Because there are only finitely many real numbers that can be represented exactly in 
IEEE single format, and not all numbers of the above form are among them, in 
general it will be impossible to represent such numbers exactly. For example, let

y = 838861.2, z = 1.3

and run the following Fortran program: 

The output from this program should be similar to: 

The difference between the value 8.388612 × 105 assigned to y and the value printed 
out is 0.000000125, which is seven decimal orders of magnitude smaller than y. The 
accuracy of representing y in IEEE single format is about 6 to 7 significant digits, or 
that y has about six significant digits if it is to be represented in IEEE single format. 

 REAL Y, Z
 Y = 838861.2
 Z = 1.3

WRITE(*,40) Y
40 FORMAT("y: ",1PE18.11)
 WRITE(*,50) Z
50 FORMAT("z: ",1PE18.11)

y: 8.38861187500E+05
z: 1.29999995232E+00
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Similarly, the difference between the value 1.3 assigned to z and the value printed 
out is 0.00000004768, which is eight decimal orders of magnitude smaller than z. The 
accuracy of representing z in IEEE single format is about 7 to 8 significant digits, or 
that z has about seven significant digits if it is to be represented in IEEE single format. 

Now formulate the question: 

Assume you convert a decimal floating point number a to its IEEE single format 
binary representation b, and then translate b back to a decimal number c; how many 
orders of magnitude are between a and a - c? 

Rephrase the question: 

What is the number of significant decimal digits of a in the IEEE single format 
representation, or how many decimal digits are to be trusted as accurate when one 
represents x in IEEE single format?

The number of significant decimal digits is always between 6 and 9, that is, at least 6 
digits, but not more than 9 digits are accurate (with the exception of cases when the 
conversions are exact, when infinitely many digits could be accurate). 

Conversely, if you convert a binary number in IEEE single format to a decimal 
number, and then convert it back to binary, generally, you need to use at least 9 
decimal digits to ensure that after these two conversions you obtain the number you 
started from.

The complete picture is given in TABLE 2-10: 

TABLE 2-10 Range and Precision of Storage Formats

Format Significant Digits 
(Binary)

Smallest Positive 
Normal Number

Largest Positive 
Number

Significant Digits 
(Decimal)

single 24 1.175... 10-38 3.402... 10+38 6-9

double 53 2.225... 10-308 1.797... 10+308 15-17

double 
extended 
(SPARC)

113 3.362... 10-4932 1.189... 10+4932 33-36

double 
extended 
(x86)

64 3.362... 10-4932 1.189... 10+4932 18-21
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2.2.7 Base Conversion in the Solaris Environment
Base conversion refers to the transformation of a number represented in one base to 
a number represented in another base. I/O routines such as printf and scanf in C 
and read, write, and print in Fortran involve base conversion between numbers 
represented in bases 2 and 10:

■ Base conversion from base 10 to base 2 occurs when reading in a number in 
conventional decimal notation and storing it in internal binary format. 

■ Base conversion from base 2 to base 10 occurs when printing an internal binary 
value as an ASCII string of decimal digits.

In the Solaris environment, the fundamental routines for base conversion in all 
languages are contained in the standard C library, libc. These routines use table-
driven algorithms that yield correctly rounded conversion between any input and 
output formats subject to modest restrictions on the lengths of the strings of decimal 
digits involved. In addition to their accuracy, table-driven algorithms reduce the 
worst-case times for correctly rounded base conversion. 

The IEEE standard requires correct rounding for typical numbers whose magnitudes 
range from 10–44 to 10+44 but permits slightly incorrect rounding for larger 
exponents. (See section 5.6 of IEEE Standard 754.) The libc table-driven algorithms 
round correctly throughout the entire range of single, double, and double extended 
formats.

In C, conversions between decimal strings and binary floating point values are 
always rounded correctly in accordance with IEEE 754: the converted result is the 
number representable in the result's format that is nearest to the original value in the 
direction specified by the current rounding mode. When the rounding mode is 
round-to-nearest and the original value lies exactly halfway between two 
representable numbers in the result format, the converted result is the one whose 
least significant digit is even. These rules apply to conversions of constants in source 
code performed by the compiler as well as to conversions of data performed by the 
program using standard library routines.

In Fortran, conversions between decimal strings and binary floating point values are 
rounded correctly following the same rules as C by default. For I/O conversions, the 
“round-ties-to-even” rule in round-to-nearest mode can be overridden, either by 
using the ROUNDING= specifier in the program or by compiling with the 
-iorounding flag. See the Fortran User’s Guide and the f95(1) man page for more 
information.

See Appendix F for references on base conversion. Particularly good references are 
Coonen’s thesis and Sterbenz’s book. 
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2.3 Underflow
Underflow occurs, roughly speaking, when the result of an arithmetic operation is so 
small that it cannot be stored in its intended destination format without suffering a 
rounding error that is larger than usual. 

2.3.1 Underflow Thresholds 
TABLE 2-11 shows the underflow thresholds for single, double, and double-extended 
precision. 

The positive subnormal numbers are those numbers between the smallest normal 
number and zero. Subtracting two (positive) tiny numbers that are near the smallest 
normal number might produce a subnormal number. Or, dividing the smallest 
positive normal number by two produces a subnormal result. 

The presence of subnormal numbers provides greater precision to floating-point 
calculations that involve small numbers, although the subnormal numbers 
themselves have fewer bits of precision than normal numbers. Producing subnormal 
numbers (rather than returning the answer zero) when the mathematically correct 
result has magnitude less than the smallest positive normal number is known as 
gradual underflow. 

There are several other ways to deal with such underflow results. One way, common 
in the past, was to flush those results to zero. This method is known as Store 0 and 
was the default on most mainframes before the advent of the IEEE Standard. 

TABLE 2-11 Underflow Thresholds 

Destination Precision Underflow Threshold 

single smallest normal number
largest subnormal number

1.17549435e–38 
1.17549421e–38

double smallest normal number 
largest subnormal number

2.2250738585072014e–308 
2.2250738585072009e–308

double-extended 
(SPARC)

smallest normal number
largest subnormal number

3.3621031431120935062626778173217526e–4932 
3.3621031431120935062626778173217520e–4932 

double-extended (x86) smallest normal number
largest subnormal number

3.36210314311209350626e–4932 
3.36210314311209350590e–4932 
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The mathematicians and computer designers who drafted IEEE Standard 754 
considered several alternatives while balancing the desire for a mathematically 
robust solution with the need to create a standard that could be implemented 
efficiently. 

2.3.2 How Does IEEE Arithmetic Treat Underflow? 
IEEE Standard 754 chooses gradual underflow as the preferred method for dealing 
with underflow results. This method amounts to defining two representations for 
stored values, normal and subnormal. 

Recall that the IEEE format for a normal floating-point number is:

where s is the sign bit, e is the biased exponent, and f is the fraction. Only s, e, and f 
need to be stored to fully specify the number. Because the implicit leading bit of the 
significand is defined to be 1 for normal numbers, it need not be stored. 

The smallest positive normal number that can be stored, then, has the negative 
exponent of greatest magnitude and a fraction of all zeros. Even smaller numbers 
can be accommodated by considering the leading bit to be zero rather than one. In 
the double-precision format, this effectively extends the minimum exponent from 
10-308 to 10-324, because the fraction part is 52 bits long (roughly 16 decimal digits.) 
These are the subnormal numbers; returning a subnormal number (rather than 
flushing an underflowed result to zero) is gradual underflow. 

Clearly, the smaller a subnormal number, the fewer nonzero bits in its fraction; 
computations producing subnormal results do not enjoy the same bounds on relative 
roundoff error as computations on normal operands. However, the key fact about 
gradual underflow is that its use implies: 

■ Underflowed results need never suffer a loss of accuracy any greater than that 
which results from ordinary roundoff error.

■ Addition, subtraction, comparison, and remainder are always exact when the 
result is very small. 

Recall that the IEEE format for a subnormal floating-point number is:

where s is the sign bit, the biased exponent e is zero, and f is the fraction. Note that 
the implicit power-of-two bias is one greater than the bias in the normal format, and 
the implicit leading bit of the fraction is zero. 

1–( )s 2 e bias–( )( )× 1.× f

1–( )s 2 bias– 1+( )( )× 0.× f
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Gradual underflow allows you to extend the lower range of representable numbers. 
It is not smallness that renders a value questionable, but its associated error. 
Algorithms exploiting subnormal numbers have smaller error bounds than other 
systems. The next section provides some mathematical justification for gradual 
underflow. 

2.3.3 Why Gradual Underflow? 
The purpose of subnormal numbers is not to avoid underflow/overflow entirely, as 
some other arithmetic models do. Rather, subnormal numbers eliminate underflow 
as a cause for concern for a variety of computations (typically, multiply followed by 
add). For a more detailed discussion, see Underflow and the Reliability of Numerical 
Software by James Demmel and Combatting the Effects of Underflow and Overflow in 
Determining Real Roots of Polynomials by S. Linnainmaa.

The presence of subnormal numbers in the arithmetic means that untrapped 
underflow (which implies loss of accuracy) cannot occur on addition or subtraction. 
If x and y are within a factor of two, then x – y is error-free. This is critical to a 
number of algorithms that effectively increase the working precision at critical 
places in algorithms. 

In addition, gradual underflow means that errors due to underflow are no worse 
than usual roundoff error. This is a much stronger statement than can be made about 
any other method of handling underflow, and this fact is one of the best justifications 
for gradual underflow. 

2.3.4 Error Properties of Gradual Underflow 
Most of the time, floating-point results are rounded: 

computed result = true result + roundoff

How large can the roundoff be? One convenient measure of its size is called a unit in 
the last place, abbreviated ulp. The least significant bit of the fraction of a floating-
point number in its standard representation is its last place. The value represented by 
this bit (e.g., the absolute difference between the two numbers whose 
representations are identical except for this bit) is a unit in the last place of that 
number. If the computed result is obtained by rounding the true result to the nearest 
representable number, then clearly the roundoff error is no larger than half a unit in 
the last place of the computed result. In other words, in IEEE arithmetic with 
rounding mode to nearest,

0 ≤ |roundoff| ≤ 1/2 ulp

of the computed result. 
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Note that an ulp is a relative quantity. An ulp of a very large number is itself very 
large, while an ulp of a tiny number is itself tiny. This relationship can be made 
explicit by expressing an ulp as a function: ulp(x) denotes a unit in the last place of 
the floating-point number x.

Moreover, an ulp of a floating-point number depends on the precision to which that 
number is represented. For example, TABLE 2-12 shows the values of ulp(1) in each of 
the four floating-point formats described above:

Recall that only a finite set of numbers can be exactly represented in any computer 
arithmetic. As the magnitudes of numbers get smaller and approach zero, the gap 
between neighboring representable numbers narrows. Conversely, as the magnitude 
of numbers gets larger, the gap between neighboring representable numbers widens. 

For example, imagine you are using a binary arithmetic that has only 3 bits of 
precision. Then, between any two powers of 2, there are 23 = 8 representable 
numbers, as shown in FIGURE 2-6. 

FIGURE 2-6 Number Line

The number line shows how the gap between numbers doubles from one exponent 
to the next. 

In the IEEE single format, the difference in magnitude between the two smallest 
positive subnormal numbers is approximately 10-45, whereas the difference in 
magnitude between the two largest finite numbers is approximately 1031!

TABLE 2-12 ulp(1) in Four Different Precisions

Precision Value

single ulp(1) = 2^-23 ~ 1.192093e-07

double ulp(1) = 2^-52 ~ 2.220446e-16

double extended (x86) ulp(1) = 2^-63 ~ 1.084202e-19

quadruple (SPARC) ulp(1) = 2^-112 ~ 1.925930e-34
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In TABLE 2-13, nextafter(x,+∞) denotes the next representable number after x as 
you move along the number line towards +∞. 

Any conventional set of representable floating-point numbers has the property that 
the worst effect of one inexact result is to introduce an error no worse than the 
distance to one of the representable neighbors of the computed result. When 
subnormal numbers are added to the representable set and gradual underflow is 
implemented, the worst effect of one inexact or underflowed result is to introduce an 
error no greater than the distance to one of the representable neighbors of the 
computed result. 

In particular, in the region between zero and the smallest normal number, the 
distance between any two neighboring numbers equals the distance between zero 
and the smallest subnormal number. The presence of subnormal numbers eliminates 
the possibility of introducing a roundoff error that is greater than the distance to the 
nearest representable number. 

Because no calculation incurs roundoff error greater than the distance to any of the 
representable neighbors of the computed result, many important properties of a 
robust arithmetic environment hold, including these three: 

■ x ≠ y ⇔ x – y ≠ 0 
■ (x – y) + y ≈ x, to within a rounding error in the larger of x and y 
■ 1/(1/x) ≈ x, when x is a normalized number, implying 1/x ≠ 0 

An alternative underflow scheme is Store 0, which flushes underflow results to 
zero. Store 0 violates the first and second properties whenever x – y underflows. 
Also, Store 0 violates the third property whenever 1/x underflows. 

Let λ represent the smallest positive normalized number, which is also known as the 
underflow threshold. Then the error properties of gradual underflow and Store 0 
can be compared in terms of λ. 

TABLE 2-13 Gaps Between Representable Single-Format Floating-Point  
Numbers 

x nextafter(x, +∞) Gap 

0.0 1.4012985e–45 1.4012985e–45

1.1754944e–38 1.1754945e–38 1.4012985e–45

1.0 1.0000001 1.1920929e–07

2.0 2.0000002 2.3841858e–07

16.000000 16.000002 1.9073486e–06

128.00000 128.00002 1.5258789e–05

1.0000000e+20 1.0000001e+20 8.7960930e+12

9.9999997e+37 1.0000001e+38 1.0141205e+31
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gradual underflow: |error| <  ulp in λ 

Store 0:                  |error| ≈ λ 

There is a significant difference between half a unit in the last place of λ, and λ itself.

2.3.5 Two Examples of Gradual Underflow Versus 
Store 0 
The following are two well-known mathematical examples. The first example is code 
that computes an inner product. 

With gradual underflow, the result is as accurate as roundoff allows. In Store 0, a 
small but nonzero sum could be delivered that looks plausible but is wrong in nearly 
every digit. However, in fairness, it must be admitted that to avoid just these sorts of 
problems, clever programmers scale their calculations if they are able to anticipate 
where minuteness might degrade accuracy. 

The second example, deriving a complex quotient, is not amenable to scaling: 

, assuming 

  

It can be shown that, despite roundoff, the computed complex result differs from the 
exact result by no more than what would have been the exact result if  and 

 each had been perturbed by no more than a few ulps. This error analysis 
holds in the face of underflows, except that when both a and b underflow, the error 
is bounded by a few ulps of . Neither conclusion is true when underflows 
are flushed to zero. 

This algorithm for computing a complex quotient is robust, and amenable to error 
analysis, in the presence of gradual underflow. A similarly robust, easily analyzed, 
and efficient algorithm for computing the complex quotient in the face of Store 0 
does not exist. In Store 0, the burden of worrying about low-level, complicated 
details shifts from the implementor of the floating-point environment to its users. 

sum = 0; 
for (i = 0; i < n; i++) {

sum = sum + a[i] * y[i]; 
} 
return sum;

1
2
---

a i b⋅+ p i q⋅+
r i s⋅+
-------------------= r s⁄ 1≤

 p r s⁄( ) q+⋅( ) i q r s⁄( ) p–⋅( )+
s r r s⁄( )⋅+

-------------------------------------------------------------------------------=

p i q⋅+
r i s⋅+

a i b⋅+
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The class of problems that succeed in the presence of gradual underflow, but fail 
with Store 0, is larger than the fans of Store 0 may realize. Many frequently used 
numerical techniques fall in this class: 

■ Linear equation solving 
■ Polynomial equation solving 
■ Numerical integration 
■ Convergence acceleration 
■ Complex division 

2.3.6 Does Underflow Matter?
Despite these examples, it can be argued that underflow rarely matters, and so, why 
bother? However, this argument turns upon itself.

In the absence of gradual underflow, user programs need to be sensitive to the 
implicit inaccuracy threshold. For example, in single precision, if underflow occurs 
in some parts of a calculation, and Store 0 is used to replace underflowed results 
with 0, then accuracy can be guaranteed only to around 10-31, not 10-38, the usual 
lower range for single-precision exponents. 

This means that programmers need to implement their own method of detecting 
when they are approaching this inaccuracy threshold, or else abandon the quest for 
a robust, stable implementation of their algorithm. 

Some algorithms can be scaled so that computations don’t take place in the 
constricted area near zero. However, scaling the algorithm and detecting the 
inaccuracy threshold can be difficult and time-consuming for each numerical 
program.
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CHAPTER 3

The Math Libraries 

This chapter describes the math libraries provided with the Solaris OS and Sun 
Studio 10. Besides listing each of the libraries along with its contents, this chapter 
discusses some of the features supported by the math libraries provided with the 
compiler collection, including IEEE supporting functions, random number 
generators, and functions that convert data between IEEE and non-IEEE formats.

The contents of the libm and libsunmath libraries are also listed on the 
Intro(3M) man page.

3.1 Solaris Math Libraries
This section describes the math libraries that are bundled with the Solaris 10 OS. 
These libraries are provided as shared objects and are installed in the standard 
location for Solaris libraries.

3.1.1 Standard Math Library
The Solaris standard math library, libm, contains elementary mathematical 
functions and support routines required by the various standards to which the 
Solaris operating environment conforms.

The Solaris 10 OS includes two versions of libm: libm.so.1 and libm.so.2. 
libm.so.1 provides the functions required by those standards supported by the 
Solaris 9 OS and earlier versions. libm.so.2 provides the functions required by 
those standards supported by the Solaris 10 OS (including C99). libm.so.1 is 
provided for backward compatibility so that programs compiled and linked on the 
Solaris 9 OS and earlier systems will continue to run unchanged. The contents of 
libm.so.1 are documented in the section 3M man pages on those systems. The 
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remainder of this chapter refers to libm.so.2. See the ld(1) and compiler manual 
pages for more information about dynamic linking and the options and environment 
variables that determine which shared objects are loaded when a program is run.

TABLE 3-1 lists the functions in libm. For each mathematical function, the table gives 
only the name of the double precision version of the function. The library also 
contains a single precision version having the same name followed by an f and an 
extended/quadruple precision version having the same name followed by an l. 

Notes on TABLE 3-1:

TABLE 3-1 Contents of libm 

Type Function Name 

Algebraic functions cbrt, fdim, fma, fmax, fmin, hypot, sqrt

Elementary transcendental functions asin, acos, atan, atan2, asinh, acosh, atanh, 
exp, exp2, expm1, pow, log, log1p, log10, log2, 
sin, cos, sincos, tan, sinh, cosh, tanh

Higher transcendental functions j0, j1, jn, y0, y1, yn, erf, erfc, gamma, lgamma, 
gamma_r, lgamma_r, tgamma

Integral rounding functions ceil, floor, llrint, llround, lrint, lround, 
modf, nearbyint, rint, round, trunc

IEEE standard recommended functions copysign, fmod, ilogb, nextafter, remainder, 
scalbn, fabs

IEEE classification functions isnan

Old style floating-point functions frexp, ldexp, logb, scalb, significand

Error handling routine (user-defined) matherr

Complex functions cabs, cacos, cacosh, carg, casin, casinh, 
catan, catanh, ccos, ccosh, cexp, cimag, 
clog, conj, cpow, cproj, creal, csin, csinh, 
csqrt, ctan, ctanh

C99 floating point environment 
functions

feclearexcept, fegetenv, fegetexceptflag, 
fegetprec, fegetround, feholdexcept, 
feraiseexcept, fesetenv, fesetexceptflag, 
fesetprec, fesetround, fetestexcept, 
feupdateenv

Floating point exception handling 
functions

fex_getexcepthandler, fex_get_handling, 
fex_get_log, fex_get_log_depth, 
fex_log_entry, fex_merge_flags, 
fex_setexcepthandler, fex_set_handling, 
fex_set_log, fex_set_log_depth

Other C99 functions nan, nexttoward, remquo, scalbln
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1. The functions gamma_r and lgamma_r are reentrant versions of gamma and 
lgamma.

2. The functions fegetprec and fesetprec are only available on x86 systems. 
These functions are not specified by the C99 standard.

3. Error bounds and observed errors for the transcendental functions in libm are 
tabulated on the libm(3LIB) man page.

3.1.2 Vector Math Library
The library libmvec provides routines that evaluate common mathematical 
functions for an entire vector of arguments. An application may invoke the routines 
in libmvec explicitly, or the compiler may invoke these routines when the 
-xvector flag is used.

libmvec is implemented as a primary shared object, libmvec.so.1, and several 
auxiliary shared objects that provide alternate versions of some or all of the vector 
functions. When a program linked with libmvec is run, the runtime linker 
automatically selects the version that offers the best performance on the host 
platform. For this reason, a program that uses the functions in libmvec may deliver 
slightly different results when run on different systems.

TABLE 3-2 lists the functions in libmvec. 

TABLE 3-2 Contents of libmvec

Type Function Name

Algebraic functions vhypot_, vhypotf_, vrhypot_, vrhypotf_, vrsqrt_, 
vrsqrtf_, vsqrt_, vsqrtf_

Exponential and 
related functions

vexp_, vexpf_, vlog_, vlogf_, vpow_, vpowf_

Trigonometric 
functions

vatan_, vatanf_, vatan2_, vatan2f_, vcos_, vcosf_, vsin_, 
vsinf_, vsincos_, vsincosf_ 

Complex functions vc_abs_, vc_exp_, vc_log_, vc_pow_, vz_abs_, vz_exp_, 
vz_log_, vz_pow_
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3.2 Sun Studio Math Libraries
This section describes the math libraries that are included with the Sun Studio 10 
compilers. Except as noted, these libraries are provided as static archives. By default, 
they are installed in the directory

/opt/SUNWspro/prod/lib/

Libraries that are optimized for processors implementing particular instruction set 
variants are installed in subdirectories of the form

/opt/SUNWspro/prod/lib/<arch>/

Here <arch> is the name of the instruction set variant. On SPARC based systems, 
these directories include v7, v8, v8a, v8plus, v8plusa, v8plusb, v9, v9a, and 
v9b. On x86 systems, these directories include f80387 and amd64.

The directory /opt/SUNWspro/lib/ contains symbolic links to all Sun Studio math 
libraries that are provided as shared objects.

Header files for Sun Studio math libraries are installed in the directory 
/opt/SUNWspro/prod/include/ and subdirectories therein.

3.2.1 Sun Math Library
The libsunmath math library contains functions that are not specified by any 
standard but are useful in numerical software. It also contains many of the functions 
that are in libm.so.2 but not in libm.so.1. libsunmath is provided as both a 
shared object and a static archive.

TABLE 3-3 lists the functions in libsunmath that are not in libm.so.2. For each 
mathematical function, the table gives only the name of the double precision version 
of the function as it would be called from a C program. 

TABLE 3-3 Contents of libsunmath 

Type Function Name 

Elementary transcendental 
functions

exp10

Trigonometric functions in 
degrees

asind, acosd, atand, atan2d, sind, cosd, sincosd, 
tand

Trigonometric functions 
scaled in π

asinpi, acospi, atanpi, atan2pi, sinpi, cospi, 
sincospi, tanpi
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Trigonometric functions 
with double precision π 
argument reduction

asinp, acosp, atanp,sinp, cosp, sincosp, tanp

Financial functions annuity, compound

Integral rounding functions aint, anint, irint, nint

IEEE standard 
recommended functions 

signbit

IEEE classification functions fp_class, isinf, isnormal, issubnormal, iszero

Functions that supply useful 
IEEE values

min_subnormal, max_subnormal, min_normal, 
max_normal, infinity, signaling_nan, quiet_nan

Additive random number 
generators

i_addran_, i_addrans_, i_init_addrans_, 
i_get_addrans_, i_set_addrans_, r_addran_, 
r_addrans_, r_init_addrans_, r_get_addrans_, 
r_set_addrans_, d_addran_, d_addrans_, 
d_init_addrans_, d_get_addrans_, d_set_addrans_, 
u_addrans_

Linear congruential random 
number generators 

i_lcran_, i_lcrans_, i_init_lcrans_, 
i_get_lcrans_, i_set_lcrans_, r_lcran_, r_lcrans_, 
d_lcran_, d_lcrans_, u_lcrans_

Multiply-with-carry random 
number generators

i_mwcran_, i_mwcrans_, i_init_mwcrans_, 
i_get_mwcrans_, i_set_mwcrans, i_lmwcran_, 
i_lmwcrans_, i_llmwcran_, i_llmwcrans_, u_mwcran_, 
u_mwcrans_, u_lmwcran_, u_lmwcrans, u_llmwcran_, 
u_llmwcrans_, r_mwcran_, r_mwcrans_, d_mwcran_, 
d_mwcrans_, smwcran_

Random number shufflers i_shufrans_, r_shufrans_, d_shufrans_, 
u_shufrans_

Data conversion convert_external 

Control rounding mode and 
floating-point exception 
flags

ieee_flags 

Floating-point trap handling ieee_handler, sigfpe

Show status ieee_retrospective

Enable/disable nonstandard 
arithmetic

standard_arithmetic, nonstandard_arithmetic

TABLE 3-3 Contents of libsunmath (Continued)

Type Function Name 
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3.2.2 Optimized Libraries
The libmopt library provides faster versions of some of the functions in libm and 
libsunmath. On SPARC based systems, the libcopt library provides faster 
versions of a few of the routines in libc. Both of these libraries are provided as 
static archives only.

The routines contained in libmopt replace corresponding routines in libm. 
Typically, the libmopt versions are noticeably faster. Unlike the libm versions, 
however, which support any of ANSI/POSIX®, SVID, X/Open, or C99/IEEE-style 
treatment of exceptional cases, the libmopt routines only support C99/IEEE-style 
handling of these cases. (See Appendix E.) Also, while all mathematical functions in 
libm deliver results with reasonable accuracy regardless of the floating point 
rounding direction mode, the result of calling any function in libmopt with a 
rounding direction other than round-to-nearest is undefined. A program that uses 
libmopt must ensure that the default round-to-nearest mode is in effect whenever 
any standard math function is called. To link a program with libmopt, use the 
-xlibmopt flag.

The routines contained in libcopt are not called directly by the user. Instead, they 
replace support routines in libc that are used by the compiler. These support 
routines are no longer needed on current SPARC based systems. libcopt is 
provided solely to improve the performance of precompiled programs that were 
optimized for earlier SPARC processors. To link a program with libcopt, use the -
lcopt flag.

On SPARC based systems, the library libcx contains slightly faster versions of the 
128-bit quadruple precision floating point arithmetic support routines in libc. 
These routines are not called directly by the user. They are used by the compiler in 
programs that perform arithmetic on quadruple precision (long double or 
REAL*16) data. libcx is provided as both a static archive and a shared object.

The quadruple precision support routines in libcx are nearly identical to those in 
libc. The libcx versions have been optimized for specific instruction set variants. 
Programs that use quadruple precision extensively may run slightly faster provided 
they are linked with the appropriate variant of libcx. To link a program with 
libcx, use the -lcx flag and specify the instruction set variant for which the 
program is intended using the -xarch flag.

A shared version of libcx, called libcx.so.1, is also provided. This version can 
be preloaded at run time by setting the environment variable LD_PRELOAD to the 
full path name of the libcx.so.1 file. For best performance, use the appropriate 
version of libcx.so.1 for your system’s architecture. For example, on an 
UltraSPARC® based system, assuming the library is installed in the default location, 
set LD_PRELOAD as follows:

csh:

setenv LD_PRELOAD /opt/SUNWspro/lib/v8plus/libcx.so.1
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sh:

LD_PRELOAD=/opt/SUNWspro/lib/v8plus/libcx.so.1

export LD_PRELOAD

3.2.3 Vector Math Library (SPARC only)
On SPARC based systems, the Sun Studio math libraries include two static archive 
versions of libmvec. These libraries provide the same functions as the Solaris 
libmvec. The static archive libraries are provided so that applications that use the 
vector functions can run on systems running the Solaris 9 or earlier operating 
environments. Applications that need only run on Solaris 10 systems should use the 
Solaris libmvec.

libmvec.a provides single-thread vector functions identical to those in the Solaris 
libmvec.so.1. To link with libmvec.a, use the -lmvec flag. libmvec_mt.a 
provides multi-thread versions of the vector functions that rely on multiprocessor 
parallelization. To use libmvec_mt.a, you must link with both -xparallel and 
-lmvec_mt.

See the libmvec(3m) and clibmvec(3m) manual pages for more information.

3.2.4 libm9x Math Library
The libm9x math library contains the C99 <fenv.h> Floating-Point Environment 
functions as well as enhancements to support improved handling of floating-point 
exceptions. In the Solaris 10 OS, the contents of libm9x have been incorporated into 
libm. libm9x is still provided for applications that run on earlier versions of the 
Solaris OS. Applications that need only run on Solaris 10 systems should use libm.
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3.3 Single, Double, and 
Extended/Quadruple Precision
Most numerical functions are available in single, double, and extended (x86) or 
quadruple precision (SPARC). Examples of calling different precision versions of 
various functions from different languages are shown in TABLE 3-4. 

In C, names of single precision functions are formed by appending f to the double 
precision name, and names of extended or quadruple precision functions are formed 
by adding l. Because Fortran calling conventions differ, libsunmath provides r_…, 
d_…, and q_… functions for single, double, and quadruple precision, respectively. 
Fortran intrinsic functions can be called by the generic name for all three precisions. 

Not all functions have q_… versions. Refer to math.h and sunmath.h for names 
and definitions of libm and libsunmath functions. 

In Fortran programs, remember to declare r_… functions as real, d_… functions as 
double precision, and q_… functions as REAL*16. Otherwise, type mismatches 
might result. 

Note – Sun Studio Fortran for x86 does not support either extended double or 
quadruple precision.

TABLE 3-4 Calling Single, Double, and Extended/Quadruple Functions

Language Single Double Extended/Quadruple

C, C++ #include <math.h> 
float x,y,z; 
x = sinf(y); 
x = fmodf(y,z); 
 
#include <sunmath.h> 
float x; 
x = max_normalf(); 
x = r_addran_();

#include <math.h> 
double x,y,z; 
x = sin(y); 
x = fmod(y,z); 
 
#include <sunmath.h> 
double x; 
x = max_normal(); 
x = d_addran_();

#include <math.h> 
long double x,y,z; 
x = sinl(y); 
x = fmodl(y,z); 
 
#include <sunmath.h> 
long double x; 
x = max_normall();

Fortran REAL x,y,z 
x = sin(y) 
x = r_fmod(y,z) 
x = r_max_normal() 
x = r_addran()

REAL*8 x,y,z 
x = sin(y) 
x = d_fmod(y,z) 
x = d_max_normal() 
x = d_addran()

REAL*16 x,y,z 
x = sin(y) 
x = q_fmod(y,z) 
x = q_max_normal()
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3.4 IEEE Support Functions 
This section describes the IEEE recommended functions, the functions that supply 
useful values, ieee_flags, ieee_retrospective, and standard_arithmetic 
and nonstandard_arithmetic. Refer to Chapter 4 for more information on the 
functions ieee_flags and ieee_handler.

3.4.1 ieee_functions(3m) and ieee_sun(3m) 
The functions described by ieee_functions(3m) and ieee_sun(3m) provide 
capabilities either required by the IEEE standard or recommended in its appendix. 
These are implemented as efficient bit mask operations. 

TABLE 3-5 ieee_functions(3m) 

Function  Description 

math.h Header file

copysign(x,y) x with y’s sign bit 

fabs(x) Absolute value of x 

fmod(x, y) Remainder of x with respect to y 

ilogb(x) Base 2 unbiased exponent of x in integer format

nextafter(x,y) Next representable number after x, in the direction y

remainder(x,y) Remainder of x with respect to y 

scalbn(x,n) x × 2n

TABLE 3-6 ieee_sun(3m) 

Function  Description 

sunmath.h Header file 

fp_class(x) Classification function

isinf(x) Classification function

isnormal(x) Classification function

issubnormal(x) Classification function

iszero(x) Classification function

signbit(x) Classification function
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The remainder(x,y) is the operation specified in IEEE Standard 754-1985. The 
difference between remainder(x,y) and fmod(x,y) is that the sign of the result 
returned by remainder(x,y) might not agree with the sign of either x or y, 
whereas fmod(x,y) always returns a result whose sign agrees with x. Both 
functions return exact results and do not generate inexact exceptions. 

Note – You must declare d_function as double precision and q_function as REAL*16 
in the Fortran program that uses them. 

nonstandard_arithmetic(void) Toggle hardware

standard_arithmetic(void) Toggle hardware

ieee_retrospective(*f)

TABLE 3-7 Calling ieee_functions From Fortran

IEEE Function Single Precision Double Precision Quadruple Precision

copysign(x,y) t=r_copysign(x,y) z=d_copysign(x,y) z=q_copysign(x,y)

ilogb(x) i=ir_ilogb(x) i=id_ilogb(x) i=iq_ilogb(x)

nextafter(x,y) t=r_nextafter(x,y) z=d_nextafter(x,y) z=q_nextafter(x,y)

scalbn(x,n) t=r_scalbn(x,n) z=d_scalbn(x,n) z=q_scalbn(x,n)

signbit(x) i=ir_signbit(x) i=id_signbit(x) i=iq_signbit(x)

TABLE 3-8 Calling ieee_sun From Fortran

IEEE Function Single Precision Double Precision Quadruple Precision

signbit(x) i=ir_signbit(x) i=id_signbit(x) i=iq_signbit(x)

TABLE 3-6 ieee_sun(3m) (Continued)

Function  Description 
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3.4.2 ieee_values(3m) 
IEEE values like infinity, NaN, maximum and minimum positive floating-point 
numbers are provided by the functions described by the ieee_values(3m) man 
page. TABLE 3-9, TABLE 3-10, TABLE 3-11, and TABLE 3-12 show the decimal values and 
hexadecimal IEEE representations of the values provided by ieee_values(3m) 
functions.   

TABLE 3-9 IEEE Values: Single Precision 

IEEE value
Decimal value  
hexadecimal representation

C, C++  
Fortran

max normal 3.40282347e+38 
7f7fffff

r = max_normalf(); 
r = r_max_normal()

min normal 1.17549435e–38 
00800000

r = min_normalf(); 
r = r_min_normal()

max subnormal 1.17549421e–38 
007fffff

r = max_subnormalf(); 
r = r_max_subnormal()

min subnormal 1.40129846e–45 
00000001

r = min_subnormalf(); 
r = r_min_subnormal()

Infinity  
7f800000

r = infinityf(); 
r = r_infinity()

quiet NaN NaN  
7fffffff 

r = quiet_nanf(0); 
r = r_quiet_nan(0)

signaling NaN NaN  
7f800001 

r = signaling_nanf(0); 
r = r_signaling_nan(0)

TABLE 3-10 IEEE Values: Double Precision 

IEEE value 
Decimal Value 
hexadecimal representation 

C, C++  
Fortran

max normal 1.7976931348623157e+308
7fefffff ffffffff 

d = max_normal(); 
d = d_max_normal() 

min normal 2.2250738585072014e–308 
00100000 00000000

d = min_normal();  
d = d_min_normal()

max subnormal 2.2250738585072009e–308 
000fffff ffffffff

d = max_subnormal();  
d = d_max_subnormal()

min subnormal 4.9406564584124654e–324 
00000000 00000001

d = min_subnormal(); 
d = d_min_subnormal()

∞
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Infinity 

7ff00000 00000000

d = infinity(); 
d = d_infinity()

quiet NaN NaN 
7fffffff ffffffff

d = quiet_nan(0); 
d = d_quiet_nan(0)

signaling NaN NaN 
7ff00000 00000001

d = signaling_nan(0); 
d = d_signaling_nan(0)

TABLE 3-11 IEEE Values: Quadruple Precision (SPARC)

IEEE value
Decimal value  
hexadecimal representation

C, C++  
Fortran

max normal 1.1897314953572317650857593266280070e+4932

7ffeffff ffffffff ffffffff ffffffff

q = max_normall(); 
q = q_max_normal()

min normal 3.3621031431120935062626778173217526e–4932

00010000 00000000 00000000 00000000

q = min_normall(); 
q = q_min_normal()

max subnormal 3.3621031431120935062626778173217520e–4932

0000ffff ffffffff ffffffff ffffffff

q = max_subnormall(); 
q = q_max_subnormal()

min subnormal 6.4751751194380251109244389582276466e–4966 

00000000 00000000 00000000 00000001

q = min_subnormall(); 
q = q_min_subnormal()

Infinity

7fff0000 00000000 00000000 00000000

q = infinityl(); 
q = q_infinity()

quiet NaN NaN

7fff8000 00000000 00000000 00000000

q = quiet_nanl(0); 
q = q_quiet_nan(0)

signaling NaN NaN

7fff0000 00000000 00000000 00000001

q = signaling_nanl(0); 
q = q_signaling_nan(0)

TABLE 3-12 IEEE Values: Double Extended Precision (x86) 

IEEE value
Decimal value 
hexadecimal representation (80 bits) C, C++

max normal 1.18973149535723176505e+4932

7ffe ffffffff ffffffff

x = max_normall();

min positive 
normal

3.36210314311209350626e–4932

0001 80000000 00000000

x = min_normall();

max subnormal 3.36210314311209350608e–4932

0000 7fffffff ffffffff

x = max_subnormall();

TABLE 3-10 IEEE Values: Double Precision (Continued)

IEEE value 
Decimal Value 
hexadecimal representation 

C, C++  
Fortran

∞

∞
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3.4.3 ieee_flags(3m) 
ieee_flags (3m) is the Sun interface to: 

■ Query or set rounding direction mode 
■ Query or set rounding precision mode 
■ Examine, clear, or set accrued exception flags

The syntax for a call to ieee_flags(3m) is: 

i = ieee_flags(action, mode, in, out);

The ASCII strings that are the possible values for the parameters are shown in 
TABLE 3-13:

The ieee_flags(3m) man page describes the parameters in complete detail. 

min positive 
subnormal

1.82259976594123730126e–4951

0000 00000000 00000001

x = min_subnormall();

Infinity

7fff 80000000 00000000

x = infinityl();

quiet NaN NaN

7fff c0000000 00000000

x = q

signaling NaN NaN

7fff 80000000 00000001

x = signaling_nanl(0);

TABLE 3-13 Parameter Values for ieee_flags 

Parameter C or C++ Type All Possible Values

action char * get, set, clear, clearall

mode char * direction, precision, exception

in char * nearest, tozero, negative, positive, extended, 
double, single, inexact, division, underflow, 
overflow, invalid, all, common

out char ** nearest, tozero, negative, positive, extended, 
double, single, inexact, division, underflow, 
overflow, invalid, all, common

TABLE 3-12 IEEE Values: Double Extended Precision (x86) (Continued)

IEEE value
Decimal value 
hexadecimal representation (80 bits) C, C++

∞
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Some of the arithmetic features that can be modified by using ieee_flags are 
covered in the following paragraphs. Chapter 4 contains more information on 
ieee_flags and IEEE exception flags.

When mode is direction, the specified action applies to the current rounding 
direction. The possible rounding directions are: round towards nearest, round 
towards zero, round towards +∞, or round towards −∞. The IEEE default rounding 
direction is round towards nearest. This means that when the mathematical result of 
an operation lies strictly between two adjacent representable numbers, the one 
nearest to the mathematical result is delivered. (If the mathematical result lies 
exactly halfway between the two nearest representable numbers, then the result 
delivered is the one whose least significant bit is zero. The round towards nearest 
mode is sometimes called round to nearest even to emphasize this.) 

Rounding towards zero is the way many pre-IEEE computers work, and corresponds 
mathematically to truncating the result. For example, if 2/3 is rounded to 6 decimal 
digits, the result is .666667 when the rounding mode is round towards nearest, but 
.666666 when the rounding mode is round towards zero. 

When using ieee_flags to examine, clear, or set the rounding direction, possible 
values for the four input parameters are shown in TABLE 3-14. 

When mode is precision, the specified action applies to the current rounding 
precision. On x86 based systems, the possible rounding precisions are: single, 
double, and extended. The default rounding precision is extended; in this mode, 
arithmetic operations that deliver a result to a floating point register round their 
result to the full 64-bit precision of the extended double register format. When the 
rounding precision is single or double, arithmetic operations that deliver a result to 
a floating point register round their result to 24 or 53 significant bits, respectively. 
Although most programs produce results that are at least as accurate, if not more so, 
when extended rounding precision is used, some programs that require strict 
adherence to the semantics of IEEE arithmetic will not work correctly in extended 
rounding precision mode and must be run with the rounding precision set to single 
or double as appropriate.

Rounding precision cannot be set on systems using SPARC processors. On these 
systems, calling ieee_flags with mode = precision has no effect on computation.

TABLE 3-14 ieee_flags Input Values for the Rounding Direction

Parameter Possible value (mode is direction)

action get, set, clear, clearall 

in nearest, tozero, negative, positive 

out nearest, tozero, negative, positive 
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Finally, when mode is exception, the specified action applies to the current IEEE 
exception flags. See Chapter 4 for more information about using ieee_flags to 
examine and control the IEEE exception flags.

3.4.4 ieee_retrospective(3m) 
The libsunmath function ieee_retrospective prints information about 
unrequited exceptions and nonstandard IEEE modes. It reports:

■ Outstanding exceptions.
■ Enabled traps.
■ If rounding direction or precision is set to other than the default.
■ If nonstandard arithmetic is in effect.

The necessary information is obtained from the hardware floating-point status 
register.

ieee_retrospective prints information about exception flags that are raised, and 
exceptions for which a trap is enabled. These two distinct, if related, pieces of 
information should not be confused. If an exception flag is raised, then that 
exception occurred at some point during program execution. If a trap is enabled for 
an exception, then the exception may not have actually occurred (but if it had, a 
SIGFPE signal would have been delivered). The ieee_retrospective message is 
meant to alert you about exceptions that may need to be investigated (if the 
exception flag is raised), or to remind you that exceptions may have been handled by 
a signal handler (if the exception’s trap is enabled.) Chapter 4 discusses exceptions, 
signals, and traps, and shows how to investigate the cause of a raised exception.

A program can explicitly call ieee_retrospective at any time. Fortran programs 
compiled with f95 in -f77 compatibility mode automatically call 
ieee_retrospective before they exit. C/C++ programs and Fortran programs 
compiled with f95 in the default mode do not automatically call 
ieee_retrospective. 

Note, though, that the f95 compiler enables trapping on common exceptions by 
default, so unless a program either explicitly disables trapping or installs a SIGFPE 
handler, it will immediately abort when such an exception occurs. In -f77 
compatibility mode, the compiler does not enable trapping, so when floating point 
exceptions occur, the program continues execution and reports those exceptions via 
the ieee_retrospective output on exit. 

The syntax for calling this function is:

C, C++            ieee_retrospective(fp);

Fortran           call ieee_retrospective()
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For the C function, the argument fp specifies the file to which the output will be 
written. The Fortran function always prints output on stderr.

The following example shows four of the six ieee_retrospective warning 
messages: 

A warning message appears only if trapping is enabled or an exception was raised.

You can suppress ieee_retrospective messages from Fortran programs by one 
of three methods. One approach is to clear all outstanding exceptions, disable traps, 
and restore round-to-nearest, extended precision, and standard modes before the 
program exits. To do this, call ieee_flags, ieee_handler, and 
standard_arithmetic as follows:

Note – Clearing outstanding exceptions without investigating their cause is not 
recommended. 

Another way to avoid seeing ieee_retrospective messages is to redirect stderr 
to a file. Of course, this method should not be used if the program sends output 
other than ieee_retrospective messages to stderr.

The third approach is to include a dummy ieee_retrospective function in the 
program, for example:

 Note: IEEE floating-point exception flags raised:  
    Inexact; Underflow; 
 Rounding direction toward zero 
 IEEE floating-point exception traps enabled: 
    overflow; 
 See the Numerical Computation Guide, ieee_flags(3M),  
    ieee_handler(3M), ieee_sun(3m)

character*8 out 
i = ieee_flags('clearall', '', '', out) 
call ieee_handler('clear', 'all', 0)
call standard_arithmetic()

subroutine ieee_retrospective
return
end
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3.4.5 nonstandard_arithmetic(3m) 
As discussed in Chapter 2, IEEE arithmetic handles underflowed results using 
gradual underflow. On some SPARC based systems, gradual underflow is often 
implemented partly with software emulation of the arithmetic. If many calculations 
underflow, this may cause performance degradation. 

To obtain some information about whether this is a case in a specific program, you 
can use ieee_retrospective or ieee_flags to determine if underflow 
exceptions occur, and check the amount of system time used by the program. If a 
program spends an unusually large amount of time in the operating system, and 
raises underflow exceptions, gradual underflow may be the cause. In this case, using 
non-IEEE arithmetic may speed up program execution. 

The function nonstandard_arithmetic causes underflowed results to be flushed 
to zero on those SPARC implementations that have a mode in hardware in which 
flushing to zero is faster. The trade-off for speed is accuracy, because the benefits of 
gradual underflow are lost. 

The function standard_arithmetic resets the hardware to use the default IEEE 
arithmetic. Both functions have no effect on implementations that provide only the 
default IEEE 754 style of arithmetic—SuperSPARC® is such an implementation. 

3.5 C99 Floating Point Environment 
Functions
This section describes the <fenv.h> floating point environment functions in C99. In 
the Solaris 10 OS, these functions are available in libm. They provide many of the 
same capabilities as the ieee_flags function, but they use a more natural C 
interface, and because they are defined by C99, they are more portable.

Note – For consistent behavior, do not use both C99 floating point environment 
functions and exception handling extensions in libm and the ieee_flags and 
ieee_handler functions in libsunmath in the same program.
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3.5.1 Exception Flag Functions
The fenv.h file defines macros for each of the five IEEE floating point exception 
flags: FE_INEXACT, FE_UNDERFLOW, FE_OVERFLOW, FE_DIVBYZERO, and 
FE_INVALID. In addition, the macro FE_ALL_EXCEPT is defined to be the bitwise 
“or” of all five flag macros. In the following descriptions, the excepts parameter may 
be a bitwise “or” of any of the five flag macros or the value FE_ALL_EXCEPT. For the 
fegetexceptflag and fesetexceptflag functions, the flagp parameter must be 
a pointer to an object of type fexcept_t. (This type is defined in fenv.h.)

C99 defines the following exception flag functions:  

The feclearexcept function clears the specified flags. The fetestexcept function 
returns a bitwise “or” of the macro values corresponding to the subset of flags 
specified by the excepts argument that are set. For example, if the only flags currently 
set are inexact, underflow, and division by zero, then

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);

would set i to FE_DIVBYZERO.

The feraiseexcept function causes a trap if any of the specified exceptions’ trap is 
enabled. (See Chapter 4 for more information on exception traps.) Otherwise, it 
merely sets the corresponding flags.

The fegetexceptflag and fesetexceptflag functions provide a convenient 
way to temporarily save the state of certain flags and later restore them. In 
particular, the fesetexceptflag function does not cause a trap; it merely restores 
the values of the specified flags.

3.5.2 Rounding Control
The fenv.h file defines macros for each of the four IEEE rounding direction modes: 
FE_TONEAREST, FE_UPWARD (toward positive infinity), FE_DOWNWARD (toward 
negative infinity), and FE_TOWARDZERO. C99 defines two functions to control 

TABLE 3-15 C99 Standard Exception Flag Functions

Function Action

feclearexcept(excepts) clear specified flags

fetestexcept(excepts) return settings of specified flags

feraiseexcept(excepts) raise specified exceptions

fegetexceptflag(flagp, excepts) save specified flags in *flagp

fesetexceptflag(flagp, excepts) restore specified flags from *flagp
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rounding direction modes: fesetround sets the current rounding direction to the 
direction specified by its argument (which must be one of the four macros above), 
and fegetround returns the value of the macro corresponding to the current 
rounding direction.

On x86 based systems, the fenv.h file defines macros for each of three rounding 
precision modes: FE_FLTPREC (single precision), FE_DBLPREC (double precision), 
and FE_LDBLPREC (extended double precision). Although they are not part of C99, 
libm on x86 provides two functions to control the rounding precision mode: 
fesetprec sets the current rounding precision to the precision specified by its 
argument (which must be one of the three macros above), and fegetprec returns 
the value of the macro corresponding to the current rounding precision.

3.5.3 Environment Functions
The fenv.h file defines the data type fenv_t, which represents the entire floating 
point environment including exception flags, rounding control modes, exception 
handling modes, and, on SPARC, nonstandard mode. In the descriptions that follow, 
the envp parameter must be a pointer to an object of type fenv_t.

C99 defines four functions to manipulate the floating point environment. libm 
provides an additional function that may be useful in multi-threaded programs. 
These functions are summarized in the following table:  

The fegetenv and fesetenv functions respectively save and restore the floating 
point environment. The argument to fesetenv may be either a pointer to an 
environment previously saved by a call to fegetenv or feholdexcept or the 
constant FE_DFL_ENV defined in fenv.h. The latter represents the default 
environment with all exception flags clear, rounding to nearest (and to extended 
double precision on x86 based systems), nonstop exception handling mode (i.e., 
traps disabled), and on SPARC based systems, nonstandard mode disabled.

TABLE 3-16 libm Floating Point Environment Functions

Function Action

fegetenv(envp) save environment in *envp

fesetenv(envp) restore environment from *envp

feholdexcept(envp) save environment in *envp and establish nonstop mode

feupdateenv(envp) restore environment from *envp and raise exceptions

fex_merge_flags(envp) “or” exception flags from *envp
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The feholdexcept function saves the current environment and then clears all 
exception flags and establishes nonstop exception handling mode for all exceptions. 
The feupdateenv function restores a saved environment (which may be one saved 
by a call to fegetenv or feholdexcept or the constant FE_DFL_ENV), then raises 
those exceptions whose flags were set in the previous environment. If the restored 
environment has traps enabled for any of those exceptions, a trap occurs; otherwise 
the flags are set. These two functions may be used in conjunction to make a 
subroutine call appear to be atomic with regard to exceptions, as the following code 
sample shows:  

The fex_merge_flags function performs a logical OR of the exception flags from 
the saved environment into the current environment without provoking any traps. 
This function may be used in a multi-threaded program to preserve information in 
the parent thread about flags that were raised by a computation in a child thread. 
See Appendix A for an example showing the use of fex_merge_flags.

3.6 Implementation Features of libm and 
libsunmath 
This section describes implementation features of libm and libsunmath: 

■ Argument reduction using infinitely precise π, and trigonometric functions scaled 
in π.

#include <fenv.h>

void myfunc(...) {
    fenv_t env;

    /* save the environment, clear flags, and disable traps */
    feholdexcept(&env);
    /* do a computation that may incur exceptions */
    ...
    /* check for spurious exceptions */
    if (fetestexcept(...)) {
        /* handle them appropriately and clear their flags */
        ...
        feclearexcept(...);
    }
    /* restore the environment and raise relevant exceptions */
    feupdateenv(&env);
}
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■ Data conversion routines for converting floating-point data between IEEE and 
non-IEEE formats. 

■ Random number generators. 

3.6.1 About the Algorithms 
The elementary functions in libm and libsunmath on SPARC based systems are 
implemented with an ever-changing combination of table-driven and 
polynomial/rational approximation algorithms. Some elementary functions in libm 
and libsunmath on x86 based systems are implemented using the elementary 
function kernel instructions provided in the x86 instruction set; other functions are 
implemented using the same table-driven or polynomial/rational approximation 
algorithms used on SPARC based systems.

Both the table-driven and polynomial/rational approximation algorithms for the 
common elementary functions in libm and the common single precision elementary 
functions in libsunmath deliver results that are accurate to within one unit in the 
last place (ulp). On SPARC based systems, the common quadruple precision 
elementary functions in libsunmath deliver results that are accurate to within one 
ulp, except for the expm1l and log1pl functions, which deliver results accurate to 
within two ulps. (The common functions include the exponential, logarithm, and 
power functions and circular trigonometric functions of radian arguments. Other 
functions, such as the hyperbolic trig functions and higher transcendental functions, 
are less accurate.) These error bounds have been obtained by direct analysis of the 
algorithms. Users can also test the accuracy of these routines using BeEF, the 
Berkeley Elementary Function test programs, available from netlib in the ucbtest 
package (http://www.netlib.org/fp/ucbtest.tgz).

3.6.2 Argument Reduction for Trigonometric Functions 
Trigonometric functions for radian arguments outside the range [–π/4,π/4] are 
usually computed by reducing the argument to the indicated range by subtracting 
integral multiples of π/2. 

Because π is not a machine-representable number, it must be approximated. The 
error in the final computed trigonometric function depends on the rounding errors 
in argument reduction (with an approximate π as well as the rounding), and 
approximation errors in computing the trigonometric function of the reduced 
argument. Even for fairly small arguments, the relative error in the final result might 
be dominated by the argument reduction error, while even for fairly large 
arguments, the error due to argument reduction might be no worse than the other 
errors. 
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There is widespread misapprehension that trigonometric functions of all large 
arguments are inherently inaccurate, and all small arguments relatively accurate. 
This is based on the simple observation that large enough machine-representable 
numbers are separated by a distance greater than π. 

