
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Fortran User’s Guide

Sun™ Studio 10

Part No. 819-0492-10
January 2005, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xvii

Typographic Conventions xvii

Shell Prompts xix

Supported Platforms xix

Accessing Sun Studio Software and Man Pages xix

Accessing Compilers and Tools Documentation xxii

Accessing Related Solaris Documentation xxv

Resources for Developers xxv

Contacting Sun Technical Support xxvi

Sending Your Comments xxvi

1. Introduction 1–1

1.1 Standards Conformance 1–1

1.2 Features of the Fortran 95 Compiler 1–2

1.3 Other Fortran Utilities 1–2

1.4 Debugging Utilities 1–3

1.5 Sun Performance Library 1–3

1.6 Interval Arithmetic 1–4

1.7 Man Pages 1–4

1.8 README Files 1–5
 iii

1.9 Command-Line Help 1–6

2. Using Fortran 95 2–1

2.1 A Quick Start 2–1

2.2 Invoking the Compiler 2–3

2.2.1 Compile-Link Sequence 2–3

2.2.2 Command-Line File Name Conventions 2–4

2.2.3 Source Files 2–5

2.2.4 Source File Preprocessors 2–5

2.2.5 Separate Compiling and Linking 2–5

2.2.6 Consistent Compiling and Linking 2–6

2.2.7 Unrecognized Command-Line Arguments 2–6

2.2.8 Fortran 95 Modules 2–7

2.3 Directives 2–7

2.3.1 General Directives 2–8

2.3.2 Parallelization Directives 2–15

2.4 Library Interfaces and system.inc 2–16

2.5 Compiler Usage Tips 2–17

2.5.1 Determining Hardware Platform (SPARC) 2–18

2.5.2 Using Environment Variables 2–18

2.5.3 Memory Size 2–19

3. Fortran Compiler Options 3–1

3.1 Command Syntax 3–1

3.2 Options Syntax 3–2

3.3 Options Summary 3–3

3.3.1 Commonly Used Options 3–8

3.3.2 Macro Flags 3–9

3.3.3 Backward Compatibility and Legacy Options 3–9
iv Fortran User’s Guide • January 2005

3.3.4 Obsolete Option Flags 3–10

3.4 Options Reference 3–11

–a 3–11

-aligncommon[={1|2|4|8|16}] 3–11

–ansi 3–12

-arg=local 3–12

-autopar 3–12

–B{static|dynamic} 3–13

–C 3–13

–c 3–14

–cg89 3–14

–cg92 3–14

–copyargs 3–14

–Dname[=def] 3–15

–dalign 3–16

–dbl_align_all[={yes|no}] 3–16

–depend[={yes|no}] 3–17

-dn 3–17

–dryrun 3–17

–d{y|n} 3–17

–e 3–18

–erroff[={%all|%none|taglist}] 3–18

–errtags[={yes|no}] 3–18

-errwarn[={%all|%none|taglist}] 3–19

–explicitpar 3–19

–ext_names=e 3–20

–F 3–20

–f 3–20
Contents v

-f77[=list] 3–21

–fast 3–22

–fixed 3–24

–flags 3–24

–fnonstd 3–25

–fns[={yes|no}] 3–25

–fpover[={yes|no}] 3–26

-fpp 3–26

-fprecision={single|double|extended} 3–27

–free 3–27

–fround={nearest|tozero|negative|positive} 3–27

–fsimple[={1|2|0}] 3–27

-fstore 3–29

–ftrap=t 3–29

–G 3–30

–g 3–30

–hname 3–30

–help 3–31

–Ipath 3–31

–inline=[%auto][[,][no%]f1,…[no%]fn] 3–32

-iorounding[={compatible|processor-defined}] 3–32

–Kpic 3–33

–KPIC 3–33

–Lpath 3–33

–lx 3–33

–libmil 3–34

–loopinfo 3–34

–Mpath 3–35
vi Fortran User’s Guide • January 2005

-moddir=path 3–36

–mp={%none|sun|cray} 3–36

–mt 3–37

–native 3–37

–noautopar 3–37

–nodepend 3–37

–noexplicitpar 3–37

-nofstore 3–38

–nolib 3–38

–nolibmil 3–38

–noreduction 3–38

–norunpath 3–38

–O[n] 3–39

–O 3–39

–O1 3–39

–O2 3–40

–O3 3–40

–O4 3–40

–O5 3–40

–o name 3–40

–onetrip 3–40

-openmp[={parallel|noopt|none}] 3–41

–PIC 3–42

–p 3–42

–pad[=p] 3–42

–parallel 3–43

–pg 3–44

–pic 3–44
Contents vii

–Qoption pr ls 3–44

–qp 3–45

–R ls 3–45

-r8const 3–45

–reduction 3–46

–S 3–46

–s 3–46

–sb 3–46

–sbfast 3–47

–silent 3–47

–stackvar 3–47

–stop_status[={yes|no}] 3–48

–temp=dir 3–49

–time 3–49

–U 3–49

-Uname 3–49

–u 3–49

–unroll=n 3–50

-use=list 3–50

–V 3–50

–v 3–50

-vax=keywords 3–51

–vpara 3–51

–w[n] 3–51

–Xlist[x] 3–52

-x386 3–53

-x486 3–53

–xa 3–53
viii Fortran User’s Guide • January 2005

-xalias[=keywords] 3–54

–xarch=isa 3–56

-xassume_control[=keywords] 3–61

–xautopar 3–62

–xcache=c 3–62

–xcg89 3–63

–xcg92 3–63

-xcheck=keyword 3–63

–xchip=c 3–64

–xcode=keyword 3–65

–xcommonchk[={yes|no}] 3–67

–xcrossfile[={1|0}] 3–68

-xdebugformat={stabs|dwarf} 3–69

–xdepend 3–69

–xexplicitpar 3–69

–xF 3–69

-xfilebyteorder=options 3–70

-xhasc[={yes|no}] 3–72

–xhelp={readme|flags} 3–73

-xia[={widestneed|strict}] 3–73

–xild{off|on} 3–74

–xinline=list 3–74

-xinterval[={widestneed|strict|no}] 3–74

-xipo[={0|1|2}] 3–74

-xipo_archive[={none|readonly|writeback}] 3–77

-xjobs=n 3–77

-xknown_lib=library_list 3–78

-xlang=f77 3–79
Contents ix

–xlibmil 3–79

–xlibmopt 3–79

–xlic_lib=sunperf 3–80

–xlicinfo 3–80

-xlinkopt[={1|2|0}] 3–80

–xloopinfo 3–81

–xmaxopt[=n] 3–82

-xmemalign[=<a>] 3–82

–xnolib 3–83

–xnolibmil 3–83

–xnolibmopt 3–83

–xOn 3–83

-xopenmp 3–83

–xpad 3–83

-xpagesize=size 3–83

-xpagesize_heap=size 3–84

-xpagesize_stack=size 3–84

–xparallel 3–85

–xpg 3–85

–xpp={fpp|cpp} 3–85

–xprefetch[=a[,a]] 3–85

-xprefetch_auto_type=[no%]indirect_array_access 3–87

-xprefetch_level={1|2|3} 3–88

–xprofile={collect[:name]|use[:name]|tcov} 3–88

-xprofile_ircache[=path] 3–90

-xprofile_pathmap=collect_prefix:use_prefix 3–90

-xrecursive 3–91

–xreduction 3–91
x Fortran User’s Guide • January 2005

–xregs=r 3–91

–xs 3–92

–xsafe=mem 3–92

–xsb 3–93

–xsbfast 3–93

–xspace 3–93

–xtarget=t 3–93

–xtime 3–95

–xtypemap=spec 3–96

–xunroll=n 3–96

–xvector[={yes|no}] 3–96

–ztext 3–97

4. Fortran 95 Features and Differences 4–1

4.1 Source Language Features 4–1

4.1.1 Continuation Line Limits 4–1

4.1.2 Fixed-Form Source Lines 4–1

4.1.3 Source Form Assumed 4–2

4.1.4 Limits and Defaults 4–3

4.2 Data Types 4–3

4.2.1 Boolean Type 4–3

4.2.2 Abbreviated Size Notation for Numeric Data Types 4–6

4.2.3 Size and Alignment of Data Types 4–7

4.3 Cray Pointers 4–9

4.3.1 Syntax 4–9

4.3.2 Purpose of Cray Pointers 4–10

4.3.3 Declaring Cray Pointers and Fortran 95 Pointers 4–10

4.3.4 Features of Cray Pointers 4–10

4.3.5 Restrictions on Cray Pointers 4–11
Contents xi

4.3.6 Restrictions on Cray Pointees 4–11

4.3.7 Usage of Cray Pointers 4–11

4.4 STRUCTURE and UNION (VAX Fortran) 4–12

4.5 Unsigned Integers 4–13

4.5.1 Arithmetic Expressions 4–14

4.5.2 Relational Expressions 4–14

4.5.3 Control Constructs 4–14

4.5.4 Input/Output Constructs 4–14

4.5.5 Intrinsic Functions 4–15

4.6 Fortran 2003 Features 4–15

4.6.1 Interoperability with C Functions 4–15

4.6.2 IEEE Floating-Point Exception Handling 4–16

4.6.3 Command-Line Argument Intrinsics 4–16

4.6.4 PROTECTED Attribute 4–16

4.6.5 Fortran 2003 Asynchronous I/O 4–16

4.6.6 Extended ALLOCATABLE Attribute 4–17

4.6.7 VALUE Attribute 4–17

4.6.8 Fortran 2003 Stream I/O 4–18

4.6.9 Fortran 2003 Formatted I/O Features 4–18

4.7 Additional I/O Extensions 4–19

4.7.1 I/O Error Handling Routines 4–19

4.7.2 Variable Format Expressions 4–19

4.7.3 NAMELIST Input Format 4–20

4.7.4 Binary Unformatted I/O 4–20

4.7.5 Miscellaneous I/O Extensions 4–20

4.8 Directives 4–21

4.8.1 Form of Special f95 Directive Lines 4–21

4.8.2 FIXED and FREE Directives 4–22
xii Fortran User’s Guide • January 2005

4.8.3 Parallelization Directives 4–23

4.9 Module Files 4–23

4.9.1 Searching for Modules 4–25

4.9.2 The -use=list Option Flag 4–25

4.9.3 The fdumpmod Command 4–25

4.10 Intrinsics 4–26

4.11 Forward Compatibility 4–27

4.12 Mixing Languages 4–27

5. FORTRAN 77 Compatibility: Migrating to Fortran 95 5–1

5.1 Compatible f77 Features 5–1

5.2 Incompatibility Issues 5–6

5.3 Linking With f77-Compiled Routines 5–8

5.3.1 Fortran 95 Intrinsics 5–8

5.4 Additional Notes About Migrating to the f95 Compiler 5–9

A. Runtime Error Messages A–1

A.1 Operating System Error Messages A–1

A.2 f95 Runtime I/O Error Messages A–2

B. Features Release History B–1

B.1 Sun Studio 10 Fortran Release: B–1

B.2 Sun Studio 9 Fortran Release: B–2

B.3 Sun Studio 8 Fortran Release: B–4

B.4 Sun ONE Studio 7, Compiler Collection (Forte Developer 7) Release: B–7

C. Legacy –xtarget Platform Expansions C–1

D. Fortran Directives Summary D–1

D.1 General Fortran Directives D–1

D.2 Special Fortran 95 Directives D–3
Contents xiii

D.3 Fortran 95 OpenMP Directives D–3

D.4 Sun Parallelization Directives D–4

D.5 Cray Parallelization Directives D–5

Index Index–1
xiv Fortran User’s Guide • January 2005

Tables

TABLE 1-1 READMEs of Interest 1–5

TABLE 2-1 Filename Suffixes Recognized by the Fortran 95 Compiler 2–4

TABLE 2-2 Summary of General Fortran Directives 2–9

TABLE 3-1 Options Syntax 3–2

TABLE 3-2 Typographic Notations for Options 3–2

TABLE 3-3 Compiler Options Grouped by Functionality 3–3

TABLE 3-4 Commonly Used Options 3–8

TABLE 3-5 Macro Option Flags 3–9

TABLE 3-6 Backward Compatibility Options 3–9

TABLE 3-7 Obsolete f95 Options 3–10

TABLE 3-8 Subnormal REAL and DOUBLE 3–26

TABLE 3-9 –Xlist Suboptions 3–53

TABLE 3-10 -xalias Option Keywords 3–54

TABLE 3-11 –xarch ISA Keywords 3–56

TABLE 3-12 Most General -xarch Options on SPARC Platforms 3–56

TABLE 3-13 -xarch Values for SPARC Platforms 3–57

TABLE 3-14 -xarch Values for x86 Platforms 3–60

TABLE 3-15 –xcache Values 3–62

TABLE 3-16 Common –xchip SPARC Processor Names 3–64

TABLE 3-17 Less Common -xchip SPARC Processor Names 3–64
 xv

TABLE 3-18 Expansions of Commonly Used -xtarget System Platforms 3–94

TABLE 4-1 F95 Source Form Command-line Options 4–2

TABLE 4-2 Size Notation for Numeric Data Types 4–6

TABLE 4-3 Default Data Sizes and Alignments (in Bytes) 4–8

TABLE 4-4 Nonstandard Intrinsics 4–26

TABLE A-1 f95 Runtime I/O Messages A–2

TABLE C-1 Legacy -xtarget Expansions C–1

TABLE D-1 Summary of General Fortran Directives D–1

TABLE D-2 Special Fortran 95 Directives D–3

TABLE D-3 Sun-Style Parallelization Directives Summary D–4

TABLE D-4 Cray Parallelization Directives Summary D–5
xvi Fortran User’s Guide • January 2005

Before You Begin

The Fortran User’s Guide describes the environment and command-line options for
the Sun™ Studio Fortran 95 compiler f95.

This guide is intended for scientists, engineers, and programmers who have a
working knowledge of the Fortran language and wish to learn how to use the
Fortran compiler effectively. Familiarity with the Solaris™ Operating System or
UNIX® in general is also assumed.

See also the companion Fortran Programming Guide for essential information on
input/output, program development, libraries, program analysis and debugging,
numerical accuracy, porting, performance, optimization, parallelization, and
interoperability.

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.
 xvii

■ The symbol ∆ stands for a blank space where a blank is significant:

■ The FORTRAN 77 standard used an older convention, spelling the name
“FORTRAN” capitalized. The current convention is to use lower case:
“Fortran 95”

■ References to online man pages appear with the topic name and section number.
For example, a reference to the library routine GETENV will appear as getenv(3F),
implying that the man command to access this man page would be:
man -s 3F getenv

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos

∆∆36.001

TABLE P-1 Typeface Conventions (Continued)

Typeface Meaning Examples
xviii Fortran User’s Guide • January 2005

Shell Prompts

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon
EM64T. The supported systems for the version of the Solaris Operating System you
are running are available in the hardware compatibility lists at
http://www.sun.com/bigadmin/hcl. These documents cite any implementation
differences between the platform types.

In this document, the term "x86" refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product
families. For supported systems, see the hardware compatibility lists.

Accessing Sun Studio Software and Man
Pages
The compilers and tools and their man pages are not installed into the standard
/usr/bin/ and /usr/share/man directories. To access the compilers and tools,
you must have your PATH environment variable set correctly (see “Accessing the
Compilers and Tools” on page xx). To access the man pages, you must have the your
MANPATH environment variable set correctly (see “Accessing the Man Pages” on
page xxi.).

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
Before You Begin xix

http://www.sun.com/bigadmin/hcl

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note – The information in this section assumes that your Sun Studio compilers and
tools are installed in the /opt directory. If your software is not installed in the /opt
directory, ask your system administrator for the equivalent path on your system.

Accessing the Compilers and Tools
Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

▼ To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable. If you have Forte
Developer software, Sun ONE Studio software or another release of Sun Studio
software installed, add the following path before the paths to those installations.

/opt/SUNWspro/bin

% echo $PATH
xx Fortran User’s Guide • January 2005

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

▼ To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

Accessing the Integrated Development
Environment
The Sun Studio integrated development environment (IDE) provides modules for
creating, editing, building, debugging, and analyzing the performance of a C, C++,
or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the
sunstudio(1) man page.

The correct operation of the IDE depends on the IDE being able to find the core
platform. The sunstudio command looks for the core platform in two locations:

■ The command looks first in the default installation directory,
/opt/netbeans/3.5V.

% man dbx
Before You Begin xxi

■ If the command does not find the core platform in the default directory, it
assumes that the directory that contains the IDE and the directory that contains
the core platform are both installed in or mounted to the same location. For
example, if the path to the directory that contains the IDE is /foo/SUNWspro, the
command looks for the core platform in /foo/netbeans/3.5V.

If the core platform is not installed or mounted to either of the locations where the
sunstudio command looks for it, then each user on a client system must set the
environment variable SPRO_NETBEANS_HOME to the location where the core
platform is installed or mounted (/installation_directory/netbeans/3.5V).

Each user of the IDE also must add /installation_directory/SUNWspro/bin to their
$PATH in front of the path to any other release of Forte Developer software, Sun
ONE Studio software, or Sun Studio software.

The path /installation_directory/netbeans/3.5V/bin should not be added to the
user’s $PATH.

Accessing Compilers and Tools
Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as
well as through Help buttons on many windows and dialogs, in the IDE.
xxii Fortran User’s Guide • January 2005

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with use of or reliance on any such
content, goods, or services available on or through any such sites or resources.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Online help HTML available through the Help menu in the IDE

Release notes HTML at http://docs.sun.com
Before You Begin xxiii

http://docs.sun.com
http://docs.sun.com
http://docs.sun.com

Related Compilers and Tools Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system

Document Title Description

Fortran Programming Guide Describes how to write effective Fortran code on
Solaris environments; input/output, libraries,
performance, debugging, and parallel processing.

Fortran Library Reference Details the Fortran library and intrinsic routines

Fortran User’s Guide Describes the compile-time environment and
command-line options for the f95 compiler. Also
includes guidelines for migrating legacy f77
programs to f95.

C User’s Guide Describes the compile-time environment and
command-line options for the cc compiler.

C++ User’s Guide Describes the compile-time environment and
command-line options for the CC compiler.

OpenMP API User’s Guide Summary of the OpenMP multiprocessing API, with
specifics about the implementation.

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.
xxiv Fortran User’s Guide • January 2005

http://docs.sun.com

Accessing Related Solaris
Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Resources for Developers
Visit http://developers.sun.com/prodtech/cc to find these frequently
updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compilers and tools components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://developers.sun.com.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris operating environment.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris link-editor and runtime
linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.
Before You Begin xxv

http://developers.sun.com
http://developers.sun.com/prodtech/cc

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL:

http://www.sun.com/hwdocs/feedback

Please include the part number (819-0492-10) of your document in the subject line of
your email.
xxvi Fortran User’s Guide • January 2005

http://www.sun.com/service/contacting
http://www.sun.com/hwdocs/feedback

CHAPTER 1

Introduction

The Sun™ Studio Fortran 95 compiler, f95, described here and in the companion
Fortran Programming Guide, is available under the Solaris Operating System on
SPARC®, UltraSPARC® and x86 platforms. The compiler conforms to published
Fortran language standards, and provides many extended features, including
multiprocessor parallelization, sophisticated optimized code compilation, and mixed
C/Fortran language support.

The f95 compiler also provides a Fortran 77 compatibility mode that accepts most
legacy Fortran 77 source codes. There is no longer a separate Fortran 77 compiler.
See Chapter 5 for information on FORTRAN 77 compatibility and migration issues.

1.1 Standards Conformance
■ f95 was designed to be compatible with the ANSI X3.198-1992, ISO/IEC

1539:1991, and ISO/IEC 1539:1997 standards documents.

■ Floating-point arithmetic is based on IEEE standard 754-1985, and international
standard IEC 60559:1989.

■ f95 provides support for the optimization-exploiting features of the SPARC® and
x86 families of processor architectures: UltraSPARC®, SPARC64, AMD64,
Pentium, and Xeon EM64T, on Solaris platforms.

■ In this document, “Standard” means conforming to the versions of the standards
listed above. “Non-standard” or “Extension” refers to features that go beyond
these versions of these standards.

The responsible standards bodies may revise these standards from time to time. The
versions of the applicable standards to which these compilers conform may be
revised or replaced, resulting in features in future releases of the Sun Fortran
compilers that create incompatibilities with earlier releases.
1-1

1.2 Features of the Fortran 95 Compiler
The Sun Studio Fortran 95 compiler provides the following features and extensions:

■ Global program checking across routines for consistency of arguments, commons,
parameters, and the like.

■ Optimized automatic and explicit loop parallelization for multiprocessor systems.

■ VAX/VMS Fortran extensions, including:

■ Structures, records, unions, maps
■ Recursion

■ OpenMP parallelization directives.

■ Cray-style parallelization directives, including TASKCOMMON.

■ Global, peephole, and potential parallelization optimizations produce high
performance applications. Benchmarks show that optimized applications can run
significantly faster when compared to unoptimized code.

■ Common calling conventions on Solaris systems permit routines written in C or
C++ to be combined with Fortran programs.

■ Support for 64-bit enabled Solaris environments on UltraSPARC platforms.

■ Call-by-value using %VAL.

■ Compatibility between Fortran 77 and Fortran 95 programs and object binaries.

■ Interval Arithmetic programming.

■ Some “Fortran 2003” features, including Stream I/O.

See Appendix B for details on new and extended features added to the compiler
with each software release.

1.3 Other Fortran Utilities
The following utilities provide assistance in the development of software programs
in Fortran:

■ Sun Studio Performance Analyzer — In depth performance analysis tool for
single threaded and multi-threaded applications. See analyzer(1).

■ asa — This Solaris utility is a Fortran output filter for printing files that have
Fortran carriage-control characters in column one. Use asa to transform files
formatted with Fortran carriage-control conventions into files formatted
according to UNIX line-printer conventions. See asa(1).
1-2 Fortran User’s Guide • January 2005

■ fdumpmod — A utility to display the names of modules contained in a file or
archive. See fdumpmod(1).

■ fpp — A Fortran source code preprocessor. See fpp(1).

■ fsplit — This utility splits one Fortran file of several routines into several files,
each with one routine per file. Use fsplit on FORTRAN 77 or Fortran 95 source
files. See fsplit(1)

1.4 Debugging Utilities
The following debugging utilities are available:

■ -Xlist — A compiler option to check across routines for consistency of
arguments, COMMON blocks, and so on.

■ dbx—Provides a robust and feature-rich runtime and static debugger, and
includes a performance data collector.

1.5 Sun Performance Library
The Sun Performance Library™ is a library of optimized subroutines and functions
for computational linear algebra and Fourier transforms. It is based on the standard
libraries LAPACK, BLAS1, BLAS2, BLAS3, FFTPACK, VFFTPACK, and LINPACK
generally available through Netlib (www.netlib.org).

Each subprogram in the Sun Performance Library performs the same operation and
has the same interface as the standard library versions, but is generally much faster
and accurate and can be used in a multiprocessing environment.

See the performance_library README file, and the Sun Performance Library
User’s Guide for details. (Man pages for the performance library routines are in
section 3P.)
Chapter 1 Introduction 1-3

www.netlib.org

1.6 Interval Arithmetic
The Fortran 95 compiler provides the compiler flags -xia and -xinterval to
enable new language extensions and generate the appropriate code to implement
interval arithmetic computations. (Interval arithmetic features are only supported on
SPARC/UltraSPARC platforms.)

See the Fortran 95 Interval Arithmetic Programming Reference for details.

1.7 Man Pages
Online manual (man) pages provide immediate documentation about a command,
function, subroutine, or collection of such things. See the Preface for the proper
setting of the MANPATH environment variable for accessing Sun Studio man pages.)

You can display a man page by running the command:

Throughout the Fortran documentation, man page references appear with the topic
name and man section number: f95(1) is accessed with man f95. Other sections,
denoted by ieee_flags(3M) for example, are accessed using the -s option on the
man command:

The Fortran library routines are documented in the man page section 3F.

The following lists man pages of interest to Fortran users:

demo% man topic

demo% man -s 3M ieee_flags

f95(1) The Fortran 95 command-line options

analyzer(1) Performance Analyzer

asa(1) Fortran carriage-control print output post-processor

dbx(1) Command-line interactive debugger

fpp(1) Fortran source code pre-processor

cpp(1) C source code pre-processor
1-4 Fortran User’s Guide • January 2005

1.8 README Files
The READMEs directory contains files that describe new features, software
incompatibilities, bugs, and information that was discovered after the manuals were
printed. The location of this directory depends on where your software was
installed. The path is: /opt/SUNWspro/READMEs/.

The README file for each compiler is easily viewed by the -xhelp=readme
command-line option. For example, the command:

displays the fortran_95 README file directly.

fdumpmod(1) Display contents of a MODULE (.mod) file.

fsplit(1) Pre-processor splits Fortran source routines into single files

ieee_flags(3M) Examine, set, or clear floating-point exception bits

ieee_handler(3M) Handle floating-point exceptions

matherr(3M) Math library error handling routine

ild(1) Incremental link editor for object files

ld(1) Link editor for object files

TABLE 1-1 READMEs of Interest

README File Describes...

fortran_95 new and changed features, known limitations, documentation
errata for this release of the Fortran 95 compiler, f95.

fpp_readme overview of fpp features and capabilities

interval_arithmetic overview of the interval arithmetic features in f95

math_libraries optimized and specialized math libraries available.

profiling_tools using the performance profiling tools, prof, gprof, and
tcov.

runtime_libraries libraries and executables that can be redistributed under the
terms of the End User License.

performance_library overview of the Sun Performance Library

% f95 -xhelp=readme
Chapter 1 Introduction 1-5

1.9 Command-Line Help
You can view very brief descriptions of the f95 command line options by invoking
the compiler’s -help option as shown below:

%f95 -help=flags
Items within [] are optional. Items within < > are variable
parameters.
Bar | indicates choice of literal values.
-someoption[={yes|no}] implies -someoption is equivalent to
-someoption=yes

-a Collect data for tcov basic
block profiling
-aligncommon[=<a>] Align common block elements to the specified
 boundary requirement; <a>={1|2|4|8|16}
-ansi Report non-ANSI extensions.
-autopar Enable automatic loop parallelization
-Bdynamic Allow dynamic linking
-Bstatic Require static linking
-C Enable runtime subscript range checking
-c Compile only; produce .o files but suppress
 linking
...etc.
1-6 Fortran User’s Guide • January 2005

CHAPTER 2

Using Fortran 95

This chapter describes how to use the Fortran 95 compiler.

The principal use of any compiler is to transform a program written in a procedural
language like Fortran into a data file that is executable by the target computer
hardware. As part of its job, the compiler may also automatically invoke a system
linker to generate the executable file.

The Fortran 95 compiler can also be used to:

■ Generate a parallelized executable file for multiple processors (-openmp).

■ Analyze program consistency across source files and subroutines and generate a
report (-Xlist).

■ Transform source files into:

■ Relocatable binary (.o) files, to be linked later into an executable file or static
library (.a) file.

■ A dynamic shared library (.so) file (-G).

■ Link files into an executable file.

■ Compile an executable file with runtime debugging enabled (-g).

■ Compile with runtime statement or procedure level profiling (-pg).

■ Check source code for ANSI standards conformance (-ansi).

2.1 A Quick Start
This section provides a quick overview of how to use the Fortran 95 compiler to
compile and run Fortran programs. A full reference to command-line options
appears in the next chapter.
2-1

The very basic steps to running a Fortran application involve using an editor to
create a Fortran source file with a .f, .for, .f90, .f95, .F, .F90, or .F95 filename
suffix; invoking the compiler to produce an executable; and finally, launching the
program into execution by typing the name of the file:

Example: This program displays a message on the screen:

In this example, f95 compiles source file greetings.f and links the executable
program onto the file, a.out, by default. To launch the program, the name of the
executable file, a.out, is typed at the command prompt.

Traditionally, UNIX compilers write executable output to the default file called
a.out. It can be awkward to have each compilation write to the same file. Moreover,
if such a file already exists, it will be overwritten by the next run of the compiler.
Instead, use the -o compiler option to explicitly specify the name of the executable
output file:

In the preceding example, the -o option tells the compiler to write the executable
code to the file greetings. (By convention, executable files usually are given the
same name as the main source file, but without an extension.)

Alternatively, the default a.out file could be renamed via the mv command after
each compilation. Either way, run the program by typing the name of the executable
file at a shell prompt.

The next sections of this chapter discuss the conventions used by the f95 commands,
compiler source line directives, and other issues concerning the use of these
compiler. The next chapter describes the command-line syntax and all the options in
detail.

demo% cat greetings.f
 PROGRAM GREETINGS
 PRINT *, 'Real programmers write Fortran!'
 END
demo% f95 greetings.f
demo% a.out
 Real programmers write Fortran!
demo%

demo% f95 –o greetings greetings.f
demo% greetings
 Real programmers write Fortran!
demo%
2-2 Fortran User’s Guide • January 2005

2.2 Invoking the Compiler
The syntax of a simple compiler command invoked at a shell prompt is:

f95 [options] files...

Here files… is one or more Fortran source file names ending in .f, .F, .f90, .f95,
.F90, .F95, or .for; options is one or more of the compiler option flags. (Files with
names ending in a .f90 or .f95 extension are “free-format” Fortran 95 source files
recognized only by the f95 compiler.)

In the example below, f95 is used to compile two source files to produce an
executable file named growth with runtime debugging enabled:

Note – You can invoke the Fortran 95 compiler with either the f95 or f90 command.

New: The compiler will also accept source files with the extension .f03 or .F03.
These are treated as equivalent to .f95 and .F95 and could be used as a way to
indicate that a source file contains Fortran 2003 extensions.

Section 2.2.2, “Command-Line File Name Conventions” on page 2-4, describes the
various source file extensions accepted by the compiler.

2.2.1 Compile-Link Sequence
In the previous example, the compiler automatically generates the loader object files,
growth.o and fft.o, and then invokes the system linker to create the executable
program file growth.

After compilation, the object files, growth.o and fft.o, will remain. This
convention permits easy relinking and recompilation of files.

If the compilation fails, you will receive a message for each error. No .o files are
generated for those source files with errors, and no executable program file is
written.

demo% f95 -g -o growth growth.f fft.f95
Chapter 2 Using Fortran 95 2-3

2.2.2 Command-Line File Name Conventions
The suffix extension attached to file names appearing on the command-line
determine how the compiler will process the file. File names with a suffix extension
other than one of those listed below, or without an extension, are passed to the
linker.

Fortran 95 free-format is described in Chapter 4.

TABLE 2-1 Filename Suffixes Recognized by the Fortran 95 Compiler

 Suffix Language Action

.f Fortran 77 or
Fortran 95
fixed-format

Compile Fortran source files, put object files in current
directory; default name of object file is that of the source but
with .o suffix.

.f95

.f90
Fortran 95
free-format

Same action as .f

.f03 Fortran 2003
free-format

Same action as .f

.for Fortran 77 or
Fortran 95

Same action as .f.

.F Fortran 77 or
Fortran 95
fixed-format

Apply the Fortran (or C) preprocessor to the Fortran 77 source
file before compilation.

.F95

.F90
Fortran 95
free-format

Apply the Fortran (or C) preprocessor to the Fortran 95
free-format source file before Fortran compiles it.

.F03 Fortran 2003
free-format

Same as .F95

.s Assembler Assemble source files with the assembler.

.S Assembler Apply the C preprocessor to the assembler source file before
assembling it.

.il Inline
expansion

Process template files for inline expansion. The compiler will
use templates to expand inline calls to selected routines.
(Template files are special assembler files; see the inline(1)
man page.)

.o Object files Pass object files through to the linker.

.a,.s.o,

.so.n
Libraries Pass names of libraries to the linker. .a files are static libraries,

.so and .so.n files are dynamic libraries.
2-4 Fortran User’s Guide • January 2005

2.2.3 Source Files
The Fortran compiler will accept multiple source files on the command line. A single
source file, also called a compilation unit, may contain any number of procedures
(main program, subroutine, function, block data, module, and so on). Applications
may be configured with one source code procedure per file, or by gathering
procedures that work together into single files. The Fortran Programming Guide
describes the advantages and disadvantages of these configurations.

2.2.4 Source File Preprocessors
f95 supports two source file preprocessors, fpp and cpp. Either can be invoked by
the compiler to expand source code “macros” and symbolic definitions prior to
compilation. The compiler will use fpp by default; the -xpp=cpp option changes the
default from fpp to cpp. (See also the discussion of the -Dname option).

fpp is a Fortran-specific source preprocessor. See the fpp(1) man page and the fpp
README for details. It is invoked by default on files with a .F, .F90, F95, or .F03
extension.

The source code for fpp is available from the Netlib web site at

http://www.netlib.org/fortran/

See cpp(1) for information on the standard Unix C language preprocessor. Use of fpp
over cpp is recommended on Fortran source files.

2.2.5 Separate Compiling and Linking
You can compile and link in separate steps. The -c option compiles source files and
generates .o object files, but does not create an executable. Without the -c option the
compiler will invoke the linker. By splitting the compile and link steps in this
manner, a complete recompilation is not needed just to fix one file, as shown in the
following example:

Compile one file and link with others in separate steps:

Be sure that the link step lists all the object files needed to make the complete
program. If any object files are missing from this step, the link will fail with
undefined external reference errors (missing routines).

demo% f95 -c file1.f (Make new object file)
demo% f95 -o prgrm file1.o file2.o file3.o (Make executable file)
Chapter 2 Using Fortran 95 2-5

http://www.netlib.org/fortran/

2.2.6 Consistent Compiling and Linking
Ensuring a consistent choice of compiling and linking options is critical whenever
compilation and linking are done in separate steps. Compiling any part of a program
with some options requires linking with the same options. Also, a number of options
require that all source files be compiled with that option, including the link step.

The option descriptions in Chapter 3 identify such options.

Example: Compiling sbr.f with –fast, compiling a C routine, and then linking in a
separate step:

2.2.7 Unrecognized Command-Line Arguments
Any arguments on the command-line that the compiler does not recognize are
interpreted as being possibly linker options, object program file names, or library
names.

The basic distinctions are:

■ Unrecognized options (with a -) generate warnings.

■ Unrecognized non-options (no -) generate no warnings. However, they are passed
to the linker and if the linker does not recognize them, they generate linker error
messages.

For example:

Note that in the first example, -bit is not recognized by f95 and the option is
passed on to the linker (ld), who tries to interpret it. Because single letter ld options
may be strung together, the linker sees -bit as -b -i -t, which are all legitimate ld
options! This may (or may not) be what the user expects, or intended.

demo% f95 -c -fast sbr.f
demo% cc -c -fast simm.c
demo% f95 -fast sbr.o simm.o link step; passes -fast to the linker

demo% f95 -bit move.f <- -bit is not a recognized f95 option
f95: Warning: Option -bit passed to ld, if ld is invoked, ignored
otherwise
demo% f95 fast move.f <- The user meant to type -fast
ld: fatal: file fast: cannot open file; errno=2
ld: fatal: File processing errors. No output written to a.out
2-6 Fortran User’s Guide • January 2005

In the second example, the user intended to type the f95 option -fast but neglected
the leading dash. The compiler again passes the argument to the linker which, in
turn, interprets it as a file name.

These examples indicate that extreme care should be observed when composing
compiler command lines!

2.2.8 Fortran 95 Modules
f95 automatically creates module information files for each MODULE declaration
encountered in the source files, and searches for modules referenced by a USE
statement. For each module encountered (MODULE module_name), the compiler
generates a corresponding file, module_name.mod, in the current directory. For
example, f95 generates the module information file list.mod for the MODULE list
unit found on file mysrc.f95 .

See the -Mpath and -moddir dirlist option flags for information on how to set the
defaults paths for writing and searching for module information files.

See also the -use compiler option for implicitly invoking MODULE declarations in all
compilation units.

Use the fdumpmod(1) command to display information about the contents of a .mod
module information file.

For detailed information, see Section 4.9, “Module Files” on page 4-23.

2.3 Directives
Use a source code directive, a form of Fortran comment, to pass specific information
to the compiler regarding special optimization or parallelization choices. Compiler
directives are also sometimes called pragmas. The compiler recognize a set of general
directives and parallelization directives. Fortran 95 also processes OpenMP shared
memory multiprocessing directives.

Directives unique to f95 are described in Section 4.8, “Directives” on page 4-21. A
complete summary of all the directives recognized by f95 appears in Appendix D.

Note – Directives are not part of the Fortran standard.
Chapter 2 Using Fortran 95 2-7

2.3.1 General Directives
The various forms of a general Fortran 95 directive are:

The variable keyword identifies the specific directive. Additional arguments or
suboptions may also be allowed. (Some directives require the additional keyword
SUN or SPARC, as shown above.)

A general directive has the following syntax:

■ In column one, any of the comment-indicator characters c, C, !, or *

■ For f95 free-format, ! is the only comment-indicator recognized (!$PRAGMA). The
examples in this chapter assume fixed-format.

■ The next seven characters are $PRAGMA, no blanks, in either uppercase or
lowercase.

■ Directives using the ! comment-indicator character may appear in any position
on the line for free-format source programs.

Observe the following restrictions:

■ After the first eight characters, blanks are ignored, and uppercase and lowercase
are equivalent, as in Fortran text.

■ Because it is a comment, a directive cannot be continued, but you can have many
C$PRAGMA lines, one after the other, as needed.

■ If a comment satisfies the above syntax, it is expected to contain one or more
directives recognized by the compiler; if it does not, a warning is issued.

■ The C preprocessor, cpp, will expand macro symbol definitions within a comment
or directive line; the Fortran preprocessor, fpp, will not expand macros in
comment lines. fpp will recognize legitimate f95 directives and allow limited
substitution outside directive keywords. However, be careful with directives
requiring the keyword SUN. cpp will replace lower-case sun with a predefined
value. Also, if you define a cpp macro SUN, it might interfere with the SUN
directive keyword. A general rule would be to spell those pragmas in mixed case
if the source will be processed by cpp or fpp, as in:

C$PRAGMA Sun UNROLL=3

C$PRAGMA keyword (a [, a] …) [, keyword (a [, a] …)] ,…
C$PRAGMA SUN keyword (a [, a] …) [, keyword (a [, a] …)] ,…
C$PRAGMA SPARC keyword (a [, a] …) [, keyword (a [, a] …)] ,…
2-8 Fortran User’s Guide • January 2005

The Fortran compiler recognize the following general directives:

2.3.1.1 The C Directive

The C() directive specifies that its arguments are external functions. It is equivalent
to an EXTERNAL declaration except that unlike ordinary external names, the Fortran
compiler will not append an underscore to these argument names. See the C-Fortran
Interface chapter in the Fortran Programming Guide for more details.

TABLE 2-2 Summary of General Fortran Directives

C Directive C$PRAGMA C(list)
Declares a list of names of external functions as C language
routines.

IGNORE_TKR Directive C$PRAGMA IGNORE_TKR {name {, name} ...}
The compiler ignores the type, kind, and rank of the specified
dummy argument names appearing in a generic procedure
interface when resolving a specific call.

UNROLL Directive C$PRAGMA SUN UNROLL=n
Advises the compiler that the following loop can be unrolled to a
length n.

WEAK Directive C$PRAGMA WEAK(name[=name2])
Declares name to be a weak symbol, or an alias for name2.

OPT Directive C$PRAGMA SUN OPT=n
Set optimization level for a subprogram to n.

PIPELOOP Directive C$PRAGMA SUN PIPELOOP=n
Assert dependency in the following loop exists between
iterations n apart.

NOMEMDEP Directive C$PRAGMA SUN NOMEMDEP

Assert there are no memory dependencies in the following loop.

PREFETCH Directives C$PRAGMA SPARC_PREFETCH_READ_ONCE(name)
C$PRAGMA SPARC_PREFETCH_READ_MANY(name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE(name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY(name)
Request compiler generate prefetch instructions for references to
name. (Requires -xprefetch option.)

ASSUME Directives C$PRAGMA [BEGIN} ASSUME (expression [,probability])
C$PRAGMA END ASSUME

Make assertions about conditions at certain points in the
program that the compiler can assume are true.
Chapter 2 Using Fortran 95 2-9

The C() directive for a particular function should appear before the first reference to
that function in each subprogram that contains such a reference.

Example - compiling ABC and XYZ for C:

2.3.1.2 The IGNORE_TKR Directive

This directive causes the compiler to ignore the type, kind, and rank of the specified
dummy argument names appearing in a generic procedure interface when resolving
a specific call.

For example, in the procedure interface below, the directive specifies that SRC can be
any data type, but LEN can be either KIND=4 or KIND=8.

 EXTERNAL ABC, XYZ
C$PRAGMA C(ABC, XYZ)

The interface block defines two specific procedures for a generic procedure name.
This example is shown in Fortran 95 free format.

