
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Netra™ CP2300 cPSB Board
Programming Guide

for Solaris Operating Environment

Part No. 817-1331-10
May 2003, Revision A

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Netra, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Netra, et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xiii

1. Watchdog Timer 1

Watchdog Timers 1

Watchdog Timer Driver 2

Operations on the Watchdog Timers 3

Parameters Transfer Structure 3

Input/Output Controls 7

Errors 8

Example 8

Configuration 11

OpenBoot PROM Interface 11

Data Structure 12

Watchdog Operation 12

Commands at OpenBoot PROM Prompt 12

Corner Cases 13

Setting the Watchdog Timer at OpenBoot PROM 13

2. User Flash 15

User Flash Usage and Implementation 15
iii

System Compatibility 16

User Flash Driver 16

Switch Settings 17

OpenBoot PROM Device Tree and Properties 17

User Flash Device Files 17

Interface (Header) File 17

Application Programming Interface 18

Structures to Use in IOCTL Arguments 19

Errors 20

Example Programs 20

Sample User Flash Application Program 27

3. Advanced System Management 35

ASM Component Compatibility 36

Typical ASM System Application 37

Typical Cycle From Power Up to Shutdown 38

ASM Protection at the OpenBoot PROM 38

ASM Protection at the Operating Environment Level 39

Post Shutdown Recovery 40

Hardware ASM Functions 41

Power On/Off Switching 45

Inlet, Exhaust, and CPU Temperature Monitoring 45

Adjusting the ASM Warning, Critical, and Shutdown Parameter Settings on the
Board 46

OpenBoot PROM Environmental Parameters 47

OpenBoot PROM/ASM Monitoring 49

CPU Monitoring 49

show-sensors Command at OpenBoot PROM 51

IPMI Command Examples at OpenBoot PROM 51
iv Netra CP2300 cPSB Board Programming Guide • May 2003

ASM Application Programming 57

Specifying the ASM Polling Rate 58

Monitoring the Temperature 58

Solaris Driver Interface 58

Sample Application Program 59

4. Programming the User LED 63

Files and Packages Required to Support the Alarm/User LED 65

Applications 65

Application Programming Interface (API) 66

Compile 67

Link 67

Sample Application Program 68

Index 69
Contents v

vi Netra CP2300 cPSB Board Programming Guide • May 2003

Figures

FIGURE 3-1 Typical ASM Application Block Diagram 37

FIGURE 3-2 Location of ASM Hardware on the Netra CP2300 cPSB Board (Top Side) 42

FIGURE 3-3 Location of ASM Hardware on the Netra CP2300 cPSB Board (Bottom Side) 43

FIGURE 3-4 Netra CP2300 cPSB Board ASM Functional Block Diagram 44

FIGURE 4-1 Illustration of a Typical Netra CP2300 cPSB Board Front Panel Showing the Alarm/User
LED 64
vii

viii Netra CP2300 cPSB Board Programming Guide • May 2003

Tables

TABLE 1-1 OpenBoot PROM Prompt Commands 13

TABLE 2-1 User Flash Node Properties 17

TABLE 2-2 System Calls 18

TABLE 3-1 Compatible ASM Components 36

TABLE 3-2 Typical Netra CP2300 cPSB Board Hardware ASM Functions 41

TABLE 3-3 I2C Components 41

TABLE 3-4 Reported Temperature Readings at an Ambient Room Temperature of 21˚C on a Typical
Netra CP2300 cPSB Board 47

TABLE 3-5 Typical Netra CP2300 Board Temperature Thresholds and Firmware Action 48

TABLE 4-1 Supported LED and Command Combinations for the Netra CP2300 Board 67
ix

x Netra CP2300 cPSB Board Programming Guide • May 2003

Code Samples

CODE EXAMPLE 1-1 Include File wd_if.h 4

CODE EXAMPLE 1-2 Status of Watchdog Timers and Starting Timers 8

CODE EXAMPLE 2-1 PROM Information Structure 19

CODE EXAMPLE 2-2 User Flash Interface Structure 19

CODE EXAMPLE 2-3 Read Action on User Flash Device 20

CODE EXAMPLE 2-4 Write Action on User Flash Device 22

CODE EXAMPLE 2-5 Erase Action on User Flash Device 24

CODE EXAMPLE 2-6 Block Erase Action on User Flash Device 25

CODE EXAMPLE 2-7 Sample User Flash Application Program 27

CODE EXAMPLE 3-1 Input Output Control Data Structure 59

CODE EXAMPLE 3-2 Sample ASM Application Program 59

CODE EXAMPLE 4-1 Application Programming Interface for the Netra CP2300 Board 66

CODE EXAMPLE 4-2 Sample LED Application Program 68
xi

xii Netra CP2300 cPSB Board Programming Guide • May 2003

Preface

The Netra™ CP2300 compactPCI Packet Switched Backplane (cPSB) board is a crucial
building block that network equipment providers (NEPs) and carriers can use when
scaling and improving the availability of next-generation, carrier-grade systems.

The Netra CP2300 cPSB Board Programming Guide is written for program developers
and users who want to program this board in order to design original equipment
manufacturer (OEM) systems, supply additional capability to an existing compatible
system, or work in a laboratory environment for experimental purposes.

Before You Read This Book
You are required to have a basic knowledge of computers and digital logic
programming, in order to fully use the information in this document.
xiii

How This Book Is Organized
Chapter 1 provides details on the Netra CP2300 cPSB board watchdog timer driver
and its operation.

Chapter 2 describes the user flash driver for the Netra CP2300 cPSB board onboard
flash PROMs and how to use it.

Chapter 3 describes the specific Advanced System Management (ASM) functions of
the Netra CP2300 cPSB board.

Chapter 4 describes how to program the User LED on the Netra CP2300 cPSB board.

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals

■ AnswerBook2™ online documentation for the Solaris™ operating environment

■ Other software documentation that you received with your system
xiv Netra CP2300 cPSB Board Programming Guide • May 2003

Typographic Conventions

Shell Prompts

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
Preface xv

Related Documentation

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Title Part Number

Netra CP2300 cPSB Board Product Note 816-7185

Netra CP2300 cPSB Board Installation and Technical
Reference

816-7186

Netra CP2300 cPSB Board Programming Guide 817-1331

Netra CP2300 cPSB Board Transition Card Product Note 816-7187

Netra CP2300 cPSB Board Transition Card Installation and
Technical Reference

816-7188

Netra CP2300 cPSB Board Release Notes 817-1741

Important Safety Information for Sun Hardware Systems 816-7190
xvi Netra CP2300 cPSB Board Programming Guide • May 2003

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Netra CP2300 cPSB Board Programming Guide, part number 817-1331-10
Preface xvii

xviii Netra CP2300 cPSB Board Programming Guide • May 2003

CHAPTER 1

Watchdog Timer

The System Management Controller (SMC) on the Netra CP2300 cPSB board
implements a two-level watchdog timer. The watchdog timer is used to recover the
central processing unit (CPU) in case the CPU freezes.

This chapter provides detailed information on the SMC-based watchdog timer
driver and its operation for the Netra CP2300 cPSB board. This chapter also
describes the user-level application programming interface (API) and behavior of the
Netra CP2300 cPSB board watchdog timer. For functional details of the watchdog
timer, see the technical reference and installation guide for your board product. See
“Accessing Sun Documentation” on page xvi for information on accessing this
documentation.

This chapter includes the following sections:
■ “Watchdog Timers” on page 1
■ “Watchdog Timer Driver” on page 2
■ “Operations on the Watchdog Timers” on page 3
■ “Parameters Transfer Structure” on page 3
■ “Input/Output Controls” on page 7
■ “Data Structure” on page 12
■ “Watchdog Operation” on page 12

Watchdog Timers
There are two watchdog timers:
■ 16-bit timer
■ 8-bit pre-timeout timer
1

16-bit Timer (WD1)

Each tick represents 100 ms. This timer, set to a nonzero number, counts down first.
When the timer reaches zero, a warning is sent to the SPARC CPU through the isa
bus and the WD2 pre-timeout counter is set to a nonzero value when interrupt
option is enabled. Otherwise the SMC resets the SPARC CPU immediately. The reset
action takes place when the reset option is enabled.

8-bit Pre-timeout Timer (WD2)

Each tick represents one second. This timer is started when the countdown timer
reaches zero (if WD1 is set to zero, WD2 starts right away). When the value of this
counter reaches zero, the SPARC CPU is reset. If the hard reset option is enabled, no
warning is issued prior to reset.

Watchdog Timer Driver
The watchdog driver is a loadable STREAMS pseudo driver layered atop the Netra
CP2300 cPSB board service processor hardware. This driver implements a
standardized watchdog timer function that can be used by systems management
software for a number of systems timeout tasks.

The systems management software that uses the watchdog driver has access to two
independent timers, the WD1 timer and the WD2 timer. The WD2 is the main timer
and is used to detect conditions where the Solaris operating environment hangs.
Systems management software starts and periodically restarts the WD2 timer before
it expires. If the WD2 timer expires, the watchdog function of the WD2 timer forces
the SPARC™ processor to reset. The maximum range for WD2 is 255 seconds.

The WD1 timer is typically set to a shorter interval than the WD2 timer. User
applications can examine the expiration status of the WD1 timer to get advance
warning if the main timer, WD2, is about to expire. The system management
software has to start WD1 before it can start WD2. If WD1 expires, then WD2 starts
only if enabled. The maximum range for WD1 is 6553.5 seconds.

The applications programming interface exported by the watchdog driver is input
output control-based (IOCTL-based). The watchdog driver is an exclusive-use
device. If the device has already been opened, subsequent opens fail with EBUSY.
2 Netra CP2300 cPSB Board Programming Guide • May 2003

Operations on the Watchdog Timers
Operations on the watchdog timers require a call to ioctl(2) using the parameters
appropriate to the operation. The watchdog driver exports Input Output Controls
(IOCTLs) to start, stop, and get the current status of the watchdog timers.

When the device is initially opened, both the watchdog timers, WD1 and WD2, are
in STOPPED state. To start either timer, an application program must use the
WIOCSTART command. Once started, the WD1 timer can be stopped by using the
WIOCSTOP command. Once started, the WD2 timer cannot be stopped—it can only
be restarted. Each watchdog timer takes the default action when it expires.

If the WD1 timer expires and the default action is enabled, WD1 interrupts the
SPARC processor. This interrupt is handled and the status of the WD1 timer queried
shows the EXPIRED condition. If the default action is disabled, then the WD1 timer
is in FREERUN state and no interrupt is delivered to the SPARC processor on
expiration.

If the WD2 timer expires and the default action is enabled, WD2 resets the SPARC
processor. If the default action is disabled, the WD2 timer is put in FREERUN state
and its expiration does not affect the SPARC processor.

In the Netra CP2300 cPSB board, the SMC-based watchdog timers are not
independent. The WD2 timer is a continuation of the WD1 timer. There are some
behavioral consequences to this implementation that result in the Netra CP2300
cPSB board watchdog timer having different semantics. The most obvious difference
is that starting one timer when the other timer is active causes the other timer to be
restarted with its programmed timeout period.

Parameters Transfer Structure
The IOCTL-based watchdog timer application programming interface (API) uses a
common data structure to communicate all requests and responses between the
watchdog timer driver and user applications.
Chapter 1 Watchdog Timer 3

Along with other API definitions, this structure is defined in the include file
sys/wd_if.h. The structure, called watchdog_if_t, is provided below for
reference.

