
PRIVILEGE BRACKETING IN THE
SOLARIS™ 10 OPERATING SYSTEM
Glenn Brunette, Security Program Office, Client Solutions

Sun BluePrints™ OnLine — April 2006

819-6320-10
Revision 1.0, 3/29/06
Edition: April 2006

Please
Recycle

© 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Solaris, and Sun BluePrints are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Sun Microsystems, Inc.

Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

TABLE OF CONTENTS

Privilege Bracketing in the Solaris™ 10 Operating System . 1
Introduction . 2
Process Rights Management . 2
Making Programs Privilege Aware . 4

Using the ping Program for this Example . 4
Privilege Bracketing Using Private Header Files and Functions . 5
Privilege Bracketing Using Public Header Files and Functions . 8

Conclusion. 12
References . 12
About the Author . 13
Acknowledgements . 14
Ordering Sun Documents . 14
Accessing Sun Documentation Online . 14

1-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Privilege Bracketing in the Solaris™ 10 Operating System

In IT security, the well-known “least privilege” principle states that: “Every program and every user of the
system should operate using the least set of privileges necessary to complete the job.”1 This Sun
BluePrints™ OnLine article describes how to use the Process Rights Management feature of the
Solaris™ 10 Operating System (Solaris 10 OS) to implement this principle for any given software program.

Process Rights Management allows software developers to write privilege-aware programs that run with
only the privileges they need, dropping those that are not needed or are no longer required. Further, using
a programming technique called privilege bracketing, a developer can control exactly when a privilege or
set of privileges is active or in effect.

Software developers can use the privilege bracketing technique to ensure that a program is running with
privilege only when that privilege is required. This is accomplished by placing privileged software
operations between code that effectively enables and disables specific privileges. Using the methods
described in this article, software developers will be able to develop privileged programs that are more
secure and resilient to flaws because the use of privilege within the code can be more tightly controlled.

This article contains the following sections:

• Introduction
• Process Rights Management
• Making Programs Privilege Aware
• Conclusion
• References
• About the Author
• Acknowledgements
• Ordering Sun Documents
• Accessing Sun Documentation Online

Note – This Sun BluePrints OnLine article relies on the description of Process Rights Management and
related concepts that were provided in the Sun BluePrints article titled Privilege Debugging in the Solaris
10 Operating System (Brunette, Glenn and Moffat, Darren, February 2006), which is available at
http://www.sun.com/blueprints/0206/819-5507.pdf.

1.““The Protection of Information in Computer Systems,” Jerome Saltzer and Michael Schroeder. April 17. 1975.
http://web.mit.edu/Saltzer/www/publications/protection/
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://www.sun.com/blueprints/0206/819-5507.pdf
http://www.sun.com/blueprints/0206/819-5507.pdf

2-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Introduction
The traditional UNIX® privilege model is based on the concept of a super-user. In this model, the system
associates all of its privileged operations with the root account or—more precisely—the user identifier
(UID) 0. All other UIDs are considered unprivileged by the operating system. This “all or nothing” approach
to privilege delegation means that any application that must perform a privileged operation, such as a
binding to a reserved network port (for example, one whose port number is less than 1024), must be
started as root.

Starting applications in this manner, however, is inherently risky because it means that the application will
have privilege to do anything on the system. Administrators are forced to trust the applications to use only
the privileges that they need, and only in the ways that are expected. Consequently, disaster could ensue
should the application not manage its use of privilege safely, or should the application be misconfigured or
exploited in some way.

Process Rights Management
Introduced in the Solaris 10 OS, Process Rights Management replaces the dependence on a special UID
(for example, UID 0), using instead nearly 50 discrete and well-defined privileges that can be individually
delegated or revoked as needed. While support for the traditional privilege model is still maintained for
backward compatibility, this new approach offers administrators and software developers the ability to
exercise fine-grained control over the delegation and use of privilege in the Solaris OS.

