
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun™ OpenGL 1.3 for Solaris™

Implementation and
Performance Guide

Part No. 817-2997-11
November 2003, Revision A

http://www.sun.com/hwdocs/feedback

Please
Recycle

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks, registered trademarks, or service marks of
Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements. OpenGL is a registered trademark of Silicon Graphics, Inc.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun. OpenGL est une marque déposée de Silicon Graphics, Inc.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xi

1. Introduction to Sun OpenGL for Solaris Software 1

Product Functionality 1

Compatibility Issues 3

Upgrading and Motif Versions 3

MT-Safe 4

Supported Platforms 5

Where to Look for Information on OpenGL Programming 5

2. Architecture 7

A Quick Review of the Architecture 7

Software Architecture 9

Vertex Processing Architecture 11

Rasterization and Fragment Processing Architecture 11

3. Performance 13

Acceleration Versus Optimization 13

Multiscreen Environment Performance 14

Multisampling 15

View Frustum Culling on Display Lists 15
iii

Display List Compression 16

General Tips on Vertex Processing 17

Vertex Arrays 17

MultiDrawArrays 17

Triangle List and Mesh Primitives 18

Consistent Data Types 18

Low Batching 20

Optimized Data Types 21

Hardware Specific Acceleration 21

Sun XVR-1000 and Sun XVR-4000 Graphics Accelerator Performance 22

OpenGL Acceleration on the Sun XVR-1000 and Sun XVR-4000 Graphics
Accelerators 22

Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500, Sun XVR-600 and Sun XVR-1200
Graphics Accelerator Performance 24

Hardware Acceleration Features 24

Sun XVR-1200 Graphics Accelerator Dual Pipeline 25

Vertex Processing 25

Texture 25

Buffer Clear 26

Tuning the Geometry Subsystem 26

Sun Elite3D Graphics Accelerator Performance 27

Attributes 27

Pixel Operations 29

Consistent Data 29

Sun Creator and Creator3D Graphics Accelerator Performance 30

Attributes Affecting Creator3D Performance 30

Attributes Affecting Software Rendering Performance 38

Pixel Operations 39
iv Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Pixel Transfer Pipeline (ARB) Imaging Extensions and the Pixel Transform 43

Implementation 44

How To Use the Pixel Transfer Pipeline and Pixel Transform 45

Software Performance 58

4. Tips and Techniques 59

Avoiding Overlay Colormap Flashing 59

Changing the Limitation on the Number of Simultaneous GLX Windows 60

Hardware Window ID Allocation Failure Message 60

Getting Peak Frame Rate 61

Identifying the Release Version 61

Determining Visuals Supported by a Specific Frame Buffer 62

Developing Applications for 64-bit 62

Common 64-bit Application Development Errors 62

Colormap Flashing for OpenGL Indexed Applications 64

GL Rendering Model and X Visual Class 65

Stereo 65

Rendering to DirectColor Visuals 67

Overlays 67

Server Overlay Visual (SOV) Convention 67

Compatibility of SOV with other Overlay Models 68

Gamma Correction 69

A. Supported Extensions for Graphics Accelerators 71
Contents v

vi Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Figures

FIGURE 2-1 Basic Architecture 8

FIGURE 2-2 Sun OpenGL for Solaris Software Architecture 10

FIGURE 3-1 Hardware Rasterizer Path for Creator3D 34

FIGURE 3-2 Text Load Processing Flow 36

FIGURE 3-3 Sun OpenGL for Solaris Architecture for Drawing Pixels 40

FIGURE 3-4 Pixel Transfer Pipeline Functions and Order of Execution 44
vii

viii Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Tables

TABLE 3-1 3D Optimized Cases 37

TABLE A-1 Sun OpenGL 1.3 for Solaris Extensions and Supported Systems 71
ix

x Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Preface

The Sun OpenGL 1.3 for Solaris Implementation and Performance Guide provides
information on Sun’s implementation of the OpenGL™ graphics library for the
Solaris™ operating environment from Sun Microsystems, Inc.

Who Should Use This Book
This book is intended for application developers who are using Sun’s OpenGL for
Solaris software to port or develop OpenGL applications on Solaris. It assumes
familiarity with OpenGL functionality and with the principles of 2D and 3D
computer graphics.

What’s New In This Release
This release of Sun™ OpenGL® for Solaris™ contains all of the functionality
included in the previous release of OpenGL (version 1.2.3, shipped on 03/2002).
TABLE P-1 lists the features and benefits of Sun OpenGL 1.3 for Solaris.
xi

TABLE P-1 Sun OpenGL 1.3 for Solaris Features and Benefits

Feature Description

Cube Map Textures Improves the visual effects of reflection mapping using a set of six two-
dimensional texture images representing the faces of a cube.

Texture Dot3 Environment
Mode

Enables per-pixel lighting computations for better lighting effects.

Texture Add Environment
Mode

Provides a texture function to add incoming pixel and texture source colors.

Point Parameters extension Attenuates point size based on the distance to eye point (for example, better
simulation of lights on an airport runway, and so on).

Dynamic Video Resolution
extension

Scales the frame rate by dynamically adjusting frame buffer video resolution.

Gradient Background Clear Faster clearing of background with gradient colors.

Display List Tuning Faster display list compilation and rendering.

Bug fixes Improved robustness and stability.

Targeted Texture extension Enable application to configure texture memory allocation (trade-off
performance for more texture memory).

Additional Blend exensions Seperate blend functions for RGB and Alpha components; additional blend
factors for Porter-Duff blending.

Read Video Pixels and
Read/Write Samples
extensions

Provide high quality pixels readback, and reading or writing of pixel samples.
xii Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

How This Book Is Organized
This book is organized as follows:

Chapter 1 “Introduction to Sun OpenGL for Solaris Software,” provides a
description of the Sun OpenGL for Solaris software.

Chapter 2 “Architecture,” presents information on the Sun OpenGL for Solaris
architecture.

Chapter 3 “Performance,” presents specific information on using Sun’s OpenGL
library for specific hardware platforms.

Chapter 4 “Tips and Techniques,” presents information on visuals for the OpenGL
for Solaris product.

Appendix A ”Supported Extensions for Graphics Accelerators” lists the Sun
OpenGL 1.3 for Solaris extensions and systems each support.

Using UNIX Commands
This document might not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. See the following for this information:

� Software documentation that you received with your system

� Solaris™ operating environment documentation, which is at

http://docs.sun.com
Preface xiii

http://docs.sun.com

Typographic Conventions

Shell Prompts

.

TABLE P-2

Typeface1

1 The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

TABLE P-3

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xiv Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Sun OpenGL 1.3 for Solaris Implementation and Performance Guide, part number
817-2997-11
Preface xv

xvi Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

CHAPTER 1

Introduction to Sun OpenGL for
Solaris Software

Sun OpenGL for Solaris is Sun’s native implementation of the OpenGL application
programming interface (API). The OpenGL API is an industry-standard, vendor-
neutral graphics library. It provides a small set of low-level geometric primitives and
many basic and advanced 3D rendering features, such as modeling transformations,
shading, lighting, anti-aliasing, texture mapping, fog, and alpha blending.

Product Functionality
Sun OpenGL 1.3 for Solaris is an implementation based on the OpenGL 1.3 standard
specifications. It also includes additional extensions that are not available in the base
OpenGL 1.3 specification. These extensions are listed below in alphabetical order:

� GL_ARB_imaging — ARB imaging extension

� GL_ARB_multitexture — Multitexture extension

� GL_ARB_multisample — Multisampling extension

� GL_ARB_texture_cube_map — Cube map texture extension

� GL_ARB_texture_env_combine — Texture environment combine extension

� GL_ARB_transpose_matrix — Transpose matrix extension

� GL_EXT_abgr — ABGR reverse-order color format extension

� GL_EXT_blend_color — Blend color extension

� GL_EXT_blend_func_separate — Separate blend function extension

� GL_EXT_blend_logic_op — Blend logic op extension

� GL_EXT_blend_minmax — Blend minmax extension

� GL_EXT_blend_subtract — Blend subtract extension
1

� GL_EXT_compiled_vertex_array — Compiled vertex array extension

� GL_EXT_convolution — Convolution extension

� GL_EXT_gradient_clear — Gradient clear extension

� GL_EXT_histogram — Histogram extension

� GL_EXT_multi_draw_arrays — Multidraw array and element extensions

� GL_EXT_pixel_transform — Pixel transform extension

� GL_EXT_polygon_offset — Polygon offset extension

� GL_EXT_rescale_normal — Rescale normal extension

� GL_EXT_texture3D — 3D texture mapping extension

� GL_HP_convolution_border_modes — Convolution border mode extension

� GL_HP_occlusion_test — Occlusion culling extension

� GL_SGI_color_table — SGI color table extension

� GL_SGI_texture_color_table — Texture color table extension

� GL_SGIS_detail_texture — Detail texture extension

� GL_SGIS_sharpen_texture — Sharpen texture extension

� GL_SGIS_texture_filter4 — Texture filter4 extension

� GL_SGIX_texture_lod_bias — Texture LOD bias extension

� GL_SGIX_texture_scale_bias — Texture scale and bias extension
� GL_SUN_blend_src_mult_dst_alpha — Defines two alpha blending factors:

GL_SRC_ALPHA_MULT_ONE_MINUS_DST_ALPHA_SUN and
GL_SRC_ALPHA_MULT_DST_ALPHA_SUN, used as the source RGB blending
factors to perform Porter-Duff blending

� GL_SUN_convolution_border_modes — Convolution border mode extension

� GL_SUN_global_alpha — Global alpha extension

� GL_SUN_multi_draw_arrays — Multidraw array and element extension

� GL_SUN_read_video_pixels — Read video pixels extension

� GL_SUN_read_write_samples — Read and write samples extension

� GL_SUN_targeted_texture — Read and write samples extension

� GLX_EXT_visual_info — Visual information extension

� GLX_SGI_make_current_read — Make current read extension

� GLX_SGIX_fbconfig — fbconfig extension

� GLX_SGIX_pbuffer — pbuffer extension

� GLX_SUN_get_transparent_index — Transparent pixel index extension

� GLX_SUN_video_resize — Video resize extension
2 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Note – If your application uses extensions, you will need to ensure that it also
handles the functionality in an OpenGL compliant manner. Application can use the
glXQueryExtensionString(3gl) function to programmatically determine the
extensions supported by an OpenGL implementation.

Compatibility Issues
Applications compiled with the previous Sun OpenGL for Solaris libraries will run
unchanged with the Sun OpenGL 1.3 for Solaris implementation. However, note the
following backward compatibility issues:

� If your application uses the features in the Sun OpenGL for Solaris library that are
not available in the previous release, it will not be backward compatible with the
previous Sun OpenGL for Solaris libraries.

� To reduce function call overhead and improve performance for vertex calls in
immediate mode, vertex commands such as glVertex, glColor, glNormal,
glTexCoord and glIndex have been redefined as macros in the Sun OpenGL for
Solaris software. You can use the compiler directive flag,
-DSUN_OGL_NO_VERTEX_MACROS, to disable the vertex macro feature. See the
glVertex (3gl) man page for further information.

Upgrading and Motif Versions
Sun OpenGL contains OpenGL Motif Drawing Widget libraries for Motif 2.x and 1.x
libraries. Since Motif 2.x, available in the Solaris 7 system software or later
compatible releases, is incompatible with Motif 1.x, when installing Sun OpenGL for
Solaris software you need to make certain the OpenGL Motif Drawing Widget
library symbolic links point to the appropriate version of OpenGL Motif Drawing
Widget library.

If you are using pre-Solaris 7 system software, libGLw.so should point to
libGLw.so.1; and if you are using Solaris 7 system software or subsequent
compatible release, libGLw.so should point to libGLw.so.2.

When upgrading from Solaris 2.6 system software to Solaris 7 system software (or
subsequent release), it is recommended that you reinstall Sun OpenGL software as
well.
Chapter 1 Introduction to Sun OpenGL for Solaris Software 3

If you are using Solaris 7 system software (or subsequent release) and are
developing with Motif 1.2 linking with -lXm12, you must link the OpenGL Motif
Drawing Widgets with -lGLw12 instead of -1GLw.

MT-Safe
The Sun OpenGL for Solaris library is multithread safe (MT-safe). Multiple
rendering threads are allowed in a single process.

To initialize MT-safe mode for Xlib/Xt and OpenGL, applications need to call
XInitThreads(), XtToolkitThreadInitialize() and
glXInitThreadsSUN() before multiple threads are created. See man
pages glXInitThreadsSUN(3gl), XInitThreads(3X11), and
XtToolkitThreadInitialize(3Xt) for more detail.

If your multithreaded application uses only one OpenGL rendering thread, you can
obtain better performance by avoiding calling the glXInitThreads() function.

Multithread safe allows OpenGL parallelism. This parallelism supports single to
multiple CPUs as well as single to multiple screens.

In a non-Xinerama environment, the maximum number of supported OpenGL
rendering threads is 512. In a Xinerama environment, the maximum number is
512/(N+1) where N is the number of screens in the Xinerama environment.

Caution – When the OpenGL renderer (see glGetString(GL_RENDERER)) is a
graphics accelerator (not a software renderer), multiple rendering threads to the
same screen might perform slower than single threaded rendering due to the
overhead of context switching. If possible, avoid multithreaded rendering to a single
graphics accelerated screen.
4 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Supported Platforms
Sun OpenGL 1.3 for Solaris supports the following devices:

� All SPARC™ systems equipped with the following graphics boards are
supported: PGX, PGX24, PGX32, PGX64, Creator, Creator3D, Elite3D, Expert3D,
Expert3D-Lite, Sun XVR-500, Sun XVR-600, Sun XVR-1000, Sun XVR-1200, and
Sun XVR-4000 graphics accelerators. This includes Sun Blade desktops, Sun Fire
servers, Ultra™ desktops, and Ultra Enterprise™ servers.

� For systems equipped with Creator, Creator3D, Elite3D, Expert3D, Expert3D-Lite,
Sun XVR graphics accelerators, OpenGL functionality is accelerated in hardware.

� For systems equipped with PGX, PGX24, PGX32, and PGX64 graphics boards,
OpenGL functionality is performed in software.

� For systems equipped with PGX64 graphics boards, OpenGL index rendering is
not supported in 32-bit depth mode. You must configure the frame buffer to 8-bit
depth for OpenGL index rendering.

Where to Look for Information on
OpenGL Programming
For information on how to write an OpenGL application, see the following books:

� OpenGL Programming Guide by Neider, Davis, and Woo

� OpenGL Reference Manual by the OpenGL Architecture Review Board

� OpenGL Programming for X Windows System by Mark Kilgard

These books are published by Addison-Wesley and are available through your local
bookstore.

For more information on OpenGL, you may want to refer to “The Design of the
OpenGL Interface” written by Mark Segal and Kurt Akeley. A PostScript copy of this
document is included in the SUNWgldoc package.

http://www.opengl.org is also a good source for information on OpenGL.
Chapter 1 Introduction to Sun OpenGL for Solaris Software 5

6 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

CHAPTER 2

Architecture

The purpose of designing a graphics system architecture is to enable performance
within the constraints of cost and functionality goals. Hardware design places
various stages of the graphics pipeline into hardware accelerators. Software design
uses the hardware features and complements the hardware by providing complete
coverage of functionality.

Understanding the hardware and software architecture of a particular system will
help you determine whether a feature is accelerated in the graphics hardware or
implemented in software. This will enable you to identify which path through the
system your application uses for the feature. With this information, you can project
your application’s performance. Given knowledge of performance versus
functionality trade-offs, you can make informed choices about how to use the system
to maximize your application’s interactivity.

This chapter describes the Sun OpenGL for Solaris architecture.