There is no inherent boundary at which computed trigonometric function values 
suddenly become bad, nor are the inaccurate function values useless. Provided that 
the argument reduction is done consistently, the fact that the argument reduction is 
performed with an approximation to π is practically undetectable, because all 
essential identities and relationships are as well preserved for large arguments as for 
small. 

libm and libsunmath trigonometric functions use an “infinitely” precise π for 
argument reduction. The value 2/π is computed to 916 hexadecimal digits and 
stored in a lookup table to use during argument reduction. 

The group of functions sinpi, cospi, and tanpi (see TABLE 3-3) scales the input 
argument by π to avoid inaccuracies introduced by range reduction. 

3.6.3 Data Conversion Routines 
In libm and libsunmath, there is a flexible data conversion routine, 
convert_external, used to convert binary floating-point data between IEEE and 
non-IEEE formats. 

Formats supported include those used by SPARC (IEEE), IBM PC, VAX, IBM S/370, 
and Cray. 

Refer to the man page on convert_external(3m) for an example of taking data 
generated on a Cray, and using the function convert_external to convert the data 
into the IEEE format expected on SPARC based systems. 

3.6.4 Random Number Facilities
There are three facilities for generating uniform pseudo-random numbers in 32-bit 
integer, single precision floating point, and double precision floating point formats:

■ The functions described in the addrans(3m) manual page are based on a family 
of table-driven additive random number generators.

■ The functions described in the lcrans(3m) manual page are based on a linear 
congruential random number generator.

■ The functions described in the mwcrans(3m) manual page are based on multiply-
with-carry random number generators. These functions also include generators 
that supply uniform pseudo-random numbers in 64-bit integer formats.
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In addition, the functions described on the shufrans(3m) manual page may be 
used in conjunction with any of these generators to shuffle an array of pseudo-
random numbers, thereby providing even more randomness for applications that 
need it. (Note that there is no facility for shuffling arrays of 64-bit integers.)

Each of the random number facilities includes routines that generate one random 
number at a time (i.e., one per function call) as well as routines that generate an 
array of random numbers in a single call. The functions that generate one random 
number at a time deliver numbers that lie in the ranges shown in TABLE 3-17. 

The functions that generate an entire array of random numbers in a single call allow 
the user to specify the interval in which the generated numbers will lie. Appendix A 
gives several examples that show how to generate arrays of random numbers 
uniformly distributed over different intervals.

Note that the addrans and mwcrans generators are generally more efficient than 
the lcrans generators, but their theory is not as refined. “Random Number 
Generators: Good Ones Are Hard To Find”, by S. Park and K. Miller, Communications 
of the ACM, October 1988, discusses the theoretical properties of linear congruential 
algorithms. Additive random number generators are discussed in Volume 2 of 
Knuth’s The Art of Computer Programming. 

TABLE 3-17 Intervals for Single-Value Random Number Generators 

Function Lower Bound Upper Bound

i_addran_ -2147483648 2147483647

r_addran_ 0 0.9999999403953552246

d_addran_ 0 0.9999999999999998890

i_lcran_ 1 2147483646

r_lcran_ 4.656612873077392578E-10 1

d_lcran_ 4.656612875245796923E-10 0.9999999995343387127

i_mwcran_ 0 2147483647

u_mwcran_ 0 4294967295

i_llmwcran_ 0 9223372036854775807

u_llmwcran_ 0 18446744073709551615

r_mwcran_ 0 0.9999999403953552246

d_mwcran_ 0 0.9999999999999998890
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CHAPTER 4

Exceptions and Exception Handling 

This chapter describes IEEE floating point exceptions and shows how to detect, 
locate, and handle them.

The floating point environment provided by the Sun Studio compilers and the 
Solaris OS on SPARC® based systems and x86 based systems supports all of the 
exception handling facilities required by the IEEE standard as well as many of the 
recommended optional facilities. One objective of these facilities is explained in the 
IEEE 854 Standard (IEEE 854, page 18):

... to minimize for users the complications arising from exceptional conditions. 
The arithmetic system is intended to continue to function on a computation as 
long as possible, handling unusual situations with reasonable default responses, 
including setting appropriate flags.

To achieve this objective, the standards specify default results for exceptional 
operations and require that an implementation provide status flags, which can be 
sensed, set, or cleared by a user, to indicate that exceptions have occurred. The 
standards also recommend that an implementation provide a means for a program 
to trap (i.e., interrupt normal control flow) when an exception occurs. The program 
can optionally supply a trap handler that handles the exception in an appropriate 
manner, for example by providing an alternate result for the exceptional operation 
and resuming execution. This chapter lists the exceptions defined by IEEE 754 along 
with their default results and describes the features of the floating point 
environment that support status flags, trapping, and exception handling. (Some 
information in this chapter pertains specifically to the Solaris 10 OS and not to 
earlier versions of the Solaris OS.)
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4.1 What Is an Exception?
It is hard to define exceptions. To quote W. Kahan, 

An arithmetic exception arises when an attempted atomic arithmetic 
operation has no result that would be acceptable universally. The 
meanings of atomic and acceptable vary with time and place. (See 
Handling Arithmetic Exceptions by W. Kahan.)

For example, an exception arises when a program attempts to take the square root of 
a negative number. (This example is one case of an invalid operation exception.) When 
such an exception occurs, the system responds in one of two ways:

■ If the exception’s trap is disabled (the default case), the system records the fact 
that the exception occurred and continues executing the program using the 
default result specified by IEEE 754 for the excepting operation.

■ If the exception’s trap is enabled, the system generates a SIGFPE signal. If the 
program has installed a SIGFPE signal handler, the system transfers control to 
that handler; otherwise, the program aborts.

IEEE 754 defines five basic types of floating point exceptions: invalid operation, 
division by zero, overflow, underflow and inexact. The first three (invalid, division, and 
overflow) are sometimes collectively called common exceptions. These exceptions can 
seldom be ignored when they occur. ieee_handler(3m) gives an easy way to trap 
on common exceptions only. The other two exceptions (underflow and inexact) are 
seen more often—in fact, most floating point operations incur the inexact 
exception—and they can usually, though not always, be safely ignored.
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TABLE 4-1 condenses information found in IEEE Standard 754. It describes the five 
floating point exceptions and the default response of an IEEE arithmetic 
environment when these exceptions are raised. 

TABLE 4-1 IEEE Floating Point Exceptions 

IEEE
Exception Reason Why This Arises Example

Default Result When
Trap is Disabled

Invalid 
operation

An operand is invalid for 
the operation about to be 
performed.

(On x86, this exception is 
also raised when the 
floating point stack 
underflows or overflows, 
though that is not part of 
the IEEE standard.)

 0 × ∞
 0 ⁄ 0 
 ∞ ⁄  ∞ 
 x REM 0
Square root of negative operand
Any operation with a signaling
   NaN operand 
Unordered comparison
   (see note 1)
Invalid conversion (see note 2) 

Quiet NaN 

Division by 
zero

An exact infinite result is 
produced by an operation 
on finite operands.

x ⁄ 0 for finite, nonzero x
log(0) 

Correctly signed infinity 

Overflow The correctly rounded 
result would be larger in 
magnitude than the 
largest finite number 
representable in the 
destination format (i.e., 
the exponent range is 
exceeded).

Double precision:
DBL_MAX + 1.0e294
exp(709.8)

Single precision:
(float)DBL_MAX
FLT_MAX + 1.0e32
expf(88.8)

Depends on rounding mode 
(RM), and the sign of the 
intermediate result:
RM+ –
RN+∞ –∞ 
RZ +max –max
R–+max –∞ 
R+ +∞ –max

Underflow Either the exact result or 
the correctly rounded 
result would be smaller 
in magnitude than the 
smallest normal number 
representable in the 
destination format (see 
note 3).

Double precision:
nextafter(min_normal,-∞)
nextafter(min_subnormal,-∞)
DBL_MIN ⁄3.0 
exp(-708.5)

Single precision:
(float)DBL_MIN
nextafterf(FLT_MIN, -∞)
expf(-87.4)

Subnormal or zero
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4.1.1 Notes for Table 4-1
1. Unordered comparison: Any pair of floating point values can be compared, even 

if they are not of the same format. Four mutually exclusive relations are possible: 
less than, greater than, equal, or unordered. Unordered means that at least one of 
the operands is a NaN (not a number). 

Every NaN compares “unordered” with everything, including itself. TABLE 4-2 
shows which predicates cause the invalid operation exception when the relation is 
unordered.

2. Invalid conversion: Attempt to convert NaN or infinity to an integer, or integer 
overflow on conversion from floating point format. 

3. The smallest normal numbers representable in the IEEE single, double, and 
extended formats are 2-126, 2-1022, and 2-16382, respectively. See Chapter 2 for a 
description of the IEEE floating point formats.

Inexact The rounded result of a 
valid operation is 
different from the 
infinitely precise result. 
(Most floating point 
operations raise this 
exception.)

2.0 / 3.0
(float)1.12345678
log(1.1)
DBL_MAX + DBL_MAX, 
when no overflow trap 

The result of the operation 
(rounded, overflowed, or 
underflowed)

TABLE 4-2 Unordered Comparisons

Predicates  Invalid Exception

math c, c++ f95 (if unordered)

 =  == .EQ. no 

 ≠  != .NE. no 

 >  > .GT. yes 

 ≥  >= .GE. yes 

 <  < .LT. yes 

 ≤  <= .LE. yes 

TABLE 4-1 IEEE Floating Point Exceptions (Continued)

IEEE
Exception Reason Why This Arises Example

Default Result When
Trap is Disabled
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The x86 floating point environment provides another exception not mentioned in the 
IEEE standards: the denormal operand exception. This exception is raised whenever a 
floating point operation is performed on a subnormal number.

Exceptions are prioritized in the following order: invalid (highest priority), overflow, 
division, underflow, inexact (lowest priority). On x86 based systems, the denormal 
operand exception has the lowest priority of all.

The only combinations of standard exceptions that can occur simultaneously in a 
single operation are overflow with inexact and underflow with inexact. On x86 
based systems, the denormal operand exception can occur with any of the five 
standard exceptions. If trapping on overflow, underflow, and inexact is enabled, the 
overflow and underflow traps take precedence over the inexact trap; they all take 
precedence over a denormal operand trap on x86 based systems.

4.2 Detecting Exceptions
As required by the IEEE standard, the floating point environments on SPARC based 
systems and x86 based systems provide status flags that record the occurrence of 
floating point exceptions. A program can test these flags to determine which 
exceptions have occurred. The flags can also be explicitly set and cleared. The 
ieee_flags function provides one way to access these flags. In programs written in 
C or C++, the C99 floating point environment functions provide another.

On SPARC based systems, each exception has two flags associated with it, current 
and accrued. The current exception flags always indicate the exceptions raised by 
the last floating point instruction to complete execution. These flags are also 
accumulated (i.e., “or”-ed) into the accrued exception flags thereby providing a 
record of all untrapped exceptions that have occurred since the program began 
execution or since the accrued flags were last cleared by the program. (When a 
floating point instruction incurs a trapped exception, the current exception flag 
corresponding to the exception that caused the trap is set, but the accrued flags are 
unchanged.) Both the current and accrued exception flags are contained in the 
floating point status register, %fsr.

On x86 based systems, the floating point status word (SW) provides flags for accrued 
exceptions as well as flags for the status of the floating point stack. On x86 based 
systems that support SSE2 instructions, the MXCSR register contains flags that 
record accrued exceptions raised by those instructions.
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4.2.1 ieee_flags(3m) 
The syntax for a call to ieee_flags(3m) is: 

i = ieee_flags(action, mode, in, out);

A program can test, set, or clear the accrued exception status flags using the 
ieee_flags function by supplying the string "exception" as the second 
argument. For example, to clear the overflow exception flag from Fortran, write:

To determine whether an exception has occurred from C or C++, use:

When the action is "get", the string returned in out is: 

■ "not available" — if information on exceptions is not available 

■ "" (an empty string) — if there are no accrued exceptions or, in the case of x86, 
the denormal operand is the only accrued exception 

■ the name of the exception named in the third argument, in, if that exception has 
occurred

■ otherwise, the name of the highest priority exception that has occurred.

For example, in the Fortran call:

the string returned in out is "division" if the division-by-zero exception has 
occurred; otherwise it is the name of the highest priority exception that has occurred. 
Note that in is ignored unless it names a particular exception; for example, the 
argument "all" is ignored in the C call:

Besides returning the name of an exception in out, ieee_flags returns an integer 
value that combines all of the exception flags currently raised. This value is the 
bitwise “or” of all the accrued exception flags, where each flag is represented by a 
single bit as shown in TABLE 4-3. The positions of the bits corresponding to each 

      character*8 out
      call ieee_flags('clear', 'exception', 'overflow', out) 

      i = ieee_flags("get", "exception", in, out); 

      character*8 out
      i = ieee_flags('get', 'exception', 'division', out) 

      i = ieee_flags("get", "exception", "all", out); 
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exception are given by the fp_exception_type values defined in the file 
sys/ieeefp.h. (Note that these bit positions are machine-dependent and need not 
be contiguous.)

This fragment of a C or C++ program shows one way to decode the return value. 

TABLE 4-3 Exception Bits

Exception Bit Position Accrued Exception Bit

invalid fp_invalid i & (1 << fp_invalid)

overflow fp_overflow i & (1 << fp_overflow)

division fp_division i & (1 << fp_division)

underflow fp_underflow i & (1 << fp_underflow)

inexact fp_inexact i & (1 << fp_inexact)

denormalized fp_denormalized i & (1 << fp_denormalized) (x86 only)

/*
 *   Decode integer that describes all accrued exceptions. 
 *   fp_inexact etc. are defined in <sys/ieeefp.h> 
 */ 

char *out; 
int invalid, division, overflow, underflow, inexact; 

code = ieee_flags("get", "exception", "", &out); 
printf ("out is %s, code is %d, in hex: 0x%08X\n", 

out, code, code); 
inexact = (code >> fp_inexact)& 0x1; 
division = (code >> fp_division)& 0x1; 
underflow = (code >> fp_underflow)& 0x1; 
overflow = (code >> fp_overflow)& 0x1; 
invalid = (code >> fp_invalid)& 0x1; 
printf("%d %d %d %d %d \n", invalid, division, overflow,

underflow, inexact); 
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4.2.2 C99 Exception Flag Functions
C/C++ programs can test, set, and clear the floating point exception flags using the 
C99 floating point environment functions. The header file fenv.h defines five 
macros corresponding to the five standard exceptions: FE_INEXACT, 
FE_UNDERFLOW, FE_OVERFLOW, FE_DIVBYZERO, and FE_INVALID. It also defines 
the macro FE_ALL_EXCEPT to be the bitwise “or” of all five exception macros. These 
macros can be combined to test or clear any subset of the exception flags or raise any 
combination of exceptions. The following examples show the use of these macros 
with several of the C99 floating point environment functions; see the 
feclearexcept(3M) manual page for more information. 

Note – For consistent behavior, do not use both the C99 floating point environment 
functions and extensions in libm and the ieee_flags and ieee_handler 
functions in libsunmath in the same program.

To clear all five exception flags: 

To test whether the invalid operation or division by zero flags have been raised: 

To simulate raising an overflow exception (note that this will provoke a trap if the 
overflow trap is enabled): 

feclearexcept(FE_ALL_EXCEPT);

int i;

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);
if (i & FE_INVALID)
    /* invalid flag was raised */
else if (i & FE_DIVBYZERO)
    /* division by zero flag was raised */

feraiseexcept(FE_OVERFLOW);
4-8  Numerical Computation Guide • January 2005



The fegetexceptflag and fesetexceptflag functions provide a way to save 
and restore a subset of the flags. The next example shows one way to use these 
functions.

4.3 Locating an Exception
Often, programmers do not write programs with exceptions in mind, so when an 
exception is detected, the first question asked is: Where did the exception occur? 
One way to locate where an exception occurs is to test the exception flags at various 
points throughout a program, but to isolate an exception precisely by this approach 
can require many tests and carry a significant overhead.

An easier way to determine where an exception occurs is to enable its trap. When an 
exception whose trap is enabled occurs, the operating system notifies the program 
by sending a SIGFPE signal (see the signal(5) manual page). Thus, by enabling 
trapping for an exception, you can determine where the exception occurs either by 
running under a debugger and stopping on receipt of a SIGFPE signal or by 
establishing a SIGFPE handler that prints the address of the instruction where the 
exception occurred. Note that trapping must be enabled for an exception to generate 
a SIGFPE signal; when trapping is disabled and an exception occurs, the 
corresponding flag is set and execution continues with the default result specified in 
TABLE 4-1, but no signal is delivered.

fexcept_t flags;

/* save the underflow, overflow, and inexact flags */
fegetexceptflag(&flags, FE_UNDERFLOW | FE_OVERFLOW | 
FE_INEXACT);
/* clear these flags */
feclearexcept(FE_UNDERFLOW | FE_OVERFLOW | FE_INEXACT);
/* do a computation that can underflow or overflow */
...
/* check for underflow or overflow */
if (fetestexcept(FE_UNDERFLOW | FE_OVERFLOW) != 0) {
    ...
}
/* restore the underflow, overflow, and inexact flags */
fesetexceptflag(&flags, FE_UNDERFLOW | FE_OVERFLOW, | 
FE_INEXACT);
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4.3.1 Using the Debugger to Locate an Exception
This section gives examples showing how to use dbx to investigate the cause of a 
floating point exception and locate the instruction that raised it. Recall that in order 
to use the source-level debugging features of dbx, programs should be compiled 
with the –g flag. Refer to the Debugging a Program With dbx manual for more 
information.

Consider the following C program:

Compiling and running this program produces: 

The appearance of a NaN in the output suggests that an invalid operation exception 
might have occurred. To determine whether this is the case, you can recompile with 
the -ftrap option to enable trapping on invalid operations and use dbx to run the 
program and stop when a SIGFPE signal is delivered. Alternatively, you can use dbx 
without recompiling the program by linking with a startup routine that enables the 
invalid operation trap or by manually enabling the trap.

#include <stdio.h>
#include <math.h>

double sqrtm1(double x)
{
   return sqrt(x) - 1.0;
}

int main(void)
{
   double x, y;

   x = -4.2;
   y = sqrtm1(x);
   printf("%g  %g\n", x, y);
   return 0;
}

 -4.2  NaN
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4.3.1.1 Using dbx to Locate the Instruction Causing an Exception 

The simplest way to locate the code that causes a floating point exception is to 
recompile with the -g and -ftrap flags and then use dbx to track down the 
location where the exception occurs. First, recompile the program as follows: 

Compiling with -g allows you to use the source-level debugging features of dbx. 
Specifying -ftrap=invalid causes the program to run with trapping enabled for 
invalid operation exceptions. Next, invoke dbx, issue the catch fpe command to 
stop when a SIGFPE is issued, and run the program. On SPARC based systems, the 
result resembles this: 

The output shows that the exception occurred in the sqrtm1 function as a result of 
attempting to take the square root of a negative number.

You can also use dbx to identify the cause of an exception in code that has not been 
compiled with -g (such as a library routine). In this case, dbx will not be able to give 
the source file and line number, but it can show the instruction that raised the 
exception. Again, the first step is to recompile the main program with -ftrap: 

Now invoke dbx, use the catch fpe command, and run the program. When an 
invalid operation exception occurs, dbx stops at an instruction following the one 
that caused the exception. To find the instruction that caused the exception, 

 example% cc -g -ftrap=invalid ex.c -lm

      example% dbx a.out
      Reading a.out
      ... etc.
      (dbx) catch fpe
      (dbx) run
      Running: a.out
      (process id 2532)
      signal FPE (invalid floating point operation) in __sqrt at 0xff36b3c4
      0xff36b3c4: __sqrt+0x003c:      be      __sqrt+0x98
      Current function is sqrtm1
          6           return sqrt(x) - 1.0;
      (dbx) print x
      x = -4.2
      (dbx)

 example% cc -ftrap=invalid ex.c -lm
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disassemble several instructions and look for the last floating point instruction prior 
to the instruction at which dbx has stopped. On SPARC based systems, the result 
might resemble the following transcript. 

The output shows that the exception was caused by an fsqrtd instruction. 
Examining the source register shows that the exception was a result of attempting to 
take the square root of a negative number.

      example% dbx a.out
      Reading a.out
      ... etc.
      (dbx) catch fpe
      (dbx) run
      Running: a.out
      (process id 2532)
      signal FPE (invalid floating point operation) in __sqrt at 0xff2886f0
      0xff2886f0: __sqrt+0x0050:      btst     %o5, %o2
      (dbx) dis __sqrt+0x40/4
      0xff2886e0: __sqrt+0x0040:      sub      %g1, %o2, %o4
      0xff2886e4: __sqrt+0x0044:      srlx     %o4, 63, %o3
      0xff2886e8: __sqrt+0x0048:      xor      %o3, 1, %o2
      0xff2886ec: __sqrt+0x004c:      fsqrtd   %f2, %f0
      (dbx) print $f2f3
      $f2f3 = -4.2
      (dbx)
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On x86 based systems, because instructions do not have a fixed length, finding the 
correct address from which to disassemble the code might involve some trial and 
error. In this example, the exception occurs close to the beginning of a function, so 
we can disassemble from there. (Note that this output assumes the program has 
been compiled with the -xlibmil flag.) The following might be a typical result.  

The output reveals that the exception was caused by a fsqrt instruction; 
examination of the floating point registers reveals that the exception was a result of 
attempting to take the square root of a negative number.

4.3.1.2 Enabling Traps Without Recompilation

In the preceding examples, trapping on invalid operation exceptions was enabled by 
recompiling the main subprogram with the -ftrap flag. In some cases, recompiling 
the main program might not be possible, so you might need to resort to other means 
to enable trapping. There are several ways to do this.

When you are using dbx, you can enable traps manually by directly modifying the 
floating point status register. This can be somewhat tricky because the operating 
system does not enable the floating point unit until the first time it is used within a 
program, at which point the floating point state is initialized with all traps disabled. 
Thus, you cannot manually enable trapping until after the program has executed at 
least one floating point instruction. In our example, the floating point unit has 
already been accessed by the time the sqrtm1 function is called, so we can set a 
breakpoint on entry to that function, enable trapping on invalid operation 
exceptions, instruct dbx to stop on the receipt of a SIGFPE signal, and continue 

      example% dbx a.out
      Reading a.out
      ... etc.
      (dbx) catch fpe
      (dbx) run
      Running: a.out
      (process id 2532)
      signal FPE (invalid floating point operation) in sqrtm1 at 0x80506bf
      0x080506bf: sqrtm1+0x001f:      fstpl    0xfffffff0(%ebp)
      (dbx) dis sqrtm1+0x16/5
      0x080506b6: sqrtm1+0x0016:      pushl    %eax
      0x080506b7: sqrtm1+0x0017:      fldl     (%esp)
      0x080506ba: sqrtm1+0x001a:      fsqrt    
      0x080506bc: sqrtm1+0x001c:      addl     $0x00000008,%esp
      0x080506bf: sqrtm1+0x001f:      fstpl    0xfffffff0(%ebp)
      (dbx) print $st0
      $st0 = -4.20000000000000017763568394002504647e+00
      (dbx)
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execution. On SPARC based systems, the steps are as follows (note the use of the 
assign command to modify the %fsr to enable trapping on invalid operation 
exceptions):     

On x86 based systems, the same process might look like this: 

 example% dbx a.out
 Reading a.out
 ... etc.
 (dbx) stop in sqrtm1                                                         
 dbx: warning: 'sqrtm1' has no debugger info -- will trigger on first instruction
 (2) stop in sqrtm1
 (dbx) run           
 Running: a.out 
 (process id 23086)
 stopped in sqrtm1 at 0x106d8
 0x000106d8: sqrtm1       :      save    %sp, -0x70, %sp
 (dbx) assign $fsr=0x08000000
 dbx: warning: unknown language, 'c' assumed
 (dbx) catch fpe             
 (dbx) cont    
 signal FPE (invalid floating point operation) in __sqrt at 0xff36b3c4
 0xff36b3c4: __sqrt+0x003c:      be      __sqrt+0x98
 (dbx) 

example% dbx a.out
Reading a.out
... etc.
(dbx) stop in sqrtm1 
dbx: warning: 'sqrtm1' has no debugger info -- will trigger on first instruction
(2) stop in sqrtm1
(dbx) run    
Running: a.out 
(process id 25055)
stopped in sqrtm1 at 0x80506b0
0x080506b0: sqrtm1     :        pushl  %ebp
(dbx) assign $fctrl=0x137e
dbx: warning: unknown language, 'c' assumed
(dbx) catch fpe           
(dbx) cont    
signal FPE (invalid floating point operation) in sqrtm1 at 0x8050696
0x08050696: sqrtm1+0x0016:      fstpl  -16(%ebp)
(dbx) 
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In the example above, the assign command unmasks (that is, enables trapping on) 
the invalid operation exception in the floating point control word. If a program uses 
SSE2 instructions, you must unmask exceptions in the MXCSR register to enable 
trapping on exceptions raised by those instructions.

You can also enable trapping without recompiling the main program or using dbx 
by establishing an initialization routine that enables traps. (This might be useful, for 
example, if you want to abort the program when an exception occurs without 
running under a debugger.) There are two ways to establish such a routine.

If the object files and libraries that comprise the program are available, you can 
enable trapping by relinking the program with an appropriate initialization routine. 
First, create a C source file similar to the following: 

Now compile this file to create an object file and link the original program with this 
object file: 

If relinking is not possible but the program has been dynamically linked, you can 
enable trapping by using the shared object preloading facility of the runtime linker. 
To do this on SPARC based systems, create the same C source file as above, but 
compile as follows:  

#include <ieeefp.h>

#pragma init (trapinvalid)

void trapinvalid()
{
     /* FP_X_INV et al are defined in ieeefp.h */
     fpsetmask(FP_X_INV);
}

example% cc -c init.c
example% cc ex.o init.o -lm
example% a.out
Arithmetic Exception

example% cc -Kpic -G -ztext init.c -o init.so -lc
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Now to enable trapping, add the path name of the init.so object to the list of 
preloaded shared objects specified by the environment variable LD_PRELOAD, for 
example:  

See the Linker and Libraries Guide for more information about creating and preloading 
shared objects.

In principle, you can change the way any floating point control modes are initialized 
by preloading a shared object as described above. Note, though, that initialization 
routines in shared objects, whether preloaded or explicitly linked, are executed by 
the runtime linker before it passes control to the startup code that is part of the main 
executable. The startup code then establishes any nondefault modes selected via the 
-ftrap, -fround, -fns (SPARC), or -fprecision (x86) compiler flags, executes 
any initialization routines that are part of the main executable (including those that 
are statically linked), and finally passes control to the main program. Therefore, on 
SPARC (i) any floating point control modes established by initialization routines in 
shared objects, such as the traps enabled in the example above, will remain in effect 
throughout the execution of the program unless they are overridden; (ii) any 
nondefault modes selected via the compiler flags will override modes established by 
initialization routines in shared objects (but default modes selected via compiler 
flags will not override previously established modes); and (iii) any modes 
established either by initialization routines that are part of the main executable or by 
the main program itself will override both.

On x86 based systems, the situation is slightly more complicated. In general, the 
startup code automatically supplied by the compiler resets all floating point modes 
to the default by calling the __fpstart routine (found in the standard C library, 
libc) before establishing any nondefault modes selected by the -fround, -ftrap, 
or -fprecision flags and passing control to the main program. As a consequence, 
in order to enable trapping (or change any other default floating point mode) on x86 
based systems by preloading a shared object with an initialization routine, you must 
override the __fpstart routine so that it does not reset the default floating point 
modes. The substitute __fpstart routine should still perform the rest of the 

example% env LD_PRELOAD=./init.so a.out
Arithmetic Exception
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initialization functions that the standard routine does, however. The following code 
shows one way to do this. This code assumes that the host platform is running the 
Solaris 10 OS. 

4.3.2 Using a Signal Handler to Locate an Exception
The previous section presented several methods for enabling trapping at the outset 
of a program in order to locate the first occurrence of an exception. In contrast, you 
can isolate any particular occurrence of an exception by enabling trapping within the 
program itself. If you enable trapping but do not install a SIGFPE handler, the 
program will abort on the next occurrence of the trapped exception. Alternatively, if 
you install a SIGFPE handler, the next occurrence of the trapped exception will 
cause the system to transfer control to the handler, which can then print diagnostic 
information, such as the address of the instruction where the exception occurred, 
and either abort or resume execution. (In order to resume execution with any 
prospect for a meaningful outcome, the handler might need to supply a result for the 
exceptional operation as described in the next section.)

#include <ieeefp.h>
#include <sys/sysi86.h>

#pragma init (trapinvalid)

void trapinvalid()
{
     /* FP_X_INV et al are defined in ieeefp.h */
     fpsetmask(FP_X_INV);
}

extern int  __fltrounds(), __flt_rounds;
extern int  _fp_hw, _sse_hw;

void __fpstart()
{
    /* perform the same floating point initializations as
       the standard __fpstart() function but leave all
       floating point modes as is */
    __flt_rounds = __fltrounds();
    (void) sysi86(SI86FPHW, &_fp_hw);

    /* set the following variable to 1 instead if the host
       platform supports SSE2 instructions */
    _sse_hw = 0;
}
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You can use ieee_handler to simultaneously enable trapping on any of the five 
IEEE floating point exceptions and either request that the program abort when the 
specified exception occurs or establish a SIGFPE handler. You can also install a 
SIGFPE handler using one of the lower-level functions sigfpe(3), signal(3c), or 
sigaction(2); however, these functions do not enable trapping as ieee_handler 
does. (Remember that a floating point exception triggers a SIGFPE signal only when 
its trap is enabled.)

4.3.2.1 ieee_handler (3m)

The syntax of a call to ieee_handler is:

i = ieee_handler(action, exception, handler) 

The two input parameters action and exception are strings. The third input parameter, 
handler, is of type sigfpe_handler_type, which is defined in floatingpoint.h.

The three input parameters can take the following values: 

When the requested action is "set", ieee_handler establishes the handling 
function specified by handler for the exceptions named by exception. The handling 
function can be SIGFPE_DEFAULT or SIGFPE_IGNORE, both of which select the 
default IEEE behavior, SIGFPE_ABORT, which causes the program to abort on the 
occurrence of any of the named exceptions, or the address of a user-supplied 
subroutine, which causes that subroutine to be invoked (with the parameters 
described in the sigaction(2) manual page for a signal handler installed with the 
SA_SIGINFO flag set) when any of the named exceptions occurs. If the handler is 
SIGFPE_DEFAULT or SIGFPE_IGNORE, ieee_handler also disables trapping on 
the specified exceptions; for any other handler, ieee_handler enables trapping. 
(On x86 platforms, the floating point hardware traps whenever an exception’s trap is 
enabled and its corresponding flag is raised. Therefore, to avoid spurious traps, a 
program should clear the flag for each specified exception before calling 
ieee_handler to enable trapping.)

Input Parameter C or C++ Type  Possible Value 

action char * get, set, clear 

exception char * invalid, division, overflow,
underflow, inexact,
all, common 

handler sigfpe_handler_type user-defined routine 
SIGFPE_DEFAULT 

SIGFPE_IGNORE 

SIGFPE_ABORT 
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When the requested action is "clear", ieee_handler revokes whatever handling 
function is currently installed for the specified exception and disables its trap. (This is 
the same as "set"ting SIGFPE_DEFAULT.) The third parameter is ignored when 
action is "clear".

For both the "set" and "clear" actions, ieee_handler returns 0 if the requested 
action is available and a nonzero value otherwise.

When the requested action is "get", ieee_handler returns the address of the 
handler currently installed for the specified exception (or SIGFPE_DEFAULT, if no 
handler is installed).

The following examples show a few code fragments illustrating the use of 
ieee_handler. This C code causes the program to abort on division by zero: 

Here is the equivalent Fortran code: 

This C fragment restores IEEE default exception handling for all exceptions:

Here is the same action in Fortran: 

#include <sunmath.h> 
/* uncomment the following line on x86 systems */
    /* ieee_flags("clear", "exception", "division", NULL); */
    if (ieee_handler("set", "division", SIGFPE_ABORT) != 0)
        printf("ieee trapping not supported here \n"); 

#include <floatingpoint.h> 
c uncomment the following line on x86 systems
c     ieee_flags('clear', 'exception', 'division', %val(0))
      i = ieee_handler('set', 'division', SIGFPE_ABORT) 
      if(i.ne.0) print *,'ieee trapping not supported here' 

#include <sunmath.h> 
    if (ieee_handler("clear", "all", 0) != 0) 
        printf("could not clear exception handlers\n"); 

      i = ieee_handler('clear', 'all', 0) 
      if (i.ne.0) print *, 'could not clear exception handlers' 
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4.3.2.2 Reporting an Exception From a Signal Handler

When a SIGFPE handler installed via ieee_handler is invoked, the operating 
system provides additional information indicating the type of exception that 
occurred, the address of the instruction that caused it, and the contents of the 
machine’s integer and floating point registers. The handler can examine this 
information and print a message identifying the exception and the location at which 
it occurred.

To access the information supplied by the system, declare the handler as follows. 
The remainder of this chapter presents sample code in C; see Appendix A for 
examples of SIGFPE handlers in Fortran. 

When the handler is invoked, the sig parameter contains the number of the signal 
that was sent. Signal numbers are defined in sys/signal.h; the SIGFPE signal 
number is 8.

The sip parameter points to a structure that records additional information about the 
signal. For a SIGFPE signal, the relevant members of this structure are 
sip->si_code and sip->si_addr (see sys/siginfo.h). The significance of 
these members depends on the system and on what event triggered the SIGFPE 
signal.

The sip->si_code member is one of the SIGFPE signal types listed in TABLE 4-4. 
(The tokens shown are defined in sys/machsig.h.) 

#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
    ...
}

TABLE 4-4 Types for Arithmetic Exceptions

SIGFPE Type IEEE Type

FPE_INTDIV

FPE_INTOVF

FPE_FLTRES inexact

FPE_FLTDIV division

FPE_FLTUND underflow

FPE_FLTINV invalid

FPE_FLTOVF overflow
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As the table shows, each type of IEEE floating point exception has a corresponding 
SIGFPE signal type. Integer division by zero (FPE_INTDIV) and integer overflow 
(FPE_INTOVF) are also included among the SIGFPE types, but because they are not 
IEEE floating point exceptions you cannot install handlers for them via 
ieee_handler. (You can install handlers for these SIGFPE types via sigfpe(3); 
note, though, that integer overflow is ignored by default on all SPARC and x86 
platforms. Special instructions can cause the delivery of a SIGFPE signal of type 
FPE_INTOVF, but Sun compilers do not generate these instructions.)

For a SIGFPE signal corresponding to an IEEE floating point exception, the 
sip->si_code member indicates which exception occurred. (On x86 based 
systems, it actually indicates the highest priority unmasked exception whose flag is 
raised. This is normally the same as the exception that last occurred.) The sip-
>si_addr member holds the address of the instruction that caused the exception on 
SPARC based systems, and on x86 based systems it holds the address of the 
instruction at which the trap was taken (usually the next floating point instruction 
following the one that caused the exception).

Finally, the uap parameter points to a structure that records the state of the system at 
the time the trap was taken. The contents of this structure are system-dependent; see 
sys/reg.h for definitions of some of its members.

Using the information provided by the operating system, we can write a SIGFPE 
handler that reports the type of exception that occurred and the address of the 
instruction that caused it. CODE EXAMPLE 4-1 shows such a handler.

CODE EXAMPLE 4-1 SIGFPE Handler 

#include <stdio.h>

#include <sys/ieeefp.h>

#include <sunmath.h>

#include <siginfo.h>

#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)

{

    unsigned    code, addr;

    code = sip->si_code;

    addr = (unsigned) sip->si_addr;

    fprintf(stderr, "fp exception %x at address %x\n", code,

        addr);

}

int main()
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On SPARC systems, the output from this program resembles the following: 

{

    double  x;

    /* trap on common floating point exceptions */

    if (ieee_handler("set", "common", handler) != 0)

        printf("Did not set exception handler\n");

    /* cause an underflow exception (will not be reported) */

    x = min_normal();

    printf("min_normal = %g\n", x);

    x = x / 13.0;

    printf("min_normal / 13.0 = %g\n", x);

    /* cause an overflow exception (will be reported) */

    x = max_normal();

    printf("max_normal = %g\n", x);

    x = x * x;

    printf("max_normal * max_normal = %g\n", x);

    ieee_retrospective(stderr);

    return 0;

}

min_normal = 2.22507e-308
min_normal / 13.0 = 1.7116e-309
max_normal = 1.79769e+308
fp exception 4 at address 10d0c
max_normal * max_normal = 1.79769e+308
 Note: IEEE floating-point exception flags raised:
    Inexact;  Underflow; 
 IEEE floating-point exception traps enabled:
    overflow; division by zero; invalid operation; 
 See the Numerical Computation Guide, ieee_flags(3M), 
ieee_handler(3M)

CODE EXAMPLE 4-1 SIGFPE Handler (Continued)
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On x86 platforms, the operating system saves a copy of the accrued exception flags 
and then clears them before invoking a SIGFPE handler. Unless the handler takes 
steps to preserve them, the accrued flags are lost once the handler returns. Thus, the 
output from the preceding program does not indicate that an underflow exception 
was raised. 

In most cases, the instruction that causes the exception does not deliver the IEEE 
default result when trapping is enabled: in the preceding outputs, the value reported 
for max_normal * max_normal is not the default result for an operation that 
overflows (i.e., a correctly signed infinity). In general, a SIGFPE handler must 
supply a result for an operation that causes a trapped exception in order to continue 
the computation with meaningful values. See “Handling Exceptions” on page 4 30 
for one way to do this.

4.3.3 Using libm Exception Handling Extensions to 
Locate an Exception
C/C++ programs can use the exception handling extensions to the C99 floating 
point environment functions in libm to locate exceptions in several ways. These 
extensions include functions that can establish handlers and simultaneously enable 
traps, just as ieee_handler does, but they provide more flexibility. They also 
support logging of retrospective diagnostic messages regarding floating point 
exceptions to a selected file.

4.3.3.1 fex_set_handling(3m)

The fex_set_handling function allows you to select one of several options, or 
modes, for handling each type of floating point exception. The syntax of a call to 
fex_set_handling is:

ret = fex_set_handling(ex, mode, handler);

min_normal = 2.22507e-308
min_normal / 13.0 = 1.7116e-309
max_normal = 1.79769e+308
fp exception 4 at address 8048fe6
max_normal * max_normal = 1.79769e+308
 Note: IEEE floating-point exception traps enabled: 
    overflow;  division by zero;  invalid operation; 
 See the Numerical Computation Guide, ieee_handler(3M)
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The ex argument specifies the set of exceptions to which the call applies. It must be a 
bitwise “or” of the values listed in the first column of TABLE 4-5. (These values are 
defined in fenv.h.) 

For convenience, fenv.h also defines the following values: FEX_NONE (no 
exceptions), FEX_INVALID (all invalid operation exceptions), FEX_COMMON 
(overflow, division by zero, and all invalid operations), and FEX_ALL (all 
exceptions).

The mode argument specifies the exception handling mode to be established for the 
indicated exceptions. There are five possible modes:

■ FEX_NONSTOP mode provides the IEEE 754 default nonstop behavior. This is 
equivalent to leaving the exception’s trap disabled. (Note that unlike 
ieee_handler, fex_set_handling allows you to establish nondefault 
handling for certain types of invalid operation exceptions and retain IEEE default 
handling for the rest.)

■ FEX_NOHANDLER mode is equivalent to enabling the exception’s trap without 
providing a handler. When an exception occurs, the system transfers control to a 
previously installed SIGFPE handler, if present, or aborts.

■ FEX_ABORT mode causes the program to call abort(3c) when the exception 
occurs.

■ FEX_SIGNAL installs the handling function specified by the handler argument for 
the indicated exceptions. When any of these exceptions occurs, the handler is 
invoked with the same arguments as if it had been installed by ieee_handler.

TABLE 4-5 Exception Codes for fex_set_handling  

Value Exception

FEX_INEXACT inexact result

FEX_UNDERFLOW underflow

FEX_OVERFLOW overflow

FEX_DIVBYZERO division by zero

FEX_INV_ZDZ 0/0 invalid operation

FEX_INV_IDI infinity/infinity invalid operation

FEX_INV_ISI infinity-infinity invalid operation

FEX_INV_ZMI 0*infinity invalid operation

FEX_INV_SQRT square root of negative number

FEX_INV_SNAN operation on signaling NaN

FEX_INV_INT invalid integer conversion

FEX_INV_CMP invalid unordered comparison
4-24  Numerical Computation Guide • January 2005



■ FEX_CUSTOM installs the handling function specified by handler for the indicated 
exceptions. Unlike FEX_SIGNAL mode, when an exception occurs, the handler is 
invoked with a simplified argument list. The arguments consist of an integer 
whose value is one of the values listed in TABLE 4-5 and a pointer to a structure 
that records additional information about the operation that caused the exception. 
The contents of this structure are described in the next section and in the 
fex_set_handling(3m) manual page.

Note that the handler parameter is ignored if the specified mode is FEX_NONSTOP, 
FEX_NOHANDLER, or FEX_ABORT. fex_set_handling returns a nonzero value if 
the specified mode is established for the indicated exceptions, and returns zero 
otherwise. (In the examples below, the return value is ignored.)

The following examples suggest ways to use fex_set_handling to locate certain 
types of exceptions. To abort on a 0/0 exception:  

To install a SIGFPE handler for overflow and division by zero: 

In the previous example, the handler function could print the diagnostic information 
supplied via the sip parameter to a SIGFPE handler, as shown in the previous 
subsection. By contrast, the following example prints the information about the 
exception that is supplied to a handler installed in FEX_CUSTOM mode. (See the 
fex_set_handling(3m) manual page for more information.) 

fex_set_handling(FEX_INV_ZDZ, FEX_ABORT, NULL);

fex_set_handling(FEX_OVERFLOW | FEX_DIVBYZERO, FEX_SIGNAL, 
    handler);

CODE EXAMPLE 4-2 Printing Information Supplied to Handler Installed in FEX_CUSTOM 
Mode 

#include <fenv.h>

void handler(int ex, fex_info_t *info)

{

    switch (ex) {

    case FEX_OVERFLOW:

        printf("Overflow in ");

        break;

    case FEX_DIVBYZERO:

        printf("Division by zero in ");

        break;
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    default:

        printf("Invalid operation in ");

    }

    switch (info->op) {

    case fex_add:

        printf("floating point add\n");

        break;

    case fex_sub:

        printf("floating point subtract\n");

        break;

    case fex_mul:

        printf("floating point multiply\n");

        break;

    case fex_div:

        printf("floating point divide\n");

        break;

    case fex_sqrt:

        printf("floating point square root\n");

        break;

    case fex_cnvt:

        printf("floating point conversion\n");

        break;

    case fex_cmp:

        printf("floating point compare\n");

        break;

    default:

        printf("unknown operation\n");

    }

    switch (info->op1.type) {

    case fex_int:

        printf("operand 1: %d\n", info->op1.val.i);

        break;

    case fex_llong:

        printf("operand 1: %lld\n", info->op1.val.l);

        break;

    case fex_float:

        printf("operand 1: %g\n", info->op1.val.f);

        break;

    case fex_double:

        printf("operand 1: %g\n", info->op1.val.d);

CODE EXAMPLE 4-2 Printing Information Supplied to Handler Installed in FEX_CUSTOM 
Mode (Continued)
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The handler in the preceding example reports the type of exception that occurred, 
the type of operation that caused it, and the operands. It does not indicate where the 
exception occurred. To find out where the exception occurred, you can use 
retrospective diagnostics.

4.3.3.2 Retrospective Diagnostics

Another way to locate an exception using the libm exception handling extensions is 
to enable logging of retrospective diagnostic messages regarding floating point 
exceptions. When you enable logging of retrospective diagnostics, the system 
records information about certain exceptions. This information includes the type of 
exception, the address of the instruction that caused it, the manner in which it will 
be handled, and a stack trace similar to that produced by a debugger. (The stack 

        break;

    case fex_ldouble:

        printf("operand 1: %Lg\n", info->op1.val.q);

        break;

    }

    switch (info->op2.type) {

    case fex_int:

        printf("operand 2: %d\n", info->op2.val.i);

        break;

    case fex_llong:

        printf("operand 2: %lld\n", info->op2.val.l);

        break;

    case fex_float:

        printf("operand 2: %g\n", info->op2.val.f);

        break;

    case fex_double:

        printf("operand 2: %g\n", info->op2.val.d);

        break;

    case fex_ldouble:

        printf("operand 2: %Lg\n", info->op2.val.q);

        break;

    }

}

...

fex_set_handling(FEX_COMMON, FEX_CUSTOM, handler);

CODE EXAMPLE 4-2 Printing Information Supplied to Handler Installed in FEX_CUSTOM 
Mode (Continued)
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trace recorded with a retrospective diagnostic message contains only instruction 
addresses and function names; for additional debugging information such as line 
numbers, source file names, and argument values, you must use a debugger.)

The log of retrospective diagnostics does not contain information about every single 
exception that occurs; if it did, a typical log would be huge, and it would be 
impossible to isolate unusual exceptions. Instead, the logging mechanism eliminates 
redundant messages. A message is considered redundant under either of two 
circumstances:

■ The same exception has been previously logged at the same location (i.e., with the 
same instruction address and stack trace), or

■ FEX_NONSTOP mode is in effect for the exception and its flag has been previously 
raised.

In particular, in most programs, only the first occurrence of each type of exception 
will be logged. (When FEX_NONSTOP handling mode is in effect for an exception, 
clearing its flag via any of the C99 floating point environment functions allows the 
next occurrence of that exception to be logged, provided it does not occur at a 
location at which it was previously logged.)

To enable logging, use the fex_set_log function to specify the file to which 
messages should be delivered. For example, to log messages to the standard error 
file, use: 

CODE EXAMPLE 4-3 combines logging of retrospective diagnostics with the shared 
object preloading facility illustrated in the previous section. By creating the 
following C source file, compiling it to a shared object, preloading the shared object 
by supplying its path name in the LD_PRELOAD environment variable, and 
specifying the names of one or more exceptions (separated by commas) in the FTRAP 
environment variable, you can simultaneously abort the program on the specified 
exceptions and obtain retrospective diagnostic output showing where each exception 
occurs. 

fex_set_log(stderr);

CODE EXAMPLE 4-3 Combined Logging of Retrospective Diagnostics With Shared Object 
Preloading 

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fenv.h>

static struct ftrap_string {
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    const char  *name;

    int         value;

} ftrap_table[] = {

    { "inexact", FEX_INEXACT },

    { "division", FEX_DIVBYZERO },

    { "underflow", FEX_UNDERFLOW },

    { "overflow", FEX_OVERFLOW },

    { "invalid", FEX_INVALID },

    { NULL, 0 }

};

#pragma init (set_ftrap)

void set_ftrap()

{

    struct ftrap_string  *f;

    char                 *s, *s0;

    int                  ex = 0;

    if ((s = getenv("FTRAP")) == NULL)

        return;

    if ((s0 = strtok(s, ",")) == NULL)

        return;

    do {

        for (f = &trap_table[0]; f->name != NULL; f++) {

            if (!strcmp(s0, f->name))

                ex |= f->value;

        }

    } while ((s0 = strtok(NULL, ",")) != NULL);

    fex_set_handling(ex, FEX_ABORT, NULL);

    fex_set_log(stderr);

}

CODE EXAMPLE 4-3 Combined Logging of Retrospective Diagnostics With Shared Object 
Preloading (Continued)
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Using the preceding code with the example program given at the beginning of this 
section produces the following results on SPARC based systems: 

The preceding output shows that the invalid operation exception was raised as a 
result of a square root operation in the routine sqrtm1.

(As noted above, to enable trapping from an initialization routine in a shared object 
on x86 platforms, you must override the standard __fpstart routine.)

Appendix A gives more examples showing typical log outputs. For general 
information, see the fex_set_log(3m) man page.

4.4 Handling Exceptions
Historically, most numerical software has been written without regard to exceptions 
(for a variety of reasons), and many programmers have become accustomed to 
environments in which exceptions cause a program to abort immediately. Now, 
some high-quality software packages such as LAPACK are being carefully designed 
to avoid exceptions such as division by zero and invalid operations and to scale their 
inputs aggressively to preclude overflow and potentially harmful underflow. Neither 
of these approaches to dealing with exceptions is appropriate in every situation. 
However, ignoring exceptions can pose problems when one person writes a program 
or subroutine that is intended to be used by someone else (perhaps someone who 
does not have access to the source code), and attempting to avoid all exceptions can 
require many defensive tests and branches and carry a significant cost (see Demmel 
and Li, “Faster Numerical Algorithms via Exception Handling,” IEEE Trans. Comput. 
43 (1994), pp. 983–992.)

The default exception response, status flags, and optional trapping facility of IEEE 
arithmetic are intended to provide a third alternative: continuing a computation in 
the presence of exceptions and either detecting them after the fact or intercepting 
and handling them as they occur. As described above, ieee_flags or the C99 
floating point environment functions can be used to detect exceptions after the fact, 
and ieee_handler or fex_set_handling can be used to enable trapping and 

example% cc -Kpic -G -ztext init.c -o init.so -R/opt/SUNWspro/lib 
-L/opt/SUNWspro/lib -lm9x -lc
example% env FTRAP=invalid LD_PRELOAD=./init.so a.out
Floating point invalid operation (sqrt) at 0x00010c24 sqrtm1_, abort
  0x00010c30  sqrtm1_
  0x00010b48  MAIN_
  0x00010ccc  main
Abort
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install a handler to intercept exceptions as they occur. In order to continue the 
computation, however, the IEEE standard recommends that a trap handler be able to 
provide a result for the operation that incurred an exception. A SIGFPE handler 
installed via ieee_handler or fex_set_handling in FEX_SIGNAL mode can 
accomplish this using the uap parameter supplied to a signal handler by the Solaris 
operating environment. An FEX_CUSTOM mode handler installed via 
fex_set_handling can provide a result using the info parameter supplied to such 
a handler.

Recall that a SIGFPE signal handler can be declared in C as follows: 

When a SIGFPE signal handler is invoked as a result of a trapped floating point 
exception, the uap parameter points to a data structure that contains a copy of the 
machine’s integer and floating point registers as well as other system-dependent 
information describing the exception. If the signal handler returns normally, the 
saved data are restored and the program resumes execution at the point at which the 
trap was taken. Thus, by accessing and decoding the information in the data 
structure that describes the exception and possibly modifying the saved data, a 
SIGFPE handler can substitute a user-supplied value for the result of an exceptional 
operation and continue computation.

An FEX_CUSTOM mode handler can be declared as follows:    

When a FEX_CUSTOM handler is invoked, the ex parameter indicates which type of 
exception occurred (it is one of the values listed in TABLE 4-5) and the info parameter 
points to a data structure that contains more information about the exception. 
Specifically, this structure contains a code representing the arithmetic operation that 
caused the exception and structures recording the operands, if they are available. It 
also contains a structure recording the default result that would have been 
substituted if the exception were not trapped and an integer value holding the 
bitwise “or” of the exception flags that would have accrued. The handler can modify 

#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
    ...
}

#include <fenv.h>

void handler(int ex, fex_info_t *info)
{
    ...
}
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the latter members of the structure to substitute a different result or change the set of 
flags that are accrued. (Note that if the handler returns without modifying these 
data, the program will continue with the default untrapped result and flags just as if 
the exception were not trapped.)

As an illustration, the following section shows how to substitute a scaled result for 
an operation that underflows or overflows. See Appendix A for further examples.

4.4.0.1 Substituting IEEE Trapped Under/Overflow Results

The IEEE standard recommends that when underflow and overflow are trapped, the 
system should provide a way for a trap handler to substitute an exponent-wrapped 
result, i.e., a value that agrees with what would have been the rounded result of the 
operation that underflowed or overflowed except that the exponent is wrapped 
around the end of its usual range, thereby effectively scaling the result by a power of 
two. The scale factor is chosen to map underflowed and overflowed results as nearly 
as possible to the middle of the exponent range so that subsequent computations 
will be less likely to underflow or overflow further. By keeping track of the number 
of underflows and overflows that occur, a program can scale the final result to 
compensate for the exponent wrapping. This under/overflow “counting mode” can 
be used to produce accurate results in computations that would otherwise exceed 
the range of the available floating point formats. (See P. Sterbenz, Floating-Point 
Computation.)

On SPARC based systems, when a floating point instruction incurs a trapped 
exception, the system leaves the destination register unchanged. Thus, in order to 
substitute the exponent-wrapped result, an under/overflow handler must decode 
the instruction, examine the operand registers, and generate the scaled result itself. 
CODE EXAMPLE 4-4 shows a handler that performs these steps. (In order to use this 
handler with code compiled for UltraSPARCbased systems, compile the handler on a 
system running the Solaris 2.6 OS, Solaris 7 OS, or Solaris 8 OS and define the 
preprocessor token V8PLUS.) 

