

D

EVELOPING

AND

 T

UNING

A

PPLICATIONS

ON

 U

LTRA

SPARC T1
C

HIP

 M

ULTITHREADING

 S

YSTEMS

Denis Sheahan,

 UltraSPARC T1 Architecture Group

Sun BluePrints

™

 OnLine

—

December 2005

Part No 819-

5144-10
Revision 1.0, 12/1/05
Edition: December 2005

Please

Recycle

© 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA

 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, Java, UltraSPARC, Sun Fire, and Solaris

are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun

acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer

industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who

implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

T

able of Contents

Sun Microsystems, Inc.

Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems

 —

December 2005

T

able of Contents

UltraSPARC T1 Processor Physical Characteristics

. 2

Performance Characteristics . 3

Classes of Commercial Applications . 4

Assessing System and Application Performance . 5

Analyzing Performance With Solaris Dynamic Tracing Software . 10

Scaling Applications With CMT . 11

Tuning for General Performance . 18

Accessing the Modular Arithmetic Unit and Encryption Framework . 32

Minimizing Floating-Point Operations and VIS Instructions. 33

Summary . 36

About the Author . 36

References . 36

Ordering Sun Documents . 37

Accessing Sun Documentation Online . 37

1

-

Developing and

T

uning

Applications on UltraSP

ARC

T1 Chip Multithreading Systems

Sun Microsystems, Inc.

Developing and Tuning Applications on UltraSPARC T1 Chip
Multithreading Systems

Traditional processor design has long emphasized the performance of a single hardware thread of

execution, and focused on providing high levels of instruction-level parallelism (ILP). These increasingly

complex processor designs have been driven to very high clock rates (frequencies), often at the cost of

increased power consumption and heat production. Unfortunately, the impact of memory latency has

meant that even the fastest single-threaded processors spend most of their time stalled, waiting for

memory. Complicating this tendency, many of today’s complex commercial workloads are simply unable to

take advantage of instruction-level parallelism, instead benefiting from thread-level parallelism (TLP).

Sun’s Throughput Computing initiative represents a new paradigm in system design, with a focus toward

maximizing the overall throughput of key commercial workloads rather than the speed of a single thread of

execution. Chip multi-threading (CMT) processor technology is key to this approach, providing a new

thread-rich environment that drives application throughput and processor resource utilization while

effectively masking memory access latencies.

Sun’s new UltraSPARC® T1 processor combines chip multiprocessing (CMP) and hardware multithreading

(MT) with an efficient instruction pipeline to enable chip multithreading. The resulting processor design

provides multiple physical-instruction execution pipelines and several active thread contexts per pipeline.

UltraSPARC T1 processors offer a new thread-rich environment for developers and can be thought of as

symmetric multiprocessing (SMP) on a chip. Applications that currently scale well on SMP machines

should also scale well in UltraSPARC T1 processor-based environments. Some simple modifications to an

application can often achieve even greater scalability in the UltraSPARC T1 processor-based environment

than can be achieved on an SMP machine.

This Sun BluePrints™ article describes techniques that system architects, application developers, and

performance analysts can use to assess the scaling characteristics of an application. It also explains how

to optimize an application for CMT, in particular for systems that use UltraSPARC T1 processors.This

article discusses the following topics:

• Processor physical characteristics

• Performance characteristics

• Classes of commercial applications

• Assessing performance on UltraSPARC T1 processor-based systems

• Scaling applications with CMT

• Tuning for general performance

• Accessing the modular arithmetic unit and encryption framework

• Minimizing floating-point operations and VIS instructions
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

2

-

Developing and

T

uning

Applications on UltraSP

ARC

T1 Chip Multithreading Systems

Sun Microsystems, Inc.

Note – This document distinguishes between a hardware thread, also known as a strand, and a software
thread of execution, also known as a lightweight process (LWP). This distinction is important because
hardware thread scheduling is not under the control of software.

UltraSPARC T1 Processor Physical Characteristics
Sun's UltraSPARC T1 CMT hardware architecture has the following characteristics:

• Eight cores, or individual execution pipelines, per chip.

• Four strands or active thread contexts that share a pipeline in each core. Each cycle of a different

hardware strand is scheduled on the pipeline in round robin order.

• 32 threads total per UltraSPARC T1 processor.

• A strand that stalls for any reason is switched out and its slot on the pipeline is given to the next strand

automatically. The stalled strand is inserted back in the queue when the stall is complete.

• Cores that are connected by a high-speed, low-latency crossbar in silicon. An UltraSPARC T1 processor

can be considered SMP on a chip.

• Hardware strands that are presented by the Solaris™ Operating System (Solaris OS) as a processor.

For example, mpstat(1) and psradm(1M) show 32 CPUs.

• Cores that have an instruction cache, a data cache, an instruction translation-lookaside buffer (iTLB),

and a data TLB (dTLB) shared by the four strands.

• Strands defined by a set of unique registers and logic to control state.

• A twelve-way associative unified Level 2 (L2) on-chip cache. Each hardware strand shares the entire L2

cache.

• Memory latency that is uniform across all cores—uniform memory access (UMA), not non-uniform

memory access (NUMA).

• Full SPARC V7, V8, and V9 binary compatibility.

• Low-latency Double Data Rate 2 (DDR2) memory to reduce stalls. Four on-chip memory controllers

provide high memory bandwidth (theoretical maximum is 25 gigabytes per second).

• An operating system scheduler that schedules LWPs on UltraSPARC T1 hardware strands. It is the task

of the hardware to schedule strands in the core.

• A modular arithmetic unit (MAU) for each core that supports modular multiplication and exponentiation

to help accelerate Secure Sockets Layer (SSL) processing.

• A single floating-point unit (FPU) that is shared by all cores, making UltraSPARC T1 processors a

suboptimal choice for applications with floating-point intensive requirements.

• An UltraSPARC T1 processor cannot be configured as an SMP system with multiple chips using a single

Solaris OS image.

Figure 1 illustrates the structure of the UltraSPARC T1 processor.
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

3

-

Developing and

T

uning

Applications on UltraSP

ARC

T1 Chip Multithreading Systems

Sun Microsystems, Inc.

Figure 1. UltraSPARC T1 Processor Design

Performance Characteristics
The UltraSPARC T1 processor-based architecture has numerous implications for application performance.

Single Strand Performance

In a CMT architecture, single-strand performance can mean one of two things: exclusive single-strand

performance, or shared single-strand performance. Exclusive single-strand performance is the

performance of a strand which has exclusive access to a core. This is achieved by parking the other three

strands. Shared single-strand performance is the performance of a single strand when the other three

strands are sharing the core.

The aim of the Throughput Computing architecture is to maximize system throughput. The performance of

a single thread on a system with UltraSPARC T1 processors is less than that of a single threaded

processor. This is because the strands do not have exclusive access to the resources of the core and the

pipeline is simpler. Although individual strands are weaker, aggregate performance is greater than in the

previous generation of SPARC processors. Indeed, by running LWPs on all 32 hardware strands in

parallel, the aggregate performance of UltraSPARC T1 processors exeeds that of today’s SPARC

systems. This is the tradeoff of single-thread performance versus throughput.

Threads Running Together on a Core

Because of shared structures like caches, the performance of a thread is also affected by other threads

running on the same core. This effect can be positive or negative:

• If a thread is stalled waiting for memory, its cycles can be directly and immediately used to process other

threads that are ready to run.

On-chip cross-bar interconnect FPU

L2 cache L2 cache L2 cache L2 cache

Core

0

Core

1

Core

2

Core

3

Core

4

Core

5

Core

6

Core

7

UltraSPARC T1 Processor

DDR-2 SDRAM DDR-2 SDRAM DDR-2 SDRAM DDR-2 SDRAM

System Interface
Buffer Switch Core

Bus
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

4-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
• If many threads are running the same application (a common occurrence in today’s deployments), they

benefit from constructive sharing of text and data in the Level-2 cache.

• Though it is a very rare scenario in modern commercial applications, if all of the threads running on the

four strands of a core have little or no stall component, then all will receive approximately one quarter of

the CPU cycles available within the core.

• If one thread is thrashing a cache or translation lookup buffer (TLB) on a core, other threads on that core

can be adversely effected. This scenario is known as “destructive sharing”.

Memory Latency

In today’s systems, increases in processor speed have significantly outpaced memory speedbumps. As a

result application performance is often constrained by memory latency. On UltraSPARC T1 processor-

based systems, however, memory latency is much less of an issue for application performance.

The effect of automatically switching out a stalled strand is to hide memory latency in the chip. Of course,

the individual strand will stall, but the core, and ultimately the chip, can continue to feed the pipeline by

executing instructions from the other strands. The negative effects of memory latency are mitigated

through more effective use of the pipeline.

Transaction-Lookaside Buffers

A translation-lookaside buffer (TLB) is a hardware cache that is used to translate a process's virtual

address to a system’s physical memory address. This hardware is essential for performance. Each core in

an UltraSPARC T1 processor-based system has a 64-entry iTLB and a similar dTLB. All four strands share

this resource. Performance can be improved by using large pages, where possible, through the Solaris OS

virtual memory features. For more information, see Tuning a TLB on page 29.

Classes of Commercial Applications
UltraSPARC T1 processors are designed to scale well with applications that are throughput oriented,

particularly Web, transaction, and Java™ technology services. Classes of applications include:

• Multi-threaded applications—Multi-threaded applications are characterized by having a small number of

highly-threaded processes. These applications scale by scheduling work through threads or Light

Weight Processes (LWPs) in the Solaris Operating System. Threads often communicate via shared

global variables. Examples of threaded applications include Lotus Domino, the Sybase Database

Engine, and Siebel CRM. Most multi-threaded applications scale well on UltraSPARC T1 processor-

based systems.

• Multi-process applications—Multi-process applications are characterized by the presence of many

single-threaded processes that often communicate via shared memory or other Inter Process

Communication (IPC) mechanisms. Examples of multi-process applications include the Oracle

database, SAP, and PeopleSoft. Most multiprocess applications scale well on UltraSPARC T1

processor-based systems.
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

5-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
• Java technology-based applications—Java technology-based applications embrace threading in a

fundamental way. Not only does the Java language greatly facilitate multithreaded applications, but the

Java Virtual Machine (JVM™) is a multi-threaded process that provides scheduling and memory

management for Java applications. Java applications that can benefit directly from CMT resources

include application servers such as Sun’s Java Application Server, BEA’s Weblogic, IBM’s Websphere,

or the open-source Tomcat application server. All applications that use a Java™ 2 Platform, Enterprise

Edition (J2EE™ platform) application server can immediately benefit from CMT technology.

• Multi-instance applications—Even if an individual application does not scale to take advantage of a large

number of threads, it is still possible to gain from the CMT architecture by running multiple instances of

the application in parallel. If multiple application instances require some degree of isolation, Solaris

Containers technology can be used to provide each of them its own separate and secure environment.

