
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Sun™ S3L 4.0 Software
Reference Manual

Part No. 817-0087-10
February 2003, Revision A

Please
Recycle

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Solaris, Sun HPC ClusterTools, Prism, Forte, Sun Performance Library,
RSM, and Sun Scalable Scientific Subroutine Library are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the
U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Solaris , Sun HPC ClusterTools, Prism, Forte, Sun Performance Library, RSM,
et Sun Scalable Scientific Subroutine Library sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique
ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface ix

1. Introduction 1

Sun S3L Overview 2

2. Sun S3L Functions 11

S3L_2_norm and S3L_gbl_2_norm 11

S3L_acorr 14

S3L_acorr_free_setup 17

S3L_acorr_setup 19

S3L_array_op1 22

S3L_array_op2 24

S3L_array_scalar_op2 26

S3L_cholesky_factor 29

S3L_cholesky_invert 32

S3L_cholesky_solve 35

S3L_condition_number, S3L_gbl_condition_number 38

S3L_conv 41

S3L_conv_free_setup 45

S3L_conv_setup 46
iii

S3L_convert_sparse 49

S3L_copy_array 54

S3L_copy_array_detailed 56

S3L_cshift 59

S3L_dct_iv 61

S3L_dct_iv_free_setup 64

S3L_dct_iv_setup 66

S3L_declare 69

S3L_declare_detailed 73

S3L_declare_sparse 77

S3L_deconv 83

S3L_deconv_free_setup 86

S3L_deconv_setup 88

S3L_describe 91

S3L_dst 93

S3L_dst_free_setup 96

S3L_dst_setup 98

S3L_eigen_iter 101

S3L_exit 105

S3L_fft 107

S3L_fft_detailed 110

S3L_fft_free_setup 113

S3L_fft_setup 115

S3L_fin_fd_1D 118

S3L_fin_fd_2D 124

S3L_forall 130

S3L_free 133

S3L_free_process_grid 135
iv Sun S3L 4.0 Software Reference Manual • February 2003

S3L_free_rand_fib 137

S3L_free_sparse 139

S3L_from_ScaLAPACK_desc 141

S3L_gen_band_factor 144

S3L_gen_band_free_factors 147

S3L_gen_band_solve 149

S3L_gen_iter_solve 153

S3L_gen_lsq 161

S3L_gen_svd 164

S3L_gen_trid_factor 167

S3L_gen_trid_free_factors 171

S3L_gen_trid_solve 172

S3L_get_attribute 176

S3l_get_qr 181

S3L_get_safety 183

S3L_grade_down, S3L_grade_up, S3L_grade_detailed_down,
S3L_grade_detailed_up 186

S3L_ifft 191

S3L_init 193

S3L_inner_prod and S3_gbl_inner_prod 195

S3L_lp_sparse 202

S3l_lu_deallocate 206

S3l_lu_factor 208

S3l_lu_invert 211

S3l_lu_solve 214

S3L_mat_mult 217

S3L_mat_vec_mult 224

S3L_matvec_sparse 228

S3L_outer_prod 231
Contents v

S3L_print_array and S3L_print_sub_array 235

S3L_print_sparse 238

S3L_qp 241

S3L_qp_attr_init, S3L_qp_attr_destroy, S3L_qp_attr_set 245

S3L_qr_factor 248

S3L_qr_free 251

S3L_qr_solve 252

S3L_rand_fib 255

S3L_rand_lcg 258

S3L_rand_sparse 260

S3L_rc_fft and S3L_cr_fft 265

S3L_rc_fft_free_setup 270

S3L_rc_fft_setup 271

S3L_read_array and S3L_read_sub_array 274

S3L_read_sparse 277

S3L_reduce 284

S3L_reduce_axis 286

S3L_set_array_element, S3L_get_array_element,
S3L_set_array_element_on_proc, and
S3L_get_array_element_on_proc 289

S3L_set_process_grid 293

S3L_set_safety 296

S3L_setup_rand_fib 299

S3L_sort, S3L_sort_up, S3L_sort_down, S3L_sort_detailed_up,
S3L_sort_detailed_down 301

S3L_sort_detailed 306

S3L_sparse_solve 309

S3L_sparse_solve_free 313

S3L_sym_eigen 315

S3L_thread_comm_setup 319
vi Sun S3L 4.0 Software Reference Manual • February 2003

S3L_to_ScaLAPACK_desc 322

S3L_trans 324

S3L_walsh 327

S3L_walsh_free_setup 331

S3L_walsh_setup 333

S3L_write_array and S3L_write_sub_array 336

S3L_write_sparse 339

S3L_zero_elements 346

A. Sun S3L Array Checking Errors 349
Contents vii

viii Sun S3L 4.0 Software Reference Manual • February 2003

Preface

This manual describes the Sun™ Scalable Scientific Subroutine Library (Sun S3L). It
is directed to anyone developing message-passing C, C++, F77, or F90 programs.

Acknowledgments
The Sun S3L dense linear algebra routines make use of the ScaLAPACK library
described in “ScaLAPACK: Linear Algebra Software for Distributed Memory
Architectures,” J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker in Parallel
Computers: Theory and Practice, Ed. by T. Casavant, P. Tvrdik, and F. Plasil. (IEEE
Press, 1995, pp. 267-282.)

ScaLAPACK routines access the Sun MPI library through calls to the BLACS library
described in “Two-dimensional Basic Linear Algebra Communications
Subprograms,” J. Dongarra and R. van de Geijn, in Environments and Tools for Parallel
Scientific Computing, Ed. by J. Dongarra and B. Tourancheau (Elsevier Science
Publisher B.V., 1993, pp. 31-40), in “Basic Linear Algebra Communication
Subprograms: Analysis and Implementation Across Multiple Parallel Architectures,”
R.C. Whaley.

How This Book Is Organized
Chapter 1 contains a list of the routines in Sun S3L, organized into general classes,
such as Dense Matrix Operations, Sparse Matrix Operations, and so forth.
ix

Chapter 2 contains individual descriptions of the Sun S3L routines, presented in
alphabetical order.

Appendix A describes the error codes that are returned when an array handle error
is encountered.

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures.

See one or both of the following for such information:

■ AnswerBook™ online documentation for the Solaris™ software environment

■ Other software documentation that you received with your system

Typographic Conventions

Table with descriptions and examples of the typographic conventions that are used in this book.

Typeface1

1 The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
x Sun S3L 4.0 Software Reference Manual • February 2003

Shell Prompts

Table with examples of the types of shell prompts that are used in this book.

Related Documentation

Table listing other documents that are related to this book or product.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Application Title Part Number

Sun HPC ClusterTools
software documentation

Read Me First: Guide to Sun HPC
ClusterTools Software Documentation

817-0096-10

Sun HPC ClusterTools
software

Sun HPC ClusterTools 5 Software Release
Notes
Sun HPC ClusterTools 5 Software
Installation Guide
Sun HPC ClusterTools 5 Software
Performance Guide
Sun HPC ClusterTools 5 Software
Administrator’s Guide
Sun HPC ClusterTools 5 Software User’s
Guide

817-0081-10

817-0082-10

817-0090-10

817-0083-10

817-0084-10

Sun MPI software
programming

Sun MPI 6.0 Software Programming and
Reference Guide

817-0085-10

Sun S3L software Sun S3L 4.0 Software Programming Guide 817-0086-10

Prism™ graphical
programming
environment

Prism 7.0 Software User’s Guide
Prism 7.0 Software Reference Manual

817-0088-10
817-0089-10
Preface xi

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number (817-0087-10) of your document in the subject line of
your email.
xii Sun S3L 4.0 Software Reference Manual • February 2003

CHAPTER 1

Introduction

This chapter contains a quick-reference index to the routines in the Sun Scalable
Scientific Subroutine Library (Sun S3L). The routines are organized into two tables:

■ TABLE 1-1 lists the parallel functions in Sun S3L that perform mathematical
operations. These are referred to as the Sun S3L core routines.

■ TABLE 1-2 lists the supplemental functions in Sun S3L that simplify many tasks
involved in distributed memory computing. These are referred to as the Sun S3L
toolkit routines.

Note – Many Sun S3L computational routines support the ScaLAPACK version 1.6
and PBLAS version 1.0 application programming interfaces (APIs). TABLE 1-3 lists the
ScaLAPACK and PBLAS APIs that are supported.
1

Sun S3L Overview
TABLE 1-1 Sun S3L Core Mathematical Routines

Function Description

Dense Matrix Operations

S3L_2_norm()
S3L_inner_prod()
S3L_mat_mult()
S3L_mat_vec_mult()
S3L_outer_prod()

Compute 2-norm of a vector.
Compute inner product of two vectors.
Compute product of two matrices.
Compute product of a matrix and vector.
Compute outer product of two vectors.

Sparse Matrix Operations

S3L_declare_sparse()
S3L_free_sparse()
S3L_convert_sparse()

S3L_rand_sparse()

S3L_matvec_sparse()

S3L_read_sparse()
S3L_write_sparse()
S3L_print_sparse()

Create an S3L handle for an S3L sparse array.
Free memory allocated to S3L sparse array.
Convert an S3L array from one sparse format

to another.
Create an S3L array with random values and

sparsity.
Compute the product of a sparse matrix and

dense vector.
Read a sparse matrix from an ASCII file.
Write a sparse matrix to a file.
Print all nonzero values from a sparse matrix.

Gaussian Elimination for Dense Systems

S3L_lu_factor()
S3L_lu_invert()

S3L_lu_solve()

S3L_lu_deallocate()

Perform LU factorization of a matrix.
Compute inverse of square matrix instances of

S3L array using S3l_lu_factor() results.
Solve system of linear equations (AX=B) for

square matrix instances of S3L array.
Deallocate S3L_lu_factor() resources.

Walsh Transform

S3L_walsh()

S3L_walsh_setup()

S3L_walsh_free_setup()

Compute discrete Walsh/Hadamard
transform of 1D and 2D S3L arrays.

Prepare internal data structure for discrete
Walsh/Hadamard transform.

Free memory allocated to Walsh/Hadamard
transform.

Iterative Eigenpairs Computation

S3L_eigen_iter() Compute selected eigenpairs of dense or
sparse matrices.
2 Sun S3L 4.0 Software Reference Manual • February 2003

Finite-Difference Stock Option Pricing

S3L_fin_fd_1D()

S3L_fin_fd_2D()

Solve 1D Black-Scholes PDE to compute prices
of vanilla and several exotic stock options.

Solve 2D Black-Scholes PDE to compute prices
of vanilla and several exotic stock options.

Discrete Cosine Transform

S3L_dct_iv()

S3L_dct_iv_setup()

S3L_dct_iv_free_setup()

Compute DCT Type IV of 1D, 2D, and 3D S3L
arrays.

Prepare internal data structures for DCT Type
IV operation.

Free memory allocated to DCT setup.

Discrete Sine Transform

S3L_dst()
S3L_dst_setup()
S3L_dst_free_setup()

Compute DST of 1D, 2D, and 3D S3L arrays.
Prepare internal data structures for DST.
Free memory allocated to DST setup.

QR Array Factoring/Solving

S3L_qr_factor()

S3L_get_qr()

S3L_qr_solve()

S3L_qr_free()

Compute QR decomposition of a real or
complex S3L array.

Extract Q and R arrays from a QR-
decomposed S3L array.

Compute the least-squares solution to an
over-determined system of the form a*x=b.

Free memory allocated to QR decomposition.

Quadratic Programming Optimization

S3L_qp_attr_init()

S3L_qp_attr_destroy()
S3L_qp_attr_set()

S3L_qp()

Initialize a set of QP attributes with default
values.

Destroy a specified set of QP attributes.
Specify the type of solver to be used and

amount of error output.
Solve linear/quadratic optimization problem.

Cholesky Solver

S3L_cholesky_factor()

S3L_cholesky_solve()

S3L_cholesky_invert()

Perform Cholesky factorization for each
square matrix in an S3L array.

Solve a system of distributed linear equations
of the form AX = B for each square matrix
in an S3L array.

Compute the inverse of each square matrix in
an S3L array.

TABLE 1-1 Sun S3L Core Mathematical Routines (Continued)

Function Description
Chapter 1 Introduction 3

Sparse Linear System Solver

Direct Method
S3L_sparse_solve()

S3L_sparse_solve_free()

Iterative Method
S3L_gen_iter_solve()

A direct solver for solving sparse linear
systems of equations of the form A*x = y.

Free memory allocated to the direct solver.

An iterative solver for solving sparse linear
systems of equations of the form A*x =b.

Sparse Linear Problem Solver

S3L_lp_sparse() Solve a linear/quadric optimization problem
of the form min c’*x.

Fast Fourier Transforms

S3L_fft()
S3L_fft_detailed()

S3L_ifft()
S3L_rc_fft()
S3L_cr_fft()
S3L_fft_setup()

S3L_rc_fft_setup()

S3L_fft_free_setup()
S3L_rc_fft_free_setup()

Perform simple FFT on an S3L array.
Perform in-place forward or inverse FFT along

a specified axis of an S3L array.
Perform the inverse FFT on an S3L axis.
Perform forward FFT of a real S3L array.
Perform inverse FFT of a complex S3L array.
Prepare internal data structure for FFT

operation.
Prepare internal data structure for real-to-

complex and complex-to-real FFTs.
Free memory allocated to FFT setup.
Free memory allocated to real-to-complex or

complex-to-real FFT setup.

Structured Solvers

S3L_gen_band_factor()

S3L_gen_band_solve()
S3L_gen_band_free_factors()

S3L_gen_trid_factor()
S3L_gen_trid_solve()
S3L_gen_trid_free_factors()

Perform LU factorization of an n x n general
banded S3L array.

Solve a banded system.
Free resources allocated to factorization of

a general banded S3L array.
Compute factorization of a tridiagonal matrix.
Solve a tridiagonal system.
Free memory allocated to factorization of a

tridiagonal matrix.

Dense Symmetric Eigenvalue Solver

S3L_sym_eigen() Find eigenvalues and, optionally, eigenvectors
in Hermitian matrices.

TABLE 1-1 Sun S3L Core Mathematical Routines (Continued)

Function Description
4 Sun S3L 4.0 Software Reference Manual • February 2003

Condition Numbers

S3L_condition_number() Compute the condition numbers of one or
more instances of a square S3L array.

Parallel Random Number Generators

S3L_setup_rand_fib()

S3L_rand_fib()
S3L_rand_lcg()

S3L_free_rand_fib()

Initialize state table for the Lagged-Fibonacci
random number generator (LFG).

Initialize an S3L array with an LFG.
Initialize an S3L array with a linear

congruential random number generator.
Free memory allocated to the random number

generator state table.

Least-Squares Solver

S3L_gen_lsq() Find the least-squares solution of an
overdetermined system or the minimum
norm solution of an underdetermined
system.

Dense Singular Value Decomposition

S3L_gen_svd() Compute the singular value of an S3L array
and, optionally, the right singular vector or
left singular vector.

Autocorrelation

S3L_acorr_setup()

S3L_acorr()
S3L_acorr_free_setup()

Set up initial conditions for computing the
autocorrelation of a signal.

Compute 1D or 2D autocorrelation of a signal.
Free memory allocated to a particular

autocorrelation setup.

Convolution

S3L_conv_setup()

S3L_conv()
S3L_conv_free_setup()

Set up conditions for computing the
convolution of a signal.

Compute 1D or 2D convolution of a signal.
Free memory allocated to a particular

convolution setup.

TABLE 1-1 Sun S3L Core Mathematical Routines (Continued)

Function Description
Chapter 1 Introduction 5

Deconvolution

S3L_deconv_setup()

S3L_deconv()

S3L_deconv_free_setup()

Set up initial conditions for computing the
deconvolution of an S3L array.

Compute 1D or 2D deconvolution of an S3L
array.

Free memory allocated to a particular
deconvolution setup.

Grade Elements of an Array

S3L_grade_up()

S3L_grade_down()

S3L_grade_detailed_up()

S3L_grade_detailed_down()

Grade all elements of an S3L array in
ascending order.

Grade all elements of an S3L array in
descending order.

Grade elements along one axis of an S3L array
in ascending order.

Grade elements along one axis of an S3L array
in descending order.

Sort Elements of an Array

S3L_sort()

S3L_sort_up()

S3L_sort_down()

S3L_sort_detailed()

S3L_sort_detailed_up()

S3L_sort_detailed_down()

Sort all elements of a one-dimensional array
in ascending order.

Sort all elements of a one-dimensional or
multidimensional array in ascending order.

Sort all elements of a one-dimensional or
multidimensional array in descending
order.

Sort elements along one axis of an S3L array
in either ascending or descending order
using quicksort or radixsort algorithm.

Sort elements along one axis of an S3L array
in ascending order.

Sort elements along one axis of an S3L array
in descending order.

Parallel Transpose

S3L_trans() Perform generalized transposition of an S3L
array.

TABLE 1-1 Sun S3L Core Mathematical Routines (Continued)

Function Description
6 Sun S3L 4.0 Software Reference Manual • February 2003

TABLE 1-2 Sun S3L Toolkit Routines

Function Description

Create/Exit Sun S3L Environment

S3L_init()
S3L_exit()

Set up Sun S3L environment.
Leave Sun S3L environment.

Create Sun S3L Array Handles

S3L_declare()
S3L_declare_detailed()

Declare an S3L array (basic method).
Declare S3L array (control more parameters).

Release Sun S3L Array Handles

S3L_free() Release an S3L array.

Control Sun S3L Process Grids

S3L_set_process_grid()
S3L_free_process_grid()

Define an S3L process grid.
Release resources allocated to a process grid.

Perform Operations on Sun S3L Arrays

S3L_array_op1()
S3L_array_op2()
S3L_array_scalar_op2()
S3L_cshift()
S3L_forall()

S3L_reduce()
S3L_reduce_axis()

S3L_set_array_element()
S3L_set_array_element_on_proc()

S3L_get_array_element()

S3L_get_array_element_on_proc()

S3L_zero_elements()

Perform operation on one array.
Perform operation on two arrays.
Perform operation on array and scalar value.
Perform circular shift along a specified axis.
Apply a user-defined function to some or

all elements in an array.
Perform a reduction function across an array.
Perform a reduction function along one axis

of an array.
Set the value of an element of an S3L array.
Set the value of an element of an S3L array,

using the value supplied on a specific
process.

Retrieve the value of an element of an S3L
array.

Retrieve the value of an element of an S3L
array, as supplied by a specified process.

Set all elements in an S3L array to zero.
Chapter 1 Introduction 7

Get Information About Sun S3L Arrays

S3L_describe()

S3L_get_attribute()
S3L_read_array()
S3L_read_sub_array()
S3L_print_array()
S3L_print_sub_array()

S3L_write_array()
S3L_write_sub_array()

Get information about an S3L array or
process grid.

Get the value of an S3L array attribute.
Read an S3L array from a file.
Read part of an S3L array from a file.
Print an S3L array to standard output.
Print part of an S3L array to standard

output.
Write an S3L array to a specified file.
Write part of an S3L array to a specified file.

Miscellaneous Tools

S3L_copy_array()
S3L_copy_array_detailed()

S3L_from_ScaLAPACK_desc()

S3L_to_ScaLAPACK_desc()

S3L_thread_comm_setup()

S3L_set_safety()
S3L_get_safety()

Copy an S3L array into another S3L array.
Copy a section of an S3L array into another

S3L array.
Convert ScaLAPACK descriptor to S3L

handle.
Convert S3L handle to ScaLAPACK

descriptor.
Prepare S3L environment for thread-safe

operation.
Set error-checking level for S3L operations.
Get S3L error-checking level.

TABLE 1-3 Supported ScaLAPACK 1.6 and PBLAS 1.0 APIs

Category Routines

PBLAS 1,2,3 p{s,d}dot, p{c,z}dotu, p{s,d}nrm2, p{sc,dz}nrm2,
p{s,d}ger, p{c,z}geru, p{s,d,c,z}gemv, p{s,d,c,z}gemm

LU factor, solve,
inverse

p{s,d,c,z}getrf,p{s,d,c,z}getrs,p{s,d,c,z}getri

Tridiagonal solvers p{s,d,c,z}dttrf, p{s,d,c,z}dttrs

Banded solvers p{s,d,c,z}gbsv, p{s,d,c,z}gbtrf, p{s,d,c,z}gbtrs

Symmetric
eigensolver

p{s,d}syevx, p{c,z}heevx

TABLE 1-2 Sun S3L Toolkit Routines (Continued)

Function Description
8 Sun S3L 4.0 Software Reference Manual • February 2003

Singular value
decomposition

p{s,d,c,z}geqrf

Least-squares solver p{s,d,c,z}gels

Condition number p{s,d,c,z}gecon

TABLE 1-3 Supported ScaLAPACK 1.6 and PBLAS 1.0 APIs

Category Routines
Chapter 1 Introduction 9

10 Sun S3L 4.0 Software Reference Manual • February 2003

CHAPTER 2

Sun S3L Functions

This chapter describes the full set of functions in Sun S3L 4.0. The functions are
listed in alphabetical order, with core and toolkit routines intermixed.

S3L_2_norm and S3L_gbl_2_norm

Description
Multiple-Instance 2-norm – The multiple-instance 2-norm routine, S3L_2_norm,
computes one or more instances of the 2-norm of a vector. The single-instance
2-norm routine, S3L_gbl_2_norm, computes the global 2-norm of a parallel array.

For each instance z of z, the multiple-instance routine S3L_2_norm performs the
operation shown in TABLE 2-1.

Upon successful completion, S3L_2_norm overwrites each element of z with the
2-norm of the corresponding vector in x.

TABLE 2-1 Sun S3L Multiple-Instance 2-norm Operations

Operation Data Type

z = (xTx)1/2 = ||x||(2) real

z = (xHx)1/2 = ||x||(2) complex
11

Single-Instance 2-norm – The single-instance routine S3L_gbl_2_norm routine
performs the operations shown in TABLE 2-2.

Upon successful completion, a is overwritten with the global 2-norm of x.

Syntax
The C and Fortran syntax for S3L_2_norm and S3L_gbl_2_norm is as follows:

C/C++ Syntax

F77/F90 Syntax

TABLE 2-2 Sun S3L Single-Instance 2-norm Operations

Operation Data Type

a = (xTx)1/2 = ||x||(2) real

a = (xHx)1/2 = ||x||(2) complex

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_2_norm(z, x, x_vector_axis)
S3L_gbl_2_norm(a, x)

S3L_array_t a
S3L_array_t z
S3L_array_t x
int x_vector_axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_2_norm(z, x, ier)
S3L_gbl_2_norm(a, x, x_vector_axis, ier)

integer*8 a
integer*8 z
integer*8 x
integer*4 x_vector_axis
integer*4 ier
12 Sun S3L 4.0 Software Reference Manual • February 2003

Input
S3L_2_norm accepts the following arguments as input:

■ x – Array handle for a Sun S3L parallel array. For calls to S3L_2_norm (multiple-
instance routine), x must represent a parallel array of rank >= 2, with at least one
nonlocal instance axis. The variable x contains one or more instances of the vector
x whose 2-norm will be computed.

For calls to S3L_gbl_2_norm (single-instance routine), x must represent a
parallel array of rank >= 1, with any instance axes declared to have length 1.

■ x_vector_axis – Scalar variable. Identifies the axis of x along which the vectors
lie.

Output
S3L_2_norm uses the following arguments as output:

■ z – Array handle for the Sun S3L parallel array that will contain the results of the
multiple-instance 2-norm routine. The rank of z must be one less than that of x.
The axes of z must match the instance axes of x in length and order of
declaration. Thus, each vector x in x corresponds to a single destination value z
in z.

■ a – Pointer to a scalar variable. Destination for the single-instance 2-norm routine.

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, S3L_2_norm and S3L_gbl_2_norm return S3L_SUCCESS.

S3L_2_norm and S3L_gbl_2_norm perform generic checking of the validity of the
arrays they accept as arguments. If an array argument contains an invalid or
corrupted value, the function terminates and an error code is returned that indicates
which value of the array handle was invalid. See Appendix A of this manual for a
detailed list of these error codes.

In addition, the following conditions will cause the functions to terminate and return
the associated error code.

■ S3L_ERR_ARG_RANK – x has invalid rank.

■ S3L_ERR_ARG_AXISNUM – (S3L_2_norm only) x_vector_axis is a bad axis
number. For C program calls, this parameter must be >= 0 and less than the rank
of x. For Fortran program calls, it must be >= 1 and not exceed the rank of x.
Chapter 2 Sun S3L Functions 13

■ S3L_ERR_MATCH_RANK – z does not have a rank of one less than that of x.

Examples
/opt/SUNWhpc/examples/s3l/dense_matrix_ops/norm2.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/norm2.f

Related Functions
S3L_inner_prod(3)

S3L_outer_prod(3)

S3L_mat_vec_mult(3)

S3L_mat_mult(3)

S3L_acorr

Description
S3L_acorr computes the 1D or 2D autocorrelation of a signal represented by the
parallel array described by Sun S3L array handle A. The result is stored in the
parallel array described by the Sun S3L array handle C.

A and C are Sun S3L array handles of the same real or complex type.

For the 1D case, if A is of length ma, the result of the autocorrelation will be of length
2*ma-1. In the 2D case, if A is of size [ma,na], the result of the autocorrelation is of
size [2*ma-1,2*na-1].

The size of C has to be at least equal to the size of the autocorrelation for each case,
as described above. If it is larger, the excess elements of C will contain zero or non-
significant entries.

The result of the autocorrelation of A is stored in wraparound order along each
dimension. If the extent of C along a given axis is lc, the autocorrelation at zero lag is
stored in C(0), the autocorrelation at lag 1 in C(1), and so forth. The
autocorrelation at lag -1 is stored in C(lc-1), the autocorrelation at lag -2 is stored
in C(lc-2), and so forth.
14 Sun S3L 4.0 Software Reference Manual • February 2003

Side Effect

Following calculation of the autocorrelation of A, A may be destroyed, since it is used
internally as auxiliary storage. If its contents will be reused after autocorrelation is
performed, first copy it to a temporary array.

Note – S3L_acorr is most efficient when all arrays have the same length and when
this length is one that can be computed efficiently by means of S3L_fft or
S3L_rc_fft. See “S3L_fft” on page 107 and “S3L_rc_fft and S3L_cr_fft” on
page 266 for more information about execution efficiency.

Restriction

The dimensions of array C must be such that a 1D or 2D complex-to-complex FFT or
real-to-complex FFT can be computed.

Syntax
The C and Fortran syntax for S3L_acorr is as follows:

C/C++ Syntax

F77/F90 Syntax

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_acorr(A, C, setup_id)

S3L_array_t A
S3L_array_t C
int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_acorr(A, C, setup_id, ier)

integer*8 A
integer*8 C
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 15

Input
S3L_acorr accepts the following arguments as input:

■ A – Sun S3L internal array handle for the parallel array upon which the
autocorrelation will be performed. A is of size ma (1D case) or ma x na (2D case).

■ setup_id – Integer value returned by a previous call to S3L_acorr_setup.

Output
S3L_acorr uses the following arguments as output:

■ C – Sun S3L internal array handle for the parallel array that contains the results of
the autocorrelation. Its length must be at least 2*ma-1 (1D case) or 2*ma-1 x 2*na-
1 (2D case).

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_acorr returns S3L_SUCCESS.

S3L_acorr performs generic checking of the arrays it accepts as arguments. If an
array argument contains an invalid or corrupted value, the function terminates and
an error code is returned that indicates which value of the array handle was invalid.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following codes:

■ S3L_ERR_ARG_DTYPE – The data type of one of the array arguments is invalid. It
must be S3L_float, S3L_double, S3L_complex, or S3L_double_complex.

■ S3L_ERR_ARG_EXTENTS – The extents of C are smaller than 2*ma-1 (1D case) or
2*ma-1 x 2*na-1 (2D case).

■ S3L_ERR_ARG_RANK – The rank of one of the array arguments is not 1 or 2 as
required.

■ S3L_ERR_MATCH_DTYPE – a and C are not the same data type.

■ S3L_ERR_MATCH_RANK – a and C do not have the same rank.

In addition, since S3L_fft or S3L_rc_fft is used internally to compute the
autocorrelation, if the dimensions of C are not suitable for S3L_fft or S3L_rc_fft,
an error code indicating this unsuitability is returned. For more details, refer to the
man pages for S3L_fft and S3L_rc_fft.
16 Sun S3L 4.0 Software Reference Manual • February 2003

Examples
/opt/SUNWhpc/examples/s3l/acorr/ex_acorr.c

/opt/SUNWhpc/examples/s3l/acorr-f/ex_acorr.f

Related Functions
S3L_acorr_setup(3)

S3L_acorr_free_setup(3)

S3L_acorr_free_setup

Description
S3L_acorr_free_setup invalidates the ID specified by the setup_id argument.
This deallocates the internal memory that was reserved for the autocorrelation
computation associated with that ID.

Syntax
The C and Fortran syntax for S3L_acorr_free_setup is as follows:
Chapter 2 Sun S3L Functions 17

C/C++ Syntax

F77/F90 Syntax

Input
S3L_acorr_free_setup accepts the following arguments as input:

■ setup_id – Valid autocorrelation setup ID as returned from a previous call to
S3L_acorr_setup.

Output
S3L_acorr_free_setup uses the following arguments as output:

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_acorr_free_setup returns S3L_SUCCESS.

In addition, the following condition causes the function to terminate and return the
associated code:

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_acorr_free_setup(setup_id)

int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_acorr_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier
18 Sun S3L 4.0 Software Reference Manual • February 2003

Examples
/opt/SUNWhpc/examples/s3l/acorr/ex_acorr.c

/opt/SUNWhpc/examples/s3l/acorr-f/ex_acorr.f

Related Functions
S3L_acorr(3)

S3L_acorr_setup(3)

S3L_acorr_setup

Description
S3L_acorr_setup sets up the initial conditions necessary for computation of the
autocorrelation C = acorr(A). It returns an integer setup value that can be used by
subsequent calls to S3L_acorr and S3L_acorr_free_setup.

Syntax
The C and Fortran syntax for S3L_acorr_setup is as follows:
Chapter 2 Sun S3L Functions 19

C/C++ Syntax

F77/F90 Syntax

Input
S3L_acorr_setup accepts the following arguments as input:

■ A – Sun S3L internal array handle for the parallel 1D or 2D array of real or
complex type whose autocorrelation is to be computed.

■ C – Sun S3L internal array handle for the parallel 1D or 2D array of the same type
as A, used to store the result of the autocorrelation. Its extents along each axis
must be at least equal to two times the corresponding extent of A minus 1.

Output
S3L_acorr_setup uses the following arguments as output:

■ setup – Integer value returned by this function. Use this value for the setup_id
argument in subsequent calls to S3_acorr and S3L_acorr_free_setup.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_acorr_setup(A, C, setup_id)

S3L_array_t A
S3L_array_t C
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_acorr_setup(A, C, setup_id, ier)

integer*8 A
integer*8 C
integer*4 setup_id
integer*4 ier
20 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_acorr_setup returns S3L_SUCCESS.

S3L_acorr_setup performs generic checking of the arrays it accepts as arguments.
If an array argument contains an invalid or corrupted value, the function terminates
and an error code is returned that indicates which value of the array handle was
invalid. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following codes:

■ S3L_ERR_ARG_DTYPE – The data type of one of the array arguments is invalid. It
must be S3L_float, S3L_double, S3L_complex, or S3L_double_complex.

■ S3L_ERR_MATCH_DTYPE – The array arguments are not all of the same data type.

■ S3L_ERR_MATCH_RANK – The array arguments are not all of the same rank.

■ S3L_ERR_ARG_RANK – The rank of one of the array arguments is not 1 or 2 as
required.

■ S3L_ERR_ARG_EXTENTS – The extents of C are less than the extents of A.

Examples
/opt/SUNWhpc/examples/s3l/acorr/ex_acorr.c

/opt/SUNWhpc/examples/s3l/acorr-f/ex_acorr.f

Related Functions
S3L_acorr(3)

S3L_acorr_free_setup(3)
Chapter 2 Sun S3L Functions 21

S3L_array_op1

Description
S3L_array_op1 applies a predefined unary (single operand) operation to each
element of a Sun S3L parallel array. The Sun S3L array handle argument, a, identifies
the parallel array to be operated on and the op argument specifies the operation to
be performed. The value of op must be:

■ S3L_OP_ABS – Replaces each element in a with its absolute value.

■ S3L_OP_MINUS – Replaces each element in a with its negative value.

■ S3L_OP_EXP – Replaces each element in the real or complex array a with its
exponential.

Syntax
The C and Fortran syntax for S3L_array_op1 is as follows:

C/C++ Syntax

F77/F90

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_array_op1(a, op)

S3L_array_t a
S3L_op_type op

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_array_op1(a, op, ier)

integer*8 a
integer*4 op
integer*4 ier
22 Sun S3L 4.0 Software Reference Manual • February 2003

Input
S3L_array_op1 accepts the following arguments as input:

■ a – Sun S3L array handle for the parallel array on which the operation will be
performed.

■ op – Predefined constant specifying the operation to be applied. See the
Description section for details.

Output
S3L_array_op1 uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_array_op1
returns error status in ier.

Error Handling
On success, S3L_array_op1 returns S3L_SUCCESS.

S3L_array_op1 performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following condition will cause the function to terminate and return
the associated error code.

■ S3L_ERR_ARG_DTYPE – op is equal to S3L_OP_EXP, but a is of integer type.

Examples
/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/deconv-f/ex_deconv.f

Related Functions
S3L_array_op2(3)

S3L_array_scalar_op2(3)

S3L_reduce(3)
Chapter 2 Sun S3L Functions 23

S3L_array_op2

Description
S3L_array_op2 applies the operation specified by op to elements of parallel arrays
a and b, which must be of the same type and have the same distribution. The
parameter op can be one of the following:

■ S3L_OP_MUL – a equals a .* b
■ S3L_OP_CMUL – a equals a .* conjg(b)
■ S3L_OP_DIV – a equals a ./ b
■ S3L_OP_MINUS – a equals a – b
■ S3L_OP_PLUS – a equals a + b

Note – The operators ".*" and "./" denote pointwise multiplication and division of
the elements in arrays a and b.

S3L_OP_MUL replaces each element in a with the elementwise product of
multiplying a and b.

S3L_OP_CMUL performs the same operation as S3L_OP_MUL, except it multiplies
each element in a by the conjugate of the corresponding element in b.

S3L_OP_DIV performs elementwise division of a by b, overwriting a with the
integer (truncated quotient) results.

S3L_OP_MINUS performs elementwise subtraction of b from a, overwriting a with
the difference.

S3L_OP_PLUS performs elementwise addition of a with b, overwriting a with the
sum.

Syntax
The C and Fortran syntax for S3L_array_op2 is as follows:
24 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_array_op2 accepts the following arguments as input:

■ a – Sun S3L array handle for one of two parallel arrays to which the operation
will be applied.

■ b – Sun S3L array handle for the second of two parallel arrays to which the
operation will be applied.

■ op – Predefined constant specifying the operation to be applied. See the
Description section for details.

Output
S3L_array_op2 uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_array_op2
returns error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_array_op2(a, b, op)

S3L_array_t a
S3L_array_t b
S3L_op_type op

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_array_op2(a, b, op, ier)

integer*8 a
integer*8 b
integer*4 op
integer*4 ier
Chapter 2 Sun S3L Functions 25

Error Handling
On success, S3L_array_op2 returns S3L_SUCCESS.

S3L_array_op2 performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_MATCH_HOME – Both arrays are local but not on the same process.
■ S3L_ERR_MATCH_ALIGN – The arrays do not have the same subgrid sizes.
■ S3L_ERR_ARG_OP – An illegal operation was requested.

Examples
/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft-f/ex_fft1.f

Related Functions
S3L_array_op1(3)

S3L_array_scalar_op2(3)

S3L_array_scalar_op2

Description
S3L_array_scalar_op2 applies a binary operation to each element of a Sun S3L
array that involves the element and a scalar.

op determines which operation will be performed. It can be one of:

■ S3L_OP_MUL – pointwise multiplication
■ S3L_OP_DIV – pointwise division
■ S3L_OP_PLUS – pointwise addition
26 Sun S3L 4.0 Software Reference Manual • February 2003

■ S3L_OP_MINUS – pointwise subtraction
■ S3L_OP_ASSIGN – assignment

Syntax
The C and Fortran syntax for S3L_array_scalar_op2 is as follows:

C/C++ Syntax

F77/F90 Syntax

where <type> is one of: integer*4, integer*8, real*4, real*8, complex*8, or
complex*16.

Input
S3L_array_scalar_op2 accepts the following arguments as input:

■ a – Sun S3L array handle for the parallel array to which the operation will be
applied.

■ scalar – Scalar value used as an operand in the operation applied to each
element of a.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_array_scalar_op2(a, scalar, op)

S3L_array_t a
void *scalar
S3L_op_type op

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_array_scalar_op2(a, scalar, op, ier)

integer*8 a
<type> scalar
integer*4 op
integer*4 ier
Chapter 2 Sun S3L Functions 27

■ op – Predefined constant specifying the operation to be applied. See the
Description section for details.

Output
S3L_array_scalar_op2 uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_array_scalar_op2 returns error status in ier.

Error Handling
On success, S3L_array_scalar_op2 returns S3L_SUCCESS.

S3L_array_scalar_op2 performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_OP – op is not one of: S3L_OP_MUL, S3L_OP_DIV, S3L_OP_PLUS,
S3L_OP_MINUS, or S3L_OP_ASSIGN

Examples
/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft-f/ex_fft1.f

Related Functions
S3L_array_op1(3)

S3L_array_op2(3)
28 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_cholesky_factor

Description
For each square A in a, S3L_cholesky_factor computes the Cholesky
factorization. The factorization has the form A = U' x U, where U is an upper
triangular matrix.

Syntax
The C and Fortran syntax for S3L_cholesky_factor is as follows:
Chapter 2 Sun S3L Functions 29

C/C++ Syntax

F77/F90 Syntax

Input
S3L_cholesky_factor accepts the following arguments as input:

■ a – Sun S3L array of rank 2 or greater. This array contains one or more instances
of a square matrix, A, which is to be factored. Each A is assumed to be dense, with
rows counted by axis row_axis and columns counted by axis col_axis.

Upon successful completion, each matrix instance A is overwritten with the upper
triangular matrix U.

■ row_axis – Scalar integer variable. Identifies the axis of a that counts the rows of
each matrix A.

For C program calls, row_axis must be >= 0 and less than the rank of a. For
Fortran program calls, row_axis must be >= 1 and not exceed the rank of a. In
addition, row_axis must be less than col_axis.

■ col_axis – Scalar integer variable. Identifies the axis of a that counts the
columns of each matrix A.

For C program calls, col_axis must be >= 0 and less than the rank of a. For
Fortran program calls, col_axis must be >= 1 and not exceed the rank of a. In
addition, col_axis must be greater than row_axis.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_cholesky_factor(a, row_axis, col_axis)

S3L_array_t a
int row_axis
int col_axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_cholesky_factor(a, row_axis, col_axis, ier)

integer*8 a
integer*4 row_axis
integer*4 col_axis
integer*4 ier
30 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_cholesky_factor uses the following arguments for output:

■ a – On exit, each matrix instance A is overwritten with the upper triangular
matrix U.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_cholesky_factor returns S3L_SUCCESS.

S3L_cholesky_factor performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause S3L_cholesky_factor to
terminate and return the associated error code:

■ S3L_ERR_ARG_RANK – Invalid rank. The rank of a must be >= 2.

■ S3L_ERR_ARG_DTYPE – Invalid data type. The data type of a must be real or
complex (single- or double-precision).

■ S3L_ERR_ARG_AXISNUM – row_axis or col_axis is invalid. This condition can
be caused by either an out-of-range axis value or row_axis = col_axis. See the
row_axis or col_axis argument description for allowed axis index ranges.

■ S3L_ERR_ARRNOTSQ – Arrays A in a are not square.

■ S3L_ERR_FACTOR_FAIL – Factorization could not be completed.

Examples
/opt/SUNWhpc/examples/s3l/cholesky/cholesky.c

/opt/SUNWhpc/examples/s3l/cholesky-f/cholesky.f

Related Functions
S3L_cholesky_solve(3)

S3L_cholesky_invert(3)
Chapter 2 Sun S3L Functions 31

S3L_cholesky_invert

Description
For each square matrix A in a, S3L_cholesky_invert uses the result from
S3L_cholesky_factor to compute the inverse of each square matrix instance A of
the Sun S3L array a. It does this by inverting the Cholesky factor U and then
computing inverse(U) * inverse(U)’.

Syntax
The C and Fortran syntax for S3L_cholesky_invert is as follows:
32 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_cholesky_invert accepts the following arguments as input:

■ a – Sun S3L array that was factored by S3L_cholesky_factor, where each
matrix instance A is a dense square matrix. Supply the same value a that was
used in S3L_cholesky_factor.

■ row_axis – Scalar integer variable. Identifies the axis of a that counts the rows of
each matrix A.

For C program calls, row_axis must be >= 0 and less than the rank of a. For
Fortran program calls, row_axis must be >= 1 and not exceed the rank of a. In
addition, row_axis must be less than col_axis.

■ col_axis – Scalar integer variable. Identifies the axis of a that counts the
columns of each matrix A.

For C program calls, col_axis must be >= 0 and less than the rank of a. For
Fortran program calls, col_axis must be >= 1 and not exceed the rank of a. In
addition, col_axis must be greater than row_axis.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_cholesky_invert(a, row_axis, col_axis)

S3L_array_t a
int row_axis
int col_axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_cholesky_invert(a, row_axis, col_axis, ier)

integer*8 a
integer*4 row_axis
integer*4 col_axis
integer*4 ier
Chapter 2 Sun S3L Functions 33

Output
S3L_cholesky_invert uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_cholesky_invert returns S3L_SUCCESS.

S3L_cholesky_invert performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause S3L_cholesky_solve to terminate
and return the associated error code:

■ S3L_ERR_ARG_RANK – Invalid rank. The rank of a must be >= 2.

■ S3L_ERR_ARG_DTYPE – Invalid data type. The data type of a must be real or
complex (single- or double-precision).

■ S3L_ERR_ARG_AXISNUM – row_axis or col_axis is invalid. This condition can
be caused by either an out-of-range axis value or row_axis = col_axis. See the
row_axis or col_axis argument description for allowed axis index ranges.

■ S3L_ERR_ARRNOTSQ – The arrays A in a are not square.

■ S3L_ERR_FACTOR_FAIL – A diagonal element in U (the array containing
factorization of a from a previous call to S3L_cholesky_factor) is zero;
therefore, inversion could not be performed.

Examples
/opt/SUNWhpc/examples/s3l/cholesky/cholesky.c

/opt/SUNWhpc/examples/s3l/cholesky-f/cholesky.f

Related Functions
S3L_cholesky_factor(3)

S3L_cholesky_solve(3)
34 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_cholesky_solve

Description
For each square matrix A in a, S3L_cholesky_solve solves a system of distributed
linear equations of the form AX = B, using Cholesky factors computed by
S3L_cholesky_factor.

A and B are corresponding instances within a and b, respectively. To solve AX = B,
S3L_cholesky_solve performs the following by means of back substitution:

1. Solve U’ * X = B, overwriting B with X

2. Solve U * X = B, overwriting B with X

Syntax
The C and Fortran syntax for S3L_cholesky_solve is as follows:
Chapter 2 Sun S3L Functions 35

C/C++ Syntax

F77/F90 Syntax

Input
S3L_cholesky_solve accepts the following arguments as input:

■ a – Sun S3L array that was factored by S3L_cholesky_factor, where each
matrix instance A is a dense square matrix. Supply the same value a that was
used in S3L_cholesky_factor.

■ row_axis – Scalar integer variable. Identifies the axis of a that counts the rows of
each matrix A.

For C program calls, row_axis must be >= 0 and less than the rank of a. For
Fortran program calls, row_axis must be >= 1 and not exceed the rank of a. In
addition, row_axis must be less than col_axis.

■ col_axis – Scalar integer variable. Identifies the axis of a that counts the
columns of each matrix A.

For C program calls, col_axis must be >= 0 and less than the rank of a. For
Fortran program calls, col_axis must be >= 1 and not exceed the rank of a. In
addition, col_axis must be greater than row_axis.

■ b – Sun S3L array of the same type (real or complex) and precision as a. Array b
must be distinct from a.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_cholesky_solve(a, row_axis, col_axis, b)

S3L_array_t a
int row_axis
int col_axis
S3L_array_t b

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_cholesky_solve(a, row_axis, col_axis, b, ier)

integer*8 a
integer*4 row_axis
integer*4 col_axis
integer*8 b
integer*4 ier
36 Sun S3L 4.0 Software Reference Manual • February 2003

The instance axes of b must match those of a in order of declaration and extents.
The rows and columns of b must be counted by axes row_axis and col_axis,
respectively (from the S3L_cholesky_factor call). If b consists of only one
right-hand side vector, it must be represented as an array of rank 2 with the
number of columns set to 1 and the elements counted by axis row_axis.

Output
S3L_cholesky_solve uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_cholesky_solve returns S3L_SUCCESS.

S3L_cholesky_solve performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause S3L_cholesky_solve to terminate
and return the associated error code:

■ S3L_ERR_MATCH_RANK – Invalid rank. For cases where rank >= 3, rank(b) must
equal rank(a). For the two-dimensional case, rank(b) must be either 1 or 2.

■ S3L_ERR_ARG_DTYPE – Invalid data type. The data type of a must be real or
complex (single- or double-precision).

■ S3L_ERR_MATCH_EXTENTS – The extents of a and b are mismatched along the
row or instance axis.

■ S3L_ERR_MATCH_DTYPE – The data types of a and b do not match.

■ S3L_ERR_ARRNOTSQ – Invalid matrix size. Each coefficient matrix A must be
square.

■ S3L_ERR_ARG_AXISNUM – row_axis or col_axis is invalid. This condition can
be caused by either an out-of-range axis value or row_axis = col_axis. See the
row_axis or col_axis argument description for allowed axis index ranges.

Examples
/opt/SUNWhpc/examples/s3l/cholesky/cholesky.c
Chapter 2 Sun S3L Functions 37

/opt/SUNWhpc/examples/s3l/cholesky-f/cholesky.f

Related Functions
S3L_cholesky_factor(3)

S3L_cholesky_invert(3)

S3L_condition_number,
S3L_gbl_condition_number

Description
S3L_condition_number and S3L_gbl_condition_number compute the
condition numbers of square arrays. LU factorization is used internally in
combination with a norm as specified by the argument norm_type.

Note – Array variables must not overlap.

Performance Note

The condition number functions perform LU factorization and compute the norm
internally. If these operations are already performed elsewhere in the calling
program, you can achieve better performance by calling one of the following
ScaLAPACK functions directly: psgecon, pdgecon, pcgecon, or pzgecon. To use
any of these ScaLAPACK functions, you will need a ScaLAPACK descriptor, which
you can obtain from the corresponding Sun S3L array descriptor with the routine
S3L_to_ScaLAPACK_desc(3).

Syntax
The C and Fortran syntax for S3L_condition_number and
S3L_gbl_condition_number is as follows:
38 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_condition_number accepts the following arguments as input:

■ a – Sun S3L array of rank 2 or greater. a contains one or more instances of a
square matrix A whose condition number is to be computed.

■ row_axis – Scalar integer variable. Identifies the axis of a that counts the rows of
each matrix A.

For C program calls, row_axis must be >= 0 and less than the rank of a. For
Fortran program calls, row_axis must be >= 1 and not exceed the rank of a. In
addition, row_axis must be less than col_axis.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_condition_number(rcn_array, a, row_axis, col_axis,
norm_type)
S3L_gbl_condition_number(rcn_array, a, row_axis, col_axis,
norm_type)

void *rcn
S3L_array_t rcn_array
S3L_array_t a
int row_axis
int col_axis
int norm_type

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_condition_number(rcn_array, a, row_axis, col_axis,
norm_type, ier)
S3L_gbl_condition_number(rcn_array, a, row_axis, col_axis,
norm_type, ier)

<type> rcn
integer*8 rcn_array
integer*8 a
integer*4 row_axis
integer*4 col_axis
integer*4 norm_type
integer*4 ier
Chapter 2 Sun S3L Functions 39

■ col_axis – Scalar integer variable. Identifies the axis of a that counts the
columns of each matrix A.

For C program calls, col_axis must be >= 0 and less than the rank of a. For
Fortran program calls, col_axis must be >= 1 and not exceed the rank of a. In
addition, col_axis must be greater than row_axis .

■ norm_type – Specifies the type of norm to be used in calculating the condition
number. Allowed values are:

Output
S3L_condition_number uses the following arguments for output:

■ rcn_array – Sun S3L array whose rank is two less than the rank a. It should be
of data type real with the same precision as a. On exit, each element in
rcn_array will hold the reciprocal condition number of the corresponding array
A.

