

CRYPTOGRAPHIC SOLUTIONS FOR
FINANCIAL SERVICES

Using the Sun™ Crypto Accelerator 6000 Card

Serge Nadon and Joel Weise
Sun Microsystems

Sun BluePrints™ Online — February 2008

Part No 820-4019-10
Revision 1.0, 1/31/08
Edition: February 2008

Sun Microsystems, Inc.

Table of Contents

Chapter 1. Introduction

. .1

System Configuration . 1

Chapter 2. Design Principles

 .3

Key Hierarchy . 4

PIN Processing . 4

Key Management . 6

Card Verification . 7

Chapter 3. Assumptions and Conventions

. .9

Conventions and Notations. 9

Chapter 4. Initializing the Sun Crypto Accelerator 6000 Card

. 11

Initializing the Keystore . 11

Initializing the Board and Keystore . 12

Running in FIPS Mode. 13

Adding the First Security Officer . 13

Confirming the Initial Parameters. 14

Displaying Board Status . 14

Adding the Second Security Officer. 15

Loading the Master File Key . 16

Enabling the Master File Key. 17

Key Exchange Key Management . 18

Chapter 5. Financial Services Applications and Cryptographic Services

 21

Open FS library . 21

Session Establishment . 22

Retrieve Object . 22

Importing a Zone Working Key . 22

Importing a PIN Verification Key . 23

Performing PIN Verification . 23

Close Session. 24

Close Library . 24

Chapter 6. For More Information

 . 25

About the Authors. 25

Acknowledgements. 25

References . 25

Ordering Sun Documents . 26

Accessing Sun Documentation Online . 26

Appendix A. The finsvcs.h File

. 27

1

Introduction

 Sun Microsystems, Inc.

Chapter 1

Introduction

The Sun™ Crypto Accelerator 6000 PCI-E card (SCA 6000 card) is a combined

cryptographic accelerator and Hardware Security Module (HSM) that can be used to

accelerate Secure Sockets Layer (SSL) and IPSec sessions, as well as perform various

financial services related cryptographic functions. Qualified as a FIPS 140-2 level 3

device, the SCA 6000 card is designed to prevent the disclosure or corruption of

cryptographic keying material, intermediate cryptographic results, or other sensitive

data. A direct key loading interface is incorporated to enable the secure entry of keying

material. Since sensitive keying material does not cross system, network, or application

boundaries, potential avenues of interception and attack are eliminated.

The security of a cryptographic device is dependent upon not only the anti-tamper

circuitry and design of the device itself, but also the processes and procedures used to

initialize the device, and perform key management and application level transactions.

This Sun BluePrints™ article assumes a working knowledge of financial services and

contemporary security issues, and discusses some control mechanisms. It describes

some of the processes and procedures needed to make the SCA 6000 card available to

an application performing financial services transactions such as PIN management and

verification, and card verification. In particular, the following topics are discussed:

• Bootstrapping the card, including initializing the card master key and key store

• Generating a financial services master key and key exchange key

• Performing financial services related key management activities

• Performing various application level financial services commands

Several examples are presented to illustrate the practical use of the SCA 6000 card:

• Master File Key (MFK) component installation

• Key Exchange Key (KEK) component installation and use

• Zone Working Key (ZWK) import

• PIN Verification Key import

• PIN Verification Key use

The cryptographic key hierarchy used by the SCA 6000 card and relevant applications is

also described, along with the methods used to retrieve key objects. Note that the SCA

6000 card does not manage or store individual cryptographic keys. Only the MFK is

stored within the SCA 6000 card—other keys must be managed as data objects by an

appropriate user application.

System Configuration

Table 1-1 describes the system configuration used to illustrate the processes in this

document.

2

Introduction

Sun Microsystems, Inc.

Table 1-1. System configuration

User-Level Providers

• /usr/lib/security/$ISA_pkcs11_kernel.so
• /usr/lib/security/$ISA_pkcs11_softtoken.so

Kernel Software Providers

• des
• aes
• arcfour
• blowfish
• sha1
• md5
• rsa
• swrand
• sha2

Kernel-Level Crypto Provider

• mca/0

3

Design Principles

 Sun Microsystems, Inc.

Chapter 2

Design Principles

The SCA 6000 card is designed to ensure compliance with relevant ANSI, ISO, and other

standards governing financial services related cryptographic processing, such as PIN

processing or credit card verification. The SCA 6000 board design is based on the

following principles.

• Key separation and compartmentalization of risk

Keys are used only for specifically defined functions, limiting the damage that can

result from a compromised key. To meet this requirement, functional key type

information is associated with each financial services key. This information is used

by the SCA 6000 card to enforce key separation and prevent one type of key from

being used for a different purpose. The generation and importing of the keys

defined in the key hierarchy are permitted, with the SCA 6000 card ensuring they

are used for specific operations only.

• Key forms

Clear text (human readable) keys stay within the SCA 6000 card, with the

exception of those existing as at least two separate components, each under the

control of a different security officer. When not stored in the card, or when in

component form, all keys are enciphered with a key of equal or greater

cryptographic strength.

• Direct key loading

For security, the MFK and KEKs can be entered directly into the SCA 6000 card with

a direct input device connected to a serial port on the board. For example, the

Termiflex OT/30 handheld device is certified for use with the SCA 6000 card. The

MFK and KEKs are entered in component form by unique security officers, enabling

the SCA 6000 card to meet key management requirements relating to split

knowledge, dual control, and data corruption.

Split knowledge

 means that cryptographic keys in multiple component form are

entrusted to, and controlled by, more than one key custodian—and that one

custodian can never learn or know a key component managed by another

custodian.

Dual control

 ensures that no single person has the capability to obtain,

determine use, alter, or ascertain a cleartext key, or more than one cleartext key

component. Because key components never transit or are processed by any

system, network, or application when input directly to the SCA 6000 card, they

cannot be intercepted, modified, destroyed, or disclosed.

4

Design Principles

 Sun Microsystems, Inc.

Key Hierarchy

The following types of financial services keys are supported:

• Master File Key (MFK)

The MFK encrypts other operational keys when they leave the HSM, such as those

used for storage. MFKs are entered into the SCA 6000 card in component form with

a direct input device. The MFK never leaves the secure confines of the HSM.

• Key Encryption Key (KEK)

The KEK encrypts other keys for key exchange operations, such as key or key

material import and export. The KEKs are entered into the SCA 6000 card in

component form with a direct input device.

• PIN Encryption Key (PEK)

The PEKs encrypt PINs during interchange processing. Two types of PEKs are

supported.