CODE EXAMPLE 1-1 Include File wd_if.h

#ifndef _SYS_WD_IF_H
#define _SYS_WD_IF_H

#pragma ident "@(#)wd_if.h 1.3 01/12/17 SMI"

/*
 * wd_if.h
 * watchdog timer user interface header file.
 */

#ifdef __cplusplus
extern "C" {
#endif

/*
 * handy defines:
 */
#define WD1 1 /* wd level 1 */
#define WD2 2 /* wd level 2 */
#define WD3 3 /* wd level 3 */

/*
 * state of the counters:
 */
#define FREERUN 0x01 /* counter is running, no intr */
#define EXPIRED 0x02 /* counter has expired */
#define RUNNING 0x04 /* counter is running, intr is on */
#define STOPPED 0x08 /* counter not started at all */
#define SERVICED 0x10 /* intr was serviced */

/*
 * IOCTL related stuff.
 */
/*
 * TIOC ioctls for watchdog control and monitor
 */
#if (!defined(_POSIX_C_SOURCE) && !defined(_XOPEN_SOURCE)) || \
 defined(__EXTENSIONS__)
#define wIOC (’w’ << 8)
#endif /* (!defined(_POSIX_C_SOURCE) && !defined(_XOPEN_SOURCE))... */
4 Netra CP2300 cPSB Board Programming Guide • May 2003

The following fields are used by the IOCTL interface. The watchdog timer driver
does not use the thr_fd and thr_lock fields.

#define WIOCSTART (wIOC | 0) /* start counters */
#define WIOCSTOP (wIOC | 1) /* inhibit interrupts (stop) */
#define WIOCGSTAT (wIOC | 2) /* get status of counters */

typedef struct {
 int thr_fd; /* wd fd, used in the thread */
 uint8_t thr_lock; /* lock for the thread */
 uint8_t level; /* wd level */

uint16_t count; /* value to be loaded into limit reg */
 uint16_t next_count; /* next lev timer count */
 uint8_t restart; /* timer to restart, 0 = stop */
 uint8_t status[3]; /* status filled in ioctl() */
 uint8_t inhibit; /* inhibit timers, bit field */
} watchdog_if_t;

/*
 * Bit field defines for the user interface
 * inhibit.
 */
#define WD1_INHIBIT 0x1 /* inhibit timer 1 */
#define WD2_INHIBIT 0x2 /* inhibit timer 2 */
#define WD3_INHIBIT 0x4 /* inhibit timer 3 */

#ifdef __cplusplus
}
#endif

#endif /* _SYS_WD_IF_H */

level Select timer to perform operations on: WD1 or WD2

count The period for the timer specified by level to run before it expires.
Legal values lie in the range from 1 to 65534. If the value of count
is equal to 0 or -1, the timer is set to its default value. The default
value for WD1 is 10 seconds and for WD2 it is 15 seconds.

restart (Optional) Select a timer to start automatically when the timer
specified by level expires. Legal values are WD1 or WD2. This
timer can be the same or different from that specified by level.

CODE EXAMPLE 1-1 Include File wd_if.h (Continued)
Chapter 1 Watchdog Timer 5

The states that each watchdog timer can assume are listed below. These states are
exclusive of each other.

In addition to these states, the following modes can become attached to a timer,
based on its state:

next_count (Optional) The period for the timer specified by restart to run
before it expires. The next_count parameter is subject to the same
range and default value rules as count, described above.

inhibit This is a mechanism for controlling the action taken by a timer
when it expires. The inhibit flag is a mask to control the default
actions taken on the expiration of each timer. A bit corresponding to
each timer determines whether the timer’s default action is enabled
or disabled. If the corresponding bit in inhibit is zero, then the
default action occurs on expiration of that timer; if the bit is set to
one, then the default action is disabled. The symbolic names for the
control masks, defined in sys/wd_if.h, are WD1_INHIBIT for
timer WD1, and WD2_INHIBIT for timer WD2.

status After a call to ioctl(2) with the WIOCGSTAT command, the status
vector reflects the state of each watchdog timer (WD1 and WD2)
available on the system. The status vector element status[0]
corresponds to the state of WD1 and status[1] corresponds to the
state of WD2.

STOPPED The counter is not running.

RUNNING The counter is running, and its associated action (interrupt or
system reset) is enabled.

FREERUN The counter is running, but no associated action is enabled.

EXPIRED This mode is applicable only to the WD1 timer. This mode indicates
that the WD1 timer interrupt has expired.

SERVICED This mode is also applicable only to the WD1 timer. This mode
indicates that an expiration interrupt has occurred and been
serviced by the driver. This mode is cleared once it is reported to
the user through WIOCGSTAT. Thus, if two consecutive IOCTL calls
using WIOCGSTAT are made by a user program, the driver might
return SERVICED for the first IOCTL call, but not for the second.
6 Netra CP2300 cPSB Board Programming Guide • May 2003

Input/Output Controls
The watchdog timer driver supports the following input/output control (IOCTL)
requests:

WIOCGSTAT Get the state of all the watchdog timers. If the level field of the
watchdog_if_t structure is a valid value (either WD1 or WD2), the
WIOCGSTAT IOCTL returns the status of both timers in the status
vector or the structure. Getting the status of the timers clears the
EXPIRED bit if set for the timer specified by the level field of the
watchdog_if_t structure, so that each timer expiration event is
reported.

WIOCSTART A few behavioral consequences are associated with the WIOCSTART
command that arise from the fact that WD1 and WD2 timers are not
independent in the Netra CP2300 cPSB board implementation. When
a WIOCSTART command is issued, the other timer, if already
running, will be restarted from its current initial value. In addition,
since the WD2 timer is in a sense an extension of the WD1 timer, it is
not permissible to set the count value for WD1 to a value greater
than that of an active WD2 timer. Similarly, it is not permissible to
set the count value for WD2 to a value greater than that of an active
WD1 timer. The following rules are applied when setting a timer if
the other timer is already active: When WD1 is active, lowering
WD2 to a value less than that of WD1 will cause WD1 to be lowered
to be equal to WD2. When WD2 is active, raising WD1 to a value
greater than that of WD2 will raise the value of WD2 to be the same
as WD1.

WIOCSTOP The WIOCSTOP command disables timer expiration actions. The
inhibit mask parameter of the watchdog_if_t structure
determines which timer is being controlled by WIOCSTOP. The
level parameter of the watchdog_if_t structure passed with this
command must be a valid watchdog level: either WD1 or WD2. If
the watchdog level is not valid, you will receive an error message
indicating that the device is not valid. It is possible to stop the WD1
timer if it is running. However, once started, the WD2 timer cannot
be stopped and resets the system unless it is prevented from
expiration by being periodically restarted.
Chapter 1 Watchdog Timer 7

Errors

Example
This code example retrieves the status of the watchdog timers, then starts both
timers:

EBUSY An application program attempted to perform an open(2) on
/dev/wd but another application already owned the device.

EFAULT An invalid pointer to a watchdog_if_t structure was passed as a
parameter to ioctl(2).

EINVAL The IOCTL command passed to the driver was not recognized.
OR
The level parameter of the watchdog_if_t structure is set to an
invalid value. Legal values are WD1 or WD2.
OR
The restart parameter of the watchdog_if_t structure is set to
an invalid value. Legal values are WD1, WD2, or zero.

ENXIO The watchdog driver has not been plumbed to communicate with
the SMC device driver.

CODE EXAMPLE 1-2 Status of Watchdog Timers and Starting Timers

#include sys/fcntl.h
#include sys/wd_if.h

.

.

.
int fd;
watchdog_if_t wdog1;
watchdog_if_t wdog2;
int rperiod = 5;

/*
 * open the watchdog driver
 */

if ((fd = open("/dev/wd", O_RDWR)) < 0) {
perror("/dev/wd open failed");
exit(0);

}

8 Netra CP2300 cPSB Board Programming Guide • May 2003

/*
 * get the status of the timers

 */
wdog1.level = WD1; /* must be a valid value

*/
if (ioctl(fd, WIOCGSTAT, &wdog1) < 0) {

perror("WIOCGSTAT ioctl failed");
exit(0);

}

printf("Status WD1: 0x%x WD2: 0x%x\n",
wdog1.status[0], wdog1.status[1]);

/*
 * Start WD1 to give advance warning if we don’t
 * respond in 10 seconds. Also, when WD1 expires,
 * restart it automatically.
 */

#define RES(sec) (10 * (sec)) /* convert to 0.1 sec
resolution */

wdog1.level = WD1;
wdog1.count = RES(10); /* 10 sec, resolution of

0.1 sec */
wdog1.restart = WD1;
wdog1.next_count = RES(10); /* 10 sec, resolution of

0.1 sec */

/*
 * start the timers ticking...
 */
if (ioctl(fd, WIOCSTART, &wdog1) < 0) {

perror("WIOCSTART ioctl failed");
exit(0);

}

/*
 * Start WD2 to reset the SPARC processor if we don’t
 * kick it again within 20 seconds.
 */
wdog2.level = WD2;
wdog2.count = RES(20); /* 20 sec, resolution of

0.1 sec */
wdog2.restart = 0;

CODE EXAMPLE 1-2 Status of Watchdog Timers and Starting Timers (Continued)
Chapter 1 Watchdog Timer 9

if (ioctl(fd, WIOCSTART, &wdog2) < 0) {
perror("WIOCSTART ioctl failed");
exit(0);

}

/*
 * loop, restarting the timers to prevent RESET
 */

for (;;) {
watchdog_if_t wstat;

/*
 * first sleep for the desired period
 * before restarting the timer(s)
 */
sleep(rperiod);

/*
 * setup to get the status of the timers
 */
wstat.level = WD1;/* must be a valid value */
if (ioctl(fd, WIOCGSTAT, &wstat) < 0) {

perror("WIOCGSTAT ioctl failed");
exit(0);

}
/*
 * If the WD1 timer has expired, take
 * appropriate action.
 */
if (wstat.status[0] & EXPIRED) {

/* timer expired. shorten sleep? */
puts("WD1: <EXPIRED>");

}

/*
 * restart the timers
 */
if (ioctl(fd, WIOCSTART, &wdog2) < 0) {

perror("WIOCSTART ioctl failed");
exit(0);

}
}

CODE EXAMPLE 1-2 Status of Watchdog Timers and Starting Timers (Continued)
10 Netra CP2300 cPSB Board Programming Guide • May 2003

Configuration
The watchdog device driver runs only on the following implementation:

■ SUNW, Netra-CP2300

The watchdog configuration file resides in
/platform/implementation/kernel/drv. The watchdog driver binary resides in
/platform/implementation/kernel/drv/sparcv9. The value of implementation for
a given Netra CP2300 cPSB board system can be obtained by running the uname(1)
command on that machine with the -i option:

The wdog.conf driver configuration file controls the boot-time configuration of the
watchdog timer driver. The driver is configured through a directive to send a notice
to syslog when the WD1 timer interrupt is serviced. The Netra CP2300 cPSB board
implementation requires that the appropriate control directive be placed in
wdog.conf.

The format for this directive is as follows:

OpenBoot PROM Interface
The OpenBoot™ PROM provides two environmental parameters, settable at the ok
prompt, that control the behavior of the SMC watchdog timer.

These parameters are watchdog-enable? and watchdog-timeout?. The
watchdog-enable? parameter is a logical switch with two possible values: true or
false.