■ rcn – Pointer to a scalar variable of data type real with the same precision as a.
Upon exit, rcn will hold the reciprocal condition number of a.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, both S3L_condition_number and S3L_gbl_condition_number
return S3L_SUCCESS.

S3L_condition_number and S3L_gbl_condition_number perform generic
checking of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, these functions will terminate and an error code
indicating which value of the array handle was invalid will be returned. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

■ S3L_ERR_ARG_RANK – The rank of a is 1.

■ S3L_ERR_MATCH_RANK – The rank of rcn_array is not valid. It must be equal to
two less than the rank of a.

S3L_ONENORM_CONDITION_NO Use the 1-norm.
S3L_INFNORM_CONDITION_NO Use the infinity norm.
40 Sun S3L 4.0 Software Reference Manual • February 2003

■ S3L_ERR_ARG_AXISNUM – row_axis or col_axis is invalid. This condition can
be caused by either an out-of-range axis value or row_axis = col_axis. See the
row_axis or col_axis argument description for allowed axis index ranges.

■ S3L_ERR_ARRNOTSQ – The arrays A in a are not square.

■ S3L_ERR_MATCH_EXTENTS – The instance axes of rcn_array and a do not have
the same extents.

■ S3L_ERR_ARG_DTYPE – Invalid data type. The data type of a must be real
(single- or double-precision).

■ S3L_ERR_ARG_OP – The value supplied for norm_type is not either
S3L_ONENORM_CONDITION_NO or S3L_INFNORM_CONDITION_NO.

Examples
/opt/SUNWhpc/examples/s3l/condition_number/gbl_condition_number.c

/opt/SUNWhpc/examples/s3l/condition_number/condition_number.c

/opt/SUNWhpc/examples/s3l/condition_number-f/gbl_condition_number.f

/opt/SUNWhpc/examples/s3l/condition_number-f/condition_number.f

Related Function
S3L_lu_factor(3)

S3L_conv

Description
S3L_conv computes the 1D or 2D convolution of a signal represented by a parallel
array using a filter contained in a second parallel array. The result is stored in a third
parallel array. These parallel arrays are described by the Sun S3L array handles: a
(signal), b (filter), and c (result). All three arrays are of the same real or complex
type.

For the 1D case, if the signal a is of length ma and the filter b of length mb, the result
of the convolution, c, will be of length ma + mb - 1. In the 2D case, if the signal is of
size [ma,na] and the filter is of size [mb,nb], the result of the convolution is of size
[ma+mb-1,na+nb-1].
Chapter 2 Sun S3L Functions 41

Side Effect

Because a and b are used internally for auxiliary storage, they may be destroyed
after the convolution calculation is complete. If the contents of a and b must be used
after the convolution, they should first be copied to temporary arrays.

Note – S3L_conv is most efficient when all arrays have the same length and when
this length can be computed efficiently by means of S3L_fft or S3L_rc_fft. See
“S3L_fft” on page 107 and “S3L_rc_fft and S3L_cr_fft” on page 266 for
additional information.

Restriction

The dimensions of the array c must be such that the 1D or 2D complex-to-complex
FFT or real-to-complex FFT can be computed.

Syntax
The C and Fortran syntax for S3L_conv is as follows:
42 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_conv accepts the following arguments as input:

■ a – Sun S3L array handle describing a parallel array of size ma (1D case) or ma x
na (2D) case. a is the input signal that will be convolved.

■ b – Sun S3L array handle describing the parallel array that contains the filter.

■ setup_id – Valid convolution setup ID as returned from a previous call to
S3L_conv_setup.

Output
S3L_conv uses the following arguments for output:

■ c – Sun S3L array handle describing a parallel array containing the convolved
signal. Its length must be at least ma+mb-1 (1D case) or ma+mb-1 x na+nb-1 (2D
case).

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_conv(a, b, c, setup_id)

S3L_array_t a
S3L_array_t b
S3L_array_t c
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_conv(a, b, c, setup_id, ier)

integer*8 a
integer*8 b
integer*8 c
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 43

Error Handling
On success, S3L_conv returns S3L_SUCCESS.

S3L_conv performs generic checking of the arrays it accepts as arguments. If an
array argument contains an invalid or corrupted value, the function terminates and
an error code is returned that indicates which value of the array handle was invalid.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following error codes:

■ S3L_ERR_MATCH_DTYPE – a, b, and c do not have the same data type.

■ S3L_ERR_MATCH_RANK – a, b, and c do not have the same rank.

■ S3L_ERR_ARG_RANK – The rank of an array argument is larger than 2.

■ S3L_ERR_ARG_DTYPE – The data type of one of the array arguments is invalid.
It must be one of:

■ S3L_float
■ S3L_double
■ S3L_complex
■ S3L_double_complex

■ S3L_ERR_ARG_EXTENTS – The extents of c are smaller than two times the sum of
the corresponding extents of a and b minus 1.

Examples
/opt/SUNWhpc/examples/s3l/conv/ex_conv.c

/opt/SUNWhpc/examples/s3l/conv-f/ex_conv.f

Related Functions
S3L_conv_setup(3)

S3L_conv_free_setup(3)
44 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_conv_free_setup

Description
S3L_conv_free_setup invalidates the ID specified by the setup_id argument.
This deallocates the internal memory that was reserved for the convolution
computation represented by that ID.

Syntax
The C and Fortran syntax for S3L_conv_free_setup is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_conv_free_setup accepts the following arguments as input:

■ setup_id – Integer value returned by a previous call to S3L_conv_setup

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_conv_free_setup(setup_id)

int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_conv_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 45

Output
S3L_conv_free_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_conv_free_setup returns S3L_SUCCESS.

In addition, the following condition causes the function to terminate and return the
associated code:

■ S3L_ERR_ARG_SETUP – Invalid setup_id value

Examples
/opt/SUNWhpc/examples/s3l/conv/ex_conv.c

/opt/SUNWhpc/examples/s3l/conv-f/ex_conv.f

Related Functions
S3L_conv(3)

S3L_conv_setup(3)

S3L_conv_setup

Description
S3L_conv_setup sets up the initial conditions necessary for computation of the
convolution C = A conv B. It returns an integer setup value that can be used by a
subsequent call to S3L_conv.
46 Sun S3L 4.0 Software Reference Manual • February 2003

Sun S3L array handles A, B, and C each describe a parallel array that can be either
one- or two-dimensional. The extents of C along each axis i must be such that they
are greater than or equal to two times the sum of the corresponding extents of A and
B minus 1.

Syntax
The C and Fortran syntax for S3L_conv_setup is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_conv_setup accepts the following arguments as input:

■ A – Sun S3L array handle describing a parallel array of size ma (1D case) or ma x
na (2D) case. A contains the input signal that will be convolved.

■ B – Sun S3L array handle describing a parallel array that contains the convolution
filter.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_conv_setup(A, B, C, setup_id)

S3L_array_t A
S3L_array_t B
S3L_array_t C
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_conv_setup(A, B, C, setup_id, ier)

integer*8 A
integer*8 B
integer*8 C
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 47

■ C – Sun S3L array handle describing a parallel array in which the convolved
signal is stored. Its length must be at least ma+mb-1 (1D case) or ma+mb-1 x
na+nb-1
(2D case).

Output
S3L_conv_setup uses the following arguments for output:

■ setup_id – Integer value returned by this function. Use this value for the
setup_id argument in subsequent calls to S3_conv and
S3L_conv_free_setup.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_conv_setup returns S3L_SUCCESS.

S3L_conv_setup performs generic checking of the arrays it accepts as arguments.
If an array argument contains an invalid or corrupted value, the function terminates
and an error code is returned that indicates which value of the array handle was
invalid. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following error codes:

■ S3L_ERR_ARG_RANK – The rank of one of the array arguments is not 1 or 2.

■ S3L_ERR_MATCH_RANK – The array arguments are not all of the same rank.

■ S3L_ERR_MATCH_DTYPE – The array arguments are not all of the same data type.

■ S3L_ERR_ARG_EXTENTS – The extents of c are less two times the sum of the
corresponding extents of A and B minus 1.

Examples
/opt/SUNWhpc/examples/s3l/conv/ex_conv.c

/opt/SUNWhpc/examples/s3l/conv-f/ex_conv.f
48 Sun S3L 4.0 Software Reference Manual • February 2003

Related Functions
S3L_conv(3)

S3L_conv_free_setup(3)

S3L_convert_sparse

Description
S3L_convert_sparse converts a Sun S3L sparse matrix that is represented in one
sparse format to a different sparse format. It supports the following sparse matrix
storage formats:

Detailed descriptions of the first three sparse formats are provided in
“S3L_declare_sparse” on page 77. They are also described in the
S3L_declare_sparse man page.

The Variable Block Row (VBR) format can be viewed as a generalization of the
Compressed Sparse Row format, where

■ The block entries of a matrix are stored block row by block row.
■ Each block entry is stored as a dense matrix in standard column-major form.

S3L_SPARSE_COO Coordinate format

S3L_SPARSE_CSR Compressed Sparse Row format

S3L_SPARSE_CSC Compressed Sparse Column format

S3L_SPARSE_VBR Variable Block Row format
Chapter 2 Sun S3L Functions 49

More specifically, the data structure of S3L_SPARSE_VBR consists of the following
six arrays:

To illustrate the VBR data structure, consider the following 5x8 matrix with a
variable block partitioning.

The sparsity pattern for this matrix is:

rptr Integer array. It contains the block row partitionings—that is, the first row
number of each block row.

cptr Integer array. It contains the block column partitionings—that is, the first
column number of each block column.

val Scalar array. It contains the block entries of the matrix.

indx Integer array. It contains the pointers to the beginning of each block entry
stored in val.

bindx Integer array. It contains the block column indices of block entries of the
matrix.

bptr Integer array. It contains pointers to the beginning of each block row in
bindx and val.

0 1 2 3 4 5 6 7 8
+------+---------+----+--------+

0 | 1 3 5 | 0 0 | 9 | 0 0 |
1 | 2 4 6 | 0 0 | 10 | 0 0 |

+---------+------+----+--------+
2 | 0 0 0 | 7 8 | 11 | 0 0 |

+------+---------+----+--------+
3 | 0 0 0 | 0 0 | 12 | 14 16 |
4 | 0 0 0 | 0 0 | 13 | 15 17 |

+------+---------+----+--------+
5

0 1 2 3 4
+-----+-----+-----+-----+

0 | x | o | x | o |
+-----+-----+-----+-----+

1 | o | x | x | o |
+-----+-----+-----+-----+

2 | o | o | x | x |
+-----+-----+-----+-----+

3

50 Sun S3L 4.0 Software Reference Manual • February 2003

where x and o , respectively, the nonzero and zero block entries of the matrix.

The matrix could be stored in VBR format as follows (using zero-based indexing):

Syntax
The C and Fortran syntax for S3L_convert_sparse is as follows:

rptr = (0, 2, 3, 6),

cptr = (0, 2, 5, 6, 8),

bptr = (0, 2, 4, 6),

bindx = (0, 2, 1, 2, 2, 3),

indx = (0, 6, 8, 10, 11, 13, 17),

val = (1.0, 2.0, 3.0, 4.0, 6.0, 9.0, 10.0. 7.0,
8.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0)
Chapter 2 Sun S3L Functions 51

C/C++ Syntax

F77/F90 Syntax

Input
S3L_convert_sparse accepts the following arguments as input:

■ A – Sun S3L internal array handle an m x n Sun S3L sparse matrix to be
converted. This handle is produced by a prior call to one of the following sparse
routines:

■ S3L_declare_sparse
■ S3L_read_sparse
■ S3L_rand_sparse
■ S3L_convert_sparse

■ spfmt – Specifies the sparse format into which A is to be converted.

If the value of spfmt is S3L_SPARSE_VBR, the following four arguments should
also be supplied:

■ bm – Scalar integer. Indicates the total number of block rows in the block sparse
matrix.

■ bn – Scalar integer. Indicates the total number of block columns in the block
sparse matrix.

■ rptr – Integer array of length bm+1 such that rptr[i] is the row index of the
first point row in the i-th block row.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_convert_sparse(A, B, spfmt, ...)

S3L_array_t A
S3L_array_t *B
S3L_sparse_storage_t spfmt

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_convert_sparse(A, B, spfmt, ..., ier)

integer*8 A
integer*8 B
integer*4 spfmt
integer*4 ier
52 Sun S3L 4.0 Software Reference Manual • February 2003

■ cptr – Integer array of length bn+1 such that cptr[j] is the column index of
the first point column in the j-th block row.

If used, bm, bn, rptr, and cptr follow the spfmt argument, as indicated by the
"..." in the Syntax section.

Note – The four VBR-specific arguments give the user explicit control over the block
partitioning structure. To use the Sun S3L internal blocking algorithm instead,
specify these arguments as NULL pointers (for C/C++) or set to –1 (for F77/F90).

Output
S3L_convert_sparse uses the following arguments for output:

■ A – On output, this is the Sun S3L internal array handle for the global general
sparse matrix that resulted from the format conversion.

■ B – Contains the converted Sun S3L sparse matrix.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, the status of S3L_convert_sparse is S3L_SUCCESS.

S3L_convert_sparse performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
will terminate and an error code indicating which value of the array handle was
invalid will be returned. See Appendix A of this manual for a detailed list of these
error codes.

In addition, the following conditions will cause this function to terminate and return
the associated error code:

■ S3L_ERR_ARG_NULL – Value specified for A is invalid. A must be a predefined
sparse matrix. Otherwise, a NULL array is encountered for rptr or cptr. When
specifying spfmt = S3L_SPARSE_VBR, bm and bn should be nonzero and rptr
and cptr should be predefined.

■ S3L_ERR_SPARSE_FORMAT – Invalid sparse format. It must be one of:
S3L_SPARSE_COO, S3L_SPARSE_CSR, S3L_SPARSE_CSC, or S3L_SPARSE_VBR.
Chapter 2 Sun S3L Functions 53

Examples
/opt/SUNWhpc/examples/s3l/sparse/ex_sparse1.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse1.f

Related Function
S3L_declare_sparse(3)

S3L_copy_array

Description
S3L_copy_array copies the contents of array A into array B, which must have the
same rank, extents, and data type as A.

Syntax
The C and Fortran syntax for S3L_copy_array is as follows.
54 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_copy_array accepts the following arguments as input:

■ A – Sun S3L array handle for the parallel array to be copied.

Output
S3L_copy_array uses the following arguments for output:

■ B – Sun S3L array handle for a parallel array of the same rank, extents, and data
type as A. On successful completion, B contains a copy of the contents of A.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_copy_array returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_copy_array(A, B)

S3L_array_t A
S3L_array_t B

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_copy_array(A, B, ier)

integer*8 A
integer*8 B
integer*4 ier
Chapter 2 Sun S3L Functions 55

S3L_copy_array checks the arrays it accepts as arguments. If an array argument
contains an invalid or corrupted value, the function terminates and an error code is
returned that indicates which value of the array handle was invalid. See Appendix A
of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated code:

■ S3L_ERR_MATCH_RANK – The ranks of A and B do not match.
■ S3L_ERR_MATCH_EXTENTS – The extents of A and B do not match.
■ S3L_ERR_MATCH_DTYPE – The data types of A and B do not match.
■ S3L_ERR_ARG_DTYPE – The data type of A and/or B is invalid.

Examples
/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f

S3L_copy_array_detailed

Description
S3L_copy_array_detailed copies an array section of array a to an array section
of array b. The array section of a is defined along each axis by indices:

The array section of array b is defined along each axis by indices:

If perm is NULL (C/C++) or its first element is negative (F77/F90), it is ignored.
Otherwise, the axes of b are permuted similarly to the permutation performed by
S3L_trans.

Syntax
The C and Fortran syntax for S3L_copy_array_detailed is as follows:

lba(i) <= j <= uba(i), with strides sta(i), i=0, rank -1

lbb(i) <= j <= ubb(i), with strides stb(i), i=0, rank -1
56 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_copy_array_detailed accepts the following arguments as input:

■ a – Sun S3L array whose elements will be copied into array b.

■ lba – Lower bound of the array section of a to be copied.

■ uba – Upper bound of the array section of a to be copied.

■ sta – Stride used to define the elements of the array section of a to be copied.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_copy_array_detailed(a, b, lba, uba, sta, lbb, ubb, stb,
perm)

S3L_array_t a
S3L_array_t b
int *lba
int *uba
int *sta
int *lbb
int *ubb
int *stb
int *perm

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_copy_array_detailed(a, b, lba, uba, sta, lbb, ubb, stb,
perm, ier)

integer*8 a
integer*8 b
integer*4 lba(*)
integer*4 uba(*)
integer*4 sta(*)
integer*4 lbb(*)
integer*4 ubb(*)
integer*4 stb(*)
integer*4 perm(*)
integer*4 ier
Chapter 2 Sun S3L Functions 57

■ lbb – Lower bound of the array section of b into which the array section of a is to
be copied.

■ ubb – Upper bound of the array section of b into which the array section of a is to
be copied.

■ stb – Stride used to define the elements of the array section of b into which the
array section of a is to be copied.

■ perm – Axes permutation vector.

Output
S3L_copy_array_detailed uses the following argument for output:

■ b – Sun S3L array which, on exit, will contain elements copied from array a.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_copy_array_detailed returns S3L_SUCCESS.

S3L_copy_array_detailed performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code is returned that indicates which
value of the array handle was invalid. See Appendix A of this manual for a detailed
list of these error codes.

In addition, the following conditions will cause S3L_copy_array_detailed to
terminate and return the associated error code:

■ S3L_ERR_MATCH_RANK – a and b do not have the same number of dimensions
(rank).

■ S3L_ERR_MATCH_DTYPE – a and b do not have the same data type.

■ S3L_ERR_INDX_INVALID – One or more of the lower bound, upper bound,
stride, or permutation axis parameters is invalid.

■ S3L_ERR_TRANS_PERMAX – The permutation axis argument contains invalid
entries.

Examples
/opt/SUNWhpc/examples/s3l/utils/copy_array_det.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array_det.f
58 Sun S3L 4.0 Software Reference Manual • February 2003

Related Functions
S3L_copy_array(3)

S3L_trans(3)

S3L_cshift

Description
S3L_cshift performs a circular shift of a specified amount along a specified axis of
the parallel array associated with array handle A. The argument axis indicates the
dimension to be shifted, and index prescribes the shift distance.

Shift direction is upward for positive index values and downward for negative index
values.

For example, if A denotes a one-dimensional array of length n before the cshift, B
denotes the same array after the cshift, and index is equal to 1, the array A will be
circularly shifted upward, as follows :

For C Programs:

B[1:n-1]=A[0:n-2], B[0]=A[n-1]

For Fortran Programs:

B(2:n)=A(1:n-1), B(1)=A(n)

Syntax
The C and Fortran syntax for S3L_cshift is as follows:
Chapter 2 Sun S3L Functions 59

C/C++ Syntax

F77/F90 Syntax

Input
S3L_cshift accepts the following arguments as input:

■ A – Array handle for the parallel array to be shifted.

■ axis – Specifies the axis along which the shift is to take place. This value must
assume zero-based axis indexing when S3L_cshift is called from a C or C++
application and one-based indexing when called from an F77 or F90 application.

■ index – Specifies the shift distance. If the extent of the axis being shifted is N,
legal values for index are –N < index < N.

Output
S3L_cshift uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_cshift returns
error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_cshift(A, axis, index)

S3L_array_t A
void axis
int index

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_cshift(A, axis, index, ier)

integer*8 A
integer*4 axis
integer*4 index
integer*4 ier
60 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_cshift returns S3L_SUCCESS.

S3L_cshift performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause the function to terminate and return
the associated error codes:

■ S3L_ERR_ARG_AXISNUM – Invalid axis value.
■ S3L_ERR_INDX_INVALID – index value is out of range.

Examples
/opt/SUNWhpc/examples/s3l/utils/cshift_reduce.c

/opt/SUNWhpc/examples/s3l/utils-f/cshift_reduce.f

Related Functions
S3L_reduce(3)

S3L_reduce_axis(3)

S3L_dct_iv

Description
S3L_dct_iv computes the Discrete Cosine Transform Type IV (DCT) of 1D, 2D, and
3D Sun S3L arrays. The arrays have to be real (S3L_float or S3L_double).
Depending on the rank of the input array a, the following array size constraints
apply:

■ 1D – The array size must be divisible by 4 x p2, where p is the number of
processors.
Chapter 2 Sun S3L Functions 61

■ 2D – Each of the array lengths must be divisible by 2 x p, where p is the number
of processors.

■ 3D – The first dimension must be even and must have a length of at least 4. The
second and third dimensions must be divisible by 2 x p, where p is the number of
processors.

Note – When the input array a is 1D, the number of processes must be either an
even number or 1.

Syntax
The C and Fortran syntax for S3L_dct_iv is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_dct_iv accepts the following arguments as input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_dct_iv(a, setup, direction)

S3L_array_t a
int setup
int direction

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_dct_iv(a, setup, direction, ier)

integer*8 a
integer*4 setup
integer*4 direction
integer*4 ier
62 Sun S3L 4.0 Software Reference Manual • February 2003

■ a – Input array whose DCT is to be computed. Also used for output, as described
in the Output section.

■ setup – Integer corresponding to a DCT setup value that was returned by a
previous call to S3L_dct_iv_setup.

■ direction – Integer, which must be one of:

Output
S3L_dct_iv uses the following arguments for output:

■ a – On exit, a contains the values of the DCT.

■ ier (Fortran only) – When called from a Fortran program, S3L_dct_iv returns
error status in ier.

Error Handling
On success, S3L_dct_iv returns S3L_SUCCESS.

S3L_dct_iv performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause this function to terminate and return
the associated error code:

■ S3L_ERR_ARG_SETUP – Invallid setup value.

■ S3L_ERR_PARAM_INVALID – The first element of the options vector is not one of:
S3L_DCT_FORWARD or S3L_DCT_INVERSE.

Examples
/opt/SUNWhpc/examples/s3l/dct/ex_dct1.c

/opt/SUNWhpc/examples/s3l/dct/ex_dct2.c

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct1.f

S3L_DCT_FORWARD compute the forward DCT

S3L_DCT_INVERSE compute the inverse DCT
Chapter 2 Sun S3L Functions 63

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct2.f

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct3.f

Related Functions
S3L_dct_iv_setup(3)

S3L_dct_iv_free_setup(3)

S3L_rc_fft(3)

S3L_dct_iv_free_setup

Description
S3L_dct_iv_free_setup frees all internal data structures that are used for the
computation of a parallel Discrete Cosine Transform, Type IV (DCT).

Syntax
The C and Fortran syntax for S3L_dct_iv_free_setup is as follows:
64 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_dct_iv_free_setup accepts the following argument as input:

■ setup – Integer corresponding to a DCT setup.

Output
S3L_dct_iv_free_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_dct_iv_free_setup returns error status in ier.

Error Handling
On success, S3L_dct_iv_free_setup returns S3L_SUCCESS.

On error, S3L_dct_iv_free_setup returns the following error code:

■ S3L_ERR_ARG_SETUP – Invalid setup value.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_dct_iv_free_setup(setup)

int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_dct_iv_free_setup(setup, ier)

integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 65

Examples
/opt/SUNWhpc/examples/s3l/dct/ex_dct1.c

/opt/SUNWhpc/examples/s3l/dct/ex_dct2.c

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct1.f

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct2.f

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct3.f

Related Functions
S3L_dct_iv(3)

S3L_dct_iv_setup(3)

S3L_rc_fft(3)

S3L_dct_iv_setup

Description
S3L_dct_iv_setup initializes internal data structures required for the computation
of a parallel Discrete Cosine Transform, Type IV (DCT).

Note

If DCT transforms will be performed on multiple arrays that all have the same data
type and extents, only one call to S3L_dct_iv_setup would be needed to support
those multiple DCT transformations. In other words, the setup performed by a
single call to S3L_dct_iv_setup could be referenced by any number of subsequent
calls to S3L_dct_iv, so long as their arrays all matched the data type and extents of
the array prescribed for the setup.

Syntax
The C and Fortran syntax for S3L_dct_iv_setup is as follows:
66 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_dct_iv_setup accepts the following argument as input:

■ a – Input array whose DCT is to be computed. The data contained in the array are
not modified.

Output
S3L_dct_iv_setup uses the following arguments for output:

■ setup – Integer corresponding to a DCT setup. This parameter can be used in
any subsequent call(s) to S3L_dct_iv to perform the DCT of an array whose
data type and extents are the same as those of array a.

■ ier (Fortran only) – When called from a Fortran program, S3L_dct_iv_setup
returns error status in ier.

Error Handling
On success, S3L_dct_iv_setup returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_dct_iv_setup(a, setup)

S3L_array_t a
int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_dct_iv_setup(a, setup, ier)

integer*8 a
integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 67

S3L_dct_iv_setup performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause this function to terminate and return
the associated error code:

■ S3L_ERR_ARG_RANK – The rank of a is not 1, 2, or 3.

■ S3L_ERR_NREAL – The data type of a is not real.

■ S3L_ERR_NEVEN – Some of the extents of a are not even or 1.

■ S3L_ERR_ARG_EXTENTS – The extents of a are not valid for the rank of a and the
number of processes over which a is distributed. The following summarizes the
rules for extents when a is 1D, 2D, or 3D:

■ S3L_ERR_NP_NEVEN – The rank of a is 1 but the total number of processes is not
even or equal to 1.

Examples
/opt/SUNWhpc/examples/s3l/dct/ex_dct1.c

/opt/SUNWhpc/examples/s3l/dct/ex_dct2.c

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct1.f

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct2.f

/opt/SUNWhpc/examples/s3l/dct-f/ex_dct3.f

Related Functions
S3L_dct_iv(3)

S3L_dct_iv_free_setup(3)

S3L_rc_fft(3)

1D Its length must be divisible by 4*sqr(np), where np is the number of processes
over which a is distributed.

2D Its extents must both be divisible by 2*np.
3D Its first extent must be even and its last two extents must both be divisible by

2*np.
68 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_declare

Description
S3L_declare creates a Sun S3L array handle that describes a Sun S3L parallel array.
It supports calling arguments that enable the user to specify:

■ The array’s rank (number of dimensions)
■ The extent of each axis
■ The array’s data type
■ Which axes, if any, will be distributed locally
■ How memory will be allocated for the array

Based on the argument-supplied specifications, a process grid size is internally
determined to distribute the array as evenly as possible.

Note – An array subgrid is the set of array elements that is allocated to a particular
process.

The axis_is_local argument specifies which array axes (if any) will be local to
the process. It consists of an integer vector whose length is at least equal to the rank
(number of dimensions) of the array. Each element of the vector indicates whether
the corresponding axis is local or not: 1 = local, 0 = not local.

When axis_is_local is ignored, all array axes except the last will be local. The
last axis will be block-distributed.

For greater control over array distribution, use S3L_declare_detailed().

Upon successful completion, S3L_declare returns a Sun S3L array handle, which
subsequent Sun S3L calls can use as an argument to gain access to that array.

Syntax
The C and Fortran syntax for S3L_declare is as follows:
Chapter 2 Sun S3L Functions 69

C/C++ Syntax

F77/F90 Syntax

Input
S3L_declare accepts the following argument as input:

■ rank – Specifies the number of dimensions the array will have. The range of legal
values for rank is 1 <= rank <= 31.

■ extents – An integer vector whose length is equal to the number of dimensions
in the array. Each element in extents specifies the extent of the corresponding
array axis. Note that axis indexing is zero-based for the C interface and one-based
for the Fortran interface, as follows:

■ When called from a C or C++ application, the first element of extents
corresponds to axis 0, the second element to axis 1, and so forth.

■ When called from an F77 or F90 application, the first element corresponds to
axis 1, the second to axis 2, and so forth.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_declare(A, rank, extents, type, axis_is_local, atype)

S3L_array_t *A
int rank
int *extents
S3L_data_type type
S3L_boolean_t *axis_is_local
S3L_alloc_type atype

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_declare(A, rank, extents, type, axis_is_local, atype, ier)

integer*8 A
integer*4 rank
integer*4 extents(*)
integer*4 type
integer*4 axis_is_local(*)
integer*4 atype
integer*4 ier
70 Sun S3L 4.0 Software Reference Manual • February 2003

■ type – Specifies the array’s data type; this must be a type supported by Sun S3L.
See the Sun S3L Software Programming Guide for a complete list of supported data
types.

■ axis_is_local – An integer vector whose length equals the array’s rank. Each
element of axis_is_local controls the distribution of the corresponding array
axis as follows:

■ If axis_is_local[i]= 0, axis[i] of the array will be block-distributed along
axis [i] of the process grid.

■ If axis_is_local[i]= 1, axis[i] will not be distributed.

If axis_is_local is NULL (C/C++) or if its first integer value is negative
(F77/F90), this argument will be ignored.

■ atype – Use one of the following predefined values to specify how the array will
be allocated:

■ S3L_USE_MALLOC – Uses malloc() to allocate the array subgrids.

■ S3L_USE_MEMALIGN64 – Uses memalign() to allocate the array subgrids and
to align them on 64-byte boundaries.

■ S3L_USE_MMAP – Uses mmap() to allocate the array subgrids. Array subgrids
on the same node will be in shared memory.

■ S3L_USE_SHMGET – Uses shmget() to allocate the array subgrids. Array
subgrids on the same node will be in intimate shared memory.

Output
S3L_declare uses the following arguments for output:

■ A – S3L_declare returns the array handle in A.

■ ier (Fortran only) – When called from a Fortran program, S3L_declare returns
error status in ier.

Error Handling
On successful completion, S3L_declare returns S3L_SUCCESS.

S3L_declare applies various checks to the arrays it accepts as arguments. If an array
argument fails any of these checks, the function returns an error code indicating the
kind of error that was detected and terminates. See Appendix A of this manual for a
list of these error codes.

In addition, the following conditions will cause S3L_declare to terminate and
return the associated error code:
Chapter 2 Sun S3L Functions 71

■ S3L_ERR_ARG_RANK – The rank specified is invalid. The range of legal values for
rank is 1 <= rank <= 31.

■ S3L_ERR_ARG_EXTENTS – One or more of the array extents is less than 1.

■ S3L_ERR_ARG_BLKSIZE – One or more block sizes is less than 1.

■ S3L_ERR_ARG_DISTTYPE – axis_is_local has one or more invalid values. See
the description of axis_is_local in the Input section for details.

Notes
When S3L_USE_MMAP or S3L_USE_SHMGET is used on a 32-bit platform, the part of
a Sun S3L array owned by a single SMP cannot exceed 2 gigabytes.

When S3L_USE_MALLOC or S3L_USE_MEMALIGN64 is used, the part of the array
owned by any single process cannot exceed 2 gigabytes.

If these size restrictions are violated, an S3L_ERR_MEMALLOC will be returned. On
64-bit platforms, the upper bound is equal to the system’s maximum available
memory.

Examples
/opt/SUNWhpc/examples/s3l/transpose/ex_trans1.c

/opt/SUNWhpc/examples/s3l/grade-f/ex_grade.f

Related Functions
S3L_declare_detailed(3)

S3L_free(3)
72 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_declare_detailed

Description
S3L_declare_detailed offers the same functionality as S3L_declare, but
supports the additional input argument, addr_a, which gives the user additional
control over array distribution.

If you do not need the level of control provided by S3L_declare_detailed,
S3L_declare offers essentially the same functionality, but has a simpler interface.

Syntax
The C and Fortran syntax for S3L_declare_detailed is as follows:
Chapter 2 Sun S3L Functions 73

C/C++ Syntax

F77/F90 Syntax

where <type> is one of: integer*4, integer*8, real*4, real*8, complex*8, or
complex*16.

Input
S3L_declare_detailed accepts the following arguments as input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_declare_detailed(A, addr_a, rank, extents, type, blocksizes,
proc_src, axis_is_local, pgrid, atype)

S3L_array_t *A
void *addr_a
int rank
int *extents
S3L_data_type type
int *blocksizes
int *proc_src
S3L_boolean_t *axis_is_local
S3L_pgrid_t pgrid
S3L_alloc_type atype

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_declare_detailed(A, addr_a, rank, extents, type, blocksizes,
proc_src, axis_is_local, pgrid, atype, ier)

integer*8 A
<type> array(1)
pointer (addr_a,array)
integer*4 rank
integer*4 extents(*)
integer*4 blocksizes(*)
integer*4 proc_src(*)
integer*4 axis_is_local(*)
integer*8 pgrid
integer*4 atype
integer*4 ier
74 Sun S3L 4.0 Software Reference Manual • February 2003

■ addr_a – If the atype argument is set to S3L_DONOT_ALLOCATE, addr_a is
taken as the starting address of the local (per process) portion of the parallel array
A. If atype is not equal to S3L_DONOT_ALLOCATE, addr_a will be ignored.

■ rank – Specifies the number of dimensions the array will have. The range of legal
values for rank is 1 <= rank <= 31.

■ extents – An integer vector whose length is at least equal to the array rank.
Each element in extents specifies the extent of the corresponding array axis.
Note that axis indexing is zero-based for the C interface and one-based for the
Fortran interface, as follows:

■ When called from a C or C++ application, the first element of extents
corresponds to axis 0, the second element to axis 1, and so forth.

■ When called from an F77 or F90 application, the first vector element
corresponds to axis 1, the second to axis 2, and so forth.

■ type – Specifies the array’s data type; this must be a type supported by Sun S3L.

■ blocksizes – Specifies the blocksize to be used in block-cyclic distribution along
each axis. If blocksizes is a NULL pointer (C/C++) or if its first element is
negative (F77/F90), default blocksizes will be chosen by the system.

■ proc_src – Vector of length at least equal to the rank. The indices of the
processes contain the start of the array—that is, the first element along the
particular axis. If this argument is a NULL pointer (C/C++) or if its first element is
negative (F77/F90), default values will be used. Along each axis, the process
whose process grid coordinate along that axis is equal to zero contains the first
array element. If proc_src is present, the pgrid (process grid) argument should
also be present. Otherwise an error code will be returned.

■ axis_is_local – An integer vector whose length is at least equal to the array
rank. Each element of axis_is_local controls the distribution of the
corresponding array axis as follows:

■ If axis_is_local[i]= 0 and blocksizes is not specified, axis[i] of the
array will be block-distributed along axis [i] of the process grid.

■ If axis_is_local[i]= 1, the corresponding array axis will not be
distributed.

The axis_is_local argument is used only if a pgrid is not specified. If it is
NULL (C/C++) or if its first integer value is negative (F77/F90), axis_is_local
will be ignored.

■ pgrid – A Sun S3L process grid handle that was obtained by calling either
S3L_set_process_grid or S3L_get_attribute. If this argument is NULL
(C/C++) or is equal to zero (F77/F90), Sun S3L will choose an appropriate pgrid
for the array.

■ atype – This argument specifies how the array will be allocated, as follows:

■ S3L_USE_MALLOC – Uses malloc() to allocate the array subgrids.
Chapter 2 Sun S3L Functions 75

■ S3L_USE_MEMALIGN64 – Uses memalign() to allocate the array subgrids and
to align them on 64-byte boundaries.

■ S3L_USE_MMAP – Uses mmap() to allocate the array subgrids. Array subgrids
on the same SMP will be in shared memory.

■ S3L_USE_SHMGET – Uses shmget() to allocate the array subgrids. Array
subgrids on the same SMP will be in shared memory.

■ S3L_DONOT_ALLOCATE – No memory is allocated for the parallel array, and
addr_a is taken to be the starting address of the per-process portion of the
parallel array.

Note – A process grid is the array of processes onto which the data is distributed.

Output
S3L_declare_detailed uses the following arguments for output:

■ A – On return, A points to a Sun S3L array handle for the declared array. This
handle can be used later when calling other Sun S3L functions that will use this
array.

■ ier (Fortran only) – When called from a Fortran program,
S3L_declare_detailed returns error status in ier.

Error Handling
On successful completion, S3L_declare_detailed returns S3L_SUCCESS.

S3L_declare_detailed applies various checks to the arrays it accepts as
arguments. If an array argument fails any of these checks, the function returns an
error code indicating the kind of error that was detected and terminates. See
Appendix A of this manual for a list of these error codes.

In addition, the following conditions will cause S3L_declare_detailed to
terminate and return the associated error codes:

■ S3L_ERR_ARG_RANK – The rank specified is invalid. The range of legal values for
rank is 1 <= rank <= 31.

■ S3L_ERR_ARG_EXTENTS – One or more of the array extents are less than 1.

■ S3L_ERR_ARG_BLKSIZE – One or more blocksizes are less than 1.

■ S3L_ERR_ARG_DISTTYPE – axis_is_local has one or more invalid values.
■ S3L_ERR_ARG_ALLOCTYPE – atype has an invalid value.
76 Sun S3L 4.0 Software Reference Manual • February 2003

Notes
When S3L_USE_MMAP or S3L_USE_SHMGET is used on a 32-bit platform, the part of
a Sun S3L array owned by a single SMP cannot exceed 2 gigabytes.

When S3L_USE_MALLOC or S3L_USE_MEMALIGN64 is used, the part of the array
owned by any single process cannot exceed 2 gigabytes.

An S3L_ERR_MEMALLOC will be returned if these size restrictions are violated. On
64-bit platforms, the upper bound is equal to the system’s maximum available
memory.

Examples
/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f

/opt/SUNWhpc/examples/s3l/utils/get_attribute.c

/opt/SUNWhpc/examples/s3l/utils-f/get_attribute.f

/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

Related Functions
S3L_declare(3)

S3L_free(3)

S3L_set_process_grid(3)

S3L_get_attribute(3)

S3L_declare_sparse

Description
S3L_declare_sparse creates an internal Sun S3L array handle that describes a
sparse matrix. The sparse matrix A may be represented in one of three sparse
formats: the Coordinate format, the Compressed Sparse Row format, or the
Chapter 2 Sun S3L Functions 77

Compressed Sparse Column format. Upon successful completion,
S3L_declare_sparse returns a Sun S3L array handle in A that describes the
distributed sparse matrix.

The Coordinate format consists of the following three arrays:

■ indx – Integer array that contains the row indices of the matrix A. indx receives
its contents from the argument row.

■ jndx – Integer array that contains the column indices of the matrix A. jndx
receives its contents from the argument col.

■ val – Floating-point array that stores the nonzero elements of sparse matrix A in
any order. val receives its contents from the argument val.

The Compressed Sparse Row format stores the sparse matrix A in the following three
arrays:

■ ptr – Integer array that contains pointers to the beginning of each row in indx
and val. ptr receives its contents from the argument row.

■ indx – Integer array that contains the column indices of the nonzero elements in
val. indx receives its contents from the argument col.

■ val – Floating-point array that stores the nonzero elements of the sparse matrix
A. val receives its contents from the argument val.

The Compressed Sparse Column format also stores the sparse matrix A in three
arrays, but the pointer and index references swap axes. In other words, the
Compressed Sparse Column format can be viewed as the Compressed Sparse Row
format for the transpose of matrix A. In the Compressed Sparse Column format, the
three internal arrays are:

■ ptr – Integer array that contains pointers to the beginning of each column in
indx and val. ptr receives its contents from the argument row.

■ indx – Integer array that contains the row indices of the nonzero elements in
val. indx receives its contents from the argument col.

■ val – Floating-point array that stores the nonzero elements of sparse matrix A.
val receives its contents from the argument val.

Note – S3L_declare_sparse follows different indexing conventions, depending
on which language the calling program is written in, Fortran or C. Its Fortran
interface uses a one-based convention to index elements of the matrix, while the C
interface assumes that the elements are indexed with zero-based values. The zero-
based convention is employed in the examples that follow.
78 Sun S3L 4.0 Software Reference Manual • February 2003

To illustrate these three sparse formats, consider the following 4x6 sparse matrix:

Representations of this sample 4x6 matrix are as follows in each of the supported
formats.

In S3L_SPARSE_COO:

In S3L_SPARSE_CSR:

In S3L_SPARSE_CSC:

Syntax
The C and Fortran syntax for S3L_declare_sparse is as follows.

3.14 0 0 20.04 0 0

0 27 0 0 -0.6 0

0 0 -0.01 0 0 0

-0.031 0 0 0.08 0 314.0

indx = (3, 1, 0, 3, 2, 0, 1, 3),

jndx = (5, 1, 3, 3, 2, 0, 4, 0),

val = (314.0, 27.0, 20.04, 0.08, -0.01, 3.14, -0.6, -0.031)

ptr = (0, 2, 4, 5, 8),

indx = (0, 3, 1, 4, 2, 0, 3, 5),

val = (3.14, 20.04, 27.0, -0.6, -0.01, -0.031, 0.08, 314.0)

ptr = (0, 2, 3, 4, 6, 7, 8),

indx = (0, 3, 1, 2, 0, 3, 1, 3),

val = (3.14, -0.031, 27.0, -0.01, 20.04, 0.08, -0.6, 314.0)
Chapter 2 Sun S3L Functions 79

C/C++ Syntax

F77/F90 Syntax

Input
S3L_declare_sparse accepts the following arguments as input:

■ spfmt – Indicates the sparse format used for representing the sparse matrix. Use
S3L_SPARSE_COO to specify the Coordinate format, S3L_SPARSE_CSR for the
Compressed Sparse Row format, and S3L_SPARSE_CSC for the Compressed
Sparse Column format.

■ m – Indicates the total number of rows in the sparse matrix.

■ n – Indicates the total number of columns in the sparse matrix.

■ row – Integer parallel array of rank 1. Its length and content can vary, depending
on which sparse format is used.

■ S3L_SPARSE_COO – row is of the same size as arrays col and val and
contains row indices of the nonzero elements in array val.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_declare_sparse(A, spfmt, m, n, row, col, val)

S3L_array_t *A
S3L_sparse_storage_t spfmt
int m
int n
S3L_array_t row
S3L_array_t col
S3L_array_t val

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_declare_sparse(A, spfmt, m, n, row, col, val, ier)

integer*8 A
integer*8 spfmt
integer*4 m
integer*4 n
integer*8 row
integer*8 col
integer*8 val
integer*4 ier
80 Sun S3L 4.0 Software Reference Manual • February 2003

■ S3L_SPARSE_CSR – row is of size m+1 and contains pointers to the beginning
of each row in arrays col and val.

■ S3L_SPARSE_CSC – row is of size n+1 and contains pointers to the beginning
of each column in arrays col and val.

■ col – Integer parallel array of rank 1 with the same length as array val. For both
S3L_SPARSE_COO and S3L_SPARSE_CSR, col contains column indices of the
corresponding elements stored in array val. For S3L_SPARSE_CSC, it contains
row indices of the corresponding elements in Sun S3L array val.

■ val – Parallel array of rank 1, containing the nonzero elements of the sparse
matrix. For S3L_SPARSE_COO, nonzero elements can be stored in any order. For
S3L_SPARSE_CSR, nonzero elements should be stored row by row, from row 1 to
m. For S3L_SPARSE_CSC, nonzero elements should be stored column by column,
from column 1 to n.

The length of val is nnz for all three formats, which is the total number of
nonzero elements in the sparse matrix. The data type of array elements can be real
or complex (single- or double-precision).

Note – Because row, col, and val are copied to working arrays, they can be
deallocated immediately following the S3L_declare_sparse call.

Output
S3L_declare_sparse uses the following arguments for output:

■ A – Upon return, A contains a Sun S3L internal array handle for the global general
sparse matrix. This handle can be used in subsequent calls to other Sun S3L
sparse array functions.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_declare_sparse returns S3L_SUCCESS.

The S3L_declare_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code is returned that indicates which
value of the array handle was invalid. See Appendix A of this manual for a detailed
list of these error codes.
Chapter 2 Sun S3L Functions 81

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

■ S3L_ERR_SPARSE_FORMAT – Invalid storage format. It must be one of:
S3L_SPARSE_COO, S3L_SPARSE_CSR, or S3L_SPARSE_CSR.

■ S3L_ERR_ARG_EXTENTS – Invalid m or n. Each must be > 0.

■ S3L_ERR_ARG_NULL – One or more of the arguments row, col, or val are
invalid. All must be preallocated Sun S3L arrays.

■ S3L_ERR_MATCH_RANK – Ranks of arrays row, col, and val are mismatched.
They all must be rank 1 arrays.

■ S3L_ERR_MATCH_DTYPE – Arrays row and col data types do not match. They
must be of type S3L_integer.

■ S3L_ERR_MATCH_EXTENTS – The lengths of arrays row, col, and val are
mismatched. Array extents must match as follows:

■ For S3L_SPARSE_COO, they must all be the same size.

■ For both S3L_SPARSE_CSR and S3L_SPARSE_CSC, the length of array col
must equal that of array val.

■ For S3L_SPARSE_CSR, array row must be of size m+1.

■ For S3L_SPARSE_CSC, array row must be of size n+1.

Example
/opt/SUNWhpc/examples/s3l/sparse/ex_sparse2.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse2.f

Related Functions
S3L_convert_sparse(3)

S3L_matvec_sparse(3)

S3L_rand_sparse(3)

S3L_read_sparse(3)
82 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_deconv

Description
If a can be expressed as the convolution of an unknown vector c with b,
S3L_deconv deconvolves the vector b out of a. The result, which is returned in c, is
such that conv(c,b)=a.

In the general case, c will only represent the quotient of the polynomial division of
a by b.

The remainder of that division can be obtained by explicitly convolving with b and
subtracting the result from a.

If ma, mb, and mc are the lengths of a, b, and c, respectively, ma must be at least
equal to mb. The length of mc will be such that mc +mb-1=ma or, equivalently, mc=
ma –mb+1.

Note – S3L_deconv is most efficient when all arrays have the same length and
when this length is such that it can be computed efficiently by S3L_fft or
S3L_rc_fft. See “S3L_fft” on page 107 and “S3L_rc_fft and S3L_cr_fft” on
page 266 for additional information.

Restriction

The dimensions of the array c must be such that the 1D or 2D complex-to-complex
FFT or real-to-complex FFT can be computed.

Scaling

The results of the deconvolution are scaled according to the underlying FFT that is
used. In particular, for multiple processes, if a and b are real 1D, the result is scaled
by n/2, where n is the length of c. For single processes, it is scaled by n. In all other
cases, the result is scaled by the product of the extents of c.
Chapter 2 Sun S3L Functions 83

Side Effect

Because a and b are used internally for auxiliary storage, they may be destroyed
after the deconvolution calculation is complete. If a and b must be used after the
deconvolution, they should first be copied to temporary arrays.

Syntax
The C and Fortran syntax for S3L_deconv is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_deconv accepts the following arguments as input:

■ a – Sun S3L array handle describing a parallel array that contains the convolution
of an unknown vector c with b. Its length must be at least ma+mb-1 (1D case) or
ma+mb-1 x na+nb-1 (2D case).

■ b – Sun S3L array handle describing the parallel array that contains the vector.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_deconv(a, b, c, setup_id)

S3L_array_t a
S3L_array_t b
S3L_array_t c
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_deconv(a, b, c, setup_id, ier)

integer*8 a
integer*8 b
integer*8 c
integer*4 setup_id
integer*4 ier
84 Sun S3L 4.0 Software Reference Manual • February 2003

■ setup_id – Valid convolution setup ID as returned from a previous call to
S3L_deconv_setup.

Output
S3L_deconv uses the following arguments for output:

■ c – Sun S3L array handle describing a parallel array. Its length must be at least
ma+mb-1 (1D case) or ma+mb-1 x na+nb-1 (2D case). Upon successful
completion, the results of deconvolving a will be stored in c.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_deconv returns S3L_SUCCESS.

S3L_deconv performs generic checking of the arrays it accepts as arguments. If an
array argument contains an invalid or corrupted value, the function terminates and
an error code is returned that indicates which value of the array handle was invalid.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following error codes:

■ S3L_ERR_MATCH_DTYPE – a, b, and c do not have the same data type.

■ S3L_ERR_MATCH_RANK – a, b, and c do not have the same rank.

■ S3L_ERR_ARG_RANK – The rank of an array argument is larger than 2.

■ S3L_ERR_ARG_DTYPE – The data type of one of the array arguments is invalid.
It must be one of:

■ S3L_float
■ S3L_double
■ S3L_complex
■ S3L_double_complex

■ S3L_ERR_ARG_EXTENTS – The extents of c are smaller than two times the sum of
the corresponding extents of a and b minus 1.