Solaris Process Rights Management is a capability in the Solaris 10 OS that allows the traditional super-
user authority to be divided into a discrete set of privileges, each with a specific purpose. A privilege or set
of privileges can be granted to a process, enabling it to accomplish tasks that normally would have
required administrative or super-user privilege. For example, the file_dac_read privilege is used to
provide an otherwise unprivileged process with the ability to read any local file on the system, regardless of
its ownership or permissions. Similarly, the net_privaddr privilege is used to allow a process to bind and
listen on a privileged network port (that is, one whose port number is between 1 and 1023). For an entire
listing of privileges, see privileges(5) or the output of the ppriv -vl command.

Privilege Keywords
There are three special privilege keywords: all, zone, and basic.

• As the name suggests, all refers to the complete set of privileges on the system. The all keyword is
appropriate only when used within the Solaris 10 Global Zone.

• When working within a Solaris 10 container, the zone keyword is used to denote all of the privileges
available for use in a local zone. Today, Solaris™ Containers run with inherently less privilege than the
Global Zone (although this might change in a future release of the Solaris OS). Several of the privileges
found in the all set are not available in a Solaris container, hence the reason for a separate keyword.

• The basic keyword is used to refer to a set of privileges that all processes—privileged and
unprivileged—are accustomed to having. By default, these basic privileges are assigned to every
process, although they can be taken away if they are not needed.
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view

3-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Privilege Sets
A privilege set is simply a mechanism for grouping together a collection of privileges. Every process has
the following four distinct privilege sets assigned that collectively determine which privileges are currently
in effect for the process, as well as which are available to the process and its children.

To illustrate the concept of privilege sets, consider the following example, in which the privilege sets
associated with the rpcbind process are displayed using the ppriv(1) command.

ppriv -S `pgrep rpcbind`
260: /usr/sbin/rpcbind
flags = PRIV_AWARE
 E: net_privaddr,proc_fork,sys_nfs
 I: none
 P: net_privaddr,proc_fork,sys_nfs
 L: none

In this example, the rpcbind process is running with three privileges (net_privaddr, proc_fork, and
sys_nfs). These privileges are the only ones that the rpcbind process is able to use because its
Permitted privilege set is equal to its Effective set. Note that the rpcbind process is not permitted to
use the proc_exec privilege, which means that it is not able to use the exec(2) family of system calls.
Because the Permitted and Limit sets take effect upon the use of an exec(2) call, there is no reason
for those sets—in this example, anyway—to contain any privileges for this process. For more information
on these privilege sets, their relationship to one another, and their use, refer to the privileges(5)
manual page.

Note – See “References” on page 12 for posts, articles, and resources that discuss the new Process Rights
Management capability in the Solaris 10 OS. Most of this material focuses on describing what this new
privilege model is, why it is useful, and how it can be applied using mechanisms such as the Solaris Role-
based Access Control (RBAC) facility, the Service Management Facility (SMF), and individual tools such
as ppriv(1).

Privilege Set Description

Permitted (or P) Contains all of the privileges that the process is permitted to use. This represents the
maximum or complete set of privileges for a given process.

Effective (or E) Contains those privileges from the Permitted set that are currently in effect.

Inheritable (or I) Contains those privileges that will be passed on to child processes upon the use of the
exec(2) family of system calls.

Limit (or L) Upper bound of the privileges that a process and its children can obtain. Changes to
this set take effect upon the next exec(2) call.
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view

4-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Making Programs Privilege Aware
Consider how Process Rights Management can be valuable from the viewpoint of a software developer.
A developer could modify a program to become privilege aware so that it runs with only the privileges that
it needs, and activates specific privileges only when it needs them. Privilege bracketing ensures that the
program is running with privilege only when privilege is needed. A developer “brackets” the code by
enabling the privilege just before it is needed, and disabling the privilege immediately after the privileged
functions complete, thereby providing clear boundaries within which privileges can be used.

