
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Sun™ S3L 4.0 Software
Programming Guide

Part No. 817-0086-10
February 2003, Revision A

Please
Recycle

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Solaris, Sun HPC ClusterTools, Prism, Forte, Sun Performance Library,
RSM, and Sun Scalable Scientific Subroutine Library are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the
U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the U.S. and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems,
Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Solaris , Sun HPC ClusterTools, Prism, Forte, Sun Performance Library, RSM,
et Sun Scalable Scientific Subroutine Library sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique
ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xi

1. Introduction to Sun S3L 1

Sun S3L Overview 1

Contents of Sun S3L 2

2. Sun S3L Data Types 11

3. Sun S3L Arrays 15

Overview 15

Sun S3L Array Attributes 16

Array Indexing 16

Sun S3L Array Handles 17

Creating Sun S3L Array Handles 17

Deallocating Sun S3L Array Handles 18

MPI Processes and Sun S3L Process Grids 18

Creating Process Grids 21

Distributing Sun S3L Arrays 21

Examining the Contents of Sun S3L Arrays 26

Printing Sun S3L Arrays 26

Visualizing Distributed Sun S3L Arrays With Prism 28
iii

4. Multiple Instance 29

Defining Multiple Independent Data Sets 29

Rules for Data Axes and Instance Axes 30

Specifying Single-Instance vs. Multiple-Instance Operations 31

Example 1: Matrix-Vector Multiplication 32

Single-Instance Operation 32

Multiple-Instance Operation 33

The Importance of Data Layout 34

Example 2: Fast Fourier Transforms 37

5. Using Sun S3L 39

Incorporating Sun S3L Function Calls Into Your Program 39

Referencing Sun S3L Include Files 42

Setting Up the Sun S3L Environment 42

Enabling Thread-Safe Use of Sun S3L Routines 43

Using the Sun S3L Safety Mechanism 43

Creating Sun S3L Array Handles for Dense Arrays 44

Creating Sun S3L Array Handles for Sparse Arrays 44

Overview of S3L_declare_sparse 45

Overview of S3L_read_sparse 46

Overview of S3L_rand_sparse 46

Freeing Sun S3L Array Handles for Dense and Sparse Arrays 47

Using the Sun S3L Link Switch 47

Accessing Online Program Examples and Man Pages 48

Sample Code Directories 48

Compiling and Running the Examples 49

Man Pages 50

6. Setting Up the Sun S3L Environment 51
iv Sun S3L 4.0 Software Programming Guide • February 2003

Creating and Removing Sun S3L Environments 51

Creating a Sun S3L Environment 51

Removing a Sun S3L Environment 52

Setting Up Support for Thread-Safe Operation 53

Controlling the Sun S3L Safety Mechanism 54

Error Checking and Reporting 54

Synchronization 55

7. Sun S3L Toolkit Routines for Managing Dense Arrays 57

Creating and Destroying Array Handles for Dense Sun S3L Arrays 57

Notes 59

Sun S3L Declare Example 60

Sun S3L Declare Detailed Example 60

Converting Between ScaLAPACK Descriptors and Sun S3L Array Handles 61

Converting From ScaLAPACK to Sun S3L 62

Converting From Sun S3L to ScaLAPACK 62

Freeing Sun S3L Array Handles 63

Initializing a Sun S3L Array From a File 63

Writing a Sun S3L Array to a File 65

Printing a Sun S3L Array to Standard Output 66

Copying Sun S3L Arrays 67

8. Creating and Freeing Custom Process Grids 71

Creating a Custom Process Grid 71

Set Process Grid Example 72

Deallocating a Process Grid 73

9. Extracting Information From Sun S3L Arrays and Process Grids 75

Extracting Descriptions of Sun S3L Arrays and Process Grids 75

Extracting Sun S3L Array Attributes 76
Contents v

Obtaining and Setting Array Elements 79

S3L_get_array_element 79

S3L_set_array_element 80

S3L_get_array_element_on_proc 83

S3L_set_array_element_on_proc 84

10. Dense Matrix Routines 87

Overview 87

Matrix-Matrix Multiplication 88

Matrix-Vector Multiplication 92

2-Norm Operations 94

Inner-Product Operations 95

Multiple-Instance Inner-Product Routines 96

Single-Instance Inner-Product Routines 98

Outer-Product Operations 99

11. General Linear Systems Solvers 101

Gaussian Elimination for Dense Systems 101

LU Factor Routine 101

LU Solve Routine 103

LU Invert Routine 104

LU Deallocate Routine 105

Householder Transformations 106

Computing QR Decomposition of Sun S3L Arrays 106

Notes 106

Finding the Least-Squares Solution for a
QR-Decomposed Array 107

Notes 107

Obtaining Q and R Arrays 108

Freeing QR Factors 109
vi Sun S3L 4.0 Software Programming Guide • February 2003

12. Basic Sparse Matrix Routines 111

Supported Sparse Formats 111

Coordinate Format 112

Compressed Sparse Row Format 112

Compressed Sparse Column Format 113

Variable Block Row Format 114

Declaring a Sparse Matrix 116

Initializing a Sparse Matrix From a File 118

Initializing a Sparse Matrix With Random Values 119

Writing a Sparse Matrix to a File 121

Printing a Sparse Matrix to Standard Output 122

Converting a Sparse Matrix From One Format to Another 123

Computing a Sparse Matrix-Vector Product 125

Deallocating a Sparse Matrix Array Handle 126

13. Sparse Linear System Solvers 127

Solving Sparse Linear Systems by the Direct Method 127

Solving Sparse Linear Systems by an Iterative Method 130

Algorithm 131

Preconditioning 131

Convergence/Divergence Criteria 132

Initial Guess 133

Maximum Iterations 133

Krylov Subspace 133

Stopping Criterion Tolerance 133

Richardson Scaling Factor 133

Iteration Termination 134

Deallocating a Sparse Linear System Solver 135
Contents vii

14. Fast Fourier Transform Routines 137

Overview 137

Setting Up for FFT Operations 138

Using Sun S3L FFT Computational Routines 139

Simple, Complex-to-Complex FFTs 139

Detailed, Complex-to-Complex FFTs 140

Real-to-Complex and Complex-to-Real FFTs 141

Supported Array Sizes 141

Scaling 142

Complex Data Packed Representation 142

Argument Syntax 144

Deallocating FFT Setups 144

15. Parallel Random Number Generation Routines 147

Initialize Lagged-Fibonacci State Table 147

Lagged-Fibonacci Random Number Generator 148

Linear Congruential Random Number Generator 149

Deallocate LFG Setup 150

16. Summary of Other Sun S3L Routines 153

Other Computational Routines 153

Walsh Transform 153

Iterative Eigenpairs 154

Stock Option Pricing 154

Discrete Sine and Cosine Transforms 154

Quadratic Programming Optimization 155

Sparse Linear Problem Solver 155

Cholesky Solver 155

Structured Solvers 156
viii Sun S3L 4.0 Software Programming Guide • February 2003

Dense Symmetric Eigenvalue Solver 156

Condition Numbers 156

Least-Squares Solver 157

Dense Singular Value Decomposition 157

Iterative Solver 157

Autocorrelation 157

Convolution 158

Deconvolution 158

Grade Elements 158

Sort Elements 159

Parallel Transpose 159

Other Toolkit Routines 159

Perform Operations on Array Elements 159

Copy Arrays 160
Contents ix

x Sun S3L 4.0 Software Programming Guide • February 2003

Preface

This manual describes the Sun™ Scalable Scientific Subroutine Library (Sun S3L). It
is directed to anyone developing message-passing C, C++, F77, or F90 programs.

Acknowledgments
The Sun S3L dense linear algebra routines make use of the ScaLAPACK library
described in “ScaLAPACK: Linear Algebra Software for Distributed Memory
Architectures,” J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker in Parallel
Computers: Theory and Practice, Ed. by T. Casavant, P. Tvrdik, and F. Plasil. (IEEE
Press, 1995, pp. 267-282.)

ScaLAPACK routines access the Sun MPI library through calls to the BLACS library
described in “Two-dimensional Basic Linear Algebra Communications
Subprograms,” J. Dongarra and R. van de Geijn, in Environments and Tools for Parallel
Scientific Computing, Ed. by J. Dongarra and B. Tourancheau (Elsevier Science
Publisher B.V., 1993, pp. 31-40), in “Basic Linear Algebra Communication
Subprograms: Analysis and Implementation Across Multiple Parallel Architectures,”
R.C. Whaley.
xi

How This Book Is Organized
Chapter 1 provides an overview of the Sun S3L contents.

Chapter 2 identifies the data types that are supported by Sun S3L.

Chapter 3 discusses parallel arrays—their distribution and indexing in a Sun S3L
context.

Chapter 4 discusses Sun S3L support for the multiple-instance paradigm.

Chapter 5 explains how to use Sun S3L routines in a message-passing program.

Chapter 6 describes how to set up the Sun S3L environment for use by a message-
passing program.

Chapter 7 describes the Sun S3L routines that simplify the management of dense
parallel arrays.

Chapter 8 describes the Sun S3L routines that create and free custom process grids.

Chapter 9 describes the Sun S3L routines that extract information about parallel
arrays and process grids and that access the contents of the arrays.

Chapter 10 describes the Sun S3L routines that perform dense matrix operations.

Chapter 11 describes the Sun S3L routines that provide solutions to linear systems
equations for real and complex general matrices.

Chapter 12 describes the Sun S3L routines that perform fundamental linear algebra
operations on sparse matrices.

Chapter 13 describes the Sun S3L routines that provide solutions to sparse linear
systems of the type A*x = B.

Chapter 14 describes the Sun S3L routines that perform FFT computations and the
supporting routines that set up and deallocate the internal data structures used by
the FFT routines.

Chapter 15 describes the Sun S3L routines that perform random number generation.

Chapter 16 provides a summary listing of Sun S3L routines that are not discussed in
detail in this manual.

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures.

See either of the following for such information:
xii Sun S3L 4.0 Software Programming Guide • February 2003

■ AnswerBook2™ online documentation for the Solaris™ 2.x operating
environment

■ Other software documentation that you received with your system

Typographic Conventions

Table with descriptions and examples of the typographic conventions that are used in this book.

Shell Prompts

Table with examples of the types of shell prompts that are used in this book.

Typeface1

1 The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
Preface xiii

Related Documentation

Table listing other documents that are related to this book or product.

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Application Title Part Number

Sun HPC ClusterTools
Documentation

Read Me First: Guide to Sun HPC
ClusterTools 5 Software Documentation

817-0096-10

Sun HPC ClusterTools
Software

Sun HPC ClusterTools 5 Software Release
Notes
Sun HPC ClusterTools 5 Software
Installation Guide
Sun HPC ClusterTools 5 Software
Performance Guide
Sun HPC ClusterTools 5 Software
Administrator’s Guide
Sun HPC ClusterTools 5 Software User’s
Guide

817-0081-10

817-0082-10

817-0090-10
817-0083-10
817-0084-10

Sun MPI Programming Sun MPI 6.0 Software Programming and
Reference Guide

817-0085-10

Sun S3L software Sun S3L 4.0 Software Reference Manual 817-0087-10

Prism™ graphical
programming
environment

Prism 7.0 Software User’s Guide
Prism 7.0 Software Reference Manual

817-0088-10
817-0089-10
xiv Sun S3L 4.0 Software Programming Guide • February 2003

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number (817-0086-10) of your document in the subject line of
your email.
Preface xv

xvi Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 1

Introduction to Sun S3L

This chapter contains general information about the Sun Scalable Scientific
Subroutine Library (Sun S3L).

■ “Sun S3L Overview” on page 1
■ “Contents of Sun S3L” on page 2

Sun S3L Overview
Sun S3L provides a set of parallel and scalable functions and tools widely used in
scientific and engineering computing. It can be used on all Sun HPC systems—from
a single processor on an SMP, to multiple processors on a standalone SMP, to a
cluster of SMPs.

The chief advantages offered by Sun S3L are summarized below:

■ Sun S3L is optimized for Sun HPC systems.

■ Sun S3L functions have a simple array syntax interface that is callable from
message-passing programs written in C, C++, F77, or F90.

■ Sun S3L supports multiple instances.

■ Sun S3L is thread safe.

■ Sun S3L uses the Sun Performance Library™ for nodal computation.

■ Extensive and detailed programming examples are provided online.

■ Sun S3L is supported by Sun.

■ Sun S3L includes built-in diagnostics.

Sun S3L uses array handles to provide array syntax support to message-passing
programs. Array handles, which are closely analogous to the array descriptors found
in the public domain packages ScaLAPACK and PETSc, facilitate argument passing
by encapsulating information about distributed arrays.
1

Sun S3L operates on multidimensional arrays of up to 31 dimensions. This means it
implements the multiple-instance paradigm, where the same function is applied to
multiple, disjoint data sets concurrently.

The Sun S3L user interface includes a communicator setup routine that enables Sun
S3L functions to be used in multithreaded applications. This routine causes Sun S3L
to establish an independent Sun MPI communicator and thread-safe data for each
thread from which the routine is called.

Sun S3L routines implement the Sun Performance Library for nodal operations. This
is a collection of libraries for dense linear algebra and Fourier transforms based on
the standard libraries BLAS, LINPACK, LAPACK, FFTPACK, and VFFTPACK.
Besides providing appropriate nodal support to Sun S3L, routines from the Sun
Performance Library can be called independently from any user codes running
locally on a Sun Ultra HPC Server node.

Note – The Sun Performance Library is available to Sun S3L users as part of the
ForteTM Developer 6 products.

Sun S3L routines operate on objects of various data types. However, this information
is encoded in the array handle and is decoded at runtime, enabling appropriate
branching to occur during execution. Consequently, there is no need for separate
routines with different names to implement the different data types. A single routine
suffices for all types.

An extensive set of online examples illustrates correct use of all Sun S3L functions.
These examples can be used as templates in developing actual code. Separate
examples are provided to demonstrate C and Fortran interfaces.

Contents of Sun S3L
Sun S3L consists of a set of core library functions—that is, the routines that perform
the linear algebra, Fourier transform, and other computational functions usually
found in a mathematical routine library—plus a set of auxiliary utilities, referred to
as the toolkit functions. TABLE 1-1 and TABLE 1-2 list the Sun S3L computational and
toolkit routines, respectively.

Note – Many Sun S3L computational routines support the ScaLAPACK version 1.6
and PBLAS version 1.0 application programming interfaces (APIs). See TABLE 1-3 for
a list of these supported APIs.
2 Sun S3L 4.0 Software Programming Guide • February 2003

Most of the computational and toolkit routines are discussed in later chapters of this
programming guide. Detailed descriptions of all the Sun S3L routines are provided
in the Sun S3L Software Reference Manual. They are also described in their online man
pages.

TABLE 1-1 Sun S3L Core Mathematical Routines

Function Description

Dense Matrix Operations

S3L_2_norm()
S3L_inner_prod()
S3L_mat_mult()
S3L_mat_vec_mult()
S3L_outer_prod()

Compute 2-norm of a vector.
Compute inner product of two vectors.
Compute product of two matrices.
Compute product of a matrix and vector.
Compute outer product of two matrices.

Sparse Matrix Operations

S3L_declare_sparse()
S3L_free_sparse()
S3L_convert_sparse()

S3L_rand_sparse()

S3L_matvec_sparse()

S3L_read_sparse()
S3L_write_sparse()

S3L_print_sparse()

Create an S3L handle for an S3L sparse array.
Free memory allocated to S3L sparse array.
Convert an array from one sparse format to

another
Create an S3L array with random values and

sparsity.
Compute product of a sparse matrix and

dense vector.
Read sparse matrix from a file.
Write sparse matrix to a file.
Print all nonzero values from a sparse matrix.

Gaussian Elimination for Dense Systems

S3L_lu_factor()
S3L_lu_invert()

S3L_lu_solve()

S3L_lu_deallocate()

Perform LU factorization of a matrix.
Compute inverse of square matrix instances of

S3L array using S3l_lu_factor() results.
Solve system of linear equations (AX=B) for

square matrix instances of S3L array.
Deallocate S3L_lu_factor() resources.

Walsh Transform

S3L_walsh()

S3L_walsh_setup()

S3L_walsh_free_setup()

Compute discrete Walsh/Hadamard
transform of 1D and 2D S3L arrays.

Prepare internal data structure for discrete
Walsh/Hadamard transform.

Free memory allocated to Walsh/Hadamard
transform.

Iterative Eigenpairs Computation

S3L_eigen_iter() Compute selected eigenpairs of dense or
sparse matrices.
Chapter 1 Introduction to Sun S3L 3

Finite-Difference Stock Option Pricing

S3L_fin_fd_1D()

S3L_fin_fd_2D()

Solve 1D Black-Scholes PDE to compute prices
of vanilla and several exotic stock options.

Solve 2D Black-Scholes PDE to compute prices
of vanilla and several exotic stock options.

Discrete Cosine Transform

S3L_dct_iv()

S3L_dct_iv_setup()

S3L_dct_iv_free_setup()

Compute DCT Type IV of 1D, 2D, and 3D S3L
arrays.

Prepare internal data structures for DCT Type
IV operation.

Free memory allocated to DCT.

Discrete Sine Transform

S3L_dst()
S3L_dst_setup()
S3L_dst_free_setup()

Compute DST of 1D, 2D, and 3D S3L arrays.
Prepare internal data structures for DST.
Free memory allocated to DST.

QR Array Factoring/Solving

S3L_qr_factor()

S3L_get_qr()

S3L_qr_solve()

S3L_qr_free()

Compute QR decomposition of a real or
complex S3L array.

Extract Q and R arrays from a QR-
decomposed S3L array.

Compute the least-squares solution to an
over-determined system of the form a*x=b.

Free memory allocated to QR decomposition.

Quadratic Programming Optimization

S3L_qp_attr_init()

S3L_qp_attr_destroy()
S3L_qp_attr_set()

S3L_qp()

Initialize a set of QP attributes with default
values.

Destroy a specified set of QP attributes.
Specify the type of solver to be used and

amount of error output.
Solve linear/quadratic optimization problem.

Cholesky Solver

S3L_cholesky_factor()

S3L_cholesky_solve()

S3L_cholesky_invert()

Perform Cholesky factorization for each
square matrix in an S3L array.

Solve a system of distributed linear equations
of the form AX = B for each square matrix
in an S3L array.

Compute the inverse of each square matrix in
an S3L array.

TABLE 1-1 Sun S3L Core Mathematical Routines (Continued)

Function Description
4 Sun S3L 4.0 Software Programming Guide • February 2003

Sparse Linear System Solvers

Direct Method
S3L_sparse_solve()

S3L_sparse_solve_free()

Iterative Method
S3L_gen_iter_solve()

A direct solver for solving sparse linear
systems of equations of the form A*x = y.

Free memory allocated to the direct solver.

An iterative solver for solving sparse linear
systems of equations of the form A*x = y.

Sparse Linear Problem Solver

S3L_lp_sparse() Solve a linear/quadric optimization problem
of the form min c‘*x.

Fast Fourier Transforms

S3L_fft()
S3L_fft_detailed()

S3L_ifft()
S3L_rc_fft()
S3L_cr_fft()
S3L_fft_setup()
S3L_rc_fft_setup()

S3L_cr_fft_setup()

S3L_fft_free_setup()
S3L_rc_fft_free_setup()

Perform simple FFT on an S3L array.
Perform in-place forward or reverse FFT along

a specified axis of an S3L array.
Perform the inverse FFT on an S3L axis.
Perform forward FFT of a real S3L array.
Perform inverse FFT of a complex S3L array.
Prepare internal structure for FFT operation.
Prepare internal data structure for real-to-

complex (forward) FFT.
Prepare internal data structure for complex-to-

real (inverse) FFT.
Free memory allocated to FFT setup.
Free memory allocated to real-to-complex or

complex-to-real FFT setup.

Structured Solvers

S3L_gen_band_factor()

S3L_gen_band_solve()
S3L_gen_band_free_factors()

S3L_gen_trid_factor()
S3L_gen_trid_solve()
S3L_gen_trid_free_factors()

Perform LU factorization of an n x n general
banded S3L array.

Solve a banded system.
Free resources allocated to factorization of

general banded S3L array.
Compute factorization of a tridiagonal matrix.
Solve a tridiagonal system.
Free resources allocated to factorization of a

tridiagonal matrix.

Dense Symmetric Eigenvalue Solver

S3L_sym_eigen() Find eigenvalues and, optionally, eigenvectors
in Hermitian matrices.

TABLE 1-1 Sun S3L Core Mathematical Routines (Continued)

Function Description
Chapter 1 Introduction to Sun S3L 5

Condition Numbers

S3L_condition_number() Compute the condition numbers of one or
more instances of a square S3L array.

Parallel Random Number Generators

S3L_setup_rand_fib()

S3L_rand_fib()
S3L_rand_lcg()

S3L_free_rand_fib()

Initialize state table for the Lagged-Fibonacci
random number generator (LFG).

Initialize an S3L array with an LFG.
Initialize an S3L array with a Linear

Congruential random number generator.
Free memory allocated to the random number

generator state table.

Least Squares Solver

S3L_gen_lsq() Find the least squares solution to an
overdetermined system or the minimum
norm solution to an underdetermined
system.

Dense Singular Value Decomposition

S3L_gen_svd() Compute the singular value of an S3L array
and, optionally, the right and/or left
singular vectors.

Autocorrelation

S3L_acorr_setup()

S3L_acorr()
S3L_acorr_free_setup()

Set up conditions for computing the
autocorrelation of a signal.

Compute 1D or 2D autocorrelation of a signal.
Free memory allocated to a particular

autocorrelation setup.

Convolution

S3L_conv_setup()

S3L_conv()
S3L_conv_free_setup()

Set up conditions for computing the
convolution of a signal.

Compute 1D or 2D convolution of a signal.
Free memory allocated to a particular

convolution setup.

TABLE 1-1 Sun S3L Core Mathematical Routines (Continued)

Function Description
6 Sun S3L 4.0 Software Programming Guide • February 2003

Deconvolution

S3L_deconv_setup()

S3L_deconv()

S3L_deconv_free_setup()

Set up conditions for computing the
deconvolution of an S3L array.

Compute 1D or 2D deconvolution of an S3L
array.

Free memory allocated to a particular
deconvolution setup.

Grade Elements of an Array

S3L_grade_up()

S3L_grade_down()

S3L_grade_detailed_up()

S3L_grade_detailed_down()

Grade all elements of an S3L array in
ascending order.

Grade all elements of an S3L array in
descending order.

Grade elements along one axis of an S3L array
in ascending order.

Grade elements along one axis of an S3L array
in descending order.

Sort Elements of an Array

S3L_sort()

S3L_sort_up()

S3L_sort_down()

S3L_sort_detailed()

S3L_sort_detailed_up()

S3L_sort_detailed_down()

Sort all elements of a one-dimensional array
in ascending order.

Sort all elements of a one-dimensional or
multidimensional array in ascending order.

Sort all elements of a one-dimensional or
multidimensional array in descending
order.

Sort elements along one axis of an S3L array
in either ascending or descending order
using quicksort or radixsort algorithm.

Sort elements along one axis of an S3L array
in ascending order.

Sort elements along one axis of an S3L array
in descending order.

Parallel Transpose

S3L_trans() Perform generalized transposition of an S3L
array.

TABLE 1-1 Sun S3L Core Mathematical Routines (Continued)

Function Description
Chapter 1 Introduction to Sun S3L 7

TABLE 1-2 Sun S3L Toolkit Routines

Function Description

Create/Exit Sun S3L Environment

S3L_init()
S3L_exit()

Set up Sun S3L environment.
Leave Sun S3L environment.

Create Sun S3L Array Handles

S3L_declare()
S3L_declare_detailed()

S3L_DefineArray()

Create S3L array handle (basic method).
Create S3L array handle (with control over

more parameters).
Declare S3L array (not recommended; for

back-compatibility with Sun S3L 2.0 only).

Release Sun S3L Array Handles

S3L_free()
S3L_UndefineArray()

Release an S3L array (recommended).
Release an S3L array (for Sun S3L 2.0 only).

Control Sun S3L Process Grids

S3L_set_process_grid()
S3L_free_process_grid()

Define an S3L process grid.
Release resources allocated to a process grid.

Perform Operations on Sun S3L Arrays

S3L_array_op1()
S3L_array_op2()
S3L_array_scalar_op2()
S3L_cshift()
S3L_forall()

S3L_reduce()
S3L_reduce_axis()

S3L_set_array_element()
S3L_set_array_element_on_proc()

S3L_get_array_element()

S3L_get_array_element_on_proc()

S3L_zero_elements()

Perform operation on array (one operand).
Perform operation on array (two operands).
Perform operation on array and scalar value.
Perform circular shift along a specified axis.
Apply a user-defined function to some or

all elements in an array.
Perform a reduction function across an array.
Perform a reduction function along one axis

of an array
Set the value of an element of an S3L array.
Set the value of an element of an S3L array,

using the value supplied on a specific
process.

Retrieve the value of an element of an S3L
array.

Retrieve the value of an element of an S3L
array, as supplied by a specified process.

Set all elements in an S3L array to zero.
8 Sun S3L 4.0 Software Programming Guide • February 2003

Get Information About Sun S3L Arrays

S3L_describe()

S3L_get_attribute()
S3L_read_array()
S3L_read_sub_array()
S3L_print_array()
S3L_print_sub_array()

S3L_write_array()
S3L_write_sub_array()

Get information about an S3L array or
process grid.

Get the value of an S3L array attribute.
Read an S3L array from a file.
Read part of an S3L array from a file.
Print an S3L array to standard output.
Print part of an S3L array to standard

output.
Write an S3L array to a specified file.
Write part of an S3L array to a specified file.

Miscellaneous Tools

S3L_copy_array()
S3L_from_ScaLAPACK()

S3L_to_ScaLAPACK()

S3L_thread_comm_setup()

S3L_set_safety()
S3L_get_safety()

Copy an S3L array into another S3L array.
Convert ScaLAPACK descriptor to S3L

handle.
Convert S3L handle to ScaLAPACK

descriptor.
Prepare S3L environment for thread-safe

operation.
Set error-checking level for S3L operations.
Get S3L error-checking level.

TABLE 1-3 Supported ScaLAPACK 1.6 and PBLAS 1.0 APIs

Category Routine

PBLAS 1,2,3 p{s,d}dot, p{c,z}dotu, p{s,d}nrm2, p{sc,dz}nrm2,
p{s,d}ger, p{c,z}geru, p{s,d,c,z}gemv, p{s,d,c,z}gemm

LU factor, solve,
inverse

p{s,d,c,z}getrf,p{c,d,c,z}getrs,p{c,d,c,z}getri

Tridiagonal solvers p{s,d,c,z}dttrf, p{s,d,c,z}dttrs

Banded solvers p{s,d,c,z}gbsv, p{s,d,c,z}gbtrf, p{s,d,c,z}gbtrs

Symmetric
eigensolver

p{s,d}syevx, p{c,z}heevx

Singular Value
Decomposition

p{s,d,c,z}geqrf

Least Squares Solver p{s,d,c,z}gels

TABLE 1-2 Sun S3L Toolkit Routines (Continued)

Function Description
Chapter 1 Introduction to Sun S3L 9

10 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 2

Sun S3L Data Types

Data type information is encoded in the Sun S3L array handle for both C and
Fortran interfaces and is decoded at runtime. This allows appropriate branching to
occur during execution, which makes it unnecessary to maintain separate routines
with different names for each language interface.

TABLE 2-1 shows the data types supported for the various Sun S3L routines. TABLE 2-2
lists the C and Fortran language-specific data type equivalents.

Within each subroutine call, elements of all array arguments must match in data
type, unless the argument descriptions indicate otherwise.

Place one of the following include lines at the top of any C or Fortran program unit
that makes a Sun S3L call:

C and C++ programs

F77 and F90 programs

Note – For Sun S3L 2.0 (previously released version of Sun S3L), the Sun S3L array
handles for the F77 interfaces are of type integer*4. For subsequent releases, they
are of type integer*8. Therefore, when porting F77 programs from Sun S3L 2.0 to
a later version, be sure to change the array handle data type definitions accordingly.
If you want your F77 program to be compatible across Sun S3L 2.0 and subsequent
releases, you should insert #ifdef statements in appropriate places in the code.