• Single-threaded applications—Single-threaded applications that have a severe response-time

constraint are not good candidates for UltraSPARC T1 processor-based systems. Weaker single-thread

performance can make the response time unobtainable. Single-threaded batch applications are an

example of such code.

• Floating-point intensive applications—The UltraSPARC T1 processor has a single floating-point unit. If

more than one percent of an application consists of floating-point instructions, it is not a good candidate

for UltraSPARC T1 processor-based systems. The SAS Analytics package is an example of such an

application.

Assessing System and Application Performance
When assessing the performance of current systems and applications to determine the suitability of

transitioning to UltraSPARC T1 processor-based systems, consider the system’s overall performance,

parallelism, and throughput. This section explains how to make these assessments and provides

information about using Solaris™ Dynamic Tracing (DTrace) for debugging and performance analysis.

Assessing Overall Performance

Application performance can be assessed either on an existing system with UltraSPARC III or UltraSPARC

IV processors, or directly on an UltraSPARC T1 system. To begin performance assessment observe the

application running under load using the mpstat(1) and vmstat(1) commands. The first line in the

mpstat and vmstat sample should be discarded because it is an accumulation of data since booting the

system. Table 1 shows the mpstat output from a Sun Fire™ V490 server runnig four dual-core

UltraSPARC IV+ processors.

Table 1. mpstat Output for a Sun Fire V490 Server

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
16 9 0 1 212 109 0 0 0 0 0 12 0 0 0 100
17 0 0 1 4 2 1 0 1 0 0 5 0 0 0 100
18 26 0 54 4 2 5 0 1 0 0 59 0 0 0 100
19 7 0 1 4 1 2 0 1 0 0 14 0 0 0 100
528 9 0 1 4 1 24 0 2 2 0 21 0 0 0 100
529 2 0 1 4 1 1 0 0 0 0 10 0 0 0 100
530 18 0 16 4 1 5 0 1 2 0 33 0 0 0 100
531 9 0 1 4 1 7 0 1 1 0 25 0 0 0 100
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

6-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
The following code example shows the vmstat output from the same system.

On an eight-core UltraSPARC T1 processor-based system mpstat(1) displays 32 processors. A six-core

system displays 24 processors.

When migrating to a UltraSPARC T1 processor-based system, look at the following fields in mpstat:

• usr/sys/wt/idl (CPU utilization breakdown)

These fields display how much of each CPU is consumed in mpstat(1). vmstat(1) aggregates

utilization for all CPUs and rolls wt and idl into id. If a Sun Fire V490 or x86 system is mostly idle, this

will also be true on a UltraSPARC T1 processor-based system. If a traditional SMP system is fully

consumed, this should map to an UltraSPARC T1 system. If a two-way system is fully consumed,

determine how many LWPs are involved in the processing.

• icsw (number of involuntary context switches)

This field displays the number of LWPs involuntarily taken off the CPU either through expiration of their

quantum or the availability of a higher-priority LWP. This number indicates if there were generally more

LWPs ready to run than physical processors. When run on an UltraSPARC T1 processor-based system,

the icsw is usually less than it is on traditional systems because there are more hardware threads

available for LWPs.

The r b w fields of the vmstat output give another indication of how many LWPs are ready to run,

blocked, or in wait state. If a high number of LWPs can be run, this is a good indication that an

application will scale and is potentially a good fit for a thread-rich environment.

• migr (migrations of LWPs between processors)

This field displays the number of times the OS scheduler moves a ready-to-run LWP to an idle

processor. If possible, the OS tries to keep the LWP on the last processor on which it ran. If the

processor is busy, it migrates. Migrations on traditional CPUs are bad for performance because they

cause an LWP to pull its working set into cold caches, often at the expense of other LWPs.

kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr s0 s1 s6 s8 in sy cs us sy id
0 0 0 34020544 31463984 47 22 5 0 0 0 0 0 0 0 0 239 120 36 0 0 100

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 161 258 145 24 0 1 0 1 11 0 0 0 99
 1 0 0 3 9 0 15 0 1 0 0 8 0 0 0 100
 2 0 0 2 11 0 21 0 1 0 0 6 0 0 0 100
 3 0 0 1 5 0 8 0 1 0 1 4 0 0 0 100
 4 0 0 4 14 0 26 0 1 0 1 12 0 0 0 100
...
 28 0 0 3 9 0 16 0 1 0 0 10 1 0 0 99
 29 0 0 2 7 0 12 0 1 0 0 8 0 0 0 100
 30 0 0 2 9 1 14 0 1 0 0 5 0 0 0 100
 31 0 0 2 63 54 17 0 1 1 0 3 0 0 0 100
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

7-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
UltraSPARC T1 migrations between hardware strands on the same core are essentially free because all

caches are shared. Migrations between cores also have less of an impact because most state is held in

the unified L2 cache.

• csw (voluntary context switches)

This field displays the number of LWP switches that occur either because tasks are short or they need to

wait for I/O. These should be similar on UltraSPARC T1 processor-based systems.

Assessing Application Parallelism on a Traditional System

When tuning an application on an UltraSPARC T1 processor-based system, determine how many LWPs

are actually involved in processing. To make this determination, run the workload and use prstat(1) or

ps -ef(1) to determine which processes are accumulating CPU resources. It is a good idea to take a few

snapshots at intervals to determine which processes are accumulating CPU resources on an ongoing

basis.

The default execution of the prstat(1) command sorts by CPU utilization and returns the process LWP

count, as shown below.

In the preceding example, cpuhog (PID 8607) is consuming 71 percent of available CPU and has nine

LWPs.

In the preceding example, two Java processes are active, but PID 129953 is accumulating the greatest

number of CPU cycles. If a process is accumulating more CPU time than has elapsed, the process is

multithreaded. This result is confirmed by running the ps -Lef command.

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
8607 mauroj 145M 145M cpu0 59 4 0:00:54 71% cpuhog/9
5148 andreash 35M 9632K sleep 59 0 0:07:11 0.2% mixer_applet2/1
4455 andreash 16M 14M sleep 59 0 0:02:10 0.1% Xvnc/1
4614 andreash 12M 10M sleep 59 0 0:01:46 0.0% gconfd-2/1

ps -ef
UID PID PPID C STIME TTY TIME CMD
daemon 100726 1 0 11:45:55 ? 0:00 /usr/lib/nfs/statd
root 129953 129945 1 15:30:53 pts/5 0:43 /usr/dist/share/java,v1.5.0beta2/5.x-sun4/
jre/bin/java -server -XX:CompileThres
root 100742 100739 0 11:47:28 pts/2 0:01 -tcsh
root 100405 1 0 11:45:41 ? 0:00 /usr/lib/ssh/sshd
root 100409 1 0 11:45:41 ? 0:02 /usr/sfw/sbin/snmpd
root 100724 100721 0 11:45:52 ? 0:00 /usr/lib/saf/ttymon
root 129896 100251 0 15:30:02 ? 0:00 in.rlogind
root 129945 129934 0 15:30:45 pts/5 0:09 /usr/dist/share/java,v1.5.0beta2/5.x-sun4//
bin/java -classpath /export/home/XML
root 129934 129869 0 15:30:36 pts/5 0:00 /bin/sh run_xmltest.sh
root 129957 129898 0 15:31:08 pts/1 0:00 ps -ef
root 101738 100251 0 11:51:59 ? 0:00 in.telnetd

ps -Lef | grep 129953 | grep -v grep | wc -l
48
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

8-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
As shown in the preceding example, there are 48 threads in the process. A closer look indicates that not all

of them are active.

Some threads have accumulated six minutes of CPU time, and others have accumulated only a few

seconds. From the preceding ps output, it is apparent that about 36 threads are active. If multiple LWPs

are accumulating CPU, the application will most likely scale on the multiple cores of an UltraSPARC T1

processor-based system.

When assessing performance, try to scale up the workload. Look for any points in the throughput curve

where performance declines. This is an indication of a possible bottleneck. Even if multiple threads or

processes are accumulating CPU, applications can also have phases of execution. Therefore, it is useful

to take a number of prstat(1) or ps(1) snapshots to determine how the utilization changes over time,

which will enable pinpointing periods of serialization or periods where a master thread feeds consumers.

Assessing CMT System Throughput

Processor utilization from mpstat is the most important performance indicator on a traditional system.

When running on an UltraSPARC T1 processor-based system, however, the most important statistic is the

number of instructions per second that the chip can execute, which ultimately determines the throughput of

the system. The instructions per second of the chip is the sum of the number executed on each hardware

strand. The instructions per strand is dependent on a number of different factors, including the following:

• The scalability of the application, for example, the number of LWPs that can be run in parallel

• The application’s instruction mix and the amount of stall it generates

• The LWPs executing on the other strands of a core, their stall component, and use of the shared

resources (instruction cache, for example)

• The total number of LWPs that the Solaris OS tries to schedule on the strand, which determines how

often the application gets to run

• Other applications running on other cores and their use of the L2 unified cache

ps -Lef | grep 129953
UID PID PPID LWP NLWP C STIME TTY LTIME CMD
root 129953 129945 1 48 0 15:30:52 pts/5 0:06 /usr/dist/share/java,v1.5.0beta2/5.x-sun4/
jre/bin/java -server -XX:CompileThres
root 129953 129945 2 48 0 15:30:53 pts/5 0:01 /usr/dist/share/java,v1.5.0beta2/5.x-sun4/
jre/bin/java -server -XX:CompileThres

....

root 129953 129945 45 48 0 15:30:59 pts/5 6:24 /usr/dist/share/java,v1.5.0beta2/5.x-sun4/
jre/bin/java -server -XX:CompileThres
root 129953 129945 46 48 0 15:30:59 pts/5 6:26 /usr/dist/share/java,v1.5.0beta2/5.x-sun4/
jre/bin/java -server -XX:CompileThres
root 129953 129945 47 48 0 15:30:59 pts/5 6:24 /usr/dist/share/java,v1.5.0beta2/5.x-sun4/
jre/bin/java -server -XX:CompileThres
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

9-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Each UltraSPARC T1 strand has a set of hardware performance counters that can be monitored using

the cpustat(1M) command. cpustat can collect two counters in parallel, the second always being

the instruction count. For example, to collect iTLB misses and instruction counts for every strand on the

chip, type the following:

Both a pic0 and pic1 register must be specified. ITLB_miss is used in the preceding example, although

instruction counts are only of interest in this instance.

The performance counters indicate that each strand is executing about 190 million instructions per second.

To determine how many instructions are executing per core, aggregate counts from four strands. Strands

zero, one, two, and three are in the first core, strands four, five, six, and seven are in the second core, and

so on. The preceding example indicates that the system is executing about 760 million instructions per

core per second. If the processor is executing at 1.2 Gigahertz, each core can execute a maximum of 1200

million instructions per second, yielding an efficiency rating of 0.63. To achieve maximum throughput,

maximize the number of instructions per second on each core and ultimately on the chip.