A Quick Review of the Architecture
As a first step in examining the Sun OpenGL for Solaris architecture, FIGURE 2-1
shows the basic architecture of the Sun OpenGL for Solaris library.
7

FIGURE 2-1 Basic Architecture

In the first stage of the OpenGL pipeline, vertex data enters the pipeline, and curve
and surface geometry is evaluated. Next, colors, normals, and texture coordinates
are associated with vertices, and vertices are transformed and lit. Vertices are then
assembled into geometric primitives.

The rasterization stage converts geometric primitives into frame buffer addresses
and values, or fragments. Each fragment may be altered by per-fragment operations,
such as blending. Per-fragment operations store updates into the frame buffer based
on incoming and previously-stored Z values (for Z buffering), blending of incoming
fragment colors with stored colors, as well as masking and other logical operations.

Pixel data is processed in the pixel operation stage. The resulting data is stored as
texture memory, or rasterized and processed as fragments before being written to the
frame buffer.

The task of the hardware and software implementors at Sun was to implement the
OpenGL functionality. The remainder of this chapter describes this implementation.

Texture
Memory

Rasterization
Per-
Fragment
Operations

FrameEvaluator

Display List

Per-Vertex
Operations
Primitive
Assembly

Pixel
Operations

Buffer
8 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Software Architecture
Once the hardware designers have determined what the hardware will accelerate, all
other decisions regarding performance fall to the software implementors. Software
implementors need to consider the following questions:

What hardware features will be used?

1. What features that are not accelerated in hardware can the software optimize?

2. How will the software implement all functionality?

In response to these questions, the Sun OpenGL for Solaris software developers
implemented OpenGL as follows:

� Accelerated OpenGL by using all features of the Creator, Creator3D, Elite3D,
Expert3D, Expert3D-Lite, Sun XVR-500, Sun XVR-600, Sun XVR-1000, and Sun
XVR-4000 graphics accelerators.

� For the Creator and Creator3D systems, optimized line and point transformation
and clip test, and a subset of texture lookup and filtering.

� System hardware acceleration.

� Implemented OpenGL to its complete specification by writing code for primitive
assembly and vertex processing, including:

� Coordinate transformations
� Texture coordinate generation
� Clipping

� Implemented two forms of software rasterization for OpenGL features not
rasterized in hardware:

� Optimized software rasterizer for many texturing functions and pixel
operations. Software rasterization is done by the CPU using an optimized
implementation. On an UltraSPARC CPU, some features, such as texturing
rasterization, may be handled using software code employing the VIS
instruction set.

� A software rasterizer for all features not handled by the hardware or by the
VIS software.

This implementation of the Sun OpenGL for Solaris library allows devices with
varying capabilities to run efficiently. It enables Sun OpenGL for Solaris applications
to run on the following types of devices:

� Model coordinate device (Elite3D, Expert3D, Expert3D-Lite, Sun XVR-500,
Sun XVR-600, Sun XVR-1000, and Sun XVR-4000 graphics accelerator system) –
Handles most OpenGL functionality in hardware, including vertex processing,
primitive assembly, rasterization, and fragment operations.
Chapter 2 Architecture 9

� Device coordinate device (Creator or Creator3D graphics accelerator system) –
Performs vertex processing. Rasterization and fragment processing is handled in
hardware.

� Memory mappable devices (PGX graphics, software renderer) – Vertex
processing, primitive assembly, rasterization, and fragment processing are
performed in software, and the results are written to the memory-mapped frame
buffer.

FIGURE 2-2 illustrates the graphics software architecture of the Sun OpenGL for
Solaris product. This figure shows the paths that application data can take through
the OpenGL system, depending on the type of hardware device the application is
running on.

FIGURE 2-2 Sun OpenGL for Solaris Software Architecture

Batched vertex processing

Device coordinate Software
rasterization

Device independent code

API or Application

Frame buffer

hardware rasterization
(Creator/Creator3D)

Model
coordinate
hardware

Software

Hardware

(PGX)

Vertex
Processing

Rasterization/
Per-Fragment
Operations

OpenGL API
to Pipeline
Layer
10 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Vertex Processing Architecture
As FIGURE 2-2 on page 10 shows, Sun’s OpenGL implementation handles vertex
processing in several ways:

� Hardware vertex processing – On model coordinate devices, vertex processing is
done via the hardware. In addition to hardware acceleration, the model
coordinate (MC) pipeline is optimized for vertex arrays and display list mode.
The model coordinate pipeline also recognizes consistent data pattern within
glBegin/glEnd pairs. If the data is consistent, the software is able to use
hardware resources efficiently.

� Software vertex processor – This is the fully optimized path from the software
implementor's point of view. The principal optimization is that the model
coordinate software pipeline recognizes consistent data types within
glBegin/glEnd pairs: if the data is consistent, the software pipeline is able to
use CPU resources efficiently.

The OpenGL vertex array commands result in the best performance for vertex
processing on all hardware platforms. For repeated rendering of the same geometry,
display lists provide significant performance benefits over immediate mode
rendering.

Rasterization and Fragment Processing
Architecture
Rasterization and fragment processing is handled in one of the following ways:

� Hardware rasterizer – The graphics subsystem handles lines, points, and
triangles, and does simple fragment processing, such as blending and the depth-
buffer test.

� Optimized software rasterizer – The CPU does software rasterization using an
optimized implementation. On an UltraSPARC CPU, some features, such as
texturing rasterization, may be handled by the UltraSPARC CPU using software
code employing the VIS instruction set.

� Software rasterizer – The CPU does software rasterization using a generic,
unoptimized implementation. The generic software rasterizer is approximately
one-sixth the speed of the optimized software rasterizer.
Chapter 2 Architecture 11

12 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

CHAPTER 3

Performance

This chapter provides performance information that you can use to tune your
application to make the best use of Sun hardware graphics accelerators. The first
section defines two terms commonly used when discussing hardware and software
performance. The second section provides general advice on how to optimize vertex
processing performance for a variety of platforms. The third section describes the
graphics hardware architecture. The subsequent sections provide specific techniques
to ensure maximum performance on the Sun Elite3D, Creator, Creator3D, Expert3D,
Expert3D-Lite, and Sun XVR graphics accelerators.

Acceleration Versus Optimization
When discussing performance, understanding how the hardware implementor,
software implementor, and application programmer define and differentiate the
terms hardware acceleration and software optimization is helpful.

� To the hardware designer, hardware accelerating OpenGL means implementing
logic in the form of gates and data paths for OpenGL functions.

� To the OpenGL software implementor, accelerating OpenGL functions means
writing software to use the graphics hardware features. In addition, the software
implementor can optimize OpenGL features that are not accelerated in hardware
by writing highly tuned code to make the performance of those features as
efficient as possible.

� To the OpenGL application programmer, acceleration typically means the speed
at which various combinations of geometry and OpenGL state render, with the
goal generally being interactive performance.

With these definitions in mind, the next sections describe the OpenGL architecture
and the implementation of this architecture in the Sun OpenGL for Solaris software.
13

Multiscreen Environment Performance
For a multiscreen Xinerama environment, OpenGL internally spawns a rendering
thread for each screen, so that the rendering is done in parallel. Note that an
application’s OpenGL performance in multiscreen Xinerama may not be equal to its
performance in single-screen non-Xinerama mode. For example:

� For true immediate mode (that is, rendering using glVertex calls), the
OpenGL/Xinerama performance is approximately 32% to 50% of its non-
Xinerama performance. This is caused by the extra overhead of copying GL
commands to dispatch buffer, the extra layer of dispatch function calls and the
thread synchronization cost of the multiple rendering threads.

� For applications using vertex arrays, the OpenGL/Xinerama performance is
approximately 40% to 70% for glDrawElements, and 30% to 45% for
glDrawArrays, of its non-Xinerama performance.

� For applications using display list mode, the OpenGL/Xinerama performance is
approximately 70% to 99% of its non-Xinerama performance. And in some cases,
the performance can exceed its non-Xinerama performance.

� If your application window resides entirely within one screen, OpenGL will
revert back to single-screen rendering and deliver the full performance as in non-
Xinerama mode.

� Note that since OpenGL spawns a separate rendering thread for each screen, it’s
important that you configure your system to balance the CPU and frame buffer
needs. In general, we recommend allocating one processor per screen for your
graphics computation.

In summary, for the best OpenGL performance in multiscreen Xinerama:

1. Use display list mode.

2. Allocate at least one CPU per screen for graphics rendering.
14 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Multisampling
Multisampling is a technique for doing full screen antialiasing. It works by sampling
each pixel multiple times and filters the samples before they are displayed on the
screen. This removes jagged edges on 3D data and results in higher image quality.

Performance will normally be slower when multisampling is enabled due to the
extra processing required to filter the samples and to generate each sample. The
filtering operation normally happens when the buffers are swapped or when pixels
are read from the frame buffer. Applications which have a high frame rate or do
many frame buffer reads could experience a loss in performance. Also, applications
which are fill rate limited could see a loss in performance due to the overhead of
generating each sample during rasterization. The performance will also become
slower when the primitives contain many partial coverage pixels (for example, small
size primitives and wireframe primitives).

For information on how to enable multisampling on the Sun XVR graphics
accelerators, see the documentation for your product at
http://www.sun.com/documentation

View Frustum Culling on Display Lists
Sun OpenGL performs view frustum culling internally on display list data. Each
block of geometric data in a display list is checked against the current view frustum
and rendering is skipped for blocks of primitives that are completely outside of the
view frustum. OpenGL display list view frustum culling can significantly improve
rendering performance for certain cases.

To best use OpenGL’s view frustum culling, the application should define display
lists based on the spatial locality of the geometry. In other words, objects that are in
close proximity to one another should be put into the same display list. This allows
the view frustum culling implementation to generate a minimum-sized bounding
box for the geometry. Rendering of the entire set can be skipped when the bounding
box is outside the current view frustum.

Display list view frustum culling is ON by default and can be turned OFF by setting
the environment variable:

% setenv SUN_OGL_VFCULL off
Chapter 3 Performance 15

Display List Compression
On UltraSPARC platforms, Sun OpenGL can optionally compress display lists to
reduce the total memory footprint used by the system. This can also provide a
potential performance improvement when used with frame buffers capable of
hardware geometry decompression.

Display list compression is OFF by default and can be turned ON by setting the
variable SUN_OGL_COMPRESSED_DISPLAY_LISTS in the runtime environment.
OpenGL will still honor this variable when running on frame buffers without
hardware geometry decompression, but in those cases rendering is accomplished
through a software decompression process that can significantly decrease rendering
performance depending on processor speed and the size of the display list.

Display list compression can range from 6:1 to none at all over uncompressed
display lists depending upon the content. In particular, primitives containing texture
coordinates cannot be compressed. OpenGL will compress all display list commands
that it can, leaving incompatible commands in their original form. The best
compression ratios result from display lists containing vertices with consistent,
supported data types within glBegin/glEnd pairs (see the discussion on
Consistent Data Types below).

Other primitive data that cannot be compressed include those with indexed data,
homogeneous coordinates, edge flags, coordinate evaluation, and glMaterial
commands.

Display list build times are greater when they are being compressed. This again
varies depending on the content of the display lists, but can range up to 10:1.
Whether such a performance cost is significant depends upon how often display lists
are built versus how often they are rendered, and should be weighed against the
memory savings and rendering performance improvement or degradation
experienced by individual applications.

Applications interested in using display list compression should simply set the
SUN_OGL_COMPRESSED_DISPLAY_LISTS variable at runtime and examine the
resulting performance to see if it is useful for their specific needs.

% setenv SUN_OGL_COMPRESSED_DISPLAY_LISTS on
16 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

General Tips on Vertex Processing
To achieve the best vertex processing performance on all Sun platforms, follow these
guidelines:

1. Use vertex arrays or display list mode rather than immediate mode whenever
rendering data repeatedly.

2. Use consistent patterns of data types between glBegin(3gl) and glEnd(3gl).
Consistent data types are described in “Consistent Data Types” on page 18.

3. If you must use immediate mode, try to include as many primitives of the same
type as possible between one glBegin and the corresponding glEnd.

4. Define at most eight primitive states per vertex when they are defined between
glBegin and glEnd.

5. If vertex array is used, try to stay in vertex array mode, rather than switching
between vertex array and immediate mode.

These guidelines are discussed in the sections that follow.

Vertex Arrays
Vertex array commands provide the best performance for vertex processing of big
primitives because they avoid the function call overhead of passing one vertex,
color, and normal at a time. Instead of calling an OpenGL command for each vertex,
you can pre-specify arrays of vertices, colors, and normals, and use them to define a
primitive or set of primitives of the same type with a single command. Interleaved
vertex arrays may enable even faster performance, since the application passes the
data packed in a single array.

MultiDrawArrays
Sun OpenGL for Solaris contains the extension glMultiDrawArraysSUN(). This
function allows multiple strips of primitives to be rendered with one call to OpenGL.
Because of reduced function call and setup overhead, this function can provide
significant speed improvement when an object contains many short strips. For some
implementations of this function, there may be additional performance gains if the
strips are contiguous in the vertex array. As with the standard glDrawArrays(),
using interleaved vertex arrays gives even better performance.
Chapter 3 Performance 17

Triangle List and Mesh Primitives
Sun OpenGL for Solaris contains extensions for rendering TriangleList,
TriangleMesh, and QuadMesh primitives. A single TriangleList can be used to
substitute a combination of triangles, triangle strips, and triangle fan; a single
TriangleMesh can be used to substitute a set of triangle strips; and a single
QuadMesh can be used to substitute a set of quadrilateral strips. These extended
primitives can provide significant speed improvement over standard simple
primitives because of reduced function call overhead.

See glBegin, glDrawMeshArraysSUN, and glReplacementCodeSUN man pages
for more details.

Consistent Data Types
For the Sun OpenGL for Solaris implementation on all Sun platforms, vertex
processing is optimized if the application provides consistent, supported data types
within a glBegin/glEnd pair. Data types are consistent when the commands
between one vertex call, such as glVertex3fv, and the next vertex call include
identical patterns of data types in the identical order. In other words, consistent data
is data for which the pattern is the same for each vertex, except when glCallList
or glEval* is included. For example, the following set of commands is consistent
because the primitive is defined by the repeating set of calls glColor3fv(3gl);
glVertex3fv(3gl).

glBegin(GL_LINES);
glColor3fv(...);
glVertex3fv(...);
glColor3fv(...);
glVertex3fv(...);
glColor3fv(...);
glVertex3fv(...);

glEnd();
18 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

As another example, the following set of commands is consistent since each vertex
contains the same data – a color, normal, and vertex in repeating order.

Note – The *f versions of the calls may be used interchangeably with the *fv
versions.

Inconsistent data types do not follow a repeating, supported pattern. In the first
example below, the data is inconsistent because the first vertex has a normal, but the
second vertex doesn’t. In the second example, the order is reversed in the second set
of commands, although both vertices have a color and a normal.

For general information on the vertex data that can be specified between
glBegin(3gl) and glEnd(3gl) calls, see the glBegin(3gl) reference page.

glBegin(GL_LINES);
glColor3f(...);
glNormal3f(...);
glVertex3f(...);
glColor3f(...);
glNormal3f(...);
glVertex3f(...);

glEnd();

glBegin(GL_LINES);
glNormal3fv(...);
glColor3fv(...);
glVertex3fv(...);
glColor3fv(...);
glVertex3fv(...);

glEnd();

glBegin(GL_LINES);
glColor3fv(...);
glNormal3fv(...);
glVertex3fv(...);
glNormal3fv(...);
glColor3fv(...);
glVertex3fv(...);

glEnd();
Chapter 3 Performance 19

Low Batching
Sun OpenGL for Solaris performs best when given big primitives. If small primitives
are sent to the library, the library will try to batch these primitives together,
providing that the primitives are of the same primitive type, with the same
consistent data pattern, and there are no attribute state changes outside the glBegin
call.

For example, the following primitives will be batched together by the library.

