
PRIVILEGE DEBUGGING IN THE
SOLARIS™ 10 OPERATING SYSTEM
Glenn Brunette, Security Program Office, Client Solutions
Darren Moffat, Solaris Security Technologies Group,
 Operating Platforms Group (OPG)

Sun BluePrints™ OnLine — February 2006

819-5507-10
Revision 0.9, 1/18/06
Edition: February 2006

Please
Recycle

© 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Solaris, and Sun BluePrints are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Sun Microsystems, Inc.

Privilege Debugging in the Solaris™ 10 Operating System — February 2006

TABLE OF CONTENTS

Privilege Debugging in the Solaris™ 10 Operating System . 1
Introduction . 1
What is Process Rights Management? . 2
What is Privilege Debugging? . 3
Using DTrace for Privilege Debugging . 4
Using the privdebug Program . 5
Privilege Debugging Using an Example Apache2 Service . 7

Privilege Debugging the Apache2 Service—Global Zone Method . 8
Privilege Debugging the Apache2 Service—Local Zone Method . 17

Conclusion. 21
References . 21

Sun BluePrints . 21
Sun Product Documentation and Manual Pages. 21
Other Documentation, Articles and Web Sites . 22

About the Authors . 22
Glenn Brunette. 22
Darren Moffat. 23

Acknowledgements . 23
Ordering Sun Documents . 23
Accessing Sun Documentation Online . 23

1-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Privilege Debugging in the Solaris™ 10 Operating System

This Sun BluePrints™ OnLine article describes how, in the Solaris™ 10 Operating System (Solaris 10 OS),
to profile applications and services in order to determine which Solaris 10 privileges they attempt to use.
With this information, organizations can then restrict those applications and services so that they are
granted only the absolutely necessary privileges that they need to fulfill their intended purpose.

This article contains the following sections:

• Introduction
• What is Process Rights Management?
• What is Privilege Debugging?
• Using DTrace for Privilege Debugging
• Using the privdebug Program
• Privilege Debugging Using an Example Apache2 Service
• Conclusion
• References
• About the Authors
• Acknowledgements

Introduction
The traditional UNIX® privilege model is based on the concept of a super-user. In this model, the system
associates all of its privileged operations with the root account or—more precisely—the user identifier
(UID) 0. All other UIDs are considered unprivileged by the operating system. This “all or nothing” approach
to privilege delegation means that any application that must perform a privileged operation, such as a
binding to a reserved network port (for example, one whose port number is less than 1024), must be
started as root.

Starting applications in this manner, however, is inherently risky because it means that the application will
have privilege to do anything on the system. Administrators are forced to trust the applications to use only
the privileges that they need and only in the ways that are expected. Consequently, disaster could ensue
should the application not manage its use of privilege safely, or should the application be misconfigured or
exploited in some way.

The Solaris 10 OS introduced many new security features and capabilities. One of its most significant
security enhancements is the Process Rights Management capability. Process Rights Management
replaces the dependence on a special UID (for example, UID 0), using instead a number of discrete and
well-defined privileges that can be individually delegated or revoked as needed. While support for the
traditional privilege model is still maintained for backward compatibility, this new approach offers
administrators and software developers the ability to exercise fine-grained control over the delegation and
use of privilege in the Solaris OS.
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

2-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
In IT security, the well-known “least privilege” principle states that: “Every program and every user of the
system should operate using the least set of privileges necessary to complete the job.”1

In the Solaris 10 OS, administrators can now configure their applications and services for least privilege
through the careful delegation of individual privileges. Programs and services that traditionally needed to
be started as root can now simply be assigned only the privileges they need, and started as an otherwise
unprivileged user. This way, they have only the powers they require to perform their specific privileged
tasks. Optionally, applications can also be developed to be “privilege aware,” which gives them even
greater control over which privileges are enabled, disabled, or used. When you deploy applications and
services on Solaris 10 OS, the question arises: How do you know what privileges an application needs?

This article describes how to quickly and easily determine which privileges might be needed by a program,
service, or process. With this information, you can adjust how that program, service, or process is started
so that only the absolutely necessary privileges are actually granted. This can be accomplished whether
you are invoking programs from a command line or starting services using the Solaris 10 Service
Management Facility (SMF). In turn, these actions can improve the overall security of the system by
ensuring that applications and services are running with just the right privileges—and no more.

What is Process Rights Management?
Solaris Process Rights Management is a capability in the Solaris 10 OS that allows the traditional super-
user authority to be divided into a discrete set of privileges, each with a specific purpose. A privilege or set
of privileges can be granted to a process to enable it to accomplish tasks that normally would have
required administrative or super-user privilege. For example, the file_dac_read privilege is used to
provide an otherwise unprivileged process with the ability to read any file on the system, regardless of its
ownership or permissions. For an entire listing of privileges, see privileges(5) or the output of the
ppriv -vl command.

Three special privilege keywords are discussed in this article: all, zone, and basic.

• As the name suggests, all refers to the complete set of privileges on the system. The all keyword is
appropriate only when used within the Solaris 10 Global Zone.

• When working within a Solaris 10 Container, the zone keyword is used to denote all of the privileges
available for use in a local zone. Today, Solaris™ Containers run with inherently less privilege than the
Global Zone (although this might change in a future release of the Solaris OS). Several of the privileges
found in the all set are not available in a Solaris Container, hence the reason for a separate keyword.

• The basic keyword is used to refer to a set of privileges that all processes—privileged and
unprivileged—are accustomed to having. These basic privileges are, by default, assigned to every
process, although they can be taken away if they are not needed.

Given that there are nearly 50 distinct privileges available in the Solaris 10 OS, it is critical to quickly and
easily determine which privileges are relevant for any given program, service, or process. Subsequent

1.“”The Protection of Information in Computer Systems,” Jerome Saltzer and Michael Schroeder. April 17. 1975. http://
web.mit.edu/Saltzer/www/publications/protection/
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view

3-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
sections describe some of the methods available for enumerating the privileges used by a process or
service.

What is Privilege Debugging?
Strictly speaking, the term privilege debugging is used to describe the process of enumerating those
privileges needed by a service or process in order to be able to run and perform its tasks successfully.
With this list of privileges, a privilege profile can be developed for use with Role-based Access Control
(RBAC) execution profiles or SMF service profiles, allowing administrators to define the privileges with
which a service or program should be run.

The Solaris 10 OS provides a rudimentary privilege debugging capability in the ppriv(1) command.
The ppriv command can be configured to attach to an existing process, or start a new one, with privilege
debugging enabled using its -D (privilege debugging) option.

usage: ppriv [-v] [-S] [-D|-N] [-s spec] { pid | core } ...
 ppriv -e [-D|-N] [-s spec] cmd [args ...]
 ppriv -l [-v] [privilege ...]