Other useful cpustat counters for assessing performance on an UltraSPARC T1 processor-based

system are detailed in Table 2. All counters are per second, per thread. Rather than deal with raw misses,

accumulate the counters and express them as a percentage miss rate of instructions. For example, if the

system executes 200 million instructions per second on a strand and IC_miss indicates 14 million

instruction cache misses per second, then the instruction cache miss rate is seven percent.

Table 2. cpustat Output—Performance Assessment Counters

/usr/sbin/cpustat -c pic0=ITLB_miss,pic1=Instr_cnt,sys 1 10
time cpu event pic0 pic1
2.019 0 tick 6 186595695 # pic0=ITLB_miss,sys,pic1=Instr_cnt,sys
2.089 1 tick 7 192407038 # pic0=ITLB_miss,sys,pic1=Instr_cnt,sys
2.039 2 tick 49 192237411 # pic0=ITLB_miss,sys,pic1=Instr_cnt,sys
2.049 3 tick 15 190609811 # pic0=ITLB_miss,sys,pic1=Instr_cnt,sys
......

Counter Name Counts High Value Impact Potential Remedy

IC_miss Number of instruction
cache misses >7%

Small impact as
latency can be hidden
by strands

Compiler flag options to
compact the binary. See
compiler section.

DC_miss Number of data cache
misses >11%

Small impact as
latency can be hidden
by strands

Compact data structures to
align on 64-byte boundaries.

ITLB_miss Number of instruction
TLB misses >.001%

Potentially severe
impact from TLB
thrashing

Make sure text on large pages.
See TLB section.

DTLB_miss Number of data TLB
misses >.005%

Potentially severe
impact from TLB
thrashing

Make sure data segments are
on large pages. See TLB
section.

L1_imiss
Instruction cache
misses that also miss
L2

>2%
Medium impact
potential for all
threads to stall

Reduce conflict with data
cache misses if possible.

L1_dmiss_ld Data case misses that
also miss L2 >2%

Medium impact
potential for all
threads to stall

Potential alignment issues.
Offset data structures.
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

10-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
These counters enable a good overall picture of application behavior to be obtained. The cpustat(1)

command gives statistics for all LWPs running on all cores. To isolate the statistics for a single process,

use the cputrack(1) command:

The cputrack command follows the process, taking into account when it is switched off CPU or migrates

between strands.

UltraSPARC T1 processors also have a number of DRAM performance counters, the most important of

which are read and write operations to each of the four memory banks. The tool to display DRAM counters

is the busstat command. Be sure to type the command on a single line.

The counts are of 64-byte lines read or written to memory; to get the total bandwidth, add all four counters

together. In the preceding example, the system is roughly reading (4 * 16000 * 64) = 4096000 bytes / 3.9

megabytes per second and writing (4 * 8000 * 64 bytes) = 2048000 bytes / 1.95 megabytes per second.

Analyzing Performance With Solaris Dynamic Tracing Software
The Solaris 10 Operating System improves the way system administrators and developers identify the

reasons for suboptimal system and application performance. Solaris Dynamic Tracing (DTrace) technology

makes it possible to delve deeply into complex systems to troubleshoot systemic problems in real time.

DTrace is a comprehensive, advanced tracing tool for troubleshooting systemic problems in real time. With

DTrace, administrators, integrators, and developers can tune applications for performance and

troubleshoot production systems—with little or no performance impact. For more information on the

DTrace software, visit http://www.sun.com/bigadmin/content/dtrace/ or read the Solaris

Dynamic Tracing Guide, an excellent starting point for information about this tool. In the Solaris 10 OS,

lockstat(1) has been rewritten and is now a DTrace client, and a new tool called plockstat(1) is

always built on top of DTrace.

Note – The UltraSPARC T1 Architecture Group used many scripts in assessing the performance of
UltraSPARC T1 processors.

cputrack -c pic0=ITLB_miss,pic1=Instr_cnt,sys command
cputrack -c pic0=ITLB_miss,pic1=Instr_cnt,sys -p pid

busstat -w dram0,pic0=mem_reads,pic1=mem_writes -w dram1,pic0=mem_reads,pic1=mem_writes
-w dram2,pic0=mem_reads,pic1=mem_writes -w dram3,pic0=mem_reads,pic1=mem_writes
time dev event0 pic0 event1 pic1
1 dram0 mem_reads 16104 mem_writes 8086
1 dram1 mem_reads 15953 mem_writes 8032
1 dram2 mem_reads 15957 mem_writes 8069
1 dram3 mem_reads 15973 mem_writes 8001
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

11-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Scaling Applications With CMT
In most cases, applications that already scale on SMP systems should perform extremely well on

UltraSPARC T1 processor-based systems. Sometimes, however, software fails to scale. The following

sections describe how to determine scaling bottlenecks and some of the options for improving scaling.

Scaling Locks

Hot locks are the most common reason applications fail to scale when deployed on an UltraSPARC T1

processor-based system. Hot locks are most commonly exposed when an application is migrated from a

two-way or four-way system. Applications might have many threads configured, but on these systems only

two to four threads can actually run in parallel, which reduces contention by essentially serializing access

to hot locks. When migrating to an UltraSPARC T1 processor-based system, many threads can run in

parallel and locks can become hot as a result.

On traditional SMP systems, communication costs between threads are high. Communication costs

include compare-and-swap (CAS) instructions, which are usually used for lock primitives, and coherency

traffic. The constant intercache movement of locks and critical structures is a major performance inhibitor.

Cache-to-cache transfers cause a lot of stalls in applications, and independent software vendors (ISVs)

dedicate a lot of effort to breaking up shared structures and scaling locks. The problem is worse on NUMA

systems where transfers from remote caches are more costly. This trend has led the authors of parallel

applications to use coarse-grained parallelism and avoid sharing.

In contrast, UltraSPARC T1 processor-based systems easily handle fine-grained sharing and

communication through the high-bandwidth, low-latency, on-chip crossbar. The L2 is also 12-way

associative, which helps reduce both cache conflicts and false sharing between cores. Hot structures and

locks tend to reside in the unified L2 cache. The latency to access a lock is therefore a lot less, which can

change the scaling characteristics of an application.

Users see the effects of lock contention as follows:

• No increase in throughput as more load is applied, or an actual decrease in throughput as CPU cycles

are consumed waiting for resources

• Increasing response time of the application as more load is applied

Observing Hot Application Locks

Many commercial applications have in-built lock observability. Oracle applications, for instance, have the

Statspck package with which a user can take multiple snaps of Oracle’s internal statistics, including lock

contention, hold times, waiters, and the like. A generator produces reports based on the deltas between

the various snaps. It is useful to take lock statistics on current systems and compare them with the

statistics from an UltraSPARC T1 processor-based system.
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

12-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Observing Hot Solaris Userland Locks

User-level locks can be observed in the Solaris OS using the plockstat(1M) command. This command

uses DTrace to instrument a running process or a command of interest. To determine hot locks in a

command, type the following command:

To attach to a running process, type the following command:

This command gives only the caller by default; the -s <depth> option can also be used to obtain a stack

trace of the contending LWPs.

Observing Hot Java Locks

Locking primitives are handled differently in various versions of the JVM machine. In JVM 1.4.2, a thread

handles lock contention by entering the kernel with a system call. Hot locks generate a high number of

lwp_mutex_timedlock() or lwp_mutex_lock() system calls. DTrace or truss -c can be used to

determine counts of system calls to see if these calls dominate. High lock contention in JVM 1.4.2 also

results in high system time as displayed by mpstat.

If many threads are contending for the same lock, the effect is more pronounced on an UltraSPARC T1

processor-based system (or a 32-way SMP system) because all the hardware strands will enter the kernel.

From JVM 1.5 onward, locking has been moved to the VM itself. A back-off mechanism has been

implemented for hotly contended locks, which translates to more idle on the system. Therefore, in JVM 1.5,

idle might increase as more load is applied.

There is a lot of ongoing work in Java observability through the Java Virtual Machine Profiler Interface

(JVMPI) and the JVM Tool Interface (JVMTI). This has been linked with Dtrace, as well. Additional

information is available at the following web locations:

• http://blogs.sun.com/roller/page/ahl

• https://solaris10-dtrace-vm-agents.dev.java.net/

The Workshop Analyzer also uses this framework in its later releases.

While the JVM has long included the -Xrunhprof profiling flag, release J2SE5.0 and later use the JVMTI

for heap and CPU profiling. Usage information is obtained by runnning the java -Xrunhprof command.

This profiling flag includes a variety of options, and returns a lot of data. As a result, using a large number

of options can significantly impact application performance.

plockstat -A command arg...

plockstat -A -p <pid>
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

13-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
To observe locks, use the following command. Note that setting monitor=y indicates that locks should be

observed. Setting msa=y turns on Solaris OS microstate accouting, and depth=8 sets the depth of the

stack displayed.

This command results in a lot of data, including all the call stacks in the Java process. Note two sections at

the bottom of the output: the MONITOR DUMP and MONITOR TIME sections. The MONITOR DUMP section is

a complete snapshot of all the monitors and threads in the system.

MONITOR TIME is a profile of monitor contention obtained by measuring the time spent by a thread waiting

to enter a monitor. Entries in this record are ranked by the percentage of total monitor contention time and

a brief description of the monitor.

In previous versions of the JVM, one option is to dump all the stacks on the running VM by sending a

SIGQUIT (signal number 3) to the Java process using the kill command. This dumps the stacks for all

VM threads to the standard error as shown below.

java -Xrunhprof:cpu=times,monitor=y,msa=y,depth=8,file=path_to_result_file app_name

MONITOR DUMP BEGIN\
 THREAD 200000, trace 302389, status: CW\
 THREAD 200001, trace 300000, status: R\
 THREAD 201044, trace 302505, status: R\
.....
 MONITOR Ljava/lang/StringBuffer;\
 owner: thread 200058, entry count: 1\
 waiting to enter:\
 waiting to be notified:\
MONITOR DUMP END\

MONITOR TIME BEGIN (total = 2442 ms) Sat Nov 5 11:51:04 2005\
rank self accum count trace monitor\
 1 64.51% 64.51% 364 302089 java.lang.Class (Java)\
 2 20.99% 85.50% 294 302094 java.lang.Class (Java)\
 3 9.94% 95.44% 128 302027 sun.misc.Launcher$AppClassLoader (Java)\
 4 4.17% 99.61% 164 302122 sun.misc.Launcher$AppClassLoader (Java)\
 5 0.30% 99.90% 46 302158 sun.misc.Launcher$AppClassLoader (Java)\
 6 0.05% 99.95% 14 302163 sun.misc.Launcher$AppClassLoader (Java)\
 7 0.03% 99.98% 10 302202 sun.misc.Launcher$AppClassLoader (Java)\
 8 0.02% 100.00% 4 302311 sun.misc.Launcher$AppClassLoader (Java)\
MONITOR TIME END\
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

14-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
If the top of the stack for a number of threads terminates in a monitor call, this is the place to drill down and

determine what resource is being contended.

Sometimes removing a lock that protects a hot structure can require many architectural changes that are

not possible. The lock might even be in a third-party library over which the developer has no control. In

such cases, multiple instances of the application are probably the best way to achieve scaling.