#include <s3l/s3l-c.h>

include ’s3l/s3l-f.h’
11

TABLE 2-1 Array Data Types Supported for C/C++ and F77/F90

Operation int
long
integer float double complex

double
complex

2-norm x x x x

Autocorrelation x x x x

Convolve x x x x

Copy array x x x x x x

Circular shift x x x x x x

Declare array x x x x x x

Deconvolve x x x x

Define array x x x x x x

Describe array x x x x x x

Exit – N/A –

FFT, simple and detailed
complex-to-complex

x x

FFT, inverse x x

FFT, simple real-to-complex x x

FFT, simple complex-to-real x x

Forall x x x x x x

Free array handle x x x x x x

General band solver x x x x

General iterative solver x x x x

General least squares x x x x

General singular value
decomposition (SVD)

x x x x

General tridiagonal x x x x

Get array elements x x x x x x

Get array attributes x x x x x x

Grade up/down x x x x x x
12 Sun S3L 4.0 Software Programming Guide • February 2003

Initialize Sun S3L environment – N/A –

Inner product x x x x

LU factor x x x x

LU solve x x x x

LU invert x x x x

Matrix multiplication x x x x

Matrix vector multiplication x x x x

Matrix vector sparse x x x x

Outer product x x x x

Print array x x x x x x

Print sparse array x x x x

Read array x x x x x x

Read sparse array x x x x

Reduce x x x x x x

Reduce axis x x x x x x

RNG, lagged Fibonacci x x x x x x

RNG, linear congruential x x x x x x

RNG, sparse matrix x x x x

Set array elements x x x x x x

Set process grid – N/A –

Set safety – N/A –

Sort x x x x

Thread communicator setup – N/A –

Symmetric eigenvalues,
eigenvectors

x x x x

Transpose x x x x x x

Write array x x x x x x

Zero elements x x x x x x

TABLE 2-1 Array Data Types Supported for C/C++ and F77/F90 (Continued)

Operation int
long
integer float double complex

double
complex
Chapter 2 Sun S3L Data Types 13

TABLE 2-2 Equivalent Sun S3L, Fortran, and C Array Data Types

Sun S3L Data Types F77/F90 Data Types C/C++ Data Types

S3L_integer INTEGER*4 int

S3L_long_integer INTEGER*8 long long

S3L_float REAL*4 float

S3L_double REAL*8 double

S3L_complex COMPLEX*8 typedef struct

{ float real;

float imag;

} S3L_cmpx8

S3L_double_complex COMPLEX*16 typedef struct cmpx16_s

{ float double real;

float double imag;

} S3L_cmpx16
14 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 3

Sun S3L Arrays

This chapter discusses various issues related to parallel arrays in the Sun S3L
context. This discussion is organized into the following sections:

■ “Overview” on page 15
■ “Sun S3L Array Attributes” on page 16
■ “Array Indexing” on page 16
■ “Sun S3L Array Handles” on page 17
■ “MPI Processes and Sun S3L Process Grids” on page 18
■ “Creating Process Grids” on page 21
■ “Distributing Sun S3L Arrays” on page 21
■ “Examining the Contents of Sun S3L Arrays” on page 26

Overview
Sun S3L distributes arrays on an axis-by-axis basis across multiple processes,
enabling operations to be performed in parallel on different sections of the array.
These distributed arrays are referred to in this manual as Sun S3L arrays. They may
also be referred to as Sun S3L parallel arrays.

When a message-passing program passes an array to a Sun S3L routine, it can
specify any of the following distribution methods for the array’s axes:

■ Block – The axis is divided into blocks and distributed across the processes, with
each process receiving no more than one block.

■ Block-cyclic – The axis is divided into smaller blocks and distributed across the
processes in round-robin fashion.

■ Local – The axis is placed as an undivided whole on a single process.
15

Regardless of the distribution scheme specified by the calling program, Sun S3L will,
if necessary, automatically distribute the axes internally in a manner that is most
efficient for the routine being called. If Sun S3L changes the distribution method
internally, it will restore the original distribution scheme on the resultant array
before passing it back to the calling program.

Sun S3L Array Attributes
A principal attribute of Sun S3L arrays is rank—that is, the number of dimensions, or
axes, the array has. For example, a Sun S3L array with three dimensions is called a
rank-3 array. Sun S3L arrays can have up to 31 dimensions.

A Sun S3L array is also defined by its extents, which is its length along each
dimension, and its type, which refers to the data type of its elements. The following
data types are defined for Sun S3L arrays:

■ S3L_integer (4-byte integer)
■ S3L_long_integer (8-byte integer)
■ S3L_float (4-byte floating point number)
■ S3L_double (8-byte double precision floating point number)
■ S3L_complex (8-byte complex number)
■ S3L_double_complex (16-byte complex number)

The C and Fortran equivalents of these array data types are described in Chapter 2.

Array Indexing
Sun S3L routines that access specific locations within arrays use either zero-based or
one-based indexing:

■ Zero-based indexing is applied when the calling program uses the C-language
interface.

■ One-based indexing is applied when the calling program uses the Fortran-
language interface.
16 Sun S3L 4.0 Software Programming Guide • February 2003

Sun S3L Array Handles
Each Sun S3L array must be associated with a unique Sun S3L array handle. This is
a set of internal data structures that contains a full description of the array—that is,
all the information needed to define both the global and local characteristics of the
array. The global definition includes such information as the array’s rank and how it
is distributed. The local information includes its extents and its location in the local
process memory. No matter how an array has been distributed, the associated Sun
S3L array handle ensures that its layout is understood by all MPI processes.

In C programs, Sun S3L array handles are declared as type S3L_array_t and in
Fortran programs as type integer*8.

Creating Sun S3L Array Handles
TABLE 3-1 lists the routines that Sun S3L provides for creating Sun S3L array handles.

TABLE 3-1 Sun S3L Routines for Creating Array Handles
Routine Notes Comments

S3L_declare dense Allocates memory for a dense parallel array
and returns a Sun S3L array handle that
describes the array.

S3L_declare_detailed dense Same as S3L_declare, but this routine gives
the user control over more array mapping
parameters.

S3L_declare_sparse sparse Allocates memory for a sparse parallel array
and returns a Sun S3L array handle that
describes the array. This routine is used to set
up sparse Sun S3L arrays for various sparse
matrix and sparse linear systems functions.

S3L_read_sparse sparse Sets up a sparse matrix and reads sparse matrix
data from a file into it. The nonzero values are
mapped into the matrix in terms of the sparse
data structure stored in the file.

S3L_rand_sparse sparse Sets up a sparse matrix and populates it with
random nonzero values in a sparsity pattern
that is specified by arguments in the function
argument list.
Chapter 3 Sun S3L Arrays 17

Detailed descriptions of S3L_declare and S3L_declare_detailed are provided
in “Creating and Destroying Array Handles for Dense Sun S3L Arrays” on page 57.

S3L_declare_sparse, S3L_read_sparse, and S3L_rand_sparse are described
more fully in Chapter 12.

There are three other Sun S3L routines that also create Sun S3L array handles, but
they are meant for special-case situations. They are listed in TABLE 3-2.

These routines are all described in the Sun S3L Software Reference Manual.

Deallocating Sun S3L Array Handles
When a Sun S3L array is no longer needed, use S3L_free to deallocate a dense
array and S3L_free_sparse to deallocate a sparse array. This makes the memory
resources available for other uses.

MPI Processes and Sun S3L Process
Grids
In a Sun MPI application, each process is identified by a unique rank. This is an
integer in the range 0 to np-1, where np is the total number of MPI processes
spawned by the application.

TABLE 3-2 Routines for Creating Sun S3L Array Handles in Special Cases

Routine Notes Comments

S3L_convert_sparse sparse Converts a sparse array from one supported
sparse format to another supported sparse
format. There are four such supported sparse
formats.

S3L_from_ScaLAPACK_desc dense Converts a ScaLAPACK array descriptor to a
Sun S3L array handle.

S3L_DefineArray dense This routine is an earlier version of
S3L_declare, but its user interface is less
efficient. It is retained only for compatibility
with the Sun HPC 2.0 release of Sun S3L.
18 Sun S3L 4.0 Software Programming Guide • February 2003

Note – This use of the term rank is unrelated to the rank of a Sun S3L array. Process
ranks correspond to MPI ranks as used in interprocess communication. A Sun S3L
array’s rank refers to the number of dimensions the array has.

Sun S3L maps each Sun S3L array onto a logical arrangement of MPI processes,
referred to as a process grid. A process grid will have the same number of dimensions
as the Sun S3L array with which it is associated. The section of a Sun S3L array that
is on a given process is called a subgrid.

Sun S3L controls the ordering of the processes within the n-dimensional process
grid. FIGURE 3-1 through FIGURE 3-3 illustrate this. These examples show how Sun
S3L might arrange eight processes in one- and two-dimensional process grids.

In FIGURE 3-1, the eight processes form a one-dimensional grid.

FIGURE 3-1 Eight Processes Arranged as a 1x8 Process Grid

FIGURE 3-2 and FIGURE 3-3 show the eight processes organized into rectangular 2x4
process grids.

Note that, although both process grids have 2x4 extents, they differ in their
majorness attribute. This attribute determines the order in which the processes are
distributed onto a process grid’s axes or local subgrid axes. The two possible modes
are:

■ Column major – Processes are distributed along column axes first; that is, the
process grid’s row indices increase fastest.

■ Row major – Processes are distributed along row axes first; the process grid’s
column indices increase fastest.

In FIGURE 3-2, subgrid distribution follows a column-major order. In FIGURE 3-3,
process grid distribution is in row-major order.

0 1 2 3 4 5 6 7

(0) (1) (2) (3) (4) (5) (6) (7)coordinates

Process rank
Chapter 3 Sun S3L Arrays 19

FIGURE 3-2 Eight Processes Arranged as a 2x4 Process Grid: Column-Major Order

FIGURE 3-3 Eight Processes Arranged as a 2x4 Process Grid: Row-Major Order

Note – In these examples, axis numbers are one-based (Fortran-style). They would
be zero-based for the C-language interface. Process ranks and process grid
coordinates are always zero-based.

A
xi

s
1

Axis 2

0
(0,0)

1
(1,0)

Process
rank

Process grid
coordinates

Column major

2
(0,1)

3
(1,1)

4
(0,2)

5
(1,2)

6
(0,3)

7
(1,3)

A
xi

s
1

Axis 2

Process
rank

Process grid
coordinates

Row major

0
(0,0)

4
(1,0)

1
(0,1)

5
(1,1)

2
(0,2)

6
(1,2)

3
(0,3)

7
(1,3)
20 Sun S3L 4.0 Software Programming Guide • February 2003

Creating Process Grids
By default, Sun S3L will automatically assign a process grid of an appropriate shape
and size whenever a Sun S3L array handle is created. In choosing a default process
grid, Sun S3L always has the goal of producing as even a distribution of the Sun S3L
array as possible.

However, the programmer has the option of defining a process grid explicitly by
calling the function S3L_set_process_grid. This enables the programmer to
specify:

■ The number of dimensions the process grid will have
■ The order in which the axes are created: column major or row major
■ The extent of each of the process grid’s axes
■ The list of processes to be included in the process grid

Upon exit, S3L_set_process_grid returns a process grid handle.

A process grid can be defined over the full set of processes being used by an
application or over any subset of those processes. This flexibility can be useful when
circumstances call for setting up a process grid that does not include all available
processes.

For example, if an application will be running in a two-node cluster where one node
has 14 CPUs and the other has 10, better load balancing may be achieved by defining
the process grid to have 10 processes in each node.

When the process grid is no longer needed, you can deallocate its process grid
handle by calling S3L_free_process_grid.

Detailed descriptions of S3L_set_process_grid and S3L_free_process_grid
are provided in “Creating a Custom Process Grid” on page 71.

Distributing Sun S3L Arrays
Sun S3L array axes are distributed either locally or in a block-cyclic pattern. When
an axis is distributed locally, all indices along that axis are made local to a particular
process.

An axis that is distributed block-cyclically is partitioned into blocks of some useful
size and the blocks are distributed onto the processes in a round-robin fashion:

■ The first block goes to the first process, the second block to the second process,
and so on. This continues until all processes have received an initial block.
Chapter 3 Sun S3L Arrays 21

■ After the last process in the sequence has received its first block, the next block is
sent to the first process, the block after that to the second process, and so on. This
cycle is repeated until all elements in the axis have been distributed.

The definition of a useful block size will vary, depending in large part on the kind of
operation to be performed. See the discussion of Sun S3L array distribution in the
Sun HPC ClusterTools Software Performance Guide for additional information about
block-cyclic distribution and choosing block sizes.

A special case of block-cyclic distribution is block distribution. This involves
choosing a block size that is large enough to ensure that all blocks in the axis will be
distributed on the first distribution cycle—that is, no process will receive more than
one block. FIGURE 3-4 through FIGURE 3-6 illustrate block and block-cyclic
distributions with a sample 8x8 array distributed onto a 2x2 process grid.

In FIGURE 3-4 and FIGURE 3-5, block size is set to 4 along both axes and the resulting
blocks are distributed in pure block fashion. As a result, all the subgrid indices on
any given process are contiguous along both axes.

The only difference between these two examples is that process grid ordering is
column-major in FIGURE 3-4 and row-major in FIGURE 3-5.
22 Sun S3L 4.0 Software Programming Guide • February 2003

FIGURE 3-4 An 8x8 Sun S3L Array Distributed on a 2x2 Process Grid Using Pure Block
Distribution: Column-Major Ordering of Processes

1 2 3 4 5 6 7 8

(1,1)

A
xi

s
1

Notes:

1

2

3

4

5

6

7

8

(2,1)

(3,1)

(4,1)

(1,2)

(2,2)

(3,2)

(4,2)

(1,3)

(2,3)

(3,3)

(4,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,5)

(6,5)

(7,5)

(8,5)

(5,6)

(6,6)

(7,6)

(8,6)

(5,7)

(6,7)

(7,7)

(8,7)

(5,8)

(6,8)

(7,8)

(8,8)

(5,1)

(6,1)

(7,1)

(8,1)

(5,2)

(6,2)

(7,2)

(8,2)

(5,3)

(6,3)

(7,3)

(8,3)

(5,4)

(6,4)

(7,4)

(8,4)

(1,5)

(2,5)

(3,5)

(4,5)

(1,6)

(2,6)

(3,6)

(4,6)

(1,7)

(2,7)

(3,7)

(4,7)

(1,8)

(2,8)

(3,8)

(4,8)

Proc grid = 0,0

Proc rank = 0

Proc grid = 1,0

Proc rank = 2

Proc grid = 0,1

Proc rank = 1

Proc grid = 1,1

Proc rank = 3

Proc rank = the MPI process rank
Proc grid = the process grid coordinates
(n,m) = array indices

Axis 2
Chapter 3 Sun S3L Arrays 23

FIGURE 3-5 An 8x8 Sun S3L Array Distributed on a 2x2 Process Grid Using Pure Block
Distribution: Row-Major Ordering of Processes

FIGURE 3-6 shows block-cyclic distribution of the same array. In this example, the
block size for the first axis is set to 4 and the block size for the second axis is set to 2.

1 2 3 4 5 6 7 8

(1,1)

A
xi

s
1

Axis 2

1

2

3

4

5

6

7

8

(2,1)

(3,1)

(4,1)

(1,2)

(2,2)

(3,2)

(4,2)

(1,3)

(2,3)

(3,3)

(4,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,5)

(6,5)

(7,5)

(8,5)

(5,6)

(6,6)

(7,6)

(8,6)

(5,7)

(6,7)

(7,7)

(8,7)

(5,8)

(6,8)

(7,8)

(8,8)

(5,1)

(6,1)

(7,1)

(8,1)

(5,2)

(6,2)

(7,2)

(8,2)

(5,3)

(6,3)

(7,3)

(8,3)

(5,4)

(6,4)

(7,4)

(8,4)

(1,5)

(2,5)

(3,5)

(4,5)

(1,6)

(2,6)

(3,6)

(4,6)

(1,7)

(2,7)

(3,7)

(4,7)

(1,8)

(2,8)

(3,8)

(4,8)

Proc grid = 0,0

Proc rank = 0

Proc grid = 0,1

Proc rank = 1

Proc grid = 1,0

Proc rank = 2

Proc grid = 1,1

Proc rank = 3

Notes:
Proc rank = the MPI process rank
Proc grid = the process grid coordinates
(n,m) = array indices
24 Sun S3L 4.0 Software Programming Guide • February 2003

FIGURE 3-6 An 8x8 Sun S3L Array Distributed on a 2x2 Process Grid Using Block-Cyclic
Distribution: Column-Major Ordering of Processes

When no part of a Sun S3L array is distributed—that is, when all axes are local—all
elements of the array are on a single process. By default, this is the process with MPI
rank 0. The programmer can request that an undistributed array be allocated to a
particular process with the S3L_declare_detailed routine.

Although the elements of an undistributed array are defined only on a single
process, the Sun S3L array handle enables all other processes to access the
undistributed array.

1 2 3 4 5 6 7 8

(1,1)

A
xi

s
1

Axis 2

1

2

3

4

5

6

7

8

(2,1)

(3,1)

(4,1)

(1,2)

(2,2)

(3,2)

(4,2)

(1,5)

(2,5)

(3,5)

(4,5)

(1,6)

(2,6)

(3,6)

(4,6)

(5,3)

(6,3)

(7,3)

(8,3)

(5,4)

(6,4)

(7,4)

(8,4)

(5,7)

(6,7)

(7,7)

(8,7)

(5,8)

(6,8)

(7,8)

(8,8)

(5,1)

(6,1)

(7,1)

(8,1)

(5,2)

(6,2)

(7,2)

(8,2)

(5,5)

(6,5)

(7,5)

(8,5)

(5,6)

(6,6)

(7,6)

(8,6)

(1,3)

(2,3)

(3,3)

(4,3)

(1,4)

(2,4)

(3,4)

(4,4)

(1,7)

(2,7)

(3,7)

(4,7)

(1,8)

(2,8)

(3,8)

(4,8)

Proc grid = 0,0

Proc rank = 0

Proc grid = 1,0

Proc rank = 2

Proc grid = 0,1

Proc rank = 1

Proc grid = 1,1

Proc rank = 3

Notes:
Proc rank = the MPI process rank
Proc grid = the process grid coordinates
(n,m) = array indices
Chapter 3 Sun S3L Arrays 25

Examining the Contents of Sun S3L
Arrays

Printing Sun S3L Arrays
The Sun S3L utilities S3L_print_array and S3L_print_sub_array can be used
to print the values of a distributed Sun S3L array to standard output.

S3L_print_array prints the whole array, while S3L_print_sub_array prints a
section of the array that is defined by programmer-specified lower and upper
bounds.

The values of array elements will be printed out in column-major order. This is
referred to as Fortran ordering, where the leftmost axis index varies fastest.

Each element value is accompanied by the array indices for that value. This is
illustrated by the following example.

a is a 4 x 5 x 2 Sun S3L array that has been initialized to random double-precision
values with a call to S3L_rand_lcg. A call to S3L_print_array will produce the
following output:

For large Sun S3L arrays, it is often a good idea to print only a section of the array
rather than the entire array. This not only reduces the time it takes to retrieve the
data, but it can be difficult to locate useful information in displays of large amounts
of data. Printing selected sections of a large array can make the task of finding data

call s3l_print_array(a)
(1,1,1) 0.000525
(2,1,1) 0.795124
(3,1,1) 0.225717
(4,1,1) 0.371280
(1,2,1) 0.225035
(2,2,1) 0.878745
(3,2,1) 0.047473
(4,2,1) 0.180571
(1,3,1) 0.432766
...
26 Sun S3L 4.0 Software Programming Guide • February 2003

of interest much easier. This can be done using the function
S3L_print_sub_array. The following example shows how to print only the first
column of the array shown in the previous example:

The following output would be produced by this call:

If a stride argument other than 1 is specified, only elements at the specified stride
locations will be printed. For example, the following sets the stride for axis 1 to 2:

which results in the following output:

integer*4 lb(3),ub(3),st(3)

c specify the lower and upper bounds
c along each axis. Elements whose coordinates
c are greater or equal to lb(i) and less than or
c equal to ub(i) (and with stride st(i)) are
c printed to the output

lb(1) = 1
ub(1) = 4
st(1) = 1
lb(2) = 1
ub(2) = 1
st(2) = 1
lb(3) = 1
ub(3) = 1
st(3) = 1
call s3l_print_sub_array(a,lb,ub,st,ier)

(1,1,1) 0.000525
(2,1,1) 0.795124
(3,1,1) 0.225717
(4,1,1) 0.371280

st(1) = 2

(1,1,1) 0.000525
(3,1,1) 0.225717
Chapter 3 Sun S3L Arrays 27

Visualizing Distributed Sun S3L Arrays With
Prism
Sun S3L arrays can be visualized with Prism, the debugger that is part of the Sun
HPC ClusterTools suite. Before Sun S3L arrays can be visualized, however, the
programmer must instruct Prism that a variable of interest in an MPI code describes
a Sun S3L array.

For example, if variable a has been declared in a Fortran program to be of type
integer*8 and a corresponding Sun S3L array of type S3L_float has been
allocated by a call to S3L_declare or S3L_declare_detailed, the programmer
should enter the following at the Prism command prompt:

Once this is done, Prism can print values of the distributed array:

Or it can assign values to it:

or visualize it:

type float a

print a(1:2,4:6)

assign a(2,10) = 2.0

print a on dedicated
28 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 4

Multiple Instance

Most Sun S3L routines support multiple instances. That is, they enable you to perform
multiple independent operations on different data sets concurrently. The multiple
instance discussions in this chapter are organized into the following sections:

■ “Defining Multiple Independent Data Sets” on page 29
■ “Rules for Data Axes and Instance Axes” on page 30
■ “Specifying Single-Instance vs. Multiple-Instance Operations” on page 31

Defining Multiple Independent Data
Sets
To perform a Sun S3L operation on multiple independent data sets in parallel, you
must embed the multiple independent instances of each operand or result argument
in a parallel array.

The shape of the parallel array is defined by two kinds of axes:

■ Data axes define the geometry of the individual instances of the operand or result.
■ Instance axes label the multiple instances.

FIGURE 4-1 illustrates this with an example of a matrix-vector multiplication
operation in which four independent products are computed simultaneously. It
shows how the destination and source vectors and the source matrix are organized
with respect to the data and instance axes:

■ The four destination vectors are embedded in a 2D parallel array with one data
axis and one instance axis.

■ The four source vectors are similarly embedded in another parallel array.

■ The source matrices are embedded in a 3D parallel array.

The instances within each variable are labeled 0 through 3.
29

FIGURE 4-1 A Multiple-Instance Matrix-Vector Multiplication Problem

The logical unit on which the routine operates—sometimes called a cell—is defined
by the data axes. The instance axes define the geometry of the frame in which the
cells are embedded. The 3D parallel array shown in FIGURE 4-1 is a frame containing
four 2-dimensional cells.

The product of the lengths of the instance axes is the total number of instances. The
product of the lengths of the data axes is the size of the cell.

Rules for Data Axes and Instance Axes
When you organize your data to form cells and frames for a multiple-instance
operation, apply the following rules:

■ All parallel arrays involved in the operation must have the same number of
instance axes.

■ Counting up through the instance axes of the parallel arrays (excluding the data
axes), corresponding instance axes must occur in the same order in each operand
or result.

=+x
3

2
1

0

Instance axis

Data 3
2

0
1

3
2

0
1

Destination
vectorSource vector) + =(Source matrix x Destination

vector

Data Axis

3
2

1
0

axis
30 Sun S3L 4.0 Software Programming Guide • February 2003

■ The corresponding instance axes of the operands or results must have identical
lengths. Certain routines also require that corresponding instance axes must also
have identical layouts. The situations where identical layouts are required are
identified in the applicable man pages.

■ The lengths of the data axes must be defined so that the operation makes sense.
For example, in matrix multiplication, the data axis lengths of the operand and
result matrices must obey the standard rules for axis lengths in matrix
multiplication. Specific requirements for data axis lengths are provided in the
applicable man pages.

■ Except where explicitly noted, Sun S3L supports all combinations of layouts for
data axes and instance axes. Which layout will provide the best performance for
any given operation depends largely on the nature of the operation.

In most cases, however, performance is best when the cells (that is, all of the data
axes) are local to a processing element. Instance axes are typically defined as
nonlocal axes. Some man pages for Sun S3L routines contain specific information
about optimizing layouts.

“Specifying Single-Instance vs. Multiple-Instance Operations” on page 31 illustrates
these rules being applied in a matrix-vector multiplication example.

Note – Most Sun S3L routines impose few or no restrictions on where the instance
axes can occur in a parallel array.

Specifying Single-Instance vs. Multiple-
Instance Operations
Sun S3L routines that support multiple instances have the same calling sequence for
single-instance and multiple-instance operations. The methods for specifying single-
instance and multiple-instance operations depend on which routine you are calling.
The man pages for routines that are capable of multiple-instance operation contain
specific information for their respective routines.

“Example 1: Matrix-Vector Multiplication” on page 32 explains the differences
between single- and multiple-instance operation for the matrix-vector-multiplication
routine.

“Example 2: Fast Fourier Transforms” on page 37 discusses use of multiple instances
in FFTs.
Chapter 4 Multiple Instance 31

Example 1: Matrix-Vector Multiplication
When you call the matrix-vector-multiplication routine, S3L_mat_vec_mult, the
dimensionality of the arguments you supply determines whether the routine
performs a single-instance or multiple-instance operation. The F77 form of this Sun
S3L function is:

Note – The S3L_mat_vec_mult routine requires you to specify which axes you are
using as data axes for each matrix or vector argument.

Single-Instance Operation

To perform a single-instance operation, specify each vector argument as a 1D
parallel array and each matrix argument as a 2D parallel array. (Alternatively, you
can declare these arguments to have more dimensions, but all instance axes must
have length 1.)

For example, a single-instance operation in F77 can be performed by first defining
the block-distributed arrays:

S3L_mat_vec_mult(y, a, x, y_vector_axis, row_axis, col_axis,

x_vector_axis, ier)

integer*8 a, x, y

 integer*4 ext(2), axis_is_local(2)

integer*4 ier

axis_is_local(1) = 0

axis_is_local(2) = 0

ext(1) = p

ext(2) = q

call s3l_declare(a, 2, ext, S3L_float, axis_is_local,

$ S3L_USE_MALLOC, ier)

call s3l_declare(x, 1, ext, S3L_float, axis_is_local,

$ S3L_USE_MALLOC, ier)

call s3l_declare(y, 1, ext, S3L_float, axis_is_local,

$ S3L_USE_MALLOC, ier)
32 Sun S3L 4.0 Software Programming Guide • February 2003

and then using

Arrays x and y are 1D. The definitions of x_vector_axis = 1 and col_axis = 2
indicate that the product a(i, j) * x(j) will be evaluated for all values of j. These
products will be summed over the first index of a (row_axis = 1), and the result
added to the corresponding element in y. The equivalent code is

Multiple-Instance Operation

To perform a multiple-instance operation, embed the multiple instances of each
vector argument in a parallel array of rank greater than 1, and embed the multiple
instances of each matrix argument in a parallel array of rank greater than 2.

For example, the simplest multiple-instance matrix-vector multiplication involves
the definition of one instance axis.

call S3L_mat_vec_mult(y, a, x, 1, 1, 2, 1, ier)

do i = 1, p

sum = 0.0

do j = i, q

sum = sum + a(i, j) * x(j)

enddo

enddo

integer*8 a, x, y

 integer*4 ext(3), axis_is_local(3)

integer*4 ier

axis_is_local(1) = 0

axis_is_local(2) = 0

axis_is_local(3) = 0

ext(1) = p

ext(2) = q

ext(3) = r

call s3l_declare(a, 3, ext, S3L_float, axis_is_local,

$ S3L_USE_MALLOC, ier)

ext(1) = q

ext(2) = r

call s3l_declare(x, 2, ext, S3L_float, axis_is_local,

$ S3L_USE_MALLOC, ier)

ext(1) = p
Chapter 4 Multiple Instance 33

In this code, all three arrays contain an instance axis of length r. In addition, each
instance axis is the rightmost axis in the array declaration. In other words, the order
of data axes and instance axes is the same in all three arrays. These axis definitions
produce arrays whose geometries are outlined in FIGURE 4-1. In the illustration, r = 4.

Multiplication using these arrays is then performed by:

In analyzing the operations performed in this call, it is useful to define s0, the index
along the instance axis. For a given value of s0, the following operations will be
done:

■ The product a(i, j, s0) * x(j, s0) will be calculated for all j. This is
indicated by the values of the arguments x_vector_axis and col_axis, which
are 1 and 2 respectively.

■ The above product will be summed over i, the first index of a (row_axis = 1),
and the result added to y(i, s0).