INTERFACE BLCKX

SUBROUTINE BLCK_32(LEN,SRC)
 REAL SRC(1)
!$PRAGMA IGNORE_TKR SRC
 INTEGER (KIND=4) LEN
END SUBROUTINE

SUBROUTINE BLCK_64(LEN,SRC)
 REAL SRC(1)
!$PRAGMA IGNORE_TKR SRC
 INTEGER (KIND=8) LEN
END SUBROUTINE

END INTERFACE

The subroutine call:

INTEGER L
REAL S(100)
CALL BLCKX(L,S)
2-10 Fortran User’s Guide • January 2005

The call to BLCKX will call BLCK_32 when compiled normally, and BLCK_64 when
compiled with -xtypemap=integer:64. The actual type of S does not determine
which routine to call. This greatly simplifies writing generic interfaces for wrappers
that call specific library routines based on argument type, kind, or rank.

Note that dummy arguments for assumed-shape arrays, Fortran pointers, or
allocatable arrays cannot be specified on the directive. If no names are specified, the
directive applies to all dummy arguments to the procedure, except dummy
arguments that are assumed-shape arrays, Fortran pointers, or allocatable arrays.

2.3.1.3 The UNROLL Directive

The UNROLL directive requires that you specify SUN after C$PRAGMA.

The C$PRAGMA SUN UNROLL=n directive instructs the compiler to unroll the following
loop n times during its optimization pass. (The compiler will unroll a loop only
when its analysis regards such unrolling as appropriate.)

n is a positive integer. The choices are:

■ If n=1, the optimizer may not unroll any loops.
■ If n>1, the optimizer may unroll loops n times.

If any loops are actually unrolled, the executable file becomes larger. For further
information, see the Fortran Programming Guide chapter on performance and
optimization.

Example - unrolling loops two times:

2.3.1.4 The WEAK Directive

The WEAK directive defines a symbol to have less precedence than an earlier
definition of the same symbol. This pragma is used mainly in sources files for
building libraries. The linker does not produce an error message if it is unable to
resolve a weak symbol.

WEAK (name1) defines name1 to be a weak symbol. The linker does not produce an
error message if it does not find a definition for name1.

WEAK (name1=name2) defines name1 to be a weak symbol and an alias for name2.

C$PRAGMA SUN UNROLL=2

C$PRAGMA WEAK (name1 [=name2])
Chapter 2 Using Fortran 95 2-11

If your program calls but does not define name1, the linker uses the definition from
the library. However, if your program defines its own version of name1, then the
program’s definition is used and the weak global definition of name1 in the library is
not used. If the program directly calls name2, the definition from library is used; a
duplicate definition of name2 causes an error. See the Solaris Linker and Libraries
Guide for more information.

2.3.1.5 The OPT Directive

The OPT directive requires that you specify SUN after C$PRAGMA.

The OPT directive sets the optimization level for a subprogram, overriding the level
specified on the compilation command line. The directive must appear immediately
before the target subprogram, and only applies to that subprogram. For example:

When the above is compiled with an f95 command that specifies -O4, the directive
will override this level and compile the subroutine at -O2. Unless there is another
directive following this routine, the next subprogram will be compiled at -O4.

The routine must also be compiled with the -xmaxopt[=n] option for the directive to
be recognized. This compiler option specifies a maximum optimization value for
PRAGMA OPT directives: if a PRAGMA OPT specifies an optimization level greater than
the -xmaxopt level, the -xmaxopt level is used.

2.3.1.6 The NOMEMDEP Directive

The NOMEMDEP directive requires that you specify SUN after C$PRAGMA.

This directive must appear immediately before a DO loop. It asserts to the optimizer
that there are no memory-based dependencies within an iteration of the loop to
inhibit parallelization. Requires -parallel or -explicitpar options.

2.3.1.7 The PIPELOOP=n Directive

The PIPELOOP=n directive requires that you specify SUN after C$PRAGMA.

This directive must appear immediately before a DO loop. n is a positive integer
constant, or zero, and asserts to the optimizer a dependence between loop iterations.
A value of zero indicates that the loop has no inter-iteration (loop-carried)

C$PRAGMA SUN OPT=2
 SUBROUTINE smart(a,b,c,d,e)
 ...etc
2-12 Fortran User’s Guide • January 2005

dependencies and can be freely pipelined by the optimizer. A positive n value
implies that the I-th iteration of the loop has a dependency on the (I-n)-th iteration,
and can be pipelined at best for only n iterations at a time.

For more information on optimization, see the Fortran Programming Guide.

2.3.1.8 The PREFETCH Directives

The -xprefetch option flag, Section , “–xprefetch[=a[,a]]” on page 3-85, enables
a set of PREFETCH directives that advise the compiler to generate prefetch
instructions for the specified data element. Prefetch instructions are only available
on UltraSPARC platforms.

See also the C User’s Guide, or the SPARC Architecture Manual, Version 9 for further
information about prefetch instructions.

2.3.1.9 The ASSUME Directives

The ASSUME directive gives the compiler hints about conditions at certain points in
the program. These assertions can help the compiler to guide its optimization
strategies. The programmer can also use these directives to check the validity of the
program during execution. There are two formats for ASSUME.

The syntax of the “point assertion” ASSUME is

C We know that the value of K is such that there can be no
C cross-iteration dependencies (E.g. K>N)
C$PRAGMA SUN PIPELOOP=0
 DO I=1,N
 A(I)=A(I+K) + D(I)
 B(I)=B(I) + A(I)
 END DO

C$PRAGMA SPARC_PREFETCH_READ_ONCE(name)
C$PRAGMA SPARC_PREFETCH_READ_MANY(name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE(name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY(name)

C$PRAGMA ASSUME (expression [,probability])
Chapter 2 Using Fortran 95 2-13

Alternatively, the “range assertion” ASSUME is:

Use the point assertion form to state a condition that the compiler can assume at that
point in the program. Use the range assertion form to state a condition that holds
over the enclosed range of statements. The BEGIN and END pairs in a range assertion
must be properly nested.

The required expression is a boolean expression that can be evaluated at that point in
the program that does not involve user-defined operators or function calls except for
those listed below.

The optional probability value is a real number from 0.0 to 1.0, or an integer 0 or 1,
giving the probability of the expression being true. A probability of 0.0 (or 0) means
never true, and 1.0 (or 1) means always true. If not specified, the expression is
considered to be true with a high probability, but not a certainty. An assertion with a
probability other than exactly 0 or 1 is a non-certain assertion. Similarly, an assertion
with a probability expressed exactly as 0 or 1 is a certain assertion.

For example, if the programmer knows that the length of a DO loop is always greater
than 10,000, giving this hint to the compiler can enable it to produce better code. The
following loop will generally run faster with the ASSUME pragma than without it.

Two intrinsic functions are available for use specifically in the expression clause of
the ASSUME directive. (Note that their names are prefixed by two underscores.)

This list of special intrinsics might expand in future releases.

C$PRAGMA BEGIN ASSUME [expression [, probability)
 block of statements
C$PRAGMA END ASSUME

C$PRAGMA BEGIN ASSUME(__tripcount().GE.10000,1) !! a big loop
 do i = j, n
 a(i) = a(j) + 1
 end do
C$PRAGMA END ASSUME

__branchexp() Use in point assertions placed immediately before a branching
statement with a boolean controlling expression. It yields the same
result as the boolean expression controlling the branching statement.

__tripcount() Yields the trip count of the loop immediately following or enclosed
by the directive. When used in a point assertion, the statement
following the directive must be the first line of a DO. When used in a
range assertion, it applies to the outermost enclosed loop.
2-14 Fortran User’s Guide • January 2005

Use with the -xassume_control compiler option. (See Section ,
“-xassume_control[=keywords]” on page 3-61) For example, when compiled with
-xassume_control=check, the example above would produce a warning if the
trip count ever became less than 10,000.

Compiling with -xassume_control=retrospective will generate a summary
report at program termination of the truth or falsity of all assertions. See the f95
man page for details on -xassume_control.

Another example:

Compiling the above example with -xassume_control=check will issue a runtime
warning should the loop not be taken because the trip count is zero or negative.

2.3.2 Parallelization Directives
Parallelization directives explicitly request the compiler to attempt to parallelize the
DO loop or the region of code that follows the directive. The syntax differs from
general directives. Parallelization directives are only recognized when compilation
options -openmp, -parallel, or -explicitpar are used. Details regarding Fortran
parallelization can be found in the OpenMP API User’s Guide and the Fortran
Programming Guide.

The Fortran compiler supports the OpenMP shared memory parallelization model,
as well as legacy Sun and Cray directives.

Parallelization features of the compiler are not available currently on x86 platforms.

2.3.2.1 OpenMP Parallelization Directives

The Fortran 95 compiler recognizes the OpenMP Fortran shared memory
multiprocessing API as the preferred parallel programming model. The API is
specified by the OpenMP Architecture Review Board (http://www.openmp.org).

You must compile with the command-line option -openmp, to enable OpenMP
directives. (See Section , “-openmp[={parallel|noopt|none}]” on page 3-41.)

For more information about the OpenMP directives accepted by f95, see the
OpenMP API User’s Guide.

C$PRAGMA ASSUME(__tripcount.GT.0,1)
 do i=n0, nx
Chapter 2 Using Fortran 95 2-15

http://www.openmp.org

2.3.2.2 Legacy Sun/Cray Parallelization Directives

Sun style parallelization directives are the default for -parallel and -explicitpar.
Sun directives have the directive sentinel $PAR.

Cray style parallelization directives, enabled by the -mp=cray compiler option, have
the sentinel MIC$. Interpretations of similar directives differ between Sun and Cray
styles. See the chapter on parallelization in the Fortran Programming Guide for details.
See also the OpenMP API User’s Guide for guidelines on converting legacy Sun/Cray
parallelization directives to OpenMP directives.

Sun/Cray parallelization directives have the following syntax:

■ The first character must be in column one.

■ The first character can be any one of c, C, *, or !.

■ The next four characters may be either $PAR (Sun style), or MIC$ (Cray style),
without blanks, and in either upper or lower case.

■ Next, the directive keyword and qualifiers, separated by blanks. The explicit
parallelization directive keywords are:

TASKCOMMON, DOALL, DOSERIAL, and DOSERIAL*

Each parallelization directive has its own set of optional qualifiers that follow the
keyword.

Example: Specifying a loop with a shared variable:

2.4 Library Interfaces and system.inc
The Fortran 95 compiler provides an include file, system.inc, that defines the
interfaces for most non-intrinsic library routines. Declare this include file to insure
that functions you call and their arguments are properly typed, especially when
default data types are changed with -xtypemap.

For example, the following may produce an arithmetic exception because function
getpid() is not explicitly typed:

C$PAR DOALL SHARED(yvalue) Sun style
CMIC$ DOALL SHARED(yvalue) Cray style

 integer(4) mypid
 mypid = getpid()
 print *, mypid
2-16 Fortran User’s Guide • January 2005

The getpid() routine returns an integer value but the compiler assumes it returns a
real value if no explicit type is declared for the function. This value is further
converted to integer, most likely producing a floating-point error.

To correct this you should explicitly type getuid() and functions like it that you
call:

Problems like these can be diagnosed with the -Xlist (global program checking)
option. The Fortran 95 include file ‘system.inc’ provides explicit interface
definitions for these routines.

Including system.inc in program units calling routines in the Fortran library will
automatically define the interfaces for you, and help the compiler diagnose type
mismatches. (See the Fortran Library Reference for more information.)

2.5 Compiler Usage Tips
The next sections suggest a number of ways to use the Fortran 95 compiler
efficiently. A complete compiler options reference follows in the next chapter.

 integer(4) mypid, getpid
 mypid = getpid()
 print *, mypid

 include 'system.inc'
 integer(4) mypid
 mypid = getpid()
 print *, mypid
Chapter 2 Using Fortran 95 2-17

2.5.1 Determining Hardware Platform (SPARC)
Some compiler flags allow the user to tune code generation to a specific set of
hardware platform options. The utility command fpversion displays the SPARC
hardware platform specifications for the native processor:

The values printed depend on the load on the system at the moment fpversion is
called.

See fpversion(1) and the Numerical Computation Guide for details. fpversion is not
available on x86 platforms.

2.5.2 Using Environment Variables
You can specify options by setting the FFLAGS or OPTIONS variables.

Either FFLAGS or OPTIONS can be used explicitly in the command line. When you are
using the implicit compilation rules of make, FFLAGS is used automatically by the
make program.

Example: Set FFLAGS: (C Shell)

Example: Use FFLAGS explicitly:

When using make, if the FFLAGS variable is set as above and the makefile’s
compilation rules are implicit, that is, there is no explicit compiler command line, then
invoking make will result in a compilation equivalent to:

demo% fpversion
A SPARC-based CPU is available.
 Kernel says CPU’s clock rate is 750.0 MHz.
 Kernel says main memory’s clock rate is 150.0 MHz.

 Sun-4 floating-point controller version 0 found.
 An UltraSPARC chip is available.

 Use "-xtarget=ultra3" code-generation option.

 Hostid = hardware_host_id.

demo% setenv FFLAGS '-fast -Xlist'

demo% f95 $FFLAGS any.f
2-18 Fortran User’s Guide • January 2005

f95 -fast -Xlist files…

make is a very powerful program development tool that can easily be used with all
Sun compilers. See the make(1) man page and the Program Development chapter in the
Fortran Programming Guide.

Note – Default implicit rules assumed by make may not recognize files with
extensions .f95 and .mod (Fortran 95 Module files). See the Fortran Programming
Guide and the Fortran 95 readme file for details.

2.5.3 Memory Size
A compilation may need to use a lot of memory. This will depend on the
optimization level chosen and the size and complexity of the files being compiled.
On SPARC platforms, if the optimizer runs out of memory, it tries to recover by
retrying the current procedure at a lower level of optimization and resumes
subsequent routines at the original level specified in the -On option on the command
line.

A processor running the compiler should have at least 64 megabytes of memory; 256
megabytes are recommended. Enough swap space should also be allocated. 200
megabytes is the minimum; 300 megabytes is recommended.

Memory usage depends on the size of each procedure, the level of optimization, the
limits set for virtual memory, the size of the disk swap file, and various other
parameters.

Compiling a single source file containing many routines could cause the compiler to
run out of memory or swap space.

If the compiler runs out of memory, try reducing the level of optimization, or split
multiple-routine source files into files with one routine per file, using fsplit(1).

2.5.3.1 Swap Space Limits

The command, swap -s, displays available swap space. See swap(1M).
Chapter 2 Using Fortran 95 2-19

Example: Use the swap command:

To determine the actual real memory:

2.5.3.2 Increasing Swap Space

Use mkfile(1M) and swap(1M) to increase the size of the swap space on a
workstation. You must become superuser to do this. mkfile creates a file of a
specific size, and swap -a adds the file to the system swap space:

2.5.3.3 Control of Virtual Memory

Compiling very large routines (thousands of lines of code in a single procedure) at
optimization level -O3 or higher may require additional memory that could degrade
compile-time performance. You can control this by limiting the amount of virtual
memory available to a single process.

In a sh shell, use the ulimit command. See sh(1).

Example: Limit virtual memory to 16 Mbytes:

In a csh shell, use the limit command. See csh(1).

Example: Limit virtual memory to 16 Mbytes:

demo% swap -s
total: 40236k bytes allocated + 7280k reserved = 47516k used, 1058708k
available

demo% /usr/sbin/dmesg | grep mem
mem = 655360K (0x28000000)
avail mem = 602476544

demo# mkfile -v 90m /home/swapfile
/home/swapfile 94317840 bytes
demo# /usr/sbin/swap -a /home/swapfile

demo$ ulimit -d 16000

demo% limit datasize 16M
2-20 Fortran User’s Guide • January 2005

Each of these command lines causes the optimizer to try to recover at 16 Mbytes of
data space.

This limit cannot be greater than the system’s total available swap space and, in
practice, must be small enough to permit normal use of the system while a large
compilation is in progress. Be sure that no compilation consumes more than half the
space.

Example: With 32 Mbytes of swap space, use the following commands:

In a sh shell:

In a csh shell:

The best setting depends on the degree of optimization requested and the amount of
real and virtual memory available.

In 64-bit Solaris environments, the soft limit for the size of an application data
segment is 2 Gbytes. If your application needs to allocate more space, use the shell’s
limit or ulimit command to remove the limit.

For csh use:

For sh or ksh, use:

See the Solaris 64-bit Developer’s Guide for more information.

demo$ ulimit -d 1600

demo% limit datasize 16M

demo% limit datasize unlimited

demo$ ulimit -d unlimited
Chapter 2 Using Fortran 95 2-21

2-22 Fortran User’s Guide • January 2005

CHAPTER 3

Fortran Compiler Options

This chapter details the command–line options for the f95 compiler.

■ A description of the syntax used for compiler option flags starts at Section 3.1,
“Command Syntax” on page 3-1.

■ Summaries of options arranged by functionality starts at Section 3.3, “Options
Summary” on page 3-3.

■ The complete reference detailing each compiler option flag starts at Section 3.4,
“Options Reference” on page 3-11.

3.1 Command Syntax
The general syntax of the compiler command line is:

Items in square brackets indicate optional parameters. The brackets are not part of
the command. The options are a list of option keywords prefixed by dash (–). Some
keyword options take the next item in the list as an argument. The list_of_files is a list
of source, object, or library file names separated by blanks. Also, there are some
options that must appear after the list of source files, and these could include
additional lists of files (for example, -B, -l, and -L).

f95 [options] list_of_files additional_options
3-1

3.2 Options Syntax
Typical compiler option formats are:

The following typographical conventions are used when describing the individual
options:

Brackets, pipe, and ellipsis are meta characters used in the descriptions of the options
and are not part of the options themselves.

Some general guidelines for options are:

■ –lx is the option to link with library libx.a. It is always safer to put –lx after
the list of file names to insure the order libraries are searched.

TABLE 3-1 Options Syntax

Syntax Format Example

–flag –g

–flagvalue –Dnostep

–flag=value –xunroll=4

–flag value –o outfile

TABLE 3-2 Typographic Notations for Options

Notation Meaning Example: Text/Instance

 [] Square brackets contain arguments that are
optional.

 –O[n]
 –O4, –O

 { } Curly brackets (braces) contain a set of choices
for a required option.

 –d{y|n}

 –dy

 | The “pipe” or “bar” symbol separates
arguments, only one of which may be chosen.

 –B{dynamic|static}

 –Bstatic

 : The colon, like the comma, is sometimes used
to separate arguments.

 –Rdir[:dir]
 –R/local/libs:/U/a

 … The ellipsis indicates omission in a series. –xinline=f1[,…fn]
 –xinline=alpha,dos
3-2 Fortran User’s Guide • January 2005

■ In general, processing of the compiler options is from left to right, allowing
selective overriding of macro options (options that include other options). This
rule does not apply to linker options. However, some options, –I, –L, and –R for
example, accumulate values rather than override previous values when repeated
on the same command line.

■ In an optional list of choices, such as -xhasc[={yes|no}], the first choice listed is
the value assumed when the option flag appears on the command line without a
value. For example, -xhasc is equivalent to -xhasc=yes.

■ Source files, object files, and libraries are compiled and linked in the order in
which they appear on the command line.

3.3 Options Summary
In this section, the compiler options are grouped by function to provide an easy
reference. The details will be found on the pages in the following sections, as
indicated.

Note that not all options are available on both SPARC and x86 platforms. Check the
detailed reference section for availability.

The following table summarizes the f95 compiler options by functionality. The table
does not include obsolete and legacy option flags. Some flags serve more than one
purpose and appear more than once.

TABLE 3-3 Compiler Options Grouped by Functionality

Function Option Flag

Compilation Mode:

Compile only; do not produce an executable file -c

Show commands built by the driver but do not
compile

-dryrun

Support Fortran 77 extensions and compatibility -f77

Specify path for writing compiled .mod Module files -moddir=path

Specify name of object, library, or executable file to
write

-o filename

Compile and generate only assembly code -S

Strip symbol table from executable -s

Suppress compiler messages, except error messages -silent

Define path to directory for temporary files -temp=path
Chapter 3 Fortran Compiler Options 3-3

Show elapsed time for each compilation phase -time

Show version number of compiler and its phases -V

Verbose messages -v

Specify non-standard aliasing situations -xalias=list

Compile with multiple processors -xjobs=n

Compiled Code:

Add/suppress trailing underscores on external
names

-ext_names=x

Inline specified user functions -inline=list

Compile position independent code -KPIC/-kpic

Inline certain math library routines -libmil

STOP returns integer status value to shell -stop_status[=yn]

Specify code address space -xcode=x

Enable UltraSPARC prefetch instructions -xprefetch[=x]

Specify use of optional registers -xregs=x

Specify default data mappings -xtypemap=x

Data Alignment:

Specify alignment of data in COMMON blocks -aligncommon[=n]

Force COMMON block data alignment to allow
double word fetch/store

-dalign

Force alignment of all data on 8-byte boundaries -dbl_align_all

Align COMMON block data on 8-byte boundaries -f

Specify memory alignment and behavior -xmemalign[=ab]

Debugging:

Enable runtime subscript range checking -C

Compile for debugging with dbx -g

Compile for browsing with source browser -sb, -sbfast

Flag use of undeclared variables -u

Check C$PRAGMA ASSUME assertions -xassume_control=check

Check for stack overflow at runtime -xcheck=stkovf

Enable runtime task common check -xcommonchk

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
3-4 Fortran User’s Guide • January 2005

Compile for Performance Analyzer -xF

Generate cross-reference listings -Xlistx

Enable debugging without object files -xs

Diagnostics:

Flag use of non-standard extensions -ansi

Suppress specific error messages -erroff=list

Display error tag names with error messages -errtags

Show summary of compiler options -flags, -help

Show version number of the compiler and its phases -V

Verbose messages -v

Verbose parallelization messages -vpara

Show/suppress warning messages -wn

Display compiler README file -xhelp=readme

Licensing:

Show license server information -xlicinfo

Linking and Libraries:

Allow/require dynamic/static libraries -Bx

Allow only dynamic/static library linking -dy, -dn

Build a dynamic (shared object) library -G

Assign name to dynamic library -hname

Add directory to library search path -Lpath

Link with library libname.a or libname.so -lname

Build runtime library search path into executable -Rpath

Disable use of incremental linker, ild -xildoff

Link with optimized math library -xlibmopt

Link with Sun Performance Library -xlic_lib=sunperf

Link editor option -zx

Generate pure libraries with no relocations -ztext

Numerics and Floating-Point:

Use non-standard floating-point preferences -fnonstd

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
Chapter 3 Fortran Compiler Options 3-5

Select SPARC non-standard floating point -fns

Enable runtime floating-point overflow during input -fpover

Select IEEE floating-point rounding mode -fpround=r

Select floating-point optimization level -fsimple=n

Select floating-point trapping mode -ftrap=t

Specify rounding method for formatted
input/output

-iorounding=mode

Promote single precision constants to double
precision

-r8const

Enable interval arithmetic and set the appropriate
floating-point environment (includes -xinterval)

-xia[=e]

Enable interval arithmetic extensions -xinterval[=e]

Optimization and Performance:

Analyze loops for data dependencies -depend

Optimize using a selection of options -fast

Specify optimization level -On

Pad data layout for efficient use of cache -pad[=p]

Allocate local variables on the memory stack -stackvar

Enable loop unrolling -unroll[=m]

Enable optimization across source files -xcrossfile[=n]

Invoke interprocedural optimizations pass -xipo[=n]

Set highest optimization level for #pragma OPT -xmaxopt[=n]

Enable/adjust compiler generated prefetch
instructions

-xprefetch=list

Control automatic generation of prefetch
instructions

-xprefetch_level=n

Enable generation or use of performance profiling
data

-xprofile=p

Assert that no memory-based traps will occur -xsafe=mem

Do no optimizations that increase code size -xspace

Generate calls to vector library functions
automatically

-xvector[=yn]

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
3-6 Fortran User’s Guide • January 2005

Parallelization:

Enable automatic parallelization of DO loops -autopar

Enable parallelization of loops explicitly marked
with directives

-explicitpar

Show loop parallelization information -loopinfo

Specify Cray-style parallelization directives -mp=CRAY

Compile for hand-coded multithreaded
programming

-mt

Accept OpenMP API directives and set appropriate
environment

-openmp[=keyword]

Parallelize loops with -autopar -explicitpar
-depend combination

-parallel

Recognize reduction operations in loops with
automatic parallelization

-reduction

Verbose parallelization messages -vpara

Source Code:

Define preprocessor symbol -Dname[=val]

Undefine preprocessor symbol -Uname

Accept extended (132 character) source lines -e

Apply preprocessor to .F and/or .F90 and .F95
files but do not compile

-F

Accept Fortran 95 fixed-format input -fixed

Preprocess all source files with the fpp preprocessor -fpp

Accept Fortran 95 free-format input -free

Add directory to include file search path -Ipath

Add directory to module search path -Mpath

Recognize upper and lower case as distinct -U

Tread hollerith as character in actual arguments -xhasc={yes|no}

Select preprocessor, cpp or fpp, to use -xpp[={fpp|cpp}]

Allow recursive subprogram calls -xrecursive

Target Platform:

Specify target platform instruction set for the
optimizer

-xarch=a

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
Chapter 3 Fortran Compiler Options 3-7

3.3.1 Commonly Used Options
The compiler has many features that are selectable by optional command–line
parameters. The short list below of commonly used options is a good place to start.

Specify target cache properties for optimizer -xcache=a

Specify target processor for the optimizer -xchip=a

Specify target platform for the optimizer -xtarget=a

TABLE 3-4 Commonly Used Options

Action Option

Debug—global program checking across routines for consistency of
arguments, commons, and so on.

–Xlist

Debug—produce additional symbol table information to enable the
dbx and debugging.

–g

Performance—invoke the optimizer to produce faster running
programs.

–O[n]

Performance—Produce efficient compilation and run times for the
native platform, using a set of predetermined options.

–fast

Dynamic (–Bdynamic) or static (–Bstatic) library binding. –Bx

Compile only—Suppress linking; make a .o file for each source file. –c

Output file—Name the executable output file nm instead of a.out. –o nm

Source code—Compile fixed format Fortran source code. -fixed

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
3-8 Fortran User’s Guide • January 2005

3.3.2 Macro Flags
Some option flags are macros that expand into a specific set of other flags. These are
provided as a convenient way to specify a number of options that are usually
expressed together to select a certain feature.

Settings that follow the macro flag on the command line override the expansion of
the macro. For example, to use -fast but with an optimization level of -O3, the
-O3 must come after -fast on the command line.

3.3.3 Backward Compatibility and Legacy Options
The following options are provided for backward compatibility with earlier compiler
releases, and certain Fortran legacy capabilities.

TABLE 3-5 Macro Option Flags

Option Flag Expansion

-dalign -xmemalign=8s -aligncommon=16

-f -aligncommon=16

-fast -xO5 -libmil -fsimple=2 -dalign -xlibmopt -depend
-fns -ftrap=common -pad=local -xvector=yes
-xprefetch=yes (SPARC) -xprefetch_level=2 (SPARC)
-nofstore (x86)

-fnonstd -fns -ftrap=common

-parallel -autopar -explicitpar -depend

-xia=widestneed -xinterval=widestneed -ftrap=%none -fns=no
-fsimple=0

-xia=strict -xinterval=strict -ftrap=%none -fns=no -fsimple=0

-xtarget -xarch=a -xcache=b -xchip=c

TABLE 3-6 Backward Compatibility Options

Action Option

Allow assignment to constant arguments. –copyargs

Treat hollerith constant as character or typeless in call
argument lists.

-xhasc[={yes|no}]

Support Fortran 77 extensions and conventions -f77

Nonstandard arithmetic—allow nonstandard arithmetic. –fnonstd
Chapter 3 Fortran Compiler Options 3-9

Use of these option flags is not recommended for producing portable Fortran 95
programs.

3.3.4 Obsolete Option Flags
The following options are considered obsolete and should not be used. They might
be removed from later releases of the compiler.

Optimize performance for the host system. –native

DO loops—use one trip DO loops. –onetrip

Allow legacy aliasing situations -xalias=keywords

TABLE 3-7 Obsolete f95 Options

Option Flag Equivalent

-a -xprofile=tcov

-cg89 -xtarget=ss2

-cg92 -xtarget=ss1000

-native -xtarget=native

-noqueue License queueing. No longer needed.

-p Profiling. Use -pg or the Performance Analyzer

-pic -xcode=pic13

-PIC -xcode=pic32

-sb No longer needed.

-sbfast No longer needed.

-silent No longer needed.

TABLE 3-6 Backward Compatibility Options (Continued)

Action Option
3-10 Fortran User’s Guide • January 2005

3.4 Options Reference
This section describes all of the f95 compiler command–line option flags, including
various risks, restrictions, caveats, interactions, examples, and other details.

Unless indicated otherwise, each option is valid on both SPARC and x86 platforms.
Option flags valid only on SPARC platforms are marked (SPARC). Option flags
valid only on x86 platforms are marked (x86).

Option flags marked (Obsolete) are obsolete and should not be used. In many cases
they have been superceded by other options or flags that should be used instead.

–a

(Obsolete) Profile by basic block using tcov, old style.

This is the old style of basic block profiling for tcov. See –xprofile=tcov for
information on the new style of profiling and the tcov(1) man page for more details.
Also see the manual, Program Performance Analysis Tools.

-aligncommon[={1|2|4|8|16}]

Specify the alignment of data in common blocks and standard numeric sequence
types.

The value indicates the maximum alignment (in bytes) for data elements within
common blocks and standard numeric sequence types.

Note – A standard numeric sequence type is a derived type containing a SEQUENCE
statement and only default component data types (INTEGER, REAL,
DOUBLEPRECISION, COMPLEX without KIND= or *size). Any other type, such as
REAL*8, will make the type non-standard.

For example, -aligncommon=4 would align data elements with natural alignments
of 4 bytes or more on 4-byte boundaries.

This option does not affect data with natural alignment smaller than the specified
size.

Without -aligncommon, the compiler aligns elements in common blocks and
numeric sequence types on (at most) 4-byte boundaries.

Specifying -aligncommon without a value defaults to 1 - all common block and
numeric sequence type elements align on byte boundaries (no padding between
elements).
Chapter 3 Fortran Compiler Options 3-11

-aligncommon=16 reverts to -aligncommon=8 on platforms that are not 64-bit
enabled (platforms other than v9, v9a, or v9b).

–ansi

Identify many nonstandard extensions.

Warning messages are issued for any uses of non–standard Fortran 95 extensions in
the source code.

-arg=local

Preserve actual arguments over ENTRY statements.

When you compile a subprogram with alternate entry points with this option, f95
uses copy/restore to preserve the association of dummy and actual arguments.

This option is provided for compatibility with legacy Fortran 77 programs. Code
that relies on this option is non-standard.

-autopar

Enable automatic loop parallelization.

Finds and parallelizes appropriate loops for running in parallel on multiple
processors. Analyzes loops for inter–iteration data dependencies and loop
restructuring. If the optimization level is not specified –O3 or higher, it will
automatically be raised to –O3.

Also specify the –stackvar option when using any of the parallelization options,
including –autopar.

Avoid -autopar if the program already contains explicit calls to the libthread
threads library. See note in Section , “–mt” on page 3-37.

The -autopar option is not appropriate on a single–processor system, and the
compiled code will generally run slower.

To run a parallelized program in a multithreaded environment, you must set the
PARALLEL (or OMP_NUM_THREADS) environment variable prior to execution. This
tells the runtime system the maximum number of threads the program can create.
The default is 1. In general, set the PARALLEL or OMP_NUM_THREADS variable to the
available number of processors on the target platform.

If you use –autopar and compile and link in one step, the multithreading library
and the thread–safe Fortran runtime library will automatically be linked. If you use
-autopar and compile and link in separate steps, then you must also link with
-autopar to insure linking the appropriate libraries.
3-12 Fortran User’s Guide • January 2005

The -reduction option may also be useful with –autopar. Other parallelization
options are –parallel and –explicitpar.

Refer to the Fortran Programming Guide for more information on parallelization.

–B{static|dynamic}

Prefer dynamic or require static library linking.

No space is allowed between –B and dynamic or static. The default, without –B
specified, is –Bdynamic.

■ –Bdynamic: Prefer dynamic linking (try for shared libraries).
■ –Bstatic: Require static linking (no shared libraries).

Also note:

■ If you specify static, but the linker finds only a dynamic library, then the
library is not linked with a warning that the “library was not found.”

■ If you specify dynamic, but the linker finds only a static version, then that library
is linked, with no warning.

You can toggle –Bstatic and –Bdynamic on the command line. That is, you can
link some libraries statically and some dynamically by specifying -Bstatic and
-Bdynamic any number of times on the command line, as follows:

These are loader and linker options. Compiling and linking in separate steps with
-Bx on the compile command will require it in the link step as well.

You cannot specify both -Bdynamic and -dn on the command line because -dn
disables linking of dynamic libraries.

In a 64-bit Solaris environment, many system libraries are available only as shared
dynamic libraries. These include libm.so and libc.so (libm.a and libc.a are
not provided). This means that –Bstatic and –dn may cause linking errors in
64-bit Solaris environments. Applications must link with the dynamic libraries in
these cases.

See the Fortran Programming Guide for more information on static and dynamic
libraries.

–C

Check array references for out of range subscripts and conformance at runtime.

f95 prog.f -Bdynamic -lwells -Bstatic -lsurface
Chapter 3 Fortran Compiler Options 3-13

Subscripting arrays beyond their declared sizes may result in unexpected results,
including segmentation faults. The –C option checks for possible array subscript
violations in the source code and during execution. -C also adds runtime checks for
array conformance in array syntax expressions

Specifying –C may make the executable file larger.

If the –C option is used, array subscript violations are treated as an error. If an array
subscript range violation is detected in the source code during compilation, it is
treated as a compilation error.

If an array subscript violation can only be determined at runtime, the compiler
generates range–checking code into the executable program. This may cause an
increase in execution time. As a result, it is appropriate to enable full array subscript
checking while developing and debugging a program, then recompiling the final
production executable without subscript checking.

–c

Compile only; produce object .o files, but suppress linking.

Compile a .o file for each source file. If only a single source file is being compiled,
the –o option can be used to specify the name of the .o file written.

–cg89

(Obsolete, SPARC) Compile for generic SPARC architecture.

This option is a macro for: –xarch=v7 –xchip=old –xcache=64/32/1 which is
equivalent to –xtarget=ss2.

–cg92

(Obsolete, SPARC) Compile for SPARC V8 architecture.

This option is a macro for:
–xarch=v8 –xchip=super –xcache=16/32/4:1024/32/1 which is equivalent to
–xtarget=ss1000.

–copyargs

Allow assignment to constant arguments.

Allow a subprogram to change a dummy argument that is a constant. This option is
provided only to allow legacy code to compile and execute without a runtime error.

■ Without –copyargs, if you pass a constant argument to a subroutine, and then
within the subroutine try to change that constant, the run aborts.
3-14 Fortran User’s Guide • January 2005

■ With –copyargs, if you pass a constant argument to a subroutine, and then
within the subroutine change that constant, the run does not necessarily abort.

Code that aborts unless compiled with –copyargs is, of course, not Fortran
standard compliant. Also, such code is often unpredictable.

–Dname[=def]

Define symbol name for the preprocessor.

This option only applies to .F, .F90, .F95, and .F03 source files.

–Dname=def Define name to have value def

–Dname Define name to be 1

On the command line, this option will define name as if:

#define name[=def]

had appears in the source file. If no =def specified, the name name is defined as the
value 1. The macro symbol name is passed on to the preprocessor fpp (or cpp — see
the –xpp option) for expansion.

The predefined macro symbols have two leading underscores. The Fortran syntax
may not support the actual values of these macros—they should appear only in fpp
or cpp preprocessor directives. (Note the two leading underscores.)

■ The product version is predefined (in hex) in _ _SUNPRO_F90, and
_ _SUNPRO_F95.
For example _ _SUNPRO_F95 is 0x810 for the Sun Studio 10 release.

■ The following macros are predefined on appropriate systems:

_ _sparc, _ _unix, _ _sun, _ _SVR4, __i386 ,
_ _SunOS_5_6, _ _SunOS_5_7, _ _SunOS_5_8, _ _SunOS_5_9, _ _SunOS_5_10

For instance, the value _ _sparc is defined on SPARC systems.

■ The following are predefined with no underscores, but they might be deleted in a
future release: sparc, unix, sun

■ On SPARC V9 systems, the _ _sparcv9 macro is also defined.

■ On 64-bit x86 systems, the macros __amd64 and __x86_64 are defined.

Compile with the verbose option (-v) to see the definitions created by the compiler.
Chapter 3 Fortran Compiler Options 3-15

You can use these values in such preprocessor conditionals as the following:

#ifdef _ _sparc

f95 uses the fpp(1) preprocessor by default. Like the C preprocessor cpp(1), fpp
expands source code macros and enables conditional compilation of code. Unlike
cpp, fpp understands Fortran syntax, and is preferred as a Fortran preprocessor.
Use the –xpp=cpp flag to force the compiler to specifically use cpp rather than fpp.

–dalign

Align COMMON blocks and standard numerical sequence types, and generate faster
multi-word load/stores.

This flag changes the data layout in COMMON blocks, numeric sequence types, and
EQUIVALENCE classes, and enables the compiler to generate faster multi-word
load/stores for that data.

The data layout effect is that of the -f flag: double- and quad-precision data in
COMMON blocks and EQUIVALENCE classes are laid out in memory along their
“natural” alignment, which is on 8-byte boundaries (or on 16-byte boundaries for
quad-precision when compiling for 64-bit environments with -xarch=v9 or v9a).
The default alignment of data in COMMON blocks is on 4-byte boundaries. The
compiler is also allowed to assume natural alignment and generate faster
multi-word load/stores to reference the data.

Note – -dalign may result in nonstandard alignment of data, which could cause
problems with variables in EQUIVALENCE or COMMON and may render the program
non-portable if –dalign is required.

-dalign is a macro equivalent to:

-xmemalign=8s -aligncommon=16 on SPARC platforms

-aligncommon=8 on 32-bit x86 platforms

-aligncommon=16 on 64-bit x86 platforms.

If you compile one subprogram with –dalign, compile all subprograms of the
program with –dalign. This option is included in the –fast option.

Note that because -dalign invokes -aligncommon, standard numeric sequence
types are also affected by this option. See Section ,
“-aligncommon[={1|2|4|8|16}]” on page 3-11

–dbl_align_all[={yes|no}]

Force alignment of data on 8–byte boundaries
3-16 Fortran User’s Guide • January 2005

The value is either yes or no. If yes, all variables will be aligned on 8–byte
boundaries. Default is –dbl_align_all=no.

When compiling for 64-bit environments with -xarch=v9 or v9a, this flag will align
quad-precision data on 16-byte boundaries.

This flag does not alter the layout of data in COMMON blocks or user-defined
structures.

Use with –dalign to enable added efficiency with multi-word load/stores.

If used, all routines must be compiled with this flag.

–depend[={yes|no}]

Analyze loops for data dependencies and do loop restructuring.

Dependence analysis is enabled with -depend or -depend=yes. The analysis is
disabled with -depend=no, which is the compiler default.

This option will raise the optimization level to O3 if no optimization level is
specified, or if it is specified less than O3. –depend is also included with –fast,
-autopar and -parallel. Note also that specifying an optimization level -O3 or
higher automatically adds -depend. (See the Fortran Programming Guide.)

-dn

Disallow dynamic libraries. See Section , “–d{y|n}” on page 3-17.

–dryrun

Show commands built by the f95 command-line driver, but do not compile.

Useful when debugging, this option displays the commands and suboptions the
compiler will invoke to perform the compilation.

–d{y|n}

Allow or disallow dynamic libraries for the entire executable.

■ –dy: Yes, allow dynamic/shared libraries.
■ –dn: No, do not allow dynamic/shared libraries.

The default, if not specified, is –dy.

Unlike –Bx, this option applies to the whole executable and need appear only once on
the command line.

–dy|–dn are loader and linker options. If you compile and link in separate steps
with these options, then you need the same option in the link step.
Chapter 3 Fortran Compiler Options 3-17

In a 64-bit Solaris environment, many system libraries are not available only as
shared dynamic libraries. These include libm.so and libc.so (libm.a and
libc.a are not provided). This means that –dn and –Bstatic may cause linking
errors in 64-bit Solaris environments and 32-bit x86 Solaris platforms, and all 32-bit
Solaris platforms starting with the Solaris 10 release. Applications must link with the
dynamic libraries in these cases.

–e

Accept extended length input source line.