Tuning Locks

Locks are usually implemented as spin-mutexes. When a thread wishes to accquire a lock, it first tests

whether the lock is available, usually using the SPARC CAS instruction. If the thread fails to acquire the

lock, it can choose to spin to avoid being context switched off the CPU. Context switches are an expensive

operation; they involve the immediate cost of getting another thread on CPU, as well as the added cost of

TLB and cache pollution (the so-called cache reload transient).

Classic SMP systems spin to try to increase the utilization of the processor in question; cycles are burned

hoping the lock will soon become available. On an UltraSPARC T1 processor-based system, however,

spinning steals cycles from other strands on the core. This has to be weighed against the disruption that a

kill -3 <pid>
Full thread dump Java HotSpot(TM) Client VM (1.4.1_06-b01 mixed mode):

"Signal Dispatcher" daemon prio=10 tid=0xba6a8 nid=0x7 waiting on condition
[0..0]

"Finalizer" daemon prio=8 tid=0xb48b8 nid=0x4 in Object.wait()
[f2b7f000..f2b7fc24]
 at java.lang.Object.wait(Native Method)
 - waiting on <f2c00490> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:111)
 - locked <f2c00490> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:127)
 at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159)

"Reference Handler" daemon prio=10 tid=0xb2f88 nid=0x3 in Object.wait()
[facff000..facffc24]
 at java.lang.Object.wait(Native Method)
 - waiting on <f2c00380> (a java.lang.ref.Reference$Lock)
 at java.lang.Object.wait(Object.java:426)
 at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:113)
 - locked <f2c00380> (a java.lang.ref.Reference$Lock)

"main" prio=5 tid=0x2c240 nid=0x1 runnable [ffbfe000..ffbfe5fc]
 at testMain.doit2(testMain.java:12)
 at testMain.main(testMain.java:64)

"VM Thread" prio=5 tid=0xb1b30 nid=0x2 runnable

"VM Periodic Task Thread" prio=10 tid=0xb9408 nid=0x5 runnable
"Suspend Checker Thread" prio=10 tid=0xb9d58 nid=0x6 runnable
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

15-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
context switch will have on the other strands in a core. This disruption can be significant as it requires

switching to kernel context and as a result displaces TLBs. Another reason for spinning on SMP systems is

to avoid going off CPU and spending a long time on a Solaris run queue. In a CMT environment, there is a

much higher likelihood that a strand will be available when the application is ready to run, which leads to

shorter queues.

Testing the spin counts for locks is an iterative process on UltraSPARC T1 processors. The current setting

is a good starting point and is sufficient in most cases. If throughput is low, but the number of instruction

per thread is relatively high, the application could be doing excessive spinning. Also check any application

lock hold and spin statistics. When decreasing the spin count, look for changes in the involuntary context

switch rates displayed by mpstat.

In multithreaded applications, consider making locks adaptive by initializing them with

PTHREAD_MUTEX_PRIVATE (for pthreads) or USYNC_THREADS (for UI threads). In a thread-rich

environment, there is a higher likelihood the holder will be on a CPU. On typical SMP systems, spin

algorithms often use long latency instructions between checks of the mutex. Sometimes, floating-point or

long-integer instructions such as div, mul, or fdiv are used. This reduces coherency traffic caused by

the lock check. However, on UltraSPARC T1 processor-based systems, coherency is not an issue and the

mutex can be checked more frequently. Also, with the number of threads, there is a higher likelihood that

the lock holder will be on CPU, so the lock change will be seen more quickly.

Thundering herds can also occur on UltraSPARC T1 processor-based systems because 32 threads are

ready to run at any given time. When the holder of a hot lock relinquishes control, there might be a number

of other threads spinning, waiting to acquire the lock. Because the lock is held in unified L2 (it was just

freed), the waiters all get to see it at the same time, which can lead to unforeseen deadlock situations that

are often resolved using an unoptimized back-off codepath. If all the waiters are backed off for a similar

amount of time, they can all return to looking for the lock as a herd. This causes periods of reduced

throughput on the system.

It might be necessary to break up the lock or assign random back-off periods to avoid these situations.

Tuning Critical Sections

On UltraSPARC T1 processor-based systems, a thread may take longer to pass through a critical section

than on a single-threaded processor, especially if there are other active threads sharing cycles on the core.

Critical sections are often protected using locks, so the users may be able to detect longer hold times in

the application’s lock statistics. Performance gains may also be achieved by shortening the length of each

critical section. This goal can be achieved in a number of ways:

• By breaking up the structure and creating a number of locks for each of the sections

• By creating per-CPU structures that then scale the associated locks

• By reducing the amount of global data In native multi-threaded applications (with the introduction of

Thread Local Storage (TLS), Solaris threads can have high performing per-thread data)
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

16-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Where possible to enhance threading and synchronization, Java developers are advised to use the

java.util.concurrent package introduced in J2SE 5.0. Many of the data-structures provided by that

package are lock-free and scale well on large systems such as those powered by the UltraSPARC T1

processor. For more information, please reference: http://java.sun.com/j2se/1.5.0/docs/

api/java/util/concurrent/package-summary.html

Another mechanism to enhance the performance of critical sections can be found in the schedctl APIs

(see the schedctl_init(3SCHED) manual page for details). These calls allow a running thread (LWP)

to give a hint to the kernel that preemptions of that LWP should be avoided. Calls to schedctl_start()

and schedctl_stop() are placed around critical sections to indicate the LWP is holding a critical

resource.

Sizing Processes and Threads

A central concept in CMT design is that threads are plentiful but less powerful. This is referred to as a

thread-rich environment. The best way to achieve scalability in this environment is to apply additional

threads to a given task. In a thread-rich environment, an LWP is more likely to be scheduled and running

instead of waiting in the OS run queue.

Less contention to get on CPU significantly reduces the impact of the context switches that occur as a

result of preemption and are a significant performance hit on traditional CPUs. Run queues also tend to be

shorter in a thread-rich environment, and a process spends less time waiting to run than it would on an

SMP system.

In multiprocess environments, increasing the number of application processes might be necessary to

utilize the strands. For example, an Oracle application might need more shadow processes, or SAP might

need more worker processes (WP) in each instance. When multiple LWPs are sharing a core, the

response time of each might be slightly slower on CMT. In online transaction processing (OLTP)

environments, however, response time is usually dominated by network and disk delays.

It may be necessary to resize thread pools in multithreaded applications. Such pools are often sized to the

number of processors, which equates to a hardware strand in CMT. Sizing the pools can be an iterative

process. Use the ps -Lef or prstat command to determine how many Solaris OS threads are required

for a load.

Sometimes, increasing pool sizes might not be sufficient due to bottlenecks encountered in handoffs

between threads. This problem can manifest itself as idle on the system even as the load applied is

increased. Developers need to look at points of serialization in the application.

Tuning Java Garbage Collection

Tuning garbage collection (GC) is one of the most important performance tasks for Java applications. GC

tuning is often necessary to achieve acceptable response times. Tuning garbage collection requires

determining the frequency of garbage collection events, whether Young Generation or Full GCs are used,

and their duration. In addition, it is important to know the amount of garbage generated. To obtain this data,
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

17-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
add the -verbosegc, -XX:+PrintGCTimeStamps, and -XX:+PrintGCDetails flags to the regular

JVM command line.

The preceding example indicates that at 2018 seconds a Young Generation GC cleaned 3.3 GBs and took

.38 seconds to complete. This was quickly followed by a Full GC that took 5.3 seconds to complete.

Because of the thread rich environment, Java applications often see a significant increase in throughput on

UltraSPARC T1 processor-based systems. This increased throughput often generates significantly more

Garbage in the VM, and previous GC tuning may no longer be valid. Sometimes Full GC is generated

where previously only Young Generation existed. Dump the GC details to a log file to confirm. Full GC

should be avoided whenever possible as it has a severe effect on response time.

Full GC is usually an indication that the Java heap is too small. Increase the heap size using the -Xmx and

-Xms options until Full GCs are no longer triggered. It is best to pre-allocate the heap by setting -Xmx and

-Xms to the same value. For example, to set the Java heap to 3.5 GB add the -Xmx3550m, -Xms3550m,

-Xmn2g, and -Xss128k options. The J2SE 1.5.0_06 release also introduced parallelism into the old GCs.

Add the -XX:+UseParallelOldGC option to the standard JVM flags to enable this feature.

For Young Generation the number of parallel GC threads is the number of CPUs presented by the Solaris

OS. On UltraSPARC T1 processor-based systems this equates to the number of threads. It may be

necessary to scale back the number of threads involved in Young Generation GC to achieve response time

constraints. To reduce the number of threads set the XX:ParallelGCThreads=number_of_threads

flag.

A good starting point is to set the GC threads to the number of cores on the system running UltraSPARC

T1 processors. Putting it all together yields the following flags:

Older versions of the JVM machine, such as 1.3, do not have parallel GC. This can be an issue on CMT

processors because GC can stall the entire VM. Parallel GC is available from 1.4.2 onward, so this is a

good starting point for Java applications on UltraSPARC T1 processor-based systems.

Polling, Events, and Asynchronous Operations

Polling is often used in applications to help ensure response time requirements. In this scenario, a thread

(LWP) is dedicated to constantly check for incoming requests, responses, and other events. Polling on a

1953.954: [GC [PSYoungGen: 1413632K->37248K(1776640K)] 2782033K->1440033K(3316736K), 0.3666410 secs]
2018.424: [GC [PSYoungGen: 1477376K->37584K(1760640K)] 2880161K->1473633K(3300736K), 0.3825016 secs]
2018.806: [Full GC [PSYoungGen: 37584K->0K(1760640K)] [ParOldGen: 1436049K->449978K(1540096K)] 147363
3K->449978K(3300736K) [PSPermGen: 4634K->4631K(16384K)], 5.3205801 secs]
2085.554: [GC [PSYoungGen: 1440128K->39968K(1808384K)] 1890106K->489946K(3348480K), 0.2442195 secs]

-Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelOldGC -XX:+UseParallelGC -XX:ParallelGCThreads=8
-XX:+PrintGCDetails -XX:+PrintGCTimestamps
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

18-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
traditional processor is an acceptable option, as there is only a single thread of execution for the scheduler

to manage. On a traditional processor, other LWPs in the dispatch queue will prevent the polling thread

from burning CPU cycles. Polling in a CMT architecture is an undesirable option, as it occupies CPU

cycles that could be used by other threads scheduled on a core. In a thread-rich environment the polling

thread will also run far more often.

A useful alternative to polling is the Event Ports facility available in the Solaris 10 OS. For more

information, see the port_create(3C), port_get(3C), and port_send(3C) manual pages. These

APIs enable a thread to receive notification when an event is complete. A thread will be automatically

scheduled when the event is ready at a port. A single thread can listen on multiple ports or multiple threads

can service a high-throughput port. (See also http://developers.sun.com/solaris/articles/

event_completion.html)

Similarly, kernel asynchronous I/O (kaio) can be used to avoid burning excessive CPU cycles. For more

information, see the aio_read (3RT), aio_write(3RT), aio_waitn(3RT) and

aio_suspend(3RT) manual pages. Lists of I/O can also be submitted with lio_listio(3RT). Rather

than blocking, I/O operations can be reaped asynchronously.