These two operations will be performed for all 1 <= s0 <= r. In other words, the
matrix-vector multiplication will be evaluated for all instances:

The order in which these instances are evaluated depends on the layouts of the
arrays. Since all arrays are block-distributed along all axes, it is possible for one set
of processes to work on the first instance:

while another set of processes evaluates the N-th instance at the same time—that is,
in parallel:

The Importance of Data Layout

The extent of parallelism depends on the details of the data layouts, particularly on
the mapping of the data and instance axes to the underlying process grid axes. The
highest degree of parallelism is achieved when all data axes are local and all instance
axes are distributed.

ext(2) = r

call s3l_declare(y, 2, ext, S3L_float, axis_is_local,

$ S3L_USE_MALLOC, ier)

call S3L_mat_vec_mult(y, a, x, 1, 1, 2, 1, ier)

y(:, s0) * a(:, :, s0) * x(:, s0)

y(:, 1) = a(:, :, 1) * x(:, 1)

y(:, N) = a(:, :, N) * x(:, N)
34 Sun S3L 4.0 Software Programming Guide • February 2003

The use of local data axes forces each cell (that is, all data axes) to reside entirely in
just one process. The use of distributed instance axes spreads the collection of cells
over the process grid, resulting in better load-balancing among processes.

Multiple-instance operations are usually most efficient when each cell (all of the data
axes) resides on one process. Local distribution of data axes is illustrated below,
using a Sun S3L array of rank 5, with the first two axes being the data axes and the
other three being instance axes.

integer*8 a, x, y

 integer*4 mat_ext(5), mat_axis_is_local(5)

 integer*4 vec_ext(4), vec_axis_is_local(4)

integer*4 ier

mat_axis_is_local(1) = 1

mat_axis_is_local(2) = 1

mat_axis_is_local(3) = 0

mat_axis_is_local(4) = 0

mat_axis_is_local(5) = 0

mat_ext(1) = p

mat_ext(2) = q

mat_ext(3) = k

mat_ext(4) = m

mat_ext(5) = n

call s3l_declare(a, 5, mat_ext, S3L_float, mat_axis_is_local,

$ S3L_USE_MALLOC, ier)

vec_axis_is_local(1) = 1

vec_axis_is_local(2) = 1

vec_axis_is_local(3) = 0

vec_axis_is_local(4) = 0

vec_ext(1) = q

vec_ext(2) = k

vec_ext(3) = m

vec_ext(4) = n

call s3l_declare(x, 4, vec_ext, S3L_float, vec_axis_is_local,

$ S3L_USE_MALLOC, ier)

vec_ext(1) = p

vec_ext(2) = k

vec_ext(3) = m

vec_ext(4) = n
Chapter 4 Multiple Instance 35

The data axes are defined to be local to a process. Each array has three block-
distributed instance axes. Note that the order of instance axes is the same in all three
arrays.

Multiplication using these arrays is then performed by

The following is an analysis of the results of this multiple-instance matrix-vector
operation. In this analysis, s0, s1, and s2 are used to denote the index along each of
the three instance axes. For a given value of s0, the following operations will be
done:

■ The product a(i, j, s0, s1, s2) * x(j, s0, s1, s2) will be calculated
for all j. This is indicated by the values of the arguments x_vector_axis and
col_axis, which are 1 and 2, respectively.

■ This product will be summed over i, the first index of a (row_axis = 1), and the
result added to y(i, s0, s1, s2).

These two operations will be performed for all 1 <= s0 <= k, 1 <= s1 <= m, and
1 <= s2 <= n. In other words, the matrix-vector multiplication will be evaluated for
all instances:

However, unlike the previous example, the data axes in this case are local. This
means that the evaluation of each instance does not involve any interprocess
communication. Each process independently works on its own set of instances,
using a purely local matrix-vector multiplication algorithm. These local algorithms
are usually faster than their global counterparts, since no communication between
processes is involved.

Source code for these operations is in the file mat_vec_mult.f. This can be found
in the Sun S3L examples directory:

Note – /opt/SUNWhpc is the default location for the examples directory. If you
cannot find the directory, it may be that your site is not using the default path.

call s3l_declare(y, 4, vec_ext, S3L_float, vec_axis_is_local,

$ S3L_USE_MALLOC, ier)

call S3L_mat_vec_mult(y, a, x, 1, 1, 2, 1, ier)

y(:, s0, s1, s2) = A(:, :, s0, s1, s2) * x(:, s0, s1, s2)

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f.
36 Sun S3L 4.0 Software Programming Guide • February 2003

Example 2: Fast Fourier Transforms
When calling the detailed complex-to-complex FFT routine, S3L_fft_detailed,
you can supply a multidimensional parallel array and specify whether you want to
perform a forward transform, an inverse transform, or no transform along each axis.
The axes that are transformed are the data axes and define the cell. The axes along
which no transformation is performed are the instance axes.

Note – The simple FFT routine, S3L_fft, performs a transform along each axis of
the supplied parallel array. Consequently, it does not support multiple instances.
Chapter 4 Multiple Instance 37

38 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 5

Using Sun S3L

This chapter explains how to incorporate calls to Sun S3L routines into your
message-passing program. It covers the following topics:

■ “Incorporating Sun S3L Function Calls Into Your Program” on page 39
■ “Referencing Sun S3L Include Files” on page 42
■ “Setting Up the Sun S3L Environment” on page 42
■ “Enabling Thread-Safe Use of Sun S3L Routines” on page 43
■ “Using the Sun S3L Safety Mechanism” on page 43
■ “Creating Sun S3L Array Handles for Dense Arrays” on page 44
■ “Creating Sun S3L Array Handles for Sparse Arrays” on page 44
■ “Freeing Sun S3L Array Handles for Dense and Sparse Arrays” on page 47
■ “Using the Sun S3L Link Switch” on page 47
■ “Accessing Online Program Examples and Man Pages” on page 48

Note – Sun S3L documentation includes sample online programs that demonstrate
how to call each Sun S3L routine. You are encouraged to experiment with these
sample programs. See “Accessing Online Program Examples and Man Pages” on
page 48.

Incorporating Sun S3L Function Calls
Into Your Program
The basic steps required for incorporating Sun S3L function calls into an MPI
program are relatively simple and can be summarized as shown in TABLE 5-1.
39

CODE EXAMPLE 5-1 illustrates these steps with a simple program example. They are
also discussed more fully in the following subsections.

TABLE 5-1 Summary of Basic Sun S3L Functions

include ’s3l/s3l-f.h’
include ’s3l/s3l_errno-f.h’

Place references to the appropriate Sun S3L
include files in the program’s header section.

S3L_init() Set up a Sun S3L environment.

S3L_thread_comm_setup() If the MPI program is multithreaded, use to set
up support for thread-safe operation.

S3L_set_safety() If in program development mode, this routine
may be used to enable enhanced error checking.
Alternatively, the S3L_SAFETY environment
variable can be used for this purpose.

S3L_declare()
S3L_declare_sparse()

Create Sun S3L array handles for any dense
and/or sparse parallel arrays that will be used
by Sun S3L functions.

S3L_*(args) Place calls to Sun S3L functions of interest.

S3L_free()
S3L_free_sparse()

Deallocate array handles created earlier.

S3L_exit Undo the Sun S3L environment.

CODE EXAMPLE 5-1 S3L Program Example

c
c Copyright (c) 2001, by Sun Microsystems, Inc.
c All rights reserved.
c
c This example shows how to create an S3L environment and then
deallocate it when c it is no longer needed. It also shows a
simple MPI program that creates a 2D c array and an S3L array
handle for the array, fills the array with data, prints the c
array, and deallocates the array.

program main
40 Sun S3L 4.0 Software Programming Guide • February 2003

implicit none
include ’s3l/s3l-f.h’
include ’mpif.h’

integer*4 nrow, ncol
parameter (nrow = 8, ncol = nrow)

c global array descriptor

integer*8 a

c Initialize S3L environment. Because MPI was not already initialized
c at time of s3l_init call, S3L will call mpi_init.

call s3l_init(ier)

call mpi_comm_rank(MPI_COMM_WORLD, me, ier)
call mpi_comm_size(MPI_COMM_WORLD, np, ier)

c Set array extents (lengths of array axes).

ext(1) = nrow
ext(2) = ncol

c Specify distribution of array axes; 0 means both are block-distributed.

axis_is_local(1) = 0
axis_is_local(2) = 0

c Create S3L array handle for a.

call s3l_declare(a, 2, ext, S3L_float, axis_is_local,
$ S3L_USE_MALLOC, ier)

c Fill array a with zeros.

call s3l_zero_elements(a, ier)

c Print contents of a to standard out.

call s3l_print_array(a, ier)

c Deallocate array handle for a and exit s3l environment.

call s3l_free(a, ier)

CODE EXAMPLE 5-1 S3L Program Example (Continued)
Chapter 5 Using Sun S3L 41

Referencing Sun S3L Include Files
Place the appropriate include lines at the top of any program unit that makes a Sun
S3L call. The correct include files are as follows for both C and Fortran language
interfaces:

The first line allows the program to access the header file containing prototypes of
the routines and defines the symbols and data types required by the interface. The
second line includes the header file containing error codes the routines might return.

If the compiler cannot find the Sun S3L include file, verify that a path to the
directory does exist. The default path is

Setting Up the Sun S3L Environment
Before a message-passing program can start using Sun S3L functions, every MPI
process in the program must call S3L_init. This will create a Sun S3L environment
to handle calls from MPI processes. S3L_init also initializes the BLACS
environment.

See Chapter 6 for detailed instructions on using S3L_init.

call s3l_exit(ier)

end

C or C++

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>

F77 or F90

include ’s3l/s3l-f.h’
include ’s3l/s3l_errno-f.h’

/opt/SUNWhpc/include/

CODE EXAMPLE 5-1 S3L Program Example (Continued)
42 Sun S3L 4.0 Software Programming Guide • February 2003

Enabling Thread-Safe Use of Sun S3L
Routines
If your MPI program is multithreaded, you can use S3L_thread_comm_setup to
create a safe environment for individual threads and sets of cooperating threads to
call Sun S3L functions. S3L_thread_comm_setup creates the internal MPI
communicators and data structures needed for thread-safe operation of Sun S3L
routines.

Note – If S3L_thread_comm_setup is used, it must be the first Sun S3L function
called after S3L_init.

See “Setting Up Support for Thread-Safe Operation” on page 53 for additional
information.

Using the Sun S3L Safety Mechanism
Sun S3L provides a user-controlled mechanism for increasing the level of error
checking performed during Sun S3L operations. This safety mechanism provides, in
addition to the default level, three incrementally higher levels of error checking of
Sun S3L functions.

When either of the two highest error checking modes is specified, the safety
mechanism also causes the MPI processes to be synchronized. This synchronization
can simplify the task of isolating errors to particular processes.

The safety mechanism can be controlled either by setting the environment variable
S3L_SAFETY or with a call to the S3L_set_safety function.

The safety mechanism also provides the inquiry function S3L_get_safety, which
returns the current safety level.

See “Controlling the Sun S3L Safety Mechanism” on page 54 for more information.
Chapter 5 Using Sun S3L 43

Creating Sun S3L Array Handles for
Dense Arrays
S3L_declare and S3L_declare_detailed each creates a Sun S3L array handle
that describes a dense Sun S3L parallel array. Both support calling arguments that
enable the user to specify:

■ The array’s rank (number of dimensions)
■ The extent of each axis
■ The array’s data type
■ Which axes, if any, will be distributed locally
■ How memory will be allocated for the array

S3L_declare_detailed provides additional arguments, which may be used to
control:

■ The block sizes to be used in distributing array axes
■ The starting address of the local subgrid
■ Which processes contain the start of each array axis

See “Creating and Destroying Array Handles for Dense Sun S3L Arrays” on page 57
for detailed instructions on using S3L_declare and S3L_declare_detailed.

If the simpler S3L_declare routine is used, Sun S3L will automatically assign a
process grid to the Sun S3L array. The size of the process grid will be based on
values supplied by the S3L_declare arguments, with the goal of distributing the
array as evenly as possible across the processes.

If S3L_declare_detailed is used instead, the programmer will have the choice of
either using the default process grid assigned by Sun S3L or of specifying a custom
process grid through a call to S3L_set_process_grid. This topic is discussed
more fully in “MPI Processes and Sun S3L Process Grids” on page 18 and in
“Creating a Custom Process Grid” on page 71.

Creating Sun S3L Array Handles for
Sparse Arrays
Sun S3L provides the following functions for creating Sun S3L array handles for
sparse arrays:

■ S3L_declare_sparse
44 Sun S3L 4.0 Software Programming Guide • February 2003

■ S3L_read_sparse
■ S3L_rand_sparse

An overview of each is provided below. All are described more fully in Chapter 12.

Note – S3L_convert_sparse, which is used to convert an array from one sparse
format to another, also creates a Sun S3L array handle. But, it does so for the
converted array, not for a newly created array. Since this discussion is about creating
array handles for new sparse arrays, S3L_convert_sparse is not covered here. It
is discussed in “Converting a Sparse Matrix From One Format to Another” on
page 123.

Overview of S3L_declare_sparse
S3L_declare_sparse is similar in purpose to S3L_declare, except that it applies
to sparse matrices in one of the following sparse formats:

■ Coordinate
■ Compressed Sparse Row
■ Compressed Sparse Column

See “Supported Sparse Formats” on page 111 for detailed descriptions of these
sparse formats.

Before calling S3L_declare_sparse, you must create three 1D arrays using
S3L_declare or S3L_declare_detailed. Two of these arrays, designated row
and col, hold mapping information (pointer and index values) that specify where
the nonzero values are located in the sparse matrix. The third array, designated val,
contains all the nonzero elements belonging to the sparse matrix.

See “Declaring a Sparse Matrix” on page 116 for more detailed descriptions of row,
col, and val.

When calling S3L_declare_sparse, the following information is passed to the
function through the argument string:

■ The sparse format to be used
■ The number of rows and columns in the sparse matrix
■ The Sun S3L array handles for row, col, and val

See “Declaring a Sparse Matrix” on page 116 for detailed descriptions of the
arguments taken by S3L_declare_sparse.

Upon completion, S3L_declare_sparse returns a Sun S3L array handle that
describes the sparse array.
Chapter 5 Using Sun S3L 45

Overview of S3L_read_sparse
S3L_read_sparse reads sparse matrix data from an ASCII file and distributes the
data to all participating processes. The data read from the file includes the nonzero
values of the sparse matrix, as well as mapping information that specifies the row
and column layout of the nonzero values in the sparse matrix.

The data must be stored in one of the following sparse formats:

■ Coordinate
■ Compressed Sparse Row
■ Compressed Sparse Column
■ Variable Block Row

When calling S3L_read_sparse, the following information is passed to the
function:

■ The sparse format to be used: Coordinate, Compressed Sparse Row, and so forth

■ The number of rows and columns in the sparse matrix

■ The number of nonzero elements in the sparse matrix

■ The data type of the sparse array: S3L_float, S3L_double, S3L_complex, or
S3L_double_complex

■ The name of the file to be read

■ The format of the data to be read from the file: ascii or ASCII

Upon completion, S3L_read_sparse returns a Sun S3L array handle that
represents the newly created sparse array.

See “Initializing a Sparse Matrix From a File” on page 118 for detailed descriptions
of the arguments taken by S3L_read_sparse.

Overview of S3L_rand_sparse
S3L_rand_sparse enables you to create a sparse matrix without either supplying
the nonzero data content or specifying the exact locations of the nonzero elements. It
creates a global general sparse matrix, populating it with a set of random values.
The sparse format can be any one of:

■ Coordinate
■ Compressed Sparse Row
■ Compressed Sparse Column
■ Variable Block Row

When calling S3L_rand_sparse, the following information is passed to the
function:

■ The sparse format to be used: Coordinate, Compressed Sparse Row, and so forth
46 Sun S3L 4.0 Software Programming Guide • February 2003

■ The type of random pattern to be used

■ The number of rows and columns in the sparse matrix

■ The desired density level; that is, the approximate percentage of elements in the
sparse matrix that will be nonzero values. The density level must be expressed as
a positive number no greater than 1.0

■ The data type of the sparse array: S3L_float, S3L_double, S3L_complex, or
S3L_double_complex

■ A seed value for the random number generator

■ If the Variable Block Row format is specified, two additional arguments are used
to pass row and column indices. These specify where the blocks of nonzero values
are located in the sparse matrix

Upon completion, S3L_rand_sparse returns a Sun S3L array handle that
represents the newly created sparse array. See “Initializing a Sparse Matrix With
Random Values” on page 119 for detailed descriptions of the arguments taken by
S3L_rand_sparse.

Freeing Sun S3L Array Handles for
Dense and Sparse Arrays
Sun S3L provides separate functions for deallocating Sun S3L array handles for
dense and sparse arrays. This is necessary because sparse arrays involve more
complex internal data structures, which require more steps to be deallocated.

Use S3L_free to deallocate a dense Sun S3L array.

Use S3L_free_sparse to deallocate a sparse Sun S3L array.

In either case, the only argument is the Sun S3L array handle that describes the
array.

Using the Sun S3L Link Switch
To link in Sun S3L at compile time, include the switch –ls3l. This automatically
links in the Forte Developer 6 library as well.
Chapter 5 Using Sun S3L 47

Sun S3L requires the presence of the Sun Performance Library routines and its
associated license file. This library is not installed with the Sun HPC ClusterTools
components. Instead, it is included as part of the Forte Developer 6 compiler suite.

The following examples show the –ls3l in use with the various supported
compilers:

Note – The –dalign option is needed because libs3l and libsunperf libraries
are compiled with it.

Accessing Online Program Examples
and Man Pages

Sample Code Directories
The online sample programs are located in subdirectories of the Sun S3L examples
directory. Separate C and Fortran versions are provided. The generic path for these
examples is:

C

% tmcc –dalign –o program program.c –ls3l

C++

% tmCC –dalign –o program program.cc –ls3l

F77

% tmf77 –dalign –o program program.f –ls3l

F90

% tmf90 –dalign –o program program.f90 –ls3l

/opt/SUNWhpc/examples/s3l/op_class[–lang_suffix]/ex_name.lang
48 Sun S3L 4.0 Software Programming Guide • February 2003

This shows the default location of the examples directory. If it is not in
/opt/SUNWhpc/, ask your system administrator for the correct path.

op_class refers to the general class of operations to which the routines of interest
belong.

Note – The –lang_suffix part of the name is used for Fortran implementations only.
The op_class directory name does not include –lang_suffix for examples implemented
in C.

ex_name.lang is the example’s file name. The lang extension is .c, or .f. For example,
the following is the Fortran version of a program example that illustrates use of
s3l_outer_prod routines:

The following shows the equivalent example for the C interface:

Compiling and Running the Examples
Each example subdirectory has a makefile. Each makefile references the file
/opt/SUNWhpc/Make.simple. If you are copying the example sources and
makefiles to one of your own subdirectories, you should also copy Make.simple to
your subdirectory’s parent directory.

Make.simple contains definitions of compilers, compiler flags, and other variables
that are needed to compile and run the examples. Note that the compiler flags in this
file will not provide highly optimized executables. Information on optimization flags
is best obtained from the documentation for the compiler being used.

Each makefile has several targets that are meant to simplify the compilation and
execution of examples. If you want to compile the source codes and create all
executables in a particular example directory, use the command, make.

If you wish to run the executables, enter make run. This command will also perform
any necessary compilation and linking steps, so you need not issue make before
entering make run.

By default, your executables will be run on two processes. You can change this by
specifying the NPROCS variable on the command line. For example, the following
will start execution on four processes:

% make run NPROCS=4

Executables and object files can be deleted by make clean.

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/outer_prod.f

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/outer_prod.c
Chapter 5 Using Sun S3L 49

Man Pages
To read the online man page for a Sun S3L routine, enter the following:

% man routine_name
50 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 6

Setting Up the Sun S3L
Environment

This chapter describes how to prepare the Sun S3L environment for use by an MPI
application. Its contents are organized into the following sections:

■ “Creating and Removing Sun S3L Environments” on page 51
■ “Setting Up Support for Thread-Safe Operation” on page 53
■ “Controlling the Sun S3L Safety Mechanism” on page 54

Creating and Removing Sun S3L
Environments

Creating a Sun S3L Environment
Before an application can start using Sun S3L functions, every process involved in
the application must call S3L_init to prepare the Sun S3L environment to handle
calls from MPI processes. S3L_init also initializes the BLACS environment.

S3L_init tests the MPI library to verify that it is Sun MPI. If not, it returns the
following error and terminates:

If the MPI layer is Sun MPI, S3L_init proceeds to:

■ Initialize the Sun S3L environment
■ Initialize the BLACS environment
■ Enable the Prism library to access Sun S3L operations

S3L error: invalid MPI. Please use Sun HPC MPI.
51

If the application calls S3L_init before initializing the MPI environment—that is,
before it calls MPI_init—Sun S3L will call MPI_init itself.

Note – If S3L_init calls MPI_Init internally, a subsequent call to S3L_exit (to
undo the Sun S3L environment) will result in an internal Sun S3L call to
MPI_Finalize. This will remove the MPI environment created by the Sun S3L call
to MPI_Init.

CODE EXAMPLE 5-1 contains a program example that illustrates the use of S3L_init.
It also illustrates S3L_exit as well as a few other simple Sun S3L function calls.

S3L_init does not take any input arguments. If the call is made from a Fortran
program, error status will be in ier.

Examples showing S3L_init in use can be found in:

Removing a Sun S3L Environment
When an application is finished using Sun S3L functions, it must call S3L_exit to
perform various cleanup tasks associated with the current Sun S3L environment.

S3L_exit checks to see if the Sun S3L environment is in the initialized state, that is,
to see if S3L_init has been called more recently than S3L_exit. If not, S3L_exit
returns the error value S3L_ERR_NOT_INIT and exits.

If Sun S3L had initialized the MPI environment—that is, if MPI_Init had been
called from within Sun S3L rather than from the application, calling S3L_exit will
cause Sun S3L to call MPI_Finalize, which will remove the MPI environment
created by the Sun S3L call to MPI_Init.

See CODE EXAMPLE 5-1 for an example of S3L_exit in use.

S3L_exit does not take any input arguments. If the call is made from a Fortran
program, error status will be in ier.

Examples showing S3L_exit in use can be found in:

/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/inner_prod.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/inner_prod.f

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f
52 Sun S3L 4.0 Software Programming Guide • February 2003

Setting Up Support for Thread-Safe
Operation
Sun S3L provides a setup utility that allows MPI applications containing multiple
threads to safely call Sun S3L functions. This utility, S3L_thread_comm_setup,
establishes the appropriate internal MPI communicators and data structures to
support thread-safe use of Sun S3L functions.

Note – The only Sun S3L routine that can be called before
S3L_thread_comm_setup is S3L_init.

S3L_thread_comm_setup need not be invoked if Sun S3L functions are called
from only one thread in the program.

However, when Sun S3L routines will be called from separate threads and/or sets of
cooperating threads, each must call S3L_thread_comm_setup individually. This is
necessary because a unique communicator must be used for each calling thread or
set of cooperating threads.

The term cooperating threads refers to a set of threads that will be working on the
same data. For example, one thread can initialize a random number generator,
obtain a setup ID, and pass this to a cooperating thread, which will then use the
random number generator.

Note – The user must ensure that the threads within a cooperating set are properly
synchronized.

A unique communicator is required because Sun S3L performs internal
communications. For example, when S3L_mat_mult is called from a multithreaded
program, the thread on one node needs to communicate with the appropriate thread
on another node. This can be done only if a communicator that is unique to these
threads has been previously defined and passed to the communications routines
within Sun S3L.

Note – Threads library functions are not available in F77. For this reason, no F77
interface is provided for S3L_thread_comm_setup.

S3L_thread_comm_setup has the following argument syntax:

S3L_thread_comm_setup(comm, ier)
Chapter 6 Setting Up the Sun S3L Environment 53

comm specifies an MPI communicator that is congruent with, but not identical to,
MPI_COMM_WORLD.

For detailed descriptions of the C bindings for this routine, see the
S3L_thread_comm_setup(3) man page or the corresponding description in the
Sun S3L Software Reference Manual.

Examples showing S3L_thread_comm_setup in use can be found in:

Controlling the Sun S3L Safety
Mechanism
Sun S3L includes an internal safety mechanism that can be useful during program
development. This safety mechanism enables you to:

■ Select different levels of error checking when debugging new code—see “Error
Checking and Reporting” on page 54

■ Force synchronization of MPI processes for easier error isolation—see
“Synchronization” on page 55

Error Checking and Reporting
The safety mechanism can perform error checking and generate runtime error
information at multiple levels of detail. You can turn safety checking on at any level
during all or part of a program.

One safety level checks for errors in the usage and arguments of the Sun S3L calls in
your program. A more detailed level also checks for errors generated by internal Sun
S3L routines. Examples of errors found and reported by the safety mechanism
include the following:

■ A supplied or returned data element that should be numerical is not. For
example, it is identified as a Not a Number (NaN), or as infinity. NaNs are
defined in the IEEE Standard for Binary Floating-Point Arithmetic.

■ The code generates a division by 0 (for example, because of bad data, a user error,
or an internal software problem).

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/inner_prod_mt.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/matmult_mt.c
54 Sun S3L 4.0 Software Programming Guide • February 2003

Note – For performance reasons, Sun S3L conducts most of its argument checking
and error handling independently on each process. Consequently, when the safety
mechanism is enabled and an error is detected, different processes may return
different error values.

Synchronization
When a Sun S3L application executes on multiple processes, the processes are
generally running asynchronously with respect to one another. The Sun S3L safety
mechanism provides an interface for explicitly synchronizing the processes to each
Sun S3L call made by your code. It traps and reports errors, indicating when the
errors occurred relative to the synchronization points.

The S3L safety mechanism can be set to operate at any one of four levels, which are
described in TABLE 6-1.

The Sun S3L safety mechanism can be controlled in either of two ways:

■ By setting the environment variable S3L_SAFETY

TABLE 6-1 Sun S3L Safety Level Values

Safety Level Description

0 The safety mechanism is turned off. Explicit synchronization and
error checking are not performed. This level is appropriate for
production runs of code that have already been thoroughly tested.

2 This level detects potential race conditions in multithreaded Sun
S3L operations on parallel arrays. To avoid race conditions, a Sun
S3L function locks all parallel array handles in its argument list
before proceeding. This safety level causes warning messages to be
generated if more than one Sun S3L function attempts to use the
same parallel array at the same time.

5 In addition to checking for and reporting level 2 errors, level 5
performs explicit synchronization before and after each call and
locates each error with respect to the synchronization points. This
safety level is appropriate during program development or during
runs for which a small performance penalty can be tolerated.

9 This level checks for and reports all level 2 and level 5 errors, as
well as errors generated by any lower levels of code called from
within Sun S3L. Performs explicit synchronization in these lower
levels of code and locates each error with respect to the
synchronization points. This level is appropriate for detailed
debugging following the occurrence of a problem.
Chapter 6 Setting Up the Sun S3L Environment 55

■ By using the call S3L_set_safety in a program

where number is one of: 0, 2, 5, or 9

The value of S3L_SAFETY is read in when S3L_init() is called. This value can be
overridden at any point in the user’s program by a call to S3L_set_safety().
When S3L_set_safety() is called, its value overrides S3L_SAFETY until the
program completes.

If S3L_set_safety() is called again, the new safety level will override the
previous setting. In other words, S3L_set_safety() can be called multiple times
within a single program. The next time the program is run, the safety level specified
by S3L_SAFETY will be reasserted

To check the current safety mechanism setting, call the companion function,
S3L_get_safety. It will return the safety level value currently in effect.
S3L_get_safety does not take any input arguments.

If the call is made from a Fortran program, error status will be in ier.

Examples showing S3L_set_safety and S3L_get_safety in use can be found in:

setenv S3L_SAFETY number

/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f
56 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 7

Sun S3L Toolkit Routines for
Managing Dense Arrays

This chapter describes a group of Sun S3L routines that are convenient for managing
dense Sun S3L arrays. The descriptions are organized into the following sections:

■ “Creating and Destroying Array Handles for Dense Sun S3L Arrays” on page 57
■ “Converting Between ScaLAPACK Descriptors and Sun S3L Array Handles” on

page 61
■ “Freeing Sun S3L Array Handles” on page 63
■ “Initializing a Sun S3L Array From a File” on page 63
■ “Writing a Sun S3L Array to a File” on page 65
■ “Printing a Sun S3L Array to Standard Output” on page 66
■ “Copying Sun S3L Arrays” on page 67

Creating and Destroying Array Handles
for Dense Sun S3L Arrays
S3L_declare and S3L_declare_detailed each creates a Sun S3L array handle
that describes a Sun S3L array. Both support calling arguments that enable the user
to specify:

■ The array’s rank (number of dimensions)
■ The extent of each axis
■ The array’s data type
■ Which axes, if any, will be distributed locally
■ How memory will be allocated for the array

S3L_declare_detailed supplies additional arguments that allow more detailed
control over array mapping. This additional control applies to:
57

■ The starting address of the local subgrid. This value is used only if the
programmer elects to allocate array subgrids explicitly by disabling automatic
array allocation.