In addition, since S3L_fft or S3L_rc_fft is used internally to compute the
deconvolution, if the dimensions of c are not appropriate for using S3L_fft or
S3L_rc_fft, an error code indicating the unsuitability is returned. See “S3L_fft”
on page 107 and “S3L_rc_fft and S3L_cr_fft” on page 266 for more details.
Chapter 2 Sun S3L Functions 85

Examples
/opt/SUNWhpc/examples/s3l/deconv/ex_deconv.c

/opt/SUNWhpc/examples/s3l/deconv-f/ex_deconv.f

Related Functions
S3L_deconv_setup(3)

S3L_deconv_free_setup(3)

S3L_deconv_free_setup

Description
S3L_deconv_free_setup invalidates the ID specified by the setup_id argument.
This deallocates internal memory that was reserved for the deconvolution
computation represented by that ID.

Syntax
The C and Fortran syntax for S3L_deconv_free_setup is as follows:
86 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_deconv_free_setup accepts the following arguments as input:

■ setup_id – Integer value returned by a previous call to S3L_deconv_setup.

Output
S3L_deconv_free_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

Error Handling
On success, S3L_deconv_free_setup returns S3L_SUCCESS.

In addition, the following condition causes the function to terminate and return the
associated code:

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_deconv_free_setup(setup_id)

int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_deconv_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 87

Examples
/opt/SUNWhpc/examples/s3l/deconv/ex_deconv.c

/opt/SUNWhpc/examples/s3l/deconv-f/ex_deconv.f

Related Functions
S3L_deconv(3)

S3L_deconv_setup(3)

S3L_deconv_setup

Description
S3L_deconv_setup sets up the initial conditions required for computing the
deconvolution of A with B. It returns an integer setup value that can be used by
subsequent calls to S3L_deconv or S3L_deconv_free_setup.

Syntax
The C and Fortran syntax for S3L_deconv_setup is as follows:
88 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_deconv_setup accepts the following arguments as input:

■ A – Sun S3L internal array handle for the parallel array that contains the input
signal to be deconvolved.

■ B – Sun S3L internal array handle for the parallel array that contains the vector.

■ C – Sun S3L internal array handle for the parallel array that will store the
deconvolved signal.

Output
S3L_deconv_setup uses the following arguments for output:

■ setup_id – Integer value returned by this function. Use this value for the
setup_id argument in subsequent calls to S3L_deconv and
S3L_deconv_free_setup.

■ ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_deconv_setup(A, B, C, setup_id)

S3L_array_t A
S3L_array_t B
S3L_array_t C
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_deconv_setup(A, B, C, setup_id, ier)

integer*8 A
integer*8 B
integer*8 C
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 89

Error Handling
On success, S3L_deconv_setup returns S3L_SUCCESS.

S3L_deconv_setup performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions cause the function to terminate and return one
of the following error codes:

■ S3L_ERR_ARG_RANK – The rank of one of the array arguments is not 1 or 2.

■ S3L_ERR_MATCH_RANK – The array arguments are not all of the same rank.

■ S3L_ERR_MATCH_DTYPE – The array arguments are not all of the same data type.

■ S3L_ERR_ARG_EXTENTS – The extents of C are less than the corresponding
extents ext(A) - ext(B) + 1, or the extents of A are less than the corresponding
extents of B.

Examples
/opt/SUNWhpc/examples/s3l/deconv/ex_deconv.c

/opt/SUNWhpc/examples/s3l/deconv-f/ex_deconv.f

Related Functions
S3L_deconv(3)

S3L_deconv_free_setup(3)
90 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_describe

Description
S3L_describe prints information about a parallel array or a process grid to
standard output. If an array handle is supplied in argument A, the parallel array is
described. If a process grid is supplied in A, the associated process grid is described.
The info_node argument specifies the MPI rank of the process on which the
subgrid of interest is located.

If A is a Sun S3L array handle, the following are provided:

■ Information on the rank extents and the data type of the array, as well as the
starting address in memory of its subgrid.

■ A description of the underlying grid of processes to which data is mapped.

If the entire array fits on the process specified by info_node, all parts of the
S3L_describe output apply to the full array. Otherwise, some parts of the output,
such as subgrid size, will apply only to the portion of the array that is on process
info_node.

If A is a process grid handle, S3L_describe provides only a description of the
underlying grid of processes to which data is mapped.

To determine what value to enter for info_node, run MPI_Comm_rank on the
process of interest.

Syntax
The C and Fortran syntax for S3L_describe is as follows:
Chapter 2 Sun S3L Functions 91

C/C++ Syntax

F77/F90 Syntax

Input
S3L_describe accepts the following arguments as input:

■ A – May be a parallel array handle or a process grid handle.

■ info_node – Scalar integer variable that specifies the index or rank of the
process from which the information will be gathered. Note that certain array
parameters, such as the subgrid size and addresses, will vary from process to
process.

Output
S3L_describe uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_describe
returns error status in ier.

Error Handling
On success, S3L_describe returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_describe(A, info_node)

S3L_array_t A
int info_node

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_describe(A, info_node, ier)

integer*8 A
integer*4 info_node
integer*4 ier
92 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_describe performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_ARRAY – A is not a valid parallel array or process grid handle.

Examples
/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

Related Functions
MPI_Comm_rank(3)

S3L_declare(3)

S3L_declare_detailed(3)

S3L_set_process_grid(3)

S3L_dst

Description
S3L_dst computes the Discrete Sine Transform (DST) of 1D, 2D, and 3D Sun S3L
arrays. The data type of the arrays must be real (S3L_float or S3L_double).
Depending on the rank of the input array a, the following array size constraints
apply:

■ 1D – The array size must be divisible by 4 x p2, where p is the number of
processors.

■ 2D – Each of the array lengths must be divisible by 2 x p, where p is the number
of processors.
Chapter 2 Sun S3L Functions 93

■ 3D – The first dimension must be even and must have a length of at least 4. The
second and third dimensions must be divisible by 2 x p, where p is the number of
processors.

Note – When the input array a is 1D, the number of processes must be either an
even number or 1.

Notes

Efficient distribution: The S3L_dst function is more efficient when the arrays are
block-distributed along their last dimension. In all other cases, Sun S3L performs an
internal redistribution of the arrays, which may result in additional overhead.

Forward/Inverse DST: The inverse DST is the same as the forward one.

First element: The DST does not take into account the first element of an input array
(the element with index 0 in C or index 1 in F77). This means that, when performing
a forward DST followed by an inverse DST, the first element must be zero to ensure
perfect reconstruction. Otherwise, only the elements with nonzero index (C) or non-
one index (F77) will be reconstructed. This extends to multidimensional DST
transforms—elements whose index contains 0 (C) or 1 (F77) along any dimension do
not contribute to the DST and are therefore ignored in the reconstruction.

Scaling: When the forward DST of an array is followed by the inverse DST of the
array, the original array is scaled by a factor that is determined in the following
manner:

Syntax
The C and Fortran syntax for S3L_dst is as follows:

1D reconstructed array is scaled by n/2, where n is the length of the original array

2D reconstructed array is scaled by (m*n)/4, where m and n are the array extents

3D reconstructed array is scaled by (m*n*k)/4, where m, n, and k are the array extents
94 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_dst accepts the following arguments as input:

■ a – Input array whose DST is to be computed.

■ setup – Integer corresponding to DST setup as returned by S3L_dst_setup.

Output
S3L_dst uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_dst returns error
status in ier.

Error Handling
On success, S3L_dst returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_dst(a, setup)

S3L_array_t a
int setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_dst(a, setup, ier)

integer*8 a
integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 95

S3L_dst performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following condition will cause S3L_dst to terminate and return the
associated error code:

■ S3L_ERR_ARG_SETUP – Invalid setup value.

Examples
/opt/SUNWhpc/examples/s3l/dst/ex_dst1.c

/opt/SUNWhpc/examples/s3l/dst/ex_dst2.c

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst1.f

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst2.f

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst3.f

Related Functions
S3L_dst_setup(3)

S3L_dst_free_setup(3)

S3L_rc_fft(3)

S3L_dst_free_setup

Description
S3L_dst_free_setup frees all internal data structures required for the
computation of a parallel Discrete Sine Transform (DST).

Syntax
The C and Fortran syntax for S3L_dst_free_setup is as follows:
96 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_dst_free_setup accepts the following argument as input:

■ setup – Integer corresponding to a DST setup.

Output
S3L_dst_free_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_dst_free_setup returns error status in ier.

Error Handling
On success, S3L_dst_free_setup returns S3L_SUCCESS.

On error, S3L_dst_free_setup returns the following error code:

■ S3L_ERR_ARG_SETUP – Invalid setup value.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_dst_free_setup(setup)

int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_dst_free_setup(setup, ier)

integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 97

Examples
/opt/SUNWhpc/examples/s3l/dst/ex_dst1.c

/opt/SUNWhpc/examples/s3l/dst/ex_dst2.c

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst1.f

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst2.f

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst3.f

Related Functions
S3L_dst(3)

S3L_dst_setup(3)

S3L_rc_fft(3)

S3L_dst_setup

Description
S3L_dst_setup initializes internal data structures required for the computation of
a parallel Discrete Sine Transform (DST).

Note

If DST transforms will be performed on multiple arrays that all have the same data
type and extents, only one call to S3l_dst_setup is needed to support those
multiple DST transformations. In other words, the setup performed by a single call
to S3l_dst_setup could be referenced by any number of subsequent calls to
S3L_dst so long as their arrays all match the data type and extents of the array
prescribed for the setup.

Syntax
The C and Fortran syntax for S3L_dst_setup is as follows:
98 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_dst_setup accepts the following argument as input:

■ a – Input array whose DST is to be computed. The data contained in the array are
not modified.

Output
S3L_dst_setup uses the following arguments for output:

■ setup – Integer corresponding to a DST setup. This parameter can be used in any
subsequent calls to S3L_dst to perform the DST of an array whose data type and
extents are the same as those of array a.

■ ier (Fortran only) – When called from a Fortran program, S3L_dst_setup
returns error status in ier.

Error Handling
On success, S3L_dst_setup returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_dst_setup(a, setup)

S3L_array_t a
int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_dst_setup(a, setup, ier)

integer*8 a
integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 99

S3L_dst_setup performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause S3L_dst_setup to terminate and
return the associated error code:

■ S3L_ERR_ARG_RANK – The rank of a is not 1, 2, or 3.

■ S3L_ERR_ARG_NREAL – The data type of a is not real.

■ S3L_ERR_ARG_NEVEN – Some of the extents of array a are not even.

■ S3L_ERR_ARG_EXTENTS – The extents of a are not valid for the rank of a and the
number of processes over which a is distributed. The following summarizes the
rules for extents when a is 1D, 2D, or 3D:

■ S3L_ERR_NP_NEVEN – The rank of a is 1 but the total number of processes is not
even or equal to 1.

Examples
/opt/SUNWhpc/examples/s3l/dst/ex_dst1.c

/opt/SUNWhpc/examples/s3l/dst/ex_dst2.c

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst1.f

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst2.f

/opt/SUNWhpc/examples/s3l/dst-f/ex_dst3.f

Related Functions
S3L_dst(3)

S3L_dst_free_setup(3)

S3L_rc_fft(3)

1D Its length must be divisible by 4*sqr(np), where np is the number of processes
over which a is distributed.

2D Its extents must both be divisible by 2*np.

3D Its first extent must be even and its last two extents must both be divisible by
2*np.
100 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_eigen_iter

Description
S3L_eigen_iter is an iterative eigensolver that computes selected eigenpairs of
dense or sparse matrices. Users may specify eigenpairs with certain properties, such
as largest magnitude. For dense arrays, users can process multiple instances of
matrices.

Syntax
The C and Fortran syntax for S3L_eigen_iter is as follows:
Chapter 2 Sun S3L Functions 101

C/C++ Syntax

F77/F90 Syntax

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_eigen_iter(a, nev, ncv, matcode, which, vec, eig, maxitr,
tol, row_axis, col_axis, vec_axis, nev_axis, eig_axis)

S3L_array_t a
int nev
int ncv
S3L_eigen_iter_type matcode
char *which
S3L_array_t vec
S3L_array_t eig
int maxitr
void *tol
int row_axis
int col_axis
int vec_axis
int nev_axis
int eig_axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_eigen_iter(a, nev, ncv, matcode, which, vec, eig, maxitr,
tol, row_axis, col_axis, vec_axis, nev_axis, eig_axis, ier)

integer*8 a
integer*4 nev
integer*4 ncv
integer*4 matcode
character*2 which
integer*8 vec
integer*8 eig
integer*4 maxitr
<type_tol> tol
integer*4 row_axis
integer*4 col_axis
integer*4 vec_axis
integer*4 nev_axis
integer*4 eig_axis
integer*4 ier
102 Sun S3L 4.0 Software Reference Manual • February 2003

Input
S3L_eigen_iter accepts the following arguments as input:

■ a – A square Sun S3L array; it may be sparse or dense.

■ nev – Specifies the number of eigenpairs requested.

■ ncv – Specifies the number of columns in the array vec. This indicates the
number of Lanczos vectors generated at each update iteration. Increasing ncv
increases the amount of work done in each iteration and decreases the number of
iterations.

■ matcode – Specifies which solver algorithm to use, as follows:

■ When array a is symmetric, matcode must be set to S3L_EIGEN_SYM.

If the data type of a is S3L_float or S3L_double, the Lanczos solver will be
used. If a is either S3L_complex or S3L_double_complex, the Arnoldi
(general) solver will be used. In such cases, the type of eig returned will be
correspondingly S3L_complex or S3L_double_complex.

Note: When a complex Hermitian problem is being solved, the imaginary part
of the returned eigenvalues may contain small, nonzero round-off errors. These
errors should be ignored unless they are significant when compared with
eigenvalues of the largest magnitude computed.

■ When array a is asymmetric, matcode must be set to S3L_EIGEN_GEN, which
will force use of the Arnoldi solver.

■ To compute singular value decomposition, set matcode to S3L_EIGEN_SVD.

■ which – An array of two characters denoting the Ritz values to be computed. The
allowed values of which and their uses are described below:

■ When matcode is set to S3L_EIGEN_SYM or to S3L_EIGEN_SVD and the data
type of array a is either S3L_float or S3L_double, the following values can
be used:

LA – computes the nev largest (algebraic) eigenvalues.

SA – computes the nev smallest (algebraic) eigenvalues.

LM – computes the nev largest (in magnitude) eigenvalues.

SM – computes the nev smallest (in magnitude) eigenvalues.

BE – computes nev eigenvalues, half from each end of the spectrum. When
nev is odd, computes one more from the high end than from the low end.

■ When matcode is set to S3L_EIGEN_GEN or to S3L_EIGEN_SVD and the data
type of array a is either S3L_complex or S3L_double_complex, the
following values can be used:

LR – computes the nev eigenvalues with the largest real part.

SR – computes the nev eigenvalues with the smallest real part.
Chapter 2 Sun S3L Functions 103

LI – computes the nev eigenvalues with the largest imaginary part.

SI – computes the nev eigenvalues with the smallest imaginary part.

LM – computes the nev largest (in magnitude) eigenvalues.

SM – computes the nev smallest (in magnitude) eigenvalues.

■ maxitr – Specifies the maximum number of iterations.

■ tol – Specifies the tolerance value to be used in determining when convergence
has been reached. Convergence is reached when

where Ritz(i) is the approximation of the i-th eigenvalue. If tol <= 0.0, the
machine precision is used.

■ row_axis – Specifies the axis of a that counts the rows of the embedded matrix
or matrices (in the multiple-instance case). This argument is ignored for sparse
matrices.

■ col_axis – Specifies the axis of a that counts the columns of the embedded
matrix or matrices (in the multiple-instance case). This argument is ignored for
sparse matrices.

■ vec_axis – Specifies the axis of vec along which the elements of the embedded
eigenvectors lie. This argument is ignored for sparse matrices.

■ nev_axis – Specifies the axis of vec along which the embedded requested
eigenvectors lie. This argument is ignored for sparse matrices.

■ eig_axis – Specifies the axis of eig along which the elements of the embedded
eigenvalues lie. This argument is ignored for sparse matrices.

Output
S3L_eigen_iter uses the following arguments for output:

■ vec – Sun S3L array. On exit, vec contains nev eigenvectors. vec must have the
same number of rows as a and at least nev columns.

■ eig – Sun S3L array. When matcode is set to S3L_EIGEN_SYM or
S3L_EIGEN_SVD, eig contains, on exit, nev eigenvalues. When matcode is set to
S3L_EIGEN_SVD, eig contains singular values on exit.

■ ier (Fortran only) – When called from a Fortran program, S3L_eigen_iter
returns error status in ier.

|| Ax – abs(Ritz(i) x) || <= tol * abs(Ritz(i))
104 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_eigen_iter returns S3L_SUCCESS.

S3L_eigen_iter performs generic checking of the arrays it accepts as arguments.
If an array argument contains an invalid or corrupted value, the function terminates
and an error code is returned that indicates which value of the array handle was
invalid. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_MAXITER – The maximum number of iterations was exceeded.

■ S3L_ERR_EIGITER_MATCODE – The matcode argument has an invalid value.

■ S3L_ERR_EIGITER_WHICH – The which argument has an invalid value.

■ S3L_ERR_PARAM_INVALID – This error indicates one or more of the following:

Examples
/opt/SUNWhpc/examples/s3l/eigen_iter/ex_gen_sparse_z.c

/opt/SUNWhpc/examples/s3l/eigen_iter/ex_svd_dense_z.c

/opt/SUNWhpc/examples/s3l/eigen_iter/ex_sym_sparse_f.c

/opt/SUNWhpc/examples/s3l/eigen_iter-f/ex_complex.f

/opt/SUNWhpc/examples/s3l/eigen_iter-f/ex_gen.f

/opt/SUNWhpc/examples/s3l/eigen_iter-f/ex_svd_sparse.f

/opt/SUNWhpc/examples/s3l/eigen_iter-f/ex_sym.f

S3L_exit

Description
When an application is finished using Sun S3L functions, it must call S3L_exit to
perform various cleanup tasks associated with the current Sun S3L environment.

- nev and/or ncv have invalid values
- matcode = S3L_EIGEN_SVD and m x n
- matrix a has m < n.
Chapter 2 Sun S3L Functions 105

S3L_exit checks to see if the Sun S3L environment is in the initialized state, that is,
to see if S3L_init has been called more recently than S3L_exit. If not, S3L_exit
returns the error message S3L_ERR_NOT_INIT and exits.

Syntax
The C and Fortran syntax for S3L_exit is as follows.

C/C++ Syntax

F77/F90 Syntax

Input
S3L_exit takes no input arguments.

Output
When called from a Fortran program, S3L_exit returns error status in ier.

Error Handling
On successful completion, S3L_exit returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_exit()

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_exit(ier)

integer*4 ier
106 Sun S3L 4.0 Software Reference Manual • February 2003

The following condition will cause S3L_exit to terminate and return the associated
error code:

■ S3L_ERR_NOT_INIT – Sun S3L has not been initialized.

Examples
/opt/SUNWhpc/examples/s3l/dense_matrix_ops/inner_prod.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/inner_prod.f

/opt/SUNWhpc/examples/s3l/utils/copy_array.f

Related Function
S3L_init(3)

S3L_fft

Description
S3L_fft performs a simple Fast Forier Transform (FFT) on the complex parallel
array a. The same FFT operation is performed along all axes of the array.

Both power-of-two and arbitrary radix FFTs are supported. The 1D parallel FFT can
be used for sizes that are a multiple of the square of the number of processes. The 2D
and 3D FFTs can be used for arbitrary sizes and distributions.

The S3L_fft routine computes a multidimensional transform by performing a one-
dimensional transform along each axis in turn.

The sign of the twiddle factor exponents determines the direction of an FFT. Twiddle
factors with a negative exponent imply a forward transform, and twiddle factors
with positive exponents are used for an inverse transform.

For the 2D FFT, a more efficient transpose algorithm will be used if the block sizes
along each dimension are equal to the extents divided by the number of processes,
resulting in significant performance improvements.
Chapter 2 Sun S3L Functions 107

S3L_fft (and S3L_ifft) can only be used for complex and double-complex data
types. To compute a real-data forward FFT, use S3L_rc_fft. This performs a
forward FFT on the real data, yielding packed representation of the complex results.
To compute the corresponding inverse FFT, use S3L_cr_fft, which will perform an
inverse FFT on the complex data, overwriting the original real array with real-
valued results of the inverse FFT.

The floating-point precision of the result always matches that of the input.

Note – S3L_fft_detailed, S3L_fft_detailed, and S3L_ifft do not perform
any scaling. Consequently, when a forward FFT is followed by an inverse FFT, the
original data will be scaled by the product of the extents of the array.

Syntax
The C and Fortran syntax for S3L_fft is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_fft accepts the following arguments as input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fft(a, setup_id)

S3L_array_t a
int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fft(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier
108 Sun S3L 4.0 Software Reference Manual • February 2003

■ a – Parallel array that is to be transformed. Its rank, extents, and type must be the
same as the parallel array a supplied in the S3L_fft_setup call.

■ setup_id – Scalar integer variable. Use the value returned by the
S3L_fft_setup call for this argument.

Output
S3L_fft uses the following arguments for output:

■ a – The input array a is overwritten with the result of the FFT.

■ ier (Fortran only) – When called from a Fortran program, S3L_fft returns error
status in ier.

Error Handling
On success, S3L_fft returns S3L_SUCCESS.

S3L_fft performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

The following conditions will cause the function to terminate and return the
associated error code:

■ S3L_ERR_FFT_RANKGT3 – The rank of the array a is larger than 3.

■ S3L_ERR_ARG_NCOMPLEX – Array a is not of type S3L_complex or
S3L_double_complex.

■ S3L_ERR_FFT_EXTSQPROCS – Array a is 1D, but its extent is not divisible by the
square of the number of processes.

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

Examples
/opt/SUNWhpc/examples/s3l/fft/fft.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft2.c

/opt/SUNWhpc/examples/s3l/fft-f/fft.f
Chapter 2 Sun S3L Functions 109

Related Functions
S3L_fft_setup(3)

S3L_fft_free_setup(3)

S3L_ifft(3)

S3L_fft_detailed(3)

S3L_cr_fft(3)

S3L_rc_fft(3)

S3L_rc_fft_setup(3)

S3L_fft_detailed

Description
S3L_fft_detailed computes the in-place forward or inverse FFT along a specified
axis of a complex or double-complex parallel array, a. FFT direction and axis are
specified by the arguments iflag and axis, respectively. Both power-of-two and
arbitrary radix FFTs are supported. Upon completion, a is overwritten with the FFT
result.

A 1D parallel FFT can be used for array sizes that are a multiple of the square of the
number of processes. Higher-dimensionality FFTs can be used for arbitrary sizes and
distributions.

For the 2D FFT, a more efficient transpose algorithm is employed when the
blocksizes along each dimension are equal to the extents divided by the number of
processes. This yields significant performance benefits.

S3L_fft_detailed can only be used for complex and double-complex data types.
To compute a real-data forward FFT, use S3L_rc_fft. This performs a forward FFT
on the real data, yielding packed representation of the complex results. To compute
the corresponding inverse FFT, use S3L_cr_fft, which will perform an inverse FFT
on the complex data, overwriting the original real array with real-valued results of
the inverse FFT.

The floating-point precision of the result always matches that of the input.
110 Sun S3L 4.0 Software Reference Manual • February 2003

Note – S3L_fft_detailed, S3L_fft_detailed, and S3L_ifft do not perform
any scaling. Consequently, when a forward FFT is followed by an inverse FFT, the
original data will be scaled by the product of the extents of the array.

Syntax
The C and Fortran syntax for S3L_fft_detailed is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_fft_detailed accepts the following arguments as input:

■ a – Parallel array that is to be transformed. Its rank, extents, and type must be the
same as the parallel array a supplied in the S3L_fft_setup call.

■ setup_id – Scalar integer variable. Use the value returned by the
S3L_fft_setup call for this argument.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fft_detailed(a, setup_id, iflag, axis)

S3L_array_t a
int setup_id
int iflag
int axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fft_detailed(a, setup_id, iflag, axis, ier)

integer*8 a
integer*4 setup_id
integer*4 iflag
integer*4 axis
integer*4 ier
Chapter 2 Sun S3L Functions 111

■ iflag – Determines the transform direction. Set iflag to 1 for forward FFT; set
to –1 for inverse FFT.

■ axis – Determines the axis along which the FFT is to be computed.

Output
S3L_fft_detailed uses the following arguments for output:

■ a – The input array a is overwritten with the result of the FFT.

■ ier (Fortran only) – When called from a Fortran program, S3L_fft_detailed
returns error status in ier.

Error Handling
On success, S3L_fft_detailed returns S3L_SUCCESS.

S3L_fft_detailed performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and returns an error code indicating which value was
invalid. See Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

■ S3L_ERR_ARG_NCOMPLEX – Array a is not complex.

■ S3L_ERR_FFT_EXTSQPROCS – Array a is 1D, but its extent is not divisible by the
square of the number of processes.

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

■ S3L_ERR_FFT_INVIFLAG – The iflag argument is invalid.

Examples
/opt/SUNWhpc/examples/s3l/fft/fft.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft2.c

/opt/SUNWhpc/examples/s3l/fft-f/fft.f
112 Sun S3L 4.0 Software Reference Manual • February 2003

Related Functions
S3L_fft_setup(3)

S3L_fft_free_setup(3)

S3L_ifft(3)

S3L_fft(3)

S3L_cr_fft(3)

S3L_rc_fft(3)

S3L_rc_fft_setup(3)

S3L_fft_free_setup

Description
S3L_fft_free_setup deallocates internal memory associated with setup_id by a
previous call to S3L_fft_setup.

Syntax
The C and Fortran syntax for S3L_fft_free_setup is as follows:
Chapter 2 Sun S3L Functions 113

C/C++ Syntax

F77/F90 Syntax

Input
S3L_fft_free_setup accepts the following argument as input:

■ setup_id – Scalar integer variable. Use the value returned by the
S3L_fft_setup call for this argument.

Output
S3L_fft_free_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_fft_free_setup returns error status in ier.

Error Handling
On success, S3L_fft_free_setup returns S3L_SUCCESS.

The following condition will cause S3L_fft_free_setup to terminate and return
the associated error code:

■ S3L_ERR_ARG_SETUP – Invalid setup_id value

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fft_free_setup(setup_id)

int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fft_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier
114 Sun S3L 4.0 Software Reference Manual • February 2003

Examples
/opt/SUNWhpc/examples/s3l/fft/fft.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft2.c

/opt/SUNWhpc/examples/s3l/fft-f/fft.f

/opt/SUNWhpc/examples/s3l/fft-f/ex_fft1.f

Related Functions
S3L_fft_setup(3)

S3L_fft(3)

S3L_ifft(3)

S3L_fft_detailed(3)

S3L_fft_setup

Description
A call to S3L_fft_setup is the first step in executing Sun S3L Fast Fourier
Transforms. It taskes as an argument the Sun S3L handle of the parallel array a that
is to be transformed. It returns a setup value in setup_id, which is used in
subsequent calls to other Sun S3L FFT routines.

When S3L_fft_setup is called, the contents of array a can be arbitrary. The setup
routine neither examines nor modifies the contents of this parallel array. It simply
uses its size and type to create the setup object.

The setup ID computed by the S3L_fft_setup call can be used for any parallel
arrays that have the same rank, extents, and type as the a argument supplied in the
S3L_fft_setup call—but only for such parallel arrays. If a transform is to be
performed on two parallel arrays, a and b, identical in rank, extents, and type, then
one call to the setup routine suffices, even if transforms are performed on different
axes of the two parallel arrays. But if a and b differ in rank, extents, or type, a
separate setup call is required for each.
Chapter 2 Sun S3L Functions 115

More than one setup ID can be active at a time; that is, the setup routine can be
called more than once before deallocating any setup IDs. Consequently, special care
must be taken to specify the correct setup ID for calls to S3L_fft, S3L_ifft,
S3L_fft_detailed, and S3L_fft_free_setup.

The time required to compute the contents of an FFT setup_id structure is
substantially longer than the time required to actually perform an FFT. For this
reason, and because it is common to perform FFTs on many parallel variables with
the same rank, extents, and type, Sun S3L keeps the setup and transform phases
distinct.

When a is no longer needed, S3L_fft_free_setup should be called to deallocate
the FFT setup_id.

Syntax
The C and Fortran syntax for S3L_fft_setup is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_fft_setup accepts the following argument as input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fft_setup(a, setup_id)

S3L_array_t a
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fft_setup(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier
116 Sun S3L 4.0 Software Reference Manual • February 2003

■ a – Sun S3L array handle for a parallel array that will be the subject of subsequent
transform operations.

Output
S3L_fft_setup uses the following arguments for output:
■ setup_id – On output, it contains an integer value that can be used in

subsequent calls to S3L_fft, S3L_ifft, S3L_fft_detailed, and
S3L_fft_free_setup.

■ ier (Fortran only) – When called from a Fortran program, S3L_fft_setup
returns error status in ier.

Error Handling
On success, S3L_fft_setup returns S3L_SUCCESS.

S3L_fft_setup performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

The following conditions will cause S3L_fft_setup to terminate and return the
associated error code:

■ S3L_ERR_FFT_RANKGT3 – The rank of array a is larger than 3.

■ S3L_ERR_ARG_NCOMPLEX – Array a is not of type S3L_complex or
S3L_double_complex.

■ S3L_ERR_FFT_EXTSQPROCS – Array a is a 1D array, but its extent is not a
multiple of the square of the number of processes over which it was defined.

Examples
/opt/SUNWhpc/examples/s3l/fft/fft.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft2.c

/opt/SUNWhpc/examples/s3l/fft-f/fft.f

/opt/SUNWhpc/examples/s3l/fft-f/ex_fft1.f
Chapter 2 Sun S3L Functions 117

Related Functions
S3L_fft(3)

S3L_fft_free_setup(3)

S3L_ifft(3)

S3L_fft_detailed(3)

S3L_fin_fd_1D

Description
S3L_fin_fd_1D uses the fourth-order, unconditionally stable, oscillation-free finite-
difference (FD) method to solve a one-dimensional (1D) Black-Scholes partial
differential equation (PDE) in the user-specified region. It computes prices of vanilla
and several exotic stock options. It also provides optional support for hedge
statistics (“Greeks”). The types of supported exotic options are described in the list
of arguments.

Syntax
The C and Fortran syntax for S3L_fin_fd_1D is as follows:
118 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

where <type> is either float or double.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fin_fd_1D(strike_price, interest_rate, dvdnd_yield,
volatility, exercise_schedule, n_ex, dividend_schedule, n_ds,
dividends, option_charm, option_type, exercise_type, hedge_stat,
s_min, s_max, n_s, n_time, error_tol, num_iterations,
option_price, stock_price, delta, gamma, theta, vega, rho)

<type> strike_price
<type> interest_rate
<type> dvdnd_yield
<type> volatility
<type> *exercise_schedule
int n_ex
<type> *dividend_schedule
int n_ds
<type> *dividends
int option_charm
int option_type
int exercise_type
int hedge_stat
<type> s_min
<type> s_max
int n_s
int n_time
<type> *error_tol
int *num_iterations
S3L_array_t *option_price
S3L_array_t *stock_price
S3L_array_t *delta
S3L_array_t *gamma
S3L_array_t *theta
S3L_array_t *vega
S3L_array_t *rho
Chapter 2 Sun S3L Functions 119

F77/F90 Syntax

where <type> is either real*4 or real*8.

Input
S3L_fin_fd_1D accepts the following arguments as input:

■ strike_price – Input parameter specifying strike price. Must be greater than 0.

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fin_fd_1D(strike_price, interest_rate, dvdnd_yield,
volatility, exercise_schedule, n_ex, dividend_schedule, n_ds,
dividends, option_charm, option_type, exercise_type, hedge_stat,
s_min, s_max, n_s, n_time, error_tol, num_iterations,
option_price, stock_price, delta, gamma, theta, vega, rho, ier)

<type> strike_price
<type> interest_rate
<type> dvdnd_yield
<type> volatility
<type> exercise_schedule
integer*4 n_ex
<type> dividend_schedule
integer*4 n_ds
<type> dividends
integer*4 option_charm
integer*4 option_type
integer*4 exercise_type
integer*4 hedge_stat
<type> s_min
<type> s_max
integer*4 n_s
integer*4 n_time
<type> error_tol
integer*4 num_iterations
integer*8 option_price
integer*8 stock_price
integer*8 delta
integer*8 gamma
integer*8 theta
integer*8 vega
integer*8 rho
integer*4 ier
120 Sun S3L 4.0 Software Reference Manual • February 2003

■ interest_rate – Input parameter specifying interest rate. Must be greater than
0.

■ dvdnd_yield – Input parameter specifying continuous dividend yield. Must be
greater than or equal to 0.

■ volatility – Input parameter specifying stock volatility. Must be greater than
0.

■ exercise_schedule – Input parameter specifying expiration dates. All entries
in exercise_schedule must be greater than 0. The largest entry in the array is
used to set the time to maturity of the contract. If European or American options
are specified, the other entries are not used. If Bermudan options are specified, all
entries in exercise_schedule are used. Entries in exercise_schedule do
not have to be sorted.

■ n_ex – Input parameter specifying the size of exercise_schedule. Must be
greater than 0.

■ dividend_schedule – Input parameter specifying dividend dates. All entries in
dividend_schedule must be greater than 0 and less than the maximum value
in exercise_schedule. For discrete dividends, dividend_schedule should
be an array of type <type_data>. Entries in dividend_schedule do not need
to be sorted. However, the i-th element in dividend_schedule is always
associated with the i-th element in dividends.

■ n_ds – Input parameter specifying size of dividend_schedule. Must be greater
than 0.

■ dividends – Input parameter specifying dividends. All entries must be greater
than or equal to 0. For discrete dividends, dividends should be an array of type
<type_data>.

■ option_charm – Input parameter specifying option version. The allowed values
for option_charm are:

■ option_type – Input parameter specifying option type. The allowed values for
option_type are:

S3L_VANILLA For standard (vanilla) option
S3L_BINARY_CON For binary cash-or-nothing option
S3L_BINARY_AON For binary asset-or-nothing option

S3L_CALL For call option
S3L_PUT For put option
Chapter 2 Sun S3L Functions 121

■ exercise_type – Input parameter specifying option exercise type. The allowed
values for exercise_type are:

■ hedge_stat – Input parameter specifying computation of hedge statistics
(Greeks). The allowed values for hedge_stat are:

■ s_min – Input parameter specifying the minimum stock price for the range in
which the option price is computed. Must be greater than 0 and less than s_max.

■ s_max – Input parameter specifying the maximum stock price for the range in
which the option price is computed. Must be greater than 0.

■ n_s – Input parameter specifying stock price discretization. This is the number of
grid points between s_min and s_max. n_s must be even and greater than 0.

■ n_time – Input parameter specifying time discretization. This is the number of
grid points between 0 and the expiration date. Must be greater than 0.

■ error_tol – Input parameter specifying error tolerance. If a negative value is
given for error_tol, 1.0e–08 will be used in its place.

■ num_iterations – Input parameter specifying the maximum number of
iterations. If a negative value is given for num_iterations, 10000 will be used in
its place.

Output
S3L_fin_fd_1D uses the following arguments for output:

■ option_price – Sun S3L array. On exit, option_price holds option prices for
the corresponding stock prices in stock_price. option_price should have a
length of at least n_s.

■ stock_price – Sun S3L array. On exit, stock_price holds stock prices that fall
between s_min and s_max with nonuniform discretization. stock_price
should have a length of at least n_s.

■ delta – Sun S3L array. On exit, delta holds values of delta (the first derivative
of option price with respect to stock price) for the corresponding stock prices in
stock_price. If hedge_stat is not 0, delta should have a length of at least
n_s. delta is not used if hedge_stat is 0.

S3L_EUROPEAN For European option
S3L_BERMUDAN For Bermudan option
S3L_AMERICAN For American option

0 Do not compute Greeks
nonzero Compute Greeks
122 Sun S3L 4.0 Software Reference Manual • February 2003

■ gamma – Sun S3L array. On exit, gamma holds values of gamma (the second
derivative of option price with respect to stock price) for the corresponding stock
prices in stock_price. If hedge_stat is not zero, gamma should have a length
of at least n_s. If hedge_stat is zero, gamma is not used.

■ theta – Sun S3L array. On exit, theta holds values of theta (the first derivative
of option price with respect to time) for the corresponding stock prices in
stock_price. theta should have a length of at least n_s.

■ vega – Sun S3L array. On exit, vega holds values of vega (the first derivative of
option price with respect to volatility) for the corresponding stock prices in
stock_price. If hedge_stat is not zero, vega should have a length of at least
n_s. If hedge_stat is zero, vega is not used.

■ rho – Sun S3L array. On exit, rho holds values of rho (the first derivative of
option price with respect to interest rate) for the corresponding stock prices in
stock_price. If hedge_stat is not zero, rho should have a length of at least
n_s. If hedge_stat is zero, rho is not used.

■ ier (Fortran only) – When called from a Fortran program, S3L_fin_fd_1D
returns error status in ier.

Error Handling
On success, S3L_fin_fd_1D returns S3L_SUCCESS.

S3L_fin_fd_1D performs generic checking of the arrays it accepts as arguments. If
an array argument contains an invalid or corrupted value, the function terminates
and an error code is returned that indicates which value of the array handle was
invalid. See Appendix A of this manual for a detailed list of these error codes.

Examples
/opt/SUNWhpc/examples/s3l/financial/ex_fin_fd_1D.c

/opt/SUNWhpc/examples/s3l/financial-f/ex_fin_fd_1D.f

Related Function
S3L_fin_fd_2D(3)
Chapter 2 Sun S3L Functions 123

S3L_fin_fd_2D

Description
S3L_fin_fd_2D uses the fourth-order, unconditionally stable, oscillation-free finite-
difference (FD) method to solve a two-dimensional (2D) Black-Scholes partial
differential equation (PDE) in the user-specified region. It computes prices of certain
exotic stock options. It also provides optional support for hedge statistics (“Greeks”).
The types of supported exotic options are described in the list of arguments.

Syntax
The C and Fortran syntax for S3L_fin_fd_2D is as follows:
124 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

where <type> is either float or double.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fin_fd_2D(strike_price, interest_rate, dvdnd_yield,
volatility, exercise_schedule, n_ex, dividend_schedule, n_ds,
dividends, observation_schedule, n_os, option_charm,
option_type, exercise_type, hedge_stat, x_min, x_max,
n_discretization, n_time, error_tol, num_iterations,
option_price, stock_price, delta, gamma, theta, vega, rho)

<type> strike_price
<type> interest_rate
<type> dvdnd_yield
<type> volatility
<type> *exercise_schedule
int n_ex
<type> *dividend_schedule
int n_ds
<type> *dividends
<type> *observation_schedule
int n_os
int option_charm
int option_type
int exercise_type
int hedge_stat
<type> x_min[2]
<type> x_max[2]
int n_discretization[2]
int n_time
<type> *error_tol
int *num_iterations
S3L_array_t *option_price
S3L_array_t *stock_price
S3L_array_t *delta
S3L_array_t *gamma
S3L_array_t *theta
S3L_array_t *vega
S3L_array_t *rho
Chapter 2 Sun S3L Functions 125

F77/F90 Syntax

where <type> is either real*4 or real*8.

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fin_fd_2D(strike_price, interest_rate, dvdnd_yield,
volatility, exercise_schedule, n_ex, dividend_schedule, n_ds,
dividends, observation_schedule, n_os, option_charm,
option_type, exercise_type, hedge_stat, x_min, x_max,
n_discretization, n_time, error_tol, num_iterations,
option_price, stock_price, delta, gamma, theta, vega, rho, ier)

<type> strike_price
<type> interest_rate
<type> dvdnd_yield
<type> volatility
<type> exercise_schedule
integer*4 n_ex
<type> dividend_schedule
integer*4 n_ds
<type> dividends
<type> observation_schedule
integer*4 n_os
integer*4 option_charm
integer*4 option_type
integer*4 exercise_type
integer*4 hedge_stat
<type> x_min(2)
<type> x_max(2)
integer*4 n_discretization
integer*4 n_time
<type> error_tol
integer*4 num_iterations
integer*8 option_price
integer*8 stock_price
integer*8 delta
integer*8 gamma
integer*8 theta
integer*8 vega
integer*8 rho
integer*4 ier
126 Sun S3L 4.0 Software Reference Manual • February 2003

Input
S3L_fin_fd_2D accepts the following arguments as input:

■ strike_price – Input parameter specifying strike price. Must be greater than 0.

■ interest_rate – Input parameter specifying interest rate. Must be greater than
0.

■ dvdnd_yield – Input parameter specifying continuous dividend yield. Must be
greater than or equal to 0.

■ volatility – Input parameter specifying stock volatility. Must be greater than
0.

■ exercise_schedule – Input parameter specifying expiration dates. All entries
in exercise_schedule must be greater than 0. The largest entry in the array is
used to set the time to maturity of the contract. If European or American options
are specified, the other entries are not used. If Bermudan options are specified, all
entries in exercise_schedule are used. Entries in exercise_schedule do
not have to be sorted.

■ n_ex – Input parameter specifying the size of exercise_schedule. Must be
greater than 0.

■ dividend_schedule – Input parameter specifying dividend dates. All entries in
dividend_schedule must be greater than 0 and less than the maximum value
in exercise_schedule. For discrete dividends, dividend_schedule should
be an array of type <type_data>. Entries in dividend_schedule do not need
to be sorted. However, the i-th element in dividend_schedule is always
associated with the i-th element in dividends.

■ n_ds – Input parameter specifying size of dividend_schedule. Must be greater
than 0.

■ dividends – Input parameter specifying dividends. All entries must be greater
than or equal to 0. For discrete dividends, dividends should be an array of type
<type_data>.

■ observation_schedule – Input parameter specifying dates for exotic
options—that is, dates when the average or minimum/maximum value of a stock
price is sampled. All entries in observation_schedule must be greater than 0
and less than the largest value in exercise_schedule.
observation_schedule should be an array of type <type_data>. Entries in
observation_schedule do not have to be sorted.

■ n_os – Input parameter specifying the size of observation_schedule. n_os
must be greater than 0.
Chapter 2 Sun S3L Functions 127

■ option_charm – Input parameter specifying option version. The allowed value
for option_charm is:

■ option_type – Input parameter specifying option type. The allowed values for
option_type are:

■ exercise_type – Input parameter specifying option exercise type. The allowed
values for exercise_type are:

■ hedge_stat – Input parameter specifying computation of hedge statistics
(Greeks). The allowed values for hedge_stat are:

■ x_min – Input parameter specifying the minimum stock price for the range in
which the option price is computed. x_min should be a two-element array of type
<type_data>. Each value in the array must be greater than 0 and less than the
corresponding x_max.

■ x_max – Input parameter specifying the maximum stock price for the range in
which the option price is computed. x_max should be a two-element array of type
<type_data>. Each value in the array must be greater than 0.

■ n_discretization – Input parameter specifying variable discretization. This is
the number of grid points between x_min and x_max. n_discretization
should be a two-element array of integers. Each value in the array must be even
and greater than 0.

n_discretization[0] specifies stock price discretization and
n_discretization[1] specifies discretization of the second parameter—in the
case of the Asian option, for example, it specifies discretization of the average
stock price.

S3L_ASIAN_A_RT For arithmetic average rate option (also known as
fixed strike option)

S3L_CALL For call option
S3L_PUT For put option

S3L_EUROPEAN For European option
S3L_BERMUDAN For Bermudan option
S3L_AMERICAN For American option

0 Do not compute Greeks
nonzero Compute Greeks
128 Sun S3L 4.0 Software Reference Manual • February 2003

■ n_time – Input parameter specifying time discretization. This is the number of
grid points between 0 and the expiration date. Must be greater than 0.

■ error_tol – Input parameter specifying error tolerance. If a negative value is
given for error_tol, 1.0e–08 will be used in its place.

■ num_iterations – Input parameter specifying the maximum number of
iterations. If a negative value is given for num_iterations, 10000 will be used in
its place.

Output
S3L_fin_fd_2D uses the following arguments for output:

■ option_price – Sun S3L array. On exit, option_price holds option prices for
the corresponding stock prices in stock_price. option_price should have a
length of at least n_discretization[0].

■ stock_price – Sun S3L array. On exit, stock_price holds stock prices that fall
between x_min and x_max with nonuniform discretization. stock_price
should have a length of at least n_discretization[0].

■ delta – Sun S3L array. On exit, delta holds values of delta (the first derivative
of option price with respect to stock price) for the corresponding stock prices in
stock_price. If hedge_stat is not zero, delta should have a length of at least
n_discretization[0]. delta is not used if hedge_stat is zero.

■ gamma – Sun S3L array. On exit, gamma holds values of gamma (the second
derivative of option price with respect to stock price) for the corresponding stock
prices in stock_price. If hedge_stat is not zero, gamma should have a length
of at least n_discretization[0]. If hedge_stat is zero, gamma is not used.

■ theta – Sun S3L array. On exit, theta holds values of theta (the first derivative
of option price with respect to time) for the corresponding stock prices in
stock_price. theta should have a length of at least n_discretization[0].

■ vega – Sun S3L array. On exit, vega holds values of vega (the first derivative of
option price with respect to volatility) for the corresponding stock prices in
stock_price. If hedge_stat is not zero, vega should have a length of at least
n_discretization[0]. If hedge_stat is zero, vega is not used.

■ rho – Sun S3L array. On exit, rho holds values of rho (the first derivative of
option price with respect to interest rate) for the corresponding stock prices in
stock_price. If hedge_stat is not zero, rho should have a length of at least
n_discretization[0]. If hedge_stat is zero, rho is not used.

■ ier (Fortran only) – When called from a Fortran program, S3L_fin_fd_2D
returns error status in ier.
Chapter 2 Sun S3L Functions 129

Error Handling
On success, S3L_fin_fd_2D returns S3L_SUCCESS.

S3L_fin_fd_2D performs generic checking of the arrays it accepts as arguments. If
an array argument contains an invalid or corrupted value, the function terminates
and an error code is returned that indicates which value of the array handle was
invalid. See Appendix A of this manual for a detailed list of these error codes.

Examples
/opt/SUNWhpc/examples/s3l/financial/ex_fin_fd_2D.c

/opt/SUNWhpc/examples/s3l/financial-f/ex_fin_fd_2D.f

Related Function
S3L_fin_fd_1D(3)
130 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_forall

Description
S3L_forall applies a user-defined function to elements of a parallel Sun S3L array
and sets its values accordingly. Three different function types are supported. These
types are described in TABLE 2-3.

Here, <type> is one of integer*4, integer*8, real*4, real*8, complex*8, or
complex*16, and rank is the rank of the array.

For S3L_ELEM_FN1, the user function is applied to each element in the array.

For S3L_ELEM_FNN, the user function is supplied the local subgrid address and
subgrid size and iterates over subgrid elements. This form delivers the highest
performance because the looping over the elements is contained within the function
call.

For S3L_INDEX_FN, the user function is applied to each element in the subarray
specified by the triplets argument to S3L_forall. If the triplets argument is NULL
in C/C++ or has a leading value of 0 in F77/F90, the whole array is implied. The
user function may involve the global coordinates of the array element; these are
contained in the coord argument. Global coordinates of array elements are 0-based
for C programs and 1-based for Fortran programs.

TABLE 2-3 User-Defined Function Types for S3L_forall

fn_type C Prototype Fortran Interface

S3L_ELEM_FN1 void user_fn(void *elem_addr); subroutine user_fn(a)
<type> a
end user_fn

S3L_ELEM_FNN void user_fn(void *elem_addr,
int n);

subroutine user_fn(a,n)
<type> a
integer*4 n
end user_fn

S3L_INDEX_FN void user_fn(void *elem_addr,
int *coord);

subroutine user_fn(a,v coord)
<type> a
Chapter 2 Sun S3L Functions 131

Note – When a Fortran program uses triplets, the length of the first axis of the
triplets must equal the rank of the array. Failure to meet this requirement can
produce wrong results or a segmentation violation.

Note – A subgrid is the portion of the parallel array that is owned by a process. A
subarray is the portion of the parallel array that is described by a lower bound, an
upper bound, and a stride in each dimension.

Syntax
The C and Fortran syntax for S3L_forall is as follows:

C/C++ Syntax

where rank is the rank of the array.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_forall(a, user_fn, fn_type, triplets)

S3L_array_t a
void (*user_fn)()
int fn_type
int triplets[rank][3]
132 Sun S3L 4.0 Software Reference Manual • February 2003

F77/F90 Syntax

where rank is the rank of the array.

Input
S3L_forall accepts the following arguments as input:

■ a – Parallel array to which the function will be applied.

■ user_fn – Pointer to the user-defined function.

■ fn_type – Predefined value specifying the class of functions to which the
function belongs. See the Description section for a list of valid fn_type entries.

■ triplets – An integer vector that is used to restrict the function to a range of
elements. For each axis of the array, a triplet takes the form:

The stride must be positive. To apply the function to all the elements in the array,
set triplets to NULL (C/C++) or to <= 0 (F77/F90).