 (report, set or list process privileges)

However, the ppriv notion of privilege debugging is limited to debugging privilege check failures. When a
necessary privilege is not available, the ppriv command can be configured to tell the user which privilege
was needed when the program failed. Consider the following example.

$ ppriv -e -D cat /etc/shadow
cat[6286]: missing privilege "file_dac_read" (euid = 100, syscall =
225) needed at ufs_iaccess+0xd2
cat: cannot open /etc/shadow

In this example, an unprivileged user (EUID 100) was not able to open the /etc/shadow file for reading.
The attempt to perform this action generated a missing privilege message, explaining that the
file_dac_read privilege was not granted to the user, and therefore the operation could not proceed.
In addition to printing the error message to the user's terminal session, the following information is logged
via SYSLOG.

Nov 14 09:35:50 blackhole genunix: [ID 702911 kern.notice] cat[6286]:
missing privilege "file_dac_read" (euid = 100, syscall = 225) needed at
ufs_iaccess+0xd2

Further, the Solaris 10 OS can be globally configured to use this form of privilege debugging through the
use of the priv_debug parameter defined in /etc/system. If this parameter is set to 1, then privilege
debugging is enabled for the entire system.

As with many /etc/system parameters, the current setting can be queried using the mdb(1) command.

echo "priv_debug/X" | mdb -k
priv_debug:
priv_debug: 0
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view
http://docs.sun.com/app/docs/doc/817-0689/6mgfkpctk?a=view

4-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
In this case, the priv_debug setting was disabled (0). Although this approach is useful for debugging
single error messages, it can be cumbersome when needing to iteratively exercise all of the possible
failure cases for a given service before a listing of privileges can be derived. Ideally, a process should be
able to run in a training or evaluation mode and in a controlled environment in order to have access to any
privilege on the system. While in this state, the use of all of the privileges by a process (or group of
processes) could then be recorded in order to enumerate all the privileges that had been used.

To be successful even in this model, however, the process or service must be fully exercised to ensure that
every code path in which privileges might be used has been traversed. Failure to fully exercise the service
in this way might mean that some privileges needed by the service have not been identified. Further, be
sure to exercise not only the successful operation of the software, but also error conditions. Error
conditions often involve infrequently-used areas of the source code and could require privileges.

Using DTrace for Privilege Debugging
To assist in determining which privileges are used by a program (successfully or not), use the Dynamic
Tracing Tool (DTrace) in the Solaris 10 OS. In the Solaris 10 OS 03/2005 release, there are two privilege-
specific DTrace probes that are useful for privilege debugging: priv-ok and priv-err.

dtrace -l | grep priv-
 4523 sdt genunix priv_policy_only priv-ok
 4524 sdt genunix priv_policy_choice priv-ok
 4525 sdt genunix priv_policy priv-ok
 4526 sdt genunix priv_policy_only priv-err
 4527 sdt genunix priv_policy_choice priv-err
 4528 sdt genunix priv_policy_err priv-err

Warning – The specific DTrace probes used in this article are not declared by Sun to be a stable interface
(see attributes(5) for more information). As a result, these particular interfaces might change or might
be removed in future releases, updates, or patches to the Solaris OS.

These probes are used to detect the successful (priv-ok) and unsuccessful (priv-err) use of privilege.
With this information and a little DTrace scripting, it is possible to implement a privilege debugging
mechanism that does not rely solely on failure cases for detection.

In the following example, DTrace is used to simply print an entry whenever the priv-ok or priv-err
probes are activated. This provides a quick and easy way to verify that this approach will work.

dtrace -n 'sdt:::priv-*'
dtrace: description 'sdt:::priv-*' matched 6 probes
CPU ID FUNCTION:NAME
 0 4525 priv_policy:priv-ok
 0 4523 priv_policy_only:priv-ok
 0 4523 priv_policy_only:priv-ok
 0 4525 priv_policy:priv-ok
 0 4525 priv_policy:priv-ok
 0 4525 priv_policy:priv-ok
 0 4525 priv_policy:priv-ok
 0 4528 priv_policy_err:priv-err
 0 4523 priv_policy_only:priv-ok
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/app/docs/doc/816-5175/6mbba7evc?q=attributes%285%29&a=view

5-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Before continuing, however, it is useful to know what other kinds of information can be gathered. Adjusting
the DTrace invocation in the following way can undercover more helpful information.

dtrace -n 'sdt:::priv-* { printf("%d %d %s\n", arg0, pid, execname); }'
dtrace: description 'sdt:::priv-* ' matched 6 probes
CPU ID FUNCTION:NAME
 0 4525 priv_policy:priv-ok 27 7062 sh
 0 4525 priv_policy:priv-ok 26 7083 sh
 0 4525 priv_policy:priv-ok 26 7083 ps
 0 4525 priv_policy:priv-ok 28 7083 ps

Just as in the previous example, DTrace was configured to display a message whenever the priv-ok or
priv-err probe was used. In this case, the output was changed so that it included the number of the
privilege being checked, the process identifier attempting to use the privilege, and the actual command
name (associated with the process ID). The example output shows that a shell used privileges 27 and 26,
and then the ps command used privileges 26 and 28.

What does this mean? Normally, users and processes interact with privilege names in the Solaris 10 OS,
not privilege numbers. However, because this command collects information from within the kernel, which
operates using privilege numbers, then numbers appear in the output. To map privilege numbers to
names, inspect the /usr/include/sys/priv_const.h file.

#define PRIV_PROC_EXEC 26
#define PRIV_PROC_FORK 27
#define PRIV_PROC_INFO 28

In this case, the shell was likely spawning the ps command, a combination of a fork(2) and exec(2).
The ps command used the proc_info privilege to verify that it had permission to show processes other
than those owned by the user issuing the ps command.

Caution – This particular approach might not work in all cases, because third-party kernel modules can
register additional privileges with the kernel. Such updates would not change the Sun-provided
/usr/include/sys/priv_const.h file. It is also possible for an administrator to add privileges using
the /etc/security/device_policy file.

Using the privdebug Program
Building on the foundation provided by DTrace, privdebug is a small Perl program that can help with
privilege debugging operations. Within the privdebug command is a small DTrace program that performs
the core of the enumeration work. The Perl wrapper is used to perform the privilege number to name
mapping and to provide more flexibility with respect to pre- and post-processing. Use it to enumerate the
privileges used by programs and services.