Extended source lines can be up to 132 characters long. The compiler pads on the
right with trailing blanks to column 132. If you use continuation lines while
compiling with –e, then do not split character constants across lines, otherwise,
unnecessary blanks may be inserted in the constants.

–erroff[={%all|%none|taglist}]

Suppress warning messages listed by tag name.

Suppress the display of warning messages specified in the comma–separated list of
tag names taglist. If %all, suppress all warnings, which is equivalent to the –w
option. If %none, no warnings are suppressed.

Example:

f95 -erroff=WDECL_LOCAL_NOTUSED ink.f

Use the –errtags option to see the tag names associated with warning messages.

–errtags[={yes|no}]

Display the message tag with each warning message.

With-errtags=yes, the compiler’s internal error tag name will appear along with
warning messages. The default is not to display the tag (-errtags=no).

-errtags alone stands for -errtags=yes.

demo% f95 –errtags ink.f
ink.f:
 MAIN:
"ink.f", line 11: Warning: local variable "i" never used
(WDECL_LOCAL_NOTUSED) <– The warning message’s tag name
3-18 Fortran User’s Guide • January 2005

-errwarn[={%all|%none|taglist}]

Treat warning messages as errors.

The taglist specifies a list of comma-separated tag names of warning messages that
should be treated as errors. If %all, treat all warnings as errors. If %none, no
warnings are treated as errors.

See also -errtags.

–explicitpar

Parallelize loops explicitly marked by Sun or Cray directives.

The compiler will generate parallel code even if there are data dependencies in the
DO loop that would cause the loop to generate incorrect results when run in parallel.
With explicit parallelization, it is the user’s responsibility to correctly analyze loops
for data dependency problems before marking them with parallelization directives.

Parallelization is appropriate only on multiprocessor systems.

This option enables Sun and/or Cray explicit parallelization directives. DO loops
immediately preceded by parallelization directives will have threaded code
generated for them.

To enable OpenMP explicit parallelization directives, do not use -explicitpar.
Use -openmp instead. See Section , “-openmp[={parallel|noopt|none}]” on
page 3-41)

Note – -explicitpar should not be used to compile programs that already do
their own multithreading with calls to the libthread library.

To run a parallelized program in a multithreaded environment, you must set the
PARALLEL (or OMP_NUM_THREADS) environment variable prior to execution. This
tells the runtime system the maximum number of threads the program can create.
The default is 1. In general, set the PARALLEL or OMP_NUM_THREADS variable to the
available number of processors on the target platform.

If you use –explicitpar and compile and link in one step, then linking
automatically includes the multithreading library and the thread–safe Fortran
runtime library. If you use –explicitpar and compile and link in separate steps,
then you must also link with –explicitpar.

To improve performance, also specify the –stackvar option when using any of the
parallelization options, including –explicitpar.
Chapter 3 Fortran Compiler Options 3-19

Use the -mp option (Section , “–mp={%none|sun|cray}” on page 3-36) to select the
style of parallelization directives enabled. The default with -explicitpar is Sun
directives. Use -explicitpar -mp=cray to enable Cray directives.

If the optimization level is not –O3 or higher, it is raised to –O3 automatically.

For details, see the “Parallelization” chapter in the Fortran Programming Guide.

–ext_names=e

Create external names with or without trailing underscores.

e must be either plain or underscores. The default is underscores.

–ext_names=plain: Do not add trailing underscore.

–ext_names=underscores: Add trailing underscore.

An external name is a name of a subroutine, function, block data subprogram, or
labeled common. This option affects both the name of the routine’s entry point and
the name used in calls to it. Use this flag to allow Fortran 95 routines to call (and be
called by) other programming language routines.

–F

Invoke the source file preprocessor, but do not compile.

Apply the fpp preprocessor to .F, .F90, .F95, and .F03 source files listed on the
command line, and write the processed result on a file with the same name but with
filename extension changed to .f (or .f95 or .f03), but do not compile.

Example:

f95 –F source.F

writes the processed source file to source.f

fpp is the default preprocessor for Fortran. The C preprocessor, cpp, can be selected
instead by specifying –xpp=cpp.

–f

Align double- and quad-precision data in COMMON blocks.

-f is a legacy option flag equivalent to -aligncommon=16. Use of -aligncommon
is preferred.

The default alignment of data in COMMON blocks is on 4-byte boundaries. -f
changes the data layout of double- and quad-precision data in COMMON blocks
and EQUIVALENCE classes to be placed in memory along their “natural”
3-20 Fortran User’s Guide • January 2005

alignment, which is on 8-byte boundaries (or on 16-byte boundaries for
quad-precision when compiling for 64-bit SPARC environments with -xarch=v9 or
v9a).

Note – -f may result in nonstandard alignment of data, which could cause
problems with variables in EQUIVALENCE or COMMON and may render the program
non-portable if –f is required.

Compiling any part of a program with -f requires compiling all subprograms of that
program with -f.

By itself, this option does not enable the compiler to generate faster multi-word
fetch/store instructions on double and quad precision data. The –dalign option
does this and invokes –f as well. Use of –dalign is preferred over the older –f. See
Section , “–dalign” on page 3-16. Because –dalign is part of the –fast option, so
is –f.

-f77[=list]

Select Fortran 77 compatibility mode.

This option flag enables porting legacy Fortran 77 source programs, including those
with language extensions accepted by the f77 compiler, to the f95 Fortran 95
compiler.

list is a comma-separated list selected from the following possible keywords:

keyword meaning

%all Enable all the Fortran 77 compatibility features.

%none Disable all the Fortran 77 compatibility features.

backslash Accept backslash as an escape sequence in character strings.

input Allow input formats accepted by f77.

intrinsics Limit recognition of intrinsics to only Fortran 77 intrinsics.

logical Accept Fortran 77 usage of logical variables, such as:
- assigning integer values to logical variables
- allowing arithmetic expressions in logical conditional statements,
 with .NE.0 representing .TRUE.
- allowing relational operators .EQ. and .NE. with logical operands

misc Allow miscellaneous f77 Fortran 77 extensions.
Chapter 3 Fortran Compiler Options 3-21

All keywords can be prefixed by no% to disable the feature, as in:

-f77=%all,no%backslash

The default, when -f77 is not specified, is -f77=%none. Using -f77 without a list
is equivalent to specifying -f77=%all.

Exceptions Trapping and -f77:

Specifying -f77 does not change the Fortran 95 trapping mode, which is
-ftrap=common. Fortran 95 differs from the Fortran 77 compiler’s behavior
regarding arithmetic exception trapping. The Fortran 77 compiler allowed
execution to continue after an arithmetic exception occurred. Compiling with
-f77 also causes the program to call ieee_retrospective on program exit to
report on any arithmetic exceptions that might have occurred. Specify
-ftrap=none following the -f77 option flag on the command line to mimic the
original Fortran 77 behavior.

See Chapter 5 for complete information on f77 compatibility and Fortran 77 to
Fortran 95 migration.

See also the -xalias flag for handling non-standard programming syndromes that
may cause incorrect results.

–fast

Select options that optimize execution performance.

Note – This option is defined as a particular selection of other options that is subject
to change from one release to another, and between compilers. Also, some of the
options selected by –fast might not be available on all platforms. Compile with the
-v (verbose) flag to see the expansion of -fast for any release.

-fast provides high performance for certain benchmark applications. However, the
particular choice of options may or may not be appropriate for your application. Use
-fast as a good starting point for compiling your application for best performance.
But additional tuning may still be required. If your program behaves improperly

output Generate f77-style formatted output, including list-directed and
NAMELIST output.

subscript Allow non-integer expressions as array subscripts.

tab Enable f77-style TAB-formatting, including unlimited source line
length. No blank padding will be added to source lines shorter than
72 characters.

keyword meaning
3-22 Fortran User’s Guide • January 2005

when compiled with -fast, look closely at the individual options that make up
-fast and invoke only those appropriate to your program that preserve correct
behavior.

Note also that a program compiled with -fast may show good performance and
accurate results with some data sets, but not with others. Avoid compiling with
-fast those programs that depend on particular properties of floating-point
arithmetic.

Because some of the options selected by -fast have linking implications, if you
compile and link in separate steps be sure to link with -fast also.

–fast selects the following options:

■ –dalign
■ –depend (SPARC)
■ –fns
■ –fsimple=2
■ -ftrap=common
■ –libmil
■ –xtarget=native
■ –O5
■ –xlibmopt
■ -pad=local (SPARC)
■ -xvector=yes (SPARC)
■ -xprefetch=yes
■ -xprefetch_level=2
■ -nofstore (x86)

Details about the options selected by –fast:

■ The -xtarget=native hardware target.
If the program is intended to run on a different target than the compilation
machine, follow the –fast with a code–generator option. For example:
 f95 –fast -xtarget=ultra ...

■ The –O5 optimization level option.

■ The –depend option analyzes loops for data dependencies and possible
restructuring. (SPARC)

■ The –libmil option for system–supplied inline expansion templates.
For C functions that depend on exception handling, follow -fast by -nolibmil
(as in -fast –nolibmil). With –libmil, exceptions cannot be detected with
errno or matherr(3m).

■ The -fsimple=2 option for aggressive floating–point optimizations.
–fsimple=2 is unsuitable if strict IEEE 754 standards compliance is required. See
Section , “–fsimple[={1|2|0}]” on page 3-27.
Chapter 3 Fortran Compiler Options 3-23

■ The –dalign option to generate double loads and stores for double and quad
data in common blocks. Using this option can generate nonstandard Fortran data
alignment in common blocks.

■ The –xlibmopt option selects optimized math library routines.

■ -pad=local inserts padding between local variables, where appropriate, to
improve cache usage. (SPARC)

■ -xvector=yes transforms certain math library calls within DO loops to single
calls to a vectorized library equivalent routine with vector arguments.

■ –fns selects non-standard floating-point arithmetic exception handling and
gradual underflow. See Section , “–fns[={yes|no}]” on page 3-25.

■ Trapping on common floating-point exceptions, -ftrap=common, is the enabled
with Fortran 95.

■ -xprefetch=yes enables the compiler to generate hardware prefetch
instructions where appropriate.

■ -xprefetch_level=2 sets the default level for insertion of prefetch instructions.

■ -nofstore cancels forcing expressions to have the precision of the result. (x86)

It is possible to add or subtract from this list by following the –fast option with
other options, as in:

f95 –fast –fsimple=1 –xnolibmopt ...

which overrides the –fsimple=2 option and disables the –xlibmopt selected by
-fast.

Because -fast invokes -dalign, -fns, -fsimple=2, programs compiled with
-fast can result in nonstandard floating-point arithmetic, nonstandard alignment
of data, and nonstandard ordering of expression evaluation. These selections might
not be appropriate for most programs.

Note that the set of options selected by the -fast flag can change with each
compiler release.

–fixed

Specify fixed–format Fortran 95 source input files.

All source files on the command–line will be interpreted as fixed format regardless
of filename extension. Normally, f95 interprets only .f files as fixed format, .f95
as free format.

–flags

Synonym for –help.
3-24 Fortran User’s Guide • January 2005

–fnonstd

Initialize floating–point hardware to non–standard preferences.

This option is a macro for the combination of the following option flags:

–fns –ftrap=common

Specifying –fnonstd is approximately equivalent to the following two calls at the
beginning of a Fortran main program.

The nonstandard_arithmetic() routine replaces the obsolete
abrupt_underflow() routine of earlier releases.

To be effective, the main program must be compiled with this option.

Using this option initializes the floating-point hardware to:

■ Abort (trap) on floating-point exceptions.

■ Flush underflow results to zero if it will improve speed, rather than produce a
subnormal number as the IEEE standard requires.

See –fns for more information about gradual underflow and subnormal numbers.

The –fnonstd option allows hardware traps to be enabled for floating–point
overflow, division by zero, and invalid operation exceptions. These are converted
into SIGFPE signals, and if the program has no SIGFPE handler, it terminates with a
dump of memory.

For more information, see the ieee_handler(3m) and ieee_functions(3m) man
pages, the Numerical Computation Guide, and the Fortran Programming Guide.

–fns[={yes|no}]

Select nonstandard floating–point mode.

The default is the standard floating–point mode (–fns=no). (See the “Floating–Point
Arithmetic” chapter of the Fortran Programming Guide.)

Optional use of =yes or =no provides a way of toggling the –fns flag following
some other macro flag that includes it, such as –fast.
–fns without a value is the same as -fns=yes.

This option flag enables nonstandard floating-point mode when the program begins
execution. On SPARC platforms, specifying nonstandard floating-point mode
disables “gradual underflow”, causing tiny results to be flushed to zero rather than
producing subnormal numbers. It also causes subnormal operands to be silently

i=ieee_handler("set", "common", SIGFPE_ABORT)
call nonstandard_arithmetic()
Chapter 3 Fortran Compiler Options 3-25

replaced by zero. On those SPARC systems that do not support gradual underflow
and subnormal numbers in hardware, use of this option can significantly improve
the performance of some programs.

Where x does not cause total underflow, x is a subnormal number if and only if |x| is
in one of the ranges indicated:

See the Numerical Computation Guide for details on subnormal numbers, and the
Fortran Programming Guide chapter “Floating–Point Arithmetic” for more
information about this and similar options. (Some arithmeticians use the term
denormalized number for subnormal number.)

The standard initialization of floating–point preferences is the default:

■ IEEE 754 floating–point arithmetic is nonstop (do not abort on exception).
■ Underflows are gradual.

On x86 platforms, this option is enabled only for Pentium III and Pentium 4
processors (sse or sse2 instruction sets).

To be effective, the main program must be compiled with this option.

–fpover[={yes|no}]

Detect floating-point overflow in formatted input.

With –fpover=yes specified, the I/O library will detect runtime floating-point
overflows in formatted input and return an error condition (1031). The default is no
such overflow detection (–fpover=no). –fpover without a value is equivalent to
–fpover=yes.

-fpp

Force preprocessing of input with fpp.

Pass all the input source files listed on the f95 command line through the fpp
preprocessor, regardless of file extension. (Normally, only files with .F, .F90, or .F95
extension are automatically preprocessed by fpp.) See also Section ,
“–xpp={fpp|cpp}” on page 3-84.

TABLE 3-8 Subnormal REAL and DOUBLE

Data Type Range

REAL 0.0 < |x| < 1.17549435e–38

DOUBLE PRECISION 0.0 < |x| < 2.22507385072014e–308
3-26 Fortran User’s Guide • January 2005

-fprecision={single|double|extended}

(x86) Initialize non-default floating-point rounding precision mode.

On x86, sets the floating-point precision mode to either single, double, or
extended.

With a value of single or double, this flag causes the rounding precision mode to
be set to single or double precision respectively at program initiation. With
extended, or by default when the -fprecision flag is not specified, the rounding
precision mode is initialized to extended precision.

This option is effective only on x86 systems and only if used when compiling the
main program.

–free

Specify free–format source input files.

All source files on the command–line will be interpreted as f95 free format
regardless of filename extension. Normally, f95 interprets .f files as fixed format,
.f95 as free format.

–fround={nearest|tozero|negative|positive}

Set the IEEE rounding mode in effect at startup.

The default is –fround=nearest.

To be effective, compile the main program with this option.

This option sets the IEEE 754 rounding mode that:

■ Can be used by the compiler in evaluating constant expressions.
■ Is established at runtime during the program initialization.

When the value is tozero, negative, or positive, the option sets the rounding
direction to round-to-zero, round-to-negative-infinity, or round-to-positive-infinity,
respectively, when the program begins execution. When –fround is not specified,
-fround=nearest is used as the default and the rounding direction is
round-to-nearest. The meanings are the same as those for the ieee_flags function.
(See the “Floating–Point Arithmetic” chapter of the Fortran Programming Guide.)

–fsimple[={1|2|0}]

Select floating–point optimization preferences.

Allow the optimizer to make simplifying assumptions concerning floating–point
arithmetic. (See the “Floating–Point Arithmetic” chapter of the Fortran Programming
Guide.)
Chapter 3 Fortran Compiler Options 3-27

For consistent results, compile all units of a program with the same –fsimple
option.

The defaults are:

■ Without the –fsimple flag, the compiler defaults to –fsimple=0
■ With –fsimple without a value, the compiler uses –fsimple=1

The different floating–point simplification levels are:

–fsimple=0

Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.

–fsimple=1

Allow conservative simplifications. The resulting code does not strictly conform
to IEEE 754, but numeric results of most programs are unchanged.

With –fsimple=1, the optimizer can assume the following:

■ IEEE 754 default rounding/trapping modes do not change after process
initialization.

■ Computations producing no visible result other than potential floating point
exceptions may be deleted.

■ Computations with Infinity or NaNs (“Not a Number”) as operands need not
propagate NaNs to their results; e.g., x*0 may be replaced by 0.

■ Computations do not depend on sign of zero.

With –fsimple=1, the optimizer is not allowed to optimize completely without
regard to roundoff or exceptions. In particular, a floating–point computation
cannot be replaced by one that produces different results with rounding modes
held constant at run time.

–fsimple=2

Permit aggressive floating point optimizations. This can cause some programs to
produce different numeric results due to changes in the way expressions are
evaluated. In particular, the Fortran standard rule requiring compilers to honor
explicit parentheses around subexpressions to control expression evaluation order
may be broken with -fsimple=2. This could result in numerical rounding
differences with programs that depend on this rule.

For example, with -fsimple=2, the compiler may evaluate C-(A-B) as
(C-A)+B, breaking the standard’s rule about explicit parentheses, if the resulting
code is better optimized. The compiler might also replace repeated computations
of x/y with x*z, where z=1/y is computed once and saved in a temporary, to
eliminate the costly divide operations.

Programs that depend on particular properties of floating-point arithmetic should
not be compiled with -fsimple=2.
3-28 Fortran User’s Guide • January 2005

Even with –fsimple=2, the optimizer still is not permitted to introduce a
floating point exception in a program that otherwise produces none.

–fast selectes -fsimple=2.

-fstore

(x86) Force precision of floating-point expressions.

For assignment statements, this option forces all floating-point expressions to the
precision of the destination variable. This is the default. However, the -fast option
includes -nofstore to disable this option. Follow -fast with -fstore to turn this
option back on.

–ftrap=t

Set floating–point trapping mode in effect at startup.

t is a comma–separated list that consists of one or more of the following:

%all, %none, common, [no%]invalid, [no%]overflow, [no%]underflow,
[no%]division, [no%]inexact.

-ftrap=common is a macro for
-ftrap=invalid,overflow,underflow,division.

The f95 default is -ftrap=common. This differs from the C and C++ compiler
defaults, which is -ftrap=none.

Sets the IEEE 745 trapping mode in effect at startup but does not install a SIGFPE
handler. You can use ieee_handler(3M) or fex_set_handling(3M) to
simultaneously enable traps and install a SIGFPE handler. If you specify more than
one value, the list is processed sequentially from left to right. The common
exceptions, by definition, are invalid, division by zero, and overflow.

Example: –ftrap=%all,no%inexact means set all traps, except inexact.

The meanings for –ftrap=t are the same as for ieee_flags(), except that:

■ %all turns on all the trapping modes, and will cause trapping of spurious and
expected exceptions. Use common instead.

■ %none turns off all trapping modes.

■ A no% prefix turns off that specific trapping mode.

To be effective, compile the main program with this option.

For further information, see the “Floating–Point Arithmetic” chapter in the Fortran
Programming Guide.
Chapter 3 Fortran Compiler Options 3-29

–G

Build a dynamic shared library instead of an executable file.

Direct the linker to build a shared dynamic library. Without –G, the linker builds an
executable file. With –G, it builds a dynamic library. Use –o with –G to specify the
name of the file to be written. See the Fortran Programming Guide chapter “Libraries”
for details.

–g

Compile for debugging and performance analysis.

Produce additional symbol table information for debugging with dbx(1) debugging
utility and for performance analysis with the Performance Analyzer.

Although some debugging is possible without specifying –g, the full capabilities of
dbx and debugger are only available to those compilation units compiled with –g.

Some capabilities of other options specified along with –g may be limited. See the
dbx documentation for details.

Note – In previous releases of the compiler, the –g option would make –xildon the
default incremental linker option when only .o object files appear on the command
line (see Section , “–xild{off|on}” on page 3-73). Starting with this release, you
must compile with the -xildon flag to get this behavior.

To use the full capabilities of the Performance Analyzer, compile with -g. While
some performance analysis features do not require -g, you must compile with -g to
view annotated source, some function level information, and compiler commentary
messages. (See the analyzer(1) man page and the manual Sun Studio Performance
Analyzer.)

The commentary messages generated with -g describe the optimizations and
transformations the compiler made while compiling your program. The messages,
interleaved with the source code, can be displayed by the er_src(1) command.

Note that commentary messages only appear if the compiler actually performed any
optimizations. You are more likely to see commentary messages when you request
high optimization levels, such as with -xO4, or -fast.

–hname

Specify the name of the generated dynamic shared library.

This option is passed on to the linker. For details, see the Solaris Linker and Libraries
Guide, and the Fortran Programming Guide chapter “Libraries.”
3-30 Fortran User’s Guide • January 2005

The –hname option records the name name to the shared dynamic library being
created as the internal name of the library. A space between –h and name is optional
(except if the library name is elp, for which the space will be needed). In general,
name must be the same as what follows the -o. Use of this option is meaningless
without also specifying –G.

Without the –hname option, no internal name is recorded in the library file.

If the library has an internal name, whenever an executable program referencing the
library is run the runtime linker will search for a library with the same internal name
in any path the linker is searching. With an internal name specified, searching for the
library at runtime linking is more flexible. This option can also be used to specify
versions of shared libraries.

If there is no internal name of a shared library, then the linker uses a specific path for
the shared library file instead.

–help

Display a summary list of compiler options.

See also Section , “–xhelp={readme|flags}” on page 3-72.

–Ipath

Add path to the INCLUDE file search path.

Insert the directory path path at the start of the INCLUDE file search path. No space is
allowed between –I and path. Invalid directories are ignored with no warning
message.

The include file search path is the list of directories searched for INCLUDE files—file
names appearing on preprocessor #include directives, or Fortran INCLUDE
statements.

Example: Search for INCLUDE files in /usr/app/include:

Multiple –Ipath options may appear on the command line. Each adds to the top of
the search path list (first path searched).

The search order for relative paths on INCLUDE or #include is:

1. The directory that contains the source file

2. The directories that are named in the –I options

3. The directories in the compiler’s internal default list

demo% f95 –I/usr/app/include growth.F
Chapter 3 Fortran Compiler Options 3-31

4. /usr/include/

To invoke the preprocessor, you must be compiling source files with a .F, .F90,
.F95, or .F03 suffix.

–inline=[%auto][[,][no%]f1,…[no%]fn]

Enable or disable inlining of specified routines.

Request the optimizer to inline the user–written routines appearing in a
comma-separated list of function and subroutine names. Prefixing a routine name
with no% disables inlining of that routine.

Inlining is an optimization technique whereby the compiler effectively replaces a
subprogram reference such as a CALL or function call with the actual subprogram
code itself. Inlining often provides the optimizer more opportunities to produce
efficient code.

Specify %auto to enable automatic inlining at optimization levels -O4 or -O5.
Automatic inlining at these optimization levels is normally turned off when explicit
inlining is specified with -inline.

Example: Inline the routines xbar, zbar, vpoint:

Following are the restrictions; no warnings are issued:

■ Optimization must be –O3 or greater.

■ The source for the routine must be in the file being compiled, unless -xipo or
–xcrossfile are also specified.

■ The compiler determines if actual inlining is profitable and safe.

The appearance of -inline with -O4 disables the automatic inlining that the
compiler would normally perform, unless %auto is also specified. With -O4, the
compilers normally try to inline all appropriate user–written subroutines and
functions. Adding –inline with –O4 may degrade performance by restricting the
optimizer’s inlining to only those routines in the list. In this case, use the %auto
suboption to enable automatic inlining at -O4 and -O5.

In the example above, the user has enabled -O4’s automatic inlining while disabling
any possible inlining of the routine zpoint() that the compiler might attempt.

-iorounding[={compatible|processor-defined}]

demo% f95 –O3 –inline=xbar,zbar,vpoint *.f

demo% f95 -O4 -inline=%auto,no%zpoint *.f
3-32 Fortran User’s Guide • January 2005

Set floating-point rounding mode for formatted input/output.

Sets the ROUND= specifier globally for all formatted input/output operations.

With -iorounding=compatible, the value resulting from data conversion is the
one closer to the two nearest representations, or the value away from zero if the
value is halfway between them.

With -iorounding=processor-defined, the rounding mode is the processor’s
default mode. This is the default when -iorounding is not specified.

–Kpic

(Obsolete) Synonym for –xcode=pic13.

–KPIC

(Obsolete) Synonym for –xcode=pic32.

–Lpath

Add path to list of directory paths to search for libraries.

Adds path to the front of the list of object–library search directories. A space between
–L and path is optional. This option is passed to the linker. See also Section , “–lx”
on page 3-33.

While building the executable file, ld(1) searches path for archive libraries (.a files)
and shared libraries (.so files). ld searches path before searching the default
directories. (See the Fortran Programming Guide chapter “Libraries” for information
on library search order.) For the relative order between LD_LIBRARY_PATH and
–Lpath, see ld(1).

Note – Specifying /usr/lib or /usr/ccs/lib with –Lpath may prevent linking
the unbundled libm. These directories are searched by default.

Example: Use -Lpath to specify library search directories:

–lx

Add library libx.a to linker’s list of search libraries.

demo% f95 -L./dir1 -L./dir2 any.f
Chapter 3 Fortran Compiler Options 3-33

Pass –lx to the linker to specify additional libraries for ld to search for unresolved
references. ld links with object library libx. If shared library libx.so is available
(and –Bstatic or –dn are not specified), ld uses it, otherwise, ld uses static library
libx.a. If it uses a shared library, the name is built in to a.out. No space is allowed
between –l and x character strings.

Example: Link with the library libVZY:

Use -lx again to link with more libraries.

Example: Link with the libraries liby and libz:

See also the “Libraries” chapter in the Fortran Programming Guide for information on
library search paths and search order.

–libmil

Inline selected libm library routines for optimization.

There are inline templates for some of the libm library routines. This option selects
those inline templates that produce the fastest executable for the floating–point
options and platform currently being used.

For more information, see the man pages libm_single(3F) and libm_double(3F)

–loopinfo

Show loop parallelization results.

Show which loops were and were not parallelized with the –parallel, –autopar,
or –explicitpar options. (Option –loopinfo must appear with one of these
parallelization options.)

demo% f95 any.f –lVZY

demo% f95 any.f –ly –lz
3-34 Fortran User’s Guide • January 2005

–loopinfo displays a list of messages on standard error:

–Mpath

Specify MODULE directory, archive, or file.

Look in path for Fortran 95 modules referenced in the current compilation. This path
is searched in addition to the current directory.

path can specify a directory, .a archive file of precompiled module files, or a .mod
precompiled module file. The compiler determines the type of the file by examining
its contents.

An archive .a file must be explicitly specified on a -M option flag to be searched for
modules. The compiler will not search archive files by default.

Only .mod files with the same names as the MODULE names appearing on USE
statements will be searched. For example, the statement USE ME causes the compiler
to look only for the module file me.mod

When searching for modules, the compiler gives higher priority to the directory
where the module files are being written. This is controlled by the -moddir compiler
option, or the MODDIR environment variable. When neither are specified, the default
write-directory is the current directory. When both are specified, the write-directory
is the path specified by the -moddir flag.

This means that if only the -M flag appears, the current directory will be searched for
modules first before any object listed on the -M flag. To emulate the behavior of
previous releases, use:

-moddir=empty-dir -Mdir -M

where empty-dir is the path to an empty directory.

demo% f95 –o shalow –fast –parallel –loopinfo shalow.f
...
"shalow.f", line 325: not parallelized, not profitable (inlined loop)
"shalow.f", line 172: PARALLELIZED, and serial version generated
"shalow.f", line 173: not parallelized, not profitable
"shalow.f", line 181: PARALLELIZED, fused
"shalow.f", line 182: not parallelized, not profitable
"shalow.f", line 193: not parallelized, not profitable
"shalow.f", line 199: PARALLELIZED, and serial version generated
"shalow.f", line 200: not parallelized, not profitable
"shalow.f", line 226: PARALLELIZED, and serial version generated
"shalow.f", line 227: not parallelized, not profitable
...etc
Chapter 3 Fortran Compiler Options 3-35

There should be no space between the -M and the path. For example,
-M/home/siri/PK15/Modules

See Section 4.9, “Module Files” on page 4-23 for more information about modules in
Fortran 95.

-moddir=path

Specify where the compiler will write compiled .mod MODULE files.

The compiler will write the .mod MODULE information files it compiles in the
directory specified by path. The directory path can also be specified with the MODDIR
environment variable. If both are specified, this option flag takes precedence.

The compiler uses the current directory as the default for writing .mod files.

See Section 4.9, “Module Files” on page 4-23 for more information about modules in
Fortran 95.

–mp={%none|sun|cray}

Select Sun or Cray parallelization directives.

The default without specifying -explicitpar is –mp=%none.

The default with -explicitpar is -mp=sun.

You must also specify -explicitpar (or -parallel) to enable parallelization. For
correctness, also specify -stackvar:

-explicitpar -stackvar -mp=cray

To compile for OpenMP parallelization, use the -openmp flag. See Section ,
“-openmp[={parallel|noopt|none}]” on page 3-41.

Sun and Cray directives cannot both be active in the same compilation unit.

A summary of the Sun and Cray parallelization directives appears in Appendix D in
this manual. See the Fortran Programming Guide for details.

-mp=sun Accept Sun–style directives: C$PAR or !$PAR prefix.

-mp=cray Accept Cray–style directives: CMIC$ or !MIC$ prefix.

-mp=%none Ignore all parallelization directives.
3-36 Fortran User’s Guide • January 2005

–mt

Require linking to thread–safe libraries.

If you do your own low–level thread management (for example, by calling the
libthread library), compiling with –mt prevents conflicts.

Use –mt if you mix Fortran with multithreaded C code that calls the libthread
library. See also the Solaris Multithreaded Programming Guide.

–mt is implied automatically when using the -autopar, -explicitpar, or
-parallel options.

Note the following:

■ A function subprogram that does I/O should not itself be referenced as part of an
I/O statement. Such recursive I/O may cause the program to deadlock with –mt.

■ In general, do not compile your own multithreaded code with -autopar,
-explicitpar, or -parallel. The compiler-generated calls to the threads
library and the program’s own calls may conflict, causing unexpected results.

■ On a single–processor system, performance may be degraded with the –mt
option.

–native

(Obsolete) Optimize performance for the host system.

This option is a synonym for –xtarget=native, which is preferred. The –fast
option sets -xtarget=native.

–noautopar

Disables automatic parallelization invoked by –autopar earlier on the command
line.

–nodepend

(SPARC) Cancel any –depend appearing earlier on the command line.

–noexplicitpar

Disables explicit parallelization invoked by –explicitpar earlier on the command
line.
Chapter 3 Fortran Compiler Options 3-37

-nofstore

(x86) Cancel -fstore on command line.

The compiler default is -fstore. -fast includes -nofstore.

–nolib

Disable linking with system libraries.

Do not automatically link with any system or language library; that is do not pass
any default –lx options on to ld. The normal behavior is to link system libraries
into the executables automatically, without the user specifying them on the
command line.

The –nolib option makes it easier to link one of these libraries statically. The system
and language libraries are required for final execution. It is your responsibility to
link them in manually. This option provides you with complete control.

Link libm statically and libc dynamically with f95:

The order for the –lx options is important. Follow the order shown in the examples.

–nolibmil

Cancel –libmil on command line.

Use this option after the -fast option to disable inlining of libm math routines:

–noreduction

Disable –reduction on command line.

This option disables –reduction.

–norunpath

Do not build a runtime shared library search path into the executable.

The compiler normally builds into an executable a path that tells the runtime linker
where to find the shared libraries it will need. The path is installation dependent.
The -norunpath option prevents that path from being built in to the executable.

demo% f95 –nolib any.f95 –Bstatic –lm –Bdynamic –lc

demo% f95 –fast –nolibmil …
3-38 Fortran User’s Guide • January 2005

This option is helpful when libraries have been installed in some nonstandard
location, and you do not wish to make the loader search down those paths when the
executable is run at another site. Compare with –Rpaths.

See the Fortran Programming Guide chapter on “Libraries” for more information.

–O[n]

Specify optimization level.

n can be 1, 2, 3, 4, or 5. No space is allowed between –O and n.

If -O[n] is not specified, only a very basic level of optimization limited to local
common subexpression elimination and dead code analysis is performed. A
program’s performance may be significantly improved when compiled with an
optimization level than without optimization. Use of –O (which sets –O3) or
–fast (which sets –O5) is recommended for most programs.

Each –On level includes the optimizations performed at the levels below it.
Generally, the higher the level of optimization a program is compiled with, the
better runtime performance obtained. However, higher optimization levels may
result in increased compilation time and larger executable files.

Debugging with –g does not suppress –On, but –On limits –g in certain ways; see the
dbx documentation.

The -O3 and -O4 options reduce the utility of debugging such that you cannot
display variables from dbx, but you can still use the dbx where command to get a
symbolic traceback.

If the optimizer runs out of memory, it attempts to proceed over again at a lower
level of optimization, resuming compilation of subsequent routines at the original
level.

For details on optimization, see the Fortran Programming Guide chapters
“Performance Profiling” and “Performance and Optimization.”

–O

This is equivalent to –O3.

–O1

Provides a minimum of statement–level optimizations.

Use if higher levels result in excessive compilation time, or exceed available swap
space.
Chapter 3 Fortran Compiler Options 3-39

–O2

Enables basic block level optimizations.

This level usually gives the smallest code size. (See also –xspace.)

–O3 is preferred over –O2 unless –O3 results in unreasonably long compilation time,
exceeds swap space, or generates excessively large executable files.

–O3

Adds loop unrolling and global optimizations at the function level. Adds -depend
automatically.

Usually –O3 generates larger executable files.

–O4

Adds automatic inlining of routines contained in the same file.

Usually –O4 generates larger executable files due to inlining.

The –g option suppresses the –O4 automatic inlining described above.
–xcrossfile increases the scope of inlining with –O4.

–O5

Attempt aggressive optimizations.

Suitable only for that small fraction of a program that uses the largest fraction of
compute time. –O5’s optimization algorithms take more compilation time, and may
also degrade performance when applied to too large a fraction of the source
program.

Optimization at this level is more likely to improve performance if done with profile
feedback. See –xprofile=p.

–o name

Specify the name of the executable file to be written.

There must be a blank between –o and name. Without this option, the default is to
write the executable file to a.out. When used with –c, –o specifies the target .o
object file; with –G it specifies the target .so library file.

–onetrip

Enable one trip DO loops.
3-40 Fortran User’s Guide • January 2005

Compile DO loops so that they are executed at least once. DO loops in standard
Fortran are not performed at all if the upper limit is smaller than the lower limit,
unlike some legacy implementations of Fortran.

-openmp[={parallel|noopt|none}]

Enable explicit parallelization with Fortran 95 OpenMP Version 2.0 directives.

The flag accepts the following optional keyword suboptions:

-openmp specified without a suboption keyword is equivalent to
-openmp=parallel. Note that this default might change in later releases.

To debug OpenMP programs with dbx, compile with -g -openmp=noopt to be able
to breakpoint within parallel regions and display the contents of variables.

The OpenMP directives are summarized in the OpenMP API User’s Guide.

To run a parallelized program in a multithreaded environment, you must set the
PARALLEL (or OMP_NUM_THREADS) environment variable prior to execution. This
tells the runtime system the maximum number of threads the program can create.
The default is 1. In general, set the PARALLEL or OMP_NUM_THREADS variable to the
available number of processors on the target platform.

OpenMP requires the definition of the preprocessor symbol _OPENMP to have the
decimal value YYYYMM where YYYY and MM are the year and month designations
of the version of the OpenMP Fortran API that the implementation supports.

parallel • Enables recognition of OpenMP pragmas, and the program is parallelized
accordingly.

• The minimum optimization level for -xopenmp=parallel is -xO3. The
compiler changes the optimization from a lower level to -xO3 if
necessary, and issues a warning.

• Defines preprocessor token _OPENMP to be 200011
• Invokes -stackvar automatically.

noopt • Enables recognition of OpenMP pragmas, and the program is parallelized
accordingly.

• The compiler does not raise the optimization level if it is lower than
-xO3. If you explicitly set the optimization to a level lower than -xO3, as
in -xO2 -openmp=noopt the compiler will issue an error. If you do not
specify an optimization level with -openmp=noopt, the OpenMP
pragmas are recognized, the program is parallelized accordingly, but no
optimization is done.

• Defines preprocessor token _OPENMP to be 200011
• Invokes -stackvar automatically.

none Disables recognition of OpenMP pragmas and does not change the
optimization level. (This is the compiler’s default.)
Chapter 3 Fortran Compiler Options 3-41

When compiling and linking in separate steps, also specify -openmp on the link
step. This is especially important when compiling libraries that contain OpenMP
directives.

–PIC

(Obsolete, SPARC) Compile position–independent code with 32-bit addresses.

–PIC is equivalent to –xcode=pic32. See Section , “–xcode=keyword” on
page 3-65 for more information about position-independent code.

–p

(Obsolete) Compile for profiling with the prof profiler.

Prepare object files for profiling, see prof (1). If you compile and link in separate
steps, and also compile with the -p option, then be sure to link with the -p option.
–p with prof is provided mostly for compatibility with older systems. –pg profiling
with gprof is possibly a better alternative. See the Fortran Programming Guide
chapter on Performance Profiling for details.

–pad[=p]

Insert padding for efficient use of cache.

This option inserts padding between arrays or character variables, if they are static
local and not initialized, or if they are in common blocks. The extra padding
positions the data to make better use of cache. In either case, the arrays or character
variables can not be equivalenced.

p, if present, must be either %none or either (or both) local or common:

If both local and common are specified, they can appear in any order.

Defaults for –pad:

■ The compiler does no padding by default.

■ Specifying –pad, but without a value is equivalent to -pad=local,common.

The –pad[=p] option applies to items that satisfy the following criteria:

■ The items are arrays or character variables
■ The items are static local or in common blocks

local Add padding between adjacent local variables.

common Add padding between variables in common blocks.

%none Do not add padding. (Compiler default.)
3-42 Fortran User’s Guide • January 2005

For a definition of local or static variables, see Section , “–stackvar” on page 3-47.

The program must conform to the following restrictions:

■ Neither the arrays nor the character strings are equivalenced

■ If –pad=common is specified for compiling a file that references a common block,
it must be specified when compiling all files that reference that common block.
The option changes the spacing of variables within the common block. If one
program unit is compiled with the option and another is not, references to what
should be the same location within the common block might reference different
locations.

■ If –pad=common is specified, the declarations of common block variables in
different program units must be the same except for the names of the
variables.The amount of padding inserted between variables in a common block
depends on the declarations of those variables. If the variables differ in size or
rank in different program units, even within the same file, the locations of the
variables might not be the same.

■ If –pad=common is specified, EQUIVALENCE declarations involving common
block variables are flagged with a warning message and the block is not padded.

■ Avoid overindexing arrays in common blocks with -pad=common specified. The
altered positioning of adjacent data in a padded common block will cause
overindexing to fail in unpredictable ways.

It is the programmer’s responsibility to make sure that common blocks are compiled
consistently when -pad is used. Common blocks appearing in different program
units that are compiled inconsistently with -pad=common will cause errors.
Compiling with -Xlist will report when common blocks with the same name have
different lengths in different program units.

–parallel

Parallelize with: –autopar, –explicitpar, –depend

Parallelize loops chosen automatically by the compiler as well as explicitly specified
by user supplied directives. Optimization level is automatically raised to –O3 if it is
lower. See also Section , “–explicitpar” on page 3-19.

To improve performance, also specify the –stackvar option when using any of the
parallelization options, including –autopar.

Sun-style parallelization directives are enabled by default. Use -mp=cray to select
Cray style parallelization directives. (Note: For OpenMP parallelization use
-openmp, not -parallel.)

Avoid -parallel if you do your own thread management. See Section , “–mt” on
page 3-37.
Chapter 3 Fortran Compiler Options 3-43

Parallelization options like –parallel are intended to produce executable
programs to be run on multiprocessor systems. On a single–processor system,
parallelization generally degrades performance.

To run a parallelized program in a multithreaded environment, you must set the
PARALLEL (or OMP_NUM_THREADS) environment variable prior to execution. This
tells the runtime system the maximum number of threads the program can create.
The default is 1. In general, set the PARALLEL or OMP_NUM_THREADS variable to the
available number of processors on the target platform.