This section shows how to change a program so that it:

• Drops any privileges that it will never need.
• Disables any privileges not immediately needed.
• Enables the remaining privileges only when it needs them (disabling them when they are no longer

required).
• Relinquishes the use of privileges when they are no longer needed at all by the rest of the program.

Note – To make use of Solaris privileges, you do not need to modify the source code of programs.
Programs can be executed with an additional or a reduced set of privileges using RBAC, SMF, or ppriv.
Developing programs to be privilege aware, however, gives developers more fine-grained control over
when privileges are enabled, used, and relinquished.

Using the ping Program for this Example
To illustrate the concept of making programs privilege aware, this section uses the OpenSolaris version of
the /usr/sbin/ping program, a set-id program, which was chosen for the following reasons:

• The ping(1M) source code is simple and straightforward to read and understand.
• All of the changes needed to make it privilege aware were contained in one file.

In this article, the term set-id refers to files that are either set-uid or set-gid. The ping program is
set-uid (to “root”), which means that when the ping program is run (by any user), the actual ping
code is executed with the privileges of the root user. Without privilege bracketing, the ping code could
potentially run with any privilege available to root—which is all of them.

Note – There is nothing special about ping with respect to privileges and privilege bracketing. The same
techniques described in this section could be applied to other programs, whether they are set-id or not.
In the case of a non-set-id program, privilege bracketing can be used to drop privileges granted via the
“basic” set, which are granted to every process (by default) on startup. For example, suppose a program
ran without privilege, but a developer did not want to allow that program to be able to execute other
programs. To do this, the developer could simply drop the proc_exec privilege.
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqbe?a=view

5-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
In February 2003, before the ping command was made privilege aware, ping was a set-uid root
program that controlled its use of privilege using the seteuid(2) function. When the program started as
root, it quickly set its effective UID to the UID of the calling user to run with less privilege. When it came
time to execute a privileged operation, the code issued another seteuid call that reset its EUID to root
so that the privileged operation could succeed.

With the introduction of Process Rights Management in the Solaris 10 OS, this model was no longer
needed. Rather than executing code as EUID 0, specific privileges are used to define the types of
privileged operations that are permitted. This is a major advance because, in the Solaris 10 OS, privilege-
aware programs will run with only the privileges that they need, exactly when they need them.

Note – Line numbers in code samples represent a snapshot of the code as of the writing of this article.
They are meant to provide a relative reference only. Line numbers will likely change over time when
modifications are made to the OpenSolaris source code.

Privilege Bracketing Using Private Header Files and Functions
This section examines the OpenSolaris ping.c source code and walks through the steps of making the
ping program privilege aware using private header files and functions—the term “private” referring to the
stability of the interfaces (for example, functions) used by Sun to solve this problem. In this particular case,
the functions used were private to the Solaris ON (Operating System and Networking) software
consolidation and were not intended for use by software developers working on code outside of that
consolidation. For an example of how to more generally solve this same problem using public interfaces,
see “Privilege Bracketing Using Public Header Files and Functions” on page 8. For information about
interface stability classifications, see attributes(5).

Specifying the Header File for Private Interfaces
To make a program privilege aware, begin by including a new header that declares functions and defines
constants used by the privilege manipulation functions that will be used later in this section.

 72 #include <priv_utils.h>

The priv_utils.h file is posted on the OpenSolaris Web site at
http://cvs.opensolaris.org/source/xref/usr/src/head/priv_utils.h.

Initializing the Program's Privileges
Next, in the main function, initialize the program’s privileges, dropping all of the privileges that are not
needed, as shown in the following code.

 247 /*
 248 * This program needs the net_icmpaccess privileges. We'll fail
 249 * on the socket call and report the error there when we have
 250 * insufficient privileges.
 251 */
 252 (void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_NET_ICMPACCESS,
 253 (char *)NULL);
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakd?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakd?a=view
http://cvs.opensolaris.org/source/xref/usr/src/head/priv_utils.h
http://cvs.opensolaris.org/source/xref/usr/src/head/priv_utils.h
http://docs.sun.com/app/docs/doc/816-5175/6mbba7evc?a=view

6-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Remember that ping is still set-uid root, which means that, when it is started, it will have the privileges
that have been assigned to root (which is, by default, all). This is necessary in order to preserve
backward compatibility.