CODE EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for 
SPARC Based Systems 

#include <stdio.h>

#include <ieeefp.h>

#include <math.h>

#include <sunmath.h>

#include <siginfo.h>

#include <ucontext.h>

#ifdef V8PLUS
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/* The upper 32 floating point registers are stored in an area

   pointed to by uap->uc_mcontext.xrs.xrs_prt. Note that this

   pointer is valid ONLY when uap->uc_mcontext.xrs.xrs_id ==

   XRS_ID (defined in sys/procfs.h). */

#include <assert.h>

#include <sys/procfs.h>

#define FPxreg(x)  ((prxregset_t*)uap->uc_mcontext.xrs.xrs_ptr)

->pr_un.pr_v8p.pr_xfr.pr_regs[(x)]

#endif

#define FPreg(x)   uap->uc_mcontext.fpregs.fpu_fr.fpu_regs[(x)]

/*

*  Supply the IEEE 754 default result for trapped under/overflow

*/

void

ieee_trapped_default(int sig, siginfo_t *sip, ucontext_t *uap)

{

    unsigned    instr, opf, rs1, rs2, rd;

    long double qs1, qs2, qd, qscl;

    double      ds1, ds2, dd, dscl;

    float       fs1, fs2, fd, fscl;

    /* get the instruction that caused the exception */

    instr = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;

    /* extract the opcode and source and destination register

       numbers */

    opf = (instr >> 5) & 0x1ff;

    rs1 = (instr >> 14) & 0x1f;

    rs2 = instr & 0x1f;

    rd = (instr >> 25) & 0x1f;

    /* get the operands */

    switch (opf & 3) {

    case 1: /* single precision */

        fs1 = *(float*)&FPreg(rs1);

        fs2 = *(float*)&FPreg(rs2);

        break;

    case 2: /* double precision */

#ifdef V8PLUS

CODE EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for 
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        if (rs1 & 1)

        {

            assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

            ds1 = *(double*)&FPxreg(rs1 & 0x1e);

        }

        else

            ds1 = *(double*)&FPreg(rs1);

        if (rs2 & 1)

        {

            assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

            ds2 = *(double*)&FPxreg(rs2 & 0x1e);

        }

        else

            ds2 = *(double*)&FPreg(rs2);

#else

        ds1 = *(double*)&FPreg(rs1);

        ds2 = *(double*)&FPreg(rs2);

#endif

        break;

    case 3: /* quad precision */

#ifdef V8PLUS

        if (rs1 & 1)

        {

            assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

            qs1 = *(long double*)&FPxreg(rs1 & 0x1e);

        }

        else

            qs1 = *(long double*)&FPreg(rs1);

        if (rs2 & 1)

        {

            assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

            qs2 = *(long double*)&FPxreg(rs2 & 0x1e);

        }

        else

            qs2 = *(long double*)&FPreg(rs2);

#else

        qs1 = *(long double*)&FPreg(rs1);

        qs2 = *(long double*)&FPreg(rs2);

#endif

CODE EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for 
SPARC Based Systems (Continued)
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        break;

    }

    /* set up scale factors */

    if (sip->si_code == FPE_FLTOVF) {

        fscl = scalbnf(1.0f, -96);

        dscl = scalbn(1.0, -768);

        qscl = scalbnl(1.0, -12288);

    } else {

        fscl = scalbnf(1.0f, 96);

        dscl = scalbn(1.0, 768);

        qscl = scalbnl(1.0, 12288);

    }

    /* disable traps and generate the scaled result */

    fpsetmask(0);

    switch (opf) {

    case 0x41: /* add single */

        fd = fscl * (fscl * fs1 + fscl * fs2);

        break;

    case 0x42: /* add double */

        dd = dscl * (dscl * ds1 + dscl * ds2);

        break;

    case 0x43: /* add quad */

        qd = qscl * (qscl * qs1 + qscl * qs2);

        break;

    case 0x45: /* subtract single */

        fd = fscl * (fscl * fs1 - fscl * fs2);

        break;

    case 0x46: /* subtract double */

        dd = dscl * (dscl * ds1 - dscl * ds2);

        break;

    case 0x47: /* subtract quad */

        qd = qscl * (qscl * qs1 - qscl * qs2);

        break;

CODE EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for 
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    case 0x49: /* multiply single */

        fd = (fscl * fs1) * (fscl * fs2);

        break;

    case 0x4a: /* multiply double */

        dd = (dscl * ds1) * (dscl * ds2);

        break;

    case 0x4b: /* multiply quad */

        qd = (qscl * qs1) * (qscl * qs2);

        break;

    case 0x4d: /* divide single */

        fd = (fscl * fs1) / (fs2 / fscl);

        break;

    case 0x4e: /* divide double */

        dd = (dscl * ds1) / (ds2 / dscl);

        break;

    case 0x4f: /* divide quad */

        qd = (qscl * qs1) / (qs2 / dscl);

        break;

    case 0xc6: /* convert double to single */

        fd = (float) (fscl * (fscl * ds1));

        break;

    case 0xc7: /* convert quad to single */

        fd = (float) (fscl * (fscl * qs1));

        break;

    case 0xcb: /* convert quad to double */

        dd = (double) (dscl * (dscl * qs1));

        break;

    }

    /* store the result in the destination */

    if (opf & 0x80) {

        /* conversion operation */

        if (opf == 0xcb) {

            /* convert quad to double */

CODE EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for 
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#ifdef V8PLUS

            if (rd & 1)

            {

                assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

                *(double*)&FPxreg(rd & 0x1e) = dd;

            }

            else

                *(double*)&FPreg(rd) = dd;

#else

            *(double*)&FPreg(rd) = dd;

#endif

        } else

            /* convert quad/double to single */

            *(float*)&FPreg(rd) = fd;

    } else {

        /* arithmetic operation */

        switch (opf & 3) {

        case 1: /* single precision */

            *(float*)&FPreg(rd) = fd;

            break;

        case 2: /* double precision */

#ifdef V8PLUS

            if (rd & 1)

            {

                assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

                *(double*)&FPxreg(rd & 0x1e) = dd;

            }

            else

                *(double*)&FPreg(rd) = dd;

#else

            *(double*)&FPreg(rd) = dd;

#endif

            break;

        case 3: /* quad precision */

#ifdef V8PLUS

            if (rd & 1)

            {

                assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

                *(long double*)&FPxreg(rd & 0x1e) = qd;

CODE EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for 
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            }

            else

                *(long double*)&FPreg(rd & 0x1e) = qd;

#else

            *(long double*)&FPreg(rd & 0x1e) = qd;

#endif

            break;

        }

    }

}

int

main()

{

    volatile float   a, b;

    volatile double  x, y;

    ieee_handler("set", "underflow", ieee_trapped_default);

    ieee_handler("set", "overflow", ieee_trapped_default);

    a = b = 1.0e30f;

    a *= b; /* overflow; will be wrapped to a moderate number */

    printf( "%g\n", a );

    a /= b;

    printf( "%g\n", a );

    a /= b; /* underflow; will wrap back */

    printf( "%g\n", a );

    x = y = 1.0e300;

    x *= y; /* overflow; will be wrapped to a moderate number */

    printf( "%g\n", x );

    x /= y;

    printf( "%g\n", x );

    x /= y; /* underflow; will wrap back */

    printf( "%g\n", x );

    ieee_retrospective(stdout);

    return 0;

}

CODE EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for 
SPARC Based Systems (Continued)
4-38  Numerical Computation Guide • January 2005



In this example, the variables a, b, x, and y have been declared volatile only to 
prevent the compiler from evaluating a * b, etc., at compile time. In typical usage, 
the volatile declarations would not be needed. 

The output from the preceding program is: 

On x86 based systems, the floating point hardware provides the exponent-wrapped 
result when a floating point instruction incurs a trapped underflow or overflow and 
its destination is a register. When trapped underflow or overflow occurs on a 
floating point store instruction, however, the hardware traps without completing the 
store (and without popping the stack, if the store instruction is a store-and-pop). 
Thus, in order to implement counting mode, an under/overflow handler must 
generate the scaled result and fix up the stack when a trap occurs on a store 
instruction. CODE EXAMPLE 4-5 illustrates such a handler. 

159.309
1.59309e-28
1
4.14884e+137
4.14884e-163
1
 Note: IEEE floating-point exception traps enabled:
    underflow;  overflow;
 See the Numerical Computation Guide, ieee_handler(3M)

CODE EXAMPLE 4-5 Substituting IEEE Trapped Under/Overflow Handler Results for x86 
Based Systems 

#include <stdio.h>

#include <ieeefp.h>

#include <math.h>

#include <sunmath.h>

#include <siginfo.h>

#include <ucontext.h>

/* offsets into the saved fp environment */

#define CW    0    /* control word */

#define SW    1    /* status word */

#define TW    2    /* tag word */

#define OP    4    /* opcode */

#define EA    5    /* operand address */
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#define FPenv(x)    uap->uc_mcontext.fpregs.fp_reg_set.
fpchip_state.state[(x)]

#define FPreg(x)    *(long double *)(10*(x)+(char*)&uap->
uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[7])

/*

*  Supply the IEEE 754 default result for trapped under/overflow

*/

void

ieee_trapped_default(int sig, siginfo_t *sip, ucontext_t *uap)

{

    double      dscl;

    float       fscl;

    unsigned    sw, op, top;

    int         mask, e;

    /* preserve flags for untrapped exceptions */

    sw = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.status;

    FPenv(SW) |= (sw & (FPenv(CW) & 0x3f));

    /* if the excepting instruction is a store, scale the stack
       top, store it, and pop the stack if need be */

    fpsetmask(0);

    op = FPenv(OP) >> 16;

    switch (op & 0x7f8) {

    case 0x110:

    case 0x118:

    case 0x150:

    case 0x158:

    case 0x190:

    case 0x198:

        fscl = scalbnf(1.0f, (sip->si_code == FPE_FLTOVF)?
            -96 : 96);

        *(float *)FPenv(EA) = (FPreg(0) * fscl) * fscl;

        if (op & 8) {

            /* pop the stack */

            FPreg(0) = FPreg(1);

            FPreg(1) = FPreg(2);

            FPreg(2) = FPreg(3);

            FPreg(3) = FPreg(4);

            FPreg(4) = FPreg(5);

            FPreg(5) = FPreg(6);

CODE EXAMPLE 4-5 Substituting IEEE Trapped Under/Overflow Handler Results for x86 
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            FPreg(6) = FPreg(7);

            top = (FPenv(SW) >> 10) & 0xe;

            FPenv(TW) |= (3 << top);

            top = (top + 2) & 0xe;

            FPenv(SW) = (FPenv(SW) & ~0x3800) | (top << 10);

        }

        break;

    case 0x510:

    case 0x518:

    case 0x550:

    case 0x558:

    case 0x590:

    case 0x598:

        dscl = scalbn(1.0, (sip->si_code == FPE_FLTOVF)?
            -768 : 768);

        *(double *)FPenv(EA) = (FPreg(0) * dscl) * dscl;

        if (op & 8) {

            /* pop the stack */

            FPreg(0) = FPreg(1);

            FPreg(1) = FPreg(2);

            FPreg(2) = FPreg(3);

            FPreg(3) = FPreg(4);

            FPreg(4) = FPreg(5);

            FPreg(5) = FPreg(6);

            FPreg(6) = FPreg(7);

            top = (FPenv(SW) >> 10) & 0xe;

            FPenv(TW) |= (3 << top);

            top = (top + 2) & 0xe;

            FPenv(SW) = (FPenv(SW) & ~0x3800) | (top << 10);

        }

        break;

    }

}

int main()

{

    volatile float    a, b;

    volatile double    x, y;

    ieee_handler("set", "underflow", ieee_trapped_default);

CODE EXAMPLE 4-5 Substituting IEEE Trapped Under/Overflow Handler Results for x86 
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As on SPARC based systems, the output from the preceding program on x86 is: 

C/C++ programs can use the fex_set_handling function in libm to install a 
FEX_CUSTOM handler for underflow and overflow. On SPARC based systems, the 
information supplied to such a handler always includes the operation that caused 
the exception and the operands, and this information is sufficient to allow the 
handler to compute the IEEE exponent-wrapped result, as shown above. On x86 
based systems, the available information might not always indicate which particular 
operation caused the exception; when the exception is raised by one of the 
transcendental instructions, for example, the info->op parameter is set to 
fex_other. (See the fenv.h file for definitions.) Moreover, the x86 hardware 

    ieee_handler("set", "overflow", ieee_trapped_default);

    a = b = 1.0e30f;

    a *= b;

    printf( "%g\n", a );

    a /= b;

    printf( "%g\n", a );

    a /= b;

    printf( "%g\n", a );

    x = y = 1.0e300;

    x *= y;

    printf( "%g\n", x );

    x /= y;

    printf( "%g\n", x );

    x /= y;

    printf( "%g\n", x );

    ieee_retrospective(stdout);

    return 0;

}

159.309
1.59309e-28
1
4.14884e+137
4.14884e-163
1
 Note: IEEE floating-point exception traps enabled:
    underflow;  overflow;
 See the Numerical Computation Guide, ieee_handler(3M)

CODE EXAMPLE 4-5 Substituting IEEE Trapped Under/Overflow Handler Results for x86 
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delivers an exponent-wrapped result automatically, and this can overwrite one of 
the operands if the destination of the excepting instruction is a floating point 
register.

Fortunately, the fex_set_handling feature provides a simple way for a handler 
installed in FEX_CUSTOM mode to substitute the IEEE exponent-wrapped result for 
an operation that underflows or overflows. When either of these exceptions is 
trapped, the handler can set

info->res.type = fex_nodata;

to indicate that the exponent-wrapped result should be delivered. Here is an 
example showing such a handler:     

#include <stdio.h>
#include <fenv.h>

void handler(int ex, fex_info_t *info) {
    info->res.type = fex_nodata;
}
int main()
{
    volatile float  a, b;
    volatile double x, y;

    fex_set_log(stderr);
    fex_set_handling(FEX_UNDERFLOW | FEX_OVERFLOW, FEX_CUSTOM,
        handler);
    a = b = 1.0e30f;
    a *= b; /* overflow; will be wrapped to a moderate number */
    printf("%g\n", a);
    a /= b;
    printf("%g\n", a);
    a /= b; /* underflow; will wrap back */
    printf("%g\n", a);

    x = y = 1.0e300;
    x *= y; /* overflow; will be wrapped to a moderate number */
    printf("%g\n", x);
    x /= y;

    printf("%g\n", x);
    x /= y; /* underflow; will wrap back */
    printf("%g\n", x);

    return 0;
}
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The output from the preceding program resembles the following:  

Floating point overflow at 0x00010924 main, handler: handler
  0x00010928 main
159.309
1.59309e-28
Floating point underflow at 0x00010994 main, handler: handler
  0x00010998 main
1
Floating point overflow at 0x000109e4 main, handler: handler
  0x000109e8 main
4.14884e+137
4.14884e-163
Floating point underflow at 0x00010a4c main, handler: handler
  0x00010a50 main
1
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APPENDIX A

Examples 

This appendix provides examples of how to accomplish some popular tasks. The 
examples are written either in Fortran or ANSI C, and many depend on the current 
versions of libm and libsunmath. These examples were tested with the current C 
and Fortran compilers in the Solaris OS.

A.1 IEEE Arithmetic 
The following examples show one way you can examine the hexadecimal 
representations of floating-point numbers. Note that you can also use the debuggers 
to look at the hexadecimal representations of stored data. 

The following C program prints a double precision approximation to π and single 
precision infinity:

CODE EXAMPLE A-1 Double Precision Example 

#include <math.h>

#include <sunmath.h>

 

int main() {

union {

float       flt;

unsigned un;

} r;

union {

double      dbl;

unsigned    un[2];

} d;
A-1



On SPARC based systems, the output of the preceding program looks like this: 

The following Fortran program prints the smallest normal numbers in each format:

/* double precision */

d.dbl = M_PI;

(void) printf("DP Approx pi = %08x %08x = %18.17e \n",

   d.un[0], d.un[1], d.dbl);

/* single precision */

r.flt = infinityf();

(void) printf("Single Precision %8.7e : %08x \n", 

   r.flt, r.un);

return 0;

}

DP Approx pi = 400921fb 54442d18 = 3.14159265358979312e+00 
Single Precision Infinity: 7f800000 

CODE EXAMPLE A-2 Print Smallest Normal Numbers in Each Format 

program print_ieee_values

c

c the purpose of the implicit statements is to ensure

c that the floatingpoint pseudo-intrinsic functions

c are declared with the correct type

c

implicit real*16 (q)

implicit double precision (d)

implicit real (r)

real*16           z

double precision  x

real              r

c

z = q_min_normal()

write(*,7) z, z

 7 format('min normal, quad: ',1pe47.37e4,/,' in hex ',z32.32)

c

CODE EXAMPLE A-1 Double Precision Example (Continued)
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On SPARC based systems, the corresponding output reads: 

A.2 The Math Libraries
This section shows examples that use functions from the math library. 

A.2.1 Random Number Generator
The following example calls a random number generator to generate an array of 
numbers and uses a timing function to measure the time it takes to compute the EXP 
of the given numbers:  

x = d_min_normal()

write(*,14) x, x

 14 format('min normal, double: ',1pe23.16,' in hex ',z16.16)

c

r = r_min_normal()

write(*,27) r, r

 27 format('min normal, single: ',1pe14.7,' in hex ',z8.8)

c

end

min normal, quad:   3.3621031431120935062626778173217526026D-4932
 in hex 00010000000000000000000000000000
min normal, double:  2.2250738585072014-308 in hex 0010000000000000
min normal, single:  1.1754944E-38 in hex 00800000

CODE EXAMPLE A-3 Random Number Generator 

#ifdef DP

#define GENERIC double precision

#else

#define GENERIC real

#endif

CODE EXAMPLE A-2 Print Smallest Normal Numbers in Each Format (Continued)
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To compile the preceding example, place the source code in a file with the suffix F 
(not f) so that the compiler will automatically invoke the preprocessor, and specify 
either -DSP or -DDP on the command line to select single or double precision.

#define SIZE 400000

program example

c

implicit GENERIC (a-h,o-z)

GENERIC x(SIZE), y, lb, ub

real tarray(2), u1, u2

c

c compute EXP on random numbers in [-ln2/2,ln2/2]

lb = -0.3465735903

ub = 0.3465735903

c

c generate array of random numbers

#ifdef DP

call d_init_addrans()

call d_addrans(x,SIZE,lb,ub)

#else

call r_init_addrans()

call r_addrans(x,SIZE,lb,ub)

#endif

c

c start the clock

call dtime(tarray)

u1 = tarray(1)

c

c compute exponentials

do 16 i=1,SIZE

y = exp(x(i))

 16 continue

c

c get the elapsed time

call dtime(tarray)

u2 = tarray(1)

print *,'time used by EXP is ',u2-u1

print *,'last values for x and exp(x) are ',x(SIZE),y

c

call flush(6)

end

CODE EXAMPLE A-3 Random Number Generator (Continued)
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This example shows how to use d_addrans to generate blocks of random data 
uniformly distributed over a user-specified range:   

CODE EXAMPLE A-4 Using d_addrans 

/*

 * test SIZE*LOOPS random arguments to sin in the range

 * [0, threshold] where

 * threshold = 3E30000000000000 (3.72529029846191406e-09)

 */

#include <math.h>

#include <sunmath.h>

#define SIZE 10000

#define LOOPS 100

int main()

{

doublex[SIZE], y[SIZE];

int i, j, n;

doublelb, ub;

union {

unsigned u[2];

double d;

}  upperbound;

upperbound.u[0] = 0x3e300000;

upperbound.u[1] = 0x00000000;

/* initialize the random number generator */

d_init_addrans_();

/* test (SIZE * LOOPS) arguments to sin */

for (j = 0; j < LOOPS; j++) {

/*

* generate a vector, x, of length SIZE, 

* of random numbers to use as

* input to the trig functions.

*/

n = SIZE;

ub = upperbound.d;

lb = 0.0;
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A.2.2 IEEE Recommended Functions
This Fortran example uses some functions recommended by the IEEE standard:     

d_addrans_(x, &n, &lb, &ub);

for (i = 0; i < n; i++)

 y[i] = sin(x[i]);

/* is sin(x) == x?  It ought to, for tiny x. */

for (i = 0; i < n; i++)

if (x[i] != y[i])

printf(

" OOPS: %d sin(%18.17e)=%18.17e \n",

i, x[i], y[i]);

}

printf(" comparison ended; no differences\n");

ieee_retrospective_();

return 0;

}

CODE EXAMPLE A-5 IEEE Recommended Functions 

c
c Demonstrate how to call 5 of the more interesting IEEE 
c recommended functions from Fortran. These are implemented 
c with "bit-twiddling", and so are as efficient as you could 
c hope. The IEEE standard for floating-point arithmetic 
c doesn't require these, but recommends that they be 
c included in any IEEE programming environment.
c
c For example, to accomplish 
c y = x * 2**n, 
c since the hardware stores numbers in base 2,
c shift the exponent by n places. 
c                

CODE EXAMPLE A-4 Using d_addrans (Continued)
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c Refer to 
c ieee_functions(3m)
c libm_double(3f)
c libm_single(3f)
c
c The 5 functions demonstrated here are:
c
c ilogb(x): returns the base 2 unbiased exponent of x in 
c integer format
c signbit(x): returns the sign bit, 0 or 1
c copysign(x,y): returns x with y's sign bit
c nextafter(x,y): next representable number after x, in 
c the direction y
c scalbn(x,n): x * 2**n
c
c functiondouble precisionsingle precision
c --------------------------------------------------------
c ilogb(x) i = id_ilogb(x)i = ir_ilogb(r)
c signbit(x)i = id_signbit(x)i = ir_signbit(r)
c copysign(x,y)x = d_copysign(x,y)r = r_copysign(r,s)
c nextafter(x,y)z = d_nextafter(x,y)r = r_nextafter(r,s)
c scalbn(x,n)x = d_scalbn(x,n)r = r_scalbn(r,n)

program ieee_functions_demo
implicit double precision (d)
implicit real (r) 
double precision   x, y, z, direction
real               r, s, t, r_direction
integer            i, scale

print *
print *, 'DOUBLE PRECISION EXAMPLES:'
print *

x = 32.0d0
i = id_ilogb(x)
write(*,1) x, i

 1 format(' The base 2 exponent of ', F4.1, ' is ', I2)

x = -5.5d0
y = 12.4d0
z = d_copysign(x,y)
write(*,2) x, y, z

 2    format(F5.1, ' was given the sign of ', F4.1,
     *   ' and is now ', F4.1)

CODE EXAMPLE A-5 IEEE Recommended Functions (Continued)
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x = -5.5d0
i = id_signbit(x)
print *, 'The sign bit of ', x, ' is ', i

x = d_min_subnormal()
direction = -d_infinity()
y = d_nextafter(x, direction)
write(*,3) x

 3 format(' Starting from ', 1PE23.16E3,
     -   ', the next representable number ')

write(*,4) direction, y
 4 format('    towards ', F4.1, ' is ', 1PE23.16E3)

x = d_min_subnormal()
direction = 1.0d0

    y = d_nextafter(x, direction)
write(*,3) x
write(*,4) direction, y
x = 2.0d0
scale = 3
y = d_scalbn(x, scale)
write (*,5) x, scale, y

 5 format(' Scaling ', F4.1, ' by 2**', I1, ' is ', F4.1)
print *
print *, 'SINGLE PRECISION EXAMPLES:'
print *

r = 32.0
i = ir_ilogb(r)
write (*,1) r, i

r = -5.5
i = ir_signbit(r)
print *, 'The sign bit of ', r, ' is ', i

r = -5.5
s = 12.4
t = r_copysign(r,s)
write (*,2) r, s, t

r = r_min_subnormal()
r_direction = -r_infinity()
s = r_nextafter(r, r_direction)
write(*,3) r
write(*,4) r_direction, s

CODE EXAMPLE A-5 IEEE Recommended Functions (Continued)
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The output from this program is shown in CODE EXAMPLE A-6. 

r = r_min_subnormal()
r_direction = 1.0e0
s = r_nextafter(r, r_direction)
write(*,3) r
write(*,4) r_direction, s

r = 2.0
scale = 3
s = r_scalbn(r, scale)
write (*,5) r, scale, y

print *
end

CODE EXAMPLE A-6 Output of CODE EXAMPLE A-5 

DOUBLE PRECISION EXAMPLES:

The base 2 exponent of 32.0 is  5
-5.5 was given the sign of 12.4 and is now  5.5
The sign bit of    -5.5 is   1
Starting from  4.9406564584124654E-324, the next representable
   number towards -Inf is  0.0000000000000000E+000
Starting from  4.9406564584124654E-324, the next representable
   number towards  1.0 is  9.8813129168249309E-324
Scaling  2.0 by 2**3 is 16.0

SINGLE PRECISION EXAMPLES:

The base 2 exponent of 32.0 is  5
The sign bit of    -5.5 is   1
-5.5 was given the sign of 12.4 and is now  5.5
Starting from  1.4012984643248171E-045, the next representable
   number towards -Inf is  0.0000000000000000E+000
Starting from  1.4012984643248171E-045, the next representable
   number towards  1.0 is  2.8025969286496341E-045
Scaling  2.0 by 2**3 is 16.0

CODE EXAMPLE A-5 IEEE Recommended Functions (Continued)
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If using the f95 compiler with the -f77 compatibility option, the following 
additional messages are displayed. 

A.2.3 IEEE Special Values
This C program calls several of the ieee_values(3m) functions:  

Remember to specify both -lsunmath and -lm when linking. 

On SPARC based systems, the output looks like this:  

Note:IEEE floating-point exception flags raised: 
   Inexact; Underflow;
See the Numerical Computation Guide, ieee_flags(3M)

#include <math.h> 
#include <sunmath.h>

int main() 
{ 

double   x; 
float   r; 

x = quiet_nan(0); 
printf("quiet NaN: %.16e = %08x %08x \n", 
 x, ((int *) &x)[0], ((int *) &x)[1]); 

x = nextafter(max_subnormal(), 0.0);                
printf("nextafter(max_subnormal,0) = %.16e\n",x);
printf("                           = %08x %08x\n", 

((int *) &x)[0], ((int *) &x)[1]); 

r = min_subnormalf(); 
printf("single precision min subnormal = %.8e = %08x\n",
    r, ((int *) &r)[0]); 

return 0; 
} 

quiet NaN: NaN = 7fffffff ffffffff 
nextafter(max_subnormal,0) = 2.2250738585072004e-308 
                           = 000fffff fffffffe 
single precision min subnormal = 1.40129846e-45 = 00000001 
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Because the x86 architecture is “little-endian”, the output on x86 is slightly different 
(the high and low order words of the hexadecimal representations of the double 
precision numbers are reversed):  

Fortran programs that use ieee_values functions should take care to declare those 
functions’ types: 

On SPARC, the output reads as follows:  

quiet NaN: NaN = ffffffff 7fffffff 
nextafter(max_subnormal,0) = 2.2250738585072004e-308 
                           = fffffffe 000fffff
single precision min subnormal = 1.40129846e-45 = 00000001 

program print_ieee_values
c
c the purpose of the implicit statements is to insure
c that the floatingpoint pseudo-instrinsic
c functions are declared with the correct type
c

implicit real*16 (q)
implicit double precision (d)
implicit real (r)
real*16 z, zero, one
double precision    x
real                r

c
zero = 0.0
one = 1.0
z = q_nextafter(zero, one)
x = d_infinity()
r = r_max_normal()

c
print *, z
print *, x
print *, r

c
end

  6.4751751194380251109244389582276466-4966
  Inf             
  3.40282E+38
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A.2.4 ieee_flags — Rounding Direction
The following example demonstrates how to set the rounding mode to round towards 
zero: 

#include <math.h>
#include <sunmath.h>

int main()
{

int         i;
double      x, y;
char        *out_1, *out_2, *dummy;

/* get prevailing rounding direction */
i = ieee_flags("get", "direction", "", &out_1);

x = sqrt(.5);
printf("With rounding direction %s, \n", out_1);
printf("sqrt(.5) = 0x%08x 0x%08x = %16.15e\n",
       ((int *) &x)[0], ((int *) &x)[1], x);

/* set rounding direction */
if (ieee_flags("set", "direction", "tozero", &dummy) != 0)

printf("Not able to change rounding direction!\n");
i = ieee_flags("get", "direction", "", &out_2);

x = sqrt(.5);
/*
 * restore original rounding direction before printf, since
 * printf is also affected by the current rounding direction
 */
if (ieee_flags("set", "direction", out_1, &dummy) != 0)

printf("Not able to change rounding direction!\n");
printf("\nWith rounding direction %s,\n", out_2);
printf("sqrt(.5) = 0x%08x 0x%08x = %16.15e\n",
       ((int *) &x)[0], ((int *) &x)[1], x);

return 0;
}
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(SPARC) The output of this short program shows the effects of rounding towards 
zero: 

(x86) The output of this short program shows the effects of rounding towards zero: 

To set rounding direction towards zero from a Fortran program: 

The output is as follows: 

demo% cc rounding_direction.c -lsunmath -lm
demo% a.out 
With rounding direction nearest, 
sqrt(.5) = 0x3fe6a09e 0x667f3bcd  = 7.071067811865476e-01 

With rounding direction tozero, 
sqrt(.5) = 0x3fe6a09e 0x667f3bcc  = 7.071067811865475e-01 
demo% 

demo% cc rounding_direction.c -lsunmath -lm
demo% a.out 
With rounding direction nearest, 
sqrt(.5) = 0x667f3bcd 0x3fe6a09e  = 7.071067811865476e-01 

With rounding direction tozero, 
sqrt(.5) = 0x667f3bcc 0x3fe6a09e  = 7.071067811865475e-01 
demo% 

program ieee_flags_demo
character*16 out

i = ieee_flags('set', 'direction', 'tozero', out)
if (i.ne.0) print *, 'not able to set rounding direction'

i = ieee_flags('get', 'direction', '', out)
print *, 'Rounding direction is: ', out

end

demo% f95 ieee_flags_demo.f
demo% a.out
 Rounding direction is: tozero          
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If the program is compiled using the f95 compiler with the -f77 compatibility 
option, the output includes the following additional messages. 

A.2.5 C99 Floating Point Environment Functions
The next example illustrates the use of several of the C99 floating point environment 
functions. The norm function computes the Euclidean norm of a vector and uses the 
environment functions to handle underflow and overflow. The main program calls 
this function with vectors that are scaled to ensure that underflows and overflows 
occur, as the retrospective diagnostic output shows. 

demo% f95 -f77 ieee_flags_demo.f
ieee_flags_demo.f:
 MAIN ieee_flags_demo:
demo% a.out
 Rounding direction is: tozero          
 Note: Rounding direction toward zero 
 See the Numerical Computation Guide, ieee_flags(3M) 

CODE EXAMPLE A-7  C99 Floating Point Environment Functions 

#include <stdio.h>

#include <math.h>

#include <sunmath.h>

#include <fenv.h>

/*

*  Compute the euclidean norm of the vector x avoiding

*  premature underflow or overflow

*/

double norm(int n, double *x)

{

    fenv_t  env;

    double  s, b, d, t;

    int     i, f;

    /* save the environment, clear flags, and establish nonstop

       exception handling */

    feholdexcept(&env);
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    /* attempt to compute the dot product x.x */

    d = 1.0; /* scale factor */

    s = 0.0;

    for (i = 0; i < n; i++)

        s += x[i] * x[i];

    /* check for underflow or overflow */

    f = fetestexcept(FE_UNDERFLOW | FE_OVERFLOW);

    if (f & FE_OVERFLOW) {

        /* first attempt overflowed, try again scaling down */

        feclearexcept(FE_OVERFLOW);

        b = scalbn(1.0, -640);

        d = 1.0 / b;

        s = 0.0;

        for (i = 0; i < n; i++) {

            t = b * x[i];

            s += t * t;

        }

    }

    else if (f & FE_UNDERFLOW && s < scalbn(1.0, -970)) {

        /* first attempt underflowed, try again scaling up */

        b = scalbn(1.0, 1022);

        d = 1.0 / b;

        s = 0.0;

        for (i = 0; i < n; i++) {

            t = b * x[i];

            s += t * t;

        }

    }

    /* hide any underflows that have occurred so far */

    feclearexcept(FE_UNDERFLOW);

    /* restore the environment, raising any other exceptions

       that have occurred */

    feupdateenv(&env);

    /* take the square root and undo any scaling */

    return d * sqrt(s);

}

CODE EXAMPLE A-7  C99 Floating Point Environment Functions (Continued)
Appendix A Examples  A-15



On SPARC based systems, compiling and running this program produces the 
following:  

CODE EXAMPLE A-8 shows the effect of the fesetprec function on x86 based 
systems. (This function is not available on SPARC based systems.) The while loops 
attempt to determine the available precision by finding the largest power of two that 
rounds off entirely when it is added to one. As the first loop shows, this technique 
does not always work as expected on architectures like x86 based systems that 

int main()

{

    double x[100], l, u;

    int    n = 100;

    fex_set_log(stdout);

    l = 0.0;

    u = min_normal();

    d_lcrans_(x, &n, &l, &u);

    printf("norm: %g\n", norm(n, x));

    l = sqrt(max_normal());

    u = l * 2.0;

    d_lcrans_(x, &n, &l, &u);

    printf("norm: %g\n", norm(n, x));

    return 0;

}

demo% cc norm.c -lsunmath -lm
demo% a.out
Floating point underflow at 0x000153a8 __d_lcrans_, nonstop mode
  0x000153b4  __d_lcrans_
  0x00011594  main
Floating point underflow at 0x00011244 norm, nonstop mode
  0x00011248  norm
  0x000115b4  main
norm: 1.32533e-307
Floating point overflow at 0x00011244 norm, nonstop mode
  0x00011248  norm
  0x00011660  main
norm: 2.02548e+155

CODE EXAMPLE A-7  C99 Floating Point Environment Functions (Continued)
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evaluate all intermediate results in extended precision. Thus, the fesetprec 
function may be used to guarantee that all results will be rounded to the desired 
precision, as the second loop shows. 

The output from this program on x86 systems is:  

CODE EXAMPLE A-8 fesetprec Function (x86) 

#include <math.h>

#include <fenv.h>

int main()

{

    double  x;

    x = 1.0;

    while (1.0 + x != 1.0)

        x *= 0.5;

    printf("%d significant bits\n", -ilogb(x));

    fesetprec(FE_DBLPREC);

    x = 1.0;

    while (1.0 + x != 1.0)

        x *= 0.5;

    printf("%d significant bits\n", -ilogb(x));

    return 0;

}

64 significant bits
53 significant bits
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Finally, CODE EXAMPLE A-9 shows one way to use the environment functions in a 
multi-threaded program to propagate floating point modes from a parent thread to a 
child thread and recover exception flags raised in the child thread when it joins with 
the parent. (See the Solaris Multithreaded Programming Guide for more information on 
writing multi-threaded programs.)  

CODE EXAMPLE A-9 Using Environment Functions in Multi-Thread Program 

#include <thread.h>

#include <fenv.h>

fenv_t  env;

void child(void *p)

{

    /* inherit the parent's environment on entry */

    fesetenv(&env);

    ...

    /* save the child's environment before exit */

    fegetenv(&env);

}

void parent()

{

    thread_t tid;

    void *arg;

    ...

    /* save the parent's environment before creating the child */

    fegetenv(&env);

    thr_create(NULL, NULL, child, arg, NULL, &tid);

    ...

    /* join with the child */

    thr_join(tid, NULL, &arg);

    /* merge exception flags raised in the child into the

       parent's environment */

    fex_merge_flags(&env);

    ...

}
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A.3 Exceptions and Exception Handling

A.3.1 ieee_flags — Accrued Exceptions
Generally, a user program examines or clears the accrued exception bits. 
CODE EXAMPLE A-10 is a C program that examines the accrued exception flags. 

CODE EXAMPLE A-10 Examining the Accrued Exception Flags 

#include <sunmath.h>

#include <sys/ieeefp.h>

int main()

{

int     code, inexact, division, underflow, overflow, invalid;

double  x;

char    *out;

/* cause an underflow exception */

x = max_subnormal() / 2.0;

/* this statement insures that the previous */

/* statement is not optimized away          */

printf("x = %g\n",x);

/* find out which exceptions are raised */

code = ieee_flags("get", "exception", "", &out);

/* decode the return value */

inexact =      (code >> fp_inexact)     & 0x1;

underflow =    (code >> fp_underflow)   & 0x1;

division =     (code >> fp_division)    & 0x1;

overflow =     (code >> fp_overflow)    & 0x1;

invalid =      (code >> fp_invalid)     & 0x1;
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The output from running this program: 

The same can be done from Fortran: 

      /* "out" is the raised exception with the highest priority */

printf(" Highest priority exception is: %s\n", out);

/* The value 1 means the exception is raised, */

/* 0 means it isn't.                          */

printf("%d %d %d %d %d\n", invalid, overflow, division,

underflow, inexact);

ieee_retrospective_();

return 0;

}

demo% a.out 
x = 1.11254e-308
 Highest priority exception is: underflow
0 0 0 1 1
 Note:IEEE floating-point exception flags raised:   
    Inexact;  Underflow; 
 See the Numerical Computation Guide, ieee_flags(3M)

CODE EXAMPLE A-11  Examining the Accrued Exception Flags – Fortran 

/*

A Fortran example that: 

    *  causes an underflow exception

    *  uses ieee_flags to determine which exceptions are raised

    *  decodes the integer value returned by ieee_flags 

    *  clears all outstanding exceptions

Remember to save this program in a file with the suffix .F, so that

the c preprocessor is invoked to bring in the header file

floatingpoint.h. 

*/

#include <floatingpoint.h> 

CODE EXAMPLE A-10 Examining the Accrued Exception Flags (Continued)
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The output is as follows: 

    program decode_accrued_exceptions

    double precision   x

    integer            accrued, inx, div, under, over, inv

    character*16       out

    double precision   d_max_subnormal

c Cause an underflow exception

    x = d_max_subnormal() / 2.0

c Find out which exceptions are raised

    accrued = ieee_flags('get', 'exception', '', out)

c Decode value returned by ieee_flags using bit-shift intrinsics

    inx   = and(rshift(accrued, fp_inexact)  , 1)

    under = and(rshift(accrued, fp_underflow), 1)

    div   = and(rshift(accrued, fp_division) , 1)

    over  = and(rshift(accrued, fp_overflow) , 1)

    inv   = and(rshift(accrued, fp_invalid)  , 1)

c The exception with the highest priority is returned in "out"

    print *, "Highest priority exception is ", out

c The value 1 means the exception is raised; 0 means it is not

    print *, inv, over, div, under, inx

c Clear all outstanding exceptions

    i = ieee_flags('clear', 'exception', 'all', out)

    end

 Highest priority exception is underflow       
   0  0  0  1  1

CODE EXAMPLE A-11  Examining the Accrued Exception Flags – Fortran (Continued)
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While it is unusual for a user program to set exception flags, it can be done. This is 
demonstrated in the following C example. 

On SPARC, the output from the preceding program is: 

On x86, the output is:           

A.3.2 ieee_handler — Trapping Exceptions

Note – The examples below apply only to the Solaris OS.

#include <sunmath.h>

int main()
{

int     code;
char    *out;

if (ieee_flags("clear", "exception", "all", &out) != 0)
    printf("could not clear exceptions\n");
if (ieee_flags("set", "exception", "division", &out) != 0)
    printf("could not set exception\n");
code = ieee_flags("get", "exception", "", &out);
printf("out is: %s , fp exception code is: %X \n",
out, code);

return 0;
}

out is: division , fp exception code is: 2 

out is: division , fp exception code is: 4
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Here is a Fortran program that installs a signal handler to locate an exception (for 
SPARC based systems only):    

CODE EXAMPLE A-12 Trap on Underflow – SPARC 

program demo

c declare signal handler function

external fp_exc_hdl

double precision   d_min_normal

double precision   x

c set up signal handler

i = ieee_handler('set', 'common', fp_exc_hdl)

if (i.ne.0) print *, 'ieee trapping not supported here'

c cause an underflow exception (it will not be trapped)

x = d_min_normal() / 13.0

print *, 'd_min_normal() / 13.0 = ', x

c cause an overflow exception

c the value printed out is unrelated to the result

x = 1.0d300*1.0d300

print *, '1.0d300*1.0d300 = ', x

end 

c

c the floating-point exception handling function

c

integer function fp_exc_hdl(sig, sip, uap)

integer sig, code, addr

character label*16

c

c The structure /siginfo/ is a translation of siginfo_t

c from <sys/siginfo.h>

c

structure /fault/

integer address

end structure

structure /siginfo/

integer si_signo
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The output is:

integer si_code

integer si_errno

record /fault/ fault

end structure

record /siginfo/ sip

c See <sys/machsig.h> for list of FPE codes

c Figure out the name of the SIGFPE

code = sip.si_code

if (code.eq.3) label = 'division'

if (code.eq.4) label = 'overflow'

if (code.eq.5) label = 'underflow'

if (code.eq.6) label = 'inexact'

if (code.eq.7) label = 'invalid'

addr = sip.fault.address

c Print information about the signal that happened

write (*,77) code, label, addr

 77 format ('floating-point exception code ', i2, ',',

     *       a17, ',', ' at address ', z8 )

end

 d_min_normal() / 13.0 =     1.7115952757748-309
floating-point exception code  4, overflow        , at address    
1131C
 1.0d300*1.0d300 =     1.0000000000000+300
 Note: IEEE floating-point exception flags raised: 
    Inexact;  Underflow; 
 IEEE floating-point exception traps enabled:
    overflow; division by zero; invalid operation; 
 See the Numerical Computation Guide, ieee_flags(3M), 
    ieee_handler(3M) 

CODE EXAMPLE A-12 Trap on Underflow – SPARC (Continued)
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(SPARC) Here is a more complex C example:   

CODE EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact – 
SPARC 

/*

 * Generate the 5 IEEE exceptions: invalid, division,

 * overflow, underflow and inexact.

 *
 * Trap on any floating point exception, print a message,

 * and continue.

 *
 * Note that you could also inquire about raised exceptions by

 *    i = ieee("get","exception","",&out);

 * where out contains the name of the highest exception

 * raised, and i can be decoded to find out about all the

 * exceptions raised.

 */

#include <sunmath.h>

#include <signal.h>

#include <siginfo.h>

#include <ucontext.h>

extern void trap_all_fp_exc(int sig, siginfo_t *sip,

ucontext_t *uap);

int main()

{

doublex, y, z;

char*out;

/*

 * Use ieee_handler to establish "trap_all_fp_exc"

 * as the signal handler to use whenever any floating

 * point exception occurs.

 */

if (ieee_handler("set", "all", trap_all_fp_exc) != 0)

printf(" IEEE trapping not supported here.\n");

/* disable trapping (uninteresting) inexact exceptions */

if (ieee_handler("set", "inexact", SIGFPE_IGNORE) != 0)

printf("Trap handler for inexact not cleared.\n");
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/* raise invalid */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("1. Invalid: signaling_nan(0) * 2.5\n");

x = signaling_nan(0);

y = 2.5;

z = x * y;

/* raise division */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("2. Div0: 1.0 / 0.0\n");

x = 1.0;

y = 0.0;

z = x / y;

/* raise overflow */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("3. Overflow: -max_normal() - 1.0e294\n");

x = -max_normal();

y = -1.0e294;

z = x + y;

/* raise underflow */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("4. Underflow: min_normal() * min_normal()\n");

x = min_normal();

y = x;

z = x * y;

/* enable trapping on inexact exception */

if (ieee_handler("set", "inexact", trap_all_fp_exc) != 0)

printf("Could not set trap handler for inexact.\n");

/* raise inexact */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("5. Inexact: 2.0 / 3.0\n");

x = 2.0;

y = 3.0;

CODE EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact – 
SPARC (Continued)
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z = x / y;

/* don't trap on inexact */

if (ieee_handler("set", "inexact", SIGFPE_IGNORE) != 0)

printf(" could not reset inexact trap\n");

/* check that we're not trapping on inexact anymore */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("6. Inexact trapping disabled; 2.0 / 3.0\n");

x = 2.0;

y = 3.0;

z = x / y;

/* find out if there are any outstanding exceptions */

ieee_retrospective_();

/* exit gracefully */

return 0;

}

void trap_all_fp_exc(int sig, siginfo_t *sip, ucontext_t *uap) {

char*label = "undefined";

/* see /usr/include/sys/machsig.h for SIGFPE codes */

switch (sip->si_code) {

case FPE_FLTRES:

label = "inexact";

break;

case FPE_FLTDIV:

label = "division";

break;

case FPE_FLTUND:

label = "underflow";

break;

case FPE_FLTINV:

label = "invalid";

break;

case FPE_FLTOVF:

label = "overflow";

break;

}

CODE EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact – 
SPARC (Continued)
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The output is similar to the following: 

(SPARC) CODE EXAMPLE A-14 shows how you can use ieee_handler and the 
include files to modify the default result of certain exceptional situations: 

printf(

" signal %d, sigfpe code %d: %s exception at address %x\n",

sig, sip->si_code, label, sip->_data._fault._addr);

}

1. Invalid: signaling_nan(0) * 2.5
   signal 8, sigfpe code 7: invalid exception at address 10da8
2. Div0: 1.0 / 0.0
   signal 8, sigfpe code 3: division exception at address 10e44
3. Overflow: -max_normal() - 1.0e294
   signal 8, sigfpe code 4: overflow exception at address 10ee8
4. Underflow: min_normal() * min_normal()
   signal 8, sigfpe code 5: underflow exception at address 10f80
5. Inexact: 2.0 / 3.0
   signal 8, sigfpe code 6: inexact exception at address 1106c
6. Inexact trapping disabled; 2.0 / 3.0
Note: IEEE floating-point exception traps enabled:  
   underflow; overflow; division by zero; invalid operation; 
See the Numerical Computation Guide, ieee_handler(3M)

CODE EXAMPLE A-14 Modifying the Default Result of Exceptional Situations 

/*

 * Cause a division by zero exception and use the

 * signal handler to substitute MAXDOUBLE (or MAXFLOAT)

 * as the result.

 *

 * compile with the flag -Xa

 */

 

#include <values.h>

#include <siginfo.h>

#include <ucontext.h>

CODE EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact – 
SPARC (Continued)
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void division_handler(int sig, siginfo_t *sip, ucontext_t *uap);

int main() {

double x, y, z;

float r, s, t;

char *out;

/*

 * Use ieee_handler to establish division_handler as the

 * signal handler to use for the IEEE exception division.

 */

if (ieee_handler("set","division",division_handler)!=0) {

printf(" IEEE trapping not supported here.\n");

}

/* Cause a division-by-zero exception */

x = 1.0;

y = 0.0;

z = x / y;

/*

 * Check to see that the user-supplied value, MAXDOUBLE,

 * is indeed substituted in place of the IEEE default

 * value, infinity.

 */

printf("double precision division: %g/%g = %g \n",x,y,z);

/* Cause a division-by-zero exception */

r = 1.0;

s = 0.0;

t = r / s;

/*

 * Check to see that the user-supplied value, MAXFLOAT,

 * is indeed substituted in place of the IEEE default

 * value, infinity.

 */

printf("single precision division: %g/%g = %g \n",r,s,t);

ieee_retrospective_();

return 0;

CODE EXAMPLE A-14 Modifying the Default Result of Exceptional Situations (Continued)
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}

void division_handler(int sig, siginfo_t *sip, ucontext_t *uap) {

int inst;

unsigned rd, mask, single_prec=0;

float f_val = MAXFLOAT;

double d_val = MAXDOUBLE;

long *f_val_p = (long *) &f_val;

/* Get instruction that caused exception. */

inst = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;

/*

 * Decode the destination register. Bits 29:25 encode the

 * destination register for any SPARC floating point

 * instruction.

 */

mask = 0x1f;

rd = (mask & (inst >> 25));

/*

 * Is this a single precision or double precision

 * instruction?  Bits 5:6 encode the precision of the

 * opcode; if bit 5 is 1, it's sp, else, dp.

 */

mask = 0x1;

single_prec = (mask & (inst >> 5));

/* put user-defined value into destination register */

if (single_prec) {

uap->uc_mcontext.fpregs.fpu_fr.fpu_regs[rd] =

f_val_p[0];

} else {

uap->uc_mcontext.fpregs.fpu_fr.fpu_dregs[rd/2] = d_val;

}

}

CODE EXAMPLE A-14 Modifying the Default Result of Exceptional Situations (Continued)
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As expected, the output is: 

A.3.3 ieee_handler — Abort on Exceptions
You can use ieee_handler to force a program to abort in case of certain floating-
point exceptions: 

A.3.4 libm Exception Handling Features
The following examples show how to use some of the exception handling features 
provided by libm. The first example is based on the following task: given a number 
x and coefficients a0, a1,..., aN, and b0, b1,..., bN-1, evaluate the function f(x) and its first 
derivative f’(x), where f is the continued fraction

 f(x) = a0 + b0/(x + a1 + b1/(x + ... /(x + aN-1 + bN-1/(x + aN))...)).

 Computing f is straightforward in IEEE arithmetic: even if one of the intermediate 
divisions overflows or divides by zero, the default value specified by the standard (a 
correctly signed infinity) turns out to yield the correct result. Computing f’, on the 
other hand, can be more difficult because the simplest form for evaluating it can 
have removable singularities. If the computation encounters one of these 
singularities, it will attempt to evaluate one of the indeterminate forms 0/0, 

double precision division: 1/0 = 1.79769e+308 
single precision division: 1/0 = 3.40282e+38 
Note: IEEE floating-point exception traps enabled: 
   division by zero; 
See the Numerical Computation Guide, ieee_handler(3M)

#include <floatingpoint.h>
program abort

c
ieeer = ieee_handler('set', 'division', SIGFPE_ABORT)
if (ieeer .ne. 0) print *, ' ieee trapping not supported'
r = 14.2
s = 0.0
r = r/s

c
print *, 'you should not see this; system should abort'

c
end 
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0*infinity, or infinity/infinity, all of which raise invalid operation exceptions. W. 
Kahan has proposed a method for handling these exceptions via a feature called 
“presubstitution”.

Presubstitution is an extension of the IEEE default response to exceptions that lets 
the user specify in advance the value to be substituted for the result of an 
exceptional operation. Using the exception handling facilities in libm, a program 
can implement presubstitution easily by installing a handler in the FEX_CUSTOM 
exception handling mode. This mode allows the handler to supply any value for the 
result of an exceptional operation simply by storing that value in the data structure 
pointed to by the info parameter passed to the handler. Here is a sample program to 
compute the continued fraction and its derivative using presubstitution 
implemented with a FEX_CUSTOM handler. 

CODE EXAMPLE A-15 Computing the Continued Fraction and Its Derivative Using the 
FEX_CUSTOM Handler 

#include <stdio.h>

#include <sunmath.h>

#include <fenv.h>

volatile double p;

void handler(int ex, fex_info_t *info)

{

    info->res.type = fex_double;

    if (ex == FEX_INV_ZMI)

        info->res.val.d = p;

    else

        info->res.val.d = infinity();

}

/*

*  Evaluate the continued fraction given by coefficients a[j] and

*  b[j] at the point x; return the function value in *pf and the

*  derivative in *pf1

*/

void continued_fraction(int N, double *a, double *b,

    double x, double *pf, double *pf1)

{

    fex_handler_t    oldhdl; /* for saving/restoring handlers */

    volatile double  t;

    double           f, f1, d, d1, q;

    int              j;

    fex_getexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);
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    fex_set_handling(FEX_DIVBYZERO, FEX_NONSTOP, NULL);

    fex_set_handling(FEX_INV_ZDZ | FEX_INV_IDI | FEX_INV_ZMI,

        FEX_CUSTOM, handler);

    f1 = 0.0;

    f = a[N];

    for (j = N - 1; j >= 0; j--) {

        d = x + f;

        d1 = 1.0 + f1;

        q = b[j] / d;

        /* the following assignment to the volatile variable t

           is needed to maintain the correct sequencing between

           assignments to p and evaluation of f1 */

        t = f1 = (-d1 / d) * q;

        p = b[j-1] * d1 / b[j];

        f = a[j] + q;

    }

    fex_setexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

    *pf = f;

    *pf1 = f1;

}

/* For the following coefficients, x = -3, 1, 4, and 5 will all

   encounter intermediate exceptions */

double a[] = { -1.0, 2.0, -3.0, 4.0, -5.0 };

double b[] = { 2.0, 4.0, 6.0, 8.0 };

int main()

{

    double  x, f, f1;

    int     i;

    feraiseexcept(FE_INEXACT); /* prevent logging of inexact */

    fex_set_log(stdout);

    fex_set_handling(FEX_COMMON, FEX_ABORT, NULL);

    for (i = -5; i <= 5; i++) {

        x = i;

        continued_fraction(4, a, b, x, &f, &f1);

CODE EXAMPLE A-15 Computing the Continued Fraction and Its Derivative Using the 
FEX_CUSTOM Handler (Continued)
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Several comments about the program are in order. On entry, the function 
continued_fraction saves the current exception handling modes for division by 
zero and all invalid operation exceptions. It then establishes nonstop exception 
handling for division by zero and a FEX_CUSTOM handler for the three indeterminate 
forms. This handler will substitute infinity for both 0/0 and infinity/infinity, but it 
will substitute the value of the global variable p for 0*infinity. Note that p must be 
recomputed each time through the loop that evaluates the function in order to 
supply the correct value to substitute for a subsequent 0*infinity invalid operation. 
Note also that p must be declared volatile to prevent the compiler from 
eliminating it, since it is not explicitly mentioned elsewhere in the loop. Finally, to 
prevent the compiler from moving the assignment to p above or below the 
computation that can incur the exception for which p provides the presubstitution 
value, the result of that computation is also assigned to a volatile variable (called 
t in the program). The final call to fex_setexcepthandler restores the original 
handling modes for division by zero and the invalid operations.