If you use –parallel and compile and link in one step, then linking automatically
includes the multithreading library and the thread–safe Fortran runtime library. If
you use –parallel and compile and link in separate steps, then you must also link
with –parallel.

See the Fortran Programming Guide chapter “Parallelization” for further information.

–pg

Compile for profiling with the gprof profiler.

Compile self–profiling code in the manner of –p, but invoke a runtime recording
mechanism that keeps more extensive statistics and produces a gmon.out file when
the program terminates normally. Generate an execution profile by running gprof.
See the gprof(1) man page and the Fortran Programming Guide for details.

Library options must be after the source and .o files (–pg libraries are static).

If you compile and link in separate steps, and you compile with -pg, then be sure to
link with -pg.

–pic

(Obsolete, SPARC) Compile position–independent code for shared library.

–pic is equivalent to –xcode=pic13. See Section , “–xcode=keyword” on
page 3-65 for more information on position-indepented code.

–Qoption pr ls

Pass the suboption list ls to the compilation phase pr.

There must be blanks separating Qoption, pr, and ls. The Q can be uppercase or
lowercase. The list is a comma–delimited list of suboptions, with no blanks within
the list. Each suboption must be appropriate for that program phase, and can begin
with a minus sign.
3-44 Fortran User’s Guide • January 2005

This option is provided primarily for debugging the internals of the compiler by
support staff. Use the LD_OPTIONS environment variable to pass options to the
linker. See the chapter on linking and libraries in the Fortran Programming Guide.

–qp

Synonym for –p.

–R ls

Build dynamic library search paths into the executable file.

With this option, the linker, ld(1), stores a list of dynamic library search paths into
the executable file.

ls is a colon–separated list of directories for library search paths. The blank between
–R and ls is optional.

Multiple instances of this option are concatenated together, with each list separated
by a colon.

The list is used at runtime by the runtime linker, ld.so. At runtime, dynamic
libraries in the listed paths are scanned to satisfy any unresolved references.

Use this option to let users run shippable executables without a special path option
to find needed dynamic libraries.

Building an executable file using –Rpaths adds directory paths to a default path,
/opt/SUNWspro/lib, that is always searched last.

For more information, see the “Libraries” chapter in the Fortran Programming Guide,
and the Solaris Linker and Libraries Guide.

-r8const

Promote single-precision constants to REAL*8 constants.

All single-precision REAL constants are promoted to REAL*8. Double-precision
(REAL*8) constants are not changed. This option only applies to constants. To
promote both constants and variables, see Section , “–xtypemap=spec” on
page 3-95.

Use this option flag carefully. It could cause interface problems when a subroutine or
function expecting a REAL*4 argument is called with a REAL*4 constant that gets
promoted to REAL*8. It could also cause problems with programs reading
unformatted data files written by an unformatted write with REAL*4 constants on
the I/O list.
Chapter 3 Fortran Compiler Options 3-45

–reduction

Recognize reduction operations in loops.

Analyze loops for reduction operations during automatic parallelization. There is
potential for roundoff error with the reduction.

A reduction operation accumulates the elements of an array into a single scalar value.
For example, summing the elements of a vector is a typical reduction operation.
Although these operations violate the criteria for parallelizability, the compiler can
recognize them and parallelize them as special cases when –reduction is specified.
See the Fortran Programming Guide chapter “Parallelization” for information on
reduction operations recognized by the compilers.

This option is usable only with the automatic parallelization options –autopar or
-parallel. It is ignored otherwise. Explicitly parallelized loops are not analyzed
for reduction operations.

Example: Automatically parallelize with reduction:

–S

Compile and only generate assembly code.

Compile the named programs and leave the assembly–language output on
corresponding files suffixed with .s. No .o file is created.

–s

Strip the symbol table out of the executable file.

This option makes the executable file smaller and more difficult to reverse engineer.
However, this option inhibits debugging with dbx or other tools, and overrides –g.

–sb

(Obsolete) Produce table information for the source code browser.

Note – -sb cannot be used on source files the compiler automatically passes
through the fpp or cpp preprocessors (that is, files with .F, .F90, .F95, or .F03
extensions), or used with the -F option.

demo% f95 -parallel -reduction any.f
3-46 Fortran User’s Guide • January 2005

–sbfast

(Obsolete) Produce only source code browser tables.

Produce only table information for the source code browser. Do not assemble, link, or
make object files.

Note – -sbfast cannot be used on source files the compiler automatically passes
through the fpp or cpp preprocessors (that is, files with .F, .F90, .F95, or .F03
extensions), or used with the -F option.

–silent

(Obsolete) Suppress compiler messages.

Normally, the f95 compiler does not issue messages, other than error diagnostics,
during compilation. This option flag is provided for compatibility with the legacy
f77 compiler, and its use is redundant except with the -f77 compatibility flag.

–stackvar

Allocate local variables on the stack whenever possible.

This option makes writing recursive and re-entrant code easier and provides the
optimizer more freedom when parallelizing loops.

Use of –stackvar is recommended with any of the parallelization options.

Local variables are variables that are not dummy arguments, COMMON variables,
variables inherited from an outer scope, or module variables made accessible by a
USE statement.

With -stackvar in effect, local variables are allocated on the stack unless they have
the attributes SAVE or STATIC. Note that explicitly initialized variables are
implicitly declared with the SAVE attribute. A structure variable that is not explicitly
initialized but some of whose components are initialized is, by default, not implicitly
declared SAVE. Also, variables equivalenced with variables that have the SAVE or
STATIC attribute are implicitly SAVE or STATIC.

A statically allocated variable is implicitly initialized to zero unless the program
explicitly specifies an initial value for it. Variables allocated on the stack are not
implicitly initialized except that components of structure variables can be initialized
by default.

Putting large arrays onto the stack with –stackvar can overflow the stack causing
segmentation faults. Increasing the stack size may be required.
Chapter 3 Fortran Compiler Options 3-47

The initial thread executing the program has a main stack, while each helper thread
of a multithreaded program has its own thread stack.

The default stack size is about 8 Megabytes for the main stack and 4 Megabytes
(8 Megabytes on SPARC V9 platforms) for each thread stack. The limit command
(with no parameters) shows the current main stack size. If you get a segmentation
fault using –stackvar, try increasing the main and thread stack sizes.

Example: Show the current main stack size:

Example: Set the main stack size to 64 Megabytes:

Example: Set each thread stack size to 8 Megabytes:

For further information of the use of –stackvar with parallelization, see the
“Parallelization” chapter in the Fortran Programming Guide. See csh(1) for details on
the limit command.

Compile with -xcheck=stkovf to enable runtime checking for stack overflow
situations. See Section , “-xcheck=keyword” on page 3-63.

–stop_status[={yes|no}]

Permit STOP statement to return an integer status value.

The default is –stop_status=no.

With –stop_status=yes, a STOP statement may contain an integer constant. That
value will be passed to the environment as the program terminates:

STOP 123

demo% limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes <–––
coredumpsize unlimited
descriptors 64
memorysize unlimited
demo%

demo% limit stacksize 65536

demo% setenv STACKSIZE 8192
3-48 Fortran User’s Guide • January 2005

The value must be in the range 0 to 255. Larger values are truncated and a run–time
message issued. Note that

STOP ‘stop string’

is still accepted and returns a status value of 0 to the environment, although a
compiler warning message will be issued.

The environment status variable is $status for the C shell csh, and $? for the
Bourne and Korn shells, sh and ksh.

–temp=dir

Define directory for temporary files.

Set directory for temporary files used by the compiler to be dir. No space is allowed
within this option string. Without this option, the files are placed in the /tmp
directory.

–time

Time each compilation phase.

The time spent and resources used in each compiler pass is displayed.

–U

Recognize upper and lower case in source files.

Do not treat uppercase letters as equivalent to lowercase. The default is to treat
uppercase as lowercase except within character–string constants. With this option,
the compiler treats Delta, DELTA, and delta as different symbols.

Portability and mixing Fortran with other languages may require use of –U. See the
Fortran Programming Guide chapter on porting programs to Fortran 95.

-Uname

Undefine preprocessor macro name.

This option applies only to source files that invoke the fpp or cpp pre-processor. It
removes any initial definition of the preprocessor macro name created by -Dname on
the same command line, including those implicitly placed there by the
command-line driver, regardless of the order the options appear. It has no effect on
any macro definitions in source files. Multiple -Uname flags can appear on the
command line. There must be no space between -U and the macro name.

–u
Chapter 3 Fortran Compiler Options 3-49

Report undeclared variables.

Make the default type for all variables be undeclared rather than using Fortran
implicit typing. This option warns of undeclared variables, and does not override
any IMPLICIT statements or explicit type statements.

–unroll=n

Enable unrolling of DO loops where possible.

n is a positive integer. The choices are:

■ n=1 inhibits all loop unrolling.
■ n>1 suggests to the optimizer that it attempt to unroll loops n times.

Loop unrolling generally improves performance, but will increase the size of the
executable file. For more information on this and other compiler optimizations, see
the “Performance and Optimization” chapter in the Fortran Programming Guide. See
also Section 2.3.1.3, “The UNROLL Directive” on page 2-11.

-use=list

Specify implicit USE modules.

list is a comma-separated list of module names or module file names.

Compiling with -use=module_name has the effect of adding a USE module_name
statement to each subprogram or module being compiled. Compiling with
-use=module_file_name has the effect of adding a USE module_name for each of the
modules contained in the specified file.

See Section 4.9, “Module Files” on page 4-23 for more information about modules in
Fortran 95.

–V

Show name and version of each compiler pass.

This option prints the name and version of each pass as the compiler executes.

This information may be helpful when discussing problems with Sun service
engineers.

–v

Verbose mode – show details of each compiler pass.

Like –V, shows the name of each pass as the compiler executes, and details the
options, macro flag expansions, and environment variables used by the driver.
3-50 Fortran User’s Guide • January 2005

-vax=keywords

Specify choice of VAX VMS Fortran extensions enabled.

The keywords specifier must be one of the following suboptions or a
comma-delimited list of a selection of these.

Sub-options can be individually selected or turned off by preceeding with no%.

Example:

-vax=debug,rsize,no%blank_zero

–vpara

Show verbose parallelization messages.

As the compiler analyzes loops explicitly marked for parallelization with directives,
it issues warning messages about certain data dependencies it detects; but the loop
will still be parallelized.

Example: Verbose parallelization warnings:

–w[n]

Show or suppress warning messages.

This option shows or suppresses most warning messages. However, if one option
overrides all or part of an option earlier on the command line, you do get a warning.

blank_zero Interpret blanks in formatted input as zeros on internal files.

debug Interpret lines starting with the character 'D' to be regular Fortran
statements rather than comments, as in VMS Fortran.

rsize Interpret unformatted record size to be in words rather than bytes.

struct_align Layout components of a VAX structure in memory as in VMS
Fortran, without padding. Note: this can cause data misalignments.

%all Enable all these VAX VMS features.

%none Disable all these VAX VMS features.

demo% f95 -explicitpar -vpara any.f
any.f:
 MAIN any:
"any.f", line 11: Warning: the loop may have parallelization
inhibiting reference
Chapter 3 Fortran Compiler Options 3-51

n may be 0, 1, 2 ,3, or 4.

-w0 shows just error messages. This is equivalent to -w
-w1 shows errors and warnings. This is the default without -w.
-w2 shows errors, warnings, and cautions.
-w3 shows errors, warnings, cautions, and notes.
-w4 shows errors, warnings, cautions, notes, and comments.

Example: –w still allows some warnings to get through:

–Xlist[x]

Produce listings and do global program checking (GPC).

Use this option to find potential programming bugs. It invokes an extra compiler
pass to check for consistency in subprogram call arguments, common blocks, and
parameters, across the global program. The option also generates a line–numbered
listing of the source code, including a cross reference table. The error messages
issued by the –Xlist options are advisory warnings and do not prevent the
program from being compiled and linked.

Note – Be sure to correct all syntax errors in the source code before compiling with
-Xlist. Unpredictable reports may result when run on a source code with syntax
errors.

Example: Check across routines for consistency:

The above example writes the following to the output file fil.lst:

■ A line–numbered source listing (default)
■ Error messages (embedded in the listing) for inconsistencies across routines
■ A cross reference table of the identifiers (default)

By default, the listings are written to the file name.lst, where name is taken from
the first listed source file on the command line.

demo% f95 -w -parallel any.f
f95: Warning: Optimizer level changed from 0 to 3 to support
parallelized code
demo%

 demo% f95 -Xlist fil.f
3-52 Fortran User’s Guide • January 2005

A number of sub–options provide further flexibility in the selection of actions. These
are specified by suffixes to the main –Xlist option, as shown in the following table

See the Fortran Programming Guide chapter “Program Analysis and Debugging” for
details.

-x386

(x86) Synonym for -xtarget=386

-x486

(x86) Synonym for -xtarget=486

–xa

Synonym for –a.

TABLE 3-9 –Xlist Suboptions

Option Feature

–Xlist Show errors, listing, and cross reference table

–Xlistc Show call graphs and errors

–XlistE Show errors

–Xlisterr[nnn] Suppress error nnn messages

–Xlistf Show errors, listing, and cross references, but no object files

–Xlisth Terminate compilation if errors detected

–XlistI Analyze #include and INCLUDE files as well as source files

–XlistL Show listing and errors only

–Xlistln Set page length to n lines

-XlistMP Check OpenMP directives (SPARC)

–Xlisto name Output report file to name instead of file.lst

–Xlists Suppress unreferenced names from the cross–reference table

–Xlistvn Set checking level to n (1,2,3, or 4) – default is 2

–Xlistw[nnn] Set width of output line to nnn columns – default is 79

–Xlistwar[nnn] Suppress warning nnn messages

–XlistX Show cross–reference table and errors
Chapter 3 Fortran Compiler Options 3-53

-xalias[=keywords]

Specify degree of aliasing to be assumed by the compiler.

Some non-standard programming techniques can introduce situations that interfere
with the compiler’s optimization strategies. The use of overindexing, pointers, and
passing global or non-unique variables as subprogram arguments, can introduce
ambiguous aliasing situations that could result code that does not work as expected.

Use the -xalias flag to inform the compiler about the degree to which the program
deviates from the aliasing requirements of the Fortran standard.

The flag may appear with or without a list of keywords. The keywords list is
comma-separated, and each keyword indicates an aliasing situation present in the
program.

Each keyword may be prefixed by no% to indicate an aliasing type that is not
present.

The aliasing keywords are:

TABLE 3-10 -xalias Option Keywords

keyword meaning

dummy Dummy (formal) subprogram parameters can alias each other and
global variables.

no%dummy (Default). Usage of dummy parameters follows the Fortran standard
and do not alias each other or global variables.

craypointer (Default) (Default). Cray pointers can point at any global variable or
a local variable whose address is taken by the LOC() function. Also,
two Cray pointers might point at the same data. This is a safe
assumption that could inhibit some optimizations.

no%craypointer Cray pointers point only at unique memory addresses, such as
obtained from malloc(). Also, no two Cray pointers point at the
same data. This assumption enables the compiler to optimize Cray
pointer references.

actual The compiler treats actual subprogram arguments as if they were
global variables. Passing an argument to a subprogram might result
in aliasing through Cray pointers.

no%actual (Default) Passing an argument does not result in further aliasing.
3-54 Fortran User’s Guide • January 2005

Specifying -xalias without a list gives the best performance for most programs
that do not violate Fortran aliasing rules, and corresponds to:

no%dummy,no%craypointer,no%actual,no%overindex,no%ftnpointer

To be effective, -xalias should be used when compiling with optimization levels
-xO3 and higher.

The compiler default, with no -xalias flag specified, assumes that the program
conforms to the Fortran 95 standard except for Cray pointers:

no%dummy,craypointer,no%actual,no%overindex,no%ftnpointer

Examples of various aliasing situations and how to specify them with -xalias are
given in the Porting chapter of the Fortran Programming Guide.

overindex • A reference to an element in a COMMON block might refer to any
element in a COMMON block or equivalence group.

• Passing any element of a COMMON block or equivalence group
as an actual argument to a subprogram gives access to any
element of that COMMON block or equivalence group to the
called subprogram.

• Variables of a sequence derived type are treated as if they were
COMMON blocks, and elements of such a variable might alias
other elements of that variable.

• Individual array bounds may be violated, but except as noted
above, the referenced array element is assumed to stay within the
array.
Array syntax, WHERE, and FORALL statements are not considered
for overindexing. If overindexing occurs in these constructs, they
should be rewritten as DO loops.

no%overindex (Default) Array bounds are not violated. Array references do not
reference other variables.

ftnpointer Calls to external functions might cause Fortran pointers to point at
target variables of any type, kind, or rank.

no%ftnpointer (Default) Fortran pointers follow the rules of the standard.

TABLE 3-10 -xalias Option Keywords (Continued)

keyword meaning
Chapter 3 Fortran Compiler Options 3-55

–xarch=isa

Specify instruction set architecture (ISA).

Architectures that are accepted by -xarch keyword isa are shown in TABLE 3-11:

Note that although -xarch can be used alone, it is part of the expansion of the
–xtarget option and may be used to override the –xarch value that is set by a
specific –xtarget option. For example:

% f95 -xtarget=ultra2 -xarch=v8plusb ...

overrides the -xarch=v8 set by -xtarget=ultra2

This option limits the code generated by the compiler to the instructions of the
specified instruction set architecture by allowing only the specified set of
instructions. This option does not guarantee use of any target–specific instructions.

If this option is used with optimization, the appropriate choice can provide good
performance of the executable on the specified architecture. An inappropriate choice
results in a binary program that is not executable on the intended target platform.

TABLE 3-12 summarizes the most general -xarch options on SPARC platforms.

Also note the following:

■ SPARC instruction set architectures V7, V8, and V8a are all binary compatible.

TABLE 3-11 –xarch ISA Keywords

Platform Valid -xarch Keywords

SPARC generic, generic64, native, native64, v7, v8a, v8, v8plus,
v8plusa, v8plusb, v9, v9a, v9b

x86 generic, native, 386, pentium_pro, sse, sse2, amd64

TABLE 3-12 Most General -xarch Options on SPARC Platforms

-xarch= Performance

generic • runs adequately on all supported platforms

v8plusa • runs optimally on UltraSPARC-II processors in 32-bit mode

v8plusb • runs optimally on UltraSPARC-III processors in 32-bit mode
• no execution on other platforms

v9a • runs optimally on UltraSPARC-II processors in 64-bit mode
• no execution on other platforms

v9b • runs optimally on UltraSPARC-III processors in 64-bit mode
• no execution on other platforms
3-56 Fortran User’s Guide • January 2005

■ Object binary files (.o) compiled with v8plus and v8plusa can be linked and
can execute together, but only on a SPARC V8plusa compatible platform.

■ Object binary files (.o) compiled with v8plus, v8plusa, and v8plusb can be
linked and can execute together, but only on a SPARC V8plusb compatible
platform.

■ -xarch values v9, v9a, and v9b are only available on UltraSPARC 64–bit Solaris
environments.

■ Object binary files (.o) compiled with v9 and v9a can be linked and can execute
together, but will run only on a SPARC V9a compatible platform.

■ Object binary files (.o) compiled with v9, v9a, and v9b can be linked and can
execute together, but will run only on a SPARC V9b compatible platform.

For any particular choice, the generated executable may run much more slowly on
earlier architectures. Also, although quad-precision (REAL*16 and long double)
floating-point instructions are available in many of these instruction set
architectures, the compiler does not use these instructions in the code it generates.

The default when -xarch is not specified is v8plus on SPARC platforms, 386 on x86
platforms.

TABLE 3-13 gives details for each of the -xarch keywords on SPARC platforms.

TABLE 3-13 -xarch Values for SPARC Platforms

-xarch= Meaning (SPARC)

generic Compile for good performance on most 32-bit systems.
This is the default. This option uses the best instruction set for good
performance on most processors without major performance degradation on
any of them. With each new release, the definition of “best” instruction set
may be adjusted, if appropriate, and is currently v8plus.

generic64 Compile for good performance on most 64-bit enabled systems.
This option uses the best instruction set for good performance on most
64-bit enabled processors without major performance degradation on any of
them. With each new release, the definition of “best” instruction set may be
adjusted, if appropriate, and is currently interpreted as v9.

native Compile for good performance on this system.
This is the default for the -fast option. The compiler chooses the
appropriate setting for the current system processor it is running on.

native64 Compile for good performance in 64-bit mode on this system.
Like native, compiler chooses the appropriate setting for 64-bit mode on
the current system processor it is running on.
Chapter 3 Fortran Compiler Options 3-57

v7 Compile for the SPARC-V7 ISA.
Enables the compiler to generate code for good performance on the V7 ISA.
This is equivalent to using the best instruction set for good performance on
the V8 ISA, but without integer mul and div instructions, and the fsmuld
instruction.
Examples: SPARCstation 1, SPARCstation 2

v8a Compile for the V8a version of the SPARC-V8 ISA.
By definition, V8a means the V8 ISA, but without the fsmuld instruction.
This option enables the compiler to generate code for good performance on
the V8a ISA.
Example: Any system based on the microSPARC I chip architecture

v8 Compile for the SPARC-V8 ISA.
Enables the compiler to generate code for good performance on the V8
architecture.
Example: SPARCstation 10

v8plus Compile for the V8plus version of the SPARC-V9 ISA.
By definition, V8plus means the V9 ISA, but limited to the 32–bit subset
defined by the V8plus ISA specification, without the Visual Instruction Set
(VIS), and without other implementation-specific ISA extensions.
• This option enables the compiler to generate code for good performance

on the V8plus ISA.
• The resulting object code is in SPARC-V8+ ELF32 format and only

executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusa Compile for the V8plusa version of the SPARC-V9 ISA.
By definition, V8plusa means the V8plus architecture, plus the Visual
Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.
• This option enables the compiler to generate code for good performance

on the UltraSPARC architecture, but limited to the 32–bit subset defined
by the V8plus specification.

• The resulting object code is in SPARC-V8+ ELF32 format and only
executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.

Example: Any system based on the UltraSPARC chip architecture

TABLE 3-13 -xarch Values for SPARC Platforms (Continued)

-xarch= Meaning (SPARC)
3-58 Fortran User’s Guide • January 2005

v8plusb Compile for the V8plusb version of the SPARC-V8plus ISA with
UltraSPARC-III extensions.
Enables the compiler to generate object code for the UltraSPARC
architecture, plus the Visual Instruction Set (VIS) version 2.0, and with
UltraSPARC-III extensions.
• The resulting object code is in SPARC-V8+ ELF32 format and executes

only in a Solaris UltraSPARC-III environment.
• Compiling with this option uses the best instruction set for good

performance on the UltraSPARC-III architecture.

v9 Compile for the SPARC–V9 ISA.
Enables the compiler to generate code for good performance on the V9
SPARC architecture.
• The resulting .o object files are in ELF64 format and can only be linked

with other SPARC-V9 object files in the same format.
• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit
kernel.

• –xarch=v9 is only available when compiling in a 64–bit enabled Solaris
environment.

v9a Compile for the SPARC–V9 ISA with UltraSPARC extensions.
Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions
specific to UltraSPARC processors, and enables the compiler to generate
code for good performance on the V9 SPARC architecture.
• The resulting .o object files are in ELF64 format and can only be linked

with other SPARC-V9 object files in the same format.
• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit
kernel.

• –xarch=v9a is only available when compiling in a 64–bit enabled Solaris
operating environment.

v9b Compile for the SPARC-V9 ISA with UltraSPARC-III extensions.
Adds UltraSPARC-III extensions and VIS version 2.0 to the V9a version of
the SPARC-V9 ISA. Compiling with this option uses the best instruction set
for good performance in a Solaris UltraSPARC-III environment.
• The resulting object code is in SPARC-V9 ELF64 format and can only be

linked with other SPARC-V9 object files in the same format.
• The resulting executable can only be run on an UltraSPARC-III processor

running a 64–bit enabled Solaris operating environment with the 64–bit
kernel.

• –xarch=v9b is only available when compiling in a 64–bit enabled Solaris
operating environment.

TABLE 3-13 -xarch Values for SPARC Platforms (Continued)

-xarch= Meaning (SPARC)
Chapter 3 Fortran Compiler Options 3-59

TABLE 3-14 details each of the -xarch keywords on x86 platforms. The default on x86
is generic if -xarch is not specified.

Cautions on x86 Platforms:

Programs compiled with -xarch={sse|sse2} to run on Solaris x86 SSE/SSE2
Pentium 4-compatible platforms must be run only on platforms that are SSE/SSE2
enabled. Running such programs on platforms that are not SSE/SSE2-enabled could
result in segmentation faults or incorrect results occuring without any explicit
warning messages. Patches to the OS and compilers to prevent execution of
SSE/SSE2-compiled binaries on platforms not SSE/SSE2-enabled might be made
available at a later date.

OS releases starting with Solaris 9/04 are SSE/SSE2-enabled on Pentium
4-compatible platforms. Earlier versions of Solaris OS are not SSE/SSE2-enabled.
This warning extends also to programs that employ .il inline assembly language
functions or __asm() assembler code that utililize SSE/SSE2 instructions.

If you compile and link in separate steps, always link using the compiler and with
-xarch={sse|sse2} to ensure that the correct startup routine is linked.

Arithmetic results on x86 may differ from results on SPARC due to the x86 80-bit
floating-point registers. To minimize these differences, use the -fstore option or
compile with -xarch=sse2 if the hardware supports SSE2.

TABLE 3-14 -xarch Values for x86 Platforms

-xarch= Meaning (x86)

generic Compile for good performance on most 32-bit x86 platforms. This is
the default, and is equivalent to -xarch=386.

generic64 Compile for good performance on most 64-bit x86 platforms. It is
interpreted as amd64 currently.

native Compile for good performance on this x86 architecture. Use the best
instruction set for good performance on most x86 processors. With
each new release, the definition of “best” instruction set may be
adjusted, if appropriate.

native64 Compile for good performance on this 64-bit x86 architecture.

386 Limits instruction set to the Intel 386/486 architecture.

pentium_pro Limits instruction set to the Pentium Pro architecture.

sse Adds the SSE instruction set to pentium_pro. (See Note below.)

sse2 Adds the SSE2 instruction set to the pentium_pro. (See Note
below.)

amd64 Compile for AMD64 64-bit x86 instruction set.
3-60 Fortran User’s Guide • January 2005

-xassume_control[=keywords]

Set parameters to control ASSUME pragmas.

Use this flag to control the way the compiler handles ASSUME pragmas in the source
code.

The ASSUME pragmas provide a way for the programmer to assert special
information that the compiler can use for better optimization. These assertions may
be qualified with a probability value. Those with a probability of 0 or 1 are marked
as certain; otherwise they are considered non-certain.

You can also assert, with a probability or certainty, the trip count of an upcoming
DO loop, or that an upcoming branch will be taken.

See Section 2.3.1.9, “The ASSUME Directives” on page 2-13, for a description of the
ASSUME pragmas recognized by the f95 compiler.

The keywords on the -xassume_control option can be a single suboption keyword
or a comma-separated list of keywords. The keyword suboptions recognized are:

The compiler default is

 -xassume_control=optimize

This means that the compiler recognizes ASSUME pragmas and they will affect
optimization, but no checking is done.

If specified without parameters, -xassume_control implies

 -xassume_control=check,fatal

optimize The assertions made on ASSUME pragmas affect optimization of
the program.

check The compiler generates code to check the correctness of all
assertions marked as certain, and emits a runtime message if the
assertion is violated; the program continues if fatal is not also
specified.

fatal When used with check, the program will terminate when an
assertion marked certain is violated.

retrospective[:d] The d parameter is an optional tolerance value, and must be a
real positive constant less than 1. The default is ".1".
retrospective compiles code to count the truth or falsity of all
assertions. Those outside the tolerance value d are listed on
output at program termination.

%none All ASSUME pragmas are ignored.
Chapter 3 Fortran Compiler Options 3-61

In this case the compiler accepts and checks all certain ASSUME pragmas, but they do
not affect optimization. Assertions that are invalid cause the program to terminate.

–xautopar

Synonym for –autopar.

–xcache=c

Define cache properties for the optimizer.

c must be one of the following:

■ generic
■ native
■ s1/l1/a1
■ s1/l1/a1:s2/l2/a2
■ s1/l1/a1:s2/l2/a2:s3/l3/a3

The si/li/ai are defined as follows:

siThe size of the data cache at level i, in kilobytes
liThe line size of the data cache at level i, in bytes
aiThe associativity of the data cache at level i

This option specifies the cache properties that the optimizer can use. It does not
guarantee that any particular cache property is used.

Although this option can be used alone, it is part of the expansion of the
–xtarget option; it is provided to allow overriding an –xcache value implied by a
specific –xtarget option.

Example: –xcache=16/32/4:1024/32/1 specifies the following:

A Level 1 cache has: 16K bytes, 32 byte line size, 4–way associativity.

TABLE 3-15 –xcache Values

Value Meaning

generic Define the cache properties for good performance on
most processors without any major performance
degradation. This is the default.

native Define the cache properties for good performance on
this host platform.

s1/l1/a1 Define level 1 cache properties.

s1/l1/a1:s2/l2/a2 Define levels 1 and 2 cache properties.

s1/l1/a1:s2/l2/a2:s3/l3/a3 Define levels 1, 2, and 3 cache properties
3-62 Fortran User’s Guide • January 2005

A Level 2 cache has: 1024K bytes, 32 byte line size, direct mapping associativity.

–xcg89

(SPARC) Synonym for –cg89.

–xcg92

(SPARC) Synonym for –cg92.

-xcheck=keyword

Generate special runtime checks and initializations.

The keyword must be one of the following:

Stack overflows, especially in multithreaded applications with large arrays allocated
on the stack, can cause silent data corruption in neighboring thread stacks. Compile
all routines with -xcheck=stkovf if stack overflow is suspected. But note that
compiling with this flag does not guarantee that all stack overflow situations will be
detected since they could occur in routines not compiled with this flag.

–xchip=c

Specify target processor for the optimizer.

This option specifies timing properties by specifying the target processor.

keyword Feature

stkovf Turn on runtime checking for stack overflow on subprogram entry.
If a stack overflow is detected, a SIGSEGV segment fault will be
raised. (SPARC only)

no%stkovf Disable runtime checking for stack overflow. (SPARC only)

init_local Perform special initialization of local variables.
The compiler initializes local variables to a value that is likely to
cause an arithmetic exception if it is used by the program before it is
assigned. Memory allocated by the ALLOCATE statement will also be
initialized in this manner.
Module variables, SAVE variables, and variables in COMMON blocks
are not initialized.

no%init_local Disable local variable initialization. This is the default.

%all Turn on all these runtime checking features.

%none Disable all these runtime checking features.
Chapter 3 Fortran Compiler Options 3-63

Although this option can be used alone, it is part of the expansion of the
–xtarget option; it is provided to allow overriding a –xchip value implied by the
a specific –xtarget option.

Some effects of –xchip=c are:

■ Instruction scheduling
■ The way branches are compiled
■ Choice between semantically equivalent alternatives

The following tables list the valid –xchip processor name values:

The following are older, less common -xchip processor names and are listed here
for reference purposes only:

TABLE 3-16 Common –xchip SPARC Processor Names

-xchip= Optimize for:

generic most SPARC processors. (This is the default.)

native this host platform.

ultra the UltraSPARC processor.

ultra2 the UltraSPARC II processor.

ultra2e the UltraSPARC IIe processor.

ultra2i the UltraSPARC IIi processor.

ultra3 the UltraSPARC III processor.

ultra3cu the UltraSPARC IIIcu processor.

ultra4 the UltraSPARC IV processor

TABLE 3-17 Less Common -xchip SPARC Processor Names

-xchip= Optimize for:

old pre–SuperSPARC processors.

super the SuperSPARC processor.

super2 the SuperSPARC II processor.

micro the MicroSPARC processor.

micro2 the MicroSPARC II processor.

hyper the HyperSPARC processor.

hyper2 the HyperSPARC II processor.

powerup the Weitek PowerUp processor.
3-64 Fortran User’s Guide • January 2005

On x86 platforms: the -xchip values are 386, 486, pentium, pentium_pro,
pentium3, pentium4, opteron, generic, and native.

–xcode=keyword

(SPARC) Specify code address space on SPARC platforms.

The values for keyword are:

The defaults (not specifying -xcode=keyword explicitly) are:

–xcode=abs32 on SPARC V8 and V7 platforms.
–xcode=abs44 on UltraSPARC V9 (–xarch=v9 platforms)

Position-Independent Code:

Use -xcode=pic13 or -xcode=pic32 when creating dynamic shared libraries to
improve runtime performance.

While the code within a dynamic executable is usually tied to a fixed address in
memory, position-independent code can be loaded anywhere in the address space of
the process.

When you use position-independent code, relocatable references are generated as an
indirect reference through a global offset table. Frequently accessed items in a
shared object will benefit from compiling with -xcode=pic13 or -xcode=pic32
by not requiring the large number of relocations imposed by code that is not
position-independent.

The size of the global offset table is limited to 8Kb.

keyword Feature

abs32 Generate 32-bit absolute addresses. Code+data+bss size is limited to
2**32 bytes. This is the default on 32-bit platforms:
-xarch=generic, v7, v8, v8a, v8plus, v8plusa

abs44 Generate 44-bit absolute addresses. Code+data+bss size is limited to
2**44 bytes. Available only on 64-bit platforms: -xarch=v9, v9a

abs64 Generate 64-bit absolute addresses. Available only on 64-bit
platforms: -xarch=v9, v9a

pic13 Generate position-independent code (small model). Equivalent to
-pic. Permits references to at most 2**11 unique external symbols
on 32-bit platforms, 2**10 on 64-bit platforms.

pic32 Generate position-independent code (large model). Equivalent to
-PIC. Permits references to at most 2**30 unique external symbols
on 32-bit platforms, 2**29 on 64-bit platforms.
Chapter 3 Fortran Compiler Options 3-65

There are two nominal performance costs with -xcode={pic13|pic32} :

■ A routine compiled with either -xcode=pic13 or -xcode=pic32 executes a few
extra instructions upon entry to set a register to point at the global offset table
used for accessing a shared library’s global or static variables.

■ Each access to a global or static variable involves an extra indirect memory
reference through the global offset table. If the compile is done with pic32, there
are two additional instructions per global and static memory reference.

When considering the above costs, remember that the use of -xcode=pic13 or
-xcode=pic32 can significantly reduce system memory requirements, due to the
effect of library code sharing. Every page of code in a shared library compiled
-xcode=pic13 or -xcode=pic32 can be shared by every process that uses the
library. If a page of code in a shared library contains even a single non-pic (that is,
absolute) memory reference, the page becomes nonsharable, and a copy of the page
must be created each time a program using the library is executed.

The easiest way to tell whether or not a .o file has been compiled with
-xcode=pic13 or -xcode=pic32 is with the nm command:

nm file.o | grep _GLOBAL_OFFSET_TABLE_

A .o file containing position-independent code will contain an unresolved external
reference to _GLOBAL_OFFSET_TABLE_ as marked by the letter U.

To determine whether to use -xcode=pic13 or -xcode=pic32, check the size of the
Global Offset Table (GOT) by using elfdump -c (see the elfdump(1) man page for
more information) and for the section header, sh_name: .got. The sh_size value is
the size of the GOT. If the GOT is less than 8,192 bytes, specify -xcode=pic13,
otherwise specify -xcode=pic32.

In general, use the following guidelines to determine how you should use -xcode:

■ If you are building an executable you should not use -xcode=pic13 or
-xcode=pic32.

■ If you are building an archive library only for linking into executables you should
not use -xcode=pic13 or -xcode=pic32.

■ If you are building a shared library, start with -xcode=pic13 and once the GOT
size exceed 8,192 bytes, use -xcode=pic32.

■ If you are building an archive library for linking into shared libraries you should
just use -xcode=pic32.

Compiling with the -xcode=pic13 or pic32 (or -pic or -PIC) options is
recommended when building dynamic libraries. See the Solaris Linker and Libraries
Guide.
3-66 Fortran User’s Guide • January 2005

–xcommonchk[={yes|no}]

Enable runtime checking of common block inconsistencies.

This option provides a debug check for common block inconsistencies in programs
using TASK COMMON and parallelization. (See the discussion of the TASK COMMON
directive in the “Parallelization” chapter in the Fortran Programming Guide.)

The default is –xcommonchk=no; runtime checking for common block
inconsistencies is disabled because it will degrade performance. Use
-xcommonchk=yes only during program development and debugging, and not for
production-quality programs.

Compiling with –xcommonchk=yes enables runtime checking. If a common block
declared in one source program unit as a regular common block appears somewhere
else on a TASK COMMON directive, the program will stop with an error message
indicating the first such inconsistency. -xcommonchk without a value is equivalent
to -xcommonchk=yes.

Example: Missing TASKCOMMON directive in tc.f

demo% cat tc.f
 common /x/y(1000)
 do 1 i=1,1000
 1 y(i) = 1.
 call z(57.)
 end
demo% cat tz.f
 subroutine z(c)
 common /x/h(1000)
C$PAR TASKCOMMON X
C$PAR DOALL
 do 1 i=1,1000
1 h(i) = c* h(i)
 return
 end
demo% f95 -c -O4 -parallel -xcommonchk tc.f
demo% f95 -c -O4 -parallel -xcommonchk tz.f
demo% f95 -o tc -O4 -parallel -xcommonchk tc.o tz.o
demo% tc
ERROR(libmtsk): inconsistent declaration of
threadprivate/taskcommon
 x_: not declared as threadprivate/taskcommon at line 1 of tc.f
demo%
Chapter 3 Fortran Compiler Options 3-67

–xcrossfile[={1|0}]

Enable optimization and inlining across source files.

Normally, the scope of the compiler’s analysis is limited to each separate file on the
command line. For example, –O4’s automatic inlining is limited to subprograms
defined and referenced within the same source file.

With –xcrossfile, the compiler analyzes all the files named on the command line
as if they had been concatenated into a single source file.

–xcrossfile is only effective when used with –O4 or –O5.

Cross–file inlining creates a possible source file interdependence that would not
normally be there. If any file in a set of files compiled together with
–xcrossfile is changed, then all files must be recompiled to insure that the new
code is properly inlined. See Section , “–inline=[%auto][[,][no%]f1,…[no%]fn]” on
page 3-32.

The default, without –xcrossfile on the command line, is -xcrossfile=0, and
no cross-file optimizations are performed. To enable cross-file optimizations, specify
–xcrossfile (equivalent to –xcrossfile=1).

Any .s assmbler source files in the compilation do not participate in the crossfile
analysis. Also, the -xcrossfile flag is ignored if compiling with -S.

-xdebugformat={stabs|dwarf}

Sun Studio compilers are migrating the format of debugger information from the
"stabs" format to the "dwarf" format. The default setting for this release is
-xdebugformat=stabs.

If you maintain software which reads debugging information, you now have the
option to transition your tools from the stabs format to the dwarf format.

Use this option as a way of accessing the new format for the purpose of porting
tools. There is no need to use this option unless you maintain software which reads
debugger information, or unless a specific tool tells you that it requires debugger
information in one of these formats.

-xdebugformat=stabs generates debugging information using the stabs standard
format.

-xdebugformat=dwarf generates debugging information using the dwarf
standard format.

If you do not specify -xdebugformat, the compiler assumes
-xdebugformat=stabs. It is an error to specify the option without an argument.
3-68 Fortran User’s Guide • January 2005

This option affects the format of the data that is recorded with the -g option. Some
the format of that information is also controlled with this option. So
-xdebugformat has a an effect even when -g is not used.

The dbx and Performance Analyzer software understand both stabs and dwarf
format so using this option does not have any effect on the functionality of either
tool.

This is a transitional interface so expect it to change in incompatible ways from
release to release, even in a minor release. The details of any specific fields or values
in either stabs or dwarf are also evolving.

–xdepend

Synonym for –depend.

–xexplicitpar

Synonym for –explicitpar.

–xF

Allow function–level reordering by the Performance Analyzer.

Allow the reordering of functions (subprograms) in the core image using the
compiler, the performance analyzer and the linker. If you compile with the -xF
option, then run the analyzer, you can generate a map file that optimizes the
ordering of the functions in memory depending on how they are used together. A
subsequent link to build the executable file can be directed to use that map by using
the linker -Mmapfile option. It places each function from the executable file into a
separate section.

Reordering the subprograms in memory is useful only when the application text
page fault time is consuming a large percentage of the application time. Otherwise,
reordering may not improve the overall performance of the application. See the
Program Performance Analysis Tools manual for further information on the analyzer.
Chapter 3 Fortran Compiler Options 3-69

-xfilebyteorder=options

Support file sharing between little-endian and big-endian platforms.