The purpose of the __init_suid_priv function, as described in priv_utils.h code, is to do the
following (actual source code comments are provided):

 48 /*
 49 * Should be run at the start of a set-uid root program;
 50 * if the effective uid == 0 and the real uid != 0,
 51 * the specified privileges X are assigned as follows:
 52 *
 53 * P = I + X + B (B added insofar allowable from L)
 54 * E = I
 55 * (i.e., the requested privileges are dormant, not active)
 56 * Then resets all uids to the invoking uid; no-op if euid == uid == 0.
 57 *
 58 * flags: PU_LIMITPRIVS, PU_CLEARLIMITSET, PU_CLEARINHERITABLE
 59 *
 60 * Caches the required privileges for use by __priv_bracket().
 61 *
 62 */

The __init_suid_priv function, as used in the ping.c code, does the following tasks:

• Resets the real and effective UID of the ping process to that of the calling user so that it is no longer
running as root.

• Clears the limit set of the ping process, which means that any children spawned by this process will
themselves have no privileges.

• Adds the net_icmpaccess privilege to the permitted set of the ping process so that it can be enabled
and used when necessary. Consequently, the four privilege sets (Effective, Inheritable,
Permitted, and Limit) of the ping process will look like the following example.

ppriv -S `pgrep ping`
14527: ping localhost
flags = PRIV_AWARE
 E: basic
 I: basic
 P: basic,net_icmpaccess
 L: none

For more information on each of these privilege sets, refer to “Privilege Sets” on page 3. For
additional background information, refer to the Sun Process Rights Management Tutorial at
http://iforce.sun.com/protected/solaris10/adoptionkit/tech/least/tutorial.html.

According to ppriv, the net_icmpaccess privilege is used to allow a process to send and receive ICMP
packets.

$ ppriv -lv net_icmpaccess
net_icmpaccess
 Allows a process to send and receive ICMP packets.
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://iforce.sun.com/protected/solaris10/adoptionkit/tech/least/tutorial.html

7-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
With the changes made to ping thus far, rather than having the potential to access all of root's power, a
ping process will now run as the calling user's UID with a single (non-basic) privilege that allows the
sending or receiving of ICMP packets.

In addition, priv_utils.h offers more instruction as to how to proceed.

 65 /*
 66 * After calling __init_suid_priv we can __priv_bracket(PRIV_ON) and
 67 * __priv_bracket(PRIV_OFF) and __priv_relinquish to get rid of the
 68 * privileges forever.
 69 */

Implementing Privilege Bracketing Around Privileged Operations
Recall that, before ping was made privilege aware, it used seteuid to control when its privileges were in
effect. This was necessary for the program to run in a privileged capacity only when it needed to execute
privileged operations. In the new model, the ping process leverages privilege bracketing to control when a
privilege (listed in the permitted privilege set of the process) is made effective.

To see privilege bracketing in action, take a look at the following code, which appears in the
setup_socket function in ping.c.

 1196 /* now we need the net_icmpaccess privilege */
 1197 (void) __priv_bracket(PRIV_ON);
 1198
 1199 recv_sock = socket(family, SOCK_RAW,
 1200 (family == AF_INET) ? IPPROTO_ICMP : IPPROTO_ICMPV6);
 1201
 1202 if (recv_sock < 0) {
 1203 Fprintf(stderr, "%s: socket %s\n", progname, strerror(errno));
 1204 exit(EXIT_FAILURE);
 1205 }
 1206
 1207 /* revert to non-privileged user after opening sockets */
 1208 (void) __priv_bracket(PRIV_OFF);