The main program enables logging of retrospective diagnostics by calling the 
fex_set_log function. Before it does so, it raises the inexact flag; this has the effect 
of preventing the logging of inexact exceptions. (Recall that in FEX_NONSTOP mode, 
an exception is not logged if its flag is raised, as explained in the section 
“Retrospective Diagnostics” on page 4 27.) The main program also establishes 
FEX_ABORT mode for the common exceptions to ensure that any unusual exceptions 
not explicitly handled by continued_fraction will cause program termination. 

        printf("f(% g) = %12g, f’(% g) = %12g\n", x, f, x, f1);

    }

    return 0;

}

CODE EXAMPLE A-15 Computing the Continued Fraction and Its Derivative Using the 
FEX_CUSTOM Handler (Continued)
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Finally, the program evaluates a particular continued fraction at several different 
points. As the following sample output shows, the computation does indeed 
encounter intermediate exceptions:  

(The exceptions that occur in the computation of f’(x) at x = 1, 4, and 5 do not result 
in retrospective diagnostic messages because they occur at the same site in the 
program as the exceptions that occur when x = –3.)

The preceding program may not represent the most efficient way to handle the 
exceptions that can occur in the evaluation of a continued fraction and its derivative. 
One reason is that the presubstitution value must be recomputed in each iteration of 
the loop regardless of whether or not it is needed. In this case, the computation of 
the presubstitution value involves a floating point division, and on modern SPARC 
and x86 processors, floating point division is a relatively slow operation. Moreover, 
the loop itself already involves two divisions, and because most SPARC and x86 
processors cannot overlap the execution of two different division operations, 
divisions are likely to be a bottleneck in the loop; adding another division would 
exacerbate the bottleneck.

It is possible to rewrite the loop so that only one division is needed, and in 
particular, the computation of the presubstitution value need not involve a division. 
(To rewrite the loop in this way, one must precompute the ratios of adjacent 
elements of the coefficients in the b array.) This would remove the bottleneck of 

f(-5) =     -1.59649,   f’(-5) =      -0.1818
f(-4) =     -1.87302,   f’(-4) =    -0.428193
Floating point division by zero at 0x08048dbe continued_fraction, 
nonstop mode
  0x08048dc1  continued_fraction
  0x08048eda  main
Floating point invalid operation (inf/inf) at 0x08048dcf 
continued_fraction, handler: handler
  0x08048dd2  continued_fraction
  0x08048eda  main
Floating point invalid operation (0*inf) at 0x08048dd2 
continued_fraction, handler: handler
  0x08048dd8  continued_fraction
  0x08048eda  main
f(-3) =           -3,   f’(-3) =     -3.16667
f(-2) = -4.44089e-16,   f’(-2) =     -3.41667
f(-1) =     -1.22222,   f’(-1) =    -0.444444
f( 0) =     -1.33333,   f’( 0) =     0.203704
f( 1) =           -1,   f’( 1) =     0.333333
f( 2) =    -0.777778,   f’( 2) =      0.12037
f( 3) =    -0.714286,   f’( 3) =    0.0272109
f( 4) =    -0.666667,   f’( 4) =     0.203704
f( 5) =    -0.777778,   f’( 5) =    0.0185185
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multiple division operations, but it would not eliminate all of the arithmetic 
operations involved in the computation of the presubstitution value. Furthermore, 
the need to assign both the presubstitution value and the result of the operation to 
be presubstituted to volatile variables introduces additional memory operations 
that slow the program. While those assignments are necessary to prevent the 
compiler from reordering certain key operations, they effectively prevent the 
compiler from reordering other unrelated operations, too. Thus, handling the 
exceptions in this example via presubstitution requires additional memory 
operations and precludes some optimizations that might otherwise be possible. Can 
these exceptions be handled more efficiently?

In the absence of special hardware support for fast presubstitution, the most efficient 
way to handle exceptions in this example may be to use flags, as the following 
version does:  

CODE EXAMPLE A-16 Using Flags to Handle Exceptions 

#include <stdio.h>

#include <math.h>

#include <fenv.h>

/*

*  Evaluate the continued fraction given by coefficients a[j] and

*  b[j] at the point x; return the function value in *pf and the

*  derivative in *pf1

*/

void continued_fraction(int N, double *a, double *b,

    double         x, double *pf, double *pf1)

{

    fex_handler_t  oldhdl;

    fexcept_t      oldinvflag;

    double         f, f1, d, d1, pd1, q;

    int            j;

    fex_getexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

    fegetexceptflag(&oldinvflag, FE_INVALID);

    fex_set_handling(FEX_DIVBYZERO | FEX_INV_ZDZ | FEX_INV_IDI |

        FEX_INV_ZMI, FEX_NONSTOP, NULL);

    feclearexcept(FE_INVALID);
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In this version, the first loop attempts the computation of f(x) and f’(x) in the default 
nonstop mode. If the invalid flag is raised, the second loop recomputes f(x) and f’(x) 
explicitly testing for the appearance of a NaN. Usually, no invalid operation 
exception occurs, so the program only executes the first loop. This loop has no 
references to volatile variables and no extra arithmetic operations, so it will run 
as fast as the compiler can make it go. The cost of this efficiency is the need to write 
a second loop nearly identical to the first to handle the case when an exception 
occurs. This trade-off is typical of the dilemmas that floating point exception 
handling can pose.

    f1 = 0.0;

    f = a[N];

    for (j = N - 1; j >= 0; j--) {

        d = x + f;

        d1 = 1.0 + f1;

        q = b[j] / d;

        f1 = (-d1 / d) * q;

        f = a[j] + q;

    }

    if (fetestexcept(FE_INVALID)) {

        /* recompute and test for NaN */

        f1 = pd1 = 0.0;

        f = a[N];

        for (j = N - 1; j >= 0; j--) {

            d = x + f;

            d1 = 1.0 + f1;

            q = b[j] / d;

            f1 = (-d1 / d) * q;

            if (isnan(f1))

                f1 = b[j] * pd1 / b[j+1];

            pd1 = d1;

            f = a[j] + q;

        }

    }

    fesetexceptflag(&oldinvflag, FE_INVALID);

    fex_setexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

    *pf = f;

    *pf1 = f1;

}

CODE EXAMPLE A-16 Using Flags to Handle Exceptions (Continued)
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A.3.5 Using libm Exception Handling With Fortran 
Programs
The exception handling facilities in libm are primarily intended to be used from 
C/C++ programs, but by using the Sun Fortran language interoperability features, 
you can call some libm functions from Fortran programs as well.

Note – For consistent behavior, do not use both the libm exception handling 
functions and the ieee_flags and ieee_handler functions in the same program.

The following example shows a Fortran version of the program to evaluate a 
continued fraction and its derivative using presubstitution (SPARC only):    

CODE EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using 
Presubstitution – SPARC 

c

c Presubstitution handler

c

      subroutine handler(ex, info)

      structure /fex_numeric_t/

          integer type

          union

          map

              integer i

          end map

          map

              integer*8 l

          end map

          map

              real f

          end map

          map

              real*8 d

          end map

          map

              real*16 q

          end map

          end union

      end structure
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      structure /fex_info_t/

          integer op, flags

          record /fex_numeric_t/ op1, op2, res

      end structure

      integer ex

      record /fex_info_t/ info

      common /presub/ p

      double precision  p, d_infinity

      volatile          p

c 4 = fex_double; see <fenv.h> for this and other constants

      info.res.type = 4

c x'80' = FEX_INV_ZMI

      if (loc(ex) .eq. x'80') then

          info.res.d = p

      else

          info.res.d = d_infinity()

      endif

      return

      end

c

c Evaluate the continued fraction given by coefficients a(j) and

c b(j) at the point x; return the function value in f and the

c derivative in f1

c

      subroutine continued_fraction(n, a, b, x, f, f1)

      integer           n

      double precision  a(*), b(*), x, f, f1

      common            /presub/ p

      integer           j, oldhdl

      dimension        oldhdl(24)

      double precision d, d1, q, p, t

      volatile         p, t

CODE EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using 
Presubstitution – SPARC (Continued)
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      external fex_getexcepthandler, fex_setexcepthandler

      external fex_set_handling, handler

c$pragma c(fex_getexcepthandler, fex_setexcepthandler)

c$pragma c(fex_set_handling)

c x'ff2' = FEX_DIVBYZERO | FEX_INVALID

      call fex_getexcepthandler(oldhdl, %val(x'ff2'))

c x'2' = FEX_DIVBYZERO, 0 = FEX_NONSTOP

      call fex_set_handling(%val(x'2'), %val(0), %val(0))

c x'b0' = FEX_INV_ZDZ | FEX_INV_IDI | FEX_INV_ZMI, 3 = FEX_CUSTOM

      call fex_set_handling(%val(x'b0'), %val(3), handler)

      f1 = 0.0d0

      f = a(n+1)

      do j = n, 1, -1

          d = x + f

          d1 = 1.0d0 + f1

          q = b(j) / d

          f1 = (-d1 / d) * q

c

c         the following assignment to the volatile variable t

c         is needed to maintain the correct sequencing between

c         assignments to p and evaluation of f1

          t = f1

          p = b(j-1) * d1 / b(j)

          f = a(j) + q

      end do

      call fex_setexcepthandler(oldhdl, %val(x'ff2'))

      return

      end

CODE EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using 
Presubstitution – SPARC (Continued)
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The output from this program reads:    

c Main program

c

      program cf

      integer            i

      double precision   a, b, x, f, f1

      dimension          a(5), b(4)

      data a /-1.0d0, 2.0d0, -3.0d0, 4.0d0, -5.0d0/

      data b /2.0d0, 4.0d0, 6.0d0, 8.0d0/

      external fex_set_handling

c$pragma c(fex_set_handling)

c x'ffa' = FEX_COMMON, 1 = FEX_ABORT

      call fex_set_handling(%val(x'ffa'), %val(1), %val(0))

      do i = -5, 5

          x = dble(i)

          call continued_fraction(4, a, b, x, f, f1)

          write (*, 1) i, f, i, f1

      end do

    1 format('f(', I2, ') = ', G12.6, ', f’'(', I2, ') = ', G12.6)

      end

f(-5) = -1.59649    , f’(-5) = -.181800
f(-4) = -1.87302    , f’(-4) = -.428193
f(-3) = -3.00000    , f’(-3) = -3.16667
f(-2) = -.444089E-15, f’(-2) = -3.41667
f(-1) = -1.22222    , f’(-1) = -.444444
f( 0) = -1.33333    , f’( 0) = 0.203704
f( 1) = -1.00000    , f’( 1) = 0.333333
f( 2) = -.777778    , f’( 2) = 0.120370
f( 3) = -.714286    , f’( 3) = 0.272109E-01
f( 4) = -.666667    , f’( 4) = 0.203704
f( 5) = -.777778    , f’( 5) = 0.185185E-01
 Note: IEEE floating-point exception flags raised:
    Inexact;  Division by Zero;  Invalid Operation;
 IEEE floating-point exception traps enabled:
    overflow;  division by zero;  invalid operation;
 See the Numerical Computation Guide, ieee_flags(3M),
ieee_handler(3M)

CODE EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using 
Presubstitution – SPARC (Continued)
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A.4 Miscellaneous

A.4.1 sigfpe — Trapping Integer Exceptions
The previous section showed examples of using ieee_handler. In general, when 
there is a choice between using ieee_handler or sigfpe, the former is 
recommended.

Note – sigfpe is available only in the Solaris OS. 

(SPARC) There are instances, such as trapping integer arithmetic exceptions, when 
sigfpe is the handler to be used. CODE EXAMPLE A-18 traps on integer division by 
zero. 

CODE EXAMPLE A-18 Trapping Integer Exceptions 

/* Generate the integer division by zero exception */

#include <siginfo.h>

#include <ucontext.h>

#include <signal.h>

void int_handler(int sig, siginfo_t *sip, ucontext_t *uap);

int main() {

int   a, b, c;

/*

 * Use sigfpe(3) to establish "int_handler" as the signal handler

 * to use on integer division by zero

 */

/*

 * Integer division-by-zero aborts unless a signal

 * handler for integer division by zero is set up

 */

sigfpe(FPE_INTDIV, int_handler);
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A.4.2 Calling Fortran From C
Here is a simple example of a C driver calling Fortran subroutines. Refer to the 
appropriate C and Fortran manuals for more information on working with C and 
Fortran. The following is the C driver (save it in a file named driver.c):  

a = 4;

b = 0;

c = a / b;

printf("%d / %d = %d\n\n", a, b, c);

return 0;

}

void int_handler(int sig, siginfo_t *sip, ucontext_t *uap) {

printf("Signal %d, code %d, at addr %x\n",

sig, sip->si_code, sip->_data._fault._addr);

/*

 * automatically for floating-point exceptions but not for 

 * integer division by zero.

 */

uap->uc_mcontext.gregs[REG_PC] = 

uap->uc_mcontext.gregs[REG_nPC];

}

CODE EXAMPLE A-19 Calling Fortran From C 

/*

 * a demo program that shows:

 * 1. how to call f95 subroutine from C, passing an array argument

 * 2. how to call single precision f95 function from C

 * 3. how to call double precision f95 function from C

 */

extern int      demo_one_(double *);

extern float    demo_two_(float *);

extern double   demo_three_(double *);

int main()

CODE EXAMPLE A-18 Trapping Integer Exceptions (Continued)
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{

doublearray[3][4];

floatf, g;

doublex, y;

int i, j;

for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)

array[i][j] = i + 2*j;

g = 1.5;

y = g;

/* pass an array to a fortran function (print the array) */

demo_one_(&array[0][0]);

printf(" from the driver\n");

for (i = 0; i < 3; i++) {

for (j = 0; j < 4; j++)

printf("    array[%d][%d] = %e\n",

i, j, array[i][j]);

printf("\n");

}

/* call a single precision fortran function */

f = demo_two_(&g);

printf(

        " f = sin(g) from a single precision fortran function\n");

printf("    f, g: %8.7e, %8.7e\n", f, g);

printf("\n");

/* call a double precision fortran function */

x = demo_three_(&y);

printf(

 " x = sin(y) from a double precision fortran function\n");

printf("    x, y: %18.17e, %18.17e\n", x, y);

ieee_retrospective_();

return 0;

}

CODE EXAMPLE A-19 Calling Fortran From C (Continued)
A-44  Numerical Computation Guide • January 2005



Save the Fortran subroutines in a file named drivee.f: 

Then, perform the compilation and linking:

subroutine demo_one(array)
double precision array(4,3)
print *, 'from the fortran routine:'
do 10 i =1,4
do 20 j = 1,3

print *, '   array[', i, '][', j, '] = ', array(i,j)
 20 continue

print *
 10 continue

return
end

real function demo_two(number)
real number
demo_two = sin(number)
return
end

double precision function demo_three(number)
double precision number
demo_three = sin(number)
return 
end

cc -c driver.c
f95 -c drivee.f

demo_one:
demo_two:
demo_three:

f95 -o driver driver.o drivee.o
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The output looks like this:

 from the fortran routine:
    array[ 1 ][ 1 ] =  0.0E+0
    array[ 1 ][ 2 ] =  1.0
    array[ 1 ][ 3 ] =  2.0
 
    array[ 2 ][ 1 ] =  2.0
    array[ 2 ][ 2 ] =  3.0
    array[ 2 ][ 3 ] =  4.0
 
    array[ 3 ][ 1 ] =  4.0
    array[ 3 ][ 2 ] =  5.0
    array[ 3 ][ 3 ] =  6.0
 
    array[ 4 ][ 1 ] =  6.0
    array[ 4 ][ 2 ] =  7.0
    array[ 4 ][ 3 ] =  8.0
 
 from the driver
    array[0][0] = 0.000000e+00
    array[0][1] = 2.000000e+00
    array[0][2] = 4.000000e+00
    array[0][3] = 6.000000e+00

    array[1][0] = 1.000000e+00
    array[1][1] = 3.000000e+00
    array[1][2] = 5.000000e+00
    array[1][3] = 7.000000e+00

    array[2][0] = 2.000000e+00
    array[2][1] = 4.000000e+00
    array[2][2] = 6.000000e+00
    array[2][3] = 8.000000e+00

 f = sin(g) from a single precision fortran function
    f, g: 9.9749500e-01, 1.5000000e+00

 x = sin(y) from a double precision fortran function
    x, y: 9.97494986604054446e-01, 1.50000000000000000e+00
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A.4.3 Useful Debugging Commands
TABLE A-1 shows examples of debugging commands for the SPARC architecture. 

TABLE A-1 Some Debugging Commands (SPARC) 

Action dbx adb

Set breakpoint 
   at function 
   at line number 
   at absolute address 
   at relative address 

stop in myfunct

stop at 29 

myfunct:b 

23a8:b

main+0x40:b 

Run until breakpoint met run :r 

Examine source code list <pc,10?ia 

Examine a fp register 
   IEEE single precision 
   decimal equivalent (Hex)
   IEEE double precision 
   decimal equivalent (Hex)

print $f0

print -fx $f0

print $f0f1

print -flx $f0f1 
print -flx $d0

<f0=X 

<f0=f 

<f0=X; <f1=X 

<f0=F 

Examine all fp registers regs -F $x for f0-f15 

$X for f16-f31 

Examine all registers regs $r; $x; $X 

Examine fp status register print -fx $fsr <fsr=X 

Put single precision 1.0 in f0 
Put double prec 1.0 in f0/f1 

assign $f0=1.0

assign $f0f1=1.0 

3f800000>f0 

3ff00000>f0; 0>f1

Continue execution cont :c 

Single step step (or next) :s 

Exit the debugger quit $q 
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TABLE A-2 shows examples of debugging commands for the x86 architecture. 

The following examples show two ways to set a breakpoint at the beginning of the 
code corresponding to a routine myfunction in adb. First you can say: 

Second, you can determine the absolute address that corresponds to the beginning of 
the piece of code corresponding to myfunction, and then set a break at that 
absolute address: 

The main subroutine in a Fortran program compiled with f95 is known as MAIN_ to 
adb. To set a breakpoint at MAIN_ in adb: 

   MAIN_:b 

TABLE A-2 Some Debugging Commands (x86) 

Action dbx adb 

Set breakpoint 
   at function 
   at line number 
   at absolute address 
   at relative address 

stop in myfunct

stop at 29 

myfunct:b 

23a8:b

main+0x40:b 

Run until breakpoint met run :r 

Examine source code list <pc,10?ia 

Examine fp registers print $st0

... 

print $st7 

$x 

Examine all registers examine &$gs/19X $r 

Examine fp status register examine &$fstat/X <fstat=X 

or $x

Continue execution cont :c 

Single step step (or next) :s 

Exit the debugger quit $q 

myfunction:b 

myfunction=X 
23a8 

23a8:b 
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When examining the contents of floating-point registers, the hex value shown by the 
dbx command regs -F is the base-16 representation, not the number’s decimal 
representation. For SPACR based systems, the adb commands $x and $X display 
both the hexadecimal representation, and the decimal value. For x86 based systems, 
the adb command $x displays only the decimal value. For SPARC based systems, 
the double precision values show the decimal value next to the odd-numbered 
register. 

Because the operating system disables the floating-point unit until it is first used by 
a process, you cannot modify the floating-point registers until they have been 
accessed by the program being debugged. 

(SPARC) When displaying floating point numbers, you should keep in mind that the 
size of registers is 32 bits, a single precision floating-point number occupies 32 bits 
(hence it fits in one register), and a double precision floating-point number occupies 
64 bits (therefore two registers are used to hold a double precision number). In the 
hexadecimal representation, 32 bits corresponds to 8 hexadecimal digits. In the 
following snapshot of FPU registers displayed with adb, the display is organized as 
follows: 

<name of fpu register> <IEEE hex value> <single precision> <double precision> 

(SPARC) The third column holds the single precision decimal interpretation of the 
hexadecimal pattern shown in the second column. The fourth column interprets 
pairs of registers. For example, the fourth column of the f11 line interprets f10 and 
f11 as a 64-bit IEEE double precision number. 

(SPARC) Because f10 and f11 are used to hold a double precision value, the 
interpretation (on the f10 line) of the first 32 bits of that value, 7ff00000, as +NaN, 
is irrelevant. The interpretation of all 64 bits, 7ff00000 00000000, as +Infinity, 
happens to be the meaningful translation. 
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(SPARC) The adb command $x, that was used to display the first 16 floating-point 
data registers, also displayed fsr (the floating-point status register): 

(x86) The corresponding output on x86 looks like:  

Note – (x86) cw is the control word; sw is the status word.

$x 
fsr    40020
f0 400921fb     +2.1426990e+00 
f1 54442d18     +3.3702806e+12     +3.1415926535897931e+00 
f2        2     +2.8025969e-45 
f3        0     +0.0000000e+00     +4.2439915819305446e-314 
f4 40000000     +2.0000000e+00 
f5        0     +0.0000000e+00     +2.0000000000000000e+00 
f6 3de0b460     +1.0971904e-01 
f7        0     +0.0000000e+00     +1.2154188766544394e-10 
f8 3de0b460     +1.0971904e-01 
f9        0     +0.0000000e+00     +1.2154188766544394e-10 
f10 7ff00000     +NaN 
f11        0     +0.0000000e+00     +Infinity 
f12 ffffffff     -NaN 
f13 ffffffff     -NaN                -NaN 
f14 ffffffff     -NaN 
f15 ffffffff     -NaN                -NaN 

$x
80387 chip is present.
cw      0x137f
sw      0x3920
cssel 0x17  ipoff 0x2d93                datasel 0x1f  dataoff 0x5740
 
 st[0]  +3.24999988079071044921875 e-1            VALID
 st[1]  +5.6539133243479549034419688 e73          EMPTY
 st[2]  +2.0000000000000008881784197              EMPTY
 st[3]  +1.8073218308070440556016047 e-1          EMPTY
 st[4]  +7.9180300235748291015625 e-1             EMPTY
 st[5]  +4.201639036693904927233234 e-13          EMPTY
 st[6]  +4.201639036693904927233234 e-13          EMPTY
 st[7]  +2.7224999213218694649185636              EMPTY
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APPENDIX B

SPARC Behavior and 
Implementation

This chapter discusses issues related to the floating-point units used in SPARC® 
based workstations and describes a way to determine which code generation flags 
are best suited for a particular workstation.

B.1 Floating-Point Hardware
This section lists a number of SPARC floating-point units and describes the 
instruction sets and exception handling features they support. See the SPARC 
Architecture Manual Version 8 Appendix N, “SPARC IEEE 754 Implementation 
Recommendations”, and Version 9 Appendix B, “IEEE Std 754-1985 Requirements 
for SPARC-V9”, for brief descriptions of what happens when a floating-point trap is 
taken, the distinction between trapped and untrapped underflow, and recommended 
possible courses of action for SPARC implementations that provide a non-IEEE 
(nonstandard) arithmetic mode. 

TABLE B-1 lists the hardware floating-point implementations used by SPARC 
workstations. Many early SPARC based systems have floating-point units derived 
from cores developed by TI or Weitek:

■ TI family – includes the TI8847 and the TMS390C602A 
■ Weitek family – includes the 1164/1165, the 3170, and 3171
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These two families of FPUs have been licensed to other workstation vendors, so 
chips from other semiconductor manufacturers may be found in some SPARC based 
workstations. Some of these other chips are also shown in the table. 

TABLE B-1 SPARC Floating-Point Options 

FPU
Description or
Processor Name Appropriate for Machines Notes

Optimum -xchip 
and -xarch

Weitek 
1164/1165-
based FPU 
or no FPU

Kernel emulates 
floating-point 
instructions

Obsolete Slow; not 
recommended

-xchip=old 
-xarch=v7

TI 8847-based 
FPU 

TI 8847; 
controller from 
Fujitsu or LSI

Sun-4™/1xx
Sun-4/2xx 
Sun-4/3xx 
Sun-4/4xx 
SPARCstation® 1 (4/60) 

1989
Most SPARCstation 
1 workstations have 
Weitek 3170

-xchip=old 
-xarch=v7

Weitek 3170-
based FPU

 SPARCstation 1   (4/60) 
SPARCstation 1+ (4/65) 

1989, 1990 -xchip=old 
-xarch=v7

TI 602a SPARCstation 2 (4/75) 1990 -xchip=old 
-xarch=v7

Weitek 3172-
based FPU

 SPARCstation SLC (4/20)
SPARCstation IPC (4/40) 

1990 -xchip=old 
-xarch=v7

Weitek 8601 or 
Fujitsu 86903

Integrated CPU 
and FPU

SPARCstation IPX (4/50)
SPARCstation ELC (4/25)

1991
IPX uses 40 MHz 
CPU/FPU; ELC 
uses 33 MHz

-xchip=old 
-xarch=v7

Cypress 602 Resides on Mbus 
Module

SPARCserver® 6xx 1991 -xchip=old 
-xarch=v7

TI TMS390S10
(STP1010)

microSPARC®-I SPARCstation LX
SPARCclassic

1992
No FsMULd in 
hardware

-xchip=micro 
-xarch=v8a

Fujitsu 86904
(STP1012)

microSPARC-II SPARCstation 4 and 5
SPARCstation Voyager

No FsMULd in 
hardware

-xchip=micro2 
-xarch=v8a

TI TMS390Z50
(STP1020A)

SuperSPARC®-I SPARCserver 6xx 
SPARCstation 10 
SPARCstation 20
SPARCserver 1000
SPARCcenter 2000

-xchip=super 
-xarch=v8
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The last column in the preceding table shows the compiler flags to use to obtain the 
fastest code for each FPU. These flags control two independent attributes of code 
generation: the -xarch flag determines the instruction set the compiler may use, 
and the -xchip flag determines the assumptions the compiler will make about a 

STP1021A SuperSPARC-II SPARCserver 6xx
SPARCstation 10
SPARCstation 20
SPARCserver 1000
SPARCcenter 2000

-xchip=super2 
-xarch=v8

Ross RT620 hyperSPARC® SPARCstation 10/HSxx
SPARCstation 20/HSxx

-xchip=hyper 
-xarch=v8

Fujitsu 86907 TurboSPARC SPARCstation 4 and 5 -xchip=micro2 
-xarch=v8

STP1030A UltraSPARC® I Ultra-1, Ultra-2
Ex000

V9+VIS -xchip=ultra 
-xarch=v8plusa

STP1031 UltraSPARC II Ultra-2, E450
Ultra-30, Ultra-60, 
Ultra-80, Ex500
Ex000, E10000

V9+VIS -xchip=ultra2 
-xarch=v8plusa

SME1040 UltraSPARC IIi Ultra-5, Ultra-10 V9+VIS -xchip=ultra2i 
-xarch=v8plusa

UltraSPARC IIe Sun Blade™ 100 V9+VIS -xchip=ultra2e

-xarch=v8plusa

UltraSPARC III Sun Blade 1000
Sun Blade 2000

V9+VIS II -xchip=ultra3

-xarch=v8plusb*

UltraSPARC IIIi Sun Blade 1500
Sun Blade 2500

V9+VIS II -xchip=ultra3i

-xarch=v8plusb*

UltraSPARC IV Sun Fire V490
Sun Fire V890
Sun Fire E2900
Sun Fire E4900
Sun Fire E6900
Sun Fire E20K
Sun Fire E25K

V9+VIS II -xchip=ultra4

-xarch=v8plusb*

*Programs compiled or linked with -xarch=v8plusb will work only on UltraSPARC III/IV systems.  To 
create a program that can run on any UltraSPARC (I,II,III,IV) system, use -xarch=v8plusa.

TABLE B-1 SPARC Floating-Point Options (Continued)

FPU
Description or
Processor Name Appropriate for Machines Notes

Optimum -xchip 
and -xarch
Appendix B SPARC Behavior and Implementation  B-3



processor’s performance characteristics in scheduling the code. Because all SPARC 
floating-point units implement at least the floating-point instruction set defined in 
the SPARC Architecture Manual Version 7, a program compiled with -xarch=v7 will 
run on any SPARC based system, although it may not take full advantage of the 
features of later processors. Likewise, a program compiled with a particular -xchip 
value will run on any SPARC based system that supports the instruction set 
specified with -xarch, but it may run more slowly on systems with processors other 
than the one specified.

The floating-point units listed in the table preceding the microSPARC-I implement 
the floating-point instruction set defined in the SPARC Architecture Manual Version 7. 
Programs that must run on systems with these FPUs should be compiled with 
-xarch=v7. The compilers make no special assumptions regarding the performance 
characteristics of these processors, so they all share the single -xchip option 
-xchip=old. (Not all of the systems listed in TABLE B-1 are still supported by the 
compilers; they are listed solely for historical purposes. Refer to the appropriate 
version of the Numerical Computation Guide for the code generation flags to use 
with compilers supporting these systems.)

The microSPARC-I and microSPARC-II floating-point units implement the floating-
point instruction set defined in the SPARC Architecture Manual Version 8 except for 
the FsMULd and quad precision instructions. Programs compiled with -xarch=v8 
will run on systems with these processors, but because unimplemented floating-
point instructions must be emulated by the system kernel, programs that use 
FsMULd extensively (such as Fortran programs that perform a lot of single precision 
complex arithmetic), may encounter severe performance degradation. To avoid this, 
compile programs for systems with these processors with -xarch=v8a.

The SuperSPARC-I, SuperSPARC-II, hyperSPARC, and TurboSPARC floating-point 
units implement the floating-point instruction set defined in the SPARC Architecture 
Manual Version 8 except for the quad precision instructions. To get the best 
performance on systems with these processors, compile with -xarch=v8.

The UltraSPARC I, UltraSPARC II, UltraSPARC IIe, UltraSPARC IIi, UltraSPARC III, 
UltraSPARC IIIi, and UltraSPARC IV floating-point units implement the floating-
point instruction set defined in the SPARC Architecture Manual Version 9 except for 
the quad precision instructions; in particular, they provide 32 double precision 
floating-point registers. To allow the compiler to use these registers, compile with 
-xarch=v8plus (for programs that run under a 32-bit OS) or -xarch=v9 (for 
programs that run under a 64-bit OS). These processors also provide extensions to 
the standard instruction set. The additional instructions, known as the Visual 
Instruction Set or VIS, are rarely generated automatically by the compilers, but they 
may be used in assembly code. Therefore, to take full advantage of the instruction 
set these processors support, use -xarch=v8plusa (32-bit) or -xarch=v9a (64-bit). 

The -xarch and -xchip options can be specified simultaneously using the 
-xtarget macro option. (That is, the -xtarget flag simply expands to a suitable 
combination of -xarch, -xchip, and -xcache flags.) The default code generation 
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option is -xtarget=generic. See the cc(1), CC(1), and f95(1) man pages and the 
compiler manuals for more information including a complete list of -xarch, 
-xchip, and -xtarget values. Additional -xarch information is provided in the 
Fortran User’s Guide, C User’s Guide, and C++ User’s Guide.

B.1.1 Floating-Point Status Register and Queue
All SPARC floating-point units, regardless of which version of the SPARC 
architecture they implement, provide a floating-point status register (FSR) that 
contains status and control bits associated with the FPU. All SPARC FPUs that 
implement deferred floating-point traps provide a floating-point queue (FQ) that 
contains information about currently executing floating-point instructions. The FSR 
can be accessed by user software to detect floating-point exceptions that have 
occurred and to control rounding direction, trapping, and nonstandard arithmetic 
modes. The FQ is used by the operating system kernel to process floating-point traps 
and is normally invisible to user software.

Software accesses the floating-point status register via STFSR and LDFSR 
instructions that store the FSR in memory and load it from memory, respectively. In 
SPARC assembly language, these instructions are written as follows:  

The inline template file libm.il located in the directory containing the libraries 
supplied with the Sun Studio compilers contains examples showing the use of 
STFSR and LDFSR instructions. 

FIGURE B-1 shows the layout of bit fields in the floating-point status register. 

FIGURE B-1 SPARC Floating-Point Status Register

In versions 7 and 8 of the SPARC architecture, the FSR occupies 32 bits as shown. In 
version 9, the FSR is extended to 64 bits, of which the lower 32 match the figure; the 
upper 32 are largely unused, containing only three additional floating point 
condition code fields.

        st      %fsr, [addr]  ! store FSR at specified address
        ld      [addr], %fsr  ! load FSR from specified address

RD res TEM NS res ver ftt qneres fcc aexc cexc

31:30 29:28 27:23 22 21:20 19:17 16:14 13 12 11:10 9:5 4:0
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Here res refers to bits that are reserved, ver is a read-only field that identifies the 
version of the FPU, and ftt and qne are used by the system when it processes 
floating-point traps. The remaining fields are described in the following table. 

The RM field holds two bits that specify the rounding direction for floating-point 
operations. The NS bit enables nonstandard arithmetic mode on SPARC FPUs that 
implement it; on others, this bit is ignored. The fcc field holds floating-point 
condition codes generated by floating-point compare instructions and used by 
branch and conditional move operations. Finally, the TEM, aexc, and cexc fields 
contain five bits that control trapping and record accrued and current exception flags 
for each of the five IEEE 754 floating-point exceptions. These fields are subdivided as 
shown in TABLE B-3. 

(The symbols NV, OF, UF, DZ, and NX above stand for the invalid operation, 
overflow, underflow, division-by-zero, and inexact exceptions respectively.)

TABLE B-2 Floating-Point Status Register Fields

Field Contains

RM rounding direction mode

TEM trap enable modes

NS nonstandard mode

fcc floating point condition code

aexc accrued exception flags

cexc current exception flags

TABLE B-3 Exception Handling Fields

Field  Corresponding bits in register 

TEM, trap enable modes NVM
27 

OFM
26 

UFM
25 

DZM
24  

NXM
23 

aexc, accrued exception flags nva 
9 

ofa 
8 

ufa
7 

dza 
6

nxa 
5

cexc, current exception flags nvc
4

ofc 
3

ufc 
2

dzc 
1

nxc 
0
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B.1.2 Special Cases Requiring Software Support
In most cases, SPARC floating-point units execute instructions completely in 
hardware without requiring software support. There are four situations, however, 
when the hardware will not successfully complete a floating-point instruction: 

■ The floating-point unit is disabled.

■ The instruction is not implemented by the hardware (such as fsqrt[sd] on 
Weitek 1164/1165-based FPUs, fsmuld on microSPARC-I and microSPARC-II 
FPUs, or quad precision instructions on any SPARC FPU).

■ The hardware is unable to deliver the correct result for the instruction’s operands.

■ The instruction would cause an IEEE 754 floating-point exception and that 
exception’s trap is enabled.

In each situation, the initial response is the same: the process “traps” to the system 
kernel, which determines the cause of the trap and takes the appropriate action. (The 
term “trap” refers to an interruption of the normal flow of control.) In the first three 
situations, the kernel emulates the trapping instruction in software. Note that the 
emulated instruction can also incur an exception whose trap is enabled.

In the first three situations above, if the emulated instruction does not incur an IEEE 
floating-point exception whose trap is enabled, the kernel completes the instruction. 
If the instruction is a floating-point compare, the kernel updates the condition codes 
to reflect the result; if the instruction is an arithmetic operation, it delivers the 
appropriate result to the destination register. It also updates the current exception 
flags to reflect any (untrapped) exceptions raised by the instruction, and it “or”s 
those exceptions into the accrued exception flags. It then arranges to continue 
execution of the process at the point at which the trap was taken.

When an instruction executed by hardware or emulated by the kernel software 
incurs an IEEE floating-point exception whose trap is enabled, the instruction is not 
completed. The destination register, floating point condition codes, and accrued 
exception flags are unchanged, the current exception flags are set to reflect the 
particular exception that caused the trap, and the kernel sends a SIGFPE signal to 
the process.
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The following pseudo-code summarizes the handling of floating-point traps. Note 
that the aexc field can normally only be cleared by software. 

A program will encounter severe performance degradation when many floating-
point instructions must be emulated by the kernel. The relative frequency with 
which this happens can depend on several factors including, of course, the type of 
trap.

Under normal circumstances, the fp_disabled trap should occur only once per 
process. The system kernel disables the floating-point unit when a process is first 
started, so the first floating-point operation executed by the process will cause a 
trap. After processing the trap, the kernel enables the floating-point unit, and it 
remains enabled for the duration of the process. (It is possible to disable the floating-
point unit for the entire system, but this is not recommended and is done only for 
kernel or hardware debugging purposes.)

An unimplemented_FPop trap will obviously occur any time the floating-point 
unit encounters an instruction it does not implement. Since most current SPARC 
floating-point units implement at least the instruction set defined by the SPARC 
Architecture Manual Version 8 except for the quad precision instructions, and the Sun 
Studio compilers do not generate quad precision instructions, this type of trap 
should not occur on most systems. As mentioned above, two notable exceptions are 
the microSPARC-I and microSPARC-II processors, which do not implement the 
FsMULd instruction. To avoid unimplemented_FPop traps on these processors, 
compile programs with the -xarch=v8a option.

The remaining two trap types, unfinished_FPop and trapped IEEE exceptions, are 
usually associated with special computational situations involving NaNs, infinities, 
and subnormal numbers.

FPop provokes a trap;
if trap type is fp_disabled, unimplemented_FPop, or
  unfinished_FPop then
    emulate FPop;
texc ¨ all IEEE exceptions generated by FPop;
if (texc and TEM) = 0 then
    f[rd]  ¨ fp_result;  // if fpop is an arithmetic op
    fcc ¨ fcc_result;  // if fpop is a compare
    cexc ¨ texc;
    aexc ¨ (aexc or texc);
else
    cexc ¨ trapped IEEE exception generated by FPop;
    throw SIGFPE;
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B.1.2.1 IEEE Floating-Point Exceptions, NaNs, and Infinities

When a floating-point instruction encounters an IEEE floating-point exception 
whose trap is enabled, the instruction is not completed; instead the system delivers a 
SIGFPE signal to the process. If the process has established a SIGFPE signal handler, 
that handler is invoked, and otherwise, the process aborts. Since trapping is most 
often enabled for the purpose of aborting the program when an exception occurs, 
either by invoking a signal handler that prints a message and terminates the 
program or by resorting to the system default behavior when no signal handler is 
installed, most programs do not incur many trapped IEEE floating-point exceptions. 
As described in Chapter 4, however, it is possible to arrange for a signal handler to 
supply a result for the trapping instruction and continue execution. Note that severe 
performance degradation can result if many floating-point exceptions are trapped 
and handled in this way.

Most SPARC floating-point units will also trap on at least some cases involving 
infinite or NaN operands or IEEE floating-point exceptions even when trapping is 
disabled or an instruction would not cause an exception whose trap is enabled. This 
happens when the hardware does not support such special cases; instead it 
generates an unfinished_FPop trap and leaves the kernel emulation software to 
complete the instruction. Different SPARC FPUs vary as to the conditions that result 
in an unfinished_FPop trap: for example, most early SPARC FPUs as well as the 
hyperSPARC FPU trap on all IEEE floating-point exceptions regardless of whether 
trapping is enabled, while UltraSPARC FPUs can trap “pessimistically” when a 
floating-point exception’s trap is enabled and the hardware is unable to determine 
whether or not an instruction would raise that exception. On the other hand, the 
SuperSPARC-I, SuperSPARC-II, TurboSPARC, microSPARC-I, and microSPARC-II 
FPUs handle all exceptional cases in hardware and never generate 
unfinished_FPop traps.

Since most unfinished_FPop traps occur in conjunction with floating-point 
exceptions, a program can avoid incurring an excessive number of these traps by 
employing exception handling (i.e., testing the exception flags, trapping and 
substituting results, or aborting on exceptions). Of course, care must be taken to 
balance the cost of handling exceptions with that of allowing exceptions to result in 
unfinished_FPop traps.

B.1.2.2 Subnormal Numbers and Nonstandard Arithmetic

The most common situations in which some SPARC floating-point units will trap 
with an unfinished_FPop involve subnormal numbers. Many SPARC FPUs will 
trap whenever a floating-point operation involves subnormal operands or must 
generate a nonzero subnormal result (i.e., a result that incurs gradual underflow). 
Because underflow is somewhat rare but difficult to program around, and because 
the accuracy of underflowed intermediate results often has little effect on the overall 
accuracy of the final result of a computation, the SPARC architecture includes a 
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nonstandard arithmetic mode that provides a way for a user to avoid the performance 
degradation associated with unfinished_FPop traps involving subnormal 
numbers.

The SPARC architecture does not precisely define nonstandard arithmetic mode; it 
merely states that when this mode is enabled, processors that support it may 
produce results that do not conform to the IEEE 754 standard. However, all existing 
SPARC implementations that support this mode use it to disable gradual underflow, 
replacing all subnormal operands and results with zero. (There is one exception: 
Weitek 1164/1165 FPUs only flush subnormal results to zero in nonstandard mode, 
they do not treat subnormal operands as zero.)

Not all SPARC implementations provide a nonstandard mode. Specifically, the 
SuperSPARC-I, SuperSPARC-II, TurboSPARC, microSPARC-I, and microSPARC-II 
floating-point units handle subnormal operands and generate subnormal results 
entirely in hardware, so they do not need to support nonstandard arithmetic. (Any 
attempt to enable nonstandard mode on these processors is ignored.) Therefore, 
gradual underflow incurs no performance loss on these processors.

To determine whether gradual underflows are affecting the performance of a 
program, you should first determine whether underflows are occurring at all and 
then check how much system time is used by the program. To determine whether 
underflows are occurring, you can use the math library function 
ieee_retrospective() to see if the underflow exception flag is raised when the 
program exits. Fortran programs call ieee_retrospective() by default. C and 
C++ programs need to call ieee_retrospective() explicitly prior to exit. If any 
underflows have occurred, ieee_retrospective() prints a message similar to the 
following:  

If the program encounters underflows, you might want to determine how much 
system time the program is using by timing the program execution with the time 
command. 

If the system time (the third figure shown above) is unusually high, multiple 
underflows might be the cause. If so, and if the program does not depend on the 
accuracy of gradual underflow, you can enable nonstandard mode for better 
performance. There are two ways to do this. First, you can compile with the -fns 
flag (which is implied as part of the macros -fast and -fnonstd) to enable 

Note: IEEE floating-point exception flags raised:  
 Inexact; Underflow;  
See the Numerical Computation Guide, ieee_flags(3M)

demo% /bin/time myprog > myprog.output
305.3 real      32.4 user      271.9 sys 
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nonstandard mode at program startup. Second, the value-added math library 
libsunmath provides two functions to enable and disable nonstandard mode, 
respectively: calling nonstandard_arithmetic() enables nonstandard mode (if it 
is supported), while calling standard_arithmetic() restores IEEE behavior. The 
C and Fortran syntax for calling these functions is as follows:  

Caution – Since nonstandard arithmetic mode defeats the accuracy benefits of 
gradual underflow, you should use it with caution. For more information about 
gradual underflow, see Chapter 2.

B.1.2.3 Nonstandard Arithmetic and Kernel Emulation

On SPARC floating-point units that implement nonstandard mode, enabling this 
mode causes the hardware to treat subnormal operands as zero and flush subnormal 
results to zero. The kernel software that is used to emulate trapped floating-point 
instructions, however, does not implement nonstandard mode, in part because the 
effect of this mode is undefined and implementation-dependent and because the 
added cost of handling gradual underflow is negligible compared to the cost of 
emulating a floating-point operation in software.

If a floating-point operation that would be affected by nonstandard mode is 
interrupted (for example, it has been issued but not completed when a context 
switch occurs or another floating-point instruction causes a trap), it will be emulated 
by kernel software using standard IEEE arithmetic. Thus, under unusual 
circumstances, a program running in nonstandard mode might produce slightly 
varying results depending on system load. This behavior has not been observed in 
practice. It would affect only those programs that are very sensitive to whether one 
particular operation out of millions is executed with gradual underflow or with 
abrupt underflow. 

C, C++  nonstandard_arithmetic(); 

 standard_arithmetic(); 

Fortran  call nonstandard_arithmetic() 

 call standard_arithmetic() 
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B.2 fpversion(1) Function — Finding 
Information About the FPU
The fpversion utility distributed with the compilers identifies the installed CPU 
and estimates the processor and system bus clock speeds. fpversion determines 
the CPU and FPU types by interpreting the identification information stored by the 
CPU and FPU. It estimates their clock speeds by timing a loop that executes simple 
instructions that run in a predictable amount of time. The loop is executed many 
times to increase the accuracy of the timing measurements. For this reason, 
fpversion is not instantaneous; it can take several seconds to run.

fpversion also reports the best -xtarget code generation option to use for the 
host system.

On an Ultra 4 workstation, fpversion displays information similar to the 
following. (There may be variations due to differences in timing or machine 
configuration.)  

See the fpversion(1) manual page for more information.

demo% fpversion 
 A SPARC-based CPU is available.
 CPU’s clock rate appears to be approximately 461.1 MHz.
 Kernel says CPU’s clock rate is 480.0 MHz.
 Kernel says main memory’s clock rate is 120.0 MHz.

 Sun-4 floating-point controller version 0 found.
 An UltraSPARC chip is available.
 FPU's frequency appears to be approximately 492.7 MHz.

 Use “-xtarget=ultra2 -xcache=16/32/1:2048/64/1” code-
generation option.

 Hostid = hardware_host_id
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APPENDIX C

x86 Behavior and Implementation

This appendix discusses x86 and SPARC compatibility issues related to the floating-
point units used in x86 based systems.

The hardware is 80386, 80486, and Pentium™ microprocessors from x86 and 
compatible microprocessors from other manufacturers. While great effort went into 
compatibility with the SPARC platform, several differences exist.

On x86 based systems:

■ The floating-point registers are 80-bits wide. Because intermediate results of 
arithmetic computations can be in extended precision, computation results can 
differ. The -fstore flag minimizes these discrepancies. However, using the 
-fstore flag introduces a penalty in performance. 

■ Each time a single or double precision floating-point number is loaded or stored, 
a conversion to or from double extended precision occurs. Thus loads and stores 
of floating-point numbers can cause exceptions.

■ Gradual underflow is implemented entirely in hardware. There is no nonstandard 
mode.

■ The fpversion utility is not provided.

■ The extended double format admits certain bit patterns that do not represent any 
floating point values (see TABLE 2-8). The hardware generally treats these 
“unsupported formats” like NaNs, but the math libraries are not consistent in 
their handling of such representations. Since these bit patterns are never 
generated by the hardware, they can only be created by invalid memory 
references (such as reading beyond the end of an array) or from explicit coercions 
of data in memory from one type to another (via C’s union construct, for 
example). Therefore, in most numerical programs, these bit patterns do not arise.
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APPENDIX D

What Every Computer Scientist 
Should Know About Floating-Point 
Arithmetic

Note – This appendix is an edited reprint of the paper What Every Computer Scientist 
Should Know About Floating-Point Arithmetic, by David Goldberg, published in the 
March, 1991 issue of Computing Surveys. Copyright 1991, Association for 
Computing Machinery, Inc., reprinted by permission. 

D.1 Abstract
Floating-point arithmetic is considered an esoteric subject by many people. This is 
rather surprising because floating-point is ubiquitous in computer systems. Almost 
every language has a floating-point datatype; computers from PCs to 
supercomputers have floating-point accelerators; most compilers will be called upon 
to compile floating-point algorithms from time to time; and virtually every operating 
system must respond to floating-point exceptions such as overflow. This paper 
presents a tutorial on those aspects of floating-point that have a direct impact on 
designers of computer systems. It begins with background on floating-point 
representation and rounding error, continues with a discussion of the IEEE floating-
point standard, and concludes with numerous examples of how computer builders 
can better support floating-point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]: 
General — instruction set design; D.3.4 [Programming Languages]: Processors — 
compilers, optimization; G.1.0 [Numerical Analysis]: General — computer arithmetic, 
error analysis, numerical algorithms (Secondary) 

D.2.1 [Software Engineering]: Requirements/Specifications — languages; D.3.4 
Programming Languages]: Formal Definitions and Theory — semantics; D.4.1 
Operating Systems]: Process Management — synchronization.

General Terms: Algorithms, Design, Languages
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Additional Key Words and Phrases: Denormalized number, exception, floating-
point, floating-point standard, gradual underflow, guard digit, NaN, overflow, 
relative error, rounding error, rounding mode, ulp, underflow.

D.2 Introduction
Builders of computer systems often need information about floating-point 
arithmetic. There are, however, remarkably few sources of detailed information 
about it. One of the few books on the subject, Floating-Point Computation by Pat 
Sterbenz, is long out of print. This paper is a tutorial on those aspects of floating-
point arithmetic (floating-point hereafter) that have a direct connection to systems 
building. It consists of three loosely connected parts. The first section, “Rounding 
Error” on page D 2, discusses the implications of using different rounding strategies 
for the basic operations of addition, subtraction, multiplication and division. It also 
contains background information on the two methods of measuring rounding error, 
ulps and relative error. The second part discusses the IEEE floating-point 
standard, which is becoming rapidly accepted by commercial hardware 
manufacturers. Included in the IEEE standard is the rounding method for basic 
operations. The discussion of the standard draws on the material in the section 
“Rounding Error” on page D 2. The third part discusses the connections between 
floating-point and the design of various aspects of computer systems. Topics include 
instruction set design, optimizing compilers and exception handling. 

I have tried to avoid making statements about floating-point without also giving 
reasons why the statements are true, especially since the justifications involve 
nothing more complicated than elementary calculus. Those explanations that are not 
central to the main argument have been grouped into a section called “The Details,” 
so that they can be skipped if desired. In particular, the proofs of many of the 
theorems appear in this section. The end of each proof is marked with the ❚ symbol. 
When a proof is not included, the ❚ appears immediately following the statement of 
the theorem. 

D.3 Rounding Error 
Squeezing infinitely many real numbers into a finite number of bits requires an 
approximate representation. Although there are infinitely many integers, in most 
programs the result of integer computations can be stored in 32 bits. In contrast, 
given any fixed number of bits, most calculations with real numbers will produce 
quantities that cannot be exactly represented using that many bits. Therefore the 
result of a floating-point calculation must often be rounded in order to fit back into 
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its finite representation. This rounding error is the characteristic feature of floating-
point computation. The section “Relative Error and Ulps” on page D 5 describes 
how it is measured. 

Since most floating-point calculations have rounding error anyway, does it matter if 
the basic arithmetic operations introduce a little bit more rounding error than 
necessary? That question is a main theme throughout this section. The section 
“Guard Digits” on page D 6 discusses guard digits, a means of reducing the error 
when subtracting two nearby numbers. Guard digits were considered sufficiently 
important by IBM that in 1968 it added a guard digit to the double precision format 
in the System/360 architecture (single precision already had a guard digit), and 
retrofitted all existing machines in the field. Two examples are given to illustrate the 
utility of guard digits. 

The IEEE standard goes further than just requiring the use of a guard digit. It gives 
an algorithm for addition, subtraction, multiplication, division and square root, and 
requires that implementations produce the same result as that algorithm. Thus, 
when a program is moved from one machine to another, the results of the basic 
operations will be the same in every bit if both machines support the IEEE standard. 
This greatly simplifies the porting of programs. Other uses of this precise 
specification are given in “Exactly Rounded Operations” on page D 13. 

D.3.1 Floating-point Formats 
Several different representations of real numbers have been proposed, but by far the 
most widely used is the floating-point representation.1 Floating-point 
representations have a base β (which is always assumed to be even) and a precision 
p. If β = 10 and p = 3, then the number 0.1 is represented as 1.00 × 10-1. If β = 2 and 
p = 24, then the decimal number 0.1 cannot be represented exactly, but is 
approximately 1.10011001100110011001101 × 2-4. 

In general, a floating-point number will be represented as ± d.dd… d × βe, where 
d.dd… d is called the significand2 and has p digits. More precisely ± d0 . d1 d2 … dp-1 × 
βe represents the number 

. (1)

1. Examples of other representations are floating slash and signed logarithm [Matula and Kornerup 1985; 
Swartzlander and Alexopoulos 1975].

2. This term was introduced by Forsythe and Moler [1967], and has generally replaced the older term mantissa.

d0 d1β 1– … d p 1– β p 1–( )–+ + + 
  βe 0 di β<≤( ),±
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The term floating-point number will be used to mean a real number that can be exactly 
represented in the format under discussion. Two other parameters associated with 
floating-point representations are the largest and smallest allowable exponents, emax 
and emin. Since there are βp possible significands, and emax – emin + 1 possible 
exponents, a floating-point number can be encoded in

bits, where the final +1 is for the sign bit. The precise encoding is not important for 
now.