– Terminal PIN Keys (TPKs) encrypt PINs on the terminal side of the transactions

during acquisition. Examples of terminals include ATM and POS devices.

– Zone Working Keys (ZWKs) encrypt PINs during the interchange between differ-

ent financial institutions.

• PIN Verification Key (PVK)

The PVKs verify PIN values, such as PIN Verification Values (PVVs).

• Card Verification Key (CVK)

The CVKs verify card values, such as Card Verification Values (CVVs).

MFKs and KEKs are entered directly into the SCA 6000 card via a direct connect

interface. All other working keys are imported or exported into the SCA 6000 card using

a KEK, and are translated for local storage as cryptograms under the MFK. Only the MFK

is physically resident within the SCA 6000 card. Other keys must be managed locally by

the user and applications.

PIN Processing

PIN processing typically occurs in debit and credit transactions, such as the purchasing

of goods or services from a merchant or when using an ATM. In these scenarios, an end

user or customer enters a PIN at an acceptance point, and the PIN is encrypted for

transmission using a terminal PIN key associated with that acceptance point. The

encrypted PIN is transmitted to an acquiring bank or other processor where it can

either be translated for transmission to an interchange, such as a major credit card

company or third-party processor, or verified, if the customer account resides with the

bank that acquired the transaction from the ATM or merchant (acquiring bank). If the

PIN is translated and transmitted to an interchange facility, it must be decrypted under

the terminal key and re-encrypted using a zone working key shared with it and the

recipient interchange organization.

5

Design Principles

 Sun Microsystems, Inc.

Similarly, the interchange organization can translate and transmit the PIN to the

issuing bank that maintains a relationship with the original customer, or perform a

stand-in verification process for the benefit of the issuing bank. If the interchange

organization transmits the PIN to the issuer, the PIN encrypted under the zone working

key must be decrypted and re-encrypted using a zone working key shared with it and

the issuer. If the interchange organization performs the validation, the PIN is decrypted

from encryption under the zone working key of the acquirer and validated using an

agreed upon process, such as PIN Verification using a PIN Verification key and a PIN

Verification Value (PVV).

Finally, if the PIN is transmitted to the issuer, the PIN is decrypted from encryption

under the zone working key shared between the issuer and the forwarding agent (the

interchange organization). It is then verified by the issuer using a validation method of

their choice.

For keys to be usable, they must remain in the clear—and clear keys can only exist

within the secure confines of the SCA 6000 card. As a result, the applicable keys must be

retrieved from storage, forwarded to the SCA 6000 card, and decrypted using the

appropriate master file key (MFK) before encryption and decryption operations occur.

Figure 2-1 illustrates the PIN the processing sequence. In this figure,

E

 stands for

encrypt,

D

 stands for decrypt, and the data in parentheses is encrypted or decrypted

using the key that follows. An

A

 is prefixed to the ZWK and MFK of the acquirer, an

I

 to

the ZWK of the issuer, and

IS

 to the MFK of the issuer. The SCA 6000 card is designed to

perform common PIN translation and verification processes. See the S

un Crypto

Accelerator 6000 Board User’s Guide

 located at

http://docs.sun.com/source/819-5536-

11

 for more information.

Figure 2-1.The PIN processing sequence

Acceptance Point Acquirer

Interchange

Issuer BankD(Azwk)
Imfk

D(pin)
Azwk

D(Izwk)
Imfk

E(pin)
Izwk

or
Verify PIN

D(Izwk)
ISmfk

D(pin)
Izwk

Verify PIN

E(pin)
tpk

D(tpk)
Amfk

D(pin)
tpk

D(Azwk)
Amfk

E(pin)
Azwk

or
Verify PIN

6

Design Principles

 Sun Microsystems, Inc.

Key Management

Performing PIN translation and PIN verification requires that various cryptographic keys

be utilized. These keys must be established between all parties before either PIN

translation or verification can occur. Generating, transferring, and establishing these

keys is referred to as

key management

. Several key management processes must be

implemented to support PIN translation or verification. Note that the key management

processes described below for PIN translation and verification are essentially the same

as the processes used for card verification.

PIN processing requires the use of symmetric keys. Since symmetric keys are secret

keys, the integrity of the PIN is dependent upon the keys being shared between the

fewest number of nodes (typically two nodes). Thus the reason for PIN translation. In a

system using asymmetric keys, such as a PKI, this is not necessarily the case.

Establishing the keys necessary for the PIN processing noted here requires that

cryptographic keys be generated and distributed only to authorized parties. Note that

this article does not discuss the details of the verification and transmission processes

involved. It focuses on the required cryptographic processes, including:

• Generation of key encryption keys and constituent components

• Distribution of key encryption key components

• Generation of zone working keys

• Distribution of zone working keys using a key encryption key

• Generation of PIN verification keys

• Distribution of PIN verification keys using a key encryption key

Key separation is critical to maintaining the integrity of PIN processing. As a result, a

separate key encryption key must be established with every node that desires to later

exchange a cryptographic key. The distribution of the key encryption keys must be

transmitted as cleartext key components, since they are the initial keys exchanged. It is

recommended that key encryption keys be transmitted between parties with at least

two components.

Figure 2-2 describes the fundamental key exchange process that can be applied to any

two entities. Note that typically keys are stored on a database encrypted under a

master key known only to the local organization. In Figure 2-2, this takes place where

the

kek

 and the

Azwk

 are both store encrypted under the

Amfk

 of the acquirer and the

Imfk

 of the interchange.

Note –

For brevity, the distribution of the terminal PIN keys between the PIN acceptance
devices and the acquirer, and the exchange of the zone working key of the issuer and the PIN

verification keys, are not discussed.

7

Design Principles

 Sun Microsystems, Inc.

Figure 2-2.The key exchange process for the Azwk supported by the SCA 6000 card

Card Verification

Card verification is used to validate credit card transactions. It relies on a pair of

cryptographic keys that are used to generate a value that is place on a credit card and

subsequently verified. Because the value is not encrypted, performing card verification

can be viewed as an easier function to perform—a translation function is not required.

The details of the card verification process are not discussed here. However, since a pair

of keys is used to generate and validate a card verification value, the same key

management processes outlined above can be used to distribute the keys. Examples

include the exchange between the issuer and an interchange organization that can

perform stand-in card verification processing, or between the issuer and the vendor

creating the actual credit card and magnetic strip. Figure 2-3 depicts the card

verification process supported by the SCA 6000 card.