The following example shows that the primitives are not batched together because
the glColor3fv call outside the glBegin call breaks the batching of the primitives.

glBegin(GL_TRIANGLES);
 glNormal3fv(...);
 glVertex3fv(...);
 glNormal3fv(...);
 glVertex3fv(...);
 glNormal3fv(...);
 glVertex3fv(...);
glEnd();

glBegin(GL_TRIANGLES);
 glNormal3fv(...);
 glVertex3fv(...);
 glNormal3fv(...);
 glVertex3fv(...);
 glNormal3fv(...);
 glVertex3fv(...);
glEnd();

glBegin(GL_LINES);
 glVertex3fv(...);
 glVertex3fv(...);
glEnd();

glColorfv(...);
glBegin(GL_LINES);
 glVertex3fv(...);
 glVertex3fv(...);
glEnd();
20 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Optimized Data Types
On any platform that uses the software pipeline for model coordinate rendering,
your application will get better performance if it can pass vertex data in patterns for
which the software pipeline has optimized code. Optimized data patterns are
consistent data patterns that contain none of the following:

� glEdgeFlag*()

� glMaterial*()

� glEvalCoord*()

� both glColor*() and glIndex*()

� both glTexCoord*() and glIndex*()

Hardware Specific Acceleration
Graphics hardware architectures can be designed to meet varying constraints of cost
and CPU performance. High-performance model coordinate (MC) devices, such as
Sun XVR-1200 and Sun XVR-4000 graphics accelerators, typically implement vertex
processing and transformations in hardware. A model coordinate device may
perform lighting, coordinate transformations, clipping, and culling as well as
rasterization and fragment processing in hardware, thereby providing very fast
performance.

At a different performance level, rasterization devices typically use the host CPU to
perform vertex processing and use the rasterization hardware to convert device
coordinate geometry into pixel values. The Creator3D systems are examples of
device coordinate (DC) devices. The graphics hardware architecture of the
Creator3D graphics system is designed as follows:

� Primitive assembly and vertex processing are performed on the UltraSPARCTM

CPU. Texturing operations are also performed on the CPU.

� Rasterization and fragment processing are performed in the Creator3D graphics
hardware subsystem. The Creator3D graphics system accelerates rasterization of
lines, points, and triangles, and also accelerates per-fragment operations such as
the pixel ownership test, scissor test, depth buffer test, blending, logical
operations, line anti-aliasing, line stippling, and polygon stippling.

The benefit of building custom hardware for graphics is that when operations are
parallelized in hardware circuits, turning on features (like both Z-buffering and
blending) has a very small performance cost. If a feature is provided in hardware,
the hardware is usually designed to allow sustained throughput for that feature.
Thus, you can make full use of features that have been implemented in hardware
without experiencing performance degradation.
Chapter 3 Performance 21

The benefit of putting graphics functions in software is that since the CPU is a
required and shared computing resource, using it for graphics operations imposes
no additional financial cost. The disadvantage is that each additional graphics
operation requires CPU cycle time. When an application asks more of the CPU, the
CPU may perform more slowly.

Sun XVR-1000 and Sun XVR-4000
Graphics Accelerator Performance
The Sun XVR-1000 is an UltraSPARCTM port architecture (UPA) bus high-resolution,
high-performance graphics frame buffer that provides 30-bit color and 3D
acceleration. The Sun XVR-4000 runs over the Sun Fire plane interconnect bus. The
graphics board has full hardware support for 2D and 3D texture mapping, as well as
multisampling and an S-video port.

OpenGL Acceleration on the Sun XVR-1000 and
Sun XVR-4000 Graphics Accelerators
The Sun XVR-1000 and Sun XVR-4000 graphics accelerators provide a complete
acceleration of the OpenGL API, including 2D and 3D texture-mapping and image
processing. The boards accelerate the entire 3D OpenGL graphics pipeline in
hardware, including all geometry operations, triangle setup, texturing and pixel
operations.

In addition, the board hardware acceleration is used for matrix transformations,
perspective, and viewport transformations, area fills, block moves, puts and gets,
2D/3D and antialiased points vectors and polygons, alpha operations, window
clipping, fog, stencil, depth buffering, texture mapping, Pbuffers, and accumulation
buffers.

These graphics accelerators support both 8-bit and 24-bit OpenGL visuals.

The General Tips on vertex processing, noted earlier in this chapter also apply for
the Sun XVR-1000 and Sun XVR-4000 graphics accelerators. Applications should
strive to use Display List mode, rather than Immediate Mode. Use of consistent Data
Types is preferred, as is high batching of primitive data. Vertex Arrays and
MultiDraw Arrays will provide for the best immediate mode rendering
performance.
22 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

The following are attributes that cause slower rendering by the Sun XVR-1000 and
Sun XVR-4000 graphics accelerators:

� Rendering polygons with GL_POLYGON_SMOOTH enabled

� Rendering lines with GL_LINE_SMOOTH enabled, or points with
GL_POINT_SMOOTH on an indexed color raster

� glEnable of GL_LIGHTING on an indexed color raster

� Setting glRenderMode to anything other than GL_RENDER

� Setting glPointSize to larger than 13.0

� Rendering a line primitive (GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP), or a
polygon with glPolygonMode set to GL_LINE or GL_POINT with texture
mapping enabled

� Multi-texturing with alpha blending enabled

� Multi-texturing with GL_COMBINE_EXT set to GL_ADD_SIGNED_EXT or scale
!= 1.0(applies to both rgb and alpha)

� Setting glPolygonOffset scale to a value outside the range (-8 ... 8)

In general, you can obtain the best performance from batching vertices together in a
single primitive, or a large group of like primitives. Display list rendering is
generally faster than vertex arrays, which is faster than immediate mode.

Rendering vertex arrays using glMultiDrawArraysEXT is faster than
glDrawArrays, which is faster than glDrawElements.

Enabling multisampling will yield better rendering quality at the expense of
performance.

The Sun XVR-4000 graphics accelerator provides support for a number of unique
Sun OpenGL extensions:

� GLX_SUN_video_resize — The Sun XVR-4000 graphics accelerator provides a
way for doing swap synchronous resizing of the area that is to be magnified (or
passed through) to the output video resolution. Applications can often obtain
better frame rates using this video resizing technique.

See the glXVideoResizeSUN man page for more details on using this extension.

� GL_SUN_read_video_pixels — In the Sun XVR-4000 graphics accelerator, the
concept of a frame buffer is replaced by a double-buffered sample buffer for high-
quality antialiasing. Applications can use this extension to get access to the high-
quality anti-aliased video pixels through video read back path available on the
Sun XVR-4000 graphics accelerator.

See the glReadVideoPixelsSUN man page for more details on using this
extension.
Chapter 3 Performance 23

Sun Expert3D, Sun Expert3D-Lite,
Sun XVR-500, Sun XVR-600 and Sun
XVR-1200 Graphics Accelerator
Performance
The Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500, Sun XVR-600, and Sun XVR-
1200 graphics accelerators are high resolution, high performance PCI graphics frame
buffers that provide hardware texture mapping. It is designed to fill the needs of
Suns customers who use texture mapping extensively, notably in defense,
geophysical and digital content creation applications.

The Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500, Sun XVR-600, and Sun XVR-
1200 graphics accelerators provide a complete acceleration of the OpenGL API,
including 2D and 3D texture-mapping and image processing.

Hardware Acceleration Features
The Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500, Sun XVR-600, and Sun XVR-
1200 graphics accelerators will accelerate the entire 3D OpenGL graphics pipeline in
hardware, including all geometry operations, triangle setup, texturing and pixel
operations.

In addition, Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500, Sun XVR-600, and Sun
XVR-1200 graphics accelerators hardware acceleration is used for matrix
transformations, perspective, and viewport transformations, area fills, block moves,
puts and gets, 2D/3D and antialiased points vectors and polygons, alpha operations,
window clipping, fog, stencil, depth buffering, texture mapping, Pbuffers, and
accumulation buffers. The Sun XVR-1200 graphics accelerator hardware acceleration,
in addition to these, is also used for texture matrix transformations of texture
coordinates, full lighting calculations (up to 32 lights), and user clip-planes (up to
eight).

The Sun XVR-1200 graphics accelerator adds new hardware features. These include:
dual pipeline architecture, dual screen support, gradient area fill support, cube-
mapped texture support, 32 light sources versus 24, Increase Display List (Direct
Burst) memory size (32 MBytes) and texture buffer memory size (256 MBytes) to
improve display list and texture based applications performance.

The Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500, Sun XVR-600, and Sun
XVR-1200 graphics accelerators supports both 8-bit and 24-bit OpenGL visuals.
24 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

The list of unaccelerated features for the Sun Expert3D, Sun Expert3D-Lite,
Sun XVR-500, Sun XVR-600, and Sun XVR-1200 graphics accelerators is small:

� Fill rates limit the performance of large, non-textured triangles.

� Wide antialiased points (Enabled GL_POINT_SMOOTH and glPointSize > 3.0)

� Wide antialiased lines (Enabled GL_LINE_SMOOTH and glLineWidth > 1.0)

Sun XVR-1200 Graphics Accelerator Dual Pipeline
The Sun XVR-1200 Grahics Accelerator is a "dual pipe" architecture and can be
configured to drive a single display or to drive two displays. In the dual display
mode, the two graphics pipelines run independently, one being used for each
display. In the single display mode, the two graphics pipelines run in a parallel,
processing a single stream of graphics requests. This means that graphics rendering
performance in single display mode is roughly double that of dual display mode.

Vertex Processing
“General Tips on Vertex Processing” on page 17 also apply to the Sun Expert3D, Sun
Expert3D-Lite, Sun XVR-500, Sun XVR-600, and Sun XVR-1200 graphics accelerators.
Applications should strive to use Display List mode, rather than Immediate Mode.
Use of consistent Data Types is preferred, as is high batching of primitive data.
Vertex Arrays and MultiDraw Arrays will provide for the best immediate mode
rendering performance.

Immediate-Mode OpenGL graphics operations are likely to scale with CPU
performance on the Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500, Sun XVR-600,
and Sun XVR-1200 graphics accelerators. Immediate-Mode OpenGL graphics
operations are also likely limited by the PCI bus bandwidth.

Texture
Virtual texture maps are supported. The Sun Expert3D, Sun Expert3D-Lite, Sun
XVR-500, Sun XVR-600, and Sun XVR-1200 graphics accelerators do not limit the
number of textures that are defined. As much texture is supported as can be defined
in Virtual Memory on Sun Expert3D, Sun Expert3D-Lite or Sun XVR-500 graphics
accelerator systems.
Chapter 3 Performance 25

The largest single texture map supported by the Sun Expert3D, Sun Expert3D-Lite,
Sun XVR-500, and Sun XVR-600 graphics accelerators is 16 megabytes. For the Sun
XVR-1200 graphics accelerators, the largest single texture map supported is 32
megabytes. All texture maps should be this size or smaller. The smallest texel format
uses 16 bits per texel.

Buffer Clear
When clearing the OpenGL color and depth buffers, there is a performance
advantage to clearing both buffers from the same glClear() call:
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

Various applications wish to clear the color buffer to a gradient shaded background
as opposed to a solid color. To do this, the application draws a primitive the size of
the window, but has to make many changes to the state of the pipeline before the
drawing can occur. The Sun XVR-600 and Sun XVR-1200 graphics accelerators also
provide GL_EXT_gradient_clear extension and fully hardware acceleration
support to improve gradient clear performance.

The performance difference on the Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500,
Sun XVR-600, and Sun XVR-1200 graphics accelerators may be an order of
magnitude.

Tuning the Geometry Subsystem
OpenGL offers many features to generate sophisticated photo-realistic rendering
images. Some of these features, however, have extra performance cost due to the Sun
XVR-1200 graphics accelerator hardware architecture and software implementation.
Use those features only when performance and image quality are justified.

Best Performance Slower Performance

Single light source Multiple light sources

User clip planes disabled User clip planes enabled

Local viewer disabled Local viewer enabled

Two side lighting disabled Two side lighting enabled

Face culling disabled Face culling enabled

Directional light source Positional light source
26 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Sun Elite3D Graphics Accelerator
Performance
The Sun Elite3D graphics accelerator performance is affected by attributes that force
the slower rendering layers to be used.

Attributes
Primitive-attribute settings affect performance; therefore, you will get a better level
of performance if you can avoid setting the attributes listed below. In general, the
more host processing needed, the slower the resulting rendering, so it is
advantageous for an application to avoid those attributes that force the slower
rendering layers to be used.

Attributes that Force the Use of the CPU for Vertex Processing

The Elite3D graphics accelerator performs most all vertex processing operations. If
an attribute is set and it cannot be handled directly by the hardware, the host CPU
must handle it, as well as the other model coordinate functions. Rasterization of the
resulting device coordinate geometry is still performed by the hardware, although at
a reduced speed. The drop off in performance may be anywhere from 20% to 50%.

� Using vertices with homogeneous coordinates – glVertex4()

� Calling (glMaterial()) between glBegin() and glEnd().

� Enabling indexed color linear fog – glIndex() and GL_FOG_MODE, GL_LINEAR

Environment Variables Affecting Read Performance
� unsetenv SUN_OGL_ABGR_READPIX_NOCONFORM (default)

The alpha value read back from the frame buffer during glReadPixels with
the GL_ABGR_EXT format is always 1.0. This is conformant but slower than the
following variable:

� setenv SUN_OGL_ABGR_READPIX_NOCONFORM

The alpha value read back from the frame buffer during glReadPixels with
the GL_ABGR_EXT format is undefined. This up to 30% faster than the
conformant version. For Elite3D, the alpha value is not stored in the frame
Chapter 3 Performance 27

buffer anyway. Consequently, if the application does not use the alpha value,
this version is a significantly faster way to read pixels back from the frame
buffer.

Attributes that Force the Use of the Generic Software
Rasterizer

Elite3D hardware rasterizers cannot be used under some attribute setting
combinations. Consequently, software rasterization must be used to scan convert
primitives. This is the slowest data path, with a noticeable performance drop from
the DC layer rendering mentioned above. If your application requires any of the
following attributes for performance critical functionality, you may want to
determine whether this performance is acceptable. If not, you can evaluate whether
the use of these attributes is advisable.

1. Rasterization attributes

� Enabling immediate mode texture mapping – To take advantage of Elite3D’s
hardware texture mapping, use display list rendering. In immediate mode, a
considerable slowdown in rendering results. Except when
glHint(GL_SURFACE_SIZE_HINT_SUNX, GL_LARGE_SUNX) is set,
hardware texture mapping acceleration will be turned on. The performance of
certain applications with large textured surfaces will improve.

� Environment mapping – glTexGen(Coord,pname,GL_EYE_LINEAR or
GL_SPHERE_MAP)

� 3D texture mapping – GL_TEXTURE_3D. Note that 3D texturing refers to using
a 3D cube of textures, not 1D or 2D texturing of 3D geometry, which can be
accelerated by Elite3D.

� Enabling surface antialiasing (GL_POLYGON_SMOOTH) for any of the triangle,
quad, or polygon primitives rendered with glPolygonMode == GL_FILL

� Enabling indexed color antialiasing

� Stippled lines (GL_LINE_STIPPLE) where the line stipple scale factor is larger
than 15

� glColorTable(GL_TEXTURE_COLOR_TABLE_SGI(), ...size bigger than 256
entries – Elite3D hardware texture mapping can only support up to 256 table
entries.

� BGRA pixel formats

� Packed pixel formats

� Separate specular color

� Texture level of detail control
28 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

2. Texturing attributes

� Texture-mapped lines and dots – Elite3D hardware texture mapping is only
supported for filled primitives.

3. Fragment attributes

� Blending or alpha test requiring destination alpha. There is no alpha buffer in
an Elite3D accelerator; therefore, any blending operation or alpha test that
requires destination alpha is rasterized by software.

� Indexed color exponential fog. Elite3D supports fog for RGB colors only.
Exponential fog must be applied on a per-pixel basis; therefore, rendering must
be done at the software raster level.