The flag identifies the byte-order and byte-alignment of data on unformatted I/O
files. options must specify any combination of the following, but at least one
specification must be present:

littlemax_align:spec

bigmax_align:spec

native:spec

max_align declares the maximum byte alignment for the target platform. Permitted
values are 1, 2, 4, 8, and 16. The alignment applies to Fortran VAX structures and
Fortran 95 derived types that use platform-dependent alignments for compatibility
with C language structures.

little specifies a "little-endian" file on platforms where the maximum byte
alignment is max_align. For example, little4 specifies a 32-bit x86 file, while
little16 describes a 64-bit x86 file.

big specifies a "big-endian" file with a maximum alignment of max_align. For
example, big8 describes a SPARCV8 (32-bit) file, while big16 describesa SPARC V9
(64-bit) file.

native specifies a "native" file with the same byte order and alignment used by the
compiling processor platform. The following are assumed to be "native":

spec must be a comma-separated list of the following:

%all

unit

filename

%all refers to all files and logical units except those opened as "SCRATCH", or
named explicitly elsewhere in the -xfilebyteorder flag. %all can only appear
once.

unit refers to a specific Fortran unit number opened by the program.

Platform "native" corresponds to:

32-bit SPARC V8 big8

64-bit SPARC V9 big16

32-bit x86 little4

64-bit x86 (amd64) little16
3-70 Fortran User’s Guide • January 2005

filename refers to a specific Fortran file name opened by the program.

Examples:

-xfilebyteorder=little4:1,2,afile.in,big8:9,bfile.out,12
-xfilebyteorder=little8:%all,big16:20

Notes:

This option does not apply to files opened with STATUS="SCRATCH". I/O
operations done on these files are always with the byte-order and byte-alignment of
the native processor.

The first default, when -xfilebyteorder does not appear on the command line, is
-xfilebyteorder=native:%all.

A file name or unit number can be declared only once in this option.

When -xfilebyteorder does appear on the command line, it must appear with at
least one of the little, big, or native specifications.

Files not explicitly declared by this flag are assumed to be native files. For example,
compiling with -xfilebyteorder=little4:zork.out declares zork.out to be
a little-endian 32-bit x86 file with a 4-byte maximum data alignment. All other files
in the program are native files.

When the byte-order specified for a file is the same as the native processor but a
different alignment is specified, the appropriate padding will be used even though
no byte swapping is done. For example,this would be the case when compiling with
-xarch=amd64 for 64-bit x86 platforms and
-xfilebyteorder=little4:filename is specified.

The declared types in data records shared between big-endian and little-endian
platforms must have the same sizes. For example, a file produced by a SPARC
executable compiled with -xtypemap=integer:64,real:64,double:128
cannot be read by an x86 executable compiled with
-xtypemap=integer:64,real:64,double:64 since the default double precision
datatypes will have different sizes.

Note that unformatted files containing REAL*16 data cannot be used on x86
platforms, which do not support REAL*16.

An I/O operation withan entire UNION/MAP data object on a file specified as
non-native will result in a runtime I/O error. You can only execute I/O operations
using the individual members of the MAP (and not an entire VAX record containing
the UNION/MAP) on non-native files.

-xhasc[={yes|no}]

Treat Hollerith constant as a character string in an actual argument list.
Chapter 3 Fortran Compiler Options 3-71

With -xhasc=yes, the compiler treats Hollerith constants as character strings when
they appear as an actual argument on a subroutine or function call. This is the
default, and complies with the Fortran standard. (The actual call list generated by
the compiler contains hidden string lengths for each character string.)

With -xhasc=no, Hollerith constants are treated as typeless values in subprogram
calls, and only their addresses are put on the actual argument list. (No string length
is generated on the actual call list passed to the subprogram.)

Compile routines with -xhasc=no if they call a subprogram with a Hollerith
constant and the called subprogram expects that argument as INTEGER (or anything
other than CHARACTER).

Example:

Passing 4habcd to z is handled correctly by compiling with -xhasc=no.

This flag is provided to aid porting legacy Fortran 77 programs.

–xhelp={readme|flags}

Show summary help information.

-xhelp=readme Show the online README file for this release of the compiler.
-xhelp=flags List the compiler option flags. Equivalent to -help.

-xia[={widestneed|strict}]

(SPARC) Enable interval arithmetic extensions and set a suitable floating-point
environment.

The default if not specified is -xia=widestneed.

demo% cat hasc.f
 call z(4habcd, ’abcdefg’)
 end
 subroutine z(i, s)
 integer i
 character *(*) s
 print *, "string length = ", len(s)
 return
 end
demo% f95 -o has0 hasc.f
demo% has0
 string length = 4 <-- should be 7
demo% f95 -o has1 -xhasc=no hasc.f
demo% has1
 string length = 7 <-- now correct length for s
3-72 Fortran User’s Guide • January 2005

Fortran 95 extensions for interval arithmetic calculations are detailed in the Interval
Arithmetic Programming Reference. See also Section ,
“-xinterval[={widestneed|strict|no}]” on page 3-73.

The -xia flag is a macro that expands as follows:

–xild{off|on}

Enable/disable the Incremental Linker, ild.

-xildoff disables the use of the incremental linker, ild. The standard linker, ld, is
used instead. -xildon enables use of ild instead of ld.

-xildoff is the default. With previous releases of the compilers, -xildon was the
default when compiling only object files with -g. To force the use of ild in
link-only compiles with -g, include the -xildon option explicitly.

See Section , “–g” on page 3-30, and the section on ild in the C User’s Guide.

–xinline=list

Synonym for –inline.

-xinterval[={widestneed|strict|no}]

(SPARC) Enable interval arithmetic extensions.

The optional value can be one of either no, widestneed or strict. The default if
not specified is widestneed.

Fortran 95 extensions for interval arithmetic calculations are detailed in the
Fortran 95 Interval Arithmetic Programming Reference. See also Section ,
“-xia[={widestneed|strict}]” on page 3-72.

-xia or
-xia=widestneed

-xinterval=widestneed -ftrap=%none -fns=no -fsimple=0

-xia=strict -xinterval=strict -ftrap=%none -fns=no -fsimple=0

no Interval arithmetic extensions not enabled.

widestneed Promotes all non-interval variables and literals in any mixed-mode
expression to the widest interval data type in the expression.

strict Prohibits mixed-type or mixed-length interval expressions. All interval type
and length conversions must be explicit.
Chapter 3 Fortran Compiler Options 3-73

-xipo[={0|1|2}]

(SPARC) Perform interprocedural optimizations.

Performs whole-program optimizations by invoking an interprocedural analysis
pass. Unlike -xcrossfile, -xipo will perform optimizations across all object files
in the link step, and is not limited to just the source files on the compile command.

-xipo is particularly useful when compiling and linking large multi-file
applications. Object files compiled with this flag have analysis information compiled
within them that enables interprocedural analysis across source and pre-compiled
program files. However, analysis and optimization is limited to the object files
compiled with -xipo, and does not extend to object files on libraries.

-xipo=0 disables, and -xipo=1 enables, interprocedural analysis. -xipo=2 adds
interprocedural aliasing analysis and memory allocation and layout optimizations to
improve cache performance. The default is -xipo=0, and if -xipo is specified
without a value, -xipo=1 is used.

When compiling with -xipo=2, there should be no calls from functions or
subroutines compiled without -xipo=2 (for example, from libraries) to functions or
subroutines compiled with -xipo=2.

As an example, if you interpose on the function malloc() and compile your own
version of malloc() with -xipo=2, all the functions that reference malloc() in any
library linked with your code would also have to be compiled with -xipo=2. Since
this might not be possible for system libraries, your version of malloc should not be
compiled with -xipo=2.

When compiling and linking are performed in separate steps, -xipo must be
specified in both steps to be effective.

Example using -xipo in a single compile/link step:

The optimizer performs crossfile inlining across all three source files. This is done in
the final link step, so the compilation of the source files need not all take place in a
single compilation and could be over a number of separate compilations, each
specifying -xipo.

Example using -xipo in separate compile/link steps:

demo% f95 -xipo -xO4 -o prog part1.f part2.f part3.f

demo% f95 -xipo -xO4 -c part1.f part2.f
demo% f95 -xipo -xO4 -c part3.f
demo% f95 -xipo -xO4 -o prog part1.o part2.o part3.o
3-74 Fortran User’s Guide • January 2005

The object files created in the compile steps have additional analysis information
compiled within them to permit crossfile optimizations to take place at the link step.

A restriction is that libraries, even if compiled with -xipo do not participate in
crossfile interprocedural analysis, as shown in this example:

Here interprocedural optimizations will be performed between one.f, two.f and
three.f, and between main.f and four.f, but not between main.f or four.f
and the routines on mylib.a. (The first compilation may generate warnings about
undefined symbols, but the interprocedural optimizations will be performed because
it is a compile and link step.)

Other important information about -xipo:

■ requires at least optimization level -xO4

■ conflicts with -xcrossfile; if used together will result in a compilation error

■ objects compiled without -xipo can be linked freely with objects compiled with
-xipo.

■ The -xipo option generates significantly larger object files due to the additional
information needed to perform optimizations across files. However, this
additional information does not become part of the final executable binary file.
Any increase in the size of the executable program will be due to the additional
optimizations performed

■ In this release, crossfile subprogram inlining is the only interprocedural
optimization performed by -xipo.

■ .s assembly language files do not participate in interprocedural analysis.

■ The -xipo flag is ignored if compiling with -S.

When Not To Compile With -xipo:

Working with the set of object files in the link step, the compiler tries to perform
whole-program analysis and optimizations. For any function or subroutine foo()
defined in this set of object files, the compiler makes the following two
assumptions:

(1) At runtime, foo() will not be called explicitly by another routine defined
outside this set of object files, and

(2) calls to foo() from any routine in the set of object files will be not be
interposed upon by a different version of foo() defined outside this set of object
files.

demo% f95 -xipo -xO4 one.f two.f three.f
demo% ar -r mylib.a one.o two.o three.o
...
demo% f95 -xipo -xO4 -o myprog main.f four.f mylib.a
Chapter 3 Fortran Compiler Options 3-75

If assumption (1) is not true for the given application, do not compile with
-xipo=2.
If assumption (2) is not true, do not compile with either -xipo=1 or -xipo=2.

As an example, consider interposing on the function malloc() with your own
source version and compiling with -xipo=2. Then all the functions in any library
that reference malloc() that are linked with your code would have to also be
compiled with -xipo=2 and their object files would need to participate in the link
step. Since this might not be possible for system libraries, your version of malloc
should not be compiled with -xipo=2.

As another example, suppose that you build a shared library with two external
calls, foo() and bar() inside two different source files, and bar() calls foo()
inside its body. If there is a possibility that the function call foo() could be
interposed at runtime, then compile neither source file for foo() or bar() with
-xipo=1 or -xipo=2. Otherwise, foo() could be inlined into bar(), which could
cause incorrect results when compiled with -xipo.

-xipo_archive[={none|readonly|writeback}]

(SPARC) Allow crossfile optimization to include archive (.a) libraries.

The value must be one of the following:

If you do not specify a setting for -xipo_archive, the compiler assumes
-xipo_archive=none.

-xjobs=n

Compile with multiple processors.

Specify the -xjobs option to set how many processes the compiler creates to
complete its work. This option can reduce the build time on a multi-cpu machine. In
this release of the f95 compiler, -xjobs works only with the -xipo option. When
you specify -xjobs=n, the interprocedural optimizer uses n as the maximum
number of code generator instances it can invoke to compile different files.

writeback The compiler optimizes object files passed to the linker with object
files compiled with -xipo that reside in the .a archive library
before producing an executable. Any object files contained in the
library that were optimized during the compilation are replaced
with their optimized version.

readonly The compiler optimizes object files passed to the linker with object
files compiled with -xipo that reside in the .a archive library
before producing an executable.

none No processing of archive files is performed.
3-76 Fortran User’s Guide • January 2005

Generally, a safe value for n is 1.5 multiplied by the number of available processors.
Using a value that is many times the number of available processors can degrade
performance because of context switching overheads among spawned jobs. Also,
using a very high number can exhaust the limits of system resources such as swap
space.

You must always specify -xjobs with a value. Otherwise an error diagnostic is
issued and compilation aborts.

Multiple instances of -xjobs on the command line override each other until the
rightmost instance is reached.

The following example compiles more quickly on a system with two processors than
the same command without the -xjobs option.

example% f95 -xipo -xO4 -xjobs=3 t1.f t2.f t3.f

-xknown_lib=library_list

Recognize calls to a known library.

When specified, the compiler treats references to certain known libraries as
intrinsics, ignoring any user-supplied versions. This enables the compiler to perform
optimizations over calls to library routines based on its special knowledge of that
library.

The library_list is a comma-delimited list of keywords currently to blas, blas1,
blas2, blas3, and intrinsics. The compiler recognizes calls to the following
BLAS1, BLAS2, and BLAS3 library routines and is free to optimize appropriately for
the Sun Performance Library implementation. The compiler will ignore
user-supplied versions of these library routines and link to the BLAS routines in the
Sun Performance Library.
Chapter 3 Fortran Compiler Options 3-77

-xlang=f77

(SPARC) Prepare for linking with runtime libraries compiled with earlier versions of
f77.

f95 -xlang=f77 implies linking with the f77compat library, and is a shorthand
way for linking Fortran 95 object files with older Fortran 77 object files. Compiling
with this flag insures the proper runtime environment.

Use f95 -xlang=f77 when linking f95 and f77 compiled objects together into a
single executable.

Note the following when compiling with -xlang:

■ Do not compile with both -xnolib and -xlang.

-xknown_lib= Feature

blas1 The compiler recognizes calls to the following BLAS1 library
routines:
caxpy ccopy cdotc cdotu crotg cscal csrot
csscal cswap dasum daxpy dcopy ddot drot
drotg drotm drotmg dscal dsdot dswap dnrm2
dzasum dznrm2 icamax idamax isamax izamax sasum
saxpy scasum scnrm2 scopy sdot sdsdot snrm2
srot srotg srotm srotmg sscal sswap zaxpy
zcopy zdotc zdotu zdrot zdscal zrotg zscal
zswap

blas2 The compiler recognizes calls to the following BLAS2 library
routines:
cgemv cgerc cgeru ctrmv ctrsv dgemv
dger dsymv dsyr dsyr2 dtrmv dtrsv
sgemv sger ssymv ssyr ssyr2 strmv
strsv zgemv zgerc zgeru ztrmv ztrsv

blas3 The compiler recognizes calls to the following BLAS2 library
routines:
cgemm csymm csyr2k csyrk ctrmm ctrsm
dgemm dsymm dsyr2k dsyrk dtrmm dtrsm
sgemm ssymm ssyr2k ssyrk strmm strsm
zgemm zsymm zsyr2k zsyrk ztrmm ztrsm

blas Selects all the BLAS routines. Equivalent to
 -xknown_lib=blas1,blas2,blas3

intrinsics The compiler ignores any explicit EXTERNAL declarations for
Fortran 95 intrinsics, thereby ignoring any user-supplied intrinsic
routines.
3-78 Fortran User’s Guide • January 2005

■ When mixing Fortran object files with C++, link using the C++ compiler and
specify -xlang=f95 on the CC command line.

■ When mixing C++ objects with Fortran object files compiled with any of the
parallelization options, the linking CC command line must also specify -mt.

–xlibmil

Synonym for –libmil.

–xlibmopt

Use library of optimized math routines.

Use selected math routines optimized for speed. This option usually generates faster
code. It may produce slightly different results; if so, they usually differ in the last bit.
The order on the command line for this library option is not significant.

–xlic_lib=sunperf

Link with the Sun Performance Library.

For example:

As with –l, this option should appear on the command line after all source and
object file names.

This option must be used to link with the Sun Performance Library. (See the Sun
Performance Library User’s Guide.)

–xlicinfo

Show license information.

Use this option to return serial number entitlement information about the installed
compiler software.

-xlinkopt[={1|2|0}]

(SPARC) Perform link-time optimizations on relocatable object files.

f95 –o pgx –fast pgx.f –xlic_lib=sunperf
Chapter 3 Fortran Compiler Options 3-79

The post-optimizer performs a number of advanced performance optimizations on
the binary object code at link-time. The optional value sets the level of optimizations
performed, and must be 0, 1, or 2.

Specifying the -xlinkopt flag without a value implies -xlinkopt=1.

These optimizations are performed at link time by analyzing the object binary code.
The object files are not rewritten but the resulting executable code may differ from
the original object codes.

This option is most effective when used to compile the whole program, and with
profile feedback.

When compiling in separate steps, -xlinkopt must appear on both compile and
link steps.

Note that the level parameter is only used when the compiler is linking. In the
example above, the postoptimization level used is 2 even though the object binaries
were compiled with an implied level of 1.

The link-time post-optimizer cannot be used with the incremental linker, ild. The
-xlinkopt flag will set the default linker to be ld. Enabling the incremental linker
explicitly withthe -xildon flag will disable the -xlinkopt option if both are
specified together.

For the -xlinkopt option to be useful, at least some, but not necessarily all, of the
routines in the program must be compiled with this option. The optimizer can still
perform some limited optimizations on object binaries not compiled with
-xlinkopt.

The -xlinkopt option will optimize code coming from static libraries that appear
on the compiler command line, but it will skip and not optimize code coming from
shared (dynamic) libraries that appear on the command line. You can also use
-xlinkopt when building shared libraries (compiling with -G).

0 The post-optimizer is disabled. (This is the default.)

1 Perform optimizations based on control flow analysis, including instruction
cache coloring and branch optimizations, at link time.

2 Perform additional data flow analysis, including dead-code elimination and
address computation simplification, at link time.

demo% f95 -c -xlinkopt a.f95 b.f95
demo% f95 -o myprog -xlinkopt=2 a.o b.o
3-80 Fortran User’s Guide • January 2005

The link-time post-optimizer is most effective when used with run-time profile
feedback. Profiling reveals the most and least used parts of the code and directs the
optimizer to focus its effort accordingly. This is particularly important with large
applications where optimal placement of code performed at link time can reduce
instruction cache misses. Typically, this would be compiled as shown below:

For details on using profile feedback, see the -xprofile option

Note that compiling with this option will increase link time slightly. Object file sizes
also increase, but the size of the executable remains the same. Compiling with the
-xlinkopt and -g flags increases the size of the excutable by including debugging
information.

–xloopinfo

Synonym for –loopinfo.

–xmaxopt[=n]

Enable optimization pragma and set maximum optimization level.

n has the value 1 through 5 and corresponds to the optimization levels of –O1
through –O5. If not specified, the compiler uses 5.

This option enables the C$PRAGMA SUN OPT=n directive when it appears in the
source input. Without this option, the compiler treats these lines as comments. See
Section 2.3.1.5, “The OPT Directive” on page 2-12.

If this pragma appears with an optimization level greater than the maximum level
on the –xmaxopt flag, the compiler uses the level set by –xmaxopt.

-xmemalign[=<a>]

(SPARC) Specify maximum assumed memory alignment and behavior of misaligned
data accesses.

For memory accesses where the alignment is determinable at compile time, the
compiler will generate the appropriate load/store instruction sequence for that data
alignment.

For memory accesses where the alignment cannot be determined at compile time,
the compiler must assume an alignment to generate the needed load/store sequence.

demo% f95 -o progt -xO5 -xprofile=collect:prog file.f95
demo% progt
demo% f95 -o prog -xO5 -xprofile=use:prog -xlinkopt file.95
Chapter 3 Fortran Compiler Options 3-81

The -xmemalign flag allows the user to specify the maximum memory alignment of
data to be assumed by the compiler for those indeterminate situations. It also
specifies the error behavior at runtime when a misaligned memory access does take
place.

The value specified consists of two parts: a numeric alignment value, <a>, and an
alphabetic behavior flag, .

Allowed values for alignment, <a>, are:

1 Assume at most 1-byte alignment.
2 Assume at most 2-byte alignment.
4 Assume at most 4-byte alignment.
8 Assume at most 8-byte alignment.
16 Assume at most 16-byte alignment.

Allowed values for error behavior on accessing misaligned data, , are:

i Interpret access and continue execution
s Raise signal SIGBUS
f Raise signal SIGBUS only for alignments less or equal to 4

The defaults when compiling without -xmemalign specified are:

■ 8i for -xarch=generic,v7,v8,v8a,v8plus,v8plusa
■ 8s for -xarch=v9,v9a with C and C++
■ 8f for -xarch=v9,v9a with Fortran

The default for -xmemalign appearing without a value is 1i for all platforms.

Note that -xmemalign itself does not force any particular data alignment to take
place. Use -dalign or -aligncommon to force data alignment.

The -dalign option is a macro:

-dalign is a macro for: -xmemalign=8s -aligncommon=16

See Section , “-aligncommon[={1|2|4|8|16}]” on page 3-11 for details.

–xnolib

Synonym for –nolib.

–xnolibmil

Synonym for –nolibmil.

–xnolibmopt

Do not use fast math library.
3-82 Fortran User’s Guide • January 2005

Use with –fast to override linking the optimized math library:

f95 –fast –xnolibmopt …

–xOn

Synonym for –On.

-xopenmp

(SPARC) Synonym for -openmp.

–xpad

Synonym for –pad.

-xpagesize=size

(SPARC) Set the preferred page size for the stack and the heap.

The size value must be one of the following:

 8K 64K 512K 4M 32M 256M 2G 16G or default

For example: -xpagesize=4M

Not all these page sizes are supported on all platforms and depend on the
architecture and Solaris environment. The page size specified must be a valid page
size for the Solaris operating environment on the target platform, as returned by
getpagesizes(3C). If it is not, the request will be silently ignored at run-time. The
Solaris environment offers no guarantee that the page size request will be honored.

You can use pmap(1) or meminfo(2) to determine if your running program received
the requested page size.

If you specify -xpagesize=default, the flag is ignored; -xpagesize specified
without a size value is equivalent to -xpagesize=default.

This option is a macro for
 -xpagesize_heap=size -xpagesize_stack=size
These two options accept the same arguments as -xpagesize: 8K, 64K, 512K,
4M, 32M, 256M, 2G, 16G, default. You can set them both with the same value
by specifying -xpagesize=size or you can specify them individually with different
values.

Compiling with this flag has the same effect as setting the LD_PRELOAD environment
variable to mpss.so.1 with the equivalent options, or running the Solaris 9
command ppgsz(1) with the equivalent options, before starting the program. See
the Solaris 9 man pages for details.
Chapter 3 Fortran Compiler Options 3-83

Note that this feature is not available on Solaris 7 and 8 environments. A program
compiled with this option will not link on Solaris 7 and 8 environments.

-xpagesize_heap=size

(SPARC) Set the preferred page size for the heap.

The size value must be one of the following:

 8K 64K 512K 4M 32M 256M 2G 16G or default

For example: -xpagesize_heap=4M

See -xpagesize for details.

-xpagesize_stack=size

(SPARC) Set the preferred page size for the stack.

The size value must be one of the following:

 8K 64K 512K 4M 32M 256M 2G 16G or default

For example: -xpagesize_stack=4M

See -xpagesize for details.

–xparallel

Synonym for –parallel.

–xpg

Synonym for –pg.

–xpp={fpp|cpp}

Select source file preprocessor.

The default is –xpp=fpp.

The compilers use fpp(1) to preprocess .F, .F95, or .F03 source files. This
preprocessor is appropriate for Fortran. Previous versions used the standard C
preprocessor cpp. To select cpp, specify –xpp=cpp.
3-84 Fortran User’s Guide • January 2005

–xprefetch[=a[,a]]

Enable prefetch instructions on those architectures that support prefetch, such as
UltraSPARC II or UltraSPARC III, Pentium 3, Pentium 4, or AMD Opteron
(-xarch=v8plus, v8plusa, v9plusb, v9, v9a, or v9b, sse, sse2, generic64,
or amd64)

See Section 2.3.1.8, “The PREFETCH Directives” on page 2-13 for a description of the
Fortran PREFETCH directives.

a must be one of the following:

With -xprefetch, -xprefetch=auto, and -xprefetch=yes, the compiler is free
to insert prefetch instructions into the code it generates. This may result in a
performance improvement on architectures that support prefetch.

If you are running computationally intensive codes on large multiprocessors, you
might find it advantageous to use -xprefetch=latx:factor. This option instructs
the code generator to adjust the default latency time between a prefetch and its
associated load or store by the specified factor.

The prefetch latency is the hardware delay between the execution of a prefetch
instruction and the time the data being prefetched is available in the cache. The
compiler assumes a prefetch latency value when determining how far apart to place
a prefetch instruction and the load or store instruction that uses the prefetched data.

Note – The assumed latency between a prefetch and a load may not be the same as
the assumed latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide
range of machines and applications. This tuning may not always be optimal. For
memory-intensive applications, especially applications intended to run on large

a is Meaning

auto Enable automatic generation of prefetch instructions

no%auto Disable automatic generation of prefetch instructions

explicit Enable explicit prefetch macros

no%explicit Disable explicit prefetch macros

latx:factor Adjust the compiler’s assumed prefetch-to-load and prefetch-to-store
latencies by the specified factor. The factor must be a positive
floating-point or integer number.

yes -xprefetch=yes is the same as -xprefetch=auto,explicit

no -xprefetch=no is the same as -xprefetch=no%auto,no%explicit
Chapter 3 Fortran Compiler Options 3-85

multiprocessors, you may be able to obtain better performance by increasing the
prefetch latency values. To increase the values, use a factor that is greater than 1. A
value between .5 and 2.0 will most likely provide the maximum performance.

For applications with datasets that reside entirely within the external cache, you may
be able to obtain better performance by decreasing the prefetch latency values. To
decrease the values, use a factor that is less than 1.

To use the -xprefetch=latx:factor option, start with a factor value near 1.0 and
run performance tests against the application. Then increase or decrease the factor,
as appropriate, and run the performance tests again. Continue adjusting the factor
and running the performance tests until you achieve optimum performance. When
you increase or decrease the factor in small steps, you will see no performance
difference for a few steps, then a sudden difference, then it will level off again.

Defaults:

If -xprefetch is not specified, -xprefetch=no%auto,explicit is assumed.

If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.

The default of no%auto is assumed unless explicitly overridden with the use of
-xprefetch without any arguments or with an argument of auto or yes. For
example, -xprefetch=explicit is the same as
-xprefetch=explicit,no%auto.

The default of explicit is assumed unless explicitly overridden with an argument
of no%explicit or an argument of no. For example, -xprefetch=auto is the
same as -xprefetch=auto,explicit.

If automatic prefetching is enabled, such as with -xprefetch or -xprefetch=yes,
but a latency factor is not specified, then -xprefetch=latx:1.0 is assumed.

Interactions:

With -xprefetch=explicit, the compiler will recognize the directives:

$PRAGMA SPARC_PREFETCH_READ_ONCE (name)
$PRAGMA SPARC_PREFETCH_READ_MANY (name)
$PRAGMA SPARC_PREFETCH_WRITE_ONCE (name)
$PRAGMA SPARC_PREFETCH_WRITE_MANY (name)

The -xchip setting effects the determination of the assumed latencies and therefore
the result of a latx:factor setting.

The latx:factor suboption is valid only when automatic prefetching is enabled. That
is, latx:factor is ignored unless it is used with auto.
3-86 Fortran User’s Guide • January 2005

Warnings:

Explicit prefetching should only be used under special circumstances that are
supported by measurements.

Because the compiler tunes the prefetch mechanism for optimal performance across
a wide range of machines and applications, you should only use
-xprefetch=latx:factor when the performance tests indicate there is a clear
benefit. The assumed prefetch latencies may change from release to release.
Therefore, retesting the effect of the latency factor on performance whenever
switching to a different release is highly recommended.

-xprefetch_auto_type=[no%]indirect_array_access

Generate indirect prefetches for a data arrays accessed indirectly.

Does [not] generate indirect prefetches for the loops indicated by the option
-xprefetch_level={1|2|3} in the same fashion the prefetches for direct memory
accesses are generated. The prefix no% negates the declaration.

If you do not specify a setting for -xprefetch_auto_type, the compiler sets it to
-xprefetch_auto_type=no%indirect_array_access.

Requires -xprefetch=auto and an optimization level -xO3 or higher.

Options such as -xdepend can affect the aggressiveness of computing the indirect
prefetch candidates and therefore the aggressiveness of the automatic indirect
prefetch insertion due to better memory alias disambiguation information.

-xprefetch_level={1|2|3}

Control the automatic generation of prefetch instructions.

This option is only effective when compiling with:

■ -xprefetch=auto,

■ with optimization level 3 or greater,

■ on a platform that supports prefetch (-xarch=v8plus, v8plusa, v8plusb, v9,
v9a, v9b, generic64, native64).

The default for -xprefetch=auto without specifying -xprefetch_level is level
2.

Prefetch level 2 generates additional opportunities for prefetch instructions than
level 1. Prefetch level 3 generates additional prefetch instructions than level 2.

Prefetch levels 2 and 3 are only effective on UltraSPARC III platforms
(-xarch=v8plusb or v9b), or x86 Pentium 4 or AMD Opteron (-xarch=sse2 or
amd64)
Chapter 3 Fortran Compiler Options 3-87

–xprofile={collect[:name]|use[:name]|tcov}

Collect or optimize with runtime profiling data, or perform basic block coverage
analysis.

Compiling with high optimization levels (-xO5) is enhanced by providing the
compiler with runtime performance feedback. To produce the profile feedback the
compiler needs to do its best optimizations, you must compile first with
-xprofile=collect, run the executable against a typical data set, and then
recompile at the highest optimization level and with -xprofile=use.

collect[:name]

Collect and save execution frequency data for later use by the optimizer with
-xprofile=use. The compiler generates code to measure statement execution
frequency.

The name is the name of the program that is being analyzed. This name is
optional. If name is not specified, a.out is assumed to be the name of the
executable.

At runtime a program compiled with –xprofile=collect:name will create by
default the subdirectory name.profile to hold the runtime feedback
information. The program writes its runtime profile data to the file named
feedback in this subdirectory. If you run the program several times, the
execution frequency data accumulates in the feedback file; that is, output from
prior runs is not lost.

You can set the environment variables SUN_PROFDATA and SUN_PROFDATA_DIR
to control the file and directory where a program compiled with
-xprofile=collect writes its runtime profile data. With these variables set, the
program compiled with -xprofile=collect writes its profile data to
$SUN_PROFDATA_DIR/$SUN_PROFDATA.

These environment variables similarly control the path and names of the profile
data files written by tcov, as described in the tcov(1) man page.

Profile collection is “MT-safe”. That is, profiling a program that does its own
multitasking by compiling with -mt and calling the multitasking library directly
will give accurate results.

When compiling and linking in separate steps, the link step must also specify
-xprofile=collect if it appears on the compile step.

use[:nm]

Use execution frequency data to optimize strategically at optimization level -xO5.

As with collect:nm, the nm is optional and may be used to specify the name of
the program.
3-88 Fortran User’s Guide • January 2005

The program is optimized by using the execution frequency data previously
generated and saved in the profile data files written by a previous execution of
the program compiled with –xprofile=collect.

The source files and other compiler options must be exactly the same as used for
the compilation that created the compiled program that generated the feedback
file. If compiled with –xprofile=collect:nm, the same program name nm
must appear in the optimizing compilation: –xprofile=use:nm.

See also -xprofile_ircache for speeding up compilationg between the collect
and use phases.

See also -xprofile_pathmap for controlling where the compiler looks for
profile data files.

tcov

Basic block coverage analysis using “new” style tcov. Optimization level must be
-O2 or greater.

Code instrumentation is similar to that of –a, but .d files are no longer generated
for each source file. Instead, a single file is generated, whose name is based on the
name of the final executable. For example, if stuff is the executable file, then
stuff.profile/tcovd is the data file.

When running tcov, you must pass it the –x option to make it use the new style
of data. If not, tcov uses the old .d files, if any, by default for data, and produces
unexpected output.

Unlike –a, the TCOVDIR environment variable has no effect at compile–time.
However, its value is used at program runtime to identify where to create the
profile subdirectory.

See the tcov(1) man page, the “Performance Profiling” chapter of the Fortran
Programming Guide, and the Program Performance Analysis Tools manual for more
details.

Note – The report produced by tcov can be unreliable if there is inlining of
subprograms due to -O4 or -inline. Coverage of calls to routines that have been
inlined is not recorded.

-xprofile_ircache[=path]

(SPARC) Save and reuse compilation data between collect and use profile phases.

Use with -xprofile=collect|use to improve compilation time during the use
phase by reusing compilation data saved from the collect phase.

If specified, path will override the location where the cached files are saved. By
default, these files will be saved in the same directory as the object file. Specifying a
path is useful when the collect and use phases happen in two different places.
Chapter 3 Fortran Compiler Options 3-89

A typical sequence of commands might be:

With large programs, compilation time in the use phase can improve significantly by
saving the intermediate data in this manner. But this will be at the expense of disk
space, which could increase considerably.

-xprofile_pathmap=collect_prefix:use_prefix

(SPARC) Set path mapping for profile data files.

Use the -xprofile_pathmap option with the -xprofile=use option.

Use -xprofile_pathmap when the compiler is unable to find profile data for an
object file that is compiled with -xprofile=use, and:

■ You are compiling with -xprofile=use into a directory that is not the directory
used when previously compiling with -xprofile=collect.

■ Your object files share a common basename in the profile but are distinguished
from each other by their location in different directories.

The collect-prefix is the prefix of the UNIX pathname of a directory tree in which
object files were compiled using -xprofile=collect.

The use-prefix is the prefix of the UNIX pathname of a directory tree in which object
files are to be compiled using -xprofile=use.

If you specify multiple instances of -xprofile_pathmap, the compiler processes
them in the order of their occurrence. Each use-prefix specified by an instance of
-xprofile_pathmap is compared with the object file pathname until either a
matching use-prefix is identified or the last specified use-prefix is found not to match
the object file pathname.

-xrecursive

Allow routines without RECURSIVE attribute call themselves recursively.

Normally, only subprograms defined with the RECURSIVE attribute can call
themselves recursively.

Compiling with -xrecursive enables subprograms to call themselves, even if they
are not defined with the RECURSIVE attribute. But, unlike subroutines defined
RECURSIVE, use of this flag does not cause local variables to be allocated on the

demo% f95 -xO5 -xprofile=collect -xprofile_ircache t1.c t2.c
demo% a.out collects feedback data
demo% f95 -xO5 -xprofile=use -xprofile_ircache t1.c t2.c
3-90 Fortran User’s Guide • January 2005

stack by default. For local variables to have separate values in each recursive
invocation of the subprogram, compile also with -stackvar to put local variables
on the stack.

Indirect recursion (routine A calls routine B which then calls routine A) can give
inconsistent results at optimization levels greater than -xO2. Compiling with the
-xrecursive flag guarantees correctness with indirect recursion, even at higher
optimization levels.

Compiling with -xrecursive can cause performance degradations.

–xreduction

Synonym for –reduction.

–xregs=r

(SPARC) Specify register usage.

r is a comma–separated list that consists of one or more of the following:

[no%]appl, [no%]float.

Where the % is shown, it is a required character.

Example: –xregs=appl,no%float

■ appl: Allow the compiler to use the application registers as scratch registers.

On SPARC systems, certain registers are described as application registers. Using
these registers can increase performance because fewer load and store instructions
are needed. However, such use can conflict with some old library programs
written in assembly code.

The set of application registers depends on the SPARC platform:

■ -xarch=v8 or v8a — registers %g2, %g3, and %g4
■ -xarch=v8plus or v8plusa — registers %g2, %g3, and %g4
■ -xarch=v9 or v9a — registers %g2 and %g3

■ no%appl: Do not use the appl registers.

■ float: Allow the compiler to use the floating–point registers as scratch registers
for integer values. This option has no effect on the compiler’s use of
floating-point registers for floating-point values.

■ no%float: Do not use the floating–point registers. With this option, a source
program cannot contain any floating–point code.

The compiler default is: –xregs=appl,float.
Chapter 3 Fortran Compiler Options 3-91

–xs

Allow debugging by dbx without object (.o) files.

With –xs, all debug information is copied into the executable file. If you move
executables to another directory, then you can use dbx and ignore the object (.o)
files. Use this option when you cannot retain the .o files.

Without –xs, if you move the executables, you must move both the source files and
the object (.o) files, or set the path with either the dbx pathmap or use command.

–xsafe=mem

(SPARC) Allow the compiler to assume that no memory protection violations occur.

Using this option allows the compiler to assume no memory–based traps occur. It
grants permission to use the speculative load instruction on the SPARC V9
platforms.

This option is effective only when used with optimization level -O5 one one of the
following architectures (-xarch): v8plus, v8plusa, v8plusb, v9, v9a, or v9b

Caution – Because non-faulting loads do not cause a trap when a fault such as
address misalignment or segmentation violation occurs, you should use this option
only for programs in which such faults cannot occur. Because few programs incur
memory-based traps, you can safely use this option for most programs. Do not use
this option with programs that explicitly depend on memory-based traps to handle
exceptional conditions.

–xsb

(Obsolete) Synonym for –sb.

–xsbfast

(Obsolete) Synonym for –sbfast.

–xspace

Do no optimizations that increase the code size.

Example: Do not unroll or parallelize loops if it increases code size.
3-92 Fortran User’s Guide • January 2005

–xtarget=t

Specify the target platform for the instruction set and optimization.

t must be one of: native, native64, generic, generic64, platform–name.

The –xtarget option permits a quick and easy specification of the –xarch,
-xchip, and –xcache combinations that occur on real platforms. The only meaning
of –xtarget is in its expansion.

The performance of some programs may benefit by providing the compiler with an
accurate description of the target computer hardware. When program performance
is critical, the proper specification of the target hardware could be very important.
This is especially true when running on the newer SPARC processors. However, for
most programs and older SPARC processors, the performance gain is negligible and
a generic specification is sufficient.

native: Optimize performance for the host platform.

The compiler generates code optimized for the host platform. It determines the
available architecture, chip, and cache properties of the machine on which the
compiler is running.

native64: Compile for native 64-bit environment.

Set the architecture, chip, and cache properties for the 64-bit environment on the
machine on which the compiler is running.

generic: Get the best performance for generic architecture, chip, and cache.

The compiler expands –xtarget=generic to:

 –xarch=generic –xchip=generic –xcache=generic

This is the default value.

generic64: Compile for generic 64-bit environment.

This expands to -xarch=v9 -xcache=generic -xchip=generic

platform–name: Get the best performance for the specified platform.

SPARC Platforms

Use the fpversion(1) command to determine the expansion of -xtarget=native
on a running system.

Note that -xtarget for a specific host platform might not expand to the same
-xarch, -xchip, or -xcache settings as -xtarget=native when compiling on
that platform.
Chapter 3 Fortran Compiler Options 3-93

The following table gives a list of the commonly used system platform names
accepted by the compiler. Appendix C gives a list of older and less commonly used
system platform names

TABLE 3-18 Expansions of Commonly Used -xtarget System Platforms

-xtarget=platform-name -xarch -xchip -xcache

generic generic generic generic

generic64 v9 generic generic

entr150 v8plusa ultra 16/32/1:512/64/1

entr2 v8plusa ultra 16/32/1:512/64/1

entr2/1170 v8plusa ultra 16/32/1:512/64/1

entr2/1200 v8plusa ultra 16/32/1:512/64/1

entr2/2170 v8plusa ultra 16/32/1:512/64/1

entr2/2200 v8plusa ultra 16/32/1:512/64/1

entr3000 v8plusa ultra 16/32/1:512/64/1

entr4000 v8plusa ultra 16/32/1:512/64/1

entr5000 v8plusa ultra 16/32/1:512/64/1

entr6000 v8plusa ultra 16/32/1:512/64/1

ultra v8plusa ultra 16/32/1:512/64/1

ultra1/140 v8plusa ultra 16/32/1:512/64/1

ultra1/170 v8plusa ultra 16/32/1:512/64/1

ultra1/200 v8plusa ultra 16/32/1:512/64/1

ultra2 v8plusa ultra2 16/32/1:512/64/1

ultra2/1170 v8plusa ultra 16/32/1:512/64/1

ultra2/1200 v8plusa ultra 16/32/1:1024/64/1

ultra2/1300 v8plusa ultra2 16/32/1:2048/64/1

ultra2/2170 v8plusa ultra 16/32/1:512/64/1

ultra2/2200 v8plusa ultra 16/32/1:1024/64/1

ultra2/2300 v8plusa ultra2 16/32/1:2048/64/1

ultra2e v8plusa ultra2e 16/32/1:256/64/4

ultra2i v8plusa ultra2i 16/32/1:512/64/1

ultra3 v8plusa ultra3 64/32/4:8192/512/1
3-94 Fortran User’s Guide • January 2005

Compiling for a 64-bit Solaris OS on UltraSPARC V9 platforms is indicated by the
-xarch=v9 or -xarch=v9a flag. Setting -xtarget=ultra or ultra2 is not
necessary or sufficient. If -xtarget is specified, the -xarch=v9 or v9a option
must appear after the -xtarget flag, as in:

-xtarget=ultra2 ...-xarch=v9

otherwise the -xtarget setting will revert -xarch to v8plusa.

x86 Platforms

The valid -xtarget platform names for x86 systems are:

generic, native, 386, 486, pentium, pentium_pro, pentium3,
pentium4, and opteron.