Improving Interrupt Processing

As mentioned previously, a single CMT strand is not as powerful as a traditional SPARC CPU. Usually,

when completing an interrupt, a packet must be delivered from the hardware to the user’s data space

requiring a certain number of instructions. This limits the number of interrupts per second a CMT strand

can deliver. There are an abundance of strands in the chip, however, so a useful technique for improving

the number of interrupts per second is fanout using either hardware or software.

A software technique involves minimal packet processing in the interrupt context of a driver. The driver

simply deposits the packet on one of a number of queues for asynchronous processing. A kernel thread is

then scheduled on any other strand to complete the interrupt. This greatly improves the interrupts per

second that can be completed.

A good example is the GigaSwift Ethernet [Cassini (ce)] driver on SPARC systems. This driver has four

task queues for processing packets. This driver performs very well on UltraSPARC T1 processor-based

systems.

Fanout can also be achieved using hardware techniques, such as message signaled interrupts (MSIs),

which are supported in PCI-Express and optional in PCI 2.2 devices. In the Solaris 10 12/05 OS, there is a

DDI interface for MSI programmers. MSI lets interrupts be delivered to a range of CPUs or hardware

threads in the case of UltraSPARC T1 processors. This greatly increases the throughput of a driver in a

CMT system.

Tuning for General Performance
Improving the general performance of an UltraSPARC T1 processor-based system involves various

system-tuning practices including properly sizing memory, selecting the most suitable JVM machine,
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

19-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
scheduling strands, and the like. This section describes some of the options available for tuning a system

that uses UltraSPARC T1 processors.

Sizing Memory

UltraSPARC T1 processor-based systems ship with up to 32 gigabytes of DDR2 memory. Configurations

of four, eight, and 16 gigabytes are also available. The amount of memory has a large effect on both the

price of the system and the power consumed, which is a great concern in most data centers today. Thus,

correct memory sizing is essential for both price performance and performance per watt.

Today, the majority of applications are 32-bit, which limits their address space to four gigabytes, which, in

turn, limits the amount of memory they consume. Most applications do not require more memory than this,

although the trend is moving toward higher memory space using 64-bit addressing. When moving to an

UltraSPARC T1 processor-based system (or any SMP-based system), memory scaling issues are

sometimes uncovered. These are often not seen when running on a two-way server limited to four or eight

gigabytes of memory.

When sizing the memory on an UltraSPARC T1 processor-based system, consider the following questions:

• How much memory can an application really take advantage of?

• If multiple instances are used to increase scalability, how much memory does each instance consume?

• Can performance be gained from a larger file system cache?

• Can swapping or paging be avoided with more memory?

Memory sizing is often an iterative process. If possible, test with 16 gigabytes or even 32 gigabytes initially,

and use vmstat while running the workload to see if memory can be reduced, as follows.

In the preceding example, the free memory column indicates that 14 gigabytes are free on a 16 gigabyte

system. It is important to have enough memory to avoid paging during high loads, which will seriously

impact performance. Use the -p option as follows to determine which memory is being paged.

The following list outlines the steps involved in sizing memory:

1. Run the application with 32 gigabytes and use vmstat to determine if less memory is needed.
Determine the performance at this memory level.

vmstat 5
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr s0 s1 -- -- in sy cs us sy id
 0 0 0 14890592 14773440 9 76 0 0 0 0 0 0 0 0 0 384 230 226 8 0 92
 0 0 0 15155536 14672920 1 10 8 0 0 0 0 0 0 0 0 276 65 52 0 0 100

vmstat -p 10
memory page executable anonymous filesystem
swap free re mf fr de sr epi epo pf api apo apf fpi fpo fpf
14890616 14773432 9 76 0 0 0 0 0 0 0 0 0 0 0 0
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

20-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
2. Reduce the memory to 16 gigabytes and rerun the test. Determine if there is a performance impact.

3. Again, use vmstat to determine if there is memory available.

4. Reduce the memory to eight gigabytes and repeat the test.

Many applications scale structures and threads based on the number of CPUs in the system, often

determined by the sysconf(3C) call. Because the Solaris OS reports 32 processors for UltraSPARC T1

processor-based systems, these allocations might be too high. Application developers might need to tune

down the allocation of resources as required.

Use pmap(1) with the -x option on the process to determine the amount of resident physical memory

being consumed. Shared mappings, such as shared object libraries, will not need to be added for every

process. Physical address space tends to be dominated by process heap segments.

Because more memory is available on an UltraSPARC T1 processor-based system, consider moving an

application to 64-bit, thus removing the 4 gigabyte restriction. There are already 64-bit versions available

of many applications such as databases and the JVM machine. When considering a move to 64-bit, the

following considerations are important:

• Can the application take advantage of greater than four gigabytes of memory?

• Are 64-bit versions of all third-party libraries available for the application? A single process cannot mix

32-bit and 64-bit libraries.

• There is a performance cost in running a 64-bit application on any platform due to the extra instructions

required to break the 4 gigabyte limit. This cost can be up to 12 percent.

• There will be an effort involved in porting from 32-bit to 64-bit and also testing the 64-bit version.

As a simple rule of thumb, if an application is already hitting the 4 gigabyte memory limit and the potential

gain in performance is greater than a 12 percent hit, then a 64-bit version of the application should be

considered.

Selecting a JVM

A number of optimizations have been added to the Sun JVM for CMT and for UltraSPARC T1 processors

in particular. The first JVM Sun will release with these optimizations will be Java™ 2 Platform, Standard

Edition (J2SE™) 5.0_06 software, which can be downloaded from java.sun.com

The optimizations are also available in the Java™ Developers Kit (JDK™) 6.0 Binary Snapshot Releases

available at:www.java.net/download/jdk6/binaries. Developers can try them here first.

Customers are sometimes reluctant or unable to move to the latest release of the JVM machine. Make

every effort to move to at least version 1.4.2, which has parallel garbage collection and the

AggressiveHeap option. Some ISVs, such as IBM Websphere, require the latest service pack to move to

version 1.4.2.
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

21-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Compiling and Analyzing Applications

UltraSPARC T1 processors are fully SPARC-binary compatible for all Sun-supported architectures

(SPARC V7, V8, and V9). An application does not need to be recompiled or modified in any way to run on

systems that use UltraSPARC T1 processors, and we do not expect ISVs to support an UltraSPARC T1

processor-specific binary. Binaries created by older versions of the Sun™ Studio software compiler will

also work well. The latest version, Sun Studio 11, is available for download from the Sun Web site at

http://www.sun.com/software/products/studio/.

All the current compiler optimizations will also work well on UltraSPARC T1 processor-based systems.

Table 3 provides recommendations for developers who decide to recompile an application for use on

UltraSPARC T1 processor-based systems.

Table 3. Recomplicaiton Recommendations

Note – If building a shared object, use -KPIC or -Kpic.

A variety of tools are available to help gain insight into performance-related issues on UltraSPARC T1

systems. The Sun Studio Performance Analyzer can help assess code performance, identify potential

performance problems, and locate the section of the code where problems are occurring. The

Performance Analyzer can be used from the command line or from a graphical user interface. The

Analyzer consists of two tools:

• The Collector collects performance data by profiling and tracing function calls. The data can include call

stacks, micro-state accounting information, thread-synchronization delay data, MPI function call data,

memory allocation data, and summary information for the operating system and the process. The

Collector can collect all kinds of data for C, C++, and FORTRAN programs as well as profiling

applications written in Java.

• The Performance Analyzer itself displays the data recorded by the Collector. The Analyzer processes

the data from the Collector and displays various metrics of performance at the level of the program, the

Binary Type Compiler Flags

32-bit Sun Studio 7, 8, 9, and 10 software

-xO4

or

-fast -xO4 -xtarget=generic

32-bit Sun Studio 10, Update 1 software

-xO4 -xtarget=ultraT1

or

-fast -xO4 -xtarget=ultraT1

64-bit Sun Studio 7, 8, 9, and 10 software

-xO4 -xtarget=generic64

or

-fast -xO4 -xtarget=generic64

64-bit Sun Studio 10, Update 1 software

-xO4 -xtarget=ultraT1 -xarch=generic64

or

-fast -xO4 -xtarget=ultraT1 -xarch=generic64
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

22-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
functions, the source lines, and the instructions. These metrics are classed into four groups: timing

metrics, synchronization delay metrics, memory allocation metrics, and MPI tracing metrics. The

Analyzer also displays the raw data in a graphical format as a function of time. Mapfiles are another

option for achieving optimization. See the Sun Studio Performance Analyzer documentation for more

details.

In general, for all SPARC platforms using profile-feedback with -xprofile=collect and then

-xprofile=use is recommended. This can improve performance up to 15 percent on most applications.

Profile feedback is described in the technical white paper Delivering Performance on Sun: Optimizing

Applications for Solaris located at http://developers.sun.com/solaris/articles/sol-perf/

sol-app-perf.pdf. In addition the Sun Studio 10 C User's Guide from docs.sun.com also contains

information about this topic.

UltraSPARC T1 processors have a relatively small instruction cache per core, and optimizations that

compact the executable are worth investigating. Using postoptimization through the -xlinkopt option is

the most effective mechanism to achieve this if feedback optimization is already being used. Information

about this topic can be found at http://docs.sun.com/source/819-0494/cc_ops.app.html.

Scheduling LWPs

The Solaris OS handles the normal scheduling of LWPs on hardware strands. It also attempts to maintain

the affinity of LWPs for their strands. If there is insufficient work, a strand enters the idle loop in the kernel,

at which point the hardware strand is parked so its slot can be used by the other strands in the core. When

work becomes available, the strand is automatically unparked.

A side effect of Solaris OS thread parking is that it blurs the concept of idle on a hardware strand. In a

traditional SPARC core, the CPU can be in one of three states (user, system, or idle) as reported by

mpstat or vmstat. A hardware strand in a UltraSPARC T1 processor-based system can be user, system,

or parked. If a strand is parked, its cycles are automatically distributed to the other strands in the core.

Therefore, the shared resources of a core are not truly idle unless all the strands are idle. Idle, therefore,

has meaning only at a core level, although mpstat and vmstat still reports user, system, or idle for each

strand. Having some idle strands in a core is inefficient, however, because it reduces the ability to absorb a

stall. A CMT processor's strength is in running many threads in parallel.

Partitioning Applications

With the abundance of threads, developers can also consider dedicating strands or even cores to tasks

using psrset, pbind, or the equivalent APIs. Keep in mind that four strands share the facilities of a core.