Pixel Operations
For Elite3D, pixel operations are handled in the same was as the Creator Graphics
accelerator. The optimized attributes are the same for both accelerators. For
information on which attribute settings optimize performance on the Creator
Graphics, see “Pixel Operations” on page 39.

Consistent Data
In most cases, other than texture mapping, the Elite3D can handle any data,
inconsistent or consistent, without calling the software pipeline for vertex
processing. If the vertex data is consistent, the Elite3D can handle it more efficiently,
resulting in better performance.

If the data is in a display list, is consistent, and doesn’t violate the guidelines listed
on “Attributes” on page 27, it can be block copied to the hardware. For most
applications, this is the fastest way to get data to the Elite3D hardware.

If the data is inconsistent, or if the application uses immediate mode rendering the
data cannot be block copied. Instead, it is written to the hardware one word at a
time. This is slower than block copying, but still much faster than the performance
on a DC device or performance via the software pipeline. The OpenGL for Solaris
implementation for the Elite3D calls the software pipeline as a last resort, for a small
set of attributes or types of geometry, for example using homogeneous coordinates
or calling glMaterial inside a primitive. For examples of consistent data patterns,
see “Consistent Data Types” on page 18.
Chapter 3 Performance 29

Sun Creator and Creator3D Graphics
Accelerator Performance
The Ultra Creator and Creator 3D Graphics systems accelerate rasterization of lines,
points, and triangles as well as most per-fragment operations. Vertex processing and
texturing operations are performed on the UltraSPARC CPU. The Sun OpenGL for
Solaris implementation for the Creator and Creator3D frame buffers uses all features
of the Creator graphics subsystem.

Rasterization and fragment processing is handled in one of three ways:

� Creator3D hardware rasterizer – Handles lines, points, and triangles, and does
simple fragment processing.

� Optimized software rasterizer – UltraSPARC VIS (Visual Instruction Set) handles
many texturing functions and pixel operations.

� Generic software rasterizer – Performs rasterization for all features not handled
by the hardware or by the VIS software.

The following sections provide specific information on attribute use and pixel
operations on these platforms.

Attributes Affecting Creator3D Performance
Primitive-attribute settings affect performance; therefore, you will get a better level
of performance if you can avoid setting the attributes listed below. In some cases, the
listed attributes simply increase the amount of processing in the hardware or
optimized software data paths. In other cases, setting these attributes forces the use
of the software rasterizer, resulting in slow performance.

Attributes that Increase Vertex Processing Overhead

Attributes that result in more vertex processing overhead include:

� Enabling lighting.

� Turning on user specified clip planes (GL_CLIP_PLANE[i]).

� Enabling color material (GL_COLOR_MATERIAL).

� Enabling non-linear fog (glFog(GL_FOG_MODE, GL_EXP{2})). An exception to
this is using RGBA mode on Creator3D Series 2.

� Enabling GL_NORMALIZE.
30 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

� Turning on polygon offset. However, polygon offset is optimized for the case
when the factor parameter of the glPolygonOffset call is set to 0.0. Users may
have to adjust the units parameter accordingly to avoid stitching for this case.

Primitive Types and Vertex Data Patterns that Increase Vertex
Processing Overhead

Types and patterns that result in more vertex processing overhead are:

� Using a vertex data pattern for GL_POINTS, GL_LINES, GL_LINE_STRIP,
and GL_LINE_LOOP, other than one of the following repeating patterns. These are
the patterns that are maximally accelerated.

V3F:
glVertex3f(...);
...
C3F_V3F:
glColor3f(...);
glVertex3f(...);
...
C4F_V3F:
glColor4f(...);
glVertex3f(...);
...
V2F:
glVertex2f(...);
...
C3F_V2F:
glColor3f(...);
glVertex2f(...);
...
C4F_V2F:
glColor4f(...);
glVertex2f(...);
...

Note – All vertex data patterns, other than one of the above repeating patterns, take
more memory.

� Using glDrawElements in immediate mode.
Chapter 3 Performance 31

Attributes That Increase Hardware Rasterization Overhead

Attributes that result in slower hardware rasterization are:

� Enabling line antialiasing (GL_LINE_SMOOTH)

� Enabling point antialiasing (GL_POINT_SMOOTH)

Environment Variables Affecting Read Performance
� unsetenv SUN_OGL_ABGR_READPIX_NOCONFORM (default)

The alpha value read back from the frame buffer during glReadPixels with
the GL_ABGR_EXT format is always 1.0. This is conformant but slower than the
following variable.

� setenv SUN_OGL_ABGR_READPIX_NOCONFORM

The alpha value read back from the frame buffer during glReadPixels with
the GL_ABGR_EXT format is undefined. This is up to 30% faster than the
conformant version. For Creator, the alpha value is not stored in the frame
buffer anyway. Consequently, if the application does not use the alpha value,
this version is a significantly faster way to read pixels back from the frame
buffer.

Attributes That Force the Use of the Software Rasterizer

Setting the following attributes forces the use of the software rasterizer. This is the
slowest data path. If your application requires any of the following attributes for
performance critical functionality, you may want to determine whether this
performance is acceptable. If not, you can evaluate whether the use of these
attributes is advisable.

1. Rasterization attributes

� In Indexed color mode, enabling line anti-aliasing (GL_LINE_SMOOTH) or point
anti-aliasing (GL_POINT_SMOOTH)

� Enabling polygon anti-aliasing (GL_POLYGON_SMOOTH)

� Stippled lines (GL_LINE_STIPPLE) where the line stipple scale factor is larger
than 15

� Antialiased line width not equal to 1.0

� Non-antialiased (“jaggy”) points with glPointSize(3gl)greater than 1.0

Note – The only anti-aliased point size supported by Creator3D and Creator is 1.0.
glPointSize is ignored for anti-aliased points. Although the nominal antialiased
point size is 1.0, the actual visible size is approximately 1.5.
32 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

2. Fragment Attributes

� Blending (GL_BLEND) forces the use of the software rasterizer unless both the
source and destination blend functions are in the following set of blend
functions supported by the hardware: GL_ZERO, GL_ONE, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA

� Enabling the stencil test (GL_STENCIL_TEST) on Creator3D or Creator3D
Series 2. (Enabling the stencil test does not force the use of the software
rasterizer on Creator3D Series 3 because it supports hardware stencilling).

On the UltraSPARC platform, a VIS optimized software rasterizer is used for
smooth-shaded non-textured stenciled triangles whenever the
glStencilOp parameter fail is anything other than GL_INCR or GL_DECR
and the depth test does not affect the stencil buffer. (This is the case when
depth test is disabled or the glStencilOp parameters zfail and zpass are
identical).

� Enabling any type of fog in Indexed color mode

FIGURE 3-1 shows the data path for hardware rasterization on the Creator3D system.

3. Texturing Attributes

� Color Table—When the GL_TEXTURE_COLOR_TABLE_SGI extension is used,
the only glTexEnv texture base internal formats that are accelerated are
GL_LUMINANCE, GL_LUMINANCE_ALPHA and GL_INTENSITY.

� The texture environment mode glTexEnv GL_TEXTURE_ENV_MODE of
GL_BLEND is not accelerated when it is used with the
GL_TEXTURE_COLOR_TABLE_SGI extension.

� Fog—On Creator3D, only linear fog is accelerated. On Creator3D Series 2, all
types of RGBA fog are accelerated.

Attributes That Vary Optimized Texturing Speed

Texturing makes extensive use of VIS on UltraSparc platforms and allows for large
textures. Texturing speed naturally increases with faster CPUs (a 300 Mhz
UltraSPARC CPU is 1.6 times faster than a 167 Mhz CPU). Though texturing fill rates
are slower on a host CPU than on dedicated hardware, the system costs are lower.

Stencil and some fragment blending cases are slow. The rest are fast (done by
Creator 3D hardware).

Some texturing attributes are handled by generic code and result in the slowest
texturing speed when the GL_TEXTURE_COLOR_TABLE_SGI extension is used with
texture environment color blending or base internal formats of GL_ALPHA, GL_RGB,
or GL_RGBA.
Chapter 3 Performance 33

FIGURE 3-1 Hardware Rasterizer Path for Creator3D

Texturing attributes with the most impact on speed are:

� Minification filter
� Texture Coordinate Interior/Exterior Classification (per triangle)
� All wrap modes set to GL_REPEAT
� Texture Color Lookup Table

The VIS optimized software rasterizer will vary in texturing speed based on the
texturing attributes specified. The factors affecting texturing speed are listed below.
Note that this is variance within the optimized path, not the difference between the
optimized and generic paths.

Software
Pipeline Renderer

DP MC Renderer

glCallList

DP MC Renderer

glDrawArray

Software Rasterizer/ DP DC Renderer

Vertex
Array

Display
List

dpProcessBuffer dpDrawArray

 Buffered
Primitives

glBegin

glEnd

.

.

Fragment Processing

Frame buffer

Creator3D Fast Path

DP Pixel Renderer
34 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

� Projection Type—The type of projection matrix. Orthographic is faster than
perspective.

� Wrap Mode—Best speed is when all dimensions (GL_TEXTURE_WRAP_x) are set to
GL_REPEAT. If all the texture wrap modes are GL_REPEAT, this case is specially
optimized. If any of the texture wrap modes are GL_CLAMP, the standard texture
wrap routine is used, but it is slower than the special case.

� Dimension—In general, 2D texturing is faster than 3D texturing, since there is one
less texture coordinate to deal with. However, this does not mean it is better to
use many 2D textures to approximate 3D texturing since the texture load time (see
next section) may significantly increase the overhead.

� Minfilter—The fastest GL_TEXTURE_MIN_FILTER parameter is GL_NEAREST,
which is approximately 4x the speed of GL_LINEAR. The approximate relative
speed in decreasing order is: GL_NEAREST, GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR, GL_LINEAR_MIPMAP_NEAREST,
and GL_LINEAR_MIPMAP_LINEAR.

� Magfilter—For GL_TEXTURE_MAG_FILTER, the same speed ratio of 4x applies to
GL_NEAREST vs. GL_LINEAR. Note, however, that GL_TEXTURE_MAG_FILTER is
ignored when GL_TEXTURE_MIN_FILTER is set to GL_NEAREST or GL_LINEAR.
This can be overridden with a shell environment variable but this will slow down
texturing speed for GL_NEAREST and GL_LINEAR, since they now have to
perform level-of-detail calculations to determine when to use
GL_TEXTURE_MAG_FILTER. The shell environment variable that forces this
slower behavior is: setenv SUN_OGL_MAGFILTER “conformant”

� Texture Coordinate Classification—If all texture coordinates of a
triangle/quad/polygon are at LEAST 1/2 texel inside away from the texture map
edge, the primitive is considered interior and are render faster than those whose
texture coordinates touch or cross the texture map’s edges. If any vertex touches
or crosses the texture map edge, the primitive is considered exterior. If a primitive
is interior, the texture edge related attributes such as wrap modes and texture
border no longer affect the texturing speed.

� Env Mode—The fastest glTexEnv() GL_TEXTURE_ENV_MODE is GL_REPLACE,
followed closely by GL_MODULATE. GL_DECAL is the same speed as GL_REPLACE.

� Color Table—The use of the extension GL_TEXTURE_COLOR_TABLE_SGI will
reduce texturing speed.

� Texture Color Lookup Table—Using this table causes significant slowdown of
texturing speed. Only cases of one or two channel lookups are optimized -
GL_LUMINANCE, GL_INTENSITY, GL_LUMINANCE_ALPHA. Three or four channel
lookups (GL_RGB, GL_RGBA) go to a generic code routine that is slower than the
special case.
Chapter 3 Performance 35

Texture Memory Usage

The OpenGL library uses packed textures when possible to minimize texture space.
The OpenGL library internally makes a copy of the user specified texture. Internal
formats GL_LUMINANCE, GL_ALPHA, and GL_INTENSITY are stored as packed 8-bits
per texel textures. The internal format GL_LUMINANCE_ALPHA is stored as 16-bit per
texel textures. Note that this copy can be avoided by using constant data extension
(see GL_CONSTANT_DATA_SUNX man page for more details). On the Elite3D, if MIP
mapping is used, an additional copy is made internally (resulting in a total of two
internal copies).

Attributes That Vary Texture Load Time

The time to load the texture image into a texture object or a display list will vary
depending on the pixel store and pixel transfer attributes specified when the texture
is specified.

FIGURE 3-2 shows the texture load processing flow.

FIGURE 3-2 Text Load Processing Flow

glTexImage*D()

glPixelStore()

glPixelTransfer()
texture conversion
 & storage

memcpy() &
texture

Optimized
texture conversion
& storage

API Layer

(Fast)(Fastest)(Slow)

Optional & slow
Required & fast
36 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

The following recommendations should be followed where possible to reduce
texture load time:

� Use Constant Data Extension – This extension eliminates the texture load time by
using the application-provided texture data pointer internally. To use this
extension, the application should use one of the format/internal format
combinations listed in TABLE 3-1 and the texture data type should be
GL_UNSIGNED_BYTE. Using this extension restricts when or how the texture data
pointer can be deleted or changed. For a complete description refer to
GL_CONSTANT_DATA_SUNX man page.

� Use texture objects where possible.

� If multiple textures are being used, put the textures in texture objects and use
glBindTexture to switch among the textures. This ensures that the internal
copy of texture is evaluated only once.

� Internally, 1D, 2D, and 3D textures use packed representation to minimize
memory usage.

� If application uses pixel store (but not pixel transfer) and therefore constant data
extension cannot be used, for textures using data type GL_UNSIGNED_BYTE, the
following format/base internal format combination give the best loading
performance.

TABLE 3-1 3D Optimized Cases

Format Base Internal Format

GL_RED GL_INTENSITY

GL_RED GL_LUMINANCE

GL_ALPHA GL_ALPHA

GL_LUMINANCE GL_INTENSITY

GL_LUMINANCE GL_LUMINANCE

GL_ABGR_EXT GL_RGBA
Chapter 3 Performance 37

Attributes Affecting Software Rendering
Performance
This section applies when pure software rendering is being used. This happens on
the single-buffered Creator platform when glDrawBuffer(3gl) is set to GL_BACK or
GL_FRONT_AND_BACK. The data presented here is also valid for the PGX platforms.
Note that for non-Ultra machines, VIS rasterization is replaced by an optimized
software rasterizer.

Attributes That Increase Vertex Processing Overhead

Attributes that result in more vertex processing overhead are:

� Enabling lighting.

� Turning on user specified clip planes (GL_CLIP_PLANE[i]).

� Enabling color material (GL_COLOR_MATERIAL).

� Enabling non-linear fog (glFog (GL_FOG_MODE, GL_EXP{2})). An exception
to this is using RGBA mode on Creator3D Series 2.

� Enabling GL_NORMALIZE.

� Turning on polygon offset. However, polygon offset is optimized when the factor
parameter of the glPolygonOffset call is set to 0.0. Users may have to adjust
the units parameter accordingly to avoid stitching for this case.

Attributes That Force the Use of the Generic Software
Rasterizer

Setting the following attributes forces the use of the generic software rasterizer. This
is the slowest data path. If your application requires any of the following attributes
for performance critical functionality, you may want to determine whether this
performance is acceptable. If not, you can evaluate whether the use of these
attributes is advisable.

1. Texturing Attributes

� All three-dimensional texturing attributes result in the use of the generic
software rasterizer.

� Two-dimensional texture mapping (GL_TEXTURE_2D) in the following cases:

i. Texture environment mode glTexEnv GL_TEXTURE_ENV_MODE is set to
GL_BLEND.

ii. glTexEnv texture base internal format is GL_ALPHA.
38 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

iii. Texturing of points is handled by the generic software.

iv. Fog is enabled.

v. Any use of the SGI Texture Color Table (GL_SGI_texture_color_table)
extension.

2. Fragment Attributes

� Enabling any type of fog in Indexed color mode.