Compiling for 64-bit Solaris OS on 64-bit x86 AMD Opteron platforms is indicated
by the -xarch=amd64 flag. Compiling with -xtarget=opteron is not necessary or
sufficient. If -xtarget is specified, the -xarch=amd64 option must appear after the
-xtarget flag, as in:

-xtarget=opteron -xarch=amd64

otherwise the compilation will revert to 32-bit x86.

–xtime

Synonym for –time.

–xtypemap=spec

Specify default data mappings.

This option provides a flexible way to specify the byte sizes for default data types.
This option applies to both default-size variables and constants.

The specification string spec may contain any or all of the following in a
comma-delimited list:

ultra3cu v8plusa ultra3cu 64/32/4:8192/512/2

ultra3i v8plusa ultra3i 64/32/4:1024/64/4

ultra4 v8plusa ultra4 64/32/4:8192/128/2

TABLE 3-18 Expansions of Commonly Used -xtarget System Platforms (Continued)

-xtarget=platform-name -xarch -xchip -xcache
Chapter 3 Fortran Compiler Options 3-95

real:size
double:size
integer:size

The allowable combinations on each platform are:

■ real:32
■ real:64
■ double:64
■ double:128
■ integer:32
■ integer:64

For example:

■ –xtypemap=real:64,double:64,integer:64

maps both default REAL and DOUBLE to 8 bytes.

This option applies to all variables declared with default specifications (without
explicit byte sizes), as in REAL XYZ (resulting in a 64-bit XYZ). Also, all
single-precision REAL constants are promoted to REAL*8.

Note that INTEGER and LOGICAL are treated the same, and COMPLEX is mapped as
two REALs. Also, DOUBLE COMPLEX will be treated the way DOUBLE is mapped.

–xunroll=n

Synonym for –unroll=n.

–xvector[={yes|no}]

Enable automatic calls to vectorized library functions.

With –xvector=yes, the compiler is permitted to transform certain math library
calls within DO loops into single calls to the equivalent vectorized library routine
whenever possible. This could result in a performance improvement for loops with
large loop counts.

The compiler defaults to –xvector=no. Specifying –xvector by itself defaults to
-xvector=yes.

This option also triggers –depend. (Follow –xvector with –nodepend on the
command line to cancel the dependency analysis.)

The compiler will automatically notify the linker to include the libmvec and libc
libraries in the load step if –xvector appears. However, to compile and link in
separate steps requires specifying –xvector on the link step as well to correctly
select these necessary libraries.
3-96 Fortran User’s Guide • January 2005

–ztext

Generate only pure libraries with no relocations.

The general purpose of –ztext is to verify that a generated library is pure text;
instructions are all position–independent code. Therefore, it is generally used with
both –G and –pic.

With –ztext, if ld finds an incomplete relocation in the text segment, then it does
not build the library. If it finds one in the data segment, then it generally builds the
library anyway; the data segment is writable.

Without –ztext, ld builds the library, relocations or not.

A typical use is to make a library from both source files and object files, where you
do not know if the object files were made with –pic.

Example: Make library from both source and object files:

An alternate use is to ask if the code is position–independent already: compile
without –pic, but ask if it is pure text.

Example: Ask if it is pure text already—even without –pic:

If you compile with –ztext and ld does not build the library, then you can
recompile without –ztext, and ld will build the library. The failure to build with
-ztext means that one or more components of the library cannot be shared;
however, maybe some of the other components can be shared. This raises questions
of performance that are best left to you, the programmer.

demo% f95 –G –pic –ztext –o MyLib –hMyLib a.f b.f x.o y.o

demo% f95 –G –ztext –o MyLib –hMyLib a.f b.f x.o y.o
Chapter 3 Fortran Compiler Options 3-97

3-98 Fortran User’s Guide • January 2005

CHAPTER 4

Fortran 95 Features and Differences

This appendix shows some of the major features differences between standard
Fortran 95 and the Fortran 95 compiler, f95.

4.1 Source Language Features
The Fortran 95 compiler provides the following source langauge features and
extensions to the Fortran 95 standard.

4.1.1 Continuation Line Limits
f95 allows 99 continuation lines (1 initial and 99 continuation lines). Standard
Fortran 95 allows 19 for fixed-form and 39 for free-form.

4.1.2 Fixed-Form Source Lines
In fixed-form source, lines can be longer than 72 characters, but everything beyond
column 73 is ignored. Standard Fortran 95 only allows 72-character lines.
4-1

Tabs in f95 force the rest of the line to be padded out to column 72. This may cause
unexpected results if the tab appears within a character string that is continued onto
the next line:

4.1.3 Source Form Assumed
The source form assumed by f95 depends on options, directives, and suffixes.

Files with a .f or .F suffix are assumed to be in fixed format. Files with a .f90,
.f95, .F90, or .F95 suffix are assumed to be in free format.

If the -free or -fixed option is used, it overrides the file name suffix. If either a
!DIR$ FREE or !DIR$ FIXED directive is used, it overrides the option and file name
suffix.

4.1.3.1 Mixing Forms

Some mixing of source forms is allowed.

■ In the same f95 command, some source files can be fixed form, some free.

■ In the same file, free form can be mixed with fixed form by using !DIR$ FREE and
!DIR$ FIXED directives.

Source file:
^Iprint *, "Tab on next line
^I1this continuation line starts with a tab."
^Iend

Running the code:
Tab on next line this
continuation
 line starts with a tab.

TABLE 4-1 F95 Source Form Command-line Options

 Option Action

-fixed Interpret all source files as Fortran fixed form

-free Interpret all source files as Fortran free form
4-2 Fortran User’s Guide • January 2005

4.1.3.2 Case

Sun Fortran 95 is case insensitive by default. That means that a variable AbcDeF is
treated as if it were spelled abcdef. Compile with the -U option to have the
compiler treat upper and lower case as unique.

4.1.4 Limits and Defaults
■ A single Fortran 95 program unit can define up to 65,535 derived types and

16,777,215 distinct constants.

■ Names of variables and other objects can be up to 127 characters long. 31 is
standard.

4.2 Data Types
This section describes features and extensions to the Fortran 95 data types.

4.2.1 Boolean Type
f95 supports constants and expressions of Boolean type. However, there are no
Boolean variables or arrays, and there is no Boolean type statement.

4.2.1.1 Miscellaneous Rules Governing Boolean Type
■ Masking—A bitwise logical expression has a Boolean result; each of its bits is the

result of one or more logical operations on the corresponding bits of the
operands.

■ For binary arithmetic operators, and for relational operators:

■ If one operand is Boolean, the operation is performed with no conversion.

■ If both operands are Boolean, the operation is performed as if they were
integers.

■ No user-specified function can generate a Boolean result, although some
(nonstandard) intrinsics can.

■ Boolean and logical types differ as follows:

■ Variables, arrays, and functions can be of logical type, but they cannot be
Boolean type.
Chapter 4 Fortran 95 Features and Differences 4-3

■ There is a LOGICAL statement, but no BOOLEAN statement.

■ A logical variable, constant, or expression represents only two values, .TRUE.
or .FALSE. A Boolean variable, constant, or expression can represent any
binary value.

■ Logical entities are invalid in arithmetic, relational, or bitwise logical
expressions. Boolean entities are valid in all three.

4.2.1.2 Alternate Forms of Boolean Constants

f95 allows a Boolean constant (octal, hexadecimal, or Hollerith) in the following
alternate forms (no binary). Variables cannot be declared Boolean. Standard Fortran
does not allow these forms.

Octal

ddddddB, where d is any octal digit

■ You can use the letter B or b.

■ There can be 1 to 11 octal digits (0 through 7).

■ 11 octal digits represent a full 32-bit word, with the leftmost digit allowed to be 0,
1, 2, or 3.

■ Each octal digit specifies three bit values.

■ The last (right most) digit specifies the content of the right most three bit
positions (bits 29, 30, and 31).

■ If less than 11 digits are present, the value is right-justified—it represents the right
most bits of a word: bits n through 31. The other bits are 0.

■ Blanks are ignored.

Within an I/O format specification, the letter B indicates binary digits; elsewhere it
indicates octal digits.

Hexadecimal

X’ddd’ or X"ddd", where d is any hexadecimal digit

■ There can be 1 to 8 hexadecimal digits (0 through 9, A-F).

■ Any of the letters can be uppercase or lowercase (X, x, A-F, a-f).

■ The digits must be enclosed in either apostrophes or quotes.

■ Blanks are ignored.

■ The hexadecimal digits may be preceded by a + or - sign.
4-4 Fortran User’s Guide • January 2005

■ 8 hexadecimal digits represent a full 32-bit word and the binary equivalents
correspond to the contents of each bit position in the 32-bit word.

■ If less than 8 digits are present, the value is right-justified—it represents the right
most bits of a word: bits n through 31. The other bits are 0.

Hollerith

Accepted forms for Hollerith data are:

Above, “…” is a string of characters and n is the character count.

■ A Hollerith constant is type Boolean.

■ If any character constant is in a bitwise logical expression, the expression is
evaluated as Hollerith.

■ A Hollerith constant can have 1 to 4 characters.

Examples: Octal and hexadecimal constants.

Examples: Octal and hexadecimal in assignment statements.

Use of an octal or hexadecimal constant in an arithmetic expression can produce
undefined results and do not generate syntax errors.

nH… ’…’H "…"H

nL… ’…’L "…"L

nR… ’…’R "…"R

Boolean Constant Internal Octal for 32-bit Word

0B 00000000000

77740B 00000077740

X"ABE" 00000005276

X"-340" 37777776300

X'1 2 3' 00000000443

X'FFFFFFFFFFFFFFFF' 37777777777

i = 1357B

j = X"28FF"

k = X'-5A'
Chapter 4 Fortran 95 Features and Differences 4-5

4.2.1.3 Alternate Contexts of Boolean Constants

f95 allows BOZ constants in the places other than DATA statements.

If these are assigned to a real variable, no type conversion occurs.

Standard Fortran allows these only in DATA statements.

4.2.2 Abbreviated Size Notation for Numeric Data
Types
f95 allows the following nonstandard type declaration forms in declaration
statements, function statements, and IMPLICIT statements. The form in column one
is nonstandard Fortran 95, though in common use. The kind numbers in column two
can vary by vendor.

B’bbb’ O’ooo’ Z’zzz’

B"bbb" O"ooo" Z"zzz"

TABLE 4-2 Size Notation for Numeric Data Types

Nonstandard Declarator Short Form Meaning

INTEGER*1 INTEGER(KIND=1) INTEGER(1) One-byte signed integers

INTEGER*2 INTEGER(KIND=2) INTEGER(2) Two-byte signed integers

INTEGER*4 INTEGER(KIND=4) INTEGER(4) Four-byte signed integers

LOGICAL*1 LOGICAL(KIND=1) LOGICAL(1) One-byte logicals

LOGICAL*2 LOGICAL(KIND=2) LOGICAL(2) Two-byte logicals

LOGICAL*4 LOGICAL(KIND=4) LOGICAL(4) Four-byte logicals

REAL*4 REAL(KIND=4) REAL(4) IEEE single-precision four-
byte floating-point

REAL*8 REAL(KIND=8) REAL(8) IEEE double-precision
eight-byte floating-point

REAL*16 REAL(KIND=16) REAL(16) IEEE quad-precision
sixteen-byte floating-point
4-6 Fortran User’s Guide • January 2005

4.2.3 Size and Alignment of Data Types
Storage and alignment are always given in bytes. Values that can fit into a single
byte are byte-aligned.

The size and alignment of types depends on various compiler options and platforms,
and how variables are declared. The default maximum alignment in COMMON
blocks is to 4-byte boundaries.

Default data alignment and storage allocation can be changed by compiling with
special options, such as -aligncommon, -f, -dalign, -dbl_align_all,
-xmemalign,, and -xtypemap. The default descriptions in this manual assume that
these options are not in force.

There is additional information in Chapter 11 of the Fortran Programming Guide
regarding special cases of data types and alignment on certain platforms.

COMPLEX*8 COMPLEX(KIND=4) COMPLEX(4) Single-precision complex
(four bytes each part)

COMPLEX*16 COMPLEX(KIND=8) COMPLEX(8) Double-precision complex
(eight bytes each part)

COMPLEX*32 COMPLEX(KIND=16) COMPLEX(16) Quad-precision complex
(sixteen bytes each part)

TABLE 4-2 Size Notation for Numeric Data Types (Continued)

Nonstandard Declarator Short Form Meaning
Chapter 4 Fortran 95 Features and Differences 4-7

The following table summarizes the default size and alignment, ignoring other
aspects of types and options.

Note the following:

■ REAL*16 and COMPLEX*32: in 64-bit environments (compiling with -xarch=v9
or v9a) the default alignment is on 16-byte (rather than 8-byte) boundaries, as
indicated by 8/16 in the table. This data type, “quad precision”, is not available
on x86 platforms.

■ Arrays and structures align according to their elements or fields. An array aligns
the same as the array element. A structure aligns the same as the field with the
widest alignment.

Options -f or -dalign force alignment of all 8, 16, or 32-byte data onto 8-byte
boundaries. Option -dbl_align_all causes all data to be aligned on 8-byte
boundaries. Programs that depend on the use of these options may not be portable.

TABLE 4-3 Default Data Sizes and Alignments (in Bytes)

Fortran 95 Data Type Size
 Default
Alignment

 Alignment in
COMMON

BYTE X

CHARACTER X

CHARACTER*n X

 1
 1
 n

 1
 1
 1

 1
 1
 1

COMPLEX X

COMPLEX*8 X

DOUBLE COMPLEX X

COMPLEX*16 X

COMPLEX*32 X

 8
 8
 16
 16
 32

 4
 4
 8
 8
 8/16

 4
 4
 4
 4
 4

DOUBLE PRECISION X

REAL X

REAL*4 X

REAL*8 X

REAL*16 X

 8
 4
 4
 8
 16

 8
 4
 4
 8
 8/16

 4
 4
 4
 4
 4

INTEGER X

INTEGER*2 X

INTEGER*4 X

INTEGER*8 X

 4
 2
 4
 8

 4
 2
 4
 8

 4
 2
 4
 4

LOGICAL X

LOGICAL*1 X

LOGICAL*2 X

LOGICAL*4 X

LOGICAL*8 X

 4
 1
 2
 4
 8

 4
 1
 2
 4
 8

 4
 1
 2
 4
 4
4-8 Fortran User’s Guide • January 2005

4.3 Cray Pointers
A Cray pointer is a variable whose value is the address of another entity, called the
pointee.

f95 supports Cray pointers; Standard Fortran 95 does not.

4.3.1 Syntax
The Cray POINTER statement has the following format:

Where pointer_name, pointee_name, and array_spec are as follows:

Example: Declare Cray pointers to two pointees.

The above example declares Cray pointer p and its pointee b, and Cray pointer q
and its pointee c.

Example: Declare a Cray pointer to an array.

POINTER (pointer_name, pointee_name [array_spec]), …

pointer_name Pointer to the corresponding pointee_name.
pointer_name contains the address of pointee_name.
Must be: a scalar variable name (but not a derived type)
Cannot be: a constant, a name of a structure, an array, or a
function

pointee_name Pointee of the corresponding pointer_name
Must be: a variable name, array declarator, or array name

array_spec If array_spec is present, it must be explicit shape, (constant or non-
constant bounds), or assumed-size.

POINTER (p, b), (q, c)

 POINTER (ix, x(n, 0:m))
Chapter 4 Fortran 95 Features and Differences 4-9

The above example declares Cray pointer ix and its pointee x; and declares x to be
an array of dimensions n by m+1.

4.3.2 Purpose of Cray Pointers
You can use pointers to access user-managed storage by dynamically associating
variables to particular locations in a block of storage.

Cray pointers allow accessing absolute memory locations.

4.3.3 Declaring Cray Pointers and Fortran 95 Pointers
 Cray pointers are declared as follows:

POINTER (pointer_name, pointee_name [array_spec])

Fortran 95 pointers are declared as follows:

POINTER object_name

The two kinds of pointers cannot be mixed.

4.3.4 Features of Cray Pointers
■ Whenever the pointee is referenced, f95 uses the current value of the pointer as

the address of the pointee.

■ The Cray pointer type statement declares both the pointer and the pointee.

■ The Cray pointer is of type Cray pointer.

■ The value of a Cray pointer occupies one storage unit on 32-bit processors, and
two storage units on 64-bit SPARC V9 processors.

■ The Cray pointer can appear in a COMMON list or as a dummy argument.

■ The Cray pointee has no address until the value of the Cray pointer is defined.

■ If an array is named as a pointee, it is called a pointee array.

Its array declarator can appear in:

■ A separate type statement
■ A separate DIMENSION statement
■ The pointer statement itself

■ If the array declarator is in a subprogram, the dimensioning can refer to:

■ Variables in a common block, or
4-10 Fortran User’s Guide • January 2005

■ Variables that are dummy arguments

■ The size of each dimension is evaluated on entrance to the subprogram, not when
the pointee is referenced.

4.3.5 Restrictions on Cray Pointers
■ pointee_name must not be a variable typed CHARACTER*(*).

■ If pointee_name is an array declarator, it must be explicit shape, (constant or non-
constant bounds), or assumed-size.

■ An array of Cray pointers is not allowed.

■ A Cray pointer cannot be:

■ Pointed to by another Cray pointer or by a Fortran pointer.
■ A component of a structure.
■ Declared to be any other data type.

■ A Cray pointer cannot appear in:

■ A PARAMETER statement or in a type declaration statement that includes the
PARAMETER attribute.

■ A DATA statement.

4.3.6 Restrictions on Cray Pointees
■ A Cray pointee cannot appear in a SAVE, DATA, EQUIVALENCE, COMMON, or

PARAMETER statement.

■ A Cray pointee cannot be a dummy argument.

■ A Cray pointee cannot be a function value.

■ A Cray pointee cannot be a structure or a structure component.

■ A Cray pointee cannot be of a derived type.

4.3.7 Usage of Cray Pointers
Cray pointers can be assigned values as follows:

■ Set to an absolute address

Example: q = 0

■ Assigned to or from integer variables, plus or minus expressions

Example: p = q + 100
Chapter 4 Fortran 95 Features and Differences 4-11

■ Cray pointers are not integers. You cannot assign them to a real variable.

■ The LOC function (nonstandard) can be used to define a Cray pointer.

Example: p = LOC(x)

Example: Use Cray pointers as described above.

Remarks about the above example:

■ word64 refers to the contents of absolute address 64

■ blk is an array that occupies the first 128 words of memory

■ a is an array of length 1000 located in blank common

■ b follows a and is of length n

■ c follows b

■ a, b, and c are associated with pool

■ word64 is the same as blk(17) because Cray pointers are byte address and the
integer elements of blk are each 4 bytes long

4.4 STRUCTURE and UNION (VAX Fortran)
To aid the migration of programs from f77, f95 accepts VAX Fortran STRUCTURE
and UNION statements, a precursor to the “derived types” in Fortran 95. For syntax
details see the FORTRAN 77 Language Reference manual.

The field declarations within a STRUCTURE can be one of the following:

■ A substructure — either another STRUCTURE declaration, or a record that has
been previously defined.

■ A UNION declaration.

SUBROUTINE sub (n)
COMMON pool(100000)
INTEGER blk(128), word64
REAL a(1000), b(n), c(100000-n-1000)
POINTER (pblk, blk), (ia, a), (ib, b), &

(ic, c), (address, word64)
DATA address / 64 /
pblk = 0
ia = LOC(pool)
ib = ia + 4000
ic = ib + n
...
4-12 Fortran User’s Guide • January 2005

■ A TYPE declaration, which can include initial values.

■ A derived type having the SEQUENCE attribute. (This is particular to f95 only.)

As with f77, a POINTER statement cannot be used as a field declaration.

f95 also allows:

■ Either ‘.’ or ‘%’ can be used as a structure field dereference symbol:
struct.field or struct%field.

■ Structures can appear in a formatted I/O statement.

■ Structures can be initialized in a PARAMETER statement; the format is the same as
a derived type initialization.

■ Structures can appear as components in a derived type, but the derived type must
be declared with the SEQUENCE attribute.

4.5 Unsigned Integers
The Fortran 95 compiler accepts a new data type, UNSIGNED, as an extension to the
language. Four KIND parameter values are accepted with UNSIGNED: 1, 2, 4, and 8,
corresponding to 1-, 2-, 4-, and 8-byte unsigned integers, respectively.

The form of an unsigned integer constant is a digit-string followed by the upper or
lower case letter U, optionally followed by an underscore and kind parameter. The
following examples show the maximum values for unsigned integer constants:

Expressed without a kind parameter (12345U), the default is the same as for default
integer. This is U_4 but can be changed by the -xtypemap option, which will change
the kind type for default unsigned integers.

Declare an unsigned integer variable or array with the UNSIGNED type specifier:

 255u_1
 65535u_2
 4294967295U_4
 18446744073709551615U_8

UNSIGNED U
UNSIGNED(KIND=2) :: A
UNSIGNED*8 :: B
Chapter 4 Fortran 95 Features and Differences 4-13

4.5.1 Arithmetic Expressions
■ Binary operations, such as + - * / cannot mix signed and unsigned operands.

That is, U*N is illegal if U is declared UNSIGNED, and N is a signed INTEGER.

■ Use the UNSIGNED intrinsic function to combine mixed operands in a binary
operation, as in U*UNSIGNED(N)

■ An exception is when one operand is an unsigned integer and the other is a
signed integer constant expression with positive or zero value; the result is an
unsigned integer.

■ The kind of the result of such a mixed expression is the largest kind of the
operands.

■ Exponentiation of a signed value is signed while exponentiation of an unsigned
value is unsigned.

■ Unary minus of an unsigned value is unsigned.

■ Unsigned operands may mix freely with real, complex operands. (Unsigned
operands cannot be mixed with interval operands.)

4.5.2 Relational Expressions
Signed and unsigned integer operands may be compared using intrinsic relational
operations. The result is based on the unaltered value of the operands.

4.5.3 Control Constructs
■ The CASE construct accepts unsigned integers as case-expressions.

■ Unsigned integers are not permitted as DO loop control variables, or in arithmetic
IF control expressions.

4.5.4 Input/Output Constructs
■ Unsigned integers can be read and written using the I, B, O, and Z edit

descriptors.

■ They can also be read and written using list-directed and namelist I/O. The
written form of an unsigned integer under list-directed or namelist I/O is the
same as is used for positive signed integers.

■ Unsigned integers can also be read or written using unformatted I/O.
4-14 Fortran User’s Guide • January 2005

4.5.5 Intrinsic Functions
■ Unsigned integers are allowed in intrinsic functions, except for SIGN and ABS.

■ A new intrinsic function, UNSIGNED, is analogous to INT but produces a result of
unsigned type. The form is

 UNSIGNED(v [,kind]).

■ Another new intrinsic function, SELECTED_UNSIGNED_KIND(var), returns the
kind parameter for var.

■ The MIN and MAX functions do not allow both signed and unsigned integer
operands unless there is at least one operand of REAL type.

■ Unsigned arrays cannot appear as arguments to array intrinsic functions.

4.6 Fortran 2003 Features
A number of features proposed in the Fortran 2003 draft standard appear in this
release of the f95 compiler.

4.6.1 Interoperability with C Functions
The new draft standard for Fortran provides:

■ a means of referencing C language procedures and, conversely, a means of
specifying that a Fortran subprogram can be referenced from a C function, and

■ a means of declaring global variables that are linked with external C variables

The ISO_C_BINDING module provides access to named constants that are kind type
parameters representing data that is compatible with C types.

The draft standard also introduces the BIND(C) attribute. A Fortran derived type is
interoperable with C if it has the BIND attribute.

This release of the Fortran 95 compiler implements these features as described in the
chapter 15 of the draft standard. Fortran also provides facilities for defining derived
types, enumerations, and type aliases that correspond to C types, as described in
chapter 4 of the draft standard.
Chapter 4 Fortran 95 Features and Differences 4-15

4.6.2 IEEE Floating-Point Exception Handling
New intrinsic modules IEEE_ARITHMETIC, and IEEE_FEATURES provide support
for exceptions and IEEE arithmetic in the Fortran language. Full support of these
features is provided by:

USE, INTRINSIC :: IEEE_ARITHMETIC

USE, INTRINSIC :: IEEE_FEATURES

These modules define a set of derived types, constants, rounding modes, inquiry
functions, elemental functions, kind functions, and elemental and non-elemental
subroutines. The details are contained in Chapter 14 of the draft standard for
Fortran 2000.

4.6.3 Command-Line Argument Intrinsics
The Fortran 2003 draft standard introduces three new intrinsics for processing
command-line arguments and environment variables. These are:

■ GET_COMMAND(command, length, status)

Returns in command the entire command line that invoked the program.

■ GET_COMMAND_ARGUMENT(number, value, length, status)

Returns a command-line argument in value.

■ GET_ENVIRONMENT_VARIABLE(name, value, length, status, trim_name)

Return the value of an environment variable.

4.6.4 PROTECTED Attribute
The Fortran 95 compiler now accepts the Fortran 2003 PROTECTED attribute.
PROTECTED imposes limitations on the usage of module entities. Objects with the
PROTECTED attribute are only definable within the module that declares them.

4.6.5 Fortran 2003 Asynchronous I/O
The compiler recognizes the ASYNCHRONOUS specifier on I/O statements:

ASYNCHRONOUS=['YES' | 'NO']
4-16 Fortran User’s Guide • January 2005

This syntax is as proposed in the Fortran 2000 draft standard, Chapter 9. In
combination with the WAIT statement it allows the programmer to specify I/O
processes that may be overlapped with computation. While the compiler recognizes
ASYNCHRONOUS='YES', the draft standard does not require actual asynchronous
I/O. In this release of the compiler, I/O is always synchronous.

4.6.6 Extended ALLOCATABLE Attribute
Recent decisions by the Fortran 95 standards organizations have extended the data
entities allowed for the ALLOCATABLE attribute. Previously this attribute was limited
to locally stored array variables. It is now allowed with:

■ array components of structures
■ dummy arrays
■ array function results

Allocatable entities remain forbidden in all places where they may be storage-
associated: COMMON blocks and EQUIVALENCE statements. Allocatable array
components may appear in SEQUENCE types, but objects of such types are then
prohibited from COMMON and EQUIVALENCE.

4.6.7 VALUE Attribute
The f95 compiler recognizes the VALUE type declaration attribute. This attribute has
been proposed for the Fortran 2003 standard.

Specifying a subprogram dummy input argument with this attribute indicates that
the actual argument is passed “by value”. The following example demonstrates the
use of the VALUE attribute with a C main program calling a Fortran 95 subprogram
with a literal value as an argument:

C code:
#include <stdlib.h>
int main(int ac, char *av[])
{
 to_fortran(2);
}

Fortran code:
 subroutine to_fortran(i)
 integer, value :: i
 print *, i
 end
Chapter 4 Fortran 95 Features and Differences 4-17

4.6.8 Fortran 2003 Stream I/O
A new “stream” I/O scheme has been proposed as part of the Fortran 2003 draft
standard. Stream I/O access treats a data file as a continuous sequence of bytes,
addressable by a positive integer starting from 1. Declare a stream I/O file with the
ACCESS='STREAM' specifier on the OPEN statement. File positioning to a byte
address requires a POS=scalar_integer_expression specifier on a READ or WRITE
statement. The INQUIRE statement accepts ACCESS='STREAM', a specifier STREAM=
scalar_character_variable, and POS=scalar_integer_variable.

4.6.9 Fortran 2003 Formatted I/O Features
Three new Fortran 2003 formatted I/O specifiers have been implemented in f95.
They may appear on OPEN, READ, WRITE, PRINT, and INQUIRE statements:

■ DECIMAL=['POINT'|'COMMA']

Change the default decimal editing mode. The default uses a period to separate
the whole number and decimal parts of a floating-point number formatted with D,
E, EN, ES, F, and G editing. 'COMMA' changes the default to use comma instead of
a period, to print, for example, 123,456. The default is 'POINT', which uses a
period, to print, for example, 123.456.

■ ROUND=['PROCESSOR_DEFINED' | 'COMPATIBLE']

Set the default rounding mode for formatted I/O D, E, EN, ES, F, and G editing.
With 'COMPATIBLE', the value resulting from data conversion is the one closer
to the two nearest represetnations, or the value away from zero if the value is
halfway between them. With 'PROCESSOR_DEFINED', the rounding mode is
dependent on the processor’s default mode, and is the compiler default if ROUND
is not specified.

As an example, WRITE(*,'(f11.4)') 0.11115 prints 0.1111 in default
mode, and 0.1112 in 'COMPATIBLE' mode.

■ IOMSG=character-variable

Returns an error message as a string in the specified character variable. This is the
same error message that would appear on standard output. Users should
allocated a character buffer large enough to hold the longest message.
(CHARACTER*256 should be sufficient.)

When used in INQUIRE statements, these specifiers declare a character variable for
returning the current values.

New edit descriptors DP, DC, RP, and RC change the defaults within a single FORMAT
statement to decimal point, decimal comma, processor-defined rounding, and
compatible rounding respectively. For example:

WRITE(*,'(I5,DC,F10.3)') N, W
4-18 Fortran User’s Guide • January 2005

prints a comma instead of a period in the F10.3 output item.

See also the -iorounding compiler command-line option for changing the floating-
point rounding modes on formatted I/O. (Section , “-iorounding[=
{compatible|processor-defined}]” on page 3-32.)

4.7 Additional I/O Extensions
The section describes extensions to Fortran 95 Input/Output handling that are
accepted by the f95 compiler that are not part of the Fortran 2003 draft standard.
Some are I/O extensions that appeared in the Fortran 77 compiler, f77, and are now
part of the Fortran 95 compiler.

4.7.1 I/O Error Handling Routines
Two new functions enable the user to specify their own error handling routine for
formatted input on a logical unit. When a formatting error is detected, the runtime
I/O library calls the specified user-supplied handler routine with data pointing at
the character in the input line causing the error. The handler routine can supply a
new character and allow the I/O operation to continue at the point where the error
was detected using the new character; or take the default Fortran error handling.

The new routines, SET_IO_ERR_HANDLER(3f) and GET_IO_ERR_HANDLER(3f), are
module subroutines and require USE SUN_IO_HANDLERS in the routine that calls
them. See the man pages for these routines for details.

4.7.2 Variable Format Expressions
Fortran 77 allowed any integer constant in a format to be replaced by an arbitrary
expression enclosed in angle brackets:

1 FORMAT(… < expr > …)

Variable format expressions cannot appear as the n in an nH… edit descriptor, in a
FORMAT statement that is referenced by an ASSIGN statement, or in a FORMAT
statement within a parallel region.

This feature is enabled natively in f95, and does not require the -f77 compatibility
option flag.
Chapter 4 Fortran 95 Features and Differences 4-19

4.7.3 NAMELIST Input Format
■ The group name may be preceded by $ or & on input. The & is the only form

accepted by the Fortran 95 standard, and is what is written by NAMELIST output.

■ Accepts $ as the symbol terminating input except if the last data item in the
group is CHARACTER data, in which case the $ is treated as input data.

■ Allows NAMELIST input to start in the first column of a record.

4.7.4 Binary Unformatted I/O
Opening a file with FORM='BINARY' has roughly the same effect as FORM=
'UNFORMATTED', except that no record lengths are embedded in the file. Without
this data, there is no way to tell where one record begins, or ends. Thus, it is
impossible to BACKSPACE a FORM='BINARY' file, because there is no way of telling
where to backspace to. A READ on a 'BINARY' file will read as much data as needed
to fill the variables on the input list.

■ WRITE statement: Data is written to the file in binary, with as many bytes
transferred as specified by the output list.

■ READ statement: Data is read into the variables on the input list, transferring as
many bytes as required by the list. Because there are no record marks on the file,
there will be no “end-of-record” error detection. The only errors detected are
“end-of-file” or abnormal system errors.

■ INQUIRE statement: INQUIRE on a file opened with FORM=”BINARY” returns:

FORM=”BINARY”
ACCESS=”SEQUENTIAL”
DIRECT=”NO”
FORMATTED=”NO”
UNFORMATTED=”YES”
RECL= AND NEXTREC= are undefined

■ BACKSPACE statement: Not allowed—returns an error.

■ ENDFILE statement: Truncates file at current position, as usual.

■ REWIND statement: Repositions file to beginning of data, as usual.

4.7.5 Miscellaneous I/O Extensions
■ Recursive I/O possible on different units (this is because the f95 I/O library is

"MT-Warm").

■ RECL=2147483646 (231-2) is the default record length on sequential formatted,
list directed, and namelist output.
4-20 Fortran User’s Guide • January 2005

■ ENCODE and DECODE are recognized and implemented as described in the
FORTRAN 77 Language Reference Manual.

■ Non-advancing I/O is enabled with ADVANCE='NO', as in:

 write(*,'(a)',ADVANCE='NO') 'n= '
 read(*,*) n

4.8 Directives
A compiler directive directs the compiler to do some special action. Directives are
also called pragmas.

A compiler directive is inserted into the source program as one or more lines of text.
Each line looks like a comment, but has additional characters that identify it as more
than a comment for this compiler. For most other compilers, it is treated as a
comment, so there is some code portability.

Sun-style parallelization directives are the default with f95 -explicitpar. To
switch to Cray-style directives, use the -mp=cray compiler command-line flag.
Explicit parallelization with OpenMP directives requires compiling with -openmp.

A complete summary of Fortran directives appears in Appendix D.

4.8.1 Form of Special f95 Directive Lines
f95 recognizes its own special directives in addition to those described in Chapter 2.
These have the following syntax:

4.8.1.1 Fixed-Form Source
■ Put CDIR$ or !DIR$ in columns 1 through 5.
■ Directives are listed in columns 7 and beyond.
■ Columns beyond 72 are ignored.
■ An initial directive line has a blank in column 6.
■ A continuation directive line has a nonblank in column 6.

!DIR$ d1, d2, …
Chapter 4 Fortran 95 Features and Differences 4-21

4.8.1.2 Free-Form Source
■ Put !DIR$ followed by a space anywhere in the line.

The !DIR$ characters are the first nonblank characters in the line (actually,
non-whitespace).

■ Directives are listed after the space.

■ An initial directive line has a blank, tab, or newline in the position immediately
after the !DIR$.

■ A continuation directive line has a character other than a blank, tab, or newline in
the position immediately after the !DIR$.

Thus, !DIR$ in columns 1 through 5 works for both free-form source and fixed-form
source.

4.8.2 FIXED and FREE Directives
These directives specify the source form of lines following the directive line.

4.8.2.1 Scope

They apply to the rest of the file in which they appear, or until the next FREE or
FIXED directive is encountered.

4.8.2.2 Uses
■ They allow you to switch source forms within a source file.

■ They allow you to switch source forms for an INCLUDE file. You insert the
directive at the start of the INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the form being used prior to processing
the INCLUDE file.

4.8.2.3 Restrictions

The FREE/FIXED directives:

■ Each must appear alone on a compiler directive line (not continued).

■ Each can appear anywhere in your source code. Other directives must appear
within the program unit they affect.
4-22 Fortran User’s Guide • January 2005

Example: A FREE directive.

4.8.3 Parallelization Directives
A parallelization directive is a special comment that directs the compiler to attempt to
parallelize the next DO loop. These are summarized in Appendix D and described in
the chapter on parallelization in the Fortran Programming Guide. f95 recognizes both
Sun and Cray style parallelization directives, as well as the OpenMP Fortran API
directives. OpenMP parallelization is described in the OpenMP API User’s Guide.

4.9 Module Files
Compiling a file containing a Fortran 95 MODULE generates a module interface file
(.mod file) for every MODULE encountered in the source. The file name is derived from
the name of the MODULE; file xyz.mod (all lowercase) will be created for MODULE xyz.

Compilation also generates a .o module implementation object file for the source
file containing the MODULE statements. Link with the module implementation object
file along with the all other object files to create an executable.

The compiler creates module interface files and implementation object files in the
directory specified by the -moddir=dir flag or the MODDIR evironment variable. If
not specified, the compiler writes .mod files in the current working directory.

The compiler looks in the current working directory for the interface files when
compiling USE modulename statements. The -Mpath option allows you to give the
compiler an additional path to search. Module implementation object files must be
listed explicitly on the command line for the link step.

Typically, programmers define one MODULE per file and assign the same name to the
MODULE and the source file containing it. However, this is not a requirement.

!DIR$ FREE
DO i = 1, n

a(i) = b(i) * c(i)
END DO
Chapter 4 Fortran 95 Features and Differences 4-23

In this example, all the files are compiled at once. The module source files appear
first before their use in the main program.

Compilation creates the files:

main
main.o
one.mod
mod_one.o
two.mod
mod_two.o

The next example compiles each unit separately and links them together.

When compiling main.f90, the compiler searches the current directory for
one.mod and two.mod. These must be compiled before compiling any files that
reference the modules on USE statements. The link step requires the module
implementation object files mod_one.o and mod_two.o appear along with all other
object files to create the executable.

demo% cat mod_one.f90
 MODULE one
 ...
 END MODULE
demo% cat mod_two.f90
 MODULE two
 ...
 END MODULE
demo% cat main.f90
 USE one
 USE two
 ...
 END
demo% f95 -o main mod_one.f90 mod_two.f90 main.f90

demo% f95 -c mod_one.f90 mod_two.f90
demo% f95 -c main.f90
demo% f95 -o main main.o mod_one.o mod_two.o
4-24 Fortran User’s Guide • January 2005

4.9.1 Searching for Modules
With the release of the Sun ONE Studio 7 Fortran 95 compiler, .mod files can be
stored into an archive (.a) file. An archive must be explicitly specified in a -Mpath
flag on the command line for it to be searched for modules. The compiler does not
search archive files by default.

Only .mod files with the same names that appear on USE statements will be
searched. For example, the Fortran 95 statement USE mymod causes the compiler to
search for the module file mymod.mod by default.

While searching, the compiler gives higher priority to the directory where the
module files are being written. This can be controlled by the -moddir=dir option
flag and the MODDIR environment variable. This implies that if only the -Mpath
option is specified, the current directory will be searched for modules first, before
the directories and files listed on the -M flag.

4.9.2 The -use=list Option Flag
The -use=list flag forces one or more implicit USE statements into each subprogram
or module subprogram compiled with this flag. By using the flag, it is not necessary
to modify source programs when a module or module file is required for some
feature of a library or application.

Compiling with -use=module_name has the effect of adding a USE module_name to
each subprogram or module being compiled. Compiling with -use=
module_file_name has the effect of adding a USE module_name for each of the modules
contained in the module_file_name file.

4.9.3 The fdumpmod Command
Use the fdumpmod(1) command to display information about the contents of a
compiled module information file.

demo% fdumpmod x.mod group.mod
x 1.0 v8,i4,r4,d8,n16,a4 x.mod
group 1.0 v8,i4,r4,d8,n16,a4 group.mod
Chapter 4 Fortran 95 Features and Differences 4-25

The fdumpmod command will display information about modules in a single .mod
file, files formed by concatenating .mod files, and in .a archives of .mod files. The
display includes the name of the module, a version number, the target architecture,
and flags indicating compilation options with which the module is compatible. See
the fdumpmod(1) man page for details.

4.10 Intrinsics
f95 supports some intrinsic procedures that are extensions beyond the standard.

See the Fortran Library Reference for a more complete discussion of intrinsics,
including those from Fortran 77 that are recognized by the Fortran 95 compiler.

TABLE 4-4 Nonstandard Intrinsics

Name Definition Function Type Argument Types Arguments Notes

COT Cotangent real real ([X=]x) P, E

DDIM Positive difference double
precision

double precision ([X=]x,[Y=]y) P, E

LEADZ Get the number of
leading 0 bits

integer Boolean, integer, real,
or pointer

([I=]i) NP, I

POPCNT Get the number of
set bits

integer Boolean, integer, real,
or pointer

([I=]i) NP, I

POPPAR Calculate bit
population parity

integer Boolean, integer, real,
or pointer

([X=]x) NP, I

Notes on the above table:

P The name can be passed as an argument.

NP The name cannot be passed as an argument.

E External code for the intrinsic is called at run time.

I f95 generates inline code for the intrinsic procedure.
4-26 Fortran User’s Guide • January 2005

4.11 Forward Compatibility
Future releases of f95 are intended to be source code compatible with this release.

Module information files generated by this release of f95 are not guaranteed to be
compatible with future releases.

