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Preface

This manual presents techniques that application programmers can use to get top

performance from message-passing programs running on Sun™ servers and clusters

of servers.

Before You Read This Book

This manual assumes that the reader has basic knowledge of:

■ Developing parallel applications with the Sun MPI and S3L libraries

■ Executing parallel applications with either the Sun Cluster Runtime Environment

(CRE) or Platform Computing’s Load-Sharing Facility Suite (LSF)

■ Profiling parallel applications using the Prism™ development environment

How This Book Is Organized

This manual covers the following topics.

■ Quick Reference - A summary of performance tips

■ Chapter 1 - Introduction: The Sun HPC ClusterTools Solution
■ Chapter 2 - Choosing Your Programming Model and Hardware
■ Chapter 3 - Performance Programming with the Sun MPI (message-passing) library

■ Chapter 4 - Sun S3L Performance Guidelines, for getting the most from this

optimized library of scientific routines

■ Chapter 5 - Compilation and Linking for top performance

■ Chapter 6 - Runtime Considerations and Tuning
xi



■ Chapter 7 - Profiling tools and techniques

■ Appendix A - Sun MPI Implementation and how it affects performance

■ Appendix B - Sun MPI Environment Variables and how to use them

Using Solaris Commands

This document may not contain information on basic Solaris™ commands and

procedures.

See one or both of the following for this information:

■ AnswerBook2™ online documentation for the Solaris Operating Environment

■ Other software documentation that you received with your system.
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Typographic Conventions

Shell Prompts

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

Command-line variable; replace

with a real name or value

To delete a file, type rm filename.

Shell Prompt

C shell %

C shell superuser #

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
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Related Documentation

Accessing Sun Documentation Online

The docs.sun.com SM web site enables you to access a select group of Sun technical

documentation on the Web. You can browse the docs.sun.com archive or search

for a specific book title or subject at:

http://docs.sun.com

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product

documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center

on Fatbrain.com at:

http://www.fatbrain.com/documentation/sun

Application Title Part Number

All Sun HPC ClusterTools 4 Product Notes 816-0647-10

Sun S3L Programming Sun S3L 4.0 Programming Guide 816-0652-10

Sun S3L Programming Sun S3L 4.0 Reference Manual 816-0653-10

Sun MPI Programming Sun MPI 5.0 Programming and Reference Guide 816-0651-10

Sun MPI Programming Sun HPC ClusterTools 4 User’s Guide 816-0650-10

Prism Prism 6.2 User’s Guide 816-0654-10

Prism Prism 6.2 Reference Manual 816-0655-10
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Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.
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Quick Reference

This list is a summary of the key performance tips found in this document. They are

organized under the following categories:

■ “Compilation and Linking” on page xvii

■ “Sun MPI Environment Variables” on page xviii

■ “Job Launch on a Multinode Cluster” on page xx

■ “MPI Programming Tips” on page xxii

■ “Forte Developer Profiling” on page xxiii

■ “Prism Profiling” on page xxv

Compilation and Linking

Compilation and linking are discussed in Chapter 5.

■ Use Forte™ Developer 6 update 2 for best performance.

■ Use the f90 compiler for all Fortran codes, including Fortran 77.

See “Compiler Version” on page 73.

■ Use the mpf77 , mpf90 , mpcc, and mpCCutilities where possible. Link with

-lmpi . For programs that use S3L, link with -ls3l .

% mpf90 -fast -g a.f -lmpi
% mpcc -fast -g a.c -ls3l -lmopt

See “Using the mp* Utilities” on page 73.

■ Compile with -fast .

See “–fast ” on page 74.
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■ As appropriate, add the following -xarch setting after -fast :

See “–xarch ” on page 75.

■ Compile and link with -g .

See “-g ” on page 75.

■ Link with -lopt for C programs.

■ Compile with -xdepend .

■ Compile and link with -xvector if math library intrinsics (logarithms,

exponentials, or trigonometric functions) appear inside long loops.

■ Compile with -xprefetch selectively.

■ Compile with -xrestrict and -xalias_level , as appropriate, for C

programs.

■ Compile with -xsfpconst , as appropriate, for C programs.

■ Compile with -stackvar , as appropriate, for Fortran programs.

See “Other Useful Switches” on page 76.

Sun MPI Environment Variables

The Sun MPI environment variables are discussed in Chapter 6 and Appendix B.

■ Especially if you will leave at least one idle processor per node to service system

daemons, consider using

% setenv MPI_SPIN 1

See “Are You Running on a Dedicated System?” on page 79.

■ If there are no other MPI jobs running and your job is single-threaded,

% setenv MPI_PROCBIND 1

See “Are You Running on a Dedicated System?” on page 79.

32-bit binary 64-bit binary

UltraSPARC II

(will also run on

UltraSPARC III)

-xarch=v8plusa -xarch=v9a

UltraSPARC III

(will not run on

UltraSPARC II)

-xarch=v8plusb -xarch=v9b
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■ Suppress cyclic message passing with

% setenv MPI_SHM_CYCLESTART 0x7fffffff

or, in a 64-bit environment, with

% setenv MPI_SHM_CYCLESTART 0x7fffffffffffffff

See “Suppress Cyclic Messages” on page 79.

■ If system buffers are used “safely” (that is, code does not rely on unlimited

buffering to avoid deadlock)

% setenv MPI_POLLALL 0

If this setting causes your code to deadlock, try using larger buffers, as noted in

the next bullet.

See “Does the Code Use System Buffers Safely?” on page 80.

■ If you are willing to trade memory for performance, increase buffering with

% setenv MPI_SHM_SBPOOLSIZE 8000000

% setenv MPI_SHM_NUMPOSTBOX 256

See “Are You Willing to Trade Memory for Performance?” on page 80.

■ Move certain “warm-up” effects to MPI_Init() with

% setenv MPI_FULLCONNINIT 1

This smooths performance profiles and speeds certain portions of code, but

MPI_Init() can take up to minutes.

See “Initializing Sun MPI Resources” on page 82.

■ If more runtime diagnostic information is desired,

% setenv MPI_PRINTENV 1

% setenv MPI_SHOW_INTERFACES 3

% setenv MPI_SHOW_ERRORS 1

See “Is More Runtime Diagnostic Information Needed?” on page 83.
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Job Launch on a Multinode Cluster
■ Checking Load

See “Running on a Dedicated System” on page 77.

■ Objectives for Job Launch

■ Minimize internode communication.

- Run on one node if possible.

- Place heavily communicating processes on the same node as one another.

See “Minimizing Communication Costs” on page 83.

■ Maximize bisection bandwidth.

- Run on one node if possible.

- Otherwise, spread over many nodes.

- For example, spread jobs that use multiple I/O servers.

See “Bisection Bandwidth” on page 84.

■ Examples of Job Launch With CRE

■ To run jobs in the background, perhaps from a shell script, use -n :

% mprun -n -np 4 a.out &

or

% cat a.csh
#!/bin/csh
mprun -n -np 4 a.out
% a.csh

See “Running Jobs in the Background” on page 85.

■ To eliminate core dumps, do so in the parent shell.

% limit coredumpsize 0 (for csh )

$ ulimit -c 0 (for sh )

See “Limiting Core Dumps” on page 85.

CRE LSF UNIX

How high is the load? %mpinfo –N %lsload %uptime

What is causing the load? %mpps –e %bjobs –u all %ps –e
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■ To run 32 processes, with each block of consecutive 4 processes mapped to a

node:

% mprun –np 32 –Zt 4 a.out

or

% mprun –np 32 –Z 4 a.out

See “Collocal Blocks of Processes” on page 88.

■ To run 16 processes, with no two mapped to the same node:

% mprun –Ns –np 16 a.out

See “Multithreaded Job” on page 86.

■ To map 32 processes in round-robin fashion to the nodes in the cluster, with

possibly multiple processes per node:

% mprun –Ns –W –np 32 a.out

See “Round-Robin Distribution of Processes” on page 87.

■ To map the first 4 processes to node0 , the next 4 to node1 , and the next 8 to

node2 :

% cat nodelist

node0 4
node1 4
node2 8

% mprun –np 16 –m nodelist a.out

See “Detailed Mapping” on page 87.

■ Examples of Job Launch With LSF

See “Multinode Job Launch Under LSF” on page 88.

■ To eliminate core dumps, use

% bsub -C 0 -I -n 32 a.out

■ To run 32 processes, with each block of consecutive 4 processes run on a

distinct node:

% bsub –I –n 32 –R "span[ptile=4]" a.out
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MPI Programming Tips
■ Minimize number and volume of messages.

See “Reducing Message Volume” on page 21.

■ Reduce serialization and improve load balancing.

See “Reducing Serialization” on page 22 and “Load Balancing” on page 22.

■ Minimize synchronizations:

■ Generally reduce the amount of message passing.

■ Reduce the amount of explicit synchronization (such as MPI_Barrier() ,

MPI_Ssend() , and so on).

■ Post sends well ahead of when a receiver needs data.

■ Ensure sufficient system buffering.

See “Synchronization” on page 22.

■ Pay attention to buffering:

■ Do not assume unlimited internal buffering by Sun MPI.

■ Tune Sun MPI environment variables at run time to increase system buffering

(see Chapter 6 and Appendix B).

■ Use nonblocking calls such as MPI_Isend() for finest control over user-

specified buffering.

■ Post receives early to relieve pressure on system buffers.

See “Buffering” on page 23.

■ Replace blocking operations with nonblocking operations:

■ Initiate nonblocking operations as soon as possible.

■ Complete nonblocking operations as late as possible.

■ Test the status of nonblocking operations periodically with MPI_Test() calls.

See “Nonblocking Operations” on page 25.

■ Pay attention to polling:

■ Match message-passing calls (receives to sends, collectives to collectives, and

so on).

■ Post MPI_Irecv() calls ahead of arrivals.

■ Avoid MPI_ANY_SOURCE.

■ Avoid MPI_Probe() and MPI_Iprobe() .

■ Set the environment variable MPI_POLLALL to 0 at run time.

See “Polling” on page 25.

■ Take advantage of MPI collective operations.
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See “Sun MPI Collectives” on page 26.

■ Use contiguous data types:

■ Send some unnecessary padding if necessary.

■ Pack your own data if you can outperform generalized

MPI_Pack() /MPI_Unpack() routines.

See “Contiguous Data Types” on page 27.

■ Avoid congestion if you’re going to run over TCP:

■ Avoid “hot receivers.”

■ Use blocking point-to-point communications.

■ Use synchronous sends (MPI_Ssend() and related calls).

■ Use MPI collectives such as MPI_Alltoall() , MPI_Alltoallv() ,

MPI_Gather() , or MPI_Gatherv() , as appropriate.

■ At run time, set MPI_EAGERONLYto 0, and possibly lower

MPI_TCP_RENDVSIZE.

See “Special Considerations for Message Passing Over TCP” on page 27.

Forte Developer Profiling

Use of the Forte Developer Performance Analyzer with Sun MPI programs is

discussed in Chapter 7.

■ Before you start:

■ Use the most recent Forte Developer version and update number.

■ Set your path to include Forte Developer software, usually

/opt/SUNWspro/bin

■ Basic usage to collect performance data and analyze results:

% mprun -np 16 collect a.out 3 5 341
% analyzer test.*.er

■ To control data volumes:

■ Increase the profiling interval. For example:

% mprun -np 16 collect -p 20 a.out 3 5 341

■ Collect data on only a subset of the MPI processes.

■ Collect data to a local file system, such as /tmp , or a file system identified by

your system administrator, or by

% /usr/bin/df -lk
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■ Data organization:

■ Organize experiments (one per process) into subdirectories (one per multi-

process run). Use the commands er_mv , er_rm , and er_cp .

■ If you collect an experiment directly into a directory with the collect -d
switch, make sure that the directory has already been created and, ideally, that

no other experiments already exist in it.

■ Data collection with Forte Developer 6 update 1 or later:

■ Use collect as a standalone command (dbx is no longer required):

% cat csh-script
#!/bin/csh
if ( $MP_RANK < 4 ) then

collect -o /tmp/proc-$MP_RANK.er a.out 3 5 341
er_mv /tmp/proc-$MP_RANK.er .

else
a.out 3 5 341

endif
% mprun -np 16 csh-script

■ Loading data:

■ The performance analyzer accepts experiment names on the command line,

such as:

% analyzer
% analyzer proc-0.er
% analyzer run1/proc-*.er

■ After the analyzer has been started, use the Experiment menu to Add and

Drop individual experiments.

■ Analyzing data

■ Basic view shows how much time is spent per function.

■ Click on the Source button to see how much time is spent per source-code line.

This requires that the code was compiled and linked with -g , which is

compatible with high levels of optimization and parallelization.

■ Click on Callers-Callees to see caller-callee relationships.

■ Select other metrics with the Metrics button.

■ Use er_print to bypass the graphical interface:

% er_print -functions proc-0.er
% er_print -callers-callees proc-0.er
% er_print -source lhsx_ 1 proc-0.er

■ Look at inclusive time for high-level MPI functions to filter out internal

software layers of the Sun MPI library:

% er_print -function proc-0.er | grep PMPI_
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■ To ensure that MPI wait times are profiled, select wall-clock time, instead of

CPU time, as the profiling metric. Or, collect data in the first place with

% setenv MPI_COSCHED 0
% setenv MPI_SPIN 1

Prism Profiling

The Prism environment offers ease of use with its MPI Performance Analysis. If you

accept the default values, Prism’s TNF profiling requires no special compilation or

linking and no special invocation.

Prism Profiling is discussed in Chapter 7 and in the Prism User’s Guide.

■ Launch a basic profiling session with three commands or menu choices:

■ Prism’s TNF browser (tnfview ) opens with a timeline view of your profiling

data.

■ Note how the events in the window represent elapsed time.

■ Inspect the representation for any obvious structure indicating interprocess

synchronization or program behavior.

■ Middle-drag the mouse to zoom the timeline view.

■ To Display Profiling Statistics:

■ Click on the graph icon in the timeline window to open the graph window.

MPI calls appear on the list of Interval Definitions.

■ Identify the MPI calls that consume the most time and what fraction of overall

time they account for.

1. Click on a routine under Interval Definitions.

2. Click on Create a dataset from this interval definition.

Prism Command Menu Entry

tnfcollection on Performance : Collection

run Execute : Run

tnfview Performance : Display TNF Data
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3. Click on the Table tab.

4. Note the time spent under Latency Summation.

5. Repeat steps 1, 2, and 4 for other interesting MPI calls.

■ Identify the largest message sizes and which message sizes are responsible for the

most time.

The TNF browser displays byte counts as bytes, sendbytes, or recvbytes. The

TNF browser reports byte counts in _start or _end probes. The TNF

browser’s byte counts for MPI_Wait or MPI_Test calls are bytes received

(zero bytes usually indicate completions of asynchronous sends).

1. Click on the the Plot tab—Select values under X axis, Y axis, and Field:, then

click on Refresh.

2. Click on the Table tab—Select values under Group intervals by this data

element: (note that the browser may display the last column in hexadecimal

format).

3. Click on the Histogram tab—Select values under Metric and Field:, then

click on Refresh.

■ To find hot spots:

1. Click on the Plot tab.

2. Click on a high-latency event to center the timeline view about a hotspot.

3. Return to the timeline view.

4. Navigate about the hotspot using the navigation buttons.

1. Open the Navigate by list and select current vid.

2. Click on the arrow icons to move forward and backward.

3. Read data about selected events in the Event Table.

■ To control the volume of profiling data, consider:

■ Scale down the run (reduce the number of iterations or the number of

processes).

■ Use larger trace buffers.

■ Selectively enable probes.

■ Profile isolated sections of code by terminating jobs early, by modifying user

source code, or by isolating sections at run time.
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CHAPTER 1

Introduction: The Sun HPC
ClusterTools Solution

The Sun HPC ClusterTools suite is a solution for high-performance computing. It

provides the tools you need to develop and execute parallel (message-passing)

applications. These programs can run on any Sun system based on the

UltraSPARC™ processor, from a single workstation up to a cluster of high-end

symmetric multiprocessors (SMPs).

This chapter presents an overview of the hardware and software products that Sun

Microsystems provides for high-performance computing, with emphasis on the

components of the Sun HPC ClusterTools software suite.

■ Sun HPC Hardware on page 1

■ Processors on page 2

■ Nodes on page 2

■ Clusters on page 3

■ Sun HPC ClusterTools Software on page 3

■ Sun MPI on page 4

■ Sun S3L on page 4

■ Sun Parallel File System on page 5

■ Prism Environment on page 5

■ Cluster Runtime Environment on page 6

Sun HPC Hardware
Programs written with Sun HPC ClusterTools software run on the whole line of Sun

UltraSPARC clusters, servers, and workstations. This feature enables you to exploit

all available hardware in achieving performance.
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For detailed information on UltraSPARC-based computing see:

http://www.sun.com/sparc

http://www.sun.com/desktop

http://www.sun.com/servers

This section notes the performance-related features of Sun SMPs and clusters. These

will be important in the first step of performance programming, choosing your tools

and hardware, discussed in Chapter 2.

Processors

UltraSPARC microprocessors are a full implementation of the SPARC V9

architecture, which provides high-performance, 64-bit computing in a Solaris

Operating Environment.

The UltraSPARC-I processor introduced this family in 1995.

The UltraSPARC-II processor supports CPU clock speeds in the range of 250-480

MHz and L2 cache sizes up to 8 MBytes.

The UltraSPARC-III processor, introduced in 2000, has complete binary compatibility

with older applications, while introducing new performance enhancements for

programs that target only the latest processors. Initial versions are at 600, 750, and

900 MHz, with a published roadmap to 1.5+ GHz. L2 cache sizes are up to 8 MBytes.

Nodes

Nodes (the units of a cluster) may be as small as workstations or workgroup servers.

For example, the Sun Blade™ 1000 can have up to two UltraSPARC-III CPUs and 8

GBytes of main memory.

The largest server based on the UltraSPARC-II microprocessor is the Enterprise™

10000. This popular server hosts up to 64 processors at 400 MHz. It utilizes a 12.5-

GByte/s backplane and can support up to 64 GBytes of memory. Thus, a single such

server may itself have the power of a reasonable-size cluster, while offering very

high bandwidth, low latency, and a single, large, uniform address space to 64 CPUs

at once.

At the time of this writing, the largest announced server based on the UltraSPARC-

III processor is the Sun Fire™ 6800, which can host up to 24 processors and up to 192

GBytes of memory. The backplane can sustain 9.6 GByte/s of data traffic.
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Clusters

SMPs may be clustered by means of any Sun-supported TCP/IP interconnect, such

as 100BASE-T Ethernet or ATM.

Individual Sun HPC ClusterTools message-passing applications can have up to 2048

processes running on as many as 64 nodes of a cluster. The programmer must

manage the location of data in the distributed memory and its transfers between

nodes.

Sun HPC ClusterTools Software
Sun’s HPC message-passing software supports applications designed to run on

single systems and clusters of SMPs. Called Sun HPC ClusterTools software, it

provides the tools for developing distributed-memory parallel applications and for

managing distributed resources in the execution of these applications.

Sun HPC ClusterTools 4 software runs under the Solaris 8 (32-bit or 64-bit)

Operating Environment.

Another software suite, Sun Forte™ Developer software, can be used to develop

shared-memory applications. These may be multithreaded or may be parallelized to

some extent during compilation, but they are limited to running within a single SMP.

Programmers can use tools from both the Forte Developer suite and the HPC

ClusterTools suite to develop distributed-memory applications that also exhibit

parallelism (multithreading) within nodes.

The differences between HPC ClusterTools software and Forte Developer software

are explored in Chapter 2. The present chapter focuses on describing the capabilities

of Sun HPC ClusterTools software.

The ClusterTools suite is layered on the Forte Developer suite, and uses its compilers

for C, C++, and Fortran. However, the ClusterTools suite provides specialized

versions of development tools for its message-passing programs:

■ Sun MPI library of message-passing and I/O routines

■ Sun S3L, an optimized scientific subroutine library

■ Sun Parallel File System, for use with MPI I/O

■ Prism™ graphical development environment for debugging and performance

profiling of message-passing programs

■ Sun CRE, a runtime environment that manages the resources of a server or cluster

to execute message-passing programs
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■ Sun runtime environment plugins for use with Platform Computing’s LSF

resource management suite (an alternative to CRE)

Sun MPI

Sun MPI is a highly optimized version of the Message-Passing Interface (MPI)

communications library. This dynamic library is the basis of distributed-memory

programming, as it enables the programmer to create distributed data structures and

to manage interprocess communications explicitly.

MPI is the de facto industry standard for message-passing programming. You can

find more information about it on the MPI web page and the many links it provides:

http://www.mpi-forum.org

Sun MPI implements all of the MPI 1.2 standard as well as a significant subset of the

MPI 2.0 feature list. In addition, Sun MPI provides the following features:

■ Seamless use of different network protocols; for example, code compiled on a Sun

HPC system that has a Scalable Coherent Interface (SCI) network can be run

without change on a cluster that has an ATM network.

■ Multiprotocol, thread-safe support such that MPI picks the fastest available

medium for each type of connection (such as shared memory, SCI, or ATM).

■ Finely tunable shared-memory communication.

■ Optimized collectives for SMPs, for long messages, for clusters, etc.

■ Parallel I/O to the ClusterTools Parallel (distributed) File System, as well as

single-stream I/O to a standard Solaris file system (UFS).

Sun MPI programs are compiled on Forte Developer compilers. MPI provides full

support for Fortran 77, C, and C++, and basic support for Fortran 90.

Chapter 3 and Appendix A of this manual provide more information about Sun MPI

features, as well as instructions for getting the best performance from an MPI

program.

Sun S3L

The Sun Scalable Scientific Subroutine Library (Sun S3L) provides a set of parallel

and scalable capabilities and tools that are used widely in scientific and engineering

computing. Built on top of MPI, it provides highly optimized implementations of

vector and dense matrix operations (level 1, 2, 3 Parallel BLAS), FFT, tridiagonal
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solvers, sorts, matrix transpose, and many other operations. Sun S3L also provides

optimized versions of a subset of the ScaLAPACK library, along with utility routines

to convert between S3L and ScaLAPACK descriptors.

S3L is thread-safe and also supports the multiple instance paradigm, which enables

an operation to be applied concurrently to multiple, disjoint data sets in a single call.

Sun S3L routines can be called from applications written in F77, F90, C, and C++.

This library is described in more detail in Chapter 4.

Sun Parallel File System

The Sun HPC ClusterTools Parallel File System (PFS) component provides high-

performance file I/O for MPI applications running in a cluster-based, distributed-

memory environment.