Acquirer Interchange

Enter kek Components 1-n
into SCA 6000 Card

xor kek Components 1-n Together
within the Card

E(kek)
Imfk

 (For Local Storage)

D(kek)
Imfk

D(Azwk)
kek

E(Azwk)
Imfk

 (For Local Storage)

Generate AzwkStep 4

Distribute E(Azwk)
kekStep 5

Step 6

Step 1 Generate kek Components

Step 2 Distribute Clear kek Components 1-n

Step 3 E(kek)
AMfk

 (For Local Storage)

E(Azwk)
AMfk

 (For Local Storage)

8

Design Principles

 Sun Microsystems, Inc.

Figure 2-3.The key exchange process for the cvk pair

Issuer Bank Interchange

Enter kek Components 1-n
into SCA 6000 Card

xor kek Components 1-n Together
within the Card

E(kek)
Imfk

(For Local Storage)

D(kek)
Imfk

D(cvk Pair)
kek

E(cvk Pair)
Imfk

 (For Local Storage)

Generate cvk PairStep 4

Distribute E(cvk Pair)
kekStep 5

Step 6

Step 1 Generate kek Components

Step 2 Distribute kek Components 1-n

Step 3 E(kek)
ISmfk

E(cvk Pair)
kek

(For Local Storage)

9

Assumptions and Conventions

 Sun Microsystems, Inc.

Chapter 3

Assumptions and Conventions

The processes described in this article assume the SCA 6000 card is physically installed

and initialized in a powered, functioning system with the SCA 6000 card libraries

installed. The system does not need to be available on a network until an application is

used to perform financial service transactions. Table 3-1 lists the SCA 6000 card software

packages, as well as the directories and files needed for platforms running the Solaris™

Operating System (OS).

Table 3-1. SCA 6000 card packages, directories and files for Solaris platforms

Conventions and Notations

The following conventions and notations are used throughout this document:

• Dialog boxes contain one or more sets of message prompts and responses needed

to complete an action.

• Within dialog boxes, responses to messages and prompts are in denoted by italics.

Software Packages

• SUNWmcaf
• SUNWmcact
• SUNWmcafw
• SUNWmcamn
• SUNWmcar

• SUNWmcau
• SUNWscafsu
• SUNWscamga
• SUNWscamgm
• SUNWscamgr
• SUNWscamgu

Directory Contents

/kernel/drv Driver configuration files

/kernel/drv/sparcv9 64-bitSPARCdrivers

/kernel/drv/amd64 64-bitAMDdrivers

/opt/SUNWsca/include Financial services header files

/opt/SUNWsca/lib Financial services libraries

/opt/SUNWsca/lib/sparcv9 Financial services libraries

/opt/SUNWsca/lib/amd64 Financial services libraries

/opt/SUNWsca/man Financial services man pages

/usr/lib/crypto Services

/usr/lib/crypto/firmware/sca Firmware files

/usr/man Man pages

/usr/sbin Administration utilities

/var/sca/keydata Keystore files (encrypted)

/var/sca/log Service log files

/var/svc/manifest/device Service manifests

10

Assumptions and Conventions

 Sun Microsystems, Inc.

• The SCA 6000 card can be managed from two access points. Use of the RJ-11

interface is required for MFK and KEK key management. Access can also be

obtained from a Unix® shell via the

scamgr

 utility.

• Once the board is initialized, subsequent actions originate from the console using

the

scamgr

 utility, and are indicated in s

camgr{mca0@localhost, so1}

 notation.

• MFK and KEK key management functions are performed via a board direct RJ-11

interface, and are indicated in

{sca6000, so1}

 notation.

• Application-level commands use the PKCS #11 interface via the SCA 6000 card PCI-E

interface.

• Security Officers and Key Custodians are interchangeable for the purposes of this

document.

11

Initializing the Sun Crypto Accelerator 6000 Card

 Sun Microsystems, Inc.

Chapter 4

Initializing the Sun Crypto Accelerator 6000 Card

This chapter describes the tasks necessary to initialize the SCA 6000 card and enable an

application to utilize it for specific financial service functions, such as card or PIN

verification, or PIN interchange translation. This section describes how to:

• Initialize the board and its keystore

• Add Security Officers and Key Custodians

• Set the different security parameters

• Enter and enable the MFK

• Enter a KEK

Initializing the Keystore

Assuming the SCA 6000 card and associated software packages are installed, the first

step involves initializing the board with the appropriate configuration and key store

information using the

scamgr

 utility.

1. The person acting as the primary security officer and key custodian initiates the

scamgr

 utility and logs into the SCA 6000 card. This is the first time that the board

is accessed. More information on the

scamgr

 utility can be found in the S

un Crypto

Accelerator 6000 Board User’s Guide, Chapter 3

located at

http://docs.sun.com/

source/819-5536-11

.

2. The primary key custodian receives a message indicating that the public key on the

board is not found in the trust database. This is normal behavior. Because the SCA

6000 card used to demonstrate the examples in this document was initialized and

zeroed several times, the trust database must be updated.

-bash-3.00# scamgr

Warning: Public Key Conflict
--
The public key presented by the board you are connecting to is
different than the public key that is trusted for this Serial ID.

Serial ID: 36:30:30:32:37:32
New Key Fingerprint: e0d9-1e23-2586-3b2b-2166-6948-1c2c-7792-7903-4e31
Trusted Key Fingerprint: 9670-3605-fc05-37af-971f-8617-af1f-691d-502f-
1c9e
--
Please select an action:

1. Abort this connection
2. Trust the board for this session only.
3. Replace the trusted key with the new key.
Your Choice --> 3

12

Initializing the Sun Crypto Accelerator 6000 Card

 Sun Microsystems, Inc.

3. Choose option

3

.

4. The board prompts for the path to the firmware. Enter the appropriate path after

the prompt. This causes the firmware to be loaded. When the firmware load is

complete, the board indicates

firmware

update

successful

. Note that firmware

version 1.0.5 is used for the examples presented in this document.

5. A firmware load requires the board to be manually reset. This is performed using

the

scamgr

 utility. More information on the reset command dialog can be found

on page 59 of the S

un Crypto Accelerator 6000 Board User’s Guide, Chapter 3

located at

http://docs.sun.com/source/819-5536-11.

Initializing the Board and Keystore

After the connection is closed, the primary key custodian must initialize the SCA 6000

card.

1. Run the

scamgr

 utility again to initialize the SCA 6000 card.

2. Upon the first connection to the SCA 6000 card, a prompt is displayed enabling the

board to be initialized with a new keystore or an existing keystore. Enter a

1

 and

initialize the board to use a new keystore. Note that this should only be performed

once unless there is a problem with a keystore or the current key store is no longer

required. It may also be useful to backup the existing keystore in the event it is

needed in the future.