� Enabling blending (glBlendFunc) (3gl) except when the source blending
factor is GL_SRC_ALPHA and the destination blending factor is
GL_ONE_MINUS_SRC_ALPHA. This case is optimized.

� Enabling logical operations.

� Enabling depth test glEnable(GL_DEPTH_TEST) forces the use of the
optimized software rasterizer. If depth test is enabled, and if
glDepthFunc(3gl) is on, enabling any Z comparison other than GL_LESS or
GL_LEQUAL forces the use of the generic software rasterizer.

� Enabling alpha test.

� Setting glDrawBuffer(3gl) to GL_BACK or GL_FRONT_AND_BACK, or setting
glReadBuffer(3gl) to GL_BACK.

Pixel Operations
Under optimal conditions, the commands glDrawPixels(3gl),
glReadPixels(3gl), and glCopyPixels(3gl) are optimized on the Creator and
Creator3D systems using the VIS instruction set on the UltraSPARC CPU. Bitmap
operations using the command glBitmap(3gl) are accelerated in the Creator3D
font registers. However, some attribute settings result in the use of the software
rasterizer for pixel operations.

FIGURE 3-3 shows the rasterization and fragment processing architecture for
glDrawPixels(3gl). The figure shows the optimized and unoptimized paths for
pixel rendering. Your application will experience performance degradation for each
functional box that it needs. In addition, performance degradation will occur if the
data type is not unsigned byte; in this case, the data must be reformatted internally.
Chapter 3 Performance 39

FIGURE 3-3 Sun OpenGL for Solaris Architecture for Drawing Pixels

Conditions That Result in VIS Optimization on UltraSPARC
Systems

In general, for DrawPixels, CopyPixels, and Bitmap, the use of texture mapping or
nonlinear fog (except in RGBA mode on Creator3D Series 2) will force the use of the
generic software rasterizer, resulting in slow performance. In addition, if the
hardware does not support the per-fragment operations that the application has
enabled, the generic software rasterizer is used. See the OpenGL documentation or
the “OpenGL Machine” diagram for a list of per-fragment operations.

For the Creator3D system, if the following conditions are true, pixel operations are
optimized. If these conditions are not true, the generic software rasterizer is used.

glDrawPixels Command
� Pixel format is GL_RGBA, GL_RGB, GL_ABGR_EXT, GL_RED, GL_GREEN, GL_BLUE,

GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

� Data type is GL_UNSIGNED_BYTE. (For GL_LUMINANCE the data type can also be
GL_SHORT).

� For the format of GL_DEPTH_COMPONENT, the types GL_INT, GL_UNSIGNED_INT,
and GL_FLOAT are optimized for the case with no pixel transfer.

DrawPixels

unpack

 zoom

transfer/map

texture/ fog

SW per-fragment ops

frame buffer

data type
reformatting
40 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

� Texturing is disabled.

� Pixel unpacking is unnecessary.

� For the formats listed in the first line, the pixel transfer operations for scale/bias,
pixel map, SGI color table, convolution, post convolution color table, histogram,
and minmax may be enabled.

� Pixel Zoom may be done if it zoom factors are other than the default values.

� Pixel transform may be done if its current matrix is other than the identity matrix.

glReadPixels Command
� Pixel format is GL_RGBA, GL_RGB, GL_ABGR_EXT, GL_RED, GL_GREEN,

GL_BLUE, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

� Data type is GL_UNSIGNED_BYTE.

� For the format of GL_DEPTH_COMPONENT, the types GL_INT,
GL_UNSIGNED_INT, and GL_FLOAT are optimized for the case with no pixel
transfer.

� Pixel packing is unnecessary.

� For the formats listed in the first line, the pixel transfer operations for scale/bias,
pixel map, SGI color table, convolution, SGI post convolution color table,
histogram, and minmax may be enabled.

glCopyPixels Command
� Pixel type is GL_COLOR.

� Texturing is disabled.

� Pixel zooming is in the default state.

� The pixel transfer operations for scale/bias, pixel map, SGI color table,
convolution, SGI post convolution color table, histogram, and minmax may be
enabled.

glBitmap Command
� Texturing is not enabled.
� Blending is not enabled.
Chapter 3 Performance 41

Conditions That Result in VIS Optimization

For the UltraSPARC the Creator and non-Creator frame buffers, if the following
conditions are true, pixel operations are optimized. If these conditions are not true,
the generic software rasterizer is used.

glDrawPixels Command
� For GL_LUMINANCE with data types GL_UNSIGNED_BYTE and GL_SHORT,

there are special VIS optimized routines for:

� drawing directly to the frame buffer (or pbuffer).

� performing pixel transfer (i.e., scale/bias, pixel map, SGI color table,
convolution, SGI post convolution color table, histogram, and minmax) then
displaying directly to the frame buffer (or pbuffer).

� performing the pixel transform extension, then drawing directly to the frame
buffer (or pbuffer).

� performing pixel transfer followed by the pixel transform extension, then
finally drawing directly to the frame buffer (or pbuffer).

� Pixel format is GL_RGBA, GL_RGB or GL_ABGR_EXT.

� Data type is GL_UNSIGNED_BYTE.

� Texturing is disabled.

� Pixel unpacking is unnecessary.

� If depth test is enabled, and if glDepthFunc(3gl) is on, enabling any Z
comparison other than GL_LESS or GL_LEQUAL.

glReadPixels Command
� For GL_RED with the data type GL_UNSIGNED_BYTE, there is one special VIS

optimized routine for extracting the red channel from an ABGR frame buffer or
pbuffer.

� If glReadPixels format is GL_RGBA, GL_RGB, or GL_ABGR_EXT, and the pixel
type is GL_UNSIGNED_BYTE, glReadPixels is optimized.

� If glReadPixels format is GL_DEPTH_COMPONENT, these pixel types are
optimized: GL_INT, GL_UNSIGNED_INT, GL_FLOAT.

� Pixel packing is unnecessary.
42 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

glCopyPixels Command
� Pixel type is GL_COLOR.
� Texturing is disabled.
� Enabling any Z comparison other than GL_LESS or GL_LEQUAL.

glBitmap Command
� Texturing is disabled.
� If depth test is enabled, and if glDepthFunc is on, enabling any Z comparison

other than GL_LESS or GL_LEQUAL.

Pixel Transfer Pipeline (ARB) Imaging
Extensions and the Pixel Transform
The Pixel Transfer Pipeline consists of a small set of image processing functions that
operate on most rectangular imagery with OpenGL. These operations are performed
whenever Pixel Transfer operations can occur within OpenGL (that is,
glDrawPixels, glReadPixels, glCopyPixels, glTexImage2D, glTexImage3D,
and so on).

This pipeline has been fine tuned for maximum performance on GL_LUMINANCE
formatted data for the data types GL_UNSIGNED_BYTE and GL_SHORT. Other
formats have been accelerated as well; however, GL_LUMINANCE gains the most in
performance with this Implementation of the Pipeline.

This pipeline has been accelerated using the Visual Instruction Set, which is only
available on those systems with the UltraSPARC processor. The Pixel Transfer
Pipeline with VIS acceleration is not supported on Non-UltraSPARC processors;
however, the original Pixel Transfer Functionality is still there, minus the new
imaging extensions.
Chapter 3 Performance 43

Implementation
FIGURE 3-4 shows the functions and the order of execution (from top to bottom) of
these functions in the Pixel Transfer Pipeline.

FIGURE 3-4 Pixel Transfer Pipeline Functions and Order of Execution

All functions in the pipeline have been accelerated using VIS whenever possible. The
imaging extensions within this pipeline are convolution, post convolution
scale/bias, post convolution color table, histogram, minmax, and pixel transform.
The last one, pixel transform, is not really part of the pixel transfer pipeline, but is
instead considered part of the pixel rasterizer. Also, pixel transform is only executed
in the glDrawPixels interface.

Another optimization that is worth noting here is that direct output to the display,
via the glDrawPixels interface, or into a pbuffer has been optimized for
GL_LUMINANCE format with GL_UNSIGNED_BYTE and GL_SHORT data types. For
GL_UNSIGNED_BYTE, while the frame buffer is in TrueColor mode (rgb mode), the
luminance pixels are expanded to XBGR format and then written directly to the
frame buffer memory using VIS for optimal throughput. For GL_LUMINANCE,
GL_SHORT data, the conversion of GL_SHORT data to GL_UNSIGNED_BYTE and then
expansion to XBGR for direct display has been optimized for maximum throughput
using VIS.

Scale/Bias

Pixel Map

SGI Color Table

Convolution

Post Convolution Scale/Bias

Post Convolution Color Table

Histogram

MinMax

Pixel Transform
44 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

When the input format is GL_LUMINANCE and the input data type is GL_SHORT the
Pixel Transfer Pipeline has been made so that it will process the data from the
beginning to end of the pipe as GL_SHORT data. This maintains the accuracy and
integrity of the data from one stage of the pipeline to the next. Only just before
rendering into the frame buffer or pbuffer does the data get scaled down and
clamped to [0, 255].

In this pipeline none or all of these processing blocks can be enabled. Any time the
Pixel Transfer Pipeline is used, there is only one pass through the pipe, and the order
of execution does not change from that represented in FIGURE 3-4.

How To Use the Pixel Transfer Pipeline and Pixel
Transform
For the most part, OpenGL operates on RGBA colors. Therefore, to be specification
compliant in OpenGL, if a user of OpenGL wants to do pixel transfer operations on
GL_LUMINANCE data, that data should first be expanded to GL_RGBA format, (or
GL_ABGR_EXT format) before doing any processing. However, depending on the
OpenGL pixel transfer state parameters, it may not be necessary to expand the
image data before processing in the pixel transfer pipeline. That is, if we expand the
data from GL_LUMINANCE to GL_RGBA first, process the image as four-banded data
in the Pixel Transfer Pipeline, and then display, or if we process the GL_LUMINANCE
data as a single banded image in the Pixel Transfer Pipeline, then expand the data at
the end of the pipeline, then display the data; if the result would be the same using
either of the two paths, it makes sense to use the faster path, which, in this case,
would be the latter path.

This takes about 1/4th the time, (or less) to do the correct desired operation. The
Pixel Transfer Pipeline evaluates the various states of the pixel transfer functions and
determines if it needs to do format expansion, before, during, or after processing,
but expansion always occurs, if needed, just before rendering to the frame buffer or
pbuffer.

The only case were format expansion can occur inside the Pixel Transfer Pipeline is
within the “pixel map” block. If you want optimal throughput for GL_LUMINANCE
data, do not use pixel map, instead use SGI color table if you need to use a color
table at this stage in the pipeline.

The following sections explain each stage of the Pixel Transfer Pipeline. The example
code provided shows you how to set the state parameters for the given stage so that
GL_LUMINANCE data is not expanded until the very end of the pipeline, just before
rendering to the frame buffer's window or the pbuffer.
Chapter 3 Performance 45

Scale/Bias

This operation multiplies all pixels by a given scale value then adds a bias value.
Scale and Bias values can be set differently for each color component of a pixel.
These values are set as follows:

glPixelTransferf (GL_RED_SCALE, red_scale_value);

glPixelTransferf (GL_GREEN_SCALE, green_scale_value);

glPixelTransferf (GL_BLUE_SCALE, blue_scale_value);

glPixelTransferf (GL_ALPHA_SCALE, alpha_scale_value);

glPixelTransferf (GL_RED_BIAS, red_bias_value);

glPixelTransferf (GL_GREEN_BIAS, green_bias_value);

glPixelTransferf (GL_BLUE_BIAS, blue_bias_value);

glPixelTransferf (GL_ALPHA_BIAS, alpha_bias_value);

If any of these deviate from their default values, (1.0 for scale and 0.0 for bias), the
Scale/Bias block in the Pixel Transfer Pipeline is enabled. If any of the red, green,
blue, or alpha components differ from each other for either scale or bias, and if the
input format can be expanded to GL_RGBA or GL_ABGR_EXT format, the expansion
will occur before processing starts in the pixel transfer pipeline. If the red, green,
blue and alpha scale values are all the same or alpha scale is 1.0, and the red, green,
blue and alpha bias values are the same or the alpha bias is 0.0, but the red, green,
and blue components are different from their default values, expansion does not
need to occur. Hence, if you do a glDrawPixels operation and pass in
GL_LUMINANCE data, the red component will be used to do the scale and bias, and
the output will be a GL_LUMINANCE format image. Hence, the following OpenGL
calls will set up Scale/Bias to process GL_LUMINANCE without format expansion:

glPixelTransferf (GL_RED_SCALE, scale_value);

glPixelTransferf (GL_GREEN_SCALE, scale_value);

glPixelTransferf (GL_BLUE_SCALE, scale_value);

glPixelTransferf (GL_ALPHA_SCALE, scale_value);

glPixelTransferf (GL_RED_BIAS, bias_value);

glPixelTransferf (GL_GREEN_BIAS, bias_value);

glPixelTransferf (GL_BLUE_BIAS, bias_value);

glPixelTransferf (GL_ALPHA_BIAS, bias_value);

or

glPixelTransferf (GL_RED_SCALE, scale_value);

glPixelTransferf (GL_GREEN_SCALE, scale_value);

glPixelTransferf (GL_BLUE_SCALE, scale_value);

glPixelTransferf (GL_ALPHA_SCALE, 1.0);

glPixelTransferf (GL_RED_BIAS, bias_value);
46 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

glPixelTransferf (GL_GREEN_BIAS, bias_value);

glPixelTransferf (GL_BLUE_BIAS, bias_value);

glPixelTransferf (GL_ALPHA_BIAS, 0.0);

To disable scale/bias, just reset the scale/bias values back to their default values as
shown below:

glPixelTransferf (GL_RED_SCALE, 1.0);

glPixelTransferf (GL_GREEN_SCALE, 1.0);

glPixelTransferf (GL_BLUE_SCALE, 1.0);

glPixelTransferf (GL_ALPHA_SCALE, 1.0);

glPixelTransferf (GL_RED_BIAS, 0.0);

glPixelTransferf (GL_GREEN_BIAS, 0.0);

glPixelTransferf (GL_BLUE_BIAS, 0.0);

glPixelTransferf (GL_ALPHA_BIAS, 0.0);

Pixel Map

When in true color mode (RGB mode), if the input image data format is not
GL_RGBA or GL_ABGR_EXT, expansion is always forced if pixel map is enabled using
glPixelTransfer (GL_MAP_COLOR, GL_TRUE). If the input image format is
GL_COLOR_INDEX and the current display mode is RGB, Pixel Map is called
automatically whether it was enabled or not to do the conversion from color index to
RGBA. In terms of performance for GL_LUMINANCE, this case is not optimal and you
should use SGI color table instead.

To learn how to use Pixel Map, consult the “OpenGL Reference Manual,” by the
OpenGL Architecture Review Board, known as the blue book. Read the sections on
glPixelTransfer, and glPixelMap.