PFS files closely resemble UFS files, but they provide significantly higher file I/O

performance by striping files across multiple nodes. This means that the time

required to read or write a PFS file can be reduced by an amount roughly

proportional to the number of file server nodes in the PFS file.

Sun PFS is optimized for the large files and complex data access patterns that are

characteristic of HPC applications.

Prism Environment

The Prism environment is the Sun HPC ClusterTools graphical programming

environment. It enables you to develop, execute, and debug multithreaded or

unthreaded message-passing programs and to visualize data at any stage in the

execution of a program.

The Prism environment also supports performance profiling of message-passing

programs. The analysis provides an overview of what MPI calls, message sizes, or

other characteristics account for the execution time. You can display information

about the sort of message-passing activity in different phases of a run, identify time-

consuming events, and, with simple mouse clicks, investigate any of them in detail.

The Prism profiling capabilities are described in more detail in Chapter 7. The

environment can be used with applications written in Fortran 77, Fortran 90, C, and

C++.
Chapter 1 Introduction: The Sun HPC ClusterTools Solution 5



Cluster Runtime Environment

The Cluster Runtime Environment (CRE) component of Sun HPC ClusterTools

software serves as the runtime resource manager for message-passing programs. It

supports interactive execution of Sun HPC applications on single SMPs or on

clusters of SMPs.

CRE is layered on the Solaris Operating Environment but enhanced to support

multiprocess execution. It provides the tools for configuring and managing clusters,

nodes, logical sets of processors (partitions), and PFS I/O servers.

Alternatively, Sun HPC message-passing programs can be executed by third-party

resource-management software, such as the Load Sharing Facility suite from

Platform Computing Corporation.
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CHAPTER 2

Choosing Your Programming Model
and Hardware

This chapter outlines some points to consider in planning how to go about

developing or porting an HPC application. It provides a high-level overview of how

to compare and assess programming models for use on Sun parallel hardware.

■ Starting Out on page 7

■ Programming Models on page 8

■ Scalability on page 11

■ Characterizing Platforms on page 14

Starting Out
The first step in developing a high-performance application is to settle upon your

basic approach. To make the best choice among the Sun HPC tools and techniques,

you need to:

■ Set goals for program performance and scalability

■ Determine the amount of time and effort you can invest

■ Select a programming model

■ Assess the available computing resources

There are two common models of parallel programming in high performance

computing: shared-memory programming and distributed-memory programming.

These models are supported on Sun hardware with Sun Forte Developer software

and with Sun HPC ClusterTools software, respectively. Issues in choosing between

the models might include existing source-code base, available software development

resources, desired scalability, and target hardware.
7



As detailed in Chapter 1, the basic Sun HPC ClusterTools programming model is

distributed-memory message passing. Such a program executes as a collection of

Solaris processes with separate address spaces. The processes compute

independently, each on its own local data, and share data only through explicit calls

to message-passing routines.

You might choose to use this model regardless of your target hardware. That is, you

might run a message-passing program on an SMP cluster or run it entirely on a

single, large SMP server. Or, you might choose to forego ClusterTools software and

utilize only multithreaded parallelism, running it on a single SMP server. It is also

possible to combine the two approaches.

Programming Models
A high-performance application will almost certainly be parallel, but parallelism

comes in many forms. The form you choose depends partly on your target hardware

(server versus cluster) and partly on the time you have to invest.

Sun provides development tools for several widely used HPC programming models.

These products are categorized by memory model: Sun Forte Developer tools for

shared-memory programming and Sun HPC ClusterTools for distributed-memory

programming.

■ Shared memory means that all parts of a program can access one another’s data

freely. This may be because they share a common address space, which is the case

with multiple threads of control within a single process. Or, it may result from

employing a software mechanism for sharing memory.

Parallelism that is generated by Forte Developer compilers or programmed as

multiple threads requires either a single processor or an SMP. SMP servers give

their executing processes equal (symmetric) access to their shared memory.

■ Distributed memory means that multiple processes exchange data only through

explicit message passing.

Message-passing programs, where the programmer inserts calls to the MPI

library, are the only programs that can run across a cluster of SMPs. They can

also, of course, run on a single SMP or even on a serial processor.
8 Sun HPC ClusterTools 4 Performance Guide • August 2001



Table 2.1 summarizes these two product suites.

Thus, available hardware does not necessarily dictate programming model. A

message-passing program can run on any configuration, and a multithreaded

program can run on a parallel server (SMP). The only constraint is that a program

without message passing cannot run on a cluster.

The choice of programming model, therefore, usually depends more on software

preferences and available development time. Only when your performance goals

demand the combined resources of a cluster of servers is the message-passing model

necessarily required.

A closer look at the differences between shared-memory model and the distributed

memory model as they pertain to parallelism reveals some other factors in the

choice. The differences are summarized in Table 2.2.

TABLE 2-1 Comparison of Sun Forte Developer and Sun HPC ClusterTools Suites

Sun Forte Developer Suite Sun HPC ClusterTools Suite

Target hardware Any Sun workstation or

SMP

Any Sun workstation, SMP,

or cluster

Memory model Shared memory Distributed memory

Runtime resource manager Solaris Operating

Environment

CRE (Cluster Runtime

Environment) or third-party

product

Parallel execution Multithreaded Multiprocess with message

passing

TABLE 2-2 Comparison of Shared-Memory and Distributed-Memory Parallelism

Shared Memory Distributed Memory

Parallelization unit Loop Data structure

Compiler-generated
parallelism

Available in Fortran 77,

Fortran 90, and C via

compiler options, directives/

pragmas, and OpenMP

HPF (not part of

ClusterTools suite)

Explicit (hand-coded)
parallelism

C/C++ and threads (Solaris

or POSIX)

Calls to MPI library routines

from Fortran 77, Fortran 90,

C, or C++
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Note – Nonuniform memory architecture (NUMA) is starting to blur the lines

between shared- and distributed-memory architectures. That is, the architecture

functions as shared memory, but typically the difference in cost between local and

remote memory accesses is so great that it might be desirable to manage data locality

explicitly. One way to do this is to use message passing.

Even without a detailed look, it is obvious that more parallelism is available with

less investment of effort in the shared-memory model.

To illustrate the difference, consider a simple program that adds the values of an

array (a global sum). In serial Fortran, the code is:

Compiler-generated parallelism requires little change. In fact, the compiler might

well parallelize this simple example automatically. At most, the programmer might

need to add a single directive:

To perform this operation with an MPI program, the programmer needs to

parallelize the data structure as well as the computational loop. The program would

look like this:

 REAL A(N), X
 X = 0.
 DO I = 1, N
    X = X + A(I)
 END DO

        REAL A(N), X
        X = 0.

  C$OMP DO REDUCTION(+:X)

        DO I = 1, N
           X = X + A(I)
        END DO

       REAL A(NLOCAL), X, XTMP

       XTMP = 0.
       DO I = 1, NLOCAL
          XTMP = XTMP + A(I)
       END DO
       CALL MPI_ALLREDUCE
      & (XTMP,X1,MPI_REAL,MPI_SUM,MPI_COMM_WORLD,IERR)
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When this program executes, each process can access only its own (local) share of the

data array. Explicit message passing is used to combine the results of the multiple

concurrent processes.

Clearly, message passing requires more programming effort than shared-memory

parallel programming. But this is only one of several factors to consider in choosing

a programming model. The trade-off for the increased effort can be a significant

increase in performance and scalability.

In choosing your programming model, consider the following factors:

■ If you are updating an existing code, what programming model does it use? In

some cases, it is reasonable to migrate from one model to another, but this is

rarely easy. For example, to go from shared memory to distributed memory, you

must parallelize the data structures and redistribute them throughout the entire

source code.

■ What time investment are you willing to make? Compiler-based multithreading

(using Forte Developer tools) might allow you to port or develop a program in

less time than explicit message passing would require.

■ What is your performance requirement? Is it within or beyond the computing

capability associated with a single, uniform memory? Since Sun SMP servers can

be very large—up to 64 processors in the current generation—a single server (and

thus shared memory) may be adequate for some purposes. For other purposes, a

cluster—and thus distributed-memory programming—will be required.

■ Is your performance requirement (including problem size) likely to increase in the

future? If so, it might be worth choosing the message-passing model even if a

single server meets your current needs. You can then migrate easily to a cluster in

the future. In the meantime, the application might run faster than a shared-

memory program on a single SMP because of the MPI discipline of enforcing data

locality.

Mixing models is generally possible, but not common.

Scalability
A part of setting your performance goals is to consider how your application will

scale.

The primary purpose of message-passing programming is to introduce explicit data

decomposition and communication into an application, so that it will scale to higher

levels of performance with increased resources. The appeal of a cluster is that it

increases the range of scalability: a potentially limitless amount of processing power

may be applied to complex problems and huge data sets.
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The degree of scalability you can realistically expect is a function of the algorithm,

the target hardware, and certain laws of scaling itself.

Amdahl’s Law

Unfortunately, decomposing a problem among more and more processors ultimately

reaches a point of diminishing returns. This idea is expressed in a formula known as

Amdahl’s Law.1 Amdahl’s Law assumes (quite reasonably) that a task has only some

fraction f that is parallelizable, while the rest of the task is inherently serial. As the

number of processors NP is increased, the execution time T for the task decreases as

T = (1-f) + f / NP

For example, consider the case in which 90 percent of the workload can be

parallelized. That is, f = 0.90 . The speedup as a function of the number of

processors is shown in Table 2-3.

As the parallelizable part of the task is more and more subdivided, the non-parallel

10 percent of the program (in this example) begins to dominate. The maximum

speedup achievable is only 10-fold, and the program can actually use only about

three or four processors efficiently.

1. G.M. Amdahl, Validity of the single-processor approach to achieving large scale computing capabilities. In
AFIPS Conference Proceedings, vol. 30 (Atlantic City, N.J., Apr. 18-20). AFIPS Press, Reston, Va., 1967, pp. 483-
485.

TABLE 2-3 Speedup with Number of Processors

Processors
(NP)

Run time
(T)

Speedup
(1/T) Efficiency

1 1.000 1.0 100%

2 0.550 1.8 91%

3 0.400 2.5 83%

4 0.325 3.1 77%

6 0.250 4.0 67%

8 0.213 4.7 59%

16 0.156 6.4 40%

32 0.128 7.8 24%

64 0.114 8.8 14%
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Keep Amdahl’s Law in mind when you target a performance level or run prototypes

on smaller sets of CPUs than your production target. In the example above, if you

had started measuring scalability on only two processors, the 1.8-fold speedup

would have seemed admirable, but it is actually an indication that scalability beyond

that may be quite limited.

In another respect, the scalability story is even worse than Amdahl’s Law suggests.

As the number of processors increases, so does the overhead of parallelization. Such

overhead may include communication costs or interprocessor synchronization. So,

observation will typically show that adding more processors will ultimately cause

not just diminishing returns but negative returns: eventually, execution time may

increase with added resources.

Still, the news is not all bad. With the high-speed interconnects within and between

nodes, as described in Chapter 1, and with the programming techniques described in

this manual, your application may well achieve high, and perhaps near linear,

speedups for some number of processors. And, in certain situations, you might even

achieve superlinear scalability, since adding processors to a problem also provides a

greater aggregate cache.

Scaling Laws of Algorithms

Amdahl’s Law assumes that the work done by a program is either serial or

parallelizable. In fact, an important factor for distributed-memory programming that

Amdahl’s Law neglects is communication costs. Communication costs increase as

the problem size increases, although their overall impact depends on how this term

scales vis-a-vis the computational workload.

When the local portion (the subgrid) of a decomposed data set is sufficiently large,

local computation can dominate the run time and amortize the cost of interprocess

communication. Table 2-4 shows examples of how computation and communication

scale for various algorithms. In the table, L is the linear extent of a subgrid while N
is the linear extent of the global array.

TABLE 2-4 Scaling of Computation and Communication Times for Selected Algorithms

Algorithm Communication Type
Communication
Count

Computation
Count

2-dimensional stencil nearest neighbor L L2

3-dimensional stencil nearest neighbor L2 L3

matrix multiply nearest neighbor N2 N3

multidimensional

FFT

all-to-all N N log(N)
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With a sufficiently large subgrid, the relative cost of communication can be lowered

for most algorithms.

The actual speed-up curve depends also on cluster interconnect speed. If a problem

involves many interprocess data transfers over a relatively slow network

interconnect, the increased communication costs of a high process count may exceed

the performance benefits of parallelization. In such cases, performance may be better

with fewer processes collocated on a single SMP. With a faster interconnect, on the

other hand, you might see even superlinear scalability with increased process counts

because of the larger cache sizes available.

Characterizing Platforms
To set reasonable performance goals, and perhaps to choose among available sets of

computing resources, you need to be able to assess the performance characteristics

of hardware platforms.

The most basic picture of message-passing performance is built on two parameters:

latency and bandwidth. These parameters are commonly cited for point-to-point

message passing, that is, simple sends and receives.

■ Latency is the time required to send a null-length message.

■ Bandwidth is the rate at which very long messages are sent.

In this somewhat simplified model, the time required for passing a message between

two processes is

time = latency + message-size / bandwidth

Obviously, short messages are latency-bound and long messages are bandwidth-

bound. The crossover message size between the two is given as

crossover-size = latency x bandwidth

Another performance parameter is bisection bandwidth, which is a measure of the

aggregate bandwidth a system can deliver to communication-intensive applications

that exhibit little data locality. Bisection bandwidth may not be related to point-to-

point bandwidth since the performance of the system can degrade under load (many

active processes).
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To suggest orders of magnitude, Table 2.5 shows sample values of these parameters

for two Sun HPC platforms: a large SMP and a 64-node cluster.

The best performance is likely to come from a single server. With Sun servers, this

means up to 64 CPUs in the current generation.

For clusters, these values indicate that the TCP cluster is latency-bound. A smaller

cluster using a faster interconnect would be less so. On the other hand, many nodes

are needed to match the bisection bandwidth of single node.

Basic Hardware Factors

Typically, you work with a fixed set of hardware factors: your system is what it is.

From time to time, however, hardware choices might be available, and, in any case,

you need to understand the ways in which your system affects program

performance. This section describes a number of basic hardware factors.

Processor speed is directly related to the peak floating-point performance a processor

can attain. Since an UltraSPARC processor can execute up to one floating-point add

and one floating-point multiply per cycle, peak floating-point performance is twice

the processor clock speed. For example, a 250-MHz processor would have a peak

floating-point performance of 500 Mflops. In practice, achieved floating-point

performance will be less, due to imbalances of additions and multiplies and the

necessity of retrieving data from memory rather than cache. Nevertheless, some

number of floating-point intensive operations, such as the matrix multiplies that

provide the foundation for much of dense linear algebra, can achieve a high fraction

of peak performance, and typically increasing processor speed has a positive impact

on most performance metrics.

Large L2 (or external) caches can also be important for good performance. While it is

desirable to keep data accesses confined to L1 (or on-chip) caches, UltraSPARC

processors run quite efficiently from L2 caches as well. When you go beyond L2

cache to memory, however, the drop in performance can be significant. Indeed,

though Amdahl’s Law and other considerations suggest that performance should

TABLE 2-5 Sample Performance Values for MPI Operations on Two Sun Platforms

Platform
Latency
(microseconds)

Bandwidth
(Mbyte/s)

Crossover size
= lat x bw
(bytes)

Platform
Bisection
bandwidth
(Mbyte/s)

SMP E10000 server ~ 2 ~ 200 ~ 400 ~ 2500

Cluster of

64 nodes connected

with TCP network

~ 150 ~ 40 ~ 6000 ~ 2000
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scale at best linearly with processor counts, many applications see a range of

superlinear scaling, since an increase in processor count implies an increase in

aggregate L2 cache size.

The number of processors is, of course, a basic factor in performance since more

processors deliver potentially more performance. Naturally, it is not always possible

to utilize many processors efficiently, but it is vital that enough processors be

present. This means not only that there should be one processor per MPI process,

but ideally there should also be a few extra processors per node to handle system

daemons and other services.

System speed is a round fraction, say, one-third or one-fourth, of processor speed. It is

an important determinant of performance for memory-access-bound applications.

For example, if a code goes often out of its caches, then it might well perform better

on 300-MHz processors with a 100-MHz system clock than on 333-MHz processors

with a 83-MHz system clock. Also, performance speedup from 250-MHz processors

to 333-MHz processors, both with the same system speed, is likely to be less than the

4/3 factor suggested by the processor speedup since the memory is at the same

speed in both cases.

Memory latency is influenced not only by memory clock speed, but also by system

architecture. As a rule, as the maximum size of an architecture expands, memory

latency goes up. Hence, applications or workloads that do not require much

interprocess communication might well perform better on a cluster of 4-CPU

workgroup servers than on a 64-CPU E10000 server.

Memory bandwidth is directly related to memory latency. For MPI point-to-point

communications, it is useful to think of latency and bandwidth as distinct quantities.

For memory access, however, transfers are always in units of whole cache lines, and

so latency and bandwidth are coupled.

Memory size is required to support large applications efficiently. While the Solaris

operating environment will run applications even when there is insufficient physical

memory, such use of virtual memory will degrade performance dramatically.

When many processes run on a single node, the backplane bandwidth of the node

becomes an issue. Large Sun servers scale very well with high processor counts, but

MPI applications can nonetheless tax backplane capabilities either due to local

memory operations (within an MPI process) or due to interprocess communications

via shared memory. MPI processes located on the same node exchange data by

copying into and then out of shared memory. Each copy entails two memory

operations: a load and a store. Thus, a two-sided MPI data transfer undergoes four

memory operations. On a 30-CPU Sun E6000 server, with a 2.6-Gbyte/s backplane,

this means that a large all-to-all operation can run at about 650 Mbyte/s aggregate

bandwidth. On a 64-CPU Sun E10000 server, with a 12.5-Gbyte/s backplane, an

aggregate 3.1 Gbyte/s bandwidth can be achieved. (Here, bandwidth is the rate at

which bytes are either sent or received.)
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For cluster performance, the interconnect between nodes is typically characterized by

its latency and bandwidth. Choices include any network that supports TCP, such as

HIPPI, ATM, or Gigabit Ethernet, and the Sun Fire™ high-performance cluster

interconnect (when available).

Importantly, there will often be wide gaps between the performance specifications of

the raw network and what an MPI application will achieve in practice. Notably:

■ Latency might be degraded by software layers, especially operating system

interactions in the case of TCP message passing.

■ Bandwidth might be degraded by the network interface (e.g., SBus or PCI).

■ Bandwidth might further be degraded on a loss-prone network if data is dropped

under load.

A cluster’s bisection bandwidth might be limited by its switch or by the number of

network interfaces that tap nodes into the network. In practice, typically the latter is

the bottleneck. Thus, increasing the number of nodes might or might not increase

bisection bandwidth.

Other Factors

At other times, even other parameters enter the picture. Seemingly identical systems

can result in different performance because of the tunable system parameters

residing in /etc/system , the degree of memory interleaving in the system,

mounting of file systems, and other issues that might be best understood with the

help of your system administrator. Further, some transient conditions, such as the

operating system’s free-page list or virtual-to-physical page mappings, may

introduce hard-to-understand performance issues.

For the most part, however, the performance of the underlying hardware is not as

complicated an issue as this level of detail implies. As long as your performance

goals are in line with your hardware’s capabilities, the performance achieved will be

dictated largely by the application itself. This manual helps you maximize that

potential for MPI applications.
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CHAPTER 3

Performance Programming

This chapter discusses approaches to consider when you are writing new message-

passing programs.

The general rules of good programming apply to any code, serial or parallel. This

chapter therefore focuses primarily on optimizing MPI interprocess communications

and concludes with an extended example.

When you are working with legacy programs, you need to consider the costs of

recoding in relation to the benefits.

General Good Programming
The general rules of good programming apply when your goal is to achieve top

performance along with robustness and, perhaps, portability.

Clean Programming

The first rule of good performance programming is to employ “clean” programming.

Good performance is more likely to stem from good algorithms than from clever

“hacks.” While tweaking your code for improved performance may work well on

one hardware platform, those very tweaks may be counterproductive when the same

code is deployed on another platform. A clean source base is typically more useful

than one laden with many small performance tweaks. Ideally, you should emphasize

readability and maintenance throughout the code base. Use performance profiling to

identify any hot spots, and then do low-level tuning to fix the hot spots.
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One way to garner good performance while simplifying source code is to use library

routines. Advanced algorithms and techniques are available to users simply by

issuing calls to high-performance libraries. In certain cases, calls to routines from

one library may be speeded up simply by relinking to a higher-performing library.

As examples,

Optimizing Local Computation

The most dramatic impact on scalability in distributed-memory programs comes

from optimizing the data decomposition and communication. Aside from

parallelization issues, a great deal of performance enhancement can be achieved by

optimizing local (on-node) computation. Common techniques include loop rewriting

and cache blocking. Compilers can be leveraged by exploring compilation switches

(see Chapter 5).

For the most part, the important topic of optimizing serial computation within a

parallel program is omitted here. To learn more about this and other areas of

performance optimization, consult Techniques For Optimizing Applications: High
Performance Computing, by Rajat Garg and Ilya Shapov, Prentice-Hall, 2001, ISBN:

0-13-093476-3. That volume covers serial optimization and various parallelization

models. It deals with programming, compilation, and runtime issues and provides

numerous concrete examples.

Operations... may be speeded up by...

BLAS routines linking to Sun Performance Library software

Collective MPI

operations

formulating in terms of MPI collectives and using Sun MPI

Certain ScaLAPACK

routines

linking to Sun S3L
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Optimizing MPI Communications
The default behavior of Sun MPI accommodates many programming practices

efficiently. Tuning environment variables at run time can result in even better

performance. However, best performance will typically stem from writing the best

programs. This section describes good programming practices under the following

headings:

■ Reducing Message Volume on page 21

■ Reducing Serialization on page 22

■ Load Balancing on page 22

■ Synchronization on page 22

■ Buffering on page 23

■ Nonblocking Operations on page 25

■ Polling on page 25

■ Sun MPI Collectives on page 26

■ Contiguous Data Types on page 27

These topics are all interwoven. Clearly, reducing the number and volume of

messages can reduce communication overheads, but such overheads are inherent to

parallelization of serial computation. Serialization is one extreme of load balancing.

Load imbalances manifest themselves as performance issues only because of

synchronization. Synchronization, in turn, can be mitigated with message buffering,

nonblocking operations, or general polling.

Following the general discussion of these issues, this chapter illustrates them in a

case study.

Reducing Message Volume

An obvious way to reduce message-passing costs is to reduce the amount of message

passing. One method is to reduce the total amount of bytes sent among processes.