Your Choice --> 3
This board is currently in failsafe mode. Boards in failsafe
mode can only perform firmware upgrades. You will now be prompted
for the location of the firmware you wish to load. Once the upgrade
is completed, scamgr will exit. When you reconnect, you will be
using the new firmware.

Enter the path to the firmware file: /export/home/122889-01/
SUNWmcafw/reloc/lib/crypto/firmware/sca/sca6000fw
Loading new firmware. This may take a few minutes...Done.
Firmware update successful.

Connection Closed.

scamgr{ mca0@localhost, so1 } reset
WARNING Issuing this command will reset
Board and close this connection.

Proceed with reset? {Y/Yes/N/No} {No}: Y

Reset Successful

13

Initializing the Sun Crypto Accelerator 6000 Card

 Sun Microsystems, Inc.

3. The SCA 6000 card prompts for a keystore name. Documenting the name of the

keystore should be done for future reference. The example uses the name

sca1

 for

the keystore.

Running in FIPS Mode

After the keystore is named, the option is presented to run the SCA 6000 card in FIPS

mode. FIPS mode enables the board to be run such that it is compliant as a FIPS 140-2

level 3 device, including the activation of anti-tamper controls. The SCA 6000 card

should be run in FIPS mode when performing financial service related commands and

transactions. At the prompt, enter

Y

 for yes.

Adding the First Security Officer

Once the SCA 6000 card is running in FIPS mode, the next task is to create the security

officers. Security officers manage the board and perform the bootstrapping and initial

cryptographic key loading, and function as key custodians. The examples in the

following sections create two security officers, with the first security officer named

so1

.

It is mandatory that at least one security officer be created for each Master File Key

(MFK) component entered. Additional security officers can be created to ensure there is

sufficient backup capability to perform MFK and Key Encryption Key (KEK) key

management functions. Note that the security officer passwords are not displayed.

These should be memorized or otherwise preserved to ensure the security officers are

-bash-3.00# scamgr
This board is uninitialized.
You will now initialize the board. You may either
completely initialize the board and start with a new
keystore or initialize the board to use an existing
keystore, providing a backup file in the process.

1. Initialize the board with a new keystore
2. Initialize the board to use an existing keystore
Your Choice (0 to exit) --> 1

Keystore Name: sca1

Run in FIPS 140-2 mode? (Y/Yes/N/No) [No]: Y

Initial Security Officer Name: so1

Initial Security Officer Password:
Confirm password:

14

Initializing the Sun Crypto Accelerator 6000 Card

 Sun Microsystems, Inc.

able to log in to the SCA 6000 card as needed. Note that there is no capability for

recovering passwords, so it is critical that passwords not be lost or forgotten.

Confirming the Initial Parameters
After the first security officer sets a password, the SCA 6000 card prompts for

confirmation of its initialization parameters. Upon confirmation that the parameters

are correct, the security officer affirms the parameter settings by typing Y

It is at this stage that the board is actually initialized. The following message is

displayed while the board is being initialized.

When initialization is complete, the following message is displayed. Note that the key

fingerprint should also be recorded if a remote access key is utilized.

Displaying Board Status
At initialization completion, the SCA 6000 card status is displayed using the scamgr

utility with the show status command. Parameters that require modification, such as

the login timeout or password rules, can be changed at this point. The following

example leaves the default parameters in place. More information on how to change

parameters can be found in the Sun Crypto Accelerator 6000 Board User’s Guide located

at http://docs.sun.com/source/819-5536-11.

Note – The security officer is logged out when SCA 6000 card initialization completes. As a
result, the security officer must log in again to display board status.

Board initialization parameters:
--
Initial Security Officer Name: so1
Keystore name: sca1
Run in FIPS 140-2 Mode: Yes
--

Is this correct? (Y/Yes/N/No) [No]: Y

Initializing crypto accelerator board. This may take a few minutes...

Initializing crypto accelerator board. This may take a few minutes...The
board is ready to be administered.
As part of the initialization process, a new remote access key has been
generated. The key fingerprint is listed below. This should be the
fingerprint presented by the board the next time you connect to it.
Key Fingerprint: 195b-5484-be33-2d3e-31c0-a9af-0bbb-465f-7577-ebfa

15 Initializing the Sun Crypto Accelerator 6000 Card Sun Microsystems, Inc.

Adding the Second Security Officer
The second security officer can now be created using the scamgr utility with the

create so command. While the example below creates one additional security officer,

more can be created at this time, if required. Organizations should create at least as

many security officers as MFK components. Note that the first security officer, so1, is

logged on during this process.

Next, the second security officer is named so2. The second security officer should be

present to enter a password, and should retain sole responsibility for the use of the

login ID. Note that the first security officer, so1, continues to be logged on after the

creation of the second security officer, s02, completes.

Security Officer Login: so1
Security Officer Password:
scamgr{mca0@localhost, so1}> show status

Board Status

Version Info:
* Hardware Version: 1.3.50
* Firmware Version: 1.0.5
* Serial: 363030323732

Keystore Info:
* Name: sca1.600272
* ID: 0000000054b987bd
* Master Key Lock: (D)
* FIPS 140-2 Mode: (E)

Security Settings:
* Login Timeout: 5 min.
* Password Level: MED
* Master Key Backups: 0
* Multiadmin Mode: (D)
* Min. Authenticators: 2
* Multiadmin Timeout: 5

scamgr{mca0@localhost, so1}>

scamgr{mca0@localhost, so1}> create so

New security officer name: so2
Enter new security officer password:
Confirm password:
Security Officer so2 created successfully.

scamgr{mca0@localhost, so1}>

16 Initializing the Sun Crypto Accelerator 6000 Card Sun Microsystems, Inc.

Loading the Master File Key
Once the two security officers are created, financial services MFK and KEK cryptographic

key creation can be performed using the load mfk and load kek commands

respectively. The MFK and the KEKs are loaded into the SCA 6000 card using a directly

connected input device attached via an RJ-11 connector rather than via a console

interface. A direct connection is used to ensure that cryptographic keying material is

secured during transmission and cannot be intercepted and compromised.

Several factors are important to note regarding the keys:

• The examples below use two components for each key type. A minimum of two

key components is required. More key components can be used, if necessary.

• Three to five components per key is common. To ensure dual control and split

knowledge, each component should be controlled by a separate custodian or

teams of custodians.