As you can see, the __priv_bracket function is used around the privileged operation—in this case, the
socket(2) call—to control whether the instructions are executed with privilege. This is one form of
privilege bracketing that enables and disables all of the privileges cached by the __init_suid_priv
function invoked earlier in the program (and described in “Initializing the Program's Privileges” on page 5).
There are other privilege manipulation functions available to allow more fine-grained control if needed.
To learn more, refer to the Solaris 10 product documentation—”Developing Privileged Applications” in the
Solaris Security for Developer’s Guide at:

http://docs.sun.com/app/docs/doc/816-4863/6mb20lvf9?a=view

Relinquishing Privileges when No Longer Needed
The final task is to relinquish privileges when you are certain that they are no longer needed.

 602 __priv_relinquish();

The __priv_relinquish function is called after the setup_socket function has completed in main.
Because the program will no longer need the net_raw_icmpaccess privilege (the only non-basic
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakd?a=view

8-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
privilege available to the process), it can now be safely dropped by calling the __priv_relinquish
function.

Note – Once a privilege is relinquished, it will no longer be available to the process. If a privilege might be
needed later in the program, then simply disable it (removing it from the Effective privilege set of the
process) and use functions described later in this article (priv_delset and setppriv) instead.
Disabling the privilege effectively takes away that privilege but does not relinquish it entirely so that, if the
privilege is needed later, it can simply be added back to the Effective set (using priv_addset and
setppriv).

Privilege Bracketing Using Public Header Files and Functions
The privilege functions and header file described in “Privilege Bracketing Using Private Header Files and
Functions” on page 5 are private to Solaris and, more specifically, to the ON [OS and Networking]
consolidation. Therefore, the approach described above will work just fine if you are modifying
OpenSolaris set-id programs such as atq, atrm, traceroute, lpstat, and the like. For details on
Solaris consolidations, see http://blogs.sun.com/roller/page/kupfer?entry=the_hitchhiker_s_guide_to.

What if you are developing programs for another consolidation or something that is entirely external to
OpenSolaris? Can you still implement privilege bracketing? Absolutely!

In addition to the ON private header files and functions discussed above, there is also an available set of
public header files and functions. For the sake of comparison, this section describes how to adapt the
privilege-aware version of ping.c (as described in “Privilege Bracketing Using Private Header Files and
Functions” on page 5) to use the public versions of the privilege manipulation header files and functions.
Doing so accomplishes the same result—namely, making the program privilege aware and implementing
bracketing around the privileged operations.

Note – By way of convention, this section describes only the changes that need be implemented to convert
the ping.c program modified earlier to use the new public header files and functions.

Specifying the Header File for Public Interfaces
The first thing to do is change the header file. To use the public interfaces, be sure to include priv.h and
not priv_utils.h.

72c72
< #include <priv_utils.h>

> #include <priv.h>

Defining a Convenience Function to Initialize the Program's Privileges
Next, go to the section of the code that configured the privilege sets at the start of the program. Recall that
this was done in order to drop any privileges that were never needed, and disable those that were left but
not needed right now. This was originally accomplished using the __init_suid_priv function, which
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://blogs.sun.com/roller/page/kupfer?entry=the_hitchhiker_s_guide_to
http://blogs.sun.com/roller/page/kupfer?entry=the_hitchhiker_s_guide_to

9-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
provided a convenient wrapper for that functionality. Unfortunately, that function is private, so rather than a
single line, a little more work is required.

To make the code easier to follow for this article, a new function (setup_privs) was created to handle
the initial privilege operations. The setup_privs function handles the majority of the work originally done
by the __init_suid_priv function.