4.12 Mixing Languages
On Solaris systems, routines written in C can be combined with Fortran programs,
since these languages have common calling conventions.See the C-Fortran Interface
chapter in the Fortran Programming Guide for details on how to interoperate between
C and Fortran routines.
Chapter 4 Fortran 95 Features and Differences 4-27

4-28 Fortran User’s Guide • January 2005

CHAPTER 5

FORTRAN 77 Compatibility:
Migrating to Fortran 95

The Fortran 95 compiler, f95, will compile most legacy FORTRAN 77 programs,
including programs utilizing non-standard extensions previously compiled by the
f77 compiler.

f95 will accept many of these FORTRAN 77 features directly. Others require
compiling in FORTRAN 77 compatibility mode (f95 -f77).

This chapter describes the FORTRAN 77 features accepted by f95, and lists those
f77 features that are incompatible with f95. For details on any of the non-standard
FORTRAN 77 extensions that were accepted by the f77 compiler, see the
FORTRAN 77 Language Reference manual at
http://docs.sun.com/source/806-3594/index.html.

See Chapter 4 for other extensions to the Fortran 95 language accepted by the f95
compiler.

f95 will compile standard-conforming FORTRAN 77 programs. To ensure continued
portability, programs utilizing non-standard FORTRAN 77 features should migrate
to standard-conforming Fortran 95. Compiling with the -ansi option will flag all
non-standard usages in your program.

5.1 Compatible f77 Features
f95 accepts the following non-standard features of the FORTRAN 77 compiler, f77,
either directly or when compiling in -f77 compatibility mode:

■ Source Format

■ Continuation lines can start with ‘&’ in column 1. [-f77=misc]

■ The first line in an include file can be a continuation line. [-f77=misc]

■ Use f77 tab-format. [-f77=tab]
5-1

http://docs.sun.com/source/806�3594/index.html

■ Tab-formatting can extend source lines beyond column 72. [-f77=tab]

■ f95 tab-formatting will not pad character strings to column 72 if they extend
over a continuation line. [-f77]

■ I/O:

■ You can open a file with ACCESS=’APPEND’ in Fortran 95.

■ List-directed output uses formats similar to the f77 compiler. [-f77=output]

■ f95 allows BACKSPACE on a direct-access file, but not ENDFILE.

■ f95 allows implicit field-width specifications in format edit descriptors. For
example, FORMAT(I) is allowed.

■ f95 will recognize f77 escape sequences (for example, \n \t \’) in output
formats. [-f77=backslash.]

■ f95 recognizes FILEOPT= in OPEN statements.

■ f95 allows SCRATCH files to be closed with STATUS=’KEEP’ [-f77]. When the
program exits, the scratch file is not deleted. SCRATCH files can also be opened
with FILE=name when compiled with -f77.

■ Direct I/O is permitted on internal files. [-f77]

■ f95 recognizes FORTRAN 77 format edit descriptors A, $, and SU. [-f77]

■ FORM=’PRINT’ can appear on OPEN statements. [-f77]

■ f95 recognizes the legacy FORTRAN input/output statements ACCEPT and
TYPE.

■ Compile with -f77=output to write FORTRAN 77 style NAMELIST output.

■ A READ with only ERR= specified (no IOSTAT= or END= branches) treats the ERR=
branch as an END= when an EOF is detected. [-f77]

■ VMS Fortran NAME=’filename’ is accepted on OPEN statements. [-f77]

■ f95 accepts an extra comma after READ() or WRITE(). [-f77]

■ END= branch can appear on direct access READ with REC=. [-f77=input]

■ Allow format edit descriptor Ew.d.e and treat it as Ew.d.Ee. [-f77]

■ Character strings can be used in the FORMAT of an input statement.
[-f77=input]

■ IOSTAT= specifier can appear in ENCODE/DECODE statements.

■ List-directed I/O is allowed with ENCODE/DECODE statements.

■ Asterisk (*) can be used to stand in for STDIN and STDOUT when used as a
logical unit in an I/O statement.

■ Arrays can appear in the FMT= specifier. [-f77=misc]

■ PRINT statement accepts namelist group names. [-f77=output]

■ The compiler accepts redundant commas in FORMAT statements.
5-2 Fortran User’s Guide • January 2005

■ While performing NAMELIST input, entering a question mark (?) responds with
the name of the namelist group being read. [-f77=input]

■ Data Types, Declarations, and Usage:

■ In a program unit, the IMPLICIT statement may follow any other declarative
statement in the unit.

■ f95 accepts the IMPLICIT UNDEFINED statement.

■ f95 accepts the AUTOMATIC statement, a FORTRAN 77 extension.

■ f95 accepts the STATIC statement and treats it like a SAVE statement.

■ f95 accepts VAX STRUCTURE, UNION, and MAP statements.(See Section 4.4,
“STRUCTURE and UNION (VAX Fortran)” on page 4-12)

■ LOGICAL and INTEGER variables can be used interchangeably. [-f77=logical]

■ INTEGER variables can appear in conditional expressions, such as DO WHILE.
[-f77=logical]

■ Cray pointers can appear in calls to intrinsic functions.

■ f95 will accept data initializations using slashes on type declarations. For
example: REAL MHW/100.101/, ICOMX/32.223/

■ f95 allows assigning Cray character pointers to non-pointer variables and to
other Cray pointers that are not character pointers.

■ f95 allows the same Cray pointer to point to items of different type sizes (for
example, REAL*8 and INTEGER*4).

■ A Cray pointer can be declared INTEGER in the same program unit where it is
declared as a POINTER. The INTEGER declaration is ignored. [-f77=misc]

■ A Cray pointer can be used in division and multiplication operations.
[-f77=misc]

■ Variables in an ASSIGN statement can be of type INTEGER*2. [-f77=misc]

■ Expressions in alternate RETURN statements can be non-integer type.
[-f77=misc]

■ Variables with the SAVE attribute can be equivalenced to an element of a
COMMON block.

■ Initializers for the same array can be of different types. Example:
REAL*8 ARR(5) /12.3 1, 3, 5.D0, 9/

■ Type declarations for namelist items can follow the NAMELIST statement.

■ f95 accepts the BYTE data type.

■ f95 allows non-integers to be used as array subscripts. [-f77=subscript]

■ f95 allows relational operators .EQ. and .NE. to be used with logical
operands. [-f77=logical]

■ f95 will accept the legacy f77 VIRTUAL statement, and treats it as a DIMENSION
statement.
Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-3

■ Different data structures can be equivalenced in a manner that is compatible
with the f77 compiler. [-f77=misc]

■ Like the f77 compiler, f95 allows many intrinsics to appear in initialization
expressions on PARAMETER statements.

■ f95 allows assignment of an integer value to CHARACTER*1 variables.
[-f77=misc]

■ BOZ constants can be used as exponents. [-f77=misc]

■ BOZ constants can be assigned to character variables. For example:
 character*8 ch
 ch ="12345678"X

■ BOZ constants can be used as arguments to intrinsic function calls.
[-f77=misc]

■ A character variable can be initialized with an integer value in a DATA
statement. The first character in the variable is set to the integer value and the
rest of the string, if longer than one character, is blank-filled.

■ An integer array of hollerith characters can be used as a format descriptor.
[-f77].

■ Constant folding will not be done at compile time if it results in a
floating-point exception. [-f77=misc]

■ When compiling with -f77=misc, f95 will automatically promote a REAL
constant to the appropriate kind (REAL*8 or REAL*16) in assignments, data,
and parameter statements, in the manner of the f77 compiler. [-f77=misc]

■ Equivalenced variables are allowed on an assigned GOTO. [-f77]

■ Non-constant character expressions can be assigned to numeric variables.

■ Compiling with -f77=misc allows *kind after the variable name in type
declarations. [-f77=misc]. For example
 REAL Y*4, X*8(21))
 INTEGER FUNCTION FOO*8(J)

■ A character substring may appear as an implied-DO target in a DATA statement.
[-f77=misc]
For example: DATA (a(i:i), i=1,n) /n*’+’/

■ Integer expressions within parentheses can appear as a type size. For example:
 PARAMETER (N=2)
 INTEGER*(N+2) K

■ Programs, Subroutines, Functions, and Executable Statements:

■ f95 does not require a PROGRAM statement to have a name.

■ Functions can be called by a CALL statement as if they were subroutines.
[-f77]

■ Functions do not have to have their return value defined. [-f77]
5-4 Fortran User’s Guide • January 2005

■ An alternate return specifier (*label or &label) can appear in the actual
parameter list and in different positions. [-f77=misc]

■ %VAL can be used with an argument of type COMPLEX. [-f77=misc]

■ %REF and %LOC are available. [-f77=misc]

■ A subroutine can call itself recursively without declaring itself with a
RECURSIVE keyword. [-f77=misc] However, programs that perform indirect
recursion (routine A calls routine B which then calls routine A) should also be
compiled with the -xrecursive flag to work correctly.

■ A subroutine with alternate returns can be called even when the dummy
argument list does not have an alternate return list.

■ Compiling with -f77=misc allows statement functions to be defined with
arguments typed other than INTEGER or REAL, and actual arguments will be
converted to the type defined by the statement function. [-f77=misc]

■ Allow null actual arguments. For example: CALL FOO(I,,,J) has two null
arguments between the first I and the final J argument.

■ f95 treats a call to the function %LOC() as a call to LOC(). [-f77=misc]

■ Allow unary plus and unary minus after another operator such as ** or *.

■ Allow a second argument with the CMPLX() intrinsic function even when the
first argument is a COMPLEX type. In this case, the real part of the first argument
is used. [-f77=misc]

■ Allow the argument to the CHAR() intrinsic function to exceed 255 with only a
warning, not an error. [-f77=misc]

■ Allow negative shift counts with only a warning, not an error.

■ Search for an INCLUDE file in the current directory as well as those specified in
the -I option. [-f77=misc]

■ Allow consecutive .NOT. operations, such as .NOT..NOT..NOT.(I.EQ.J).
[-f77=misc]

■ Miscellaneous

■ The f95 normally does not issue progress messages to standard out. The f77
compiler did issue progress messages, displaying the names of the routines it
was compiling. This convention is retained when compiling with the -f77
compatibility flag.

■ Programs compiled by the f77 compiler did not trap on arithmetic exceptions,
and automatically called ieee_retrospective on exit to report on any
exceptions that may have occured during execution. Compiling with the -f77
flag mimics this behavior of the f77 compiler. By default, the f95 compiler
traps on the first arithmetic exception encountered and does not call
ieee_retrospective.
Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-5

■ The f77 compiler treated a REAL*4 constant as if it had higher precision in
contexts where higher precision was needed. When compiling with the -f77
flag, the f95 compiler allows a REAL*4 constant to have double or quad
precision when the constant is used with a double or quad precision operand,
respectively.

■ Allow the DO loop variable to be redefined within the loop. [-f77=misc]

■ Display the names of program units being compiled. [-f77=misc]

■ Allow the types of the variables used in a DIMENSION statement to be
declared after the DIMENSION statement. Example:
 SUBROUTINE FOO(ARR,G)
 DIMENSION ARR(G)
 INTEGER G
 RETURN
 END

For details on the syntax and semantics of non-standard language extensions, see the
FORTRAN 77 Language Reference at
http://docs.sun.com/source/806-3594/index.html.

5.2 Incompatibility Issues
The following lists known incompatibilities that arise when compiling and testing
legacy f77 programs with this release of f95. These are due to either missing
comparable features in f95, or differences in behavior. These items are non-standard
extensions to Fortran 77 supported in f77 but not in f95.

■ Source Format

■ An ANSI warning is given for names longer than 6 characters when the -f77
option is specified.

■ I/O:

■ f95 does not allow ENDFILE on a direct-access file.

■ f95 does not recognize the 'n form for specifying a record number in direct
access I/O: READ (2 '13) X,Y,Z

■ f95 does not recognize the legacy f77 “R” format edit descriptor.

■ f95 does not allow the DISP= specifier in a CLOSE statement.

■ Bit constants are not allowed on a WRITE statement.

■ Fortran 95 NAMELIST does not allow arrays and character strings with variable
lengths.

■ Opening a direct access file with RECL=1 cannot be used as a “stream” file. Use
FORMAT=’STREAM’ instead.
5-6 Fortran User’s Guide • January 2005

http://docs.sun.com/source/806�3594/index.html

■ Fortran 95 reports illegal I/O specifiers as errors. f77 gave only warnings.

■ Data Types, Declarations, and Usage:

■ f95 allows only 7 array subscripts; f77 allowed 20.

■ f95 does not allow non-constants in PARAMETER statements.

■ Integer values cannot be used in the initializer of a CHARACTER type
declaration.

■ The REAL() intrinsic returns the real part of a complex argument instead of
converting the argument to REAL*4. This gives different results when the
argument is DOUBLE COMPLEX or COMPLEX*32

■ Fortran 95 will not allow array elements in boundary expressions before the
array is declared. For example:

■ Programs, Subroutines, Functions, Statements:

■ The maximum length for names is 127 characters.

■ Command-line Options:

■ f95 does not recognize the f77 compiler options -dbl -oldstruct -i2 -i4
and some suboptions of -vax.

■ f77 Library Routines Not Supported by f95:

■ The POSIX library.

■ The IOINIT() library routine.

■ The tape I/O routines topen, tclose, twrite, tread, trewin, tskipf,
tstate.

■ start_iostats and end_iostats library routines.

■ f77_init() function.

■ f95 does not allow the IEEE_RETROSPECTIVE subroutine to be bypassed by
defining the user’s own routine with the same name.

subroutine s(i1,i2)
integer i1(i2(1):10)
dimension i2(10)
...ERROR: "I2" has been used as a function, therefore it must
not be declared with the explicit-shape DIMENSION attribute.

end
Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-7

5.3 Linking With f77-Compiled Routines
■ To mix f77 and f95 object binaries, link with f95 compile with the -xlang=f77

option. Perform the link step with f95 even if the main program is an f77
program

■ Example: Compiling an f95 main program with an f77 object file.

■ The FORTRAN 77 library and intrinsics are available to f95 programs and are
listed in the Fortran Library Reference Manual.

Example: f95 main calls a routine from the FORTRAN 77 library.

See dtime(3F).

5.3.1 Fortran 95 Intrinsics
The Fortran 95 standard supports intrinsic functions that FORTRAN 77 did not have.
The full set of Fortran 95 intrinsics, including non-standard intrinsics, appears in the
Fortran Library Reference manual.

demo% cat m.f95
CHARACTER*74 :: c = ’This is a test.’
 CALL echo1(c)
END
demo% f95 -xlang=f77 m.f95 sub77.o
demo% a.out
 This is a test.
demo%

demo% cat tdtime.f95
 REAL e, dtime, t(2)
 e = dtime(t)
 DO i = 1, 100000
 as = as + cos(sqrt(float(i)))
 END DO
 e = dtime(t)
 PRINT *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
 END
demo% f95 tdtime.f95
demo% a.out
elapsed: 0.14 , user: 0.14 , sys: 0.0E+0
demo%
5-8 Fortran User’s Guide • January 2005

If you use any of the intrinsic names listed in the Fortran Library Reference as a
function name in your program, you must add an EXTERNAL statement for f95 to use
your routine rather than the intrinsic one.

The Fortran Library Reference also lists all the intrinsics recognized by earlier releases
of the f77 compiler. The f95 compiler recognizes these names as intrinsics as well.

Compiling with -f77=intrinsics limits the compiler’s recognition of intrinsic
functions to just those that were known to the f77 compiler, ignoring the Fortran 95
intrinsics.

5.4 Additional Notes About Migrating to the
f95 Compiler
■ The floatingpoint.h header file replaces f77_floatingpoint.h, and should

be used in source programs as follows:

#include "floatingpoint.h"

■ Header file references of the form f77/filename should be changed to remove the
f77/ directory path.

■ Some programs utilizing non-standard aliasing techniques (by overindexing
arrays, or by overlapping Cray or Fortran pointers) may benefit by compiling
with the appropriate -xalias flag. See Section , “-xalias[=keywords]” on
page 3-54. This is discussed with examples in the chapter on porting “dusty deck”
programs in the Fortran Programming Guide.
Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-9

5-10 Fortran User’s Guide • January 2005

APPENDIX A

Runtime Error Messages

This appendix describes the error messages generated by the Fortran 95 runtime I/O
library and operating system.

A.1 Operating System Error Messages
Operating system error messages include system call failures, C library errors, and
shell diagnostics. The system call error messages are found in intro(2). System calls
made through the Fortran library do not produce error messages directly. The
following system routine in the Fortran library calls C library routines which
produce an error message:

The following message is displayed:

integer system, status
status = system("cp afile bfile")
print*, "status = ", status
end

cp: cannot access afile
 status = 512
A-1

A.2 f95 Runtime I/O Error Messages
The f95 I/O library issues diagnostic messages when errors are detected at runtime.
Here is an example, compiled and run with Fortran 95:

Because the f95 message contains references to the originating source code filename
and line number, application developers should consider using the ERR= clause in
I/O statements to softly trap runtime I/O errors.

TABLE A-1 lists the runtime I/O messages issued by f95.

demo% cat wf.f
 WRITE(6) 1
 END
demo% f95 -o wf wf.f
demo% wf

 ****** FORTRAN RUN-TIME SYSTEM ******
 Error 1003: unformatted I/O on formatted unit
 Location: the WRITE statement at line 1 of "wf.f"
 Unit: 6
 File: standard output
Abort

TABLE A-1 f95 Runtime I/O Messages

Error Message

1000 format error

1001 illegal unit number

1002 formatted I/O on unformatted unit

1003 unformatted I/O on formatted unit

1004 direct-access I/O on sequential-access unit

1005 sequential-access I/O on direct-access unit

1006 device does not support BACKSPACE

1007 off beginning of record

1008 can't stat file

1009 no * after repeat count

1010 record too long
A-2 Fortran User’s Guide • January 2005

1011 truncation failed

1012 incomprehensible list input

1013 out of free space

1014 unit not connected

1015 read unexpected character

1016 illegal logical input field

1017 'new' file exists

1018 can't find 'old' file

1019 unknown system error

1020 requires seek ability

1021 illegal argument

1022 negative repeat count

1023 illegal operation for channel or device

1024 reentrant I/O

1025 incompatible specifiers in open

1026 illegal input for namelist

1027 error in FILEOPT parameter

1028 writing not allowed

1029 reading not allowed

1030 integer overflow on input

1031 floating-point overflow on input

1032 floating-point underflow on input

1051 default input unit closed

1052 default output unit closed

1053 direct-access READ from unconnected unit

1054 direct-access WRITE to unconnected unit

1055 unassociated internal unit

1056 null reference to internal unit

1057 empty internal file

1058 list-directed I/O on unformatted unit

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message
Appendix A Runtime Error Messages A-3

1059 namelist I/O on unformatted unit

1060 tried to write past end of internal file

1061 unassociated ADVANCE specifier

1062 ADVANCE specifier is not 'YES' or 'NO'

1063 EOR specifier present for advancing input

1064 SIZE specifier present for advancing input

1065 negative or zero record number

1066 record not in file

1067 corrupted format

1068 unassociated input variable

1069 more I/O-list items than data edit descriptors

1070 zero stride in subscript triplet

1071 zero step in implied DO-loop

1072 negative field width

1073 zero-width field

1074 character string edit descriptor reached on input

1075 Hollerith edit descriptor reached on input

1076 no digits found in digit string

1077 no digits found in exponent

1078 scale factor out of range

1079 digit equals or exceeds radix

1080 unexpected character in integer field

1081 unexpected character in real field

1082 unexpected character in logical field

1083 unexpected character in integer value

1084 unexpected character in real value

1085 unexpected character in complex value

1086 unexpected character in logical value

1087 unexpected character in character value

1088 unexpected character before NAMELIST group name

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message
A-4 Fortran User’s Guide • January 2005

1089 NAMELIST group name does not match the name in the program

1090 unexpected character in NAMELIST item

1091 unmatched parenthesis in NAMELIST item name

1092 variable not in NAMELIST group

1093 too many subscripts in NAMELIST object name

1094 not enough subscripts in NAMELIST object name

1095 zero stride in NAMELIST object name

1096 empty section subscript in NAMELIST object name

1097 subscript out of bounds in NAMELIST object name

1098 empty substring in NAMELIST object name

1099 substring out of range in NAMELIST object name

1100 unexpected component name in NAMELIST object name

1111 unassociated ACCESS specifier

1112 unassociated ACTION specifier

1113 unassociated BINARY specifier

1114 unassociated BLANK specifier

1115 unassociated DELIM specifier

1116 unassociated DIRECT specifier

1117 unassociated FILE specifier

1118 unassociated FMT specifier

1119 unassociated FORM specifier

1120 unassociated FORMATTED specifier

1121 unassociated NAME specifier

1122 unassociated PAD specifier

1123 unassociated POSITION specifier

1124 unassociated READ specifier

1125 unassociated READWRITE specifier

1126 unassociated SEQUENTIAL specifier

1127 unassociated STATUS specifier

1128 unassociated UNFORMATTED specifier

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message
Appendix A Runtime Error Messages A-5

1129 unassociated WRITE specifier

1130 zero length file name

1131 ACCESS specifier is not 'SEQUENTIAL' or 'DIRECT'

1132 ACTION specifier is not 'READ', 'WRITE' or 'READWRITE'

1133 BLANK specifier is not 'ZERO' or 'NULL'

1134 DELIM specifier is not 'APOSTROPHE', 'QUOTE', or 'NONE'

1135 unexpected FORM specifier

1136 PAD specifier is not 'YES' or 'NO'

1137 POSITION specifier is not 'APPEND', 'ASIS', or 'REWIND'

1138 RECL specifier is zero or negative

1139 no record length specified for direct-access file

1140 unexpected STATUS specifier

1141 status is specified and not 'OLD' for connected unit

1142 STATUS specifier is not 'KEEP' or 'DELETE'

1143 status 'KEEP' specified for a scratch file

1144 impossible status value

1145 a file name has been specified for a scratch file

1146 attempting to open a unit that is being read from or
written to

1147 attempting to close a unit that is being read from or
written to

1148 attempting to open a directory

1149 status is 'OLD' and the file is a dangling symbolic link

1150 status is 'NEW' and the file is a symbolic link

1151 no free scratch file names

1152 specifier ACCESS='STREAM' for default unit

1153 stream-access to default unit

1161 device does not support REWIND

1162 read permission required for BACKSPACE

1163 BACKSPACE on direct-access unit

1164 BACKSPACE on binary unit

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message
A-6 Fortran User’s Guide • January 2005

1165 end-of-file seen while backspacing

1166 write permission required for ENDFILE

1167 ENDFILE on direct-access unit

1168 stream-access to sequential or direct-access unit

1169 stream-access to unconnected unit

1170 direct-access to stream-access unit

1171 incorrect value of POS specifier

1172 unassociated ASYNCHRONOUS specifier

1173 unassociated DECIMAL specifier

1174 unassociated IOMSG specifier

1175 unassociated ROUND specifier

1176 unassociated STREAM specifier

1177 ASYNCHRONOUS specifier is not 'YES' or 'NO'

1178 ROUND specifier is not 'UP', 'DOWN', 'ZERO', 'NEAREST',
'COMPATIBLE' or 'PROCESSOR-DEFINED'

1179 DECIMAL specifier is not 'POINT' or 'COMMA'

1180 RECL specifier is not allowed in OPEN statement for stream-
access unit

1181 attempting to allocate an allocated array

1182 deallocating an unassociated pointer

1183 deallocating an unallocated allocatable array

1184 deallocating an allocatable array through a pointer

1185 deallocating an object not allocated by an ALLOCATE
statement

1186 deallocating a part of an object

1187 deallocating a larger object than was allocated

1191 unallocated array passed to array intrinsic function

1192 illegal rank

1193 small source size

1194 zero array size

1195 negative elements in shape

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message
Appendix A Runtime Error Messages A-7

1196 illegal kind

1197 nonconformable array

1213 asynchronous I/O on unconnected unit

1214 asynchronous I/O on synchronous unit

1215 a data edit descriptor and I/O list item type are
incompatible

1216 current I/O list item doesn’t match with any data edit
descriptor

2001 invalid constant, structure, or component name

2002 handle not created

2003 character argument too short

2004 array argument too long or too short

2005 end of file, record, or directory stream

2021 lock not initialized (OpenMP)

2122 deadlock in using lock variable (OpenMP)

2123 lock not set (OpenMP)

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message
A-8 Fortran User’s Guide • January 2005

APPENDIX B

Features Release History

This Appendix lists the new and changed features in this release and previous
releases of the Fortran 95 compiler.

The Fortran 95 compiler, version 8.1, is a component released with Sun Studio 10.

B.1 Sun Studio 10 Fortran Release:
■ Compiling for AMD-64 Processors

This release introduces -xarch=amd64 and -xtarget=opteron for compiling
applications to run on 64-bit x86 platforms.

■ File sharing between big-endian and little-endian platforms

The new compiler flag -xfilebyteorder provides cross-platform support of
binary I/O files.

■ OpenMP available on Solaris OS x86 platforms

With this release of Sun Studio, the OpenMP API for shared-memory parallelism
is available on Solaris x86 platforms as well as Solaris SPARC platforms. The same
functionality is now enabled on both platforms.

■ OpenMP option -openmp=stubs no longer supported

An OpenMP "stubs" library is provided for user's convenience. To compile an
OpenMP program that calls OpenMP library functions but ignores the OpenMP
pragmas, compile the program with the -openmp option and link the object files
with the libompstubs.a library. For example:
% f95 omp_ignore.c -lompstubs

Linking with both libompstubs.a and the OpenMP runtime library libmtsk.so
is unsupported and may result in unexpected behavior.
B-1

B.2 Sun Studio 9 Fortran Release:
■ Fortran 95 compiler released on x86 Solaris platforms:

This release of Sun Studio makes the Fortran 95 compiler available on Solaris OS
x86 platforms. Compile with -xtarget values generic, native, 386, 486,
pentium, pentium_pro, pentium3, or pentium4, to generate executables on
Solaris x86 platforms. The default on x86 platforms is -xtarget=generic.

The following f95 features are not yet implemented on x86 platforms and are
only available on SPARC platforms:

■ Interval Arithmetic (compiler options -xia and -xinterval)

■ Quad (128-bit) Arithmetic (for example, REAL*16)

■ IEEE Intrinsic modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and
IEEE_FEATURES

■ The sun_io_handler module

■ Parallelization options such as -autopar, -parallel, -explitipar, and
-openmp.

The following f95 command-line options are only available on x86 platforms and
not on SPARC platforms: -fprecision, -fstore, -nofstore

The following f95 command-line options are only available on SPARC platforms
and not on x86 platforms: -xcode, -xmemalign, -xprefetch, -xcheck, -xia,
-xinterval, -xipo, -xjobs, -xlang, -xlinkopt, -xloopinfo, -xpagesize,
-xprofile_ircache, -xreduction, -xvector, -depend, -openmp,
-parallel, -autopar, -explicitpar, -vpara, -XlistMP.
Also, on x86 platforms -fast adds -nofstore.

■ Improved Runtime Performance:

Runtime performance for most applications should improve significantly with
this release. For best results, compile with high optimization levels -xO4 or -xO5.
At these levels the compiler may now inline contained procedures, and those with
assumed-shape, allocatable, or pointer arguments.

■ Fortran 2003 Command-Line Intrinsics:

The Fortran 2003 draft standard introduces three new intrinsics for processing
command-line arguments and environment variables. These have been
implemented in this release of the f95 compiler. The new intrinsics are:

■ GET_COMMAND(command, length, status)

Returns in command the entire command line that invoked the program.

■ GET_COMMAND_ARGUMENT(number, value, length, status)

Returns a command-line argument in value.
B-2 Fortran User’s Guide • January 2005

■ GET_ENVIRONMENT_VARIABLE(name, value, length, status, trim_name)

Return the value of an environment variable.

■ New and Changed Command-Line Options:

The following f95 command-line options are new in this release. See the
Chapter 3 for details.

■ -xipo_archive={ none | readonly | writeback }

Allow crossfile optimization to include archive (.a) libraries. (SPARC only)

■ -xprefetch_auto_type=[no%]indirect_array_access

Generate indirect prefetches for a data arrays accessed indirectly. (SPARC only)

■ -xprofile_pathmap=collect_prefix:use_prefix

Set path mapping for profile data files. Use the -xprofile_pathmap option
with the -xprofile=use option when profiling into a directory that is not the
directory used when previously compiling with -xprofile=collect.

The following command-line option defaults have changed with this release of
f95.

■ The default for -xprefetch is -xprefetch=no%auto,explicit.

■ The default for -xmemalign is -xmemalign=8i; when compiling with one of
the -xarch=v9 options the default is -xmemalign=8f.

■ The default for -xcode when compiling with one of the -xarch=v9 options is
abs44.

To compile with the defaults used in previous compiler releases, specify the
following options explicitly:

-xarch=v8 -xmemalign=4s -xprefetch=no for 32-bit compilation
-xcode=abs64 -xprefetch=no for 64-bit compilation

■ Default SPARC Architecture is V8PLUS:

The default SPARC architecture is no longer V7. Support for -xarch=v7 is limited
in this Sun Studio 9 release. The new default is V8PLUS (UltraSPARC). Compiling
with -xarch=v7 is treated as -xarch=v8 because the Solaris 8 OS only supports
-xarch=v8 or better.

To deploy on SPARC V8 systems (for example, SPARCStation 10), compile with
-xarch=v8 explicitly. The provided system libraries run on SPARC V8
architectures.

To deploy on SPARC V7 systems (for example, SPARCStation 1), compile with
-xarch=v7 explicitly. The provided system libraries use the SPARC V8 instruction
set. For the Sun Studio 9 release, only the Solaris 8 OS supports the SPARC V7
architecture. When a SPARC V8 instruction is encountered, the OS interprets the
instruction in software. The program will run, but performance will be degraded.

■ OpenMP: Maximum Number of Threads Increased:
Appendix B Features Release History B-3

The maximum number of threads for OMP_NUM_THREADS and the multitasking
library has increased from 128 to 256.

■ OpenMP: Automatic Scoping of Variables:

This release of the Fortran 95 compiler's implementation of the OpenMP API for
shared-memory parallel programming features automatic scoping of variables in
parallel regions. See the OpenMP API User's Guide for details. (OpenMP is only
implemented on SPARC platforms for this release.)

B.3 Sun Studio 8 Fortran Release:
■ Enhanced -openmp option:

The -openmp option flag has been enhanced to facilitate debugging OpenMP
programs. To use dbx to debug your OpenMP application, compile with

-openmp=noopt -g

You will then be able to use dbx to breakpoint within parallel regions and display
contents of variables. See Section , “-openmp[={parallel|noopt|none}]” on
page 3-41.

■ Multi-process compilation:

Specify -xjobs=n with -xipo and the interprocedural optimizer will invoke at
most n code generator instances to compile the files listed on the command line.
This option can greatly reduce the build time of large applications on a multi-cpu
machine. See Section , “-xjobs=n” on page 3-76.

■ Making assertions with PRAGMA ASSUME:

The ASSUME pragma is a new feature in this release of the compiler. This pragma
gives hints to the compiler about conditions the programmer knows are true at
some point in a procedure. This may help the compiler to do a better job
optimizing the code. The programmer can also use the assertions to check the
validity of the program during execution. See Section 2.3.1.9, “The ASSUME
Directives” on page 2-13, and Section , “-xassume_control[=keywords]” on
page 3-61.

■ More Fortran 2000 features:

The following features appearing in the Fortran 2000 draft standard have been
implemented in this release of Fortran 95 compiler. These are described in
Chapter 4.

■ Exceptions and IEEE Arithmetic:

New intrinsic modules IEEE_ARITHMETIC, and IEEE_FEATURES provide
support for exceptions and IEEE arithmetic in the Fortran language. See
Section 4.6.2, “IEEE Floating-Point Exception Handling” on page 4-16.
B-4 Fortran User’s Guide • January 2005

■ Interoperability with C:

The new draft standard for Fortran provides a means of referencing C
language procedures and, conversely, a means of specifying that a Fortran
subprogram can be referenced from a C function. It also provides a means of
declaring global variables that are linked with external C variables. See
Section 4.6.1, “Interoperability with C Functions” on page 4-15.

■ PROTECTED Attribute

The Fortran 95 compiler now accepts the Fortran 2000 PROTECTED attribute.
PROTECTED imposes limitations on the usage of module entities. Objects with
the PROTECTED attribute are only definable within the module that declares
them. Section 4.6.4, “PROTECTED Attribute” on page 4-16.

■ ASYNCHRONOUS I/O Specifier

The compiler recognizes the ASYNCHRONOUS specifier on I/O statements:

ASYNCHRONOUS=['YES' | 'NO']

This syntax is as proposed in the draft standard. See Section 4.6.5, “Fortran
2003 Asynchronous I/O” on page 4-16.

■ Enhanced compatibility with legacy f77:

A number of new features enhance the Fortran 95 compiler's compatibility with
legacy Fortran 77 compiler, f77. These include variable format expressions
(VFE's), long identifiers, -arg=local , and the -vax compiler option. See
Chapter 3 and Chapter 4.

■ I/O error handlers:

Two new functions enable the user to specify their own error handling routine for
formatted input on a logical unit. These routines are described in Section 4.7.1,
“I/O Error Handling Routines” on page 4-19, and in man pages and the Fortran
Library Reference.

■ Unsigned integers:

With this release, the Fortran 95 compiler accepts a new data type, UNSIGNED, as
an extension to the language. See Section 4.5, “Unsigned Integers” on page 4-13.

■ Set preferred stack/heap page size:

A new command-line option, -xpagesize, enables the running program to set the
preferred stack and heap page size at program startup. See Section ,
“-xpagesize=size” on page 3-83.

■ Faster and enhanced profiling:

This release introduces the new command-line option -xprofile_ircache= path,
to speed up the "use" compilation phase during profile feedback. See Section ,
“-xprofile_ircache[=path]” on page 3-89. See also Section ,
“-xprofile_pathmap=collect_prefix:use_prefix” on page 3-90.

■ Enhanced "known libraries":
Appendix B Features Release History B-5

The -xknown_lib option has been enhanced to include more routines from the
Basic Linear Algebra library, BLAS. See Section , “-xknown_lib=library_list” on
page 3-77.

■ Link-time Optimization:

Compile and link with the new -xlinkopt flag to invoke a post-optimizer to
apply a number of advanced performance optimizations on the generated binary
object code at link time. See Section , “-xlinkopt[={1|2|0}]” on page 3-79.

■ Initialization of local variables:

A new extension to the -xcheck option flag enables special initialization of local
variables. Compiling with -xcheck=init_local initializes local variables to a
value that is likely to cause an arithmetic exception if it is used before it is
assigned by the program. See Section , “-xcheck=keyword” on page 3-63
B-6 Fortran User’s Guide • January 2005

B.4 Sun ONE Studio 7, Compiler Collection
(Forte Developer 7) Release:
■ Fortran 77 Functionality Absorbed Into Fortran 95 Compiler

This release of the Forte Developer software replaces the f77 compiler with
added functionality in the f95 compiler. The f77 command is a script that calls
the f95 compiler:

See Chapter 5 for details on Fortran 77 compatibilities and incompatibilities.

■ Fortran 77 Compatibility Mode:

The new -f77 flag selects various compatibility features that enable the compiler
to accept many Fortran 77 constructs and conventions that are normally
incompatible with Fortran 95. See Section , “-f77[=list]” on page 3-21, and
Chapter 5.

■ Compiling “Dusty Deck” Programs That Employ Non-Standard Aliasing:

The f95 compiler must assume that programs it compiles adhere to the Fortran 95
standard regarding aliasing of variables through subprogram calls, global
variables, pointers, and overindexing. Many “dusty deck” legacy programs
intentionally utilized aliasing techniques to get around shortcomings in early
versions of the Fortran language. Use the new -xalias flag to advise the
compiler about how far the program deviates from the standard and what kind of
aliasing syndromes it should expect. In some cases the compiler generates correct
code only when the proper -xalias suboption is specified. Programs that
conform strictly to the standard will find some performance improvement by
advising the compiler to be unconcerned about aliasing. See Section ,
“-xalias[=keywords]” on page 3-54, and the chapter on Porting in the Fortran
Programming Guide.

■ Enhanced MODULE Features:

■ New flag -use=list forces one or more implicit USE statements into each
subprogram. See Section , “-use=list” on page 3-50.

■ New flag -moddir=path controls where the compiler writes compiled MODULE
subprograms (.mod files). See Section , “-moddir=path” on page 3-36. A new
environment variable, MODDIR, also controls where .mod files are written.

the command:
 f77 options files libraries
becomes a call to the f95 compiler::
 f95 -f77=%all -ftrap=%none options files -lf77compat libraries
Appendix B Features Release History B-7

■ The -Mpath flag will now accept directory paths, archive (.a) files, or module
(.mod) files to search for MODULE subprograms. The compiler determines the
type of the file by examining its contents; the actual file name extension is
ignored. See Section , “–Mpath” on page 3-35.

■ When searching for modules, the compiler now looks first in the directory
where module files are being written.

See Section 4.9, “Module Files” on page 4-23 for details.

■ Enhanced Global Program Analysis With -Xlist:

This release of the f95 compiler adds a number of new checks to the global
program analysis provided by the -Xlist flag. The new -XlistMP suboption
opens a new domain of static program analysis, verification of OpenMP
parallelization directives. See Section , “–Xlist[x]” on page 3-52, the Forte
Developer OpenMP API User’s Guide, and the chapter on Program Analysis and
Debugging in the Fortran Programming Guide for details.

■ Identifying Known Libraries With -xknown_lib=library:

A new option, -xknown_lib=library, directs the compiler to treat references to
certain known libraries as intrinsics, ignoring any user-supplied versions. This
enables the compiler to perform optimizations over library calls based on its
special knowledge of the library. In this release, the known library names are
limited to blas, for a subset of the BLAS routines in the Sun Performance Library,
and intrinsics, for ignoring explicit EXTERNAL declarations for Fortran 95
standard intrinsics and any user-supplied versions of these routines. See Section ,
“-xknown_lib=library_list” on page 3-77.

■ Ignoring Dummy Argument Type in Interfaces:

A new directive, !$PRAGMA IGNORE_TKR {list_of_variables}, causes the compiler
to ignore the type, kind, and rank for the specified dummy argument names
appearing in a generic procedure interface when resolving a specific call. Using
this directive greatly simplifies writing generic interfaces for wrappers that call
specific library routines based on argument type, kind, and rank. See
Section 2.3.1.2, “The IGNORE_TKR Directive” on page 2-10 for details.

■ Enhanced -C Runtime Array Checking:

In this f95 compiler release, runtime array subscript range checking with the -C
option has been enhanced to include array conformance checking. A runtime
error is produced when an array syntax statement is executed where the array
sections are not conformable. See Section , “–C” on page 3-13.

■ Introducing Fortran 2000 Features:

Some new formatted I/O features proposed for the next Fortran standard have
been implemented in this release of f95. These are the DECIMAL=, ROUND=, and
IOMSG= specifiers, and they may appear in OPEN, READ, WRITE, PRINT, and
INQUIRE statements. Also implemented are the DP, DC, RP, and RC edit
descriptors. See Section 4.6.9, “Fortran 2003 Formatted I/O Features” on
page 4-18 for details.
B-8 Fortran User’s Guide • January 2005

■ Rounding in Formatted I/O:

A new option flag, -iorounding, sets the default rounding mode for formatted
I/O. The modes, processor-defined or compatible, correspond to the ROUND=
specifier implemented as part of the Fortran 2000 features. See Section ,
“-iorounding[={compatible|processor-defined}]” on page 3-32.

■ Obsolete Flags Removed:

The following flags have been removed from the f95 command line:

-db -dbl

The following f77 compiler flags have not been implemented in the f95 compiler
and are also considered obsolete:

-arg=local -i2 -i4 -misalign -oldldo -r8 -vax
-xl -xvpara -xtypemap=integer:mixed

■ Checking for Stack Overflow:

Compiling with the new -xcheck=stkovf flag adds a runtime check for stack
overflow conditions on entry to subprograms. If a stack overflow is detected, a
SIGSEGV segment fault is raised. Stack overflows in multithreaded applications
with large arrays allocated on the stack can cause silent data corruption in
neighboring thread stacks. Compile all routines with -xcheck=stkovf if stack
overflow is suspected. See Section , “-xcheck=keyword” on page 3-63.

■ New Default Thread Stack Size:

With this release, the default slave thread stack size has been increased to 4
Megabytes on SPARC V8 platforms, and 8 Megabytes on SPARC V9 platforms.
See the discussion of stacks and stack sizes in the Parallelization chapter of the
Fortran Programming Guide for details.