■ The block size to be used in distributing the array along each axis. The
programmer has the option of letting Sun S3L choose a default block size.

■ Which processes contain the start of each array axis. Again, the programmer can
let Sun S3L specify default processes. To use this option, the programmer must
specify a particular process grid, rather than using one provided by Sun S3L.

S3L_declare and S3L_declare_detailed have the following argument syntax:

Upon exit, A contains a Sun S3L array handle for the Sun S3L array.

addr_a depends on the use of the atype argument. If atype is set to
S3L_DONOT_ALLOCATE, addr_a will be taken as the starting address of the local
(per process) portion of A. Otherwise, addr_a will be ignored. This argument is
used only by S3L_declare_detailed.

rank specifies the number of dimensions the array will have.

extents is an integer vector whose length is equal to the number of dimensions in
the array. Each element in extents specifies the extent of the corresponding array
axis. The first element corresponds to the first axis, the second element to the second
axis, and so forth. Axis indexing is zero-based for the C interface and one-based for
the Fortran interface.

type specifies the array’s data type, which must be one of the Sun S3L data types
listed in Chapter 2.

blocksizes specifies the block sizes to be used in distributing the array axes. To
select default block sizes, set blocksizes to NULL (C/C++) or to –1 (F77/F90).

proc_src is a vector whose length is at least equal to the rank of A. Each element of
proc_src corresponds to an axis of the process grid and is the index for the start of
the array axis allocated to that process grid axis. In other words, each proc_src
element specifies the index value of the process that contains the first data element
of the corresponding array axis.

axis_is_local is an integer vector that contains one element for each axis of A.
Each element specifies, with a 0 or 1 value, whether the axis it represents will be
distributed across multiple processes (0) or locally to a single process (1).

S3L_declare(A, rank, extents, type, axis_is_local, atype, ier)

S3L_declare_detailed(A, addr_a, rank, extents, type, blocksizes,
proc_src, axis_is_local, pgrid, atype, ier)
58 Sun S3L 4.0 Software Programming Guide • February 2003

Note – The axis_is_local argument is used only if a process grid handle is not
specified in this call. See the description of the pgrid argument below.

Use the pgrid argument to request that Sun S3L associate A with a particular
process grid. To do this, supply the handle of the desired process grid for this
argument. If the process grid already exists, you can acquire its handle by calling
S3L_get_attribute. If it does not already exist, you can create it by calling
S3L_set_process_grid.

If you want Sun S3L to assign a default process grid to A, set pgrid to NULL
(C/C++) or to 0 (F77/F90).

atype specifies how A will be allocated in memory. Use one of the following
predefined values for this argument:

■ S3L_USE_MALLOC – Uses malloc() to allocate the array subgrids.

■ S3L_USE_MEMALIGN64 – Uses memalign() to allocate the array subgrids and to
align them on 64-byte boundaries.

■ S3L_USE_MMAP – Uses mmap() to allocate the array subgrids. Array subgrids on
the same SMP (node) will be in shared memory.

■ S3L_USE_SHMGET – Uses shmget() to allocate the array subgrids. Array
subgrids on the same SMP (node) will be in shared memory.

Notes
When S3L_USE_MMAP or S3L_USE_SHMGET is used on a 32-bit platform, the part of
a Sun S3L array owned by a single SMP cannot exceed 2 gigabytes.

When S3L_USE_MALLOC or S3L_USE_MEMALIGN64 is used, the part of the array
owned by any single process cannot exceed 2 gigabytes.

If these size restrictions are violated, an S3L_ERR_MEMALLOC will be returned. On
64-bit platforms, the upper bound is equal to the system’s maximum available
memory.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for these routines, see the
S3L_declare(3) and S3L_declare_detailed(3) man pages or the
corresponding descriptions in the Sun S3L Software Reference Manual.
Chapter 7 Sun S3L Toolkit Routines for Managing Dense Arrays 59

Sun S3L Declare Example
The following F77 program example illustrates the use of S3L_declare with a 1D,
double-precision array of length 1000:

In this example, the array has only one axis, so array_is_local contains a single
element, whose value is 0, which means the axis will be distributed across multiple
processes.

If the program containing this code is run on six processes, Sun S3L will associate a
1D process grid of length 6 with A. It will set the block size of the array distribution
to ceiling(1000/6)=167. As a result, processes 0 though 4 will have 167 local array
elements and process 5 will have 165.

If array_is_local had instead been set to 1, the entire array would have been
allocated to process 0.

Upon successful completion, S3L_declare returns a Sun S3L array handle, which
subsequent Sun S3L calls can use as an argument to gain access to that array.

Sun S3L Declare Detailed Example
The following example illustrates the extra control that S3L_declare_detailed
provides over array handle creation:

include ’s3l/s3l-f.h’

include ’s3l/s3l-errno-f.h’

integer*4 local,ext,ier

integer*8 A

local = 0

ext = 1000

call s3l_declare(A,1,ext,S3L_double,local,S3L_USE_MALLOC,ier)

include ’s3l/s3l-f.h’

include ’s3l/s3l_errno-f.h’

integer*8 A, pg_a

integer*4 ext_a(3), block_a(3), local_a(3), ier

ext_a(1) = 100

ext_a(2) = 100

ext_a(3) = 100

local_a(1) = 1

local_a(2) = 0

local_a(3) = 0

call s3l_declare_detailed(A,0,3,ext_a,S3L_double,block_a,

$ -1,local_a,pg_a,S3L_USE_MALLOC,ier)
60 Sun S3L 4.0 Software Programming Guide • February 2003

In this example, S3L_declare_detailed creates an array handle for a 3D, double-
precision array. The extent of each array axis is 100.

Each axis of Sun S3L array A will be distributed, using block sizes specified in
block_a.

Because local_a(1) is set to 1, the first axis of A will be local to the first process in
the process grid’s first axis. The second and third axes of A will be distributed along
the second and third axes of the process grid.

If local_a(1) had been set to 0 instead, it would have been distributed across all
processes in the process grid’s first axis. That is, all three array axes would have
been distributed across multiple processes along their respective process grid axes.

Examples showing S3L_declare in use can be found in:

Examples showing S3L_declare_detailed in use can be found in:

Converting Between ScaLAPACK
Descriptors and Sun S3L Array Handles
If your program includes arrays that are described by ScaLAPACK descriptors, you
can use S3L_from_ScaLAPACK_desc to convert those descriptors into Sun S3L
array handles.

Sun S3L also provides a routine, S3L_from_ScaLAPACK_desc, for converting Sun
S3L array handles into ScaLAPACK array descriptors.

/opt/SUNWhpc/examples/s3l/transpose/ex_trans1.c

/opt/SUNWhpc/examples/s3l/grade-f/ex_grade.f

/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f

/opt/SUNWhpc/examples/s3l/utils/get_attribute.c

/opt/SUNWhpc/examples/s3l/utils-f/get_attribute.f

/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f
Chapter 7 Sun S3L Toolkit Routines for Managing Dense Arrays 61

Converting From ScaLAPACK to Sun S3L
S3L_from_ScaLAPACK_desc has the following argument syntax:

s3ldesc is the Sun S3L array handle that S3L_from_ScaLAPACK_desc produces
on exit.

scdesc is the ScaLAPACK array descriptor.

data_type specifies the data type of the array.

address holds the starting address of the existing array subgrid.

Note – In Fortran programs, address should be either a pointer or the starting
address of a local array, as determined by the loc(3F) function.

If the call is made from a Fortran program, error status will be in ier.

Converting From Sun S3L to ScaLAPACK
S3L_to_ScaLAPACK_desc has the following argument syntax:

s3ldesc contains the Sun S3L array handle that is to be converted to a ScaLAPACK
array descriptor.

scdesc contains the ScaLAPACK array descriptor that is produced on exit.

data_type specifies the data type of the Sun S3L array. This must be one of the
supported data types described in Chapter 2.

address holds the starting address of the existing array subgrid.

Note – In Fortran programs, address should be either a pointer or the starting
address of a local array, as determined by the loc(3F) function.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for these routines, see the
S3L_from_ScaLAPACK_desc(3) and S3L_to_ScaLAPACK_desc(3) man pages
or the corresponding descriptions in the Sun S3L Software Reference Manual.

S3L_from_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address, ier)

S3L_to_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address, ier)
62 Sun S3L 4.0 Software Programming Guide • February 2003

Examples showing S3L_from_ScaLAPACK_desc and S3L_to_ScaLAPACK_desc
in use can be found in:

Freeing Sun S3L Array Handles
When a Sun S3L array is no longer needed, call S3L_free to deallocate the internal
structures that describe the array. The routine has the following argument syntax:

a is the array handle to be deallocated.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_free(3) man page or the corresponding description in the Sun S3L Software
Reference Manual.

Examples showing S3L_free in use can be found in:

Initializing a Sun S3L Array From a File
S3L_read_array enables you to populate a Sun S3L array with data read from a
file. The process with MPI rank 0 reads the data from a local file and distributes the
data to all processes that have local subgrids of the Sun S3L array.

S3L_read_sub_array is similar to S3L_read_array, except it distributes the file
data to specific sections of each axis of the Sun S3L array. Lower and upper bound
arguments are available, which allow the specification of the first and last indices
along each axis. A stride length greater than 1 can also be specified for any axes to
produce noncontiguous indexing along the affected axes.

For both functions, the format of the file must be either ASCII or binary.

/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

S3L_free(a, ier)

/opt/SUNWhpc/examples/s3l/io/ex_print1.c

/opt/SUNWhpc/examples/s3l/io-f/ex_print1.f
Chapter 7 Sun S3L Toolkit Routines for Managing Dense Arrays 63

S3L_read_array and S3L_read_sub_array have the following argument syntax:

a is a Sun S3L array handle describing the Sun S3L array to be initialized. This array
handle was returned by a previous call to either S3L_declare or
S3L_declare_detailed.

lbounds is an integer vector that is used in calls to S3L_read_sub_array. Each
element of lbounds corresponds to an axis of a and specifies the lower bound of the
indices along the axis it represents. This lower-bound index marks the beginning of
a subset of array elements along that axis that will be initialized. The default lower
bound is:

■ 0 for the C interface
■ 1 for the Fortran interface.

ubounds is an integer vector that is used in calls to S3L_read_sub_array. Each
element of ubounds corresponds to an axis of a and specifies the upper bound of the
indices along the axis it represents. This upper-bound index marks the upper end of
a subset of array elements along that axis that will be initialized. The default upper
bound is:

■ axis extent –1 for the C interface
■ axis extent for the Fortran interface

strides is an integer vector that is used in calls to S3L_read_sub_array. Each
element of strides corresponds to an axis of a and specifies a stride length to be
used in indexing along that axis. The default stride length is 1, which produces
contiguous indexing.

filename is a scalar character variable that specifies the name of the file to be read.

format is a scalar character variable used to specify the format of the data to be
read. The value can be either ascii or binary.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for these routines, see the
S3L_read_array(3) and S3L_read_sub_array(3) man pages or the
corresponding descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_read_array and S3L_read_sub_array in use can be
found in:

S3L_read_array(a, filename, format, ier)

S3L_read_sub_array(a, lbounds, ubounds, strides, filename,
format, ier)

/opt/SUNWhpc/examples/s3l/io/ex_io.c

/opt/SUNWhpc/examples/s3l/io-f/ex_io.f
64 Sun S3L 4.0 Software Programming Guide • February 2003

Writing a Sun S3L Array to a File
S3L_write_array causes the process with MPI rank 0 to write a distributed Sun
S3L array into a specified file. The file is local to the process with MPI rank 0.

S3L_write_sub_array writes a subset of the distributed Sun S3L array to a
specified file. This subset is defined by arguments that specify the lower and upper
bounds of the section of each axis to be written. A stride length greater than 1 can
also be specified for any axes to produce noncontiguous indexing along the affected
axes.

For both functions, the format of the file must be either ascii or binary.

S3L_write_array and S3L_write_sub_array have the following argument
syntax:

a is a Sun S3L array handle describing the Sun S3L array to be written. This array
handle was returned by a previous call to either S3L_declare or
S3L_declare_detailed.

lbounds is an integer vector that is used in calls to S3L_write_sub_array. Each
element of lbounds corresponds to an axis of a and specifies the lower bound of the
indices along the axis it represents. This lower-bound index marks the beginning of
a subset of array elements along that axis that will be written. The default lower
bound is:

■ 0 for the C interface
■ 1 for the Fortran interface

ubounds is an integer vector that is used in calls to S3L_write_sub_array. Each
element of ubounds corresponds to an axis of a and specifies the upper bound of the
indices along the axis it represents. This upper-bound index marks the upper end of
a subset of array elements along that axis that will be written. The default upper
bound is:

■ axis extent –1 for the C interface
■ axis extent for the Fortran interface

strides is an integer vector that is used in calls to S3L_write_sub_array. Each
element of strides corresponds to an axis of a and specifies a stride length to be
used in indexing along that axis. The default stride length is 1, which produces
contiguous indexing.

S3L_write_array(a, filename, format, ier)

S3L_write_sub_array(a, lbounds, ubounds, strides, filename,
format, ier)
Chapter 7 Sun S3L Toolkit Routines for Managing Dense Arrays 65

filename is a scalar character variable that specifies the name of the file to be
written to.

format is a scalar character variable used to specify the format of the data to be
written. The value can be either ascii or binary.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for these routines, see the
S3L_write_array(3) and S3L_write_sub_array(3) man pages or the
corresponding descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_write_array and S3L_write_sub_array in use can be
found in:

Printing a Sun S3L Array to Standard
Output
S3L_print_array causes the process with MPI rank 0 to print the Sun S3L array
described by the array handle a to standard output.

S3L_print_sub_array prints a specified subset of the Sun S3L array. This subset
is defined by the lbounds, ubounds, and strides arguments. lbounds and
ubounds specify the lower and upper boundaries for indexing along each axis.
strides specifies the stride length to be used along each axis. It must be greater
than zero.

S3L_print_array and S3L_print_sub_array have the following argument
syntax:

a is a Sun S3L array handle describing the Sun S3L array to be printed. This array
handle was returned by a previous call to either S3L_declare or
S3L_declare_detailed.

lbounds is an integer vector that is used in calls to S3L_print_sub_array. Each
element of lbounds corresponds to an axis of a and specifies the lower boundary of
the indices along the axis it represents. This lower-bound index marks the beginning
of a subset of array elements along that axis that will be printed. The default lower
bound is:

/opt/SUNWhpc/examples/s3l/io/ex_io.c

/opt/SUNWhpc/examples/s3l/io-f/ex_io.f

S3L_print_array(a, ier)

S3L_print_sub_array(a, lbounds, ubounds, strides, ier)
66 Sun S3L 4.0 Software Programming Guide • February 2003

■ 0 for the C interface
■ 1 for the Fortran interface

ubounds is an integer vector that is used in calls to S3L_print_sub_array. Each
element of ubounds corresponds to an axis of a and specifies the upper boundary of
the indices along the axis it represents. This index marks the upper end of a subset
of array elements along that axis that will be printed. The default upper bound is:

■ axis extent –1 for the C interface
■ axis extent for the Fortran interface

strides is an integer vector that is used in calls to S3L_print_sub_array. Each
element of strides corresponds to an axis of a and specifies a stride length to be
used in indexing along that axis. The default stride length is 1, which produces
contiguous indexing.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for these routines, see the
S3L_print_array(3) and S3L_print_sub_array(3) man pages or the
corresponding descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_print_array and S3L_print_sub_array in use can be
found in:

Copying Sun S3L Arrays
S3L_copy_array copies the contents of Sun S3L array A into Sun S3L array B,
which must have the same rank, extents, and data type as A.

S3L_copy_array_detailed copies a specified subset of Sun S3L array A into the
corresponding section of Sun S3L array B. The subset of A to be copied is defined
along each axis by the indices:

where lbA and ubA are the lower- and upper-bound indices of axes of A and stA is
the indexing stride to be used along axes of A.

The array section of B is defined along each axis by the indices:

/opt/SUNWhpc/examples/s3l/io/ex_print1.c

/opt/SUNWhpc/examples/s3l/io/ex_io.c

/opt/SUNWhpc/examples/s3l/io-f/ex_io.f

lbA(i), <= j <= ubA(i), with strides stA(i), i=0, rank-1

lbB(i), <= j <= ubB(i), with strides stB(i), i=0, rank-1
Chapter 7 Sun S3L Toolkit Routines for Managing Dense Arrays 67

where lbB, ubB, and stB are analogous to lbA, ubA, and stA.

S3L_copy_array and S3L_copy_array_detailed have the following argument
syntax:

A is a Sun S3L array handle describing the Sun S3L array to be copied (the source
array). This array handle was returned by a previous call to either S3L_declare or
S3L_declare_detailed.

B is a Sun S3L array handle describing the Sun S3L array into which A is to be copied
(the destination array). This array handle was returned by a previous call to either
S3L_declare or S3L_declare_detailed.

B must have the same rank, extents, and data type as A.

lbA is an integer vector that is used in calls to S3L_copy_array_detailed. Each
element of lbA corresponds to an axis of A and specifies the lower bound of the
indices along the axis it represents. This lower-bound index marks the beginning of
a subset of array elements along that axis that will be copied. The default lower
bound is:

■ 0 for the C interface
■ 1 for the Fortran interface

ubA is an integer vector that is used in calls to S3L_copy_array_detailed. Each
element of ubA corresponds to an axis of A and specifies the upper bound of the
indices along the axis it represents. This upper-bound index marks the upper end of
a subset of array elements along that axis that will be copied. The default upper
bound is:

■ axis extent –1 for the C interface
■ axis extent for the Fortran interface

stA is an integer vector that is used in calls to S3L_copy_array_detailed. Each
element of stA corresponds to an axis of A and specifies a stride length to be used in
indexing along that axis. The default stride length is 1, which produces contiguous
indexing.

lbB, ubB, and stB have the same meaning for the destination array B as lbA, ubA,
and stA have for source array A.

perm is an integer vector that is used in calls to S3L_copy_array_detailed. The
first element of perm controls whether the other elements will be evaluated. It does
so in the following way: If the first element is NULL (C interface) or negative (Fortran
interface), perm is ignored. Otherwise, the other elements are evaluated.

S3L_copy_array(A, B, ier)

S3L_copy_array_detailed(A, B, lbA, ubA, stA, lbB, ubB, stB,
perm, ier)
68 Sun S3L 4.0 Software Programming Guide • February 2003

Each of the other elements of perm correspond to an axis of B and specify whether
the axis it represents will be permuted.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for these routines, see the
S3L_copy_array(3) and S3L_copy_array_detailed(3) man pages or the
corresponding descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_copy_array in use can be found in:

Examples showing S3L_copy_array_detailed in use can be found in:

/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f

/opt/SUNWhpc/examples/s3l/utils/copy_array_det.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array_det.f
Chapter 7 Sun S3L Toolkit Routines for Managing Dense Arrays 69

70 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 8

Creating and Freeing Custom
Process Grids

This chapter explains how to create and free a process grid with user-defined
parameters. It contains the following sections:

■ “Creating a Custom Process Grid” on page 71
■ “Deallocating a Process Grid” on page 73

Creating a Custom Process Grid
S3L_set_process_grid enables you to define various aspects of the process grid
and associate it with a Sun S3L array handle. It has the following argument syntax:

Upon exit, pgrid contains the handle for the process grid.

rank specifies the number of dimensions the process grid is to have. This must be
the same as the rank of the Sun S3L array with which it will be associated.

majorness specifies the order in which execution will proceed within the process
grid. Use one of the following predefined values for this argument:

S3L_set_process_grid(pgrid, rank, majorness, grid_extents,
plist_length, process_list, ier)

S3L_MAJOR_COLUMN Execution proceeds from leftmost axis to rightmost axis.

S3L_MAJOR_ROW Execution proceeds from leftmost axis to rightmost axis.
71

For example, if (i,j) represents the indices for a process grid’s first and second axes,
specifying S3L_MAJOR_COLUMN will cause i to be the inner loop index and j to be
the outer loop index. For S3L_MAJOR_ROW, the sequence would be the opposite.

grid_extents is an integer vector whose length equals the rank of the process
grid. Each element in grid_extents specifies the extent of the corresponding axis
of the process grid. Axis indexing is zero-based for the C interface and one-based for
the Fortran interface.

plist_length specifies the length of the process_list argument, which is
described below.

process_list is an integer array whose length is specified in plist_length. It
contains a list of the processes that will be included in the process grid. For example,
if your program is running on MPI processes 0 through 3, but you want to create a
process grid for a particular Sun S3L array consisting only of processes 1 and 3, set
plist_length to 2 and have:

If plist_length is 0, process_list will be ignored. The process grid is then
created using all available processes in MPI_COMM_WORLD.

Note – If the product of all grid extents is N and if a value greater than N is
specified for plist_length, only the first N elements of process_list will be
used.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_set_process_grid(3) man page or the corresponding description in the Sun
S3L Software Reference Manual.

Set Process Grid Example
The following F77 example shows how to specify a two-dimensional process grid
that is defined over a set of eight processes having MPI ranks 0 through 7. The
process grid has extents of 2x4 and is assigned column-major ordering.

process_list[0] = 1

process_list[1] = 3

include ‘s3l/s3l-f.h’

integer*8 pg

integer*4 rank

integer*4 pext(2),process_list(8)

integer*4 i,ier
72 Sun S3L 4.0 Software Programming Guide • February 2003

Further examples showing S3L_set_process_grid in use can be found in:

Deallocating a Process Grid
S3L_free_process_grid frees the process grid handle returned by a previous call
to S3L_set_process_grid. It has the following argument syntax:

pgrid is the process grid handle to be deallocated.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_free_process_grid(3) man page or the corresponding description in the
Sun S3L Software Reference Manual.

Examples showing S3L_free_process_grid in use can be found in:

rank = 2

pext(1) = 2

pext(2) = 4

do i=1,8

process_list(i)=i-1

end do

call s3l_set_process_grid(pg,rank,S3L_MAJOR_COLUMN,

pext,8,process_list,ier)

/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

S3L_set_process_grid(pgrid, ier)

/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f
Chapter 8 Creating and Freeing Custom Process Grids 73

74 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 9

Extracting Information From Sun
S3L Arrays and Process Grids

Sun S3L provides several functions for extracting information about Sun S3L arrays
and process grids, as well as accessing the contents of the arrays. These functions are
discussed in the following sections:

■ “Extracting Descriptions of Sun S3L Arrays and Process Grids” on page 75
■ “Extracting Sun S3L Array Attributes” on page 76
■ “Obtaining and Setting Array Elements” on page 79

Extracting Descriptions of Sun S3L
Arrays and Process Grids
S3L_describe prints information about a Sun S3L array or process grid to
standard output. It has the following argument syntax:

A is a Sun S3L handle for either a Sun S3L array or a process grid, whichever object
is to be described.

info_node is a scalar integer variable that specifies the rank of the process from
which the information is to be taken.

Note – Some array parameters, such as subgrid size and address values, will vary
from process to process.

If the call is made from a Fortran program, error status will be in ier.

S3L_describe(A, info_node, ier)
75

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_describe(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_describe in use can be found in:

Extracting Sun S3L Array Attributes
Sun S3L provides a function, S3L_get_attribute, for extracting specific details
about a Sun S3L array’s attributes. TABLE 9-1 lists the attributes that can be acquired
with S3L_get_attribute.

/opt/SUNWhpc/examples/s3l/utils/scalapack_conv.c

/opt/SUNWhpc/examples/s3l/utils-f/scalapack_conv.f

TABLE 9-1 S3L_get_attribute Output Values

Attribute Name Description

S3L_ELEM_TYPE Returns the Sun S3L data type of the elements of a Sun S3L
array or sparse matrix.

S3L_ELEM_SIZE Returns the size (in bytes) of the elements of a Sun S3L dense
array or sparse matrix.

S3L_RANK Returns the rank (number of dimensions) of a Sun S3L dense
array or sparse matrix.

S3L_EXTENT If requesting a Sun S3L array extent attribute, returns the
extent of a Sun S3L dense array or sparse matrix along the
specified axis.
If requesting a process grid extent attribute, it returns the
number of processes over which a given axis of an array is
distributed.

S3L_BLOCK_SIZE Returns the block size of the block-cyclic distribution of a Sun
S3L dense array along the specified dimension.

S3L_BLOCK_START Returns the index of the starting process of the block-cyclic
distribution of a Sun S3L dense array along the specified
dimension.

S3L_SGRID_SIZE Returns the subgrid size of the block-cyclic distribution of a
Sun S3L dense array along the specified dimension.

S3L_AXIS_LOCAL Returns 0 if the axis is local (not distributed) and 1 if it is
distributed.
76 Sun S3L 4.0 Software Programming Guide • February 2003

S3L_SGRID_ADDRESS Returns the starting address of the local subgrid (local per-
process part) of a Sun S3L dense array.

S3L_MAJOR If requesting a Sun S3L array attribute, returns the majorness
of the elements in the local part of the array. If requesting a
process grid attribute, returns the majorness (F77 or C) of the
process grid. In either case, the majorness value may be either
S3L_MAJOR_COLUMN (F77 major) or S3L_MAJOR_ROW (C
major).

S3L_ALLOC_TYPE Returns one of the predefined memory allocation types for
dense Sun S3L arrays. See the description of the atype
argument in “Creating and Destroying Array Handles for
Dense Sun S3L Arrays” on page 57 for descriptions of the
supported allocation types.

S3L_SHARED_ADDR For dense Sun S3L arrays that have been allocated in shared
memory (single SMP case), returns the global starting address
of the array. All processes can directly access all elements of
such arrays without the need for explicit interprocess
communication.

S3L_PGRID_DESC Returns the process grid descriptor associated with a Sun S3L
dense array or sparse matrix.

S3L_SCALAPACK_DESC For 1D and 2D Sun S3L dense arrays, returns the ScaLAPACK
array descriptor associated with the array.

S3L_SPARSE_FORMAT For a Sun S3L sparse matrix, returns the sparse format in
which the matrix is stored.

S3L_NONZEROS For a Sun S3L sparse matrix, returns the number of nonzero
elements of the matrix.

S3L_RIDX_SGRID_ADDR For a Sun S3L sparse matrix stored in the S3L_SPARSE_COO
format, returns the starting address of an array of index sets
containing the local row numbers that comprise each local
submatrix.
For a Sun S3L sparse matrix stored in the S3L_SPARSE_CSR
format, it returns the starting address of an array containing
pointers to the beginning of each row of the local submatrix.

S3L_CIDX_SGRID_ADDR For a Sun S3L sparse matrix stored in either the
S3L_SPARSE_COO or S3L_SPARSE_CSR format, returns the
starting address of an array of index sets containing the global
column numbers that comprise each local submatrix.

S3L_NRZS_SGRID_ADDR For a Sun S3L sparse matrix stored in either the
S3L_SPARSE_COO or S3L_SPARSE_CSR format,
S3L_NZRS_SGRID_ADDR returns the starting address of an
array containing nonzero elements of the local submatrix.

TABLE 9-1 S3L_get_attribute Output Values (Continued)

Attribute Name Description
Chapter 9 Extracting Information From Sun S3L Arrays and Process Grids 77

S3L_get_attribute has the following argument syntax:

a is a pointer to a descriptor of an unknown type.

req_attr is the predefined value that specifies the attribute to be accessed. See
TABLE 9-1 for the list of values that this argument can have.

axis is a scalar integer variable that is used to access attributes that are axis-specific,
such as extents or block sizes.

On exit, attr contains the attribute value.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_get_attribute(3) man page or the corresponding descriptions in the Sun
S3L Software Reference Manual.

Examples showing S3L_get_attribute in use can be found in:

S3L_RIDX_SGRID_SIZE For a Sun S3L sparse matrix stored in the S3L_SPARSE_COO
format, returns the size of an array of index sets containing the
local row numbers that comprise each local submatrix.
For a Sun S3L sparse matrix stored in the S3L_SPARSE_CSR
format, returns the size of an array containing the pointers to
the beginning of each row of the local submatrix.

S3L_CIDX_SGRID_SIZE For a Sun S3L sparse matrix stored in either the
S3L_SPARSE_COO or S3L_SPARSE_CSR format, returns the
size of an array of index sets containing the global column
numbers that comprise each local submatrix.

S3L_NRZS_SGRID_SIZE For a Sun S3L sparse matrix stored in either the
S3L_SPARSE_COO or S3L_SPARSE_CSR format, returns the
size of an array containing nonzero elements of the local
submatrix.

S3L_COORD Returns the coordinate of the calling process in a Sun S3L
process grid, along the dimension given in axis.

S3L_ON_SINGLE_SMP Returns 1 if a Sun S3L process grid is defined on a single SMP
and 0 if not.