Note – The privdebug command is currently unsupported but freely available. The source code for the
privdebug program can be found at the following URL:
http://www.opensolaris.org/os/community/security/files/
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://www.opensolaris.org/os/community/security/files/
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9pj?q=ps&a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9pj?q=ps&a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jag7?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
message URL http://www.opensolaris.org/os/community/security/projects

6-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
The privdebug command has the following syntax:

./privdebug -h
privdebug [-f] [-v] [-H] [-o out]
 -n <EXECNAME> Debug a specific program name
 -p <PID> Debug a specific process ID
 -z <ZONENAME> Debug a specific zone name
privdebug [-f] [-v] [-H] [-o out]
 -e <COMMAND> Execute and debug a specific command
privdebug --help | -h

The privdebug command has two primary modes:

• It can attach to an existing process running somewhere on the system using the following options:
-n, -p, and -z. These options can be used in any combination to be as specific as needed.

• It can execute the specific program to be debugged using the -e option.

Upon successful startup, privdebug will display a header line, which includes the following fields:

The rest of this section provides several sample invocations and associated output.

In the following example, privdebug is used to trace the in.telnetd process (and all of its children):
./privdebug -n in.telnetd -f -v
STAT TIMESTAMP PPID PID PRIV CMD
USED 1231183251124451 238 7115 sys_audit in.telnetd
USED 1231183251139719 238 7115 sys_audit in.telnetd
USED 1231183251612259 238 7115 proc_fork in.telnetd
USED 1231183251974167 7115 7116 proc_exec in.telnetd
USED 1231183472328575 238 7115 proc_fork in.telnetd
USED 1231183472556716 7115 7117 proc_exec in.telnetd
USED 1231183478414533 238 7115 proc_fork in.telnetd
USED 1231183482742793 7115 7118 file_dac_write in.telnetd
USED 1231183504062754 7115 7118 proc_exec in.telnetd
[...]

Field Description

STAT Contains the status of the privilege operation. Indicates whether a given privilege was used (USED)
or whether the privilege check failed because the privilege was needed (NEED).

TIMESTAMP Simple timestamp indicating when the privilege check was made. Time is expressed as the number
of elapsed seconds since January 1, 1970.

PPID Parent process ID associated with the process that caused the privilege check.

PID Process PID of the process that caused the privilege check.

PRIV Name of the privilege that was being checked.

CMD Name of the command that caused the privilege check.
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

7-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
In the following example, privdebug is attached to PID 7062 (/bin/bash). In this case, the output
shows privileges associated with the shell, as well as commands run from the shell:

./privdebug -p 7062 -f -v
STAT TIMESTAMP PPID PID PRIV CMD
USED 1231312074567753 6673 7062 proc_fork sh
USED 1231312076416810 7062 7154 proc_exec sh
USED 1231323896848942 6673 7062 proc_fork sh
USED 1231323898693786 7062 7155 proc_exec sh
USED 1231323924895005 7062 7155 proc_fork zlogin
USED 1231323927290452 7155 7156 proc_fork zlogin
USED 1231323958729003 7155 7156 sys_devices zlogin
USED 1231323959964745 7155 7156 file_dac_write zlogin
USED 1231323960139726 7155 7156 proc_exec zlogin

In the final example, the output traces commands run directly from privdebug:

./privdebug -f -v -e ps
STAT TIMESTAMP PPID PID PRIV CMD
USED 1232521405311329 7278 7279 proc_exec ps
USED 1232521494214885 7278 7279 proc_info ps
USED 1232521494225841 7278 7279 proc_info ps

Using these basic constructs, you can enumerate privileges used or needed by processes and services in
the Solaris 10 OS.

Privilege Debugging Using an Example Apache2 Service
This section applies privilege debugging tools in a real world scenario using the Apache2 Web service that
is available in the SUNWapch2r and SUNWapch2u packages in the Solaris 10 OS. This service is
identified by the SMF Fault Management Resource Identifier (FMRI) as:

svc:/network/http:apache2

which will be abbreviated in this section as apache2. In addition, the abbreviated name httpd will be
used to refer to the actual Apache2 processes that are started by the system.

This section describes two approaches used to examine the process of privilege debugging:

• Privilege Debugging the Apache2 Service—Global Zone Method
• Privilege Debugging the Apache2 Service—Local Zone Method

To illustrate the basic concepts, privilege debugging will be performed first within a Solaris 10 Global Zone,
to keep the example simple and to leverage all of the privileges on the system. Next, privilege debugging
will be performed in a Solaris Container called web_svc. Examining privileges within the context of a
Solaris Container affords some protection given that, by default:

• You will grant all privileges to the program or service.
• You might not want this service or program to impact others running in other Solaris Containers or in the

Global Zone.
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

8-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
For the second example, the command-line prompts will be prefixed with either global (for the Global
Zone) or web_svc (for the Solaris Container) so that it is obvious where the commands are issued.

Note – The details of how to configure and install a Solaris Container are outside of the scope of this
document. The Solaris Container used in this example is based on the default Sun template. It was
changed only to define the Solaris Container root directory (that is the zonepath) and network interfaces.

Privilege Debugging the Apache2 Service—Global Zone Method
This section examines the process of privilege debugging within the context of a Solaris 10 Global Zone.
All of the commands and output recorded in this section have been entered from a terminal session
attached to the Global Zone.

The process in this section involves completing the following steps:

• Step 1. Verify the Current State of the Apache2 Service
• Step 2. Install the ApachePD Privilege Debugging Rights Profile
• Step 3. Assign the ApachePD Rights Profile to the gmb Account
• Step 4. Assign the Necessary DTrace Privileges to the gmb Account
• Step 5. Start a Privilege Debugging Session
• Step 6. Start the Apache2 Service
• Step 7. Exercise the Apache2 Service
• Step 8. Stop the Apache2 Service
• Step 9. Construct an SMF Method Context for the Apache2 Service
• Step 10. Validate an SMF Method Context for the Apache2 Service

By following these steps, you will be able to enumerate the privileges used by the Apache2 service and
then construct an SMF method context so that the service can be automatically started and stopped with
the set of privileges identified.

Step 1. Verify the Current State of the Apache2 Service
Begin by ensuring that the Apache2 service is in a known good state to eliminate the possibility that
service configuration problems could cause failures in subsequent steps. Issue the following commands to
verify that the Apache2 service can be successfully started and stopped.

svcs apache2
STATE STIME FMRI
disabled 9:59:13 svc:/network/http:apache2

svcadm enable apache2
svcs apache2
STATE STIME FMRI
online 9:59:25 svc:/network/http:apache2

svcadm disable apache2
svcs apache2
STATE STIME FMRI
disabled 9:59:31 svc:/network/http:apache2
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

9-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Note – Before proceeding further, depending on your environment, consider testing the service more
strenuously. You must have a high degree of assurance that the service is functioning properly and as
expected. If the Apache2 service is not operating correctly in any way, fix the service before proceeding to
Step 2.