If watchdog-enable? is set to false, the watchdog timer is disabled at boot time.
Once the kernel is booted, applications have the option to open and start the
watchdog timer.

uname -i
SUNW, Netra-CP2300

#
control to enable syslog notification when a WD1
interrupt is handled.
handler-message="on" enables syslog notice.
handler-message="off" disables syslog notice.
#
handler-message="off";
Chapter 1 Watchdog Timer 11

If watchdog-enable? is set to true, the watchdog timer is enabled at boot time
with its default actions, as follows. The WD1 timer is controlled by the value in the
watchdog-timeout variable. The default value for watchdog-timeout is 65535
(in the unit of one-tenth of a second). When WD1 expires, it sends an asynchronous
message to the SPARC CPU and starts the WD2 timer. The default value for WD2 is
one second. If WD2 expires, it resets the system.

If the watchdog timer is enabled at boot time, it is your responsibility to ensure that
an application program is run to periodically restart the WD1 timer. If you fail to do
so, the watchdog timer may reset the SPARC CPU when the watchdog expires.

Data Structure
For information on the data structure that is used with watchdog timer programs,
refer to CODE EXAMPLE 1-1.

Watchdog Operation
The watchdog operation (the local watchdog) is the watchdog that works between the
SPARC CPU and System Management Controller (SMC).

Commands at OpenBoot PROM Prompt
Commands for smc are available in the SMC controller device mode
(/pci@1f,0/pci@1,1/isa@7/sysmgmt@0,8010 alias hsc). You need to go to
the sysmgmt node before executing the smc commands and execute the following
once:

ok dev hsc
12 Netra CP2300 cPSB Board Programming Guide • May 2003

TABLE 1-1 lists the commands at OpenBoot prompt.

Corner Cases
When watchdog reset occurs, the power module is toggled. Thus, the state of the
CPU, except those stored in nonvolatile memory, will be lost. Once watchdog reset
occurs after the SPARC CPU is restarted, the SPARC CPU must restart the watchdog
timer.

The SPARC CPU must perform a corner case. After the SMC resets the SPARC CPU,
the output buffer full (OBF) bit and OEM1 bit in the isa bus status register remain
set. Since this is a read-only bit, the SMC cannot reset the bit. The SPARC CPU must
ignore the status bits and clear the OBF bit by reading one byte of data from the isa
bus. This action must be performed after watchdog reset. Otherwise, the SPARC
CPU can inadvertently restart watchdog. For example, if the timer’s values are set to
very low numbers, the board can never boot to the Solaris operating system.

The SMC manages the race condition by putting interlock. The SMC does not start
pre-timeout timer unless the warning is dispatched to the SPARC CPU. The code is
set up on the SPARC CPU side after watchdog warning is issued. Use a Keyboard
Controller Style (KCS) command to clear the watchdog interrupt. Using this
command is the only way to avoid the selected pre-timeout action such as hard
reset. This command rewinds the watchdog timer. The application program
internally manages the warning, along with the command being sent to the SMC.

If diag-switch? is set to true, the timing for watchdog can be affected.

Setting the Watchdog Timer at OpenBoot PROM
The examples in this section are performed at the OpenBoot PROM level.

TABLE 1-1 OpenBoot PROM Prompt Commands

Command Description

smc-get-wdt Gets the current timers values, and other watchdog state bits.

smc-set-wdt Sets the timers values and other flags. This command is also used to
stop watchdog operations.

smc-reset-wdt Starts timer countdown and is often referred to as the "heartbeat".
Chapter 1 Watchdog Timer 13

▼ To Set the Watchdog Timer Without Running the Pre-
Timeout Timer

In this example, after level one expires, the CPU is reset.

1. Set the timer to 10 minutes = 600 sec = 600,000/10 msec = 0x1770.

2. Set the reload values inside the SMC:

3. Start the watchdog timer:

▼ To Set the Watchdog Timer With Pre-Timeout Time

This procedure sets the reload values of countdown timer and pre-timeout timer. In
this example, after level one expires, there are 80 seconds before the reset.

1. Set the timer to 80 seconds = 0x50.

Set the countdown value to 10 minutes, as in the previous procedure, and set the
pre-timeout timer to 80 seconds.

2. Start the watchdog timer:

▼ To Stop the Watchdog Timer

ok 17 70 ff 0 31 4 smc-set-wdt

ok smc-reset-wdt

ok 17 70 ff 50 31 4 smc-set-wdt

ok smc-reset-wdt

ok ff ff ff 0 31 4 smc-set-wdt
14 Netra CP2300 cPSB Board Programming Guide • May 2003

CHAPTER 2

User Flash

This chapter describes the user flash driver for the onboard flash PROM and how to
use it. The Netra CP2300 cPSB board is equipped with user flash memory. This
chapter includes the following sections:

■ “User Flash Usage and Implementation” on page 15
■ “System Compatibility” on page 16
■ “User Flash Driver” on page 16
■ “Application Programming Interface” on page 18
■ “Example Programs” on page 20

User Flash Usage and Implementation
The customer can use the flash memory for various purposes such as storage for
RTOS, user data storage, OpenBoot PROM information or to store dropins. Dropins
simplify customizing a system for the user.

When OpenBoot PROM in system flash is corrupted, and if a backup copy of
OpenBoot PROM is stored in user flash, you can switch the SMC switch to boot the
OpenBoot PROM from the user flash and then use flash update to get a good
OpenBoot PROM image back into the system flash.

The user flash includes a flash PROM chip that can be programmed. The Netra
CP2300 cPSB board has an 8MB flash that is logically divided into two parts: 1MB
for the system/boot flash and 7MB for the user flash. The physical address for the
flash is 1ff.f000.0000.
15

System Compatibility
The following releases support the user flash driver:

■ Solaris 8 2/02 operating environment or other compatible versions that support
this feature

■ Netra CP2300 cPSB board OpenBoot PROM

■ Firmware version 1.0.1
■ Firmware CORE Release 1.0.3
■ Release 4.0 Version 16
■ SMCFW FLASH Code Version 4.0.12
■ SMCFW BOOT Code Version 4.15.1
■ PLD Revision 1.1
■ CORE 1.0.3
■ All the above versions or other compatible versions that support this feature

User Flash Driver
The uflash is the device driver for the flash PROM device on the Netra CP2300 cPSB
board. Access to the driver is carried out through open, read, write, pread,
pwrite and ioctl system interfaces.

On the Netra CP2300 cPSB board, one of these devices is supported. There is one
logical device file for each physical device that can be accessed from applications.
Users can use these devices for storing applications and data.

An instance of the driver is loaded for the device. The driver blocks any reads to the
device while a write is in progress. Multiple, concurrent reads can go through to the
same device at the same time. Writes to a device occur one at a time. All read and
write operations are supported at this time. Access to the device normally happens a
byte at a time.

The device also supports erase and lock features. Applications can use them through
the IOCTL interface. The device is divided into logical blocks. Applications that
issue these operations also supply a block number or a range of blocks that are a
target of these operations. Locks are preserved across reboots. Locking a block
prevents an erase or write operation on that block.
16 Netra CP2300 cPSB Board Programming Guide • May 2003

Switch Settings
The user flash modules on the Netra CP2300 cPSB board are write enabled by
default. The user flash is detected during OpenBoot PROM boot by default.

OpenBoot PROM Device Tree and Properties
This section provides information on the user flash OpenBoot PROM device node
and its properties.

User flash OpenBoot PROM device node is:

/pci@1f,0/pci@1,1/isa@7/flashprom@1f,100000

See TABLE 2-1 for the user flash node properties.

User Flash Device Files
The user flash device files are as follows:

■ /dev/uflash0

Interface (Header) File
The user flash header file is located in the following path:

/usr/platform/SUNW,Netra-CP2300/include/sys/uflash_if.h

TABLE 2-1 User Flash Node Properties

Property Description/Value

dcode-offset 00000002

blocks-per-bank 00000038

block-size 00020000

model SUNW,yyy-yyyy

compatible nct-uflash

reg 0000001f 00100000 00700000
Chapter 2 User Flash 17

Application Programming Interface
Access to the user flash device from the Solaris operating environment is through an
application or user C program. No command-line tool is available. User programs
open this device file and then issue read, write, or ioctl commands to use the
user flash device.

The system calls are listed below in TABLE 2-2.

The ioctl supported commands are listed below:

Note that these ioctl commands are not supported:

#define UIOCMLCK (uflashIOC|3) /* master lock */
#define UIOCEALL (uflashIOC|6) /* erase all unlocked blocks */
#define UIOCEFUL (uflashIOC|7) /* erase full chip */

TABLE 2-2 System Calls

Call Description

read(), pread() reads device

pwrite() writes device

ioctl() erases device, queries device parameters

#define UIOCIBLK (uflashIOC|0) /* identify */
#define UIOCQBLK (uflashIOC|1) /* query a block */
#define UIOCLBLK (uflashIOC|2) /* lock a block */
#define UIOCCLCK (uflashIOC|4) /* clear all locks */
#define UIOCEBLK (uflashIOC|5) /* erase a block */
18 Netra CP2300 cPSB Board Programming Guide • May 2003

Structures to Use in IOCTL Arguments

PROM Information Structure

The PROM information structure holds device information returned by the driver in
response to an identify command.

User Flash User Interface Structure

The user flash user interface structure holds user parameters to commands such as
erase.

CODE EXAMPLE 2-1 PROM Information Structure

/*

 * PROM info structure.

 */

typedef struct {

 uint16_t mfr_id; /* manufacturer id */

 uint16_t dev_id; /* device id */

 /* allow future expansion */

int8_t blk_status[256]; /* blks status filled
by driver */

int32_t blk_num; /* total # of blocks */

int32_t blk_size; /* # of bytes per block */

} uflash_info_t;

CODE EXAMPLE 2-2 User Flash Interface Structure

/*

 * uflash user interface structure.

 */

typedef struct {

 int blk_num;

 int num_of_blks;

uflash_info_t info; /* to be filled by the
driver */

} uflash_if_t;
Chapter 2 User Flash 19

Errors

Example Programs
Example programs are provided in this section for the following actions on user
flash device:

■ Read
■ Write
■ Erase
■ Block Erase

Read Example Program

CODE EXAMPLE 2-3 contains the Read Action on the user flash device.

EINVAL Application passed one or more incorrect arguments to the system
call.

EACCESS Write or Erase operation was attempted on a locked block.

ECANCELLED A hardware malfunction has been detected. Normally, retrying the
command should fix this problem. If the problem persists, power
cycling the system may be necessary.

ENXIO This error indicates problems with the driver state. Power cycle of
the system or reinstallation of driver may be necessary.

EFAULT An error was encountered when copying arguments between the
application and driver (kernel) space.

ENOMEM System was low on memory when the driver attempted to acquire it.

CODE EXAMPLE 2-3 Read Action on User Flash Device

/*

* uflash_read.c

 * An example that shows how to read user flash

 */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>
20 Netra CP2300 cPSB Board Programming Guide • May 2003

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <uflash_if.h>

char *uflash0 = "/dev/uflash0";

int ufd0;

uflash_if_t ufif0;

char *buf0;

char *module;

static int

uflash_init() {

 char *buf0 = malloc(ufif0.info.blk_size);

if (!buf0) {

 printf("%s: cannot allocate memory\n", module);

 return(-1);

 }

/* open device */

 if ((ufd0 = open(uflash0, O_RDWR)) == -1) {

 perror("uflash0: ");

exit(1);

 }

/* get uflash sizes */

 if (ioctl(ufd0, UIOCIBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCIBLK): ");

 exit(1);

 }

if (ufd0) {

 printf("%s: \n", uflash0);

 printf("manfacturer id = 0x%p\n", ufif0.info.mfr_id);

 printf("device id = 0x%p\n", ufif0.info.dev_id);

 printf("number of blocks = 0x%p", ufif0.info.blk_num);

 printf("block size = 0x%p" ufif0.info.blk_size);

 }

static int

uflash_uninit() {

 if (ufd0)

 close(ufd0);

cleanup:

 if (buf0)

 free(buf0);

}

static int

uflash_read() {

CODE EXAMPLE 2-3 Read Action on User Flash Device (Continued)
Chapter 2 User Flash 21

Write Example Program

CODE EXAMPLE 2-4 contains the Write Action on the user flash device.