S3L_get_attribute(a, req_attr, axis, attr, ier)

/opt/SUNWhpc/examples/s3l/utils/get_attribute.c

/opt/SUNWhpc/examples/s3l/utils-f/get_attribute.f

TABLE 9-1 S3L_get_attribute Output Values (Continued)

Attribute Name Description
78 Sun S3L 4.0 Software Programming Guide • February 2003

Obtaining and Setting Array Elements
Sun S3L provides the following routines for accessing specific array elements in a
distributed array:

■ S3L_get_array_element
■ S3L_set_array_element
■ S3L_get_array_element_on_proc
■ S3L_set_array_element_on_proc

These functions locate the target elements by means of their global coordinates,
which the programmer supplies.

S3L_get_array_element

Use S3L_get_array_element to obtain the value of a specific element from a
distributed array. The argument coor specifies the global coordinates of the target
element. The process that contains the array element specified in coor will return
the value of that element in val.

Each process that contains a subgrid of the Sun S3L array checks to see if the global
coordinates in coor map to their local subgrid. The process that has the target
element in its local subgrid stores the value of the element in the local variable, val.
All other processes exit from S3L_get_array_element without modifying their
local val variables.

FIGURE 9-1 illustrates this with a diagram of a 1 x 16 array that is distributed over a
1 x 4 process grid. S3L_get_array_element is used to obtain the value of the
array element at global coordinate 6.

Note – For clarity, symbols such as ‘!’ and ‘@’ are used to represent the values
stored in the various array elements.
Chapter 9 Extracting Information From Sun S3L Arrays and Process Grids 79

FIGURE 9-1 Illustration of S3L_get_array_element Use for a 1 x 16 Sun S3L Array

S3L_get_array_element has the following argument syntax:

a is a Sun S3L array handle for the distributed array containing the element of
interest.

coor is an integer vector that specifies the global coordinates of a particular element
in the Sun S3L array described by a.

val is an array variable. On exit, the val that is local to the process containing the
target element will contain the value of the target element.

S3L_set_array_element

S3L_set_array_element assigns the value stored in val to the array element
whose global coordinates are in the argument coor.

Each process that contains a subgrid of the Sun S3L array will store the value to be
assigned to the target element in a local copy of the val variable and will check to
see if the global coordinates in coor map to the local subgrid. The process that has

S3L_get_array_element(a, coor, val, ier)

On exit, process 1 stores “&” in val.

On entry, S3L_get_array_element passes the global coordinate 6 (one-based) to
every process in the process grid.

[...]
coor = 6
call s3l_get_array_element(a, coor, val, ier)

[...]

! @ # $ ^ & *) (] [= } { + ~

val = &

0 1 2 3MPI Rank
80 Sun S3L 4.0 Software Programming Guide • February 2003

the target element in its local subgrid will assign the contents of val to the element.
All other processes exit S3L_set_array_element without modifying any elements
in their subgrids.

FIGURE 9-2 illustrates this with the same 1 x 16 Sun S3L array and 1 x 4 process grid.
In this case, the S3L_set_array_element call will assign the value W to the array
element at global coordinate 6. All processes in the process grid will call
S3L_set_array_element, but only the process with MPI rank 1 will update a
local array element—the element at local coordinate 2

.

FIGURE 9-2 Illustration of S3L_set_array_element Use for a 1 x 16 Sun S3L Array

S3L_set_array_element has the following argument syntax:

a is a Sun S3L array handle describing the distributed array that contains the
element(s) of interest.

S3L_set_array_element(a, coor, val, ier)

0 1 2 3

On exit, process 1 assigns the value W to local element 2.

On entry, S3L_set_array_element passes the global coordinate 6 (one-based) and the

! @ # $ ^ & *) (] [= } { + ~

value W to every process in the process grid.

! @ # $ ^ W *) (] [= } { + ~

[...]
coor = 6

call s3l_set_array_element(a, coor, val, ier)

[...]

val = W

val = W
Chapter 9 Extracting Information From Sun S3L Arrays and Process Grids 81

coor is an integer vector that specifies the global coordinates of one or more
elements in the array described by a.

val is an array variable that contains the value(s) to be assigned to the element(s)
specified in coor.

Note – If you know the MPI rank of the process that contains the array element to
be set, you can limit execution of S3L_set_array_element to that process,
avoiding the need for communication operations by the other processes. This is
illustrated in FIGURE 9-3.

FIGURE 9-3 Illustration of S3L_set_array_element Use When the Element’s Process
Locality is Known

coor = 6

0 1 2 3

On exit, process 1 assigns the value W to local element 2.

On entry, S3L_set_array_element passes the global coordinate 6 (one-based) and the

! @ # $ ^ & *) (] [= } { + ~

value W to every process in the process grid.

! @ # $ ^ W *) (] [= } { + ~

val = W

[...]

val = W

[...]

if (my_mpi_rank .eq. 1) then
call s3l_set_array_element(a, coor, val, ier)
endif
82 Sun S3L 4.0 Software Programming Guide • February 2003

S3L_get_array_element_on_proc

S3L_get_array_element_on_proc is similar to S3L_get_array_element,
except the target element(s) must be local to a specific MPI process. In other words,
one or more target elements are specified by their global coordinates in coor and a
particular process is specified in the argument pnum. The target process will assign
the value(s) of any local array elements specified in coor to the local val variable.
FIGURE 9-4 illustrates the use of S3L_get_array_element_on_proc.

The value in pnum is the MPI rank of the process, which is defined in the global
communicator, MPI_COMM_WORLD.

FIGURE 9-4 Illustration of S3L_get_array_element_on_proc for a 1 x 16 Sun S3L
Array

S3L_get_array_element_on_proc has the following argument syntax:

a is a Sun S3L array handle describing the distributed array that contains the
element(s) of interest.

S3L_get_array_element_on_proc(a, coor, val, pnum, ier)

Process 3 obtains the value of the element at global coordinate 6 (local coordinate 2 on

On entry, S3L_get_array_element_on_proc passes the global coordinate 6 (one-based)

! @ # $ ^ & *) (] [= } { + ~

and the pnum value 3 to all processes in the process grid.

[...]
pnum = 3
coor = 6

MPI Rank

call s3l_get_array_element_on_proc(a, coor, val, pnum, ier)
val = W

0 1 2 3

[...]

val = &

process 1) and assigns it to its local variable, val. The contents of val on all the other
processes are unchanged.
Chapter 9 Extracting Information From Sun S3L Arrays and Process Grids 83

coor is an integer vector that specifies the global coordinates of one or more
elements in the array described by a.

val is an array variable that contains value(s) obtained from the element(s) that are
specified in coor and are local to the process whose rank is specified in pnum.

pnum is an integer variable that specifies the MPI rank of the target process.

S3L_set_array_element_on_proc

Use S3L_set_array_element_on_proc to set the value of one or more array
elements that are local to a specific process. Pass the global coordinates of the target
elements in coor, the value(s) to be assigned in val, and the MPI rank of the target
process in pnum. FIGURE 9-5 shows S3L_set_array_element_on_proc in use.
84 Sun S3L 4.0 Software Programming Guide • February 2003

FIGURE 9-5 Illustration of S3L_set_array_element_on_proc for a 1x16 Sun S3L
Array

S3L_set_array_element_on_proc has the following argument syntax:

a is a Sun S3L array handle describing the distributed array that contains the
element(s) of interest.

coor is an integer vector that specifies the global coordinates of one or more
elements in the array described by a.

val is an array variable that contains the value(s) to be assigned to the element(s)
specified in coor that are local to the process whose MPI rank is in pnum.

pnum is an integer variable that specifies the MPI rank of the target process.

S3L_set_array_element_on_proc(a, coor, val, pnum, ier)

On exit, the value of val on process 3 gets assigned to element 2 on process 1.

On entry, S3L_set_array_element_on_proc passes the coor value 6, the pnum

! @ # $ ^ & *) (] [= } { + ~

value 3, and the val value W to all processes in the process grid.

! @ # $ ^ W *) (] [= } { + ~

[...]
pnum = 3
coor = 6

MPI Rank

call s3l_set_array_element(a, coor, val, pnum, ier)
val = W

0 1 2 3

[...]

val = W
Chapter 9 Extracting Information From Sun S3L Arrays and Process Grids 85

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for these routines, see the
S3L_get_array_element(3), S3L_set_array_element(3),
S3L_get_array_element_on_proc(3), and
S3L_set_array_element_on_proc(3) man pages or the corresponding
descriptions in the Sun S3L Software Reference Manual.

Examples showing the S3L_get_array_element and S3L_set_array_element
functions in use can be found in:

Examples showing the S3L_get_array_element_on_proc and
S3L_set_array_element_on_proc functions in use can be found in:

/opt/SUNWhpc/examples/s3l/utils/cshift_reduce.c

/opt/SUNWhpc/examples/s3l/utils-f/cshift_reduce.f

/opt/SUNWhpc/examples/s3l/utils/copy_array.c

/opt/SUNWhpc/examples/s3l/utils-f/copy_array.f

/opt/SUNWhpc/examples/s3l/utils/zero_elements.c

/opt/SUNWhpc/examples/s3l/utils-f/zero_elements.f
86 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 10

Dense Matrix Routines

Sun S3L includes support for matrix-matrix and matrix-vector multiplication, inner-
and outer-product computation, and 2-norm computation. The routines that support
these operations are discussed the following sections:

■ “Overview” on page 87
■ “Matrix-Matrix Multiplication” on page 88
■ “Matrix-Vector Multiplication” on page 92
■ “2-Norm Operations” on page 94
■ “Inner-Product Operations” on page 95
■ “Outer-Product Operations” on page 99

Overview
The dense matrix routines, like most other Sun S3L routines, can be used in both
single-instance or multiple-instance contexts. For example, the matrix-matrix
multiplication routine can be used in either of the following ways:

■ To simply multiply two 2D arrays
■ To multiply many instances of the two arrays, which are embedded in another

array of greater dimensionality

In the first case, the operation would be performed on a single process, with both
arrays local to that process or on multiple processes, with the two arrays block-
distributed across the processes.

In the second case, each instance of the multiplication operation would be
performed on a different process, with each process having a pair of instances of the
two arrays local to it.
87

All of the dense matrix routines operate on at least one Sun S3L array, which would
ordinarily be created by a call to S3L_declare or S3L_declare_detailed. See
“Creating and Destroying Array Handles for Dense Sun S3L Arrays” on page 57 for
information on how to create and deallocate dense Sun S3L arrays.

The balance of this chapter discusses the various Sun S3L dense matrix routines
more closely.

Matrix-Matrix Multiplication
Sun S3L provides 18 versions of matrix multiplication routines. These are listed in
TABLE 10-1.

TABLE 10-1 Sun S3L Matrix-Matrix Multiplication Operations

Routine Operation Data Type

S3L_mat_mult C = C + AB real or complex

S3L_mat_mult_noadd C = AB real or complex

S3L_mat_mult_addto C = D + AB real or complex

S3L_mat_mult_t1 C = C + ATB real or complex

S3L_mat_mult_t1_noadd C = ATB real or complex

S3L_mat_mult_t1_addto C = D + ATB real or complex

S3L_mat_mult_h1 C = C + AHB complex only

S3L_mat_mult_h1_noadd C = AHB complex only

S3L_mat_mult_h1_addto C = D + AHB complex only

S3L_mat_mult_t2 C = C + ABT real or complex

S3L_mat_mult_t2_noadd C = ABT real or complex

S3L_mat_mult_t2_addto C = D + ABT real or complex

S3L_mat_mult_h2 C = C + ABH complex only

S3L_mat_mult_h2_noadd C = ABH complex only

S3L_mat_mult_h2_addto C = D + ABH complex only

S3L_mat_mult_t1_t2 C = C + ATBT real or complex

S3L_mat_mult_t1_t2_noadd C = ATBT real or complex

S3L_mat_mult_t1_t2_addto C = D + ATBT real or complex
88 Sun S3L 4.0 Software Programming Guide • February 2003

In each routine, two Sun S3L arrays, represented by A and B, are multiplied. A third
Sun S3L array, represented by C, will hold the results of the operation. Other aspects
of the operation vary from routine to routine as follows:

■ Some routines replace the contents of C with the product of A and B. These
routine names end with _noadd.

■ Other routines add the product of A and B to the contents of a fourth Sun S3L
array, represented by D. These routine names end with _addto.

■ All other routines add the product of A and B to the contents of C. These routines
do not include either _noadd or _addto in their names.

■ Some routines take the transpose of one or both operand matrices. This is
indicated in the routine names by the strings _t1 and _t2, where:

■ _t1 indicates the transpose of the first factor array (A)
■ _t2 indicates the transpose of the second factor array (B)

■ Some routines take the Hermitian of an operand matrix. It must contain complex
data. This is indicated in the routine names by the strings _h1 and _h2, which
follow the same naming pattern as _t1 and _t2.

The argument syntax for the matrix-matrix multiply routines is summarized below:

A, B, C, and D are Sun S3L array handles returned by earlier calls to S3L_declare or
S3L_declare_detailed.

A and B represent the multiplication operand matrices. C represents the matrix that
stores the result of the operation. A, B, and C must all have the same rank.

D is used only in the _addto class of routines, when its contents are added to the
product of A and B. D must have the same shape as C.

Note – The argument D can be identical to C in all matrix multiply _addto routines,
except t1_t2__addto (both A and B are transposed).

The contents of A and B are not changed in any of the matrix multiply routines. If D
is distinct from C, its contents are not changed either. If D and C are the same
variable, its contents are overwritten by the result of the matrix multiply operation.

row_axis is a scalar integer that specifies which axis of A, B, C, and D counts the
rows of the embedded matrix or matrices. It must be nonnegative and less than the
rank of C.

S3L_mat_mult(A, B, C, row_axis, col_axis, ier)

S3L_mat_mult_noadd(A, B, C, row_axis, col_axis, ier)

S3L_mat_mult_addto(A, B, C, D, row_axis, col_axis, ier)
Chapter 10 Dense Matrix Routines 89

col_axis is a scalar integer that specifies which axis of A, B, C, and D counts the
columns of the embedded matrix or matrices. It must be nonnegative and less than
the rank of C.

For detailed descriptions of the Fortran and C bindings for the matrix-matrix
multiply routines, see the S3L_mat_mult(3) man page or the corresponding
descriptions in the Sun S3L Software Reference Manual.

For calls that do not transpose either matrix A or B, the variables conform correctly
with the axis lengths for row_axis and col_axis shown in TABLE 10-2.

For calls that transpose matrix A (AT), the variables conform correctly with the axis
lengths for row_axis and col_axis shown in TABLE 10-3.

TABLE 10-2 Recommended row_axis and col_axis Values When Matrix A and
Matrix B Are Not Transposed

Variable row_axis Length col_axis Length

A p q

B q r

C p r

D p r

TABLE 10-3 Recommended row_axis and col_axis Values When Matrix A
Is Transposed

Variable row_axis Length col_axis Length

A q p

B q r

C p r

D p r
90 Sun S3L 4.0 Software Programming Guide • February 2003

For calls that transpose matrix B (BT), the variables conform correctly with the axis
lengths for row_axis and col_axis shown in TABLE 10-4.

For calls that transpose both A and B (ATBT), the variables conform correctly with
the axis lengths for row_axis and col_axis shown in TABLE 10-5.

A matrix multiply routine will use one of three algorithms, depending on various
factors. The three candidate algorithms are:

■ Broadcast-Multiply-Roll
■ Cannon
■ Broadcast-Broadcast-Multiply

Examples showing S3L_mat_mult in use can be found in:

TABLE 10-4 Recommended row_axis and col_axis Values When Matrix B
Is Transposed

Variable row_axis Length col_axis Length

A p q

B r q

C p r

D p r

TABLE 10-5 Recommended row_axis and col_axis Values When Both Matrix A and
Matrix B Are Transposed

Variable row_axis Length col_axis Length

A q p

B r q

C p r

D p r

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/matmult.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/matmult.f
Chapter 10 Dense Matrix Routines 91

Matrix-Vector Multiplication
Sun S3L provides six matrix-vector multiplication routines, which compute one or
more instances of a matrix-vector product. For each instance, these routines perform
the operations listed in TABLE 10-6.

Note – In these descriptions, conj[A] denotes the conjugate of A.

In each matrix-vector routine, a Sun S3L array, represented by A, is multiplied by a
vector, represented by x. Another Sun S3L array, represented by y, holds the results
of the matrix-vector operation. Other aspects of the operation vary from routine to
routine as follows:

■ Some routines replace the contents of y with the product of A and x. Their names
end with _noadd.

■ Other routines add the product of A and x to the contents of another Sun S3L
array, represented by v, and replace the contents of y with the result. Their names
end with _addto.

■ The remaining routines add the product of A and x to the contents of y. These
routines do not include either _noadd or _addto in their names.

■ Some routines take the complex conjugate of A. This is indicated in the routine
names by the string _c1.

TABLE 10-6 Sun S3L Matrix-Vector Multiplication Operations

Routine Operation Data Type

S3L_mat_vec_mult y = y + Ax real or complex

S3L_mat_vec_mult_noadd y = Ax real or complex

S3L_mat_vec_mult_addto y = v + Ax real or complex

S3L_mat_vec_mult_c1 y = y + conj[A]x complex only

S3L_mat_vec_mult_c1_noadd y = conj[A]x complex only

S3L_mat_vec_mult_c1_addto y = v + conj[A]x complex only
92 Sun S3L 4.0 Software Programming Guide • February 2003

The argument syntax for the matrix-vector routines is summarized below:

y, A, x, and v are Sun S3L array handles returned by earlier calls to S3L_declare or
S3L_declare_detailed.

A and x represent the matrix and vector multiplication operands, respectively. y
represents the array that stores the result of the matrix-vector operation.

v is used only in the _addto class of routines. Its contents are added to the product
of A and x.

Note – The argument v can be identical to y in both routines that have _addto in
their names.

y, A, x, and v must have the following rank and size relationships:

■ x and y must have the same rank, which can be one or greater.

■ The rank of A must be one greater than the rank of y.

■ The instance axis of A must match the instance axis of y in length and order of
declaration. This means, each matrix instance in A corresponds to a vector in y.

■ v has the same rank and shape as y.

y_vector_axis is a scalar integer that specifies the axis of y and v along which the
elements of the embedded vectors lie.

row_axis is a scalar integer that specifies which axis of y, A, x, and v counts the
rows of the embedded matrix or matrices. It must be nonnegative and less than the
rank of A.

col_axis is a scalar integer that specifies which axis of y, A, x, and v counts the
columns of the embedded matrix or matrices. It must be nonnegative and less than
the rank of A.

x_vector_axis is a scalar integer that specifies the axis of x along which the
elements of the embedded vectors lie.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the matrix-vector
multiply routines, see the S3L_mat_vec_mult(3) man page or the corresponding
descriptions in the Sun S3L Software Reference Manual.

S3L_mat_vec_mult(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)

S3L_mat_vec_mult_noadd(y, A, x, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)

S3L_mat_vec_mult_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)
Chapter 10 Dense Matrix Routines 93

Examples showing S3L_mat_vec_mult in use can be found in:

2-Norm Operations
The multiple-instance 2-norm routine, S3L_2_norm, computes one or more
instances of the 2-norm of a vector. The single-instance 2-norm routine,
S3L_gbl_2_norm, computes the global 2-norm of a parallel array.

For each instance z of z, the multiple-instance 2-norm routine performs one of the
operations shown in TABLE 10-7.

Upon successful completion, S3L_2_norm overwrites each element of z with the
2-norm of the corresponding vector in x.

The single-instance 2-norm routine performs the operations shown in TABLE 10-8.

Upon successful completion, S3L_gbl_2_norm overwrites a with the global 2-norm
of x.

The argument syntax for the single- and multiple-instance 2-norm routines are
summarized below:

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/mat_vec_mult.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/matvec_mult.f

TABLE 10-7 Sun S3L Multiple-Instance 2-norm Operations

Operation Data Type

z = (xTx)1/2 = ||x||(2) real

z = (xHx)1/2 = ||x||(2) complex

TABLE 10-8 Sun S3L Single-Instance 2-norm Operations

Operation Data Type

a = (xTx)1/2 = ||x||(2) real

a = (xHx)1/2 = ||x||(2) complex

S3L_gbl_2_norm(a, x, ier)

S3L_2_norm(z, x, x_vector_axis, ier)
94 Sun S3L 4.0 Software Programming Guide • February 2003

x and z are Sun S3L array handles returned by earlier calls to S3L_declare or
S3L_declare_detailed.

x represents a parallel array of rank 2 or greater and at least one nonlocal instance
axis. It contains one or more instances of the vector x whose 2-norm will be
computed.

z represents a parallel array that will contain the results of the multiple-instance 2-
norm operation. Its rank must be one less than that of x.

a is a pointer to a scalar variable, which is the destination for the results of the
single-instance 2-norm operation.

x_vector_axis is a scalar integer that specifies the axis of x along which the
vectors lie.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the 2-norm routine, see
the S3L_2_norm(3) man page or the corresponding descriptions in the Sun S3L
Software Reference Manual.

Examples showing S3L_2_norm in use can be found in:

Inner-Product Operations
Sun S3L provides six multiple-instance inner-product routines, all of which compute
one or more instances of the inner product of two vectors embedded in two parallel
arrays. It also provides six single-instance inner product routines, all of which
compute the inner product over all the axes of two parallel arrays.

The two sets of inner-product routines are discussed separately below.

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/norm2.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/norm2.f
Chapter 10 Dense Matrix Routines 95

Multiple-Instance Inner-Product Routines
The operations performed by the inner product routines are listed in TABLE 10-9.

For each multiple-instance inner-product routine, array x contains one or more
instances of the first vector in each inner-product pair, x. Likewise, array y contains
one or more instances of the second vector in each pair, y.

In each multiple-instance inner-product routine, the inner products are computed for
vectors embedded in two Sun S3L arrays, represented by x and y. Another Sun S3L
array, represented by z, holds the results of the inner-product operation. Other
aspects of the operation vary from routine to routine as follows:

■ Some routines replace the contents of z with the inner products of x and y. Their
names end with _noadd.

■ Other routines add the inner-product results of x and y to the contents of another
Sun S3L array, represented by u and replace the contents of z with the result.
Their names end with _addto.

■ The remaining routines add the inner product of x and y to the contents of z.
These routines do not include either _noadd or _addto in their names.

■ Three routines take the transpose of the x array. Their names do not contain any
special indication of this.

■ The other three routines take the Hermitian of x, which must contain complex
data. This is indicated in the routine names by the string _c1.

The argument syntax for the multiple-instance inner-product routines is summarized
below:

TABLE 10-9 Sun S3L Multiple-Instance Inner-Product Operations

Routine Operation Data Type

S3L_inner_prod z = z + xTy real or complex

S3L_inner_prod_noadd z = xTy real or complex

S3L_inner_prod_addto z = u + xTy real or complex

S3L_inner_prod_c1 z = z + xHy complex only

S3L_inner_prod_c1_noadd z = xHy complex only

S3L_inner_prod_c1_addto z = u + xHy complex only

S3L_inner_prod(z, x, y, x_vector_axis, y_vector_axis, ier)

S3L_inner_prod_noadd(z, x, y, x_vector_axis, y_vector_axis, ier)

S3L_inner_prod_addto(z, x, y, u, x_vector_axis, y_vector_axis,
ier)
96 Sun S3L 4.0 Software Programming Guide • February 2003

z, x, y, and u are Sun S3L array handles returned by earlier calls to S3L_declare or
S3L_declare_detailed.

x and y represent the Sun S3L arrays that contain the vector pairs from which the
inner products will be computed. z represents the array that stores the results of the
multiple-instance inner-product operations.

For some multiple-instance inner-product operations, the inner-product results are
added to the contents of z. In other operations, the inner-product results simply
replace the contents of z.

u is used only in the _addto class of routines. Its contents are added to the inner-
product results computed from x and y.

z, x, y, and u must have the following rank and size relationships:

■ x and y must be at least rank 1 arrays, must be of the same rank, and their
corresponding axes must have the same extents. Additionally, x and y must both
be distributed arrays—that is, each must have at least one axis that is nonlocal.

■ Array z, which stores the results of the multiple-instance inner-product
operations, must be of rank one less than that of x and y. Its axes must match the
instance axes of x and y in length and order of declaration, and it must also have
at least one axis that is nonlocal. This means each vector pair in x and y
corresponds to a single destination value in z.

■ Finally, x, y, and z must match in data type and precision.

x_vector_axis is a scalar integer that specifies the axis of x along which the
elements of the embedded vectors lie.

y_vector_axis is a scalar integer that specifies the axis of y along which the
elements of the embedded vectors lie.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the multiple-instance
inner-product routines, see the S3L_inner_prod(3) man page or the
corresponding descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_inner_prod in use can be found in:

Note – If each instance axis of x and y—that is, the axes along which the inner
product will be taken—contains only a single vector, either declare the axes to have
an extent of 1 or use the comparable single-instance inner-product routine, as
described below.

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/inner_prod.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/inner_prod.f
Chapter 10 Dense Matrix Routines 97

Single-Instance Inner-Product Routines
The operations performed by the single-instance inner-product routines are listed in
TABLE 10-10.

The argument syntax for the single-instance inner-product routines is summarized
below:

x and y are Sun S3L array handles returned by earlier calls to S3L_declare or
S3L_declare_detailed. They represent the Sun S3L arrays containing the vector
pairs from which the inner-products will be computed.

a is a pointer to a scalar variable that is the destination for the results of the single-
instance inner-product operations. For S3L_gbl_inner_prod and
S3L_gbl_inner_prod_c1, a is also a source of values to be added to the inner
products of x and y.

b is also a pointer to a scalar variable. It is used only in the _addto class of routines.
Its contents are added to the inner-product results computed from x and y.

For detailed descriptions of the Fortran and C bindings for the single-instance inner-
product routines, see the S3L_inner_prod(3) man page or the corresponding
descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_inner_prod in use can be found in:

TABLE 10-10 Sun S3L Single-Instance Inner-Product Operations

Routine Operation Data Type

S3L_gbl_inner_prod a = a + xTy real or complex

S3L_gbl_inner_prod_noadd a = xTy real or complex

S3L_gbl_inner_prod_addto a = b + xTy real or complex

S3L_gbl_inner_prod_c1 a = a + xHy complex only

S3L_gbl_inner_prod_c1_noadd a = xHy complex only

S3L_gbl_inner_prod_c1_addto a = b + xHy complex only

S3L_gbl_inner_prod(a, x, y, ier)

S3L_gbl_inner_prod_noadd(a, x, y, ier)

S3L_gbl_inner_prod_addto(a, x, y, b, ier)

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/inner_prod.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/inner_prod.f
98 Sun S3L 4.0 Software Programming Guide • February 2003

Outer-Product Operations
Sun S3L provides six outer-product routines that compute one or more instances of
an outer product of two vectors. For each instance, the outer-product routines
perform the operations listed in TABLE 10-11.

Note – In these descriptions, yT and yH denote y transpose and y Hermitian,
respectively.

In elementwise notation, for each instance S3L_outer_prod computes:

and S3L_outer_prod_c2 computes

where conj[y(j)] denotes the conjugate of y(j).

The argument syntax for the outer-product routines is summarized below:

A, x, y, and B are Sun S3L array handles returned by earlier calls to S3L_declare or
S3L_declare_detailed.

TABLE 10-11 Sun S3L Outer-Product Operations

Routine Operation Data Type

S3L_outer_prod A = A + xyT real or complex

S3L_outer_prod_noadd A = xyT real or complex

S3L_outer_prod_addto A = B + xyT real or complex

S3L_outer_prod_c2 A = A + xyH complex only

S3L_outer_prod_c2_noadd A = xyT complex only

S3L_outer_prod_c2_noadd A = B + xyT complex only

A(i,j) = A(i,j) + x(i) * y(j)

A(i,j) = A(i,j) + x(i) * conj[y(j)]

S3L_outer_prod(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)

S3L_outer_prod_noadd(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)

S3L_outer_prod_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis, ier)
Chapter 10 Dense Matrix Routines 99

x and y represent the Sun S3L arrays that contain the vector pairs from which the
inner-products will be computed. A represents the array that stores the results of the
outer-product operations.

x contains one or more instances of the first source vector, x, embedded along the
axis specified by axis x_vector_axis (see below).

y contains one or more instances of the second source vector, y, embedded along the
axis specified by y_vector_axis (see below).

B is used only in the _addto class of routines. Its contents are added to the outer
products computed from x and y.

A, x, y, and B must conform to the following rank and size relationships:

■ A must be of rank 2 or greater.

■ The rank of x and y must be one less than the rank of A.

■ Array z, which stores the results of the multiple-instance inner-product
operations, must be of rank one less than that of x and y. Its axes must match the
instance axes of x and y in length and order of declaration. It must also have at
least one axis that is nonlocal. This means each vector pair in x and y corresponds
to a single destination value in z.