Output
S3L_forall uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_forall returns
error status in ier.

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_forall(a, user_fn, fn_type, triplets, ier)

integer*8 a
<external> user_fn
integer*4 fn_type
integer*4 triplets(rank,3)
integer*4 ier

inclusive lower bound

inclusive upper bound

stride
Chapter 2 Sun S3L Functions 133

Error Handling
On success, S3L_forall returns S3L_SUCCESS.

S3L_forall performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_FORALL_INVFN – User-specified function is invalid. fn_type is not
one of:

■ S3L_ELEM_FN1
■ S3L_ELEM_FNN
■ S3L_INDEX_FN

■ S3L_ERR_INDX_INVALID – fn_type is S3L_INDEX_FN and one or more of the
elements in the triplets argument has an invalid value.

Examples
/opt/SUNWhpc/examples/s3l/forall/ex_forall.c

/opt/SUNWhpc/examples/s3l/forall/ex_forall2.cc

/opt/SUNWhpc/examples/s3l/forall-f/ex_forall.f

S3L_free

Description
S3L_free deallocates the memory reserved for a parallel Sun S3L array and
undefines the associated array handle.
134 Sun S3L 4.0 Software Reference Manual • February 2003

Note – If memory was allocated for the array by the user rather than by Sun S3L,
S3L_free destroys the array handle but does not deallocate the memory. This
situation can arise when S3L_declare_detailed() is invoked with the atype
argument set to S3L_DONOT_ALLOCATE.

Syntax
The C and Fortran syntax for S3L_free is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_free accepts the following argument as input:

■ a – Handle for the parallel Sun S3L array that is to be deallocated. This handle
was returned by a previous call to S3L_declare, S3L_declare_detailed.

Output
S3L_free uses the following argument for output:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_free(a)

S3L_pgrid_t *a

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_free(a, ier)

integer*8 a
integer*4 ier
Chapter 2 Sun S3L Functions 135

■ ier (Fortran only) – When called from a Fortran program, S3L_free returns
error status in ier.

Error Handling
On success, S3L_free returns S3L_SUCCESS.

On error, S3L_free returns the following error code:

■ S3L_ERR_ARG_ARRAY – a is a NULL pointer (C/C++) or 0 (F77/F90).

Examples
/opt/SUNWhpc/examples/s3l/io/ex_print1.c

/opt/SUNWhpc/examples/s3l/io-f/ex_print1.f

Related Functions
S3L_declare(3)

S3L_declare_detailed(3)

S3L_free_process_grid

Description
S3L_free_process_grid frees the process grid handle returned by a previous call
to S3L_set_process_grid.

Syntax
The C and Fortran syntax for S3L_free_process_grid is as follows:
136 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_free_process_grid accepts the following argument as input:

■ pgrid – The process grid handle returned by a previous call to
S3L_set_process_grid.

Output
S3L_free_process_grid uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_free_process_grid returns error status in ier.

Error Handling
On success, S3L_free_process_grid returns S3L_SUCCESS.

On error, S3L_free returns the following error code:

■ S3L_ERR_PGRID_NULL – An invalid process grid argument was supplied.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_free_process_grid(pgrid)

S3L_pgrid_t *pgrid

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_free_process_grid(pgrid, ier)

integer*8 pgrid
integer*4 ier
Chapter 2 Sun S3L Functions 137

Examples
/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

Related Function
S3L_set_process_grid(3)

S3L_free_rand_fib

Description
S3L_free_rand_fib frees memory allocated to a random number generator state
table associated with a particular setup ID value.

Syntax
The C and Fortran syntax for S3L_free_rand_fib is as follows:
138 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_free_rand_fib accepts the following argument as input:

■ setup_id – Integer index that has been initialized by a call to
S3L_setup_rand_fib and is used to identify a particular state table setup.

Output
S3L_free_rand_fib uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_free_rand_fib
returns error status in ier.

Error Handling
On success, S3L_free_rand_fib returns S3L_SUCCESS.

On error, S3L_free returns the following error code:

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_free_rand_fib(setup_id)

int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_free_rand_fib(setup_id, ier)

integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 139

Examples
/opt/SUNWhpc/examples/s3l/rand_fib/rand_fib.c

/opt/SUNWhpc/examples/s3l/rand_fib-f/rand_fib.f

Related Functions
S3L_rand_fib(3)

S3L_setup_rand_fib(3)

S3L_free_sparse

Description
S3L_free_sparse deallocates the memory reserved for a sparse matrix and the
associated array handle.

Syntax
The C and Fortran syntax for S3L_free_sparse is as follows:
140 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_free_sparse accepts the following argument as input:

■ A – Handle for the parallel Sun S3L array that was allocated through a previous
call to S3L_declare_sparse, S3L_read_sparse, or S3L_rand_sparse.

Output
S3L_free_sparse uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_free_sparse
returns error status in ier.

Error Handling
On success, S3L_free_sparse returns S3L_SUCCESS.

On error, S3L_free returns the following error code:

■ S3L_ERR_ARG_ARRAY – A is a NULL pointer (C/C++) or 0 (F77/F90).

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_free_sparse(A)

S3L_array_t *A

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_free_sparse(A, ier)

integer*8 A
integer*4 ier
Chapter 2 Sun S3L Functions 141

Examples
/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse2.c

/opt/SUNWhpc/examples/s3l/iter/ex_iter.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

/opt/SUNWhpc/examples/s3l/iter-f/ex_iter.f

Related Functions
S3L_declare_sparse(3)

S3L_read_sparse(3)

S3L_rand_sparse(3)

S3L_from_ScaLAPACK_desc

Description
S3L_from_ScaLAPACK_desc converts the ScaLAPACK descriptor and subgrid
address specified by scdesc and address into a Sun S3L array handle, which is
returned in s3ldesc.

Syntax
The C and Fortran syntax for S3L_from_ScaLAPACK_desc is as follows:
142 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_from_ScaLAPACK_desc accepts the following arguments as input:

■ scdesc – ScaLAPACK descriptor for a parallel array.

■ data_type – Specifies the data type of the Sun S3L array. It must specify a data
type supported by Sun S3L.

■ address – This input argument holds the starting address of an existing array
subgrid.

Note – In Fortran programs, address should be either a pointer (see the Fortran
documentation for details) or the starting address of a local array, as determined by
the loc(3F) function.

Output
S3L_from_ScaLAPACK_desc uses the following arguments for output:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_from_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address)

S3L_array_t *s3ldesc
int *scdesc
S3L_data_type data_type
void *address

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_from_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address, ier)

integer*8 s3ldesc
integer*4 scdesc(*)
integer*4 data_type
pointer address
integer*4 ier
Chapter 2 Sun S3L Functions 143

■ s3ldesc – Sun S3L array handle that is the output of
S3L_from_ScaLAPACK_desc.

■ ier (Fortran only) – When called from a Fortran program,
S3L_from_ScaLAPACK_desc returns error status in ier.

Error Handling
On success, S3L_from_ScaLAPACK_desc returns S3L_SUCCESS.

S3L_from_ScaLAPACK_desc performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code is returned that indicates which
value of the array handle was invalid. See Appendix A of this manual for a detailed
list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_NULL – The scdesc argument is a NULL pointer (C/C++) or 0
(F77/F90).

■ S3L_ERR_NOT_SUPPORT – The ScaLAPACK descriptor data type is not supported
by Sun S3L.

■ S3L_ERR_PGRID_NOPROCS – The ScaLAPACK descriptor has an invalid BLACS
context.

Examples
/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

Related Function
S3L_to_ScaLAPACK_desc(3)
144 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_gen_band_factor

Description
S3L_gen_band_factor performs the LU factorization of an n x n general banded
array with lower bandwidth bl and upper bandwidth bu. The nonzero diagonals of
the array should be stored in a Sun S3L array a of size [2*bl+2*bu+1,n].

In the more general case, a can be a multidimensional array, where axis_r and
axis_d denote the array axes whose extents are 2*bl+2*bu+1 and n, respectively.
The format of the array a is described in the following example:

Example:

Consider a 7 x 7 (n=7) banded array with bl = 1, bu = 2. c is the main diagonal, b is
the first superdiagonal, and a the second. d is the first subdiagonal. The contents of
the composite array a used as input to S3L_gen_band_factor should have the
following organization:

Note that, items denoted by ’*’ are not referenced.

If a is two-dimensional, S3L_gen_band_factor is more efficient when axis_r is
the first axis, axis_d is the second axis, and array a is block-distributed along the
second axis. For C programs, the indices of the first and second axes are 0 and 1,
respectively. For Fortran programs, the corresponding indices are 1 and 2.

If a has more than two dimensions, S3L_gen_band_factor is most efficient when
axes axis_r and axis_d of a are local (that is, are not distributed).

* * * * * * *

* * * * * * *

* * * * * * *

* * a0 a1 a2 a3 a4

* b0 b1 b2 b3 b4 b5

c0 c1 c2 c3 c4 c5 c6

d0 d1 d2 d3 d4 d5 *
Chapter 2 Sun S3L Functions 145

Syntax
The C and Fortran syntax for S3L_gen_band_factor is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_gen_band_factor accepts the following arguments as input:

■ a – Sun S3L array handle for a real or complex parallel array of size
[1+2*bl+2*bl,n].

■ bl – Lower bandwidth of a.

■ bu – Upper bandwidth of a.

■ axis_r – Specifies the row axis along which factorization will occur.

■ axis_d – Specifies the column axis along which factorization will occur.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_band_factor(a, bl, bu, factors, axis_r, axis_d)

S3L_array_t a
int bl
int bu
int *factors
int axis_r
int axis_d

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_band_factor(a, bl, bu, factors, axis_r, axis_d, ier)

integer*4 a
integer*4 bl
integer*4 bu
integer*4 factors
integer*4 axis_r
integer*4 axis_d
integer*4 ier
146 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_gen_band_factor uses the following arguments for output:

■ a – Upon successful completion, S3L_gen_band_factor stores the factorization
results in a.

■ factors – Pointer to an internal structure that holds the factorization.

■ ier (Fortran only) – When called from a Fortran program,
S3L_gen_band_factor returns error status in ier.

Error Handling
On success, S3L_gen_band_factor returns S3L_SUCCESS.

S3L_gen_band_factor performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_DTYPE – The type of a is not real, double, complex or double
complex.

■ S3L_ERR_INDX_INVALID – bl or bu value is invalid for either of the following
reasons:

■ It is less than 0 (C/C++) or less than 1 (F77/F90).
■ It is greater than the extent of a along axis_d.

■ S3L_ERR_ARG_EXTENTS – The extent of a along axis axis_r is not equal to
2*bl+2*bu+1.

■ S3L_ERR_ARRTOOSMALL – The extents of a along axis axis_d are such that the
block size in a block distribution is less than bu + bl + 1.

■ S3L_ERR_ARG_AXISNUM – An axis argument is invalid for one of the following
reasons:

■ It is less than 0 (C/C++) or less than 1 (F77/F90).
■ It is greater than the rank of the referenced array.
■ axis_d is equal to axis_r.

■ S3L_ERR_BAND_FFAIL – The factorization could not be completed.
Chapter 2 Sun S3L Functions 147

Examples
/opt/SUNWhpc/examples/s3l/band/ex_band.c

/opt/SUNWhpc/examples/s3l/band-f/ex_band.f

Related Functions
S3L_gen_band_solve(3)

S3L_gen_band_free_factors(3)

S3L_gen_band_free_factors

Description
S3L_gen_band_free_factors frees internal memory associated with a banded
matrix factorization.

Syntax
The C and Fortran syntax for S3L_gen_band_free_factors is as follows:
148 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_gen_band_free_factors accepts the following argument as input:

■ factors – Pointer to the internal structure that will be freed.

Output
S3L_gen_band_free_factors uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_gen_band_free_factors returns error status in ier.

Error Handling
On success, S3L_gen_band_free_factors returns S3L_SUCCESS.

The following condition will cause S3L_gen_band_free_factors to terminate
and return the associated error code:

■ S3L_ERR_ARG_SETUP – The value of the factors argument is invalid.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_band_free_factors(factors)

int *factors

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_band_free_factors(factors, ier)

integer*4 factors
integer*4 ier
Chapter 2 Sun S3L Functions 149

Examples
/opt/SUNWhpc/examples/s3l/band/ex_band.c

/opt/SUNWhpc/examples/s3l/band-f/ex_band.f

Related Functions
S3L_gen_band_solve(3)

S3l_gen_band_factor(3)

S3L_gen_band_solve

Description
S3L_gen_band_solve solves a banded system whose factorization has been
computed by a prior call to S3L_gen_band_factor.

The factored banded matrix is stored in array a, whose dimensions are 2*bu + 2*bl
+ 1 x n. The right-hand side is stored in array b, whose dimensions are n x nrhs.

If a and b have more than two dimensions, axis_r and axis_d refer to those axes
of a whose extents are 2*bu + 2*bl + 1 and n, respectively. Likewise, axis_row and
axis_col refer to the axes of b with extents n and nrhs.

Array Layout Guidelines

Two-Dimensional Arrays: If a and b are two-dimensional, S3L_gen_band_solve
is more efficient when axis_r = 0, axis_d = 1, array a is block-distributed along
axis 1, axis_row = 0, axis_col = 1, and array b is block distributed along axis 0.

Note that the values cited in the previous paragraph apply to programs using the
C/C++ interface—that is, they assume zero-based array indexing. When
S3L_gen_band_solve is called from F77 or F90 applications, these values must be
increased by one. Therefore, when a and b are two-dimensional and
S3L_gen_band_solve is called by a Fortran program, the solver is more efficient
when axis_r = 1, axis_d = 2, array a is block-distributed along axis 2, axis_row
= 1, axis_col = 2 and array b is block-distributed along axis 1.
150 Sun S3L 4.0 Software Reference Manual • February 2003

When a and b are two-dimensional and nrhs is greater than 1, the size of a must be
such that n is divisible by the number of processors.

Arrays With More Than Two Dimensions: If a and b have more than two
dimensions, S3L_gen_band_solve is more efficient when axis_r and axis_d of
a and axis_row and axis_col of b are local (not distributed).

Syntax
The C and Fortran syntax for S3L_gen_band_solve is as follows:
Chapter 2 Sun S3L Functions 151

C/C++ Syntax

F77/F90 Syntax

Input
S3L_gen_band_solve accepts the following arguments as input:

■ a – Sun S3L array handle for a real or complex parallel array of size
[1+2*bl+2*bu,n].

■ bl – Lower bandwidth of a.

■ bu – Upper bandwidth of a.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_band_solve(a, bl, bu, factors, axis_r, axis_d, b,
axis_row, axis_col)

S3L_array_t a
int bl
int bu
int factors
int axis_r
int axis_d
S3L_array_t b
int axis_row
int axis_col

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_band_solve(a, bl, bu, factors, axis_r, axis_d, b,
axis_row, axis_col, ier)

integer*4 a
integer*4 bl
integer*4 bu
integer*4 factors
integer*4 axis_r
integer*4 axis_d
integer*8 b
integer*4 axis_row
integer*4 axis_col
integer*4 ier
152 Sun S3L 4.0 Software Reference Manual • February 2003

■ factors – Pointer to an internal structure that holds the factorization results.

■ axis_r – Specifies the axis of array a whose extent is 1+2*bl+2*bu+1.

■ axis_d – Specifies the axis of array a whose extent is n.

■ axis_row – Specifies the axis of array b whose extent is n.

■ axis_col – Specifies the axis of array b whose extent is nhrs.

■ b – Sun S3L array handle containing the right-hand side of the matrix equation
ax=b.

Output
S3L_gen_band_solve uses the following arguments for output:

■ b – On output, b is overwritten by the solution to the matrix equation ax=b.

■ ier (Fortran only) – When called from a Fortran program,
S3L_gen_band_solve returns error status in ier.

Error Handling
On success, S3L_gen_band_solve returns S3L_SUCCESS.

S3L_gen_band_solve performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_DTYPE – The type of a is not one of: real, double, complex or
double complex.

■ S3L_ERR_INDX_INVALID – bl or bu value is invalid for either of the following
reasons:

■ It is less than 0 (C/C++) or less than 1 (F77/F90).
■ It is greater than the extent of a along axis_d.

■ S3L_ERR_ARG_EXTENTS – The extent of a along axis axis_r is not equal to
2*bl+2*bu+1.

■ S3L_ERR_ARRTOOSMALL – The extents of a along axis axis_d are such that the
block size in a block distribution is less than bu + bl + 1.

■ S3L_ERR_ARG_AXISNUM – An axis argument is invalidfor one of the following
reasons:
Chapter 2 Sun S3L Functions 153

■ It is less than 0 (C/C++) or less than 1 (F77/F90).
■ It is greater than the rank of the referenced array.
■ axis_d is equal to axis_r.

■ S3L_ERR_MATCH_RANK – The rank of a is not the same as that of b.

■ S3L_ERR_ARG_SETUP – The factors value does not correspond to a valid setup.

■ S3L_ERR_MATCH_EXTENTS – The extents of a along axis_d do not equal the
extents of b along axis_row, or some of the other extents of a and b do not
match.

Examples
/opt/SUNWhpc/examples/s3l/band/ex_band.c

/opt/SUNWhpc/examples/s3l/band-f/ex_band.f

Related Functions
S3L_gen_band_factor(3)

S3L_gen_band_free_factors(3)

S3L_gen_iter_solve

Description
Given a general square sparse matrix A and a right-hand side vector b,
S3L_gen_iter_solve solves the linear system of equations Ax = b, using an
iterative algorithm, with or without preconditioning.

The first three arguments to S3L_gen_iter_solve are Sun S3L internal array
handles that describe the global general sparse matrix A, the rank 1 global array b,
and the rank 1 global array x.

The sparse matrix A is produced by a prior call to one of the following sparse
routines:

■ S3L_declare_sparse
■ S3L_read_sparse
■ S3L_rand_sparse
154 Sun S3L 4.0 Software Reference Manual • February 2003

■ S3L_convert_sparse

The rank 1 global arrays, b and x, have the same data type and precision as the
sparse matrix A, and both have a length equal to the order of A.

Two local rank 1 arrays, iparm and rparm, provide user control over various
aspects of S3L_gen_iter_solve behavior, including:

■ Choice of algorithm to be used.

■ Type of preconditioner to use on A.

■ Flags to select the initial guess to the solution.

■ Maximum number of iterations to be taken by the solver.

■ If restarted GMRES algorithm is chosen, selection of the size of the Krylov
subspace.

■ Tolerance values to be used by the stopping criterion.

■ If the Richardson algorithm is chosen, selection of the scaling factor to be used.

iparm is an integer array and rparm is a real array. The options supported by these
arguments are described in the subsections titled: “Algorithm,” “Preconditioning,”
“Convergence/Divergence Criteria,” “Initial Guess,” “Maximum Iterations,”
“Krylov Subspace,” “Stopping-Criterion Tolerance,” and “Richardson Scaling
Factor.” The “Iteration Termination” subsection identifies the conditions under
which S3L_gen_iter_solve will terminate an operation.

Note – iparm and rparm must be preallocated and initialized before
S3L_gen_iter_solve is called. To enable the default condition for any parameter,
set it to 0. Otherwise, initialize iparm and rparm with the appropriate parameter
values, as described in the following subsections.

Algorithm

S3L_gen_iter_solve attempts to solve Ax = b using one of the following iterative
solution algorithms. The choice of algorithm is determined by the value supplied for
the parameter iparm[S3L_iter_solver]. The various options available for this
parameter are listed and described in TABLE 2-4.

TABLE 2-4 iparm[S3L_iter_solver] Options

Option Description

S3L_bcgs BiConjugate Gradient Stabilized (Bi-CGSTAB)

S3L_cgs Conjugate Gradient Squared (CGS)

S3L_cg Conjugate Gradient (CG)
Chapter 2 Sun S3L Functions 155

Preconditioning

S3L_gen_iter_solve implements left preconditioning. That is, preconditioning is
applied to the linear system Ax = b by:

where Q is the preconditioner and Q-1 denotes the inverse of Q. The supported
preconditioners are listed in TABLE 2-5.

S3L_cr Conjugate Residuals (CR)

S3L_gmres Generalized Minimum Residual (GMRES) – default

S3L_qmr Quasi-Minimal Residual (QMR)

S3L_richardson Richardson method

Q-1 A = Q-1 b

TABLE 2-4 iparm[S3L_iter_solver] Options (Continued)

Option Description
156 Sun S3L 4.0 Software Reference Manual • February 2003

Convergence/Divergence Criteria

The iparm[S3L_iter_conv] parameter selects the criterion to be used for
stopping computation. Currently, the single valid option for this parameter is
S3L_r0, which selects the default criterion for both convergence and divergence.
The convergence criterion is satisfied when:

err = ||rj||_2 / ||r0||_2 < epsilon

and the divergence criterion is met when:

err = ||rj||_2 / ||r0||_2 > 10000.0

where:

■ rj and r0 are the residuals obtained at iterations j and 0.
■ ||.||_2 is the 2-norm.
■ epsilon is the desired convergence tolerance stored in rparm[S3L_iter_tol].
■ 10000.0 is the divergence tolerance, which is set internally in the solver.

Initial Guess

The parameter iparm[S3L_iter_init] determines the contents of the initial
guess for the solution of the linear system as follows:

■ 0 – Applies zero as the initial guess. This is the default.

■ 1 – Applies the value contained in array x as the initial guess. For this case, the
user must initialize x before calling S3L_gen_iter_solve.

TABLE 2-5 iparm[S3L_iter_pc] Options

Option Description

S3L_none No preconditioning will be done (default).

S3L_jacobi Point Jacobi preconditioner will be used. Note that this option is
not supported when the sparse matrix A is represented under
S3L_SPARSE_VBR format.

S3L_bjacobi Block Jacobi preconditioner will be used. Note that this option is
supported only when the sparse matrix A is represented under
S3L_SPARSE_VBR format.

S3L_ilu Use a simplified ILU(0); the Incomplete LU factorization of
level- zero preconditioner. This preconditioner modifies only
diagonal nonzero elements of the matrix. Note that this option is
not supported when the sparse matrix A is represented under
S3L_SPARSE_VBR format.
Chapter 2 Sun S3L Functions 157

Maximum Iterations

On input, the iparm[S3L_iter_maxiter] parameter specifies the maximum
number of iterations to be taken by the solver. Set to 0 to select the default, which is
10000.

On output, iparm[S3L_iter_maxiter] contains the total number of iterations
taken by the solver at the time of termination.

Krylov Subspace

If the restarted GMRES algorithm is selected, iparm[S3L_iter_kspace] specifies
the size of the Krylov subspace to be used. The default is 30.

Stopping-Criterion Tolerance

On input, rparm[S3L_iter_tol] specifies the tolerance values to be used by the
stopping criterion. Its default is 10-8.

On output, rparm[S3L_iter_tol] contains the computed error, err, according to
the convergence criteria. See the iparm[S3L_iter_conv] description for details.

Richardson Scaling Factor

If the Richardson method is selected, rparm[S3L_rich_scale] specifies the
scaling factor to be used. The default value is 1.0.

Iteration Termination

S3L_gen_iter_solve terminates the iteration when one of the following
conditions is met:

■ The computation has satisfied the convergence criterion.
■ The computation has diverged.
■ An algorithmic breakdown has occurred.
■ The number of iterations has exceeded the supplied value.

Syntax
The C and Fortran syntax for S3L_gen_iter_solve is as follows:
158 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
S3L_gen_iter_solve accepts the following arguments as input:

■ A – Sun S3L internal array handle for the global general sparse matrix. The matrix
data type can be real or complex (single- or double-precision).

■ b – Global array of rank 1, with the same data type and precision as A and x and
a length equal to the order of the sparse matrix. b contains the right-hand side
vector of the linear problem.

■ x – Global array of rank 1, with the same data type and precision as A and b and
a length equal to the order of the sparse matrix. On input, x may contain the
initial guess for the solution to the linear system. Upon completion, x contains the
converged solution (see the Output section).

■ iparm – Integer local array of rank 1 and length s3l_iter_iparm_size. On
input, iparm options have the following uses:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_iter_solve(A, b, x, iparm, rparm)

S3L_array_t A
S3L_array_t b
S3L_array_t x
int *iparm
<type> *rparm

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_iter_solve(A, b, x, iparm, rparm, ier)

integer*8 A
integer*8 b
integer*8 x
integer*4 iparm(*)
<type> rparm(*)
integer*4 ier
Chapter 2 Sun S3L Functions 159

■ iparm[S3l_iter_solver] – Specifies the iterative algorithm to be used. Set
it to 0 to use the default solver GMRES. See the Description section for details.

■ iparm[S3l_iter_pc] – Specifies the preconditioner to be used. Set it to 0 to
use the default option, S3L_none.

■ iparm[S3l_iter_conv] – Selects the criterion to be used for stopping the
computation.

■ iparm[S3l_iter_init] – Specifies the contents of the initial guess to the
solution of the linear system.

■ iparm[S3l_iter_maxiter] – Specifies the maximum number of iterations
to be taken by the solver.

■ iparm[S3l_iter_kspace] – Specifies the size of the Krylov subspace for
restarted GMRES.

■ rparm – Real local array with the same precision as x and a length equal to
S3L_iter_rparm_size. On input, it provides the following options for
computing all or part of the matrix U.

■ rparm[S3l_iter_tol] – Specifies the tolerance values to be used by the
stopping criterion. It has a default of 10-8.

■ rparm[S3l_rich_scale] – Specifies the scaling factor to be used in the
Richardson method. The default is 1.0.

Output
S3L_gen_iter_solve uses the following arguments for output:

■ x – Upon successful completion, x contains the converged solution. If the
computation breaks down or diverges, x will contain the solution produced by
the most recent iteration.

■ iparm[S3L_iter_maxiter] – On output, contains the total number of
iterations taken by the solver at the time of termination.

■ rparm[S3L_iter_tol] – On output, contains the computed error, err,
according to the convergence criteria. See the iparm[S3L_iter_conv]
description for details.

■ ier (Fortran only) – When called from a Fortran program,
S3L_gen_iter_solve returns error status in ier.

Error Handling
On success, S3L_gen_iter_solve returns S3L_SUCCESS.
160 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_gen_iter_solve performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

On error, it returns one of the following codes, which are organized by error type.

Input Errors
■ S3L_ERR_ARG_NULL – Invalid array x or b or sparse matrix A. They all must be

preallocated Sun S3L arrays or sparse matrix.

■ S3L_ERR_ARRNOTSQ – Invalid matrix size. Matrix A must be square.

■ S3L_ERR_ARG_DTYPE – Invalid data type. The data type of matrix A must be real
or complex (single- or double-precision).

■ S3L_ERR_ARG_RANK – Invalid rank for arrays x and b. Both must be rank 1
arrays.

■ S3L_ERR_MATCH_DTYPE – x, b, and A do not have the same data type.

■ S3L_ERR_MATCH_EXTENTS – The lengths of x and b do not match the size of
sparse matrix A. Both must be equal to the order of A.

■ S3L_ERR_PARAM_INVALID – Invalid input for iparm or rparm. Both must be
preallocated and initialized with the predefined values described in the
Description section or set to 0 for the default value.

■ S3L_ERR_PC_INVALID – Invalid input for preconditioner. Option S3L_bjacobi
is valid only if sparse matrix A is represented under S3L_SPARSE_VBR.

Computational Errors
■ S3L_ERR_ILU_ZRPVT – A zero pivot was encountered during ILU

preconditioning.

■ S3L_ERR_JACOBI_ZRDIAG – A zero pivot was encountered during Jacobi
preconditioning.

■ S3L_ERR_DIVERGE – Computation has diverged.

■ S3L_ERR_ITER_BRKDWN – A breakdown has occurred.

■ S3L_ERR_MAXITER – The number of iterations has exceeded the value supplied
in iparm[S3L_iter_maxiter].

Examples
/opt/SUNWhpc/examples/s3l/iter/ex_iter.c
Chapter 2 Sun S3L Functions 161

/opt/SUNWhpc/examples/s3l/iter-f/ex_iter.f

Related Functions
S3L_declare_sparse(3)

S3L_read_sparse(3)

S3L_rand_sparse(3)

S3L_gen_lsq

Description
If m >= n, S3L_gen_lsq finds the least-squares solution to an overdetermined
system. That is, it solves the least-squares problem:

On output, the first n rows of B hold the least-squares solution X.

If m < n, S3L_gen_lsq finds the minimum norm solution to an underdetermined
system:

On output, B holds the minimum norm solution X.

Syntax
The C and Fortran syntax for S3L_gen_lsq is as follows:

minimize || B - A*X ||

A * X = B(1:m,:)
162 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_gen_lsq accepts the following arguments as input:

■ A – Sun S3L array handle that describes a parallel array of dimensions m x n. On
output, its contents may be destroyed.

■ B – Sun S3L array handle that describes a parallel array of dimensions max(m,n) x
nrhs. On output, its contents may be destroyed.

■ axis1 – If A and B have more than two dimensions, axis1 denotes the
dimension of A with extent m. Otherwise, it has to be 0 for C/C++ programs or
1 for F77/F90 programs.

■ axis2 – If A and B have more than two dimensions, axis2 denotes the
dimension of A with extent n. Otherwise, it has to be 0 for C/C++ programs or 1
for F77/F90 programs.

Output
S3L_gen_lsq uses the following arguments for output:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_lsq(A, B, axis1, axis2)

S3L_array_t A
S3L_array_t B
int axis1
int axis2

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_lsq(A, B, axis1, axis2, ier)

integer*8 A
integer*8 B
integer*4 axis1
integer*4 axis2
integer*4 ier
Chapter 2 Sun S3L Functions 163

■ B – On output, B is overwritten by the result of the least-squares problem.

■ ier (Fortran only) – When called from a Fortran program, S3L_gen_lsq returns
error status in ier.

Error Handling
On success, S3L_gen_lsq returns S3L_SUCCESS.

S3L_gen_lsq checks the validity of the array arguments. If an array argument is
found to be corrupted or invalid, an error code is returned. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code.

■ S3L_ERR_ARG_AXISNUM – An axis argument is invalid for one of the following
reasons:

■ It is less than 0 (C/C++) or less than 1 (F77/F90).
■ It is greater than the rank of the referenced array.
■ axis1 is equal to axis2.

■ S3L_ERR_MATCH_DTYPE – The array arguments are not all of the same data type,
as required.

■ S3L_ERR_MATCH_RANK – Corresponding ranks of the array arguments do not
match.

■ S3L_ERR_MATCH_EXTENTS – The extents of the arrays are not compatible.

■ S3L_ERR_ARG_DTYPE – The array arguments are not float or double, complex, or
double-precision complex.

Examples
/opt/SUNWhpc/examples/s3l/lsq/ex_lsq.c

/opt/SUNWhpc/examples/s3l/lsq-f/ex_lsq.f
164 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_gen_svd

Description
S3L_gen_svd computes the singular value of a parallel array A and, optionally, the
right singular vector and/or the left singular vector. On exit, S contains the singular
values. If requested, U and V contain the left and right singular vectors, respectively.

If A, U, and V are two-dimensional arrays, S3L_gen_svd is more efficient when A, U,
and V are allocated on the same process grid and the same block size is used along
both axes. When A, U, and V have more than two dimensions, S3L_gen_svd is more
efficient when axis_r, axis_c, and axis_s are local (that is, are not distributed).

Syntax
The C and Fortran syntax for S3L_gen_svd is as follows:
Chapter 2 Sun S3L Functions 165

C/C++ Syntax

F77/F90 Syntax

Input
S3L_gen_svd accepts the following arguments as input:

■ A – Sun S3L array handle describing a parallel array of type S3L_double or
S3L_float. In the 2D case, A is an m x n array. If A has more than two
dimensions, axis_r and axis_c correspond to the axes of A whose extents are
m and n, respectively.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_svd(A, U, S, V, jobu, jobv, axis_r, axis_c, axis_s)

S3L_array_t A
S3L_array_t U
S3L_array_t S
S3L_array_t V
char jobu
char jobv
int axis_r
int axis_c
int axis_s

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_svd(A, U, S, V, jobu, jobv, axis_r, axis_c, axis_s, ier)

integer*8 A
integer*8 U
integer*8 S
integer*8 V
character*1 jobu
character*1 jobv
integer*4 axis_r
integer*4 axis_c
integer*4 axis_s
integer*4 ier
166 Sun S3L 4.0 Software Reference Manual • February 2003

■ U – If jobu = V, U is a parallel array of dimensions m x min(m,n). Otherwise, U is
not referred to. If U has more than two dimensions, axis_r and axis_c
correspond to the axes of U whose extents are m and n, respectively. On output, U
is overwritten with the left singular vectors.

■ S – Sun S3L array handle describing a parallel array (vector) of length min(m,n).
If S is multidimensional, axis_s corresponds to the axis of S whose extent is
min(m,n).

■ V – If jobu = V, this is a Sun S3L array handle describing a parallel array of
dimensions min(m,n) x n. Otherwise, V is not referenced. If V has more than two
dimensions, axis_r and axis_c correspond to the axes of V whose extents are
m and n, respectively. On output, V is overwritten with the right singular vectors.

■ jobu – Specifies options for computing all or part of the matrix U, as follows:

■ jobu = V – The first min(m,n) columns of U (the left singular vectors) are
returned in the array U.

■ jobu = N – No columns of U (no left singular vectors) are computed.

■ jobv – Specifies options for computing all or part of the matrix V, as follows:

■ jobv = V – The first min(m,n) rows of V (the right singular vectors) are
returned in the array V.

■ jobv = N – No rows of V (no right singular vectors) are computed.

■ axis_r – This is the axis of arrays A, U, and V such that the extent of array A
along axis_r is m, the extent of array U along axis_r is m, and the extent of
array V along axis_r is min(m,n).

■ axis_c – This is the axis of arrays A, U, and V such that the extent of array A
along axis_c is n, the extent of array U along axis_c is min(m,n), and the extent
of array V along axis_c is n.

■ axis_s – This is the axis of array S along which the length is equal to min(m,n).

Output
S3L_gen_svd uses the following arguments for output:

■ U – On output, U is overwritten with the left singular vectors.
■ S – On output, S is overwritten with the singular values.
■ V – On output, V is overwritten with the right singular vectors.
■ ier (Fortran only) – When called from a Fortran program, S3L_gen_svd returns

error status in ier.

Error Handling
On success, S3L_gen_svd returns S3L_SUCCESS.
Chapter 2 Sun S3L Functions 167

S3L_gen_svd performs generic checking of the arrays it accepts as arguments. If an
array argument contains an invalid or corrupted value, the function terminates and
an error code is returned that indicates which value of the array handle was invalid.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_AXISNUM – An axis argument is invalid for one of the following
reasons:

■ It is less than 0 (C/C++) or less than 1 (F77/F90).
■ It is greater than the rank of the referenced array.
■ axis_r is equal to axis_c.

■ S3L_ERR_MATCH_DTYPE – The array arguments are not all of the same data type,
as required.

■ S3L_ERR_MATCH_RANK – Corresponding ranks of the array arguments do not
match.

■ S3L_ERR_MATCH_EXTENTS – The extents of the arrays are not compatible.

■ S3L_ERR_ARG_DTYPE – The data types of the array arguments are not float or
double.

■ S3L_ERR_ARG_OP – jobv is not one of V or N.

■ S3L_ERR_SVD_FAIL – The svd algorithm failed to converge.

Examples
/opt/SUNWhpc/examples/s3l/svd/ex_svd.c

/opt/SUNWhpc/examples/s3l/svd-f/ex_svd.f

S3L_gen_trid_factor

Description
S3L_gen_trid_factor factors a tridiagonal matrix, whose diagonal is stored in
vector D. The first upper subdiagonal is stored in U, and the first lower subdiagonal
in L.
168 Sun S3L 4.0 Software Reference Manual • February 2003

On return, the integer factors contains a pointer to an internal setup structure that
holds the factorization. Subsequent calls to S3L_gen_trid_solve use the value in
factors to access the factorization results.

The contents of the vectors D, U, and L may be altered. These altered vectors, along
with the factors parameter, have to be passed to a subsequent call to
S3L_gen_trid_solve to produce the solution to a tridiagonal system.

D, U, and L must have the same extents and type. If they are one-dimensional, all
three must be of length n. The first n–1 entries of U contain the elements of the
superdiagonal. The last n–1 entries of L contain the elements of the first subdiagonal.
The last element of U and the first element of L are not referenced and can be
initialized arbitrarily.

If D, U, and L have more than one dimension, axis_d is the axis along which the
multidimensional arrays are factored. If they are one-dimensional, axis_d must be
0 in C/C++ programs and 1 in F77/F90 programs.

S3L_gen_trid_factor is based on the ScaLAPACK routines pxdttrf, where x is
single, double, complex, or double complex. It does no pivoting; consequently, the
matrix has to be positive definite for the factorization to be stable.

For one-dimensional arrays, the routine is more efficient when D, U, and L are block-
distributed. For multiple dimensions, the routine is more efficient when axis_d is a
local axis.

Syntax
The C and Fortran syntax for S3L_gen_trid_factor is as follows:
Chapter 2 Sun S3L Functions 169

C/C++ Syntax

F77/F90 Syntax

Input
S3L_gen_trid_factor accepts the following arguments as input:

■ D – Vector containing the diagonal for the matrix being factored.
■ U – Vector containing the first upper diagonal for the matrix being factored.
■ L – Vector containing the first lower diagonal for the matrix being factored.
■ axis_d – When D, U, and L are one-dimensional, axis_d must be 0 (C/C++

programs) or 1 (F77/F90 programs). For multidimensional arrays, axis_d
specifies the axis along which the arrays are factored.

Output
S3L_gen_trid_factor uses the following arguments for output:

■ D – On output, D is overwritten with the partial result of the factorization.

■ U – On output, U is overwritten with the partial result of the factorization.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_trid_factor(D, U, L, factors, axis_d)

S3L_array_t D
S3L_array_t U
S3L_array_t L
int *factors
int axis_d

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_trid_factor(D, U, L, factors, axis_d, ier)

integer*8 D
integer*8 U
integer*8 L
integer*4 factors
integer*4 axis_d
integer*4 ier
170 Sun S3L 4.0 Software Reference Manual • February 2003

■ L – On output, L is overwritten with the partial result of the factorization.

■ factors – Upon completion, factors points to the internal data structure
containing the factorization results.

■ ier (Fortran only) – When called from a Fortran program,
S3L_gen_trid_factor returns error status in ier.

Error Handling
On success, S3L_gen_trid_factor returns S3L_SUCCESS.

S3L_gen_trid_factor performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_MATCH_DTYPE – The arrays are not the same data type.

■ S3L_ERR_MATCH_RANK – The arrays do not have the same rank.

■ S3L_ERR_MATCH_EXTENTS – The arrays do not have the same extents.

■ S3L_ERR_ARG_DTYPE – The array type cannot be operated on by the routine
because it is either integer or long long.

■ S3L_ERR_ARRTOOSMALL – The array extent is too small, making the length of the
main diagonal less than two times the number of processes.

■ S3L_ERR_ARG_AXISNUM – An axis argument is invalid; that is, it is either:

■ Less than 0 (C/C++) or less than 1 (F77/F90).
■ Greater than the rank of the referenced array.

■ S3L_ERR_FACTOR_FAIL – The tridiagonal matrix could not be factored for some
reason. For example, it might not be diagonally dominant.

Examples
/opt/SUNWhpc/examples/s3l/trid/ex_trid.c

/opt/SUNWhpc/examples/s3l/trid-f/ex_trid.f

Related Functions
S3L_gen_trid_solve(3)
Chapter 2 Sun S3L Functions 171

S3L_gen_trid_free_factors(3)

S3L_gen_trid_free_factors

Description
S3L_gen_trid_free_factors frees the internal memory setup that was reserved
by a prior call to S3L_gen_trid_factor. The factors argument contains the
value returned by the earlier S3L_gen_trid_factor call.

Syntax
The C and Fortran syntax for S3L_gen_trid_free_factors is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_gen_trid_free_factors accepts the following argument as input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_trid_free_factors(factors)

int *factors

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_trid_free_factors(factors, ier)

integer*4 factors
integer*4 ier
172 Sun S3L 4.0 Software Reference Manual • February 2003

■ factors – Pointer to the internal structure that will be freed.

Output
S3L_gen_trid_free_factors uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_gen_trid_free_factors returns error status in ier.

Error Handling
On success, S3L_gen_trid_free_factors returns S3L_SUCCESS.

The following condition will cause S3L_gen_trid_free_factors to terminate
and return the associated error code:

■ S3L_ERR_ARG_SETUP – The factors value is invalid.

Examples
/opt/SUNWhpc/examples/s3l/trid/ex_trid.c

/opt/SUNWhpc/examples/s3l/trid-f/ex_trid.f

Related Functions
S3L_gen_trid_solve(3)

S3L_gen_trid_factor(3)

S3L_gen_trid_solve

Description
S3L_gen_trid_solve solves a tridiagonal system that has been previously
factored through a call to S3L_gen_trid_factor.
Chapter 2 Sun S3L Functions 173

If D, U, and L are of length n, B (the right-hand side of the tridiagonal system) must
be of size n x nrhs. If D, U, and L are multidimensional, axis_d is the axis along
which the system is solved. The rank of B must be one greater than the rank of D, U,
and L.

If the rank of B is greater than 2, row_b and col_b specify the axes whose
dimensions are n and nrhs, respectively. The extents of all other axes must be the
same as the corresponding axes of D, U, and L.

When computing multiple tridiagonal systems in which only the right-hand-side
matrix changes, the factorization routine S3L_gen_trid_factor need only be
called once, before the first call to S3l_gen_trid_solve. Then,
S3L_gen_trid_solve can be called repeatedly without calling
S3L_gen_trid_factor again.

Syntax
The C and Fortran syntax for S3L_gen_trid_solve is as follows:
174 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_gen_trid_solve accepts the following argument as input:

■ D – Vector containing the diagonal for the matrix being factored.

■ U – Vector containing the first upper subdiagonal for the matrix being factored.

■ L – Vector containing the first lower subdiagonal for the matrix being factored.

■ factors – Pointer to an internal structure that holds the factorization results.

■ B – The right-hand side of the tridiagonal system to be solved.

■ axis_d – When D, U, and L are one-dimensional, axis_d must be 0 (C/C++
programs) or 1 (F77/F90 programs). For multidimensional arrays, axis_d
specifies the axis along which factorization was carried out.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_trid_solve(D, U, L, factors, B, axis_d, row_b, col_b)

S3L_array_t D
S3L_array_t U
S3L_array_t L
int factors
S3L_array_t B
int axis_d
int row_b
int col_b

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_trid_solve(D, U, L, factors, B, axis_d, row_b, col_b, ier)

integer*8 D
integer*8 U
integer*8 L
integer*4 factors
integer*8 B
integer*4 axis_d
integer*4 row_b
integer*4 col_b
integer*4 ier
Chapter 2 Sun S3L Functions 175

■ row_b – Indicates the row axis of the right-hand-side array, B. The value of row_b
depends on the following:

■ When B is two-dimensional and its sides are n x nrhs, row_b is 0 (C/C++) or
1 (F77/F90).

■ When B is two-dimensional and its sides are nrhs x n, row_b is 1 (C/C++) or
2 (F77/F90).

■ When B has more than two dimensions, row_b identifies the side of B with an
extent of n. For C/C++ programs, the row_b value is zero-based and for
F77/F90 programs, it is one-based.

■ col_b – Indicates the column axis of the right-hand-side array, B, that has an
extent of nrhs. The value of col_b is determined as follows:

■ When B is two-dimensional and its sides are n x nrhs, col_b is 1 (C/C++) or
2 (F77/F90).

■ When B is two-dimensional and its sides are nrhs x n, col_b is 0 (C/C++) or
1 (F77/F90).

■ When B has more than two dimensions, col_b identifies the side of B with an
extent of nhrs. For C/C++ programs, the col_b value is zero-based and for
F77/F90 programs, it is one-based.

Output
S3L_gen_trid_solve uses the following arguments for output:

■ B – On output, B is overwritten with the solution to the tridiagonal system.

■ ier (Fortran only) – When called from a Fortran program,
S3L_gen_trid_solve returns error status in ier.

Error Handling
On success, S3L_gen_trid_solve returns S3L_SUCCESS.

S3L_gen_trid_solve performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code.

■ S3L_ERR_MATCH_DTYPE – The arrays are not the same data type.

■ S3L_ERR_MATCH_RANK – The arrays do not have compatible rank.
176 Sun S3L 4.0 Software Reference Manual • February 2003

■ S3L_ERR_MATCH_EXTENTS – The arrays do not have compatible extents.

■ S3L_ERR_ARG_DTYPE – The array type cannot be operated on by the routine
because it is either integer or long long.

■ S3L_ERR_ARRTOOSMALL – The array extent is too small, making the length of the
main diagonal less than two times the number of processes.

■ S3L_ERR_ARG_AXISNUM – An axis argument is invalidfor one of the following
reasons:

■ It is less than 0 (C/C++) or less than 1 (F77/F90).
■ It is greater than the rank of the referenced array.
■ row_b is equal to col_b.

■ S3L_ERR_ARG_SETUP – The factors value does not correspond to a valid setup.

Examples
/opt/SUNWhpc/examples/s3l/trid/ex_trid.c

/opt/SUNWhpc/examples/s3l/trid-f/ex_trid.f

Related Functions
S3L_gen_trid_factor(3)

S3L_gen_trid_free_factors(3)

S3L_get_attribute

Description
S3L_get_attribute returns a requested attribute of a Sun S3L dense array or
sparse matrix. The user specifies one of a set of predefined req_attr values and, on
return, the integer value of the requested attribute is stored in attr. For attributes
associated with array axes—such as the extents or blocksizes of an array—the user
specifies the axis as well.

The req_attr entry must be one of the following:

■ S3L_ELEM_TYPE – Retrieves in attr the Sun S3L type of the elements of a Sun
S3L dense array or sparse matrix as they are defined in s3l-c.h or s3l-f.h.
Chapter 2 Sun S3L Functions 177

■ S3L_ELEM_SIZE – Retrieves in attr the size (in bytes) of the elements of a Sun
S3L dense array or sparse matrix.

■ S3L_RANK – Retrieves in attr the rank (number of dimensions) of a Sun S3L
dense array or sparse matrix.

■ S3L_EXTENT – If a is a Sun S3L array handle, S3L_EXTENT retrieves in attr the
extent of a Sun S3L dense array or sparse matrix along the dimension given in
axis. If a is a Sun S3L process grid handle, it returns in attr the number of
processes over which a given axis of an array is distributed.

■ S3L_BLOCK_SIZE – Retrieves in attr the block size of the block-cyclic
distribution of a Sun S3L dense array along the dimension given in axis.

■ S3L_BLOCK_START – Retrieves in attr the index of the starting process of the
block-cyclic distribution of a Sun S3L dense array along the dimension given in
axis.

■ S3L_SGRID_SIZE – Retrieves in attr the subgrid size of the block-cyclic
distribution of a Sun S3L dense array along the dimension given in axis.

■ S3L_AXIS_LOCAL – Assigns 0 to attr if the axis is not distributed and 1 if it is.

■ S3L_SGRID_ADDRESS – Returns in attr the starting address of the local subgrid
(local per-process part) of a Sun S3L dense array.

■ S3L_MAJOR – If a is a Sun S3L dense array, S3L_MAJOR returns in attr the
majorness of the elements in the local part of the array. It can be either
S3L_MAJOR_ROW (C major) or S3L_MAJOR_COLUMN (F77 major). If a is a Sun S3L
process grid descriptor, it returns in attr the majorness (F77 or C) of the internal
process grid associated with a Sun S3L process grid.

■ S3L_ALLOC_TYPE – Returns in attr one of the predefined allocation types for
dense Sun S3L arrays. The user can use this option to determine, for example,
whether the array has been allocated in shared memory, whether the local (per-
process) parts of the array are 64-byte aligned, and so forth.

■ S3L_SHARED_ADDR – For dense Sun S3L arrays that have been allocated in shared
memory (single SMP case), S3L_SHARED_ADDR returns in attr the global
starting address of the array. All processes can directly access all elements of such
arrays without the need for explicit interprocess communication.

■ S3L_PGRID_DESC – Returns in attr the process grid descriptor associated with
a Sun S3L dense array or sparse matrix.

■ S3L_SCALAPACK_DESC – For 1D and 2D Sun S3L dense arrays,
S3L_SCALAPACK_DESC returns in attr the ScaLAPACK array descriptor
associated with the distribution of that array.

■ S3L_SPARSE_FORMAT – For a Sun S3L sparse matrix, S3L_SPARSE_FORMAT
returns in attr the sparse format in which the matrix is stored.