There are two reasons why a real number might not be exactly representable as a 
floating-point number. The most common situation is illustrated by the decimal 
number 0.1. Although it has a finite decimal representation, in binary it has an 
infinite repeating representation. Thus when β = 2, the number 0.1 lies strictly 
between two floating-point numbers and is exactly representable by neither of them. 
A less common situation is that a real number is out of range, that is, its absolute 
value is larger than β ×  or smaller than 1.0 × . Most of this paper discusses 
issues due to the first reason. However, numbers that are out of range will be 
discussed in the sections “Infinity” on page D 24 and “Denormalized Numbers” on 
page D 27. 

Floating-point representations are not necessarily unique. For example, both 
0.01 × 101 and 1.00 × 10-1 represent 0.1. If the leading digit is nonzero (d0 ≠ 0 in 
equation (1) above), then the representation is said to be normalized. The floating-
point number 1.00 × 10-1 is normalized, while 0.01 × 101 is not. When β = 2, p = 3, 
emin = -1 and emax = 2 there are 16 normalized floating-point numbers, as shown in 
FIGURE D-1. The bold hash marks correspond to numbers whose significand is 1.00. 
Requiring that a floating-point representation be normalized makes the 
representation unique. Unfortunately, this restriction makes it impossible to 
represent zero! A natural way to represent 0 is with 1.0 × , since this preserves 
the fact that the numerical ordering of nonnegative real numbers corresponds to the 
lexicographic ordering of their floating-point representations.3 When the exponent is 
stored in a k bit field, that means that only 2k - 1 values are available for use as 
exponents, since one must be reserved to represent 0. 

Note that the × in a floating-point number is part of the notation, and different from 
a floating-point multiply operation. The meaning of the × symbol should be clear 
from the context. For example, the expression (2.5 × 10-3) × (4.0 × 102) involves only a 
single floating-point multiplication.

3. This assumes the usual arrangement where the exponent is stored to the left of the significand.

log2 emax emin– 1+( )[ ] log2 βp( )[ ] 1+ +

βemax βemin

βemin 1–
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FIGURE D-1 Normalized Numbers When β = 2, p = 3, emin  =  -1, emax  = 2

D.3.2 Relative Error and Ulps 
Since rounding error is inherent in floating-point computation, it is important to 
have a way to measure this error. Consider the floating-point format with β = 10 and 
p = 3, which will be used throughout this section. If the result of a floating-point 
computation is 3.12 × 10-2, and the answer when computed to infinite precision is 
.0314, it is clear that this is in error by 2 units in the last place. Similarly, if the real 
number .0314159 is represented as 3.14 × 10-2, then it is in error by .159 units in the 
last place. In general, if the floating-point number d.d…d × βe is used to represent z, 
then it is in error by d.d…d − (z/βe)βp-1 units in the last place.4, 5 The term ulps will 
be used as shorthand for “units in the last place.” If the result of a calculation is the 
floating-point number nearest to the correct result, it still might be in error by as 
much as .5 ulp. Another way to measure the difference between a floating-point 
number and the real number it is approximating is relative error, which is simply the 
difference between the two numbers divided by the real number. For example the 
relative error committed when approximating 3.14159 by 3.14 × 100 is 
.00159/3.14159 ≈ .0005. 

To compute the relative error that corresponds to .5 ulp, observe that when a real 
number is approximated by the closest possible floating-point number d.dd...dd × βe, 
the error can be as large as 0.00...00β′ × βe, where β’ is the digit β/2, there are p units 
in the significand of the floating-point number, and p units of 0 in the significand of 
the error. This error is ((β/2)β-p) × βe. Since numbers of the form d.dd…dd × βe all 
have the same absolute error, but have values that range between βe and β × βe, the 
relative error ranges between ((β/2)β-p) × βe/βe and ((β/2)β-p) × βe/βe+1. That is, 

(2)

In particular, the relative error corresponding to .5 ulp can vary by a factor of β. This 
factor is called the wobble. Setting ε = (β/2)β-p to the largest of the bounds in (2) 
above, we can say that when a real number is rounded to the closest floating-point 
number, the relative error is always bounded by e, which is referred to as machine 
epsilon. 

4. Unless the number z is larger than +1 or smaller than . Numbers which are out of range in this 
fashion will not be considered until further notice.

5. Let z’ be the floating-point number that approximates z. Then d.d…d - (z/βe)βp-1 is equivalent to             
z’-z/ulp(z’). A more accurate formula for measuring error is z’-z/ulp(z). – Ed. 
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In the example above, the relative error was .00159/3.14159 ≈ .0005. In order to avoid 
such small numbers, the relative error is normally written as a factor times ε, which 
in this case is ε = (β/2)β-p = 5(10)-3 = .005. Thus the relative error would be expressed 
as (.00159/3.14159)/.005) ε ≈ 0.1ε. 

To illustrate the difference between ulps and relative error, consider the real number 
x = 12.35. It is approximated by  = 1.24 × 101. The error is 0.5 ulps, the relative error 
is 0.8ε. Next consider the computation 8 . The exact value is 8x = 98.8, while the 
computed value is 8  = 9.92 × 101. The error is now 4.0 ulps, but the relative error is 
still 0.8ε. The error measured in ulps is 8 times larger, even though the relative error 
is the same. In general, when the base is β, a fixed relative error expressed in ulps 
can wobble by a factor of up to β. And conversely, as equation (2) above shows, a 
fixed error of .5 ulps results in a relative error that can wobble by β.

The most natural way to measure rounding error is in ulps. For example rounding to 
the nearest floating-point number corresponds to an error of less than or equal to .5 
ulp. However, when analyzing the rounding error caused by various formulas, 
relative error is a better measure. A good illustration of this is the analysis in the 
section “Proof” on page D 46. Since ε can overestimate the effect of rounding to the 
nearest floating-point number by the wobble factor of β, error estimates of formulas 
will be tighter on machines with a small β. 

When only the order of magnitude of rounding error is of interest, ulps and ε may 
be used interchangeably, since they differ by at most a factor of β. For example, 
when a floating-point number is in error by n ulps, that means that the number of 
contaminated digits is logβ n. If the relative error in a computation is nε, then 

 contaminated digits ≈ logβ n. (3)

D.3.3 Guard Digits 
One method of computing the difference between two floating-point numbers is to 
compute the difference exactly and then round it to the nearest floating-point 
number. This is very expensive if the operands differ greatly in size. Assuming p = 3, 
2.15 × 1012 – 1.25 × 10-5 would be calculated as 

x = 2.15 × 1012  

y = .0000000000000000125 × 1012 

x – y = 2.1499999999999999875 × 1012

which rounds to 2.15 × 1012. Rather than using all these digits, floating-point 
hardware normally operates on a fixed number of digits. Suppose that the number 
of digits kept is p, and that when the smaller operand is shifted right, digits are 
simply discarded (as opposed to rounding). Then 2.15 × 1012 – 1.25 × 10-5 becomes 

x̃
x̃

x̃
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x = 2.15 × 1012  

y = 0.00 × 1012 

x – y = 2.15 × 1012

The answer is exactly the same as if the difference had been computed exactly and 
then rounded. Take another example: 10.1 – 9.93. This becomes 

x = 1.01 × 101  

y = 0.99 × 101 

x – y = .02 × 101

The correct answer is .17, so the computed difference is off by 30 ulps and is wrong 
in every digit! How bad can the error be?

D.3.3.1 Theorem 1 

Using a floating-point format with parameters β and p, and computing differences using p 
digits, the relative error of the result can be as large as β – 1. 

D.3.3.2 Proof

A relative error of β - 1 in the expression x - y occurs when x = 1.00…0 and y =
 .ρρ…ρ, where ρ = β - 1. Here y has p digits (all equal to ρ). The exact difference is 
x - y = β-p. However, when computing the answer using only p digits, the rightmost 
digit of y gets shifted off, and so the computed difference is β-p+1. Thus the error is 
β-p – β-p+1 = β-p (β - 1), and the relative error is β-p(β – 1)/β-p = β – 1. ❚

When β=2, the relative error can be as large as the result, and when β=10, it can be 9 
times larger. Or to put it another way, when β=2, equation (3) shows that the number 
of contaminated digits is log2(1/ε) = log2(2p) = p. That is, all of the p digits in the 
result are wrong! Suppose that one extra digit is added to guard against this 
situation (a guard digit). That is, the smaller number is truncated to p + 1 digits, and 
then the result of the subtraction is rounded to p digits. With a guard digit, the 
previous example becomes 

x = 1.010 × 101 

y = 0.993 × 101 

x – y = .017 × 101

and the answer is exact. With a single guard digit, the relative error of the result may 
be greater than ε, as in 110 – 8.59. 

x = 1.10 × 102  

y = .085 × 102 

x - y = 1.015 × 102
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This rounds to 102, compared with the correct answer of 101.41, for a relative error 
of .006, which is greater than ε = .005. In general, the relative error of the result can 
be only slightly larger than ε. More precisely, 

D.3.3.3 Theorem 2 

If x and y are floating-point numbers in a format with parameters β and p, and if subtraction 
is done with p + 1 digits (i.e. one guard digit), then the relative rounding error in the result 
is less than 2ε. 

This theorem will be proven in “Rounding Error” on page D 46. Addition is 
included in the above theorem since x and y can be positive or negative. 

D.3.4 Cancellation
The last section can be summarized by saying that without a guard digit, the relative 
error committed when subtracting two nearby quantities can be very large. In other 
words, the evaluation of any expression containing a subtraction (or an addition of 
quantities with opposite signs) could result in a relative error so large that all the 
digits are meaningless (Theorem 1). When subtracting nearby quantities, the most 
significant digits in the operands match and cancel each other. There are two kinds 
of cancellation: catastrophic and benign. 

Catastrophic cancellation occurs when the operands are subject to rounding errors. For 
example in the quadratic formula, the expression b2 - 4ac occurs. The quantities b2 
and 4ac are subject to rounding errors since they are the results of floating-point 
multiplications. Suppose that they are rounded to the nearest floating-point number, 
and so are accurate to within .5 ulp. When they are subtracted, cancellation can 
cause many of the accurate digits to disappear, leaving behind mainly digits 
contaminated by rounding error. Hence the difference might have an error of many 
ulps. For example, consider b = 3.34, a = 1.22, and c = 2.28. The exact value of b2 - 4ac 
is .0292. But b2 rounds to 11.2 and 4ac rounds to 11.1, hence the final answer is .1 
which is an error by 70 ulps, even though 11.2 - 11.1 is exactly equal to .16. The 
subtraction did not introduce any error, but rather exposed the error introduced in 
the earlier multiplications.

Benign cancellation occurs when subtracting exactly known quantities. If x and y have 
no rounding error, then by Theorem 2 if the subtraction is done with a guard digit, 
the difference x-y has a very small relative error (less than 2ε).

6. 700, not 70. Since .1 - .0292 = .0708, the error in terms of ulp(0.0292) is 708 ulps. – Ed.
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A formula that exhibits catastrophic cancellation can sometimes be rearranged to 
eliminate the problem. Again consider the quadratic formula 

(4)

When , then  does not involve a cancellation and

. 

But the other addition (subtraction) in one of the formulas will have a catastrophic 
cancellation. To avoid this, multiply the numerator and denominator of r1 by

(and similarly for r2) to obtain 

(5)

If  and b > 0, then computing r1 using formula (4) will involve a cancellation. 
Therefore, use formula (5) for computing r1 and (4) for r2. On the other hand, if b < 0, 
use (4) for computing r1 and (5) for r2. 

The expression x2 - y2 is another formula that exhibits catastrophic cancellation. It is 
more accurate to evaluate it as (x - y)(x + y).7 Unlike the quadratic formula, this 
improved form still has a subtraction, but it is a benign cancellation of quantities 
without rounding error, not a catastrophic one. By Theorem 2, the relative error in 
x – y is at most 2ε. The same is true of x + y. Multiplying two quantities with a small 
relative error results in a product with a small relative error (see the section 
“Rounding Error” on page D 46). 

In order to avoid confusion between exact and computed values, the following 
notation is used. Whereas x – y denotes the exact difference of x and y, x  y denotes 
the computed difference (i.e., with rounding error). Similarly ⊕, ⊗, and  denote 
computed addition, multiplication, and division, respectively. All caps indicate the 
computed value of a function, as in LN(x) or SQRT(x). Lowercase functions and 
traditional mathematical notation denote their exact values as in ln(x) and  . 

Although (x  y) ⊗ (x ⊕ y) is an excellent approximation to x2 – y2, the floating-
point numbers x and y might themselves be approximations to some true quantities 

 and . For example,  and  might be exactly known decimal numbers that 

7. Although the expression (x – y)(x + y) does not cause a catastrophic cancellation, it is slightly less accurate 
than x2 – y2 if  or . In this case, (x – y)(x + y) has three rounding errors, but x2 – y2 has only two 
since the rounding error committed when computing the smaller of x2 and y2 does not affect the final 
subtraction.

r1
b– b2 4ac–+

2a
--------------------------------------- r2, b– b2 4ac––

2a
--------------------------------------= =

b2 ac» b2 4ac–

b2 4ac– b≈

b– b2 4ac––

r1
2c

b– b2 4ac––
-------------------------------------- r2, 2c

b– b2 4ac–+
---------------------------------------= =

b2 ac»

x y» x y«

x

x̂ ŷ x̂ ŷ
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cannot be expressed exactly in binary. In this case, even though x  y is a good 
approximation to x – y, it can have a huge relative error compared to the true 
expression , and so the advantage of (x + y)(x – y) over x2 – y2 is not as 
dramatic. Since computing (x + y)(x - y) is about the same amount of work as 
computing x2 - y2, it is clearly the preferred form in this case. In general, however, 
replacing a catastrophic cancellation by a benign one is not worthwhile if the 
expense is large, because the input is often (but not always) an approximation. But 
eliminating a cancellation entirely (as in the quadratic formula) is worthwhile even if 
the data are not exact. Throughout this paper, it will be assumed that the floating-
point inputs to an algorithm are exact and that the results are computed as 
accurately as possible.

The expression x2 – y2 is more accurate when rewritten as (x – y)(x + y) because a 
catastrophic cancellation is replaced with a benign one. We next present more 
interesting examples of formulas exhibiting catastrophic cancellation that can be 
rewritten to exhibit only benign cancellation. 

The area of a triangle can be expressed directly in terms of the lengths of its sides a, 
b, and c as 

(6)

(Suppose the triangle is very flat; that is, a ≈ b + c. Then s ≈ a, and the term (s - a) in 
formula (6) subtracts two nearby numbers, one of which may have rounding error. 
For example, if a = 9.0, b = c = 4.53, the correct value of s is 9.03 and A is 2.342.... 
Even though the computed value of s (9.05) is in error by only 2 ulps, the computed 
value of A is 3.04, an error of 70 ulps. 

There is a way to rewrite formula (6) so that it will return accurate results even for 
flat triangles [Kahan 1986]. It is 

(7)

If a, b, and c do not satisfy a ≥ b ≥ c, rename them before applying (7). It is 
straightforward to check that the right-hand sides of (6) and (7) are algebraically 
identical. Using the values of a, b, and c above gives a computed area of 2.35, which 
is 1 ulp in error and much more accurate than the first formula.

Although formula (7) is much more accurate than (6) for this example, it would be 
nice to know how well (7) performs in general. 

x̂ ŷ–

A s s a–( ) s b–( ) s c–( ) where s, a b c+ +( ) 2⁄= =

A
a b c+( )+( ) c a b–( )–( ) c a b–( )+( ) a b c–( )+( )

4
-------------------------------------------------------------------------------------------------------------------------------- a b c≥ ≥,=
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D.3.4.1 Theorem 3 

The rounding error incurred when using (7) to compute the area of a triangle is at most 11ε, 
provided that subtraction is performed with a guard digit, e ≤ .005, and that square roots are 
computed to within 1/2 ulp. 

The condition that e < .005 is met in virtually every actual floating-point system. For 
example when β = 2, p ≥ 8 ensures that e < .005, and when β = 10, p ≥ 3 is enough. 

In statements like Theorem 3 that discuss the relative error of an expression, it is 
understood that the expression is computed using floating-point arithmetic. In 
particular, the relative error is actually of the expression 

SQRT((a ⊕ (b ⊕ c)) ⊗ (c (a  b)) ⊗ (c ⊕ (a  b)) ⊗ (a ⊕ (b  c)))  4 (8)

Because of the cumbersome nature of (8), in the statement of theorems we will 
usually say the computed value of E rather than writing out E with circle notation.

Error bounds are usually too pessimistic. In the numerical example given above, the 
computed value of (7) is 2.35, compared with a true value of 2.34216 for a relative 
error of 0.7ε, which is much less than 11ε. The main reason for computing error 
bounds is not to get precise bounds but rather to verify that the formula does not 
contain numerical problems. 

A final example of an expression that can be rewritten to use benign cancellation is 
(1 + x)n, where . This expression arises in financial calculations. Consider 
depositing $100 every day into a bank account that earns an annual interest rate of 
6%, compounded daily. If n = 365 and i = .06, the amount of money accumulated at 
the end of one year is 

100

dollars. If this is computed using β = 2 and p = 24, the result is $37615.45 compared 
to the exact answer of $37614.05, a discrepancy of $1.40. The reason for the problem 
is easy to see. The expression 1 + i/n involves adding 1 to .0001643836, so the low 
order bits of i/n are lost. This rounding error is amplified when 1 + i/n is raised to 
the nth power. 

The troublesome expression (1 + i/n)n can be rewritten as enln(1 + i/n), where now the 
problem is to compute ln(1 + x) for small x. One approach is to use the 
approximation ln(1 + x) ≈ x, in which case the payment becomes $37617.26, which is 
off by $3.21 and even less accurate than the obvious formula. But there is a way to 
compute ln(1 + x) very accurately, as Theorem 4 shows [Hewlett-Packard 1982]. This 
formula yields $37614.07, accurate to within two cents! 

x 1«

1 i n⁄+( )n 1–
i n⁄

------------------------------
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Theorem 4 assumes that LN(x) approximates ln(x) to within 1/2 ulp. The problem it 
solves is that when x is small, LN(1 ⊕ x) is not close to ln(1 + x) because 1 ⊕ x has lost 
the information in the low order bits of x. That is, the computed value of ln(1 + x) is 
not close to its actual value when . 

D.3.4.2 Theorem 4 

 If ln(1 + x) is computed using the formula 

the relative error is at most 5ε when 0 ≤ x < 3/4, provided subtraction is performed with a 
guard digit, e < 0.1, and ln is computed to within 1/2 ulp. 

This formula will work for any value of x but is only interesting for , which is 
where catastrophic cancellation occurs in the naive formula ln(1 + x). Although the 
formula may seem mysterious, there is a simple explanation for why it works. Write 
ln(1 + x) as

. 

The left hand factor can be computed exactly, but the right hand factor µ(x) =
 ln(1 + x)/x will suffer a large rounding error when adding 1 to x. However, µ is 
almost constant, since ln(1 + x) ≈ x. So changing x slightly will not introduce much 
error. In other words, if , computing  will be a good approximation to 
xµ(x) = ln(1 + x). Is there a value for  for which  and can be computed 
accurately? There is; namely  = (1 ⊕ x)  1, because then 1 +  is exactly equal to 
1 ⊕ x. 

The results of this section can be summarized by saying that a guard digit 
guarantees accuracy when nearby precisely known quantities are subtracted (benign 
cancellation). Sometimes a formula that gives inaccurate results can be rewritten to 
have much higher numerical accuracy by using benign cancellation; however, the 
procedure only works if subtraction is performed using a guard digit. The price of a 
guard digit is not high, because it merely requires making the adder one bit wider. 
For a 54 bit double precision adder, the additional cost is less than 2%. For this price, 
you gain the ability to run many algorithms such as formula (6) for computing the 
area of a triangle and the expression ln(1 + x). Although most modern computers 
have a guard digit, there are a few (such as Cray systems) that do not. 

x 1«

1 x+( )ln

x for 1 x⊕ 1=

x 1 x+( )ln
1 x+( ) 1–

-------------------------- for 1 x 1≠⊕






=

x 1«

x ln 1 x+( )
x

---------------------- 
  xµ x( )=

x̃ x≈ xµ x̃( )
x̃ x̃ x̃ 1+

x̃ x̃
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D.3.5 Exactly Rounded Operations 
When floating-point operations are done with a guard digit, they are not as accurate 
as if they were computed exactly then rounded to the nearest floating-point number. 
Operations performed in this manner will be called exactly rounded.8 The example 
immediately preceding Theorem 2 shows that a single guard digit will not always 
give exactly rounded results. The previous section gave several examples of 
algorithms that require a guard digit in order to work properly. This section gives 
examples of algorithms that require exact rounding. 

So far, the definition of rounding has not been given. Rounding is straightforward, 
with the exception of how to round halfway cases; for example, should 12.5 round to 
12 or 13? One school of thought divides the 10 digits in half, letting {0, 1, 2, 3, 4} 
round down, and {5, 6, 7, 8, 9} round up; thus 12.5 would round to 13. This is how 
rounding works on Digital Equipment Corporation’s VAX computers. Another 
school of thought says that since numbers ending in 5 are halfway between two 
possible roundings, they should round down half the time and round up the other 
half. One way of obtaining this 50% behavior to require that the rounded result have 
its least significant digit be even. Thus 12.5 rounds to 12 rather than 13 because 2 is 
even. Which of these methods is best, round up or round to even? Reiser and Knuth 
[1975] offer the following reason for preferring round to even. 

D.3.5.1 Theorem 5 

Let x and y be floating-point numbers, and define x0 = x, x1 = (x0  y) ⊕ y, …, xn = 
(xn-1  y) ⊕ y. If ⊕ and  are exactly rounded using round to even, then either xn = x for 
all n or xn = x1 for all n ≥ 1. ❚

To clarify this result, consider β = 10, p = 3 and let x = 1.00, y = -.555. When rounding 
up, the sequence becomes

x0  y = 1.56, x1 = 1.56  .555 = 1.01, x1  y = 1.01 ⊕ .555 = 1.57,

and each successive value of xn increases by .01, until xn = 9.45 (n ≤ 845)9. Under 
round to even, xn is always 1.00. This example suggests that when using the round 
up rule, computations can gradually drift upward, whereas when using round to 
even the theorem says this cannot happen. Throughout the rest of this paper, round 
to even will be used. 

One application of exact rounding occurs in multiple precision arithmetic. There are 
two basic approaches to higher precision. One approach represents floating-point 
numbers using a very large significand, which is stored in an array of words, and 
codes the routines for manipulating these numbers in assembly language. The 

8. Also commonly referred to as correctly rounded. –  Ed. 

9. When n = 845, xn= 9.45, xn + 0.555 = 10.0, and 10.0 - 0.555 = 9.45. Therefore, xn = x845 for n > 845. 
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second approach represents higher precision floating-point numbers as an array of 
ordinary floating-point numbers, where adding the elements of the array in infinite 
precision recovers the high precision floating-point number. It is this second 
approach that will be discussed here. The advantage of using an array of floating-
point numbers is that it can be coded portably in a high level language, but it 
requires exactly rounded arithmetic.

The key to multiplication in this system is representing a product xy as a sum, where 
each summand has the same precision as x and y. This can be done by splitting x and 
y. Writing x = xh + xl and y = yh + yl, the exact product is

xy = xh yh + xh yl + xl yh + xl yl. 

If x and y have p bit significands, the summands will also have p bit significands 
provided that xl, xh, yh, yl can be represented using [p/2] bits. When p is even, it is 
easy to find a splitting. The number x0.x1 … xp - 1 can be written as the sum of 
x0.x1 … xp/2 - 1 and 0.0 … 0xp/2 … xp - 1. When p is odd, this simple splitting method 
will not work. An extra bit can, however, be gained by using negative numbers. For 
example, if β = 2, p = 5, and x = .10111, x can be split as xh = .11 and xl = -.00001. 
There is more than one way to split a number. A splitting method that is easy to 
compute is due to Dekker [1971], but it requires more than a single guard digit. 

D.3.5.2 Theorem 6

Let p be the floating-point precision, with the restriction that p is even when β > 2, and 
assume that floating-point operations are exactly rounded. Then if k = [p/2] is half the 
precision (rounded up) and m = βk + 1, x can be split as x = xh + xl, where 

xh = (m ⊗ x)  (m ⊗ x  x), xl = x  xh, 

and each xi is representable using [p/2] bits of precision. 

To see how this theorem works in an example, let β = 10, p = 4, b = 3.476, a = 3.463, 
and c = 3.479. Then b2 – ac rounded to the nearest floating-point number is .03480, 
while b ⊗ b = 12.08, a ⊗ c = 12.05, and so the computed value of b2 – ac is .03. This is 
an error of 480 ulps. Using Theorem 6 to write b = 3.5 – .024, a = 3.5 - .037, and c =
 3.5 - .021, b2 becomes 3.52 – 2 × 3.5 × .024 + .0242. Each summand is exact, so b2 =
 12.25 – .168 + .000576, where the sum is left unevaluated at this point. Similarly, ac = 
3.52 – (3.5 × .037 + 3.5 × .021) + .037 × .021 = 12.25 – .2030 +.000777. Finally, 
subtracting these two series term by term gives an estimate for b2 – ac of 
0 ⊕ .0350  .000201 = .03480, which is identical to the exactly rounded result. To 
show that Theorem 6 really requires exact rounding, consider p = 3, β = 2, and x = 7. 
Then m = 5, mx = 35, and m ⊗ x = 32. If subtraction is performed with a single guard 
digit, then (m ⊗ x)  x = 28. Therefore, xh = 4 and xl = 3, hence xl is not representable 
with [p/2] = 1 bit. 
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As a final example of exact rounding, consider dividing m by 10. The result is a 
floating-point number that will in general not be equal to m/10. When β = 2, 
multiplying m/10 by 10 will restore m, provided exact rounding is being used. 
Actually, a more general fact (due to Kahan) is true. The proof is ingenious, but 
readers not interested in such details can skip ahead to section “The IEEE Standard” 
on page D 16.

D.3.5.3 Theorem 7

When β = 2, if m and n are integers with |m| < 2p - 1 and n has the special form n = 2i + 2j, 
then (m  n) ⊗ n = m, provided floating-point operations are exactly rounded. 

D.3.5.4 Proof

Scaling by a power of two is harmless, since it changes only the exponent, not the 
significand. If q = m/n, then scale n so that 2p - 1 ≤ n < 2p and scale m so that 1/2 < q 
< 1. Thus, 2p - 2 < m < 2p. Since m has p significant bits, it has at most one bit to the 
right of the binary point. Changing the sign of m is harmless, so assume that q > 0.

If  = m  n, to prove the theorem requires showing that 

 (9)

That is because m has at most 1 bit right of the binary point, so n  will round to m. 
To deal with the halfway case when |n  - m| = 1/4, note that since the initial 
unscaled m had |m| < 2p - 1, its low-order bit was 0, so the low-order bit of the scaled 
m is also 0. Thus, halfway cases will round to m. 

Suppose that q = .q1q2 …, and let  = .q1q2 … qp1. To estimate |n  - m|, first compute

|  - q| = |N/2p + 1 - m/n|, 

where N is an odd integer. Since n = 2i + 2j and 2p - 1 ≤ n < 2p, it must be that n = 
2p - 1 + 2k for some k ≤ p - 2, and thus

.

q

nq m–
1
4
---≤

q
q

q̂ q

q̂

q̂ q– nN 2p 1+ m–

n2p 1+
---------------------------------- 2 p 1– k– 1+( )N 2p 1 k–+ m–

n2p 1 k–+
-------------------------------------------------------------------------------= =
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The numerator is an integer, and since N is odd, it is in fact an odd integer. Thus,

|  - q| ≥ 1/(n2p + 1 - k). 

Assume q <  (the case q >  is similar).10 Then n  < m, and 

|m-n |= m-n  = n(q- ) = n(q-(  -2-p-1)) ≤ 

=(2p-1+2k)2-p-1–2-p-1+k = 

This establishes (9) and proves the theorem.11  ❚

The theorem holds true for any base β, as long as 2i + 2j is replaced by βi + βj. As β 
gets larger, however, denominators of the form βi + βj are farther and farther apart. 

We are now in a position to answer the question, Does it matter if the basic 
arithmetic operations introduce a little more rounding error than necessary? The 
answer is that it does matter, because accurate basic operations enable us to prove 
that formulas are “correct” in the sense they have a small relative error. The section 
“Cancellation” on page D 8 discussed several algorithms that require guard digits to 
produce correct results in this sense. If the input to those formulas are numbers 
representing imprecise measurements, however, the bounds of Theorems 3 and 4 
become less interesting. The reason is that the benign cancellation x – y can become 
catastrophic if x and y are only approximations to some measured quantity. But 
accurate operations are useful even in the face of inexact data, because they enable 
us to establish exact relationships like those discussed in Theorems 6 and 7. These 
are useful even if every floating-point variable is only an approximation to some 
actual value. 

D.4 The IEEE Standard 
There are two different IEEE standards for floating-point computation. IEEE 754 is a 
binary standard that requires β = 2, p = 24 for single precision and p = 53 for double 
precision [IEEE 1987]. It also specifies the precise layout of bits in a single and 
double precision. IEEE 854 allows either β = 2 or β = 10 and unlike 754, does not 
specify how floating-point numbers are encoded into bits [Cody et al. 1984]. It does 
not require a particular value for p, but instead it specifies constraints on the 
allowable values of p for single and double precision. The term IEEE Standard will be 
used when discussing properties common to both standards. 

10.Notice that in binary, q cannot equal  . – Ed. 

11.Left as an exercise to the reader: extend the proof to bases other than 2. – Ed. 
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This section provides a tour of the IEEE standard. Each subsection discusses one 
aspect of the standard and why it was included. It is not the purpose of this paper to 
argue that the IEEE standard is the best possible floating-point standard but rather 
to accept the standard as given and provide an introduction to its use. For full 
details consult the standards themselves [IEEE 1987; Cody et al. 1984]. 

D.4.1 Formats and Operations 

D.4.1.1 Base 

It is clear why IEEE 854 allows β = 10. Base ten is how humans exchange and think 
about numbers. Using β = 10 is especially appropriate for calculators, where the 
result of each operation is displayed by the calculator in decimal. 

There are several reasons why IEEE 854 requires that if the base is not 10, it must be 
2. The section “Relative Error and Ulps” on page D 5 mentioned one reason: the 
results of error analyses are much tighter when β is 2 because a rounding error of .5 
ulp wobbles by a factor of β when computed as a relative error, and error analyses 
are almost always simpler when based on relative error. A related reason has to do 
with the effective precision for large bases. Consider β = 16, p = 1 compared to β = 2, 
p = 4. Both systems have 4 bits of significand. Consider the computation of 15/8. 
When β = 2, 15 is represented as 1.111 × 23, and 15/8 as 1.111 × 20. So 15/8 is exact. 
However, when β = 16, 15 is represented as F × 160, where F is the hexadecimal digit 
for 15. But 15/8 is represented as 1 × 160, which has only one bit correct. In general, 
base 16 can lose up to 3 bits, so that a precision of p hexadecimal digits can have an 
effective precision as low as 4p - 3 rather than 4p binary bits. Since large values of β 
have these problems, why did IBM choose β = 16 for its system/370? Only IBM 
knows for sure, but there are two possible reasons. The first is increased exponent 
range. Single precision on the system/370 has β = 16, p = 6. Hence the significand 
requires 24 bits. Since this must fit into 32 bits, this leaves 7 bits for the exponent and 
one for the sign bit. Thus the magnitude of representable numbers ranges from 
about  to about  = . To get a similar exponent range when β = 2 would 
require 9 bits of exponent, leaving only 22 bits for the significand. However, it was 
just pointed out that when β = 16, the effective precision can be as low as 4p - 3 = 21 
bits. Even worse, when β = 2 it is possible to gain an extra bit of precision (as 
explained later in this section), so the β = 2 machine has 23 bits of precision to 
compare with a range of 21 - 24 bits for the β = 16 machine. 

Another possible explanation for choosing β = 16 has to do with shifting. When 
adding two floating-point numbers, if their exponents are different, one of the 
significands will have to be shifted to make the radix points line up, slowing down 
the operation. In the β = 16, p = 1 system, all the numbers between 1 and 15 have the 
same exponent, and so no shifting is required when adding any of the ( ) = 105 

16 26– 1626 228

15
2
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possible pairs of distinct numbers from this set. However, in the β = 2, p = 4 system, 
these numbers have exponents ranging from 0 to 3, and shifting is required for 70 of 
the 105 pairs. 

In most modern hardware, the performance gained by avoiding a shift for a subset 
of operands is negligible, and so the small wobble of β = 2 makes it the preferable 
base. Another advantage of using β = 2 is that there is a way to gain an extra bit of 
significance.12 Since floating-point numbers are always normalized, the most 
significant bit of the significand is always 1, and there is no reason to waste a bit of 
storage representing it. Formats that use this trick are said to have a hidden bit. It was 
already pointed out in “Floating-point Formats” on page D 3 that this requires a 
special convention for 0. The method given there was that an exponent of emin – 1 
and a significand of all zeros represents not , but rather 0. 

IEEE 754 single precision is encoded in 32 bits using 1 bit for the sign, 8 bits for the 
exponent, and 23 bits for the significand. However, it uses a hidden bit, so the 
significand is 24 bits (p = 24), even though it is encoded using only 23 bits. 

D.4.1.2 Precision 

The IEEE standard defines four different precisions: single, double, single-extended, 
and double-extended. In IEEE 754, single and double precision correspond roughly 
to what most floating-point hardware provides. Single precision occupies a single 32 
bit word, double precision two consecutive 32 bit words. Extended precision is a 
format that offers at least a little extra precision and exponent range (TABLE D-1).

12.This appears to have first been published by Goldberg [1967], although Knuth ([1981], page 211) attributes 
this idea to Konrad Zuse.

TABLE D-1 IEEE 754 Format Parameters 

Parameter

Format

Single Single-Extended Double
Double-
Extended

p 24 ≥  32 53 ≥  64

emax +127 ≥  1023 +1023  > 16383

emin -126 ≤ -1022 -1022 ≤  -16382

Exponent width in bits 8 ≤ 11 11 ≥  15

Format width in bits 32 ≥  43 64 ≥  79

1.0 2
emin 1–×
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The IEEE standard only specifies a lower bound on how many extra bits extended 
precision provides. The minimum allowable double-extended format is sometimes 
referred to as 80-bit format, even though the table shows it using 79 bits. The reason 
is that hardware implementations of extended precision normally do not use a 
hidden bit, and so would use 80 rather than 79 bits.13

The standard puts the most emphasis on extended precision, making no 
recommendation concerning double precision, but strongly recommending that 
Implementations should support the extended format corresponding to the widest basic 
format supported, …

One motivation for extended precision comes from calculators, which will often 
display 10 digits, but use 13 digits internally. By displaying only 10 of the 13 digits, 
the calculator appears to the user as a “black box” that computes exponentials, 
cosines, etc. to 10 digits of accuracy. For the calculator to compute functions like exp, 
log and cos to within 10 digits with reasonable efficiency, it needs a few extra digits 
to work with. It is not hard to find a simple rational expression that approximates 
log with an error of 500 units in the last place. Thus computing with 13 digits gives 
an answer correct to 10 digits. By keeping these extra 3 digits hidden, the calculator 
presents a simple model to the operator. 

Extended precision in the IEEE standard serves a similar function. It enables libraries 
to efficiently compute quantities to within about .5 ulp in single (or double) 
precision, giving the user of those libraries a simple model, namely that each 
primitive operation, be it a simple multiply or an invocation of log, returns a value 
accurate to within about .5 ulp. However, when using extended precision, it is 
important to make sure that its use is transparent to the user. For example, on a 
calculator, if the internal representation of a displayed value is not rounded to the 
same precision as the display, then the result of further operations will depend on 
the hidden digits and appear unpredictable to the user. 

To illustrate extended precision further, consider the problem of converting between 
IEEE 754 single precision and decimal. Ideally, single precision numbers will be 
printed with enough digits so that when the decimal number is read back in, the 
single precision number can be recovered. It turns out that 9 decimal digits are 
enough to recover a single precision binary number (see the section “Binary to 
Decimal Conversion” on page D 55). When converting a decimal number back to its 
unique binary representation, a rounding error as small as 1 ulp is fatal, because it 
will give the wrong answer. Here is a situation where extended precision is vital for 
an efficient algorithm. When single-extended is available, a very straightforward 
method exists for converting a decimal number to a single precision binary one. First 
read in the 9 decimal digits as an integer N, ignoring the decimal point. From 
TABLE D-1, p ≥ 32, and since 109 < 232 ≈ 4.3 × 109, N can be represented exactly in 
single-extended. Next find the appropriate power 10P necessary to scale N. This will 
be a combination of the exponent of the decimal number, together with the position 

13.According to Kahan, extended precision has 64 bits of significand because that was the widest precision 
across which carry propagation could be done on the Intel 8087 without increasing the cycle time [Kahan 
1988].
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of the (up until now) ignored decimal point. Compute 10|P|. If |P| ≤ 13, then this is 
also represented exactly, because 1013 = 213513, and 513 < 232. Finally multiply (or 
divide if p < 0) N and 10|P|. If this last operation is done exactly, then the closest 
binary number is recovered. The section “Binary to Decimal Conversion” on 
page D 55 shows how to do the last multiply (or divide) exactly. Thus for |P| ≤ 13, 
the use of the single-extended format enables 9-digit decimal numbers to be 
converted to the closest binary number (i.e. exactly rounded). If |P| > 13, then 
single-extended is not enough for the above algorithm to always compute the 
exactly rounded binary equivalent, but Coonen [1984] shows that it is enough to 
guarantee that the conversion of binary to decimal and back will recover the original 
binary number. 

If double precision is supported, then the algorithm above would be run in double 
precision rather than single-extended, but to convert double precision to a 17-digit 
decimal number and back would require the double-extended format. 

D.4.1.3 Exponent 

Since the exponent can be positive or negative, some method must be chosen to 
represent its sign. Two common methods of representing signed numbers are 
sign/magnitude and two’s complement. Sign/magnitude is the system used for the 
sign of the significand in the IEEE formats: one bit is used to hold the sign, the rest 
of the bits represent the magnitude of the number. The two’s complement 
representation is often used in integer arithmetic. In this scheme, a number in the 
range [-2p–1, 2p–1 – 1] is represented by the smallest nonnegative number that is 
congruent to it modulo 2p. 

The IEEE binary standard does not use either of these methods to represent the 
exponent, but instead uses a biased representation. In the case of single precision, 
where the exponent is stored in 8 bits, the bias is 127 (for double precision it is 1023). 
What this means is that if  is the value of the exponent bits interpreted as an 
unsigned integer, then the exponent of the floating-point number is  – 127. This is 
often called the unbiased exponent to distinguish from the biased exponent . 

Referring to TABLE D-1, single precision has emax = 127 and emin = -126. The reason for 
having |emin| < emax is so that the reciprocal of the smallest number  will 
not overflow. Although it is true that the reciprocal of the largest number will 
underflow, underflow is usually less serious than overflow. The section “Base” on 
page D 17 explained that emin - 1 is used for representing 0, and “Special Quantities” 
on page D 22 will introduce a use for emax + 1. In IEEE single precision, this means 
that the biased exponents range between emin – 1 = -127 and emax + 1 = 128, whereas 
the unbiased exponents range between 0 and 255, which are exactly the nonnegative 
numbers that can be represented using 8 bits. 

k
k

k

1 2
emin⁄( )
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D.4.1.4 Operations 

The IEEE standard requires that the result of addition, subtraction, multiplication 
and division be exactly rounded. That is, the result must be computed exactly and 
then rounded to the nearest floating-point number (using round to even). The 
section “Guard Digits” on page D 6 pointed out that computing the exact difference 
or sum of two floating-point numbers can be very expensive when their exponents 
are substantially different. That section introduced guard digits, which provide a 
practical way of computing differences while guaranteeing that the relative error is 
small. However, computing with a single guard digit will not always give the same 
answer as computing the exact result and then rounding. By introducing a second 
guard digit and a third sticky bit, differences can be computed at only a little more 
cost than with a single guard digit, but the result is the same as if the difference were 
computed exactly and then rounded [Goldberg 1990]. Thus the standard can be 
implemented efficiently. 

One reason for completely specifying the results of arithmetic operations is to 
improve the portability of software. When a program is moved between two 
machines and both support IEEE arithmetic, then if any intermediate result differs, it 
must be because of software bugs, not from differences in arithmetic. Another 
advantage of precise specification is that it makes it easier to reason about floating-
point. Proofs about floating-point are hard enough, without having to deal with 
multiple cases arising from multiple kinds of arithmetic. Just as integer programs 
can be proven to be correct, so can floating-point programs, although what is proven 
in that case is that the rounding error of the result satisfies certain bounds. Theorem 
4 is an example of such a proof. These proofs are made much easier when the 
operations being reasoned about are precisely specified. Once an algorithm is proven 
to be correct for IEEE arithmetic, it will work correctly on any machine supporting 
the IEEE standard. 

Brown [1981] has proposed axioms for floating-point that include most of the 
existing floating-point hardware. However, proofs in this system cannot verify the 
algorithms of sections “Cancellation” on page D 8 and “Exactly Rounded 
Operations” on page D 13, which require features not present on all hardware. 
Furthermore, Brown’s axioms are more complex than simply defining operations to 
be performed exactly and then rounded. Thus proving theorems from Brown’s 
axioms is usually more difficult than proving them assuming operations are exactly 
rounded. 

There is not complete agreement on what operations a floating-point standard 
should cover. In addition to the basic operations +, -, × and /, the IEEE standard also 
specifies that square root, remainder, and conversion between integer and floating-
point be correctly rounded. It also requires that conversion between internal formats 
and decimal be correctly rounded (except for very large numbers). Kulisch and 
Miranker [1986] have proposed adding inner product to the list of operations that 
are precisely specified. They note that when inner products are computed in IEEE 
arithmetic, the final answer can be quite wrong. For example sums are a special case 
of inner products, and the sum ((2 × 10-30 + 1030) – 1030) – 10-30 is exactly equal to 
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10-30, but on a machine with IEEE arithmetic the computed result will be -10-30. It is 
possible to compute inner products to within 1 ulp with less hardware than it takes 
to implement a fast multiplier [Kirchner and Kulish 1987].14 15

All the operations mentioned in the standard are required to be exactly rounded 
except conversion between decimal and binary. The reason is that efficient 
algorithms for exactly rounding all the operations are known, except conversion. For 
conversion, the best known efficient algorithms produce results that are slightly 
worse than exactly rounded ones [Coonen 1984]. 

The IEEE standard does not require transcendental functions to be exactly rounded 
because of the table maker’s dilemma. To illustrate, suppose you are making a table of 
the exponential function to 4 places. Then exp(1.626) = 5.0835. Should this be 
rounded to 5.083 or 5.084? If exp(1.626) is computed more carefully, it becomes 
5.08350. And then 5.083500. And then 5.0835000. Since exp is transcendental, this 
could go on arbitrarily long before distinguishing whether exp(1.626) is 
5.083500…0ddd or 5.0834999…9ddd. Thus it is not practical to specify that the 
precision of transcendental functions be the same as if they were computed to 
infinite precision and then rounded. Another approach would be to specify 
transcendental functions algorithmically. But there does not appear to be a single 
algorithm that works well across all hardware architectures. Rational approximation, 
CORDIC,16 and large tables are three different techniques that are used for 
computing transcendentals on contemporary machines. Each is appropriate for a 
different class of hardware, and at present no single algorithm works acceptably 
over the wide range of current hardware.

D.4.2 Special Quantities 
On some floating-point hardware every bit pattern represents a valid floating-point 
number. The IBM System/370 is an example of this. On the other hand, the VAX™ 
reserves some bit patterns to represent special numbers called reserved operands. This 
idea goes back to the CDC 6600, which had bit patterns for the special quantities 
INDEFINITE and INFINITY. 

The IEEE standard continues in this tradition and has NaNs (Not a Number) and 
infinities. Without any special quantities, there is no good way to handle exceptional 
situations like taking the square root of a negative number, other than aborting 
computation. Under IBM System/370 FORTRAN, the default action in response to 

14.Some arguments against including inner product as one of the basic operations are presented by Kahan and 
LeBlanc [1985].

15.Kirchner writes: It is possible to compute inner products to within 1 ulp in hardware in one partial product 
per clock cycle. The additionally needed hardware compares to the multiplier array needed anyway for that 
speed. 

16.CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing 
transcendental functions that uses mostly shifts and adds (i.e., very few multiplications and divisions) 
[Walther 1971]. It is the method additionally needed hardware compares to the multiplier array needed 
anyway for that speed. d used on both the Intel 8087 and the Motorola 68881.
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computing the square root of a negative number like -4 results in the printing of an 
error message. Since every bit pattern represents a valid number, the return value of 
square root must be some floating-point number. In the case of System/370 
FORTRAN,  is returned. In IEEE arithmetic, a NaN is returned in this 
situation. 

The IEEE standard specifies the following special values (see TABLE D-2): ± 0, 
denormalized numbers, ±∞ and NaNs (there is more than one NaN, as explained in 
the next section). These special values are all encoded with exponents of either 
emax + 1 or emin – 1 (it was already pointed out that 0 has an exponent of emin – 1). 

D.4.3 NaNs 
Traditionally, the computation of 0/0 or  has been treated as an unrecoverable 
error which causes a computation to halt. However, there are examples where it 
makes sense for a computation to continue in such a situation. Consider a subroutine 
that finds the zeros of a function f, say zero(f). Traditionally, zero finders require 
the user to input an interval [a, b] on which the function is defined and over which 
the zero finder will search. That is, the subroutine is called as zero(f, a, b). A more 
useful zero finder would not require the user to input this extra information. This 
more general zero finder is especially appropriate for calculators, where it is natural 
to simply key in a function, and awkward to then have to specify the domain. 
However, it is easy to see why most zero finders require a domain. The zero finder 
does its work by probing the function f at various values. If it probed for a value 
outside the domain of f, the code for f might well compute 0/0 or , and the 
computation would halt, unnecessarily aborting the zero finding process. 

This problem can be avoided by introducing a special value called NaN, and 
specifying that the computation of expressions like 0/0 and  produce NaN, 
rather than halting. A list of some of the situations that can cause a NaN are given in 
TABLE D-3. Then when zero(f) probes outside the domain of f, the code for f will 
return NaN, and the zero finder can continue. That is, zero(f) is not “punished” 
for making an incorrect guess. With this example in mind, it is easy to see what the 
result of combining a NaN with an ordinary floating-point number should be. 

TABLE D-2 IEEE 754 Special Values

Exponent Fraction Represents

 e = emin - 1  f =  0  ±0

 e = emin - 1  f ≠ 0 

 
emin  ≤  e ≤ emax  —  1.f × 2e

 e = emax + 1  f =  0  ∞

 e = emax + 1  f ≠ 0  NaN

4– 2=

0. f 2
emin×

1–

1–

1–
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Suppose that the final statement of f is return(-b + sqrt(d))/(2*a). If d < 0, 
then f should return a NaN. Since d < 0, sqrt(d) is a NaN, and -b + sqrt(d) 
will be a NaN, if the sum of a NaN and any other number is a NaN. Similarly if one 
operand of a division operation is a NaN, the quotient should be a NaN. In general, 
whenever a NaN participates in a floating-point operation, the result is another 
NaN. 

Another approach to writing a zero solver that doesn’t require the user to input a 
domain is to use signals. The zero-finder could install a signal handler for floating-
point exceptions. Then if f was evaluated outside its domain and raised an 
exception, control would be returned to the zero solver. The problem with this 
approach is that every language has a different method of handling signals (if it has 
a method at all), and so it has no hope of portability. 

In IEEE 754, NaNs are often represented as floating-point numbers with the 
exponent emax + 1 and nonzero significands. Implementations are free to put system-
dependent information into the significand. Thus there is not a unique NaN, but 
rather a whole family of NaNs. When a NaN and an ordinary floating-point number 
are combined, the result should be the same as the NaN operand. Thus if the result 
of a long computation is a NaN, the system-dependent information in the 
significand will be the information that was generated when the first NaN in the 
computation was generated. Actually, there is a caveat to the last statement. If both 
operands are NaNs, then the result will be one of those NaNs, but it might not be 
the NaN that was generated first. 

D.4.3.1 Infinity 

Just as NaNs provide a way to continue a computation when expressions like 0/0 or 
 are encountered, infinities provide a way to continue when an overflow occurs. 

This is much safer than simply returning the largest representable number. As an 
example, consider computing , when β = 10, p = 3, and emax = 98. If x =
 3 × 1070 and y = 4 × 1070, then x2 will overflow, and be replaced by 9.99 × 1098. 
Similarly y2, and x2 + y2 will each overflow in turn, and be replaced by 9.99 × 1098. So 
the final result will be , which is drastically wrong: the 

TABLE D-3 Operations That Produce a NaN

Operation NaN Produced By

+  ∞ + (- ∞)

×  0 × ∞

/  0/0, ∞/∞

REM  x REM 0, ∞ REM y

 (when x < 0) x

1–

x2 y2+

9.99 1098× 3.16 1049×=
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correct answer is 5 × 1070. In IEEE arithmetic, the result of x2 is ∞, as is y2, x2 + y2 and 
. So the final result is ∞, which is safer than returning an ordinary floating-

point number that is nowhere near the correct answer.17

The division of 0 by 0 results in a NaN. A nonzero number divided by 0, however, 
returns infinity: 1/0 = ∞, -1/0 = -∞. The reason for the distinction is this: if f(x) → 0 
and g(x) → 0 as x approaches some limit, then f(x)/g(x) could have any value. For 
example, when f(x) = sin x and g(x) = x, then f(x)/g(x) → 1 as x → 0. But when f(x) =
 1 - cos x, f(x)/g(x) → 0. When thinking of 0/0 as the limiting situation of a quotient 
of two very small numbers, 0/0 could represent anything. Thus in the IEEE 
standard, 0/0 results in a NaN. But when c > 0, f(x) → c, and g(x)→0, then 
f(x)/g(x) → ±∞, for any analytic functions f and g. If g(x) < 0 for small x, then 
f(x)/g(x) → -∞, otherwise the limit is +∞. So the IEEE standard defines c/0 = ±∞, as 
long as c ≠ 0. The sign of ∞ depends on the signs of c and 0 in the usual way, so that 
-10/0 = -∞, and -10/-0 = +∞. You can distinguish between getting ∞ because of 
overflow and getting ∞ because of division by zero by checking the status flags 
(which will be discussed in detail in section “Flags” on page D 32). The overflow flag 
will be set in the first case, the division by zero flag in the second. 

The rule for determining the result of an operation that has infinity as an operand is 
simple: replace infinity with a finite number x and take the limit as x → ∞. Thus 
3/∞ = 0, because

. 

Similarly, 4 – ∞ = -∞, and  = ∞. When the limit doesn’t exist, the result is a NaN, 
so ∞/∞ will be a NaN (TABLE D-3 has additional examples). This agrees with the 
reasoning used to conclude that 0/0 should be a NaN. 

When a subexpression evaluates to a NaN, the value of the entire expression is also 
a NaN. In the case of ±∞ however, the value of the expression might be an ordinary 
floating-point number because of rules like 1/∞ = 0. Here is a practical example that 
makes use of the rules for infinity arithmetic. Consider computing the function 
x/(x2 + 1). This is a bad formula, because not only will it overflow when x is larger 
than , but infinity arithmetic will give the wrong answer because it will 
yield 0, rather than a number near 1/x. However, x/(x2 + 1) can be rewritten as 
1/(x + x-1). This improved expression will not overflow prematurely and because of 
infinity arithmetic will have the correct value when x = 0: 1/(0 + 0-1) = 1/(0 + ∞) = 
1/∞ = 0. Without infinity arithmetic, the expression 1/(x + x-1) requires a test for x =
 0, which not only adds extra instructions, but may also disrupt a pipeline. This 
example illustrates a general fact, namely that infinity arithmetic often avoids the 
need for special case checking; however, formulas need to be carefully inspected to 
make sure they do not have spurious behavior at infinity (as x/(x2 + 1) did). 

17.Fine point: Although the default in IEEE arithmetic is to round overflowed numbers to ∞, it is possible to 
change the default (see “Rounding Modes” on page D 31)

x2 y2+

3 x⁄
x ∞→

lim 0=

∞

ββ
emax 2⁄
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D.4.3.2 Signed Zero 

Zero is represented by the exponent emin – 1 and a zero significand. Since the sign bit 
can take on two different values, there are two zeros, +0 and -0. If a distinction were 
made when comparing +0 and -0, simple tests like if (x = 0) would have very 
unpredictable behavior, depending on the sign of x. Thus the IEEE standard defines 
comparison so that +0 = -0, rather than -0 < +0. Although it would be possible 
always to ignore the sign of zero, the IEEE standard does not do so. When a 
multiplication or division involves a signed zero, the usual sign rules apply in 
computing the sign of the answer. Thus 3⋅(+0) = +0, and +0/-3 = -0. If zero did not 
have a sign, then the relation 1/(1/x) = x would fail to hold when x = ±∞. The reason 
is that 1/-∞ and 1/+∞ both result in 0, and 1/0 results in +∞, the sign information 
having been lost. One way to restore the identity 1/(1/x) = x is to only have one 
kind of infinity, however that would result in the disastrous consequence of losing 
the sign of an overflowed quantity. 