 /* read block 0 of user flash */

 if (pread(ufd0, buf0, ufif0.info.blk_size, 0) !=
ufif0.info.blk_size)

 perror("uflash0:read");

return(0);

}

main() {

 int ret;

module = argv[0];

ret = uflash_init();

if (!ret)

 uflash_read();

uflash_uninit();

}

CODE EXAMPLE 2-4 Write Action on User Flash Device

/*

 * uflash_write.c

 * An example that shows how to write user flash

 */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <uflash_if.h>

char *uflash0 = "/dev/uflash0";

int ufd0;

uflash_if_t ufif0;

char *buf0;

char *module;

static int

uflash_init() {

 char *buf0 = malloc(ufif0.info.blk_size);

if (!buf0) {

CODE EXAMPLE 2-3 Read Action on User Flash Device (Continued)
22 Netra CP2300 cPSB Board Programming Guide • May 2003

 printf("%s: cannot allocate memory\n", module);

 return(-1);

 }

/* open device */

 if ((ufd0 = open(uflash0, O_RDWR)) == -1) {

 perror("uflash0: ");

exit(1);

 }

/* get uflash sizes */

 if (ioctl(ufd0, UIOCIBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCIBLK): ");

 exit(1);

 }

if (ufd0) {

 printf("%s: \n", uflash0);

 printf("manfacturer id = 0x%p\n", ufif0.info.mfr_id);

 printf("device id = 0x%p\n", ufif0.info.dev_id);

 printf("number of blocks = 0x%p", ufif0.info.blk_num);

 printf("block size = 0x%p" ufif0.info.blk_size);

 }

}

static int

uflash_uninit() {

 if (ufd0)

 close(ufd0);

cleanup:

 if (buf0)

 free(buf0);

}

static int

uflash_write() {

 int i;

/* write some pattern to the buffers */

 for (i = 0; i < ufif0.info.blk_size; i += sizeof(int))

 *((int *) (buf0 + i)) = 0xDEADBEEF;

/* write block 0 of user flash */

 if (pwrite(ufd0, buf0, ufif0.info.blk_size, 0) !=
ufif0.info.blk_size)

 perror("uflash0:write");

return(0);

}

main() {

 int ret;

CODE EXAMPLE 2-4 Write Action on User Flash Device (Continued)
Chapter 2 User Flash 23

Erase Example Program

CODE EXAMPLE 2-5 contains the Erase Action on the User Flash Device.

module = argv[0];

ret = uflash_init();

if (!ret)

 uflash_write();

uflash_uninit();

}

CODE EXAMPLE 2-5 Erase Action on User Flash Device

/*

 * uflash_erase.c

 * An example that shows how to erase user flash

 */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <uflash_if.h>

char *uflash0 = "/dev/uflash0";

int ufd0;

uflash_if_t ufif0;

char *module;

static int

uflash_init() {

 /* open device */

 if ((ufd0 = open(uflash0, O_RDWR)) == -1) {

 perror("uflash0: ");

exit(1);

 }

/* get uflash sizes */

 if (ufd0 && ioctl(ufd0, UIOCIBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCIBLK): ");

 exit(1);

 }

if (ufd0) {

CODE EXAMPLE 2-4 Write Action on User Flash Device (Continued)
24 Netra CP2300 cPSB Board Programming Guide • May 2003

Block Erase Example Program

CODE EXAMPLE 2-6 contains the Block Erase Action on the user flash device.

 printf("%s: \n", uflash0);

 printf("manfacturer id = 0x%p\n", ufif0.info.mfr_id);

 printf("device id = 0x%p\n", ufif0.info.dev_id);

 printf("number of blocks = 0x%p", ufif0.info.blk_num);

 printf("block size = 0x%p" ufif0.info.blk_size);

 }

}

static int

uflash_uninit() {

 if (ufd0)

 close(ufd0);

}

static int

uflash_erase() {

 if (ufd0 && ioctl(ufd0, UIOCEFUL, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCEFUL): ");

 return(-1);

 }

 printf("\nerase successful on %s\n", uflash0);

return(0);

}

main() {

 int ret;

module = argv[0];

ret = uflash_init();

if (!ret)

 uflash_erase();

uflash_uninit();

}

CODE EXAMPLE 2-6 Block Erase Action on User Flash Device

/*

 * uflash_blockerase.c

 * An example that shows how to erase block(s) of user flash

 */

#include <sys/types.h>

#include <sys/stat.h>

CODE EXAMPLE 2-5 Erase Action on User Flash Device (Continued)
Chapter 2 User Flash 25

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <uflash_if.h>

char *uflash0 = "/dev/uflash0";

int ufd0;

uflash_if_t ufif0;

char *module;

static int

uflash_init() {

 /* open device */

 if ((ufd0 = open(uflash0, O_RDWR)) == -1) {

 perror("uflash0: ");

exit(1);

 }

/* get uflash sizes */

 if (ioctl(ufd0, UIOCIBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCIBLK): ");

 exit(1);

 }

if (ufd0) {

 printf("%s: \n", uflash0);

 printf("manfacturer id = 0x%p\n", ufif0.info.mfr_id);

 printf("device id = 0x%p\n", ufif0.info.dev_id);

 printf("number of blocks = 0x%p", ufif0.info.blk_num);

 printf("block size = 0x%p" ufif0.info.blk_size);

 }

}

static int

uflash_uninit() {

 if (ufd0)

 close(ufd0);

}

static int

uflash_blockerase() {

 /* erase 2 blocks starting from block 1 of user flash */

 uf0.blk_num = 1;

 uf0.num_of_blks = 2;

 if (ufd0 && ioctl(ufd0, UIOCEBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCEBLK): ");

 return(-1);

CODE EXAMPLE 2-6 Block Erase Action on User Flash Device (Continued)
26 Netra CP2300 cPSB Board Programming Guide • May 2003

Sample User Flash Application Program
You can use the following program to test the user flash device and driver. This
program also demonstrates how this device can be used.

 }

 printf("\nblockerase successful on %s\n", uflash0);

return(0);

}

main() {

 int ret;

module = argv[0];

ret = uflash_init();

if (!ret)

 uflash_blockerase();

uflash_uninit();

}

CODE EXAMPLE 2-7 Sample User Flash Application Program

/*

 *

 * This application program demonstrates the user program

 * interface to the User Flash PROM driver.

 *

 * One can read or write a number of bytes up to the size of

 * the user PROM by means of pread() and pwrite() calls.

 * All other functions of the PROM can be accessed by

 * means of ioctl() calls such as:

 * -) identify the chip,

 * -) query block,

 * -) lock block/unlock block,

 * -) master lock,

 * -) erase block, erase all unlocked blocks, and

 * erase whole PROM

 * Please note that not all of the above ioctl calls are

 * available for all flash PROMs. It is the user’s

 * responsibility to find out the features of a given PROM.

* The type, block size, and number of blocks of the PROM

 * are returned by "identify" ioctl().

 *

 * The pwrite() erases the block[s] and then does the

CODE EXAMPLE 2-6 Block Erase Action on User Flash Device (Continued)
Chapter 2 User Flash 27

* writing.

 *

 * Use the following line to compile your custom application

 * programs:

 * make uflash_test

 */

#pragma ident "@(#)uflash_test.c 1.0 03/04/30 SMI"

#include <stdio.h>

#include <sys/signal.h>

#include <stdio.h>

#include <sys/time.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/fcntl.h>

#include <sys/stream.h>

#include "uflash_if.h"

/*

 */

 #if 1

 #define PROM_SIZE 0x700000 /* 7 MBytes */

 #endif

static char *help[14] = {

"0 -- read user flash PROM",

"1 -- write user flash PROM",

"2 -- identify user flash PROM",

"3 -- query blocks",

"4 -- lock blocks",

"5 -- master lock",

"6 -- clear all locks",

"7 -- erase blocks",

"8 -- erase all unlocked blocks",

"9 -- erase whole PROM",

"a -- switch PROMs",

"q -- quit",

"?/h -- display this menu",

""

};

/*char get_cmd(); */

static char

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
28 Netra CP2300 cPSB Board Programming Guide • May 2003

get_cmd()

{

char buf[10];

gets(buf);

return (buf[0]);

}

/*

 * Main

 */

main(int argc, char *argv[])

{

int n_byte; /* returned from pread/pwrite */

int size, offset, pat;

int fd0, h, i;

int fd, prom_id;

uflash_if_t uflash_if;

caddr_t r_buf, w_buf;

char *devname0 = "/dev/uflash0";

char c;

r_buf = (caddr_t)malloc(PROM_SIZE);

w_buf = (caddr_t)malloc(PROM_SIZE);

/*

 * Open the user flash PROM.

 */

if ((fd0 = open(devname0, O_RDWR)) < 0) {

fprintf(stderr, "couldn’t open device: %s\n",
devname0);

exit(1);

}

/* set the default PROM */

prom_id = 0;

fd = fd0;

/* let them know about the help menu */

fprintf(stderr, "Enter <h> or <?> for help on commands\n");

while (1) {

fprintf(stderr, "[%d]command> ", prom_id);

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
Chapter 2 User Flash 29

switch(get_cmd()) {

case ’q’:

goto getout;

case ’h’:

case ’?’:

h = 0;

while (*help[h]){

fprintf(stderr, "%s\n", help[h]);

h++;

}

break;

case ’9’: /* erase the whole flash PROM */

fprintf(stderr,

 "Are you sure?[y/n]");

 scanf ("%c", &c);

if (c != ’y’)

continue;

if (ioctl(fd, UIOCEFUL, &uflash_if) == -1)

 goto getout;

break;

case ’8’: /* erase all unlocked flash PROM blocks */

/*

 * This ioctl is valid only for those

 * chips that have query command.