■ Finally, x, y, and z must match in data type and precision.

row_axis is a scalar integer that specifies which axis of A and B counts the rows of
the embedded matrix or matrices. It must be nonnegative and less than the rank of
A.

col_axis is a scalar integer that specifies which axis of A and B counts the columns
of the embedded matrix or matrices. It must be nonnegative and less than the rank
of A.

x_vector_axis is a scalar integer that specifies the axis of x along which the
elements of the embedded vectors lie.

y_vector_axis is a scalar integer that specifies the axis of y along which the
elements of the embedded vectors lie.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the outer-product
routines, see the S3L_outer_prod(3) man page or the corresponding descriptions
in the Sun S3L Software Reference Manual.

Examples showing S3L_outer_prod in use can be found in:

/opt/SUNWhpc/examples/s3l/dense_matrix_ops/outer_prod.c

/opt/SUNWhpc/examples/s3l/dense_matrix_ops-f/outer_prod.f
100 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 11

General Linear Systems Solvers

Sun S3L includes routines that provide solutions to linear systems equations for real
and complex general matrices. Both Gaussian elimination and Householder
transformation methods are supported. These routines are discussed in the
following sections:

■ “Gaussian Elimination for Dense Systems” on page 101
■ “Householder Transformations” on page 106

Gaussian Elimination for Dense Systems

LU Factor Routine
S3L_lu_factor is used to decompose one or more matrices, A, into their LU factors
using Gaussian elimination with partial pivoting. The resulting factors can then be
used by S3L_lu_solve to solve the linear system Ax = b or by S3L_lu_invert to
compute the inverse of A.

The LU factorization routine uses a parallel, block-partitioned algorithm based on
the ScaLAPACK implementation. S3L_lu_factor uses an efficient pivoting scheme
that involves fewer interprocess communication steps. Nodal computation makes
use of the underlying Forte Developer 6 routines, chiefly for matrix multiplication
operations.

For each M x N coefficient matrix A of a, S3L_lu_factor computes the LU
factorization using partial pivoting with row interchanges.

The factorization has the form A = P x L x U, where P is a permutation matrix, L is
the lower triangular with unit diagonal elements (lower trapezoidal if M > N), and
U is the upper triangular (upper trapezoidal if M < N). L and U are stored in A.
101

In general, S3L_lu_factor performs most efficiently when the array is distributed
using the same block size along each axis.

S3L_lu_factor behaves somewhat differently for 3D arrays, however. In this case,
it applies nodal LU factorization on each M x N coefficient matrix across the instance
axis. This factorization is performed concurrently on all participating processes.

You must call S3L_lu_factor before calling any of the other LU routines. The
S3L_lu_factor routine performs on the preallocated parallel array and returns a
setup ID. You must supply this setup ID in subsequent LU calls, as long as you are
working with the same set of factors.

S3L_lu_factor has the following argument syntax:

a is a Sun S3L array handle returned by an earlier call to S3L_declare or
S3L_declare_detailed. The array it represents contains one or more instances of
the coefficient matrix A that is to be factored. Each coefficient matrix A is assumed to
be dense, with dimensions M x N.

row_axis is a scalar integer that specifies which axis of a counts the rows of each
coefficient matrix A.

col_axis is a scalar integer that specifies which axis of a counts the columns of
each coefficient matrix A.

Note – row_axis and col_axis must not be equal.

setup_id is a scalar integer returned by a call to S3L_lu_factor. It can be used in
calls to other LU routines to reference the computed LU factors.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the LU factor routine, see
the S3L_lu_factor(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_lu_factor in use can be found in:

S3L_lu_factor(a, row_axis, col_axis, setup_id, ier)

/opt/SUNWhpc/examples/s3l/lu/lu.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu1.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu2.c

/opt/SUNWhpc/examples/s3l/lu-f/lu.f

/opt/SUNWhpc/examples/s3l/lu-f/ex_lu1.f
102 Sun S3L 4.0 Software Programming Guide • February 2003

LU Solve Routine
For each square coefficient matrix A of the parallel a, S3L_lu_solve uses the LU
factors computed by a previous call to S3L_lu_factor to solve a system of
distributed linear equations AX = B.

Note – Throughout these descriptions, L-1 and U-1 denote the inverse of L and U,
respectively.

A and B are corresponding instances within a and b, respectively. To solve AX = B,
S3L_lu_solve performs forward elimination:

followed by back substitution:

To obtain this solution, the S3L_lu_solve routine performs the following steps:

■ Applies L-1 to B.
■ Applies U-1 to L-1B.

Upon successful completion, each B is overwritten with the solution to AX = B.

In general, S3L_lu_solve performs most efficiently when the array is distributed
using the same block size along each axis.

S3L_lu_solve behaves somewhat differently for 3D arrays, however. In this case,
the nodal solve is applied on each of the 2D systems AX = B across the instance axis
of a and is performed concurrently on all participating processes.

The input parallel arrays a and b must be distinct.

S3L_lu_solve has the following argument syntax:

a and b are Sun S3L array handles returned by earlier calls to S3L_declare or
S3L_declare_detailed. They must be of the same type (real or complex) and
precision.

a represents the parallel array that was factored by a previous call to
S3L_lu_factor. Each coefficient matrix A in a is a dense, square (M x M) matrix.
Use the same value of a that was used in the S3L_lu_factor call.

The instance axes of b must match those of a in order of declaration and extents.

Let UX = C
A = LU implies that AX = B is equivalent to C = L-1B

X = U-1C = U-1(L-1B)

S3L_lu_solve(b, a, setup_id, ier)
Chapter 11 General Linear Systems Solvers 103

Note – For the 2D case, if b consists of only one right-hand-side vector, it can be
represented either as a vector or as an array of rank 2, with the number of columns
set to 1. If it is represented as a rank 2 array, its elements will be counted along the
axis specified in the argument row_axis. See below.

setup_id is the integer returned by the earlier call to S3L_lu_factor that
computed the LU factors for array a.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the LU solve routine, see
the S3L_lu_solve(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_lu_solve in use can be found in:

LU Invert Routine
S3L_lu_invert uses the LU factorization generated by S3L_lu_factor to
compute the inverse of each square (M x M) matrix instance A of the parallel array a.
It does this by inverting U and then solving the system A-1L = U-1 for A-1, where
A-1 and U-1 denote the inverse of A and U, respectively.

For arrays with rank > 2, the nodal inversion is applied on each 2D slice of a across
the instance axis and is performed concurrently on all participating processes.

S3L_lu_invert has the following argument syntax:

a is a Sun S3L array handle returned by an earlier call to S3L_declare or
S3L_declare_detailed. Use the same value of a that was used in the
S3L_lu_factor call.

setup_id is the integer returned by the earlier call to S3L_lu_factor.

If the call is made from a Fortran program, error status will be in ier.

/opt/SUNWhpc/examples/s3l/lu/lu.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu1.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu2.c

/opt/SUNWhpc/examples/s3l/lu-f/lu.f

/opt/SUNWhpc/examples/s3l/lu-f/ex_lu1.f

S3L_lu_invert(a, setup_id, ier)
104 Sun S3L 4.0 Software Programming Guide • February 2003

For detailed descriptions of the Fortran and C bindings for the LU invert routine, see
the S3L_lu_invert(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_lu_invert in use can be found in:

LU Deallocate Routine
S3L_lu_deallocate frees up the memory allocated to the LU factored array that is
associated with a setup_id returned by a previous S3L_lu_factor call.

S3L_lu_deallocate has the following argument syntax:

setup_id is the integer returned by the earlier call to S3L_lu_factor.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the LU deallocation
routine, see the S3L_lu_deallocate(3) man page or the corresponding
description in the Sun S3L Software Reference Manual.

Examples showing S3L_lu_deallocate in use can be found in:

/opt/SUNWhpc/examples/s3l/lu/lu.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu1.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu2.c

/opt/SUNWhpc/examples/s3l/lu-f/lu.f

/opt/SUNWhpc/examples/s3l/lu-f/ex_lu1.f

S3L_lu_deallocate(setup_id, ier)

/opt/SUNWhpc/examples/s3l/lu/lu.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu1.c

/opt/SUNWhpc/examples/s3l/lu/ex_lu2.c

/opt/SUNWhpc/examples/s3l/lu-f/lu.f

/opt/SUNWhpc/examples/s3l/lu-f/ex_lu1.f
Chapter 11 General Linear Systems Solvers 105

Householder Transformations

Computing QR Decomposition of Sun S3L Arrays
S3L_qr_factor computes the QR decomposition of a real or complex Sun S3L
array. On exit, the Q and R factors are packed in array a.

S3L_qr_factor generates internal information related to the decomposition, such
as the vector of elementary reflectors. It also returns a setup parameter, which can be
used by subsequent calls to S3L_qr_solve to compute the least-squares solution to
the system a*x = b, where a is an m x n array, with m > n, and b is an m x nrhs array.

S3L_qr_factor can be used for arrays with more than two dimensions. In such
cases, the axis_r and axis_c arguments specify the row and column axes of 2D
array slices whose QR factorization is to be computed.

When a is a 2D array, axis_r and axis_c should be set in the following manner:

Notes

S3L_qr_factor is more efficient when both dimensions of the input array are
distributed block cyclically, using equal block sizes.

If least-squares solutions are to be found for multiple a*x = b systems, where all
systems have the same matrix, the same QR factorization setup can be used by all
the S3L_qr_solve instances. In other words, only one call to S3l_qr_setup is
needed to support multiple QR solve operations so long as the matrix is the same in
every case.

S3L_qr_factor has the following argument syntax:

a is a Sun S3L array handle for an array whose QR decomposition is to be computed.
On exit, the contents of the array described by a are destroyed.

QR factorization of
C/C++
axis_r axis_c

F77/F90
axis_r axis_c

a 0 1 1 2

transpose of a 1 0 2 1

S3L_qr_factor(a, axis_r, axis_c, setup, ier)
106 Sun S3L 4.0 Software Programming Guide • February 2003

axis_r is an integer that is used to specify which axis will be treated as the row
axis.

axis_c is an integer that is used to specify which axis will be treated as the column
axis.

setup is an integer value returned by S3L_qr_factor on exit. This value is a
unique identifier for the QR decomposition results and can be used by subsequent
calls to S3L_qr_solve and S3L_get_qr.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_qr_factor(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_qr_factor in use can be found in:

Finding the Least-Squares Solution for a
QR-Decomposed Array
S3L_qr_solve computes the least-squares solution to an overdetermined linear
system of the form a*x = b. a is an m x n array, where m > n (overdetermined) and b
is an m x nrhs array of the same type as a.

S3L_qr_solve uses the QR factorization results from a previous call to
S3L_qr_factor for the computation. On exit, the first n x nrhs rows of b are
overwritten with the least-squares solution of the system.

If a and b have more than two dimensions, the operation is performed in 2D slices
over all of the arrays. These slices were specified by the row and column axis
arguments, axis_r and axis_c, of the earlier S3L_qr_factor call.

Notes

For m > n, the single routine S3L_gen_lsq performs the same set of operations as
the sequence: S3L_qr_factor, S3L_qr_solve, S3L_qr_free. However, if
multiple least-squares solutions are to be found for a set of matrices that are all the
same, the explicit sequence can be more efficient. This is because S3L_gen_lsq
performs the full sequence every time it is called, even though the QR factorization
step is needed only the first time.

/opt/SUNWhpc/examples/s3l/qr/ex_qr1.c

/opt/SUNWhpc/examples/s3l/qr-f/ex_qr1.f
Chapter 11 General Linear Systems Solvers 107

In such cases therefore, the following sequence can be used to eliminate redundant
factorization operations:

■ S3L_qr_factor, S3L_qr_solve, S3L_get_qr for the first solution
■ S3L_qr_solve, S3L_get_qr for the second and all subsequent solutions

S3L_qr_solve has the following argument syntax:

a is a Sun S3L array handle that describes an array containing a QR decomposition
that was computed by an earlier call to S3L_qr_factor.

b is a Sun S3L array handle for the array that, on exit, contains the solution to the
least-squares problem in its first n rows.

setup is an integer value that was returned by an earlier call to S3L_qr_factor. It
represents the internal QR factorization results from that QR decomposition.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_qr-solve(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_qr_solve in use can be found in:

Obtaining Q and R Arrays
S3L_get_qr extracts the Q and R arrays from the packed representation of a
QR-decomposed Sun S3L array. If Sun S3L array a is of size m x n, the array q
should be
m x min(m,n) and r should be min(m,n) x n.

If either q or r is zero, it is assumed that the extraction of the corresponding array is
not desired. q and r should not both be zero.

Arrays a, q, and r should all be of the same rank and be of the same data type.

If a has more than two dimensions, the QR factorization will have been performed
in 2D slices, which were defined by the S3L_qr_factor arguments axis_r and
axis_c. These axis numbers are included in the internal QR setup information
referred to by the setup parameter.

S3L_qr_solve(a, b, setup, ier)

/opt/SUNWhpc/examples/s3l/qr/ex_qr1.c

/opt/SUNWhpc/examples/s3l/qr-f/ex_qr1.f
108 Sun S3L 4.0 Software Programming Guide • February 2003

The dimensions of q and r should have the appropriate lengths along axis_r and
axis_c, as described for the 2D case. In addition, all other dimensions should have
the same lengths as those of a.

S3L_get_qr has the following argument syntax:

a is a Sun S3L array handle that describes an array containing a QR decomposition
that was computed by an earlier call to S3L_qr_factor.

q is a Sun S3L array handle for the array that, on exit, contains the orthonormal
array produced by the QR decomposition.

r is a Sun S3L array handle for the array that, on exit, contains an upper triangular
array.

setup is an integer value that was returned by an earlier call to S3L_qr_factor. It
represents the internal QR factorization results from that QR decomposition.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_get_qr(3) man page or the corresponding description in the Sun S3L Software
Reference Manual.

Examples showing S3L_get_qr in use can be found in:

Freeing QR Factors
S3L_qr_free frees all internal resources associated with a particular QR
factorization operation.

S3L_qr_free has the following argument syntax:

setup is an integer value that represents the internal QR factorization data
structures that are to be freed.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_qr_free(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

S3L_get_qr(a, q, r, setup, ier)

/opt/SUNWhpc/examples/s3l/qr/ex_qr1.c

/opt/SUNWhpc/examples/s3l/qr-f/ex_qr1.f

S3L_qr_free(setup, ier)
Chapter 11 General Linear Systems Solvers 109

Examples showing S3L_qr_free in use can be found in:

/opt/SUNWhpc/examples/s3l/qr/ex_qr1.c

/opt/SUNWhpc/examples/s3l/qr-f/ex_qr1.f
110 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 12

Basic Sparse Matrix Routines

This section describes various Sun S3L routines that perform fundamental linear
algebra operations on sparse matrices. They are described in the following sections:

■ “Supported Sparse Formats” on page 111
■ “Declaring a Sparse Matrix” on page 116
■ “Initializing a Sparse Matrix From a File” on page 118
■ “Initializing a Sparse Matrix With Random Values” on page 119
■ “Writing a Sparse Matrix to a File” on page 121
■ “Printing a Sparse Matrix to Standard Output” on page 122
■ “Converting a Sparse Matrix From One Format to Another” on page 123
■ “Computing a Sparse Matrix-Vector Product” on page 125
■ “Deallocating a Sparse Matrix Array Handle” on page 126

All of the sparse matrix functions work with both real and complex data types.

Supported Sparse Formats
A matrix is considered to be sparse if special techniques can be used to take
advantage of the structure of the matrix (that is, the nonzero elements and their
locations).

Many different ways of storing sparse matrices have been devised to realize these
advantages, which can mean better efficiency in both memory use and arithmetic
operations. The differences among these sparse storage schemes are mostly
reflections of such issues as the amount of storage required, the degree of indirect
addressing necessary to perform the kernel operations (such as matrix-vector
product), and the suitability for a range of different processor architectures.

The Sun S3L sparse routines support the following widely used sparse formats:

■ Coordinate (COO)
■ Compressed Sparse Row (CSR)
111

■ Compressed Sparse Column (CSC)
■ Variable Block Row (VBR)

Note – S3L_declare_sparse does not support the Variable Block Row format
directly, but S3L_convert_sparse can be used to convert sparse matrix data from
Variable Block Row format to one of the other formats, which are all compatible with
S3L_declare_sparse.

Coordinate Format
The Coordinate format consists of the following three arrays:

■ indx – Integer array that contains the row indices of the sparse matrix A. indx
receives its contents from the argument row.

■ jndx – Integer array that contains the column indices of the matrix A. jndx
receives its contents from the argument col.

■ val – Floating-point array that stores the nonzero elements of the sparse matrix
in any order. val receives its contents from the argument val.

To illustrate the Coordinate format, consider the following sample 4 x 6 sparse
matrix:

Using zero-based indexing, the contents of the indx, jndx, and val arrays might be
as follows:

For example, the row and column indices 0 and 3 show that the value 20.04 belongs
in the first row and fourth column of the sparse matrix.

Compressed Sparse Row Format
The Compressed Sparse Row format stores the sparse matrix values in the following
three arrays:

3.14 0 0 20.04 0 0

0 27 0 0 -0.6 0

0 0 -0.01 0 0 0

-0.031 0 0 0.08 0 314.0

indx = (3, 1, 0, 3, 2, 0, 1, 3),

jndx = (5, 1, 3, 3, 2, 0, 4, 0),

val = (314.0, 27.0, 20.04, 0.08, -0.01, 3.14, –0.6, -0.031)
112 Sun S3L 4.0 Software Programming Guide • February 2003

■ ptr – Integer array that contains pointers to the beginning of each row in indx
and val. ptr receives its contents from the argument row.

■ indx – Integer array that contains the column indices of the nonzero elements in
val. indx receives its contents from the argument col.

■ val – Floating-point array that stores the nonzero elements of the sparse matrix.
val receives its contents from the argument val.

The contents of the ptr, indx, and val arrays might be as follows:

For example, ptr[1] = 2 indicates that the first nonzero element in row 1 is stored
in val[2] (= val[ptr[1]]), which is 27.0.

Compressed Sparse Column Format
The Compressed Sparse Column format also stores the sparse matrix in three arrays,
but the pointer and index references swap axes. In other words, the Compressed
Sparse Column format can be viewed as the Compressed Sparse Row format for the
transpose of the sparse matrix. In the Compressed Sparse Column format, the three
internal arrays are:

■ ptr – Integer array that contains pointers to the beginning of each column in
indx and val. ptr receives its contents from the argument row.

■ indx – Integer array that contains the row indices of the nonzero elements in
val. indx receives its contents from the argument col.

■ val – Floating-point array that stores the nonzero elements of the sparse matrix.
val receives its contents from the argument val.

This matrix-transpose relationship can be seen by comparing the following values in
the ptr and indx arrays with the corresponding arrays in the Compressed Sparse
Row example:

Note that, in the Compressed Sparse Column format, the nonzero elements in val
are stored column by column, instead of row by row, as in the Compressed Sparse
Column format.

For example, ptr[5] = 7 means that the first nonzero element of column 5 is stored
in val[7] (= val[ptr[5]]), which is 314.0, and its row index is stored in
indx[7] (= indx[ptr[5]]), which is 3.

ptr = (0, 2, 4, 5, 8),

indx = (0, 3, 1, 4, 2, 0, 3, 5),

val = (3.14, 20.04, 27.0, -0.6, -0.01, -0.031, 0.08, 314.0)

ptr = (0, 2, 3, 4, 6, 7, 8),

indx = (0, 3, 1, 2, 0, 3, 1, 3),

val = (3.14, -0.031, 27.0, -0.01, 20.04, 0.08, -0.6, 314.0)
Chapter 12 Basic Sparse Matrix Routines 113

Variable Block Row Format
The first three sparse matrix formats all provide natural layouts for point sparse
matrices. However, for matrices with nonzero elements clustered in blocks, Variable
Block Row (VBR) format offers a more efficient representation. For any block-
structured matrices, such as those derived from a discretized partial differential
equation, using VBR format can reduce the amount of integer storage, and the block
representation of the matrix enables the numerical algorithms to perform the kernel
matrix operations more efficiently on the block entries.

The data structure of the VBR format consists of the following six arrays:

To illustrate the Variable Block Row data layout, consider the following 6 x 8 sparse
matrix with a variable block partitioning:

rptr Integer array. It contains the block row partitioning information—that is, the first
row number of each block row.

cptr Integer array. It contains the block column partitioning information—that is, the
first column number of each block column.

val Scalar array. It contains the block entries of the matrix.

indx Integer array. It contains the pointers to the beginning of each block entry stored
in val.

bindx Integer array. It contains the block column indices of block entries of the matrix.

bptr Integer array. It contains the pointers to the beginning of each block row in
bindx and val.

0 1 2 3 4 5 6 7 8

+------+---------+----+-------+

0 | 1 2 | | 3 | |

1 | 4 5 | | 6 | |

+------+---------+----+-------+

2 | | 7 8 9 | 10 | |

+------+---------+----+-------+

3 | | | 11 | 12 13 |

4 | | | 14 | 15 16 |

5 | | | 17 | 18 19 |

+------+---------+----+-------+

6

114 Sun S3L 4.0 Software Programming Guide • February 2003

Using zero-based indexing, the matrix could be stored in VBR format, as follows:

In array rptr, 0, 2, 3, and 6 are pointers to the boundaries of the block rows.
Likewise in cptr, 0, 2, 5, 6, and 8 are pointers to the boundaries of the block
columns.

In array bptr, 0, 2, 4, and 6 are pointers to the location in bindx of the first nonzero
block entry of each block row.

These block-based pointers are illustrated in the following figure, which represents
the block structure of the original 6 x 8 sparse matrix. It shows the first block row
with two nonzero blocks, one in block column 0 and the other in block column 2.
The next nonzero block is at block row 1 and block column 1, and so forth. Block 6 is
the outer boundary of the block rows.

In array bindx, 0, 2, 1, 2, 2, and 3 are block column indices for each of the six
nonzero block entries.

In array indx, 0, 4, 6, 9, 10, 13, and 19 point to the locations in val of the first
nonzero block entry from each block row.

The last array, val, stores nonzero blocks b0, b1, ..., b5 block by block with each
block stored as a dense matrix in standard column-by-column form. Moreover, the
starting location in val where the first element of each block gets stored is indexed
by array indx.

The VBR data structure can be understood by analyzing the representation of block
row 1 for example.

rptr = (0, 2, 3, 6),

cptr = (0, 2, 5, 6, 8),

bptr = (0, 2, 4, 6),

bindx = (0, 2, 1, 2, 2, 3),

indx = (0, 4, 6, 9, 10, 13, 19)

val = (1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 8.0, 9.0,

10.0, 11.0, 14.0, 17.0, 12.0, 15.0, 18.0,

13.0, 16.0, 19.0)

0 1 2 3 4
+----+----+----+----+

0 | b0 | | b1 | |
+----+----+----+----+

1 | | b2 | b3 | |
+----+----+----+----+

2 | | | b4 | b5 |
+----+----+----+----+

3

Chapter 12 Basic Sparse Matrix Routines 115

First, bptr[1] = 2 indicates that b2, the first nonzero block from block row 1 is
from block column 1, as indicated by bindx[2] = bindx[bptr[1]] = 1.

Second, bptr[1] = 2 also indexes into indx. That is, indx[bptr[1]] = indx[2] =
6 points to val[6] = val[indx[bptr[1]] = val[indx[2]]), where 6 is the
location in val at which the first element of b2, 7.0, is stored.

The next nonzero block in block row 1 is b3, its block column index is 2, as indicated
by bindx[bptr[1]+1] = bindx[3] = 2, and the first element of block b3 is stored
in val[9] (= val[indx[bptr[1]+1]] = val[indx[3]]), which is 10.0.

Declaring a Sparse Matrix
The Sun S3L routine S3L_declare_sparse can be used to create a sparse matrix
Sun S3L array handle that describes an array that conforms to the Coordinate,
Compressed Sparse Row, or Compressed Sparse Column format.

Note – A method for using S3L_declare_sparse to create a Sun S3L array handle
for an array with a Variable Block Row format is described later in “Converting a
Sparse Matrix From One Format to Another” on page 123.

S3L_declare_sparse has the following argument syntax:

Upon exit, A contains a Sun S3L array handle for the global general sparse matrix.
This handle can be used in subsequent calls to other Sun S3L sparse array functions.

spfmt indicates which sparse format is to be used in representing the sparse matrix.
Its value can be any one of:

■ S3L_SPARSE_COO
■ S3L_SPARSE_CSR
■ S3L_SPARSE_CSC

m indicates the number of rows in the sparse matrix.

n indicates the number of columns in the sparse matrix.

row is an integer parallel array of rank 1. Its length and content can vary, depending
on which sparse format is used:

■ S3L_SPARSE_COO – row is of the same size as arrays col and val and contains
row indices of the nonzero elements in array val.

S3L_declare_sparse(A, spfmt, m, n, row, col, val, ier)
116 Sun S3L 4.0 Software Programming Guide • February 2003

■ S3L_SPARSE_CSR – row is of size m+1 and contains pointers to the beginning of
each row in arrays col and val.

■ S3L_SPARSE_CSC – row is of size n+1 and contains pointers to the beginning of
each column in arrays col and val.

col is an integer global array of rank 1 with the same length as array val. Its use
will vary, depending on which sparse format is used:

■ S3L_SPARSE_COO – col contains column indices of the corresponding elements
stored in array val.

■ S3L_SPARSE_CSR – col contains column indices of the corresponding elements
stored in array val.

■ S3L_SPARSE_CSC – col contains row indices of the corresponding elements in
Sun S3L array val.

val is a parallel array of rank 1, containing the nonzero elements of the sparse
matrix. The storage pattern varies, depending on which sparse format is used:

■ S3L_SPARSE_COO – Nonzero elements can be stored in any order.

■ S3L_SPARSE_CSR – Nonzero elements should be stored row by row, from row 1
to row m.

■ S3L_SPARSE_CSC – Nonzero elements should be stored column by column, from
column 1 to column n.

The length of val is nnz for all three formats. This parameter represents the total
number of nonzero elements in the sparse matrix. The data type of array elements
can be real or complex (single- or double-precision).

Note – Because row, col, and val are copied to the working arrays described
earlier (indx, jndx, ptr, and val), they can be deallocated immediately following
the S3L_declare_sparse call.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_declare_sparse(3) man page or the corresponding description in the Sun
S3L Software Reference Manual.

Examples showing S3L_declare_sparse in use can be found in:

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse2.c
Chapter 12 Basic Sparse Matrix Routines 117

Initializing a Sparse Matrix From a File
S3L_read_sparse reads sparse matrix data from an ASCII file and distributes the
data to all participating processes. Upon successful completion, S3L_read_sparse
returns a Sun S3L array handle in A that represents the distributed sparse matrix.

S3L_read_sparse supports the following sparse matrix formats:

■ S3L_SPARSE_COO
■ S3L_SPARSE_CSR
■ S3L_SPARSE_CSC
■ S3L_SPARSE_VBR

MatrixMarket Notes

Under the S3L_SPARSE_COO format, S3L_read_sparse can also read data
supplied in either of two Coordinate formats that are distributed by MatrixMarket
(http://gams.nist.gov/MatrixMarket/). The two supported MatrixMarket
formats are real general and complex general.

MatrixMarket files always use one-based indexing. Consequently, they can only be
used directly by Fortran programs. For a C or C++ program to use a MatrixMarket
file, it must call the F77 application program interface. This is illustrated by the
program example:

S3L_read_sparse has the following argument syntax:

Upon exit, A contains a Sun S3L array handle for the global general sparse matrix.
This handle can be used in subsequent calls to other Sun S3L sparse array functions.

spfmt indicates which sparse format is to be used. Its value can be any one of:

■ S3L_SPARSE_COO
■ S3L_SPARSE_CSR
■ S3L_SPARSE_CSC
■ S3L_SPARSE_VBR

m indicates the number of rows in the sparse matrix.

n indicates the number of columns in the sparse matrix.

nnz indicates the number of nonzero elements in the sparse matrix.

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

S3L_read_sparse(A, spfmt, m, n, nnz, type, fname, dfmt, ier)
118 Sun S3L 4.0 Software Programming Guide • February 2003

type indicates the Sun S3L data type of the sparse array. It must be one of:

■ S3L_float
■ S3L_double
■ S3L_complex
■ S3L_double_complex

fname is a scalar character variable that names the ASCII file that contains the
sparse matrix data.

dfmt specifies the format of the data to be read from the file named by fname.
Allowed values are ascii and ASCII.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_read_sparse(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_read_sparse in use can be found in:

Initializing a Sparse Matrix With
Random Values
If you want to create a sparse matrix but don’t have a source of data for its contents,
you can use S3L_rand_sparse to create a global general sparse matrix that is
populated with a set of random values. You specify the sparsity pattern to be used,
as well as density of nonzero values, as part of the S3L_rand_sparse call.