From a performance perspective, sub-core processor sets might not be effective because strands in

multiple sets share the core resources, caches, pipeline, TLBs, and the like.
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

23-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Strands on an eight-core UltraSPARC T1 processor-based system are numbered zero through 31. Strands

zero, one, two, and three are in core zero; strands four, five, six, seven are in core one, and so on. To

create a processor set on the first core, use the following command:

To bind a process into a processor set, use the following command:

Alternatively, bind the shell to a processor set and then launch the application. All subsequent processes

will also reside in the processor set.

In the Solaris 10 OS, pbind and psrset have been extended to enable the binding of individual LWPs

within a process. For example, the following command places LWP 1 from process 2870 into processor set

1:

Note – When binding individual LWPs, be careful to ensure that the correct one is chosen. Use prstat or
ps to determine which LWPs are accumulating CPU cycles.

Managing Real-Time Processes in a CMT Environment

Strand sharing cores has implications for real-time (RT) processing. If a process is running in the RT

scheduler class on a traditional SPARC system, the Solaris OS gives it exclusive access to the processor

whenever it is ready to run. In UltraSPARC T1 processor-based systems, a process gets exclusive access

only to a strand. The other strands of the core continue to get access to the pipeline unless they are stalled

or disabled. Dedicating a single core to RT processes might be necessary to achieve required response

times.

Use the following alternative methods:

• Place the RT process in its own single-core processor set. The Solaris OS parks all the idle threads in

the set, leaving the RT exclusive access.

• pbind the RT process to a hardware strand, and use psradm to turn off the other strands in that core.

psrset -c 0 1 2 3
created processor set 1
processor 0: was not assigned, now 1
processor 1: was not assigned, now 1
processor 2: was not assigned, now 1
processor 3: was not assigned, now 1

psrset -b 1 2870
process id 2870: was not bound, now 1

psrset -b 1 2870/1
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

24-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Consolidating Applications

The eight cores and 32 threads of UltraSPARC T1 processor-based systems make it a good choice for

application consolidation. Consolidation falls into two broad categories, horizontal and vertical. Horizontal

consolidation replaces several small servers running applications with a single UltraSPARC T1 processor-

based system. All of the applications might be the same, such as J2EE application servers, or they might

be a mixture of different ones. Some customers have many applications running on older UltraSPARC II

servers, which can easily migrate in this manner. The potential savings in power, cooling, space, and

maintenance costs are significant. One disadvantage is that a system outage affects more applications, a

problem that can be mitigated by using hot standby systems or redundancy in the application.

Vertical scaling is the collapsing of multiple tiers of the same application onto one UltraSPARC T1

processor-based system. Examples include running SAP and its back-end database (for example, an

Oracle database) on the same system. This has the advantage of avoiding network delays and bandwidth

limitations between the various tiers.

There are three main ways to approach application consolidation:

• Dedicate one or more cores per application using either processor sets or the resource pools

framework. This has the advantage of isolating performance interference from other applications. It can

also provide better Quality of Service (QoS) for users. The disadvantage of this approach is that some

strands and cores might not be fully utilized while others are resource constrained. Resource pools

provide an advantage as they are persistent across operating system reboots.

• Let the applications float free across the cores. The advantage of this approach is that strands and cores

will be more fully utilized. Potentially more applications can be accommodated on a single UltraSPARC

T1 processor. The disadvantage of this approach is that CPU-hungry applications might dominate,

starving out other processes. Such processes will sometimes perform better at the expense of others.

QOS might, therefore, be harder to achieve.

• The fair share scheduling (FSS) class can be used in the unbound case, providing a means of allocating

shares of available CPU to meet required service levels.

A good approach is to test consolidation one application at a time. Run the initial application on the system

and determine how many cores it requires. It might be necessary to add some headroom for high load

periods. When the number of cores is determined, place the application in its own processor set or pool.

Repeat the process for subsequent applications, giving each a processor set. If the number of applications

has been determined but more throughput is required, look at removing the processor sets to let the

applications run free.

One issue with application consolidation is the unified L2 cache which is shared by all applications even

when partitioned using processor sets or pools. The L2 cache is a 12-way associative, however, which

dramatically reduces the conflicts. Strand-switching technology also hides the stall from extra conflicts. We
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

25-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
have tested a number of application consolidations, and the performance scaled well. To monitor the L2

cache, use the cpustat counters L2_imiss and L2_dmiss_ld as shown in the following example:

As shown below, the output is on a per-strand basis. If processor sets are used, the application with the

most misses can be determined. It is useful to check the counters as each new application is added.

For applications that scale to only a small number of CPUs on current SMP hardware, consider using

multiple instances of the application on an UltraSPARC T1 processor-based system. This might put extra

load on the L2 cache, so reassess the performance as each instance is added using the L2 performance

counters.

Using Solaris Containers to Isolate Workloads

Processor sets, resource pools, and binding are useful when consolidating workloads on an UltraSPARC

T1 processor-based system. In some cases they cannot be used.

• For security reasons, it might not be possible for applications to share the same system.

• Each application might need to bind to the same network port.

Solaris Containers—Sun’s operating system virtualization technique—consist of several technologies that

work together to foster improved resource management and virtualize the environment. With Solaris

Containers, organizations can determine how to allocate resources among applications and services, and

ensure they are isolated from one another. Isolating applications is make possible by a Solaris Container

technology called Solaris Zones that provides separate environments on a given machine that isolate

applications from one another. Each application receives a dedicated namespace in which to run, and

cannot see, monitor, or affect applications running in another zone.

Solaris Zones have the ability to present the same set of I/O interfaces to each instance of the application.

Hundreds of zones can be created on a system with only a small performance impact per zone. Using

resource pools, it is possible to assign a number of processors to a zone. For more information, visit

http://www.sun.com/bigadmin/content/zones/.

Two of the main uses of zones are group isolation and performance scaling. In group isolation, zones are

used to isolate groups of users from each other. UltraSPARC T1 processor-based systems can easily

support many zones in this scenario. Performance is not a primary concern in this case, rather the focus is

on the flexibility of presenting multiple virtual hosts to users. It is probably best in this case not to bind

/usr/sbin/cpustat -c pic0=L2_imiss,sys,pic1=Instr_cnt,sys -c
pic0=L2_dmiss_ld,sys,pic1=Instr_cnt,sys 1 300

Time cpu event pic0 pic1
1.002 0 tick 475 1683777 # pic0=L2_imiss,sys,pic1=Instr_cnt,sys
1.012 1 tick 42 109825 # pic0=L2_imiss,sys,pic1=Instr_cnt,sys
2.002 0 tick 1208 848362 # pic0=L2_dmiss,sys,pic1=Instr_cnt,sys
2.012 1 tick 2812 374964 # pic0=L2_dmiss,sys,pic1=Instr_cnt,sys
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

26-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
processors to zones. The UltraSPARC T1 processor’s 32 hardware threads are used to schedule all

zones.

In performance scaling, zones are used to run multiple instances of an application to increase throughput.

Resource pools are used to dedicate strands to a zone. For performance scaling, a single core is probably

the finest granularity that is practical in a zone. Often, the best test is to add cores to a zone one at a time

until the application no longer scales. Then create multiple zones of this size. Because each application is

different, this sizing exercise is necessary.

The Solaris OS has a global zone by default. Other zones are created from the global zone. Configuration

and booting is easy, and the user can then log in and install the application, as shown in the following

example:

mkdir /zone
mkdir /zone/1
zonecfg -z zone1
zone1: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:zone1> create
zonecfg:zone1> set zonepath=/zone/1
zonecfg:zone1> set autoboot=true
zonecfg:zone1> add net
zonecfg:zone1:net> set address=10.1.6.210
zonecfg:zone1:net> set physical=ipge0
zonecfg:zone1:net> end
zonecfg:zone1> info
zonepath: /zone/1
autoboot: true
pool:
inherit-pkg-dir:
 dir: /lib
inherit-pkg-dir:
 dir: /platform
inherit-pkg-dir:
 dir: /sbin
inherit-pkg-dir:
 dir: /usr
net:
 address: 10.1.6.210
 physical: ipge0
zonecfg:zone1> verify
zonecfg:zone1> commit
zoneadm list -vc
 ID NAME STATUS PATH
 0 global running /
zone1 configured /zone/1
zoneadm -z zone1 install
zoneadm -z zone1 boot
#
zoneadm list -vc
 ID NAME STATUS PATH
 0 global running /
 1 zone1 running /zone/1
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

27-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
If the network traffic to the zone is expected to be high, consider assigning a different network device to

each zone. The preceding example assigned ipge0 to zone1. It is possible to assign ipge1 to zone2,

and so forth.

To bind hardware threads to zones, use the pool commands as follows:

When logged in to the zone itself, mpstat and vmstat now see only the CPUs that have been assigned

to them. ps(1) and prstat(1) only show the processes running in the zone you are logged into. Use the

prstat(1) command with the '-Z' flag from the global zone to monitor utilization across all zones.

These simple tools enable the secure consolidation of a number of applications onto a single UltraSPARC

T1 processor.

Tuning Interrupt Distributions

An important part of tuning a CMT system is interrupt distribution. The issues are similar to those on large

SMP systems. Most hardware external devices, such as NICs and storage devices, generate interrupts

that are delivered to the kernel. During a boot of the Solaris OS, each interrupt source is assigned a CPU

to process its interrupts. The CPU is in effect bound to an interrupt source. With UltraSPARC T1

processor-based systems, the Solaris OS binds interrupts to a hardware strand.

To determine the source of interrupts, use /usr/sbin/intrstat. See the intrstat(1M) man page for

more information.

pooladm -e
poolcfg -c discover
poolcfg -c "create pool <poolname>"
poolcfg -c info
poolcfg -c "create pset <pset_name> (uint pset.min = $ncpus; uint
pset.max = $ncpus)"
poolcfg -c info
poolcfg -c "associate pool <poolname> (pset <pset_name>)"
poolcfg -c info
pooladm -c
poolbind -p <pool_name> -i zoneid <zone_name>

rsh zone1
psrinfo
0 no-intr since 02/21/2000 22:31:02
1 no-intr since 02/21/2000 22:31:02
2 no-intr since 02/21/2000 22:31:02
3 no-intr since 02/21/2000 22:31:02

device | cpu0 %tim cpu1 %tim cpu2 %tim cpu3 %tim
-------+--
ipge#0 | 0 0.0 0 0.0 0 0.0 0 0.0
ipge#3 | 0 0.0 0 0.0 0 0.0 0 0.0
mpt#0 | 0 0.0 0 0.0 0 0.0 0 0.0
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

28-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
The previous example shows how many interrupts each CPU is taking for a device. This can be correlated

with mpstat.

For CPUs taking interrupts, there will be a higher count in the ithr column of the output. Keep the

following issues in mind when taking interrupts on a CMT processor:

• A single CMT thread cannot sustain the same peak interrupt throughput as a regular core.

• Interrupts are very disruptive to other LWPs running on other strands of a core. They run in kernel

context and tend to trash both caches and TLBs.