225a226
> static priv_set_t *setup_privs(void);
227a229,298
> * setup_privs()
> */
> priv_set_t *
> setup_privs(void)
> {
> priv_set_t *pPrivSet = NULL;
> priv_set_t *lPrivSet = NULL;
>
> /*
> * Start with the 'basic' privilege set and then remove any
> * of the 'basic' privileges that will not be needed by this
> * process. The 'net_icmpaccess' privilege will be added
> * since we know that we will need it for the permitted set.
> */
>
> if ((pPrivSet = priv_str_to_set("basic", ",", NULL)) == NULL) {
> perror("priv_str_to_set");
> return (NULL);
> }
>
> /*
> * Let's clear all of the privileges we know we will not
> * need from the 'basic' set.
> */
>
> (void) priv_delset(pPrivSet, PRIV_FILE_LINK_ANY);
> (void) priv_delset(pPrivSet, PRIV_PROC_EXEC);
> (void) priv_delset(pPrivSet, PRIV_PROC_FORK);
> (void) priv_delset(pPrivSet, PRIV_PROC_INFO);
> (void) priv_delset(pPrivSet, PRIV_PROC_SESSION);
>
> /* Next add the known required privilege, 'net_icmpaccess' */
>
> (void) priv_addset(pPrivSet, PRIV_NET_ICMPACCESS);
>
> /* Set the permitted privilege set. */
>
> if (setppriv(PRIV_SET, PRIV_PERMITTED, pPrivSet) != 0) {
> perror("setppriv(PRIV_SET, PRIV_PERMITTED)");
> return (NULL);
> }
>
> /* Ensure that the 'net_icmpaccess' privilege is off by default. */
>
> if (priv_set(PRIV_OFF, PRIV_EFFECTIVE, PRIV_NET_ICMPACCESS,
> NULL) != 0) {
> perror("priv_set(PRIV_OFF, PRIV_EFFECTIVE)");
> return (NULL);
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

10-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
> }
>
> /* Clear the limit set. */
>
> if ((lPrivSet = priv_allocset()) == NULL) {
> perror("priv_allocset");
> return (NULL);
> }
>
> priv_emptyset(lPrivSet);
>
> if (setppriv(PRIV_SET, PRIV_LIMIT, lPrivSet) != 0) {
> perror("setppriv(PRIV_SET, PRIV_LIMIT)");
> return (NULL);
> }
>
> priv_freeset(lPrivSet);
>
> return (pPrivSet);
> }
>
> /*

Why go through the exercise of starting with the basic set of privileges and removing them all? Why not
just start out with no privileges and simply add those that are needed? The answer lies in the fact that the
basic privilege set in Solaris is not intended to be static—over time, additional non-administrative privileges
might be added to future Solaris OS versions. If the program was started with no privileges, then it might
fail because in some future Solaris version it might need a privilege for an operation that previously did not
require one. In essence, this is a way of future-proofing code.

Initializing the Program's Privileges
Now that a function has been defined to help mimic most of the behavior of __init_suid_priv, consider
how this function might be used in the following example:

243a315
> priv_set_t *privSet = NULL;
252,253d323
< (void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_NET_ICMPACCESS,
< (char *)NULL);
254a325,337
> if ((privSet = setup_privs()) == NULL) {
> exit(EXIT_FAILURE);
> }
>
> /*
> * Reset the real and effective UIDs for this process.
> */
>
> if (setreuid(getuid(), getuid()) != 0) {
> perror("setreuid");
> exit(EXIT_FAILURE);
> }
>

Note how the __init_suid_priv call has been replaced by calls to both setup_privs and
setreuid(2) functions. These changes are straightforward because all of the work was done in the
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

11-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
setup_privs function. The code captures the privilege set parameter (privSet) because it will be
needed later in the code when it comes time to relinquish privileges.

Relinquishing Privileges when No Longer Needed
Continue linearly down the code to see where other replacements are needed. At this point, all of the hard
work is over. The rest of the changes needed to complete the conversion from private to public privilege
manipulation functions are trivial. The following example shows the next replacement.