Note – S3L_rand_sparse is intended primarily as a convenient tool for creating
sparse matrices in those programming situations where the actual data values are
not important—for example, when trying out various sparse matrix sizes or sparsity
patterns.

S3L_rand_sparse supports all four sparse formats.

S3L_rand_sparse has the following argument syntax:

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse2.f

S3L_rand_sparse(A, spfmt, stype, m, n, density, type, seed, ...,
ier)
Chapter 12 Basic Sparse Matrix Routines 119

Upon exit, A contains a Sun S3L array handle for the global general sparse matrix.
This handle can be used in subsequent calls to other Sun S3L sparse array functions.

spfmt indicates which sparse format is to be used. Its value can be any one of:

■ S3L_SPARSE_COO
■ S3L_SPARSE_CSR
■ S3L_SPARSE_CSC
■ S3L_SPARSE_VBR

If S3L_SPARSE_VBR is specified, two additional arguments should also be supplied:

■ rptr – An integer array of length m+1, such that rptr[i] is the row index of the
first point row in the i-th block row.

■ cptr – An integer array of length n+1, such that cptr[j] is the column index of
the first column in the j-th block column.

If used, the rptr and cptr arguments follow the seed argument (as indicated by
the “...” entry in the syntax illustration above.

■ stype specifies the type of random pattern to be used. The choices are:

■ S3L_SPARSE_RAND – A random pattern

■ S3L_SPARSE_DRND – A random pattern with a guaranteed nonzero diagonal

■ S3L_SPARSE_SRND – A random symmetric sparse array

■ S3L_SPARSE_DSRN – A random symmetric sparse array with a guaranteed
nonzero diagonal

■ S3L_SPARSE_DSPD – A random symmetric positive definite sparse array

For all formats except VBR, m indicates the number of rows in the sparse matrix. For
the S3L_SPARSE_VBR format, m denotes the number of block rows in the sparse
matrix.

For all formats except VBR, n indicates the number of columns in the sparse matrix.
For the S3L_SPARSE_VBR format, n denotes the number of block columns in the
sparse matrix.

density is a positive number less than or equal to 1.0. It suggests the approximate
density of the array. For example, if 0.1 is supplied as the density argument,
approximately 10% of the array elements will have nonzero values.

type specifies the data type of the sparse array. It must be one of:

■ S3L_float
■ S3L_double
■ S3L_complex
■ S3L_double_complex

seed is an integer that is used internally to initialize the random number generators.
It affects both the pattern and the values of the array elements. The results are
independent of the number of processes on which the function is invoked.
120 Sun S3L 4.0 Software Programming Guide • February 2003

If the call is made from a Fortran program, error status will be in ier.

Note – The number of nonzero elements generated will depend primarily on the
combination of the density value and the array extents given by m and n. Usually,
the number of nonzero elements will approximately equal m * n * density. The
behavior of the algorithm may cause the actual number of nonzero elements to be
somewhat smaller than m * n * density. Regardless of the value supplied for
density, the number of nonzero elements will always be >= m.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_rand_sparse(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_rand_sparse in use can be found in:

Writing a Sparse Matrix to a File
S3L_write_sparse causes the process with MPI rank 0 to write the global sparse
matrix A into a file. The matrix data will be written in a user-specified format, which
can be any one of:

■ S3L_SPARSE_COO – Coordinate
■ S3L_SPARSE_CSR – Compressed Sparse Row
■ S3L_SPARSE_CSC – Compressed Sparse Column
■ S3L_SPARSE_VBR – Variable Block Row

S3L_write_sparse has the following argument syntax:

A is a Sun S3L array handle for the global general sparse matrix to be written.

spfmt indicates which sparse format is to be used. Its value can be any one of:

■ S3L_SPARSE_COO
■ S3L_SPARSE_CSR
■ S3L_SPARSE_CSC
■ S3L_SPARSE_VBR

fname is a scalar character variable that names the file to which the sparse matrix
data will be written.

/opt/SUNWhpc/examples/s3l/iter/ex_iter.c

/opt/SUNWhpc/examples/s3l/iter-f/ex_iter.f

S3L_write_sparse(A, spfmt, fname, dfmt, ier)
Chapter 12 Basic Sparse Matrix Routines 121

dfmt is a scalar character variable that specifies the data file format to be used in
writing the sparse matrix data. The allowed values are ascii and ASCII.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_write_sparse(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_write_sparse in use can be found in:

Printing a Sparse Matrix to Standard
Output
S3L_print_sparse prints all nonzero values of a global general sparse matrix and
their corresponding row and column indices to standard output.

For example, the following 4 x 6 sample matrix:

could be printed by a C program in the following manner.

The first line prints three integers, m, n, and nnz, which represent the number of
rows, columns, and the total number of nonzero elements in the matrix, respectively.

If the matrix is represented in the S3L_SPARSE_VBR format, three additional
integers are printed: bm, bn, and bnnz. These integers indicate the number of block
rows and block columns and the total number of nonzero block entries.

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

3.14 0 0 20.04 0 0

0 27 0 0 -0.6 0

0 0 -0.01 0 0 0

-0.031 0 0 0.08 0 314.0

4 6 8
(0,0) 3.140000
(0,3) 200.040000
(1,1) 27.000000
(1,4) -0.600000
(2,2) -0.010000
(3,0) -0.031000
(3,3) 0.080000
(3,5) 314.000000
122 Sun S3L 4.0 Software Programming Guide • February 2003

Note that, in the previous example, the row and column indices are zero-based,
which means that the call to S3L_print_sparse was made from a C program. If
the call had used the Fortran interface, the row and column indices would be one-
based, as shown below:

S3L_print_sparse has the following argument syntax:

A is a Sun S3L array handle for the global general sparse matrix to be printed.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_print_sparse(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_print_sparse in use can be found in:

Converting a Sparse Matrix From One
Format to Another
S3L_convert_sparse converts a Sun S3L sparse matrix that is represented in one
sparse format to a different sparse format. It supports all four of the Sun S3L sparse
formats.

S3L_convert_sparse has the following argument syntax:

4 6 8
(1,1) 3.140000
(1,4) 200.040000
(2,2) 27.000000
(2,5) -0.600000
(3,3) -0.010000
(4,1) -0.031000
(4,4) 0.080000
(4,6) 314.000000

S3L_print_sparse(A, ier)

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse2.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

S3L_convert_sparse(A, B, spfmt, ..., ier)
Chapter 12 Basic Sparse Matrix Routines 123

A is a Sun S3L array handle for the global general sparse matrix whose format is to
be converted—that is, the source matrix.

On exit, A is the Sun S3L array handle for the global general sparse matrix that
resulted from the conversion.

B is a Sun S3L array handle for the converted global general sparse matrix—that is,
the destination matrix.

The next argument, spfmt, specifies the sparse format to be used for the destination
matrix. The value of spfmt must be one of:

■ S3L_SPARSE_COO
■ S3L_SPARSE_CSR
■ S3L_SPARSE_CSC
■ S3L_SPARSE_VBR

If the spfmt value is S3L_SPARSE_VBR, you can control the block-partitioning
structure by supplying the following additional arguments after spfmt:

Note – To use the Sun S3L internal blocking algorithm rather than controlling the
block partitioning explicitly, specify these four arguments as NULL pointers (for
C/C++) or set to –1 (for F77/F90).

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_convert_sparse(3) man page or the corresponding description in the Sun
S3L Software Reference Manual.

Examples showing S3L_convert_sparse in use can be found in:

bm Scalar integer that indicates the number of block rows in the block sparse matrix

bn Scalar integer that indicates the number of block columns in the block sparse
matrix

rptr Integer array of length bm + 1, such that rptr[i] is the row index of the first
point row in the i-th block row

cptr Integer array of length bn + 1, such that cptr[j] is the column index of the first
column in the j-th block column.

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse1.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse1.f
124 Sun S3L 4.0 Software Programming Guide • February 2003

Computing a Sparse Matrix-Vector
Product
S3L_matvec_sparse computes the product of a global general sparse matrix with
a global dense vector. The sparse matrix is described by the Sun S3L array handle A.
The global dense vector is described by the Sun S3L array handle x. The product is
stored in the global dense vector described by the Sun S3L array handle y.

The array handle A is produced by a prior call to one of the following routines:

■ S3L_declare_sparse
■ S3L_read_sparse
■ S3L_rand_sparse
■ S3L_convert_sparse

S3L_matvec_sparse has the following argument syntax:

y is a global array of rank 1, with the same data type and precision as A and x. Its
length is equal to the number of rows in the sparse matrix. Upon completion, y
contains the product of the sparse matrix A and the vector x.

A is a Sun S3L array handle for the global general sparse matrix.

x is a global array of rank 1, with the same data type and precision as A and y and
with a length equal to the number of columns in the sparse matrix.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_matvec_sparse(3) man page or the corresponding description in the Sun
S3L Software Reference Manual.

Examples showing S3L_matvec_sparse in use can be found in:

S3L_matvec_sparse(y, A, x, ier)

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

/opt/SUNWhpc/examples/s3l/iter/ex_iter.c

/opt/SUNWhpc/examples/s3l/iter-f/ex_iter.f
Chapter 12 Basic Sparse Matrix Routines 125

Deallocating a Sparse Matrix Array
Handle
S3L_free_sparse deallocates the memory reserved for a sparse matrix and the
associated array handle.

S3L_free_sparse has the following argument syntax:

A is a Sun S3L array handle for the parallel Sun S3L array that was allocated by a
previous call to S3L_declare_sparse, S3L_read_sparse, S3L_rand_sparse,
or S3L_convert_sparse.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_free_sparse(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_free_sparse in use can be found in:

S3L_free_sparse(A, ier)

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse.c

/opt/SUNWhpc/examples/s3l/sparse/ex_sparse2.c

/opt/SUNWhpc/examples/s3l/iter/ex_iter.c

/opt/SUNWhpc/examples/s3l/sparse-f/ex_sparse.f

/opt/SUNWhpc/examples/s3l/iter/ex_iter.c

/opt/SUNWhpc/examples/s3l/iter-f/ex_iter.f
126 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 13

Sparse Linear System Solvers

Sun S3L provides support for solving sparse linear systems of the type A*x = B. The
discussion of these routines is organized into the following sections:

■ “Solving Sparse Linear Systems by the Direct Method” on page 127
■ “Solving Sparse Linear Systems by an Iterative Method” on page 130
■ “Deallocating a Sparse Linear System Solver” on page 135

Solving Sparse Linear Systems by the
Direct Method
S3L_sparse_solve solves a linear system of equations A*x = y, where A is a
sparse Sun S3L array and A and y are both single- or double-precision real parallel
arrays.

When calling S3L_sparse_solve to solve a new (unfactored) sparse linear system,
specify S3L_FULL_FACTOR_SOLVE as the first element of the option argument
vector. This will cause S3L_sparse_solve to reduce fill by reordering the array
and to perform symbolic and numeric factoring before solving the system. It will
also return a setup value that identifies the internal setup created by the factoring
process.

If the same linear system is to be solved again, but with a different right-hand side,
specify S3L_SOLVE_ONLY as the first element of the option argument. Also specify
the setup value returned by the S3L_sparse_solve call that factored the sparse
array. The new solution will make use of the internal setup created by the earlier
S3L_sparse_solve call.
127

If a previously factored sparse array contains new values, but the sparsity pattern
has not changed, it can be solved without specifying S3L_FULL_FACTOR_SOLVE.
Instead, specify S3L_SAME_SPARSITY_SOLVE and the previously returned setup
value. This causes S3L_sparse_solve to perform numeric factorization on the
sparse array and then solve the linear system.

When the internal setup for a linear system is no longer needed, the resources
associated with it can be freed by calling S3L_sparse_solve_free and specifying
the applicable setup value.

Note – The S+ message-passing direct sparse solver was developed by Kai Shen and
Tao Yang of the University of California at Santa Barbara. S+ can be used for general
(asymmetric) sparse matrices.

The Sun Performance Library direct solver solves a sparse linear system on a single
process.

S3L_sparse_solve has the following argument syntax:

A is a Sun S3L array handle that describes a parallel, single- or double-precision, real
sparse array.

y is a Sun S3L array handle that describes a parallel real array of rank 1 (a vector) or
rank 2 (a matrix), which contains the right-hand side of the linear system A*x = y.
On exit, y is overwritten with the solution of the system.

options is an array of rank 1 whose elements control S3L_sparse_solve
behavior in the following ways:

S3L_sparse_solve(A, y, options, roptions, setup, ier)

options[0] = S3L_FULL_FACTOR_SOLVE Perform fill-reducing reordering,
symbolic factorization, numeric
factorization, and solve the linear
system.

options[0] = S3L_SAME_SPARSITY_SOLVE Do only numeric factorization and
solve the linear system. Use this
option when the sparsity pattern of a
previously factored array stays the
same but has a new set of values.

options[0] = S3L_SOLVE_ONLY Only solve the linear system, using a
previously computed factorization.

options[1] = S3L_SPLUS_SOLVER Use S+ sparse solver.

options[1] = S3L_PERFLIB_SOLVER Use the Sun Performance Library 6.0
sparse solver.
128 Sun S3L 4.0 Software Programming Guide • February 2003

If options[1] = S3L_PERFLIB_SOLVER, specify the following options as well:

roptions is not currently used. It may be used in the future for specifying such
parameters as a drop tolerance for pivoting, a threshold value for determining when
a block is considered dense, and an amalgamation constant.

setup is an integer that is returned by S3L_sparse_solve upon completion. It
describes the sparse linear solution resulting from this call.

Note – If the internal setup created by this call will be used for additional solutions
of the linear system, subsequent calls to S3L_sparse_solve would use this setup
value. It will also be used in a subsequent call to S3L_sparse_solve_free to free
the internal data associated with this sparse linear system solution.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_sparse_solve(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_sparse_solve in use can be found in:

options[2] = S3L_NON_SYMMETRIC The sparse array has asymmetric
structure and asymmetric values.

options[2] = S3L_SYMMETRIC The sparse array has symmetric
structure and symmetric values.

options[2] = S3L_SYM_STRUCT The sparse array has symmetric
structure but asymmetric values.

options[3] = S3L_NO_PIVOT Do not use pivoting.

options[3] = S3L_DO_PIVOT Use pivoting.

/opt/SUNWhpc/examples/s3l/spsolve/ex_sparse_solve1.c

/opt/SUNWhpc/examples/s3l/spsolve-f/ex_sp_solve1.f
Chapter 13 Sparse Linear System Solvers 129

Solving Sparse Linear Systems by an
Iterative Method
S3L_gen_iter_solve solves a linear system of equations of the form A*x = y, where A is
a sparse Sun S3L array and x and y are both single- or double-precision dense parallel
arrays.

Given a general, square sparse matrix A and a right-hand side vector b,
S3L_gen_iter_solve solves the linear system of equations Ax = b, using an
iterative algorithm, with or without preconditioning.

The first three arguments to S3L_gen_iter_solve are Sun S3L internal array
handles that describe the global general sparse matrix A, the rank 1 global array b,
and the rank 1 global array x.

The sparse matrix A is produced by a prior call to one of the following sparse
routines:

■ S3L_declare_sparse
■ S3L_read_sparse
■ S3L_rand_sparse
■ S3L_convert_sparse

The global rank 1 arrays, b and x, have the same data type and precision as the
sparse matrix A, and both have a length equal to the order of A.

Two local rank 1 arrays, iparm (integer array) and rparm (real array), provide user
control over various aspects of S3L_gen_iter_solve behavior, including:

■ Choice of algorithm to be used

■ Type of preconditioner to use on A

■ Flags to select the initial guess to the solution

■ Maximum number of iterations to be taken by the solver

■ If the restarted GMRES algorithm is chosen, selection of the size of the Krylov
subspace

■ Tolerance values to be used by the stopping criterion

■ If the Richardson algorithm is chosen, selection of the scaling factor to be used

The options supported by the iparm and rparm arguments are described in the
following subsections.
130 Sun S3L 4.0 Software Programming Guide • February 2003

Note – iparm and rparm must be preallocated and initialized before
S3L_gen_iter_solve is called. To enable the default condition for any parameter,
set it to 0. Otherwise, initialize the arguments with the appropriate parameter
values, as described in the following subsections.

Algorithm
S3L_gen_iter_solve attempts to solve Ax = b using one of the following iterative
solution algorithms. The choice of algorithm is determined by the value supplied for
the parameter iparm[S3L_iter_solver]. The various options available for this
parameter are listed and described in TABLE 13-1.

Preconditioning
S3L_gen_iter_solve implements left preconditioning. That is, preconditioning is
applied to the linear system Ax = b by:

TABLE 13-1 iparm[S3L_iter_solver] Options

Option Description

S3L_bcgs BiConjugate Gradient Stabilized (Bi-CGSTAB)

S3L_cgs Conjugate Gradient Squared (CGS)

S3L_cg Conjugate Gradient (CG)

S3L_cr Conjugate Residuals (CR)

S3L_gmres Generalized Minimum Residual (GMRES) – default

S3L_qmr Quasi-Minimal Residual (QMR)

S3L_richardson Richardson method

Q-1 A = Q-1 b
Chapter 13 Sparse Linear System Solvers 131

where Q is the preconditioner and Q-1 denotes the inverse of Q. The supported
preconditioners are listed in TABLE 13-2.

Convergence/Divergence Criteria
The iparm[S3L_iter_conv] parameter selects the criterion to be used for
stopping computation. Currently, the single valid option for this parameter is
S3L_r0, which selects the default criterion for both convergence and divergence.
The convergence criterion is satisfied when:

err = ||rj||_2 / ||r0||_2 < epsilon

and the divergence criterion is met when:

err = ||rj||_2 / ||r0||_2 > 10000.0

where:

■ rj and r0 are the residuals obtained at iterations j and 0.

■ ||.||_2 is the 2-norm.

■ epsilon is the desired convergence tolerance stored in rparm[S3L_iter_tol].

■ 10000.0 is the divergence tolerance, which is set internally in the solver.

TABLE 13-2 iparm[S3L_iter_pc] Options

Option Description

S3L_none No preconditioning will be done (default).

S3L_jacobi Point Jacobi preconditioner will be used. Note that this option is
not supported when the sparse matrix A is represented under
S3L_SPARSE_VBR format.

S3L_bjacobi Block Jacobi preconditioner will be used. Note that this option is
supported only when the sparse matrix A is represented under
S3L_SPARSE_VBR format.

S3L_ilu Use a simplified ILU(0)—the Incomplete LU factorization of
level zero preconditioner. This preconditioner modifies only
diagonal nonzero elements of the matrix. Note that this option is
not supported when the sparse matrix A is represented under
S3L_SPARSE_VBR format.
132 Sun S3L 4.0 Software Programming Guide • February 2003

Initial Guess
The parameter iparm[S3L_iter_init] determines the contents of the initial
guess to the solution of the linear system as follows:

■ 0 – Applies zero as the initial guess. This is the default.

■ 1 – Applies the value contained in array x as the initial guess. For this case, the
user must initialize x before calling S3L_gen_iter_solve.

Maximum Iterations
On input, the iparm[S3L_iter_maxiter] parameter specifies the maximum
number of iterations to be taken by the solver. Set to 0 to select the default, which is
10000.

On output, iparm[S3L_iter_maxiter] contains the total number of iterations
taken by the solver at the time of termination.

Krylov Subspace
If the restarted GMRES algorithm is selected, iparm[S3L_iter_kspace] specifies
the size of the Krylov subspace to be used. The default is 30.

Stopping Criterion Tolerance
On input, rparm[S3L_iter_tol] specifies the tolerance values to be used by the
stopping criterion. Its default is 10-8.

On output, rparm[S3L_iter_tol] contains the computed error, err, according to
the convergence criteria. See the iparm[S3L_iter_conv] description for details.

Richardson Scaling Factor
If the Richardson method is selected, rparm[S3L_rich_scale] specifies the
scaling factor to be used. The default value is 1.0.
Chapter 13 Sparse Linear System Solvers 133

Iteration Termination
S3L_gen_iter_solve terminates the iteration when one of the following
conditions is met:

■ The computation has satisfied the convergence criterion.

■ The computation has diverged.

■ An algorithmic breakdown has occurred.

■ The number of iterations has exceeded the supplied value.

S3L_gen_iter_solve has the following argument syntax:

A is a Sun S3L array handle that describes a global general sparse matrix.

b is a Sun S3L array handle that describes a global array of rank 1. It has the same
data type and precision as A. b contains the right-hand side vector of the linear
problem.

x is a Sun S3L array handle that describes a global array of rank 1. It has the same
data type and precision as A and b. At the start, x contains the initial guess for the
solution to the linear system. Upon exit, x contains the converged solution. If the
computation breaks down or diverges, x will contain the results of the most recent
iteration.

iparm is an integer local array of rank 1 and length s3l_iter_iparm_size. At the
start, iparm options have the following uses:

■ iparm[S3l_iter_solver] – Specifies the iterative algorithm to be used. Set it
to 0 to use the default solver GMRES. See the Description section for details.

■ iparm[S3l_iter_pc] – Specifies the preconditioner to be used. Set it to 0 to use
the default option, S3L_none.

■ iparm[S3l_iter_conv] – Selects the criterion to be used for stopping the
computation.

■ iparm[S3l_iter_init] – Specifies the contents of the initial guess to the
solution of the linear system.

■ iparm[S3l_iter_maxiter] – Specifies the maximum number of iterations to
be taken by the solver.

■ iparm[S3l_iter_kspace] – Specifies the size of the Krylov subspace for
restarted GMRES.

Upon exit, iparm contains the total number of iterations taken by the solver at the
time of termination.

rparm is a real local array with the same precision as x and a length equal to
S3L_iter_rparm_size. At the start, it provides the following options:

S3L_gen_iter_solve(A, b, x, iparm, rparm, ier)
134 Sun S3L 4.0 Software Programming Guide • February 2003

■ rparm[S3L_iter_tol] – Specifies the tolerance values to be used by the
stopping criterion. It has a default of 10-8.

■ rparm[S3L_rich_scale] – Specifies the scaling factor to be used in the
Richardson method. The default is 1.0.

Upon exit, rparm contains the value of err, according to the stopping criterion, as
computed for the last iteration.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_gen_iter_solve(3) man page or the corresponding description in the Sun
S3L Software Reference Manual.

Examples showing S3L_gen_iter_solve in use can be found in:

Deallocating a Sparse Linear System
Solver
S3L_sparse_solve_free frees all internal data associated with the solution of a
sparse linear system.

S3L_sparse_solve_free has the following argument syntax:

setup is an integer associated with a particular sparse linear solution. It was
previously returned by the S3L_sparse_solve call that produced the solution.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for this routine, see the
S3L_sparse_solve_free(3) man page or the corresponding description in the
Sun S3L Software Reference Manual.

Examples showing S3L_sparse_solve_free in use can be found in:

/opt/SUNWhpc/examples/s3l/iter/ex_iter.c

/opt/SUNWhpc/examples/s3l/iter-f/ex_iter.f

S3L_sparse_solve_free(setup, ier)

/opt/SUNWhpc/examples/s3l/spsolve/ex_sparse_solve1.c

/opt/SUNWhpc/examples/s3l/spsolve-f/ex_sp_solvef1.f
Chapter 13 Sparse Linear System Solvers 135

136 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 14

Fast Fourier Transform Routines

This chapter discusses the routines Sun S3L provides for FFT operations. The
discussion is organized into the following sections:

■ “Overview” on page 137
■ “Setting Up for FFT Operations” on page 138
■ “Using Sun S3L FFT Computational Routines” on page 139

Overview
Sun S3L provides the following FFT computational routines:

■ S3L_fft() – Compute forward FFTs along all axes of a complex or double-
complex array.

■ S3L_ifft() – Compute reverse FFTs along all axes of a complex or double-
complex array.

■ S3L_fft_detailed() – Compute forward or inverse FFTs along a specified axis
of a complex or double-complex array.

■ S3L_rc_fft() – Compute forward FFTs along all axes of a real array, producing
a complex result.

■ S3L_cr_fft() – Compute inverse FFTs along all axes of a complex array,
producing a real result.

In addition to these FFT computational routines, the library includes routines for
setting up and deallocating internal data structures that are used by the FFT
routines. These FFT setup and deallocation routines are

■ S3L_fft_setup() – Set up for computing FFTs of complex arrays

■ S3L_rc_fft_setup() – Set up for computing FFTs of real arrays

■ S3L_fft_free_setup() – Deallocate internal structures created by
S3L_fft_setup()
137

■ S3L_rc_fft_free_setup() – Deallocate internal structures created by
S3L_rc_fft_setup().

Use of the FFT setup, computational, and deallocation routines is discussed in the
following sections.

Setting Up for FFT Operations
Before performing an FFT setup of a Sun S3L array, you must call either
S3L_declare or S3L_declare_detailed to allocate memory for that array. Each
array declaration routine returns a Sun S3L array handle that uniquely references the
allocated array.

After allocating the target array, but before calling an FFT computational routine,
call the appropriate FFT setup routine. You have two choices:

■ If the target array is of type S3L_complex or S3L_double_complex, call
S3L_fft_setup.

■ If the array is of type S3L_float or S3L_double, call S3L_rc_fft_setup.

S3L_fft_setup and S3L_rc_fft_setup have the same argument syntax:

a is the Sun S3L array handle returned by an earlier call to S3L_declare or
S3L_declare_detailed.

setup_id is the setup ID returned by this call to S3L_fft_setup.

If the call is made from a Fortran program, error status will be in ier.

S3L_fft_setup and S3L_rc_fft_setup both allocate memory for internal setup
structures. These internal data structures will hold the twiddle factors to be used in
subsequent FFT computations, as well as information about the size and layout
characteristics of the target array. Memory is also allocated for temporary arrays that
may be needed during the FFT operations.

Note – The setup routines do not examine or modify the contents of the parallel
array associated with the array handle. They use only its rank, extents, and type
information in creating their setup structures.

S3L_fft_setup(a, setup_id, ier)

S3L_rc_fft_setup(a, setup_id, ier)
138 Sun S3L 4.0 Software Programming Guide • February 2003

If you want to perform multiple FFT computations on arrays that all have the same
size and type, you can reuse the setup ID returned by one call to S3L_fft_setup or
S3L_rc_fft_setup. In other words, you would only need to make a single call to
a setup routine if all the target arrays for subsequent FFT operations are of the same
size and type.

For detailed descriptions of the Fortran and C bindings for these routines, see the
S3L_fft_setup(3) and S3L_rc_fft_setup(3) man pages or the corresponding
descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_fft_setup in use can be found in:

Examples of S3L_rc_fft_setup in use can be found in:

Using Sun S3L FFT Computational
Routines
Sun S3L FFT routines are optimized for use in a message-passing context. The core
consists of a matrix transposition module, combined with nodal single-process,
single-thread FFTs. The node-level operations are performed using functions from
the Sun Performance Library.

The Sun S3L FFT routines support parallel arrays with arbitrary distributions in a
multiprocess environment. However, certain distributions are better for maximum
efficiency. See the Sun HPC ClusterTools Software Performance Guide for advice on
performance tuning of FFT operations.

Simple, Complex-to-Complex FFTs
S3L_fft and S3L_ifft compute, respectively, the forward and inverse Discrete
Fourier Transforms (DFTs) of complex arrays of up to three dimensions. Both power-
of-two and arbitrary radix FFTs are supported. The same FFT setup can be used for
both forward and inverse FFT operations.

/opt/SUNWhpc/examples/s3l/fft/fft.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft2.c

/opt/SUNWhpc/examples/s3l/fft-f/ex_fft.f

/opt/SUNWhpc/examples/s3l/fft-f/ex_fft1.f

/opt/SUNWhpc/examples/s3l/rc_fft/rc_fft.c
/opt/SUNWhpc/examples/s3l/rc_fft-f/rc_fft.f
Chapter 14 Fast Fourier Transform Routines 139

Note – In Sun S3L, the forward FFT is defined by a negative sign in the exponential
factors and the inverse by a positive sign.

S3L_fft and S3L_ifft have the same argument syntax:

a is the Sun S3L array handle returned by an earlier call to S3L_declare or
S3L_declare_detailed.

setup_id is the setup ID returned by an earlier call to S3L_fft_setup.

If the call is made from a Fortran program, error status will be in ier.

S3L_fft and S3L_ifft do not perform scaling. Consequently, if you call S3L_fft
and then call S3L_ifft, the original data will be scaled by the product of the array
extents.