Step 2. Install the ApachePD Privilege Debugging Rights Profile
Next, create a privilege debugging rights profile for the Apache2 service. This profile (called ApachePD)
will be used to ensure that the service is started with a specific UID, GID, and set of privileges (in this case,
all). To accomplish this task, modify the /etc/security/prof_attr and /etc/security/
exec_attr files, as shown in the following examples.

grep "^ApachePD" /etc/security/prof_attr
ApachePD:::Apache Service:
grep "^ApachePD" /etc/security/exec_attr
ApachePD:solaris:cmd:::/lib/svc/method/http-apache2:
uid=webservd;gid=webservd;privs=all

In order to ensure that all of the needed privileges are enumerated, be sure to specify the UID and GID that
you intend to use when the program or service is actually deployed. In general, the Solaris kernel will first
check whether a process can perform the action without the use of privilege, even when the process has
additional privileges. As such, privilege checks might not be performed (and therefore not enumerated) if
the user attempting the operation can accomplish it without the use of privilege.

The http-apache2 command, defined in the execution profile that was just created, is configured to run
with all privileges in order to ensure that any privilege checks that are performed can succeed, allowing
the program to continue uninterrupted. Depending on your environment, consider using fewer privileges if
you are certain that they will not be needed. This approach can be used to contain or restrict a program
even while its use of privileges is examined. In the worst case, if a needed privilege is not available, then
the program will likely terminate and the process of testing will need to start over.

Step 3. Assign the ApachePD Rights Profile to the gmb Account
Once the Solaris 10 RBAC rights profile is ready, it can be assigned to the user who will perform the
evaluation. In this example, the gmb account will be used to perform privilege debugging-related tasks. In
order to use the ApachePD rights profile defined in the previous step, assign that rights profile to the gmb
account using the usermod(1M) command. Exercise caution in order to avoid inadvertently losing any
existing rights profiles in the process. The usermod(1M) manual page states the following information.

[...]
-P profile One or more comma-separated rights profiles defined in
 prof_attr(4). This replaces any existing profile setting.
 If no profile list is specified, the existing setting is
 removed.
[...]

This means that the -P option is destructive and will simply replace any existing profiles with those
supplied on the command line. Therefore, you must add the new ApachePD rights profile while also
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqjs?a=view
http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqjs?a=view

10-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
preserving any others that already exist. Use the profiles(1) command to determine whether the gmb
account has any existing profiles.

profiles gmb
Basic Solaris User
All

Be careful when using the profiles command because its output includes profiles defined in
user_attr(4) and profiles that are globally defined in /etc/security/policy.conf. In this case,
the Basic Solaris User and All profiles are globally defined and will not be overwritten by the
usermod command that follows.

Use the following command to assign the ApachePD rights profile to the gmb user.

usermod -P “ApachePD” gmb

Verify that this change has been properly applied using the profiles(1) command.

profiles gmb
ApachePD
Basic Solaris User
All

Alternatively, the contents of /etc/user_attr could have been visually inspected.

grep "^gmb:" /etc/user_attr
gmb::::type=normal;profiles=ApachePD

Note – Using the profiles command is recommended over manually inspecting the user_attr file
because it shows what the consumers of the information see. It is also useful for detecting typographical
errors that are not as obvious when looking at the raw data files.

At this point, the gmb user is now able to use the ApachePD rights profile to start or stop the Web server.

Step 4. Assign the Necessary DTrace Privileges to the gmb Account
The next step involves using the gmb account to start and stop the Web server, and also to perform the
DTrace operations necessary to enumerate the privileges used by the Apache2 service.

Note – In some environments, the use of DTrace might be reserved solely for specific administrative users.
In such cases, another user can be used in place of the gmb user. For the purpose of this example,
however, it is more important that some user be able to use DTrace in order to run the privdebug
command.
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/app/docs/doc/816-0210/6m6nb7mi9?a=view
message URL http://docs.sun.com/app/docs/doc/816-0210/6m6nb7mi9?a=view
message URL http://docs.sun.com/app/docs/doc/816-0210/6m6nb7mi9?a=view
http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqjs?a=view

11-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
To allow the gmb user to use DTrace, the following privileges must be granted.

ppriv -vl dtrace_kernel dtrace_user dtrace_proc
dtrace_kernel
 Allows DTrace kernel-level tracing.
dtrace_user
 Allows DTrace user-level tracing. Allows use of the syscall and
 profile DTrace providers to examine processes to which the user
 has permissions.
dtrace_proc
 Allows DTrace process-level tracing. Allows process-level tracing
 probes to be placed and enabled in processes to which the user has
 permissions.

In the following example, the three DTrace privileges are granted to the gmb user.

usermod -K defaultpriv=basic,dtrace_kernel,dtrace_user,dtrace_proc gmb

Just as with the usermod(1M) case above, the -K option will also overwrite the existing values for the
defaultpriv parameter. Therefore, it is important to reinforce the need for the basic set of privileges.
Otherwise, they will no longer be available to the gmb account. Once again, visually inspect the
/etc/user_attr to verify that the appropriate privileges have been assigned.

grep "^gmb:" /etc/user_attr
gmb::::type=normal;defaultpriv=basic,dtrace_kernel,dtrace_user,
dtrace_proc;profiles=ApachePD

Alternatively, privileges can be checked when the gmb user logs into the system.

gmb$ id
uid=101(gmb) gid=1(other)
gmb$ ppriv -S $$
6567: -sh
flags = <none>
 E: basic,dtrace_kernel,dtrace_proc,dtrace_user
 I: basic,dtrace_kernel,dtrace_proc,dtrace_user
 P: basic,dtrace_kernel,dtrace_proc,dtrace_user
 L: all

Step 5. Start a Privilege Debugging Session
Your environment is ready to start the privilege debugging session. Complete this step in a separate
terminal or window so that it can be left running independently from where the Apache2 service is started
or managed. This helps avoid any confusion between the output of the service (if any) and the output of the
privdebug command.

The following example uses the following options.

-n to attach to the apachectl command as it is started

-f (follow) to follow any children spawned by the apachectl command

-v (verbose) to obtain more context about the privileges that are used or attempted

gmb$./privdebug -f -v -n apachectl
STAT TIMESTAMP PPID PID PRIV CMD
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqjs?a=view

12-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Step 6. Start the Apache2 Service
With the privdebug tool now running, start the Apache2 service to discover which privileges it (or any of
its children) attempts to use. As stated previously, run the following commands in a second terminal
session or window in order to avoid confusing this output with that of the privdebug command.