Color Table

This extension is very useful for accelerating color lookup for GL_LUMINANCE data.
Other formats are accelerated as well; however, GL_LUMINANCE benefits the most.
The following code fragment shows how to correctly setup color table to perform a
color lookup for GL_LUMINANCE data:

int unpack_row_length;

int unpack_skip_pixels;

int unpack_skip_rows;

int unpack_alignment;

int lut_size;
Chapter 3 Performance 47

void *lut;

/* Turns on color table. */

glEnable (GL_COLOR_TABLE);

/* The current pixel storage modes also affect color table */

/* definition at the time the color table is created. We */

/* need to grab the current values, set the row length, */

/* skip pixels and skip rows to the defaults and */

/* set unpack alignment to 1. When finished defining the */

/* color table, restore the original values. */

glGetIntegerv (GL_UNPACK_ROW_LENGTH, (long *) &unpack_row_length);

glGetIntegerv (GL_UNPACK_SKIP_PIXELS, (long *) &unpack_skip_pixels);

glGetIntegerv (GL_UNPACK_SKIP_ROWS, (long *) &unpack_skip_rows);

glGetIntegerv (GL_UNPACK_ALIGNMENT, (long *) &unpack_alignment);

glPixelStorei (GL_UNPACK_ROW_LENGTH, 0);

glPixelStorei (GL_UNPACK_SKIP_PIXELS, 0);

glPixelStorei (GL_UNPACK_SKIP_ROWS, 0);

glPixelStorei (GL_UNPACK_ALIGNMENT, 1);

/* Define the color table for GL_LUMINANCE. */

/* If data type is GL_UNSIGNED_BYTE create a lookup table with */

/* 256 entries. Each entry is of type GL_UNSIGNED_BYTE. */

/* Range of values for any entry is [0, 255]. */

/* For a GL_SHORT lookup table, generate a table of 65536 entries */

/* ranging from -32768 to 32767. */

if (data_type == GL_UNSIGNED_BYTE) {

lut_size = 256;

lut = generate_unsigned_byte_lut();

}

else if (data_type == GL_SHORT) {

lut_size = 65536;

lut = generate_short_lut();

}

glColorTable (GL_COLOR_TABLE,
GL_LUMINANCE, /* Need to specify internal format.

*/

lut_size,

GL_LUMINANCE, /* Format of lut passed in. */
48 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

data_type, /* Data type of lut passed in. */

lut); /* Actual pointer to lut arrayl. */

/* Restore original Pixel Storage values in case something else */

/* needed these values. */

glPixelStorei (GL_UNPACK_ROW_LENGTH, unpack_row_length);

glPixelStorei (GL_UNPACK_SKIP_PIXELS, unpack_skip_pixels);

glPixelStorei (GL_UNPACK_SKIP_ROWS, unpack_skip_rows);

glPixelStorei (GL_UNPACK_ALIGNMENT, unpack_alignment);

Convolution, Post Convolution Scale/Bias and Post
Convolution Color Table

Convolution comes in three flavors: 1D convolution (applies to 1D textures only), 2D
general convolution, and 2D separable convolution. Special effort has been made to
maximize throughput for 2D general and separable convolutions for GL_LUMINANCE
format for GL_UNSIGNED_BYTE and GL_SHORT data types via the glDrawPixels
interface.

Convolution allows you to set scale and bias values that are applied to the
convolution filter kernel before it is used for convolving the image. This is different
from post convolution scale/bias (below) in that the bias is applied to the filter itself
before processing, where as with post convolution scale/bias, the bias is added to
the final convolution result before clamping for the given data type
(GL_UNSIGNED_BYTE or GL_SHORT).

Convolution and post convolution scale/bias have been combined into one
operation. The kernel values for convolution are multiplied by the scale value of the
post convolution scale/bias, then after each pixel is convolved the bias is added.
Since this is all done in VIS, there is no loss in performance when compared with an
ordinary convolve implemented in VIS.

The Sun OpenGL for Solaris implementation of convolution only supports 1 × 3,
1 × 5, and 1 × 7 convolves for 1D convolves, and 3 × 3, 5 × 5, and 7 × 7 for 2D
convolves. Also, the source image must be three times larger than the size of the
convolve kernel to be used.

The Sun OpenGL for Solaris convolution also supports the following border modes:
GL_REDUCE, GL_IGNORE_BORDER, GL_CONSTANT_BORDER, GL_WRAP_BORDER,
GL_REPLICATE_BORDER.

SGI post convolution color table is set up exactly the same way as color table. The
only difference being the target value when defining the table.
Chapter 3 Performance 49

The code fragment below shows how to setup 2D convolution for both the general
and separable cases for a 3 × 3 convolve on GL_LUMINANCE format image data. The
setup is the same for either GL_UNSIGNED_BYTE or GL_SHORT data. It also prepares
for using the GL_CONSTANT_BORDER mode, uses the
GL_CONVOLUTION_FILTER_SCALE and the GL_CONVOLUTION_FILTER_BIAS, sets
up for post convolution scale/bias, then finally sets up the SGI post convolution
color table.

int unpack_row_length;

int unpack_skip_pixels;

int unpack_skip_rows;

int unpack_alignment;

int lut_size;

void *lut;

float kernel3x3[9] = { 0.111111111, 0.111111111, 0.111111111,

0.111111111, 0.111111111, 0.111111111,

0.111111111, 0.111111111, 0.111111111};

float sepkernel3[3] = { 0.333333333, 0.333333333, 0.333333333};

float const_color[4] = { 0.5, 0.5, 0.5, 0.5 };

float kernel_scales[4] = { 0.8, 0.8, 0.8, 0.8 };

float kernel_biases[4] = { 0.2, 0.2, 0.2, 0.2 };

float post_conv_scales[4] = { 0.75, 0.75, 0.75, 0.75 };

float post_conv_biases[4] = { 0.25, 0.25, 0.25, 0.25 };

/* The current pixel storage modes affect convolve kernel */

/* destination at the time the kernels are created. */

/* We need to grab the current values, set the row length, */

/* skip pixels and skip rows to the defaults and set unpack */

/* alignment to 1. */

/* When finished defining the color table, restore the */

/* original values. */

glGetIntegerv (GL_UNPACK_ROW_LENGTH, (long *) &unpack_row_length);

glGetIntegerv (GL_UNPACK_SKIP_PIXELS, (long *) &unpack_skip_pixels);

glGetIntegerv (GL_UNPACK_SKIP_ROWS, (long *) &unpack_skip_rows);

glGetIntegerv (GL_UNPACK_ALIGNMENT, (long *) &unpack_alignment);

glPixelStorei (GL_UNPACK_ROW_LENGTH, 0);

glPixelStorei (GL_UNPACK_SKIP_PIXELS, 0);

glPixelStorei (GL_UNPACK_SKIP_ROWS, 0);

glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
50 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

/* Now, setup convolution with constant color border mode. */

if (convolve_type == GL_CONVOLUTION_2D) {

glEnable (GL_CONVOLUTION_2D);

glConvolutionFilter2D (GL_CONVOLUTION_2D,
GL_LUMINANCE, /* Internal format. */
3, 3, /* Kernal dimensions. */
GL_LUMINANCE, /* Input kernel data format

*/
GL_FLOAT, /* Data type for kernel */

/* entries. */
(void *) kernel3x3); /* Pointer to kernel

.*/

glConvolutionParameteri(GL_CONVOLUTION_2D,
GL_CONVOLUTION_BORDER_MODE,
GL_CONSTANT_BORDER);

glConvolutionParameterfv(GL_CONVOLUTION_2D,

GL_CONVOLUTION_BORDER_COLOR,

const_color);

glConvolutionParameterfv(GL_CONVOLUTION_2D,

GL_CONVOLUTION_FILTER_SCALE,

kernel_scales);

glConvolutionParameterfv(GL_CONVOLUTION_2D,

GL_CONVOLUTION_FILTER_BIAS,

kernel_biases);

}

else if (convolve_type == GL_SEPARABLE_2D) {

glEnable (GL_SEPARABLE_2D);

glSeparableFilter2D (GL_SEPARABLE_2D,

GL_LUMINANCE,

3, 3,

GL_LUMINANCE,

GL_FLOAT,

sepkernel3, /* Horizontal Kernal Values. */

sepkernel3); /* Vertical Kernal Values. */

glConvolutionParameteri(GL_SEPARABLE_2D,

GL_CONVOLUTION_BORDER_MODE,

GL_CONSTANT_BORDER);

glConvolutionParameterfv(GL_SEPARABLE_2D,

GL_CONVOLUTION_BORDER_COLOR,
Chapter 3 Performance 51

const_color);

glConvolutionParameterfv(GL_SEPARABLE_2D,

GL_CONVOLUTION_FILTER_SCALE,

kernel_scales);

glConvolutionParameterfv(GL_SEPARABLE_2D,

GL_CONVOLUTION_FILTER_BIAS,

kernel_biases);

}

glPixelTransferf(GL_POST_CONVOLUTION_RED_SCALE,

post_conv_scales[0]);

glPixelTransferf(GL_POST_CONVOLUTION_GREEN_SCALE,

post_conv_scales[1]);

glPixelTransferf(GL_POST_CONVOLUTION_BLUE_SCALE,

post_conv_scales[2]);

glPixelTransferf(GL_POST_CONVOLUTION_ALPHA_SCALE,

post_conv_scales[3]);

glPixelTransferf(GL_POST_CONVOLUTION_RED_BIAS,

post_conv_biases[0]);

glPixelTransferf(GL_POST_CONVOLUTION_GREEN_BIAS,

post_conv_biases[1]);

glPixelTransferf(GL_POST_CONVOLUTION_BLUE_BIAS,

post_conv_biases[2]);

glPixelTransferf(GL_POST_CONVOLUTION_ALPHA_BIAS,

post_conv_biases[3]);

/* Turns on post convolution color table. */

glEnable (GL_POST_CONVOLUTION_COLOR_TABLE);

/* Define the color table for GL_LUMINANCE. */

/* If data type is GL_UNSIGNED_BYTE create a lookup table with */

/* 256 entries. Each entry is of type GL_UNSIGNED_BYTE. */

/* Range of values for any entry is [0, 255]. */

/* For a GL_SHORT lookup table, generate a table of 65536 entries */

/* ranging from -32768 to 32767.*/

if (data_type == GL_UNSIGNED_BYTE) {

lut_size = 256;

lut = generate_unsigned_byte_lut();
52 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

}

else if (data_type == GL_SHORT) {

lut_size = 65536;

lut = generate_short_lut();

}

glColorTable (GL_POST_CONVOLUTION_COLOR_TABLE,

GL_LUMINANCE, /* Need to specify internal
format. */

lut_size,

GL_LUMINANCE, /* Format of lut passed in. */

data_type, /* Data type of lut passed
in. */

lut); /* Actual pointer to lut
arrayl. */

/* Restore original Pixel Storage values in case something else */

/* needed these values. */

glPixelStorei (GL_UNPACK_ROW_LENGTH, unpack_row_length);

glPixelStorei (GL_UNPACK_SKIP_PIXELS, unpack_skip_pixels);

glPixelStorei (GL_UNPACK_SKIP_ROWS, unpack_skip_rows);

glPixelStorei (GL_UNPACK_ALIGNMENT, unpack_alignment);

Histogram and Minmax

The Histogram and Minmax operations come at the end of the Pixel Transfer
Pipeline. When used, both can have their own “sink” values. If sink is enabled
(GL_TRUE), processing of image data stops here, and does not continue down the
pipeline and no output is generated. If the histogram's sink value is true, minmax is
not executed. (See the man pages for more information about the sink behavior of
these operations).

The code below gives an example of getting a histogram for GL_LUMINANCE and
data for both GL_UNSIGNED_BYTE and GL_SHORT. Notice below that the requested
width of the histogram definition for GL_SHORT has been specified to be 32768
instead of 65536. The reason is that, for GL_SHORT data, the data is effectively
clamped in the range [0, 32767]. That is, if any of the GL_SHORT values are negative,
they will contribute to the very first histogram bin counter value for 0. Specifying a
larger width is pointless since only every other histogram bin would have a value in
it. Histogram widths, in general, may be any value which is a power of 2 in the
range [0, 65536]. However, for those cases where you want to actually display the
computed histogram, you can specify a smaller width for GL_SHORT data type, say
256, 512, or 1024. This saves you the time because you do not have to do the code. By
Chapter 3 Performance 53

requesting a smaller histogram width, histogram bins are added together. For
example, for GL_SHORT, if you requested a width of 256, each returned bin value in
the histogram image would have 128 bins added together. Hence, all values in the
range [0, 127] would be in bin 0. All values in the range [128, 255] would be in bin 1,
and so on.

Minmax uses the histogram to compute its values. It gets the minmax values using
the histogram for the full width of the positive values for GL_UNSIGNED_BYTE and
GL_SHORT. Therefore, if the histogram is taken of GL_UNSIGNED_BYTE, the
possible range of minmax values is [0, 255]. For GL_SHORT, the possible range of
minmax values is [0, 32767].

int minmax[2];

int histogram[32768];

unsigned char *uc_buff;

short *s_buff;

glEnable(GL_HISTOGRAM);

glEnable(GL_MINMAX);

/* Allocate enough space for 64 x 64 GL_LUMINANCE images. */

uc_buff = (unsigned char *) malloc (4096*sizeof(unsigned char));

s_buff = (short *) malloc (4096*sizeof(short));

/* First, do it for GL_UNSIGNED_BYTE with GL_LUMINANCE format. */

glHistogram(GL_HISTOGRAM, 256, GL_LUMINANCE, GL_FALSE);

glMinmax(GL_MINMAX, GL_LUMINANCE, GL_FALSE);

glDrawPixels(64, 64, GL_LUMINANCE, GL_UNSIGNED_BYTE, uc_buff);

/* Since the call to glHistogram defined a width of 256, */

/* 256 entries of the histogram array will be filled in. */

/* The remaining entries in the array are untouched. */

glGetHistogram(GL_HISTOGRAM, GL_TRUE, GL_LUMINANCE, GL_INT,

histogram);

glGetMinmax(GL_MINMAX, GL_TRUE, GL_LUMINANCE, GL_INT,

minmax);

/* Do something with the histogram and minmax. */

/* Now, do GL_SHORT data. */

glHistogram(GL_HISTOGRAM, 32768, GL_LUMINANCE, GL_FALSE);

glMinmax(GL_MINMAX, GL_LUMINANCE, GL_FALSE);

glDrawPixels(64, 64, GL_LUMINANCE, GL_SHORT, s_buff);

/* Since the call to glHistogram defined a width of 32768, */

/* 32768 entries of the histogram array will be filled in. */
54 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

glGetHistogram(GL_HISTOGRAM, GL_TRUE, GL_LUMINANCE, GL_INT,

histogram);

glGetMinmax(GL_MINMAX, GL_TRUE, GL_LUMINANCE, GL_INT,

minmax);

Pixel Transform

Pixel Transform, while shown at the end of the Pixel Transfer Pipeline, is not part of
it. Pixel Transform is in the Pixel Rasterizer, and it only works through the
glDrawPixels interface.

Pixel Transform has been especially optimized for applying affine transformation
warping to an input image on its way to the frame buffer or pbuffer. It has been
specially tuned for handling GL_LUMINANCE format and the GL_UNSIGNED_BYTE
and GL_SHORT data types. For GL_SHORT, the data is scaled and clamped to [0, 255]
and then warped into the frame buffer or pbuffer. On the way to the frame buffer,
the data is also expanded from GL_LUMINANCE data to XBGR format, which is the
native format of the frame buffer while in rgb mode.

Pixel Transform has its own matrix mode with its own matrix stack 32 deep.

glMatrixMode(GL_PIXEL_TRANSFORM_2D_EXT);

Pixel Transform is always enabled; however, if its current matrix is the identity
matrix, the pixel transform is not performed. Only when the current matrix is not
the identity matrix will pixel transform be performed.

You can use all of the existing API calls available for matrix operations in OpenGL.
These will operate on the current matrix of the GL_PIXEL_TRANSFORM_2D_EXT
matrix mode (that is, glLoadMatrix, glTranslate, glRotate, glScale,
glLoadIdentity, glPushMatrix, glPopMatrix, glMultMatrix, and so on).
When using these matrix operators on the current matrix, after the operation is
performed, only the affine components are kept. Entries in the matrix which apply
to the z and w components are left like they were initialized with the identity matrix.

The pixel transform extension operates as if the current raster position is the origin
of the coordinate system. To simplify, set the current raster position to be located in
the lower left corner of the display window, then figure out your operations. If you
want to translate the image, you can use glTranslate, or move the current raster
position. The difference is that glTranslate will be integrated into the total
transformation for pixel transform, while moving the raster position will translate
the image regardless of the current matrix contents of the pixel transform matrix.

glPixelZoom also affects the pixel transform current matrix; however, only if the
current matrix mode is set to GL_PIXEL_TRANSFORM_2D_EXT. Also, if
glPixelZoom is called, it replaces the contexts of the current matrix as shown
below:
Chapter 3 Performance 55

If the current matrix mode is not GL_PIXEL_TRANSFORM_2D_EXT, the current
matrix of GL_PIXEL_TRANSFORM_2D_EXT is not replaced. However, pixel zoom
will still be set.