 */

if (ioctl(fd, UIOCEALL, &uflash_if) == -1)

 goto getout;

break;

case ’7’: /* erase flash PROM block */

fprintf(stderr,

"Enter PROM block number[0, 31]> ");

 scanf ("%d", &uflash_if.blk_num);

fprintf(stderr,

"Enter number of block> ");

scanf ("%d", &uflash_if.num_of_blks);

if (ioctl(fd, UIOCEBLK, &uflash_if) == -1)

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
30 Netra CP2300 cPSB Board Programming Guide • May 2003

 goto getout;

break;

case ’6’: /* clear all locks */

/* on certain PROMs */

if (ioctl(fd, UIOCCLCK, &uflash_if) == -1)

 goto getout;

break;

case ’5’: /* master lock */

/* on certain PROMs */

if (ioctl(fd, UIOCMLCK, &uflash_if) == -1)

 goto getout;

break;

case ’4’: /* lock flash PROM block */

/* on certain PROMs */

fprintf(stderr,

"Enter PROM block number[0, 31]> ");

 scanf ("%d", &uflash_if.blk_num);

fprintf(stderr,

"Enter number of block> ");

scanf ("%d", &uflash_if.num_of_blks);

if (ioctl(fd, UIOCLBLK, &uflash_if) == -1)

 goto getout;

break;

case ’3’: /* query flash PROM */

/* on certain PROMs */

fprintf(stderr,

"Enter PROM block number[0, 31]> ");

 scanf ("%d", &uflash_if.blk_num);

fprintf(stderr,

"Enter number of block> ");

scanf ("%d", &uflash_if.num_of_blks);

if (ioctl(fd, UIOCQBLK, &uflash_if) == -1)

 goto getout;

for (i = uflash_if.blk_num;

i < (uflash_if.blk_num+uflash_if.num_of_blks);

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
Chapter 2 User Flash 31

i++)

{

fprintf(stderr, "block[%d] status = %x\n",

i, uflash_if.info.blk_status[i] & 0xF);

}

break;

case ’2’: /* identify flash PROM */

if (ioctl(fd, UIOCIBLK, &uflash_if) == -1)

 goto getout;

fprintf(stderr, "manufacturer id = 0x%x, device id
=\

0x%x\n# of blks = %d, blk size = 0x%x\n",

uflash_if.info.mfr_id & 0xFF,

uflash_if.info.dev_id & 0xFF,

uflash_if.info.blk_num,

uflash_if.info.blk_size);

break;

case ’1’: /* write to user flash PROM */

fprintf(stderr,

"Enter PROM offset[0, 0xXX,XXXX]> ");

 scanf ("%x", &offset);

fprintf(stderr,

"Enter number of bytes[hex]> ");

scanf ("%x", &size);

fprintf(stderr,

"Enter data pattern[0, 0xFF]> ");

 scanf ("%x", &pat);

/*

 * init write buffer.

 */

for (i = 0; i < size; i++) {

w_buf[i] = pat;

}

n_byte = pwrite (fd, w_buf, size, offset);

if (n_byte != size) {

/* the write failed */

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
32 Netra CP2300 cPSB Board Programming Guide • May 2003

printf ("Write process was failed at byte 0x%x \
n",

n_byte);

}

break;

case ’0’:/* read from user flash PROM */

fprintf(stderr,

"Enter PROM offset[0, 0xXX,XXXX]> ");

 scanf ("%x", &offset);

fprintf(stderr,

"Enter number of bytes[hex]> ");

scanf ("%x", &size);

getchar();/* clean up the char buf */

n_byte = pread (fd, r_buf, size, offset);

if (n_byte != size) {

 /* the read failed */

printf ("Read process was failed at \

byte 0x%x \n",

 n_byte);

continue;

 }

printf ("\nuser data buffer:\n");

for (i = 0; i < size; i++) {

printf("%2x ", r_buf[i] & 0xff);

}

printf("\n");

default:

continue;

}

}

/* exit */

getout:

close(fd0);

return;

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
Chapter 2 User Flash 33

} /* end of main() */

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
34 Netra CP2300 cPSB Board Programming Guide • May 2003

CHAPTER 3

Advanced System Management

Advanced System Monitoring (ASM) is an intelligent fault detection system that
increases uptime and manageability of the board. The System Management
Controller (SMC) module on the Netra CP2300 cPSB board supports the temperature
and voltage monitoring functions of ASM. This chapter describes the specific ASM
functions of the Netra CP2300 cPSB board. This chapter includes the following
sections:

■ “ASM Component Compatibility” on page 36
■ “Typical ASM System Application” on page 37
■ “Typical Cycle From Power Up to Shutdown” on page 38
■ “Hardware ASM Functions” on page 41
■ “Adjusting the ASM Warning, Critical, and Shutdown Parameter Settings on the

Board” on page 46
■ “OpenBoot PROM Environmental Parameters” on page 47
■ “OpenBoot PROM/ASM Monitoring” on page 49
■ “ASM Application Programming” on page 57
35

ASM Component Compatibility
TABLE 3-1 lists the compatible ASM hardware, OpenBoot PROM, and Solaris
operating environment for the Netra CP2300 cPSB board.

TABLE 3-1 Compatible ASM Components

Component ASM Compatibility

Hardware Board supports ASM

OpenBoot PROM ASM is supported by OpenBoot PROM.

Operating
environment

Solaris 8 2/02 operating environment or subsequent compatible
versions
36 Netra CP2300 cPSB Board Programming Guide • May 2003

Typical ASM System Application
FIGURE 3-1 illustrates the Netra CP2300 cPSB board ASM application block diagram.

FIGURE 3-1 Typical ASM Application Block Diagram

Transition card
(OEM supplied)

I2C
node

Rack
midplane

PWR PWRPWR

MUX

I2C
internal

bus

Solaris
SC driver

Temp.
sensor

Temp.
voltages

ADM
1026

System
Monitor

ASM
driver

ASM app.
program

(monitor &
warn only)

Voltage
outputs

Other boards
Power-supply

(OEM supplied)Netra CP2300 cPSB board

I2C
external
bus Power bus (+5.0 and 3.3 volts)

SMC
firmware

SMC
I2C
Chapter 3 Advanced System Management 37

FIGURE 3-1 is a typical Netra CP2300 cPSB board system application block diagram.
For locations of the temperature sensors, see FIGURE 3-2 and FIGURE 3-3.

The Netra CP2300 cPSB board functions as a node board in a cPSB system rack. The
Netra CP2300 cPSB board monitors its CPU diode temperature and issues warnings
at both the OpenBoot PROM and Solaris operating environment levels when these
environmental readings are out of limits. At the Solaris operating environment level,
the application program monitors and issues warnings for the board. At the OBP
level, the CPU diode temperature is monitored if the NVRAM variable
env-monitor is enabled.

Typical Cycle From Power Up to
Shutdown
This section describes a typical ASM cycle from power up to shutdown.

ASM Protection at the OpenBoot PROM
The OpenBoot PROM monitors the CPU diode temperature at the fixed polling rate
of 10 seconds and displays warning messages on the default output device
whenever the measured temperature exceeds the pre-programmed NVRAM module
configurable variable warning temperature (the warning-temperature
parameter), the critical temperature (the critical-temperature parameter), or
the shutdown temperature (the shutdown-temperature parameter). See
“OpenBoot PROM Environmental Parameters” on page 47 for information on
changing these pre-programmed parameters.

OpenBoot PROM-level protection takes place only when the env-monitor
parameter is enabled (it is not the default setting). If the NVRAM variable env-
monitor is set to enabled-with-shutdown
(env-monitor=enabled-with-shutdown), and if the board temperature exceeds
the shutdown temperature, the OpenBoot PROM will shut down power to the Netra
CP2300 cPSB board CPU. If the NVRAM variable env-monitor is set to enabled
(env-monitor=enabled), the OpenBoot PROM will send a warning, critical, or
shutdown temperature message to the user that the Netra CP2300 cPSB board is
overheating.

Disabling env-monitor completely disables ASM protection at the OpenBoot
PROM level but does not affect ASM protection at the Solaris operating environment
level.
38 Netra CP2300 cPSB Board Programming Guide • May 2003

Note – To protect the system at OpenBoot PROM level, the env-monitor should be
enabled at all times.

ASM Protection at the Operating Environment
Level
Monitoring changes in the ASM temperatures can be a useful tool for determining
problems with the room where the system is installed, functional problems with the
system, or problems on the board. Establishing baseline temperatures early in
deployment and operation could be used to trigger alarms if the temperatures from
the sensors increase or decrease dramatically. If all the sensors go to room ambient,
power has probably been lost to the host system. If one or more sensors rise in
temperature substantially, there may be a system fan malfunction, the system
cooling may have been compromised, or room air conditioning may have failed.

When the application program opens the node board and pushes the ASM streams
module, the ASM module is loaded.

To access the CPU diode temperature measurements at the Solaris operating
environment level, use the ioctl system call in an application program. To specify
the ASM polling rate, use the sleep system call.

Protection at the operating environment level takes place only when the ASM
application program is running, which is initiated by the end user. Failure to run the
ASM application program completely disables ASM protection at the Solaris level
but does not affect ASM protection at the OpenBoot PROM level. Keep the ASM
application program running at all times.

In a typical ASM application program, the software reads the CPU, inlet, and
exhaust temperature sensors once every polling cycle. The program then compares
the measured CPU diode temperature with the warning temperature and displays a
warning message on the default output device whenever the warning temperature is
exceeded.

The program can also issue a shutdown message on the default output device
whenever the measured CPU diode temperature exceeds the shutdown temperature.
In addition, the ASM application program can be programmed to sync and shut
down the Solaris operating environment when conditions warrant.

The use of system calls to access the ASM device driver at the Solaris level enables
OEMs to implement their own monitoring, warning, and shutdown policies through
a high-level programming language such as the C programming language. An OEM
can log and analyze the environmental data for trends (such as drift rate or sudden
Chapter 3 Advanced System Management 39

changes in average readings). Or, an OEM can communicate the occurrence of an
unusual condition to a specialized management network using the Netra CP2300
cPSB board Ethernet port.

Refer to “Sample Application Program” on page 59 for an example of how a simple
ASM monitoring program can be implemented.

The power module is controlled by the SMC subsystem (except for automatic
controls such as overcurrent shutdown or voltage regulation). The functions
controlled are core voltage output level and power sequencing/monitor.

Post Shutdown Recovery
The onboard voltage controller is a hardware function that is not controlled by either
firmware or software. At the OpenBoot PROM level, if the NVRAM variable env-
monitor is set to enabled-with-shutdown (env-monitor=enabled-with-
shutdown), and if the board temperature exceeds the shutdown temperature, the
OpenBoot PROM will shut down power to the Netra CP2300 cPSB board CPU.

There is no mechanism for the Solaris operating environment to either recover or
restore power to the Netra CP2300 cPSB board when an unusual condition occurs
(for example, if the CPU diode temperature exceeds its maximum recommended
level). In either case, the end user must intervene and manually recover the Netra
CP2300 cPSB board as well as the cPSB system through hardware control. Once a
shutdown has occurred, you can recover the board using a cold-reset IPMI
command to SMC or by extracting and reinserting the board.
40 Netra CP2300 cPSB Board Programming Guide • May 2003

Hardware ASM Functions
This section summarizes the hardware ASM features on the Netra CP2300 cPSB
board. TABLE 3-2 lists the ASM functions on a Netra CP2300 cPSB board.

TABLE 3-3 shows the I2C components.

TABLE 3-2 Typical Netra CP2300 cPSB Board Hardware ASM Functions

Function Capability

Board Exhaust Air
Temperature

Senses the air temperature at the trailing edge of the board.
(Assumes air direction from the processor/heatsink toward the PMC
slots.)

CPU Diode
Temperature

Senses a diode temperature in the processor junction.

Board Inlet Air
Temperature

Senses the air temperature at the leading edge of the board under
the solder-side cover. (Assumes air direction from the
processor/heatsink toward the PMC slots.)

TABLE 3-3 I2C Components

Component Function

DS80CH11 SMC I2C controller - IPMB

PCF8584 I2C controller

PCF9545 4 channel I2C multiplexor

AT24C64 I2C EEPROM - motherboard FRUID

AT24C01 I2C EEPROM - RTM FRUID + external I2C header

ADM1026 System monitor/general purpose I/O

AT24C01 I2C EEPROM - onboard memory SPD

DS1307 I2C TOD

AT24C64 I2C EEPROM - NVRAM/Ethernet MAC ID

LTC4300 I2C hotswap isolator

AT24Cxx I2C EEPROM - SO DIMM 1 SPD (add-on dependent)

AT24Cxx I2C EEPROM - SO DIMM 0 SPD (add-on dependent)

AT24Cxx PMC/PTMC B (add-on card dependent)
Chapter 3 Advanced System Management 41

FIGURE 3-2 and FIGURE 3-3 show the location of the ASM hardware on the Netra
CP2300 cPSB board.