Further, since a latency cost is associated with each message, aggregating short

messages can also improve performance.
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Reducing Serialization

Serialization can take many different forms. In multithreaded programming,

contention for a lock may induce serialization. In multiprocess programming,

serialization may be induced, for example, in I/O operations through a particular

process that gathers or scatters data accordingly.

Serialization can also appear as operations that are replicated among all the

processes.

Load Balancing

Generally, the impediment to great scalability is not as blatant as serialization, but

simply a matter of poor work distribution or load balancing among the processes. A

multiprocess job completes only when the process with the most work has finished.

More so than for multithreaded programming, load balancing is an issue in

message-passing programming because work distribution or redistribution is

expensive in terms of programming and communication costs.

Temporally or spatially localized load imbalances sometimes balance against one

another. Imagine, for example, a weather simulation in which simulation of daytime

weather typically is more computationally demanding than that of nighttime

weather because of expensive radiation calculations. If different processes compute

on different geographical domains, then over the course of a simulation day each

process should see daytime and nighttime. Such circadian imbalances would

average out.

As the degree of synchronization in the simulation is increased, however, the extent

to which localized load imbalances degrade overall performance magnifies. In our

weather example, this means that if MPI processes are synchronized many times

over the course of a simulation day, then all processes will run at the slower, day-

time rate, even if this forces night-time processes to sit idle at synchronization

points.

Synchronization

The cost of interprocess synchronization is often overlooked. Indeed, the cost of

interprocess communication is often due not so much to data movement as to

synchronization. Further, if processes are highly synchronized, they tend to congest

shared resources such as a network interface or SMP backplane, at certain times and

leave those resources idle at other times. Sources of synchronization can include:

■ MPI_barrier calls.
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■ Other MPI collective operations, such as MPI_Bcast and MPI_Reduce .

■ Synchronous MPI point-to-point calls, such as MPI_Ssend .

■ Implicitly synchronous transfers for messages that are large compared with the

interprocess buffering resources.

For example, the Sun MPI cyclic and rendezvous message-passing protocols

induce extra synchronization between senders and receivers in order to reduce

use of buffers. Use of such protocols and the size of internal buffering may be

changed at run time with Sun MPI environment variables, which are discussed in

Chapter 6 “Runtime Considerations and Tuning”.

■ Data dependencies, in which one process must wait for data that is being

produced by another process.

For example, a receiver must wait if it issues an MPI_Recv before its partner

issues the corresponding MPI_Send .

Typically, synchronization should be minimized for best performance. You should:

■ Generally reduce the number of message-passing calls.

■ Specifically reduce the amount of explicit synchronization.

■ Post sends as early as possible and receives as late as possible.

■ Ensure sufficient system buffering.

If a send can be posted very early and the corresponding receive much later, then

there would be no problem with data dependency, since the data would be available

before it is needed. If internal system buffering is not provided to hold the in-transit

message, however, the completion of the send will in some way become

synchronized with the receive. This consideration brings up the topics of buffering

and nonblocking operations.

Buffering

In most MPI point-to-point communication, for example, using MPI_Send and

MPI_Recv calls, data starts in a user buffer on the sending process and ends up in a

user buffer on the receiving process. In transit, that data may also be buffered

internally multiple times by an MPI implementation.

There are performance consequences to such buffering. Among them:

■ Some degree of synchronization may be induced between the sender and the

receiver if the message exceeds the internal buffering that is available to it. That

is, a send cannot complete before the correspond receive has been posted if there

is nowhere else for the message to be stored.

■ Data must be copied from one buffer to another. This is noteworthy, but typically

not as important as synchronization effects.
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■ Buffers may have to be allocated and deallocated. Under most conditions, this is

not important with Sun MPI.

The MPI standard does not require any particular amount of internal buffering for

standard MPI_Send operations. Specifically, the standard warns against issuing too

many MPI_Send calls without receiving any messages, as this can lead to deadlock.

(See Example 3.9 in the MPI 1.1 standard.) MPI does, however, allow users to

provide buffering with MPI_Buffer_attach and then to use such buffering with

MPI_Bsend or MPI_Ibsend calls.

Sun MPI, as a particular implementation of the standard, allows users to increase

internal buffering in two ways. One way, of course, is with the standard, portable

MPI_Buffer_attach call. Another is with Sun MPI-specific runtime environment

variables, as discussed in Chapter 6.

There are several drawbacks to using MPI_Buffer_attach . They stem from the

fact that a buffered send copies data out of the user buffer into a hidden buffer and

then issues a non-blocking send (like MPI_Isend ) without giving the user access to

the request handle. Non-blocking sends (like MPI_Isend ) should be used in

preference to buffered sends (like MPI_Bsend ) because of these effects of buffered

sends:

■ Senders and receivers are not decoupled any more than with non-blocking sends.

■ Another level of buffering and copying is involved.

■ The status of the message cannot be queried (for instance, to determine when the

hidden buffer allocated by MPI_Buffer_attach is free).

■ The completion of the send cannot easily be forced.

Typically, performance will benefit more if internal buffering is increased by setting

Sun MPI environment variables. This is discussed further in Chapter 6 “Runtime

Considerations and Tuning”.

Sun MPI environment variables may not be a suitable solution in every case. For

example, you may want finer control of buffering or a solution that is portable to

other systems. (Beware that the MPI standard provides few, if any, performance

portability guarantees.) In such cases, it may be preferable to using nonblocking

MPI_Isend sends in place of buffered MPI_Bsend calls. The nonblocking calls give

finer control over the buffers and better decouple the senders and receivers.

For best results:

■ Do not assume unlimited internal buffering by Sun MPI.

■ Use buffered calls, such as MPI_Bsend and the like, sparingly.

■ Tune Sun MPI environment variables at run time to increase system buffering.

■ Use nonblocking calls such as MPI_Isend for finest control over user-specified

buffering.

■ Post nonblocking receives (like MPI_Irecv ) early to relieve pressure on system

buffers.
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Other examples of internal MPI buffering include MPI_Sendrecv_replace calls

and unexpected in-coming messages (that is, messages for which no receive

operation has yet been posted).

Nonblocking Operations

The MPI standard offers blocking and nonblocking operations. For example,

MPI_Send is a blocking send. This means that the call will not return until it is safe

to reuse the specified send buffer. On the other hand, the call may well return before

the message is received by the destination process.

Nonblocking operations enable you to make message passing concurrent with

computation. Basically, a nonblocking operation may be initiated with one MPI call

(such as MPI_Isend , MPI_Start , MPI_Startall , and so on) and completed with

another (such as MPI_Wait , MPI_Waitall , and so on). Still other calls may be used

to probe status, for example, MPI_Test .

Nonblocking operations may entail a few extra overheads. Indeed, use of a standard

MPI_Send and MPI_Recv provides the best performance with Sun MPI for highly

synchronized processes, such as in simple pingpong tests. Generally, however, the

benefits of nonblocking operations far outweigh their performance shortcomings.

The way these benefits derive, however, can be subtle. Though nonblocking

communications are logically concurrent with user computation, they do not

necessarily proceed in parallel. That is, typically, either computation or else

communication is being effected at any instant by a CPU. How performance benefits

derive from nonblocking communications is discussed further in the case study at

the end of this chapter

To maximize the benefits of nonblocking operations:

■ Replace blocking operations with nonblocking operations.

■ Initiate nonblocking operations as soon as possible.

■ Complete nonblocking operations as late as possible.

■ Test the status of nonblocking operations periodically with MPI_Test calls.

Polling

Polling is the activity in which a process searches incoming connections for arriving

messages whenever the user code enters an MPI call. Two extremes are:

■ General polling, in which a process searches all connections, regardless of the MPI

calls made in the user code. For example, an arriving message will be read if the

user code enters an MPI_Send() call.
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■ Directed polling, in which a process searches only connections specified by the user

code. For example, a message from process 3 will be left untouched by an

MPI_Recv() call that expects a message from process 5.

General polling helps deplete system buffers, easing congestion and allowing

senders to make the most progress. On the other hand, it requires receiver buffering

of unexpected messages and imposes extra overhead for searching connections that

may never have any data.

Directed polling focuses MPI on user-specified tasks and keeps MPI from

rebuffering or otherwise unnecessarily handling messages the user code has not yet

asked to receive. On the other hand, it does not aggressively deplete buffers, so

improperly written codes may deadlock.

Thus, user code is most efficient when the following criteria are all met:

■ Receives are posted in the same order as their sends.

■ Collectives and point-to-point operations are interleaved in an orderly manner.

■ Receives such as MPI_Irecv() are posted ahead of arrivals.

■ Receives are specific and the program avoids MPI_ANY_SOURCE.

■ Probe operations such as MPI_Probe() and MPI_Iprobe() are used sparingly.

■ The Sun MPI environment variable MPI_POLLALL is set to 0 at run time to

suppress general polling.

Sun MPI Collectives

Collective operations, such as MPI_Barrier() , MPI_Bcast() , MPI_Reduce() ,

MPI_Alltoall() , and the like, are highly optimized in Sun MPI for UltraSPARC

servers and clusters of servers. User codes can benefit from the use of collective

operations, both to simplify programming and to benefit automatically from the

optimizations, which include:

■ Alternative algorithms depending on message size.

■ Algorithms that exploit cheap on-node data transfers and minimize expensive

internode transfers.

■ Independent optimizations for shared-memory and internode components of

algorithms.

■ Sophisticated runtime selection of the optimal algorithm.

■ Special optimizations to deal with hot spots within shared memory, whether

cache lines or memory pages.

For Sun MPI programming, you need only keep in mind that the collective

operations are optimized and that you should use them. The details of the

optimizations used in Sun MPI to implement collective operations are available in

Appendix A “Sun MPI Implementation”.
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Contiguous Data Types

While interprocess data movement is considered expensive, data movement within a

process can also be costly. For example, interprocess data movement via shared

memory consists of two bulk transfers. Meanwhile, if data has to be packed at one

end and unpacked at the other, then these steps entail just as much data motion, but

the movement will be even more expensive since it is slow and fragmented.

You should consider:

■ Using only contiguous data types.

■ Sending a little unnecessary padding instead of trying to pack data that is only

mildly fragmented.

■ Incorporating special knowledge of the data types to pack data explicitly, rather

than relying on the generalized routines MPI_Pack() and MPI_Unpack() .

Special Considerations for Message Passing Over

TCP

Sun MPI supports message passing over any network that runs TCP. While TCP

offers reliable data flow, it does so by retransmitting data as necessary. If the

underlying network becomes loss-prone under load, TCP may retransmit a runaway

volume of data, causing MPI performance to suffer.

For this reason, applications running over TCP may benefit from throttled

communications. The following suggestions are likely to increase synchronization

and degrade performance. Nonetheless, they may be needed when running over

TCP if the underlying network is losing too much data.

To throttle data transfers, you might:

■ Avoid “hot receivers” (too many messages expected at a node at any time).

■ Use blocking point-to-point communications (MPI_Send() , MPI_Recv() , and so

on).

■ Use synchronous sends (such as MPI_Ssend() ).

■ Use MPI collectives, such as MPI_Alltoall() , MPI_Alltoallv() ,

MPI_Gather() , or MPI_Gatherv() , as appropriate, since these routines account

for loss-prone networks.

■ Set the Sun MPI environment variable MPI_EAGERONLYto 0 at run time and

possibly lower MPI_TCP_RENDVSIZE, causing Sun MPI to use a rendezvous

mode for TCP messages. See Appendix A and the Sun MPI Programming and
Reference Guide for more details.
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MPI Communications Case Study
The following examples illustrate many of the issues raised in the preceding

conceptual discussion. These examples use a highly artificial test code to look at the

performance of MPI communication and its interplay with computational load

imbalance.

The main lessons to draw from this series of example are:

■ A key performance metric in MPI programs is not the rate at which data is

transferred, but the amount of idle time processes spend waiting to send or

receive data. You should try to reduce the costs of interprocess synchronization

that result from computational load imbalances.

■ Synchronizing protocols (such as rendezvous or cyclic messaging) should be

avoided. Rendezvous is suppressed by default. To suppress cyclic messages, you

should specify:

% setenv MPI_SHM_CYCLESTART 0x7fffffff

■ Sun MPI buffering, adjusted with environment variables, should be made

sufficient for all messages that might be in transit at any one time.

■ In the event that buffering is insufficient, use nonblocking operations, such as

MPI_Isend and MPI_Irecv . This overlaps computation with communication. It

does not overlap computation with data transfer, but it does help overlap

computation with the wait times associated with communication.

■ Post nonblocking operations such as MPI_Isend and MPI_Irecv as early as

possible, and complete them with operations like MPI_Waitall as late as

possible.

■ In conjunction with nonblocking operations, MPI_Testall operations can be

made during otherwise large computational blocks if there are messages in

transit.

Algorithms Used

In these examples, each MPI process computes on some data and then circulates that

data among the other processes in a ring pattern. That is, 0 sends to 1, 1 sends to 2,

2 sends to 3, and so on, with process np-1 sending to 0. An artificial load imbalance

is induced in the computation.

The basic algorithm of this series of examples is illustrated in FIGURE 3-1 for four

processes.
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FIGURE 3-1 Basic Ring Sending Algorithm

In this figure, time advances to the right, and the processes are labeled vertically

from 0 to 3. Processes compute, then pass data in a ring upward. There are temporal

and spatial load imbalances, but in the end all processes have the same amount of

work on average.

Even though the load imbalance in the basic algorithm averages out over time,

performance degradation results if the communication operations are synchronized,

as illustrated in FIGURE 3-2.
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FIGURE 3-2 Basic Ring Sending Algorithm With Synchronization

Several variations on this basic algorithm are used in the timing experiments shown

below. What follows is a brief description of each of the five algorithm variations

used.
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Algorithm 1

■ Phase 1: compute on buffer

■ Phase 2: send buffer with MPI_Send

■ Phase 3: receive buffer with MPI_Recv

This algorithm causes all processes to send data and then all to receive data. Thus,

unless the MPI_Send call buffers the data, the code will deadlock: everyone will be

sending and no one will be receiving. This buffering requirement explicitly violates

the MPI 1.1 standard. See Example 3.9, along with associated discussion, in the MPI

1.1 standard.

Nevertheless, Sun MPI can progress messages and avoid deadlock if the messages are

sufficiently small or if the Sun MPI environment variable MPI_POLLALL is set to 1,

which is the default. (See Appendix A for information on progressing messages.)

The amount of computation to be performed in any iteration on any MPI process is

dictated by the variable ncompute and is passed in by the parent subroutine. The

array x is made multidimensional because subsequent algorithms will use

multibuffering.

TABLE 3-1 Algorithm 1 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)
include ’mpif.h’
real(8) x(lda,*), sum

! phase 1
call compute_kernel(ncompute,n,x(:,1),sum)

! phase 2
call MPI_Send(x(:,1),n,MPI_REAL8,iup  ,1,MPI_COMM_WORLD,ier)

! phase 3
call MPI_Recv(x(:,1),n,MPI_REAL8,idown,1,MPI_COMM_WORLD,MPI_STATUS_IGNORE,ier)

end
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Algorithm 2

■ Phase 1: compute on buffer

■ Phase 2: perform communication with MPI_Sendrecv_replace

This algorithm should not deadlock on any compliant MPI implementation, but it

entails unneeded overheads for extra buffering and data copying to “replace” the

user data.

TABLE 3-2 Algorithm 2 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)
include ’mpif.h’
real(8) x(lda,*), sum

! phase 1
call compute_kernel(ncompute,n,x(:,1),sum)

! phase 2
call MPI_Sendrecv_replace(x(:,1),n,MPI_REAL8,iup  ,1, &
                                             idown,1, &
            MPI_COMM_WORLD,MPI_STATUS_IGNORE,ier)

end
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Algorithm 3

■ Phase 1: compute on buffer

■ Phase 2: perform communication with MPI_Sendrecv

This algorithm removes the “replace” overheads by introducing double buffering.

TABLE 3-3 Algorithm 3 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)
include ’mpif.h’

real(8) :: x(lda,*), sum
integer ibufsend, ibufrecv
save    ibufsend, ibufrecv
data    ibufsend, ibufrecv / 1, 2 /

! phase 1
call compute_kernel(ncompute,n,x(:,ibufsend),sum)

! phase 2
call MPI_Sendrecv(x(:,ibufsend),n,MPI_REAL8,iup  ,1, &
                  x(:,ibufrecv),n,MPI_REAL8,idown,1, &
                  MPI_COMM_WORLD,MPI_STATUS_IGNORE,ier)

! toggle buffers
ibufsend = 3 - ibufsend
ibufrecv = 3 - ibufrecv

end
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Algorithm 4

■ Phase 1: nonblocking communication with MPI_Isend and MPI_Irecv

■ Phase 2: compute on buffer

■ Phase 3: MPI_Waitall to complete send and receive operations

This algorithm attempts to overlap communication with computation. That is,

nonblocking communication is initiated before the computation is started, then the

computation is performed, and finally the communication is completed. It employs

three buffers: one for data being sent, another for data being received, and another

for data used in computation.

Sun MPI does not actually overlap communication and computation, as the ensuing

discussion makes clear. The real benefit of this approach is in decoupling processes

for the case of computational load imbalance.

TABLE 3-4 Algorithm 4 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)

include ’mpif.h’

real(8) :: x(lda,*), sum
integer requests(2)

integer ibufsend, ibufrecv, ibufcomp
save    ibufsend, ibufrecv, ibufcomp
data    ibufsend, ibufrecv, ibufcomp / 1, 2, 3 /

! phase 1
call MPI_Isend &
  (x(:,ibufsend),n,MPI_REAL8,iup ,1,MPI_COMM_WORLD,requests(1),ier)
call MPI_Irecv &
  (x(:,ibufrecv),n,MPI_REAL8,idown,1,MPI_COMM_WORLD,requests(2),ier)

! phase 2
call compute_kernel(ncompute,n,x(:,ibufcomp),sum)

! phase 3
call MPI_Waitall(2,requests,MPI_STATUSES_IGNORE,ier)

! toggle buffers
ibuffree = ibufsend  ! send buffer is now free
ibufsend = ibufcomp  ! next, send what you just computed on
ibufcomp = ibufrecv  ! next, compute on what you just received
ibufrecv = ibuffree  ! use the free buffer to receive next

end
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Algorithm 5

■ Phase 1: nonblocking communication with MPI_Isend and MPI_Irecv

■ Phase 2: compute on buffer, with frequent calls to MPI_Testall

■ Phase 3: MPI_Waitall to complete send and receive operations

This algorithm is like Algorithm 4 except that it includes calls to MPI_Testall
during computation. (The purpose of this is explained below in “Use of

MPI_Testall ” on page 48.)
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TABLE 3-5 Algorithm 5 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)
include ’mpif.h’

real(8) :: x(lda,*), sum
integer requests(2)
logical flag
integer ibufsend, ibufrecv, ibufcomp
save    ibufsend, ibufrecv, ibufcomp
data    ibufsend, ibufrecv, ibufcomp / 1, 2, 3 /
integer nblock0
save    nblock0
data    nblock0 / -1 /
character*20 nblock0_input
integer(4) iargc

! determine nblock0 first time through
if ( nblock0 .eq. -1 ) then
  nblock0 = 1024                   ! try 1024
  if ( iargc() .ge. 3 ) then       ! 3rd command-line argument overrides
    call getarg(3,nblock0_input)
    read(nblock0_input,*) nblock0
  endif
endif

! phase 1
call MPI_Isend &
  (x(:,ibufsend),n,MPI_REAL8,iup ,1,MPI_COMM_WORLD,requests(1),ier)
call MPI_Irecv &
  (x(:,ibufrecv),n,MPI_REAL8,idown,1,MPI_COMM_WORLD,requests(2),ier)

! phase 2
do i = 1, n, nblock0
  nblock = min(nblock0,n-i+1)
  call compute_kernel(ncompute,nblock,x(i,ibufcomp),sum)
  call MPI_Testall(2,requests,flag,MPI_STATUSES_IGNORE,ier)
end do

! phase 3
call MPI_Waitall(2,requests,MPI_STATUSES_IGNORE,ier)

! toggle buffers
ibuffree = ibufsend  ! send buffer is now free
ibufsend = ibufcomp  ! next, send what you just computed on
ibufcomp = ibufrecv  ! next, compute on what you just received
ibufrecv = ibuffree  ! use the free buffer to receive next

end
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Making a Complete Program

To make a functioning example, one of the above subroutines should be combined

with other source code and compiled using

%mpf90 -fast source-files -lmpi

TABLE 3-6 shows a sample Fortran 90 program that serves as the driver..

TABLE 3-6 Driver Program for Example Algorithms

program driver

include ’mpif.h’
character*20 arg
integer(4), parameter :: maxn = 500000
integer(4), parameter :: maxnbuffers = 3
integer(4) iargc
real(8) x(maxn,maxnbuffers), t

! initialize the buffers

x = 0.d0

! get the number of compute iterations from the command line

ncompute_A = 0
if ( iargc() .ge. 1 ) then
  call getarg(1,arg)
  read(arg,*) ncompute_A
endif

ncompute_B = ncompute_A
if ( iargc() .ge. 2 ) then
  call getarg(2,arg)
  read(arg,*) ncompute_B
endif

! initialize usual MPI stuff

call MPI_Init(ier)
call MPI_Comm_rank(MPI_COMM_WORLD, me, ier)
call MPI_Comm_size(MPI_COMM_WORLD, np, ier)
if ( mod(np,2) .ne. 0 ) then
  print *, "expect even number of processes"
  call MPI_Finalize(ier)
  stop
endif
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! pump a lot of data through to warm up buffers
call warm_up_buffers(maxn,x)

! iterations

if ( me .eq. 0 ) write(6,1000)
niter = 10
n = 0
do while ( n .le. maxn )

  ! make measurement and report
  call time_me(maxn,n,x,niter,ncompute_A,ncompute_B,t)
  t = t / niter

if ( me .eq. 0 ) write(6,’(i15,2f20.6)’) 8 * n, t, 8.d-6 * n / t

  ! bump up n
  n = max( nint(1.2 * n), n + 1 )

enddo

1000 format(" bytes/msg sec/iter Mbyte/sec")

! shut down

call MPI_Finalize(ier)

end

subroutine time_me(lda,n,x,niter,ncompute_A,ncompute_B,t)

include ’mpif.h’
real(8) :: x(lda,*), sum, t

! figure basic MPI parameters
call MPI_Comm_rank(MPI_COMM_WORLD, me, ier)
call MPI_Comm_size(MPI_COMM_WORLD, np, ier)

! initialize sum
sum = 0.d0
! figure nearest neighbors
idown = me - 1
iup   = me + 1
if ( idown .lt.  0 ) idown = np - 1
if ( iup   .ge. np ) iup   = 0
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! start timer
call MPI_Barrier(MPI_COMM_WORLD,ier)
t = MPI_Wtime()

! loop
do iter = 1, niter

  ! induce some load imbalance
  if ( iand(iter+me,1) .eq. 0 ) then
    ncompute = ncompute_A
  else
    ncompute = ncompute_B
  endif

  ! computation (includes communication)
  call compute(lda,n,x,ncompute,me,iup,idown,sum)

enddo

! stop timer
call MPI_Barrier(MPI_COMM_WORLD,ier)
t = MPI_Wtime() - t

! dummy check
! to keep compiler from optimizing all "computation" away
if ( abs(sum) .lt. -1.d0 ) print *, "failed dummy check"

end

subroutine compute_kernel(ncomplexity,n,x,sum)
real(8) x(n), sum, t

! sweep over all data
do i = 1, n

  ! some elemental operation of particular complexity
  t = 1.d0
  do iloop = 1, ncomplexity
    t = t * x(i)
  enddo
  x(i) = t
  sum = sum + t

enddo

end
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Note the following features of the driver program in TABLE 3-6:

■ Load Imbalance. The driver introduces an artificial computational load imbalance.