The Apache2 service can be started with the following command (as the gmb user).

gmb$ pfexec /lib/svc/method/http-apache2 start

The pfexec command prefix is needed because, by default, the gmb user is not using a profile shell (such
as /bin/pfsh). If the gmb user had been configured to use a profile shell, the pfexec prefix would not be
needed. Using either the pfexec command prefix or a profile shell enables the gmb user to leverage the
ApachePD rights profile to start the Apache2 service as the webservd user and group and with all of the
privileges on the system.

Next, verify that the Apache2 service has been started using the ps(1) command.

gmb$ ps -aef | grep httpd
webservd 6619 6618 0 11:27:00 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 6621 6618 0 11:27:00 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 6618 1 0 11:26:59 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 6620 6618 0 11:27:00 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 6622 6618 0 11:27:00 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 6623 6618 0 11:27:00 ? 0:00 /usr/apache2/bin/httpd -k start

If the gmb user had also been given the proc_owner privilege or the Process Management rights
profile, then the gmb account could also inspect the httpd processes to verify whether they were in fact
started with the privileges defined in the ApachePD rights profile (all). Lacking this privilege, the following
command must be run as root or as a user with either the proc_owner privilege or the Process
Management rights profile.

ppriv -S 6618
6618: /usr/apache2/bin/httpd -k start
flags = <none>
 E: all
 I: all
 P: all
 L: all

The Apache2 service has now been successfully started as the webservd user and group, and with all
of the privileges on the system.
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9o5?a=view

13-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Next, determine which privileges the apachtctl or httpd processes used while the Apache2 service
was starting by inspecting the output of the privdebug command.

STAT TIMESTAMP PPID PID PRIV CMD
USED 1213891387930291 6603 6612 proc_fork apachectl
USED 1213891393258070 6603 6612 proc_fork apachectl
USED 1213891394717823 6612 6617 proc_exec apachectl
USED 1213891459762639 6612 6617 net_privaddr httpd
USED 1213891647640244 6612 6617 proc_fork httpd
USED 1213892608914595 1 6618 proc_fork httpd
USED 1213892614884001 1 6618 proc_fork httpd
USED 1213892619276719 1 6618 proc_fork httpd
USED 1213892623679694 1 6618 proc_fork httpd
USED 1213892627919397 1 6618 proc_fork httpd

Based on this output, three specific privileges were used: proc_fork, proc_exec, and net_privaddr.
Note that this is exactly the privilege profile that was recommended in the Sun BluePrints article titled
Limiting Service Privileges in the Solaris 10 Operating System (see http://www.sun.com/blueprints/0505/
819-2680.html), which was written without the benefit of the privdebug command.

The following example shows a brief description of the privileges used.

ppriv -vl proc_fork proc_exec net_privaddr
proc_fork
 Allows a process to call fork1()/forkall()/vfork()
proc_exec
 Allows a process to call execve().
net_privaddr
 Allows a process to bind to a privileged port number. The privilege
 port numbers are 1-1023 (the traditional UNIX privileged ports) as
 well as those ports marked as "udp/tcp_extra_priv_ports" with the
 exception of the ports reserved for use by NFS.

Step 7. Exercise the Apache2 Service
At this point, it is absolutely critical to properly exercise the Apache2 service. You want to make sure that
all of the paths through the code have been followed at least once in order to verify that you have
enumerated the correct set of privileges. In this specific case, you should also make sure that any
programs or services called by the Apache2 service (such as CGI scripts) are also exercised so that their
use of privilege can also be determined.

In fact, as a general rule, consider repeating the process of starting the service if, at times, different
command-line or configuration file options will be used. Be sure to exercise both operational and
administrative functions. Essentially, run the service through a typical quality assurance process in order to
verify that it is working correctly and has exercised the required functionality. While exercising the service,
you will be able to collect a list of privileges that can be used to further bound the service.
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://www.sun.com/blueprints/0505/819-2680.html
http://www.sun.com/blueprints/0505/819-2680.html

14-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
The following example simply verifies connecting to the Web server.

$ telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 14 Nov 2005 17:01:47 GMT
Server: Apache/2.0.52 (Unix) DAV/2
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Last-Modified: Fri, 04 May 2001 00:01:18 GMT
ETag: "22391-5b0-40446f80;223a7-961-8562af00"
Accept-Ranges: bytes
Content-Length: 1456
Connection: close
Content-Type: text/html; charset=ISO-8859-1
Content-Language: en
Expires: Mon, 14 Nov 2005 17:01:47 GMT

Connection to localhost closed by foreign host.

Note – Use a more comprehensive set of tests when enumerating privileges for a service that is intended
for a production environment.

The process of exercising the code should normally continue until sufficient confidence demonstrates that
all of the relevant code paths have been followed. During this step, be sure to review the output of the
privdebug command for new privileges that might be used by the service.

Step 8. Stop the Apache2 Service
Just as there are privileges associated with starting a service, there might also be privileges that are used
when a service is stopped or restarted. In the following example, the gmb user stops the Apache2 service
using the same command (found in the ApachePD rights profile) that was used to start the service.
The difference here is that the stop argument (rather than the start argument) is specified in the
command line.

gmb$ pfexec /lib/svc/method/http-apache2 stop

Verify that the Apache2 service has been successfully stopped using the following command.

gmb$ pgrep httpd
gmb$
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

15-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
After confirming that the Apache2 service has been stopped, inspect the output of the privdebug
command to determine whether any new privileges were recorded.

STAT TIMESTAMP PPID PID PRIV CMD
USED 1216522920650160 6635 6696 proc_fork apachectl
USED 1216522926222381 6635 6696 proc_fork apachectl
USED 1216522927697807 6696 6698 proc_exec apachectl
USED 1216522988410641 6696 6698 proc_session httpd
USED 1216522988438860 6696 6698 proc_session httpd

In this example, the new instance of apachectl was started, which in turn executed the httpd process to
run, which required the proc_session privilege. Essentially, to kill the Apache2 service, the httpd
command is used with the -k stop command line argument. To verify this, refer to the source code of the
shell script /usr/apache2/bin/apachectl.

The proc_fork and proc_exec privileges were needed to execute the httpd process. The
proc_session privilege was needed so that the httpd process could send a signal to processes outside
of its own session (the running set of httpd processes). For more information on proc_session, see the
following command output.

ppriv -vl proc_session
proc_session
 Allows a process to send signals or trace processes outside
 its session.

Step 9. Construct an SMF Method Context for the Apache2 Service
This step is necessary only if you are installing a service to be managed by SMF. Once the service is
successfully exercised, you can construct an SMF method context from the enumerated privileges, which
can then be used to automatically start or stop the service with the privileges that it needs.