■ Enhanced Interprocedural Optimizations:

With -xipo=1 the compiler does inlining across all source files. This release adds
-xipo=2 for enhanced interprocedural aliasing analysis and memory allocation
and layout optimizations to imporve cache performance. See Section ,
“-xipo[={0|1|2}]” on page 3-74.

■ Control Prefetch Instructions With -xprefetch_level=n:

Use the new flag -xprefetch_level=n to control the automatic insertion of
prefetch instructions with -xprefetch=auto. Use requires an optimization level
of -xO3 or greater and a target platform that supports prefetch (-xarch
platforms v8plus, v8plusa, v8plusb, v9, v9a, v9b, generic64, or native64).
See Section , “-xprefetch_level={1|2|3}” on page 3-87.

Feature histories for releases prior to Forte Developer 7 can be found in the
documentation sets for those earlier releases on the http://docs.sun.com web
site.
Appendix B Features Release History B-9

http://docs.sun.com

B-10 Fortran User’s Guide • January 2005

APPENDIX C

Legacy –xtarget Platform
Expansions

This Appendix details older and less commonly used –xtarget option platform
system names and their expansions. They appear here for reference purposes. The
values for UltraSPARC platforms are given under the -xtarget option description
in Chapter 3. Some of the system platforms listed here may no longer be supported
by recent releases of the Solaris operating environment.

Each specific value for –xtarget expands into a specific set of values for the
-xarch, –xchip, and –xcache options, as shown in the following table. Run
fpversion(1) to determine the target definitions on any system.

For example:

–xtarget=sun4/15

means

–xarch=v8a –xchip=micro –xcache=2/16/1

TABLE C-1 Legacy -xtarget Expansions

-xtarget= -xarch -xchip -xcache

cs6400 v8 super 16/32/4:2048/64/1

sc2000 v8 super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ss1 v7 old 64/16/1

ss10 v8 super 16/32/4

ss10/20 v8 super 16/32/4

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/402 v8 super 16/32/4
C-1

ss10/41 v8 super 16/32/4:1024/32/1

ss10/412 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1

ss10/612 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss1000 v8 super 16/32/4:1024/32/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

ss20 v8 super 16/32/4:1024/32/1

ss20/151 v8 hyper 512/64/1

ss20/152 v8 hyper 512/64/1

ss20/50 v8 super 16/32/4

ss20/502 v8 super 16/32/4

ss20/51 v8 super 16/32/4:1024/32/1

ss20/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/712 v8 super2 16/32/4:1024/32/1

TABLE C-1 Legacy -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache
C-2 Fortran User’s Guide • January 2005

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss2p v7 powerup 64/32/1

ss4 v8a micro2 8/16/1

ss4/110 v8a micro2 8/16/1

ss4/85 v8a micro2 8/16/1

ss5 v8a micro2 8/16/1

ss5/110 v8a micro2 8/16/1

ss5/85 v8a micro2 8/16/1

ss600/120 v7 old 64/32/1

ss600/140 v7 old 64/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/16/1

ssslc v7 old 64/16/1

ssvyger v8a micro2 8/16/1

TABLE C-1 Legacy -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache
Appendix C Legacy –xtarget Platform Expansions C-3

sun4/110 v7 old 2/16/1

sun4/15 v8a micro 2/16/1

sun4/150 v7 old 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

sun4/30 v8a micro 2/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/40 v7 old 64/16/1

sun4/470 v7 old 128/32/1

sun4/490 v7 old 128/32/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

sun4/630 v7 old 64/32/1

sun4/65 v7 old 64/16/1

sun4/670 v7 old 64/32/1

sun4/690 v7 old 64/32/1

sun4/75 v7 old 64/32/1

TABLE C-1 Legacy -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache
C-4 Fortran User’s Guide • January 2005

APPENDIX D

Fortran Directives Summary

This appendix summarizes the directives recognized by f95 Fortran compiler:

■ General Fortran Directives
■ Sun Parallelization Directives
■ Cray Parallelization Directives
■ OpenMP Fortran 95 Directives, Library Routines, and Environment

D.1 General Fortran Directives
General directives accepted by f95 are described in Chapter 2.

TABLE D-1 Summary of General Fortran Directives

Format

C$PRAGMA keyword (a [, a] …) [, keyword (a [, a] …)] ,…
C$PRAGMA SUN keyword (a [, a] …) [, keyword (a [, a] …)] ,…
C$PRAGMA SPARC keyword (a [, a] …) [, keyword (a [, a] …)] ,…

Comment-indicator in column 1 may be c, C, !, or *. (We use C in these examples. f95
free-format must use !.)

C Directive C$PRAGMA C(list)

Declares a list of names of external functions as C language
routines.

IGNORE_TKR Directive C$PRAGMA IGNORE_TKR {name {, name} ...}
The compiler ignores the type, kind, and rank of the specified
dummy argument names appearing in a generic procedure
interface when resolving a specific call.
D-1

UNROLL Directive C$PRAGMA SUN UNROLL=n

Advises the compiler that the following loop can be unrolled to a
length n.

WEAK Directive C$PRAGMA WEAK(name[=name2])

Declares name to be a weak symbol, or an alias for name2.

OPT Directive C$PRAGMA SUN OPT=n

Set optimization level for a subprogram to n.

NOMEMDEP Directive C$PRAGMA SUN NOMEMDEP

Assert there are no memory dependencies in the following loop.
(Requires -parallel or -explicitpar.)

PIPELOOP Directive C$PRAGMA SUN PIPELOOP=n

Assert dependency in loop between iterations n apart.

PREFETCH Directives C$PRAGMA SPARC_PREFETCH_READ_ONCE (name)
C$PRAGMA SPARC_PREFETCH_READ_MANY (name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE (name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY (name)

Request compiler generate prefetch instructions for references to
name. (Requires -xprefetch option.)

ASSUME Directives C$PRAGMA [BEGIN} ASSUME (expression [,probability])
C$PRAGMA END ASSUME

Make assertions about conditions at certain points in the program
that the compiler can assume are true.

TABLE D-1 Summary of General Fortran Directives (Continued)
D-2 Fortran User’s Guide • January 2005

D.2 Special Fortran 95 Directives
The following directives are only available with f95. See Section 4.8.2, “FIXED and
FREE Directives” on page 4-22 for details.

D.3 Fortran 95 OpenMP Directives
The Sun Fortran 95 compiler supports the OpenMP 2.0 Fortran API. The -openmp
compiler flag enables these directives. (See Section , “-openmp[=
{parallel|noopt|none}]” on page 3-41).

See the OpenMP API User’s Guide for complete details.

TABLE D-2 Special Fortran 95 Directives

Format !DIR$ directive : initial line
!DIR$& ...: continuation line

With fixed-format source, C is also accepted as a directive-indicator:
CDIR$ directive... ; the line must start in column 1.
With free-format source, the line may be preceded by blanks.

FIXED/FREE
Directives

!DIR$ FREE
!DIR$ FIXED

These directives specify the source format of the lines following the
directive. They apply to the rest of the source file in which they
appear, up to the next FREE or FIXED directive.
Appendix D Fortran Directives Summary D-3

D.4 Sun Parallelization Directives
OpenMP parallelization is the preferred parallelization model with Fortran 95. Sun-
style parallelization directives are described here for legacy applications, and are
detailed in the chapter on parallelization in the Fortran Programming Guide.

TABLE D-3 Sun-Style Parallelization Directives Summary

Format C$PAR directive [optional_qualifiers]: initial line
C$PAR& [more_qualifiers] : continuation line

Fixed format, the directive-indicator may be C (as shown), c, *, or !.
Separate multiple qualifiers with commas. Characters beyond
column 72 ignored unless -e compiler option specified.

TASKCOMMON
Directive

C$PAR TASKCOMMON block_name

Declares variables in common block block_name as thread-private:
private to a thread, but global within the thread. Declaring a
common block TASKCOMMON requires that this directive appear after
every common declaration of that block.

DOALL Directive C$PAR DOALL [qualifiers]

Parallelize DO loop that follows. Qualifiers are:
 PRIVATE(list)declare names on list PRIVATE
 SHARED(list)declare names on list SHARED
 MAXCPUS(n)use no more than n threads
 READONLY(list)listed variables not modified in loop
 SAVELASTsave last value of all private variables
 STOREBACK(list)save last value of listed variables
 REDUCTION(list)listed variables are reduction variables
 SCHEDTYPE(type)use scheduling type: (default is STATIC)
STATIC
SELF(nchunk)
FACTORING[(m)]
GSS[(m)]

DOSERIAL Directive C$PAR DOSERIAL

Disables parallelization of the loop that follows.

DOSERIAL* Directive C$PAR DOSERIAL*

Disables parallelization of the loop nest that follows.
D-4 Fortran User’s Guide • January 2005

D.5 Cray Parallelization Directives
Cray-style parallelization directives are detailed in the chapter on parallelization in
the Fortran Programming Guide. Requires -mp=cray compiler option.

TABLE D-4 Cray Parallelization Directives Summary

Format CMIC$ directive qualifiers: initial line
CMIC$& [more_qualifiers]: continuation line

Fixed format. Directive-indicator may be C (as shown here), c, *, or
!. With f95 free-format, leading blanks can appear before !MIC$.

DOALL Directive CMIC$ DOALL SHARED(list), PRIVATE(list) [, more_qualifiers]

Parallelize loop that follows. Qualifiers are:
Scoping qualifiers are required (unless list is empty)—all variables
in the loop must appear in a PRIVATE or SHARED clause:
 PRIVATE(list) declare names on list PRIVATE
SHARED(list)declare names on list SHARED
AUTOSCOPEautomatically determine scope of variables
The following are optional:
MAXCPUS(n)use no more than n threads
SAVELASTsave last value of all private variables
Only one scheduling qualifier may appear:
GUIDEDequivalent to Sun-style GSS(64)
SINGLEequivalent to Sun-style SELF(1)
CHUNKSIZE(n)equivalent to Sun-style SELF(n)
NUMCHUNKS(m)equivalent to Sun-style SELF(n/m)
The default scheduling is Sun-style STATIC, for which there is no
Cray-style equivalent. Interpretations of these scheduling qualifiers
differ between Sun and Cray style. Check the Fortran Programming
Guide for details.

TASKCOMMON
Directive

CMIC$ TASKCOMMON block_name

Declares variables in the named common block as thread-private—
private to a thread, but global within the thread. Declaring a
common block TASKCOMMON requires that this directive appear
immediately after every common declaration of that block.

DOSERIAL Directive CMIC$ DOSERIAL

Disables parallelization of the loop that follows.

DOSERIAL* Directive CMIC$ DOSERIAL*

Disables parallelization of the loop nest that follows.
Appendix D Fortran Directives Summary D-5

D-6 Fortran User’s Guide • January 2005

Index
Symbols
!DIR$ in directives, 4-21
#ifdef, 2-5
#include, 2-5

A
abrupt_underflow, 3-25
accessible documentation, -xxiii
aliasing, 3-54

-xalias, 3-54
align

-dalign, 3-16
data in COMMON with -aligncommon, 3-11
See also data

alignment of data types, 4-7
ALLOCATABLE

extensions, 4-17
analyzer compile option, -xF, 3-70
application registers (SPARC), 3-92
arguments, agreement, -Xlist, 3-52
arithmetic, See floating-point
array bounds checking, 3-13
asa, Fortran print utility, 1-2
assembly code, 3-46
ASSUME directive, 2-13
auto-read (dbx), 3-92

B
backward compatibility, options, 3-9
binary I/O, 4-19

binding, dynamic/shared libraries, 3-17
Boolean

constant, alternate forms, 4-4
type, constants, 4-3

browser, 3-46

C
C(..) directive, 2-9
cache

padding for, 3-42
specify hardware cache, 3-62

CALL
inlining subprogram calls with -inline, 3-32

case, preserve upper and lower case, 3-49
CDIR$ in directives, 4-21
code size, 3-93
command-line

help, 1-6
unrecognized options, 2-6

comments
as directives, 4-21

COMMON
alignment, 3-11
global consistency, -Xlist, 3-52
padding, 3-42
TASKCOMMON consistency checking, 3-67

compatibility
Fortran 77, 3-21, 5-1
forward, 4-27
with C, 4-27

compile and link, 2-3, 2-5
and -B, 3-13
 Index-1

build a dynamic shared library, 3-30
compile only, 3-14
dynamic (shared) libraries, 3-17

compiler
command line, 2-3
driver, show commands with -dryrun, 3-17
options summary, 3-3
show version, 3-50
timing, 3-49
verbose messages, 3-50

compilers, accessing, -xix
constant arguments, -copyargs, 3-14
continuation lines, 3-18, 4-1
conventions

file name suffixes, 2-4
cpp, C preprocessor, 2-5, 3-16, 3-20
Cray

pointer, 4-9
pointer and Fortran 95 pointer, 4-10

cross reference table, -Xlist, 3-52

D
data

alignment with -dbl_align_all, 3-16
alignment with -f, 3-20
alignment with -xmemalign, 3-82
COMMON, alignment with -aligncommon, 3-

11
mappings with -xtypemap, 3-96
promote constants to REAL*8, 3-45
size and alignment, 4-7

data dependence
-depend, 3-17

dbx
compile with -g option, 3-30

debugging
check array subscripts with -C, 3-14
cross-reference table, 3-52
-g option, 3-30
global program checking with -Xlist, 3-52
show compiler commands with -dryrun, 3-17
utilities, 1-3
with optimization, 3-30
without object files, 3-92
-Xlist, 1-3

default
data sizes and alignment, 4-7

include file paths, 3-32
define symbol for cpp, -Dname, 3-15
directives

ASSUME, 2-13
FIXED, 4-22
Fortran 77, 2-7
FREE, 4-22
IGNORE_TKR, 2-10
loop unrolling, 2-11
OpenMP (Fortran 95), 2-15, D-3
optimization level, 2-12
parallelization, 2-15, 4-23
parallelization, Cray, Sun, or OpenMP, 3-36
special Fortran 95, 4-21
summary of all directives, D-1
weak linking, 2-11

directory
temporary files, 3-49

DOALL directive, 2-16
documentation index, -xxii
documentation, accessing, -xxii to -xxiv
DOSERIAL directive, 2-16
dynamic library

build, -G, 3-30
name a dynamic library, 3-30

E
environment

program terminations by STOP, 3-48
environment variables

usage, 2-18
error messages

f95, A-2
message tags, 3-18
suppress with -erroff, 3-18

exceptions, floating-point, 3-28
trapping, 3-29

executable file
built-in path to dynamic libraries, 3-45
name, 3-40
strip symbol table from, 3-46

explicit
typing, 3-50

explicit parallelization directives, 2-15
extensions

ALLOCATABLE, 4-17
formatted I/O, 4-18
Index-2 Fortran User’s Guide • January 2005

non-ANSI, -ansi flag, 3-12
other I/O, 4-19
stream I/O, 4-18
VALUE, 4-17
VAX structures and unions, 4-12

extensions and features, 1-2
external C functions, 2-9
external names, 3-20

F
f95 command line, 2-3, 3-1
fdumpmod for viewing module contents, 2-7, 4-25
features

Fortran 95, 4-1
release history, B-1

features and extensions, 1-2
FFLAGS environment variable, 2-18
file

executable, 2-3
object, 2-3
size too big, 2-19

file names
recognized by the compiler, 2-4, 4-2

FIXED directive, 4-22
fixed-format source, 3-24
flags, See options
floating-point

fpversion, displays hardware platform, 2-18
interval arithmetic, 3-74
non-standard, 3-25
preferences, -fsimple, 3-27
rounding, 3-27
trapping mode, 3-29
See also the Numerical Computation Guide

Fortran
compatibility with legacy, 3-12, 3-21, 5-1
features and extensions, 1-2
incompatibilities with legacy, 5-6
preprocessor, 3-16

invoking with -F, 3-20
utilities, 1-2

Fortran 95
case, 4-3
directives, 4-21
features, 4-1
Forte Developer 7 release, B-7
handling nonstandard Fortran 77 aliasing, 5-9

I/O extensions, 4-19
linking with Fortran 77, 5-8
modules, 4-23

fpp, Fortran preprocessor, 2-5, 3-16, 3-20, 3-26
fpversion, show floating-point platform

information, 2-18
FREE directive, 4-22
free-format source, 3-27
fsplit, Fortran utility, 1-3
function

external C, 2-9
function-level reordering, 3-69

G
global program checking, -Xlist, 3-52
global symbols

weak, 2-11
gprof

-pg, profile by procedure, 3-44

H
hardware architecture, 3-56, 3-64
heap page size, 3-83, 3-84
help

command-line, 1-6
README information, 3-73

hexadecimal, 4-4
Hollerith, 4-5

I
I/O extensions, 4-19
IGNORE_TKR directive, 2-10
INCLUDE files, 3-31

floatingpoint.h, 5-9
system.inc, 2-16

incompatibilities, Fortran 77, 5-6
information files, 1-5
initialization of local variables, 3-63
inline

templates, -libmil, 3-34
with -fast, 3-23

inlining
automatic with -O4, 3-40
with -inline, 3-32
Index-3

installation, 1-5
path, 3-32

interfaces
library, 2-16

interval arithmetic
-xia option, 3-73
-xinterval option, 3-74

intrinsics
extensions, 4-26
interfaces, 2-16
legacy Fortran, 5-8

invalid, floating-point, 3-29
ISA, instruction set architecture, 3-56

L
large files, 2-19
legacy compiler options, 3-9
libm

searched by default, 3-33
library

build, -G, 3-30
disable system libraries, 3-38
dynamic search path in executable, 3-45
interfaces, 2-16
linking with -l, 3-34
multithread-save, 3-37
name a shared library, 3-30
path to shared library in executable, 3-38
position-independent and pure, 3-97
Sun Performance Library, 1-3, 3-80
vectorized math library, libmvec, 3-96

license information, 3-80
limit

command, 2-20
stack size, 3-48

limits
Fortran 95 compiler, 4-3

linear algebra routines, 3-80
linking

and parallelization with -parallel, 3-44
consistent compile and link, 2-6
consistent with compilation, 2-6
disable incremental linker, 3-74
disable system libraries, 3-38
enable dynamic linking, shared libraries, 3-17
explicit parallelization with -explicitpar, 3-

19

linker -Mmapfile option, 3-70
separate from compilation, 2-5
specifying libraries with -l, 3-34
weak names, 2-11
with automatic parallelization, -autopar, 3-12
with compilation, 2-3

link-time optimizations, 3-80
list of directives, D-1
list of options, 3-31
loop

automatic parallelization, 3-12
dependence analysis, -depend, 3-17
executed once, -onetrip, 3-40
explicit parallelization, 3-19
parallelization messages, 3-34
unrolling with directive, 2-11
unrolling with -unroll, 3-50

M
macro options, 3-9
man pages, 1-4
man pages, accessing, -xix
MANPATH environment variable, setting, -xxi
math library

and -Ldir option, 3-33
optimized version, 3-79

memory
actual real memory, display, 2-20
limit virtual memory, 2-20
optimizer out of memory, 2-19

messages
parallelization, 3-34, 3-51
runtime, A-1
suppress with -silent, 3-47
verbose, 3-50

misaligned data, specifying behavior, 3-82
.mod file, module file, 4-23
MODDIR environment variable, 3-36
modules, 4-23

creating and using, 2-7
default path, 3-36
fdumpmod, 2-7
fdumpmod for displaying module files, 4-25
.mod file, 4-23
-use, 4-25

multithreading, See parallelization
Index-4 Fortran User’s Guide • January 2005

multithread-safe libraries, 3-37

N
name

argument, do not append underscore, 2-9
object, executable file, 3-40

nonstandard_arithmetic(), 3-25
numeric sequence type, 3-11

O
object files

compile only, 3-14
name, 3-40

object library search directories, 3-33
obsolete options, 3-10
octal, 4-4
one-trip DO loops, 3-41
OpenMP, 2-15, 3-36

directives summary, D-3
OPT directive, 2-12

-xmaxopt option, 3-82
optimization

across source files, 3-68, 3-74
aliasing, 3-54
floating-point, 3-27
inline user-written routines, 3-32
interprocedural, 3-74
levels, 3-39
link-time, 3-80
loop unrolling, 3-50
loop unrolling by directive, 2-11
math library, 3-79
OPT directive, 2-12, 3-82
PIPELOOP directive, 2-12
PREFETCH directive, 2-13
specify cache, 3-62
specify instruction set architecture, 3-56
specify processor, 3-64
target hardware, 3-37
vector library transformations with -

xvector, 3-96
with debugging, 3-30
with -fast, 3-22

options
 commonly used, 3-8
 grouped by function, 3-3
 legacy, 3-9

 macros, 3-9
 obsolete, 3-10
 obsolete f77 flags not supported, 5-7
 order of processing, 3-3
 pass option to compilation phase, 3-44
 summary, 3-3
 syntax on command line, 3-2
 unrecognized, 2-6
Reference to all option flags, 3-11
-a, 3-11
-aligncommon, 3-11
-ansi extensions, 3-12
-arg=local, 3-12
-autopar, parallelize automatically, 3-12
-Bdynamic, 3-13
-Bstatic, 3-13
-C, check subscripts, 3-13
-c, compile only, 3-14
-cg89, (obsolete), 3-14
-cg92, (obsolete), 3-14
-copyargs, allow stores to literal arguments, 3-

14
-dalign, 3-16, 3-24
-dbl_align_all, force data alignment, 3-16
-depend, 3-23

data dependency analysis, 3-17
-dn, 3-17
-Dname, define symbol, 3-15
-dryrun, 3-17
-dy, 3-17
-e, extended source lines, 3-18
-erroff, suppress warnings, 3-18
-errtags, display message tag with

warnings, 3-18
-errwarn, error warnings, 3-19
-explicitpar, parallelize explicitly, 3-19
-ext_names, externals without underscore, 3-

20
-F, 3-20
-f, align on 8-byte boundaries, 3-20
-f77, 3-21
-fast, 3-22
-fixed, 3-24
-flags, 3-24
-fnonstd, 3-25
-fns, 3-24, 3-25
-fpp, Fortran preprocessor, 3-26
-fprecision, x86 precision mode, 3-27
-free, 3-27
Index-5

-fround=r, 3-27
-fsimple, 3-23

simple floating-point model, 3-27
-fstore, 3-29
-ftrap, 3-29
-G, 3-30
-g, 3-30
-help, 3-31
-hname, 3-30
-Idir, 3-31
-inline, 3-32
-iorounding, 3-33
-KPIC, 3-33
-Kpic, 3-33
-Ldir, 3-33
-libmil, 3-23, 3-34
-llibrary, 3-33
-loopinfo, show parallelization, 3-34
-Mdir, f95 modules, 4-23
-moddir, 3-36
-mp=cray, Cray MP directives, 3-36
-mp=sun, Sun MP directives, 3-36
–mt, multithread safe libraries, 3-37
-native, 3-37
-noautopar, 3-37
-nodepend, 3-37
-noexplicitpar, 3-37
-nofstore, 3-38
-nolib, 3-38
-nolibmil, 3-38
-noreduction, 3-38
-norunpath, 3-38
-o, output file, 3-40
-On, 3-23, 3-39
-onetrip, 3-40
-openmp, 3-41
-p, profile by procedure, 3-42
-pad=p, 3-24, 3-42
-parallel, parallelize loops, 3-43
-pg, profile by procedure, 3-44
-PIC, 3-42
-pic, 3-44
-Qoption, 3-44
-R list, 3-45
-r8const, 3-45
-S, 3-46
-s, 3-46
-sb, SourceBrowser, 3-46
-sbfast, 3-47

–silent, 3-47
-stackvar, 3-47, 3-91
-stop_status, 3-48
-temp, 3-49
-time, 3-49
-u, 3-49
-U, do not convert to lowercase, 3-49
-Uname, undefine preprocessor macro, 3-49
-unroll, unroll loops, 3-50
-use, 4-25
-V, 3-50
-v, 3-50
-vax, 3-51
-vpara, 3-51
-w, 3-51
-x386, 3-53
-x486, 3-53
-xa, 3-53
-xalias=list, 3-54
-xarch=isa, 3-56
-xassume_control, 3-61
-xautopar, 2-15, 3-62
-xcache=c, 3-62
-xcg[89|92], 3-63
-xchip=c, 3-64
-xcode=c, 3-65
-xcommoncheck, 3-67
-xcrossfile, 3-68
-xdebugformat, 3-69
-xdepend, 3-69
-xexplicitpar, 3-69
-xF, 3-69
-xhasc, Hollerith as character, 3-72
-xhelp=h, 3-73
-xia, interval arithmetic, 3-73
-xildoff, 3-74
-xinline, 3-74
-xinterval=v for interval arithmetic, 3-74
-xipo, interprocedural optimizations, 3-74
-xipo_archive, 3-77
-xjobs, multiprocessor compilation, 3-77
-xknown_lib, optimize library calls, 3-78
-xlang=f77, link with Fortran 77 libraries, 3-79
-xlibmil, 3-79
-xlibmopt, 3-24, 3-79
-xlic_lib=sunperf, 3-80
-xlicinfo, 3-80
-xlinkopt, 3-80
-xlinkopt, link-time optimizations, 3-80
Index-6 Fortran User’s Guide • January 2005

-Xlist, global program checking, 3-52
-xloopinfo, 3-81
-xmaxopt, 3-82
-xmemalign, 3-82
-xnolib, 3-83
-xnolibmopt, 3-83
-xOn, 3-83
-xopenmp, 3-83
-xpagesize, 3-83, 3-84
-xparallel, 3-85
-xpg, 3-85
-xpp=p, 3-85
-xprefetch, 2-13, 3-24
-xprefetch_auto_type, 3-87
-xprefetch_level, 3-24
-xprofile=p, 3-88
-xprofile_ircache, 3-90
-xprofile_pathmap=param, 3-90
-xrecursive, 3-91
-xreduction, 3-91
-xregs=r, 3-91
-xs, 3-92
-xsafe=mem, 3-92
-xsb, 3-93
-xsbfast, 3-93
-xspace, 3-93
-xtarget=native, 3-23
-xtarget=t, 3-93, C-1
-xtime, 3-95
-xtypemap, 3-96
-xunroll, 3-96
-xvector, 3-24, 3-96
-ztext, 3-97

OPTIONS environment variable, 2-18
order of

functions, 3-70
order of processing, options, 3-3
overflow

stack, 3-47
trap on floating-point, 3-29

overindexing
aliasing, 3-54

P
padding, 3-42
page size, setting stack or heap, 3-83, 3-84
parallelization

automatic, 3-12

automatic and explicit, -parallel, 3-43
directives, 4-23
directives (f77), 2-15
explicit, 3-19
loop information, 3-34
messages, 3-51
OpenMP, 2-15, 3-41
OpenMP directives summarized, D-3
reduction operations, 3-46
select directives style, 3-36
with multithreaded libraries, 3-37
See also Fortran Programming Guide

parameters, global consistency, -Xlist, 3-52
passes of the compiler, 3-50
path

#include, 3-31
dynamic libraries in executable, 3-45
library search, 3-33
to standard include files, 3-32

PATH environment variable, setting, -xx
performance

optimization, 3-22
Sun Performance Library, 1-3

performance library, 3-80
PIPELOOP directive, 2-12
platforms, supported, -xix
pointee, 4-9
pointer, 4-9

aliasing, 3-54
position-independent code, 3-42, 3-44, 3-65
POSIX library, not supported, 5-7
pragma, See directives
precision on x86

-fprecision, 3-27
-fstore, 3-29

PREFETCH directive, 2-13
preprocessor, source file

define symbol, 3-15
force fpp, 3-26
fpp, cpp, 2-5
specify with -xpp=p, 3-85
undefine symbol, 3-49

preserve case, 3-49
print

asa, 1-2
Index-7

processor
specify target processor, 3-64

prof, -p, 3-42
profile data path map, 3-90
profiling

-pg, gprof, 3-44
-xprofile, 3-88

R
range of subscripts, 3-13
README file, 1-5, 3-73
recursive subprograms, 3-91
register usage, 3-91
release history, B-1
reorder functions, 3-69
rounding, 3-27, 3-28

S
search

object library directories, 3-33
set

#include path, 3-31
shared library

build, -G, 3-30
disallow linking, -dn, 3-17
name a shared library, 3-30
pure, no relocations, 3-97

shell
limits, 2-20

shell prompts, -xix
SIGFPE, floating-point exception, 3-25
size of compiled code, 3-93
source file

preprocessing, 2-5
source format

mixing format of source lines (f95), 4-2
options (f95), 4-2

source lines
extended, 3-18
fixed-format, 3-24
free-format, 3-27
line length, 4-1
preprocessor, 3-85
preserve case, 3-49

SourceBrowser, 3-46

SPARC platform
cache, 3-62
chip, 3-64
code address space, 3-65
instruction set architecture, 3-57
register usage, -xregs, 3-91
-xtarget expansions, C-1

stack
increase stack size, 3-48
overflow, 3-47
setting page size, 3-83, 3-84

stack overflow, 3-63
standard

include files, 3-32
standard numeric sequence type, 3-11
standards

conformance, 1-1
identify non-ANSI extensions, -ansi flag, 3-12

static
binding, 3-17

STOP statement, return status, 3-48
stream I/O, 4-18
strict (interval arithmetic), 3-74
strip executable of symbol table, -s, 3-46
suffix

of file names recognized by compiler, 2-4
of file names recognized by compiler (f95), 4-2

supported platforms, -xix
suppress

implicit typing, 3-50
linking, 3-14
warnings, 3-52
warnings by tag name, -erroff, 3-18

swap command, 2-19
swap space

display actual swap space, 2-19
limit amount of disk swap space, 2-19

symbol table
for dbx, 3-30

syntax
compiler command line, 3-1
f95 command, 2-3, 3-1
options on compiler command line, 3-2

system.inc, 2-16
Index-8 Fortran User’s Guide • January 2005

T
tape I/O, not supported, 5-7
tcov

new style with -xprofile, 3-89
templates, inline, 3-34
temporary files, directory for, 3-49
trapping

floating-point exceptions, 3-29
on memory, 3-92

type declaration alternate form, 4-6
typographic conventions, -xvii

U
ulimit command, 2-20
underflow

gradual, 3-26
trap on floating-point, 3-29

underscore, 3-20
do not append to external names, 2-9

unrecognized options, 2-6
UNROLL directive, 2-11
usage

compiler, 2-3
utilities, 1-2

V
variables

alignment, 4-7
local, 3-47
undeclared, 3-50

VAX VMS Fortran extensions, 3-51, 4-12
version

id of each compiler pass, 3-50

W
warnings

message tags, 3-18
suppress messages, 3-52
suppress with -erroff, 3-18
undeclared variables, 3-50
use of non-standard extensions, 3-12

WEAK directive, 2-11
weak linker symbols, 2-11
widestneed (interval arithmetic), 3-74
Index-9

Index-10 Fortran User’s Guide • January 2005

	Fortran User’s Guide
	Contents
	Tables
	Before You Begin
	Introduction
	1.1 Standards Conformance
	1.2 Features of the Fortran 95 Compiler
	1.3 Other Fortran Utilities
	1.4 Debugging Utilities
	1.5 Sun Performance Library
	1.6 Interval Arithmetic
	1.7 Man Pages
	1.8 README Files
	1.9 Command-Line Help

	Using Fortran 95
	2.1 A Quick Start
	2.2 Invoking the Compiler
	2.2.1 Compile-Link Sequence
	2.2.2 Command-Line File Name Conventions
	2.2.3 Source Files
	2.2.4 Source File Preprocessors
	2.2.5 Separate Compiling and Linking
	2.2.6 Consistent Compiling and Linking
	2.2.7 Unrecognized Command-Line Arguments
	2.2.8 Fortran 95 Modules

	2.3 Directives
	2.3.1 General Directives
	2.3.1.1 The C Directive
	2.3.1.2 The IGNORE_TKR Directive
	2.3.1.3 The UNROLL Directive
	2.3.1.4 The WEAK Directive
	2.3.1.5 The OPT Directive
	2.3.1.6 The NOMEMDEP Directive
	2.3.1.7 The PIPELOOP=n Directive
	2.3.1.8 The PREFETCH Directives
	2.3.1.9 The ASSUME Directives

	2.3.2 Parallelization Directives
	2.3.2.1 OpenMP Parallelization Directives
	2.3.2.2 Legacy Sun/Cray Parallelization Directives

	2.4 Library Interfaces and system.inc
	2.5 Compiler Usage Tips
	2.5.1 Determining Hardware Platform (SPARC)
	2.5.2 Using Environment Variables
	2.5.3 Memory Size
	2.5.3.1 Swap Space Limits
	2.5.3.2 Increasing Swap Space
	2.5.3.3 Control of Virtual Memory

	Fortran Compiler Options
	3.1 Command Syntax
	3.2 Options Syntax
	3.3 Options Summary
	3.3.1 Commonly Used Options
	3.3.2 Macro Flags
	3.3.3 Backward Compatibility and Legacy Options
	3.3.4 Obsolete Option Flags

	3.4 Options Reference
	-a
	-aligncommon[={1|2|4|8|16}]
	-ansi
	-arg=local
	-autopar
	-B{static|dynamic}
	-C
	-c
	-cg89
	-cg92
	-copyargs
	-Dname[=def]
	-dalign
	-dbl_align_all[={yes|no}]
	-depend[={yes|no}]
	-dn
	-dryrun
	-d{y|n}
	-e
	-erroff[={%all|%none|taglist}]
	-errtags[={yes|no}]
	-errwarn[={%all|%none|taglist}]
	-explicitpar
	-ext_names=e
	-F
	-f
	-f77[=list]
	-fast
	-fixed
	-flags
	-fnonstd
	-fns[={yes|no}]
	-fpover[={yes|no}]
	-fpp
	-fprecision={single|double|extended}
	-free
	-fround={nearest|tozero|negative|positive}
	-fsimple[={1|2|0}]
	-fstore
	-ftrap=t
	-G
	-g
	-hname
	-help
	-Ipath
	-inline=[%auto][[,][no%]f1,…[no%]fn]
	-iorounding[={compatible|processor-defined}]
	-Kpic
	-KPIC
	-Lpath
	-lx
	-libmil
	-loopinfo
	-Mpath
	-moddir=path
	-mp={%none|sun|cray}
	-mt
	-native
	-noautopar
	-nodepend
	-noexplicitpar
	-nofstore
	-nolib
	-nolibmil
	-noreduction
	-norunpath
	-O[n]
	-O
	-O1
	-O2
	-O3
	-O4
	-O5
	-o name
	-onetrip
	-openmp[={parallel|noopt|none}]
	-PIC
	-p
	-pad[=p]
	-parallel
	-pg
	-pic
	-Qoption pr ls
	-qp
	-R ls
	-r8const
	-reduction
	-S
	-s
	-sb
	-sbfast
	-silent
	-stackvar
	-stop_status[={yes|no}]
	-temp=dir
	-time
	-U
	-Uname
	-u
	-unroll=n
	-use=list
	-V
	-v
	-vax=keywords
	-vpara
	-w[n]
	-Xlist[x]
	-x386
	-x486
	-xa
	-xalias[=keywords]
	-xarch=isa
	-xassume_control[=keywords]
	-xautopar
	-xcache=c
	-xcg89
	-xcg92
	-xcheck=keyword
	-xchip=c
	-xcode=keyword
	-xcommonchk[={yes|no}]
	-xcrossfile[={1|0}]
	-xdebugformat={stabs|dwarf}
	-xdepend
	-xexplicitpar
	-xF
	-xfilebyteorder=options
	Examples:
	Notes:

	-xhasc[={yes|no}]
	-xhelp={readme|flags}
	-xia[={widestneed|strict}]
	-xild{off|on}
	-xinline=list
	-xinterval[={widestneed|strict|no}]
	-xipo[={0|1|2}]
	-xipo_archive[={none|readonly|writeback}]
	-xjobs=n
	-xknown_lib=library_list
	-xlang=f77
	-xlibmil
	-xlibmopt
	-xlic_lib=sunperf
	-xlicinfo
	-xlinkopt[={1|2|0}]
	-xloopinfo
	-xmaxopt[=n]
	-xmemalign[=<a>]
	-xnolib
	-xnolibmil
	-xnolibmopt
	-xOn
	-xopenmp
	-xpad
	-xpagesize=size
	-xpagesize_heap=size
	-xpagesize_stack=size
	-xparallel
	-xpg
	-xpp={fpp|cpp}
	-xprefetch[=a[,a]]
	-xprefetch_auto_type=[no%]indirect_array_access
	-xprefetch_level={1|2|3}
	-xprofile={collect[:name]|use[:name]|tcov}
	-xprofile_ircache[=path]
	-xprofile_pathmap=collect_prefix:use_prefix
	-xrecursive
	-xreduction
	-xregs=r
	-xs
	-xsafe=mem
	-xsb
	-xsbfast
	-xspace
	-xtarget=t
	-xtime
	-xtypemap=spec
	-xunroll=n
	-xvector[={yes|no}]
	-ztext

	Fortran 95 Features and Differences
	4.1 Source Language Features
	4.1.1 Continuation Line Limits
	4.1.2 Fixed-Form Source Lines
	4.1.3 Source Form Assumed
	4.1.3.1 Mixing Forms
	4.1.3.2 Case

	4.1.4 Limits and Defaults

	4.2 Data Types
	4.2.1 Boolean Type
	4.2.1.1 Miscellaneous Rules Governing Boolean Type
	4.2.1.2 Alternate Forms of Boolean Constants
	4.2.1.3 Alternate Contexts of Boolean Constants

	4.2.2 Abbreviated Size Notation for Numeric Data Types
	4.2.3 Size and Alignment of Data Types

	4.3 Cray Pointers
	4.3.1 Syntax
	4.3.2 Purpose of Cray Pointers
	4.3.3 Declaring Cray Pointers and Fortran 95 Pointers
	4.3.4 Features of Cray Pointers
	4.3.5 Restrictions on Cray Pointers
	4.3.6 Restrictions on Cray Pointees
	4.3.7 Usage of Cray Pointers

	4.4 STRUCTURE and UNION (VAX Fortran)
	4.5 Unsigned Integers
	4.5.1 Arithmetic Expressions
	4.5.2 Relational Expressions
	4.5.3 Control Constructs
	4.5.4 Input/Output Constructs
	4.5.5 Intrinsic Functions

	4.6 Fortran 2003 Features
	4.6.1 Interoperability with C Functions
	4.6.2 IEEE Floating-Point Exception Handling
	4.6.3 Command-Line Argument Intrinsics
	4.6.4 PROTECTED Attribute
	4.6.5 Fortran 2003 Asynchronous I/O
	4.6.6 Extended ALLOCATABLE Attribute
	4.6.7 VALUE Attribute
	4.6.8 Fortran 2003 Stream I/O
	4.6.9 Fortran 2003 Formatted I/O Features

	4.7 Additional I/O Extensions
	4.7.1 I/O Error Handling Routines
	4.7.2 Variable Format Expressions
	4.7.3 NAMELIST Input Format
	4.7.4 Binary Unformatted I/O
	4.7.5 Miscellaneous I/O Extensions

	4.8 Directives
	4.8.1 Form of Special f95 Directive Lines
	4.8.1.1 Fixed-Form Source
	4.8.1.2 Free-Form Source

	4.8.2 FIXED and FREE Directives
	4.8.2.1 Scope
	4.8.2.2 Uses
	4.8.2.3 Restrictions

	4.8.3 Parallelization Directives

	4.9 Module Files
	4.9.1 Searching for Modules
	4.9.2 The -use=list Option Flag
	4.9.3 The fdumpmod Command

	4.10 Intrinsics
	4.11 Forward Compatibility
	4.12 Mixing Languages

	FORTRAN 77 Compatibility: Migrating to Fortran 95
	5.1 Compatible f77 Features
	5.2 Incompatibility Issues
	5.3 Linking With f77-Compiled Routines
	5.3.1 Fortran 95 Intrinsics

	5.4 Additional Notes About Migrating to the f95 Compiler

	Runtime Error Messages
	A.1 Operating System Error Messages
	A.2 f95 Runtime I/O Error Messages

	Features Release History
	B.1 Sun Studio 10 Fortran Release:
	B.2 Sun Studio 9 Fortran Release:
	B.3 Sun Studio 8 Fortran Release:
	B.4 Sun ONE Studio 7, Compiler Collection (Forte Developer 7) Release:

	Legacy -xtarget Platform Expansions
	Fortran Directives Summary
	D.1 General Fortran Directives
	D.2 Special Fortran 95 Directives
	D.3 Fortran 95 OpenMP Directives
	D.4 Sun Parallelization Directives
	D.5 Cray Parallelization Directives

	Index