On average, the computational load is balanced, that is, each process performs the

same total amount of work as every other process. On any one iteration, however,

the processes will have different amounts of work. In particular, on one iteration,

every other process will do less work and the remaining processes will do more

work. The processes switch roles on every iteration.

■ Multiple Buffering. Some of the algorithms use multiple buffering. To keep the

subroutine interfaces all the same, all the code examples support multiple buffers,

even for the algorithms that do not use the additional buffers.

■ Bandwidth Reporting. The code reports a Mbyte/s bandwidth, but this figure also

includes time for computation and is not, strictly speaking, just a measurement of

communication performance.

■ Buffer Warmup. The subroutine warm_up_buffers passes a series of messages to

make sure that MPI internal buffers are touched and ready for fast reuse.

Otherwise, spurious performance effects can result when particular buffers are

used for the first time.

! pump a lot of data through to warm up buffers
subroutine warm_up_buffers(n,x)
include ’mpif.h’
real(8) x(n,*)

! usual MPI stuff
call MPI_Comm_rank(MPI_COMM_WORLD, me, ier)
call MPI_Comm_size(MPI_COMM_WORLD, np, ier)

! figure nearest neighbors
idown = me - 1
iup   = me + 1
if ( idown .lt.  0 ) idown = np - 1
if ( iup   .ge. np ) iup   = 0

! figure number of iterations
niter = 100 * 1024 * 1024 ! large # bytes, bigger than all buffers
niter = niter / ( 8 * n )  ! convert to number of iterations

! iterate
do i = 1, niter
  call MPI_Sendrecv(x(:,1),n,MPI_REAL8,iup  ,1, &
                    x(:,2),n,MPI_REAL8,idown,1, &
                    MPI_COMM_WORLD,MPI_STATUS_IGNORE,ier)
end do

end
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Timing Experiments With the Algorithms

You can construct a functioning test code by choosing one of the above algorithms

and then compiling and linking it together with the driver code.

This section shows sample results for the various algorithms running as 4 MPI

processes on a Sun E6000 server with a 250-MHz CPU and a 4-Mbyte L2 cache. The

command line for program execution is:

%mprun -np 4 a.out

Baseline Results

FIGURE 3-3 shows bandwidth as a function of message size for Algorithms 1 and 2.

FIGURE 3-3 Bandwidth as a function of message size for Algorithms 1 and 2.
Chapter 3 Performance Programming 41



Algorithm 2 proves to be slower than Algorithm 1. This is because

MPI_Sendrecv_replace entails extra copying to “replace” data into a single

buffer. Further, Sun MPI has special optimizations that cut particular overheads for

standard MPI_Send and MPI_Recv calls, which is especially noticeable at small

message sizes.

For Algorithm 1, the program reports about 24 microseconds per iteration for short

messages and about 60 Mbyte/s for long messages. Note that this is not a standard

pingpong test, but a rough comparison can be made by noting that each iteration of

the test example is roughly equivalent to a pingpong round trip.

Directed Polling

Now, let us rerun this experiment with directed polling. This is effected by turning

general polling off:

It is generally good practice to unset environment variables after each experiment so

that settings do not persist inadvertently into subsequent experiments.

FIGURE 3-4 shows the resulting bandwidth as a function of message size.

% setenv MPI_POLLALL 0
% mprun -np 4 a.out
% unsetenv MPI_POLLALL
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FIGURE 3-4 Bandwidth as a function of message size with directed polling.

Although it is difficult to make a direct comparison with the previous figure, it is

clear that direct polling has improved the bandwidth values across the range of

message sizes. This is because directed polling leads to more efficient message

passing. Time is not used up in searching all connections needlessly.

The highest bandwidth is delivered by Algorithm 1, but it deadlocks when the

message size reaches 24 Kbytes. At this point, the standard send MPI_Send no

longer is simply depositing its message into internal buffers and returning. Instead,

the receiver is expected to start reading the message out of the buffers before the

sender can continue. With general polling (see “Baseline Results” on page 41),

processes drained the buffers even before receives were posted.

Algorithm 2 also benefits in performance from directed polling, and it provides an

MPI-compliant way of passing the messages. That is, it proceeds deadlock-free even

as the messages are made very large. Nevertheless, due to extra internal buffering

and copying to effect the "replace" behavior of the MPI_Sendrecv_replace
operation, this algorithm has the worst performance of the four.
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Algorithm 3 employs MPI_Sendrecv and double buffering to eliminate the extra

internal buffering and copying and is the fastest of the three algorithms that avoid

deadlock.

Algorithm 4, which employs nonblocking operations, is slightly slower than

Algorithm 3.

TABLE 3-7 is a summary of the short-message iteration times and long-message

bandwidths for the case of directed polling. Again, these figures are only roughly

comparable to standard pingpong tests.

While Algorithm 1 exhibits some desirable performance characteristics, it is not MPI-

compliant and depends on internal MPI buffering to avoid deadlock. Among the

deadlock-free algorithms, it appears that Algorithm 3, employing MPI_Sendrecv
calls, achieves the best performance.

Now, let us examine how Algorithm 4, employing nonblocking operations, fares

once processes have drifted out of tight synchronization because of computational

load imbalances.

Here, we run:

The driver routine shown earlier (TABLE 3-6 on page 37) picks up the command-line

arguments (1 200 ) to induce an artificial load imbalance among the MPI processes.

FIGURE 3-5 shows bandwidth as a function of message size when nonblocking

operations are used.

TABLE 3-7 Directed Polling Performance Results

Algorithm
Short message
iteration time

Long message
bandwidth

1 7-8 usec (deadlock)

2 13 usec 60 Mbyte/s

3 13 usec 95 Mbyte/s

4 20 usec 93 Mbyte/s

% setenv MPI_POLLALL 0
% mprun -np 4 a.out 1 200
% unsetenv MPI_POLLALL
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FIGURE 3-5 Bandwidth as a function of message size with nonblocking operations.

While Algorithm 3 (MPI_Sendrecv ) is faster than Algorithm 4 (MPI_Isend ,

MPI_Irecv , MPI_Waitall ) for synchronized processes, the nonblocking operations

in Algorithm 4 offer the potential to decouple the processes and improve

performance when there is a computational load imbalance.

The reported bandwidths are substantially decreased because they now include non-

negligible computation times. Comparison of bandwidths shows that the

nonblocking operations of Algorithm 4 are slightly slower than the blocking

operations of Algorithm 3 at the shortest message sizes, but the decoupling of

processes at longer message sizes improves performance.

The internal buffering of Sun MPI becomes congested at longest message sizes,

however, making the two algorithms perform equally. This behavior sets in at 24

Kbytes.
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Increasing Sun MPI Internal Buffering

Twice now, we have seen that the internal buffering becomes congested at 24 Kbytes.

This leads to deadlock in the case of Algorithm 1 and directed polling. It also leads

to synchronization of processes with Algorithm 4, even though that algorithm

employs nonblocking operations.

Note that Sun MPI has access to multiple protocol modules (PMs) to send messages

over different hardware substrates. For example, two processes on the same SMP

node exchange messages via the SHM (shared-memory) PM. If the two processes

were on different nodes of a cluster interconnected by some commodity network,

they would exchange messages via the TCP (standard Transmission Control

Protocol) PM. The 24-Kbyte limit we are seeing is specific to the SHM PM.

This 24-Kbyte limit is actually caused by two things. One is the use of cyclic

messages, which is a synchronization between sender and receive to limit the

footprint of a message in buffer memory. The onset of cyclic message passing with

the SHM PM can be controlled with the Sun MPI environment variable

MPI_SHM_CYCLESTART, whose default value is 24576. The second cause of the 24-

Kbyte limit is the size of the SHM PM buffers. Buffer sizes may be controlled with

MPI_SHM_CPOOLSIZE, whose default value is 24576, or MPI_SHM_SBPOOLSIZE.
More information about cyclic message passing and SHM PM buffers may be found

in Appendix A. More information about the associated environment variables may

be found in Appendix B.

Now, we rerun with:

Here, we have set the environment variables not only to employ direct polling, but

also to increase internal buffering and effectively suppress cyclic message passing.

FIGURE 3-6 shows bandwidth as a function of message size for the case of highly

synchronized processes (the command line specifying a.out with additional

arguments).

% setenv MPI_POLLALL 0
% setenv MPI_SHM_SBPOOLSIZE 20000000
% setenv MPI_SHM_NUMPOSTBOX 2048
% setenv MPI_SHM_CYCLESTART 0x7fffffff
% mprun -np 4 a.out
% mprun -np 4 a.out 1 200
% unsetenv MPI_POLLALL
% unsetenv MPI_SHM_SBPOOLSIZE
% unsetenv MPI_SHM_NUMPOSTBOX
% unsetenv MPI_SHM_CYCLESTART
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FIGURE 3-6 Bandwidth as a function of message size with highly synchronized processes.

Having increased the buffering and suppressed cyclic message passing, we see that

our illegal Algorithm 1 no longer deadlocks and is once again the performance

leader. Strictly speaking, of course, it is still not MPI-compliant and its use remains

nonrobust. Algorithm 2, using MPI_Sendrecv_replace , remains the slowest due

to extra buffering and copying.

FIGURE 3-7 shows bandwidth as a function of message size for the case of load

imbalance (the command line specifying a.out 1 200). Once a computational load

imbalance is introduced, Algorithm 4, employing nonblocking operations, becomes

the clear leader. All other algorithms are characterized by imbalanced processes

advancing in lockstep.
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FIGURE 3-7 Bandwidth as a function of message size with load imbalance.

Use of MPI_Testall

In some cases, for whatever reason, it is not possible to increase Sun MPI internal

buffering sufficiently to hold all in-transit messages. For such cases, we can use

Algorithm 5, which employs MPI_Testall calls to progress these messages. (For

more information on progressing messages, see "Progress Engine" in Appendix A.)
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Here, we run with:

The third command-line argument to a.out specifies, in some way, the amount of

computation to be performed between MPI_Testall calls. Note also that cyclic

message passing is explicitly suppressed.

This is a slightly unorthodox use of MPI_Testall . The standard use of MPI_Test
and its variants is to test whether specified messages have completed. The use of

MPI_Testall here, however, is to progress all in-transit messages, whether

specified in the call or not.

FIGURE 3-8 plots bandwidth against message size for the various frequencies of

MPI_Testall calls.

% setenv MPI_POLLALL 0
% setenv MPI_SHM_CYCLESTART 0x7fffffff
% mprun -np 4 a.out 1 200     128
% mprun -np 4 a.out 1 200     256
% mprun -np 4 a.out 1 200     384
% mprun -np 4 a.out 1 200     512
% mprun -np 4 a.out 1 200    1024
% mprun -np 4 a.out 1 200    2048
% mprun -np 4 a.out 1 200    4096
% mprun -np 4 a.out 1 200    8192
% mprun -np 4 a.out 1 200   10240
% mprun -np 4 a.out 1 200   12288
% mprun -np 4 a.out 1 200   16384
% unsetenv MPI_POLLALL
% unsetenv MPI_SHM_CYCLESTART
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FIGURE 3-8 Bandwidth as a function of message size with MPI_Testall calls.

There are too many curves to distinguish individually, but the point is clear. While

performance used to dip at 24 Kbytes, introducing MPI_Testall calls in concert

with nonblocking message-passing calls has maintained good throughput, even as

messages grow to be orders of magnitude beyond the size of the internal buffering.

Below the 24-Kbyte mark, of course, the MPI_Testall calls are not needed and do

not impact performance materially.

Another view of the data is offered in FIGURE 3-9. This figure plots bandwidth as a

function of the amount of computation performed between MPI_Testall calls.
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FIGURE 3-9 Bandwidth as a function of computation between MPI_Testall calls.

For clarity, FIGURE 3-9 shows only two message sizes: 64 Kbyte and 1 Mbyte. We see

that if too little computation is performed, then slight inefficiencies are introduced.

More drastic is what happens when too much computation is attempted between

MPI_Testall calls. Then, messages are not progressed sufficiently and long wait

times lead to degraded performance.

To generalize, if MPI_Testall is called too often, it becomes ineffective at

progressing messages. So, the optimal amount of computation between

MPI_Testall calls should be large compared with the cost of an ineffective

MPI_Testall call, which is on order of roughly 1 microsecond.

When MPI_Testall is called too seldom, interprocess synchronization can induce a

severe degradation in performance. As a rule of thumb, the time it takes to fill or

deplete MPI buffers sets the upper bound for how much computation to perform

between MPI_Testall calls. These buffers are typically on order of tens of Kbytes,

memory bandwidths are on order of hundreds of Mbyte/s. Thus, the upper bound is

some fraction of a millisecond.
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These are rough rules of thumb, but they indicate that there is a wide range of nearly

optimal frequencies for MPI_Testall calls.

Nevertheless, such techniques can be difficult to employ in practice. Challenges

include restructuring communication and computation to post nonblocking sends

and receives as early as possible while completing them as late as possible and

injecting progress-inducing calls effectively.
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CHAPTER 4

Sun S3L Performance Guidelines

Introduction
This chapter discusses a variety of performance issues as they relate to use of Sun

S3L routines. The discussions are organized along the following lines:

■ Linking in the Sun Performance Library™

■ Using legacy code containing ScaLAPACK calls

■ Array distribution

■ Process grids

■ Runtime mapping to a cluster

■ Using shared memory to lower communication costs

■ Using smaller data types

■ Miscellaneous performance guidelines for individual Sun S3L routines

Link in the Appropriate Version of the Sun

Performance Library

Sun S3L relies on functions in the Sun Performance Library (libsunperf ) for

numerous computations within each process. For best performance, make certain

your executable uses the architecture-specific version of libsunperf . You can do

this by linking your program with –xarch=v8plusa for 32-bit executables or

–xarch=v9a for 64-bit executables.

At run time, the environment variable LD_LIBRARY_PATHcan be used to override

link-time library choices. Ordinarily, you should not use this environment variable

as it might link a suboptimal library, such as the generic SPARC™ version, rather

than one optimized for an UltraSPARC processor.
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To unset the LD_LIBRARY_PATHenvironment variable, use

To confirm which libraries will be linked at run time, use

If Sun S3L detects that a suboptimal version of libsunperf was linked in, it will

print a warning message. For example:

Note – For single-process jobs, most Sun S3L functions call the corresponding Sun

Performance Library interface if such an interface exists. Thus, the performance of

Sun S3L functions on a single process is usually similar to that of single-threaded

Sun Performance Library functions.

Legacy Code Containing ScaLAPACK Calls

Many Sun S3L functions support ScaLAPACK application programming interfaces

(APIs). This means you can increase the performance of many parallel programs that

use ScaLAPACK calls simply by linking in Sun S3L instead of the public domain

software.

Alternatively, you might convert ScaLAPACK array descriptors to S3L array handles

and call S3L routines explicitly. By converting the ScaLAPACK array descriptors to

the equivalent Sun S3L array handles, you can visualize distributed

ScaLAPACK arrays with Prism and use the Sun S3L simplified array syntax for

programming. You will also have full use of the Sun S3L toolkit functions.

Sun S3L provides the function S3L_from_ScaLAPACK_desc that performs this API

conversion for you. See the S3L_from_ScaLAPACK_desc man page for details.

% unsetenv LD_LIBRARY_PATH

% ldd executable

S3L warning: Using libsunperf not optimized for UltraSPARC.
For better performance, link using –xarch=v8plusa
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Array Distribution

One of the most significant performance-related factors in Sun S3L programming is

the distribution of S3L arrays among MPI processes. S3L arrays are distributed, axis

by axis, using mapping schemes that are familiar to users of ScaLAPACK or High

Performance Fortran. That is, elements along an axis might have any one of the

following mappings:

■ local – All elements are owned by (that is, local to) the same MPI process.

■ block – The elements are divided into blocks with, at most, one block per process.

■ cyclic – The elements are divided into small blocks, which are allocated to

processes in a round-robin fashion, cycling over processes repeatedly, as needed.

FIGURE 4-1 illustrates these mappings with examples of a one-dimensional array

distributed over four processes.

For multidimensional arrays, mapping is specified separately for each axis, as shown

in FIGURE 4-2. This diagram illustrates a two-dimensional array’s row and column

axes being distributed among four processes. Four examples are shown, using a

different combination of the three mapping schemes in each. The value represented

in each array element is the rank of the process on which that element resides.

FIGURE 4-1 Array Distribution Examples for a One-Dimensional Array

 One-Dimensional Array

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A. (LOCAL)

Process 0:

Process 1:

Process 2:

Process 3:

Q R S T U V W X

B. (BLOCK)

Process 0:

Process 1:

Process 2:

Process 3:

A B C D E F G H

I J K L M N O P

Y Z

E F M N U V

C. (CYCLIC)

Process 0:

Process 1:

Process 2:

Process 3:

A B I J Q R Y Z

C D K L S T

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

G H O P W X
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FIGURE 4-2 Array Distribution Examples for a Two-Dimensional Array

A. (LOCAL,BLOCK)

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

B. (LOCAL,CYCLIC)

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3 0 0 1 2 2 2 3 3

C. (BLOCK,BLOCK)

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

D. (CYCLIC,CYCLIC)

0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3

NOTE: The value in each array element indicates the rank of the process
on which that element resides.
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In certain respects, local distribution is simply a special case of block distribution,

which is just a special case of cyclic distribution. Although related, the three

distribution methods can have very different effects on both interprocess

communication and load balancing among processes. TABLE 4-1 summarizes the

relative effects of the three distribution schemes on these performance components.

The next two sections provide guidelines for when you should use local and cyclic

mapping. When none of the conditions describe below apply, use block mapping.

When To Use Local Distribution

The chief reason to use local mapping is that it eliminates certain communication.

The following are two general classes of situations in which local distribution should

be used:

■ Along a single axis – The detailed versions of the Sun S3L FFT, sort, and grade

routines manipulate data only along a single, specified axis. When using the

following routines, performance is best when the target axis is local.

■ S3L_fft_detailed

■ S3L_sort_detailed_up

■ S3L_sort_detailed_down

■ S3L_grade_detailed_up

■ S3L_grade_detailed_down

■ Operations that use the multiple-instance paradigm – When operating on a full

array using a multiple-instance Sun S3L routine, make data axes local and

distribute instance axes. See the chapter on multiple instance in the Sun S3L
Programming Guide.

TABLE 4-1 Amount of Communication and of Load Balancing with Local, Block, and
Cyclic Distribution

Local Block Cyclic

Communication (such as near-

neighbor communication)

none

(optimal)

some most

(worst)

Load balancing (such as operations

on left-half of data set)

none

(worst)

some most

(optimal)
Chapter 4 Sun S3L Performance Guidelines 57



When To Use Cyclic Distribution

Some algorithms in linear algebra operate on portions of an array that diminish as

the computation progresses. Examples within Sun S3L include LU decomposition

(S3L_lu_factor and S3L_lu_solve ), singular value decomposition

(S3L_gen_svd ), and the least-squares solver (S3L_gen_lsq ). For these Sun S3L

routines, cyclic distribution of the data axes improves load balancing.

Choosing an Optimal Block Size

When declaring an array, you must specify the size of the block to be used in

distributing the array axes. Your choice of block size not only affects load balancing,

it also trades off between concurrency and cache-use efficiency.

Note – Concurrency is the measure of how many different subtasks can be

performed at a time. Load balancing is the measure of how evenly the work is

divided among the processes. Cache-use efficiency is a measure of how much work

can be done without updating cache.

Specifying large block sizes will block multiple computations together. This leads to

various optimizations, such as improved cache reuse and lower MPI latency costs.

However, blocking computations reduces concurrency, which in turn inhibits

parallelization.

A block size of 1 maximizes concurrency and provides the best load balancing.

However, small block sizes degrade cache-use efficiency.

Since the goals of maximizing concurrency and cache-use efficiency conflict, you

must choose a block size that will produce an optimal balance between them. The

following guidelines are intended to help you avoid extreme performance penalties:

■ Use the same block size in all dimensions.

■ Limit the block size so that data does not overflow the L2 (external) cache. Cache

sizes vary, but block sizes should typically not go over 100.

■ Use a block size of at least 20 to 24 to allow cache reuse.

■ Scale the block size to the size of the matrix. Keep the block size small relative to

the size of the matrix to allow ample concurrency.

There is no simple formula for determining an optimal block size that covers all

combinations of matrices, algorithms, numbers of processes, and other such

variables. The best guide is experimentation, while keeping the points just outlined

in mind.
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Illustration of Load Balancing

This section demonstrates the load-balancing benefits of cyclic distribution for an

algorithm that sums the lower triangle of an array.

The section begins by showing how block distribution results in load imbalance for

this algorithm (see FIGURE 4-3). In this example, the array’s column axis is block-

distributed across processes 0–3. Since process 0 must operate on many more

elements than the other processes, total computational time will be bounded by the

time it takes process 0 complete. The other processes, particularly process 3, will be

idle for much of that time.

FIGURE 4-3 LOCAL,BLOCKDistribution of a 16x16 Array Across Four Processes

FIGURE 4-4 shows how cyclic distribution of the column axis delivers better load

balancing. In this case, the axis is distributed cyclically, using a block size of 1.

Although process 0 still has more elements to operate on than the other processes,

cyclic distribution significantly reduces its share of the array elements.