To summarize the information obtained thus far in this section, the following privileges are needed by the
Apache2 service.

• proc_fork, proc_exec, and net_privaddr (when started)
• proc_fork, proc_exec, and proc_session (when stopped)

To construct the start/privileges and stop/privileges properties for the Apache2 service SMF
instance, first understand which privileges are considered basic.

ppriv -l basic
file_link_any
proc_exec
proc_fork
proc_info
proc_session

Whenever using the start or stop privilege property, it is important to begin with the basic
privilege. This allows for changes in the basic privilege set without needing to update the privilege profile.
From this foundation, remove any privileges found in the basic set that are not needed (for example,
those that do not appear in the enumerated list of used privileges generated by privdebug). Finally, add
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

16-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
any other non-basic privileges that were enumerated during this privilege debugging run. This process
provides the following.

• start/privileges =
 basic,!file_link_any,!proc_info,!proc_session,net_privaddr

• stop/privileges =
 basic,!file_link_any,!proc_info

Of course, just as in the ApachePD rights profile, you must also properly set the user and group
properties to webservd. Note that there are other non-privilege related steps that you must perform before
the Apache2 service will run as a non-root user. For more information, refer to the Sun BluePrints article
titled Limiting Service Privileges in the Solaris 10 Operating System at:
http://www.sun.com/blueprints/0505/819-2680.html

Step 10. Validate an SMF Method Context for the Apache2 Service
This final step confirms the value of the efforts described in this section. Attempt to configure SMF to start
the service using the set of privileges identified previously to see what this would look like in action. Using
the above information, the Apache2 SMF instance was modified as follows.

svcprop -p stop -p start apache2
start/exec astring /lib/svc/method/http-apache2\ start
start/timeout_seconds count 60
start/type astring method
start/user astring webservd
start/group astring webservd
start/privileges astring basic,!file_link_any,!proc_info,!proc_session,net_privaddr
start/limit_privileges astring :default
start/project astring :default
start/resource_pool astring :default
start/supp_groups astring :default
start/use_profile boolean false
start/working_directory astring :default
stop/exec astring /lib/svc/method/http-apache2\ stop
stop/timeout_seconds count 60
stop/type astring method
stop/user astring webservd
stop/group astring webservd
stop/privileges astring basic,!file_link_any,!proc_info
stop/limit_privileges astring :default
stop/project astring :default
stop/resource_pool astring :default
stop/supp_groups astring :default
stop/use_profile boolean false
stop/working_directory astring :default

The entire start and stop property groups are shown to help see exactly what was used for this
example. The actual lines changed are formatted in bold.

Next, update the SMF repository with the changes that were just made by using the following command.

svcadm refresh apache2
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://www.sun.com/blueprints/0505/819-2680.html
http://www.sun.com/blueprints/0505/819-2680.html

17-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
With these settings in place, verify that they work as expected. Just as before, start off with the service
disabled.

svcs apache2
STATE STIME FMRI
disabled 12:37:53 svc:/network/http:apache2

Next, enable the service and verify that it is actually running.

svcadm -v enable -s apache2
svc:/network/http:apache2 enabled.
svcs apache2
STATE STIME FMRI
online 12:38:11 svc:/network/http:apache2

With the service running, verify that it is running with the correct user, group, and privileges.

getent passwd webservd
webservd:x:80:80:WebServer Reserved UID:/:
getent group webservd
webservd::80:
pcred 6816 (process ID of httpd process started by SMF)
6816: e/r/suid=80 e/r/sgid=80
ppriv -S 6816
6816: /usr/apache2/bin/httpd -k start
flags = <none>
 E: net_privaddr,proc_exec,proc_fork
 I: net_privaddr,proc_exec,proc_fork
 P: net_privaddr,proc_exec,proc_fork
 L: all

Everything looks good thus far. The Apache2 service was started as user and group webservd with only
the privileges that were specified previously.

Finally, disable the Apache2 service and then verify that the service was truly disabled.

svcadm -v disable -s apache2
svc:/network/http:apache2 disabled.
svcs apache2
STATE STIME FMRI
disabled 12:38:19 svc:/network/http:apache2
pgrep httpd
#

At this point, everything is working as expected. The privileges used by the Apache2 service were
successfully enumerated, and those privileges were used to start and stop the service using SMF.

Privilege Debugging the Apache2 Service—Local Zone Method
Having completed the process in a Solaris 10 Global Zone, this section proceeds to apply this knowledge
to evaluating services running in a Solaris Container (called web_svc).

It must be noted however that while the service can be run from within a Solaris Container, the privdebug
command must still be run from within the Global Zone because the DTrace facility is only available to the
Global Zone. This is not a problem because DTrace can see and inspect processes running in Solaris
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

18-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Containers. To add a touch of clarity to this section, as noted above, command prompts will be prefixed
with the location from which the commands were issued, either global or web_svc (for the Global Zone
and Solaris Container respectively).

The process in this section involves completing the following steps.

• Step 1. Verify the Current State of the Apache2 Service
• Step 2. Install the ApachePD Privilege Debugging Rights Profile
• Step 3. Assign the ApachePD Rights Profile to the gmb Account
• Step 4. Assign the Necessary DTrace Privileges to the gmb Account
• Step 5. Start a Privilege Debugging Session
• Step 6. Start the Apache2 Service
• Step 7. Exercise the Apache2 Service
• Step 8. Stop the Apache2 Service
• Step 9. Construct an SMF Method Context for the Apache2 Service
• Step 10. Validate an SMF Method Context for the Apache2 Service

Step 1. Verify the Current State of the Apache2 Service
This step is performed in the web_svc Solaris Container using the same commands that were specified in
the Global Zone example (see “Step 1. Verify the Current State of the Apache2 Service” on page 8). There
is no expected change in command usage or output.

Step 2. Install the ApachePD Privilege Debugging Rights Profile
This step is performed in the web_svc Solaris Container using the same process as in the Global Zone
example (see “Step 2. Install the ApachePD Privilege Debugging Rights Profile” on page 9)—with one
important difference. In place of using the keyword all in the privilege declaration, the keyword zone
must be used. This is necessary because Solaris Containers do not have permission to use many of the
privileges defined by the all keyword.