If the current matrix of GL_PIXEL_TRANSFORM_2D_EXT has been set to something
different than identity, and glPixelZoom has been set, the pixel transform will
override the glPixelZoom operation.

If you want to do any image warping, use the pixel transform extension. Do not use
the glPixelZoom interface. Instead, use glScale to set up a zoom matrix. If you
are using multiple matrix operations on the pixel transform's current matrix, do not
use glPixelZoom in the middle or end of the list of operations since it will reset the
matrix (shown above) and remove the affect of any previous operations. Instead, use
glScale.

Pixel Transform supports four types of resampling for minification and three types
for magnification. GL_NEAREST, GL_LINEAR, and GL_CUBIC_EXT are shared by
minification and magnification. GL_AVERAGE_EXT is only supported for
minification.

The code fragment below demonstrates how to prepare a pixel transform matrix to
do an arbitrary rotation of “angle” degrees about the center of the input image in the
center of the frame buffer display window. It assumes the image is GL_LUMINANCE
data and GL_UNSIGNED_BYTE. It also sets up the resampling method to be
GL_LINEAR for minification and GL_CUBIC_EXT for magnification and sets the
GL_CUBIC_WEIGHT_EXT to have the value –0.5.

double rotation_angle;

int window_width, window_height;

int image_width, image_height;

unsigned char *image_data;

/* Grab needed values for placing image in center. */

window_width = get_window_width();

window_height = get_window_height();

image_width = get_image_width();

image_height = get_image_height();

image_data = get_image_data();

x_zoom 0 0 0

 0 y_zoom 0 0

 0 0 1 0

 0 0 0 1
56 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

rotation_angle = get_rotation_angle_between_0_and_360_degrees();

/* Prepare current pixel transform matrix. */

glMatrixMode(GL_PIXEL_TRANSFORM_2D_EXT);

glLoadIdentity();

glTranslated(window_width/2.0, window_height/2.0, 0.0);

glRotated(rotation_angle, 0.0, 0.0, 1.0);

glTranslated (-image_width/2.0, -image_height/2.0, 0.0);

/* Set up resampling methods. */

glPixelTransformParameteriEXT(GL_PIXEL_TRANSFORM_2D_EXT,

GL_PIXEL_MIN_FILTER_EXT,

GL_LINEAR);

glPixelTransformParameteriEXT(GL_PIXEL_TRANSFORM_2D_EXT,

GL_PIXEL_MAG_FILTER_EXT,

GL_CUBIC_EXT);

glPixelTransformParameterfEXT(GL_PIXEL_TRANSFORM_2D_EXT,

GL_PIXEL_CUBIC_WEIGHT_EXT,

-0.5);

/* Finally, render the image to the screen. */

glDrawPixels (image_width, image_height, GL_LUMINANCE,

GL_UNSINGED_BYTE,

image_data);
Chapter 3 Performance 57

Software Performance
Software performance is affected by attributes that force the use of the generic
software rasterizer:

1. Texturing Attributes

a. Only triangles are optimized. Texturing of points and lines is handled by the
generic software.

b. Texture environment mode glTexEnv(3gl) GL_TEXTURE_ENV_MODE is
GL_BLEND.

2. Fragment Attributes

a. Stencil operations

b. Logic operations

c. Any blending operation

d. Linear or nonlinear fog

e. Enabling any Z comparison other than GL_LESS or GL_LEQUAL
58 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

CHAPTER 4

Tips and Techniques

This chapter presents miscellaneous topics that you may find useful as you port
your application with Sun OpenGL for Solaris.

Avoiding Overlay Colormap Flashing
Colormap flashing may occur when your application uses overlay windows. This
problem stems from several characteristics of the graphics frame buffers: the overlay
visual is not the default visual, the Creator3D and Elite3D are a single hardware
colormap device, and X11 allocates colormap cells from pixel 0 upward. When the
application renders to the overlay window, it must use a non-default visual, and a
non-default colormap is loaded. In this case, colormap flashing between the default
and non-default colormaps can occur.

The best solution to this problem is to allocate the overlay colors at the high end of
the overlay colormap. In other words, if you have n colors to allocate, allocate them
in the positions colormap_size -n – 1 to colormap_size – 1.This avoids the colors in the
default colormap, which are allocated upward starting at 0. To allocate n colors at
the top of the overlay colormap, first allocate colormap_size-n read/write placeholder
cells using XAllocColorCells. Then allocate the n overlay colors using
XAllocColor. Finally, free the placeholder cells. This solution is portable; it works
on both single- and multiple-hardware colormap devices.
59

Changing the Limitation on the Number
of Simultaneous GLX Windows
There is a limitation on the number of GLX windows that an application can use
simultaneously. Each GLX window that has an attached GLX context uses a file
descriptor for DGA (Direct Graphics Access) information. You can find the current
number of open file descriptors using the limit(1) command:

The system response tells you that you have up to 64 direct GLX contexts, assuming
that you have no other processes concurrently using file descriptors.

You can increase the per-process maximum number of open file descriptors using
the limit command as follows:

This command changes the number of file descriptors available for DGA and other
uses to 128. Use the sysdef(1M) command to determine the maximum number of
file descriptors for your system.

Hardware Window ID Allocation Failure
Message
When a program calls glXMakeCurrent(3gl) to make a window the current
OpenGL drawable, the system will attempt to allocate a unique hardware window
ID (WID) for the window. This allows double buffering and hardware WID clipping
to be used. Because hardware WIDs are a scarce resource and can be used for other
purposes, there might not be any WIDs available when glXMakeCurrent is called.
If this should happen, the following message is displayed:

% limit descriptors
descriptors 64

% limit descriptors 128

Warning: unable to allocate hardware window ID
60 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

In this situation, double buffering will not be provided for the window, and the
window will be treated as a single-buffered window.

Getting Peak Frame Rate
The frame rate that ogl_install_check prints out is synchronized to monitor
frequency. It measures the time it takes to render the frame, wait for vblank, then
swap the buffers. Since accelerators can render the ogl_install_check image
very quickly, even on a Creator3D UltraSPARC 167 Mhz machine, the bottleneck is
waiting for the monitor vblank. So, under normal circumstances,
ogl_install_check is never going to be able to get a frame rate faster than the
monitor frequency.

However, there is an environment variable called OGL_NO_VBLANK that you can set
to see the peak, unsynchronized frame rate. When set, this environment variable
swaps buffers immediately, without waiting for vblank.

Identifying the Release Version
You can identify the Release Version Number of the Sun OpenGL Library by:

1. Using the what(1) command:

2. Programmatically, by calling glGetString (GL_VERSION)

(see the glGetString man page for more details)

3. Running the Sun OpenGL for Solaris install_check demo program:

% what /usr/openwin/lib/libGL.so.1

% /usr/openwin/demo/GL/ogl_install_check
Chapter 4 Tips and Techniques 61

Determining Visuals Supported by a
Specific Frame Buffer
To determine what visuals a specific frame buffer supports, use

Developing Applications for 64-bit
You should use Sun’s DevPro 5.x tools (compiler, workshop, and so on), or
subsequent compatible release, to develop your applications on 64-bit. To develop
your applications on 64-bit, run lint on your C source files using the -errchk=
longptr64 option.

Before you compile your source files, be sure to resolve all 64-bit warnings. Then
compile your source files using the -xarch=v9 option.

You can determine if your application is using 64-bit by running the file command.

For example, if your application is 64-bit, you will see the following result when you
run the file command:

Common 64-bit Application Development Errors
This section identifies known 64-bit application development errors, describes ways
to detect them, and suggests solutions.

/usr/openwin/demo/GL/xglinfo

ELF 64-bit MSB dynamic lib SPARCV9
62 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Subtracting With Unsigned Int

A possible problem exists when subtracting with unsigned int. You may need to
change unit to int in the following example:

This is especially true when doing pointer arithmetic.

Functions Without Prototypes

Functions without prototypes return integer values. Consequently, you must include
#include <malloc.h> or the correct prototypes, otherwise returned pointer
values truncate to integers. To show the warnings where function prototypes and
usage do not match correctly, compile your applications using the -fd option.

Pointer Alignment

If you have a pointer alignment problem, it probably means internal data structures
are not 64-bit aligned. For example, if you have this problem, you will see lines
similar to the following ones when you run the debugger:

The following procedure suggests a way to debug this problem.

� Compile the file containing my_func using the -s option to generate assembly
output. Be sure to maintain the same optimization levels.

� In the myfile.s assembly output file, look for:

or possibly:

long_type = long_type - unit_type

signal SEGV (no mapping at the fault address in my_func at 0xfe43afac
0xfe43afac: my_func+0x0004: ld [%i2], %o0

! SUBROUTINE my_func

.global my_func
Chapter 4 Tips and Techniques 63

� In my_func(), look for the offset (in this case the offset is 0x0004). In this
example, we have the following lines:

A problem exists with line 457 of the source code.

Alignment errors typically appear with non-debug compilations. Also, in some cases
you can debug the alignment problem from within the C source code by following
cc -g with -xo0.

Colormap Flashing for OpenGL Indexed
Applications
With the visuals exploded, there is greater potential for colormap flashing to occur
for OpenGL indexed applications. This is because applications are forced to create
private colormaps in order to create windows on the GLX visual they choose. In the
post Solaris 2.5.1 releases, the colormap flashing problem is eased by the colormap
equivalence feature. This feature allows OpenGL color indexed applications to be
written in a way that creates less flashing.

Colormap equivalence allows a program to assign a colormap of one visual to a
window that was created with a different visual, as long as the two visuals are
colormap equivalent. This means, in general, that they share the same plane group
and have the same number of colormap entries. The standard X11 protocol does not
let programs mix visuals of colormaps and windows in this way. For more
information on colormap equivalence, see the
XSolarisCheckColormapEquivalence(3) man page.

Colormap equivalence is useful for OpenGL programs because the GLX visual
expansion creates up to four different variants of each base GL_CAPABLE visual. So,
for example, instead of one 8-bit default PseudoColor colormap, there may be a
double-buffered variant, a stereo variant, and so on. Without colormap equivalence,
an application cannot assign the default colormap to windows of these variant
visuals, and this will result in more colormap flashing. With colormap equivalence,
windows of all variants can share a colormap that was created using the base visual,
and less colormap flashing will occur.

/* 000000 457 */ add %g2,%o0,%g2
/* 0x0004 */ ld [%i2, %o0
/* 0x0008 */ add %i0,2520,%o0
64 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

GL Rendering Model and X Visual Class
OpenGL RGBA rendering is supported on the 24-bit TrueColor and DirectColor
visuals. OpenGL indexed rendering is supported on the 8-bit PseudoColor visuals
and on the indexed or 224-color overlay visuals.

Note – For the Sun PGX64 graphics frame buffer, OpenGL indexed rendering is
supported when the frame buffer is configured with depth 8 mode.

Stereo

Note – This section is specific to Sun Creator, Creator3D, Elite3D, Expert3D,
Expert3D-Lite, Sun XVR-500 and Sun XVR-1000 graphics accelerators.

To run a stereo application in stereo mode, the frame buffer must be configured for
stereo operation.

� To Set Up the Frame Buffer for Stereo Operation
(Sun Expert3D, Expert3D-Lite, Sun XVR-500,
Sun XVR-1000 and Sun XVR-4000 Graphics
Accelerators)

1. Exit the window system.

2. Become superuser and type this command with the selected stereo screen
resolution. For example,

For Sun XVR-1000 and Sun XVR-4000 graphics accelerators, use the stereo keyword
for the desired resolution (for example, SUNW_STEREO_1280x1024x112).

/usr/sbin/fbconfig -res stereo resolution
Chapter 4 Tips and Techniques 65

For Sun Expert3D, Expert3D-Lite, and Sun XVR-500 graphics accelerators, stereo
resolutions include an ‘s’ indicator (for example, 1280x1024x96s).

3. Restart the window system.

Application can now use the stereo hardware buffers.

� To Set Up the Frame Buffer for Stereo Operation
(Creator and Creator3D)

1. Exit the window system.

2. Type this command:

Note – This command must be run under superuser permissions or sys admin
permissions.

3. Restart the window system.

Application can now use the stereo hardware buffers.

� To Set Up the Frame Buffer for Stereo Operation
(Elite3D)

1. Exit the window system.

2. Type this command:

3. Restart the window system.

Application can now use the stereo hardware buffers.

/usr/sbin/ffbconfig -res stereo

/usr/sbin/afbconfig -res stereo
66 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Rendering to DirectColor Visuals
The OpenGL API has no support for color mapping. The only way to get a
DirectColor visual is to implement visual selection in the application using
XGetVisualInfo(3gl) and glXGetConfig. If you request a visual with
glXChooseVisual, you will get a 24-bit TrueColor visual for RGBA rendering and
an 8-bit PseudoColor visual for index rendering.

When rendering to DirectColor visuals, the GL system calculates pixel values in the
same way as it does for TrueColor visuals. The application is responsible for loading
the window colormap with cells that make sense to the application.

Overlays
The overlay visual GLX level is greater than zero (GLX_LEVEL > 0). Visuals with a
GLX level less than or equal to zero are underlay visuals.

Server Overlay Visual (SOV) Convention
Server Overlay Visual (SOV) is an API for rendering transparent pixels in an overlay
window. A transparent pixel is a special pixel code that allows the contents of
underlay windows underneath to show through. SOV derives its name from the X
property that informs the user of the special transparent pixel value:
SERVER_OVERLAY_VISUALS. This value can be used as the input value to
glIndex* calls so that the transparent pixel can be rendered into the overlay.

The SOV API, while not an X11 standard, is a convention that is supported by many
X11 vendors. It is described at length in the book OpenGL Programming for the X
Window System by Mark J. Kilgard. This section describes Sun-specific aspects of the
SOV implementation.

Note – In this section, the term underlay is used as a synonym for the normal
planes referred to in OpenGL Programming for the X Window System.
Chapter 4 Tips and Techniques 67

The SERVER_OVERLAY_VISUALS property describes visuals with transparent pixels
(TransparentType = TransparentPixel), and also completely opaque visuals
(TransparentType = None). If you need an overlay visual with a transparent pixel,
make sure that you check the TransparentType field of the entries in this property.
The remainder of this section will discuss only the TransparentPixel SOV visuals.

Compatibility of SOV with other Overlay Models
Programs that use SOV visuals may coexist on the same screen with programs that
use OVL, the Sun-specific overlay extension. But the two may not be used
simultaneously with the same window.

Some OpenGL 1.0 programs are written to use the SOV transparent pixel if the SOV
property is present, and to use XOR rendering in the default underlay visual if the
SOV property is not present. These programs may not behave properly when the
SOV property is present. When the SOV property is not present and the underlay is
being used, a program may simply attach the default colormap to the default visual
underlay window. In the presence of the SOV visual, the program will switch to
using the SOV overlay visual but may continue to use the default colormap. Since
the SOV overlay visual is usually not the same as the default visual, this will result
in an X11 BadMatch error when the program attempts to attach the colormap to the
overlay window. Care should be taken to write programs that always attach
colormaps of the proper visual to overlay windows. In this case, the program should
have created a colormap using the SOV visual instead of trying to use the default
colormap.

Programs that use SOV can also coexist with programs using the Sun visual overlay
capability glXGetTransparentIndexSUN. However,
glXGetTransparentIndexSUN is deprecated. It is provided only for compatibility
for existing programs that use it. Newly written transparent overlay programs
should use SERVER_OVERLAY_VISUALS instead.