0
0 0
0 0 0
0 0 0 0
0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 2
0 0 0 0 1 1 1 1 2 2
0 0 0 0 1 1 1 1 2 2 2
0 0 0 0 1 1 1 1 2 2 2 2
0 0 0 0 1 1 1 1 2 2 2 2 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3

NOTE: The value in each array element indicates the rank of
the process on which that element resides.
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FIGURE 4-4 LOCAL,CYCLIC Distribution of a 16x16 Array Across Four Processes

The improvement in load balancing is summarized in TABLE 4-2. In particular, note

the decrease in the number of elements allocated to process 0, from 54 to 36. Since

process 0 still determines the overall computational time, this drop in element count

can be seen as a computational speed-up of 150 percent.

Process Grid Shape

Ordinarily, Sun S3L will map an S3L array onto a process grid whose logical

organization is optimal for the operation to be performed. You can assume that, with

few exceptions, performance will be best on the default process grid.

TABLE 4-2 Numbers of Elements the Processes Operate on in
FIGURE 4-3 and FIGURE 4-4

FIGURE 4-3
(BLOCK)

FIGURE 4-4
(CYCLIC)

Process 0 54 36

Process 1 38 32

Process 2 22 28

Process 3 6 24

0
0 1
0 1 2
0 1 2 3
0 1 2 3 0
0 1 2 3 0 1
0 1 2 3 0 1 2
0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0
0 1 2 3 0 1 2 3 0 1
0 1 2 3 0 1 2 3 0 1 2
0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

NOTE: The value in each array element indicates the rank
of the process on which that element resides.
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However, if you have a clear understanding of how a Sun S3L routine will make use

of an array and you want to try to improve the routine’s performance beyond that

provided by the default process grid, you can explicitly create process grids using

S3L_set_process_grid . This toolkit function allows you to control the following

process grid characteristics.

■ The grid’s rank (number of dimensions)

■ The number of processes along each dimension

■ The order in which processes are organized – column order (the default) or row

order

■ The rank sequence to be followed in ordering the processes

For some Sun S3L routines, a process grid’s layout can affect both load balancing

and the amount of interprocess communication that a given application experiences.

For example,

■ A 1 x 1 x 1 x ... x NP process grid (where NP= number of processes) makes all

but the last array axis local to their respective processes. The last axis is

distributed across multiple processes. Interprocess communication is eliminated

from every axis but the last. This process grid layout provides a good balance

between interprocess communication and optimal load balancing for many

algorithms. Except for the axis with the greatest stride, this layout also leaves data

in the form expected by a serial Fortran program.

■ Use a square process grid for algorithms that benefit from cyclic distributions.

This will promote better load balancing, which is usually the primary reason for

choosing cyclic distribution.

Note that these generalizations can, in some situations, be nullified by various other

parameters that also affect performance. If you choose to create a nondefault process

grid, you are most likely to arrive at an optimal block size through experimentation,

using the guidelines described here as a starting point.

Runtime Mapping to a Cluster

The runtime mapping of a process grid to nodes in a cluster can also influence the

performance of Sun S3L routines. Communication within a multidimensional

process grid generally occurs along a column axis or along a row axis. Thus, you

should map all the processes in a process grid column (or row) onto the same node

so that the majority of the communication takes place within the node.

Runtime mapping of process grids is effected in two parts:

■ The multidimensional process grid is mapped to one-dimensional MPI ranks

within the MPI_COMM_WORLDcommunicator. By default, Sun S3L uses column-
major ordering. See FIGURE 4-5 for an example of column-major ordering of a 4x3

process grid. FIGURE 4-5 also shows row major ordering of the same process grid.
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■ MPI ranks are mapped to the nodes within the cluster by CRE (or other resource

manager)

. This topic is discussed in greater detail in Chapter 6.

FIGURE 4-5 Examples of Column- and Row-Major Ordering for a 4x3 Process Grid

The two mapping stages are illustrated in FIGURE 4-6.

FIGURE 4-6 Process Grid and Runtime Mapping Phases (Column-Major Process Grid)

Neither stage of the mapping, by itself, controls performance. Rather, it is the

combination of the two that determines the extent to which communication within

the process grid will stay on a node or will be carried out over a network connection,

which is an inherently slower path.

A E I
B F J
C G K
D H  L

Column Major

(Default)

Row Major

A B C
D E F
G H I
J K  L
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Although the ability to control process grid layout and the mapping of process grids

to nodes give the programmer considerable flexibility, it is generally sufficient for

good performance to:

■ Group consecutive processes so that communication between processes remains

within a node as much as possible.

■ Use column-major ordering, which Sun S3L uses by default.

Note – If you do decide to use S3L_set_process_grid —for example, to specify a

nondefault process-grid shape—use S3L_MAJOR_COLUMNfor the majorness
argument. This will give the process grid column-major ordering. Also, specify 0 for

the plist_length argument. This will ensure that the default rank sequence is

used. That is, the process rank sequence will be 0, 1, 2, ..., rather than some other

sequence. See the S3L_set_process_grid man page for a description of the

routine.

For example, assume that 12 MPI processes are organized as a 4x3, column-major

process grid. To ensure that communication between processes in the same column

remain on node, the first four processes must be mapped to one node, the next four

processes to one node (possibly the same node as the first four processes), and so

forth.

If your runtime manager is CRE, use

For LSF, use

Note that the semantics of CRE and LSF examples differ slightly. Although both sets

of command-line arguments result in all communication within a column being on

node, they differ in the following ways:

■ The CRE command allows multiple columns to be mapped to the same node.

■ The LSF command allows no more than one column per node.

Chapter 6 contains a fuller discussion of runtime mapping.

% mprun –np 12 –Z 4 a.out

% bsub –I –n 12 –R “span[ptile=4]” a.out
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Use Shared Memory to Lower Communication

Costs

Yet another way of reducing communication costs is to run on a single SMP node

and allocate S3L data arrays in shared memory. This allows some Sun S3L routines

to operate on data in place. Such memory allocation must be performed with

S3L_declare or S3L_declare_detailed .

When declaring an array that will reside in shared memory, you need to specify how

the array will be allocated. This is done with the atype argument. TABLE 4-3 lists the

two atype values that are valid for declaring an array for shared memory and the

underlying mechanism that is used for each.

Smaller Data Types Imply Less Memory Traffic

Smaller data types have higher ratios of floating-point operations to memory traffic,

and so generally provide better performance. For example, 4-byte floating-point

elements are likely to perform better than double-precision 8-byte elements.

Similarly, single-precision complex will generally perform better than double-

precision complex operations.

TABLE 4-3 Using S3L_declare or S3L_declare_detailed to Allocate Arrays in
Shared Memory

atype Underlying Mechanism Notes

S3L_USE_MMAP mmap(2) Specify this value when memory resources

are shared with other processes.

S3L_USE_SHMGET System V shmget (2) Specify this value only when there will be

little risk of depriving other processes of

physical memory.
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Performance Notes for Specific Routines
This section contains performance-related information about individual Sun S3L

routines. TABLE 4-4 summarizes some recommendations. Symbols used in the table

include

TABLE 4-4 Summary of Performance Guidelines for Specific Routines

Operation
Operation
Count

Optimal
Distribution

Optimal
Process Grid

shmem
Optimi-
zations?

S3L_mat_mult 2 N3 (real)

8 N3 (complex)

same block size

for both axes

square no

S3L_matvec_sparse 2 N Nnonzero (real)

8 N Nnonzero (complex)

N/A N/A yes

S3L_lu_factor 2 N3/3 (real)

8 N3/3 (complex)

block cyclic; same

NB for both axes;

NB = 24 or 48

1*NP (small N);

square (big N)

no

S3L_fft , S3L_ifft 5 Nelem log2(Nelem) block; (also see

S3L_trans )

1*1*1* ... *NP yes

S3L_rc_fft , S3L_cr_fft 5 (Nelem/2)log2(Nelem/2) block; (also see

S3L_trans )

1*1*1* ... *NP yes

S3L_fft_detailed 5 Nelem log2(N) target axis local N/A N/A

S3L_gen_band_factor ,

S3L_gen_trid_factor
(iterative) block 1*NP no

S3L_sym_eigen (iterative) block; same NB

for both axes

NPR*NPC, where

NPR < NPC

no

S3L_rand_fib N/A N/A N/A no

S3L_rand_lcg N/A block 1*1*1* ... *NP no

N

Nelem

Nnonzero

Nrhs

NB

linear extent of an array

number of elements in an array
number of nonzero elements in a sparse array

number of right-hand-side vectors

block size for a block or block-cyclic axis distribution

NP number of MPI processes

NPR number of processes along the row axis
NPC number of processes along the column axis

N/A does not apply
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The operation count expressions shown in TABLE 4-4 provide a yardstick by which a

given routine’s performance can be evaluated. They can also be used to predict how

run times are likely to scale with problem size.

For example, assume a matrix multiply yields 350 Mflops per second on a 250-MHz

UltraSPARC processor, which has a peak performance of 500 Mflops per second. The

floating-point efficiency is then 70 percent, which can be evaluated for acceptability.

Floating-point efficiency is only an approximate guideline for determining an

operation’s level of performance. It cannot exceed 100 percent, but it might

legitimately be much lower under various conditions, such as when operations

require extensive memory references or when there is an imbalance between

floating-point multiplies and adds. Often, bandwidth to local memory is the limiting

factor. For iterative algorithms, the operation count is not fixed.

S3L_mat_mult

S3L_mat_mult computes the product of two matrices. It is most efficient when:

■ The array is distributed to a large number of processes organized in a square

process grid.

■ The same block size is used for both axes.

S3L_gen_lsq 4 N3/3 + 2 N2Nrhs block-cyclic; same

NB for both axes

square no

S3L_gen_svd O(N3) (iterative) block-cyclic; same

NB for both axes

square no

S3L_sort , S3L_sort_up ,

S3L_sort_down ,

S3L_grade_up ,

S3L_grade_down

N/A block 1*1*1* ... *NP no

S3L_sort_detailed_up ,

S3L_sort_detailed_down ,

S3L_grade_detailed_up ,

S3L_grade_detailed_down

N/A target axis local N/A no

S3L_trans N/A block 1*1*1* ... *NP

NP=power of two

yes

TABLE 4-4 Summary of Performance Guidelines for Specific Routines

Operation
Operation
Count

Optimal
Distribution

Optimal
Process Grid

shmem
Optimi-
zations?
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If it is not possible to provide these conditions for a matrix multiply, ensure that the

corresponding axes of the two factors are distributed consistently. For example, for a

matrix multiply of size (m,n) = (m,k) x (k,n), use the same block size for the second

axis of the first factor and the first axis of the second factor (represented by k in each

case).

S3L_matvec_sparse

Sun S3L employs its own heuristics for distributing sparse matrices over MPI

processes. Consequently, you do not need to consider array distribution or process

grid layout for S3L_matvec_sparse .

Shared-memory optimizations are performed only when the sparse matrix is in

S3L_SPARSE_CSRformat and the input and output vectors are both allocated in

shared memory.

S3L_lu_factor

The S3L_lu_factor routine uses a parallel, block-partitioned algorithm derived

from the ScaLAPACK implementation. It provides best performance for arrays with

cyclic distribution.

The following are useful guidelines to keep in mind when choosing block sizes for

the S3L_lu_factor routine:

■ Use the same block size in both axes.

■ Use a block size in the 24-100 range to promote good cache reuse but to prevent

cache overflows.

■ Use a smaller block size for smaller matrices or for larger numbers of processes to

promote better concurrency.

The S3L_lu_factor routine has special optimizations for double-precision,

floating-point matrices. Based on knowledge of the external cache size and other

process parameters, it uses a specialized matrix multiply routine to increase overall

performance, particularly on large matrices.

These optimizations are available to arrays that meet the following conditions:

■ The array is two-dimensional.

■ The array is allocated with S3L_declare_detailed , using

S3L_USE_MEMALIGN64for the atype argument .

■ The array’s data type is double-precision, floating-point.

■ Both axes have the same block size, which should be 24 or 48.
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When deciding on a process grid layout for LU factorization, your choices will

involve making a trade-off between load balancing and minimizing communication

costs. Pivoting will usually be responsible for most communication. The extreme

ends of the trade-off spectrum are summarized below:

■ To minimize the communication cost of pivoting, choose a 1 x NP process grid,

where NP is the number of MPI processes.

■ To optimize computational load balancing, choose a nearly square process grid.

Some experimentation will be necessary to arrive at the optimal trade-off for your

particular requirements.

S3L_fft, S3L_ifft, S3L_rc_fft, S3L_cr_fft,

S3L_fft_detailed

Performance is best when the extents of the array can be factored into small, prime

factors no larger than 13.

The operation count expressions given in TABLE 4-4 for the FFT family of routines

provide a good approximation. However, the actual count will depend to some

extent on the radix (factors) used. In particular, for a given problem size, the real-to-

complex and complex-to-real FFTs have half the operation count and half the

memory requirement of their complex-to-complex counterparts.

The transformed axis should be local. If a multidimensional transform is desired,

make all but the last axis local.

It is likely that the resulting transpose will dominate the computation, at least in a

multinode cluster. See the discussion of S3L_trans .

S3L_gen_band_factor, S3L_gen_trid_factor,

S3L_gen_band_solve, S3L_gen_trid_solve

These routines tend to have relatively low communication costs, and so tend to scale

well.

For best performance of the factorization routines, make the all the axes of the array

to be factored local, except for the last axis, which should be block distributed.

Conversely, the corresponding solver routines perform best when the first axis of the

right-hand side array is block distributed and all other axes are local.
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S3L_sym_eigen

The performance of S3L_sym_eigen is sensitive to interprocess latency.

If both eigenvectors and eigenvalues are computed, execution time might be as

much as an order of magnitude longer than if only eigenvalues are computed.

S3L_rand_fib, S3L_rand_lcg

S3L_rand_fib and S3L_rand_lcg initialize parallel arrays using a Lagged-

Fibonacci and a Linear Congruential random number generator, respectively. An

array initialized by the Lagged-Fibonacci routine will vary depending on the array

distribution. In contrast, array initialization by the Linear Congruential method will

produce the same result regardless of the array’s distribution.

Because the Linear Congruential random number generator must ensure that the

resulting random numbers do not depend on how the array is distributed, it has the

additional task of keeping account of the global indices of the array elements. This

extra overhead is minimized when local or block distribution is used and greatly

increased by distributing the array cyclically. S3L_rand_lcg can be two to three

times slower with cyclic distributions than with local or block distributions.

Since S3L_rand_fib fills array elements with random numbers regardless of the

elements' global indices, it is significantly faster than S3L_rand_lcg .

The S3L_rand_lcg routine is based on 64-bit strings. This means it performs better

on S3L_long_integer data types than on S3L_integer elements.

S3L_rand_fib , on the other hand, is based on 32-bit integers. It generates

S3L_integer elements twice as fast as for S3L_long_integer output.

Both algorithms generate floating-point output more slowly than integers, since they

must convert random bit strings into floating-point output. Complex numbers are

generated at half the rate of real numbers, since twice as many must be generated.

S3L_gen_lsq

S3L_gen_lsq finds the least-squares solution of an overdetermined system. It is

implemented with a QR algorithm. The operation count shown in TABLE 4-4 applies

to real, square matrices. For a real, rectangular (M,N) matrix, the operation count

scales as

2 N Nrhs(2M–N) + 2 N2 (M–N/3) for M >= N

2 N Nrhs(2M–N) + 2 M2 (N–M/3) for M < N
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For complex elements, the operation count is four times as great.

S3L_gen_svd

For S3L_gen_svd , the convergence of the iterative algorithm depends on the matrix

data. Consequently, the count is not well-defined for this routine. However,

S3L_gen_svd does tend to scale as N3.

If the singular vectors are computed, the run time can be roughly an order of

magnitude longer than if only singular values are extracted.

The A, U, and V arrays should all be on the same process grid for best performance.

S3L_gen_iter_solve

Most of the time spent in this routine is in S3L_mat_vec_sparse .

Overall performance depends on more than just the floating-point rate of that

subroutine. It is also significantly influenced by the matrix data and by the choice of

solver, preconditioner, initial guess, and convergence criteria.

S3L_acorr, S3L_conv, S3L_deconv

The performance of these functions depends on the performance of S3L FFTs and,

consequently, on the performance of the S3L transposes.

S3L_sort, S3L_sort_up, S3L_sort_down,

S3L_sort_detailed_up, S3L_sort_detailed_down,

S3L_grade_up, S3L_grade_down,

S3L_grade_detailed_up,

S3L_grade_detailed_down

These routines do not involve floating-point operations. The operation count can

vary greatly, depending on the distribution of keys, but it will typically scale from

O(N) to O(N log(N)).

Sorts of 64-bit integers can be slower than sorts of 64-bit floating-point numbers.
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S3L_trans

S3L_trans provides communication support to the Sun FFTs as well as to many

other Sun S3L algorithms. Best performance is achieved when axis extents are all

multiples of the number of processes.

S3L Toolkit Functions

The S3L Toolkit functions are primarily intended for convenience rather than

performance. However, some significant performance variations do occur. For

example:

■ S3L_copy_array can be very fast or extremely slow depending on how well the

two arrays are aligned.

■ S3L_forall performance entails relatively significant overhead for each element

operated on for function types S3L_ELEM_FN1and S3L_INDEX_FN. In contrast,

the function type S3L_ELEM_FNNamortizes such overhead over many elemental

operations.

■ S3L_set_array_element , S3L_set_array_element_on_proc ,

S3L_get_array_element , and S3L_get_array_element_on_proc perform

very small operations. Consequently, overhead costs are a significant component

for these routines (as with the S3L_forall function types S3L_ELEM_FN1and

S3L_INDEX_FN).
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CHAPTER 5

Compilation and Linking

This chapter describes the Forte Developer compiler switches that typically give the

best performance for Sun MPI programs.

For more detailed information on compilation, see the following:

■ The documentation and man pages that accompany your compiler

■ The man pages for the Sun HPC ClusterTools utilities mpf90, mpcc , and mpCC

■ Techniques For Optimizing Applications: High Performance Computing, by Rajat Garg

and Ilya Shapov, Prentice-Hall, 2001, ISBN: 0-13-093476-3

Compiler Version
The simplest way to get the best performance from a compiler and associated

libraries is to use the latest available version. The latest release supported by Sun

HPC ClusterTools 4 is Forte Developer 6 update 2.

For Fortran programmers, another way to enhance performance is to use the f90
(equivalent to the f95 ) compiler, instead of f77 . The f90 compiler supports the

Fortran 77 language features, but also has optimizations not present in the f77
compiler.

Using the mp* Utilities
Sun HPC ClusterTools programs can be written for and compiled by the Fortran 77,

Fortran 90, C, or C++ compilers. Although you can invoke these compilers directly,

you might prefer to use the convenience scripts mpf77 , mpf90 , mpcc, and mpCC,
provided with Sun HPC ClusterTools software.
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This chapter describes the basic compiler switches that typically give best

performance. The discussion centers around mpf77 and mpcc, but it applies equally

to the various scripts and aliases just mentioned. For example, you can use:

to compile a Fortran 77 program that uses Sun MPI, or

to compile a C program that uses Sun S3L. Note that these utilities automatically

link in MPI if S3L use is specified.

For more detailed information, see the Sun HPC ClusterTools User’s Guide.

–fast
The most important compilation switch for performance, is -fast . This macro

expands to settings that are appropriate for high performance for a general set of

circumstances. Since its expansion varies from one compiler release to another, you

might prefer to specify the underlying switches explicitly. To see what -fast
expands to in the current release, use -v with Fortran or -# with C for verbose

compilation output.

Part of -fast is -xtarget=native , which directs the compiler to try to produce

optimal code for the platform on which compilation is taking place. If you compile

on the same type of platform that you expect to run on, then this setting is

appropriate. (A compile-time warning might remind you that the resulting binary

will not be compatible with older processors.)

Otherwise, specify the target platform with -xtarget . The compiler man page

(f90 , cc , or CC) gives the legal values of the -xtarget switch.The -xtarget macro

then expands into appropriate values of the -xarch , -xchip , and -xcache
switches. It might suffice simply to specify the target instruction set architecture

with -xarch , as discussed below.

If you compile with –fast and link in a separate step, be sure to link with –fast .

If a Fortran program makes calls to the Sun MPI library, all its objects must have

been compiled with -dalign . This requirement is automatically satisfied when you

compile with -fast .

% mpf90 -fast -g a.f -lmpi

% mpcc -fast -g a.c -ls3l -lmopt
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–xarch
The second most important compiler switch for maximizing performance is –xarch .

While –fast picks many performance-oriented settings by default, you should

specify a value for -xarch if you are compiling for a processor type that is different

from the compilation system. Further, if you want 64-bit addressing for large-

memory applications, then –xarch is required to specify the format of the

executable.

■ Specify –xarch=v8plusa for 32-bit object binaries for UltraSPARC II processors.

■ Specify –xarch=v9a for 64-bit object binaries for UltraSPARC II processors.

■ Specify -xarch=v8plusb for 32-bit binaries for UltraSPARC III processors.

■ Specify -xarch=v9b for 64-bit binaries for UltraSPARC III processors.

Note the following requirements when using -xarch :

■ To compile or build 64-bit object binaries, you must use the Solaris 8 Operating

Environment.

■ To execute 64-bit binaries, you must use the Solaris 8 Operating Environment

with the 64-bit kernel.

■ Object files in 64-bit format can be linked only with other object files in the same

format.

The –fast switch should appear before –xarch on the compile or link line, as

shown in the examples in this chapter. If you compile with –xarch and then link in

a separate step, be sure to link with the same setting.

-g
With most compilers, -g is not thought of as a performance switch. On the contrary,

-g has traditionally inhibited compiler optimizations.

With the Forte Developer 6 compilers, however, there is virtually no loss of

performance with this switch. Further, -g compilation enables source-code

annotation by the Forte Developer performance analyzer, which provides important

performance tuning information. Thus, -g might be considered to be one of the basic

switches in to use in performance-tuning work.
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Other Useful Switches
Performance benefits from linking in the optimized math library. For Fortran, -fast
invokes -xlibmopt automatically. For C, be sure to add -lmopt to your link line:

Include -xdepend to perform analysis of data dependencies in loops, which could

lead to loop restructuring and performance enhancements. The -fast switch might

already include -xdepend for Fortran compilation, but not for C.

Include -xvector[=yes] if math library intrinsics, such as logarithm,

exponentiation, or trigonometric functions, appear inside long loops. This will make

calls to the optimized vector math library. If you compile with -xvector[=yes] ,

then include this switch on your link line to link in the vector library. The -fast
switch might already include -xvector for Fortran compilation, but not for C.

The use of data prefetch can help hide the cost of loading data from memory.

Compile with -xprefetch to enable compiler generation of prefetch instructions.

The -fast switch might already include -xprefetch for Fortran compilation, but

not for C. Sometimes, -xprefetch can slow performance, so it might best be used

selectively. For example, you can compile some files with -xprefetch[=yes] and

some with -xprefetch=no . Or, for even greater selectivity, annotate your source

code with prefetch pragmas or directives. For more information, see the compiler

user guides.