FIGURE 3-2 Location of ASM Hardware on the Netra CP2300 cPSB Board (Top Side)

AT24Cxx PMC/PTMC A (add-on card dependent)

87LPC764 “IMAX” configurable 4 channel I2C multiplexor

ALi1535D+ Southbridge - SMBUS/I2C controller

TABLE 3-3 I2C Components (Continued)

Component Function

0003BA1FB03B

2 ADDRESS

D/C: 4502
-02 REV: 01

Assembled in Taiwan
3753121000049

21 3 4 5 6

Exhaust
Sensor

CPU Thermal
Sensor
42 Netra CP2300 cPSB Board Programming Guide • May 2003

FIGURE 3-3 Location of ASM Hardware on the Netra CP2300 cPSB Board (Bottom Side)

FIGURE 3-4 is a block diagram of the ASM functions.

Inlet
Sensor
Chapter 3 Advanced System Management 43

FIGURE 3-4 Netra CP2300 cPSB Board ASM Functional Block Diagram

ASM
Application
Program

ASM
Device
Driver

Solaris
Operating

Env
CPU

CPU
Die Temp

Sensor

Southbridge

SMC Micro
Controller

PLD

I2C Mux

cPCI J5
External I2C

ADM 1026
System
Monitor

OBP
OEMS can modify
Factory Defaults

Inlet Temp
Sensor

Exhaust
Temp Sensor

I2C Controller

Power
Control

and Monitor

OEMs are original equipment
manufacturers

OEMs can write
their own device drivers

OEMs can implement
their own monitoring
and control logic
44 Netra CP2300 cPSB Board Programming Guide • May 2003

Power On/Off Switching
The onboard voltage controller allows power to the CPU of the Netra CP2300 cPSB
board only when the following conditions are met:

■ The VDD core-1.7-volt supply voltage is greater than 1.53 volts (within 10% of
nominal).

■ The 12-volt supply voltage is greater than 10.8 volts (within 10% of nominal).

■ The 5-volt supply voltage is greater than 4.5 volts (within 10% of nominal)

■ The 3.3-volt supply voltage is greater than 3.0 volts (within 10% of nominal).

The controller requires these conditions to be true for at least 100 milliseconds to
help ensure the supply voltages are stable. If any of these conditions become untrue,
the voltage monitoring circuit shuts down the CPU power of the board.

Inlet, Exhaust, and CPU Temperature Monitoring
The CPU diode sensor reading may vary from slot to slot and from board to board in
a system, and is dependent primarily on system cooling. As an example, a system
may have sensor readings for the CPU diode from 35˚C to 49˚C with an ambient
inlet of 21˚C across many boards, with a variety of configurations and positions
within a chassis. Care must be taken when setting the alarm and shutdown
temperatures based on the CPU diode sensor value. This sensor typically is linear
across the operating range of the board.

The exhaust sensor measures the local air temperature at the trailing edge of the
board for systems with bottom to top airflow. This value depends on the character
and volume of the airflow across the board. Typical values in a chassis may range
from a delta over inlet ambient of 0˚C to 12˚C, depending on the power dissipation
of the board configuration and the position in the chassis. The exhaust sensor is
nonlinear with respect to ambient inlet temperature.

The inlet sensor measures the local air temperature at the leading edge of the board
on the solder-side under the solder-side cover. This value typically can range from a
reading of 0˚C to 13˚C above inlet system ambient in a chassis; care must be taken to
understand the application and installation of the board to use this temperature
sensor.

A sudden drop of all temperature sensors close to or near room ambient temperature
can mean loss of power to one or more Netra CP2300 cPSB boards.

A gradual increase in the delta temperature from inlet to outlet can be due to dust
clogging system filters. This feature can be used to set service levels for filter
cleaning or changing.
Chapter 3 Advanced System Management 45

The CPU diode temperature can be used to prevent damage to the board by shutting
the board down if this sensor exceeds predetermined limits.

Adjusting the ASM Warning, Critical,
and Shutdown Parameter Settings on the
Board
The Netra CP2300 cPSB board uses the Advanced System Monitoring (ASM)
detection system to monitor the temperature of the board. The ASM system will
display messages if the board temperature exceeds the set warning, critical, and
shutdown settings. Because the on-board sensors may report different temperature
readings for different system configurations and airflows, you may want to adjust
the warning, critical, and shutdown temperature parameter settings.

The Netra CP2300 cPSB board determines the board temperature by retrieving
temperature data from sensors located on the board. A board sensor reads the
temperature of the immediate area around the sensor. Although the software may
appear to report the temperature of a specific hardware component, the software is
actually reporting the temperature of the area near the sensor. For example, the CPU
diode sensor reads the temperature at the location of the sensor and not on the
actual CPU heat sink. The board’s OpenBoot PROM collects the temperature
readings from each board sensor at regular intervals. You can display these
temperature readings using the show-sensors OpenBoot PROM command. See
“show-sensors Command at OpenBoot PROM” on page 51.

The temperature read by the CPU sensor will trigger OpenBoot PROM warning,
critical, and shutdown messages. When the CPU sensor reads a temperature greater
than the warning parameter setting, the OpenBoot PROM will display a warning
message. Likewise, when the sensor reads a temperature greater than the shutdown
setting, the OpenBoot PROM will display a shutdown message.

Many factors affect the temperature readings of the sensors, including the airflow
through the system, the ambient temperature of the room, and the system
configuration. These factors may contribute to the sensors reporting different
temperature readings than expected.
46 Netra CP2300 cPSB Board Programming Guide • May 2003

TABLE 3-4 shows the sensor readings of a Netra CP2300 cPSB board operating in a
Sun server in a room with an ambient temperature of 21˚C. The temperature
readings were reported using the show-sensors OpenBoot PROM command. Note
that the reported temperatures are higher than the ambient room temperature.

Since the temperature reported by the CPU diode sensor might be different than the
actual CPU temperature, you may want to adjust the settings for the warning-
temperature, critical-temperature, and shutdown-temperature OpenBoot
PROM parameters. The default values of these parameters have been conservatively
set at 60˚C for the warning temperature, 65˚C for the critical temperature, and 70˚C
for the shutdown temperature.

Note – If you have developed an application that uses the ASM software to monitor
the temperature sensors, you may want to adjust your application’s settings
accordingly.

OpenBoot PROM Environmental
Parameters
This section describes how to change the OpenBoot PROM environmental
monitoring parameters. These global OpenBoot PROM parameters do not apply at
the Solaris level. Instead, the ASM application program provides equivalent
parameters that do not necessarily have to be set to the same values as their
OpenBoot PROM counterparts. Refer to “ASM Application Programming” on
page 57 for information about using ASM at the Solaris level. The OpenBoot PROM
polling rate is at fixed intervals of 10 seconds.

TABLE 3-4 Reported Temperature Readings at an Ambient Room Temperature of 21˚C
on a Typical Netra CP2300 cPSB Board

Board Sensor Location
Reported Temperatures
(in Degrees Celsius)

Difference Between Reported and
Ambient Room Temperature (in
Degrees Celsius)

CPU 41 20

Inlet 1 31 10

Exhaust 1 29 8
Chapter 3 Advanced System Management 47

OpenBoot PROM Warning Temperature Parameter

OBP programs SMC for temperature monitoring using the sensor commands. On a
Netra CP2300 cPSB board, there are three NVRAM variables that provide different
temperature levels. The critical-temperature limit lies between warning and
shutdown thresholds. The default values of these temperature thresholds and
corresponding action are shown in TABLE 3-5.

Note that there is a lower limit of 50˚ C on shutdown-temperature value. If you try
to set the temperature to a value lower than 50˚ C, OpenBoot PROM will not accept
it. This safeguards a user from setting the shutdown-temperature lower than the
room temperature and thereby causing the CPU processor and the Netra CP2300
cPSB board to be powered off by SMC on the next reset.

The warning-temp global OpenBoot PROM parameter determines the temperature
at which a warning is displayed. The shutdown-temperature global OpenBoot
PROM parameter determines the temperature at which the system is shut down. The
temperature monitoring environment variables can be modified at the OpenBoot
PROM command level as shown in examples below:

or:

The critical-temperature is a second-level warning temperature with a default value
of 65˚ C. This variable can be modified using the OpenBoot PROM level setenv
command as shown in example below:

TABLE 3-5 Typical Netra CP2300 Board Temperature Thresholds and Firmware Action

Thresholds with Default Firmware Action

warning-temperature = 60˚ C OBP displays warning message

critical-temperature = 65˚ C OBP displays warning message

shutdown-temperature = 70˚ C OBP shuts down the CPU processor and the Netra
CP2300 board if
env-monitor=enabled-with-shutdown

ok setenv warning-temperature 61

ok setenv shutdown-temperature 72

ok setenv critical-temperature 66
48 Netra CP2300 cPSB Board Programming Guide • May 2003

OpenBoot PROM/ASM Monitoring
This section describes the ASM monitoring in the OpenBoot PROM.

CPU Monitoring
The following NVRAM module variables are in OpenBoot PROM for ASM.

■ NVRAM module variable name: env-monitor

■ Function: enables or disables environment monitoring at OpenBoot PROM
■ Data type: string
■ Valid values: disabled or enabled
■ Default value: disabled
■ OpenBoot PROM Usage:

■ NVRAM module variable name: warning-temperature

■ Function: sets the CPU warning temperature threshold
■ Data type: byte
■ Unit: decimal
■ Default value: 60
■ OpenBoot PROM Usage:

■ NVRAM module variable name: critical-temperature

■ Function: sets the CPU critical temperature threshold
■ Data type: byte
■ Unit: decimal
■ Default value: 65
■ OpenBoot PROM Usage:

■ NVRAM module variable name: shutdown-temperature

■ Function: sets the CPU shutdown temperature threshold

ok setenv env-monitor disabled or enabled

ok setenv warning-temperature temperature-value

ok setenv critical-temperature temperature-value
Chapter 3 Advanced System Management 49

■ Data type: byte
■ Unit: decimal
■ Default value: 70
■ OpenBoot PROM Usage:

Caution – Exercise caution while setting the above two parameters. Setting these
values too high will leave the system unprotected against system over-heat. Setting
these values too low will power down the system in an unpredictable manner.

Warning Temperature Response at OpenBoot PROM

When the CPU diode temperature reaches “warning-temperature,” a similar
message is displayed at the ok prompt at a regular interval:

Critical Temperature Response at OpenBoot PROM

When the CPU diode temperature reaches “critical-temperature,” a similar message
is displayed at the ok prompt at a regular interval:

ok setenv shutdown-temperature temperature-value

Temperature sensor #2 has threshold event of

<<< WARNING!!! Upper Non-critical - going high >>>

The current threshold setting is : 60

The current temperature is : 61

Temperature sensor #2 has threshold event of

<<< !!! ALERT!!! Upper Critical - going high >>>

The current threshold setting is : 65

The current temperature is : 66
50 Netra CP2300 cPSB Board Programming Guide • May 2003

show-sensors Command at OpenBoot PROM
The show-sensors command at OpenBoot PROM displays the readings of all the
temperature sensors on the board. A sample output for typical sensor readings for a
Netra CP2300 cPSB board is as follows:

IPMI Command Examples at OpenBoot PROM
The Intelligent Platform Management Interface (IPMI) commands can be used to
enable the sensors monitoring and subsequent event generation from other boards in
the system.