When installed, the ApachePD rights profile should look like the following example.

root@web_svc# grep "^ApachePD" /etc/security/prof_attr
ApachePD:::Apache Service:
root@web_svc# grep "^ApachePD" /etc/security/exec_attr
ApachePD:solaris:cmd:::/lib/svc/method/http-apache2:
uid=webservd;gid=webservd;privs=zone

Step 3. Assign the ApachePD Rights Profile to the gmb Account
This step is performed in the web_svc Solaris Container using the same commands that were specified in
the Global Zone example (see “Step 3. Assign the ApachePD Rights Profile to the gmb Account” on
page 9). There is no expected change in command usage or output. Remember that, for this step, the gmb
account must exist in the Solaris Container (in addition to being in the Global Zone).
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

19-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
When installed, the gmb account in the web_svc Solaris Container should have the following ApachePD
rights profile.

root@web_svc# profiles gmb
ApachePD
Basic Solaris User
All

Step 4. Assign the Necessary DTrace Privileges to the gmb Account
This step is performed in the Global Zone using the same commands that were specified in the Global
Zone example (see “Step 4. Assign the Necessary DTrace Privileges to the gmb Account” on page 10).
There is no expected change in command usage or output. Remember that, for this step, the gmb account
must exist in the Global Zone (in addition to being in the Solaris Container).

When installed, the gmb account in the Global Zone should have the following DTrace privileges assigned.

root@global# grep "^gmb:" /etc/user_attr
gmb::::type=normal;defaultpriv=basic,dtrace_kernel,dtrace_user,
dtrace_proc

Step 5. Start a Privilege Debugging Session
This step is performed in the Global Zone using the same command that was specified in the Global Zone
example above (see “Step 5. Start a Privilege Debugging Session” on page 11). Because this example
seeks to monitor the Apache service being run inside of a Solaris Container, a new -z command line
option is used to instruct the privdebug command to look only at events happening within the specified
zone. There is no expected change in command output.

To initiate the privilege debugging session, use the following command:

gmb@global$./privdebug -f -v -n httpd -z web_svc
STAT TIMESTAMP PPID PID PRIV CMD

Step 6. Start the Apache2 Service
This step is performed in the web_svc Solaris Container using the same process as in the Global Zone
example (see “Step 6. Start the Apache2 Service” on page 12)—with one important difference. When the
Apache2 service is started, instead of running with all privileges, it will run with privileges defined by the
zone keyword. Just as in the previous example, the service is started using the following command.

gmb@web_svc$ pfexec /lib/svc/method/http-apache2 start
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

20-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
When running, the Apache2 service should look like the following example.

root@web_svc# ps -aef | grep httpd
webservd 1195 1193 0 10:48:37 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 1197 1193 0 10:48:37 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 1198 1193 0 10:48:37 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 1193 672 0 10:48:36 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 1196 1193 0 10:48:37 ? 0:00 /usr/apache2/bin/httpd -k start
webservd 1194 1193 0 10:48:37 ? 0:00 /usr/apache2/bin/httpd -k start
root@web_svc# pcred 1193
1193: e/r/suid=80 e/r/sgid=80
 groups: 1
root@web_svc# ppriv -S 1193
1193: /usr/apache2/bin/httpd -k start
flags = <none>
 E: zone
 I: zone
 P: zone
 L: zone

In this case, no changes to the privilege profile are expected. Just as in the Global Zone example, the
required privileges include proc_exec, proc_fork, and net_privaddr.

Step 7. Exercise the Apache2 Service
This step is performed in the web_svc Solaris Container using the same commands that were specified in
the Global Zone example (see “Step 7. Exercise the Apache2 Service” on page 13). There is no expected
change in command usage or output.

Step 8. Stop the Apache2 Service
This step is performed in the web_svc Solaris Container using the same process as in the Global Zone
example (see “Step 8. Stop the Apache2 Service” on page 14)—with one important difference. When the
Apache2 service is started, instead of running with all privileges, it will be running with privileges defined by
the zone keyword. Just as in the previous example, the service is stopped using the following command.

gmb@web_svc$ pfexec /lib/svc/method/http-apache2 stop

In this case, no changes to the privilege profile are expected. Just as in the Global Zone example, the
required privileges include proc_exec, proc_fork, and proc_session.

Step 9. Construct an SMF Method Context for the Apache2 Service
This step is performed in the web_svc Solaris Container using the same commands that were specified in
the Global Zone example (see “Step 9. Construct an SMF Method Context for the Apache2 Service” on
page 15). There is no expected change in command usage or output.

Step 10. Validate an SMF Method Context for the Apache2 Service
This step is performed in the web_svc Solaris Container using the same commands that were specified in
the Global Zone example (see “Step 10. Validate an SMF Method Context for the Apache2 Service” on
page 16). There is no expected change in command usage or output.
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

21-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
Conclusion
This article has discussed the concept of privilege debugging and shown how such a process could be
implemented in the Solaris 10 OS using the privdebug command, which is built upon Sun's Dynamic
Tracing (DTrace) facility. This process can be applied to both the Solaris 10 Global Zone as well as to any
Solaris Containers on the system.

Using the privilege debugging approach defined in this article, you can more readily understand and
enumerate the privileges used by programs and services. With this knowledge, you can further restrict
those programs and services to have only the privileges that they need—and no more. Implementing the
principle of least privilege in this manner can help better protect your systems and limit the adverse impact
should any of those programs or services be vulnerable or be exploited. Remember that this method works
only if you can sufficiently exercise the required functionality of all the processes involved in providing the
service.

Alternatively, the list of privileges can be discovered by analysis of the source code, looking for all places
where system calls are made, such as those libc and related functions that are described in Section 2 of
the Solaris manual pages (see http://docs.sun.com/app/docs/doc/816-5167).

It is not always possible, however, nor is it always obvious which privileges might be needed when the
system call is made. Further, it is important to understand that automated enumeration and analysis of
privileges used by an application is not fool-proof. It is recommended that you always question the use of
privilege attempted by your applications before putting the system into production. Poorly written
applications, for example, can attempt to use privileges that they do not need or should not have.
A combination of both source code (where possible) and runtime analysis, sanity checked by a human
expert, is often the best approach.