• These keys are cleartext key components, and must be handled with the utmost

security. The components should be assigned to a key custodian, or team of key

custodians, and managed such that dual control and split knowledge is enforced.

• Each component should be recorded for backup purposes.

• All MFK components must be the same length, can be either 192 or 256 bits, and

must not contain spaces or characters other than hexadecimal values (0-9, A-F).

The example below uses 192 bits or 48 hexadecimal digits.

• While simplistic components are used in the example below, each component

should be randomly generated with sufficient randomization to withstand attack.

It is important to note that each component is created by a different security officer.

Because only one security officer can be logged on at a given time, the first security

officer must log off before the second security officer can proceed with the creation of

the second MFK component.

In the example below, the number of components prompt is displayed, indicating this is

the first time the load mfk command is being issued and there are no pending

components to be entered. As a result, it is the first component to be entered. It is

recommended that the load mfk command be completed in one session so that all

components are loaded at the same time. This prevents pending actions from existing

when the SCA 6000 card has only a portion of the components loaded.

17 Initializing the Sun Crypto Accelerator 6000 Card Sun Microsystems, Inc.

Now that the first MFK component is loaded, the first security officer logs out to permit

the second security officer to log in.

Next, the second security officer logs in to the SCA 6000 card. Because the first security

officer indicated that two components were required for the MFK, the system keeps the

first component pending until the second security officer logs on and issues the load

mfk command.

Next, the second security officer uses the load mfk command to enter the second MFK

component. The second component should be under the control of the appropriate

security officer(s), be managed under dual control and split knowledge, and conform to

length, value, and randomness requirements noted above. Because the SCA 6000 card

was expecting two components, it displays the MFK load complete message after the

successful loading of the second component.

Enabling the Master File Key
While the loading of the financial services MFK is complete, it must be enabled with the

enable mfk command to be utilized. Any key custodian can enable the MFK. In the

example below, the key custodian so2 performs the enable mfk command and enters Y

to enable the MFK.Only a single MFK can be active and enabled at any time. As a result,

the existing MFK is overwritten. When the MFK is successfully enabled the board

responds with the message, New MFK activated.

Security Officer Login: so1
Security Officer Password:
sca6000, so1}> load mfk
Number of components: 2
Enter MFK component: 1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF
Verify MFK component: 1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF
Done.
MFK component loaded.

sca6000, so1}> logout

Press <ENTER> to start
Security Officer Login: so2
Security Officer Password:

sca6000, so2}> load mfk
Enter MFK component: FEDCBA0987654321FEDCBA0987654321FEDCBA0987654321
Verify MFK component: FEDCBA0987654321FEDCBA0987654321FEDCBA0987654321
Done.
MFK component loaded.
MFK load complete.

18 Initializing the Sun Crypto Accelerator 6000 Card Sun Microsystems, Inc.

The second security officer should logout of the system once the MFK is enabled.

While the zeroize command can be used to delete the MFK, the reset command does

not perform a deletion. It is recommended that the MFK be backed up for disaster

recovery purposes. More information on how to use the scamgr utility and the backup

command can be found in the Sun Crypto Accelerator 6000 Board User’s Guide located

at http://docs.sun.com/source/819-5536-11.

Key Exchange Key Management
Key Exchange Keys (KEKs) enable the subsequent import or export of cryptographic keys

that can be used for specific financial service functions, such as card or PIN verification.

The KEKs are managed similarly to the MFK, and all key management principles

described earlier should apply.

Several factors are important to note regarding KEKs:

• A KEK component can be 128 or 196 bits in length. The example below uses 128 bit

(32 hexadecimal) components.

• There are no limits on the number of KEKs that can be used.

• It is recommended that a KEK be created for each key management relationship

maintained—one for each entity with which other cryptographic keys are to be

exchanged. KEK should not be shared except between two entities.

• A KEK can be used to exchange multiple types of cryptographic keys, such as PIN

verification or card verification keys.

The SCA 6000 card processes KEKs by enabling KEK components to be entered along

with a key tag. The key tag enables applications to make subsequent references to the

KEK retained by the SCA 6000 card. (The KEK is stored encrypted under the MFK). It is

critical that the key custodians accurately record the key tags so that the KEKs can

subsequently be used. Note that a cryptogram of the KEKs is not returned by the SCA

6000 card when the KEK components are loaded.

sca6000, so2}> enable mfk
WARNING: This command will
overwrite the old MFK with
the newly loaded one.
Enable MFK? (Y/N) [No]: Y
New MFK activated.

sca6000, so2}>Logout

19 Initializing the Sun Crypto Accelerator 6000 Card Sun Microsystems, Inc.

Applications must use the retrieve object command and the appropriate KEK key tag

in order to use a KEK. The retrieve object command returns a cryptogram of the KEK

which the application can use to import or export other cryptographic keys. Note that

the application must store and manage the KEK returned by the retrieve object

command since the KEK is deleted from the SCA 6000 card memory upon completion of

the command.

The example below specifies that each KEK is comprised of two components, each 128

bits in length.

1. Log in as the first security officer.

2. Execute the load kek command.

3. Specify a KEK label, along with the number of components that comprise the KEK.

The example below specifies a KEK with the label kek1 that is comprised of two

components.

4. Next, the first security officer enters his KEK component. It is recommended that

the first security officer make a copy of the KEK component for back up and

disaster recover purposes.

Note that the number of components prompt is displayed is this example,
indicating that no pending components need to be entered and that this the first
component to be entered. It is recommended that the load kek command be
completed in one session so that all components are loaded at the same time.
This prevents pending actions from existing when the SCA 6000 card has only a
portion of the components loaded.

5. Next, the first security officer logs out of the system so that the next security

officer can enter the next KEK component. To ensure compliance with the key

management principles noted above, a single security officer cannot load all

Press <ENTER> to start
Security Officer Login: so1
Security Officer Password:

sca6000, so1}> load kek

KEK Label: kek1
Number of Components: 2

Enter KEK component: 0987654321ABCDEF0987654321ABCDEF
Verify KEK component: 0987654321ABCDEF0987654321ABCDEF
Done.
KEK component loaded.

20 Initializing the Sun Crypto Accelerator 6000 Card Sun Microsystems, Inc.

components of a KEK. Note that the SCA 6000 card keeps track of the number of

components needed to generate a KEK.

6. Next, the second security officer now logs in and enters a KEK component. All

components of a single KEK must be identical length. It is recommended that the

second security officer make a copy of the KEK component for back up and disaster

recovery purposes.