■ S3L_NONZEROS – For a Sun S3L sparse matrix, S3L_NONZEROS returns in attr
the number of nonzero elements of that matrix.
178 Sun S3L 4.0 Software Reference Manual • February 2003

Note – The following six attribute entries only work for matrices stored under the
S3L_SPARSE_COO or S3L_SPARSE_CSR format. The internal distribution schemes
for matrices stored under S3L_SPARSE_CSC and S3L_SPARSE_VBR formats may
change in the future.

■ S3L_RIDX_SGRID_ADDR – For a Sun S3L sparse matrix stored in the
S3L_SPARSE_COO format, S3L_RIDX_SGRID_ADDR returns in attr the starting
address of an array of index sets containing the local row numbers that comprise
each local submatrix (per-process).

For a Sun S3L sparse matrix stored in the S3L_SPARSE_CSR format,
S3L_RIDX_SGRID_ADDR returns in attr the starting address of an array
containing the pointers to the beginning of each row of the local submatrix
(per-process).

Note: Users must not change the data returned in attr. It is created for internal
use only.

■ S3L_CIDX_SGRID_ADDR – For a Sun S3L sparse matrix stored in either the
S3L_SPARSE_COO or S3L_SPARSE_CSR format, S3L_CIDX_SGRID_ADDR returns
in attr the starting address of an array of index sets containing the global
column numbers that comprise each local submatrix (per-process).

Note – Users must not change the data returned in attr. It is created for internal
use only.

■ S3L_NZRS_SGRID_ADDR – For a Sun S3L sparse matrix stored in either the
S3L_SPARSE_COO or S3L_SPARSE_CSR format, S3L_NZRS_SGRID_ADDR returns
in attr the starting address of an array containing nonzero elements of the local
submatrix (per-process).

■ S3L_RIDX_SGRID_SIZE – For a Sun S3L sparse matrix stored in the
S3L_SPARSE_COO format, S3L_RIDX_SGRID_SIZE returns in attr the size of an
array of index sets containing the local row numbers that comprise each local
submatrix (per-process).

For a Sun S3L sparse matrix stored in the S3L_SPARSE_CSR format,
S3L_RIDX_SGRID_SIZE returns in attr the size of an array containing the
pointers to the beginning of each row of the local submatrix (per-process).

■ S3L_CIDX_SGRID_SIZE – For a Sun S3L sparse matrix stored in either the
S3L_SPARSE_COO or S3L_SPARSE_CSR format, S3L_CIDX_SGRID_SIZE returns
in attr the size of an array of index sets containing the global column numbers
that comprise each local submatrix (per-process).

■ S3L_NZRS_SGRID_SIZE – For a Sun S3L sparse matrix stored in either the
S3L_SPARSE_COO or S3L_SPARSE_CSR format, S3L_NZRS_SGRID_SIZE returns
in attr the size of an array containing nonzero elements of the local submatrix
(per-process).
Chapter 2 Sun S3L Functions 179

■ S3L_COORD – It returns in attr the coordinate of the calling process in a Sun S3L
process grid, along the dimension given in axis.

■ S3L_ON_SINGLE_SMP – It returns 1 in attr if a Sun S3L process grid is defined
on a single SMP and 0 if not.

Syntax
The C and Fortran syntax for S3L_get_attribute is as follows:

C/C++ Syntax

F77/F90 Syntax

where <type> is either of integer*4 type or of pointer type. When attr is an
address, it should be of pointer type. In all other cases, it should be of integer*4
type.

Input
S3L_get_attribute accepts the following arguments as input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_get_attribute(a, req_attr, axis, attr)

S3L_array_t a
S3L_attr_type req_attr
int axis
void *attr

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_get_attribute(a, req_attr, axis, attr, ier)

integer*8 a
integer*4 req_attr
integer*4 axis
<type> attr
integer*4 ier
180 Sun S3L 4.0 Software Reference Manual • February 2003

■ a – Pointer to a descriptor of an unknown type.

■ req_attr – A predefined value that specifies the attribute to be retrieved. See the
Description section for a list of valid req_attr entries.

■ axis – Scalar integer variable. To retrieve axis-specific attributes, such as extents
or blocksizes, use this parameter to specify the axis of interest.

■ attr – Pointer to a variable of the appropriate type that will hold the retrieved
attribute value.

Output
S3L_get_attribute uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_get_attribute
returns error status in ier.

Error Handling
On success, S3L_get_attribute returns S3L_SUCCESS.

S3L_get_attribute performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ATTR_INVALID – Invalid attribute; the supplied descriptor does not
have the requested attribute type.

Examples
/opt/SUNWhpc/examples/s3l/utils/get_attribute.c

/opt/SUNWhpc/examples/s3l/utils-f/get_attribute.f

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse2.c

Related Functions
S3L_set_array_element(3)
Chapter 2 Sun S3L Functions 181

S3L_set_array_element_on_proc(3)

S3l_get_qr

Description
S3L_get_qr extracts the Q and R arrays from the packed representation of a QR-
decomposed Sun S3L array. If A is of size m x n, the array Q should be m x min(m,n)
and R should be min(m,n) x n. If either Q or R is zero, it is assumed that the
extraction of the corresponding array is not desired. Q and R should not both be
zero.

The setup parameter, returned by a previous call to S3L_qr_factor, refers to an
internal QR factorization setup.

a, q, and r should all be of the same rank (that is, have the same number of
dimensions) and be of the same data type. If a has more than two dimensions, QR
factorization will have been performed along the axes axis_r and axis_c (see
S3L_qr_factor). These axis numbers are included in the internal QR setup
information referred to by the setup parameter.

The dimensions of q and r should have the appropriate lengths along axis_r and
axis_c, as described for the 2D case. In addition, all other dimensions should have
the same lengths as those of a.

Syntax
The C and Fortran syntax for S3L_get_qr is as follows:
182 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_get_qr accepts the following arguments as input:

■ a – Input array containing a QR decomposition computed by S3L_qr_factor.

■ q – Input array of size m x min(m,n). Also used for output, as described below.

■ r – Input array of size m x min(m,n) x n. Also used for output, as described
below.

■ setup – Integer returned by a previous call to S3L_qr_factor.

Output
S3L_get_qr uses the following arguments for output:

■ q – On exit, q contains the orthonormal array produced by the QR decomposition.

■ r – On exit, r contains an upper triangular array.

■ ier (Fortran only) – When called from a Fortran program, S3L_get_qr returns
error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_get_qr(a, q, r, setup)

S3L_array_t a
S3L_array_t q
S3L_array_t r
int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_get_qr(a, q, r, setup, ier)

integer*8 a
integer*8 q
integer*8 r
integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 183

Error Handling
On success, S3L_get_qr returns S3L_SUCCESS.

S3L_get_qr performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

■ S3L_ERR_ARG_RANK – Invalid rank. The rank of a is 1.

■ S3L_ERR_ARG_DTYPE – The data type of a is not S3L_float, S3L_double,
S3L_complex, or S3L_double_complex.

■ S3L_ERR_ARG_EXTENTS – The extents of a, q, and r are not compatible.

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

Examples
/opt/SUNWhpc/examples/s3l/qr/ex_qr1.c

/opt/SUNWhpc/examples/s3l/qr-f/ex_qr1.f

Related Functions
S3L_qr_factor(3)

S3L_qr_solve(3)

S3L_qr_free(3)

S3L_get_safety

Description
When S3L_get_safety is called from within an application, the value it returns
indicates the current setting of the Sun S3L safety mechanism. The possible return
values are listed and their meaning explained in TABLE 2-6.
184 Sun S3L 4.0 Software Reference Manual • February 2003

Syntax
The C and Fortran syntax for S3L_get_safety is as follows:

TABLE 2-6 Sun S3L Safety-Level Return Values

Safety Level Description

0 The safety mechanism is off.

2 This level detects potential race conditions in multithreaded Sun
S3L operations on parallel arrays. To avoid race conditions, a Sun
S3L function locks all parallel array handles in its argument list
before proceeding. This safety level causes warning messages to be
generated if more than one Sun S3L function attempts to use the
same parallel array at the same time.

5 In addition to checking for and reporting level 2 errors, level 5
performs explicit synchronization before and after each call and
locates each error with respect to the synchronization points. This
safety level is appropriate during program development or during
runs for which a small performance penalty can be tolerated.

9 This level checks for and reports all level 2 and level 5 errors, as
well as errors generated by any lower levels of code called from
within Sun S3L. Level 9 performs explicit synchronization in these
lower levels of code and locates each error with respect to the
synchronization points. This level is appropriate for detailed
debugging following the occurrence of a problem.
Chapter 2 Sun S3L Functions 185

C/C++ Syntax

F77/F90 Syntax

Input
S3L_get_safety takes no input arguments.

Output
S3L_get_safety returns the Sun S3L safety level. When called by a Fortran
program, it uses the following argument for output:

■ ier – When called from a Fortran program, S3L_get_safety returns error
status in ier.

Error Handling
On success, S3L_get_safety returns S3L_SUCCESS.

Examples
/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_get_safety()

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_get_safety(ier)

integer*4 ier
186 Sun S3L 4.0 Software Reference Manual • February 2003

Related Function
S3L_set_safety(3)

S3L_grade_down, S3L_grade_up,
S3L_grade_detailed_down,
S3L_grade_detailed_up

Description
The S3L_grade family of functions computes the grade of the elements of a parallel
array A. Grading is done in either descending or ascending order and is done either
across the whole array or along a specified axis. The graded elements are stored in
array G, using zero-based indexing when called from a C or C++ program and one-
based indexing when called from an F77 or F90 program.

S3L_grade_down and S3L_grade_up

These two functions grade the elements across the entire array A and store the
indices of the elements in descending or ascending order (S3L_grade_down or
S3L_grade_up, respectively).

If A is an array of rank n and the product of its extents is l, G is a two-dimensional
array whose extents are n x l.

Upon return of the function, every j-th column of array G is set to the indices of the
j-th smallest (S3L_grade_down) or largest (S3L_grade_up) element of array A.

For example, if A is the 3 x 3 array:

| 6 2 4 |
| |
| 1 3 8 |
| |
| 9 7 5 |
Chapter 2 Sun S3L Functions 187

and S3L_grade_down is called from a C program, it will store the following values
in G:

For the same array A, S3L_grade_up would store the following values in G (again,
using zero-based indexing).

When called by a Fortran program (F77/F90) each value in G would be one greater.
For example, S3L_grade_up would store the following set of values.

S3L_grade_detailed_down and
S3L_grade_detailed_up

The S3L_grade_detailed_down and S3L_grade_detailed_up functions differ
from S3L_grade_down and S3L_grade_up in two respects:

■ Both grade along a single axis of A, as specified by the axis argument.

■ Both store a set of indices, but these indices do not indicate element positions
directly. Instead, each stored index indicates the index of the corresponding
element of A that has either:)

■ The j-th smallest value along the specified axis (for
S3L_grade_detailed_down)

■ The j-th largest value along the specified axis (for S3L_grade_detailed_up)

This means G is an integer array whose rank and extents are the same as those of A.

Repeating the 3 x 3 sample array shown above:

| 2 1 2 0 2 0 1 0 1 |
| |
| 0 2 1 0 2 2 1 1 0 |

| 1 0 1 0 2 0 2 1 2 |
| |
| 0 1 1 2 2 0 1 2 0 |

| 2 1 2 1 3 1 3 2 3 |
| |
| 1 2 2 3 3 1 2 3 1 |

| 6 2 4 |
| |
| 1 3 8 |
| |
| 9 7 5 |
188 Sun S3L 4.0 Software Reference Manual • February 2003

if S3_grade_detailed_down is called from a C program with the axis argument
= 0, upon completion, G will contain the following values:

If, instead, axis = 1, G will contain:

If S3L_grade_detailed_up is called from a C program with axis = 0, G will
contain:

If S3L_grade_detailed_up is called from a C program with axis = 1, G will
contain:

For F77 or F90 calls, each index value in these examples, including the axis
argument, would be increased by 1.

Syntax
The C and Fortran syntax for these functions is as follows:

| 1 2 2 |
| |
| 2 1 0 |
| |
| 0 0 1 |

| 0 2 1 |
| |
| 2 1 0 |
| |
| 0 1 2 |

| 1 0 0 |
| |
| 0 1 2 |
| |
| 2 2 1 |

| 2 0 1 |
| |
| 0 1 2 |
| |
| 2 1 0 |
Chapter 2 Sun S3L Functions 189

C/C++ Syntax

F77/F90 Syntax

Input
The S3L_grade_ functions accept the following arguments as input:

■ A – Sun S3L internal array handle for the array to be graded. Its type can be real,
double, integer, or long integer.

■ axis – The axis along which S3L_grade_detailed_down or
S3L_grade_detailed_up is to be computed. It may not be used in
S3L_grade_down or S3L_grade_up calls.

Output
The S3L_grade_ functions use the following arguments for output:

■ grade – Sun S3L internal array handle for an integer array. Upon successful
completion, grade contains the indices of the order of the elements.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_grade_up(A, grade)
S3L_grade_down(A, grade)
S3L_grade_up_detailed(A, grade, axis)
S3L_grade_down_detailed(A, grade, axis)

S3L_array_t A
S3L_array_t grade
int axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_grade_up(A, grade, ier)
S3L_grade_down(A, grade, ier)
S3L_grade_up_detailed(A, grade, axis, ier)
S3L_grade_down_detailed(A, grade, axis, ier)

integer*8 A
integer*8 grade
integer*4 axis
integer*4 ier
190 Sun S3L 4.0 Software Reference Manual • February 2003

■ ier (Fortran only) – When called from a Fortran program, thes functions return
error status in ier.

Error Handling
On success, these functions return S3L_SUCCESS.

These functions perform generic checking of the arrays they accept as arguments. If
an array argument contains an invalid or corrupted value, the function terminates
and an error code is returned that indicates which value of the array handle was
invalid. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the functions to terminate and return
the associated code:

■ S3L_ERR_ARG_AXISNUM – The axis argument has an invalid value. The correct
values for axis are

■ 0 <= axis < rank of a (C/C++)
■ 0 < axis <= rank of a (F77/F90)

Examples
/opt/SUNWhpc/examples/s3l/grade/ex_grade.c

/opt/SUNWhpc/examples/s3l/grade-f/ex_grade.f

Related Functions
S3L_sort(3)

S3L_sort_detailed_up(3)

S3L_sort_detailed_down(3)
Chapter 2 Sun S3L Functions 191

S3L_ifft

Description
Run S3L_ifft to compute the inverse FFT of the complex or double-complex
parallel array a. Use the setup ID returned by S3L_fft_setup to specify the array
of interest.

Both power-of-two and arbitrary radix FFT are supported. The 1D parallel FFT can
be used for sizes that are a multiple of the square of the number of nodes; the 2D
and 3D FFTs can be used for arbitrary sizes and distributions.

Upon completion, a is overwritten with the result. The floating-point precision of the
result always matches that of the input.

For the 2D FFT, if the blocksizes along each dimension are equal to the extents
divided by the number of processes, a more efficient transpose algorithm is
employed, which yields significant performance improvements.

S3L_ifft can only be used for complex and double-complex data types. To
compute a real-data forward FFT, use S3L_rc_fft. This performs a forward FFT on
the real data, yielding packed representation of the complex results. To compute the
corresponding inverse FFT, use S3L_cr_fft, which performs an inverse FFT on the
complex data, overwriting the original real array with real-valued results of the
inverse FFT.

Note – S3L_fft and S3L_ifft do not perform any scaling. Consequently, when a
forward FFT is followed by an inverse FFT, the original data will be scaled by the
product of the extents of the array.

Syntax
The C and Fortran syntax for S3L_ifft is as follows:
192 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_ifft accepts the following arguments as input:

■ a – Sun S3L array handle for a parallel array that will be transformed. Its rank,
extents, and type must be the same as the parallel array a supplied in the
S3L_fft_setup call.

■ setup_id – Scalar integer variable. Use the value returned by the
S3L_fft_setup call for this argument.

Output
S3L_ifft uses the following arguments for output:

■ a – The input array a is overwritten with the result of the FFT.

■ ier (Fortran only) – When called from a Fortran program, S3L_ifft returns
error status in ier.

Error Handling
On success, S3L_ifft returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_ifft(a, setup_id)

S3L_array_t a
int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_ifft(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 193

S3L_ifft performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

■ S3L_ERR_FFT_RANKGT3 – The rank of the array a is larger than 3.

■ S3L_ERR_ARG_NCOMPLEX – Array a is not complex.

■ S3L_ERR_FFT_EXTSQPROCS – Array a is 1D, but its extent is not divisible by the
square of the number of processes.

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

Examples
/opt/SUNWhpc/examples/s3l/fft/fft.c

/opt/SUNWhpc/examples/s3l/fft-f/fft.f

Related Functions
S3L_fft_setup(3)

S3L_fft_free_setup(3)

S3L_fft_detailed(3)

S3L_init

Description
Before an application can start using Sun S3L functions, every process involved in
the application must call S3L_init to initialize the Sun S3L environment.
S3L_init initializes the BLACS environment as well.

S3L_init tests the MPI library to verify that it is Sun MPI. If not, it returns an error
and terminates. See the Error Handling section for details.
194 Sun S3L 4.0 Software Reference Manual • February 2003

If the MPI layer is Sun MPI, S3L_init proceeds to initialize the Sun S3L
environment, the BLACS environment, and if not already initialized, the Sun MPI
environment. It also enables the Prism library to access Sun S3L operations.

If S3L_init calls MPI_Init internally, subsequent use of S3L_exit will also result
in an internal call to MPI_Finalize.

Syntax
The C and Fortran syntax for S3L_init is as follows.

C/C++ Syntax

F77/F90 Syntax

Input
S3L_init takes no input arguments.

Output
When called from a Fortran program, S3L_init returns error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_init()

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_init(ier)

integer*4 ier
Chapter 2 Sun S3L Functions 195

Error Handling
On successful completion, S3L_init returns S3L_SUCCESS.

S3L_init tests to see if the MPI library is Sun MPI. If not, it returns the following
error message and terminates:

Examples
/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils/copy_array.f

Related Function
S3L_exit(3)

S3L_inner_prod and
S3_gbl_inner_prod

Description
Multiple-Instance Inner Product – Sun S3L provides six multiple-instance inner-
product routines, all of which compute one or more instances of the inner product of
two vectors embedded in two parallel arrays. The operations performed by the
multiple-instance inner-product routines are shown in TABLE 2-7.

S3L error: invalid MPI. Please use Sun HPC MPI.

TABLE 2-7 Sun S3L Multiple-Instance Inner-Product Operations

Routine Operation Data Type

S3L_inner_prod z = z + xTy real or complex

S3L_inner_prod_noadd z = xTy real or complex

S3L_inner_prod_addto z = u + xTy real or complex
196 Sun S3L 4.0 Software Reference Manual • February 2003

For these multiple-instance operations, array x contains one or more instances of the
first vector in each inner-product pair x. Likewise, array y contains one or more
instances of the second vector in each pair y.

Note – The array arguments x, y, and so forth, actually represent array handles that
describe Sun S3L parallel arrays. For convenience, however, this discussion ignores
that distinction and refers to them as if they were the arrays themselves.

x and y must be at least rank 1 arrays, must be of the same rank, and their
corresponding axes must have the same extents. Additionally, x and y must both be
distributed arrays—that is, each must have at least one axis that is nonlocal.

Array z, which stores the results of the multiple-instance inner-product operations,
must be of rank one less than that of x and y. Its axes must match the instance axes
of x and y in length and order of declaration and array z must also have at least one
axis that is nonlocal. This means each vector pair in x and y corresponds to a single
destination value in z.

For S3L_inner_prod and S3L_inner_prod_c1, z is also used as the source for a
set of values, which are added to the inner products of the corresponding x and y
vector pairs.

Finally, x, y, and z must match in data type and precision.

Two scalar integer variables, x_vector_axis and y_vector_axis, specify the
axes of x and y along which the constituent vectors in each vector pair lie.

Note – When specifying values for x_vector_axis and y_vector_axis, keep in
mind that Sun S3L functions employ zero-based array indexing when they are called
via the C/C++ interface and one-based indexing when called by means of the
F77/F90 interface.

The array handle u describes a Sun S3L parallel array that is used by
S3L_inner_prod_addto and S3L_inner_prod_c1_addto. These routines add
the values contained in u to the inner products of the corresponding x and y vector
pairs.

S3L_inner_prod_c1 z = z + xHy complex only

S3L_inner_prod_c1_noadd z = xHy complex only

S3L_inner_prod_c1_addto z = u + xHy complex only

TABLE 2-7 Sun S3L Multiple-Instance Inner-Product Operations (Continued)

Routine Operation Data Type
Chapter 2 Sun S3L Functions 197

Upon successful completion of S3L_inner_prod or S3L_inner_prod_c1, the
inner product of each vector pair x and y in x and y, respectively, is added to the
corresponding value in z.

Upon successful completion of S3L_inner_prod_noadd or
S3L_inner_prod_c1_noadd, the inner product of each vector pair x and y in x
and y, respectively, overwrites the corresponding value in z.

Upon successful completion of S3L_inner_prod_addto or
S3L_inner_prod_c1_addto, the inner product of each vector pair x and y in x
and y, respectively, is added to the corresponding value in u, and each resulting sum
overwrites the corresponding value in z.

Note – If each of the instance axes of x and y—that is, the axes along which the
inner product will be taken—contains only a single vector, either declare the axes to
have an extent of 1 or use the comparable single-instance inner-product routine, as
described below.

Single-Instance Inner Product – Sun S3L also provides six single-instance inner-
product routines, all of which compute the inner product over all the axes of two
parallel arrays. The operations performed by the single-instance inner-product
routines are shown in TABLE 2-8.

Note – In these descriptions, xT and xH denote x transpose and x Hermitian,
respectively.

For these single-instance functions, x and y are Sun S3L parallel arrays of rank 1 or
greater and with the same data type and precision.

a is a pointer to a scalar variable of the same data type as x and y. This variable
stores the results of the single-instance inner-product operations.

TABLE 2-8 Sun S3L Single-Instance Inner-Product Operations

Routine Operation Data Type

S3L_gbl_inner_prod a = a + xTy real or complex

S3L_gbl_inner_prod_noadd a = xTy real or complex

S3L_gbl_inner_prod_addto a = b + xTy real or complex

S3L_gbl_inner_prod_c1 a = a + xHy complex only

S3L_gbl_inner_prod_c1_noadd a = xHy complex only

S3L_gbl_inner_prod_c1_addto a = b + xHy complex only
198 Sun S3L 4.0 Software Reference Manual • February 2003

For S3L_gbl_inner_prod and S3L_gbl_inner_prod_c1, a is also used as the
source for a set of values, which are added to the inner product of x and y.

b is also a pointer to a scalar variable of the same data type as x and y. It contains a
set of values that S3L_gbl_inner_prod_addto and
S3L_gbl_inner_prod_c1_addto add to the inner product of x and y.

Upon successful completion of S3L_gbl_inner_prod or
S3L_gbl_inner_prod_c1, the global inner product of x and y is added to a.

Upon successful completion of S3L_gbl_inner_prod_noadd or
S3L_gbl_inner_prod_c1_noadd, the global inner product of x and y overwrites
a.

Upon successful completion of S3L_gbl_inner_prod_addto or
S3L_gbl_inner_prod_c1_addto, the global inner product of x and y is added to
b, and the resulting sum overwrites a.

Note – Array variables must not overlap.

Syntax
The C and Fortran syntax for S3L_inner_prod and S3L_gbl_inner_prod is as
follows:
Chapter 2 Sun S3L Functions 199

C/C++ Syntax

F77/F90 Syntax

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_inner_prod(z, x, y, x_vector_axis, y_vector_axis)
S3L_inner_prod_noadd(z, x, y, x_vector_axis, y_vector_axis)
S3L_inner_prod_addto(z, x, y, u, x_vector_axis, y_vector_axis)
S3L_inner_prod_c1(z, x, y, x_vector_axis, y_vector_axis)
S3L_inner_prod_c1_noadd(z, x, y, x_vector_axis, y_vector_axis)
S3L_inner_prod_c1_addto(z, x, y, u, x_vector_axis, y_vector_axis)
S3L_gbl_inner_prod(a, x, y)
S3L_gbl_inner_prod_noadd(a, x, y)
S3L_gbl_inner_prod_addto(a, x, y, b)
S3L_gbl_inner_prod_c1(a, x, y)
S3L_gbl_inner_prod_c1_noadd(a, x, y)
S3L_gbl_inner_prod_c1_addto(a, x, y, b)

S3L_array_t z
S3L_array_t x
S3L_array_t y
S3L_array_t u
S3L_array_t a
S3L_array_t b
int x_vector_axis
int y_vector_axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_inner_prod(z, x, y, x_vector_axis, y_vector_axis, ier)
S3L_inner_prod_noadd(z, x, y, x_vector_axis, y_vector_axis, ier)
S3L_inner_prod_addto(z, x, y, u, x_vector_axis, y_vector_axis,
ier)
S3L_inner_prod_c1(z, x, y, x_vector_axis, y_vector_axis, ier)
S3L_inner_prod_c1_noadd(z, x, y, x_vector_axis, y_vector_axis,
ier)
S3L_inner_prod_c1_addto(z, x, y, u, x_vector_axis,
y_vector_axis, ier)
S3L_gbl_inner_prod(a, x, y, ier)
S3L_gbl_inner_prod_noadd(a, x, y, ier)
S3L_gbl_inner_prod_addto(a, x, y, b, ier)
S3L_gbl_inner_prod_c1(a, x, y, ier)
S3L_gbl_inner_prod_c1_noadd(a, x, y, ier)
S3L_gbl_inner_prod_c1_addto(a, x, y, b, ier)
200 Sun S3L 4.0 Software Reference Manual • February 2003

Input
The S3L_inner_prod_ functions accept the following arguments as input:

■ z – Array handle for a Sun S3L parallel array, which S3L_inner_prod and
S3L_inner_prod_c1 use as a source of values to be added to the inner products
of the corresponding x and y vector pairs. z is also used for output; see the
Output section for details.

■ x – Array handle for a Sun S3L parallel array that contains the first vector in each
vector pair for which an inner product will be computed.

■ y – Array handle for a Sun S3L parallel array that contains the second vector in
each vector pair for which an inner product will be computed.

■ u – Array handle for a Sun S3L parallel array whose rank is one less than that of
x and y. S3L_inner_prod_addto and S3L_inner_prod_c1_addto add the
contents of u to the inner products of the corresponding vector pairs of x and y.

■ a – Pointer to a scalar variable, which S3L_gbl_inner_prod and
S3L_gbl_inner_prod_c1 use as a source of values to be added to the inner
product of x and y. a is also used for output; see the Output section for details.

■ b – Pointer to a scalar variable, which S3L_gbl_inner_prod_addto and
S3L_gbl_inner_prod_c1_addto use as a source of values to be added to the
inner product of x and y.

■ x_vector_axis – Scalar variable. Identifies the axis of x along which the vectors
lie.

■ y_vector_axis – Scalar variable. Identifies the axis of y along which the vectors
lie.

Output
The S3L_inner_prod_ functions use the following arguments for output:

■ z – Array handle for the Sun S3L parallel array that will contain the results of the
multiple-instance 2-norm routine.

integer*8 z
integer*8 x
integer*8 y
integer*8 u
integer*8 a
integer*8 b
integer*4 x_vector_axis
integer*4 y_vector_axis
integer*4 ier
Chapter 2 Sun S3L Functions 201

■ a – Pointer to a scalar variable, which is the destination for the single-instance
inner-product routines.

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, S3L_inner_prod and S3L_gbl_inner_prod return S3L_SUCCESS.

S3L_inner_prod and S3L_gbl_inner_prod perform generic checking of the
validity of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, the function terminates and an error code is returned
that indicates which value of the array handle was invalid. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_MATCH_RANK – x and y do not have the same rank.

■ S3L_ERR_MATCH_EXTENTS – Axes of x and y do not have the same extents.

■ S3L_ERR_MATCH_DTYPE – The arguments are not all of the same data type and
precision.

■ S3L_ERR_CONJ_INVAL – Conjugation was requested, but data supplied was not
of type S3L_complex or S3L_double_complex.

Examples
/opt/SUNWhpc/examples/s3l/dense_matrix_ops/inner_prod.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/inner_prod.f

Related Functions
S3L_2_norm(3)

S3L_outer_prod(3)

S3L_mat_vec_mult(3)

S3L_mat_mult(3)
202 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_lp_sparse

Description
S3L_lp_sparse applies an interior point method to solve the following
linear/quadratic optimization problem:

subject to:

The arrays must be either single- or double-precision real (S3L_float or
S3L_double).

iub is an integer array containing indices of the upper bounded variables. A is a
sparse Sun S3L array, while all other arrays are dense.

If convergence is achieved, the result of the optimization will be returned in x.

Syntax
The C and Fortran syntax for S3L_lp_sparse is as follows:

min c’*x

ub >= x(iub) >= 0

A*x = b
Chapter 2 Sun S3L Functions 203

C/C++ Syntax

where <type> is either float or double.

F77/F90 Syntax

where <type> is either real*4 or real*8.

Input
S3L_lp_sparse accepts the following arguments as input:

■ c – Sun S3L vector of length n.

■ A – Sun S3L sparse array of dimensions ne x n.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lp_sparse(c, A, b, x, ub, iub, iter, tol, attrib)

S3L_array_t c
S3L_array_t A
S3L_array_t b
S3L_array_t x
S3L_array_t ub
S3L_array_t iub
int *iter
<type> *tol
S3L_qp_attr_t attrib

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lp_sparse(c, A, b, x, ub, iub, iter, tol, attrib, ier)

integer*8 c
integer*8 A
integer*8 b
integer*8 x
integer*8 ub
integer*8 iub
integer*4 iter
<type> tol
integer*8 attrib
integer*4 ier
204 Sun S3L 4.0 Software Reference Manual • February 2003

■ b – Dense Sun S3L vector of length ne.

■ ub – Dense Sun S3L vector of length nu.

■ iub – Dense integer Sun S3L vector of length nu. It contains the indices of the
upper bounded variable x.

■ iter – On entry, iter specifies the maximum number of iterations. Also used for
output, as described below.

■ tol – On entry, tol specifies the level of tolerance to be achieved in the linear
complementarity gap for the problem to be considered solved. Also used for
output, as described below.

■ attrib – Attribute handle supplied by S3L_qr_attr_init.

Output
S3L_lp_sparse uses the following arguments for output:

■ x – Dense Sun S3L vector of length n. On exit, x contains the solution to the
optimization problem.

■ iter – On exit, iter contains the actual number of iterations performed.

■ tol – On exit, tol contains the actual level of tolerance achieved.

■ ier (Fortran only) – When called from a Fortran program, S3L_lp_sparse
returns error status in ier.

Error Handling
On success, S3L_lp_sparse returns S3L_SUCCESS.

S3L_lp_sparse performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause S3L_lp_sparse to terminate and
return the associated error code:

■ S3L_ERR_NOTSUPPORT – c and/or A are sparse, but sparse support has not been
enabled via the attrib argument. For example, the Sun Performance LibraryTM

direct solver has been chosen, but an appropriate version of that library has not
been linked in.

■ S3L_ERR_ARG_DTYPE – The data type of the supplied arrays is not S3L_double
or S3L_float.
Chapter 2 Sun S3L Functions 205

The following error codes indicate that the interior point algorithm failed to
converge. This can happen if the problem is infeasible or is very badly conditioned.
In such cases, S3L_lp_sparse will return in x the best solution achieved up to that
point. This allows the user to post-process the results and decide whether or not to
accept them.

■ S3L_ERR_SOLVE_ERR_TOO_LARGE – During each iteration, S3L_lp_sparse
solves a sparse Cholesky linear system and then verifies the solution by
computing the error. If the error is too large, this error code is returned.

■ S3L_ERR_PROBLEM_SINGULAR – This error code is returned if the linear system
to be solved is found to be singular.

■ S3L_ERR_OBJ_ERR_TOO_LARGE – The error in the objective function that is to be
minimized is more than 100 times greater than the initial error.

■ S3L_ERR_FEASIBLE_REGION – During each iteration, S3L_lp_sparse attempts
to modify the values of the parameters in such a way that the solution stays in the
feasible region. If it cannot move the solution into the feasible region, it returns
this error code.

Examples
/opt/SUNWhpc/examples/s3l/optim/ex_lp1.c

/opt/SUNWhpc/examples/s3l/optim/ex_qp1.c

/opt/SUNWhpc/examples/s3l/optim/ex_lp_sparse1.c

/opt/SUNWhpc/examples/s3l/optim/ex_qp_sparse1.c

Related Functions
S3L_qp(3)

S3L_qp_attr_init(3)

S3L_qp_attr_destroy(3)

S3L_qp_attr_set(3)
206 Sun S3L 4.0 Software Reference Manual • February 2003

S3l_lu_deallocate

Description
S3L_lu_deallocate invalidates the specified setup ID, which deallocates the
memory that has been set aside for the S3L_lu_factor routine associated with that
ID. Attempts to use a deallocated setup ID will result in errors.

When you finish working with a set of factors, be sure to use S3L_lu_deallocate
to free the associated memory. Repeated calls to S3L_lu_factor without
deallocation can cause you to run out of memory.

Syntax
The C and Fortran syntax for S3L_lu_deallocate is as follows:
Chapter 2 Sun S3L Functions 207

C/C++ Syntax

F77/F90 Syntax

Input
S3L_lu_deallocate accepts the following argument as input:

■ setup_id – Scalar integer variable. Use the value returned by the corresponding
S3L_lu_factor call for this argument.

Output
S3L_lu_deallocate uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_lu_deallocate
returns error status in ier.

Error Handling
On success, S3L_lu_deallocate returns S3L_SUCCESS.

The following condition will cause the function to terminate and return the
associated error code:

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lu_deallocate(setup_id)

int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lu_deallocate(setup_id, ier)

integer*4 setup_id
integer*4 ier
208 Sun S3L 4.0 Software Reference Manual • February 2003

Examples
/opt/SUNWhpc/examples/s3l/lu/lu.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu1.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu2.c

/opt/SUNWhpc/examples/s3l/lu-f/lu.f

/opt/SUNWhpc/examples/s3l/lu-f/ex_lu1.f

Related Functions
S3L_lu_factor(3)

S3L_lu_solve(3)

S3L_lu_invert(3)

S3l_lu_factor

Description
For each M x N coefficient matrix A of a, S3L_lu_factor computes the LU
factorization using partial pivoting with row interchanges.

The factorization has the form A = P x L x U, where P is a permutation matrix, L is
lower triangular with unit diagonal elements (lower trapezoidal if M > N), and U is
upper triangular (upper trapezoidal if M < N). L and U are stored in A.

In general, S3L_lu_factor performs most efficiently when the array is distributed
using the same block size along each axis.

S3L_lu_factor behaves somewhat differently for 3D arrays, however. In this case,
it applies nodal LU factorization to each M x N coefficient matrix across the instance
axis. This factorization is performed concurrently on all participating processes.

You must call S3L_lu_factor before calling any of the other LU routines. The
S3L_lu_factor routine performs on the preallocated parallel array and returns a
setup ID. You must supply this setup ID in subsequent LU calls, as long as you are
working with the same set of factors.

Be sure to call S3L_lu_deallocate when you have finished working with a set of
LU factors. See “S3l_lu_deallocate” on page 207 for details.
Chapter 2 Sun S3L Functions 209

The internal variable setup_id is required for communicating information between
the factorization routine and the other LU routines. The application must not modify
the contents of this variable.

Syntax
The C and Fortran syntax for S3L_lu_factor is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_lu_factor accepts the following arguments as input:

■ a – Parallel array of rank greater than or equal to 2. This array contains one or
more instances of a coefficient matrix A to be factored. Each A is assumed to be
dense with dimensions M x N with rows counted by axis row_axis and columns
counted by axis col_axis.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lu_factor(a, row_axis, col_axis, setup_id)

S3L_array_t a
int row_axis
int col_axis
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lu_factor(a, row_axis, col_, setup_id, ier)

integer*8 a
integer*4 row_axis
integer*4 col_axis
integer*4 setup_id
integer*4 ier
210 Sun S3L 4.0 Software Reference Manual • February 2003

■ row_axis – Scalar integer variable. Identifies the axis of a that counts the rows of
each matrix A. For C program calls, row_axis must be >= 0 and less than the
rank of a; for Fortran program calls, it must be >= 1 and not exceed the rank of a.
In addition, row_axis and col_axis must not be equal.

■ col_axis – Scalar integer variable. Identifies the axis of a that counts the
columns of each matrix A. For C program calls, col_axis must be >= 0 and less
than the rank of a; for Fortran program calls, it must be >= 1 and not exceed the
rank of a. In addition, row_axis and col_axis must not be equal.

Output
S3L_lu_factor uses the following arguments for output:

■ a – Upon successful completion, each matrix instance A is overwritten with data
giving the corresponding LU factors.

■ setup_id – Scalar integer variable returned by S3L_lu_factor. It can be used
when calling other LU routines to reference the LU-factored array.

■ ier (Fortran only) – When called from a Fortran program, S3L_lu_factor
returns error status in ier.

Error Handling
On success, S3L_lu_factor returns S3L_SUCCESS.

S3L_lu_factor performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

■ S3L_ERR_ARG_RANK – Invalid rank; must be >= 2.

■ S3L_ERR_ARG_BLKSIZE – Invalid blocksize; must be >= 1.

■ S3L_ERR_ARG_DTYPE – Invalid data type. It must be real or complex (single- or
double-precision).

■ S3L_ERR_ARG_NULL – Invalid array. a must be preallocated.

■ S3L_ERR_ARG_AXISNUM – row_axis or col_axis is invalid. This condition can
be caused by either an out-of-range axis number (see row_axis and col_axis
argument definitions) or row_axis equal to col_axis.

■ S3L_ERR_FACTOR_SING – A singular factor U is returned. If it is used by
S3L_lu_solve, division by zero will occur.
Chapter 2 Sun S3L Functions 211

Examples
/opt/SUNWhpc/examples/s3l/lu/lu.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu1.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu2.c

/opt/SUNWhpc/examples/s3l/lu-f/lu.f

/opt/SUNWhpc/examples/s3l/lu-f/ex_lu1.f

Related Functions
S3L_lu_deallocate(3)

S3L_lu_invert(3)

S3L_lu_solve(3)

S3l_lu_invert

Description
S3L_lu_invert uses the LU factorization generated by S3L_lu_factor to
compute the inverse of each square (M x M) matrix instance A of the parallel array a.
This is done by inverting U and then solving the system A-1L = U-1 for A-1, where
A-1 and U-1 denote the inverse of A and U, respectively.

In general, S3L_lu_invert performs most efficiently when the array is distributed
using the same block size along each axis.

For arrays with rank > 2, the nodal inversion is applied on each of the 2D slices of a
across the instance axis and is performed concurrently on all participating processes.

The internal variable setup_id is required for communicating information between
the factorization routine and the other LU routines. The application must not modify
the contents of this variable.

Syntax
The C and Fortran syntax for S3L_lu_invert is as follows:
212 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_lu_invert accepts the following arguments as input:

■ a – Parallel array that was factored by S3L_lu_factor, where each matrix
instance A is a dense M x M square matrix. Supply the same value a that was
used in S3L_lu_factor.

■ setup_id – Scalar integer variable. Use the value returned by the corresponding
S3L_lu_factor call for this argument.

Output
S3L_lu_invert uses the following arguments for output:

■ a – Upon successful completion, each matrix instance A is overwritten with data
giving the corresponding LU factors.

■ setup_id – Scalar integer variable returned by S3L_lu_factor. It can be used
when calling other LU routines to reference the LU-factored array.

■ ier (Fortran only) – When called from a Fortran program, S3L_lu_invert
returns error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lu_invert(a, setup_id)

S3L_array_t a
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lu_invert(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 213

Error Handling
On success, S3L_lu_invert returns S3L_SUCCESS.

S3L_lu_invert performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

■ S3L_ERR_ARG_NULL – Invalid array; must be the same value returned by
S3L_lu_factor.

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

■ S3L_ERR_FACTOR_SING – a contains singular factors; its inverse could not be
computed.

Examples
/opt/SUNWhpc/examples/s3l/lu/lu.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu1.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu2.c

/opt/SUNWhpc/examples/s3l/lu-f/lu.f

/opt/SUNWhpc/examples/s3l/lu-f/ex_lu1.f

Related Functions
S3L_lu_factor(3)

S3L_lu_deallocate(3)

S3L_lu_solve(3)
214 Sun S3L 4.0 Software Reference Manual • February 2003

S3l_lu_solve

Description
For each square coefficient matrix A of a, S3L_lu_solve solves a system of
distributed linear equations AX = B, with a general M x M square matrix instance A,
using the LU factorization computed by S3L_lu_factor.

Note – Throughout these descriptions, L-1 and U-1 denote the inverse of L and U,
respectively.

A and B are corresponding instances within a and b, respectively. To solve AX = B,
S3L_lu_solve performs forward elimination:

followed by back substitution:

To obtain this solution, the S3L_lu_solve routine performs the following steps:

1. Applies L–1 to B.

2. Applies U–1 to L–11B.

Upon successful completion, each B is overwritten with the solution to AX = B.

In general, S3L_lu_solve performs most efficiently when the array is distributed
using the same block size along each axis.

S3L_lu_solve behaves somewhat differently for 3D arrays, however. In this case,
the nodal solve is applied on each of the 2D systems AX = B across the instance axis
of a and is performed concurrently on all participating processes.

The input parallel arrays a and b must be distinct.

The internal variable setup_id is required for communicating information between
the factorization routine and the other LU routines. The application must not modify
the contents of this variable.

Let UX = C
A = LU implies that AX = B is equivalent to C = L-1B

X = U-1C = U-1(L-1B)
Chapter 2 Sun S3L Functions 215

Syntax
The C and Fortran syntax for S3L_lu_solve is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_lu_solve accepts the following arguments as input:

■ b – Parallel array of the same type (real or complex) and precision as a. Must be
distinct from a. The instance axes of b must match those of a in order of
declaration and extents. The rows and columns of each B must be counted by axes
row_axis and col_axis, respectively (from the S3L_lu_factor call). For the
two-dimensional case, if b consists of only one right-hand-side vector, you can
represent b as a vector (an array of rank 1) or as an array of rank 2 with the
number of columns set to 1 and the elements counted by axis row_axis.

■ a – Parallel array that was factored by S3L_lu_factor, where each matrix
instance A is a dense M x M square matrix. Supply the same value a that was
used in S3L_lu_factor.

■ setup_id – Scalar integer variable. Use the value returned by the corresponding
S3L_lu_factor call for this argument.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lu_solve(b, a, setup_id)

S3L_array_t b
S3L_array_t a
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lu_solve(b, a, setup_id, ier)

integer*8 b
integer*8 a
integer*4 setup_id
integer*4 ier
216 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_lu_solve uses the following arguments for output:

■ b – Upon successful completion, each matrix instance B is overwritten with the
solution to AX = B.

■ ier (Fortran only) – When called from a Fortran program, S3L_lu_solve
returns error status in ier.

Error Handling
On success, S3L_lu_solve returns S3L_SUCCESS.

S3L_lu_solve performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

■ S3L_ERR_ARG_NULL – Invalid array. b must be preallocated, and the same value
returned by S3L_lu_factor must be supplied in a.

■ S3L_ERR_ARG_RANK – Invalid rank. For cases where rank >= 3, the rank of b
must equal the rank of a. For the two-dimensional case, the rank of b must be
either 1 or 2.

■ S3L_ERR_ARG_DTYPE – Invalid data type; must be real or complex (single- or
double-precision).

■ S3L_ERR_ARG_BLKSIZE – Invalid block size; must be >= 1.

■ S3L_ERR_MATCH_EXTENTS – Extents of a and b are mismatched along the row or
instance axis.

■ S3L_ERR_MATCH_DTYPE – Data types of a and b do not match.

■ S3L_ERR_ARRNOTSQ – Invalid matrix size; each coefficient matrix must be
square.

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

Examples
/opt/SUNWhpc/examples/s3l/lu/lu.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu1.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu2.c
Chapter 2 Sun S3L Functions 217

/opt/SUNWhpc/examples/s3l/lu-f/lu.f

/opt/SUNWhpc/examples/s3l/lu-f/ex_lu1.f

Related Functions
S3L_lu_deallocate(3)

S3L_lu_factor(3)

S3L_lu_invert(3)

S3L_mat_mult

Description
Sun S3L provides 18 matrix multiplication routines that compute one or more
instances of matrix products. For each instance, these routines perform the
operations listed in TABLE 2-9.

Note – In these descriptions, AT and AH denote A transpose and A Hermitian,
respectively.
218 Sun S3L 4.0 Software Reference Manual • February 2003

The algorithm used depends on the axis lengths of the variables supplied.

For calls that do not transpose either matrix A or B, the variables conform correctly
with the axis lengths for row_axis and col_axis shown in TABLE 2-10.

TABLE 2-9 Sun S3L Matrix Multiplication Operations

Routine Operation Data Type

S3L_mat_mult C = C + AB real or complex

S3L_mat_mult_noadd C = AB real or complex

S3L_mat_mult_addto C = D + AB real or complex

S3L_mat_mult_t1 C = C + ATB real or complex

S3L_mat_mult_t1_noadd C = ATB real or complex

S3L_mat_mult_t1_addto C = D + ATB real or complex

S3L_mat_mult_h1 C = C + AHB complex only

S3L_mat_mult_h1_noadd C = AHB complex only

S3L_mat_mult_h1_addto C = D + AHB complex only

S3L_mat_mult_t2 C = C + ABT real or complex

S3L_mat_mult_t2_noadd C = ABT real or complex

S3L_mat_mult_t2_addto C = D + ABT real or complex

S3L_mat_mult_h2 C = C + ABH complex only

S3L_mat_mult_h2_noadd C = ABH complex only

S3L_mat_mult_h2_addto C = D + ABH complex only

S3L_mat_mult_t1_t2 C = C + ATBT real or complex

S3L_mat_mult_t1_t2_noadd C = ATBT real or complex

S3L_mat_mult_t1_t2_addto C = D + ATBT real or complex

TABLE 2-10 Recommended row_axis and col_axis Values When Matrix A and
Matrix B Are Not Transposed

Variable row_axis Length col_axis Length

A p q

B q r

C p r

D p r
Chapter 2 Sun S3L Functions 219

For calls that transpose the matrix A, the variables conform correctly with the axis
lengths for row_axis and col_axis shown in TABLE 2-11.

For calls that transpose the matrix B, the variables conform correctly with the axis
lengths for row_axis and col_axis shown in TABLE 2-12.

For calls that transpose both A and B, the variables conform correctly with the axis
lengths for row_axis and col_axis shown in TABLE 2-13.

The algorithm is numerically stable.

TABLE 2-11 Recommended row_axis and col_axis Values When Matrix A
Is Transposed

Variable row_axis Length col_axis Length

A q p

B q r

C p r

D p r

TABLE 2-12 Recommended row_axis and col_axis Values When Matrix B
Is Transposed

Variable row_axis Length col_axis Length

A p q

B r q

C p r

D p r

TABLE 2-13 Recommended row_axis and col_axis Values When Both Matrix A and
Matrix B Are Transposed

Variable row_axis Length col_axis Length

A q p

B r q

C p r

D p r
220 Sun S3L 4.0 Software Reference Manual • February 2003

Syntax
The C and Fortran syntax for S3L_mat_mult is as follows:
Chapter 2 Sun S3L Functions 221

C/C++ Syntax

F77/F90 Syntax

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_mat_mult(C, A, B, row_axis, col_axis)
S3L_mat_mult_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_t1(C, A, B, row_axis, col_axis)
S3L_mat_mult_t1_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_t1_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_h1(C, A, B, row_axis, col_axis)
S3L_mat_mult_h1_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_h1_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_t2(C, A, B, row_axis, col_axis)
S3L_mat_mult_t2_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_t2_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_h2(C, A, B, row_axis, col_axis)
S3L_mat_mult_h2_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_h2_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_t1_t2(C, A, B, row_axis, col_axis)
S3L_mat_mult_t1_t2_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_t1_t2_addto(C, A, B, D, row_axis, col_axis)

S3L_array_t C
S3L_array_t A
S3L_array_t B
S3L_array_t D
int row_axis
int col_axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_mat_mult(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_noadd(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_t1(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t1_noadd(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t1_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_h1(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_h1_noadd(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_h1_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_t2(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t2_noadd(C, A, B, row_axis, col_axis, ier)
222 Sun S3L 4.0 Software Reference Manual • February 2003

Input
The S3L_mat_mult_ functions accept the following arguments as input:

■ C – Array handle for a Sun S3L parallel array of rank >= 2. C is the destination
array for all matrix multiplication operations (as discussed in the Output section).
Some of these operations also use C as an input argument, adding the contents of
C to their respective matrix multiplication products. The operations shown in
TABLE 2-9 that include some variation of C + AB belong to this class.