C programmers should consider using -xrestrict , which causes the compiler to

treat pointer-valued function parameters as restricted pointers. Other information

about pointer aliasing can be provided to the compiler via -xalias_level . See the

C User’s Guide for more details.

C programmers should also consider -xsfpconst if they largely perform floating-

point arithmetic to 32-bit precision. Note that in C, floating-point constants are

treated as double precision values unless they are explicitly declared as floats. For

example, in the expression a=1.0/b , the constant is treated as a double precision

value, regardless of the types of a and b. This might lead to unintended numeric

conversions and other performance implications. You can rewrite the expression as

a=1.0f/b . Alternatively, you can compile with -xsfpconst to treat unsuffixed

floating-point constants as single precision quantities.

Fortran codes written so that the values of local variables are not needed for

subsequent calls might benefit from -stackvar .

% mpcc -fast -g -o a.out a.c -lmpi -lmopt
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CHAPTER 6

Runtime Considerations and Tuning

To understand runtime tuning, you need to understand what happens on your

cluster at run time—that is, how hardware characteristics can impact performance

and what the current state of the system is.

This chapter discusses the performance implications of:

■ Running on a Dedicated System on page 77

■ Setting Sun MPI Environment Variables on page 78

■ Launching Jobs on a Multinode Cluster on page 83

For most users, the most important section of the chapter will be the discussion of

tuning Sun MPI environment variables at run time. While the default values are

generally effective, some tuning may help improve performance, depending on your

particular circumstances.

Running on a Dedicated System
The primary consideration in achieving maximum performance from an application

at run time is giving it dedicated access to the resources. Useful commands include:

To find out what the load is on a cluster, use the appropriate command (mpinfo or

lsload ) depending on the resource manager (CRE or LSF) in use at your site.

Standard UNIX commands such as uptime give the same information, but only for

one node.

CRE LSF UNIX

How high is the load? %mpinfo –N %lsload %uptime

What is causing the load? %mpps –e %bjobs –u all %ps –e
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To find out what processes are contributing to a load, again use the appropriate

command, depending on resource manager. The information will be provided for all

nodes and organized according to parallel job. However, this will show only those

processes running under the resource manager. For more complete information, try

the UNIX ps command. For example, either

% /usr/ucb/ps augx

or

% /usr/bin/ps –e –o pcpu –o pid –o comm | sort –n

will list most busy processes for a particular node.

Note that small background loads can have a dramatic impact. For example,

fsflush flushes memory periodically to disk. On a server with a lot of memory, the

default behavior of this daemon may cause a background load of only about 0.2,

representing a small fraction of one percent of the compute resource of a 64-way

server. Nevertheless, if you attempted to run a “dedicated” 64-way parallel job on

this server with tight synchronization among the processes, this background activity

could potentially disrupt not only one CPU for 20 percent of the time, but in fact all

CPUs, since MPI processes are often very tightly coupled. (For the particular case of

fsflush , a system administrator should tune the behavior to be minimally

disruptive for large-memory machines.)

In short, it is desirable to leave at least one CPU idle per cluster node. In any case, it

is useful to realize that the activity of background daemons is potentially very

disruptive to tightly coupled MPI programs.

Setting Sun MPI Environment Variables
Sun MPI uses a variety of techniques to deliver high-performance, robust, and

memory-efficient message passing under a wide set of circumstances. In most cases,

performance will be good without tuning any environment variables. In certain

situations, however, applications will benefit from nondefault behaviors. The Sun

MPI environment variables discussed in this section enable you to tune these default

behaviors.

User tuning of MPI environment variables can be restricted by the system

administrator through a configuration file. You can use MPI_PRINTENV, described

below, to verify settings.

The suggestions in this section are listed roughly in order of decreasing importance.

That is, leading items are perhaps most common or most drastic. In some cases,

diagnosis of whether environment variables would be helpful is aided by Prism
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profiling, as described in Chapter 7. More information on Sun MPI environment

variables can be found in Appendix B “Sun MPI Environment Variables” and in the

Sun MPI Programming and Reference Guide.

Are You Running on a Dedicated System?

If your system’s capacity is sufficient for running your MPI job, you can commit

processors aggressively to your job. Your CPU load should not exceed the number of

physical processors. Load is basically defined as the number of MPI processes in

your job, but it can be greater if other jobs are running on the system or if your job is

multithreaded. Load can be checked with uptime , lsload , or mpinfo , as discussed

at the beginning of this chapter.

To run more aggressively:

■ % setenv MPI_SPIN 1

This setting causes Sun MPI to “spin” aggressively, regardless of whether it is

doing any useful work. If you use this setting, you should leave at least one idle

processor per node to service system daemons. If you intend to use all processors

on a node, setting this aggressive spin behavior can slow performance, so some

experimentation is needed.

■ % setenv MPI_PROCBIND 1

This setting causes Sun MPI to bind each MPI process to a different processor by

using a particular mapping. You may not see a great performance benefit for jobs

that use few processes on a node. Don’t use this setting with multiple MPI jobs on

a node or with multithreaded jobs: If multiple MPI jobs on a node use this setting,

they will compete for the same processors. Also, if your job is multithreaded,

multiple threads will compete for a processor.

Suppress Cyclic Messages

Sun MPI supports cyclic message passing for long messages between processes on

the same node. Cyclic message passing induces added synchronization between

sender and receiver, which in some cases may hurt performance. Suppress cyclic

message passing with:

% setenv MPI_SHM_CYCLESTART 0x7fffffff
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Or, if you are operating in a 64-bit Solaris environment, use:

For a description of cyclic messages, see Appendix A “Sun MPI Implementation”.

Does the Code Use System Buffers Safely?

In some MPI programs, processes send large volumes of data with blocking sends

before starting to receive messages. The MPI standard specifies that users must

explicitly provide buffering in such cases, such as by using MPI_Bsend() calls. In

practice, however, some users rely on the standard send (MPI_Send() ) to supply

unlimited buffering. By default, Sun MPI prevents deadlock in such situations

through general polling, which drains system buffers even when no receives have

been posted by the user code.

For best performance on typical, safe programs, general polling should be

suppressed by using this setting:

If deadlock results from this setting, you may nonetheless use the setting for best

performance if you resolve the deadlock with increased buffering, as discussed in

the next section.

Are You Willing to Trade Memory for

Performance?

It is common for senders to stall while waiting for other processes to free shared-

memory resources.

One simple solution to this is to increase Sun MPI’s consumption of shared memory.

For example, you might try:

% setenv MPI_SHM_SBPOOLSIZE 8000000

% setenv MPI_SHM_NUMPOSTBOX 256

for ample buffering in a variety of situations.

% setenv MPI_SHM_CYCLESTART 0x7fffffffffffffff

% setenv MPI_POLLALL 0
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Unfortunately, there is no one-size-fits-all solution to the trade-off between memory

and performance. These sample settings target better performance. The Sun MPI

default settings target low memory consumption. This section discusses

considerations that will enable you to make a more discriminating trade-off.

It is helpful to think of data traffic per connection, the logical “path” from a

particular sender to a particular receiver, since many Sun MPI buffering resources

are allocated on a per-connection basis. A sender may emit a burst of messages on a

connection, during which time the corresponding receiver may not be depleting the

buffers.

The following discussion refers exclusively to messages that are exchanged between

processes on the same node—for example, messages in an MPI program that

executes wholly on a single SMP server.

Profiling may be needed to diagnose stalled senders. For more information on

profiling, see Chapter 7. In particular, analyzing time in relation to message size for

MPI send calls can be helpful. For example,

■ If performance of send calls, such as MPI_Send() or MPI_Isend() , appears to

reflect reasonable on-node bandwidths (on the order of 100 Mbyte/s), ample

shared memory resources are probably available to accommodate senders.

■ If blocking sends (such as MPI_Send() ) are taking much more time than the

message sizes warrant, stalling may be the cause.

■ If nonblocking sends (such as MPI_Isend() ) are taking much less time than the

message sizes warrant, there may be a hidden problem. The sender may find

insufficient shared-memory resources and exit the call immediately, leaving

message data unsent. The TNF probe MPI_Isend_end should always return a

“done” argument equal to 1.

■ If calls such as MPI_Wait() or MPI_Testany() , which complete or could

complete nonblocking send operations (like MPI_Isend() ), spend too much time

completing sends, it is likely that buffering is insufficient. See FIGURE 7-9 on

page 115 for an example.

If you know or can assume that senders will stall only on occasional long messages,

but never on bursts of many short messages, you can take another approach to

profiling. In this case, use profiling to determine the length of the longest message

ever sent.

To eliminate sender stalls by increasing shared-memory resources, you must set Sun

MPI environment variables. Arbitrary adjustments to these environment variables

can lead to unforeseen consequences. As a rule, do not decrease the following

environment variables below their default values. For complete information on Sun

MPI environment variables, including default values, ranges of legal values, and

memory implications, see Appendix B “Sun MPI Environment Variables” or the Sun
MPI Programming and Reference Guide.

One approach is simply to use fixed settings, as shown in the example at the

beginning of this section. For more detailed tuning, note that you have to allocate:
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■ buffers for message data, in one of these ways:

■ on a per-connection basis (that is, for each sender-receiver pair) with

MPI_SHM_CPOOLSIZE

■ on a per-sender basis (that is, for each sender) with MPI_SHM_SBPOOLSIZE

■ postboxes for buffer pointers, ensuring at least one postbox for each 8192 bytes of

data per connection

Consider the following examples.

■ Example 1 – An MPI process will post 20 short sends to another process before

“listening” for any receives. Use:

% setenv MPI_SHM_NUMPOSTBOX 20

■ Example 2 – Interprocess messages may be as long as 200000 bytes. Since such a

message may require as many as 200000 / 8192 ≈ 24.4 postboxes, use:

% setenv MPI_SHM_CPOOLSIZE 300000

% setenv MPI_SHM_NUMPOSTBOX 30

(Values have been rounded up to ensure ample buffering.) For np=64 , the above

allocation can take about 64 * 63 * 300000 bytes, or about 1200 Mbytes.

■ Example 3 – Although interprocess messages may be as long as 200000 bytes, an

MPI process communicates with only four other processes at a time in this way.

Use:

% setenv MPI_SHM_SBPOOLSIZE 1200000

% setenv MPI_SHM_NUMPOSTBOX 30

This case use the same number of postboxes as in Example 2. Each “send-buffer

pool” is four times as large as a “connection pool” in Example 2, but there are

fewer pools. For np=64 , the new buffer allocation can take about 64 * 1200000

bytes, or about 75 Mbytes.

Initializing Sun MPI Resources

Use of certain Sun MPI Resources may be relatively expensive when they are first

used. This can disrupt performance profiles and timings. While it is best, in any case,

to ensure that performance has reached a level of equilibrium before profiling starts,

a Sun MPI environment variable may be set to move some degree of resource

initialization to the MPI_Init() call. Use:

% setenv MPI_FULLCONNINIT 1

Note that this does not tend to improve overall performance. However, it may

improve performance and enhance profiling in most MPI calls, while slowing down

the MPI_Init() call. The initialization time, in extreme cases, can take minutes to

complete.
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Is More Runtime Diagnostic Information Needed?

You can set some Sun MPI environment variables to print out extra diagnostic

information at run time:

Launching Jobs on a Multinode Cluster
In a cluster configuration, the mapping of MPI processes to nodes in a cluster can

impact application performance significantly. This section describes some important

issues, including minimizing communication costs, load balancing, bisection

bandwidth, and the role of I/O servers.

Minimizing Communication Costs

Communication between MPI processes on the same shared-memory node is much

faster than between processes on different nodes. Thus, by collocating processes on

the same node, application performance can be increased. Indeed, if one of your

servers is very large, you may want to run your entire “distributed-memory”

application on a single node.

Meanwhile, not all processes within an MPI job need to communicate efficiently

with all others. For example, the MPI processes may logically form a square “process

grid,” in which there are many messages traveling along rows and columns, or

predominantly along one or the other. In such a case, it may not be essential for all

processes to be collocated, but only for a process to be collocated with its partners

within the same row or column.

Load Balancing

Running all the processes on a single node can improve performance if the node has

sufficient resources available to service the job, as explained in the preceding section.

At a minimum, it is important to have no more MPI processes on a node than there

are CPUs. It may also be desirable to leave at least one CPU per node idle (see

“Running on a Dedicated System” on page 77). Additionally, if bandwidth to

% setenv MPI_PRINTENV 1
% setenv MPI_SHOW_INTERFACES 3
% setenv MPI_SHOW_ERRORS 1
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memory is more important than interprocess communication, you may prefer to

underpopulate nodes with processes so that processes do not compete unduly for

limited server backplane bandwidth. Finally, if the MPI processes are multithreaded,

it is important to have a CPU available for each lightweight process (LWP) within an

MPI process. This last consideration is especially tricky since the resource manager

(CRE or LSF) may not know at job launch that processes will spawn other LWPs.

Bisection Bandwidth

Many cluster configurations provide relatively little internodal bandwidth per node.

Meanwhile, bisection bandwidth may be the limiting factor for performance on a

wide range of applications. In this case, if you must run on multiple nodes, you may

prefer to run on more nodes rather than on fewer.

This point is illustrated qualitatively in FIGURE 6-1. The high-bandwidth backplanes

of large Sun servers provide excellent bisection bandwidth for a single node. Once

you have multiple nodes, however, the interface between each node and the network

will become the bottleneck. Bisection bandwidth starts to recover again when the

number of nodes—actually, the number of network interfaces—increases.

FIGURE 6-1 Bisection bandwidth increases with the number of nodes, but a single node is
even better.

In practice, every application benefits at least somewhat from increased locality, so

collocating more processes per node by reducing the number of nodes has some

positive effect. Nevertheless, for codes that are dominated by all-to-all types of

communication, increasing the number of nodes can improve performance.
84 Sun HPC ClusterTools 4 Performance Guide • August 2001



Role of I/O Servers

The presence of I/O servers in a cluster affects the other issues we have been

discussing in this section. If, for example, a program will make heavy use of a

particular I/O server, executing the program on that I/O node may improve

performance. If the program makes scant use of I/O, you may prefer to avoid I/O

nodes, since they may consume nodal resources. If multiple I/O servers are used,

you may want to distribute MPI processes in a client job to increase aggregate

(“bisection”) bandwidth to I/O.

Running Jobs in the Background

Performance experiments conducted in the course of tuning often require multiple

runs under varying conditions. It may be desirable to run such jobs in the

background.

To run jobs in the background, perhaps from a shell script, use the -n switch with

the CRE mprun command. Otherwise, the job could block. For example,

Limiting Core Dumps

Core dumps can provide valuable debugging information, but they can also induce

stifling repercussions for silly mistakes. In particular, core dumps of HPC processes

can be very large. For multiprocess jobs, the problem can be compounded, and the

effect of dumping multiple large core files over a local network to a single, NFS-

mounted file system can be crippling.

To limit core dumps for jobs submitted with the CRE mprun command, simply limit

core dumps in the parent shell before submitting the job. If the parent shell is csh ,

use limit coredumpsize 0 . If the parent shell is sh , use ulimit -c 0 .

To limit core dumps for jobs submitted with the LSF bsub command, use the -C 0
switch to bsub .

% mprun -n -np 4 a.out &% cat a.csh
#!/bin/csh
mprun -n -np 4 a.out
% a.csh
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Examples of Job Launch on a Cluster
This section presents examples of efficient parallel job launches on a multinode

cluster using the CRE and LSF runtime environments, respectively.

Multinode Job Launch Under CRE

CRE provides a number of ways to control the mapping of jobs to the respective

nodes of a cluster.

Collocal Blocks of Processes

CRE supports the collocation of blocks of processes — that is, all processes within a

block are mapped to the same node.

Assume you are performing an LU decomposition on a 4x8 process grid using Sun

S3L. If minimization of communication within each block of four consecutive MPI

ranks is most important, then these 32 processes could be launched in blocks of 4

collocated MPI processes by using –Z or –Zt :

In either case, MPI ranks 0 through 3 will be mapped to a single node. Likewise,

ranks 4 through 7 will be mapped to a single node. Each block of four consecutive

MPI ranks is mapped to a node as a block. Using the –Zt option, no two blocks will

be mapped to the same node—eight nodes will be used. Using the –Z option,

multiple blocks may be mapped to the same node. For example, with –Zt , the entire

job may be mapped to a single node if it has at least 32 CPUs.

Multithreaded Job

Consider a multithreaded MPI job in which there is one MPI process per node, with

each process multithreaded to make use of all the CPUs on the node. You could

specify 16 such processes on 16 different nodes by using:

% mprun –np 32 –Zt 4 a.out
% mprun –np 32 –Z  4 a.out

% mprun –Ns –np 16 a.out
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Round-Robin Distribution of Processes

Imagine that you have an application that depends on bandwidth for uniform, all-

to-all communication. If the code requires more CPUs than can be found on any

node within the cluster, it should be run over all the nodes in the cluster to

maximize bisection bandwidth. For example, for 32 processes, this can be effected

with the command:

That is, CRE tries to map processes to distinct nodes (because of the –Ns switch, as

in the multithreaded case above), but it will resort to “wrapping” multiple processes

(–Wswitch) onto a node as necessary.

Detailed Mapping

For more complex mapping requirements, use the mprun switch -m or -l to specify

a rankmap as a file or a string, respectively For example, if the file nodelist
contains

then the command

% mprun –np 16 –m nodelist a.out

maps the first 4 processes to node0, the next 4 to node1, and the next 8 to node2. See

the Sun HPC CluaterTools User’s Guide for more information about process mappings.

% mprun –Ns –W –np 32 a.out

node0
node0 2
node0
node1 4
node2 8
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Multinode Job Launch Under LSF

LSF controls most aspects of resource allocation on a cluster, leaving the user limited

control of the mapping of jobs to noces.

Collocal Blocks of Processes

LSF supports the collocation of blocks of processes—that is, all processes within a

block are mapped to the same node. With LSF, different blocks will be mapped to

different nodes. For example, consider a multithreaded MPI job with one MPI

process per node, and with each process multithreaded to make use of all the CPUs

on the node. You could specify 16 such processes on 16 different nodes by using:

Or, assume that you are performing an LU decomposition on a 4x8 process grid

using Sun S3L. If minimization of communication within each block of four

consecutive MPI ranks is most important, then these 32 processes would be

launched on 8 different nodes using:

On the other hand, this approach will distribute the blocks of processes over 8

nodes, regardless of whether a node could accommodate more processes. So

consider again the 4x8 process grid, but this time assume that each node in your

cluster has 14 CPUs. You could further aggregate processes and so further minimize

communication by assigning blocks of 12 consecutive MPI ranks (3 blocks of 4 each),

using:

Finally, consider a cluster with four nodes, each hosting an I/O server. If you run an

8-process application that is I/O throughput bound, the processes should be spread

over all the nodes to maximize aggregate throughput to disk. You can launch the 8

processes on 4 different nodes using:

% bsub –I –n 16 –R "span[ptile=1]" a.out

% bsub –I –n 32 –R "span[ptile=4]" a.out

% bsub –I –n 32 –R "span[ptile=12]" a.out

% bsub –I –n 8 –R "span[ptile=2]" a.out
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Multithreaded Job

By default, LSF launches one process per reserved CPU. To reserve more CPUs per

process, for example for multithreaded jobs, use the -sunhpc switch.

For example, consider a job in which there are 8 MPI processes and each process is

multithreaded 2 ways. You can reserve 8x2=16 CPUs with LSF and yet launch only 8

processes by using:

% bsub –I –n 16 -sunhpc -n 8 a.out
Chapter 6 Runtime Considerations and Tuning 89



90 Sun HPC ClusterTools 4 Performance Guide • August 2001



CHAPTER 7

Profiling

An important component of performance tuning is profiling, in which you develop a

picture of how well your code is running and what sorts of bottlenecks it may have.

Profiling can be a difficult task in the simplest of cases, and the complexities

multiply with MPI programs because of their parallelism. Without profiling

information, however, code optimization can be wasted effort.

This chapter describes:

■ “General Profiling Methodology” on page 91

■ “Forte Developer Profiling of Sun MPI Programs” on page 95

■ “Using the Prism Environment to Trace Sun MPI Programs” on page 108

■ “TNF Tracing Using the tnfdump Utility” on page 127

■ “Other Profiling Approaches” on page 128

This chapter includes a few case studies that examine some of the NAS Parallel

Benchmarks 2.3. These are available from the NASA Ames Research Center at

The runs shown in this chapter were not optimized for the platforms on which they

executed.

General Profiling Methodology
It is likely that only a few parts of a program account for most of its run time.

Profiling enables you to identify these “hot spots” and characterize their behavior.

You can then focus your optimization efforts on the spots where they will have the

most effect.

http://www.nas.nasa.gov/Software/NPB/index.html
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Profiling can be an experimental, exploratory procedure, and so you might find

yourself rerunning an experiment frequently. It is a challenge to design such runs so

that they complete quickly while still capturing the performance characteristics you

are trying to study. There are several ways you can strip down your runs, from

reducing the data set to performing fewer loop iterations, but keep these caveats in

mind:

■ Try to maintain the same problem size, since changing the size of your data set

can change the performance characteristics of your code. Similarly, reducing the

number of processors used can mask scalability problems or produce

ungeneralizable behavior.

■ If the problem size must be reduced because only a few processors are available,

try to determine how the data set should be scaled to maintain comparable

performance behavior. For many algorithms, it makes most sense to maintain a

fixed subgrid size. For example, if a full dataset of 8 Gbytes is expected to run on

64 processors, then maintain the fixed subgrid size of 128 Mbyte per processor by

profiling a 512 Mbyte data set on 4 processors.

■ Try to shorten experiments by running fewer iterations. One difficulty with this

approach is that the long-term, steady-state performance behavior of your code

may become dwarfed by otherwise inconsequential factors. In particular, code

may behave differently the first few times it is executed than when buffers,

caches, and other resources have been warmed up.

Basic Approaches

There are a variety of approaches to profiling Sun HPC ClusterTools programs:

■ Use the Forte Developer performance analyzer (the programs: Sampling Collector

and Sampling Analyzer) — This is probably the most basic approach to profiling

an HPC application on Sun systems, both for Sun MPI and non-MPI programs.

No recompiling or relinking is required. Sampling data shows which routines are

consuming the most time. User computation and MPI message passing are

profiled, and caller-callee relationships are shown. Recompilation and relinking

with –g enable attribution to individual source-code lines with almost no loss in

optimizations. On UltraSPARC-III microprocessors, hardware-based profiling can

identify where floating-point operations, cache misses, and so forth, occur. For

information about using Forte Developer profiling, see “Forte Developer Profiling

of Sun MPI Programs” on page 95.