Note that the board does not prompt for a KEK label or number of components
for subsequent KEK components, and returns KEK load complete when all
expected components are entered. The SCA 6000 card continues to maintain a
wait state for unloaded components, and it is possible for synchronization issues
to arise if the key management sessions are incomplete.

7. Finally, the second security officer logs out.

sca6000, so1}> logout

Press <ENTER> to start
Security Officer Login: so2
Security Officer Password:
sca6000, so2}> load kek
Enter KEK component: 0987654321FEDCBA0987654321FEDCBA
Verify KEK component: 0987654321FEDCBA0987654321FEDCBA
Done.
KEK component loaded.
KEK load complete.

sca6000, so2}> logout

21 Financial Services Applications and Cryptographic Services Sun Microsystems, Inc.

Chapter 5

Financial Services Applications and Cryptographic
Services

At this point in the process, the system includes a working SCA 6000 card with a

financial services MFK installed and one KEK. Working keys and verification keys can be

imported or exported to perform financial services. Applications using the SCA 6000

card must perform several operations to enable a dialog with the device. The overall

process includes:

• Open the FS library to locate the desired SCA 6000 card

• Establish a session with the appropriate SCA 6000 card

• Retrieve a KEK object

• Import the appropriate keys (translation and verification keys)

• Perform PIN translation and verification commands, as appropriate

• Close the session

• Close the FS library

The remainder of this chapter assumes that all initial key management and card

initialization tasks have been performed as described in previous chapters. The

examples below illustrate how to perform PIN verification using the PVV method with a

PIN obtained from an interchange or other intermediary using a ZWK.

Note – FS library and session establishment commands need only be issued once by the
application. All data structures referenced below are defined in the finsvcs.h file as listed in
Appendix A.

Open FS library
Financial services applications must issue the Financial Library Open Function,

fs_lib_open(), to initialize the financial services library and determine which SCA

6000 card to use. The fs_lib_open() function locates the desired PKCS#11 provider

and verifies that it supports the financial services mechanism. The fs_lib_open()

function returns a handle that must be used in subsequent financial services library

calls. The applicable keystore name is passed to the system in *token, and a handle

identifying the appropriate SCA 6000 card is returned by fs_lib_open().

The Library Open Function is:
fsLibHandle_t fs_lib_open(char *token, *err);

22 Financial Services Applications and Cryptographic Services Sun Microsystems, Inc.

Session Establishment
After the Library Open Function completes, the application must establish a session

with the correct SCA 6000 card. Users can establish multiple financial services sessions,

enabling multithreaded access to the financial services capabilities. Sessions can be

created only after the financial services library is initialized with the Session

Establishment Function, fs_lib_open(). A unique session handle is returned and must

be used for all financial service requests for the specific session.

Retrieve Object
Once a session is established with the appropriate SCA 6000 card, the application can

issue relevant key management and cryptographic functions. The examples provided

below follow a standard pattern of obtaining and utilizing cryptographic keys for

validation purposes.

1. Activate the KEK by retrieving the KEK from the SCA 6000 card. Use the Retrieve

Object Function, fs_retrieve_object(), and the key tag associated with the

appropriate key to obtain a cryptogram of the KEK encrypted under the MFK. The

application must manage the KEK since it is not stored on the board or in its

keystore. Note that the KEK was previously imported manually with a KEK label of

kek1.

2. To obtain the KEK, the application must pass in the session handle obtained in the

Session Establishment Function, the object type (KEK in this case), and the *label

identifying the KEK (kek1).

3. The KEK is returned from the card encrypted with the MFK in the *objval object.

This cryptogram is subsequently used when importing the Zone Working Keys.

Importing a Zone Working Key
Before any translation or verification functions can be performed, the associated PIN

encryption keys must be imported. This is accomplished by using an import (or export)

function. The example below imports a Zone Working Key using the Import Key

Function, fs_import_key(). The purpose of the Zone Working key is to enable a PIN to

be obtained and processed from an interchange or another intermediary. Processing in

this case means to either translate or verify a PIN.

The Session Establishment Function is:
fsSessHandle_t fs_session_open(fsLibHandle_t handle);

The Retrieve Object Function is:
fsReturn_t fs_retrieve_object(fsSessHandle_t handle, fsObjectType_t
type, char *label,
 fsObjectData_t *objval);

23 Financial Services Applications and Cryptographic Services Sun Microsystems, Inc.

To obtain the Zone Working Key, the application must pass in the session handle

obtained in the Session Establishment Function, the usage tag (ZWK), the cryptogram of

the KEK in the *kek object (just retrieved in the *objval), and the cryptogram of the

ZWK being imported in the *ikey object (encrypted under the KEK). Note that the

variant is not used in this example.

Within the secure confines of the SCA 6000 card, the IWK is decrypted using the KEK and

then re-encrypted under the MFK and finally returned in the *okey object. This

cryptogram is used subsequently to translated PINs that are encrypted under the ZWK.

Importing a PIN Verification Key
Before the verification functions can be performed, the associated Verification Key must

be imported. The example below imports a PIN Verification Key using the Import Key

Function, fs_import_key(). The purpose of the PIN verification key is to verify a PIN or

the PVV associated with that PIN.

To obtain the PIN Verification Key, the application must pass in the session handle

obtained in the Session Establishment Function, the usage tag (PVK), the cryptogram of

the KEK in the *kek object (subsequently retrieved in the *objval), and the cryptogram

of the PVK being imported in the *ikey object (encrypted under the KEK). Note that the

variant is not used in this example.

Within the secure confines of the SCA 6000 card, the PVK is decrypted using the KEK and

then re-encrypted under the MFK and finally returned in the *okey object. This

cryptogram is used subsequently to verify the PVV.

Performing PIN Verification
The PIN Verify Function, fs_pin_verify(), is executed by the credit card issuer or its

agent to authenticate a cardholder transaction where a PIN is used to authenticate the

cardholder. The SCA 6000 board supports two types of PIN verification: Visa PVV and

IBM-3624. Additionally, the board supports two types of PIN block formats, ANSI/ISO

Format 0 and ISO Format 1.

The Import Key Function is:
fsReturn_t fs_key_import(fsSessHandle_t handle, fsKeyUsage_t usage,
fsKey_t *kek,
 fsKey917_t *iKey, fsKey_t *oKey, boolean_t useVariants);

The Import Key Function is:
fsReturn_t fs_key_import(fsSessHandle_t handle, fsKeyUsage_t usage,
fsKey_t *kek,
 fsKey917_t *iKey, fsKey_t *oKey, boolean_t useVariants);

24 Financial Services Applications and Cryptographic Services Sun Microsystems, Inc.

To validate a PIN using the PVV method, the application must pass in the session

handle obtained in the Session Establishment Function, the algorithm type (Visa PVV),

the cryptogram of the ZWK that is used to encrypt the PIN (obtained in the previous

Import Key Function as the *okey), a cryptogram of the PIN Verification Key (*pvk), the

primary account number or PAN (*PAN, obtained from the transaction being validated),

the PIN encrypted by the ZWK (*pin), and the PVV and PVKI in the *data object.