■ A – Array handle for a Sun S3L parallel array of the same rank as C and B. This
array contains one or more instances of the left-hand factor array A, defined by
axes row_axis (which counts the rows) and col_axis (which counts the
columns). Axis col_axis of A must have the same length as axis row_axis of B.
The contents of A are not changed during execution.

■ B – Array handle for a Sun S3L parallel array of the same rank as C and A. This
array contains one or more instances of the right-hand factor array B, defined by
axes row_axis (which counts the rows) and col_axis (which counts the
columns). The contents of B are not changed during execution.

■ D – Parallel array of the same shape as C. This argument is used only in the calls
whose names end in _addto. It contains one or more instances of the array D that
is to be added to the array product, defined by axes row_axis (which counts the
rows) and col_axis (which counts the columns). The contents of D are not
changed during execution, unless D and C are the same variable.

The argument D can be identical with the argument C in all matrix multiply
_addto routines except _t1_t2_addto.

■ row_axis – The axis of C, A, and B that counts the rows of the embedded array or
arrays. Must be nonnegative and less than the rank of C.

■ col_axis – The axis of C, A, and B that counts the columns of the embedded
array or arrays. Must be nonnegative and less than the rank of C.

S3L_mat_mult_t2_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_h2(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_h2_noadd(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_h2_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_t1_t2(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t1_t2_noadd(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t1_t2_addto(C, A, B, D, row_axis, col_axis, ier)

integer*8 C
integer*8 A
integer*8 B
integer*8 D
integer*4 row_axis
integer*4 col_axis
integer*4 ier
Chapter 2 Sun S3L Functions 223

Output
The S3L_mat_mult_ functions use the following arguments for output:

■ C – Array handle for a Sun S3L parallel array, which is a destination array for all
matrix multiplication operations. Upon successful completion, each array instance
within C is overwritten by the result of the array multiplication call.

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, the S3L_mat_mult_ functions return S3L_SUCCESS.

The S3L_mat_mult routines perform generic checking of the validity of the arrays
they accept as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code is returned that indicates which
value of the array handle was invalid. See Appendix A of this manual for a detailed
list of these error codes.

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

■ S3L_ERR_MATCH_RANK – The parallel arrays do not have the same rank.

■ S3L_ERR_MATCH_EXTENTS – The extents of corresponding axes do not match.

■ S3L_ERR_MATCH_DTYPE – The arguments are not the same data type and
precision.

■ S3L_ERR_ARG_AXISNUM – row_axis and/or col_axis contains a bad axis
number. For C program calls, each of these parameters must be >= 0 and less than
the rank of C. For Fortran calls, they must be >= 1 and <= the rank of C.

■ S3L_ERR_CONJ_INVAL – Conjugation was requested, but data supplied was not
of type S3L_complex or S3L_double_complex.

Examples
/opt/SUNWhpc/examples/s3l/dense_matrix_ops/matmult.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/matmult.f

Related Functions
S3L_inner_prod(3)
224 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_2_norm(3)

S3L_outer_prod(3)

S3L_mat_vec_mult(3)

S3L_mat_vec_mult

Description
Sun S3L provides six matrix vector multiplication routines, which compute one or
more instances of a matrix vector product. For each instance, these routines perform
the operations listed in TABLE 2-14.

Note – In these descriptions, conj[A] denotes the conjugate of A.

Syntax
The C and Fortran syntax for S3L_mat_vec_mult is as follows:

TABLE 2-14 Sun S3L Matrix Vector Multiplication Operations

Routine Operation Data Type

S3L_mat_vec_mult y = y + Ax real or complex

S3L_mat_vec_mult_noadd y = Ax real or complex

S3L_mat_vec_mult_addto y = v + Ax real or complex

S3L_mat_vec_mult_c1 y = y + conj[A]x complex only

S3L_mat_vec_mult_c1_noadd y = conj[A]x complex only

S3L_mat_vec_mult_c1_addto y = v + conj[A]x complex only
Chapter 2 Sun S3L Functions 225

C/C++ Syntax

F77/F90 Syntax

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_mat_vec_mult(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis)
S3L_mat_vec_mult_noadd(y, A, x, y_vector_axis, row_axis,
col_axis, x_vector_axis)
S3L_mat_vec_mult_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis)
S3L_mat_vec_mult_c1(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis)
S3L_mat_vec_mult_c1_noadd(y, A, x, y_vector_axis, row_axis,
col_axis, x_vector_axis)
S3L_mat_vec_mult_c1_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis)

S3L_array_t y
S3L_array_t A
S3L_array_t x
S3L_array_t v
int y_vector_axis
int row_axis
int col_axis
int x_vector_axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_mat_vec_mult(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)
S3L_mat_vec_mult_noadd(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)
S3L_mat_vec_mult_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)
S3L_mat_vec_mult_c1(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)
S3L_mat_vec_mult_c1_noadd(y, A, x, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)
S3L_mat_vec_mult_c1_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)

integer*8 y
integer*8 A
integer*8 x
226 Sun S3L 4.0 Software Reference Manual • February 2003

Input
The S3L_mat_vec_mult_ functions accept the following arguments as input:

■ y – Array handle for a Sun S3L parallel array of rank >= 1. Two matrix vector
multiplication routines, S3L_mat_vec_mult and S3L_mat_vec_mult_c1 add
the contents of this array to the product of Ax. All matrix vector multiplication
routines use y as the destination array, as described in the Output section.

■ A – Array handle for a Sun S3L parallel array of rank one greater than that of y. It
contains one or more instances of the matrix A, defined by axes row_axis (which
counts the rows) and col_axis (which counts the columns).

The remaining axes must match the instance axes of y in length and order of
declaration. Thus, each matrix in A corresponds to a vector in y. The contents of A
are not changed during execution.

■ x – Array handle for a Sun S3L parallel array of the same rank as y. It contains
one or more instances of x, the vector that will be multiplied by the matrix A,
embedded along axis x_vector_axis.

Axis x_vector_axis of x must have the same length as axis col_axis of A. The
remaining axes of x must match the instance axes of y in length and order of
declaration. Thus, each vector in x corresponds to a vector in y. The contents of x
are not changed during execution.

■ v – Array handle for a Sun S3L parallel array of the same rank and shape as y.
This argument is used only in the S3L_mat_vec_mult_addto and
S3L_mat_vec_mult_c1_addto calls. It contains one or more instances of the
vector v, which will be added to the matrix vector product, embedded along axis
y_vector_axis. The contents of v are not changed during execution, unless v is
the same variable as y.

For S3L_mat_vec_mult_addto and S3L_mat_vec_mult_c1_addto, the
argument v can be identical to the argument y.

■ y_vector_axis – Scalar integer variable that specifies the axis of y and v along
which the elements of the embedded vectors lie. For C/C++ programs, this
argument must be nonnegative and less than the rank of y. For F77/F90
programs, it must be greater than zero and less than or equal to the rank of y.

integer*8 v
integer*4 y_vector_axis
integer*4 row_axis
integer*4 col_axis
integer*4 x_vector_axis
integer*4 ier
Chapter 2 Sun S3L Functions 227

■ row_axis – Scalar integer variable that counts the rows of the embedded matrix
or matrices. For C/C++ programs, this argument must be nonnegative and less
than the rank of A. For F77/F90 programs, it must be greater than zero and less
than or equal to the rank of A.

■ col_axis – Scalar integer variable that counts the columns of the embedded
matrix or matrices. For C/C++ programs, this argument must be nonnegative and
less than the rank of A. For F77/F90 programs, it must be greater than zero and
less than or equal to the rank of A.

■ x_vector_axis – Scalar integer variable that specifies the axis of x along which
the elements of the embedded vectors lie. For C/C++ programs, this argument
must be nonnegative and less than the rank of x. For F77/F90 programs, it must
be greater than zero and less than or equal to the rank of x.

Output
The S3L_mat_vec_mult_ functions use the following arguments for output:

■ y – Array handle for a Sun S3L array of rank >= 1. This array contains one or
more instances of the destination vector y embedded along the axis
y_vector_axis. This axis must have the same length as axis row_axis of A.
Upon completion, each vector instance is overwritten by the result of the matrix
vector multiplication call.

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, the S3L_mat_vec_mult routines return S3L_SUCCESS.

The S3L_mat_vec_mult routines perform generic checking of the validity of the
arrays they accept as arguments. If an array argument contains an invalid or
corrupted value, the function terminates and an error code is returned that indicates
which value of the array handle was invalid. See Appendix A of this manual for a
detailed list of these error codes.

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

■ S3L_ERR_MATCH_RANK – The parallel arrays do not have the same rank.

■ S3L_ERR_MATCH_EXTENTS – The lengths of corresponding axes do not match.

■ S3L_ERR_MATCH_DTYPE – The arguments are not all of the same data type and
precision.
228 Sun S3L 4.0 Software Reference Manual • February 2003

■ S3L_ERR_ARG_AXISNUM – Either row_axis or col_axis or both contain a bad
axis number. For C/C++ program calls, each of these parameters must be
nonnegative and less than the rank of A. For F77/F90 calls, they must be greater
than zero and less than or equal to the rank of A.

■ S3L_ERR_CONJ_INVAL – Conjugation was requested, but the data supplied was
not of type S3L_complex or S3L_double_complex.

Examples
/opt/SUNWhpc/examples/s3l/dense_matrix_ops/mat_vec_mult.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/matvec_mult.f

Related Functions
S3L_inner_prod(3)

S3L_2_norm(3)

S3L_outer_prod(3)

S3L_mat_mult(3)

S3L_matvec_sparse

Description
S3L_matvec_sparse computes the product of a global general sparse matrix and a
global dense vector. The sparse matrix is described by the Sun S3L array handle A.
The global dense vector is described by the Sun S3L array handle x. The result is
stored in the global dense vector described by the Sun S3L array handle y.

The array handle A is produced by a prior call to one of the following routines:

■ S3L_declare_sparse
■ S3L_read_sparse
■ S3L_rand_sparse
■ S3L_convert_sparse
Chapter 2 Sun S3L Functions 229

Syntax
The C and Fortran syntax for S3L_matvec_sparse is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_matvec_sparse uses the following arguments for output:

■ A – Sun S3L array handle for the global general sparse matrix.

■ x – Global array of rank 1, with the same data type and precision as A and y and
with a length equal to the number of columns in the sparse matrix.

Output
S3L_matvec_sparse uses the following arguments for output:

■ y – Global array of rank 1, with the same data type and precision as A and x and
with a length equal to the number of rows in the sparse matrix. Upon completion,
y contains the product of the sparse matrix A and x.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_matvec_sparse(y, A, x)

S3L_array_t y
S3L_array_t A
S3L_array_t x

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_matvec_sparse(y, A, x, ier)

integer*8 y
integer*8 A
integer*8 x
integer*4 ier
230 Sun S3L 4.0 Software Reference Manual • February 2003

■ ier (Fortran only) – When called from a Fortran program, S3L_matvec_sparse
returns error status in ier.

Error Handling
On success, S3L_matvec_sparse returns S3L_SUCCESS.

The S3L_matvec_sparse routines perform generic checking of the validity of the
arrays they accept as arguments. If an array argument contains an invalid or
corrupted value, the function terminates and an error code is returned that indicates
which value of the array handle was invalid. See Appendix A of this manual for a
detailed list of these error codes.

In addition, the following conditions will cause S3L_matvec_sparse to terminate
and return the associated error code:

■ S3L_ERR_ARG_NULL – Invalid array x or y or sparse matrix A. x and y must be
preallocated Sun S3L arrays, and A must be a preallocated sparse matrix.

■ S3L_ERR_ARG_RANK – Invalid rank for arrays x and y. They must be rank 1
arrays.

■ S3L_ERR_MATCH_RANK – The ranks of x and y do not match.

■ S3L_ERR_MATCH_DTYPE – Arrays x, y, and A do not have the same data type.

■ S3L_ERR_MATCH_EXTENTS – The lengths of x and y are mismatched with the
size of sparse matrix A. The length of x must be equal to the number of columns
in A and the length of y must be equal to the number of rows in A.

■ S3L_ERR_SPARSE_FORMAT – Invalid sparse format. It must be
S3L_SPARSE_COO, S3L_SPARSE_CSR, S3L_SPARSE_CSC, or S3L_SPARSE_VBR.

Examples
/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

/opt/SUNWhpc/examples/s3l/iter/ex_iter.c

/opt/SUNWhpc/examples/s3l/iter-f/ex_iter.f

Related Functions
S3L_declare_sparse(3)

S3L_read_sparse(3)

S3L_rand_sparse(3)
Chapter 2 Sun S3L Functions 231

S3L_outer_prod

Description
Sun S3L provides six outer product routines that compute one or more instances of
an outer product of two vectors. For each instance, the outer product routines
perform the operations listed in TABLE 2-15.

Note – In these descriptions, yT and yH denote y transpose and y Hermitian,
respectively

In elementwise notation, for each instance S3L_outer_prod computes

and S3L_outer_prod_c2 computes

where conj[y(j)] denotes the conjugate of y(j).

Syntax
The C and Fortran syntax for S3L_outer_prod is as follows:

TABLE 2-15 Sun S3L Outer Product Operations

Routine Operation Data Type

S3L_outer_prod A = A + xyT real or complex

S3L_outer_prod_noadd A = xyT real or complex

S3L_outer_prod_addto A = B + xyT real or complex

S3L_outer_prod_c2 A = A + xyH complex only

S3L_outer_prod_c2_noadd A = xyT complex only

S3L_outer_prod_c2_addto A = B + xyT complex only

A(i,j) = A(i,j) + x(i) * y(j)

A(i,j) = A(i,j) + x(i) * conj[y(j)]
232 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_outer_prod(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis)
S3L_outer_prod_noadd(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis)
S3L_outer_prod_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis)
S3L_outer_prod_c2(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis)
S3L_outer_prod_c2_noadd(A, x, y, row_axis, col_axis,
x_vector_axis, y_vector_axis)
S3L_outer_prod_c2_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis)

S3L_array_t A
S3L_array_t x
S3L_array_t y
S3L_array_t B
int row_axis
int col_axis
int x_vector_axis
int y_vector_axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_outer_prod(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)
S3L_outer_prod_noadd(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)
S3L_outer_prod_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis, ier)
S3L_outer_prod_c2(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)
S3L_outer_prod_c2_noadd(A, x, y, row_axis, col_axis,
x_vector_axis, y_vector_axis, ier)
S3L_outer_prod_c2_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis, ier)

integer*8 A
integer*8 x
Chapter 2 Sun S3L Functions 233

Input
The S3L_outer_prod_ functions accept the following arguments as input:

■ A – Array handle for a Sun S3L parallel array of rank greater than or equal to 2.
Two Sun S3L outer product routines, S3L_outer_prod and
S3L_outer_prod_c2, add the contents of this array to the product of xy. All
outer product routines use A as the destination array, as described in the Output
section.

■ x – Array handle for a Sun S3L parallel array of rank one less than that of A. It
contains one or more instances of the first source vector x embedded along axis
x_vector_axis.

■ Axis x_vector_axis of x must have the same length as axis row_axis of A. The
remaining axes of x must match the instance axes of A in length and order of
declaration. Thus, each vector in x corresponds to a vector in A.

■ y – Array handle for a Sun S3L parallel array of rank one less than that of A. It
contains one or more instances of the second source vector x embedded along
axis y_vector_axis.

■ y_vector_axis must have the same length as axis col_axis of A. The
remaining axes of y must match the instance axes of A in length and order of
declaration. Thus, each vector in y corresponds to a vector in A.

The argument y can be identical to the argument x.

■ B – Parallel array of the same shape as A. It contains one or more embedded
matrices B defined by axes row_axis (which counts the rows) and col_axis
(which counts the columns). The remaining axes must match the instance axes of
A in length and order of declaration. Thus, each matrix in B corresponds to a
matrix in A.

■ This argument is used only in the S3L_outer_prod_addto and
S3L_outer_prod_c2_addto calls, which add each outer product to the
corresponding matrix within B and place the result in the corresponding matrix
within A. The contents of B are not changed by the operation (unless B and A are
the same variable).

For S3L_outer_prod_addto and S3L_outer_prod_c2_addto, the argument
B can be identical to the argument A.

integer*8 y
integer*8 B
integer*4 row_axis
integer*4 col_axis
integer*4 x_vector_axis
integer*4 y_vector_axis
integer*4 ier
234 Sun S3L 4.0 Software Reference Manual • February 2003

■ row_axis – Scalar integer variable. The axis of A and B that counts the rows of
the embedded matrix or matrices. For C/C++ programs, this argument must be
nonnegative and less than the rank of A. For F77/F90 programs, it must be greater
than zero and less than or equal to the rank of A.

■ col_axis – Scalar integer variable. The axis of A and B that counts the columns
of the embedded matrix or matrices. For C/C++ programs, this argument must be
nonnegative and less than the rank of A. For F77/F90 programs, it must be greater
than zero and less than or equal to the rank of A.

■ x_vector_axis – Scalar integer variable that specifies the axis of x along which
the elements of the embedded vectors lie. For C/C++ programs, this argument
must be nonnegative and less than the rank of y. For F77/F90 programs, it must
be greater than zero and less than or equal to the rank of x.

■ y_vector_axis – Scalar integer variable that specifies the axis of y along which
the elements of the embedded vectors lie. For C/C++ programs, this argument
must be nonnegative and less than the rank of y. For F77/F90 programs, it must
be greater than zero and less than or equal to the rank of y.

Output
The S3L_outer_prod_ functions use the following arguments for output:

■ A – Array handle for a Sun S3L parallel array of rank greater than or equal to 2,
which contains one or more instances of the destination matrix A, defined by axes
row_axis (which counts the rows) and col_axis (which counts the columns).
Upon successful completion, each matrix instance is overwritten by the result of
the outer product call.

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, the S3L_outer_prod routines return S3L_SUCCESS.

The S3L_outer_prod routines perform generic checking of the validity of the
arrays they accept as arguments. If an array argument contains an invalid or
corrupted value, the function terminates and an error code is returned that indicates
which value of the array handle was invalid. See Appendix A of this manual for a
detailed list of these error codes.

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

■ S3L_ERR_MATCH_RANK – The parallel arrays do not have the same rank.
Chapter 2 Sun S3L Functions 235

■ S3L_ERR_MATCH_EXTENTS – The lengths of corresponding axes do not match.

■ S3L_ERR_MATCH_DTYPE – The arguments are not all of the same data type and
precision.

■ S3L_ERR_ARG_AXISNUM – row_axis and/or col_axis contains a bad axis
number. For C/C++ program calls, each of these parameters must be nonnegative
and less than the rank of A. For F77/F90 calls, they must be greater than zero and
less than or equal to the rank of A.

■ S3L_ERR_CONJ_INVAL – Conjugation was requested, but the data supplied was
not of type S3L_complex or S3L_double_complex

■ S3L_ERR_ARG_RANK – Rank of A is less than 2.

Examples
/opt/SUNWhpc/examples/s3l/dense_matrix_ops/outer_prod.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/outer_prod.f

Related Functions
S3L_inner_prod(3)

S3L_2_norm(3)

S3L_mat_vec_mult(3)

S3L_mat_mult(3)

S3L_print_array and
S3L_print_sub_array

Description
S3L_print_array causes the process with MPI rank 0 to print the parallel array
represented by the array handle a to standard output.

S3L_print_sub_array prints a specific section of the parallel array. This array
section is defined by the lbounds, ubounds, and strides arguments. lbounds
and ubounds specify the array section’s lower and upper index bounds. strides
specifies the stride to be used along each axis; it must be greater than zero.
236 Sun S3L 4.0 Software Reference Manual • February 2003

Note – The values of lbounds and ubounds should refer to zero-based indexed
arrays for the C interface and to one-based indexed arrays for the Fortran interface.

Syntax
The C and Fortran syntax for S3L_print_array and S3L_print_sub_array is as
follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_print_array and S3L_print_sub_array accept the following arguments as
input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_print_array(a)
S3L_print_sub_array(a, lbounds, ubounds, strides)

S3L_array_t a
int *lbounds
int *ubounds
int *strides

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_print_array(a, ier)
S3L_print_sub_array(a, lbounds, ubounds, strides, ier)

integer*8 a
integer*4 lbounds(*)
integer*4 ubounds(*)
integer*4 strides(*)
integer*4 ier
Chapter 2 Sun S3L Functions 237

■ a – Sun S3L array handle for the parallel array to be printed. This array handle
was returned when the array was previously declared.

■ lbounds – Integer vector specifying the lower bounds of the indices of a along
each of its axes.

■ ubounds – Integer vector specifying the upper bounds of the indices of a along
each of its axes.

■ strides – Integer vector specifying the strides on the indices of a along each of
its axes.

Output
S3L_print_array and S3L_print_sub_array use the following argument for
output:

■ ier (Fortran only) – When called from a Fortran program, S3L_print_array
and S3L_print_sub_array return error status in ier.

Error Handling
On success, S3L_print_array and S3L_print_sub_array return S3L_SUCCESS.

S3L_print_array and S3L_print_sub_array perform generic checking of the
validity of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, the function terminates and an error code is returned
that indicates which value of the array handle was invalid. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_RANGE_INV – The given range of indices is invalid:

■ A lower bound is less than the smallest index of the array.

■ An upper bound is greater than the largest index of the array along the given
axis.

■ A lower bound is larger than the corresponding upper bound.

■ A stride is negative or zero.

Examples
/opt/SUNWhpc/examples/s3l/io/ex_print1.c

/opt/SUNWhpc/examples/s3l/io/ex_io.c
238 Sun S3L 4.0 Software Reference Manual • February 2003

/opt/SUNWhpc/examples/s3l/io-f/ex_io.f

Related Functions
S3L_read_array(3)

S3L_write_array(3)

S3L_print_sparse

Description
S3L_print_sparse prints all nonzero values of a global general sparse matrix and
their corresponding row and column indices to standard output.

For example, the following 4x6 sample matrix:

could be printed by a C program in the following manner.

3.14 0 0 20.04 0 0
0 27 0 0 -0.6 0
0 0 -0.01 0 0 0
-0.031 0 0 0.08 0 314.0

4 6 8
(0,0) 3.140000
(0,3) 200.040000
(1,1) 27.000000
(1,4) -0.600000
(2,2) -0.010000
(3,0) -0.031000
(3,3) 0.080000
(3,5) 314.000000
Chapter 2 Sun S3L Functions 239

Note that, for C-language applications, zero-based indices are used. For Fortran
applications, one-based indices are used, s as follows:

The first line prints three integers, m, n, and nnz, which represent the number of
rows, columns, and the total number of nonzero elements in the matrix, respectively.
If the matrix is stored in Variable Block Row format, three additional integers are
printed as well: bm, bn, and bnnz. These integers indicate the number of block rows
and block columns and the total number of nonzero block entries.

The remaining lines list the all the nonzero elements in the matrix, one per line. The
first two values in each line are the row and column indices for the corresponding
nonzero element.

Syntax
The C and Fortran syntax for S3L_print_sparse is as follows:

4 6 8
(1,1) 3.140000
(1,4) 200.040000
(2,2) 27.000000
(2,5) -0.600000
(3,3) -0.010000
(4,1) -0.031000
(4,4) 0.080000
(4,6) 314.000000
240 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_print_sparse accepts the following argument as input:

■ A – Sun S3L internal array handle for the global general sparse matrix that is
produced by a prior call to one of the following sparse routines:

■ S3L_declare_sparse
■ S3L_read_sparse
■ S3L_rand_sparse
■ S3L_convert_sparse

Output
S3L_print_sparse uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_print_sparse
returns error status in ier.

Error Handling
On success, S3L_print_sparse returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_print_sparse(A)

S3L_array_t A

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_print_sparse(A, ier)

integer*8 A
integer*4 ier
Chapter 2 Sun S3L Functions 241

The S3L_print_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code is returned that indicates which
value of the array handle was invalid. See Appendix A of this manual for a detailed
list of these error codes.

On error, S3L_print_sparse returns the following code:

■ S3L_ERR_ARG_NULL – The value specified for A is invalid; no such Sun S3L
sparse matrix has been defined.

■ S3L_ERR_SPARSE_FORMAT – Invalid sparse format. It must be:
S3L_SPARSE_COO, S3L_SPARSE_CSR, S3L_SPARSE_CSC, or S3L_SPARSE_VBR.

Examples
/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse2.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

Related Functions
S3L_declare_sparse(3)

S3L_read_sparse(3)

S3L_rand_sparse(3)

S3L_write_sparse(3)

S3L_qp

Description
S3L_qp applies an interior point method to solve the following linear/quadratic
optimization problem:

min (1/2)*x’*Q*x+f’*x
242 Sun S3L 4.0 Software Reference Manual • February 2003

subject to:

The arrays must be either S3L_float or S3L_double.

Q, A, and C should be either dense or sparse Sun S3L arrays and all of the same type.

If convergence is achieved, the result of the optimization will be in xf.

Syntax
The C and Fortran syntax for S3L_qp is as follows:

C/C++ Syntax

where <type> is either float or double.

ub >= x >= lb
C*x > d
A*x = b

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_qp(A, Q, C, f, b, d, lb, ub, xf, iter, tol, attrib)

S3L_array_t A
S3L_array_t Q
S3L_array_t C
S3L_array_t f
S3L_array_t b
S3L_array_t d
S3L_array_t lb
S3L_array_t ub
S3L_array_t xf
int *iter
<type> *tol
S3L_qp_attr_t attrib
Chapter 2 Sun S3L Functions 243

F77/F90 Syntax

where <type> is either real*4 or real*8.

Input
S3L_qp accepts the following argument as input:

■ A – Dense or sparse Sun S3L array of size ne x n.

■ Q – Dense or sparse Sun S3L array of size n x n.

■ C – Dense or sparse Sun S3L array of size nc x n.

■ f – Dense Sun S3L vector of length n.

■ b – Dense Sun S3L vector of length ne.

■ d – Dense Sun S3L vector of length nc.

■ lb – Dense Sun S3L vector of length n.

■ ub – Dense Sun S3L vector of length n.

■ xf – Dense Sun S3L vector of length n.

■ iter – On entry, iter specifies the maximum number of iterations. Also used for
output, as described below.

■ tol – On entry, tol specifies the tolerance to be achieved in the linear
complementarity gap for the problem to be considered solved. Also used for
output, as described below.

■ attrib – Attribute handle returned by an earlier call to S3L_qp_attr_init.

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_qp(A, Q, C, f, b, d, lb, ub, xf, iter, tol, attrib, ier)

integer*8 A
integer*8 Q
integer*8 C
integer*8 f
integer*8 b
integer*8 d
integer*8 lb
integer*8 ub
integer*8 xf
integer*4 iter
<type> tol
integer*8 attrib
integer*4 ier
244 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_qp use the following arguments for output:

■ iter – On exit, iter contains the actual number of iterations performed.

■ tol – On exit, tol contains the actual level of tolerance achieved.

■ ier (Fortran only) – When called from a Fortran program, S3L_qp returns error
status in ier.

Error Handling
On success, S3L_qp returns S3L_SUCCESS.

S3L_qp performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause S3L_qp to terminate and return the
associated error code:

■ S3L_ERR_ARG_ARRAY – Both C and A arrays are equal to NULL.

■ S3L_ERR_ARG_DTYPE – The data type of the supplied arrays is not S3L_double
or S3L_float.

■ S3L_ERR_MATCH_DTYPE – The data type of A is not the same as that of b.

Examples
/opt/SUNWhpc/examples/s3l/optim/ex_lp1.c

/opt/SUNWhpc/examples/s3l/optim/ex_qp1.c

/opt/SUNWhpc/examples/s3l/optim/ex_lp_sparse1.c

/opt/SUNWhpc/examples/s3l/optim/ex_qp_sparse1.c

/opt/SUNWhpc/examples/s3l/optim-f/ex_lp1.f

/opt/SUNWhpc/examples/s3l/optim-f/ex_qp1.f

/opt/SUNWhpc/examples/s3l/optim-f/ex_sp_lp1.f

Related Functions
S3L_lp_sparse(3)

S3L_qp_attr_init(3)
Chapter 2 Sun S3L Functions 245

S3L_qp_attr_destroy(3)

S3L_qp_attr_set(3)

S3L_qp_attr_init,
S3L_qp_attr_destroy,
S3L_qp_attr_set

Description
S3L_qp_attr_init initializes a set of attributes with the handle attrib and loads
a set of default values.

S3L_qp_attr_destroy destroys the set of attributes with the handle attrib.
Once destroyed, attrib cannot be reused until it is reinitialized.

S3L_qp_attr_set specifies the type of solver to be used and the amount of error
information that will be generated.

Syntax
The C and Fortran syntax for S3L_qp_attr_init, S3L_qp_attr_destroy, and
S3L_qp_attr_set is as follows:
246 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
The S3L_qp_attr_ functions accept the following arguments as input:

■ attrib – Handle for a set of attributes. This parameter is supplied by
S3L_qp_attr_init and is used as input by S3L_qp_attr_destroy,
S3L_qp_attr_set, and S3L_qp.

■ request – For S3L_qp_attr_set, specifies the property of interest, which can
be one of:

■ value – Specifies the value of the property named by the request argument.
There are two kinds of values that can be set: solver type and verbosity level. The
allowed values of both kinds are described below:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_qp_attr_init(&attrib)
S3L_qp_attr_destroy(&attrib)
S3L_qp_attr_set(&attrib, request, value)

S3L_qp_attr_t attrib
S3L_qp_attr_req_t request
void *value

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_qp_attr_init(attrib, ier)
S3L_qp_attr_destroy(attrib, ier)
S3L_qp_attr_set(attrib, request, value, ier)

integer*8 attrib
integer*4 request
integer*4 value
integer*4 ier

S3L_QP_SOLVER_TYPE Set the direct solver type.

S3L_QP_VERBOSITY Set the verbosity level.
Chapter 2 Sun S3L Functions 247

For sparse constraint arrays, value can be used to specify the solver type, as
follows:

value can also be used to set the verbosity level of reporting, as follows:

Output
The S3L_qp_attr_ functions use the following arguments for output:

■ attrib – S3L_qp_attr_init returns this handle for a set of attributes.

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, the S3L_qp_attr_ functions all return S3L_SUCCESS.

The following conditions will cause the indicated function to terminate and return
the associated error code:

■ S3L_ERR_ATTR_INVALID – attrib is not a properly initialized variable.

■ S3L_ERR_NONSUPPORT – An invalid value has been supplied.

Examples
/opt/SUNWhpc/examples/s3l/optim/ex_lp1.c

/opt/SUNWhpc/examples/s3l/optim/ex_qp1.c

/opt/SUNWhpc/examples/s3l/optim/ex_lp_sparse1.c

/opt/SUNWhpc/examples/s3l/optim/ex_qp_sparse1.c

S3L_QP_SPLUS (default) Use the S+ full-pivoting asymmetric direct
solver.

S3L_QP_LIBSUNPERF Use the Sun Performance Library direct solver.

S3L_QP_VERB_NONE (default) No output.

S3L_QP_VERB_FULL Print the value of the error in every iteration.
248 Sun S3L 4.0 Software Reference Manual • February 2003

Related Functions
S3L_qp(3)

S3L_lp_sparse(3)

S3L_qr_factor

Description
S3L_qr_factor computes the QR decomposition of real or complex Sun S3L
arrays. On exit, the Q and R factors are packed in array a.

S3L_qr_factor generates internal information related to the decomposition, such
as the vector of elementary reflectors. It also returns a setup parameter, which can be
used by subsequent calls to S3L_qr_solve to compute the least-squares solution to
a system A*x = b, where A is an m x n array, with m > n, and b is an m x nrhs array.

S3L_qr_factor can be used for arrays with more than two dimensions. In such
cases, the axis_r and axis_c arguments specify the row and column axes of 2D
array slices, whose QR factorization is to be computed.

When a is a 2D array, axis_r and axis_c should be set as shown in TABLE 2-16.

Notes

S3L_qr_factor is more efficient when both dimensions of the input array are
block-cyclically distributed with equal block sizes.

If least-squares solutions are to be found for multiple A*x = b systems, where all
systems have the same matrix, the same QR factorization setup can be used by all
the S3L_qr_solve instances.

TABLE 2-16 Summary of axis_r and axis_c Settings for S3L_qr_factor

QR factorization of
C/C++
axis_r axis_c

F77/F90
axis_r axis_c

a 0 1 1 2

transpose of a 1 0 2 1
Chapter 2 Sun S3L Functions 249

Syntax
The C and Fortran syntax for S3L_qr_factor is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_qr_factor accepts the following arguments as input:

■ a – Input array whose QR decomposition is to be computed. On exit, the contents
of a are destroyed.

■ axis_r – Integer denoting the row axis. For C program calls, axis_r must be >=
0 and less than the rank of a; for Fortran program calls, it must be >= 1 and not
exceed the rank of a.

■ axis_c – Integer denoting the column axis. For C program calls, axis_c must be
>= 0 and less than the rank of a; for Fortran program calls, it must be >= 1 and
not exceed the rank of a.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_qr_factor(a, axis_r, axis_c, setup)

S3L_array_t a
int axis_r
int axis_c
int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_qr_factor(a, axis_r, axis_c, setup, ier)

integer*8 a
integer*4 axis_r
integer*4 axis_c
integer*4 setup
integer*4 ier
250 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_qr_factor uses the following arguments for output:

■ setup – Integer used by subsequent calls to S3L_qr_solve to access internal QR
factorization information.

■ ier (Fortran only) – When called from a Fortran program, S3L_qr_factor
returns error status in ier.

Error Handling
On success, S3L_qr_factor returns S3L_SUCCESS.

S3L_qr_factor performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause S3L_qr_factor to terminate and
return the associated error code:

■ S3L_ERR_ARG_RANK – Rank of a is less than 2, which is invalid.

■ S3L_ERR_ARG_DTYPE – Invalid data type. It must be S3L_float, S3L_double,
S3L_complex, or S3L_double_complex.

■ S3L_ERR_ARG_AXISNUM – axis_r or axis_c or both contain invalid entries.

Examples
/opt/SUNWhpc/examples/s3l/qr/ex_qr1.c

/opt/SUNWhpc/examples/s3l/qr-f/ex_qr1.f

Related Functions
S3L_get_qr(3)

S3L_qr_solve(3)

S3L_qr_free(3)
Chapter 2 Sun S3L Functions 251

S3L_qr_free

Description
S3L_qr_free frees all internal resources associated with a particular QR
decomposition.

Syntax
The C and Fortran syntax for S3L_qr_free is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_qr_free accepts the following argument as input:

■ setup – Integer returned by a previous call to S3L_qr_factor.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_qr_free(setup)

int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_qr_free(setup, ier)

integer*4 setup
integer*4 ier
252 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_qr_free uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_qr_free returns
error status in ier.

Error Handling
On success, S3L_qr_free returns S3L_SUCCESS.

In addition, the following condition will cause S3L_qr_free to terminate and
return the associated error code:

■ S3L_ERR_ARG_SETUP – Invalid setup value.

Examples
/opt/SUNWhpc/examples/s3l/qr/ex_qr1.c

/opt/SUNWhpc/examples/s3l/qr-f/ex_qr1.f

Related Functions
S3L_qr_factor(3)

S3L_qr_solve(3)

S3L_get_qr(3)

S3L_qr_solve

Description
S3L_qr_solve computes the least-squares solution to an overdetermined linear
system of the form a*x = b. a is an m x n Sun S3L array, where m > n
(overdetermined). b is an m x nrhs Sun S3L array of the same type as a.
Chapter 2 Sun S3L Functions 253

S3L_qr_solve uses the QR factorization results from a previous call to
S3L_qr_factor for the computation. On exit, the first n x nrhs rows of b are
overwritten with the least-squares solution of the system.

a and b can have more than two dimensions, in which case, the operation is
performed over all 2D slices, which were specified by the row and column axis
arguments, axis_r and axis_c, of the corresponding S3L_qr_factor call.

Notes

For m > n, the single routine S3L_gen_lsq performs the same set of operations as
the sequence: S3L_qr_factor, S3L_qr_solve, S3L_qr_free. However, when
multiple least-squares solutions are to be found for a set of matrices that are all the
same, the explicit sequence can be more efficient. This is because S3L_gen_lsq
performs the full sequence every time it is called, even though the QR factorization
step is needed only the first time. In such cases, therefore, the following sequence
can be used to eliminate redundant factorization operations:

■ S3L_qr_factor, S3L_qr_solve, S3L_get_qr for the first solution
■ S3L_qr_solve, S3L_get_qr for the second and all subsequent solutions

Syntax
The C and Fortran syntax for S3L_qr_solve is as follows:
254 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_qr_solve accepts the following arguments as input:

■ a – Input array of size m x n containing a QR decomposition computed by means
of S3L_qr_factor.

■ b – rhs array of size m x nrhs.

■ setup – Integer returned by a previous call to S3L_qr_factor.

Output
S3L_qr_solve uses the following arguments for output:

■ b – On exit, the first n rows of b contain the solution to the least-squares problem.

■ ier (Fortran only) – When called from a Fortran program, S3L_qr_solve
returns error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_qr_solve(a, b, setup)

S3L_array_t a
S3L_array_t b
int setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_qr_solve(a, b, setup, ier)

integer*8 a
integer*8 b
integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 255

Error Handling
On success, S3L_qr_solve returns S3L_SUCCESS.

S3L_qr_solve performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause S3L_qr_solve to terminate and return the
associated error code:

■ S3L_ERR_ARG_RANK – a and/or b are 1D arrays.

■ S3L_ERR_ARG_DTYPE – The data type of a is not S3L_float, S3L_double,
S3L_complex, or S3L_double_complex.

■ S3L_ERR_ARG_EXTENTS – The extents of a and b are incompatible.

■ S3L_ERR_ARG_SETUP – Invalid setup value.

Examples
/opt/SUNWhpc/examples/s3l/qr/ex_qr1.c

/opt/SUNWhpc/examples/s3l/qr-f/ex_qr1.f

Related Functions
S3L_qr_factor(3)

S3L_get_qr(3)

S3L_qr_free(3)

S3L_rand_fib

Description
S3L_rand_fib initializes a parallel array with a Lagged-Fibonacci random number
generator (LFG). The LFG’s parameters are fixed to l = 17, k = 5, and m = 32.
256 Sun S3L 4.0 Software Reference Manual • February 2003

Random numbers are produced by the following iterative equation:

The result of S3L_rand_fib depends on how the parallel array a is distributed.

When the parallel array is of type integer, its elements are filled with nonnegative
integers in the range 0 . . . 231 -1. When the parallel array is single- or double-
precision real, its elements are filled with random nonnegative numbers in the range
0 . . . 1. For complex arrays, the real and imaginary parts are initialized to random
real numbers.

Syntax
The C and Fortran syntax for S3L_rand_fib is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_rand_fib accepts the following arguments as input:

■ a – Sun S3L array handle that describes the parallel array to be initialized by the
LFG.

x[n] = (x[n-e] + x[n-k]) mod 2m

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rand_fib(a, setup_id)

S3L_array_t a
int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rand_fib(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 257

■ setup_id – Integer index used to access the state table associated with the array
referenced by a.

Output
S3L_rand_fib uses the following arguments for output:

■ a – On output, a is a randomly initialized array.

■ ier (Fortran only) – When called from a Fortran program, S3L_rand_fib
returns error status in ier.

Error Handling
On success, S3L_rand_fib returns S3L_SUCCESS.

S3L_rand_fib checks the validity of the arrays it accepts as arguments. If an array
argument contains an invalid or corrupted value, the function terminates and an
error code is returned that indicates which value of the array handle was invalid. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause S3L_rand_fib to terminate and
return the associated error code.

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

Examples
/opt/SUNWhpc/examples/s3l/rand_fib/rand_fib.c

/opt/SUNWhpc/examples/s3l/rand_fib-f/rand_fib.f

Related Functions
S3L_free_rand_fib(3)

S3L_setup_rand_fib(3)
258 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_rand_lcg

Description
S3L_rand_lcg initializes a parallel array a, using a linear congruential random
number generator (LCG). It produces random numbers that are independent of the
distribution of the parallel array.

Arrays of type S3L_integer (integer*4) are initialized to random integers in the
range 0 . . . 231-1. Arrays of type S3L_long_integer are initialized with integers in
the range 0 . . . 263-1. Arrays of type S3L_float or S3L_double are initialized in
the range 0 . . . 1. The real and imaginary parts of type S3L_complex and
S3L_double_complex are also initialized in the range 0 . . . 1.

The random numbers are initialized by an internal iterative equation of the type:

Syntax
The C and Fortran syntax for S3L_rand_lcg is as follows:

x[n] = a*x[n-1] + c
Chapter 2 Sun S3L Functions 259

C/C++ Syntax

F77/F90 Syntax

Input
S3L_rand_lcg accepts the following arguments as input:

■ a – Sun S3L array handle that describes the parallel array to be initialized by the
LCG.

■ iseed – An integer. If positive, this value is used as the initial seed for the LCG.
If zero or negative, the call to S3L_rand_lcg produces a sequence of random
numbers, which is a continuation of a sequence generated in a previous call to
S3L_rand_lcg.

Output
S3L_rand_lcg uses the following arguments for output:

■ a – On output, a is a randomly initialized array.

■ ier (Fortran only) – When called from a Fortran program, S3L_rand_lcg
returns error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rand_lcg(a, iseed)

S3L_array_t a
int iseed

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rand_lcg(a, iseed, ier)

integer*8 a
integer*4 iseed
integer*4 ier
260 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_rand_lcg returns S3L_SUCCESS.

S3L_rand_lcg checks the validity of the arrays it accepts as arguments. If an array
argument contains an invalid or corrupted value, the function terminates and an
error code is returned that indicates which value of the array handle was invalid. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_RANK – Rank of a is invalid.

Examples
/opt/SUNWhpc/examples/s3l/rand_lcg/rand_lcg.c

/opt/SUNWhpc/examples/s3l/rand_lcg-f/rand_lcg.f

Related Functions
S3L_free_rand_fib(3)

S3L_setup_rand_fib(3)

S3L_rand_sparse

Description
S3L_rand_sparse creates a random sparse matrix with a random sparsity pattern
in one of the four sparse formats:

■ S3L_SPARSE_COO – Coordinate format
■ S3L_SPARSE_CSR – Coordinate Sparse Row format
■ S3L_SPARSE_CSC – Coordinate Sparse Column format
■ S3L_SPARSE_VBR – Variable Block Row format

Upon successful completion, S3L_rand_sparse returns a Sun S3L array handle in
A, which represents this random sparse matrix.
Chapter 2 Sun S3L Functions 261

The number of nonzero elements that are generated will depend primarily on the
combination of the density argument value and the array extents given by m and n.
Usually, the number of nonzero elements will approximately equal m*n*density.
The behavior of the algorithm may cause the actual number of nonzero elements to
be somewhat smaller than m*n*density. Regardless of the value supplied for the
density argument, the number of nonzero elements will always be >= m.

Syntax
The C and Fortran syntax for S3L_rand_sparse is as follows:
262 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_rand_sparse accepts the following arguments as input:

■ spfmt – Indicates the sparse storage format used for representing the sparse
matrix. Use S3L_SPARSE_COO, S3L_SPARSE_CSR, or S3L_SPARSE_CSC to create
a random point sparse matrix. Use S3L_SPARSE_VBR to create a sparse matrix
with random block structure.

If the value of spfmt is S3L_SPARSE_VBR, the following two arguments should
also be supplied:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rand_sparse(A, spfmt, stype, m, n, density, type, seed, ...)

S3L_array_t *A
S3L_sparse_storage_t spfmt
S3L_sparse_rand_t stype
int m
int n
real*4 density
S3L_data_type type
int seed

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rand_sparse(A, spfmt, stype, m, n, density, type, seed, ...,
ier)

integer*8 A
integer*4 spfmt
integer*4 stype
integer*4 m
integer*4 n
real*4 density
integer*4 type
integer*4 seed
integer*4 ier
Chapter 2 Sun S3L Functions 263

■ rptr – An integer array of length m+1, such that rptr[i] is the row index of
the first point row in the i-th block row.

■ cptr – An integer array of length n+1, such that cptr[j] is the column index
of the first column in the j-th block column.

If used, rptr and cptr follow the seed argument, as indicated by the "..." in
the Syntax section.

■ stype – A variable of the type S3L_sparse_rand_t (C/C++) or integer*4
(F77/F90) that specifies the type of random pattern to be used, as follows:

■ S3L_SPARSE_RAND – A random pattern.

■ S3L_SPARSE_DRND – A random pattern with guaranteed nonzero diagonal.

■ S3L_SPARSE_SRND – A random symmetric sparse array.

■ S3L_SPARSE_DSRN – A random symmetric sparse array with guaranteed
nonzero diagonal.

■ S3L_SPARSE_DSPD – A random symmetric positive definite sparse array.

■ m – When the sparse format is S3L_SPARSE_COO, S3L_SPARSE_CSR, or
S3L_SPARSE_CSC, m indicates the total number of point rows in the sparse
matrix. Under S3L_SPARSE_VBR, m denotes the total number of block rows in the
sparse matrix.

■ n – When the sparse format is S3L_SPARSE_COO, S3L_SPARSE_CSR, or
S3L_SPARSE_CSC, n indicates the total number of point columns in the sparse
matrix. Under S3L_SPARSE_VBR, n denotes the total number of block columns in
the sparse matrix.

■ density – Positive parameter less than or equal to 1.0, which suggests the
approximate density of the array. For example, if density = 0.1, approximately
10% of the array elements will have nonzero values.

■ type – The type of the sparse array, which must be S3L_integer, S3L_float,
S3L_double, S3L_complex, or S3L_double_complex.

■ seed – An integer that is used internally to initialize the random number
generators. It affects both the pattern and the values of the array elements. The
results are independent of the number of processes on which the function is
invoked.

Output
S3L_rand_sparse uses the following arguments for output:

■ A – On return, A contains a Sun S3L internal array handle for the distributed
random sparse matrix. The handle can be used in subsequent calls to some other
Sun S3L sparse array functions.

■ ier (Fortran only) – When called from a Fortran program, S3L_rand_sparse
returns error status in ier.
264 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_rand_sparse returns S3L_SUCCESS.

The S3L_rand_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code is returned that indicates which
value of the array handle was invalid. See Appendix A of this manual for a detailed
list of these error codes.

In addition, the following conditions will cause S3L_rand_sparse to terminate and
return the associated error code:

■ S3L_ERR_SPARSE_FORMAT – Invalid storage format. It must be
S3L_SPARSE_COO, S3L_SPARSE_CSR, S3L_SPARSE_CSC, or S3L_SPARSE_VBR.

■ S3L_ERR_SPARSE_PATTERN – Invalid random pattern. When spfmt is
S3L_SPARSE_COO, S3L_SPARSE_CSR, or S3L_SPARSE_CSC, stype can be
S3L_SPARSE_RAND, S3L_SPARSE_DRND, S3L_SPARSE_SRND,
S3L_SPARSE_DSRN, or S3L_SPARSE_DSPD. When spfmt is S3L_SPARSE_VBR,
stype must be either S3L_SPARSE_RAND or S3L_SPARSE_DRND.

■ S3L_ERR_ARG_EXTENTS – Invalid m or n. Each extent value must be > 0.

■ S3L_ERR_ARRNOTSQ – Invalid matrix size. When stype does not equal
S3L_SPARSE_RAND, m must equal n.

■ S3L_ERR_DENSITY – Invalid density value. It must be 0.0 < density <= 1.0.

■ S3L_ERR_ARG_DTYPE – Invalid data type. When stype is S3L_SPARSE_DSPD,
the data type of the sparse matrix must be S3L_float or S3L_double.

■ S3L_ERR_ARG_NULL – Invalid arguments for rptr and cptr. When spfmt is
S3L_SPARSE_VBR, both rptr and cptr must be preallocated and initialized.

Examples
/opt/SUNWhpc/examples/s3l/iter/ex_iter.c

/opt/SUNWhpc/examples/s3l/iter-f/ex_iter.f

Related Functions
S3L_declare_sparse(3)

S3L_read_sparse(3)
Chapter 2 Sun S3L Functions 265

S3L_rc_fft and S3L_cr_fft

Description
S3L_rc_fft and S3L_cr_fft are used for computing the Fast Fourier Transform
of real 1D, 2D, or 3D arrays. S3L_rc_fft performs a forward FFT of a real array
and S3l_cr_fft performs the inverse FFT of a complex array with certain
symmetry properties. The result of S3l_cr_fft is real.

S3L_rc_fft accepts as input a real (single- or double-precision) parallel array and,
upon successful completion, overwrites the contents of the real array with the
complex Discrete Fourier Transform (DFT) of the data in a packed format.

S3L_cr_fft accepts as input a real array, which contains the packed representation
of a complex array.