■ Run your program under the Prism environment to understand the MPI message-

passing activities — Prism tracing gives you a picture of the message-passing

behavior of your program and how its characteristics—synchronization patterns,

message sizes, and so on—may be impairing performance. For information about

Prism tracing, see “Using the Prism Environment to Trace Sun MPI Programs” on

page 108.
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■ Modify your source code to include timer calls — This is most appropriate if you

have reasonable familiarity with the program. You can place timers at a high level

to understand gross aspects of the code, or at a fine level to study particular

details. For information about the inserting timer calls using Sun MPI, see

“Inserting MPI Timer Calls” on page 129.

■ Use the MPI profiling interface (PMPI) to diagnose other aspects of message-

passing performance — The MPI standard supports an interface for

instrumentation of MPI calls. That enables you to apply custom or third-party

instrumentation of MPI usage without modifying your application’s source code.

For more information about using the MPI profiling interface, see “Using the MPI

Profiling Interface” on page 128.
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TABLE 7-1 Profiling Alternatives

Method Advantages Disadvantages

Forte

Developer

Profiling

• No recompilation or relinking is

required

• Profiles whole programs: user

computation and MPI message

passing

• Identifies time-consuming

routines

• With –g recompilation and

relinking, gives attribution on a

per-source-line basis with

negligible loss in optimization

level

• Shows caller-callee relationships

• Uses a style familiar to gprof
users

• On UltraSPARC-III

microprocessors, profiles based

on hardware counters (floating-

point operations, cache misses,

and so forth)

• Has no special knowledge of

MPI or message passing (such

as bytes sent, senders, receivers,

and so forth)

• No time-line functionality

Prism

Environment

• Uses (by default) the

pre-instrumented Sun MPI

library (manual instrumentation

optional)

• Provides lots of data on MPI

usage

• Integrated with other Prism

tools

• Generates large data files

• Requires manual

instrumentation to generate

data on user code

Timers • Very versatile • Requires manual

instrumentation

• Requires that you understand

the code

gprof • Familiar tool

• Provides an overview of user

code

• Ignores time spent in MPI

PMPI Interface • You can instrument or modify

MPI without modifying source

• Allows use of other profiling

tools

• Profiles MPI usage only

• Requires integration effort
94 Sun HPC ClusterTools 4 Performance Guide • August 2001



The following are sample scenarios:

■ I am running a code with which I am rather unfamiliar. I do not know whether my
optimization efforts should focus on serial computation or message passing — or, for that
matter, in which routines — Using the Forte Developer Sampling Analyzer, you can

see which routines consume the most time.

■ I would like to visualize the load imbalances, serial bottlenecks, global synchronization, or
other interprocess effects that may be impairing my program’s scalability — Prism

tracing can help you judge whether and how message-passing calls are taking up

significant time.

■ I know that a few innermost loops are bottlenecks and I need more detailed information —

Adding timers and other instrumentation around innermost loops may help you

if you already have some idea about your code’s performance.

■ I have used certain MPI profiling tools in other environments and am used to them —

Depending on how those tools were constructed, the MPI profiling interface may

allow you to continue using them with Sun HPC ClusterTools programs.

The remainder of this chapter discusses Forte Developer profiling and Prism

tracing in detail, and then returns to a brief discussion of the alternative

approaches.

Forte Developer Profiling of Sun MPI
Programs
The Forte Developer Sampling Analyzer offers a good first step to understanding the

performance characteristics of a program on UltraSPARC systems. It combines ease

of use with powerful functionality. In particular, it can indicate whether more

detailed analysis of message-passing activity, such as with Prism tracing, is

warranted.

As with most profiling tools, there are two basic steps to using Forte Developer

performance analysis tools. The first step is to use the Forte Developer Sampling

Collector to collect performance data. The second step is to use the Sampling

Analyzer (hereafter referred to as the Analyzer) to examine results. For example, this

procedure can be as simple as replacing

% mprun –np 16 a.ou t 3 5 341
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with

Forte Developer compilers and tools are usually located in /opt/SUNWspro/bin .

Check with your system administrator for details for your site.

The following pages show the use of the Analyzer with Sun MPI programs, often

revisiting variations of the above example.

Software Releases

With each release of Forte Developer and Sun HPC ClusterTools software, the

interoperability of the Forte Developer performance analyzer with Sun MPI has

improved. Therefore, for both software suites, it is recommended that you use the

latest available release.

Recent releases of Forte Developer have supplied

■ Compilation and linking with –g provides complete source-line information and

compiler commentary to the Analyzer with virtually no reduction in optimization

levels or parallelization.

■ Vastly improved performance analysis tool, the Analyzer.

■ Sampling collection that can be used apart from dbx .

■ Profiling based on UltraSPARC III hardware counters.

■ Specification of multiple experiments on the Analyzer’s command line.

■ Default experiment names that include MPI process rank.

■ Standalone source browser er_src for viewing annotated source and

disassembly code, including compiler commentary, without having to load an

experiment.

Recent releases of Sun HPC ClusterTools software have added:

■ Ability to launch dbx from CRE. For example,

%mprun –np 16 dbx a.out

■ Run-time environment variables MP_RANKand MP_NPROCS, which tell each

process the MPI rank and total number of processes in the job

■ Support for launching shell scripts from mprun. For example.,

% mprun –np 16 shell-script

%mprun –np 16 collect a.ou t 3 5 341
%analyzer test.*.er
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Data Collection

There are several ways of using the Forte Developer Sampling Collector with MPI

codes. For example, with Forte Developer 6 update 1, the simplest usage could look

like:

On the other hand, there are many benefits to launching the data collection using a

shell script. Among them:

■ Collect data for only a subset of MPI processes

■ Number experiment files according to MPI rank

■ Collect data to a local file system and then gather them to a central location

Typically, the extra effort of using a shell script is worthwhile.

Data Volume

The volume of collected data can grow large, especially for long-running or parallel

programs. Though the Sampling Collector mitigates this problem, the scaling to

large volumes remains an issue.

There are a number of useful strategies for managing these data volumes:

■ Increase the profiling interval. The interval may be specified in milliseconds with

the –p switch to the collect command. The default value is 10. The actual

interval used depends on the resolution on the profiling system. Of course, while

increasing the interval reduces the data volume, it can reduce the quality of the

sampling data.

For example, to reduce the number of profiled events roughly by a factor of two,

use

■ Collect data on only a subset of the MPI processes. In many cases, activity on one

MPI process reflects performance behavior on all processes fairly closely. Or, if

there are load imbalances among the processes, a larger subset may be used. Of

course, limiting data collection to a subset of the processes may bias the profiling

data. In particular, a master process may behave unlike any of the other processes.

■ Collect data to a local file system. This does not reduce the volume of data

collected, but it helps mitigate the impact.

This strategy should be a routine part of data collection.

% mprun –np 16 collect a.ou t 3 5 341

%mprun –np 16 collect –p 20 a.ou t 3 5 341
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A large parallel job may run out of a central NFS-mounted file system. While this

may be adequate for jobs that are not I/O intensive, it may cause a critical bottleneck

for profiling sessions. If multiple MPI processes are trying to write large volumes of

profiling data simultaneously over NFS to a single file system, that file system, along

with network congestion, could lead to tremendous slowdowns and perturbations of

the program’s performance. It is preferable to collect profiling data to local file

systems and, perhaps, gather them to a central directory after program execution.

To identify local file systems, use

on each node of the cluster you will use, or ask your system administrator about

large-volume, high-performance disk space.

One possible choice of a local file system is /tmp . Note that /tmp on different nodes

of a cluster refer to different, respectively local file systems. Also, /tmp may not be

very large, and if it becomes filled there may be a great impact on general system

operability.

Data Organization

The Sampling Collector generates one “experiment” per MPI process. If there are

multiple runs of a multiprocess job, therefore, the number of experiments can grow

quickly.

To organize these experiments, it often makes sense to gather experiments from a

run into a distinctive subdirectory. Use the commands er_mv , er_rm , and er_cp
(again, typically under /opt/SUNWspro/bin ) to move, remove, or copy

experiments. For more information on these utilities, see the corresponding man

pages or the Forte Developer documentation.

If you collect an experiment directly into a directory, make sure that the directory

has already been created and, ideally, that no other experiments already exist in it.

%/usr/bin/df -lk
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Example

The er_rm steps are not required since (in this instance) we are using freshly created

directories. Nevertheless, these steps serve as reminders to avoid the confusion that

can result when too many experiments are gathered in the same directory.

Data Collection with Forte Developer 6

In Forte Developer 6, the Sampling Collector could originally be invoked only

through the dbx debugger.

The dbx debugger can generate a large volume of informational messages, especially

for multiprocess jobs, that are not useful for profiling data collection. Two ways of

reducing informational messages are:

■ Add the following line to your .dbxrc file.

dbxenv suppress_startup_message 5.0

■ Use the –q (quiet) switch to dbx .

Example 1. If you know you want to collect data for each MPI process, you may use

% mkdir run1
% er_rm -f run1/*.er
% mprun -np 16 collect -d run1 a.ou t 3 5 341
% mkdir run2
% er_rm -f run2/*.er
% mprun -np 16 collect -d run2 a.ou t 3 5 341
% mkdir run3
% er_rm -f run3/*.er
% mprun -np 16 collect -d run3 a.ou t 3 5 341
%

%cat dbx-script
collector enable
collector store filename proc-$MP_RANK.er
run 3 5 341
quit
%mprun -np 16 dbx -q -c "source dbx-script" a.out
%
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Example 2. If you know you want to collect data for only the first 4 MPI processes,

collect to the /tmp file system, and then gather the results after execution, you may

use

Data Collection with Forte Developer 6 update 1

With update 1, the need to invoke the Sampling Collector through dbx was lifted,

simplifying data collection.

Example 1. If you know you want to collect data for each MPI process, and it is not

important to be able to identify the output data by MPI rank, you may use

%cat dbx-script
collector enable
collector store directory /tmp
collector store filename proc-$MP_RANK.er
run 3 5 341
quit
% cat csh-script
#!/bin/csh
if ( $MP_RAN K < 4 ) then
dbx –q –c "source dbx-script" a.out
er_mv /tmp/proc-$MP_RANK.er .
else
a.ou t 3 5 341
endif
%mprun -np 16 csh-script
%

%mprun -np 16 collect a.ou t 3 5 341
%
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Example 2. If you know you want to collect data for only the first 4 MPI processes,

collect to the /tmp file system, and then gather the results after execution, you may

use

Analyzing Profiling Data

Once data has been gathered with the Sampling Collector, it may be viewed with the

Sampling Analyzer.

Loading Data

To start the Analyzer, use the command

% analyzer

Then, using the Experiment menu, you may Add and Drop individual experiments.

You may also bring up a particular experiment by specifying it on the command

line:

% analyzer proc-0.er

With Forte Developer 6 update 1 or later, you may specify multiple experiments on

the command line directly. For example:

% analyzer run1/proc-*.er

%cat csh-script
#!/bin/csh
if ( $MP_RAN K < 4 ) then
collect –o /tmp/proc-$MP_RANK.er a.ou t 3 5 341
er_mv /tmp/proc-$MP_RANK.er .
else
a.out 3 5 341

endif
%mprun -np 16 csh-script
%
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Case Study

In this case study, we examine the NPB 2.3 BT benchmark. We run using the

environment variable settings

These settings are not required for Forte Developer profiling. We simply use them to

profile our code as it would run in production. See Appendix C and the Sun MPI
Programming and Reference Guide for more information about using Sun MPI

environment variables for high performance.

A script is used to collect profiling data for MPI rank 0, only. The job is run on a

single, shared-memory node using 25 processes.

Basic Features of the Sampling Analyzer

The first view that the Analyzer shows of the resulting profiling data is shown in

FIGURE 7-1. This default view shows how time is spent in different functions. Both

exclusive and inclusive user CPU times are shown for each function, excluding and

including, respectively, time spent in any functions it calls. The top line shows that a

total of 146.93 seconds are profiled. We see that the functions LHSX() , LHSY() , and

LHSZ() account for 23.69+21.89+19.87=65.45 seconds of that time.

%setenv MPI_SPIN 1
%setenv MPI_PROCBIND 1
%setenv MPI_POLLALL 0
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FIGURE 7-1 Analyzer—Main View

Fortran programmers will note that the term function is used in the C sense to

include all subprograms, whether they pass return values or not. Further, function

names are those generated by the Fortran compiler. That is, by default they are

converted to lower case and have an underscore appended.

We can see how time is spent within a subroutine if the code was compiled and

linked with the –g switch. Again, starting with Forte Developer 6 compilers, this

switch introduces minimal impact on optimization and parallelization, and it can be

employed rather freely by performance-oriented users. When we click on the Source

button at the bottom of the window, the Analyzer brings up a text editor for the

highlighted function. The choice of text editor may be changed under the Options

menu with the Text Editor Options selection. The displayed, annotated source code

includes the selected metrics, the user source code, and compiler commentary. A

small fragment is shown in FIGURE 7-2. In particular, notice that the Analyzer

highlights hot (time-consuming) lines of code with color and with the ## markers in

the first two columns. Only a small fragment is shown since, in practice, the

annotated source can become rather wide.
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FIGURE 7-2 Analyzer—Source View

To get a better idea where time is spent at a high level in the code, you can also click

on the Callers-Callees button, shown at the bottom of FIGURE 7-1. For example, one

might get a view as in FIGURE 7-3. The selected function appears in the middle

section, its callers appear above it, and its callees below. Selected metrics are shown

for all displayed functions. By clicking on callers, you can find where time incurred

in the particular function occurs in the source code at a high level. By clicking on

callees, you can find more detail on expensive calls a particular function may be

making. This sort of analysis is probably familiar to gprof users, but the Analyzer

has features that go beyond some of gprof ’s limitations. For more information

about gprof , see “Using gprof ” on page 130.

FIGURE 7-3 Analyzer—Callers-Callees View
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Different metrics can be selected for the various displays by clicking on the Metrics

button, as seen at the bottom of FIGURE 7-1. You can choose which metrics are shown,

the order in which they are shown, and which metric should be used for sorting.

Sometimes it is useful to produce performance analysis information without

invoking the Analyzer’s graphical interface. This can be achieved by using the

er_print utility. For example:

The first command produces the function list of FIGURE 7-1. The second gives a

complete caller-callee list, similar to that shown in FIGURE 7-2. The first two

commands together provide all of the information that can be expected from gprof .

The third command produces an annotated listing of subroutine LHSX() , as shown

in FIGURE 7-3. More information on the er_print utility can be found on the

er_print man page.

Overview of Functions

Typically in a profile, you will find many unfamiliar functions that do not appear

explicitly in your code. Further, there may be none of the familiar MPI calls—

MPI_Isend() , MPI_Irecv() , MPI_Wait() , or MPI_Waitall() —you do use.

In FIGURE 7-4 are examples of functions you might find in your profiles, along with

explanations of what you are seeing. The functions are organized by load object,

such as an executable (a.out ) or a dynamic library.

%er_print –functions proc-0.er
%er_print –callers-callees proc-0.er
%er_print –source lhsx_ 1 proc-0.er
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FIGURE 7-4 Examples of Functions That May Appear in Profiles

Note that:

■ The top function is _start , which calls main . In Fortran programs, main calls

MAIN_.

■ The Fortran compiler by default converts subprogram names to lower case and

appends underscores. For example, Fortran routine MY_FORTRAN_ROUTINE()
would be converted to my_fortran_routine_() .

■ The MPI standard defines a profiling interface, which provides that MPI_*
functions should also be accessible via the shifted names PMPI_* . In the Sun MPI

implementation, this means that all user-callable functions are named with their

PMPI_* forms, with a pmpi_* wrapper for Fortran use.

a.out:

_start
main
MAIN ( Fortran only)
My_C_Routine
my_fortran_routine_

libmpi:

pmpi_send, pmpi_recv, etc. ( Fortran only)
PMPI_Send, PMPI_Recv, etc.
MPIP_*, mpip_*, makeconns, initconns ( internal MPI routines)

Loadable
Protocol
Modules:

shm_*, mpip_shm_*
tcp_*, mpip_tcp_*
rsm_*, mpip_rsm_*

librte:

RTE_Init*
cte_atexit

libcre:

TMRTE_*
_TMRTE_*
tmrte_*

libhpcshm:

create_arena
hpcshm_*

libc, libc_psr, libthread:

_poll, poll, yield
memcpy
_read, read, _write, _writev, writev

User
executables

Sun MPI
library

Other Sun HPC
ClusterTools
libraries
called by
Sun MPI

Other libraries
called by
Sun HPC
ClusterTools

libcollector:

PMPI_RECV, mutex_lock,  etc.
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For example,

■ A C call to MPI_Send() will enter the function PMPI_Send.

■ Sun MPI uses a number of internal routines, which will appear in profiles.

■ A Fortran call to MPI_SEND() enters the function pmpi_send_ , which in turn

calls PMPI_Send.

■ libcollector intercepts particular calls to the Sun MPI or threads libraries to

support synchronization tracing. Thus, functions such as PMPI_Recv and

mutex_lock may appear twice in profiles — once belonging to a user-callable

library and once belonging to libcollector .

■ Sun MPI calls routines in other ClusterTools libraries.

■ Various ClusterTools libraries call other standard libraries. Notably:

■ _poll , poll , and yield may be called by an MPI process for waiting

■ memcpy is often called when an MPI process is copying data locally — such as

for on-node message passing

■ _read , read , _write , _writev , writev are used in off-node message

passing over TCP

One way to get an overview of which MPI calls are being made and which are most

important is to look for the PMPI entry points into the MPI library. For our case

study example:

In this example, roughly 20 seconds out of 146.93 seconds profiled are due to MPI

calls. The exclusive times are typically small and meaningless. Synchronizing calls,

such as PMPI_Wait and PMPI_Waitall , appear twice, once due to libmpi and

once to libcollector . Such duplication can be ignored.

If ever there is a question about what role an unfamiliar (but possibly time-

consuming) function is playing, within the Analyzer you may:

■ Choose Callers-Callees to see which function is calling it.

■ Choose Show Summary Metrics from the View menu to see what is displayed

under Load Object.

■ Choose Select Load Objects Included from the View menu to restrict viewing to

functions that belong to specific load objects (such as your executable or libmpi ).

%er_print -function proc-0.er | grep PMPI_
0.050 16.980 PMPI_Wait
0.030 0.810 PMPI_Isend
0.030 16.930 PMPI_Wait
0.020 0.490 PMPI_Irecv
0. 0. PMPI_Finalize
0. 0.150 PMPI_Init
0. 1.630 PMPI_Waitall
0. 1.630 PMPI_Waitall
%
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MPI Wait Times

Time may be spent in MPI calls for a wide variety of reasons. Specifically, much of

that time may be spent waiting for some condition (a message to arrive, internal

buffering to become available, and so on) rather than in moving data.

While an MPI process waits, it may or may not tie up a CPU. Nevertheless, such

wait time probably costs program performance.

There are several things you can do to ensure that wait time is profiled. One is to

have Sun MPI spin a CPU aggressively during wait situations. This requires turning

off coscheduling and turning on spin behavior. Both are off by default. You may use

the following environment variable settings:

Another strategy is to select wall-clock time, instead of CPU time, as the profiling

metric. Selection of metrics was discussed above under "Basic Analyzer Features".

Using the Prism Environment to Trace
Sun MPI Programs
The Prism environment supports profiling program performance using the Solaris

trace normal form (TNF) facilities. The Sun MPI library is preinstrumented with TNF

probes, facilitating the use of the Prism environment to profile Sun MPI programs.

Prism tracing requires no special compilation or linking. Its simple graphical

interface allows you to review MPI usage within an application and find the parts

that need tuning. You may visually inspect patterns of MPI calls for general activity,

excessive synchronization, or other large-scale behaviors. Other views summarize

which MPI calls are made, which ones account for the most time, which message

sizes or other characteristics cause slowdowns, and so on.

Statistical analyses allow you to see which MPI routines, message sizes, or other

characteristics account for an appreciable fraction of the run time. You can click on

hot spots in a statistical display to examine the detailed sequence of events that led

up to that hot spot.

No instrumentation is required for Prism tracing since the Sun MPI library is

preinstrumented. You may optionally add your own probes to extract more

information from performance experiments.

% setenv MPI_COSCHED 0
% setenv MPI_SPIN 1
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This chapter illustrates Prism tracing with two case studies. If you are new to the

Prism programming environment, you may still find it useful to walk through these

examples. For a detailed treatment of Prism tracing functionality and usage,

however, please refer to the Prism User’s Guide.

The first case study is a popular HPC benchmark in computational fluid dynamics

(CFD). It relies heavily on point-to-point communications. The second case study is

based on sorting and collective communications.

Note – TNF terminology in the following discussions is not specific to MPI, as TNF

applies to a far broader context. Hence, you should understand a few TNF terms in

their general meaning. For example, in MPI, latency means the time required to send

a null-length message; whereas, in the TNF context, latency is the elapsed time for

an interval (the period bracketed by a pair of TNF events). In TNF, a thread may refer

to any thread of control, such as an MPI process.

First Prism Case Study – Point-to-Point
Message Passing
The benchmark code considered in this case study is a popular HPC benchmark in

computational fluid dynamics (CFD), the NPB 2.3 BT code.

Data Collection

In our NPB 2.3 BT example, we first run the benchmark using these environment

variable settings

These settings are not required for Prism tracing. We use them to profile our code as

it would run in production. See Appendix B and the Sun MPI Programming and
Reference Guide for more information about using Sun MPI environment variables for

high performance.

We run the benchmark under the Prism programming environment on a single,

shared-memory node using 25 processes with the command:

%setenv MPI_SPIN 1
%setenv MPI_PROCBIND 1
%setenv MPI_POLLALL 0
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You must specify the –n argument to the Prism environment (with any message-

passing program) even if you use only one process. The run took 135 seconds to

complete.

To use Prism tracing on a 32-bit binary within a Solaris environment, start the Prism

environment using the –32 command line option. For example,

▼ To Collect Performance Data

1. Click on Collection (from the Performance menu).

2. Click on Run (from the Execute menu).

3. Click on Display TNF Data (from the Performance menu).

The timeline window will appear. The horizontal axis shows time, in milliseconds

(ms). The vertical axis shows MPI process rank, which is labeled as the virtual

thread ID.