The IPMI command examples provided in this section are based on the IPMI
Specification Version 1.0. Please use the IPMI Specification for additional information
on how to implement these IPMI commands.

ok show-sensors
Sensor# Sensor Name Sensor Reading
======= ==================================== ===================
 1 EP 5v Sensor (d7) 5.112 volts
 2 EP 3.3v Sensor (8e) 3.408 volts
 3 BP +12v Sensor (d3) 12.048 volts
 4 BP -12v Sensor (62) -12.020 volts
 5 IPMB Power Sensor (d7) 5.088 volts
 6 SMC Power Sensor (d7) 5.088 volts
 7 VDD 3.3v Sensor (ac) 3.3368 volts
 8 VCCP Sensor (90) 1.6992 volts
 9 +12v Sensor (c2) 12.1250 volts
 a -12v Sensor (37) -11.968 volts
 b +5v Sensor (c4) 5.096 volts
 c Standby 3.3v Sensor (bf) 3.2852 volts
 d Main 3.3v Sensor (bf) 3.2852 volts
 e External I temp (CPU) Sensor (29) 41 degree C
 f External II temp (Outlet) Sensor (1b) 31 degree C
 10 Internal temp (Inlet) Sensor (1b) 29 degree C

Verifying Access to EEPROMs :

IPMI FRU EEPROM (EEPROM id 00) : Passed
SUN FRU EEPROM (EEPROM id 20) : Passed
FRU EEPROM (EEPROM id 21) : Passed
ADM chip EEPROM (EEPROM id 22) : Passed
ok
Chapter 3 Advanced System Management 51

Note – To execute an IPMI command, at the OpenBoot PROM ok prompt, type the
packets in reverse order followed by the relevant information as shown in examples in
“Examples of IPMI Command Packets” on page 53. Change the bytes in the example
packet to accommodate different IPMI addresses, different threshold values or
different sensor numbers. See also the IPMI Specification Version 1.0.

▼ Set or Change the Thresholds for a Sensor

The command execute-smc-cmd is available in SMC controller device mode
(/pci@1f,0/pci@1,1/isa@7/sysmgmt@0,8010 alias hsc). You need to go to
the sysmgmt node before executing the command execute-smc-cmd using the
following:

1. Set the thresholds for the sensors.

See “Set Sensor Threshold” on page 53. If no threshold is set, the default threshold
operates:

2. Follow instructions in “Check Whether the IPMI Commands Are Executed
Properly” on page 53 to check proper execution of the command.

▼ Enable Events From a Sensor

1. To execute a command to enable events from the sensor, type:

See “Set Sensor Event Enable Command” on page 56 and “Get Sensor Event Enable”
on page 56.

There are supporting commands for any sensor and the corresponding packets at
these commands: get sensor threshold, get sensor reading, and get sensor
event enable.

2. Follow instructions in “Check Whether the IPMI Commands Are Executed
Properly” on page 53 to check proper execution of the command.

ok dev hsc

ok packet bytes number-of-bytes-in-packet 34 execute-smc-cmd

ok packet bytes number-of-bytes-in-packet 34 execute-smc-cmd
52 Netra CP2300 cPSB Board Programming Guide • May 2003

▼ Check Whether the IPMI Commands Are Executed Properly

1. Check whether the stack on the ok prompt displays 0 when the command is
issued.

A 0 indicates that the command packet sent to the board was successful.

2. Type execute-smc-cmd (cmd 33) command at the ok prompt as follows:

This command verifies that the target satellite board received and executed the
command and sent a response.

3. Check the completion code which is the seventh byte from left.

If the completion code is 0, then the target board successfully executed the
command. Otherwise the command was not successfully executed by the board.

4. Check that rsSA and rqSA are swapped in the response packet.

The rsSA is the responder slave address and the rqSA is the requestor slave address.

5. (Optional) If command not correctly executed, resend the IPMI command.

Examples of IPMI Command Packets

The following packets are IPMI command packets that can be sent from the
OpenBoot PROM ok prompt:

Set Sensor Threshold

A typical example of the sensor command is as follows:

ok 0 33 execute-smc-cmd

37 0 41 10 0 0 3 1b 0 26 12 20 34 12 ba 0 10 34 execute-smc-cmd
Chapter 3 Advanced System Management 53

Note – In byte number 9, if the bit for a corresponding threshold is set to 1, then
that threshold is set. If the bit is 0, the System Management Controller ignores that
threshold. But if an attempt is made to set a threshold that is not supported, an error
is returned in the command response.

Get Sensor Threshold

A typical example of the sensor command is as follows

a5 0 27 12 20 34 12 ba 0 9 34 execute-smc-cmd

0 xx 12 xx xx xx 26 xx xx xx xx 0 xx xx 0 xx

upper nc

channel number

dont care

upper c

dont care

checksum2

lower critical

lower nc threshold

Byte to tell what is being set
sensor num

cmd

rqSeq/rsLUN

rq Slave addr

checksum1 (calculate it every time the packet is formed)

NetFn/LUN

rs Slave addr
54 Netra CP2300 cPSB Board Programming Guide • May 2003

Get Sensor Reading

A typical example of the sensor command is as follows:

93 e 2d 12 20 34 12 ba 0 9 34 execute-smc-cmd

0 xx 12 xx xx xx 27 xx

sensor num

xx

checksum2

cmd

rqSeq/rsLUN

rq Slave addr

checksum1 (calculate it every time the packet is formed)

NetFn/LUN

re Slave addr
channel number

0 xx 12 xx xx xx 2d xx

sensor num

xx

checksum2

cmd

rqSeq/rsLUN

rq Slave addr

check1 (calculate it every time the packet is formed)

NetFn/LUN

re Slave addr
channel number
Chapter 3 Advanced System Management 55

Set Sensor Event Enable Command

A typical example of the sensor command is as follows:

Get Sensor Event Enable

A typical example of the sensor command is as follows:

24 0 0 0 0 80 2 28 12 20 34 12 ba 0 e 34 execute-smc-cmd

a3 2 29 12 20 34 12 ba 0 9 34 execute-smc-cmd

0 xx 12 xx xx xx 28 c xx 0 0 0 0 0 xx

checksum2

dont care

channel number

dont care

dont care

dont care

dont care

Set the event enable (writing 00 instead
of 80 would disable the events)

sensor num

cmd

rqSeq/rsLUN

rq Slave addr

checksum1 (calculate it every time the packet is formed)

NetFn/LUN

rs Slave addr
56 Netra CP2300 cPSB Board Programming Guide • May 2003

Note – The NetFN/LUN for all sensor IPMI commands is 12, which implies that the
netFn is 0x04 lun= 0x2.

ASM Application Programming
The following sections describe how to use the ASM functions in an application
program.

For the ASM application program to monitor the hardware environment, the
following conditions must be met:

■ The system controller device driver must be installed.
■ The ASM device driver must be present.
■ The ASM application program must be installed and running.

The ASM parameter values in the application program apply when the system is
running at the Solaris level and do not necessarily have to be the same as the
corresponding to the parameter settings in the OpenBoot PROM.

To change the ASM parameter setting at the OpenBoot PROM level, see “OpenBoot
PROM Environmental Parameters” on page 47 for the procedure. The OpenBoot
PROM ASM parameter values only apply when the system is running at the
OpenBoot PROM level.

0 xx 12 xx xx xx 29 c

sensor num

xx

checksum2

cmd

rqSeq/rsLUN

rq Slave addr

check1 (calculate it every time the packet is formed)

NetFn/LUN

re Slave addr
channel number
Chapter 3 Advanced System Management 57

Specifying the ASM Polling Rate
For most applications, an ASM polling rate of once every 60 seconds is adequate.

To specify a polling rate of every 60 seconds in an ASM application program, type
the following at the command line for the Solaris operating environment:

Monitoring the Temperature
The ASM application program monitors the CPU diode temperature as follows (see
“Sample Application Program” on page 59 for C code):

1. Get the CPU diode temperature measurements and other sensor measurements
using the ioctl system call.

2. Examine the measurement readings and take the appropriate action.

Note – The warning and shutdown temperatures are set for the CPU processor.

3. Repeat the process for every ASM polling cycle.

Solaris Driver Interface
The ASM driver is a STREAMS module that sits on top of the Solaris system
controller driver. The Netra CP2300 cPSB board ASM driver accepts STREAMS
IOCTL input to the ASM driver, passes it onto the system controller driver as a
command, and sends the sensor temperature as the output to the user.

do {

... /* read and process I2C bus devices data */

sleep (60); /* sets the ASM polling rate to every 60 seconds */

} while (1);
58 Netra CP2300 cPSB Board Programming Guide • May 2003

Interface Summary

Input Output Control with I_STR should be used to get sensor information. The data
structure used to pass it as an argument for streams IOCTL is as follows:

When the monitoring is successful, it returns a 0. For any error, it returns -1 and the
errno is set correspondingly. Trying to read any sensor which is not physically
present sets errno as ENXIO. For any hardware or firmware failures, the errno is
EINVAL. For any memory allocation problems, the errno is EAGAIN.

Sample Application Program
This section presents a sample ASM application that monitors the CPU diode
temperature. Please refer to
/usr/platform/SUNw,Netra-CP2300/include/sys/ctasm.h if you want to
add support for other sensors in the application.

CODE EXAMPLE 3-1 Input Output Control Data Structure

typedef struct stdasm_data_t {
uchar_t busId;/* only local i2c supported - now not in use */
uchar_t sensorValue;/* return sensor Temperature */
uchar_t scportNum; /* scport number for SC driver */
uchar_t sensorNum; /* sensor Number */

} stdasm_data;

#define STDASM_INLET1 3 /* Inlet1, CPU Temperature Sensor */
#define STDASM_EXHAUST1 4 /* Exhaust1, Power, sdram1 Temperature Sensor */
#define STDASM_EXHAUST2 5 /* Exhaust2, sdram2 Temperature Sensor */

CODE EXAMPLE 3-2 Sample ASM Application Program

#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stropts.h>
#include <sys/uadmin.h>
#include <ctasm.h>/* lives in /usr/platform/SUNW,Netra-CP2300/include/sys

directory */

/* Right now, this application monitors the CPU temperature only, if you want
to add support for the other sensors, you have to duplicate 12 lines
Chapter 3 Advanced System Management 59

in the ProcessAllTemps routine. Also refer the ctasm.h for sensorNum */

#define MaxTemperature 65

static void ProcessTemp(int CurrentTemp)
{

FILE *WarnFile;
printf(" %d C\n", CurrentTemp);
if (CurrentTemp > MaxTemperature) {

printf("WARNING!! Current Temperature <%d> exceeds MaxTemp <%d> \n",
CurrentTemp, MaxTemperature);

WarnFile = fopen("WarnFile", "w");
if (WarnFile) {

fprintf(WarnFile, "WARNING!! Current Temperature <%d> exceeds
MaxTemp <%d> \n", CurrentTemp, MaxTemperature);

system("wall -a *WarnFile");
fclose(WarnFile);
uadmin(A_SHUTDOWN, AD_HALT, 0);

} else {
printf("Creation of WarnFile failed\n");
uadmin(A_SHUTDOWN, AD_HALT, 0);
exit(4);

}
}

}
static void ProcessAllTemps(int AsmFd, int ScPort)
{

int Result;
stdasm_data SAData;
struct strioctl sioc;

SAData.sensorNum = STDASM_INLET1; /* Can be STDASM_PMC or any other */
SAData.scportNum = ScPort;
sioc.ic_cmd = STDASM_GETSENSOR; /* Ioctl flag for asm driver */
sioc.ic_len = sizeof(stdasm_data);
sioc.ic_dp = (char *)&(SAData);
sioc.ic_timout = 200;
do {

system("date");
printf(" \n");
printf("******************************\n");
printf(" \n");