To ensure that sensitive data is not disclosed, the SCA 6000 card performs the

decryption of all keys and the PIN internally, along with all PVV calculations. The only

value returned in the PIN Verify Function is a status code indicating the success (fsOK)

or failure of the function.

Close Session
After the financial service functions complete, the application can close the current

session using the Session Close Function, fs_session_close(). To close the session,

the application simply passes the current session handle to the function.

Close Library
Once the current session is closed, the library can be closed using the Library Close

Function, fs_lib_close(). To close the library, the application simply passes the

current library handle to the function.

The PIN Verify Function is:
fsReturn_t fs_pin_verify(fsSessHandle_t handle, fsPinAlg_t alg, fsKey_t
*pek, fsKey_t *pvk,
 fsPan_t *pan, fsPin_t *pin, fsPinData_t *data);

The Session Close Function is:
fsReturn fs_session_close(fsSessHandle_t handle);

The Library Close Function is:
fsReturn_t fs_lib_close(fsLibHandle_t handle)

25 For More Information Sun Microsystems, Inc.

Chapter 6

For More Information

About the Authors
Joel Weise has worked in the field of data security for over 25 years. As a Principal

Engineer and Chief Technologist for Sun Microsystems, he designs system and

application security solutions for a range of different enterprises. Joel is a leading

expert on legal and regulatory issues as they relate to security and how IT solutions

should address various governmental mandates such as Sarbanes Oaxley, Gramm Leach

Bliley and HIPAA.

Joel specializes in security policy, cryptography, smart card multi-application systems

and public key infrastructures, and is one of the original inventors of the Open Platform

Multi-application chipcard. He was one of the original contributors to the EMV chipcard

specification and the CISP (Visa Cardholder Information Security Program) security

standards, now part of the PCI (Payment Card Industry) standards.

Serge has over 22 years of professional experience in the computer industry. As a

member of the Solaris OS adoption team, Serge helps customers to accelerate the

certification of the Solaris 10 OS as their standard operating environment. The team's

overall goal is to eliminate barriers that might prevent customers from leveraging Sun's

latest technologies and solutions. His extensive expertise has offered him the

opportunity to help customers define environment strategies, as well as participate in

the design and delivery of security architecture design and implementations,

assessments, risk assessments, trust-modeling, and analysis of security patterns. His

specific areas of expertise lie in Solaris security, security architecture, security

assessments, and network security.

Acknowledgements
The authors would like to recognize Gary Morton for his contributions to this article.

References
Sun Crypto Accelerator 6000 Card Specifications:

http:www.sun.com/products/networking/sslaccel/suncryptoaccel6000/

specs.xml

Sun Crypto Accelerator 6000 PCIe Card:

http:www.sun.com/products/networking/sslaccel/suncryptoaccel6000/

specs.xml

Sun Crypto Accelerator 6000 Board User’s Guide:

http://docs.sun.com/source/819-5536-11/

26 For More Information Sun Microsystems, Inc.

Solaris Security for Developers Guide:

http://docs.sun.com/app/docs/doc/816-4863/6mb20lvgt?a=view

Zeroisation:

http://en.wikipedia.org/wiki/Zeroisation

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc.

If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is

http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:

http://www.sun.com/blueprints/online.html

27 The finsvcs.h File Sun Microsystems, Inc.

Appendix A

The finsvcs.h File

* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/

#ifndef_FINSVCS_H
#define_FINSVCS_H

#pragma ident"@(#)finsvcs.h1.506/04/19 SMI"

#ifdef__cplusplus
extern "C" {
#endif

#if !defined(CPU_XSCALE) && !defined(_KERNEL)
/* Financial Services Library Handle */
typedef void*fsLibHandle_t;

/* session handle */
typedef void*fsSessHandle_t;
#endif /* !XSCALE && !KERNEL */

/* finsvc error codes */
typedef enum fsReturn {

fsOK,
fsError,/* processing error */
fsVerifyFail,/* verification failed (card or PIN) */
fsInvalidKey,
fsInvalidPEK,/* invalid PIN encryption key */
fsInvalidPVK,/* invalid PIN verification key */
fsInvalidPVKI,/* invalid PVK index */
fsInvalidCVK,/* invalid card verification key */
fsInvalidKEK,/* invalid key encryption key */
fsInvalidKeyType,
fsInvalidKeyUsage,
fsBufferTooSmall,
fsInvalidArgs,
fsInvalidHandle,
fsNoMem,/* memory allocation failure */
fsInvalidPin,/* pin block corrupt */
fsInvalidPinType,/* invalid pin block format */
fsInvalidDectbl,
fsInvalidPan,
fsInvalidCmd,
fsInvalidState,
fsNotInitialized,
fsNotFound,
fsInvalidLibVersion

} fsReturn_t;

28 The finsvcs.h File Sun Microsystems, Inc.

/* fs state */
typedef enum {

fsStateUninit,
fsStateNormalMode,/* core functionality enabled */
fsStateSensitiveMode,/* import/export key enabled */
fsStateTestMode,/* Test mode enabled */
fsStateMfkChange/* mfk change in progress */

} fsState_t;

/* Supported Personal Identification Number (PIN) algorithms */
typedef enum fsPinAlg {

PVV = 1,
IBM3624

} fsPinAlg_t;

/* supported magnetic/credit card algorithms */
typedef enum fsCardAlg {

CVV,
CSC

} fsCardAlg_t;

/* MAC'ing Algorithms - used by fs_mac_generate/fs_mac_verify */
typedef enum fsMacAlg {

X9_9,
X9_19,
X9_19_3DES

} fsMacAlg_t;

/*
 * supported PIN types
 *
 * ISO Format 0 is defined as follows (nibbles)
 * [0][N][P][P][P][P][P/F][P/F][P/F][P/F][P/F][P/F][P/F][P/F][F][F]
 *
 * where:
 * N = PIN length
 * P = PIN digit
 * F = Fill = 0xf
 *
 * ISO Format 1 is defined as follows:
 * [1][N][P][P][P][P][P/R][P/R][P/R][P/R][P/R][P/R][P/R][P/R][R][R]
 *
 * where:
 * N = PIN length
 * P = PIN digit
 * R = random digit between o and 0xf
 */
typedef enum fsPinType {