References

Sun BluePrints
• Limiting Service Privileges in the Solaris 10 Operating System

http://www.sun.com/blueprints/0505/819-2680.pdf

• Restricting Service Administration in the Solaris 10 Operating System

http://www.sun.com/blueprints/0605/819-2887.pdf

Sun Product Documentation and Manual Pages
• Solaris 10 Privileges Overview

http://docs.sun.com/app/docs/doc/816-4557/6maosrjfj?a=view

• attributes(5)

http://docs.sun.com/app/docs/doc/816-5175/6mbba7evc?q=attributes%285%29&a=view
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/app/docs/doc/816-4557/6maosrjfj?a=view
http://www.sun.com/blueprints/0505/819-2680.pdf
http://www.sun.com/blueprints/0605/819-2887.pdf
http://docs.sun.com/app/docs/doc/816-5167
http://docs.sun.com/app/docs/doc/816-5167
http://docs.sun.com/app/docs/doc/816-5175/6mbba7evc?q=attributes%285%29&a=view
http://docs.sun.com/app/docs/doc/816-5175/6mbba7evc?q=attributes%285%29&a=view

22-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
• exec(2)

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view

• fork(2)

http://docs.sun.com/app/docs/doc/816-5167/6mbb2jag7?a=view

• mdb(1)

http://docs.sun.com/app/docs/doc/817-0689/6mgfkpctk?a=view

• pfexec(1)

http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9o5?a=view

• ppriv(1)

http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view

• privileges(5)

http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view

• profiles(1)

http://docs.sun.com/app/docs/doc/816-0210/6m6nb7mi9?a=view

• ps(1)

http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9pj?q=ps&a=view

• usermod(1)

http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqjs?a=view

Other Documentation, Articles and Web Sites
• privdebug command

http://www.opensolaris.org/os/community/security/files/

• Sun Security Portal

http://www.sun.com/security/

• The Least Privilege Model in the Solaris 10 OS

http://www.sun.com/bigadmin/features/articles/least_privilege.html

About the Authors

Glenn Brunette
Glenn Brunette is a Sun Distinguished Engineer with nearly 15 years’ experience in information security.
Glenn currently works in Sun's Client Solutions CTO as the Director and Chief Architect of the CSO
Security Office. In this role, Glenn is responsible for global security strategy and architecture, security-
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://www.sun.com/security/
http://www.sun.com/bigadmin/features/articles/least_privilege.html
http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9p2?a=view
http://docs.sun.com/app/docs/doc/817-0689/6mgfkpctk?a=view
http://docs.sun.com/app/docs/doc/817-0689/6mgfkpctk?a=view
http://docs.sun.com/app/docs/doc/816-5175/6mbba7f3a?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9pj?q=ps&a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9pj?q=ps&a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jag7?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jag7?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
http://docs.sun.com/app/docs/doc/816-5167/6mbb2jafk?a=view
http://www.opensolaris.org/os/community/security/files/
http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqjs?a=view
http://docs.sun.com/app/docs/doc/816-5166/6mbb1kqjs?a=view
http://docs.sun.com/app/docs/doc/816-0210/6m6nb7mi9?a=view
http://docs.sun.com/app/docs/doc/816-0210/6m6nb7mi9?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9o5?a=view
http://docs.sun.com/app/docs/doc/816-5165/6mbb0m9o5?a=view
http://www.opensolaris.org/os/community/security/files/

23-Privilege Debugging in the Solaris™ 10 Operating System Sun Microsystems, Inc.
focused collaboration and knowledge sharing, as well as improving the quality and security of products and
services delivered to Sun's customers.

Glenn is the driving force behind Sun's Systemic Security approach and is also an OpenSolaris Security
Community Leader, the co-founder of the Solaris Security Toolkit software, and a frequent author,
contributor, and speaker at both Sun and industry events. Externally, Glenn has served as the Vice-Chair
of the Enterprise Grid Alliance Grid Security Working Group and Working Group Champion for the National
Cyber Security Partnership's Technical Standards and Common Criteria Task Force. Finally, Glenn is an
active contributor to the Center for Internet Security's Unix Benchmark team. Glenn is a Certified
Information Systems Security Professional (CISSP) and has been trained in the National Security
Agency's INFOSEC Assessment Methodology (IAM).

Darren Moffat
Darren Moffat is a Senior Staff Engineer in the Solaris Security Technologies Group (part of Solaris
Software). Darren has been involved with the design and development of security technologies that form
the core of the Solaris OS. Darren started with Sun UK in December, 1996, working in Enterprise Services
(then SunService) doing Trusted Solaris and general OS security support. He joined sustaining
engineering in Solaris Software for the NFS/Naming products, then moved to California to join the
development teams working on Solaris security. Before joining Sun, Darren worked as an analyst/
programmer for the UK Ministry of Defence. He is a graduate of the Computing Science Department of
Glasgow University in Scotland.

Acknowledgements
The authors would like to thank Bart Blanquart, Casper Dik, and Scott Rotondo for their inspiration,
technical feedback, and overall support in the development of this article.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If you live in the
United States, Canada, Europe, or Japan, you can purchase documentation sets or individual manuals
through this program.

Accessing Sun Documentation Online
The docs.sun.com Web site enables you to access Sun technical documentation online. You can browse
the docs.sun.com archive or search for a specific book title or subject at http://docs.sun.com/.

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:
http://www.sun.com/blueprints/online.html
Privilege Debugging in the Solaris™ 10 Operating System — February 2006

http://docs.sun.com/
http://www.sun.com/blueprints/online.html

	Privilege Debugging in the Solaris™ 10 Operating System
	Introduction
	What is Process Rights Management?
	What is Privilege Debugging?
	Using DTrace for Privilege Debugging
	Using the privdebug Program
	Privilege Debugging Using an Example Apache2 Service
	Privilege Debugging the Apache2 Service-Global Zone Method
	Step 1. Verify the Current State of the Apache2 Service
	Step 2. Install the ApachePD Privilege Debugging Rights Profile
	Step 3. Assign the ApachePD Rights Profile to the gmb Account
	Step 4. Assign the Necessary DTrace Privileges to the gmb Account
	Step 5. Start a Privilege Debugging Session
	Step 6. Start the Apache2 Service
	Step 7. Exercise the Apache2 Service
	Step 8. Stop the Apache2 Service
	Step 9. Construct an SMF Method Context for the Apache2 Service
	Step 10. Validate an SMF Method Context for the Apache2 Service

	Privilege Debugging the Apache2 Service-Local Zone Method
	Step 1. Verify the Current State of the Apache2 Service
	Step 2. Install the ApachePD Privilege Debugging Rights Profile
	Step 3. Assign the ApachePD Rights Profile to the gmb Account
	Step 4. Assign the Necessary DTrace Privileges to the gmb Account
	Step 5. Start a Privilege Debugging Session
	Step 6. Start the Apache2 Service
	Step 7. Exercise the Apache2 Service
	Step 8. Stop the Apache2 Service
	Step 9. Construct an SMF Method Context for the Apache2 Service
	Step 10. Validate an SMF Method Context for the Apache2 Service

	Conclusion
	References
	Sun BluePrints
	Sun Product Documentation and Manual Pages
	Other Documentation, Articles and Web Sites

	About the Authors
	Glenn Brunette
	Darren Moffat

	Acknowledgements
	Ordering Sun Documents
	Accessing Sun Documentation Online