/* Read the CPU Temperature */
Result = ioctl(AsmFd, I_STR, &sioc);

CODE EXAMPLE 3-2 Sample ASM Application Program (Continued)
60 Netra CP2300 cPSB Board Programming Guide • May 2003

Note – The ctasm.h header file is located in the
/usr/platform/SUNW,Netra-CP2300/include/sys directory.

if (Result == -1) printf("ioctl RetValue %d\n", errno); /* error cond
*/

else printf("Temperature %d\n", SAData.sensorValue); /* Sensor Temp
*/

ProcessTemp(SAData.sensorValue);

/* Duplicate the above 12 lines for other sensors STDASM_EXHAUST1,
STDASM_EXHAUST2 too */

sleep(60);/* Recommended polling rate */
} while(1);

}
int main(int argc, char *argv[])
{

int AsmFd;
int Result;
struct strioctl sioc;
int ScPort = 0;

if ((AsmFd = open("/dev/scclone", O_RDWR)) < 0) { /* open the SC device
*/

printf("Unable to open device /dev/sc; errno=%d\n", errno);
exit(1);

}
/* Push the ’ASM’ driver module */
Result = ioctl(AsmFd, I_PUSH, "ctasm");
if (Result == -1) {

printf("I_PUSH ctasm failed RetValue %d\n", errno);
exit(3);

}
ProcessAllTemps(AsmFd, ScPort);

}

CODE EXAMPLE 3-2 Sample ASM Application Program (Continued)
Chapter 3 Advanced System Management 61

62 Netra CP2300 cPSB Board Programming Guide • May 2003

CHAPTER 4

Programming the User LED

This chapter describes how to use the Alarm/User LED. The Alarm/User LED is
located on the front panel of the Netra CP2300 cPSB board. The bi-colored LED is
red and green in color (see FIGURE 4-1 for the location of the Alarm/User LED on the
board front panel).

In order to use the LED function, a SPARC V9 64-bit C library and the led.h file are
required. The library and the file are available in the SUNWcp23u package. The
Application Programming Interface (API) for the user is documented in the led.h
file. See “Files and Packages Required to Support the Alarm/User LED” on page 65
for more information.
63

FIGURE 4-1 Illustration of a Typical Netra CP2300 cPSB Board Front Panel Showing the
Alarm/User LED
64 Netra CP2300 cPSB Board Programming Guide • May 2003

Files and Packages Required to Support
the Alarm/User LED
To use the Alarm/User LED feature, the user should update the firmware with the
appropriate firmware version that supports this feature on the Netra board.

Note – To check the current firmware version and for instructions on how to update
the firmware, refer to the technical reference manual of the Netra board that you are
using.

The list of packages that are required are as follows:

■ SUNWcp23u: SPARC V9 64-bit C library libcp2300.so.1 available at:

/usr/platform/${PLATFORM}/lib

■ SUNWcp23u: LED include file available at:

/usr/platform/${PLATFORM}/include/sys/

Ensure that the following driver is also there, as needed:

■ SUNWcp23x.u: 64-bit sc_nct driver available at:

/platform/${PLATFORM}/kernel/drv/sparcv9/sc_nct

A typical example of ${PLATFORM} is SUNW,Netra-CP2300 for the Netra CP2300
board. An example for the library directory is:

/usr/platform/SUNW,Netra-CP2300 /lib

Applications
This section provides the application programming interface (API) to control the
command combination of the Alarm/User LED, and instructions on how to compile
and link the information.
Chapter 4 Programming the User LED 65

Note – Since the LED interface installs and then removes the sc_nct streams module,
an error can occur when multiple applications attempt to use this interface at the
same time. If the user desires more than one application to use this interface,
application software should incorporate a synchronization method such that only
one access to the interface exists at any time.

Application Programming Interface (API)

CODE EXAMPLE 4-1 Application Programming Interface for the Netra CP2300 Board

extern int led(int led, int cmd);

/* LEDS */

#define BLUE_LED 0x0

#define HOTSWAP_LED BLUE_LED

#define PLD_GREEN_LED 0x04

#define GREEN_LED PLD_GREEN_LED

#define AMBER_LED 0x08

/* LED COMMANDS */

#define LED_OFF 0x00

#define LED_ON 0x01

#define LED_BLINK_SLOW 0x02

#define LED_BLINK_FAST 0x03

/* ERROR CODES */

#define ESEQUENCE 200 /* portnum mismatch */

#define ECMDCOMP 201 /* non-zero command completion */

#define ECMDCODE 202 /* smc command mismatch */
66 Netra CP2300 cPSB Board Programming Guide • May 2003

The supported LED and command combinations are shown in TABLE 4-1.

Compile
As you compile your application, you need to use the compiler command (cc) flag
-I, to include the sys/led.h file named in “Files and Packages Required to
Support the Alarm/User LED” on page 65. Specify 64-bit binaries by setting the
-xarch=v9 and -D__sparcv9 compiler flags.

For example:

Note – Type the above command all on one line.

Link
To create a link to the library named (libcp2300.so.1) listed in “Files and
Packages Required to Support the Alarm/User LED” on page 65, use the linker flag
-L command.

For example:

TABLE 4-1 Supported LED and Command Combinations for the Netra CP2300 Board

Color of LED LED_OFF LED_ON LED_BLINK_SLOW LED_BLINK_FAST

BLUE_LED Yes Yes No No

GREEN_LED Yes Yes Yes Yes

AMBER_LED Yes Yes No No

-xCC -xarch=v9 -D__sparcv9 -I/usr/platform/SUNW,Netra-CP2300/include/

-L /usr/platform/SUNW,Netra-CP2300/lib
Chapter 4 Programming the User LED 67

Sample Application Program
This section presents a sample test.c application to turn the LED on, off, and blink.

CODE EXAMPLE 4-2 Sample LED Application Program

#include <stdio.h>
#include <sys/led.h>

main()
{
 /* blue on, rest off */
 printf(“\n\nTesting Blue led ON, rest off\n”);

fflush(stdout);
printf(“BLUE_LED on returned %d\n”, led(BLUE_LED, LED_ON));
fflush(stdout);
sleep(4);
printf(“GREEN_LED off returned %d\n”, led(GREEN_LED, LED_OFF));
fflush(stdout);
sleep(4);
printf(“AMBER_LED off returned %d\n”, led(AMBER_LED, LED_OFF));
fflush(stdout);
sleep(4);

/* all lights on, and green blinking fast */
printf(“\n\nTesting all led’s on and green blinking fast\n”);
fflush(std out);
printf(“BLUE_LED on returned %d\n”, led(BLUE_LED, LED_ON));
fflush(stdout);
sleep(4);
printf(“AMBER_LED on returned %d\n”, led(AMBER_LED, LED_ON));
fflush(stdout);
sleep(4);
printf(“GREEN_LED blink returned %d\n”, led(GREEN_LED, LED_BLINK_FAST));
fflush(stdout);
sleep(4);

}

cc -xCC -xarch=v9 -D__sparcv9 \
-I /usr/platform/SUNW,Netra-CP2300/include \
-L /usr/platform/SUNW,Netra-CP2300/lib
-l cp2300 \
-o test \
test.c
68 Netra CP2300 cPSB Board Programming Guide • May 2003

Index
A
address range, 15
ASM, 35

application block diagram, 37
application program, 57
functional block diagram, 44
polling rate, 58
temperature monitoring, 46 to 47

D
device node, 17
diag-switch?, 13
documentation, xvi
drift rate, 39
dropins, 15

E
EACCESS, 20
EBUSY, 8
ECANCELLED, 20
EFAULT, 8, 20
EINVAL, 8, 20
ENOMEM, 20
env-monitor parameter, 38
ENXIO, 8, 20
execute-smc-cmd command, 52

I
Intelligent Platform Management Interface

(IPMI), 51
IOCTL

and ASM, 39
and user flash, 18 to 27
and watchdog timer, 7 to 11

K
keyboard controller style (KSC), 13

L
LED, alarm/user, 63

N
nonvolatile memory, 13

O
OpenBoot PROM

and ASM, 38, 47
and user flash, 17
and watchdog timer, 11, 12

output buffer full (OBF), 13
69

P
PROM chips, 15
PROM information structure, 19

R
RTOS, 15

S
show-sensors command, 51
sleep system call, 39
SMC, 1, 35
SMC switch, 15

T
temperature, 38, 41, 45 to 51

U
user data storage, 15
user flash

application program, 27
device, 18
device files, 17
driver, 15
header file, 17
interface structure, 19
node properties, 17

V
voltage controller, 45

W
watchdog timer, 1
watchdog-enable?, 11
watchdog-timeout?, 11
WD1, 2
WD2, 2

WIOCGSTAT, 7
WIOCSTART, 7
WIOCSTOP, 7
70 Netra CP2300 cPSB Board Programming Guide • May 2003

	Contents
	Figures
	Tables
	Code Samples
	Preface
	Before You Read This Book
	How This Book Is Organized
	Using UNIX Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation
	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	Watchdog Timer
	Watchdog Timers
	16-bit Timer (WD1)
	8-bit Pre-timeout Timer (WD2)

	Watchdog Timer Driver
	Operations on the Watchdog Timers
	Parameters Transfer Structure
	Input/Output Controls
	Errors
	Example
	Configuration
	OpenBoot PROM Interface

	Data Structure
	Watchdog Operation
	Commands at OpenBoot PROM Prompt
	Corner Cases
	Setting the Watchdog Timer at OpenBoot PROM
	To Set the Watchdog Timer Without Running the Pre- Timeout Timer
	To Set the Watchdog Timer With Pre-Timeout Time
	To Stop the Watchdog Timer

	User Flash
	User Flash Usage and Implementation
	System Compatibility
	User Flash Driver
	Switch Settings
	OpenBoot PROM Device Tree and Properties
	User Flash Device Files
	Interface (Header) File

	Application Programming Interface
	Structures to Use in IOCTL Arguments
	PROM Information Structure
	User Flash User Interface Structure

	Errors

	Example Programs
	Read Example Program
	Write Example Program
	Erase Example Program
	Block Erase Example Program
	Sample User Flash Application Program

	Advanced System Management
	ASM Component Compatibility
	Typical ASM System Application
	Typical Cycle From Power Up to Shutdown
	ASM Protection at the OpenBoot PROM
	ASM Protection at the Operating Environment Level
	Post Shutdown Recovery

	Hardware ASM Functions
	Power On/Off Switching
	Inlet, Exhaust, and CPU Temperature Monitoring

	Adjusting the ASM Warning, Critical, and Shutdown Parameter Settings on the Board
	OpenBoot PROM Environmental Parameters
	OpenBoot PROM Warning Temperature Parameter

	OpenBoot PROM/ASM Monitoring
	CPU Monitoring
	Warning Temperature Response at OpenBoot PROM
	Critical Temperature Response at OpenBoot PROM

	show-sensors Command at OpenBoot PROM
	IPMI Command Examples at OpenBoot PROM
	Set or Change the Thresholds for a Sensor
	Enable Events From a Sensor
	Check Whether the IPMI Commands Are Executed Properly
	Examples of IPMI Command Packets

	ASM Application Programming
	Specifying the ASM Polling Rate
	Monitoring the Temperature
	Solaris Driver Interface
	Interface Summary

	Sample Application Program

	Programming the User LED
	Files and Packages Required to Support the Alarm/User LED
	Applications
	Application Programming Interface (API)
	Compile
	Link
	Sample Application Program

	Index