Optimizing the performance of an interrupt source is dependent on the software stack of the associated

hardware. In some cases, such as the stack for external Fibre Channel Arbitrated Loop (FCAL) storage,

performance often can be gained by isolating all the interrupt sources on the same core. In other cases,

such as a Gigabit Ethernet stack, performance often can be gained by spreading the interrupts across a

number of different cores.

Moving interrupt sources is achieved by using the psradm command. First, check the state of all the

hardware threads in the system using psrinfo, as follows:

If a strand can take interrupts, it displays on-line in the second column. To disable interrupts on a CPU,

use the psradm command as follows:

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 747 776 140 793 31 115 88 8 2378 26 4 0 70
.....
14 0 0 1166 1214 1005 446 11 32 46 8 1174 14 2 0 84
15 0 0 653 843 687 332 10 29 41 4 989 12 2 0 87
16 0 0 658 861 700 334 9 23 37 3 922 10 2 0 88
17 0 0 641 859 707 309 6 17 42 5 945 11 2 0 88

psrinfo
0 on-line since 04/06/2005 20:39:36
1 on-line since 04/06/2005 20:39:37
2 on-line since 04/06/2005 20:39:37
.....
27 on-line since 04/06/2005 20:39:37
28 on-line since 04/06/2005 20:39:37
29 on-line since 04/06/2005 20:39:37
30 on-line since 04/06/2005 20:39:37
31 on-line since 04/06/2005 20:39:37

psradm -i <cpuid>
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

29-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
After using psradm as described, the CPU can still run both userland and kernel LWPs, it is just not a

candidate for interrupt processing. You’ll also notice that when you now run psrinfo, its state changes to

no-intr, as follows:

Unfortunately, when psradm -i is applied to CPUs, the Solaris OS redistributes the interrupts across the

remaining hardware strands. On a system that uses UltraSPARC T1 processors, the best approach is to

dedicate cores to interrupts if required and to disable the interrupts on all other cores with psradm. If using

zones, consider moving the interrupts to the global zone so they do not interfere with local zones.

To spread interrupts across cores, chose a single strand per core and disable interrupts on the other three

strands. For example, using psradm -i 0,1,2 causes interrupts to only be taken on strand three. Repeat

this command for the other cores to ensure interrupts are spread among them.

Each time the psradm(1) command is used to change the interrupt state, be sure to use the intrstat(1)

and mpstat(1) commands to determine which strands are currently taking interrupts.

Tuning Interprocess Communications

Because of the unified L2 cache between cores, shared memory and other IPC mechanisms such as

message queues will be faster on UltraSPARC T1 processor-based systems. This can have implications

for timing in applications. Codes that are tuned for the latency of responses on traditional SMP machines

might exhibit different behavior if they are moved to a CMT environment. Messages might be delivered

quicker and, because of the abundance of threads, the message receiver might already be on CPU.

Tuning might require increasing the number of receive threads.

Tuning a TLB

A translation-lookaside buffer (TLB) is a hardware cache that is used to translate a process's virtual

address to a system’s physical memory address. As mentioned previously, UltraSPARC T1 processor-

based systems have a 64-entry iTLB and a 64-entry dTLB per core. These TLBs are fully associative, with

all 64 entries looked up in parallel.

The unit of translation is page size. Each entry in an UltraSPARC T1 TLB can support four page sizes—

eight kilobytes, 64 kilobytes, four megabytes, and 256 megabytes. When memory is accessed and a

mapping is not in the TLB, this is termed a TLB miss. There are software handlers in the OS to trap a TLB

miss and load the appropriate mapping into one of the TLB entries.

The size of the pages in the TLB determine the “span” of memory it can translate. The bigger the page

size, the better the span. The default page size for the Solaris OS is 8 kilobytes. Thus, with a 64-entry TLB,

the span is only 512 kilobytes. For large data sets, this is often too small, and a large number of TLB

misses can result.

psrinfo
0 no-intr since 02/25/2000 23:33:45
1 no-intr since 02/25/2000 23:33:45
2 no-intr since 02/25/2000 23:33:45
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

30-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Excessive TLB misses are bad for performance. To determine the number of misses per second, use the

cpustat or cputrack command as follows:

Because each TLB miss requires a number of instructions to complete, reducing the misses generally

helps performance.

To determine the page size assigned to various segments of a process use pmap -xs as follows. (Note

that the output is abridged.)

In the preceding example, the executable text of the process saposcol is on 64-kilobyte pages, as is the

process heap. There is a shared (ISM) segment on 4-megabyte pages. The stack for the process is on

eight kilobytes.

The performance impact of TLB misses can be assessed using the trapstat(1M) command. The

trapstat -T command displays the estimated CPU performance impact per hardware thread. It

indicates the time used by user threads and the kernel, and by pagesize. If trapstat indicates more than

five percent of time is spent in TLB handling, use the pmap command to help determine the cause. Sample

output from the trapstat command follows. Because the output is extensive on a 32-thread system, the

following shows the first thread output, last thread output, and totals.

/usr/sbin/cpustat -c pic0=DTLB_miss,pic1=Instr_cnt,sys -c pic0=ITLB_miss,pic1=Instr_cnt,sys 1 10
 time cpu event pic0 pic1
 5.021 0 tick 60620 231646080 # pic0=DTLB_miss,sys,pic1=Instr_cnt,sys
 5.031 1 tick 40386 235915027 # pic0=DTLB_miss,sys,pic1=Instr_cnt,sys
 5.061 0 tick 36884 236575873 # pic0=ITLB_miss,sys,pic1=Instr_cnt,sys
 5.061 1 tick 45842 230867805 # pic0=ITLB_miss,sys,pic1=Instr_cnt,sys

pmap -xs 14148

14148: /usr/sap/SSO/SYS/exe/run/saposcol
Address Kbytes RSS Anon Locked Pgsz Mode Mapped File
0000000100000000 320 320 - - 64K r-x-- saposcol
0000000100050000 128 - - - - r-x--
00000001001A6000 8 8 8 - 8K rwx-- [anon]
00000001001B0000 576 - - - - rwx-- saposcol
0000000100240000 576 576 576 - 64K rwx-- [heap]
0000010000000000 4096 4096 - 4096 4M rwxsR [ism shmid=0x2a00003f]

FFFFFFFF7DD00000 64 64 - - 64K r-x—libc.so.1

FFFFFFFF7FFFC000 16 16 16 - 8K rw--- [stack]
---------------- ---------- ---------- ---------- ----------
 total Kb 9104 7992 1072 4096
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

31-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Reducing TLB Misses

The operating system automatically attempts to reduce TLB misses using the Multiple Page Size Support

(MPSS) feature. In the Solaris 10 12/05 operating system, text, heap, anon and stack are all

automatically placed on large pages. The operating system applies a set of heuristics for large page

allocation. Use the pmap command to ensure a process was allocated correctly. Additional information on

the MPSS features of the Solaris 10 OS can be found in the mpss.so.1(1) man page. For many years,

the Solaris OS has had a performance optimization called Intimate Shared Memory (ISM), which allocates

on large pages where possible and locks down memory. The default page size for ISM on UltraSPARC T1

processor-based systems is 256-megabyte pages.

Placing Java Heap on Large Pages

Another important optimization is using large pages for the Java heap, which is put on anon segments.

From JVM 1.4.2 software onward, the -XX:+AggressiveHeap option has been available. One of the

effects of this option is to put the Java heap on 4-megabyte pages. To achieve maximum performance, it is

best to preallocate the heap using the options -Xmx<size>m and -Xms<size>m, as follows:

cpu m size| itlb-miss %tim itsb-miss %tim | dtlb-miss %tim dtsb-miss %tim |%tim
----------+-------------------------------+-------------------------------+----
 0 u 8k| 155071 7.0 1214 0.3 | 212672 7.9 1119 0.3 |15.4
 0 u 64k| 0 0.0 0 0.0 | 69757 2.6 90 0.0 | 2.7
 0 u 4m| 0 0.0 0 0.0 | 1628 0.1 0 0.0 | 0.1
 0 u 256m| 0 0.0 0 0.0 | 94271 4.3 1 0.0 | 4.3
- - - - - + - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - + - -
 0 k 8k| 11599 0.5 0 0.0 | 95723 3.6 18 0.0 | 4.0
 0 k 64k| 0 0.0 0 0.0 | 185 0.0 0 0.0 | 0.0
 0 k 4m| 0 0.0 0 0.0 | 1309 0.1 0 0.0 | 0.1
 0 k 256m| 0 0.0 0 0.0 | 6762 0.3 4 0.0 | 0.3
----------+-------------------------------+-------------------------------+----
...
----------+-------------------------------+-------------------------------+----
 31 u 8k| 137533 6.1 1015 0.3 | 179215 6.6 944 0.2 |13.3
 31 u 64k| 0 0.0 0 0.0 | 59628 2.3 73 0.0 | 2.3
 31 u 4m| 0 0.0 0 0.0 | 1768 0.1 0 0.0 | 0.1
 31 u 256m| 0 0.0 0 0.0 | 81627 3.7 1 0.0 | 3.7
- - - - - + - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - + - -
 31 k 8k| 24957 1.0 0 0.0 | 147846 5.4 10 0.0 | 6.4
 31 k 64k| 0 0.0 0 0.0 | 3123 0.1 0 0.0 | 0.1
 31 k 4m| 0 0.0 0 0.0 | 1451 0.1 0 0.0 | 0.1
 31 k 256m| 0 0.0 0 0.0 | 7753 0.4 11 0.0 | 0.4
==========+===============================+===============================+====
 ttl | 5542165 7.6 40223 0.3 | 15551587 19.0 40938 0.3 |27.3

$ JAVA_HOME/bin/java -server -Xbatch -Xms3800m -Xmx3800m -XX:+AggressiveHeap
-Xss128k spec.jbb.JBBmain -propfile SPECjbb.props
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

32-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
With the preceding options the JVM preallocates 3.8 gigabytes on 4-megabyte pages. As always, use

pmap -xs to ensure that pages were allocated. On UltraSPARC T1 processor-based systems, placing the

Java heap on large pages generally gives a large performance increase.

It is important to remember that MPSS is only advisory to the OS. If there are insufficient pages of the

requested size in the OS, the heap or stack is placed on the next best fit. It is a good idea to always check

the process using pmap -xs.

Also note that extra page sizes, 512 kilobytes and 32 megabytes, are supported on other SPARC

architectures. If the user specifies one of these page sizes on a UltraSPARC T1 processor-based system,

the nearest page size below it is selected (for example, 64 kilobytes for 512 kilobytes, and 4 megabytes for

32 megabytes). Applications might already be using MPSS with these options when they are migrated to a

UltraSPARC T1 processor-based system, so it is always a good idea to check.

Accessing the Modular Arithmetic Unit and Encryption Framework
UltraSPARC T1 processors have one modular arithmetic unit (MAU) per core that supports modular

multiplication and exponentiation to help accelerate SSL processing. Applications that need to do BigNum

computations can access the MAUs through the Solaris Encryption Framework (Solaris EF). This is very

common for web servers and application servers that employ Secure Sockets Layer (SSL) for secure

transmissions.