S3L_rc_fft and S3L_cr_fft have been optimized for cases where the arrays are
distributed only along their last dimension. They also work, however, for any
CYCLIC(n) array layout.

For the 2D FFT, a more efficient transposition algorithm is used when the blocksizes
along each dimension are equal to the extents divided by the number of processors.
This arrangement can result in significantly higher performance.

The algorithms used are nonstandard extensions of the Cooley-Tuckey factorization
and the Chinese Remainder Theorem. Both power-of-two and arbitrary radix FFTs
are supported.

The nodal FFTs upon which the parallel FFT is based are mixed radix with prime
factors 2, 3, 5, 7, 11, and 13. The parallel FFT will be more efficient when the size of
the array is a product of powers of these factors. When the size of an array cannot be
factored into these prime factors, a slower DFT is used for the remainder.

Supported Array Sizes

One Dimension: The array size must be divisible by 4 x p2, where p is the number of
processors.

Two Dimensions: Each of the array extents must be divisible by 2 x p, where p is the
number of processors.
266 Sun S3L 4.0 Software Reference Manual • February 2003

Three Dimensions: The first dimension must be even and must have a length of at
least 4. The second and third dimensions must be divisible by 2 x p, where p is the
number of processors.

Scaling

The real-to-complex and complex-to-real Sun S3L parallel FFTs do not include
scaling of the data. Consequently, for a forward 1D real-to-complex FFT of a vector
of length n, followed by an inverse 1D complex-to-real FFT of the result, the original
vector is multiplied by n/2.

If the data fits in a single process, a 1D real-to-complex FFT of a vector of length n,
followed by a 1D complex-to-real FFT results in the original vector being scaled
by n.

For a real-to-complex FFT of a 2D real array of size n x m, followed by a complex-to-
real FFT, the original array is scaled by n x m.

Similarly, a real-to-complex FFT applied to a 3D real array of size n x m x k, followed
by a complex-to-real FFT, results in the original array being scaled by
n x m x k.

Complex Data Packed Representation

1D Real-to-Complex Periodic Fourier Transform: The periodic Fourier Transform of
a real sequence X[i], i=0,...,N-1 is Hermitian (exhibits conjugate symmetry around its
middle point).

If X[i],i=0,...,N-1 are the complex values of the Fourier Transform, then

Consider, for example, the real sequence:

 X[i] = conj(X[N-i]), i=1,...,N-1 (eq. 1)

X =

0
1
2
3
4
5
6
7

Chapter 2 Sun S3L Functions 267

Its Fourier Transform is:

As you can see:

Because of the Hermitian symmetry, only N/2+1 = 5 values of the complex sequence
X need to be calculated and stored. The rest can be computed from (eq. 1).

Note that X[0] and X[N/2] are real-valued so they can be grouped together as one
complex number. In fact, Sun S3L stores the sequence X as:

The first line in this example represents the real and imaginary parts of a complex
number.

To summarize, in Sun S3L, the Fourier transform of a real-valued sequence of length
N (where N is even) is stored as a real sequence of length N. This is equivalent to a
complex sequence of length N/2.

X =

28.0000
-4.0000 + 9.6569i
-4.0000 + 4.0000i
-4.0000 + 1.6569i
-4.0000
-4.0000 - 1.6569i
-4.0000 - 4.0000i
-4.0000 - 9.6569i

X[1] = conj(X[7])
X[2] = conj(X[6])
X[3] = conj(X[5])
X[4] = conj(X[4]) (i.e., X[4] is real)
X[5] = conj(X[3])
X[6] = conj(X[2])
X[7] = conj(X[1])

X[0] X[N/2]
X[1]
X[2]

or

X =
28.0000 - 4.0000i
-4.0000 + 9.6569i
-4.0000 - 4.0000i
-4.0000 + 1.6569i
268 Sun S3L 4.0 Software Reference Manual • February 2003

2D Fourier Transform: The method used for 2D FFTs is similar to that used for
1D FFTs. When transforming each of the array columns, only half of the data is
stored.

3D Real to Hermitian FFT: As with the 1D and 2D FFTs, no extra storage is required
for the 3D FFT of real data, since advantage is taken of all possible symmetries. For
an array a(M,N,K), the result is packed in the complex b(M/2,N,K) array. Hermitian
symmetries exist along the planes a(0,:,:) and a(M/2,:,:) and along dimension 1.

See the rc_fft.c and rc_fft.f program examples for illustrations of these
concepts. The paths for these online examples are provided at the end of this section.

Syntax
The C and Fortran syntax for S3L_rc_fft and S3L_cr_fft is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
The S3L_rc_fft and S3L_cr_fft functions accept the following arguments as
input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rc_fft(a, setup_id)
S3L_cr_fft(a, setup_id)

S3L_array_t a
int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rc_fft(a, setup_id, ier)
S3L_cr_fft(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 269

■ a – Sun S3L array handle for a parallel real array. For S3L_rc_fft, the contents
of a are real values. For S3L_cr_fft, they are the packed representation of a
complex array. Upon successful completion, both routines overwrite a with the
results of the forward or inverse FFT. See the Output section for a discussion of
the use of a for output.

■ setup_id – Scalar integer variable. Use the value returned by the
S3L_rc_fft_setup call for this argument.

Output
The S3L_rc_fft and S3L_cr_fft functions use the following arguments for
output:

■ a – Sun S3L array handle for a parallel real array. Upon successful completion,
S3L_rc_fft overwrites a with the packed representation of the complex result
of the forward FFT. S3L_cr_fft overwrites a with the real result of the inverse
FFT.

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, S3L_rc_fft and S3L_cr_fft return S3L_SUCCESS.

The following condition will cause these functions to terminate and return the
associated error code:

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

Examples
/opt/SUNWhpc/examples/s3l/rc_fft/rc_fft.c

/opt/SUNWhpc/examples/s3l/rc_fft-f/rc_fft.f

Related Functions
S3L_rc_fft_setup(3)

S3L_rc_fft_free_setup(3)
270 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_rc_fft_free_setup

Description
S3L_rc_fft_free_setup deallocates internal memory associated with setup_id
by a previous call to S3L_rc_fft_setup.

Syntax
The C and Fortran syntax for S3L_rc_fft_free_setup is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_rand_sparse accepts the following argument as input:

■ setup_id – Scalar integer variable. Use the value returned by the
S3L_rc_fft_setup call for this argument.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rc_fft_free_setup(setup_id)

int setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rc_fft_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 271

Output
S3L_rc_fft_free_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_rc_fft_free_setup returns error status in ier.

Error Handling
On success, S3L_rc_fft_free_setup returns S3L_SUCCESS.

The following condition will cause S3L_rc_fft_free_setup to terminate and
return the associated error code:

■ S3L_ERR_ARG_SETUP – Invalid setup_id value.

Examples
/opt/SUNWhpc/examples/s3l/rc_fft/rc_fft.c

/opt/SUNWhpc/examples/s3l/rc_fft-f/rc_fft.f

Related Functions
S3L_rc_fft_setup(3)

S3L_rc_fft(3)

S3L_rc_fft_setup

Description
S3L_rc_fft_setup allocates a real-to-complex FFT setup that includes the twiddle
factors necessary for the computation and other internal structures. This setup
depends only on the dimensions of the array whose FFT needs to be computed, and
can be used both for the forward (real-to-complex) and inverse (complex-to-
real) FFTs. Therefore, to compute multiple real-to-complex or complex-to-real
Fourier transforms of different arrays whose extents are the same, the
S3L_rc_fft_setup function has to be called only once.
272 Sun S3L 4.0 Software Reference Manual • February 2003

Syntax
The C and Fortran syntax for S3L_rc_fft_setup is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_rc_fft_setup accepts the following argument as input:

■ a – Sun S3L array handle for a parallel array that will be the subject of subsequent
transform operations.

Output
S3L_rc_fft_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_rc_fft_setup
returns error status in ier.

■ setup_id – On output, it contains an integer value that can be used in
subsequent calls to S3L_rc_fft, S3L_cr_fft, and S3L_rc_fft_free_setup.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rc_fft_setup(a, setup_id)

S3L_array_t a
int *setup_id

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rc_fft_setup(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier
Chapter 2 Sun S3L Functions 273

Error Handling
On success, S3L_rc_fft_setup returns S3L_SUCCESS.

The following conditions will cause S3L_rc_fft_setup to terminate and return
the associated error code:

■ S3L_ERR_ARG_RANK – The rank of array a is not 1, 2, or 3.

■ S3L_ERR_ARG_NREAL – The data type of a is not real.

■ S3L_ERR_ARG_NEVEN – Some of the extents of a are not even.

■ S3L_ERR_ARG_EXTENTS – The extents of a are not correct for the rank of a and
the number of processors over which a is distributed. This relationship is
summarized below:

■ If a is 1D, its length must be divisible by 4*sqr(np) where np is the number of
processes over which the a is distributed.

■ If a is 2D, its extents must both be divisible by 2*np.

■ If a is 3D, its first extent must be even and its last two extents must both be
divisible by 2*np.

Examples
/opt/SUNWhpc/examples/s3l/rc_fft/rc_fft.c

/opt/SUNWhpc/examples/s3l/rc_fft-f/rc_fft.f

Related Functions
S3L_rc_fft(3)

S3L_cr_fft(3)

S3L_rc_fft_free_setup(3)
274 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_read_array and
S3L_read_sub_array

Description
S3L_read_array causes the process with MPI rank 0 to read the contents of a
distributed array from a local file and distribute them to the processes that own the
parts (subgrids) of the array. The local file is specified by the filename argument.

S3L_read_sub_array reads a specific section of the array, within the limits
specified by the lbounds and ubounds arguments. The strides argument
specifies the stride along each axis; it must be greater than zero. The format
argument is a string that specifies the format of the file to be read. It can be either
"ascii" or "binary".

The values of lbounds and ubounds should refer to zero-based indexed arrays for
the C interface and to one-based indexed arrays for the Fortran interface.

Syntax
The C and Fortran syntax for S3L_read_array and S3L_read_sub_array is as
follows:
Chapter 2 Sun S3L Functions 275

C/C++ Syntax

F77/F90 Syntax

Input
S3L_read_array and S3L_read_sub_array accept the following arguments as
input:

■ a – Sun S3L array handle for the parallel array to be read. This array handle was
returned when the array was declared.

■ lbounds – Integer vector specifying the lower bounds of the indices of a along
each of its axes.

■ ubounds – Integer vector specifying the upper bounds of the indices of a along
each of its axes.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_read_array(a, filename, format)
S3L_read_sub_array(a, lbounds, ubounds, strides, filename,
format)

S3L_array_t a
int *lbounds
int *ubounds
int *strides
char *filename
char *format

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_read_array(a, filename, format, ier)
S3L_read_sub_array(a, lbounds, ubounds, strides, filename,
format,ier)

integer*8 a
integer*4 lbounds(*)
integer*4 ubounds(*)
integer*4 strides(*)
character*1 filename(*)
character*1 format(*)
integer*4 ier
276 Sun S3L 4.0 Software Reference Manual • February 2003

■ strides – Integer vector specifying the strides on the indices of a along each of
its axes.

■ filename – Scalar character variable specifying the name of the file from which
the parallel array will be read.

■ format – Scalar character variable specifying the format of the data to be read.
The value can be either "ascii" or "binary".

Output
S3L_read_array and S3L_read_sub_array use the following argument for
output:

■ ier (Fortran only) – When called from a Fortran program, S3L_read_array and
S3L_read_sub_array return error status in ier.

Error Handling
On success, S3L_read_array and S3L_read_sub_array return S3L_SUCCESS.

S3L_read_array and S3L_read_sub_array perform generic checking of the
validity of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, the function terminates and an error code is returned
that indicates which value of the array handle was invalid. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_RANGE_INV – The given range of indices is invalid:

■ A lower bound is less than the smallest index of the array.

■ An upper bound is greater than the largest index of an array along the given
axis.

■ A lower bound is greater than the corresponding upper bound.

■ A stride is negative or zero.

■ S3L_ERR_FILE_OPEN – Failed to open the file with the file name provided.

■ S3L_ERR_EOF – Encountered EOF while reading an array from a file.

■ S3L_ERR_IO_FORMAT – Format is not one of "ascii" or "binary".

■ S3L_ERR_IO_FILENAME – The file name is equal to the NULL string (C/C++) or
to an empty string (F77/F90).
Chapter 2 Sun S3L Functions 277

Examples
/opt/SUNWhpc/examples/s3l/io/ex_io.c

/opt/SUNWhpc/examples/s3l/io-f/ex_io.f

Related Functions
S3L_print_array(3)

S3L_write_array(3)

S3L_read_sparse

Description
S3L_read_sparse reads sparse matrix data from an ASCII file and distributes the
data to all participating processes. Upon successful completion, S3L_read_sparse
returns a Sun S3L array handle in A that represents the distributed sparse matrix.

S3L_read_sparse supports the following sparse matrix storage formats:

■ S3L_SPARSE_COO – Coordinate format.
■ S3L_SPARSE_CSR – Compressed Sparse Row format.
■ S3L_SPARSE_CSC – Compressed Sparse Column format.
■ S3L_SPARSE_VBR – Variable Block Row format.

Each of these four format files contains three sections. They begin with a header
section, followed by two data sections.

The header section can be used for comments. It consists of one or more lines, each
of which begins with the percent character (%).

The first data section consists of a single line. It contains a list of integers denoting
the total number of matrix rows, columns, nonzero elements and, in the case of the
S3L_SPARSE_VBR format for blocked matrices, the total number of block rows,
block columns, and nonzero blocks.

The second data section contains the numerical data of the matrix. For its data
layout, the following specifies the general rules to apply:

■ Blank lines may be present anywhere in the file.

■ Numerical data is separated by one or more blanks.
278 Sun S3L 4.0 Software Reference Manual • February 2003

■ Real data entries must be in floating-point decimal format or, optionally, in the
e,E-format exponential notation common to C and Fortran.

■ All indices must be stored using zero-based indexing when called by C or C++
applications and one-based indexing when called by F77 or F90 applications.

The details of the layout are given below for each of the sparse formats.

S3L_SPARSE_COO

Under the S3L_SPARSE_COO format, the first data section lists three integers, m, n,
and nnz. m and n indicate the number of rows and columns in the matrix,
respectively. nnz indicates the total number of nonzero values in the matrix.

The second data section stores all nonzero values in the matrix, one value per line.
The first two entries on the line are the row and column indices for that value and
the third entry is the value itself.

For example, the following 4x6 matrix:

could have the following layout in an S3L_SPARSE_COO file, using zero-based
indexing:

3.14 0 0 20.04 0 0
0 27 0 0 -0.6 0
0 0 -0.01 0 0 0
-0.031 0 0 0.08 0 314.0

% Example: 4x6 sparse matrix in an S3L_SPARSE_COO file,
% row-major order, zero-based indexing:
%
4 6 8
0 0 3.140e+00
0 3 2.004e+01
1 1 2.700e+01
1 4 -6.000e-01
2 2 -1.000e-02
3 0 -3.100e-02
3 3 8.000e-02
3 5 3.140e+02
Chapter 2 Sun S3L Functions 279

The layout used for this example is row-major, but any order is supported, including
random. The next two examples show this same 4x6 matrix stored in two
S3L_SPARSE_COO files, both in random order. The first example illustrates zero-
based indexing and the second, one-based indexing.

MatrixMarket Notes

Under S3L_SPARSE_COO format, S3L_read_sparse can also read data supplied in
either of two Coordinate formats distributed by MatrixMarket
(http://gams.nist.gov/MatrixMarket/). The two supported MatrixMarket
formats are real general and complex general.

MatrixMarket files always use one-based indexing. Consequently, they can only be
used directly by Fortran programs, which also implement one-based indexing. For a
C or C++ program to use a MatrixMarket file, it must call the F77 application
program interface. The program example ex_sparse.c illustrates an F77 call from
a C program. See the Examples section for the path to this sample program.

% Example: 4x6 sparse matrix in an S3L_SPARSE_COO file,
% random-major order, zero-based indexing:
%
4 6 8
3 5 3.140e+02
1 1 2.700e+01
0 3 2.004e+01
3 3 8.000e-02
2 2 -1.000e-02
0 0 3.140e+00
1 4 -6.000e-01
3 0 -3.100e-02

% Example: 4x6 sparse matrix in an S3L_SPARSE_COO file,
% random-major order, one-based indexing:
%
4 6 8
4 4 8.000e-02
2 2 2.700e+01
1 1 3.140e+00
4 1 -3.100e-02
3 3 -1.000e-02
4 6 3.140e+02
1 4 2.004e+01
2 5 -6.000e-01
280 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_SPARSE_CSR

Under S3L_SPARSE_CSR format, the first data section is the same as the
S3L_SPARSE_COO format. The second data section stores the S3L_SPARSE_CSR
data structure in two integer arrays, ptr and indx, and one floating-point array,
val. It contains, in order, the row start pointers, the column indices, and the nonzero
elements.

For example, the same 4x6 sparse matrix used in the previous example could be
stored under S3L_SPARSE_CSR in the manner (using zero-based indexing):

S3L_SPARSE_CSC

The S3L_SPARSE_CSC format is almost identical to the S3L_SPARSE_CSR format
except with a column orientation. Specifically, the first data section is the same as the
S3L_SPARSE_CSR, while the second data section stores, in order, the column start
pointers, the row indices, and the nonzero elements.

Using the same 4x6 sparse matrix example as before, a possible data layout under
S3L_SPARSE_CSC follows:

S3L_SPARSE_VBR

Unlike the first three sparse formats, which provide natural layouts for point sparse
matrices, S3L_SPARSE_VBR format is well-suited to represent matrices with a block
structure.

Under S3L_SPARSE_VBR format, the first data section contains six integers. They
are, in order, m, n, nnz, bm, bn, and bnnz. The first three indicate the number of
point rows, point columns, and point nonzero elements of the matrix. The other
three represent the block partitionings of the matrix—that is, the number of block
rows, block columns, and nonzero block entries of the matrix.

% Example: 4x6 sparse matrix in an S3L_SPARSE_CSR format
%
4 6 8
0 2 4 5 8
0 3 4 1 2 0 3 5
3.14 20.04 27.0 –0.6 –0.01 –0.031 0.08 314.0

% Example: 4x6 sparse matrix in an S3L_SPARSE_CSC format
%
4 6 8
0 2 3 4 6 7 8
0 3 1 2 0 3 1 3
3.14 –0.031 27.0 –0.01 20.04 0.08 –0.6 314.0
Chapter 2 Sun S3L Functions 281

The second data section stores the S3L_SPARSE_VBR data structure in five integer
arrays and one floating-point array. They are:

To illustrate the data layout, consider the following 5x8 sparse matrix with variable
block partitioning.

It could be stored in S3L_SPARSE_VBR format as follows:

rptr Integer array containing the row-partitioning pointers.

cptr Integer array containing the column-partitioning pointers.

bptr Integer array containing the block row start pointers.

bindx Integer array containing the block column indices.

indx Integer array containing the block start pointers.

val Floating-point array containing the nonzero block entries, where each block
entry is stored as a dense matrix, column by column.

0 1 2 3 4 5 6 7 8
+------+---------+----+--------+

0 | 1 3 5 | 0 0 | 9 | 0 0 |
1 | 2 4 6 | 0 0 | 10 | 0 0 |

+---------+------+----+--------+
2 | 0 0 0 | 7 8 | 11 | 0 0 |

+------+---------+----+--------+
3 | 0 0 0 | 0 0 | 12 | 14 16 |
4 | 0 0 0 | 0 0 | 13 | 15 17 |

+------+---------+----+--------+
5

% Example: 5x8 sparse matrix in an S3L_SPARSE_VBR format
%
5 8 17 3 4 6

0 2 3 5
0 3 5 6 8

0 2 4 6
0 2 1 2 2 3
0 6 8 10 11 13 17

1.0 2.0 3.0 4.0 5.0 6.0 9.0 10.0
7.0 8.0 11.0
12.0 13.0 14.0 15.0 16.0 17.0
282 Sun S3L 4.0 Software Reference Manual • February 2003

Syntax
The C and Fortran syntax for S3L_read_sparse is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_read_sparse accepts the following arguments as input:

■ spfmt – Specifies the sparse storage format used for representing the sparse
matrix. The supported formats are S3L_SPARSE_COO, S3L_SPARSE_CSR,
S3L_SPARSE_CSC, and S3L_SPARSE_VBR.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_read_sparse(A, spfmt, m, n, nnz, type, fname, dfmt)

S3L_array_t *A
S3L_sparse_storage_t spfmt
int m
int n
int nnz
S3L_data_type type
char *fname
char *dfmt

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_read_sparse(A, spfmt, m, n, nnz, type, fname, dfmt, ier)

integer*8 A
integer*4 spfmt
integer*4 m
integer*4 n
integer*4 nnz
integer*4 type
character*1 fname
character*1 dfmt
integer*4 ier
Chapter 2 Sun S3L Functions 283

■ m – Indicates the total number of rows in the sparse matrix.

■ n – Indicates the total number of columns in the sparse matrix.

■ nnz – Indicates the total number of nonzero elements in the sparse matrix.

■ type – Indicates the type of the sparse array, which must be S3L_float,
S3L_double, S3L_complex, or S3L_double_complex.

■ fname – Scalar character variable that names the ASCII file containing the sparse
matrix data.

■ dfmt – Specifies the format of the data to be read from the data file. Allowed
strings are ‘ascii’ and ‘ASCII’.

Output
S3L_read_sparse uses the following arguments for output:

■ A – Sun S3L array handle for the global general sparse matrix output.

■ ier (Fortran only) – When called from a Fortran program, S3L_read_sparse
returns error status in ier.

Error Handling
On success, S3L_read_sparse returns S3L_SUCCESS.

The S3L_read_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code is returned that indicates which
value of the array handle was invalid. See Appendix A of this manual for a detailed
list of these error codes.

In addition, the following conditions will cause S3L_read_sparse to terminate and
return the associated error code:

■ S3L_ERR_ARG_EXTENTS – Invalid m, n, or nnz. These arguments must all be > 0.

■ S3L_ERR_SPARSE_FORMAT – Invalid storage format. It must be
S3L_SPARSE_COO, S3L_SPARSE_CSR, S3L_SPARSE_CSC, or S3L_SPARSE_VBR.

■ S3L_ERR_ARG_DTYPE – Invalid data type. It must be S3L_float, S3L_double,
S3L_complex, or S3L_double_complex.

■ S3L_ERR_IO_FILENAME – Invalid file name.

■ S3L_ERR_IO_FORMAT – Invalid data file format. The error could be either of the
following:

■ The dfmt value supplied was not ’ascii’ or ‘ASCII’.
284 Sun S3L 4.0 Software Reference Manual • February 2003

■ An unsupported MatrixMarket format was supplied. When a MatrixMarket file
is used, the first line of its comment section must contain either the words
’real general’ or ’complex general’.

■ S3L_ERR_FILE_OPEN – Failed to open the data file; the file either does not exist
or the name is specified incorrectly.

■ S3L_ERR_EOF – The input data ended before expected.

Examples
/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

Related Functions
S3L_convert_sparse(3)

S3L_declare_sparse(3)

S3L_matvec_sparse(3)

S3L_rand_sparse(3)

S3L_reduce

Description
S3L_reduce performs a predefined reduction function over all elements of a
parallel array. The array is described by the Sun S3L array handle argument A. The
argument op specifies the type of reduction operations, which can be one of the
following:

■ S3L_OP_SUM – Finds the sum of all the elements.
■ S3L_OP_MIN – Finds the smallest value among all the elements.
■ S3L_OP_MAX – Finds the largest value among all the elements.

Syntax
The C and Fortran syntax for S3L_reduce is as follows:
Chapter 2 Sun S3L Functions 285

C/C++ Syntax

F77/F90 Syntax

where <type> is one of: real*4, real*8, complex*8, or complex*16.

Input
S3L_reduce accepts the following arguments as input:

■ A – Array handle for the parallel array to be reduced.
■ op – Specifies the type of operation to be performed.

Output
S3L_reduce uses the following arguments for output:

■ res – Contains the result of the reduction function.

■ ier (Fortran only) – When called from a Fortran program, S3L_reduce returns
error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_reduce(A, op, res)

S3L_array_t A
S3L_op_type op
void *res

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_reduce(A, op, res, ier)

integer*8 A
integer*4 op
<type> res
integer*4 ier
286 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_reduce returns S3L_SUCCESS.

S3L_reduce performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_OP – Requested operation is not supported.
■ S3L_ERR_ARG_DTYPE – Invalid data type.

Examples
/opt/SUNWhpc/examples/s3l/utils/cshift_reduce.c

/opt/SUNWhpc/examples/s3l/utils-f/cshift_reduce.f

Related Function
S3L_reduce_axis(3)

S3L_reduce_axis

Description
S3L_reduce_axis applies a predefined reduction operation along a given axis of a
parallel Sun S3L array. If n is the rank (number of dimensions) of a, the result b is a
parallel array of rank n-1. The argument op specifies the operation to be performed.
The value of op must be one of:

■ S3L_OP_SUM – The sum reduction operation is applied.
■ S3L_OP_MIN – The minimum reduction operation is applied.
■ S3L_OP_MAX – The maximum reduction operation is applied.
Chapter 2 Sun S3L Functions 287

Syntax
The C and Fortran syntax for S3L_reduce_axis is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_reduce_axis accepts the following arguments as input:

■ a – Sun S3L array handle for the parallel array on which the operation will be
applied.

■ op – Predefined constant specifying the operation to be applied.

■ axis – Specifies the axis along which the reduction will be performed. When
S3L_reduce_axis is called from a C program, this value must reflect zero-based
indexing of the array axes. If called from a Fortran program, it must reflect one-
based indexing.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_reduce_axis(a, op, axis, b)

S3L_array_t a
S3L_op_type op
int axis
S3L_array_t b

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_reduce_axis(a, op, axis, b, ier)

integer*8 a
integer*4 op
integer*4 axis
integer*8 b
integer*4 ier
288 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_reduce_axis uses the following arguments for output:

■ b – Sun S3L array handle for the parallel array that will contain the result of the
reduction.

■ ier (Fortran only) – When called from a Fortran program, S3L_reduce_axis
returns error status in ier.

Error Handling
On success, S3L_reduce_axis returns S3L_SUCCESS.

S3L_reduce_axis performs generic checking of the validity of the arrays it accepts
as arguments. If an array argument contains an invalid or corrupted value, the
function terminates and an error code is returned that indicates which value of the
array handle was invalid. See Appendix A of this manual for a detailed list of these
error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_OP – Requested operation is not supported.

■ S3L_ERR_MATCH_EXTENTS – The extents of a and b do not match. For example,
if a is a 4D array with extents n1 x n2 x n3 x n4, and axis is equal to 2 (Fortran
interface), b must be a 3D array with extents n1 x n3 x n4.

■ S3L_ERR_MATCH_RANK – The rank of b is not equal to the rank of a minus 1.

■ S3L_ERR_ARG_AXISNUM – The axis specified is not valid; that is, it is either larger
than the rank of the array or smaller than 1 (Fortran interface). For the C interface,
the axis value is equal to or larger than the rank of the array or smaller than 0.

Examples
/opt/SUNWhpc/examples/s3l/utils/cshift_reduce.c

/opt/SUNWhpc/examples/s3l/utils-f/cshift_reduce.f

Related Function
S3L_reduce(3)
Chapter 2 Sun S3L Functions 289

S3L_set_array_element,
S3L_get_array_element,
S3L_set_array_element_on_proc,
and
S3L_get_array_element_on_proc

Description
The four subroutines described in this section enable the user to alter (set) and
retrieve (get) individual elements of an array. Two of these subroutines also enable
the user to know which process will participate in the set or get activity.

S3L_set_array_element assigns the value stored in val to a specific element of a
distributed Sun S3L array whose global coordinates are specified by coor. The val
variable is colocated with the array subgrid containing the target element.

Note – Because a Sun S3L array is distributed across a set of processes, each process
has a subsection of the global array local to it. These array subsections are also
referred to as array subgrids.

For example, if a parallel array is distributed across four processes, P0–P3, and coor
specifies an element in the subgrid that is local to P2, the val that is located on P2
will be the source of the value used to set the target element.

S3L_get_array_element is similar to S3L_set_array_element, but operates in
the opposite direction. It assigns the value stored in the element specified by coor to
val on every process. Since S3L_get_array_element broadcasts the element
value to every process, upon completion, every process contains the same value in
val.

S3L_set_array_element_on_proc specifies which process will be the source of
the value to be assigned to the target element. That is, the argument pnum specifies
the MPI rank of a particular process. The value of the variable val on that process
will be assigned to the target element—that is, the element whose coordinates are
specified by coor.
290 Sun S3L 4.0 Software Reference Manual • February 2003

Note – The MPI rank of a process is defined in the global communicator
MPI_COMM_WORLD.

S3L_get_array_element_on_proc updates the variable val on the process
whose MPI rank is supplied in pnum, and uses the element whose indices are given
in coor as the source for the update.

Syntax
The C and Fortran syntax for S3L_set_array_element and its related routines is
as follows:
Chapter 2 Sun S3L Functions 291

C/C++ Syntax

F77/F90 Syntax

where <type> is integer*4, real*4, real*8, complex*8, or complex*16.

Input
S3L_set_array_element, S3L_set_array_element_on_proc,
S3L_get_array_element,and S3L_get_array_element_on_proc accept the
following arguments as input:

■ a – Array handle describing the parallel array containing the element of interest.

■ coor – Integer vector specifying the coordinates of an element of the distributed
array a. This value follows zero-based notation for C/C++ programs and one-
based notation for F77/F90 programs.

■ val – Variable that holds the value to be assigned to an element of an array or
that accepts the value of that element.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_set_array_element(a, coor, val)
S3L_get_array_element(a, coor, val)
S3L_set_array_element_on_proc(a, coor, val, pnum)
S3L_get_array_element_on_proc(a, coor, val, pnum)

S3L_array_t a
int coor
void val
int pnum

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_set_array_element(a, coor, val, ier)
S3L_get_array_element(a, coor, val, ier)
S3L_set_array_element_on_proc(a, coor, val, pnum, ier)
S3L_get_array_element_on_proc(a, coor, val, pnum, ier)

integer*8 a
integer*4 coor
<type> val
integer*4 pnum
integer*4 ier
292 Sun S3L 4.0 Software Reference Manual • February 2003

■ pnum – Integer variable specifying the MPI rank of a process to supply or accept
the value val. pnum is used only with S3L_set_array_element_on_proc and
S3L_get_array_element_on_proc.

Output
S3L_set_array_element, S3L_set_array_element_on_proc,
S3L_get_array_element,and S3L_get_array_element_on_proc use the
following argument for output:

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, these functions return S3L_SUCCESS.

In addition, the following conditions will cause these functions to terminate and
return the associated error code and terminate:

■ S3L_ERR_ARG_DTYPE – The data type of array a is not

■ S3L_integer
■ S3L_float
■ S3L_double
■ S3L_complex
■ S3L_double_complex

■ S3L_ERR_ARG_COOR – The supplied coordinates are not valid; that is, they do not
specify an element of a.

Examples
/opt/SUNWhpc/examples/s3l/utils/cshift_reduce.c

/opt/SUNWhpc/examples/s3l/utils-f/cshift_reduce.f
Chapter 2 Sun S3L Functions 293

S3L_set_process_grid

Description
S3L_set_process_grid allows the user to define various aspects of an internal
process grid. It returns a process grid handle, which subsequent calls to other Sun
S3L functions can use to refer to that process grid.

Syntax
The C and Fortran syntax for S3L_set_process_grid is as follows:
294 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_set_process_grid accepts the following arguments as input:

■ rank – Specifies the rank of the process grid to be created. The range of legal
values for rank is the same as for Sun S3L arrays, which is 1 <= rank <= 31.

■ majorness – Uses one of the following predefined values to specify the order of
loop execution:

■ S3L_MAJOR_ROW – Rightmost axis varies fastest.
■ S3L_MAJOR_COLUMN – Leftmost axis varies fastest.

■ grid_extents – Integer array whose length equals the rank of the process grid.
It contains a list of process grid extents. Each element in the array specifies the
extent of the corresponding process grid axis. Note that axis indexing is zero-
based for the C/C++ interface and one-based for the F77/F90 interface, as
follows:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
S3L_set_process_grid(pgrid, rank, majorness, grid_extents,
plist_length, process_list)

S3L_pgrid_t *pgrid
int rank
int majorness
int *grid_extents
int plist_length
int *process_list

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_set_process_grid(pgrid, rank, majorness, grid_extents,
plist_length, process_list, ier)

integer*8 pgrid
integer*4 rank
integer*4 majorness
integer*4 grid_extents(*)
integer*4 plist_length
integer*4 process_list(*)
integer*4 ier
Chapter 2 Sun S3L Functions 295

■ When called from a C or C++ application, the first element of grid_extents
corresponds to axis 0, the second element to axis 1, and so forth.

■ When called from an F77 or F90 application, the first element corresponds to
axis 1, the second to axis 2, and so forth.

■ plist_length – Length of process list. Note that, if the product of all grid
extents is N and if a value greater than N is specified for plist_length, only the
first N elements of process_list will be used.

■ process_list – Array of integers of length plist_length, which contains a
list of the processes that will constitute the process grid. For example, if you are
running your program on four MPI processes but you wish to create a process
grid consisting of only processes 1 and 3, you should set plist_length to 2 and
have

If plist_length is 0, process_list is ignored. The process grid is then
created using all available processes in MPI_COMM_WORLD.

Output
S3L_set_process_grid uses the following arguments for output:

■ pgrid – The process grid handle returned by the function.

■ ier (Fortran only) – When called from a Fortran program,
S3L_set_process_grid returns error status in ier.

Error Handling
On success, S3L_set_process_grid returns S3L_SUCCESS.

S3L_set_process_grid performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes:

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_RANK – Invalid rank argument value.

■ S3L_ERR_ARG_MAJOR – Invalid majorness value.

process_list[0] = 1
process_list[1] = 3
296 Sun S3L 4.0 Software Reference Manual • February 2003

■ S3L_ERR_PGRID_EXTENTS – Grid size (calculated as product of process grid
extents) is less than 1.

■ S3L_ERR_ARRTOOSMALL – plist_length is greater than 0 but less than the size
of the grid (calculated from the product of process grid extents).

■ S3L_ERR_ARG_NULL – In a C/C++ program, plist_length is greater than 0,
but process_list is a NULL pointer.

Examples
/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

Related Functions
S3L_declare_detailed(3)

S3L_free_process_grid(3)

S3L_set_safety

Description
The Sun S3L safety mechanism offers two types of services:

■ It performs error checking and reporting during execution of Sun S3L routines.

■ It synchronizes Sun S3L processes so that, when an error is detected, the section
of code associated with the error can be more readily identified.

The Sun S3L safety mechanism can be set to operate at any one of four levels, which
are described in TABLE 2-17.
Chapter 2 Sun S3L Functions 297

The Sun S3L safety mechanism can be controlled in either of two ways:

■ By setting the environment variable S3L_SAFETY.

■ By using the call S3L_set_safety in a program.

To set the Sun S3L safety level using the S3L_SAFETY environment variable, issue
the command:

where number is one of: 0, 2, 5, or 9.

The value of S3L_SAFETY is read in when S3L_init() is called. This value can be
overridden by a call to S3L_set_safety() at any point in the user’s program.
When S3L_set_safety() is called, its value overrides S3L_SAFETY until the
program completes.

If S3L_set_safety() is called again, the new safety level value will override the
the previous call. In other words, S3L_set_safety() can be called multiple times
within a single program. The next time the program is run, the safety level specified
by S3L_SAFETY will be reasserted.

TABLE 2-17 Setting Sun S3L Safety Levels

Safety Level Description

0 Turns the safety mechanism off. Explicit synchronization and error
checking are not performed. This level is appropriate for production
runs of code that have already been thoroughly tested.

2 Detects potential race conditions in multithreaded Sun S3L
operations on parallel arrays. To avoid race conditions, a Sun S3L
function locks all parallel array handles in its argument list before
proceeding. This safety level causes warning messages to be
generated if more than one Sun S3L function attempts to use the
same parallel array at the same time.

5 In addition to checking for and reporting level 2 errors, performs
explicit synchronization before and after each call and locates each
error with respect to the synchronization points. This safety level is
appropriate during program development or during runs for which
a small performance penalty can be tolerated.

9 Checks for and reports all level 2 and level 5 errors, as well as errors
generated by any lower levels of code called from within Sun S3L.
Performs explicit synchronization in these lower levels of code and
locates each error with respect to the synchronization points. This
level is appropriate for detailed debugging following the occurrence
of a problem.

setenv S3L_SAFETY number
298 Sun S3L 4.0 Software Reference Manual • February 2003

Syntax
The C and Fortran syntax for S3L_set_safety is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_set_safety accepts the following argument as input:

■ n – An integer specifying one of four safety levels: 0, 2, 5, and 9. See
the Description section for details.

Output
S3L_set_safety uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_set_safety
returns error status in ier.

Error Handling
On success, S3L_set_safety returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_set_safety(n)

int n

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_set_safety(n, ier)

integer*4 n
integer*4 ier
Chapter 2 Sun S3L Functions 299

On error, the following condition will cause the function to terminate and return the
associated error code:

■ S3L_ERR_SAFELEV_INVAL – Value specified for n is invalid.

Examples
/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f

Related Function
S3L_get_safety(3)

S3L_setup_rand_fib

Description
S3L_setup_rand_fib initializes the Lagged-Fibonacci random number generator’s
(LFG’s) state table with the fixed parameters:

l = 17, k = 5, m = 32.

The state table is initialized in a manner that ensures that the random numbers
generated for each node are from a different period of the LFG. A Linear
Multiplicative Generator (LMG) is used to initialize the noncritical elements of the
state table.

Use S3L_free_rand_fib to deallocate an LFG setup.

Syntax
The C and Fortran syntax for S3L_setup_rand_fib is as follows:
300 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_setup_rand_fib accepts the following argument as input:

■ seed – An integer value used to initialize the LMG that initializes the noncritical
elements of the LFG’s state table.

Output
S3L_setup_rand_fib uses the following arguments for output:

■ setup_id – On output, setup_id contains an index that can be used as input to
S3L_rand_fib.

■ ier (Fortran only) – When called from a Fortran program,
S3L_setup_rand_fib returns error status in ier.

Error Handling
On success, S3L_setup_rand_fib returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_setup_rand_fib(setup_id, seed)

int *setup_id
int seed

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_setup_rand_fib(setup_id, seed, ier)

integer*4 setup_id
integer*4 seed
integer*4 ier
Chapter 2 Sun S3L Functions 301

Examples
/opt/SUNWhpc/examples/s3l/rand_fib/rand_fib.c

/opt/SUNWhpc/examples/s3l/rand_fib-f/rand_fib.f

Related Functions
S3L_free_rand_fib(3)

S3L_rand_fib(3)

S3L_sort, S3L_sort_up,
S3L_sort_down,
S3L_sort_detailed_up,
S3L_sort_detailed_down

Description
The S3L_sort function sorts the elements of a one-dimensional array in ascending
order.

S3L_sort_up and S3L_sort_down sort the elements of one-dimensional or
multidimensional array in ascending and descending order, respectively.

Note – S3L_sort is a special case of S3L_sort_up.

When A is one-dimensional, the result is a vector that contains the same elements as
A, but arranged in ascending order (S3L_sort or S3L_sort_up) or descending
order. For example, if A contains

calling S3L_sort or S3L_sort_up would produce the result

| 7 2 4 3 1 8 6 9 5 |

| 1 2 3 4 5 6 7 8 9 |
302 Sun S3L 4.0 Software Reference Manual • February 2003

If A is multidimensional, the elements are sorted into an index-based sequence,
starting with the first row-column index and progressing through the row indices
first before advancing to the next column index position.

For example, if A contains

S3L_sort_up would produce the result

and S3L_sort_down would produce the result

S3L_sort_detailed_up and S3L_sort_detailed_down sort the elements of
one-dimensional or multidimensional arrays in ascending and descending order
along the axis specified by the axis argument.

Note – The value of the axis argument is language dependent. For C/C++
applications, it must be zero-based and for F77/F90 applications, it must be one-
based.

If the array referenced by A contains

| 6 2 7 |
| |
| 1 4 3 |
| |
| 9 5 8 |

| 1 4 7 |
| |
| 2 5 8 |
| |
| 3 6 9 |

| 9 6 3 |
| |
| 8 5 2 |
| |
| 7 4 1 |

| 6 2 7 |
| |
| 1 4 3 |
| |
| 9 5 8 |
Chapter 2 Sun S3L Functions 303

and a C program calls S3L_sort_detailed_up with axis = 0, upon completion,
A will contain

Or, if a C program calls S3L_sort_detailed_up with axis = 1, upon completion,
A will contain

If these calls were made from an F77 or F90 program, the axis values would need to
be one greater (that is, 1 and 2, respectively) to achieve the same results.

Syntax
The C and Fortran syntax for these functions is as follows:

| 1 2 3 |
| |
| 6 4 7 |
| |
| 9 5 8 |

| 2 6 7 |
| |
| 1 3 4 |
| |
| 5 8 9 |
304 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
The family of sort functions accept one or both of the following arguments as input:

■ A – For S3L_sort, A must be a one-dimensional array. For S3L_sort_up,
S3L_sort_down, S3L_sort_detailed_up, and S3L_sort_detailed_down,
A can be one-dimensional or multidimensional.

■ axis – Used with S3L_sort_detailed_up and S3L_sort_detailed_down to
specify which axis of A is to be sorted. If A is one-dimensional, axis must be 0
(for C/C++) or 1 (for F77/F90). It may not be used in S3L_sort, S3L_sort_up,
or S3L_sort_down calls.

Output
These sort functions use the following arguments for output:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_sort(A)
S3L_sort_up(A)
S3L_sort_down(A)
S3L_sort_detailed_up(A, axis)
S3L_sort_detailed_down(A, axis)

S3L_array_t A
int axis

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_sort(A, ier)
S3L_sort_up(A, ier)
S3L_sort_down(A, ier)
S3L_sort_detailed_up(A, axis, ier)
S3L_sort_detailed_down(A, axis, ier)

integer*8 A
integer*4 axis
integer*4 ier
Chapter 2 Sun S3L Functions 305

■ A – On output, A contains the sorted array.

■ ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier.

Error Handling
On success, the sort functions return S3L_SUCCESS.

These functions all check the arrays they accept as arguments. If an array argument
contains an invalid or corrupted value, the function terminates and an error code is
returned that indicates which value of the array handle was invalid. See Appendix A
of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the functions to terminate and return
the associated code:

■ S3L_ERR_ARG_DTYPE – The type of the array is invalid. It must be
S3L_integer, S3L_long_integer, S3L_float, or S3L_double.

■ S3L_ERR_ARG_AXISNUM – The axis argument has an invalid value. The correct
values for axis are:

■ 0 <= axis < rank of a (C/C++)
■ 0 < axis <= rank of a (F77/F90)

Examples
/opt/SUNWhpc/examples/s3l/sort/sort1.c

/opt/SUNWhpc/examples/s3l/sort/ex_sort2.c

/opt/SUNWhpc/examples/s3l/sort-f/sort1.f

Related Functions
S3L_grade_up(3)

S3L_grade_detailed_down(3)

S3L_grade_detailed_up(3)
306 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_sort_detailed

Description
S3L_sort_detailed enables the user to sort Sun S3L arrays on one or more
dimensions with detailed control. The axis and options arguments support:

■ specifying the axis along which the sort will be done (for multidimensional
arrays).

■ specifying the sort direction—descending or ascending order

■ specifying either radix or quick-sort as the sort algorithm

Syntax
The C and Fortran syntax for S3L_sort_detailed is as follows:
Chapter 2 Sun S3L Functions 307

C/C++ Syntax

F77/F90 Syntax

Input
S3L_sort_detailed accepts the following arguments as input:

■ A – On entry, A contains the Sun S3L array to be sorted.

■ axis – Integer value that specifies which axis of A is to be sorted. If A is one-
dimensional, axis must be 0 (for C/C++) or 1 (for F77/F90).

■ options – Integer vector with two elements. These elements are used as follows:

The first element specifies the algorithm to be used. It can be either
S3L_QUICKSORT or S3L_RADIXSORT.

The second element specifies the sort direction. It can be either S3L_DOWN or
S3L_UP.

Output
S3L_sort_detailed uses the following arguments for output:

■ A – On exit, A contains the sorted array.

■ ier (Fortran only) – When called from a Fortran program, S3L_sort_detailed
returns error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_sort_detailed(A, axis, options)

S3L_array_t A
int axis
int *options

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_sort_detailed(A, axis, options, ier)

integer*8 A
integer*4 axis
integer*4 options
integer*4 ier
308 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_sort_detailed returns S3L_SUCCESS.

S3L_sort_detailed performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause S3L_sort_detailed to terminate
and return the associated error code:

■ S3L_ERR_ARG_DTYPE – The data type of the array is invalid. It must be
S3L_integer, S3L_long_integer, S3L_float, or S3L_double.

■ S3L_ERR_ARG_AXISNUM – The axis argument has an invalid value. The correct
values for axis are:

■

■ S3L_ERR_ARG_OP – The first element of options is not either S3L_QUICKSORT or
S3L_RADIXSORT, or the second element of options is not either S3L_UP or
S3L_DOWN.

Examples
/opt/SUNWhpc/examples/s3l/sort/ex_sort3.c

/opt/SUNWhpc/examples/s3l/sort-f/sort2.f

Related Functions
S3L_grade_down(3)

S3L_grade_up(3)

S3L_grade_detailed_down(3)

S3L_grade_detailed_up(3)

C/C++7 0 <= axis < rank of A
F77/F90 1 <= axis <= rank of A
Chapter 2 Sun S3L Functions 309

S3L_sparse_solve

Description
S3L_sparse_solve solves a linear system of equations A*x = y, where A is a
sparse Sun S3L array and A and y are both single- or double-precision real parallel
arrays.

Notes

When calling S3L_sparse_solve to solve a new (unfactored) sparse linear system,
specify S3L_FULL_FACTOR_SOLVE as the first element of the option argument
vector. This will cause S3L_sparse_solve to reduce fill by reordering the array
and to perform symbolic and numeric factoring before solving the system. It will
also return a setup value that identifies the internal setup created by the factoring.

If the same linear system is to be solved again, but with a different right-hand-side,
specify S3L_SOLVE_ONLY as the first element of the options argument. Also
specify the setup value returned by the S3L_sparse_solve call that factored the
sparse array. The new solution will make use of the internal setup created by the
earlier S3L_sparse_solve call.

If a previously factored sparse array contains new values, but the sparsity pattern
has not changed, it can be solved without specifying S3L_FULL_FACTOR_SOLVE.
Instead, specify S3L_SAME_SPARSITY_SOLVE and the previously returned setup
value. This causes S3L_sparse_solve to perform numeric factorization on the
sparse array and then solve the linear system.

When the internal setup for a linear system is no longer needed, the resources
associated with it can be freed by calling S3L_sparse_solve_free and specifying
the applicable setup value.

The S+ message-passing direct sparse solver was developed by Kai Shen and Tao
Yang of the University of California at Santa Barbara. S+ can be used for general
(asymmetric) sparse matrices.

The Sun Performance Library direct solver solves a sparse linear system on a single
process.
310 Sun S3L 4.0 Software Reference Manual • February 2003

Syntax
The C and Fortran syntax for S3L_sparse_solve is as follows:

C/C++ Syntax

F77/F90 Syntax

where <type> is either real*4 or real*8.

Input
S3L_sparse_solve accepts the following arguments as input:

■ A – A parallel single- or double-precision, real sparse Sun S3L array.

■ y – A parallel real array of rank 1 (vector) or rank 2 (matrix), containing the RHS
of the linear system A*x = y. See Output section for use at exit.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_sparse_solve(A, y, options, roptions, setup)

S3L_array_t A
S3L_array_t y
int *options
double *roptions
int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_sparse_solve(A, y, options, roptions, setup, ier)

integer*8 A
integer*8 y
integer*4 options(*)
<type> roptions(*)
integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 311

■ options – An array of rank 1 whose elements control S3L_sparse_solve
behavior as follows:

■ If options[1] = S3L_PERFLIB_SOLVER, specify the following options as well:

options[0] = S3L_FULL_FACTOR_SOLVE Perform fill-reducing
reordering, symbolic
factorization, numeric
factorization, and solve
the linear system.

options[0] = S3L_SAME_SPARSITY_SOLVE Do only numeric
factorization and solve
the linear system. Use
this option when the
sparsity pattern of a
previously factored array
stays the same but it has
a new set of values.

options[0] = S3L_SOLVE_ONLY Only solve the linear
system, using a
previously computed
factorization.

options[1] = S3L_SPLUS_SOLVER Use S+ sparse solver. See
“Notes” on page 310 for
attribution information.

options[1] = S3L_PERFLIB_SOLVER Use the Sun Performance
Library 6.0 sparse
solver.

options[2] = S3L_NON_SYMMETRIC The sparse array has
asymmetric structure
and asymmetric values.

options[2] = S3L_SYMMETRIC The sparse array has
symmetric structure
and symmetric values.

options[2] = S3L_SYM_STRUCT The sparse array has
symmetric structure
but asymmetric values.

options[3] = S3L_NO_PIVOT Do not use pivoting.

options[3] = S3L_DO_PIVOT Use pivoting.
312 Sun S3L 4.0 Software Reference Manual • February 2003

■ roptions – Not currently used. It may be used in the future for specifying such
parameters as a drop tolerance for pivoting, a threshold value for determining
when a block is considered dense, and the amalgamation constant.