ISOFormat0,
ISOFormat1

} fsPinType_t;

#defineFS_PIN_SIZE8

29 The finsvcs.h File Sun Microsystems, Inc.

/* Personal Identificatin Number (PIN) data type */
typedef struct fsPin {

fsPinType_t type;
uint8_t pin[FS_PIN_SIZE];

} fsPin_t;

/* PVV PIN data types */
typedef uint8_tfsPvki_t;/* PIN Verification Key Index */

#defineFS_DEC_TABLE_SIZE8

/* Decimalization table - used in IBM3624 PIN operations */
typedef struct fsDecTable_s {

uint8_t table[FS_DEC_TABLE_SIZE];
uint8_t pad[FS_DEC_TABLE_SIZE];/* pad to 16 bytes for AES */

} fsDecTable_t;

#defineBYTES2NIBS(x)(2 * x)
#defineNIBS2BYTES(x)(2 / x)
/*
 * Financial Key Usage.
 * These are standard key usages as defined in the financial community
 */
typedef enum fsKeyUsage {

TPK = 1, /* Terminal PIN Key (PEK) */
ZWK, /* Zone Working Key (PEK) */
CVK, /* Card Verification Key */
PVK, /* PIN Verification Key */
KEK, /* Key Encryption Key */
MACK /* MAC Key */

} fsKeyUsage_t;

#defineMAX_KEY_USAGE6

/* Financial Key Types - DESx only currently */
typedef enum fsKeyType {

DES = 1, /* Single length DES */
DES2, /* Double length DES */
DES3 /* 3DES */

} fsKeyType_t;

#defineFS_KEY_SZ 48

#defineFS_KCV_SZ 3

/* FS key format - key is just a byte stream to users */
typedef struct fsKey_s {

uint8_t keydata[FS_KEY_SZ];
} fsKey_t;

/* ISO 9.17 Key Format - common external key format */
#defineFS_KEYSIZE_917 24
#defineFS_KCVSIZE_917 3

30 The finsvcs.h File Sun Microsystems, Inc.

/* ANSI X9.17 key definition - used for import/export operations */
typedef struct fsKey917 {

uint8_t length;
uint8_t kcv[FS_KCVSIZE_917];
uint8_t key[FS_KEYSIZE_917];

} fsKey917_t;

#defineFS_PAN_SIZE 10
#defineFS_PAN_CONTROL_SIZE2
#defineFS_PAN_PIN_SIZE 12 /* PIN op PAN size (nibbles) */
#defineFS_PAN_PIN_TOTAL \

((FS_PAN_CONTROL_SIZE * 2) + FS_PAN_PIN_SIZE)

/* Personal Account Number (PAN) data structure */
typedef struct fsPan {

uint8_t length; /* in nibbles/digits (from 12 to 19) */
uint8_t pan[FS_PAN_SIZE];

} fsPan_t;

typedef enum fsObjectType {
fsObjDecTable,
fsObjKey

} fsObjectType_t;

typedef struct fsObjectData_s {
fsObjectType_ttype;
union {

fsDecTable_t decTable;
fsKey_t key;

} object;
} fsObjectData_t;

#defineFS_3624_VALDATA_SIZE 8
#defineFS_3624_OFFSET_SIZE6

#defineFS_PVV_SIZE 2
/*
 * Personal Identification Number (PIN) data.
 * Used for both PVV and IBM3624 PIN verification.
 */
typedef union fsPinData {

struct {
fsPvki_tpvki;
uint8_t pvv[FS_PVV_SIZE];

} pvv;
struct {

fsDecTable_t decTable;
uint8_t valData[FS_3624_VALDATA_SIZE];
uint8_t checkLen;
uint8_t refOffset[FS_3624_OFFSET_SIZE];

} ibm3624;
} fsPinData_t;

31 The finsvcs.h File Sun Microsystems, Inc.

/*
 * Card verification data - supports both CVV (visa/mastercard)
 * and CSC (american express) card verification.
 */
typedef struct fsCardData {

fsPan_t pan;
uint8_t expDate[2];/* expiration date */
union {

struct {
uint8_t refCVV[2];
uint8_t servCode[2];/* service code */

} cvv;
struct {

uint8_t cscLen;
uint8_t refCSC[3];

} csc;
} data;

} fsCardData_t;

#if !defined(CPU_XSCALE) && !defined(_KERNEL)
/* Library prototypes */

/* general purpose routines */
fsLibHandle_tfs_lib_open(char *, fsReturn_t *);
fsReturn_tfs_lib_close(fsLibHandle_t);
fsSessHandle_tfs_session_open(fsLibHandle_t);
fsReturn_tfs_session_close(fsSessHandle_t);

/* PIN processing functions */
fsReturn_tfs_pin_verify(fsSessHandle_t, fsPinAlg_t, fsKey_t *, fsKey_t
*,

 fsPan_t *, fsPin_t *, fsPinData_t *);
fsReturn_tfs_pin_translate(fsSessHandle_t, fsKey_t *, fsKey_t *,

 fsPin_t *, fsPin_t *, fsPan_t *);

/* card processing functions */
fsReturn_tfs_card_verify(fsSessHandle_t, fsCardAlg_t, fsKey_t *,

 fsPan_t *, fsCardData_t *);

/* Key/object management functions */
fsReturn_t fs_key_generate(fsSessHandle_t, fsKeyType_t, fsKeyUsage_t,

 fsKey_t *);
fsReturn_tfs_key_translate(fsSessHandle_t, fsKey_t *, fsKey_t *);
fsReturn_tfs_key_import(fsSessHandle_t, fsKeyUsage_t, fsKey_t *,

 fsKey917_t *, fsKey_t *, boolean_t);
fsReturn_tfs_key_export(fsSessHandle_t, fsKeyUsage_t, fsKey_t *,

 fsKey_t *, fsKey917_t *, boolean_t);
fsReturn_tfs_retrieve_object(fsSessHandle_t, fsObjectType_t, char *,

 fsObjectData_t *);
fsReturn_tfs_status(fsSessHandle_t, fsState_t *);

#endif /* !CPU_XSCALE && !KERNEL */

32 The finsvcs.h File Sun Microsystems, Inc.

#ifdef__cplusplus
}
#endif

#endif/* _FINSVCS_H */

Cryptographic Solutions for Financial Services On the Web sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN (9786) Web sun.com

© 2008 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX

is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. Information subject to change without notice. Printed in USA 02/08