Another example of the use of signed zero concerns underflow and functions that 
have a discontinuity at 0, such as log. In IEEE arithmetic, it is natural to define log 
0 = -∞ and log x to be a NaN when x < 0. Suppose that x represents a small negative 
number that has underflowed to zero. Thanks to signed zero, x will be negative, so 
log can return a NaN. However, if there were no signed zero, the log function could 
not distinguish an underflowed negative number from 0, and would therefore have 
to return -∞. Another example of a function with a discontinuity at zero is the 
signum function, which returns the sign of a number. 

Probably the most interesting use of signed zero occurs in complex arithmetic. To 
take a simple example, consider the equation . This is certainly true 
when z ≥ 0. If z = -1, the obvious computation gives  and 

. Thus, ! The problem can be traced to the fact 
that square root is multi-valued, and there is no way to select the values so that it is 
continuous in the entire complex plane. However, square root is continuous if a 
branch cut consisting of all negative real numbers is excluded from consideration. 
This leaves the problem of what to do for the negative real numbers, which are of 
the form -x + i0, where x > 0. Signed zero provides a perfect way to resolve this 
problem. Numbers of the form x + i(+0) have one sign  and numbers of the 
form x + i(-0) on the other side of the branch cut have the other sign . In fact, 
the natural formulas for computing  will give these results. 

Back to . If z =1 = -1 + i0, then

1/z = 1/(-1 + i0) = [(-1– i0)]/[(-1 + i0)(-1 – i0)]  = (-1 –- i0)/((-1)2 – 02)  = -1 + i(-0),

and so , while . Thus IEEE arithmetic 
preserves this identity for all z. Some more sophisticated examples are given by 
Kahan [1987]. Although distinguishing between +0 and -0 has advantages, it can 
occasionally be confusing. For example, signed zero destroys the relation  

1 z⁄ 1 z( )⁄=
1 1–( )⁄ 1– i= =

1 1–( )⁄ 1 i⁄ i–= = 1 z⁄ 1 z( )⁄≠

i x( )
i x–( )

 

1 z⁄ 1 z( )⁄=

1 z⁄ 1– i 0–( )+ i–= = 1 z( )⁄ 1 i⁄ i–= =
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x = y ⇔ 1/x = 1/y, which is false when x = +0 and y = -0. However, the IEEE 
committee decided that the advantages of utilizing the sign of zero outweighed the 
disadvantages.

D.4.3.3 Denormalized Numbers 

Consider normalized floating-point numbers with β = 10, p = 3, and emin = -98. The 
numbers x = 6.87 × 10-97 and y = 6.81 × 10-97 appear to be perfectly ordinary floating-
point numbers, which are more than a factor of 10 larger than the smallest floating-
point number 1.00 × 10-98. They have a strange property, however: x  y = 0 even 
though x ≠ y! The reason is that x - y = .06 × 10 -97  = 6.0 × 10-99 is too small to be 
represented as a normalized number, and so must be flushed to zero. How 
important is it to preserve the property 

x = y ⇔ x - y = 0 ? (10)

It’s very easy to imagine writing the code fragment, if (x ≠ y) then z = 1/(x-y), 
and much later having a program fail due to a spurious division by zero. Tracking 
down bugs like this is frustrating and time consuming. On a more philosophical 
level, computer science textbooks often point out that even though it is currently 
impractical to prove large programs correct, designing programs with the idea of 
proving them often results in better code. For example, introducing invariants is 
quite useful, even if they aren’t going to be used as part of a proof. Floating-point 
code is just like any other code: it helps to have provable facts on which to depend. 
For example, when analyzing formula (6), it was very helpful to know that 
x/2 < y < 2x ⇒ x  y = x - y. Similarly, knowing that (10) is true makes writing 
reliable floating-point code easier. If it is only true for most numbers, it cannot be 
used to prove anything. 

The IEEE standard uses denormalized18 numbers, which guarantee (10), as well as 
other useful relations. They are the most controversial part of the standard and 
probably accounted for the long delay in getting 754 approved. Most high 
performance hardware that claims to be IEEE compatible does not support 
denormalized numbers directly, but rather traps when consuming or producing 
denormals, and leaves it to software to simulate the IEEE standard.19 The idea 
behind denormalized numbers goes back to Goldberg [1967] and is very simple. 
When the exponent is emin, the significand does not have to be normalized, so that 
when β = 10, p = 3 and emin = -98, 1.00 × 10-98 is no longer the smallest floating-point 
number, because 0.98 × 10-98 is also a floating-point number. 

18.They are called subnormal in 854, denormal in 754.

19.This is the cause of one of the most troublesome aspects of the standard. Programs that frequently underflow 
often run noticeably slower on hardware that uses software traps.
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There is a small snag when β = 2 and a hidden bit is being used, since a number with 
an exponent of emin will always have a significand greater than or equal to 1.0 
because of the implicit leading bit. The solution is similar to that used to represent 0, 
and is summarized in TABLE D-2. The exponent emin is used to represent denormals. 
More formally, if the bits in the significand field are b1, b2, …, bp -1, and the value of 
the exponent is e, then when e > emin - 1, the number being represented is 1.b1b2…bp - 

1 × 2e whereas when e = emin - 1, the number being represented is 0.b1b2…bp - 1 × 2e + 1. 
The +1 in the exponent is needed because denormals have an exponent of emin, not 
emin - 1. 

Recall the example of β = 10, p = 3, emin = -98, x = 6.87 × 10-97 and y = 6.81 × 10-97 
presented at the beginning of this section. With denormals, x - y does not flush to 
zero but is instead represented by the denormalized number .6 × 10-98. This behavior 
is called gradual underflow. It is easy to verify that (10) always holds when using 
gradual underflow. 

FIGURE D-2 Flush To Zero Compared With Gradual Underflow

FIGURE D-2 illustrates denormalized numbers. The top number line in the figure 
shows normalized floating-point numbers. Notice the gap between 0 and the 
smallest normalized number . If the result of a floating-point calculation 
falls into this gulf, it is flushed to zero. The bottom number line shows what happens 
when denormals are added to the set of floating-point numbers. The “gulf” is filled 
in, and when the result of a calculation is less than , it is represented by 
the nearest denormal. When denormalized numbers are added to the number line, 
the spacing between adjacent floating-point numbers varies in a regular way: 
adjacent spacings are either the same length or differ by a factor of β. Without 
denormals, the spacing abruptly changes from  to , which is a factor 
of , rather than the orderly change by a factor of β. Because of this, many 
algorithms that can have large relative error for normalized numbers close to the 
underflow threshold are well-behaved in this range when gradual underflow is 
used. 
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Without gradual underflow, the simple expression x - y can have a very large relative 
error for normalized inputs, as was seen above for x = 6.87 × 10-97 and y =
 6.81 × 10-97. Large relative errors can happen even without cancellation, as the 
following example shows [Demmel 1984]. Consider dividing two complex numbers, 
a + ib and c + id. The obvious formula 

 ⋅ i

suffers from the problem that if either component of the denominator c + id is larger 
than , the formula will overflow, even though the final result may be well 
within range. A better method of computing the quotients is to use Smith’s formula:

(11)

Applying Smith’s formula to (2 ⋅ 10-98 + i10-98)/(4 ⋅ 10-98 + i(2 ⋅ 10-98)) gives the correct 
answer of 0.5 with gradual underflow. It yields 0.4 with flush to zero, an error of 100 
ulps. It is typical for denormalized numbers to guarantee error bounds for 
arguments all the way down to 1.0 x . 

D.4.4 Exceptions, Flags and Trap Handlers 
When an exceptional condition like division by zero or overflow occurs in IEEE 
arithmetic, the default is to deliver a result and continue. Typical of the default 
results are NaN for 0/0 and , and ∞ for 1/0 and overflow. The preceding 
sections gave examples where proceeding from an exception with these default 
values was the reasonable thing to do. When any exception occurs, a status flag is 
also set. Implementations of the IEEE standard are required to provide users with a 
way to read and write the status flags. The flags are “sticky” in that once set, they 
remain set until explicitly cleared. Testing the flags is the only way to distinguish 
1/0, which is a genuine infinity from an overflow. 

Sometimes continuing execution in the face of exception conditions is not 
appropriate. The section “Infinity” on page D 24 gave the example of x/(x2 + 1). 
When x > , the denominator is infinite, resulting in a final answer of 0, 
which is totally wrong. Although for this formula the problem can be solved by 
rewriting it as 1/(x + x-1), rewriting may not always solve the problem. The IEEE 
standard strongly recommends that implementations allow trap handlers to be 
installed. Then when an exception occurs, the trap handler is called instead of 
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setting the flag. The value returned by the trap handler will be used as the result of 
the operation. It is the responsibility of the trap handler to either clear or set the 
status flag; otherwise, the value of the flag is allowed to be undefined. 

The IEEE standard divides exceptions into 5 classes: overflow, underflow, division 
by zero, invalid operation and inexact. There is a separate status flag for each class 
of exception. The meaning of the first three exceptions is self-evident. Invalid 
operation covers the situations listed in TABLE D-3, and any comparison that involves 
a NaN. The default result of an operation that causes an invalid exception is to 
return a NaN, but the converse is not true. When one of the operands to an 
operation is a NaN, the result is a NaN but no invalid exception is raised unless the 
operation also satisfies one of the conditions in TABLE D-3.20 

*x is the exact result of the operation,  α = 192 for single precision, 1536 for double, and 
xmax = 1.11 …11 × .

The inexact exception is raised when the result of a floating-point operation is not 
exact. In the β = 10, p = 3 system, 3.5 ⊗ 4.2 = 14.7 is exact, but 3.5 ⊗ 4.3 = 15.0 is not 
exact (since 3.5 ⋅ 4.3 = 15.05), and raises an inexact exception. “Binary to Decimal 
Conversion” on page D 55 discusses an algorithm that uses the inexact exception. A 
summary of the behavior of all five exceptions is given in TABLE D-4. 

There is an implementation issue connected with the fact that the inexact exception 
is raised so often. If floating-point hardware does not have flags of its own, but 
instead interrupts the operating system to signal a floating-point exception, the cost 
of inexact exceptions could be prohibitive. This cost can be avoided by having the 
status flags maintained by software. The first time an exception is raised, set the 
software flag for the appropriate class, and tell the floating-point hardware to mask 
off that class of exceptions. Then all further exceptions will run without interrupting 
the operating system. When a user resets that status flag, the hardware mask is re-
enabled. 

TABLE D-4 Exceptions in IEEE 754*

Exception Result when traps disabled Argument to trap handler

overflow ±∞ or ±xmax round(x2-α)

underflow 0,  or denormal round(x2α)

divide by zero ∞ operands

invalid NaN operands

inexact round(x) round(x)

20.No invalid exception is raised unless a “trapping” NaN is involved in the operation. See section 6.2 of IEEE 
Std 754-1985. – Ed. 

2
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D.4.4.1 Trap Handlers 

One obvious use for trap handlers is for backward compatibility. Old codes that 
expect to be aborted when exceptions occur can install a trap handler that aborts the 
process. This is especially useful for codes with a loop like do S until (x >= 100). 
Since comparing a NaN to a number with <, ≤, >, ≥, or = (but not ≠) always returns 
false, this code will go into an infinite loop if x ever becomes a NaN. 

There is a more interesting use for trap handlers that comes up when computing 
products such as  that could potentially overflow. One solution is to use 
logarithms, and compute exp  instead. The problem with this approach is 
that it is less accurate, and that it costs more than the simple expression , even if 
there is no overflow. There is another solution using trap handlers called 
over/underflow counting that avoids both of these problems [Sterbenz 1974]. 

The idea is as follows. There is a global counter initialized to zero. Whenever the 
partial product  overflows for some k, the trap handler increments the 
counter by one and returns the overflowed quantity with the exponent wrapped 
around. In IEEE 754 single precision, emax = 127, so if pk = 1.45 × 2130, it will overflow 
and cause the trap handler to be called, which will wrap the exponent back into 
range, changing pk to 1.45 × 2-62 (see below). Similarly, if pk underflows, the counter 
would be decremented, and negative exponent would get wrapped around into a 
positive one. When all the multiplications are done, if the counter is zero then the 
final product is pn. If the counter is positive, the product overflowed, if the counter is 
negative, it underflowed. If none of the partial products are out of range, the trap 
handler is never called and the computation incurs no extra cost. Even if there are 
over/underflows, the calculation is more accurate than if it had been computed with 
logarithms, because each pk was computed from pk - 1 using a full precision multiply. 
Barnett [1987] discusses a formula where the full accuracy of over/underflow 
counting turned up an error in earlier tables of that formula. 

IEEE 754 specifies that when an overflow or underflow trap handler is called, it is 
passed the wrapped-around result as an argument. The definition of wrapped-
around for overflow is that the result is computed as if to infinite precision, then 
divided by 2α, and then rounded to the relevant precision. For underflow, the result 
is multiplied by 2α. The exponent α is 192 for single precision and 1536 for double 
precision. This is why 1.45 x 2130 was transformed into 1.45 × 2-62 in the example 
above. 

D.4.4.2 Rounding Modes 

In the IEEE standard, rounding occurs whenever an operation has a result that is not 
exact, since (with the exception of binary decimal conversion) each operation is 
computed exactly and then rounded. By default, rounding means round toward 
nearest. The standard requires that three other rounding modes be provided, namely 
round toward 0, round toward +∞, and round toward -∞. When used with the 

Πi 1=
n xi

Σ logxi( )
Πxi

pk Πi 1=
k xi=
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convert to integer operation, round toward -∞ causes the convert to become the floor 
function, while round toward +∞ is ceiling. The rounding mode affects overflow, 
because when round toward 0 or round toward -∞ is in effect, an overflow of 
positive magnitude causes the default result to be the largest representable number, 
not +∞. Similarly, overflows of negative magnitude will produce the largest negative 
number when round toward +∞ or round toward 0 is in effect. 

One application of rounding modes occurs in interval arithmetic (another is 
mentioned in “Binary to Decimal Conversion” on page D 55). When using interval 
arithmetic, the sum of two numbers x and y is an interval , where  is x ⊕ y 
rounded toward -∞, and  is x ⊕ y rounded toward +∞. The exact result of the 
addition is contained within the interval . Without rounding modes, interval 
arithmetic is usually implemented by computing  and 

, where  is machine epsilon.21 This results in overestimates for 
the size of the intervals. Since the result of an operation in interval arithmetic is an 
interval, in general the input to an operation will also be an interval. If two intervals 

, and , are added, the result is , where  is  with the rounding 
mode set to round toward -∞, and  is  with the rounding mode set to round 
toward +∞. 

When a floating-point calculation is performed using interval arithmetic, the final 
answer is an interval that contains the exact result of the calculation. This is not very 
helpful if the interval turns out to be large (as it often does), since the correct answer 
could be anywhere in that interval. Interval arithmetic makes more sense when used 
in conjunction with a multiple precision floating-point package. The calculation is 
first performed with some precision p. If interval arithmetic suggests that the final 
answer may be inaccurate, the computation is redone with higher and higher 
precisions until the final interval is a reasonable size.

D.4.4.3 Flags 

The IEEE standard has a number of flags and modes. As discussed above, there is 
one status flag for each of the five exceptions: underflow, overflow, division by zero, 
invalid operation and inexact. There are four rounding modes: round toward 
nearest, round toward +∞, round toward 0, and round toward -∞. It is strongly 
recommended that there be an enable mode bit for each of the five exceptions. This 
section gives some simple examples of how these modes and flags can be put to 
good use. A more sophisticated example is discussed in the section “Binary to 
Decimal Conversion” on page D 55. 

21.  may be greater than  if both x and y are negative. – Ed. 

z,z[ ] z
z
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Consider writing a subroutine to compute xn, where n is an integer. When n > 0, a 
simple routine like 

If n < 0, then a more accurate way to compute xn is not to call 
PositivePower(1/x, -n) but rather 1/PositivePower(x, -n), because the 
first expression multiplies n quantities each of which have a rounding error from the 
division (i.e., 1/x). In the second expression these are exact (i.e., x), and the final 
division commits just one additional rounding error. Unfortunately, these is a slight 
snag in this strategy. If PositivePower(x, -n) underflows, then either the 
underflow trap handler will be called, or else the underflow status flag will be set. 
This is incorrect, because if x-n underflows, then xn will either overflow or be in 
range.22 But since the IEEE standard gives the user access to all the flags, the 
subroutine can easily correct for this. It simply turns off the overflow and underflow 
trap enable bits and saves the overflow and underflow status bits. It then computes 
1/PositivePower(x, -n). If neither the overflow nor underflow status bit is set, 
it restores them together with the trap enable bits. If one of the status bits is set, it 
restores the flags and redoes the calculation using PositivePower(1/x, -n), 
which causes the correct exceptions to occur. 

Another example of the use of flags occurs when computing arccos via the formula

arccos x = 2 arctan . 

If arctan(∞) evaluates to π/2, then arccos(-1) will correctly evaluate to 2⋅arctan(∞) =
 π, because of infinity arithmetic. However, there is a small snag, because the 
computation of (1 – x)/(1 + x) will cause the divide by zero exception flag to be set, 
even though arccos(-1) is not exceptional. The solution to this problem is 
straightforward. Simply save the value of the divide by zero flag before computing 
arccos, and then restore its old value after the computation. 

PositivePower(x,n) { 
 while (n is even) { 
     x = x*x
     n = n/2
 } 
 u = x
 while (true) { 
     n = n/2
     if (n==0) return u
     x = x*x
     if (n is odd) u = u*x
 } 

22.It can be in range because if x < 1, n <  0 and x-n is just a tiny bit smaller than the underflow threshold , 
then , and so may not overflow, since in all IEEE precisions, -emin < emax.

2emin

xn 2
emin–

2
emax<≈

1 x–
1 x+
------------
Appendix D What Every Computer Scientist Should Know About Floating-Point Arithmetic  D-33



D.5 Systems Aspects
The design of almost every aspect of a computer system requires knowledge about 
floating-point. Computer architectures usually have floating-point instructions, 
compilers must generate those floating-point instructions, and the operating system 
must decide what to do when exception conditions are raised for those floating-
point instructions. Computer system designers rarely get guidance from numerical 
analysis texts, which are typically aimed at users and writers of software, not at 
computer designers. As an example of how plausible design decisions can lead to 
unexpected behavior, consider the following BASIC program. 

When compiled and run using Borland’s Turbo Basic on an IBM PC, the program 
prints Not Equal! This example will be analyzed in the next section

Incidentally, some people think that the solution to such anomalies is never to 
compare floating-point numbers for equality, but instead to consider them equal if 
they are within some error bound E. This is hardly a cure-all because it raises as 
many questions as it answers. What should the value of E be? If x < 0 and y > 0 are 
within E, should they really be considered to be equal, even though they have 
different signs? Furthermore, the relation defined by this rule, a ~ b ⇔ |a – b| < E, is 
not an equivalence relation because a ~ b and b ~ c does not imply that a ~ c.

D.5.1 Instruction Sets 
It is quite common for an algorithm to require a short burst of higher precision in 
order to produce accurate results. One example occurs in the quadratic formula 
( )/2a. As discussed in the section “Proof of Theorem 4” on page D 52, 
when b2 ≈ 4ac, rounding error can contaminate up to half the digits in the roots 
computed with the quadratic formula. By performing the subcalculation of b2 - 4ac in 
double precision, half the double precision bits of the root are lost, which means that 
all the single precision bits are preserved. 

The computation of b2 – 4ac in double precision when each of the quantities a, b, and 
c are in single precision is easy if there is a multiplication instruction that takes two 
single precision numbers and produces a double precision result. In order to 
produce the exactly rounded product of two p-digit numbers, a multiplier needs to 
generate the entire 2p bits of product, although it may throw bits away as it 
proceeds. Thus, hardware to compute a double precision product from single 

q = 3.0/7.0
if q = 3.0/7.0 then print "Equal":
    else print "Not Equal"

b– b2 4ac–±
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precision operands will normally be only a little more expensive than a single 
precision multiplier, and much cheaper than a double precision multiplier. Despite 
this, modern instruction sets tend to provide only instructions that produce a result 
of the same precision as the operands.23 

If an instruction that combines two single precision operands to produce a double 
precision product was only useful for the quadratic formula, it wouldn’t be worth 
adding to an instruction set. However, this instruction has many other uses. 
Consider the problem of solving a system of linear equations, 

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn=   b1

a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn=   b2

⋅ ⋅ ⋅

an1x1 + an2x2 + ⋅ ⋅ ⋅+ annxn=   bn

which can be written in matrix form as Ax = b, where

Suppose that a solution x(1) is computed by some method, perhaps Gaussian 
elimination. There is a simple way to improve the accuracy of the result called 
iterative improvement. First compute

ξ = Ax(1) - b (12)

and then solve the system 

Ay  =  ξ (13)

23.This is probably because designers like “orthogonal” instruction sets, where the precisions of a floating-point 
instruction are independent of the actual operation. Making a special case for multiplication destroys this 
orthogonality.

A

a11 a12 … a1n

a21 a22 … a2 1( )n  
… 

an1 an2 … ann

=
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Note that if x(1) is an exact solution, then ξ is the zero vector, as is y. In general, the 
computation of ξ and y will incur rounding error, so Ay ≈ ξ ≈ Ax(1) - b = A(x(1) - x), 
where x is the (unknown) true solution. Then y ≈ x(1) - x, so an improved estimate for 
the solution is 

x(2) = x(1) – y (14)

The three steps (12), (13), and (14) can be repeated, replacing x(1) with x(2), and x(2) with 
x(3). This argument that x(i + 1) is more accurate than x(i) is only informal. For more 
information, see [Golub and Van Loan 1989]. 

When performing iterative improvement, ξ is a vector whose elements are the 
difference of nearby inexact floating-point numbers, and so can suffer from 
catastrophic cancellation. Thus iterative improvement is not very useful unless ξ =
 Ax(1) - b is computed in double precision. Once again, this is a case of computing the 
product of two single precision numbers (A and x(1)), where the full double precision 
result is needed. 

To summarize, instructions that multiply two floating-point numbers and return a 
product with twice the precision of the operands make a useful addition to a 
floating-point instruction set. Some of the implications of this for compilers are 
discussed in the next section. 

D.5.2 Languages and Compilers 
The interaction of compilers and floating-point is discussed in Farnum [1988], and 
much of the discussion in this section is taken from that paper.

D.5.2.1 Ambiguity 

Ideally, a language definition should define the semantics of the language precisely 
enough to prove statements about programs. While this is usually true for the 
integer part of a language, language definitions often have a large grey area when it 
comes to floating-point. Perhaps this is due to the fact that many language designers 
believe that nothing can be proven about floating-point, since it entails rounding 
error. If so, the previous sections have demonstrated the fallacy in this reasoning. 
This section discusses some common grey areas in language definitions, including 
suggestions about how to deal with them.

Remarkably enough, some languages don’t clearly specify that if x is a floating-point 
variable (with say a value of 3.0/10.0), then every occurrence of (say) 10.0*x 
must have the same value. For example Ada, which is based on Brown’s model, 
seems to imply that floating-point arithmetic only has to satisfy Brown’s axioms, and 
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thus expressions can have one of many possible values. Thinking about floating-
point in this fuzzy way stands in sharp contrast to the IEEE model, where the result 
of each floating-point operation is precisely defined. In the IEEE model, we can 
prove that (3.0/10.0)*10.0 evaluates to 3 (Theorem 7). In Brown’s model, we 
cannot. 

Another ambiguity in most language definitions concerns what happens on 
overflow, underflow and other exceptions. The IEEE standard precisely specifies the 
behavior of exceptions, and so languages that use the standard as a model can avoid 
any ambiguity on this point. 

Another grey area concerns the interpretation of parentheses. Due to roundoff 
errors, the associative laws of algebra do not necessarily hold for floating-point 
numbers. For example, the expression (x+y)+z has a totally different answer than 
x+(y+z) when x = 1030, y = -1030 and z = 1 (it is 1 in the former case, 0 in the latter). 
The importance of preserving parentheses cannot be overemphasized. The 
algorithms presented in theorems 3, 4 and 6 all depend on it. For example, in 
Theorem 6, the formula xh = mx - (mx - x) would reduce to xh = x if it weren’t for 
parentheses, thereby destroying the entire algorithm. A language definition that 
does not require parentheses to be honored is useless for floating-point calculations. 

Subexpression evaluation is imprecisely defined in many languages. Suppose that 
ds is double precision, but x and y are single precision. Then in the expression 
ds + x*y is the product performed in single or double precision? Another example: 
in x + m/n where m and n are integers, is the division an integer operation or a 
floating-point one? There are two ways to deal with this problem, neither of which is 
completely satisfactory. The first is to require that all variables in an expression have 
the same type. This is the simplest solution, but has some drawbacks. First of all, 
languages like Pascal that have subrange types allow mixing subrange variables 
with integer variables, so it is somewhat bizarre to prohibit mixing single and 
double precision variables. Another problem concerns constants. In the expression 
0.1*x, most languages interpret 0.1 to be a single precision constant. Now suppose 
the programmer decides to change the declaration of all the floating-point variables 
from single to double precision. If 0.1 is still treated as a single precision constant, 
then there will be a compile time error. The programmer will have to hunt down and 
change every floating-point constant. 

The second approach is to allow mixed expressions, in which case rules for 
subexpression evaluation must be provided. There are a number of guiding 
examples. The original definition of C required that every floating-point expression 
be computed in double precision [Kernighan and Ritchie 1978]. This leads to 
anomalies like the example at the beginning of this section. The expression 3.0/7.0 
is computed in double precision, but if q is a single-precision variable, the quotient 
is rounded to single precision for storage. Since 3/7 is a repeating binary fraction, its 
computed value in double precision is different from its stored value in single 
precision. Thus the comparison q = 3/7 fails. This suggests that computing every 
expression in the highest precision available is not a good rule. 
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Another guiding example is inner products. If the inner product has thousands of 
terms, the rounding error in the sum can become substantial. One way to reduce this 
rounding error is to accumulate the sums in double precision (this will be discussed 
in more detail in the section “Optimizers” on page D 41). If d is a double precision 
variable, and x[] and y[] are single precision arrays, then the inner product loop 
will look like d = d + x[i]*y[i]. If the multiplication is done in single precision, 
than much of the advantage of double precision accumulation is lost, because the 
product is truncated to single precision just before being added to a double precision 
variable. 

A rule that covers both of the previous two examples is to compute an expression in 
the highest precision of any variable that occurs in that expression. Then q =
 3.0/7.0 will be computed entirely in single precision24 and will have the boolean 
value true, whereas d = d + x[i]*y[i] will be computed in double precision, 
gaining the full advantage of double precision accumulation. However, this rule is 
too simplistic to cover all cases cleanly. If dx and dy are double precision variables, 
the expression y = x + single(dx-dy) contains a double precision variable, but 
performing the sum in double precision would be pointless, because both operands 
are single precision, as is the result. 

A more sophisticated subexpression evaluation rule is as follows. First assign each 
operation a tentative precision, which is the maximum of the precisions of its 
operands. This assignment has to be carried out from the leaves to the root of the 
expression tree. Then perform a second pass from the root to the leaves. In this pass, 
assign to each operation the maximum of the tentative precision and the precision 
expected by the parent. In the case of q = 3.0/7.0, every leaf is single precision, so 
all the operations are done in single precision. In the case of d = d + x[i]*y[i], the 
tentative precision of the multiply operation is single precision, but in the second 
pass it gets promoted to double precision, because its parent operation expects a 
double precision operand. And in y = x + single(dx-dy), the addition is done in 
single precision. Farnum [1988] presents evidence that this algorithm in not difficult 
to implement. 

The disadvantage of this rule is that the evaluation of a subexpression depends on 
the expression in which it is embedded. This can have some annoying consequences. 
For example, suppose you are debugging a program and want to know the value of 
a subexpression. You cannot simply type the subexpression to the debugger and ask 
it to be evaluated, because the value of the subexpression in the program depends 
on the expression it is embedded in. A final comment on subexpressions: since 
converting decimal constants to binary is an operation, the evaluation rule also 
affects the interpretation of decimal constants. This is especially important for 
constants like 0.1 which are not exactly representable in binary. 

24.This assumes the common convention that 3.0 is a single-precision constant, while 3.0D0 is a double 
precision constant.
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Another potential grey area occurs when a language includes exponentiation as one 
of its built-in operations. Unlike the basic arithmetic operations, the value of 
exponentiation is not always obvious [Kahan and Coonen 1982]. If ** is the 
exponentiation operator, then (-3)**3 certainly has the value -27. However, 
(-3.0)**3.0 is problematical. If the ** operator checks for integer powers, it 
would compute (-3.0)**3.0 as -3.03 = -27. On the other hand, if the formula xy =
 eylogx is used to define ** for real arguments, then depending on the log function, 
the result could be a NaN (using the natural definition of log(x) = NaN when x < 0). 
If the FORTRAN CLOG function is used however, then the answer will be -27, 
because the ANSI FORTRAN standard defines CLOG(-3.0) to be iπ + log 3 [ANSI 
1978]. The programming language Ada avoids this problem by only defining 
exponentiation for integer powers, while ANSI FORTRAN prohibits raising a 
negative number to a real power. 

In fact, the FORTRAN standard says that 

Any arithmetic operation whose result is not mathematically defined is 
prohibited... 

Unfortunately, with the introduction of ±∞ by the IEEE standard, the meaning of not 
mathematically defined is no longer totally clear cut. One definition might be to use the 
method shown in section “Infinity” on page D 24. For example, to determine the 
value of ab, consider non-constant analytic functions f and g with the property that 
f(x) → a and g(x) → b as x → 0. If f(x)g(x) always approaches the same limit, then this 
should be the value of ab. This definition would set 2∞ = ∞ which seems quite 
reasonable. In the case of 1.0∞, when f(x) = 1 and g(x) = 1/x the limit approaches 1, 
but when f(x) = 1 - x and g(x) = 1/x the limit is e-1. So 1.0∞, should be a NaN. In the 
case of 00, f(x)g(x) = eg(x)log f(x). Since f and g are analytic and take on the value 0 at 0, 
f(x) = a1x1 + a2x2 + … and g(x) = b1x1 + b2x2 + …. Thus limx → 0g(x) log f(x) = 
limx → 0x log(x(a1 + a2x + …)) = limx → 0x log(a1x) = 0. So f(x)g(x) → e0 = 1 for all f and g, 
which means that 00 = 1.25 26 Using this definition would unambiguously define the 
exponential function for all arguments, and in particular would define 
(-3.0)**3.0 to be -27. 

D.5.2.2 The IEEE Standard 

The section “The IEEE Standard” on page D 16,” discussed many of the features of 
the IEEE standard. However, the IEEE standard says nothing about how these 
features are to be accessed from a programming language. Thus, there is usually a 
mismatch between floating-point hardware that supports the standard and 
programming languages like C, Pascal or FORTRAN. Some of the IEEE capabilities 

25.The conclusion that 00 = 1 depends on the restriction that f be nonconstant. If this restriction is removed, then 
letting f be the identically 0 function gives 0 as a possible value for lim x → 0 f(x)g(x), and so 00 would have to 
be defined to be a NaN.

26.In the case of 00, plausibility arguments can be made, but the convincing argument is found in “Concrete 
Mathematics” by Graham, Knuth and Patashnik, and argues that 00 = 1 for the binomial theorem to work.          
– Ed. 
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can be accessed through a library of subroutine calls. For example the IEEE standard 
requires that square root be exactly rounded, and the square root function is often 
implemented directly in hardware. This functionality is easily accessed via a library 
square root routine. However, other aspects of the standard are not so easily 
implemented as subroutines. For example, most computer languages specify at most 
two floating-point types, while the IEEE standard has four different precisions 
(although the recommended configurations are single plus single-extended or single, 
double, and double-extended). Infinity provides another example. Constants to 
represent ±∞ could be supplied by a subroutine. But that might make them unusable 
in places that require constant expressions, such as the initializer of a constant 
variable. 

A more subtle situation is manipulating the state associated with a computation, 
where the state consists of the rounding modes, trap enable bits, trap handlers and 
exception flags. One approach is to provide subroutines for reading and writing the 
state. In addition, a single call that can atomically set a new value and return the old 
value is often useful. As the examples in the section “Flags” on page D 32 show, a 
very common pattern of modifying IEEE state is to change it only within the scope 
of a block or subroutine. Thus the burden is on the programmer to find each exit 
from the block, and make sure the state is restored. Language support for setting the 
state precisely in the scope of a block would be very useful here. Modula-3 is one 
language that implements this idea for trap handlers [Nelson 1991]. 

There are a number of minor points that need to be considered when implementing 
the IEEE standard in a language. Since x - x = +0 for all x,27 (+0) - (+0) = +0. 
However, -(+0) = -0, thus -x should not be defined as 0 - x. The introduction of NaNs 
can be confusing, because a NaN is never equal to any other number (including 
another NaN), so x = x is no longer always true. In fact, the expression x ≠  x is the 
simplest way to test for a NaN if the IEEE recommended function Isnan is not 
provided. Furthermore, NaNs are unordered with respect to all other numbers, so x 
≤ y cannot be defined as not x > y. Since the introduction of NaNs causes floating-
point numbers to become partially ordered, a compare function that returns one of 
<, =, >, or unordered can make it easier for the programmer to deal with comparisons. 

Although the IEEE standard defines the basic floating-point operations to return a 
NaN if any operand is a NaN, this might not always be the best definition for 
compound operations. For example when computing the appropriate scale factor to 
use in plotting a graph, the maximum of a set of values must be computed. In this 
case it makes sense for the max operation to simply ignore NaNs. 

Finally, rounding can be a problem. The IEEE standard defines rounding very 
precisely, and it depends on the current value of the rounding modes. This 
sometimes conflicts with the definition of implicit rounding in type conversions or 
the explicit round function in languages. This means that programs which wish to 

27.Unless the rounding mode is round toward -∞, in which case x - x = -0.
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use IEEE rounding can’t use the natural language primitives, and conversely the 
language primitives will be inefficient to implement on the ever increasing number 
of IEEE machines. 

D.5.2.3 Optimizers 

Compiler texts tend to ignore the subject of floating-point. For example Aho et al. 
[1986] mentions replacing x/2.0 with x*0.5, leading the reader to assume that 
x/10.0 should be replaced by 0.1*x. However, these two expressions do not have 
the same semantics on a binary machine, because 0.1 cannot be represented exactly 
in binary. This textbook also suggests replacing x*y-x*z by x*(y-z), even though 
we have seen that these two expressions can have quite different values when y ≈ z. 
Although it does qualify the statement that any algebraic identity can be used when 
optimizing code by noting that optimizers should not violate the language 
definition, it leaves the impression that floating-point semantics are not very 
important. Whether or not the language standard specifies that parenthesis must be 
honored, (x+y)+z can have a totally different answer than x+(y+z), as discussed 
above. There is a problem closely related to preserving parentheses that is illustrated 
by the following code:

This is designed to give an estimate for machine epsilon. If an optimizing compiler 
notices that eps + 1 > 1 ⇔ eps > 0, the program will be changed completely. Instead 
of computing the smallest number x such that 1 ⊕ x is still greater than x (x ≈ e ≈ 

), it will compute the largest number x for which x/2 is rounded to 0 (x ≈ ). 
Avoiding this kind of “optimization” is so important that it is worth presenting one 
more very useful algorithm that is totally ruined by it. 

Many problems, such as numerical integration and the numerical solution of 
differential equations involve computing sums with many terms. Because each 
addition can potentially introduce an error as large as .5 ulp, a sum involving 
thousands of terms can have quite a bit of rounding error. A simple way to correct 
for this is to store the partial summand in a double precision variable and to perform 
each addition using double precision. If the calculation is being done in single 
precision, performing the sum in double precision is easy on most computer 
systems. However, if the calculation is already being done in double precision, 
doubling the precision is not so simple. One method that is sometimes advocated is 
to sort the numbers and add them from smallest to largest. However, there is a much 
more efficient method which dramatically improves the accuracy of sums, namely

eps = 1;
do eps = 0.5*eps; while (eps + 1 > 1);

β p– β
emin
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D.5.2.4 Theorem 8 (Kahan Summation Formula)

Suppose that  is computed using the following algorithm 

Then the computed sum S is equal to  where . 

Using the naive formula , the computed sum is equal to  where 
|δj| < (n - j)e. Comparing this with the error in the Kahan summation formula 
shows a dramatic improvement. Each summand is perturbed by only 2e, instead of 
perturbations as large as ne in the simple formula. Details are in, “Errors In 
Summation” on page D 56. 

An optimizer that believed floating-point arithmetic obeyed the laws of algebra 
would conclude that C = [T-S] - Y = [(S+Y)-S] - Y = 0, rendering the algorithm 
completely useless. These examples can be summarized by saying that optimizers 
should be extremely cautious when applying algebraic identities that hold for the 
mathematical real numbers to expressions involving floating-point variables. 

Another way that optimizers can change the semantics of floating-point code 
involves constants. In the expression 1.0E-40*x, there is an implicit decimal to 
binary conversion operation that converts the decimal number to a binary constant. 
Because this constant cannot be represented exactly in binary, the inexact exception 
should be raised. In addition, the underflow flag should to be set if the expression is 
evaluated in single precision. Since the constant is inexact, its exact conversion to 
binary depends on the current value of the IEEE rounding modes. Thus an optimizer 
that converts 1.0E-40 to binary at compile time would be changing the semantics 
of the program. However, constants like 27.5 which are exactly representable in the 
smallest available precision can be safely converted at compile time, since they are 
always exact, cannot raise any exception, and are unaffected by the rounding modes. 
Constants that are intended to be converted at compile time should be done with a 
constant declaration, such as const pi = 3.14159265.

S = X[1];
C = 0;
for j = 2 to N { 
    Y = X[j] - C;
    T = S + Y;
    C = (T - S) - Y;
    S = T;
} 

Σ
j 1=
N x j

Σx j 1 δ j+( ) O Nε2( )Σ x j ,+ δ j 2ε≤( )

Σx j Σx j 1 δ j+( )
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Common subexpression elimination is another example of an optimization that can 
change floating-point semantics, as illustrated by the following code 

Although A*B can appear to be a common subexpression, it is not because the 
rounding mode is different at the two evaluation sites. Three final examples: x = x 
cannot be replaced by the boolean constant true, because it fails when x is a NaN; 
-x = 0 - x fails for x = +0; and x < y is not the opposite of x ≥ y, because NaNs are 
neither greater than nor less than ordinary floating-point numbers. 

Despite these examples, there are useful optimizations that can be done on floating-
point code. First of all, there are algebraic identities that are valid for floating-point 
numbers. Some examples in IEEE arithmetic are x + y = y + x, 2 ×  x = x + x, 1 × x =
 x, and 0.5 × x = x/2. However, even these simple identities can fail on a few 
machines such as CDC and Cray supercomputers. Instruction scheduling and in-line 
procedure substitution are two other potentially useful optimizations.28

As a final example, consider the expression dx = x*y, where x and y are single 
precision variables, and dx is double precision. On machines that have an 
instruction that multiplies two single precision numbers to produce a double 
precision number, dx = x*y can get mapped to that instruction, rather than compiled 
to a series of instructions that convert the operands to double and then perform a 
double to double precision multiply. 

Some compiler writers view restrictions which prohibit converting (x + y) + z to x + 
(y + z) as irrelevant, of interest only to programmers who use unportable tricks. 
Perhaps they have in mind that floating-point numbers model real numbers and 
should obey the same laws that real numbers do. The problem with real number 
semantics is that they are extremely expensive to implement. Every time two n bit 
numbers are multiplied, the product will have 2n bits. Every time two n bit numbers 
with widely spaced exponents are added, the number of bits in the sum is n + the 
space between the exponents. The sum could have up to (emax - emin) + n bits, or 
roughly 2⋅emax + n bits. An algorithm that involves thousands of operations (such as 
solving a linear system) will soon be operating on numbers with many significant 
bits, and be hopelessly slow. The implementation of library functions such as sin and 
cos is even more difficult, because the value of these transcendental functions aren’t 
rational numbers. Exact integer arithmetic is often provided by lisp systems and is 
handy for some problems. However, exact floating-point arithmetic is rarely useful. 

The fact is that there are useful algorithms (like the Kahan summation formula) that 
exploit the fact that (x + y) + z ≠ x + (y + z), and work whenever the bound 

C = A*B;
RndMode = Up
D = A*B;

28.The VMS math libraries on the VAX use a weak form of in-line procedure substitution, in that they use the 
inexpensive jump to subroutine call rather than the slower CALLS and CALLG instructions.
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a ⊕ b = (a + b)(1 + δ)

holds (as well as similar bounds for –, × and /). Since these bounds hold for almost 
all commercial hardware, it would be foolish for numerical programmers to ignore 
such algorithms, and it would be irresponsible for compiler writers to destroy these 
algorithms by pretending that floating-point variables have real number semantics. 

D.5.3 Exception Handling 
The topics discussed up to now have primarily concerned systems implications of 
accuracy and precision. Trap handlers also raise some interesting systems issues. The 
IEEE standard strongly recommends that users be able to specify a trap handler for 
each of the five classes of exceptions, and the section “Trap Handlers” on page D 31, 
gave some applications of user defined trap handlers. In the case of invalid 
operation and division by zero exceptions, the handler should be provided with the 
operands, otherwise, with the exactly rounded result. Depending on the 
programming language being used, the trap handler might be able to access other 
variables in the program as well. For all exceptions, the trap handler must be able to 
identify what operation was being performed and the precision of its destination. 

The IEEE standard assumes that operations are conceptually serial and that when an 
interrupt occurs, it is possible to identify the operation and its operands. On 
machines which have pipelining or multiple arithmetic units, when an exception 
occurs, it may not be enough to simply have the trap handler examine the program 
counter. Hardware support for identifying exactly which operation trapped may be 
necessary. 

Another problem is illustrated by the following program fragment. 

Suppose the second multiply raises an exception, and the trap handler wants to use 
the value of a. On hardware that can do an add and multiply in parallel, an 
optimizer would probably move the addition operation ahead of the second 
multiply, so that the add can proceed in parallel with the first multiply. Thus when 
the second multiply traps, a = b + c has already been executed, potentially changing 
the result of a. It would not be reasonable for a compiler to avoid this kind of 
optimization, because every floating-point operation can potentially trap, and thus 
virtually all instruction scheduling optimizations would be eliminated. This problem 

x = y*z;
z = x*w;
a = b + c;
d = a/x;
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can be avoided by prohibiting trap handlers from accessing any variables of the 
program directly. Instead, the handler can be given the operands or result as an 
argument. 

But there are still problems. In the fragment 

the two instructions might well be executed in parallel. If the multiply traps, its 
argument z could already have been overwritten by the addition, especially since 
addition is usually faster than multiply. Computer systems that support the IEEE 
standard must provide some way to save the value of z, either in hardware or by 
having the compiler avoid such a situation in the first place. 

W. Kahan has proposed using presubstitution instead of trap handlers to avoid these 
problems. In this method, the user specifies an exception and the value he wants to 
be used as the result when the exception occurs. As an example, suppose that in 
code for computing (sin x)/x, the user decides that x = 0 is so rare that it would 
improve performance to avoid a test for x = 0, and instead handle this case when a 
0/0 trap occurs. Using IEEE trap handlers, the user would write a handler that 
returns a value of 1 and install it before computing sin x/x. Using presubstitution, 
the user would specify that when an invalid operation occurs, the value 1 should be 
used. Kahan calls this presubstitution, because the value to be used must be 
specified before the exception occurs. When using trap handlers, the value to be 
returned can be computed when the trap occurs. 

The advantage of presubstitution is that it has a straightforward hardware 
implementation.29 As soon as the type of exception has been determined, it can be 
used to index a table which contains the desired result of the operation. Although 
presubstitution has some attractive attributes, the widespread acceptance of the IEEE 
standard makes it unlikely to be widely implemented by hardware manufacturers. 

D.6 The Details 
A number of claims have been made in this paper concerning properties of floating-
point arithmetic. We now proceed to show that floating-point is not black magic, but 
rather is a straightforward subject whose claims can be verified mathematically. This 
section is divided into three parts. The first part presents an introduction to error 
analysis, and provides the details for the section “Rounding Error” on page D 2. The 

x = y*z;
z = a + b;

29.The difficulty with presubstitution is that it requires either direct hardware implementation, or continuable 
floating-point traps if implemented in software. – Ed. 
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second part explores binary to decimal conversion, filling in some gaps from the 
section “The IEEE Standard” on page D 16. The third part discusses the Kahan 
summation formula, which was used as an example in the section “Systems 
Aspects” on page D 34. 

D.6.1 Rounding Error 
In the discussion of rounding error, it was stated that a single guard digit is enough 
to guarantee that addition and subtraction will always be accurate (Theorem 2). We 
now proceed to verify this fact. Theorem 2 has two parts, one for subtraction and 
one for addition. The part for subtraction is 

D.6.1.1 Theorem 9

If x and y are positive floating-point numbers in a format with parameters β and p, and if 
subtraction is done with p + 1 digits (i.e. one guard digit), then the relative rounding error 
in the result is less than

e ≤ 2e.

D.6.1.2 Proof

Interchange x and y if necessary so that x > y. It is also harmless to scale x and y so 
that x is represented by x0.x1 … xp - 1 × β0. If y is represented as y0.y1 … yp-1, then the 
difference is exact. If y is represented as 0.y1 … yp, then the guard digit ensures that 
the computed difference will be the exact difference rounded to a floating-point 
number, so the rounding error is at most e. In general, let y = 0.0 … 0yk + 1 … yk + p and 

 be y truncated to p + 1 digits. Then 

y -  < (β - 1)(β-p - 1 + β-p - 2 + … + β-p - k). (15)

From the definition of guard digit, the computed value of x - y is x -  rounded to be 
a floating-point number, that is, (x - ) + δ, where the rounding error δ satisfies 

|δ| ≤ (β/2)β-p. (16)

β
2
--- 1+ 

  β p– 1 2
β
---+ 

 =

y

y

y
y
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The exact difference is x - y, so the error is (x - y) - (x -  + δ) =  - y + δ. There are 
three cases. If x - y ≥ 1 then the relative error is bounded by

 ≤ β-p [(β − 1)(β−1 + … + β-k) + β/2] < β-p(1 + β/2). (17)

Secondly, if x -  < 1, then δ = 0. Since the smallest that x - y can be is

 > (β – 1)(β-1 + … + β-k), where ρ = β – 1, 

in this case the relative error is bounded by 

. (18)

The final case is when x - y < 1 but x -  ≥ 1. The only way this could happen is if 
x -  = 1, in which case δ = 0. But if δ = 0, then (18) applies, so that again the relative 
error is bounded by β-p < β-p(1 + β/2). ❚

When β = 2, the bound is exactly 2e, and this bound is achieved for x= 1 + 22 - p and 
y = 21 - p - 21 - 2p in the limit as p → ∞. When adding numbers of the same sign, a 
guard digit is not necessary to achieve good accuracy, as the following result shows. 

D.6.1.3 Theorem 10

If x ≥ 0 and y ≥ 0, then the relative error in computing x + y is at most 2ε, even if no guard 
digits are used.

D.6.1.4 Proof

The algorithm for addition with k guard digits is similar to that for subtraction. If 
x ≥ y, shift y right until the radix points of x and y are aligned. Discard any digits 
shifted past the p + k position. Compute the sum of these two p + k digit numbers 
exactly. Then round to p digits. 

We will verify the theorem when no guard digits are used; the general case is 
similar. There is no loss of generality in assuming that x ≥ y ≥ 0 and that x is scaled 
to be of the form d.dd…d × β0. First, assume there is no carry out. Then the digits 
shifted off the end of y have a value less than β-p + 1, and the sum is at least 1, so the 
relative error is less than β-p+1/1 = 2e. If there is a carry out, then the error from 
shifting must be added to the rounding error of

. 

y y

y y– δ+
1

--------------------

y

1.0 0.

k

0…0 
  p

ρ…ρ 
 

–      

y y– δ+

β 1–( ) β 1– … β k–+ +( )
------------------------------------------------------------ β 1–( )β p– β 1– … β k–+ +( )

β 1–( ) β 1– … β k–+ +( )
-----------------------------------------------------------------------< β p–=

y
y

1
2
---β p– 2+
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The sum is at least β, so the relative error is less than 

 ≤ 2ε. ❚ 

It is obvious that combining these two theorems gives Theorem 2. Theorem 2 gives 
the relative error for performing one operation. Comparing the rounding error of 
x2 - y2 and (x + y) (x – y) requires knowing the relative error of multiple operations. 
The relative error of x  y is δ1 = [(x  y) – (x – y)] / (x – y), which satisfies 
|δ1| ≤ 2e. Or to write it another way 

x  y = (x – y) (1 + δ1),    |δ1| ≤ 2e (19)

Similarly

x ⊕ y = (x + y) (1 + δ2),   |δ2| ≤ 2e (20)

Assuming that multiplication is performed by computing the exact product and then 
rounding, the relative error is at most .5 ulp, so 

u ⊗ v = uv (1 + δ3),          |δ3| ≤ e (21)

for any floating-point numbers u and v. Putting these three equations together 
(letting u = x  y and v = x ⊕ y) gives

(x  y) ⊗ (x ⊕ y) = (x - y) (1 + δ1) (x + y) (1 + δ2) (1 + δ3) (22)

So the relative error incurred when computing (x - y) (x + y) is 

(23)

This relative error is equal to δ1 + δ2 + δ3 + δ1δ2 + δ1δ3 + δ2δ3 + δ1δ2δ3, which is 
bounded by 5ε + 8ε2. In other words, the maximum relative error is about 5 
rounding errors (since e is a small number, e2 is almost negligible). 

A similar analysis of (x ⊗ x)  (y ⊗ y) cannot result in a small value for the relative 
error, because when two nearby values of x and y are plugged into x2 - y2, the 
relative error will usually be quite large. Another way to see this is to try and 
duplicate the analysis that worked on (x  y) ⊗ (x ⊕ y), yielding 

β p– 1+ 1
2
---β p– 2++ 

  β⁄ 1 β 2⁄+( )β p–=

x y–( ) x y+( )⊗ x
2

y
2

–( )–

x
2

y
2

–( )
-------------------------------------------------------------------- 1 δ1+( ) 1 δ2+( ) 1 δ3+( ) 1–=
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(x ⊗ x)  (y ⊗ y) =  [x2(1 + δ1) - y2(1 + δ2)] (1 + δ3) 
= ((x2 - y2) (1 + δ1) + (δ1 - δ2)y2) (1 + δ3)

When x and y are nearby, the error term (δ1 - δ2)y2 can be as large as the result x2 - y2. 
These computations formally justify our claim that (x – y) (x + y) is more accurate 
than x2 – y2. 

We next turn to an analysis of the formula for the area of a triangle. In order to 
estimate the maximum error that can occur when computing with (7), the following 
fact will be needed. 

D.6.1.5 Theorem 11

If subtraction is performed with a guard digit, and y/2 ≤ x ≤ 2y, then x - y is computed 
exactly. 

D.6.1.6 Proof

Note that if x and y have the same exponent, then certainly x  y is exact. 
Otherwise, from the condition of the theorem, the exponents can differ by at most 1. 
Scale and interchange x and y if necessary so that 0 ≤ y ≤ x, and x is represented as 
x0.x1 … xp - 1 and y as 0.y1 … yp. Then the algorithm for computing x  y will 
compute x - y exactly and round to a floating-point number. If the difference is of the 
form 0.d1 … dp, the difference will already be p digits long, and no rounding is 
necessary. Since x ≤ 2y, x - y ≤ y, and since y is of the form 0.d1 … dp, so is x - y. ❚

When β > 2, the hypothesis of Theorem 11 cannot be replaced by y/β ≤ x ≤ βy; the 
stronger condition y/2 ≤ x ≤ 2y is still necessary. The analysis of the error in 
(x - y) (x + y), immediately following the proof of Theorem 10, used the fact that the 
relative error in the basic operations of addition and subtraction is small (namely 
equations (19) and (20)). This is the most common kind of error analysis. However, 
analyzing formula (7) requires something more, namely Theorem 11, as the following 
proof will show. 