602c685,687
< __priv_relinquish();

> /*
> * Clear the permitted set of the 'net_icmpaccess' privilege.
> */
603a689,696
> (void) priv_delset(privSet, PRIV_NET_ICMPACCESS);
>
> if (setppriv(PRIV_SET, PRIV_PERMITTED, privSet) != 0) {
> perror("setppriv(PRIV_PERMITTED)");
> exit(EXIT_FAILURE);
> }
> priv_freeset(privSet);
>

In this code, the __priv_relinquish function is replaced with a call to setppriv(2). For this change
to work, however, the net_icmpaccess privilege must be removed from privSet using the
priv_delset function. Remember that privSet (returned from the setup_privs function used earlier
in the code) contains the privileges from the basic privilege set that had not already been dropped, as well
as the net_icmpaccess privilege. By removing the net_icmpaccess privilege in the above code
example, setppriv will effectively drop the last privilege use by the program, thereby relinquishing all of
the program's privileges. This is because all of the basic privileges typically granted to processes had been
dropped in the setup_privs function at the start of the program. The only privilege that had remained
was net_icmpaccess. Now that the privilege has been dropped, the program will run with no privileges.

Note – Future versions of the Solaris OS might add new non-administrative privileges to the basic privilege
set. If this is done, the setup_privs code above will need to be reviewed and possibly modified in order
to ensure that all unused privileges have been dropped. Otherwise, the ping program would run with
those new privileges in effect.

Implementing Privilege Bracketing Around Privileged Operations
The next section of replacement code is where the bracketing of the net_icmpaccess privilege is
enforced. In this case, the call to __priv_bracket is replaced with a call to the priv_set(3C) function.
The priv_set function is called with the PRIV_ON parameter, which enables the net_icmpaccess
privilege in the effective privilege set of the process.
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakk?a=view

12-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
1197c1290,1293
< (void) __priv_bracket(PRIV_ON);

> if (priv_set(PRIV_ON, PRIV_EFFECTIVE, PRIV_NET_ICMPACCESS, NULL) != 0) {
> perror("priv_set(PRIV_ON, PRIV_EFFECTIVE)");
> exit(EXIT_FAILURE);
> }

Similarly, the companion instance of __priv_bracket is replaced with another call to priv_set (once
the privileged operations are complete) to remove the net_icmpaccess privilege from the effective
privilege set of the process, therefore completing the bracketing of privilege.

1208c1304,1308
< (void) __priv_bracket(PRIV_OFF);

> if (priv_set(PRIV_OFF, PRIV_EFFECTIVE, PRIV_NET_ICMPACCESS,
> NULL) != 0) {
> perror("priv_set(PRIV_OFF, PRIV_EFFECTIVE)");
> exit(EXIT_FAILURE);
> }

That is all there is to it. As you can tell, there is a bit more work in the initial setup of privilege sets for a
process. However, once complete, the use of the public privilege manipulation functions is straightforward.

Conclusion
With the information contained in this article (supplemented by the Solaris 10 product documentation, the
OpenSolaris community, and the “References” on page 12), you should have more than enough
information to get started converting your own programs to become privilege aware. Keep in mind that this
capability is useful for all types of processes—not just set-id programs. Even “unprivileged” programs
can be made to be privilege aware, limiting which basic privileges they can use, and when they can use
them.

References
• Casper Dik's WebLog – Solaris Privileges

http://blogs.sun.com/casper/20040722

• Sun BigAdmin Xpert Session – Process Rights Management in the Solaris 10 OS

http://www.sun.com/bigadmin/xperts/sessions/16_prm/

• Sun Process Rights Management Tutorial

http://iforce.sun.com/protected/solaris10/adoptionkit/tech/least/tutorial.html

• OpenSolaris ping.c Source Code

http://cvs.opensolaris.org/source/xref/usr/src/cmd/cmd-inet/usr.sbin/ping/ping.c

• OpenSolaris priv_utils.h Source Code

http://cvs.opensolaris.org/source/xref/usr/src/head/priv_utils.h
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://blogs.sun.com/casper/20040722
http://www.sun.com/bigadmin/xperts/sessions/16_prm/
http://iforce.sun.com/protected/solaris10/adoptionkit/tech/least/tutorial.html
http://cvs.opensolaris.org/source/xref/usr/src/cmd/cmd-inet/usr.sbin/ping/ping.c
http://cvs.opensolaris.org/source/xref/usr/src/head/priv_utils.h