For FFT computation of 1D arrays, the Cooley-Tuckey algorithm with stages
(number of processes) and length/number of processes is used. Consequently, for
1D FFTs, the array size must be a multiple of the square of the number of processes.

A standard row-column algorithm is used for 2D and 3D FFTs.

When the target array has more than three dimensions or if you want more control
over how the FFT operations are applied to the axes of an array, use
S3L_fft_detailed instead. This routine is discussed next.

Detailed, Complex-to-Complex FFTs
S3L_fft_detailed uses the same setup as S3L_fft and S3L_ifft, but accepts
two additional parameters. Its argument syntax is:

a is the Sun S3L array handle returned by an earlier call to S3L_declare or
S3L_declare_detailed.

setup_id is the setup ID returned by an earlier call to S3L_fft_setup.

iflag specifies the direction of the FFT computation; 1 = forward and –1 = inverse.

axis specifies the axis along which the FFT is to be computed.

If the call is made from a Fortran program, error status will be in ier.

S3L_fft(a, setup_id, ier)

S3L_ifft(a, setup_id, ier)

S3L_fft_detailed(a, setup_id, iflag, axis, ier)
140 Sun S3L 4.0 Software Programming Guide • February 2003

For detailed descriptions of the Fortran and C bindings for the S3L_fft and
S3L_fft_detailed routines, see the S3L_fft(3) and S3L_fft_detailed(3)
man pages or the corresponding descriptions in the Sun S3L Software Reference
Manual.

Examples showing S3L_fft and S3L_fft_detailed in use can be found in:

Real-to-Complex and Complex-to-Real FFTs
S3L_rc_fft computes the forward FFT of a real array of up to three dimensions. It
accepts as input a parallel array containing real, single- or double-precision data.
Upon completion, it overwrites the real contents of the array with the packed
representation of a complex array.

S3L_cr_fft computes the inverse FFT of an array of up to three dimensions whose
contents are the packed representation of a complex array.

These routines employ algorithms based on nonstandard extensions of the Cooley-
Tuckey factorization and the Chinese Remainder Theorem. Both power-of-two and
arbitrary radix FFTs are supported.

The nodal FFT functions upon which the parallel FFT is based are mixed radix with
prime factors of 2, 3, 5, 7, 11, and 13. Performance will benefit when the size of the
array is a product of powers of these factors. When the size of an array cannot be
factored into these prime factors, a slower DFT will be used for the remainder.

Supported Array Sizes

S3L_rc_fft and S3L_cr_fft have the following array size requirements:

■ 1D – The array size must be divisible by 4 x p2, where p is the number of
processors.

■ 2D – Each of the array lengths must be divisible by 2 x p, where p is the number
of processors.

■ 3D – The first dimension must be even and must have a length of at least 4. The
second and third dimensions must be divisible by 2 x p, where p is the number of
processors.

/opt/SUNWhpc/examples/s3l/fft/fft.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft2.c

/opt/SUNWhpc/examples/s3l/fft-f/fft.f
Chapter 14 Fast Fourier Transform Routines 141

Scaling

The real-to-complex and complex-to-real parallel FFTs do not perform scaling.
Consequently, for a forward 1D real-to-complex FFT of a vector of length n, followed
by an inverse 1D complex-to-real FFT of the result, the original vector is multiplied
by n/2.

If the data fits in a single process, a 1D real-to-complex FFT of a vector of length n,
followed by a 1D complex-to-real FFT, results in the original vector being scaled
by n.

For a real-to-complex FFT of a 2D real array of size n x m, followed by a complex-to-
real FFT, the original array is scaled by n x m.

Similarly, a real-to-complex FFT applied to a 3D real array of size n x m x k, followed
by a complex-to-real FFT, results in the original array being scaled by
n x m x k.

Complex Data Packed Representation

The following describes the complex data packing scheme used in the real-to-
complex FFTs of 1D, 2D, and 3D arrays.

1D Real-to-Complex Fourier Transform

The periodic Fourier Transform of a real sequence X[i], i = 0, ..., N-1 is Hermitian
(exhibits conjugate symmetry around its middle point).

If X[i],i = 0, ..., N-1 are the complex values of the Fourier Transform, then:

Consider for example the real sequence:

 X[i] = conj(X[N-i]), i=1, ..., N-1 (eq. 1)

X =

0

1

2

3

4

5

6

7

142 Sun S3L 4.0 Software Programming Guide • February 2003

Its Fourier Transform is:

As you can see:

Because of the Hermitian symmetry, only N/2+1 = 5 values of the complex sequence
X need to be calculated and stored. The rest can be computed from (1).

Note that X[0] and X[N/2] are real valued so they can be grouped together as one
complex number. In fact, Sun S3L stores the sequence X as:

The first line in this example represents the real and imaginary parts of a complex
number.

To summarize, in Sun S3L, the Fourier Transform of a real-valued sequence of length
N (where N is even) is stored as a real sequence of length N. This is equivalent to a
complex sequence of length N/2.

X =

28.0000

-4.0000 + 9.6569i

-4.0000 + 4.0000i

-4.0000 + 1.6569i

-4.0000

-4.0000 - 1.6569i

-4.0000 - 4.0000i

-4.0000 - 9.6569i

X[1] = conj(X[7])

X[2] = conj(X[6])

X[3] = conj(X[5])

X[4] = conj(X[4]) (i.e., X[4] is real)

X[5] = conj(X[3])

X[6] = conj(X[2])

X[7] = conj(X[1])

X[0] X[N/2]

X[1]

X[2]

or

X =

28.0000 - 4.0000i

-4.0000 + 9.6569i

-4.0000 - 4.0000i

-4.0000 + 1.6569i
Chapter 14 Fast Fourier Transform Routines 143

2D Real-to-Complex Fourier Transform

The method used for 2D FFTs is similar to that used for 1D FFTs. When transforming
each of the array columns, only half of the data is stored.

3D Real-to-Complex Fourier Transform

As with the 1D and 2D FFTs, no extra storage is required for the 3D FFT of real data,
since advantage is taken of all possible symmetries. For an array a(M,N,K), the
result is packed in complex b(M/2,N,K) array. Hermitian symmetries exist along the
planes a(0,:,:) and a(M/2,:,:) and along dimension 1.

See the rc_fft.c and rc_fft.f program examples for illustrations of these
concepts. The paths for these online examples are provided at the end of this section.

Argument Syntax

S3L_rc_fft and S3L_cr_fft have the same argument syntax:

a is the Sun S3L array handle returned by an earlier call to S3L_declare or
S3L_declare_detailed.

setup_id is the setup ID returned by an earlier call to S3L_rc_fft_setup.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the S3L_rc_fft and
S3L_cr_fft routines, see the S3L_rc_fft(3) and S3L_cr_fft(3) man pages or
the corresponding descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_rc_fft and S3L_cr_fft in use can be found in:

Deallocating FFT Setups
When an FFT setup is no longer needed, call S3L_fft_free_setup to free up
memory that was allocated by a prior call to S3L_fft_setup. Likewise, call
S3L_rc_fft_free_setup to free memory that was allocated by a prior call to
S3L_rc_fft_setup.

S3L_rc_fft(a, setup_id, ier)

S3L_cr_fft(a, setup_id, ier)

/opt/SUNWhpc/examples/s3l/rc_fft/rc_fft.c

/opt/SUNWhpc/examples/s3l/rc_fft-f/rc_fft.f
144 Sun S3L 4.0 Software Programming Guide • February 2003

S3L_fft_free_setup and S3L_rc_fft_free_setup have the same argument
syntax:

setup_id is the setup ID returned by an earlier call to S3L_rc_fft_setup.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the
S3L_fft_free_setup and S3L_rc_fft_free_setup routines, see the
S3L_fft_free_setup(3) and S3L_rc_fft_free_setup(3) man pages or the
corresponding descriptions in the Sun S3L Software Reference Manual.

Examples showing S3L_fft_free_setup in use can be found in:

Examples of S3L_rc_fft_free_setup are in:

S3L_fft_free_setup(setup_id, ier)

S3L_rc_fft_free_setup(setup_id, ier)

/opt/SUNWhpc/examples/s3l/fft/fft.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft1.c

/opt/SUNWhpc/examples/s3l/fft/ex_fft2.c

/opt/SUNWhpc/examples/s3l/fft-f/ex_fft.f

/opt/SUNWhpc/examples/s3l/fft-f/ex_fft1.f

/opt/SUNWhpc/examples/s3l/rc_fft/rc_fft.c

/opt/SUNWhpc/examples/s3l/rc_fft-f/rc_fft.f
Chapter 14 Fast Fourier Transform Routines 145

146 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 15

Parallel Random Number
Generation Routines

Sun S3L offers two alternative methods for generating pseudo-random numbers for
parallel arrays, Lagged-Fibonacci random number generator (LFG) and Linear
Congruential random number generator (LCG). The routines associated with these
two methods are discussed in the following sections:

■ “Initialize Lagged-Fibonacci State Table” on page 147
■ “Lagged-Fibonacci Random Number Generator” on page 148
■ “Linear Congruential Random Number Generator” on page 149
■ “Deallocate LFG Setup” on page 150

Initialize Lagged-Fibonacci State Table
S3L_setup_rand_fib allocates a set of LFG state tables and initializes them with
the fixed parameters: l = 17, k = 5, m = 32, where:

■ l is the table lag pointer
■ k is the short lag pointer
■ m is the width, in bits, of each table element

An LFG state table operates as a circular buffer, with the table lag and short lag
values pointing into different locations in the table. As the two pointers step through
the state table, a sequence of pseudo-random numbers is created. At each step in the
cycle, the two values pointed at by table lag and short lag are added together, with
that sum replacing the value created by the previous step.

The size of each state table is l x m (the product of the table lag and width
parameters). Since S3L_setup_rand_fib uses 17 and 32 for these parameters, each
state table will occupy 544 bits of memory.
147

The table lag and short lag values have been selected to provide optimal balance
between the length of the random number generation period and the amount of
memory used. A random number generator’s period is the number of new random
values that it generates before returning to the start of the sequence. Maximizing the
period ensures that the random numbers generated for each node are from a
different period of the LFG.

A Linear Multiplicative Generator (LMG) is used to initialize the noncritical
elements of the state table. The LMG itself is initialized by a seed value that is
entered as an argument to S3L_setup_rand_fib.

S3L_setup_rand_fib has the following argument syntax:

setup_id is a scalar integer returned by S3L_setup_rand_fib. It can be used by
subsequent calls to S3L_rand_fib to access the state tables.

seed is an integer value that is used to initialize the Linear Multiplicative Generator
which, in turn, initializes the LFG state tables.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the LFG setup routine,
see the S3L_setup_rand_fib(3) man page or the corresponding description in
the Sun S3L Software Reference Manual.

Examples showing S3L_setup_rand_fib in use can be found in:

Lagged-Fibonacci Random Number
Generator
S3L_rand_fib writes a pseudo-random number into each element of a parallel
array, a, using a Lagged-Fibonacci random number generator (LFG). The random
numbers are produced by the following iterative equation:

The result of S3L_rand_fib depends on how the parallel array a is distributed.

The following summarizes the different value ranges that are used for the different
supported data types:

S3L_setup_rand_fib(setup_id, seed, ier)

/opt/SUNWhpc/examples/s3l/rand_fib/rand_fib.c

/opt/SUNWhpc/examples/s3l/rand_fib-f/rand_fib.f

x[n] = (x[n-e] + x[n-k]) % 2m
148 Sun S3L 4.0 Software Programming Guide • February 2003

■ When the parallel array is of type integer, its elements are filled with nonnegative
integers in the range 0 . . . 231 -1.

■ When the parallel array is single- or double-precision real, its elements are filled
with random nonnegative numbers in the range 0 . . . 1.

■ For complex arrays, the real and imaginary parts are initialized to random real
numbers.

S3L_rand_fib has the following argument syntax:

a is a Sun S3L array handle that describes the parallel array to be initialized by the
LFG.

setup_id is an integer value that is used to access the state table associated with
the array a.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the LFG routine, see the
S3L_rand_fib(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_rand_fib in use can be found in:

Linear Congruential Random Number
Generator
S3L_rand_lcg initializes a parallel array a, using a Linear Congruential random
number generator (LCG). It produces random numbers that are independent of the
distribution of the parallel array.

The random numbers are initialized by an internal iterative equation of the type:

The result of S3L_rand_lcg does not depend on how the parallel array a is
distributed.

The following summarizes the different value ranges that are used for the different
supported data types:

S3L__rand_fib(a, setup_id, ier)

/opt/SUNWhpc/examples/s3l/rand_fib/rand_fib.c

/opt/SUNWhpc/examples/s3l/rand_fib-f/rand_fib.f

x[n] = (a*x[n-1] + c) % 2m
Chapter 15 Parallel Random Number Generation Routines 149

■ When the parallel array is of type integer, its elements are filled with nonnegative
integers in the range 0 . . . 231 -1.

■ When the parallel array is single- or double-precision real, its elements are filled
with random nonnegative numbers in the range 0 . . . 1.

■ For complex arrays, the real and imaginary parts are initialized to random real
numbers.

S3L_rand_lcg has the following argument syntax:

a is a Sun S3L array handle that describes the parallel array to be initialized by the
LCG.

iseed is an integer value. If positive, it is used as the initial seed for the LCG. If zero
or negative, the LCG produces a sequence of random numbers that is a continuation
of a sequence generated by a prior S3L_rand_lcg call.

If the call is made from a Fortran program, error status will be in ier.

For detailed descriptions of the Fortran and C bindings for the LCG routine, see the
S3L_rand_lcg(3) man page or the corresponding description in the Sun S3L
Software Reference Manual.

Examples showing S3L_rand_lcg in use can be found in:

Deallocate LFG Setup
S3L_free_rand_fib frees memory allocated to the state table of a particular
random number generator.

S3L_free_rand_fib has the following argument syntax:

setup_id is an integer value associated with the state tables that are to be
deallocated.

For detailed descriptions of the Fortran and C bindings for the LFG deallocation
routine, see the S3L_free_rand_fib(3) man page or the corresponding
description in the Sun S3L Software Reference Manual.

S3L__rand_lcg(a, iseed, ier)

/opt/SUNWhpc/examples/s3l/rand_lcg/rand_lcg.c

/opt/SUNWhpc/examples/s3l/rand_lcg-f/rand_lcg.f

S3L_free_rand_fib(setup_id, ier)
150 Sun S3L 4.0 Software Programming Guide • February 2003

Examples showing S3L_free_rand_fib in use can be found in:

/opt/SUNWhpc/examples/s3l/rand_fib/rand_fib.c

/opt/SUNWhpc/examples/s3l/rand_fib-f/rand_fib.f
Chapter 15 Parallel Random Number Generation Routines 151

152 Sun S3L 4.0 Software Programming Guide • February 2003

CHAPTER 16

Summary of Other Sun S3L
Routines

This chapter provides a summary listing of routines that are in Sun S3L, but are not
discussed in detail elsewhere in this manual. The discussion is separated into two
sections, as follows:

■ “Other Computational Routines” on page 153
■ “Other Toolkit Routines” on page 159

For detailed descriptions of these routines, refer to the Sun S3L Software Reference
Manual.

Other Computational Routines

Walsh Transform
The following Sun S3L routines support the computation of the discrete
Walsh/Hadamard transform of 1D and 2D Sun S3L arrays:

Sun S3L computes the unordered Hadamard transform, whose matrix is a
permutation of the ordered Hadamard and Walsh transforms. The transform can be
computed either in place or out of place.

S3L_walsh_setup

S3L_walsh

S3L_walsh_free_setup
153

If computed in-place, the result is in a and in order. If it is computed out of place,
the result is in b and out of order.

Iterative Eigenpairs
Sun S3L provides the following routine for computing selected eigenpairs of dense
or sparse matrices using iterative methods:

Eigenpair selection can be based on user-specified properties, such as largest
magnitude. When computing eigenpairs in densely populated arrays, the multiple-
instance paradigm can be used to shorten the time to solution.

Stock Option Pricing
The following Sun S3L routines compute the prices of vanilla and certain exotic
stock option prices. Optional support for hedge statistics (Greeks) is also provided.

Both use fourth-order, unconditionally stable, oscillation-free finite-difference
method to solve 1D and 2D Black-Scholes partial differential equations.

Discrete Sine and Cosine Transforms
Sun S3L provides routines for computing the discrete cosine transform Type IV and
discrete sine transform of 1D, 2D, and 3D Sun S3L arrays. The arrays have to be real
(S3L_float or S3L_double).

The discrete cosine transform routines are:

The discrete sine transform routines are:

S3L_eigen_iter

S3L_fin_fd_1D

S3L_fin_fd_2D

S3L_dct_iv_setup

S3L_dct_iv

S3L_dct_iv_setup

S3L_dst_setup

S3L_dst

S3L_dst_free_setup
154 Sun S3L 4.0 Software Programming Guide • February 2003

Quadratic Programming Optimization
The following routines are provided for quadratic programming optimization:

S3L_qp applies an interior point method to solve a linear/quadratic optimization
problem. The other routines are used to define certain attributes, such as the type of
solver to be used, and to release the array handle associated with the specified
attributes.

Sparse Linear Problem Solver
Sun S3L also provides the following routine for solving linear/quadratic
optimization problems for sparse Sun S3L arrays.

Cholesky Solver
Sun S3L provides the following routines for computing Cholesky factors and solving
systems of distributed linear equations:

For each square matrix A in the parallel array a, S3L_cholesky_factor computes
the Cholesky factorization. The factorization has the form A = U' x U, where U is an
upper triangular matrix.

S3L_cholesky_solve uses the factors computed by S3L_cholesky_factor to
solve a system of distributed linear equations of the form AX = B for each square
matrix A in the parallel array a.

S3L_cholesky_invert computes the inverse of each square matrix instance A of
the parallel array a. It does this by inverting the Cholesky factor U and then
computing inverse(U) * inverse(U)’.

S3L_qp

S3L_qp_attr_set

S3L_qp_attr_destroy

S3L_qp_attr_init

S3L_lp_sparse

S3L_cholesky_factor

S3L_cholesky_solve

S3L_cholesky_invert
Chapter 16 Summary of Other Sun S3L Routines 155

Structured Solvers
The following routines can be used to solve banded and triangular systems:

S3L_gen_band_factor performs the LU factorization of an n x n general banded
array and S3L_gen_band_solve solves the banded system represented by the
factorization results. S3L_gen_band_free_factors frees the internal data
structures associated with the banded matrix factorization.

S3L_gen_trid_factor factors a tridiagonal matrix whose diagonal is stored in a
vector. S3L_gen_trid_solve solves a tridiagonal system using the factors
supplied by an earlier call to S3L_gen_trid_factor.
S3L_gen_trid_free_factors frees the internal data structures associated with a
prior tridiagonal factorization.

Both S3L_gen_band_factor and S3L_gen_trid_factor operate on arrays of
rank 3 and greater in 2D slices, using the multiple-instance method to reduce overall
execution time.

Dense Symmetric Eigenvalue Solver
Sun S3L provides the following routine for finding selected eigenvalues and,
optionally, eigenvectors of Hermitian matrices:

Various controls can be placed on the selection process, such as specifying a range of
values or range of indices within which the eigenvalues must lie.

Condition Numbers
The following routine can be used to compute the condition numbers of square
arrays:

S3L_gen_band_factor

S3L_gen_band_solve

S3L_gen_band_free_factors

S3L_gen_trid_factor

S3L_gen_trid_solve

S3L_gen_trid_free_factors

S3L_sym_eigen

S3L_condition_number
156 Sun S3L 4.0 Software Programming Guide • February 2003

Internal LU factorization is used in combination with a norm as specified by a
calling argument. The norm can be either 1-norm or infinity norm.

Least-Squares Solver
Sun S3L provides the following routine for finding the least-squares solution of an
overdetermined system (m >= n):

For an underdetermined system (m < n), S3L_gen_lsq finds the minimum norm
solution.

Dense Singular Value Decomposition
The following routine computes the singular value of a parallel array and,
optionally, the right and/or left singular vectors:

Iterative Solver
The following routine uses an iterative algorithm, with or without preconditioning,
to solve a linear system of equations of the form Ax = b:

Autocorrelation
Sun S3L provides the following routines for computing the 1D or 2D autocorrelation
of a signal represented by a parallel array:

S3L_gen_lsq

S3L_gen_svd

S3L_gen_iter_solve

S3L_acorr_setup

S3L_acorr

S3L_acorr_free_setup
Chapter 16 Summary of Other Sun S3L Routines 157

Convolution
Sun S3L provides the following routines for computing the 1D or 2D convolution of
a signal represented by a parallel array, using a filter contained in a second parallel
array:

Deconvolution
Sun S3L provides the following routines for computing the 1D or 2D deconvolution
of a signal represented by a parallel array:

Grade Elements
Sun S3L includes a family of routines that computes the grade of the elements of a
parallel array. Grading is done in either descending or ascending order and is done
either across the whole array or along a specified axis. These routines are:

S3L_conv_setup

S3L_conv

S3L_conv_free_setup

S3L_deconv_setup

S3L_deconv

S3L_deconv_free_setup

S3L_grade_up

S3L_grade_down

S3L_grade_detailed_up

S3L_grade_detailed_down
158 Sun S3L 4.0 Software Programming Guide • February 2003

Sort Elements
Sun S3L includes a family of routines that sorts the elements of a parallel array.
Sorting is done in either descending or ascending order and is done either across the
whole array or along a specified axis. These routines are:

Parallel Transpose
The following routine performs a general permutation of the axes of a parallel array:

Other Toolkit Routines

Perform Operations on Array Elements
Sun S3L includes a variety of routines that can be used to alter the values of
individual elements or particular subsets of elements in parallel arrays.

The following routines perform operations that involve one or two operands:

S3L_array_op1 and S3L_array_op2 both operate on elements contained in one
(op1) or two (op2) arrays. S3L_array_scalar_op2 operations involve an array
and a scalar.

The following routine performs a circular shift of a specified distance along a
specified axis of an array:

S3L_sort

S3L_sort_up

S3L_sort_down

S3L_sort_detailed

S3L_sort_detailed_up

S3L_sort_detailed_down

S3L_trans

S3L_array_op1

S3L_array_op2

S3L_array_scalar_op2

S3L_cshift
Chapter 16 Summary of Other Sun S3L Routines 159

The following routine applies a user-defined function to some or all elements of an
array:

The following routines perform a predefined reduction function over all elements of
an array or along a specified axis of an array:

The following routine sets all elements in an array to zero:

Copy Arrays
The following routine copies the contents of one parallel array into a second parallel
array:

S3L_forall

S3L_reduce

S3L_reduce_axis

S3L_zero_elements

S3L_copy_array
160 Sun S3L 4.0 Software Programming Guide • February 2003

	Contents
	Preface
	Acknowledgments
	How This Book Is Organized
	Using UNIX Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation
	Sun Welcomes Your Comments

	Introduction to Sun S3L
	Sun S3L Overview
	Contents of Sun S3L

	Sun S3L Data Types
	Sun S3L Arrays
	Overview
	Sun S3L Array Attributes
	Array Indexing
	Sun S3L Array Handles
	Creating Sun S3L Array Handles
	Deallocating Sun S3L Array Handles

	MPI Processes and Sun S3L Process Grids
	Creating Process Grids
	Distributing Sun S3L Arrays
	Examining the Contents of Sun S3L Arrays
	Printing Sun S3L Arrays
	Visualizing Distributed Sun S3L Arrays With Prism

	Multiple Instance
	Defining Multiple Independent Data Sets
	Rules for Data Axes and Instance Axes
	Specifying Single-Instance vs. Multiple- Instance Operations
	Example 1: Matrix-Vector Multiplication
	Single-Instance Operation
	Multiple-Instance Operation
	The Importance of Data Layout

	Example 2: Fast Fourier Transforms

	Using Sun S3L
	Incorporating Sun S3L Function Calls Into Your Program
	Referencing Sun S3L Include Files
	Setting Up the Sun S3L Environment
	Enabling Thread-Safe Use of Sun S3L Routines
	Using the Sun S3L Safety Mechanism
	Creating Sun S3L Array Handles for Dense Arrays
	Creating Sun S3L Array Handles for Sparse Arrays
	Overview of S3L_declare_sparse
	Overview of S3L_read_sparse
	Overview of S3L_rand_sparse

	Freeing Sun S3L Array Handles for Dense and Sparse Arrays
	Using the Sun S3L Link Switch
	Accessing Online Program Examples and Man Pages
	Sample Code Directories
	Compiling and Running the Examples
	Man Pages

	Setting Up the Sun S3L Environment
	Creating and Removing Sun S3L Environments
	Creating a Sun S3L Environment
	Removing a Sun S3L Environment

	Setting Up Support for Thread-Safe Operation
	Controlling the Sun S3L Safety Mechanism
	Error Checking and Reporting
	Synchronization

	Sun S3L Toolkit Routines for Managing Dense Arrays
	Creating and Destroying Array Handles for Dense Sun S3L Arrays
	Notes
	Sun S3L Declare Example
	Sun S3L Declare Detailed Example

	Converting Between ScaLAPACK Descriptors and Sun S3L Array Handles
	Converting From ScaLAPACK to Sun S3L
	Converting From Sun S3L to ScaLAPACK

	Freeing Sun S3L Array Handles
	Initializing a Sun S3L Array From a File
	Writing a Sun S3L Array to a File
	Printing a Sun S3L Array to Standard Output
	Copying Sun S3L Arrays

	Creating and Freeing Custom Process Grids
	Creating a Custom Process Grid
	Set Process Grid Example

	Deallocating a Process Grid

	Extracting Information From Sun S3L Arrays and Process Grids
	Extracting Descriptions of Sun S3L Arrays and Process Grids
	Extracting Sun S3L Array Attributes
	Obtaining and Setting Array Elements
	S3L_get_array_element
	S3L_set_array_element
	S3L_get_array_element_on_proc
	S3L_set_array_element_on_proc

	Dense Matrix Routines
	Overview
	Matrix-Matrix Multiplication
	Matrix-Vector Multiplication
	2-Norm Operations
	Inner-Product Operations
	Multiple-Instance Inner-Product Routines
	Single-Instance Inner-Product Routines

	Outer-Product Operations

	General Linear Systems Solvers
	Gaussian Elimination for Dense Systems
	LU Factor Routine
	LU Solve Routine
	LU Invert Routine
	LU Deallocate Routine

	Householder Transformations
	Computing QR Decomposition of Sun S3L Arrays
	Notes

	Finding the Least-Squares Solution for a QR-Decomposed Array
	Notes

	Obtaining Q and R Arrays
	Freeing QR Factors

	Basic Sparse Matrix Routines
	Supported Sparse Formats
	Coordinate Format
	Compressed Sparse Row Format
	Compressed Sparse Column Format
	Variable Block Row Format

	Declaring a Sparse Matrix
	Initializing a Sparse Matrix From a File
	Initializing a Sparse Matrix With Random Values
	Writing a Sparse Matrix to a File
	Printing a Sparse Matrix to Standard Output
	Converting a Sparse Matrix From One Format to Another
	Computing a Sparse Matrix-Vector Product
	Deallocating a Sparse Matrix Array Handle

	Sparse Linear System Solvers
	Solving Sparse Linear Systems by the Direct Method
	Solving Sparse Linear Systems by an Iterative Method
	Algorithm
	Preconditioning
	Convergence/Divergence Criteria
	Initial Guess
	Maximum Iterations
	Krylov Subspace
	Stopping Criterion Tolerance
	Richardson Scaling Factor
	Iteration Termination

	Deallocating a Sparse Linear System Solver

	Fast Fourier Transform Routines
	Overview
	Setting Up for FFT Operations
	Using Sun S3L FFT Computational Routines
	Simple, Complex-to-Complex FFTs
	Detailed, Complex-to-Complex FFTs
	Real-to-Complex and Complex-to-Real FFTs
	Supported Array Sizes
	Scaling
	Complex Data Packed Representation
	Argument Syntax

	Deallocating FFT Setups

	Parallel Random Number Generation Routines
	Initialize Lagged-Fibonacci State Table
	Lagged-Fibonacci Random Number Generator
	Linear Congruential Random Number Generator
	Deallocate LFG Setup

	Summary of Other Sun S3L Routines
	Other Computational Routines
	Walsh Transform
	Iterative Eigenpairs
	Stock Option Pricing
	Discrete Sine and Cosine Transforms
	Quadratic Programming Optimization
	Sparse Linear Problem Solver
	Cholesky Solver
	Structured Solvers
	Dense Symmetric Eigenvalue Solver
	Condition Numbers
	Least-Squares Solver
	Dense Singular Value Decomposition
	Iterative Solver
	Autocorrelation
	Convolution
	Deconvolution
	Grade Elements
	Sort Elements
	Parallel Transpose

	Other Toolkit Routines
	Perform Operations on Array Elements
	Copy Arrays