D.6.1.7 Theorem 12

If subtraction uses a guard digit, and if a,b and c are the sides of a triangle (a ≥ b ≥ c), then 
the relative error in computing (a + (b + c))(c - (a - b))(c + (a - b))(a +(b - c)) is at most 16ε, 
provided e < .005. 
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D.6.1.8 Proof

Let’s examine the factors one by one. From Theorem 10, b ⊕ c = (b + c) (1 + δ1), where 
δ1 is the relative error, and |δ1| ≤ 2ε. Then the value of the first factor is 

(a ⊕ (b ⊕ c)) = (a + (b ⊕ c)) (1 + δ2) = (a + (b + c) (1 + δ1))(1 + δ2), 

and thus 

   (a + b + c) (1 - 2ε)2 ≤ [a + (b + c) (1 - 2ε)] ⋅ (1−2ε)  
≤ a ⊕ (b ⊕ c) 
≤ [a + (b + c) (1 + 2ε)] (1 + 2ε) 
≤ (a + b + c) (1 + 2ε)2 

This means that there is an η1 so that 

(a ⊕ (b ⊕ c)) = (a + b + c) (1 + η1)2, |η1| ≤ 2ε. (24)

The next term involves the potentially catastrophic subtraction of c and a  b, 
because a  b may have rounding error. Because a, b and c are the sides of a 
triangle, a ≤ b+ c, and combining this with the ordering c ≤ b ≤ a gives a ≤ b + c ≤ 2b 
≤ 2a. So a - b satisfies the conditions of Theorem 11. This means that a - b = a  b is 
exact, hence c  (a - b) is a harmless subtraction which can be estimated from 
Theorem 9 to be 

(c  (a  b)) = (c - (a - b)) (1 + η2), |η2| ≤ 2ε (25)

The third term is the sum of two exact positive quantities, so 

(c ⊕ (a  b)) = (c + (a - b)) (1 + η3), |η3| ≤ 2ε (26)

Finally, the last term is 

(a ⊕ (b  c)) = (a + (b - c)) (1 + η4)2, |η4| ≤ 2ε, (27)

using both Theorem 9 and Theorem 10. If multiplication is assumed to be exactly 
rounded, so that x ⊗ y = xy(1 + ζ) with |ζ| ≤ ε, then combining (24), (25), (26) and (27) 
gives 

(a ⊕ (b ⊕ c)) (c  (a  b)) (c ⊕ (a  b)) (a ⊕ (b  c)) 
≤(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) E 
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where 

E = (1 + η1)2 (1 + η2) (1 + η3) (1 +η4)2 (1 + ζ1)(1 + ζ2) (1 + ζ3) 

An upper bound for E is (1 + 2ε)6(1 + ε)3, which expands out to 1 + 15ε + O(ε2). Some 
writers simply ignore the O(e2) term, but it is easy to account for it. Writing 
(1 + 2ε)6(1 + ε)3 = 1 + 15ε + εR(ε), R(ε) is a polynomial in e with positive coefficients, 
so it is an increasing function of ε. Since R(.005) = .505, R(ε) < 1 for all ε < .005, and 
hence E ≤ (1 + 2ε)6(1 + ε)3 < 1 + 16ε. To get a lower bound on E, note that 
1 - 15ε - εR(ε) < E, and so when ε < .005, 1 - 16ε < (1 - 2ε)6(1 - ε)3. Combining these 
two bounds yields 1 - 16ε < E < 1 + 16ε. Thus the relative error is at most 16ε. ❚ 

Theorem 12 certainly shows that there is no catastrophic cancellation in formula (7). 
So although it is not necessary to show formula (7) is numerically stable, it is 
satisfying to have a bound for the entire formula, which is what Theorem 3 of 
“Cancellation” on page D 8 gives.

D.6.1.9 Proof of Theorem 3

Let 

q = (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) 

and 

Q = (a ⊕ (b ⊕ c)) ⊗ (c  (a  b)) ⊗ (c ⊕ (a  b)) ⊗ (a ⊕ (b  c)). 

Then, Theorem 12 shows that Q = q(1 + δ), with δ ≤ 16ε. It is easy to check that

(28)

provided δ ≤ .04/(.52)2 ≈ .15, and since |δ| ≤ 16ε ≤ 16(.005) = .08, δ does satisfy the 
condition. Thus

, 

with |δ1|≤ .52|δ|≤ 8.5ε. If square roots are computed to within .5 ulp, then the error 
when computing  is (1 + δ1)(1 + δ2), with |δ2|≤ ε. If β = 2, then there is no further 
error committed when dividing by 4. Otherwise, one more factor 1 + δ3 with |δ3| ≤ ε 
is necessary for the division, and using the method in the proof of Theorem 12, the 
final error bound of (1 +δ1) (1 + δ2) (1 + δ3) is dominated by 1 + δ4, with |δ4| ≤ 11ε. ❚ 

1 0.52 δ 1 δ– 1 δ+ 1 0.52 δ+≤ ≤ ≤–

Q q 1 δ+( ) q 1 δ1+( )= =

Q
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To make the heuristic explanation immediately following the statement of Theorem 
4 precise, the next theorem describes just how closely µ(x) approximates a constant. 

D.6.1.10 Theorem 13

If µ(x) = ln(1 + x)/x, then for 0 ≤ x ≤ ,  ≤ µ(x) ≤ 1 and the derivative satisfies 
|µ’(x)| ≤ . 

D.6.1.11 Proof

Note that µ(x) = 1 - x/2 + x2/3 - … is an alternating series with decreasing terms, so 
for x ≤ 1, µ(x) ≥ 1 - x/2 ≥ 1/2. It is even easier to see that because the series for µ is 
alternating, µ(x) ≤ 1. The Taylor series of µ’(x) is also alternating, and if x ≤  has 
decreasing terms, so -  ≤ µ’(x) ≤ -  + 2x/3, or -  ≤ µ’(x) ≤ 0, thus |µ’(x)| ≤ . ❚ 

D.6.1.12 Proof of Theorem 4 

Since the Taylor series for ln 

is an alternating series, 0 < x - ln(1 + x) < x2/2, the relative error incurred when 
approximating ln(1 + x) by x is bounded by x/2. If 1 ⊕ x = 1, then |x| < ε, so the 
relative error is bounded by ε/2. 

When 1 ⊕ x ≠ 1, define  via 1 ⊕ x = 1 + . Then since 0 ≤ x < 1, (1 ⊕ x)  1 = . If 
division and logarithms are computed to within  ulp, then the computed value of 
the expression ln(1 + x)/((1 + x) - 1) is 

 (1 + δ1) (1 + δ2) =  (1 + δ1) (1 + δ2) = µ( ) (1 + δ1) (1 + δ2) 
(29)

where |δ1| ≤ ε and |δ2| ≤ ε. To estimate µ( ), use the mean value theorem, which 
says that 

µ( ) - µ(x) = (  - x)µ′(ξ) (30)
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for some ξ between x and . From the definition of , it follows that |  - x| ≤ ε, and 
combining this with Theorem 13 gives |µ( ) - µ(x)| ≤ ε/2, or |µ( )/µ(x) - 1| ≤ 
ε/(2|µ(x)|) ≤ ε which means that µ( ) = µ(x) (1 + δ3), with |δ3| ≤ ε. Finally, 
multiplying by x introduces a final δ4, so the computed value of 

x⋅ln(1 ⊕ x)/((1 ⊕ x)  1)

is 

It is easy to check that if ε < 0.1, then 

(1 + δ1) (1 + δ2) (1 + δ3) (1 + δ4) = 1 + δ, 

with |δ| ≤ 5ε. ❚

An interesting example of error analysis using formulas (19), (20), and (21) occurs in 
the quadratic formula . The section “Cancellation” on page D 8, 
explained how rewriting the equation will eliminate the potential cancellation 
caused by the ± operation. But there is another potential cancellation that can occur 
when computing d = b2 – 4ac. This one cannot be eliminated by a simple 
rearrangement of the formula. Roughly speaking, when b2 ≈ 4ac, rounding error can 
contaminate up to half the digits in the roots computed with the quadratic formula. 
Here is an informal proof (another approach to estimating the error in the quadratic 
formula appears in Kahan [1972]).

If b2 ≈ 4ac, rounding error can contaminate up to half the digits in the roots computed with 
the quadratic formula . 

Proof: Write (b ⊗ b)  (4a ⊗ c) = (b2(1 + δ1) - 4ac(1 + δ2)) (1 + δ3), where |δi|≤ ε. 30 
Using d = b2 – 4ac, this can be rewritten as (d(1 + δ1) – 4ac(δ2 – δ1)) (1 + δ3). To get an 
estimate for the size of this error, ignore second order terms in δi, in which case the 
absolute error is d(δ1 + δ3) – 4acδ4, where |δ4| = |δ1 – δ2| ≤ 2ε. Since , the first 
term d(δ1 + δ3) can be ignored. To estimate the second term, use the fact that 
ax2 + bx + c = a(x – r1) (x – r2), so ar1r2 = c. Since b2 ≈ 4ac, then r1 ≈ r2, so the second 
error term is  . Thus the computed value of  is

. 

The inequality 

 

30.In this informal proof, assume that β = 2 so that multiplication by 4 is exact and doesn’t require a δi.

x̂ x̂ x̂
x̂ x̂

x̂

x ln 1 x+( )
1 x+( ) 1–

--------------------------- 1 δ1+( ) 1 δ2+( ) 1 δ3+( ) 1 δ4+( ),    δi ε≤

b– b2 4ac–±( ) 2a⁄

b– b2 4ac–±( ) 2a⁄

d 4ac«

4acδ4 4a2r1δ4
2≈ d

d 4a2r1
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Appendix D What Every Computer Scientist Should Know About Floating-Point Arithmetic  D-53



shows that

,

where

, 

so the absolute error in a is about . Since δ4 ≈ β-p, , and thus 
the absolute error of  destroys the bottom half of the bits of the roots r1 ≈ r2. In 
other words, since the calculation of the roots involves computing with , 
and this expression does not have meaningful bits in the position corresponding to 
the lower order half of ri, then the lower order bits of ri cannot be meaningful. ❚ 

Finally, we turn to the proof of Theorem 6. It is based on the following fact, which is 
proven in the section “Theorem 14 and Theorem 8” on page D 61. 

D.6.1.13 Theorem 14

Let 0 < k < p, and set m = βk + 1, and assume that floating-point operations are exactly 
rounded. Then (m ⊗ x)  (m ⊗ x  x) is exactly equal to x rounded to p – k significant 
digits. More precisely, x is rounded by taking the significand of x, imagining a radix point 
just left of the k least significant digits and rounding to an integer. 

D.6.1.14 Proof of Theorem 6 

By Theorem 14, xh is x rounded to p – k =  places. If there is no carry out, then 
certainly xh can be represented with  significant digits. Suppose there is a 
carry-out. If x = x0.x1 … xp - 1 × βe, then rounding adds 1 to xp - k - 1, and the only way 
there can be a carry-out is if xp - k - 1 = β - 1, but then the low order digit of xh is 
1 + xp - k- 1 = 0, and so again xh is representable in  digits. 

To deal with xl, scale x to be an integer satisfying βp - 1 ≤ x ≤ βp - 1. Let  
where  is the p - k high order digits of x, and  is the k low order digits. There are 
three cases to consider. If , then rounding x to p - k places is the same 
as chopping and , and . Since  has at most k digits, if p is even, then 

 has at most k =  =  digits. Otherwise, β = 2 and  is 
representable with k - 1 ≤  significant bits. The second case is when 

, and then computing xh involves rounding up, so xh =  + βk, and 
xl = x - xh = x -  − βk =  - βk. Once again,  has at most k digits, so is 
representable with p/2 digits. Finally, if  = (β/2)βk - 1, then xh =  or  + βk 
depending on whether there is a round up. So xl is either (β/2)βk - 1 or (β/2)βk - 1 - βk =
 -βk/2, both of which are represented with 1 digit. ❚ 

d 4a2r1
2δ4+ d E+=

E 4a2r1
2 δ4≤

d 2⁄ r1 δ4 δ4 β p 2⁄–≈
r1 δ4

d( ) 2a( )⁄

p 2⁄
p 2⁄

p 2⁄

x xh xl+=
xh xl

xl β 2⁄( )βk 1–<
xh xh= xl xl= xl

xl p 2⁄ p 2⁄ x1 2k 1–<
p 2⁄

x β 2⁄( )βk 1–> xh
xh xl xl

xl xh xh
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Theorem 6 gives a way to express the product of two working precision numbers 
exactly as a sum. There is a companion formula for expressing a sum exactly. If 
|x| ≥ |y| then x + y = (x ⊕ y) + (x  (x ⊕ y)) ⊕ y [Dekker 1971; Knuth 1981, 
Theorem C in section 4.2.2]. However, when using exactly rounded operations, this 
formula is only true for β = 2, and not for β = 10 as the example x = .99998, y = .99997 
shows. 

D.6.2 Binary to Decimal Conversion 
Since single precision has p = 24, and 224 < 108, you might expect that converting a 
binary number to 8 decimal digits would be sufficient to recover the original binary 
number. However, this is not the case. 

D.6.2.1 Theorem 15

When a binary IEEE single precision number is converted to the closest eight digit decimal 
number, it is not always possible to uniquely recover the binary number from the decimal 
one. However, if nine decimal digits are used, then converting the decimal number to the 
closest binary number will recover the original floating-point number. 

D.6.2.2 Proof

Binary single precision numbers lying in the half open interval [103, 210) = 
[1000, 1024) have 10 bits to the left of the binary point, and 14 bits to the right of the 
binary point. Thus there are (210 - 103)214 = 393,216 different binary numbers in that 
interval. If decimal numbers are represented with 8 digits, then there are 
(210 - 103)104 = 240,000 decimal numbers in the same interval. There is no way that 
240,000 decimal numbers could represent 393,216 different binary numbers. So 8 
decimal digits are not enough to uniquely represent each single precision binary 
number. 

To show that 9 digits are sufficient, it is enough to show that the spacing between 
binary numbers is always greater than the spacing between decimal numbers. This 
will ensure that for each decimal number N, the interval 

[N - ulp, N + ulp] 

contains at most one binary number. Thus each binary number rounds to a unique 
decimal number which in turn rounds to a unique binary number. 

1
2
--- 1

2
---
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To show that the spacing between binary numbers is always greater than the spacing 
between decimal numbers, consider an interval [10n, 10n + 1]. On this interval, the 
spacing between consecutive decimal numbers is 10(n + 1) - 9. On [10n, 2m], where m is 
the smallest integer so that 10n < 2m, the spacing of binary numbers is 2m - 24, and the 
spacing gets larger further on in the interval. Thus it is enough to check that 
10(n + 1) - 9 < 2m - 24. But in fact, since 10n < 2m, then 10(n + 1) - 9 = 10n10-8 < 2m10-8 < 2m2-24. ❚

The same argument applied to double precision shows that 17 decimal digits are 
required to recover a double precision number. 

Binary-decimal conversion also provides another example of the use of flags. Recall 
from the section “Precision” on page D 18, that to recover a binary number from its 
decimal expansion, the decimal to binary conversion must be computed exactly. That 
conversion is performed by multiplying the quantities N and 10|P| (which are both 
exact if p < 13) in single-extended precision and then rounding this to single 
precision (or dividing if p < 0; both cases are similar). Of course the computation of 
N ⋅ 10|P| cannot be exact; it is the combined operation round(N ⋅ 10|P|) that must be 
exact, where the rounding is from single-extended to single precision. To see why it 
might fail to be exact, take the simple case of β = 10, p = 2 for single, and p = 3 for 
single-extended. If the product is to be 12.51, then this would be rounded to 12.5 as 
part of the single-extended multiply operation. Rounding to single precision would 
give 12. But that answer is not correct, because rounding the product to single 
precision should give 13. The error is due to double rounding. 

By using the IEEE flags, double rounding can be avoided as follows. Save the 
current value of the inexact flag, and then reset it. Set the rounding mode to round-
to-zero. Then perform the multiplication N ⋅ 10|P|. Store the new value of the inexact 
flag in ixflag, and restore the rounding mode and inexact flag. If ixflag is 0, then 
N ⋅ 10|P| is exact, so round(N ⋅ 10|P|) will be correct down to the last bit. If ixflag 
is 1, then some digits were truncated, since round-to-zero always truncates. The 
significand of the product will look like 1.b1…b22b23…b31. A double rounding error 
may occur if b23 …b31 = 10…0. A simple way to account for both cases is to perform 
a logical OR of ixflag with b31. Then round(N ⋅ 10|P|) will be computed correctly in 
all cases. 

D.6.3 Errors In Summation 
The section “Optimizers” on page D 41, mentioned the problem of accurately 
computing very long sums. The simplest approach to improving accuracy is to 
double the precision. To get a rough estimate of how much doubling the precision 
improves the accuracy of a sum, let s1 = x1, s2 = s1 ⊕ x2…, si = si - 1 ⊕ xi. Then si =
 (1 + δi) (si - 1 + xi), where δi ≤ ε, and ignoring second order terms in δi gives 

 
(31)

sn x j 1 δk
k j=
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∑+
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n
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The first equality of (31) shows that the computed value of  is the same as if an 
exact summation was performed on perturbed values of xj. The first term x1 is 
perturbed by nε, the last term xn by only ε. The second equality in (31) shows that 
error term is bounded by . Doubling the precision has the effect of squaring ε. 
If the sum is being done in an IEEE double precision format, 1/ε ≈ 1016, so that 

 for any reasonable value of n. Thus, doubling the precision takes the 
maximum perturbation of nε and changes it to . Thus the 2ε error bound for 
the Kahan summation formula (Theorem 8) is not as good as using double precision, 
even though it is much better than single precision. 

For an intuitive explanation of why the Kahan summation formula works, consider 
the following diagram of the procedure. 

Each time a summand is added, there is a correction factor C which will be applied 
on the next loop. So first subtract the correction C computed in the previous loop 
from Xj, giving the corrected summand Y. Then add this summand to the running 
sum S. The low order bits of Y (namely Yl) are lost in the sum. Next compute the 
high order bits of Y by computing T - S. When Y is subtracted from this, the low 
order bits of Y will be recovered. These are the bits that were lost in the first sum in 
the diagram. They become the correction factor for the next loop. A formal proof of 
Theorem 8, taken from Knuth [1981] page 572, appears in the section “Theorem 14 
and Theorem 8” on page D 61.” 
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D.7 Summary 
It is not uncommon for computer system designers to neglect the parts of a system 
related to floating-point. This is probably due to the fact that floating-point is given 
very little (if any) attention in the computer science curriculum. This in turn has 
caused the apparently widespread belief that floating-point is not a quantifiable 
subject, and so there is little point in fussing over the details of hardware and 
software that deal with it. 

This paper has demonstrated that it is possible to reason rigorously about floating-
point. For example, floating-point algorithms involving cancellation can be proven 
to have small relative errors if the underlying hardware has a guard digit, and there 
is an efficient algorithm for binary-decimal conversion that can be proven to be 
invertible, provided that extended precision is supported. The task of constructing 
reliable floating-point software is made much easier when the underlying computer 
system is supportive of floating-point. In addition to the two examples just 
mentioned (guard digits and extended precision), the section “Systems Aspects” on 
page D 34 of this paper has examples ranging from instruction set design to 
compiler optimization illustrating how to better support floating-point. 

The increasing acceptance of the IEEE floating-point standard means that codes that 
utilize features of the standard are becoming ever more portable. The section “The 
IEEE Standard” on page D 16, gave numerous examples illustrating how the features 
of the IEEE standard can be used in writing practical floating-point codes. 
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D.10 Theorem 14 and Theorem 8 
This section contains two of the more technical proofs that were omitted from the 
text. 

D.10.1 Theorem 14
Let 0 < k < p, and set m = βk + 1, and assume that floating-point operations are exactly 
rounded. Then (m ⊗ x)  (m ⊗ x  x) is exactly equal to x rounded to p - k significant 
digits. More precisely, x is rounded by taking the significand of x, imagining a radix point 
just left of the k least significant digits, and rounding to an integer.

D.10.2 Proof
The proof breaks up into two cases, depending on whether or not the computation 
of mx = βkx + x has a carry-out or not. 

Assume there is no carry out. It is harmless to scale x so that it is an integer. Then the 
computation of mx = x + βkx looks like this: 

aa...aabb...bb 
+aa...aabb...bb 
zz...zzbb...bb

where x has been partitioned into two parts. The low order k digits are marked b 
and the high order p - k digits are marked a. To compute m ⊗ x from mx involves 
rounding off the low order k digits (the ones marked with b) so 

m ⊗ x = mx - x mod(βk) + rβk (32)

The value of r is 1 if .bb...b is greater than  and 0 otherwise. More precisely

r = 1 if a.bb...b rounds to a + 1, r = 0 otherwise. (33)

1
2
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Next compute m ⊗ x – x = mx – x mod(βk) + rβk - x = βk(x + r) – x mod(βk). The 
picture below shows the computation of m ⊗ x - x rounded, that is, (m ⊗ x)  x. The 
top line is βk(x + r), where B is the digit that results from adding r to the lowest 
order digit b.

aa...aabb...bB00...00 
-bb...bb             
zz...     zzZ00...00

If .bb...b <  then r = 0, subtracting causes a borrow from the digit marked B, but 
the difference is rounded up, and so the net effect is that the rounded difference 
equals the top line, which is βkx. If .bb...b >  then r = 1, and 1 is subtracted from 
B because of the borrow, so the result is βkx. Finally consider the case .bb...b = . 
If r = 0 then B is even, Z is odd, and the difference is rounded up, giving βkx. 
Similarly when r = 1, B is odd, Z is even, the difference is rounded down, so again 
the difference is βkx. To summarize 

(m ⊗ x)  x = βkx (34)

Combining equations (32) and (34) gives (m ⊗ x) - (m ⊗ x  x) = x – x mod(βk) + ρ⋅βk. 
The result of performing this computation is 

r00...00 
       + aa...aabb...bb 
       -       bb...bb 
         aa...aA00...00

The rule for computing r, equation (33), is the same as the rule for rounding a... 
ab...b to p – k places. Thus computing mx – (mx – x) in floating-point arithmetic 
precision is exactly equal to rounding x to p – k places, in the case when x + βkx 
does not carry out. 

When x + βkx does carry out, then mx = βkx + x looks like this: 

aa...aabb...bb 
+aa...aabb...bb 
zz...zZbb...bb

Thus, m ⊗ x = mx – x mod(βk) + wβk, where w = -Z if Z < β/2, but the exact value of 
w is unimportant. Next, m ⊗ x – x = βkx – x mod(βk) + wβk. In a picture 

aa...aabb...bb00...00 
-  bb... bb 
+  w                  
 zz   ... zZbb ...bb31

31.This is the sum if adding w does not generate carry out. Additional argument is needed for the special case 
where adding w does generate carry out. – Ed. 
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Rounding gives (m ⊗ x)  x = βkx + wβk - rβk, where r = 1 if .bb...b >  or if 
.bb...b =  and b0 = 1.32 Finally, 

(m ⊗ x) – (m ⊗ x  x) = mx – x mod(βk) + wβk – (βkx + wβk – rβk) 
= x – x mod(βk) + rβk.

And once again, r = 1 exactly when rounding a...ab...b to p - k places involves 
rounding up. Thus Theorem 14 is proven in all cases. ❚ 

D.10.2.1 Theorem 8 (Kahan Summation Formula)

Suppose that  is computed using the following algorithm 

Then the computed sum S is equal to S = Σ xj (1 + δj) + O(Nε2) Σ |xj|, where |δj| ≤ 2ε. 

D.10.2.2 Proof

First recall how the error estimate for the simple formula Σ xi went. Introduce s1 = x1, 
si = (1 + δi) (si - 1 + xi). Then the computed sum is sn, which is a sum of terms, each of 
which is an xi multiplied by an expression involving δj’s. The exact coefficient of x1 is 
(1 + δ2)(1 + δ3) … (1 + δn), and so by renumbering, the coefficient of x2 must be 
(1 + δ3)(1 + δ4) … (1 + δn), and so on. The proof of Theorem 8 runs along exactly the 
same lines, only the coefficient of x1 is more complicated. In detail s0 = c0 = 0 and 

yk = xk  ck - 1 = (xk - ck - 1) (1 + ηk) 

sk = sk - 1 ⊕≈ yk = (sk-1 + yk) (1 + σk) 

ck = (sk  sk - 1)  yk= [(sk - sk - 1) (1 + γk) - yk] (1 + δk)

where all the Greek letters are bounded by ε. Although the coefficient of x1 in sk is 
the ultimate expression of interest, in turns out to be easier to compute the 
coefficient of x1 in sk - ck and ck.

32.Rounding gives βkx + wβk - rβk only if (βkx + wβk) keeps the form of βkx. – Ed. 

S = X [1];

C = 0;

for j = 2 to N {

Y = X [j] - C;

   T = S + Y;

   C = (T - S) - Y;

   S = T;

}

1
2
---

1
2
---

Σ
j 1=
N x j
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When k = 1, 

c1 = (s1(1 + γ1) – y1) (1 + d1)

= y1((1 + s1) (1 + γ1) – 1) (1 + d1) 

= x1(s1 +γ1 + s1g1) (1 + d1) (1 + h1) 

s1 – c1 = x1[(1 + s1) – (s1 + g1 + s1g1) (1 + d1)](1 + h1) 

= x1[1 – g1 – s1d1 – s1g1 – d1g1 – s1g1d1](1 + h1)

Calling the coefficients of x1 in these expressions Ck and Sk respectively, then

C1 = 2ε + O(ε2) 

S1 = + η1 – γ1 + 4ε2 + O(ε3) 

To get the general formula for Sk and Ck, expand the definitions of sk and ck, ignoring 
all terms involving xi with i > 1 to get 

sk = (sk – 1 + yk)(1 + σk) 

 = [sk – 1 + (xk – ck – 1) (1 + ηk)](1 + σk) 

= [(sk – 1 – ck – 1) – ηkck – 1](1+σk) 

ck= [{sk – sk – 1}(1 + γk) – yk](1 + δk) 

= [{((sk – 1 – ck – 1) – ηkck – 1)(1 + σk) – sk – 1}(1 + γk) + ck – 1(1 + ηk)](1 + δk) 

 = [{(sk – 1 – ck – 1)σk – ηkck–1(1 + σk) – ck – 1}(1 + γk) + ck – 1(1 + ηk)](1 + δk) 

= [(sk – 1 – ck – 1)σk(1 + γk) – ck – 1(γk + ηk(σk + γk + σkγk))](1 + δk),

sk – ck= ((sk – 1 – ck – 1) – ηkck – 1) (1 + σk) 

            – [(sk – 1 – ck – 1)σk(1 + γk) – ck – 1(γk + ηk(σk + γk + σkγk)](1 + δk) 

      = (sk– 1 – ck – 1)((1 + σk) – σk(1 + γk)(1 + δk)) 

                    + ck – 1(-ηk(1 + σk) + (γk + ηk(σk + γk + σkγk)) (1 + δk)) 

   = (s– 1 – ck – 1) (1 – σk(γk + δk + γkδk)) 

               + ck – 1 – [ηk + γk + ηk(γk + σkγk) + (γk + ηk(σk + γk + σkγk))δk]

Since Sk and Ck are only being computed up to order ε2, these formulas can be 
simplified to 

Ck= (σk + O(ε2))Sk – 1 + (-γk + O(ε2))Ck – 1 

Sk= ((1 + 2ε2 + O(ε3))Sk – 1 + (2ε + Ο(ε2))Ck – 1 
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Using these formulas gives 

C2 = σ2 + O(ε2) 

S2 = 1 + η1 – γ1 + 10ε2 + O(ε3) 

and in general it is easy to check by induction that 

Ck = σk + O(ε2) 

Sk = 1 + η1 – γ1 + (4k+2)ε2 + O(ε3) 

Finally, what is wanted is the coefficient of x1 in sk. To get this value, let xn + 1 = 0, let 
all the Greek letters with subscripts of n + 1 equal 0, and compute sn + 1. Then sn + 1 = 
sn – cn, and the coefficient of x1 in sn is less than the coefficient in sn + 1, which is Sn =
 1 + η1 – γ1 + (4n + 2)ε2 = (1 + 2ε + Ο(nε2)). ❚

D.11 Differences Among IEEE 754 
Implementations

Note – This section is not part of the published paper. It has been added to clarify 
certain points and correct possible misconceptions about the IEEE standard that the 
reader might infer from the paper. This material was not written by David Goldberg, 
but it appears here with his permission.

The preceding paper has shown that floating-point arithmetic must be implemented 
carefully, since programmers may depend on its properties for the correctness and 
accuracy of their programs. In particular, the IEEE standard requires a careful 
implementation, and it is possible to write useful programs that work correctly and 
deliver accurate results only on systems that conform to the standard. The reader 
might be tempted to conclude that such programs should be portable to all IEEE 
systems. Indeed, portable software would be easier to write if the remark “When a 
program is moved between two machines and both support IEEE arithmetic, then if 
any intermediate result differs, it must be because of software bugs, not from 
differences in arithmetic,” were true.

Unfortunately, the IEEE standard does not guarantee that the same program will 
deliver identical results on all conforming systems. Most programs will actually 
produce different results on different systems for a variety of reasons. For one, most 
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programs involve the conversion of numbers between decimal and binary formats, 
and the IEEE standard does not completely specify the accuracy with which such 
conversions must be performed. For another, many programs use elementary 
functions supplied by a system library, and the standard doesn’t specify these 
functions at all. Of course, most programmers know that these features lie beyond 
the scope of the IEEE standard.

Many programmers may not realize that even a program that uses only the numeric 
formats and operations prescribed by the IEEE standard can compute different 
results on different systems. In fact, the authors of the standard intended to allow 
different implementations to obtain different results. Their intent is evident in the 
definition of the term destination in the IEEE 754 standard: “A destination may be 
either explicitly designated by the user or implicitly supplied by the system (for 
example, intermediate results in subexpressions or arguments for procedures). Some 
languages place the results of intermediate calculations in destinations beyond the 
user’s control. Nonetheless, this standard defines the result of an operation in terms 
of that destination’s format and the operands’ values.” (IEEE 754-1985, p. 7) In other 
words, the IEEE standard requires that each result be rounded correctly to the 
precision of the destination into which it will be placed, but the standard does not 
require that the precision of that destination be determined by a user’s program. 
Thus, different systems may deliver their results to destinations with different 
precisions, causing the same program to produce different results (sometimes 
dramatically so), even though those systems all conform to the standard.

Several of the examples in the preceding paper depend on some knowledge of the 
way floating-point arithmetic is rounded. In order to rely on examples such as these, 
a programmer must be able to predict how a program will be interpreted, and in 
particular, on an IEEE system, what the precision of the destination of each 
arithmetic operation may be. Alas, the loophole in the IEEE standard’s definition of 
destination undermines the programmer’s ability to know how a program will be 
interpreted. Consequently, several of the examples given above, when implemented 
as apparently portable programs in a high-level language, may not work correctly 
on IEEE systems that normally deliver results to destinations with a different 
precision than the programmer expects. Other examples may work, but proving that 
they work may lie beyond the average programmer’s ability.

In this section, we classify existing implementations of IEEE 754 arithmetic based on 
the precisions of the destination formats they normally use. We then review some 
examples from the paper to show that delivering results in a wider precision than a 
program expects can cause it to compute wrong results even though it is provably 
correct when the expected precision is used. We also revisit one of the proofs in the 
paper to illustrate the intellectual effort required to cope with unexpected precision 
even when it doesn’t invalidate our programs. These examples show that despite all 
that the IEEE standard prescribes, the differences it allows among different 
implementations can prevent us from writing portable, efficient numerical software 
whose behavior we can accurately predict. To develop such software, then, we must 
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first create programming languages and environments that limit the variability the 
IEEE standard permits and allow programmers to express the floating-point 
semantics upon which their programs depend.

D.11.1 Current IEEE 754 Implementations
Current implementations of IEEE 754 arithmetic can be divided into two groups 
distinguished by the degree to which they support different floating-point formats in 
hardware. Extended-based systems, exemplified by the Intel x86 family of processors, 
provide full support for an extended double precision format but only partial 
support for single and double precision: they provide instructions to load or store 
data in single and double precision, converting it on-the-fly to or from the extended 
double format, and they provide special modes (not the default) in which the results 
of arithmetic operations are rounded to single or double precision even though they 
are kept in registers in extended double format. (Motorola 68000 series processors 
round results to both the precision and range of the single or double formats in these 
modes. Intel x86 and compatible processors round results to the precision of the 
single or double formats but retain the same range as the extended double format.) 
Single/double systems, including most RISC processors, provide full support for 
single and double precision formats but no support for an IEEE-compliant extended 
double precision format. (The IBM POWER architecture provides only partial 
support for single precision, but for the purpose of this section, we classify it as a 
single/double system.)

To see how a computation might behave differently on an extended-based system 
than on a single/double system, consider a C version of the example from “Systems 
Aspects” on page D 34: 

Here the constants 3.0 and 7.0 are interpreted as double precision floating-point 
numbers, and the expression 3.0/7.0 inherits the double data type. On a 
single/double system, the expression will be evaluated in double precision since 
that is the most efficient format to use. Thus, q will be assigned the value 3.0/7.0 
rounded correctly to double precision. In the next line, the expression 3.0/7.0 will 
again be evaluated in double precision, and of course the result will be equal to the 
value just assigned to q, so the program will print “Equal” as expected.

int main() {
    double  q;

    q = 3.0/7.0;
    if (q == 3.0/7.0) printf("Equal\n");
    else printf("Not Equal\n");
    return 0;
}
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On an extended-based system, even though the expression 3.0/7.0 has type double, 
the quotient will be computed in a register in extended double format, and thus in 
the default mode, it will be rounded to extended double precision. When the 
resulting value is assigned to the variable q, however, it may then be stored in 
memory, and since q is declared double, the value will be rounded to double 
precision. In the next line, the expression 3.0/7.0 may again be evaluated in 
extended precision yielding a result that differs from the double precision value 
stored in q, causing the program to print “Not equal”. Of course, other outcomes are 
possible, too: the compiler could decide to store and thus round the value of the 
expression 3.0/7.0 in the second line before comparing it with q, or it could keep q 
in a register in extended precision without storing it. An optimizing compiler might 
evaluate the expression 3.0/7.0 at compile time, perhaps in double precision or 
perhaps in extended double precision. (With one x86 compiler, the program prints 
“Equal” when compiled with optimization and “Not Equal” when compiled for 
debugging.) Finally, some compilers for extended-based systems automatically 
change the rounding precision mode to cause operations producing results in 
registers to round those results to single or double precision, albeit possibly with a 
wider range. Thus, on these systems, we can’t predict the behavior of the program 
simply by reading its source code and applying a basic understanding of IEEE 754 
arithmetic. Neither can we accuse the hardware or the compiler of failing to provide 
an IEEE 754 compliant environment; the hardware has delivered a correctly rounded 
result to each destination, as it is required to do, and the compiler has assigned some 
intermediate results to destinations that are beyond the user’s control, as it is 
allowed to do.

D.11.2 Pitfalls in Computations on Extended-Based 
Systems
Conventional wisdom maintains that extended-based systems must produce results 
that are at least as accurate, if not more accurate than those delivered on 
single/double systems, since the former always provide at least as much precision 
and often more than the latter. Trivial examples such as the C program above as well 
as more subtle programs based on the examples discussed below show that this 
wisdom is naive at best: some apparently portable programs, which are indeed 
portable across single/double systems, deliver incorrect results on extended-based 
systems precisely because the compiler and hardware conspire to occasionally 
provide more precision than the program expects.

Current programming languages make it difficult for a program to specify the 
precision it expects. As the section “Languages and Compilers” on “Languages and 
Compilers” on page D 36 mentions, many programming languages don’t specify 
that each occurrence of an expression like 10.0*x in the same context should 
evaluate to the same value. Some languages, such as Ada, were influenced in this 
respect by variations among different arithmetics prior to the IEEE standard. More 
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recently, languages like ANSI C have been influenced by standard-conforming 
extended-based systems. In fact, the ANSI C standard explicitly allows a compiler to 
evaluate a floating-point expression to a precision wider than that normally 
associated with its type. As a result, the value of the expression 10.0*x may vary in 
ways that depend on a variety of factors: whether the expression is immediately 
assigned to a variable or appears as a subexpression in a larger expression; whether 
the expression participates in a comparison; whether the expression is passed as an 
argument to a function, and if so, whether the argument is passed by value or by 
reference; the current precision mode; the level of optimization at which the 
program was compiled; the precision mode and expression evaluation method used 
by the compiler when the program was compiled; and so on.

Language standards are not entirely to blame for the vagaries of expression 
evaluation. Extended-based systems run most efficiently when expressions are 
evaluated in extended precision registers whenever possible, yet values that must be 
stored are stored in the narrowest precision required. Constraining a language to 
require that 10.0*x evaluate to the same value everywhere would impose a 
performance penalty on those systems. Unfortunately, allowing those systems to 
evaluate 10.0*x differently in syntactically equivalent contexts imposes a penalty of 
its own on programmers of accurate numerical software by preventing them from 
relying on the syntax of their programs to express their intended semantics.

Do real programs depend on the assumption that a given expression always 
evaluates to the same value? Recall the algorithm presented in Theorem 4 for 
computing ln(1 + x), written here in Fortran: 

On an extended-based system, a compiler may evaluate the expression 1.0 + x in 
the third line in extended precision and compare the result with 1.0. When the same 
expression is passed to the log function in the sixth line, however, the compiler may 
store its value in memory, rounding it to single precision. Thus, if x is not so small 
that 1.0 + x rounds to 1.0 in extended precision but small enough that 1.0 + x 
rounds to 1.0 in single precision, then the value returned by log1p(x) will be zero 
instead of x, and the relative error will be one—rather larger than 5ε. Similarly, 
suppose the rest of the expression in the sixth line, including the reoccurrence of the 
subexpression 1.0 + x, is evaluated in extended precision. In that case, if x is small 
but not quite small enough that 1.0 + x rounds to 1.0 in single precision, then the 
value returned by log1p(x) can exceed the correct value by nearly as much as x, 

real function log1p(x)
real x
if (1.0 + x .eq. 1.0) then
   log1p = x
else
   log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0)
endif
return
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and again the relative error can approach one. For a concrete example, take x to be 
2-24 + 2-47, so x is the smallest single precision number such that 1.0 + x rounds up 
to the next larger number, 1 + 2-23. Then log(1.0 + x) is approximately 2-23. Because 
the denominator in the expression in the sixth line is evaluated in extended 
precision, it is computed exactly and delivers x, so log1p(x) returns approximately 
2-23, which is nearly twice as large as the exact value. (This actually happens with at 
least one compiler. When the preceding code is compiled by the Sun WorkShop 
Compilers 4.2.1 Fortran 77 compiler for x86 systems using the -O optimization flag, 
the generated code computes 1.0 + x exactly as described. As a result, the function 
delivers zero for log1p(1.0e-10) and 1.19209E-07 for log1p(5.97e-8).)

For the algorithm of Theorem 4 to work correctly, the expression 1.0 + x must be 
evaluated the same way each time it appears; the algorithm can fail on extended-
based systems only when 1.0 + x is evaluated to extended double precision in one 
instance and to single or double precision in another. Of course, since log is a 
generic intrinsic function in Fortran, a compiler could evaluate the expression 
1.0 + x in extended precision throughout, computing its logarithm in the same 
precision, but evidently we cannot assume that the compiler will do so. (One can 
also imagine a similar example involving a user-defined function. In that case, a 
compiler could still keep the argument in extended precision even though the 
function returns a single precision result, but few if any existing Fortran compilers 
do this, either.) We might therefore attempt to ensure that 1.0 + x is evaluated 
consistently by assigning it to a variable. Unfortunately, if we declare that variable 
real, we may still be foiled by a compiler that substitutes a value kept in a register 
in extended precision for one appearance of the variable and a value stored in 
memory in single precision for another. Instead, we would need to declare the 
variable with a type that corresponds to the extended precision format. Standard 
FORTRAN 77 does not provide a way to do this, and while Fortran 95 offers the 
SELECTED_REAL_KIND mechanism for describing various formats, it does not 
explicitly require implementations that evaluate expressions in extended precision to 
allow variables to be declared with that precision. In short, there is no portable way 
to write this program in standard Fortran that is guaranteed to prevent the 
expression 1.0 + x from being evaluated in a way that invalidates our proof.

There are other examples that can malfunction on extended-based systems even 
when each subexpression is stored and thus rounded to the same precision. The 
cause is double-rounding. In the default precision mode, an extended-based system 
will initially round each result to extended double precision. If that result is then 
stored to double precision, it is rounded again. The combination of these two 
roundings can yield a value that is different than what would have been obtained by 
rounding the first result correctly to double precision. This can happen when the 
result as rounded to extended double precision is a “halfway case”, i.e., it lies exactly 
halfway between two double precision numbers, so the second rounding is 
determined by the round-ties-to-even rule. If this second rounding rounds in the 
same direction as the first, the net rounding error will exceed half a unit in the last 
place. (Note, though, that double-rounding only affects double precision 
computations. One can prove that the sum, difference, product, or quotient of two 
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p-bit numbers, or the square root of a p-bit number, rounded first to q bits and then 
to p bits gives the same value as if the result were rounded just once to p bits 
provided q ≥ 2p + 2. Thus, extended double precision is wide enough that single 
precision computations don’t suffer double-rounding.)

Some algorithms that depend on correct rounding can fail with double-rounding. In 
fact, even some algorithms that don’t require correct rounding and work correctly on 
a variety of machines that don’t conform to IEEE 754 can fail with double-rounding. 
The most useful of these are the portable algorithms for performing simulated 
multiple precision arithmetic mentioned in the section “Theorem 5” on page D 13. 
For example, the procedure described in Theorem 6 for splitting a floating-point 
number into high and low parts doesn’t work correctly in double-rounding 
arithmetic: try to split the double precision number 252 + 3 × 226 – 1 into two parts 
each with at most 26 bits. When each operation is rounded correctly to double 
precision, the high order part is 252 + 227 and the low order part is 226 – 1, but when 
each operation is rounded first to extended double precision and then to double 
precision, the procedure produces a high order part of 252 + 228 and a low order part 
of –226 – 1. The latter number occupies 27 bits, so its square can’t be computed 
exactly in double precision. Of course, it would still be possible to compute the 
square of this number in extended double precision, but the resulting algorithm 
would no longer be portable to single/double systems. Also, later steps in the 
multiple precision multiplication algorithm assume that all partial products have 
been computed in double precision. Handling a mixture of double and extended 
double variables correctly would make the implementation significantly more 
expensive.

Likewise, portable algorithms for adding multiple precision numbers represented as 
arrays of double precision numbers can fail in double-rounding arithmetic. These 
algorithms typically rely on a technique similar to Kahan’s summation formula. As 
the informal explanation of the summation formula given the section “Errors In 
Summation” on page D 56 suggests, if s and y are floating-point variables with |s| 
≥ |y| and we compute:  

then in most arithmetics, e recovers exactly the roundoff error that occurred in 
computing t. This technique doesn’t work in double-rounded arithmetic, however: 
if s = 252 + 1 and y = 1/2 – 2-54, then s + y rounds first to 252 + 3/2 in extended 
double precision, and this value rounds to 252 + 2 in double precision by the round-
ties-to-even rule; thus the net rounding error in computing t is 1/2 + 2-54, which is 
not representable exactly in double precision and so can’t be computed exactly by 
the expression shown above. Here again, it would be possible to recover the 
roundoff error by computing the sum in extended double precision, but then a 
program would have to do extra work to reduce the final outputs back to double 
precision, and double-rounding could afflict this process, too. For this reason, 

t = s + y;
e = (s - t) + y;
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although portable programs for simulating multiple precision arithmetic by these 
methods work correctly and efficiently on a wide variety of machines, they do not 
work as advertised on extended-based systems.

Finally, some algorithms that at first sight appear to depend on correct rounding 
may in fact work correctly with double-rounding. In these cases, the cost of coping 
with double-rounding lies not in the implementation but in the verification that the 
algorithm works as advertised. To illustrate, we prove the following variant of 
Theorem 7:

D.11.2.1 Theorem 7’

If m and n are integers representable in IEEE 754 double precision with |m| < 252 and n has 
the special form n = 2i + 2j, then (m  n) ⊗ n = m, provided both floating-point operations 
are either rounded correctly to double precision or rounded first to extended double precision 
and then to double precision. 

D.11.2.2 Proof

Assume without loss that m > 0. Let q = m  n. Scaling by powers of two, we can 
consider an equivalent setting in which 252 ≤ m < 253 and likewise for q, so that both 
m and q are integers whose least significant bits occupy the units place (i.e., ulp(m) = 
ulp(q) = 1). Before scaling, we assumed m < 252, so after scaling, m is an even integer. 
Also, because the scaled values of m and q satisfy m/2 < q < 2m, the corresponding 
value of n must have one of two forms depending on which of m or q is larger: if 
q < m, then evidently 1 < n < 2, and since n is a sum of two powers of two, n = 1 + 2-k 
for some k; similarly, if q > m, then 1/2 < n < 1, so n = 1/2 + 2-(k + 1). (As n is the sum 
of two powers of two, the closest possible value of n to one is n = 1 + 2-52. Because 
m/(1 + 2-52) is no larger than the next smaller double precision number less than m, 
we can’t have q = m.)

Let e denote the rounding error in computing q, so that q = m/n + e, and the 
computed value q ⊗ n will be the (once or twice) rounded value of m + ne. Consider 
first the case in which each floating-point operation is rounded correctly to double 
precision. In this case, |e| < 1/2. If n has the form 1/2 + 2-(k + 1), then ne = nq – m is 
an integer multiple of 2-(k + 1) and |ne| < 1/4 + 2-(k + 2). This implies that |ne| ≤ 1/4. 
Recall that the difference between m and the next larger representable number is 1 
and the difference between m and the next smaller representable number is either 1 
if m > 252 or 1/2 if m = 252. Thus, as |ne| ≤ 1/4, m + ne will round to m. (Even if m = 
252 and ne = –1/4, the product will round to m by the round-ties-to-even rule.) 
Similarly, if n has the form 1 + 2-k, then ne is an integer multiple of 2-k and 
|ne| < 1/2 + 2-(k + 1); this implies |ne| ≤ 1/2. We can’t have m = 252 in this case 
because m is strictly greater than q, so m differs from its nearest representable 
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neighbors by ±1. Thus, as |ne| ≤ 1/2, again m + ne will round to m. (Even if |ne| = 
1/2, the product will round to m by the round-ties-to-even rule because m is even.) 
This completes the proof for correctly rounded arithmetic.

In double-rounding arithmetic, it may still happen that q is the correctly rounded 
quotient (even though it was actually rounded twice), so |e| < 1/2 as above. In this 
case, we can appeal to the arguments of the previous paragraph provided we 
consider the fact that q ⊗ n will be rounded twice. To account for this, note that the 
IEEE standard requires that an extended double format carry at least 64 significant 
bits, so that the numbers m ± 1/2 and m ± 1/4 are exactly representable in extended 
double precision. Thus, if n has the form 1/2 + 2-(k + 1), so that |ne| ≤ 1/4, then 
rounding m + ne to extended double precision must produce a result that differs 
from m by at most 1/4, and as noted above, this value will round to m in double 
precision. Similarly, if n has the form 1 + 2-k, so that |ne| ≤ 1/2, then rounding 
m + ne to extended double precision must produce a result that differs from m by at 
most 1/2, and this value will round to m in double precision. (Recall that m > 252 in 
this case.)

Finally, we are left to consider cases in which q is not the correctly rounded quotient 
due to double-rounding. In these cases, we have |e| < 1/2 + 2-(d + 1) in the worst case, 
where d is the number of extra bits in the extended double format. (All existing 
extended-based systems support an extended double format with exactly 64 
significant bits; for this format, d = 64 – 53 = 11.) Because double-rounding only 
produces an incorrectly rounded result when the second rounding is determined by 
the round-ties-to-even rule, q must be an even integer. Thus if n has the form 
1/2 + 2-(k + 1), then ne = nq – m is an integer multiple of 2-k, and 

|ne| < (1/2 + 2-(k + 1))(1/2 + 2-(d + 1)) = 1/4 + 2-(k + 2) + 2-(d + 2) + 2-(k + d + 2). 

If k ≤ d, this implies |ne| ≤ 1/4. If k > d, we have |ne| ≤ 1/4 + 2-(d + 2). In either case, 
the first rounding of the product will deliver a result that differs from m by at most 
1/4, and by previous arguments, the second rounding will round to m. Similarly, if n 
has the form 1 + 2-k, then ne is an integer multiple of 2-(k – 1), and

|ne| < 1/2 + 2-(k + 1) + 2-(d + 1) + 2-(k + d + 1). 

If k ≤ d, this implies |ne| ≤ 1/2. If k > d, we have |ne| ≤ 1/2 + 2-(d + 1). In either case, 
the first rounding of the product will deliver a result that differs from m by at most 
1/2, and again by previous arguments, the second rounding will round to m. ❚ 

The preceding proof shows that the product can incur double-rounding only if the 
quotient does, and even then, it rounds to the correct result. The proof also shows 
that extending our reasoning to include the possibility of double-rounding can be 
challenging even for a program with only two floating-point operations. For a more 
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complicated program, it may be impossible to systematically account for the effects 
of double-rounding, not to mention more general combinations of double and 
extended double precision computations.

D.11.3 Programming Language Support for Extended 
Precision
The preceding examples should not be taken to suggest that extended precision per 
se is harmful. Many programs can benefit from extended precision when the 
programmer is able to use it selectively. Unfortunately, current programming 
languages do not provide sufficient means for a programmer to specify when and 
how extended precision should be used. To indicate what support is needed, we 
consider the ways in which we might want to manage the use of extended precision.

In a portable program that uses double precision as its nominal working precision, 
there are five ways we might want to control the use of a wider precision:

1. Compile to produce the fastest code, using extended precision where possible on 
extended-based systems. Clearly most numerical software does not require more 
of the arithmetic than that the relative error in each operation is bounded by the 
“machine epsilon”. When data in memory are stored in double precision, the 
machine epsilon is usually taken to be the largest relative roundoff error in that 
precision, since the input data are (rightly or wrongly) assumed to have been 
rounded when they were entered and the results will likewise be rounded when 
they are stored. Thus, while computing some of the intermediate results in 
extended precision may yield a more accurate result, extended precision is not 
essential. In this case, we might prefer that the compiler use extended precision 
only when it will not appreciably slow the program and use double precision 
otherwise.

2. Use a format wider than double if it is reasonably fast and wide enough, 
otherwise resort to something else. Some computations can be performed more 
easily when extended precision is available, but they can also be carried out in 
double precision with only somewhat greater effort. Consider computing the 
Euclidean norm of a vector of double precision numbers. By computing the 
squares of the elements and accumulating their sum in an IEEE 754 extended 
double format with its wider exponent range, we can trivially avoid premature 
underflow or overflow for vectors of practical lengths. On extended-based 
systems, this is the fastest way to compute the norm. On single/double systems, 
an extended double format would have to be emulated in software (if one were 
supported at all), and such emulation would be much slower than simply using 
double precision, testing the exception flags to determine whether underflow or 
overflow occurred, and if so, repeating the computation with explicit scaling. 
Note that to support this use of extended precision, a language must provide both 
an indication of the widest available format that is reasonably fast, so that a 
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program can choose which method to use, and environmental parameters that 
indicate the precision and range of each format, so that the program can verify 
that the widest fast format is wide enough (e.g., that it has wider range than 
double).

3. Use a format wider than double even if it has to be emulated in software. For 
more complicated programs than the Euclidean norm example, the programmer 
may simply wish to avoid the need to write two versions of the program and 
instead rely on extended precision even if it is slow. Again, the language must 
provide environmental parameters so that the program can determine the range 
and precision of the widest available format.

4. Don’t use a wider precision; round results correctly to the precision of the double 
format, albeit possibly with extended range. For programs that are most easily 
written to depend on correctly rounded double precision arithmetic, including 
some of the examples mentioned above, a language must provide a way for the 
programmer to indicate that extended precision must not be used, even though 
intermediate results may be computed in registers with a wider exponent range 
than double. (Intermediate results computed in this way can still incur double-
rounding if they underflow when stored to memory: if the result of an arithmetic 
operation is rounded first to 53 significant bits, then rounded again to fewer 
significant bits when it must be denormalized, the final result may differ from 
what would have been obtained by rounding just once to a denormalized 
number. Of course, this form of double-rounding is highly unlikely to affect any 
practical program adversely.)

5. Round results correctly to both the precision and range of the double format. This 
strict enforcement of double precision would be most useful for programs that 
test either numerical software or the arithmetic itself near the limits of both the 
range and precision of the double format. Such careful test programs tend to be 
difficult to write in a portable way; they become even more difficult (and error 
prone) when they must employ dummy subroutines and other tricks to force 
results to be rounded to a particular format. Thus, a programmer using an 
extended-based system to develop robust software that must be portable to all 
IEEE 754 implementations would quickly come to appreciate being able to 
emulate the arithmetic of single/double systems without extraordinary effort.

No current language supports all five of these options. In fact, few languages have 
attempted to give the programmer the ability to control the use of extended 
precision at all. One notable exception is the ISO/IEC 9899:1999 Programming 
Languages - C standard, the latest revision to the C language, which is now in the 
final stages of standardization.