13-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
• OpenSolaris priv.h Source Code

http://cvs.opensolaris.org/source/xref/on/usr/src/head/priv.h

• Solaris 10 attributes(5) Manual Page

http://docs.sun.com/app/docs/doc/816-5175/6mbba7evc?a=view

• Solaris 10 exec(2) Manual Page

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view

• Solaris 10 ping Manual Page

http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqbe?a=view

• Solaris 10 ppriv(1) Manual Page

http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view

• Solaris 10 privileges(5) Manual Page

http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view

• Solaris 10 seteuid(2) Manual Page

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakd?a=view

• Solaris 10 setppriv(2) Manual Page

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakk?a=view

About the Author
Glenn Brunette is a Sun Distinguished Engineer with nearly 15 years’ experience in information security.
Glenn currently works in Sun's Client Solutions CTO as the Director and Chief Architect of the CSO
Security Office. In this role, Glenn is responsible for global security strategy and architecture, security-
focused collaboration and knowledge sharing, as well as improving the quality and security of products and
services delivered to Sun's customers.

Glenn is the driving force behind Sun's Systemic Security approach and is also an OpenSolaris Security
Community Leader, the co-founder of the Solaris Security Toolkit software, and a frequent author,
contributor, and speaker at both Sun and industry events. Externally, Glenn has served as the Vice-Chair
of the Enterprise Grid Alliance Grid Security Working Group and Working Group Champion for the National
Cyber Security Partnership's Technical Standards and Common Criteria Task Force. Finally, Glenn is an
active contributor to the Center for Internet Security's Unix Benchmark team. Glenn is a Certified
Information Systems Security Professional (CISSP) and has been trained in the National Security
Agency's INFOSEC Assessment Methodology (IAM).
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view
http://cvs.opensolaris.org/source/xref/on/usr/src/head/priv.h
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakk?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view
http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqbe?a=view
http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqbe?a=view
http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakd?a=view
http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakd?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jakk?a=view
http://docs.sun.com/app/docs/doc/816-5175/6mbba7evc?a=view
http://docs.sun.com/app/docs/doc/816-5175/6mbba7evc?a=view

14-Privilege Bracketing in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Acknowledgements
The author would like to thank the following people for their inspiration, technical feedback, and overall
support in the development of this article: Casper Dik, Darren Moffat, Joep Vesseur, and Mark Thacker.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If you live in the
United States, Canada, Europe, or Japan, you can purchase documentation sets or individual manuals
through this program.

Accessing Sun Documentation Online
The docs.sun.com Web site enables you to access Sun technical documentation online. You can browse
the docs.sun.com archive or search for a specific book title or subject at http://docs.sun.com/.

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:
http://www.sun.com/blueprints/online.html
Privilege Bracketing in the Solaris™ 10 Operating System — April 2006

http://docs.sun.com/
http://www.sun.com/blueprints/online.html

	Privilege Bracketing in the Solaris™ 10 Operating System
	Introduction
	Process Rights Management
	Privilege Keywords
	Privilege Sets

	Making Programs Privilege Aware
	Using the ping Program for this Example
	Privilege Bracketing Using Private Header Files and Functions
	Specifying the Header File for Private Interfaces
	Initializing the Program's Privileges
	Implementing Privilege Bracketing Around Privileged Operations
	Relinquishing Privileges when No Longer Needed

	Privilege Bracketing Using Public Header Files and Functions
	Specifying the Header File for Public Interfaces
	Defining a Convenience Function to Initialize the Program's Privileges
	Initializing the Program's Privileges
	Relinquishing Privileges when No Longer Needed
	Implementing Privilege Bracketing Around Privileged Operations

	Conclusion
	References
	About the Author
	Acknowledgements
	Ordering Sun Documents
	Accessing Sun Documentation Online

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