Output
S3L_sparse_solve uses the following arguments for output:

■ y – On exit, y is overwritten with the solution of the system.

■ setup – Integer associated with the sparse linear solution that results from this
call to S3L_sparse_solve. If the internal setup will be used for additional
solutions of the linear system, this setup value will be used by the subsequent
S3L_sparse_solve calls. It will also be used in a subsequent call to
S3L_sparse_solve_free to free the internal data associated with this solution
of the sparse system.

■ ier (Fortran only) – When called from a Fortran program, S3L_sparse_solve
returns error status in ier.

Error Handling
On success, S3L_sparse_solve returns S3L_SUCCESS.

S3L_sparse_solve performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and returns an error code indicating which value was
invalid. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause S3L_sparse_solve to terminate
and return the associated error code:

■ S3L_ERR_ARG_DTYPE – The data type of the input arrays A and/or y is not
S3L_float or S3L_double, or the data type of A is not the same as that of y.

■ S3L_ERR_ARRNOTSQ – Input array A is not square.

■ S3L_ERR_ARG_RANK – y is not a 1D or 2D array.

■ S3L_ERR_ARG_EXTENTS – The length of y is not compatible with the extents of A.

■ S3L_ERR_ARG_OP – One or more of the following conditions exist:

■ The first element of the integer vector options is not
S3L_FULL_FACTOR_SOLVE, S3L_SOLVE_ONLY, or
S3L_SAME_SPARSITY_SOLVE.

■ The second element of options is not S3L_SPLUS_SOLVER or
S3L_PERFLIB_SOLVER.
Chapter 2 Sun S3L Functions 313

■ The second element of options is S3L_PERFLIB_SOLVER, but one or more of
the following conditions exist:

The third element of options is not S3L_NON_SYMMETRIC, S3L_SYMMETRIC,
or S3L_SYM_STRUCT.

The fourth element of options is not S3L_NO_PIVOT or S3L_DO_PIVOT.

■ S3L_ERR_ARG_SETUP – Invalid setup value.

Examples
/opt/SUNWhpc/examples/s3l/spsolve/ex_sparse_solve1.c

/opt/SUNWhpc/examples/s3l/spsolve-f/ex_sp_solve1.f

Related Function
S3L_sparse_solve_free(3)

S3L_sparse_solve_free

Description
S3L_sparse_solve_free frees all internal data associated with the solution of a
sparse linear system.

Syntax
The C and Fortran syntax for S3L_sparse_solve_free is as follows:
314 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_sparse_solve_free accepts the following argument as input:

■ setup – An integer associated with a particular sparse linear solution. It was
previously returned by the S3L_sparse_solve call that produced the solution.

Output
S3L_sparse_solve_free uses the following argument as output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_sparse_solve_free returns error status in ier.

Error Handling
On success, S3L_sparse_solve_free returns S3L_SUCCESS.

On error, S3L_sparse_solve_free returns one of the following error codes:

■ S3L_ERR_ARG_SETUP – Invalid setup value.

■ S3L_ERR_NOTSUPPORT – The software layer upon which the Sun S3L sparse
solver is built could not be found. See the S3L_sparse_solve Error Handling
section for details. Input array A is not square.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_sparse_solve_free(setup)

int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_sparse_solve_free(setup, ier)

integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 315

Examples
/opt/SUNWhpc/examples/s3l/spsolve/ex_sparse_solve1.c

/opt/SUNWhpc/examples/s3l/spsolve-f/ex_sp_solvef1.f

Related Function
S3L_sparse_solve(3)

S3L_sym_eigen

Description
S3L_sym_eigen finds selected eigenvalues and, optionally, eigenvectors of
Hermitian matrices. The eigenvalues and eigenvectors can be selected by specifying
a range of values or a range of indices for the desired eigenvalues/vectors.

Syntax
The C and Fortran syntax for S3L_sym_eigen is as follows:
316 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

where <type_lim> is either integer*4 or real*4 and <type_tol> is either
real*4 or real*8.

Input
S3L_sym_eigen accepts the following arguments as input:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_sym_eigen(A, axis1, axis2, E, V, J, job, range, limits,
tolerances)

S3L_array_t A
int axis1
int axis2
S3L_array_t E
S3L_array_t V
S3L_array_t J
int job
int range
void *limits
void *tolerances

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_sym_eigen(A, axis1, axis2, E, V, J, job, range, limits,
tolerances, ier)

integer*8 A
integer*4 axis1
integer*4 axis2
integer*8 E
integer*8 V
integer*8 J
integer*4 job
integer*4 range
<type_lim> limits(2)
<type_tol> tolerances(2)
integer*4 ier
Chapter 2 Sun S3L Functions 317

■ A – Sun S3L array handle describing a real or complex parallel array. On entry, A
contains one or more two-dimensional Hermitian matrices, b, each of which is
assumed to be dense and square. The axes of b are identified by the arguments
axis1 and axis2. Upon exit, the contents of A are destroyed.

■ axis1 – Integer variable denoting the axis of A that contains the rows of each
Hermitian matrix, b.

■ axis2 – Integer variable denoting the axis of A that contains the columns of each
Hermitian matrix, b. axis2 must be greater than axis1.

■ job – Integer variable indicating whether or not eigenvectors are to be computed.
A value of 0 indicates that only eigenvalues are desired. Otherwise, both
eigenvalues and eigenvectors are calculated.

■ range – Integer variable indicating the range of eigenvalues to be computed, as
follows:

■ 0 – Return all eigenvalues.

■ 1 – Compute all eigenvalues within the specified interval.

■ 2 – Return a range of eigenvalue indices (when eigenvalues are sorted in
ascending order).

■ limits – Defines the eigenvalue interval when the value of range is 1 or 2.
Specifically, when range equals:

■ 0 – limits is not used.

■ 1 – limits must be a scalar real vector of length 2. Its values bracket the
interval in which eigenvalues are requested—that is, all eigenvalues in the
interval [limits(1), limits(2)] will be found.

■ 2 – limits must be a scalar integer vector of length 2. For eigenvalues sorted
in ascending order, eigenvalues corresponding to limits(1) through
limits(2) will be found.

■ tolerances – Real vector of length 2. Its precision must match that of A. That is,
if A is of type S3L_float or S3L_complex, tolerances must be single-precision.
If A is of type S3L_double or S3L_double_complex, tolerances must be
double-precision.

tolerances(1) gives the absolute error tolerance for the eigenvalues. If
tolerances(1) is less than or equal to zero, the value eps * norm(b) will be
used in its place, where eps is the machine tolerance and norm(b) is the 1-norm of
the tridiagonal matrix obtained by reducing b to tridiagonal form.

tolerances(2) controls the reorthogonalization of eigenvectors. Eigenvectors
corresponding to eigenvalues that are within tolerances(2) * norm(b) of each
other will be reorthogonalized. If tolerances(1) is less than or equal to zero,
the value 1.0e-03 will be used in its place.
318 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_sym_eigen uses the following arguments for output:

■ A – Upon exit, the contents of A are destroyed.

■ E – Sun S3L array handle describing a real parallel array with rank(E) = rank(A) -
1. axis1 of E must have the same extent as axis1 of A. The remaining axes are
instance axes matching those of A in order of declaration and extents. Thus, each
vector f within E corresponds to a matrix b within A.

On return, each f contains the eigenvalues of the corresponding matrix b.

■ V – Sun S3L array handle describing a parallel array with the same rank, extents,
and data type as A. For each instance of matrix b within A, there is a
corresponding two-dimensional array, w, within V. axis1 denotes the axis of V
that contains the rows of w; axis2 denotes the axis of V that contains the columns
of w.

On return, each column of w will contain an eigenvector of w.

■ J – Sun S3L array handle describing an integer parallel array with
rank(J) = rank(A) - 1. axis1 of J should have an extent of 2. The remaining axes
are instance axes matching those of A in order of declaration and extents. Thus, J
will contain vectors of length 2 corresponding to the matrices b embedded within
A.

On return, the first element of each vector will contain the number of eigenvalues
found. The second element of each vector will contain the number of eigenvectors
found.

■ ier (Fortran only) – When called from a Fortran program, S3L_sym_eigen
returns error status in ier.

Error Handling
On success, S3L_sym_eigen returns S3L_SUCCESS.

S3L_sym_eigen performs generic checking of the arrays it accepts as arguments. If
an array argument contains an invalid or corrupted value, the function terminates
and an error code is returned that indicates which value of the array handle was
invalid. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_AXISNUM – Invalid value of axis1 or axis2.

■ S3L_ERR_MATCH_RANK – Ranks of the parallel arrays do not match.

■ S3L_ERR_ARRNOTSQ – The two-dimensional arrays in A are not square.
Chapter 2 Sun S3L Functions 319

■ S3L_ERR_MATCH_EXTENTS – The extents of the parallel arrays do not match.

■ S3L_ERR_MATCH_DTYPE – The arguments are not all of the same data type and
precision.

■ S3L_ERR_ARG_RANGE_INV – Invalid value used for range or limits.

■ S3L_ERR_ARG_NULL – Value of range is 1 or 2, but limits is a NULL pointer
(C/C++) or 0 (F77/F90).

Examples
/opt/SUNWhpc/examples/s3l/eigen/eigen.c

/opt/SUNWhpc/examples/s3l/eigen-f/eigen.f

S3L_thread_comm_setup

Description
S3L_thread_comm_setup establishes the appropriate internal MPI communicators
and data for thread-safe operation of Sun S3L functions. It should be called from
each thread in which Sun S3L functions will be used.

Only S3L_init can be called before S3L_thread_comm_setup.

The argument comm specifies an MPI communicator, which should be congruent
with, but not identical to, MPI_COMM_WORLD.

A unique communicator must be used for each thread or set of cooperating threads.
The term cooperating threads refers to a set of threads that will be working on the
same data. For example, one thread can initialize a random number generator,
obtain a setup ID, and pass this to a fellow cooperating thread, which will then use
the random number generator.

In such cases, the user must ensure that the threads within a cooperating set are
properly synchronized.

A unique communicator is required because Sun S3L performs internal
communications. For example, when S3L_mat_mult is called from a multithreaded
program, the thread on one node needs to communicate with the appropriate thread
320 Sun S3L 4.0 Software Reference Manual • February 2003

on another node. This can be done only if a communicator that is unique to these
threads has been previously defined and passed to the communications routines
within Sun S3L.

S3L_thread_comm_setup need not be invoked if Sun S3L functions are called
from only one thread in the user’s program.

Note – S3L_thread_comm_setup is useful when a user performs explicit
multithreading by means of threads library functions. Since threads library functions
are not available in F77, the F77 interface for S3L_thread_comm_setup is not
provided.

Syntax
The C and Fortran syntax for S3L_thread_comm_setup is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_thread_comm_setup accepts the following argument as input:

■ comm – An MPI communicator that is congruent with, but not identical to,
MPI_COMM_WORLD.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_thread_comm_setup(comm)

MPI_Comm comm

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_thread_comm_setup(comm, ier)

integer*4 comm
integer*4 ier
Chapter 2 Sun S3L Functions 321

Output
S3L_thread_comm_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_thread_comm_setup returns error status in ier.

Error Handling
On success, S3L_thread_comm_setup returns S3L_SUCCESS.

S3L_thread_comm_setup performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_NULL – The comm argument is a NULL pointer (C/C++) or 0
(F77/F90).

■ S3L_ERR_COMM_INVAL – The comm argument is not congruent with
MPI_COMM_WORLD.

■ S3L_ERR_THREAD_UNSAFE – The application program is using libraries that are
not thread-safe.

Examples
/opt/SUNWhpc/examples/s3l/dense_matrix_ops/inner_prod_mt.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/matmult_mt.c

Related Functions
MPI_Comm_dup(3)

S3L_set_safety(3)

threads(3T)

Also, "Multithreaded Programming" is a relevant section in the Sun HPC ClusterTools
Software User’s Guide.
322 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_to_ScaLAPACK_desc

Description
S3L_to_ScaLAPACK_desc converts the Sun S3L array handle specified by
s3ldesc into a ScaLAPACK array descriptor and subgrid address, which are
returned in scdesc and address, respectively.

The array referred to by s3ldesc must be two-dimensional—that is, it must be a
rank 2 array.

Syntax
The C and Fortran syntax for S3L_to_ScaLAPACK_desc is as follows:
Chapter 2 Sun S3L Functions 323

C/C++ Syntax

F77/F90 Syntax

Input
S3L_to_ScaLAPACK_desc accepts the following argument as input:

■ s3ldesc – Contains the Sun S3L array handle that is provided as input to
S3L_to_ScaLAPACK_desc.

Output
S3L_to_ScaLAPACK_desc uses the following arguments for output:

■ scdesc – Contains the ScaLAPACK descriptor output generated by
S3L_to_ScaLAPACK_desc.

■ data_type – Contains the data type of the Sun S3L array. It must specify a data
type supported by Sun S3L.

■ address – This argument will hold the starting address of an existing array
subgrid.

■ ier (Fortran only) – When called from a Fortran program,
S3L_to_ScaLAPACK_desc returns error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_to_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address)

S3L_array_t *s3ldesc
int *scdesc
int data_type
void **address

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_to_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address, ier)

integer*8 s3ldesc
integer*4 scdesc(*)
integer*4 data_type
pointer address
integer*4 ier
324 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_to_ScaLAPACK_desc returns S3L_SUCCESS.

S3L_to_ScaLAPACK_desc performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_NULL – The s3ldesc argument is a NULL pointer (C/C++) or 0
(F77/F90).

■ S3L_ERR_ARG_RANK – The Sun S3L array handle refers to an array with a rank
not equal to 2.

■ S3L_ERR_PGRID_NOPROCS – The ScaLAPACK descriptor has an invalid BLACS
context.

Examples
/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

Related Function
S3L_from_ScaLAPACK_desc(3)

S3L_trans

Description
S3L_trans performs a generalized transposition of a parallel array. A generalized
transposition is defined as a general permutation of the axes. The array axis_perm
contains a description of the permutation to be performed.
Chapter 2 Sun S3L Functions 325

The distribution characteristics of a and b must be compatible—that is, they must
have the same rank and type, and corresponding axes must be of the same length.

A faster algorithm is used in the 2D case when the array meets the following
conditions:

■ The first axis of the array is local.
■ The second axis of the array is global.
■ The size of each dimension is divisible by the number of processes.
■ The blocksizes are equal to the result of the division.

Syntax
The C and Fortran syntax for S3L_trans is as follows:

C/C++ Syntax

F77/F90 Syntax

Input
S3L_trans accepts the following arguments as input:

■ a – S3L_array handle for the parallel array to be transposed.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_trans(a, b, axis_perm)

S3L_array_t a
S3L_array_t b
int *axis_perm

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_trans(a, b, axis_perm, ier)

integer*8 a
integer*8 b
integer*4 axis_perm
integer*4 ier
326 Sun S3L 4.0 Software Reference Manual • February 2003

■ axis_perm – A vector of integers that specifies the axis permutation to be
performed.

Output
S3L_trans uses the following arguments for output:

■ b – S3L_array handle for a parallel array. Upon successful completion,
S3L_trans stores the transposed array in b.

■ ier (Fortran only) – When called from a Fortran program, S3L_trans returns
error status in ier.

Error Handling
On success, S3L_trans returns S3L_SUCCESS.

S3L_trans checks the arrays it accepts as arguments. If an array argument contains
an invalid or corrupted value, the function terminates and an error code is returned
that indicates which value of the array handle was invalid. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following conditions will cause S3L_trans to terminate and return
the associated code:

■ S3L_ERR_MATCH_RANK – The ranks of a and b do not match.

■ S3L_ERR_MATCH_EXTENTS – The extents of a and b are not compatible with the
transpose operation requested. That is, the following relationship is not satisfied
for all array axes i:

■ S3L_ERR_TRANS_PERMAX – The supplied permutation is not valid (every axis
must appear exactly once).

■ S3L_ERR_ARG_AXISNUM – The axis argument has an invalid value. The correct
values for axis are:

■ 0 <= axis < rank of the array (C/C++)

■ 0 < axis <= rank of the array (F77/F90)

Examples
/opt/SUNWhpc/examples/s3l/transpose/transp.c

/opt/SUNWhpc/examples/s3l/transpose/ex_trans1.c

ext(a,axis_perm[i] = ext(b,i)
Chapter 2 Sun S3L Functions 327

/opt/SUNWhpc/examples/s3l/transpose-f/transp.f

S3L_walsh

Description
S3L_walsh computes the discrete Walsh/Hadamard transform of 1D and 2D Sun
S3L arrays. The arrays can have any of the supported Sun S3L data types. For 1D
transforms, the length of the array has to be a power of two. Similarly for the 2D
case, the lengths along both dimensions should be a power of two.

The transform can be computed either in-place or out-of-place. If computed in-place,
the result is in a and in-order. If it is computed out-of-place, the result is in b and
out-of-order.

Arrays a and b must be the same rank and type and the extents of b must be
compatible with the extents of a. For the 1D case, a and b should have the same
extent. For the 2D case, the extents of array b should be such that array a can be
transposed into b.

Notes

Efficient Distribution: The S3L_walsh function is more efficient when the arrays are
block-distributed along their last dimension. When the calling program does not
specify this distribution, Sun S3L performs an internal redistribution of the arrays,
which may result in additional overhead.

Inverse: The inverse transform is the transform itself.

Scaling: When a forward transform of an array is followed by the inverse transform,
the original array is scaled by a factor that is the inverse of the product of the array
extents. The following shows the scaling factors for one- and two-dimensional
arrays:

1D reconstructed array is scaled by 1/n, where n is the extent
of the original array

2D reconstructed array is scaled by 1/(m*n), where m and n are
the array extents
328 Sun S3L 4.0 Software Reference Manual • February 2003

Out-of-place: When computing the out-of-place transform, a different setup must be
used for the forward and inverse transforms. For the 1D case, the length
decomposition should be the reverse of the forward decomposition.

The following shows the sequence of steps required for a 1D array of length m*n.

The out-of-place transform can avoid one internal global transposition.
Consequently, it is generally more efficient than the in-place transform.

Sun S3L computes the unordered Hadamard transform, whose matrix is a
permutation of the ordered Hadamard and Walsh transforms. In particular, the
transform matrix can be constructed recursively by the 2x2 matrix:

as follows:

Syntax
The C and Fortran syntax for S3L_walsh is as follows:

decomp[0] = m;
decomp[1] = n;
S3L_walsh_setup(A,&setup,decomp);

decomp_t[0] = n;
decomp_t[1] = m;
S3L_walsh_setup(B,&setup_t,decomp_t);

dist = S3L_WALSH_OUTOFPL;
S3L_walsh(A,B,setup,&dist);
S3L_walsh(B,A,setup_t,&dist);

H2 = | 1 1 |
| 1 -1 |

H4 = | H2 H2 |
| H2 -H2 |

[...]

H2N = | HN HN |
| HN -HN |
Chapter 2 Sun S3L Functions 329

C/C++ Syntax

F77/F90 Syntax

Input
S3L_walsh accepts the following arguments as input:

■ a – Input array whose Walsh transform is to be computed.

■ b – Input array that is used as a storage array for the in-place case. It is used as
the output array for the out-of-place case. For the 1D case, it should be of the
same type and length as a. For the 2D case, its extents should be such that a can
be transposed into b.

■ setup – Integer corresponding to an appropriate Walsh transform setup. It is
initialized with S3L_walsh_setup.

■ dist – Integer that can have the following values:

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_walsh(a, b, setup, dist)

S3L_array_t a
S3L_array_t b
int setup
int *dist

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_walsh(a, b, setup, dist, ier)

integer*8 a
integer*8 b
integer*4 setup
integer*4 dist
integer*4 ier

S3L_WALSH_INPLACE specifies in-place computation

S3L_WALSH_OUTOFPL specifies out-of-place computation
330 Sun S3L 4.0 Software Reference Manual • February 2003

Output
S3L_walsh uses the following arguments for output:

■ a – Upon exit, if dist is equal to S3L_WALSH_INPLACE, its elements are replaced
with the values of the Walsh transform. Otherwise, if dist is equal to
S3L_WALSH_OUTOFPL, the contents of a are destroyed and the output of the
transform is in array b.

■ b – When dist is equal to S3L_WALSH_OUTOFPL, the results of the transform are
in array b.

■ ier (Fortran only) – When called from a Fortran program, S3L_walsh returns
error status in ier.

Error Handling
On success, S3L_walsh returns S3L_SUCCESS.

S3L_walsh performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code is returned that indicates which value of the array
handle was invalid. See Appendix A of this manual for a detailed list of these error
codes.

In addition, the following conditions will cause S3L_walsh to terminate and return
the associated error code:

■ S3L_ERR_ARG_SETUP – Invalid setup value.

■ S3L_ERR_PARAM_INVALID – The first element of the dist vector is not
S3L_WALSH_INPLACE or S3L_WALSH_OUTOFPL.

■ S3L_ERR_MATCH_RANK – The rank of a is not equal to that of b.

■ S3L_ERR_MATCH_DTYPE – The data type of a is not equal to that of b.

■ S3L_ERR_MATCH_EXTENTS – The extents of b are not compatible with those of a.

Examples
/opt/SUNWhpc/examples/s3l/walsh/ex_walsh1.c

/opt/SUNWhpc/examples/s3l/walsh/ex_walsh2.c

/opt/SUNWhpc/examples/s3l/walsh-f/ex_walsh1.f

/opt/SUNWhpc/examples/s3l/walsh-f/ex_walsh2.f
Chapter 2 Sun S3L Functions 331

Related Functions
S3L_walsh_setup(3)

S3L_walsh_free_setup(3)

S3L_walsh_free_setup

Description
S3L_walsh_free_setup frees all internal data structures required for the
computation of a parallel discrete Walsh/Hadamard transform.

Syntax
The C and Fortran syntax for S3L_walsh_free_setup is as follows:
332 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_walsh_free_setup accepts the following argument as input:

■ setup – Integer corresponding to a Walsh transform setup.

Output
S3L_walsh_free_setup uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program,
S3L_walsh_free_setup returns error status in ier.

Error Handling
On success, S3L_walsh_free_setup returns S3L_SUCCESS.

S3L_walsh_free_setup performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code is returned that indicates which value of
the array handle was invalid. See Appendix A of this manual for a detailed list of
these error codes.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_walsh_free_setup(setup)

int *setup

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_walsh_free_setup(setup, ier)

integer*4 setup
integer*4 ier
Chapter 2 Sun S3L Functions 333

In addition, the following condition will cause S3L_walsh_free_setup to
terminate and return the associated error code:

■ S3L_ERR_ARG_SETUP – Invalid setup value.

Examples
/opt/SUNWhpc/examples/s3l/walsh/ex_walsh1.c

/opt/SUNWhpc/examples/s3l/walsh/ex_walsh2.c

/opt/SUNWhpc/examples/s3l/walsh-f/ex_walsh1.f

/opt/SUNWhpc/examples/s3l/walsh-f/ex_walsh2.f

Related Functions
S3L_walsh(3)

S3L_walsh_setup(3)

S3L_walsh_setup

Description
S3L_walsh_setup initializes internal data structures required for the computation
of a parallel discrete Walsh/Hadamard transform. Depending on the size, data type
and distribution of the parallel array a, and the user-specified length decomposition,
S3L_walsh_setup allocates an internal structure that can be used to compute the
Walsh transform of array a or any other array with the same size, data type, and
distribution. This internal structure is referenced by the integer variable setup and
can be freed by using S3L_walsh_free_setup.

Syntax
The C and Fortran syntax for S3L_walsh_setup is as follows:
334 Sun S3L 4.0 Software Reference Manual • February 2003

C/C++ Syntax

F77/F90 Syntax

Input
S3L_walsh_setup accepts the following arguments as input:

■ a – Input array whose Walsh/Hadamard transform is to be computed. The data
contained in the array are not modified.

■ decomp – In the 1D case, decomp is an integer vector of length 2, whose elements
correspond to the user-specified decomposition of the length of the array. For
example, if the length of a is l, the elements of decomp should be specified such
that l = decomp[0] * decomp[1].

Output
S3L_walsh_setup uses the following arguments for output:

■ setup – Integer corresponding to an appropriate Walsh transform setup. This
parameter can be used in a subsequent call to S3L_walsh so long as the data type
and extents of the array to be transformed are the same those of the array a set up
through this call.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_walsh_setup(a, setup, decomp)

S3L_array_t a
int *setup
int decomp[2]

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_walsh_setup(a, setup, decomp, ier)

integer*8 a
integer*4 setup
integer*4 decomp(2)
integer*4 ier
Chapter 2 Sun S3L Functions 335

■ ier (Fortran only) – When called from a Fortran program, S3L_walsh_setup
returns error status in ier.

Error Handling
On success, S3L_walsh_setup returns S3L_SUCCESS.

S3L_walsh_setup performs generic checking of the validity of the arrays it accepts
as arguments. If an array argument contains an invalid or corrupted value, the
function terminates and an error code is returned that indicates which value of the
array handle was invalid. See Appendix A of this manual for a detailed list of these
error codes.

In addition, the following conditions will cause S3L_walsh_setup to terminate and
return the associated error code:

■ S3L_ERR_ARG_RANK – Array a has a rank greater than 2.
■ S3L_ERR_ARG_EXTENTS – Some of the extents of array a are not powers of 2.

Examples
/opt/SUNWhpc/examples/s3l/walsh/ex_walsh1.c

/opt/SUNWhpc/examples/s3l/walsh/ex_walsh2.c

/opt/SUNWhpc/examples/s3l/walsh-f/ex_walsh1.f

/opt/SUNWhpc/examples/s3l/walsh-f/ex_walsh2.f

Related Functions
S3L_walsh(3)

S3L_walsh_free_setup(3)
336 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_write_array and
S3L_write_sub_array

Description
S3L_write_array causes the process with MPI rank 0 to write the parallel array
represented by the array handle a into a file specified by the filename argument.
The file filename resides on the process with rank 0.

S3L_write_sub_array writes a specific section of the parallel array to filename.
This section is defined by the lbounds, ubounds, and strides arguments.
lbounds and ubounds specify the array section’s lower and upper index bounds.
strides specifies the stride along each axis; it must be greater than 0.

Note – The values of lbounds and ubounds should refer to zero-based indexed
arrays for the C interface and to one-based indexed arrays for the Fortran interface.

Syntax
The C and Fortran syntax for S3L_write_array and S3L_write_sub_array is as
follows:
Chapter 2 Sun S3L Functions 337

C/C++ Syntax

F77/F90 Syntax

Input
S3L_write_array and S3L_write_sub_array accept the following arguments as
input:

■ a – Sun S3L array handle for the parallel array to be written. This array handle
was returned when the array was declared.

■ lbounds – Integer vector specifying the lower bounds of the indices of a along
each of its axes.

■ ubounds – Integer vector specifying the upper bounds of the indices of a along
each of its axes.

■ strides – Integer vector specifying the strides on the indices of a along each of
its axes.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_write_array(a, filename, format)
S3L_write_sub_array(a, lbounds, ubounds, strides, filename,
format)

S3L_array_t a
int *lbounds
int *ubounds
int *strides
char *filename
char *format

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_write_array(a, filename, format, ier)
S3L_write_sub_array(a, lbounds, ubounds, strides, filename,
format, ier)

integer*8 a
integer*4 lbounds(*)
integer*4 ubounds(*)
integer*4 strides(*)
character*1 filename(*)
character*1 format(*)
integer*4 ier
338 Sun S3L 4.0 Software Reference Manual • February 2003

■ filename – Scalar character variable specifying the name of the file to which the
parallel array will be written.

■ format – Scalar character variable specifying the format of the data to be written.
The value can be either "ascii" or "binary".

Output
S3L_write_array and S3L_write_sub_array use the following argument for
output:

■ ier (Fortran only) – When called from a Fortran program, S3L_write_array
and S3L_write_sub_array return error status in ier.

Error Handling
On success, S3L_write_array and S3L_write_sub_array return S3L_SUCCESS.

S3L_write_array and S3L_write_sub_array perform generic checking of the
validity of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, the function terminates and an error code is returned
that indicates which value of the array handle was invalid. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

■ S3L_ERR_ARG_RANGE_INV – The given range of indices is invalid:

■ A lower bound is less than the smallest index of the array.

■ An upper bound is greater than the largest index of an array along the given
axis.

■ A lower bound is larger than the corresponding upper bound.

■ A stride is negative or zero.

■ S3L_ERR_FILE_OPEN – Failed to open the file with the file name provided.

■ S3L_ERR_IO_FORMAT – Format is not one of "ascii" or "binary".

■ S3L_ERR_IO_FILENAME – The file name is equal to the NULL string (C/C++) or
to an empty string (F77/F90).

Examples
/opt/SUNWhpc/examples/s3l/io/ex_io.c

/opt/SUNWhpc/examples/s3l/io-f/ex_io.f
Chapter 2 Sun S3L Functions 339

Related Functions
S3L_print_array(3)

S3L_read_array(3)

S3L_write_sparse

Description
S3L_write_sparse causes the process with MPI rank 0 to write the global sparse
matrix A into a file. The matrix data will be written in a user-specified format, which
can be any one of:

■ S3L_SPARSE_COO – Coordinate format.
■ S3L_SPARSE_CSR – Compressed Sparse Row format.
■ S3L_SPARSE_CSC – Compressed Sparse Column format.
■ S3L_SPARSE_VBR – Variable Block Row format.

Each of these formats consists of a header and two data sections, which
S3L_write_sparse fills in the following manner:

Examples of the four supported formats are presented below.

Header section This is a one-line section that begins with two percent ‘%%’
characters, followed by a sequence of keywords. It indicates which
sparse format and what numerical data type are used to write out
data in the matrix data structure.

First data section This is also a one-line section. It contains metric information about
the sparse matrix, such as the number of rows (m), columns (n), and
nonzero elements (nnz). In the case of the S3L_SPARSE_VBR
format, it also writes the number of block rows (bm), block columns
(bn), and nonzero blocks (bnnz).

Second data section Writes sparse matrix data in the specified format.
340 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_SPARSE_COO Format

The S3L_SPARSE_COO format is explained with this sample 4x6 sparse matrix:

The following shows how this matrix data might be written in S3L_SPARSE_COO
format:

In this example, the first line indicates that the matrix is written in
S3L_SPARSE_COO format and that the data type is single-precision real.

The second line is the first data section. It lists m = 4, n = 6, and nnz = 8. These
values represent the number of rows, columns, and the total number of nonzero
elements, respectively.

The third line begins the second data section, which contains the eight nonzero
values, each on a separate line and preceded by their row and column indices.

S3L_SPARSE_CSR Format

The following example shows how the same 4x6 sparse matrix used in the
S3L_SPARSE_COO format example might appear when written in the
S3L_SPARSE_CSR format:

3.14 0 0 20.04 0 0
0 27 0 0 -0.6 0
0 0 -0.01 0 0 0
-0.031 0 0 0.08 0 314.0

%% S3L_SPARSE_COO matrix single precision real

4 6 8
0 0 3.14000000e+00
0 3 2.00400000e+01
1 1 2.70000000e+01
1 4 -6.00000000e-01
2 2 -1.00000000e-02
3 0 -3.10000000e-02
3 3 8.00000000e-02
3 5 3.14000000e+02

%% S3L_SPARSE_CSR matrix single precision real
4 6 8
0 2 4 5 8
0 3 1 4 2 0 3 5
3.14000000e+00 2.00400000e+01
2.70000000e+01 –6.00000000e-01
–1.00000000e-02
–3.10000000e-02 8.00000000e-02 3.14000000e+02
Chapter 2 Sun S3L Functions 341

The S3L_SPARSE_CSR format differs from the S3L_SPARSE_COO format in the
second data section. It represents the CSR structure as:

For example, ptr[1] = 2 indicates that the first nonzero element in row 1 is stored
in val[2] (= val[ptr[1]), which is 2.70000000e+01.

S3L_SPARSE_CSC Format

The S3L_SPARSE_CSC format is, in effect, the CSR format for the transpose of A. In
other words, for the S3L_SPARSE_CSC format, the ptr and indx arrays exchange
roles: ptr contains column start pointers and indx contains row indices. The val
array contains the nonzero elements.

The following shows the S3L_SPARSE_CSC layout for the same 4x6 sparse matrix
example as was used before:

Again, the S3L_SPARSE_CSC data structure is written in the second data section,
which begins on the third line:

Note that, in the S3L_SPARSE_CSC format, the nonzero elements in val are stored
column-by-column, instead of row-by-row, as in the S3L_SPARSE_CSR format.

For example, ptr[5] = 7 means that the first nonzero element of column 5 is stored
in val[7] (= val[ptr[5]]), which is 3.14000000e+02, and its row index is
stored in indx[7] (= indx[ptr[5]]), which is 3.

ptr = (0, 2, 4, 5, 8)
indx = (0, 3, 1, 4, 2, 0, 3, 5)
val = (3.14000000e+00, 2.00400000e+01,

2.70000000e+01, –6.00000000e–01,
–1.00000000e–02, –3.10000000e–02,
8.00000000e–02, 3.14000000e+02)

%% S3L_SPARSE_CSC matrix single precision real
4 6 8
0 2 3 4 6 7 8
0 3 1 2 0 3 1 3
3.14000000e+00 –3.10000000e–02
2.70000000e+01 –1.00000000e–02
2.00400000e+01 8.00000000e–02
–6.00000000e–01 3.14000000e+02

ptr = (0, 2, 3, 4, 6, 7, 8)
indx = (0, 3, 1, 2, 0, 3, 1, 3)
val = (3.14000000e+00 –3.10000000e–02

2.70000000e+01 –1.00000000e–02
2.00400000e+01 8.00000000e–02
–6.00000000e–01 3.14000000e+02)
342 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_SPARSE_VBR Format

The first three sparse matrix formats all provide natural layouts for point sparse
matrices. However, for matrices with nonzero elements clustered in blocks,
S3L_SPARSE_VBR offers a more efficient representation.

Like the other three formats, S3L_SPARSE_VBR begins with a section that identifies
the format and the data type.

The second section contains three additional integers beyond the basic three used in
the point-based formats. The six integers in the second section are:

The third section contains the S3L_SPARSE_VBR data structure in five integer arrays
and one floating-point array. For their definition, see the man page for
S3L_convert_sparse().

To illustrate the S3L_SPARSE_VBR data layout, consider the following 5x8 sparse
matrix with a variable block partitioning:

m Indicates the number of point rows.

n Indicates the number of point columns.

nnz Indicates the number of point nonzero elements.

bm Indicates the number of block rows.

bn Indicates the number of block columns.

bmnz Indicates the number of nonzero block entries.

0 1 2 3 4 5 6 7 8
+------+---------+----+--------+

0 | 1 3 5 | 0 0 | 9 | 0 0 |
1 | 2 4 6 | 0 0 | 10 | 0 0 |

+---------+------+----+--------+
2 | 0 0 0 | 7 8 | 11 | 0 0 |

+------+---------+----+--------+
3 | 0 0 0 | 0 0 | 12 | 14 16 |
4 | 0 0 0 | 0 0 | 13 | 15 17 |

+------+---------+----+--------+
5

Chapter 2 Sun S3L Functions 343

This matrix could be written in S3L_SPARSE_VBR format as follows:

In this example, the second line lists:

The rest of lines lay out the matrix data in S3L_SPARSE_VBR format. The first two
lines are filled with data from arrays rptr and cptr:

In array rptr, 0, 2, 3, and 5 are pointers to the boundaries of the block rows.
Likewise in array cptr, 0, 3, 5, 6, and 8 are pointers to the boundaries of the block
columns.

Data in the remaining lines are from arrays bptr, bindx, indx, and val:

In array bptr, 0, 2, 4, and 6 are pointers to the location in bindx of the first nonzero
block entry of each block row.

%% S3L_SPARSE_VBR matrix single precision real
5 8 17 3 4 6

0 2 3 5
0 3 5 6 8

0 2 4 6
0 2 1 2 2 3
0 6 8 10 11 13 17

1.00000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00
5.00000000e+00 6.00000000e+00 9.00000000e+00 1.00000000e+01
7.00000000e+00 8.00000000e+00 1.10000000e+01 1.20000000e+01
1.30000000e+01 1.40000000e+01 1.50000000e+01 1.60000000e+01
1.70000000e-01

m = 5, n = 8, nnz = 17, bm = 3, bn = 4, bnnz = 6

rptr = (0, 2, 3, 5)
cptr = (0, 3, 5, 6, 8)

bptr = (0, 2, 4, 6)
bindx = (0, 2, 1, 2, 2, 3)
indx = (0, 6, 8, 10, 11, 13, 17)
val = (1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 8.0, 9.0, 10.0,

11.0, 14.0, 17.0, 12.0, 15.0, 18.0, 13.0, 16.0, 19.0)
1.00000000e+00, 4.00000000e+00, 3.00000000e+00,
4.00000000e+00, 5.00000000e+00, 6.00000000e+00,
7.00000000e+00, 8.00000000e+00, 9.00000000e+00,
1.00000000e+01, 1.10000000e+01, 1.20000000e+01,
1.30000000e+01, 1.40000000e+01, 1.50000000e+01,
1.60000000e+01, 1.70000000e-01,
344 Sun S3L 4.0 Software Reference Manual • February 2003

These block-based pointers are illustrated in the following figure, which represents
the block structure of the original 5x8 sparse matrix. It shows the first block row
with two nonzero blocks, one in block column 0 and the other in block column 2.
The next nonzero block is at block row 1 and block column 1, and so forth. Block 6 is
the outer boundary of the block rows.

In array bindx, 0, 2, 1, 2, 2, and 3 are indices for the block columns.

In array indx, 0, 6, 8, 10, 11, 13, and 17 point to the locations in val of the first
nonzero block entry from each block row.

The last array, val, stores nonzero blocks b0, b1, ..., b5 block-by-block with each
block stored as a dense matrix in standard column-by-column form. Morever, the
starting location in val, where the first element of each block gets stored is indexed
by array indx.

The S3L_SPARSE_VBR data structure can be understood by analyzing the
representation of block row 1 for example.

First, bptr[1] = 2 indicates that b2, the first nonzero block from block row 1 is
from block column 1, as indicated by bindx[2] = bindx[bptr[1]] = 1.

Second, bptr[1] = 2 also indexes into indx. That is, indx[bptr[1]] = indx[2] =
8 points to val[8] (= val[indx[bptr[1]] = val[indx[2]]), where 8 is the
location in val at which the first element of b2, 7.0, is stored.

The next nonzero block in block row 1 is b3, its block column index is 2, as indicated
by bindx[bptr[1]+1] = bindx[3] = 2, and the first element of block b3 is stored
in val[10] (= val[indx[bptr[1]+1]] = val[indx[3]]), which is 11.0.

Syntax
The C and Fortran syntax for S3L_write_sparse is as follows:

0 1 2 3 4
+----+----+----+----+

0 | b0 | | b1 | |
+----+----+----+----+

1 | | b2 | b3 | |
+----+----+----+----+

2 | | | b4 | b5 |
+----+----+----+----+

3

Chapter 2 Sun S3L Functions 345

C/C++ Syntax

F77/F90 Syntax

Input
S3L_write_sparse accepts the following arguments as input:

■ A – Sun S3L array handle for the global general sparse matrix.

■ spfmt – Specifies the sparse storage format to be used in writing the matrix data
to a file. The supported formats are: S3L_SPARSE_COO, S3L_SPARSE_CSR,
S3L_SPARSE_CSC, and S3L_SPARSE_VBR.

■ fname – Scalar character variable that names the file to which the sparse matrix
data will be written.

■ dfmt – Scalar character variable that specifies the data file format to be used in
writing the sparse matrix data. The allowed values are ‘ascii’ and ‘ASCII’.

Output
S3L_write_sparse uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_write_sparse
returns error status in ier.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_write_sparse(A, spfmt, fname, dfmt)

S3L_array_t A
S3L_sparse_storage_t spfmt
char *fname
char *dfmt

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_write_sparse(A, spfmt, fname, dfmt, ier)

integer*8 A
integer*4 spfmt
character*1 fname(*)
character*1 dfmt(*)
integer*4 ier
346 Sun S3L 4.0 Software Reference Manual • February 2003

Error Handling
On success, S3L_write_sparse returns S3L_SUCCESS.

The S3L_write_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code is returned that indicates which
value of the array handle was invalid. See Appendix A of this manual for a detailed
list of these error codes.

In addition, the following conditions will cause S3L_write_sparse to terminate
and return the associated error code:

■ S3L_ERR_ARG_NULL – The value specified for A is invalid. No such Sun S3L
sparse matrix has been defined.

■ S3L_ERR_SPARSE_FORMAT – Invalid storage format. It must be
S3L_SPARSE_COO, S3L_SPARSE_CSR, S3L_SPARSE_CSC, or S3L_SPARSE_VBR.

■ S3L_ERR_IO_FILENAME – Invalid file name.

■ S3L_ERR_IO_FORMAT – Invalid data file format. The dfmt value supplied was
not ’ascii’ or ‘ASCII’.

Examples
/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

Related Functions
S3L_read_sparse(3)

S3L_print_sparse(3)

S3L_zero_elements

Description
S3L_zero_elements sets to zero all elements of the Sun S3L array whose array
handle is A.
Chapter 2 Sun S3L Functions 347

Syntax
The C and Fortran syntax for S3L_zero_elements is as follows.

C/C++ Syntax

F77/F90 Syntax

Input
S3L_zero_elements accepts the following argument as input:

■ A – Sun S3L internal array handle for the parallel array that is to be initialized to
zero.

Output
S3L_zero_elements uses the following argument for output:

■ ier (Fortran only) – When called from a Fortran program, S3L_zero_elements
returns error status in ier.

Error Handling
On success, S3L_zero_elements returns S3L_SUCCESS.

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_zero_elements(A)

S3L_array_t A

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_zero_elements(A, ier)

integer*8 A
integer*4 ier
348 Sun S3L 4.0 Software Reference Manual • February 2003

S3L_zero_elements checks the array it accepts as argument. If the array argument
contains an invalid or corrupted value, the function terminates and an error code is
returned that indicates which value of the array handle was invalid. See Appendix A
of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated code:

■ S3L_ERR_ARG_DTYPE – The data type of A is invalid.

Examples
/opt/SUNWhpc/examples/s3l/utils/zero_elements.c

/opt/SUNWhpc/examples/s3l/utils-f/zero_elements.f
Chapter 2 Sun S3L Functions 349

350 Sun S3L 4.0 Software Reference Manual • February 2003

APPENDIX A

Sun S3L Array Checking Errors

Sun S3L interfaces do generic checking of the validity of the array handles that are
passed as arguments to them. If such an array handle contains an invalid or
corrupted value, the function terminates and one of the error codes listed in
TABLE A-1 is returned.

TABLE A-1 Return Codes Associated With Array Handle Errors

Error Code Definition

S3L_ERR_ARG_DTYPE The data type specified for an array is not supported by
Sun S3L.

S3L_ERR_ARG_ELEMSIZE An array argument includes an invalid element size.

S3L_ERR_ARG_RANK An invalid rank is specified for an array; it is either
negative or larger than 32 (the largest supported array
rank).

S3L_ERR_ARG_EXTENTS An array argument includes a negative extent.

S3L_ERR_ARG_BLKSIZE An array argument includes a negative blocksize.

S3L_ERR_ARG_BLKSTART For a block-cyclic array distribution, an invalid starting
process is specified; it is either negative or is larger than
the extent of the corresponding process grid axis.

S3L_ERR_ARG_SFSIZE An array argument includes an invalid subgrid size; it is
either negative or is larger than the extent along the
corresponding array axis.

S3L_ERR_ARG_MAJOR An array argument includes an invalid majorness value.

S3L_ERR_ARG_PGRID_EXTENTS An array argument includes an invalid process grid
extent; it is either negative or larger than the total
number of processes over which the array is defined.
349

S3L_ERR_ARG_PGRID_RANK The rank of a process grid does not equal the rank of the
corresponding array.

S3L_ERR_ARG_PGRID_MAJOR An array argument specifies an invalid majorness value
for a process grid.

S3L_ERR_ARG_PGRID_COOR An array argument specifies a process grid coordinate
that is either negative or larger than the process grid
extent along that axis.

TABLE A-1 Return Codes Associated With Array Handle Errors (Continued)

Error Code Definition
350 Sun S3L 4.0 Software Reference Manual • February 2003

	Contents
	Preface
	Acknowledgments
	How This Book Is Organized
	Using UNIX Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation
	Sun Welcomes Your Comments

	Introduction
	Sun S3L Overview

	Sun S3L Functions
	S3L_2_norm and S3L_gbl_2_norm
	S3L_acorr
	S3L_acorr_free_setup
	S3L_acorr_setup
	S3L_array_op1
	S3L_array_op2
	S3L_array_scalar_op2
	S3L_cholesky_factor
	S3L_cholesky_invert
	S3L_cholesky_solve
	S3L_condition_number, S3L_gbl_condition_number
	S3L_conv
	S3L_conv_free_setup
	S3L_conv_setup
	S3L_convert_sparse
	S3L_copy_array
	S3L_copy_array_detailed
	S3L_cshift
	S3L_dct_iv
	S3L_dct_iv_free_setup
	S3L_dct_iv_setup
	S3L_declare
	S3L_declare_detailed
	S3L_declare_sparse
	S3L_deconv
	S3L_deconv_free_setup
	S3L_deconv_setup
	S3L_describe
	S3L_dst
	S3L_dst_free_setup
	S3L_dst_setup
	S3L_eigen_iter
	S3L_exit
	S3L_fft
	S3L_fft_detailed
	S3L_fft_free_setup
	S3L_fft_setup
	S3L_fin_fd_1D
	S3L_fin_fd_2D
	S3L_forall
	S3L_free
	S3L_free_process_grid
	S3L_free_rand_fib
	S3L_free_sparse
	S3L_from_ScaLAPACK_desc
	S3L_gen_band_factor
	S3L_gen_band_free_factors
	S3L_gen_band_solve
	S3L_gen_iter_solve
	S3L_gen_lsq
	S3L_gen_svd
	S3L_gen_trid_factor
	S3L_gen_trid_free_factors
	S3L_gen_trid_solve
	S3L_get_attribute
	S3l_get_qr
	S3L_get_safety
	S3L_grade_down, S3L_grade_up, S3L_grade_detailed_down, S3L_grade_detailed_up
	S3L_ifft
	S3L_init
	S3L_inner_prod and S3_gbl_inner_prod
	S3L_lp_sparse
	S3l_lu_deallocate
	S3l_lu_factor
	S3l_lu_invert
	S3l_lu_solve
	S3L_mat_mult
	S3L_mat_vec_mult
	S3L_matvec_sparse
	S3L_outer_prod
	S3L_print_array and S3L_print_sub_array
	S3L_print_sparse
	S3L_qp
	S3L_qp_attr_init, S3L_qp_attr_destroy, S3L_qp_attr_set
	S3L_qr_factor
	S3L_qr_free
	S3L_qr_solve
	S3L_rand_fib
	S3L_rand_lcg
	S3L_rand_sparse
	S3L_rc_fft and S3L_cr_fft
	S3L_rc_fft_free_setup
	S3L_rc_fft_setup
	S3L_read_array and S3L_read_sub_array
	S3L_read_sparse
	S3L_reduce
	S3L_reduce_axis
	S3L_set_array_element, S3L_get_array_element, S3L_set_array_element_on_proc, and S3L_get_array_el...
	S3L_set_process_grid
	S3L_set_safety
	S3L_setup_rand_fib
	S3L_sort, S3L_sort_up, S3L_sort_down, S3L_sort_detailed_up, S3L_sort_detailed_down
	S3L_sort_detailed
	S3L_sparse_solve
	S3L_sparse_solve_free
	S3L_sym_eigen
	S3L_thread_comm_setup
	S3L_to_ScaLAPACK_desc
	S3L_trans
	S3L_walsh
	S3L_walsh_free_setup
	S3L_walsh_setup
	S3L_write_array and S3L_write_sub_array
	S3L_write_sparse
	S3L_zero_elements

	Sun S3L Array Checking Errors