The C99 standard allows an implementation to evaluate expressions in a format 
wider than that normally associated with their type, but the C99 standard 
recommends using one of only three expression evaluation methods. The three 
recommended methods are characterized by the extent to which expressions are 
“promoted” to wider formats, and the implementation is encouraged to identify 
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which method it uses by defining the preprocessor macro FLT_EVAL_METHOD: if 
FLT_EVAL_METHOD is 0, each expression is evaluated in a format that corresponds to 
its type; if FLT_EVAL_METHOD is 1, float expressions are promoted to the format 
that corresponds to double; and if FLT_EVAL_METHOD is 2, float and double 
expressions are promoted to the format that corresponds to long double. (An 
implementation is allowed to set FLT_EVAL_METHOD to –1 to indicate that the 
expression evaluation method is indeterminable.) The C99 standard also requires 
that the <math.h> header file define the types float_t and double_t, which are 
at least as wide as float and double, respectively, and are intended to match the 
types used to evaluate float and double expressions. For example, if 
FLT_EVAL_METHOD is 2, both float_t and double_t are long double. Finally, 
the C99 standard requires that the <float.h> header file define preprocessor 
macros that specify the range and precision of the formats corresponding to each 
floating-point type.

The combination of features required or recommended by the C99 standard supports 
some of the five options listed above but not all. For example, if an implementation 
maps the long double type to an extended double format and defines 
FLT_EVAL_METHOD to be 2, the programmer can reasonably assume that extended 
precision is relatively fast, so programs like the Euclidean norm example can simply 
use intermediate variables of type long double (or double_t). On the other hand, 
the same implementation must keep anonymous expressions in extended precision 
even when they are stored in memory (e.g., when the compiler must spill floating-
point registers), and it must store the results of expressions assigned to variables 
declared double to convert them to double precision even if they could have been 
kept in registers. Thus, neither the double nor the double_t type can be compiled 
to produce the fastest code on current extended-based hardware.

Likewise, the C99 standard provides solutions to some of the problems illustrated by 
the examples in this section but not all. A C99 standard version of the log1p 
function is guaranteed to work correctly if the expression 1.0 + x is assigned to a 
variable (of any type) and that variable used throughout. A portable, efficient C99 
standard program for splitting a double precision number into high and low parts, 
however, is more difficult: how can we split at the correct position and avoid double-
rounding if we cannot guarantee that double expressions are rounded correctly to 
double precision? One solution is to use the double_t type to perform the splitting 
in double precision on single/double systems and in extended precision on 
extended-based systems, so that in either case the arithmetic will be correctly 
rounded. Theorem 14 says that we can split at any bit position provided we know 
the precision of the underlying arithmetic, and the FLT_EVAL_METHOD and 
environmental parameter macros should give us this information.
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The following fragment shows one possible implementation:  

Of course, to find this solution, the programmer must know that double 
expressions may be evaluated in extended precision, that the ensuing double-
rounding problem can cause the algorithm to malfunction, and that extended 
precision may be used instead according to Theorem 14. A more obvious solution is 
simply to specify that each expression be rounded correctly to double precision. On 
extended-based systems, this merely requires changing the rounding precision 
mode, but unfortunately, the C99 standard does not provide a portable way to do 
this. (Early drafts of the Floating-Point C Edits, the working document that specified 
the changes to be made to the C90 standard to support floating-point, recommended 
that implementations on systems with rounding precision modes provide 
fegetprec and fesetprec functions to get and set the rounding precision, 
analogous to the fegetround and fesetround functions that get and set the 
rounding direction. This recommendation was removed before the changes were 
made to the C99 standard.)

Coincidentally, the C99 standard’s approach to supporting portability among 
systems with different integer arithmetic capabilities suggests a better way to 
support different floating-point architectures. Each C99 standard implementation 
supplies an <stdint.h> header file that defines those integer types the 
implementation supports, named according to their sizes and efficiency: for 
example, int32_t is an integer type exactly 32 bits wide, int_fast16_t is the 
implementation’s fastest integer type at least 16 bits wide, and intmax_t is the 
widest integer type supported. One can imagine a similar scheme for floating-point 
types: for example, float53_t could name a floating-point type with exactly 53 bit 
precision but possibly wider range, float_fast24_t could name the 

#include <math.h>
#include <float.h>

#if (FLT_EVAL_METHOD==2)
#define PWR2  LDBL_MANT_DIG - (DBL_MANT_DIG/2)
#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0))
#define PWR2  DBL_MANT_DIG - (DBL_MANT_DIG/2)
#else
#error FLT_EVAL_METHOD unknown!
#endif

...
    double   x, xh, xl;
    double_t m;

    m = scalbn(1.0, PWR2) + 1.0;  // 2**PWR2 + 1
    xh = (m * x) - ((m * x) - x);
    xl = x - xh;
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implementation’s fastest type with at least 24 bit precision, and floatmax_t could 
name the widest reasonably fast type supported. The fast types could allow 
compilers on extended-based systems to generate the fastest possible code subject 
only to the constraint that the values of named variables must not appear to change 
as a result of register spilling. The exact width types would cause compilers on 
extended-based systems to set the rounding precision mode to round to the specified 
precision, allowing wider range subject to the same constraint. Finally, double_t 
could name a type with both the precision and range of the IEEE 754 double format, 
providing strict double evaluation. Together with environmental parameter macros 
named accordingly, such a scheme would readily support all five options described 
above and allow programmers to indicate easily and unambiguously the floating-
point semantics their programs require.

Must language support for extended precision be so complicated? On single/double 
systems, four of the five options listed above coincide, and there is no need to 
differentiate fast and exact width types. Extended-based systems, however, pose 
difficult choices: they support neither pure double precision nor pure extended 
precision computation as efficiently as a mixture of the two, and different programs 
call for different mixtures. Moreover, the choice of when to use extended precision 
should not be left to compiler writers, who are often tempted by benchmarks (and 
sometimes told outright by numerical analysts) to regard floating-point arithmetic as 
“inherently inexact” and therefore neither deserving nor capable of the predictability 
of integer arithmetic. Instead, the choice must be presented to programmers, and 
they will require languages capable of expressing their selection.

D.11.4 Conclusion
The foregoing remarks are not intended to disparage extended-based systems but to 
expose several fallacies, the first being that all IEEE 754 systems must deliver 
identical results for the same program. We have focused on differences between 
extended-based systems and single/double systems, but there are further differences 
among systems within each of these families. For example, some single/double 
systems provide a single instruction to multiply two numbers and add a third with 
just one final rounding. This operation, called a fused multiply-add, can cause the 
same program to produce different results across different single/double systems, 
and, like extended precision, it can even cause the same program to produce 
different results on the same system depending on whether and when it is used. (A 
fused multiply-add can also foil the splitting process of Theorem 6, although it can 
be used in a non-portable way to perform multiple precision multiplication without 
the need for splitting.) Even though the IEEE standard didn’t anticipate such an 
operation, it nevertheless conforms: the intermediate product is delivered to a 
“destination” beyond the user’s control that is wide enough to hold it exactly, and 
the final sum is rounded correctly to fit its single or double precision destination.
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The idea that IEEE 754 prescribes precisely the result a given program must deliver 
is nonetheless appealing. Many programmers like to believe that they can 
understand the behavior of a program and prove that it will work correctly without 
reference to the compiler that compiles it or the computer that runs it. In many 
ways, supporting this belief is a worthwhile goal for the designers of computer 
systems and programming languages. Unfortunately, when it comes to floating-
point arithmetic, the goal is virtually impossible to achieve. The authors of the IEEE 
standards knew that, and they didn’t attempt to achieve it. As a result, despite 
nearly universal conformance to (most of) the IEEE 754 standard throughout the 
computer industry, programmers of portable software must continue to cope with 
unpredictable floating-point arithmetic.

If programmers are to exploit the features of IEEE 754, they will need programming 
languages that make floating-point arithmetic predictable. The C99 standard 
improves predictability to some degree at the expense of requiring programmers to 
write multiple versions of their programs, one for each FLT_EVAL_METHOD. 
Whether future languages will choose instead to allow programmers to write a 
single program with syntax that unambiguously expresses the extent to which it 
depends on IEEE 754 semantics remains to be seen. Existing extended-based systems 
threaten that prospect by tempting us to assume that the compiler and the hardware 
can know better than the programmer how a computation should be performed on a 
given system. That assumption is the second fallacy: the accuracy required in a 
computed result depends not on the machine that produces it but only on the 
conclusions that will be drawn from it, and of the programmer, the compiler, and the 
hardware, at best only the programmer can know what those conclusions may be.
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APPENDIX E

Standards Compliance 

The Sun Studio compiler products together with the header files and libraries in the 
Solaris 10 operating environment support multiple standards including: System V 
Interface Definition Edition 3 (SVID), X/Open, ANSI C (C90), POSIX.1-2001 (SUSv3) 
and ISO C (C99). (See standards(5) for a more complete discussion.) Some of these 
standards allow implementations to vary in certain respects. In some cases, the 
specifications of these standards conflict. For the math libraries, the variances and 
conflicts are primarily related to special cases and exceptions. This appendix 
documents the behavior of the functions inlibm in these cases and discusses 
conditions under which a C program can expect behavior that conforms to each 
standard. The final section of this appendix documents the conformance of the Sun 
Studio C and Fortran language products to LIA-1.

E.1 libm Special Cases
TABLE E-1 lists all of the cases in which two or more of the standards mentioned 
above specify conflicting behavior for functions in libm. Which behavior a C 
program will observe depends on the compiler flags that are used when the program 
is compiled and linked. Possible behaviors include raising floating point exceptions, 
calling the user-supplied function matherr with information about the special case 
that occurred and the value to be returned (see matherr(3M)), printing a message 
on the standard error file, and setting the global variable errno (see intro(2) and 
perror(3C)).

The first column in TABLE E-1 defines the special case. The second column shows the 
value to which errno will be set if it is set at all. The possible values for errno are 
defined in <errno.h>; the only two values used by the math library are EDOM for 
domain errors and ERANGE for range errors. When the second column shows both 
EDOM and ERANGE, the value to which errno is set is determined by the relevant 
standard as described below and shown in the fourth or fifth column. The third 
column shows the error code that will be indicated in any error message that is 
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printed. The fourth, fifth, and sixth columns show the function values that will 
nominally be returned as defined by various standards. In some cases, a user-
supplied matherr routine can override these values and supply another return 
value.

The specific responses to these special cases are determined by the compiler flags 
specified when a program is linked as follows. If either -xlibmieee or -xc99=lib 
is specified, then when any of the special cases in TABLE E-1 occurs, any appropriate 
floating point exceptions are raised, and the function value listed in the sixth column 
of the table is returned.

If neither -xlibmieee nor -xc99=lib is used, then the behavior depends on the 
language conformance flag specified when the program is linked.

Specifying the -Xa flag selects X/Open conformance. When any of the special cases 
in the table occurs, any appropriate floating point exceptions are raised, errno is 
set, and the function value listed in the fifth column of the table is returned.  If a 
user-defined matherr routine is supplied, the behavior is undefined.  Note that -Xa 
is the default when no other language conformance flag is given.

Specifying the -Xc flag selects strict C90 conformance. When a special case occurs, 
any appropriate floating point exceptions are raised, errno is set, and the function 
value listed in the fifth column of the table is returned. matherr is not invoked in 
this case.

Finally, specifying either the -Xs or the -Xt flag selects SVID conformance. When a 
special case occurs, any appropriate floating point exceptions are raised, matherr is 
called, and if matherr returns zero, then errno is set and an error message is 
printed. The function value listed in the fourth column of the table is returned unless 
it is overridden by matherr.

See the cc(1) manual page and the Sun Studio C compiler manuals for more 
information about the -xc99, -Xa, -Xc, -Xs, and -Xt flags. 

TABLE E-1 Special Cases and libm Functions 

Function errno
error 
message SVID X/Open, C90 IEEE, C99, SUSv3

acos(|x|>1) EDOM DOMAIN 0.0 0.0 NaN

acosh(x<1) EDOM DOMAIN NaN NaN NaN

asin(|x|>1) EDOM DOMAIN 0.0 0.0 NaN

atan2(+/-0,+/-0) EDOM DOMAIN 0.0 0.0 +/-0.0,+/-pi

atanh(|x|>1) EDOM DOMAIN NaN NaN NaN

atanh(+/-1) EDOM/ERANGE SING +/-HUGE1 
(EDOM)

+/-HUGE_VAL2 
(ERANGE)

+/-infinity

cosh overflow ERANGE - HUGE HUGE_VAL infinity
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exp overflow ERANGE - HUGE HUGE_VAL infinity

exp underflow ERANGE - 0.0 0.0 0.0

fmod(x,0) EDOM DOMAIN x NaN NaN

gamma(0 or 
-integer)

EDOM SING HUGE HUGE_VAL infinity

gamma overflow ERANGE - HUGE HUGE_VAL infinity

hypot overflow ERANGE - HUGE HUGE_VAL infinity

j0(|x|>X_TLOSS3) ERANGE TLOSS 0.0 0.0 correct answer

j1(|x|>X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

jn(|x|>X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

lgamma(0 or  
-integer)

EDOM SING HUGE HUGE_VAL infinity

lgamma overflow ERANGE - HUGE HUGE_VAL infinity

log(0) EDOM/ERANGE SING -HUGE 
(EDOM)

-HUGE_VAL 
(ERANGE)

-infinity

log(x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

log10(0) EDOM/ERANGE SING -HUGE 
(EDOM)

-HUGE_VAL 
(ERANGE)

-infinity

log10(x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

log1p(-1) EDOM/ERANGE SING -HUGE 
(EDOM)

-HUGE_VAL 
(ERANGE)

-infinity

log1p(x<-1) EDOM DOMAIN NaN NaN NaN

pow(0,0) EDOM DOMAIN 0.0 1.0 (no error) 1.0 (no error)

pow(NaN,0) EDOM DOMAIN NaN NaN 1.0 (no error)

pow(0,x<0) EDOM DOMAIN 0.0 -HUGE_VAL +/-infinity

pow(x<0,  
non-integer)

EDOM DOMAIN 0.0 NaN NaN

pow overflow ERANGE - +/-HUGE +/-HUGE_VAL +/-infinity

pow underflow ERANGE - +/-0.0 +/-0.0 +/-0.0

remainder(x,0) EDOM DOMAIN NaN NaN NaN

scalb overflow ERANGE - +-HUGE_VAL +/-HUGE_VAL +/-infinity

scalb underflow ERANGE - +/-0.0 +/-0.0 +/-0.0

TABLE E-1 Special Cases and libm Functions (Continued)

Function errno
error 
message SVID X/Open, C90 IEEE, C99, SUSv3
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Notes:

1. HUGE is defined in <math.h>. SVID requires that HUGE be equal to MAXFLOAT, 
which is approximately 3.4e+38.

2. HUGE_VAL is defined in <iso/math_iso.h>, which is included in <math.h>. 
HUGE_VAL evaluates to infinity.

3. X_TLOSS is defined in <values.h>.

E.1.1 Other Compiler Flags Affecting Standard 
Conformance
The compiler flags listed above directly select which of several standards will be 
followed in handling the special cases listed in TABLE E-1. Other compiler flags can 
indirectly affect whether a program observes the behavior described above.

First, both the -xlibmil and -xlibmopt flags substitute faster implementations of 
some of the functions in libm. These faster implementations do not conform to 
SVID, X/Open, or C90. Neither do they set errno or call matherr. They do, 
however, raise floating point exceptions as appropriate and deliver the results 
specified by IEEE 754 and/or C99. Similar comments apply to the -xvector flag, 
since it can cause the compiler to transform calls to standard math functions into 
calls to vector math functions.

sinh overflow ERANGE - +/-HUGE +/-HUGE_VAL +/-infinity

sqrt(x<0) EDOM DOMAIN 0.0 NaN NaN

y0(0) EDOM DOMAIN -HUGE -HUGE_VAL -infinity

y0(x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

y0(x>X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

y1(0) EDOM DOMAIN -HUGE -HUGE_VAL -infinity

y1(x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

y1(x>X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

yn(n,0) EDOM DOMAIN -HUGE -HUGE_VAL -infinity

yn(n,x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

yn(n,x>X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

TABLE E-1 Special Cases and libm Functions (Continued)

Function errno
error 
message SVID X/Open, C90 IEEE, C99, SUSv3
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Second, the -xbuiltin flag allows the compiler to treat the standard math 
functions defined in <math.h> as intrinsic and substitute inline code for better 
performance. The substitute code may not conform to SVID, X/Open, C90, or C99. It 
need not set errno, call matherr, or raise floating point exceptions.

Third, when the C preprocessor token __MATHERR_ERRNO_DONTCARE is defined, a 
number of #pragma directives in <math.h> are compiled. These directives tell the 
compiler to assume that the standard math functions have no side effects. Under this 
assumption, the compiler can reorder calls to the math functions and references to 
global data such as errno or data that might be modified by a user-supplied 
matherr routine so as to violate the expected behavior described above. For 
example, consider the code fragment: 

If this code is compiled with __MATHERR_ERRNO_DONTCARE defined, the compiler 
may assume that errno is not modified by the call to acos and transform the code 
accordingly, removing the call to printf entirely.

Note that the -fast macro flag includes the flags -xbuiltin, -xlibmil, 
-xlibmopt, and -D__MATHERR_ERRNO_DONTCARE.

Finally, since all of the math functions in libm raise floating point exceptions as 
need be, running a program with trapping on those exceptions enabled will 
generally result in behavior other than that specified by the standards listed above. 
Thus, the -ftrap compiler flag can also affect standard conformance.

E.1.2 Additional Notes on C99 Conformance
C99 specifies two possible methods by which an implementation can handle special 
cases such as those in TABLE E-1. An implementation indicates which of the two 
methods it supports by defining the identifier math_errhandling to evaluate to an 
integer expression having the value MATH_ERRNO (1) or MATH_ERREXCEPT (2) or the 
bitwise “or” of these. (These values are defined in <math.h>.) If the expression 
(math_errhandling & MATH_ERRNO) is nonzero, then the implementation handles 
cases in which the argument of a function lies outside its mathematical domain by 
setting errno to EDOM and handles cases in which the result value of a function 

#include <errno.h>
#include <math.h>

...
errno = 0;
x = acos(2.0);
if (errno) {
    printf(“error\n”);
}
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would underflow, overflow, or equal infinity exactly by setting errno to ERANGE. If 
the expression (math_errhandling & MATH_ERREXCEPT) is nonzero, then the 
implementation handles cases in which the argument of a function lies outside its 
mathematical domain by raising the invalid operation exception and handles cases 
in which the result value of a function would underflow, overflow or equal infinity 
exactly by raising the underflow, overflow, or division-by-zero exception, 
respectively.

On Solaris, <math.h> defines math_errhandling to be MATH_ERREXCEPT. 
Although the functions listed in TABLE E-1 may perform other actions for the special 
cases shown there, all libm functions---including the float and long double 
functions, complex functions, and additional functions specified by C99---respond to 
special cases by raising floating point exceptions. This is the only method for 
handling special cases that is supported uniformly for all C99 functions.

Finally, note that there are three functions for which either C99 or SUSv3 requires 
different behavior from the Solaris default. The differences are summarized in the 
following table. The table lists only the double version of each function, but the 
differences apply to the float and long double versions as well. In each case, the 
SUSv3 specification is followed when a program is linked with -xc99=lib and the 
Solaris default is followed otherwise. 

E.2 LIA-1 Conformance
In this section, LIA-1 refers to ISO/IEC 10967-1:1994 Information Technology - 
Language Independent Arithmetic - Part 1: Integer and floating-point arithmetic.

The C and Fortran 95 compilers (cc and f95) contained in the Sun Studio compilers 
release conform to LIA-1 in the following senses (paragraph letters correspond to 
those in LIA-1 section 8):

TABLE E-2 Solaris and C99/SUSv3 Differences

Function Solaris behavior C99/SUSv3 behavior

pow pow(1.0, +/-inf) returns NaN
pow(-1.0, +/-inf) returns NaN
pow(1.0, NaN) returns NaN

pow(1.0, +/-inf) returns 1
pow(-1.0, +/-inf) returns 1
pow(1.0, NaN) returns 1

logb logb(subnormal) returns Emin logb(x) = ilogb(x) when x issubnormal

ilogb ilogb(+/-0), ilogb(+/-inf),
ilogb(NaN) raise no exceptions

ilogb(+/-0), ilogb(+/-inf),
ilogb(NaN) raise invalid operation
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a. TYPES (LIA 5.1): The LIA-1 conformant types are C int and Fortran INTEGER. 
Other types may conform as well, but they are not specified here. Further 
specifications for specific languages await language bindings to LIA-1 from the 
cognizant language standards organizations.

b. PARAMETERS (LIA 5.1):

#include <values.h> /* defines MAXINT */

#define TRUE 1

#define FALSE 0

#define BOUNDED TRUE

#define MODULO TRUE

#define MAXINT 2147483647

#define MININT -2147483648

logical bounded, modulo

integer maxint, minint

parameter (bounded = .TRUE.)

parameter (modulo = .TRUE.)

parameter (maxint = 2147483647)

parameter (minint = -2147483648)

d. DIV/REM/MOD (LIA 5.1.3):

C / and %, and Fortran / and mod(), provide DIVtI(x,y) and REMtI(x,y). Also, 
modaI(x,y) is available with this code:

int modaI(int x, int y) {

int t = x % y;

if (y < 0 && t > 0)

t -= y;

else if (y > 0 && t < 0)

t += y;

return t;

}

or this:

integer function modaI(x, y)

integer x, y, t

t = mod(x, y)

if (y .lt. 0 .and. t .gt. 0) t = t - y

if (y .gt. 0 .and. t .lt. 0) t = t + y

modaI = t
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return

end

i. NOTATION (LIA 5.1.3): The following table shows the notation by which the LIA 
integer operations may be realized.

The following code shows the Fortran notation for signI(x).

integer function signi(x)

integer x, t

if (x .gt. 0) t=1

if (x .lt. 0) t=-1

if (x .eq. 0) t=0

return

end

TABLE E-3 LIA-1 Conformance - Notation

LIA C Fortran if different

addI(x,y) x+y

subI(x,y) x-y

mulI(x,y) x*y

divtI(x,y) x/y

remtI(x,y) x%y mod(x,y)

modaI(x,y) see above

negI(x) -x

absI(x) #include <stdlib.h>

abs(x)

abs(x)

signI(x) #define signI(x) (x > 0

? 1 : (x < 0 ? -1 : 0))

see below

eqI(x,y) x==y x.eq.y

neqI(x,y) x!=y x.ne.y

lssI(x,y) x<y x.lt.y

leqI(x,y) x<=y x.le.y

gtrI(x,y) x>y x.gt.y

geqI(x,y) x>=y x.ge.y
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j. EXPRESSION EVALUATION: By default, when no optimization is specified, 
expressions are evaluated in int (C) or INTEGER (Fortran) precision. Parentheses 
are respected. The order of evaluation of associative unparenthesized expressions 
such as a + b + c or a * b * c is not specified.

k. METHOD OF OBTAINING PARAMETERS: Include the definitions above in the 
source code. 

n. NOTIFICATION:   Integer exceptions are x/0 and x%0 or mod(x,0). By default, 
these exceptions generate SIGFPE. When no signal handler is specified for SIGFPE, 
the process terminates and dumps memory.

o. SELECTION MECHANISM: signal(3) or signal(3F) may be used to enable user 
exception handling for SIGFPE.
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Glossary

This glossary describes computer floating-point arithmetic terms. It also 
describes terms and acronyms associated with parallel processing. 

This symbol, “||”, appended to a term designates it as associated with parallel 
processing. 

accuracy A measure of how well one number approximates another. For example, the 
accuracy of a computed result often reflects the extent to which errors in the 
computation cause it to differ from the mathematically exact result. Accuracy 
can be expressed in terms of significant digits (e.g., “The result is accurate to 
six digits”) or more generally in terms of the preservation of relevant 

mathematical properties (e.g., “The result has the correct algebraic sign”).

array processing|| A number of processors working simultaneously, each handling one element of 
the array, so that a single operation can apply to all elements of the array in 
parallel.

 associativity|| See cache, direct mapped cache, fully associative cache, set associative cache. 

asynchronous 
control|| Computer control behavior where a specific operation is begun upon receipt of 

an indication (signal) that a particular event has occurred. Asynchronous 
control relies on synchronization mechanisms called locks to coordinate 
processors. See also mutual exclusion, mutex lock, semaphore lock, single-lock 
strategy, spin lock.

   barrier|| A synchronization mechanism for coordinating tasks even when data accesses 
are not involved. A barrier is analogous to a gate. Processors or threads 
operating in parallel reach the gate at different times, but none can pass 
through until all processors reach the gate. For example, suppose at the end of 
each day, all bank tellers are required to tally the amount of money that was 
deposited, and the amount that was withdrawn. These totals are then reported 
to the bank vice president, who must check the grand totals to verify debits 
equal credits. The tellers operate at their own speeds; that is, they finish 
totaling their transactions at different times. The barrier mechanism prevents 
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tellers from leaving for home before the grand total is checked. If debits do not 
equal credits, all tellers must return to their desks to find the error. The barrier 
is removed after the vice president obtains a satisfactory grand total.

biased exponent The sum of the base-2 exponent and a constant (bias) chosen to make the 
stored exponent’s range non-negative. For example, the exponent of 2-100 is 
stored in IEEE single precision format as (-100) + (single precision bias of 127) 
= 27.

binade The interval between any two consecutive powers of two.

blocked state|| A thread is waiting for a resource or data; such as, return data from a pending 
disk read, or waiting for another thread to unlock a resource.

bound threads|| For Solaris threads, a thread permanently assigned to a particular LWP is 
called a bound thread. Bound threads can be scheduled on a real-time basis in 
strict priority with respect to all other active threads in the system, not only 
within a process. An LWP is an entity that can be scheduled with the same 
default scheduling priority as any UNIX process.

 cache|| Small, fast, hardware-controlled memory that acts as a buffer between a 
processor and main memory. Cache contains a copy of the most recently used 
memory locations—addresses and contents—of instructions and data. Every 
address reference goes first to cache. If the desired instruction or data is not in 
cache, a cache miss occurs. The contents are fetched across the bus from main 
memory into the CPU register specified in the instruction being executed and a 
copy is also written to cache. It is likely that the same location will be used 
again soon, and, if so, the address is found in cache, resulting in a cache hit. If 
a write to that address occurs, the hardware not only writes to cache, but can 
also generate a write-through to main memory. 

See also associativity, circuit switching, direct mapped cache, fully associative cache, 
MBus, packet switching, set associative cache, write-back, write-through, XDBus. 

cache locality|| A program does not access all of its code or data at once with equal probability. 
Having recently accessed information in cache increases the probability of 
finding information locally without having to access memory. The principle of 
locality states that programs access a relatively small portion of their address 
space at any instant of time. There are two different types of locality: temporal 
and spatial.

Temporal locality (locality in time) is the tendency to reuse recently accessed 
items. For example, most programs contain loops, so that instructions and data 
are likely to be accessed repeatedly. Temporal locality retains recently accessed 
items closer to the processor in cache rather than requiring a memory access. 
See also cache, competitive-caching, false sharing, write-invalidate, write-update.

Spatial locality (locality in space) is the tendency to reference items whose 
addresses are close to other recently accessed items. For example, accesses to 
elements of an array or record show a natural spatial locality. Caching takes 
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advantage of spatial locality by moving blocks (multiple contiguous words) 
from memory into cache and closer to the processor. See also cache, competitive-
caching, false sharing, write-invalidate, write-update.

chaining A hardware feature of some pipeline architectures that allows the result of an 
operation to be used immediately as an operand for a second operation, 
simultaneously with the writing of the result to its destination register. The 
total cycle time of two chained operations is less than the sum of the stand-
alone cycle times for the instructions. For example, the TI 8847 supports 
chaining of consecutive fadd, fsub, and fmul (of the same precision). 
Chained faddd/fmuld requires 12 cycles, while consecutive unchained 
faddd/fmuld requires 17 cycles.

circuit switching|| A mechanism for caches to communicate with each other as well as with main 
memory. A dedicated connection (circuit) is established between caches or 
between cache and main memory. While a circuit is in place no other traffic can 
travel over the bus.

 coherence|| In systems with multiple caches, the mechanism that ensures that all 
processors see the same image of memory at all times.

common exceptions The three floating point exceptions overflow, invalid, and division are 
collectively referred to as the common exceptions for the purposes of 
ieee_flags(3m) and ieee_handler(3m). They are called common 
exceptions because they are commonly trapped as errors.

 competitive-
caching|| Competitive-caching maintains cache coherence by using a hybrid of write-

invalidate and write-update. Competitive-caching uses a counter to age shared 
data. Shared data is purged from cache based on a least-recently-used (LRU) 
algorithm. This can cause shared data to become private data again, thus 
eliminating the need for the cache coherency protocol to access memory (via 
backplane bandwidth) to keep multiple copies synchronized. See also cache, 
cache locality, false sharing, write-invalidate, write-update.

 concurrency|| The execution of two or more active threads or processes in parallel. On a 
uniprocessor apparent concurrence is accomplished by rapidly switching 
between threads. On a multiprocessor system true parallel execution can be 
achieved. See also asynchronous control, multiprocessor system, thread.

concurrent 
processes|| Processes that execute in parallel in multiple processors or asynchronously on 

a single processor. Concurrent processes can interact with each other, and one 
process can suspend execution pending receipt of information from another 
process or the occurrence of an external event. See also process, sequential 
processes.

 condition variable|| For Solaris threads, a condition variable enables threads to atomically block 
until a condition is satisfied. The condition is tested under the protection of a 
mutex lock. When the condition is false, a thread blocks on a condition variable 
and atomically releases the mutex waiting for the condition to change. When 
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another thread changes the condition, it can signal the associated condition 
variable to cause one or more waiting threads to wake up, reacquire the mutex, 
and re-evaluate the condition. Condition variables can be used to synchronize 
threads in this process and other processes if the variable is allocated in 
memory that is writable and shared among the cooperating processes and have 
been initialized for this behavior.

context switch In multitasking operating systems, such as the SunOS™ operating system, 
processes run for a fixed time quantum. At the end of the time quantum, the 
CPU receives a signal from the timer, interrupts the currently running process, 
and prepares to run a new process. The CPU saves the registers for the old 
process, and then loads the registers for the new process. Switching from the 
old process state to the new is known as a context switch. Time spent switching 
contexts is system overhead; the time required depends on the number of 
registers, and on whether there are special instructions to save the registers 
associated with a process.

control flow model|| The von Neumann model of a computer. This model specifies flow of control; 
that is, which instruction is executed at each step of a program. All Sun 
workstations are instances of the von Neumann model. See also data flow model, 
demand-driven dataflow.

critical region|| An indivisible section of code that can only be executed by one thread at a time 
and is not interruptible by other threads; such as, code that accesses a shared 
variable. See also mutual exclusion, mutex lock, semaphore lock, single-lock strategy, 
spin lock.

 critical resource|| A resource that can only be in use by at most one thread at any given time. 
Where several asynchronous threads are required to coordinate their access to 
a critical resource, they do so by synchronization mechanisms. See also mutual 
exclusion, mutex lock, semaphore lock, single-lock strategy, spin lock.

 data flow model|| This computer model specifies what happens to data, and ignores instruction 
order. That is, computations move forward by nature of availability of data 
values instead of the availability of instructions. See also control flow model, 
demand-driven dataflow.

data race|| In multithreading, a situation where two or more threads simultaneously 
access a shared resource. The results are indeterminate depending on the order 
in which the threads accessed the resource. This situation, called a data race, 
can produce different results when a program is run repeatedly with the same 
input. See also mutual exclusion, mutex lock, semaphore lock, single-lock strategy, 
spin lock.

 deadlock|| A situation that can arise when two (or more) separately active processes 
compete for resources. Suppose that process P requires resources X and Y and 
requests their use in that order at the same time that process Q requires 
resources Y and X and asks for them in that order. If process P has acquired 
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resource X and simultaneously process Q has acquired resource Y, then neither 
process can proceed—each process requires a resource that has been allocated 
to the other process.

default result The value that is delivered as the result of a floating-point operation that 
caused an exception.

demand-driven 
dataflow|| A task is enabled for execution by a processor when its results are required by 

another task that is also enabled; such as, a graph reduction model. A graph 
reduction program consists of reducible expressions that are replaced by their 
computed values as the computation progresses through time. Most of the 
time, the reductions are done in parallel—nothing prevents parallel reductions 
except the availability of data from previous reductions. See also control flow 
model, data flow model.

denormalized number
Older nomenclature for subnormal number.

direct mapped 
cache|| A direct mapped cache is a one-way set associative cache. That is, each cache 

entry holds one block and forms a single set with one element. See also cache, 
cache locality, false sharing, fully associative cache, set associative cache, write-
invalidate, write-update.

distributed memory 
architecture|| A combination of local memory and processors at each node of the 

interconnect network topology. Each processor can directly access only a 
portion of the total memory of the system. Message passing is used to 
communicate between any two processors, and there is no global, shared 
memory. Therefore, when a data structure must be shared, the program issues 
send/receive messages to the process that owns that structure. See also 
interprocess communication, message passing.

double precision Using two words to represent a number in order to keep or increase precision. 
On SPARC® workstations, double precision is the 64-bit IEEE double precision.

exception An arithmetic exception arises when an attempted atomic arithmetic operation 
has no result that is acceptable universally. The meanings of atomic and 
acceptable vary with time and place.

exponent The component of a floating-point number that signifies the integer power to 
which the base is raised in determining the value of the represented number.

 false sharing|| A condition that occurs in cache when two unrelated data accessed 
independently by two threads reside in the same block. This block can end up 
’ping-ponging’ between caches for no valid reason. Recognizing such a case 
and rearranging the data structure to eliminate the false sharing greatly 
increases cache performance. See also cache, cache locality.
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floating-point number 
system A system for representing a subset of real numbers in which the spacing 

between representable numbers is not a fixed, absolute constant. Such a system 
is characterized by a base, a sign, a significand, and an exponent (usually 
biased). The value of the number is the signed product of its significand and 
the base raised to the power of the unbiased exponent.

 fully associative 
cache|| A fully associative cache with m entries is an m-way set associative cache. That 

is, it has a single set with m blocks. A cache entry can reside in any of the m 
blocks within that set. See also cache, cache locality, direct mapped cache, false 
sharing, set associative cache, write-invalidate, write-update.

gradual underflow When a floating-point operation underflows, return a subnormal number 
instead of 0. This method of handling underflow minimizes the loss of 
accuracy in floating-point calculations on small numbers.

hidden bits Extra bits used by hardware to ensure correct rounding, not accessible by 
software. For example, IEEE double precision operations use three hidden bits 
to compute a 56-bit result that is then rounded to 53 bits.

IEEE Standard 754 The standard for binary floating-point arithmetic developed by the Institute of 
Electrical and Electronics Engineers, published in 1985.

in-line template A fragment of assembly language code that is substituted for the function call 
it defines, during the inlining pass of Sun Studio compilers. Used (for 
example) by the math library in in-line template files (libm.il) in order to 
access hardware implementations of trigonometric functions and other 
elementary functions from C programs.

interconnection 
network topology|| Interconnection topology describes how the processors are connected. All 

networks consist of switches whose links go to processor-memory nodes and to 
other switches. There are four generic forms of topology: star, ring, bus, and 
fully-connected network. Star topology consists of a single hub processor with 
the other processors directly connected to the single hub, the non-hub 
processors are not directly connected to each other. In ring topology all 
processors are on a ring and communication is generally in one direction 
around the ring. Bus topology is noncyclic, with all nodes connected; 
consequently, traffic travels in both directions, and some form of arbitration is 
needed to determine which processor can use the bus at any particular time. In 
a fully-connected (crossbar) network, every processor has a bidirectional link 
to every other processor.

Commercially-available parallel processors use multistage network topologies. 
A multistage network topology is characterized by 2-dimensional grid, and 
boolean n-cube.
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interprocess 
communication|| Message passing among active processes. See also circuit switching, distributed 

memory architecture, MBus, message passing, packet switching, shared memory, 
XDBus.

   IPC|| See interprocess communication.

light-weight 
process|| Solaris threads are implemented as a user-level library, using the kernel’s 

threads of control, that are called light-weight processes (LWPs). In the Solaris 
environment, a process is a collection of LWPs that share memory. Each LWP 
has the scheduling priority of a UNIX process and shares the resources of that 
process. LWPs coordinate their access to the shared memory by using 
synchronization mechanisms such as locks. An LWP can be thought of as a 
virtual CPU that executes code or system calls. The threads library schedules 
threads on a pool of LWPs in the process, in much the same way as the kernel 
schedules LWPs on a pool of processors. Each LWP is independently 
dispatched by the kernel, performs independent system calls, incurs 
independent page faults, and runs in parallel on a multiprocessor system. The 
LWPs are scheduled by the kernel onto the available CPU resources according 
to their scheduling class and priority.

 lock|| A mechanism for enforcing a policy for serializing access to shared data. A 
thread or process uses a particular lock in order to gain access to shared 
memory protected by that lock. The locking and unlocking of data is voluntary 
in the sense that only the programmer knows what must be locked. See also 
data race, mutual exclusion, mutex lock, semaphore lock, single-lock strategy, spin 
lock.

 LWP|| See light-weight process.

 MBus|| MBus is a bus specification for a processor/memory/IO interconnect. It is 
licensed by SPARC International to several silicon vendors who produce 
interoperating CPU modules, IO interfaces and memory controllers. MBus is a 
circuit-switched protocol combining read requests and response on a single 
bus. MBus level I defines uniprocessor signals; MBus level II defines 
multiprocessor extensions for the write-invalidate cache coherence mechanism.

 memory|| A medium that can retain information for subsequent retrieval. The term is 
most frequently used for referring to a computer’s internal storage that can be 
directly addressed by machine instructions. See also cache, distributed memory, 
shared memory.

message passing|| In the distributed memory architecture, a mechanism for processes to 
communicate with each other. There is no shared data structure in which they 
deposit messages. Message passing allows a process to send data to another 
process and for the intended recipient to synchronize with the arrival of the 
data.

 MIMD|| See Multiple Instruction Multiple Data, shared memory.
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 mt-safe|| In the Solaris environment, function calls inside libraries are either mt-safe or 
not mt-safe; mt-safe code is also called “re-entrant” code. That is, several 
threads can simultaneously call a given function in a module and it is up to the 
function code to handle this. The assumption is that data shared between 
threads is only accessed by module functions. If mutable global data is 
available to clients of a module, appropriate locks must also be made visible in 
the interface. Furthermore, the module function cannot be made re-entrant 
unless the clients are assumed to use the locks consistently and at appropriate 
times. See also single-lock strategy.

Multiple Instruction 
Multiple Data|| System model where many processors can be simultaneously executing 

different instructions on different data. Furthermore, these processors operate 
in a largely autonomous manner as if they are separate computers. They have 
no central controller, and they typically do not operate in lock-step fashion. 
Most real world banks run this way. Tellers do not consult with one another, 
nor do they perform each step of every transaction at the same time. Instead, 
they work on their own, until a data access conflict occurs. Processing of 
transactions occurs without concern for timing or customer order. But 
customers A and B must be explicitly prevented from simultaneously accessing 
the joint AB account balance. MIMD relies on synchronization mechanisms 
called locks to coordinate access to shared resources. See also mutual exclusion, 
mutex lock, semaphore lock, single-lock strategy, spin lock.

 multiple read single 
write|| In a concurrent environment, the first process to access data for writing has 

exclusive access to it, making concurrent write access or simultaneous read and 
write access impossible. However, the data can be read by multiple readers.

 multiprocessor|| See multiprocessor system.

multiprocessor bus|| In a shared memory multiprocessor machine each CPU and cache module are 
connected together via a bus that also includes memory and IO connections. 
The bus enforces a cache coherency protocol. See also cache, coherence, Mbus, 
XDBus.

multiprocessor 
system|| A system in which more than one processor can be active at any given time. 

While the processors are actively executing separate processes, they run 
completely asynchronously. However, synchronization between processors is 
essential when they access critical system resources or critical regions of 
system code. See also critical region, critical resource, multithreading, uniprocessor 
system.

 multitasking|| In a uniprocessor system, a large number of threads appear to be running in 
parallel. This is accomplished by rapidly switching between threads.
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 multithreading|| Applications that can have more than one thread or processor active at one 
time. Multithreaded applications can run in both uniprocessor systems and 
multiprocessor systems. See also bound thread, mt-safe, single-lock strategy, thread, 
unbound thread, uniprocessor.

mutex lock|| Synchronization variable to implement the mutual exclusion mechanism. See 
also condition variable, mutual exclusion.

 mutual exclusion|| In a concurrent environment, the ability of a thread to update a critical 
resource without accesses from competing threads. See also critical region, 
critical resource.

NaN Stands for Not a Number. A symbolic entity that is encoded in floating-point 
format.

normal number In IEEE arithmetic, a number with a biased exponent that is neither zero nor 
maximal (all 1’s), representing a subset of the normal range of real numbers 
with a bounded small relative error.

packet switching|| In the shared memory architecture, a mechanism for caches to communicate 
with each other as well as with main memory. In packet switching, traffic is 
divided into small segments called packets that are multiplexed onto the bus. 
A packet carries identification that enables cache and memory hardware to 
determine whether the packet is destined for it or to send the packet on to its 
ultimate destination. Packet switching allows bus traffic to be multiplexed and 
unordered (not sequenced) packets to be put on the bus. The unordered 
packets are reassembled at the destination (cache or main memory). See also 
cache, shared memory.

    paradigm|| A model of the world that is used to formulate a computer solution to a 
problem. Paradigms provide a context in which to understand and solve a real-
world problem. Because a paradigm is a model, it abstracts the details of the 
problem from the reality, and in doing so, makes the problem easier to solve. 
Like all abstractions, however, the model can be inaccurate because it only 
approximates the real world. See also Multiple Instruction Multiple Data, Single 
Instruction Multiple Data, Single Instruction Single Data, Single Program Multiple 
Data.

 parallel processing|| In a multiprocessor system, true parallel execution is achieved where a large 
number of threads or processes can be active at one time. See also concurrence, 
multiprocessor system, multithreading, uniprocessor.

     parallelism|| See concurrent processes, multithreading.

 pipeline|| If the total function applied to the data can be divided into distinct processing 
phases, different portions of data can flow along from phase to phase; such as 
a compiler with phases for lexical analysis, parsing, type checking, code 
generation and so on. As soon as the first program or module has passed the 
lexical analysis phase, it can be passed on to the parsing phase while the lexical 
analyzer starts on the second program or module. See also array processing, 
vector processing.
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pipelining A hardware feature where operations are reduced to multiple stages, each of 
which takes (typically) one cycle to complete. The pipeline is filled when new 
operations can be issued each cycle. If there are no dependencies among 
instructions in the pipe, new results can be delivered each cycle. Chaining 
implies pipelining of dependent instructions. If dependent instructions cannot 
be chained, when the hardware does not support chaining of those particular 
instructions, then the pipeline stalls.

precision A quantitative measure of the density of representable numbers. For example, 
in a binary floating point format that has a precision of 53 significant bits, there 
are 253 representable numbers between any two adjacent powers of two 
(within the range of normal numbers). Do not confuse precision with accuracy, 
which expresses how closely one number approximates another.

 process|| A unit of activity characterized by a single sequential thread of execution, a 
current state, and an associated set of system resources.

quiet NaN A NaN (not a number) that propagates through almost every arithmetic 
operation without raising new exceptions.

radix The base number of any system of numbers. For example, 2 is the radix of a 
binary system, and 10 is the radix of the decimal system of numeration. SPARC 
workstations use radix-2 arithmetic; IEEE Std 754 is a radix-2 arithmetic 
standard.

round Inexact results must be rounded up or down to obtain representable values. 
When a result is rounded up, it is increased to the next representable value. 
When rounded down, it is reduced to the preceding representable value.

roundoff error The error introduced when a real number is rounded to a machine-
representable number. Most floating-point calculations incur roundoff error. 
For any one floating-point operation, IEEE Std 754 specifies that the result shall 
not incur more than one rounding error.

 semaphore lock|| Synchronization mechanism for controlling access to critical resources by 
cooperating asynchronous threads. See also semaphore.

 semaphore|| A special-purpose data type introduced by E. W. Dijkstra that coordinates 
access to a particular resource or set of shared resources. A semaphore has an 
integer value (that cannot become negative) with two operations allowed on it. 
The signal (V or up) operation increases the value by one, and in general 
indicates that a resource has become free. The wait (P or down) operation 
decreases the value by one, when that can be done without the value going 
negative, and in general indicates that a free resource is about to start being 
used. See also semaphore lock.

 sequential 
processes|| Processes that execute in such a manner that one must finish before the next 

begins. See also concurrent processes, process.
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set associative cache||

In a set associative cache, there are a fixed number of locations (at least two) 
where each block can be placed. A set associative cache with n locations for a 
block is called an n-way set associative cache. An n-way set associative cache 
consists of more than one set, each of which consists of n blocks. A block can 
be placed in any location (element) of that set. Increasing the associativity level 
(number of blocks in a set) increases the cache hit rate. See also cache, cache 
locality, false sharing, write-invalidate, write-update.

shared memory 
architecture|| In a bus-connected multiprocessor system, processes or threads communicate 

through a global memory shared by all processors. This shared data segment is 
placed in the address space of the cooperating processes between their private 
data and stack segments. Subsequent tasks spawned by fork() copy all but 
the shared data segment in their address space. Shared memory requires 
program language extensions and library routines to support the model.

signaling NaN A NaN (not a number) that raises the invalid operation exception whenever it 
appears as an operand.

significand The component of a floating-point number that is multiplied by a signed 
power of the base to determine the value of the number. In a normalized 
number, the significand consists of a single nonzero digit to the left of the radix 
point and a fraction to the right.

 SIMD|| See Single Instruction Multiple Data.

Single Instruction 
Multiple Data|| System model where there are many processing elements, but they are 

designed to execute the same instruction at the same time; that is, one program 
counter is used to sequence through a single copy of the program. SIMD is 
especially useful for solving problems that have lots of data that needs to be 
updated on a wholesale basis; such as numerical calculations that are regular. 
Many scientific and engineering applications (such as, image processing, 
particle simulation, and finite element methods) naturally fall into the SIMD 
paradigm. See also array processing, pipeline, vector processing.

Single Instruction 
Single Data|| The conventional uniprocessor model, with a single processor fetching and 

executing a sequence of instructions that operate on the data items specified 
within them. This is the original von Neumann model of the operation of a 
computer.

single precision Using one computer word to represent a number.

Single Program 
Multiple Data|| A form of asynchronous parallelism where simultaneous processing of 

different data occurs without lock-step coordination. In SPMD, processors can 
execute different instructions at the same time; such as, different branches of an 
if-then-else statement.
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single-lock strategy|| In the single-lock strategy, a thread acquires a single, application-wide mutex 
lock whenever any thread in the application is running and releases the lock 
before the thread blocks. The single-lock strategy requires cooperation from all 
modules and libraries in the system to synchronize on the single lock. Because 
only one thread can be accessing shared data at any given time, each thread 
has a consistent view of memory. This strategy is quite effective in a 
uniprocessor, provided shared memory is put into a consistent state before the 
lock is released and that the lock is released often enough to allow other 
threads to run. Furthermore, in uniprocessor systems, concurrency is 
diminished if the lock is not dropped during most I/O operations. The single-
lock strategy cannot be applied in a multiprocessor system.

 SISD|| See Single Instruction Single Data.

 snooping|| The most popular protocol for maintaining cache coherency is called snooping. 
Cache controllers monitor or snoop on the bus to determine whether or not the 
cache contains a copy of a shared block.  
 
For reads, multiple copies can reside in the cache of different processors, but 
because the processors need the most recent copy, all processors must get new 
values after a write. See also cache, competitive-caching, false sharing, write-
invalidate, write-update.  
 
For writes, a processor must have exclusive access to write to cache. Writes to 
unshared blocks do not cause bus traffic. The consequence of a write to shared 
data is either to invalidate all other copies or to update the shared copies with 
the value being written. See also cache, competitive-caching, false sharing, write-
invalidate, write-update.

spin lock|| Threads use a spin lock to test a lock variable over and over until some other 
task releases the lock. That is, the waiting thread spins on the lock until the 
lock is cleared. Then, the waiting thread sets the lock while inside the critical 
region. After work in the critical region is complete, the thread clears the spin 
lock so another thread can enter the critical region. The difference between a 
spin lock and a mutex is that an attempt to get a mutex held by someone else 
will block and release the LWP; a spin lock does not release the LWP. See also 
mutex lock.

 SPMD|| See Single Program Multiple Data.

stderr Standard Error is the Unix file pointer to standard error output. This file is 
opened when a program is started.

Store 0 Flushing the underflowed result of an arithmetic operation to zero.

subnormal number In IEEE arithmetic, a nonzero floating point number with a biased exponent of 
zero. The subnormal numbers are those between zero and the smallest normal 
number.
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 thread|| A flow of control within a single UNIX process address space. Solaris threads 
provide a light-weight form of concurrent task, allowing multiple threads of 
control in a common user-address space, with minimal scheduling and 
communication overhead. Threads share the same address space, file 
descriptors (when one thread opens a file, the other threads can read it), data 
structures, and operating system state. A thread has a program counter and a 
stack to keep track of local variables and return addresses. Threads interact 
through the use of shared data and thread synchronization operations. See also 
bound thread, light-weight processes, multithreading, unbound thread.

 topology|| See interconnection network topology.

two’s complement The radix complement of a binary numeral, formed by subtracting each digit 
from 1, then adding 1 to the least significant digit and executing any required 
carries. For example, the two’s complement of 1101 is 0011.

ulp Stands for unit in last place. In binary formats, the least significant bit of the 
significand, bit 0, is the unit in the last place.

ulp(x) Stands for ulp of x truncated in working format.

 unbound threads|| For Solaris threads, threads scheduled onto a pool of LWPs are called unbound 
threads. The threads library invokes and assigns LWPs to execute runnable 
threads. If the thread becomes blocked on a synchronization mechanism (such 
as a mutex lock) the state of the thread is saved in process memory. The 
threads library then assigns another thread to the LWP. See also bound thread, 
multithreading, thread.

underflow A condition that occurs when the result of a floating-point arithmetic operation 
is so small that it cannot be represented as a normal number in the destination 
floating-point format with only normal roundoff.

uniprocessor 
system|| A uniprocessor system has only one processor active at any given time. This 

single processor can run multithreaded applications as well as the conventional 
single instruction single data model. See also multithreading, single instruction 
single data, single-lock strategy.

vector processing|| Processing of sequences of data in a uniform manner, a common occurrence in 
manipulation of matrices (whose elements are vectors) or other arrays of data. 
This orderly progression of data can capitalize on the use of pipeline 
processing. See also array processing, pipeline.

word An ordered set of characters that are stored, addressed, transmitted and 
operated on as a single entity within a given computer. In the context of 
SPARC workstations, a word is 32 bits.

wrapped number In IEEE arithmetic, a number created from a value that otherwise overflows or 
underflows by adding a fixed offset to its exponent to position the wrapped 
value in the normal number range. Wrapped results are not currently produced 
on SPARC workstations.
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 write-back|| Write policy for maintaining coherency between cache and main memory. 
Write-back (also called copy back or store in) writes only to the block in local 
cache. Writes occur at the speed of cache memory. The modified cache block is 
written to main memory only when the corresponding memory address is 
referenced by another processor. The processor can write within a cache block 
multiple times and writes it to main memory only when referenced. Because 
every write does not go to memory, write-back reduces demands on bus 
bandwidth. See also cache, coherence, write-through.

 write-invalidate|| Maintains cache coherence by reading from local caches until a write occurs. To 
change the value of a variable the writing processor first invalidates all copies 
in other caches. The writing processor is then free to update its local copy until 
another processor asks for the variable. The writing processor issues an 
invalidation signal over the bus and all caches check to see if they have a copy; 
if so, they must invalidate the block containing the word. This scheme allows 
multiple readers, but only a single writer. Write-invalidate use the bus only on 
the first write to invalidate the other copies; subsequent local writes do not 
result in bus traffic, thus reducing demands on bus bandwidth. See also cache, 
cache locality, coherence, false sharing, write-update.

 write-through|| Write policy for maintaining coherency between cache and main memory. 
Write-through (also called store through) writes to main memory as well as to 
the block in local cache. Write-through has the advantage that main memory 
has the most current copy of the data. See also cache, coherence, write-back.

 write-update|| Write-update, also known as write-broadcast, maintains cache coherence by 
immediately updating all copies of a shared variable in all caches. This is a 
form of write-through because all writes go over the bus to update copies of 
shared data. Write-update has the advantage of making new values appear in 
cache sooner, which can reduce latency. See also cache, cache locality, coherence, 
false sharing, write-invalidate.

 XDBus|| The XDBus specification uses low-impedance GTL (Gunning Transceiver 
Logic) transceiver signalling to drive longer backplanes at higher clock rates. 
XDBus supports a large number of CPUs with multiple interleaved memory 
banks for increased throughput. XDBus uses a packet switched protocol with 
split requests and responses for more efficient bus utilization. XDBus also 
defines an interleaving scheme so that one, two or four separate bus data paths 
can be used as a single backplane for increased throughput. XDBus supports 
write-invalidate, write-update and competitive-caching coherency schemes, 
and has several congestion control mechanisms. See also cache, coherence, 
competitive-caching, write-invalidate, write-update.
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