For information on using the Sun visual overlay capability, see the
glXGetTransparentIndexSUN man page.
68 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Gamma Correction
On some Sun frame buffers, two 24-bit TrueColor visuals are exported. One is
gamma corrected; the other is not. To support imaging and Xlib applications, the
nonlinear (not gamma-corrected) visuals are listed before linear visuals. However, to
provide linear visuals for graphics applications running under the Sun OpenGL for
Solaris software, the glXChooseVisual() call was modified to return a linear
visual.

If you want to use a nonlinear TrueColor visual, you need to get the visual list from
Xlib. Use the Solaris API XSolarisGetVisualGamma(3) to query the linearity of the
visual. To determine whether a visual supports OpenGL, call glXGetConfig with
attrib set to GLX_USE_GL.
Chapter 4 Tips and Techniques 69

70 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

APPENDIX A

Supported Extensions for Graphics
Accelerators

This appendix lists the Sun OpenGL 1.3 for Solaris extensions and systems each
support.

TABLE A-1 Sun OpenGL 1.3 for Solaris Extensions and Supported Systems

Extension Name Expert3D XVR-100 XVR-500 XVR-600 XVR-1000 XVR-1200 XVR-4000

GL_ARB_imaging Yes No Yes Yes Yes Yes No

GL_ARB_multisample Yes No Yes Yes Yes Yes Yes

GL_ARB_multitexture No Yes No No Yes Yes Yes

GL_ARB_texture_cube_map No Yes No Yes No Yes No

GL_ARB_texture_env_combine No Yes No Yes No Yes Yes

GL_ARB_transpose_matrix Yes Yes Yes Yes Yes Yes Yes

GL_EXT_abgr Yes Yes Yes Yes Yes Yes Yes

GL_EXT_blend_color Yes Yes Yes Yes Yes Yes Yes

GL_EXT_blend_func_separate Yes No Yes Yes No Yes No

GL_EXT_blend_logic_op Yes Yes Yes Yes Yes Yes Yes

GL_EXT_blend_minmax Yes Yes Yes Yes Yes Yes Yes

GL_EXT_blend_subtract Yes Yes Yes Yes Yes Yes Yes

GL_EXT_compiled_vertex_array No No No No No No Yes

GL_EXT_convolution Yes Yes Yes Yes Yes Yes Yes

GL_EXT_gradient_clear No No No Yes No Yes No

GL_EXT_histogram Yes Yes Yes Yes Yes Yes Yes

GL_EXT_multi_draw_arrays Yes Yes Yes Yes Yes Yes Yes
71

GL_EXT_pixel_transform No Yes No No Yes No Yes

GL_EXT_polygon_offset Yes Yes Yes Yes Yes Yes Yes

GL_EXT_rescale_normal Yes Yes Yes Yes Yes Yes Yes

GL_EXT_texture3D Yes Yes Yes Yes Yes Yes Yes

GL_HP_convolution_border_modes Yes Yes Yes Yes Yes Yes Yes

GL_HP_occlusion_test Yes Yes Yes Yes Yes Yes Yes

GL_SGI_color_table Yes Yes Yes Yes Yes Yes Yes

GL_SGI_texture_color_table Yes Yes Yes Yes Yes Yes Yes

GL_SGIS_detail_texture Yes Yes Yes No Yes No Yes

GL_SGIS_sharpen_texture Yes Yes Yes No Yes No Yes

GL_SGIS_texture_filter4 Yes Yes Yes No Yes No Yes

GL_SGIX_texture_lod_bias No Yes No Yes Yes Yes Yes

GL_SGIX_texture_scale_bias No Yes No Yes Yes Yes Yes

GL_SUN_blend_src_mult_dst_alpha Yes No Yes Yes No Yes No

GL_SUN_convolution_border_modes Yes Yes Yes Yes Yes Yes Yes

GL_SUN_global_alpha Yes Yes Yes Yes Yes Yes Yes

GL_SUN_multi_draw_arrays Yes Yes Yes Yes Yes Yes Yes

GL_SUN_read_video_pixels No No No No No No Yes

GL_SUN_read_write_samples No No No No No No Yes

GL_SUN_targeted_texture No No No Yes No Yes Yes

GLX_EXT_visual_info Yes Yes Yes Yes Yes Yes Yes

GLX_SGI_make_current_read Yes Yes Yes Yes Yes Yes Yes

GLX_SGIX_fbconfig Yes Yes Yes Yes Yes Yes Yes

GLX_SGIX_pbuffer Yes Yes Yes Yes Yes Yes Yes

GLX_SUN_get_transparent_index Yes Yes Yes Yes Yes Yes Yes

GLX_SUN_video_resize No No No No No No Yes

TABLE A-1 Sun OpenGL 1.3 for Solaris Extensions and Supported Systems (Continued)

Extension Name Expert3D XVR-100 XVR-500 XVR-600 XVR-1000 XVR-1200 XVR-4000
72 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

Index
NUMERICS
1D convolution, 49
2D

convolution, 50
general convolution, 49
separable convolution, 49

3D
optimized cases, 37
texture mapping, 28

64-bit
application development errors, 62
developing applications for, 62

A
affine transformation warping, 55
alignment errors, 64
alpha test, 29, 39
application development errors, 64-bit, 62
application tuning, 13
architecture, 7 to 11

graphics hardware, 21
arrays, vertex, 17
attributes

Creator3D performance, 30
Elite3D graphics, 27
fragment, 33, 39
software rasterizer, 38
texture load time, 36
texturing, 33

B
batching primitives, 20
blending, 29

fragment, 33
stencil, 33

C
clipping, 9
color mapping, 67
color table, SGI, 35
colormap equivalence, 64
colormap flashing, 64

avoiding, 59
compatibility issues, 3
compression, display list, 16
consistent data, 18, 29
Constant Data Extension, 37
convolution, 41, 44, 49

1D, 49
2D, 50
2D general, 49
2D separable, 49

convolve kernel, 49
coordinate transformations, 9
Creator, 13
Creator graphics, 5, 9

performance, attributes affecting, 38
Creator3D, 13
Creator3D graphics, 5, 9, 21
73

D
data types

consistent, 18
optimized, 21

default colormap, 64
depth test glEnable, 39
device coordinate (DC) devices, 10, 21
Direct Graphics Access (DGA), 60
DirectColor visuals, rendering to, 67
display list compression, 16
display list mode, 17
documentation, where to find, 5
double buffering, 60

E
Elite3D, 5, 13
Elite3D graphics, 5, 9

MIP mapping, 36
performance, 27 to 29
pixel operations, 29

env mode, 35
environment mapping, 28
environment variables

Creator 3D graphics performance, 32
performance, 27

Expert3D, 5, 9, 13
Expert3D graphics, 9

performance, 24 to 25
Expert3D, See Sun Expert3D
Expert3D-Lite, 5, 9, 13
Expert3D-Lite, See Sun Expert3D-Lite
extensions

determining, 3

F
fog

in indexed color mode, 33
on Creator3D, 39

fragment attributes
Creator graphics, 39
Creator3D graphics, 33
Elite3D graphics, 29

GX, 58
fragment blending, 33
fragment processing, 21
fragments, 8
frame rate, peak, 61
functions without prototypes, 63

G
gamma correction, 69
GL rendering model, 65
glBitmap command, 41, 43
glCopyPixels command, 41, 43
glDrawPixels command, 40, 42
glReadPixels command, 41, 42
glTexEnv texture base, 38
GLX

contexts, 60
visuals, 64
windows, limitation on number of, 60

graphics hardware architecture, 21

H
hardware

acceleration, 13
rasterizer, 11
rasterizer, Creator3D graphics, 30
window ID (WID), 60

histogram bin, 53
histogram operations, 53
homogeneous coordinates, 27

I
image warping, 56
immediate mode, 17

texture mapping, 28
indexed

applications, colormap flashing, 64
color antialiasing, 28
color exponential fog, 29
color linear fog, 27
74 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

color mode, 32, 39
install_check demo program, 61
issues, compatability, 3

L
line stipple scale factor, 28
linear visuals, 69
logical operations, 39
low batching, 20

M
magfilter, 35
memory mappable device, 10
memory usage, texture, 36
minfilter, 35
minification filter, 34
minmax operations, 53
model coordinate (MC) devices, 9, 21
Motif Drawing Widget libraries, 3
MultiDrawArrays, 17
multiple rendering threads, 4
multisampling, 15
multi-screen Xinerama, 14
multithread, 4

N
non-antialiased points, 32
nonlinear fog, 40
nonlinear TrueColor visual, 69
normal planes, 67

O
OGL_NO_VBLANK environment variable, 61
OpenGL

architecture, 7
indexed rendering, 65
product functionality, 1
references, 5

release version number, 61
RGBA rendering, 65
software architecture, 9

optimized data types, 21
overlay window, 59, 67
overlays, 67

P
packed representation, 37
parallelism, 4
peak frame rate, 61
performance, 13 to 58

Creator and Creator3D graphics, 30 to 43
Elite3D graphics, 27 to 29
Expert3D graphics, 24 to 25
GX, 58

pixel map, 47
pixel operations, 40

Creator3D, 39
Elite3D graphics, 29

pixel store, 37
pixel transfer pipeline, 45

imaging extensions, 43
pixel transform, 44, 55

extension, 55
matrix, 56

platforms supported, 5
pointer alignment problem, 63
pointer arithmetic, 63
polygon anti-aliasing, 32
polygon offset, 38
post convolution

color table, 44, 49
scale and bias, 49

primitive types, 31
projection type, 35

R
rasterization and fragment processing, 11
rasterization stage, 8
rasterizer

hardware, 11
Index 75

software, 11
references, OpenGL, 5
release version number, OpenGL, 61
rendering threads, 4

S
scale and bias values, 46
server overlay visual (SOV), See SOV visuals
SERVER_OVERLAY_VISUALS property, 68
SGI color table, 41, 45, 47
SGI post convolution color table, 49, 50
SGI Texture Color Table, 39
software optimization, 13
software performance, 58
software rasterizer, 11

Creator and Creator3D graphics, 30
SOV visuals, 67

compatability with other overlay models, 68
overlay visual, 68
property, 68

stencil test, 33
stereo, 65
stereo operation, 65
stippled lines, 28, 32
subtracting with unsigned int, problem with, 63
Sun Expert3D-Lite, 5
Sun visual overlay, 68
Sun XVR-1000 graphics accelerator, 5, 9, 22, 23
Sun XVR-1200 graphics accelerator, 21, 24, 25, 26
Sun XVR-4000 graphics accelerator, 9, 21, 22, 23
Sun XVR-500 graphics accelerator, 5, 9, 24, 25, 26
Sun XVR-600 graphics accelerator, 5, 24, 25, 26
SUN_OGL_COMPRESSED_DISPLAY_LISTS, 16
supported platforms, 5
surface antialiasing, 28

T
texture

color lookup table, 34, 35
coordinate

classification, 35

generation, 9
environment mode, 38
load time attributes, 36
mapping, 38, 40
memory, 8
memory usage, 36

texturing
attributes

Creator3D graphics, 33, 34, 38
Elite3D graphics, 29
GX, 58

rasterization, 9
speed, 33

tips and techniques, 59 to 64
transparent pixels, 67
TrueColor visuals, 69

V
vertex array commands, 17
vertex array mode, 17
vertex arrays, 17
vertex commands, 3
vertex processing, 11, 21, 27

architecture, 11
Creator3D graphics, 30
optimization, 18
overhead, 38
tips, 17

view frustum culling, 15
VIS

instruction set, 9, 11, 39
optimization, conditions that result in, 40, 42
rasterization, 38

visual overlay, 68
visuals

supported by a specific frame buffer, 62

W
WID clipping, hardware, 60
window ID allocation failure, 60
wrap mode, 35
76 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

X
Xinerama, 14

Z
Z buffering, 8, 21
Index 77

78 Sun OpenGL 1.3 for Solaris Implementation and Performance Guide • November 2003

	Sun™ OpenGL 1.3 for Solaris™ Implementation and Performance Guide
	Contents
	Figures
	Tables
	Preface
	Introduction to Sun OpenGL for Solaris Software
	Product Functionality
	Compatibility Issues
	Upgrading and Motif Versions
	MT-Safe
	Supported Platforms
	Where to Look for Information on OpenGL Programming

	Architecture
	A Quick Review of the Architecture
	Software Architecture
	Vertex Processing Architecture
	Rasterization and Fragment Processing Architecture

	Performance
	Acceleration Versus Optimization
	Multiscreen Environment Performance
	Multisampling
	View Frustum Culling on Display Lists
	Display List Compression
	General Tips on Vertex Processing
	Vertex Arrays
	MultiDrawArrays
	Triangle List and Mesh Primitives
	Consistent Data Types
	Low Batching
	Optimized Data Types

	Hardware Specific Acceleration
	Sun XVR-1000 and Sun XVR-4000 Graphics Accelerator Performance
	OpenGL Acceleration on the Sun XVR-1000 and Sun XVR-4000 Graphics Accelerators

	Sun Expert3D, Sun Expert3D-Lite, Sun XVR-500, Sun XVR-600 and Sun XVR-1200 Graphics Accelerator P...
	Hardware Acceleration Features
	Sun XVR-1200 Graphics Accelerator Dual Pipeline
	Vertex Processing
	Texture
	Buffer Clear
	Tuning the Geometry Subsystem

	Sun Elite3D Graphics Accelerator Performance
	Attributes
	Attributes that Force the Use of the CPU for Vertex Processing
	Environment Variables Affecting Read Performance
	Attributes that Force the Use of the Generic Software Rasterizer

	Pixel Operations
	Consistent Data

	Sun Creator and Creator3D Graphics Accelerator Performance
	Attributes Affecting Creator3D Performance
	Attributes that Increase Vertex Processing Overhead
	Primitive Types and Vertex Data Patterns that Increase Vertex Processing Overhead
	Attributes That Increase Hardware Rasterization Overhead
	Environment Variables Affecting Read Performance
	Attributes That Force the Use of the Software Rasterizer
	Attributes That Vary Optimized Texturing Speed
	Texture Memory Usage
	Attributes That Vary Texture Load Time

	Attributes Affecting Software Rendering Performance
	Attributes That Increase Vertex Processing Overhead
	Attributes That Force the Use of the Generic Software Rasterizer

	Pixel Operations
	Conditions That Result in VIS Optimization on UltraSPARC Systems
	Conditions That Result in VIS Optimization

	Pixel Transfer Pipeline (ARB) Imaging Extensions and the Pixel Transform
	Implementation
	How To Use the Pixel Transfer Pipeline and Pixel Transform
	Scale/Bias
	Pixel Map
	Color Table
	Convolution, Post Convolution Scale/Bias and Post Convolution Color Table
	Histogram and Minmax
	Pixel Transform

	Software Performance

	Tips and Techniques
	Avoiding Overlay Colormap Flashing
	Changing the Limitation on the Number of Simultaneous GLX Windows
	Hardware Window ID Allocation Failure Message
	Getting Peak Frame Rate
	Identifying the Release Version
	Determining Visuals Supported by a Specific Frame Buffer
	Developing Applications for 64-bit
	Common 64-bit Application Development Errors
	Subtracting With Unsigned Int
	Functions Without Prototypes
	Pointer Alignment

	Colormap Flashing for OpenGL Indexed Applications
	GL Rendering Model and X Visual Class
	Stereo
	To Set Up the Frame Buffer for Stereo Operation (Sun Expert3D, Expert3D-Lite, Sun XVR-500, Sun XV...
	To Set Up the Frame Buffer for Stereo Operation (Creator and Creator3D)
	To Set Up the Frame Buffer for Stereo Operation (Elite3D)

	Rendering to DirectColor Visuals
	Overlays
	Server Overlay Visual (SOV) Convention
	Compatibility of SOV with other Overlay Models

	Gamma Correction

	Supported Extensions for Graphics Accelerators
	Index