If the SSL component of these servers complies with the Public Key Cryptography Standards (PKCS) #11,

they can be configured to use the EF for RSA key generation operation. The EF will use the MAU to

automatically offload RSA operations. RSA operations are very expensive, and tests have shown that the

MAU provides a significant performance boost.

The hardware thread that initiated the MAU stalls for the duration of the operation, but the other three

threads on the core can progress normally. The eight MAUs (one per core) result in very high throughput

on UltraSPARC T1 processor-based systems for RSA operations.

The MAU is presented to the Solaris OS as a device called ncp—the device through which the Solaris EF

processes all operations. There are two kstat counters that can be used to monitor the performance of

the Solaris EF and ncp. The following example shows the use of the kstat -n option.
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

33-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Using kstat -n ncp0 | grep rsa shows the number of RSA jobs completed. Using kstat -n ncp0 |

grep submit shows the number of RSA jobs submitted to each MAU.

Minimizing Floating-Point Operations and VIS Instructions
UltraSPARC T1 processors have a single floating-point unit (FPU) per chip. The FPU can accommodate a

single floating-point (FP) operation at a time with a 40-cycle penalty. Other strands waiting for the FPU are

stalled. Some of the more common FP instructions are processed in the core itself to reduce this

contention.

In UltraSPARC T1 processor-based systems, excessive FP operations in an application degrade

performance. We have done extensive studies and found little or no floating-point contention in most

commercial applications. Testing on UltraSPARC T1 hardware has proven this to be correct.

kstat -n ncp0
module: ncp instance: 0
name: ncp0 class: misc
 crtime 196.2432695
 dsasign 26
 dsaverify 10
 mau0qfull 0
 mau0qupdate_failure 0
 mau0submit 42
 mau1qfull 0
 mau1qupdate_failure 0
 mau1submit 102
 mau2qfull 0
 mau2qupdate_failure 0
 mau2submit 74
 mau3qfull 0
 mau3qupdate_failure 0
 mau3submit 88
 mau4qfull 0
 mau4qupdate_failure 0
 mau4submit 93
 mau5qfull 0
 mau5qupdate_failure 0
 mau5submit 91
 mau6qfull 0
 mau6qupdate_failure
 mau6submit 84
 mau7qfull 0
 mau7qupdate_failure 0
 mau7submit 105
 rsaprivate 211
 rsapublic 211
 snaptime 536150.521888115
 status online
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

34-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
To determine the number of floating-point operations, use the cpustat command, as follows:

As a rough guideline, performance degrades if the number of floating-point instructions exceeds 1 percent

of total instructions. In the preceding example, divide the first column by the second to get the percentage

of FP instructions.

UltraSPARC T1 processors handle floating-point operations differently than previous SPARC processors.

FP SPARC instructions FST, FLD, FMOV, FABS, FNEG, Block Load, Block Store, and SIAM have been

moved from the FPU to the core. Many of the simple VIS instructions that are not emulated are also moved

to the core. The effect is that USIII or USIV floating-point performance counters might give much higher

numbers for an application than would be seen for UltraSPARC T1 processors.

If a thread is executing an FP operation and a second thread in the same core also attempts to execute an

FP operation, the second thread stalls. Note that the stall also affects in-core FP operations for strands on

the same core, but not in-core FP operation on other cores. Therefore, if an application has FP operations

from multiple threads, it is best to place them on different cores using psrsets or pbind.

Emulating Floating-Point and VIS Instructions

Finally there are a number of floating-point and VIS instructions that are emulated in software. These are

not common in commercial applications and require a lot of silicon real estate. The following is a list of

these for UltraSPARC T1 processors:

Table 4. Emulated Instructions in UltraSPARC T1 Processors

/usr/sbin/cpustat -c pic0=FP_instr_cnt,pic1=Instr_cnt,sys 1 10
 time cpu event pic0 pic1
 5.021 0 tick 60620 231646080 # pic0=FP_instr_cnt,sys,pic1=Instr_cnt,sys
 5.031 1 tick 40386 235915027 # pic0=FP_instr_cnt,sys,pic1=Instr_cnt,sys
 5.061 0 tick 36884 236575873 # pic0=FP_instr_cnt,sys,pic1=Instr_cnt,sys
 5.061 1 tick 45842 230867805 # pic0=FP_instr_cnt,sys,pic1=Instr_cnt,sys

ALLCLEAN FCMPq FEXPAND FMUL8x16AL FSQRT(s,d,q) INVALW PST

ARRAY{8,16,32} FCMPEq FMOVq FMUL8x16AU F(s,d,q)TO(q) LDDFA SHUTDOWN

BMASK FCMPEQ{16,32} FMOVqcc FMULD8SUx16 FpTOi LDQF STDFA

BSHUFFLE FCMPGT{16,32} FMOVqr FMULD8ULx16 FqTOx LDQFA STQF

BST_COMMIT FCMPLE{16,32} FMULq FNEGq FSUBq NORMALW STQFA

EDGE(8,16,32}{LN} FCMPNE{16,32} FMUL8SUx16 FPACKFIX FxTOq OTHERW

FABSq FDIVq FMUL8ULx16 FPACK{16,32} IMPDEP1 PDIST

FADDq FdMULq FMUL8x16 FPMERGE IMPDEP2 POPC
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

35-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
The emulation is done in the kernel and a number of kstat options are available to determine if it is being

called. Use the command kstat | grep fpu_sim to determine FPU emulations and use kstat | grep

vis_sim for VIS emulation, as shown in the following example:

If the kstat results indicate there are calls to emulation, use the following dtrace D script to find the

caller for FPU emulation:

The output from a Java workload appears below.

Use the following dtrace D script to find the caller for VIS emulation:

kstat | grep fpu_sim
 fpu_sim_fabsd 0
 fpu_sim_fabsq 0
 fpu_sim_fabss 0
 fpu_sim_faddd 0
 fpu_sim_faddq 0
 fpu_sim_fadds 0
 fpu_sim_fcmpd 0
 fpu_sim_fcmped 0
..........

!/usr/sbin/dtrace -s
fpuinfo:::fpu_*
{
 printf ("pid = %d\n", pid) ;
 ustack (20) ;
}

0 535 _fp_fpu_simulator:fpu_sim_fsqrtd pid = 13233
 libm.so.2`sqrt+0x4c
 libm.so.2`__1cKPSScavengeTinvoke_at_safepoint6FIiri_v_+0xb58
 libm.so.2`__1cUParallelScavengeHeapUcollect_at_safepoint6Mn0AOCollectionType_Iri
v+0x44
 libm.so.2`__1cMVM_OperationIevaluate6M_v_+0x9c

 libm.so.2`__1cIVMThreadSevaluate_operation6MpnMVM_Operation__v_+0x94
 libm.so.2`__1cIVMThreadEloop6M_v_+0x320
 libm.so.2`__1cIVMThreadDrun6M_v_+0x78
 libm.so.2`_start+0x20
 libc.so.1`_lwp_start

!/usr/sbin/dtrace -s

:::vis_fmul:entry
{
printf ("pid = %d\n", pid) ;
ustack (20) ;
}

Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

36-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Summary
Chip multi-threading processor technology is key to the approach of maximizing overall workload

throughput rather than the speed of a single thread of execution. CMT technology, like that available in the

UltraSPARC T1 processor, provides a new thread-rich environment that drives application throughput and

processor resource utilization while effectively masking memory access latencies. This new processor

design provides multiple physical-instruction execution pipelines and several active thread contexts per

pipeline. Akin to symmetric multiprocessing on a chip, UltraSPARC T1 processors are designed so that

applications that currently scale well on SMP machines are likely to scale well in UltraSPARC T1

processor-based environments. Simple modifications, including those discussed in this article, often result

in even greater scalability.

About the Author
Denis Sheahan is a Senior Staff Engineer in the Sun Microsystems UltraSPARC T1 Architecture Group.

During his 12 years at Sun, Denis has focused on application software and Solaris OS performance, with

an emphasis on database, application server, and Java technology products. He is currently working on

UltraSPARC T1 performance for current and future products.

Denis holds a B.Sc degree in Computer Science from Trinity College Dublin, Ireland. He received the Sun

Chairman’s Award for innovation in 2003.

References
Delivering Performance on Sun: Optimizing Applications for Solaris. To access this paper online, go to

http://developers.sun.com/solaris/articles/sol-perf/sol-app-perf.pdf

The Event Completion Framework for the Solaris Operating System

http://developers.sun.com/solaris/articles/event_completion.html

Java Utility Classes

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/package-

summary.html

Solaris 10 DTrace VM Agents

https://solaris10-dtrace-vm-agents.dev.java.net/

Solaris Dynamic Tracing Guide

http://www.sun.com/bigadmin/content/dtrace/

Solaris Zones

http://www.sun.com/bigadmin/content/zones/

Sun Studio 10 C User’s Guide. 819-0494. To access this manual online, go to

http://docs.sun.com/source/819-0494/cc_ops.app.html

Supporting Multiple Page Sizes in the Solaris Operating System

http://www.sun.com/blueprints/browsesubject.html#performance
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

37-Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems Sun Microsystems, Inc.
Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If you live in the

United States, Canada, Europe, or Japan, you can purchase documentation sets or individual manuals

through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation online. You can browse

the docs.sun.com archive or search for a specific book title or subject. The URL is

http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:

http://www.sun.com/blueprints/online.html
Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading Systems — December 2005

http://docs.sun.com
http://www.sun.com/blueprints/online.html

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

	UltraSPARC T1 Processor Physical Characteristics
	Performance Characteristics
	Single Strand Performance
	Threads Running Together on a Core
	Memory Latency
	Transaction-Lookaside Buffers

	Classes of Commercial Applications
	Assessing System and Application Performance
	Assessing Overall Performance
	Assessing Application Parallelism on a Traditional System
	Assessing CMT System Throughput

	Analyzing Performance With Solaris Dynamic Tracing Software
	Scaling Applications With CMT
	Scaling Locks
	Observing Hot Application Locks
	Observing Hot Solaris Userland Locks
	Observing Hot Java Locks
	Tuning Locks
	Tuning Critical Sections
	Sizing Processes and Threads
	Tuning Java Garbage Collection
	Polling, Events, and Asynchronous Operations
	Improving Interrupt Processing

	Tuning for General Performance
	Sizing Memory
	Selecting a JVM
	Compiling and Analyzing Applications
	Scheduling LWPs
	Partitioning Applications
	Managing Real-Time Processes in a CMT Environment
	Consolidating Applications
	Using Solaris Containers to Isolate Workloads
	Tuning Interrupt Distributions
	Tuning Interprocess Communications
	Tuning a TLB
	Reducing TLB Misses
	Placing Java Heap on Large Pages

	Accessing the Modular Arithmetic Unit and Encryption Framework
	Minimizing Floating-Point Operations and VIS Instructions
	Emulating Floating-Point and VIS Instructions

	Summary
	About the Author
	References
	Ordering Sun Documents
	Accessing Sun Documentation Online