%prism -n 25 a.out

%prism -32 -n 25 a.out
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FIGURE 7-5 The Timeline View of TNF Probes

The Prism programming environment creates TNF trace data files by merging data

from buffers that belong to each process in your program. The trace buffers have

limited capacity (by default, each buffer contains 128 Kbytes). If the TNF probes

generate more data than the buffers can hold, the buffers wrap, overwriting earlier

trace data with later data. For example, FIGURE 7-5 shows 3 iterations of the CFD

benchmark program, spanning roughly 2 seconds. However, the benchmark

program executes 200 iterations and spans a total elapsed time of approximately 135

seconds. The trace file displayed in the window contains only 1/70 of the events

generated during the run of the full benchmark. Since the last iterations of the

benchmark are representative of the whole run in this example, this 2-second subset

of the benchmark program’s run is appropriate. You must determine whether buffer

wraparound affects your program’s profiling data. For information about controlling

buffer wraparound, see “Coping With Buffer Wraparound” on page 121.

Message-Passing Activity At a Glance

In FIGURE 7-5, we see three iterations, each taking roughly 700 ms. By holding down

the middle mouse button while dragging over one such iteration, you can produce

the expanded view shown in FIGURE 7-6. More detail becomes evident. There are

three important phases in each iteration, which correspond to the x, y, and z axes in
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this three-dimensional computation. Some degree of synchronization among MPI

processes is evident. Consecutive blocks of 5 processes each are synchronized at the

end of phase 1 (at about 1050 ms), while every fifth process is synchronized at the

end of phase 2 (at about 1300 ms). This is indicative of the benchmark running on an

underlying 5x5 process grid.

FIGURE 7-6 Expanded View of One Iteration

Summary Statistics of MPI Usage

We now change views by clicking on the graph button at the top of tnfview ’s main

window. A new window pops up and in the Interval Definitions panel you can see

which MPI APIs were called by the benchmark, as in FIGURE 7-7.

To study usage of a particular MPI routine, click on the routine’s name in the list

under Interval Definitions and then click on Create a dataset from this interval

definition. The window will resemble FIGURE 7-7.

While each point in FIGURE 7-5 or FIGURE 7-6 represented an event, such as the entry

to or exit from an MPI routine, each point in FIGURE 7-7 is an interval — the period of

time between two events that is spent inside the MPI routine. The scatter plot graph
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shows three 700-ms iterations with three distinct phases per iteration. The vertical

axis shows that MPI_Wait calls are taking as long as 60-70 ms, but generally much

less.

FIGURE 7-7 Graph Window Showing a Scatter Plot of Interval Data

Next, click on the Table tab to produce a summary similar to that depicted in

FIGURE 7-8. The first column (Interval Count) indicates how many occurrences of the

interval are reported, the second column (Latency Summation) reports the total time

spent in the interval, the third column gives the average time per interval, and the

fourth column lists the data element used to group the intervals. (In the current

release, tnfview usually reports the fourth column in hexadecimal format.) In the

case of FIGURE 7-8, some threads (MPI processes) spent as long as 527 ms in

MPI_Wait calls. Since only about 2.6 seconds of profiling data is represented, this

represents roughly 20 percent of the run time. By repeatedly clicking on other

intervals (MPI calls) in the list under Interval Definitions and then on Create a

dataset from the selected interval definition, you can examine times spent in other

MPI calls and verify that MPI_Wait is, in fact, the predominant MPI call for this

benchmark.
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FIGURE 7-8 Graph Window Showing a Summary Table of Interval Data

To understand this further we can analyze the dependence of MPI_Wait time on

message size using the Plot, Table, or Histogram views. For example, click on the

Plot tab to return to the view of FIGURE 7-7. The X axis is being used to plot fields in

the MPI_Wait_end probe. Click on the X-axis Field button and choose bytes. Then,

click on Refresh and you should see a view like the one in FIGURE 7-9.
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FIGURE 7-9 Scatter Plot of Time Spent in MPI_Wait as a Function of the Number of Bytes
Received. Zero Bytes Indicate The Completion of a Send, Rather Than a
Receive.

The byte counts on the X axis in FIGURE 7-9 are bytes received. In particular,

MPI_Wait calls that report zero bytes are completing nonblocking send operations.

The rest are completing nonblocking receive operations.

Note – In MPI, the number of bytes in a message is known on the sender’s side

when the send is posted and on the receiver’s side when the receive is completed

(rather than posted). Sun MPI’s TNF probes report the number of bytes in a message

in the same way. For example, a nonblocking send reports TNF byte information

with the MPI_Isend call while a nonblocking receive reports TNF byte information

with the MPI_Wait call. For more information on what information TNF arguments

report, see the Sun MPI Programming and Reference Guide.

We see from the figure that an appreciable amount of time is being spent waiting for

sends to complete. This is indicative of buffer congestion, which prevents senders

from writing their messages immediately into shared-memory buffers. We can

remedy this situation by rerunning the code with Sun MPI environment variables set

for large buffers.
Chapter 7 Profiling 115



FIGURE 7-9 shows that there are messages that are just over 40 Kbytes. To increase

buffering substantially past this size, we add:

to our list of runtime environment variables. For further information about Sun MPI

environment variables, see Appendix B of this volume.

Finding Hot Spots

Timings indicate that adding these new environment variables speeds the

benchmark up by 5 percent. This speedup is encouraging since our code spends only

20 percent of the time in MPI in the first place. In particular, the time spent on

MPI_Wait calls that terminate MPI_Isend calls has practically vanished.

Nevertheless, MPI_Wait continues to consume the most time of any MPI calls for

this job. Having rerun the job with larger MPI buffers, we may once again generate

a scatter plot of time spent in MPI_Wait calls (MPI_Wait latency) as a function of

elapsed time. Compare the new distribution shown in FIGURE 7-10 and with the one

shown in FIGURE 7-7. The new distribution shows that MPI_Wait times have

decreased dramatically. However, tall fingers of high-latency calls shoot up roughly

every 200 ms. These fingers are a symptom of message-passing traffic functioning as

global synchronizations. Indeed, these synchronizations occur as computation in this

three-dimensional application goes from x to y to z axis. This MPI time has little to

do with how fast MPI is moving data.

% setenv MPI_SHM_CPOOLSIZE 102400
% setenv MPI_SHM_CYCLESTART 0x7fffffff
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FIGURE 7-10 Scatter Plot of Time Spent in MPI_Wait as a Function of Elapsed Time,
Running with Sun MPI Environment Variables That Relieve Buffer
Congestion

To study such a slowdown in detail, click on a high-latency point in the scatter plot.

This centers the cross-hairs back in the timeline view on the selected interval. Within

the timeline plot, you can navigate through a sequence of events using the tnfview
Navigate by... pull-down list, and left and right (previous and next) arrows. For

example, by pulling down Navigate by... and selecting current vid, you can restrict

navigation forward and backward on one particular MPI process. By using these

detailed navigation controls, you can confirm which sequence of MPI calls

characterize hot spots, or which interprocess dependencies are causing long

synchronization delays.
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Second Prism Case Study – Collective
Operations
Our first case study centered about point-to-point communications. Now, let us turn

our attention to one based on collective operations. We examine the NPB 2.3 IS code,

which sorts sets of keys. The benchmark was run under the Prism programming

environment on a single, shared-memory node using 16 processes. Once again, we

begin by setting Sun MPI environment variables:

since we are interested in the performance of this benchmark as a dedicated job.

Synchronizing Skewed Processes: Timeline View

The message-passing part of the code involves a bucket sort, implemented with an

MPI_Allreduce , an MPI_Alltoall , and an MPI_Alltoallv , though no such

knowledge is required for effective profiling with the Prism programming

environment. Instead, running the code under the Prism environment, we quickly

see that the most time-consuming MPI calls are MPI_Alltoallv and

MPI_Allreduce . (See “Summary Statistics of MPI Usage” on page 112.) Navigating

a small section of the timeline window, we see a tight succession of

MPI_Allreduce , MPI_Alltoall , and MPI_Alltoallv calls. One such iteration is

shown in FIGURE 7-11; we have shaded and labeled time-consuming sections.

% setenv MPI_SPIN 1
% setenv MPI_PROCBIND 1
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FIGURE 7-11 One Iteration of the Sort Benchmark

Synchronizing Skewed Processes: Scatter Plot

View

The reason MPI_Allreduce costs so much time may already be apparent from this

timeline view. The start edge of the MPI_Allreduce region is ragged, while the end

edge is flat.

We can see even more data in one glance by going to a scatter plot. In FIGURE 7-12,

time spent in MPI_Allreduce (its latency) is plotted against the finishing time for

each call to this MPI routine. There is one warm-up iteration, followed by a brief

gap, and then ten more iterations, evenly spaced. In each iteration, an MPI process

might spend as long as 10 to 30 ms in the MPI_Allreduce call, but other processes

might spend vanishingly little time in the reduce. The issue is not that the operation

is all that time consuming, but simply that it is a synchronizing operation, and so

early-arriving processes have to spend some time waiting for latecomers.

Computation

MPI_Alltoallv

MPI_Allreduce
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FIGURE 7-12 Scatter Plot of MPI_Allreduce Latencies (x axis: MPI_Allreduce_end)

As in FIGURE 7-10, brief, well-defined instants of very high-latency message-passing

calls typically signal moments in code execution of considerable interprocess

synchronization.

The next MPI call is to MPI_Alltoall , but from our Prism profile we discover that

it occurs among well-synchronized processes (thanks to the preceding

MPI_Allreduce operation) and uses very small messages (64 bytes). It consumes

very little time.

Interpreting Performance Using Histograms

The chief MPI call is this case study is the MPI_Alltoallv operation. The processes

are still well synchronized, as we saw in FIGURE 7-11, but we learn from the Table

display that there are on average 2 Mbytes of data being sent or received per

process. Clicking on the Histogram tab, we get the view seen in FIGURE 7-13. There

are a few, high-latency outliers, which a scatter plot would indicate take place

during the first warm-up iteration. Most of the calls, however, take roughly 40 ms.

The effective bandwidth for this operation is therefore:

(2 Mbyte / process) * 16 processes / 40 ms = 800 Mbyte/second
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Basically, each datum undergoes two copies (one to shared memory and one from

shared memory) and each copy entails two memory operations (a load and a store),

so this figure represents a memory bandwidth of 4 * 800 Mbyte/s = 3.2 Gbyte/s.

This benchmark was run on an HPC 6000 server, whose backplane is rated at 2.6

Gbyte/s. Our calculation is approximate, but it nevertheless indicates that we are

seeing saturation of the SMP backplane and we cannot expect to do much better

with our MPI_Alltoallv operation.

FIGURE 7-13 Histogram of MPI_Alltoallv Latencies

Performance Analysis Tips
While Prism tracing might involve only a few mouse clicks, more advanced

techniques offer more sophisticated results.

Coping With Buffer Wraparound

Event-based profiling can collect a lot of data. TNF probe data collection employs

buffer wraparound, so that once a buffer file is filled the newer events will overwrite

older ones. Thus, final traces do not necessarily report events starting at the

beginning of a program and, indeed, the time at which events start to be reported
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may vary slightly from one MPI process to another, depending on the amount of

probed activity on each process. Nevertheless, trace files will generally show

representative profiles of an application since newer, surviving events tend to

represent execution during steady state.

If buffer wraparound is an issue, then solutions include:

■ Scaling down the run (number of iterations or number of processes).

■ Using larger trace buffers.

■ Selective enabling of probes.

■ Profiling isolated sections of code by terminating jobs early.

Profiling isolated sections of code by modifying user source code.

Profiling isolated sections of code by isolating sections at run time.

Scaling Down the Run

You should usually perform code profiling and tuning on “stripped down” runs so

that many profiling experiments may be run. We describe these precautions in detail

at the beginning of this chapter.

Using Larger Trace Buffers.

To increase the size of trace buffers beyond the default value, use the Prism

command:

(prism all) tnffile filename size

where size is the size in Kbytes of the trace buffer for each process. The default value

is 128 Kbytes. Larger values, such as 256, 512, or 1024, can sometimes prove more

useful.

By default, the Prism programming environment places trace buffers in /usr/tmp
before they are merged into the user’s trace file. If this file partition is too small for

very large traces, you can redirect buffers to other directories using the

PRISM_TNFDIRenvironment variable. In order to minimize profile disruption

caused by writing very large trace files to disk, you should use local file systems

such as /usr/tmp and /tmp whenever possible instead of file systems that are

mounted over a network.

Note – While the Prism programming environment usually cleans up trace buffers

after the final merge, abnormal conditions could cause the Prism environment to

leave large files behind. Users who abort profiling sessions with large traces should

check /usr/tmp periodically for large, unwanted files.
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Selectively Enabling Probes

You can focus data collection on the events that are most relevant to performance in

order either to reduce sizes of buffer files or to make profiling less intrusive. Prism

performance analysis can disturb an application’s performance characteristics, so

you should consider focusing data collection even if larger trace buffers are an

option.

TNF probes are organized in probe groups. The probe groups are structured as

follows:

FIGURE 7-14 Sun MPI TNF Probe Groups

There are several probes that belong to both the mpi_request group and the

mpi_pt2pt group. For further information about probe groups, see the Sun MPI
Programming and Reference Guide.

For message-passing performance, typically the most important groups are:

■ mpi_pt2pt – point-to-point message passing

■ mpi_request – other probes for nonblocking point-to-point calls

■ mpi_coll – collectives

■ mpi_io_rw – file I/O

mpi_api

mpi_request

mpi_pt2pt

mpi_coll
mpi_comm
mpi_datatypes
mpi_procmgmt
mpi_topo

mpi_io

mpi_blkp2p
mpi_nblkp2p

mpi_io_consistency
mpi_io_datarep
mpi_io_errhandler
mpi_io_file
mpi_io_rw

{

{
{
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Tracing Isolated Sections of Code — Terminating Data
Collection Mid-Course

If you are especially interested in the steady-state performance characteristics of the

code, you might experiment with terminating a run early. If you choose to terminate

the run early, you will not spend time waiting for job completion when you already

have the profiling data you want. Further, by letting the job finish you risk the

possibility of uninteresting, post-processing steps overwriting the interesting steady-

state trace data.

To interrupt program execution, click on Interrupt, set a breakpoint, or use a Prism

command such as:

sh sleep 200

to wait a prescribed length of time.

Then, turn off data collection and view the performance data. Once you have viewed

performance data, you cannot resume collecting data in the same run. However, you

can run your program to completion.

Tracing Isolated Sections of Code — From Within Source
Code

You can turn TNF data collection on and off within user source code, using the

routines tnf_process_disable , tnf_process_enable , tnf_thread_disable ,

and tnf_thread_enable . Since these are C functions, Fortran usage would require

added hints for the compiler, as follows:

Whether you call these functions from C or Fortran, you must then link with

–ltnfprobe . For more information, see the Solaris man pages on these functions.

Tracing Isolated Sections of Code — At Run Time

The Prism programming environment allows users to turn collection on and off

during program execution whenever execution is stopped: for example, with a break

point or by using the interrupt command.

call tnf_process_disable()   !$pragma c(tnf_process_disable)
call tnf_process_enable()    !$pragma c(tnf_process_enable)
call tnf_thread_disable()    !$pragma c(tnf_thread_disable)
call tnf_thread_enable()     !$pragma c(tnf_thread_enable)
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If the profiled section will be entered and exited many times, data collection may be

turned on and off automatically using tracepoints. Note that the term “trace” is used

now in a different context. For TNF use, a trace is a probe. For the Prism

programming environment and other debuggers, a tracepoint is a point where

execution stops and possibly an action takes place but, unlike a breakpoint, program

execution resumes after the action.

For example, if data collection should be turned on at line 128 but then off again at

line 223, you can specify:

If you compiled and linked the application with high degrees of optimization, then

specification of line numbers may be meaningless. If you compiled and linked the

application without –g , then specifying numbers will not work. In such cases, you

can turn data collection on and off at entry points to routines using trace in routine
syntax, providing that those routines have not been inlined. For example:

Prism tracepoints have detectable effects on the behavior of the code being profiled.

The effects of the tracepoints can originate from:

■ Displaying a message when a tracepoint is encountered (modifying the event by

using the Prism Event Table can suppress such a message)

■ Making operating system calls

■ Synchronizing MPI processes

■ Responding to a breakpoint

■ Polling after a breakpoint

For this reason, you should not use trace commands inside inner loops, where they

would execute repeatedly, distorting your program’s performance. Use Prism

tracepoints to turn data collection on and off only around large amounts of code

execution.

(prism all) trace at 128 {tnfcollection on}
(prism all) trace at 223 {tnfcollection off}

(prism all) trace in routine1 {tnfcollection on}
(prism all) trace in routine2 {tnfcollection off}
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Inserting TNF Probes Into User Code

While Sun HPC ClusterTools libraries have TNF probes for performance profiling,

user code probably will not. You can add probes manually, but since they are C

macros you can add them only to C and C++ code. To use TNF probes from Fortran

code, you must make calls to C code, such as in this C file, probes.c :

The start routine accepts a descriptive string, while the end routine takes a

double-precision operation count.

Then, using Fortran, you might write in main.f :

Note – The Fortran compiler converts routine names to lowercase and appends an

underscore character.

To compile and link, use:

% tmcc –c probes.c

% tmf77 main.f probes.o –lmpi –ltnfprobe

By default, the Prism command tnfcollection on enables all probes.

Alternatively, these sample probes could be controlled through their probe group

user_probes . Profile analysis can use the interval my_probe .

For more information on TNF probes, consult the man page for TNF_PROBE(3X).

#include <tnf/probe.h>
void my_probe_start_(char *label_val) {
  TNF_PROBE_1(my_probe_start,”user_probes”,””,
    tnf_string,label,label_val);
}
void my_probe_end_  (double *ops_val) {
  TNF_PROBE_1(my_probe_end  ,”user_probes”,””,
    tnf_double,ops,*ops_val);
}

DOUBLE PRECISION OPERATION_COUNT
OPERATION_COUNT = 2.D0 * N
CALL MY_PROBE_START(“DOTPRODUCT”)
XSUM = 0.D0
DO I = 1, N

 XSUM = XSUM + X(I) * Y(I)
END DO
CALL MY_PROBE_END(OPERATION_COUNT)
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Collecting Data Batch Style

For more involved data collection experiments, you can collect TNF profiling

information in batch mode, for viewing and analysis in a later, interactive session.

Such collection may be performed using the commands-only mode of the Prism

environment, invoked with prism –C . For example, the simplest data collection

experiment would be

The wait command is needed to keep file merge from happening until after the

program has completed running. See the Prism User’s Guide for more information on

commands-only mode.

Accounting for MPI Time

Sometimes you will find it difficult to account for MPI activity. For example, if you

issue a nonblocking send or receive (MPI_Isend or MPI_Irecv ), the data

movement may occur during that call, during the corresponding MPI_Wait or

MPI_Test call, or during any other MPI call in between.

Similarly, general polling (such as with the environment variable MPI_POLLALL)

may skew accounting. For example, an incoming message may be read during a

send call because polling causes arrivals to be polled aggressively.

TNF Tracing Using the tnfdump Utility

You can implement custom post-processing of TNF data using the tnfdump utility,

which converts TNF trace files, such as the one produced by the Prism programming

environment, into an ASCII listing of timestamps, time differentials, events, and

probe arguments.

% prism -C -n 8 a.out << EOF
tnfcollection on
tnfenable mpi_pt2pt
tnfenable mpi_request
tnfenable mpi_coll
tnfenable mpi_io_rw
run
wait
quit
EOF
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To use this command, specify

% tnfdump filename

where filename is the name of the TNF trace data file produced by the Prism

programming environment.

The resulting ASCII listing, produced on the standard output, can be several times

larger than the tracefile and may require a wide window for viewing. Nevertheless,

it is full of valuable information.

For more information about the tnfdump command, see the tnfdump (1) man page.

Other Profiling Approaches
Both MPI and the Solaris environment offer useful profiling facilities. Using the MPI

profiling interface, you can investigate MPI calls. Using your own timer calls, you

can profile specific behaviors. Using the Solaris gprof utility, you can profile diverse

multiprocess codes, including those using MPI.

Using the MPI Profiling Interface

The MPI standard supports a profiling interface, which allows any user to profile

either individual MPI calls or the entire library. This interface supports two

equivalent APIs for each MPI routine. One has the prefix MPI_, while the other has

PMPI_. User codes typically call the MPI_ routines. A profiling routine or library

will typically provide wrappers for the MPI_ APIs that simply call the PMPI_ ones,

with timer calls around the PMPI_ call.

You may use this interface to change the behavior of MPI routines without

modifying your source code. For example, suppose you believe that most of the time

spent in some collective call such as MPI_Allreduce is due to the synchronization

of the processes that is implicit to such a call. Then, you might compile a wrapper

such as the one shown below, and link it into your code before
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–lmpi . The effect will be that time profiled by MPI_Allreduce calls will be due

exclusively to the MPI_Allreduce operation, with synchronization costs attributed

to barrier operations.

Profiling wrappers or libraries may be used even with application binaries that have

already been linked. See the Solaris man page for ld for more information on the

environment variable LD_PRELOAD.

You can get profiling libraries from independent sources for use with Sun MPI.

Typically, their functionality is rather limited compared to that of the Prism

environment with TNF, but for certain applications their use may be more

convenient or they may represent useful springboards for particular, customized

profiling activities. An example of a profiling library is included in the

multiprocessing environment (MPE) from Argonne National Laboratory. Several

external profiling tools can be made to work with Sun MPI using this mechanism.

For more information on this library and on the MPI profiling interface, see the Sun
MPI Programming and Reference Guide.

Inserting MPI Timer Calls

Sun HPC ClusterTools implements the Sun MPI timer call MPI_Wtime
(demonstrated in the example below) with the high-resolution timer gethrtime. If

you use MPI_Wtime calls, you should use them to measure sections that last more

than several microseconds. Times on different processes are not guaranteed to be

synchronized. For information about gethrtime, see the gethrtime(3C) man

page.

When profiling multiprocess codes, you need to ensure that the timings are not

distorted by the asynchrony of the various processes. For this purpose, you usually

need to synchronize the processes before starting and before stopping the timer.

subroutine MPI_Allreduce(x,y,n,type,op,comm,ier)
integer x(*), y(*), n, type, op, comm, ier
call PMPI_Barrier(comm,ier)
call PMPI_Allreduce(x,y,n,type,op,comm,ier)
end
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In the following example, most processes may accumulate time in the interesting,

timed portion, waiting for process 0 (zero) to emerge from uninteresting

initialization. This would skew your program’s timings. For example:

When stopping a timer, remember that measurements of elapsed time will differ on

different processes. So, execute another barrier before the “stop” timer. Alternatively,

use “maximum” elapsed time for all processes.

Avoid timing very small fragments of code. This is good advice when debugging

uniprocessor codes, and the consequences are greater with many processors. Code

fragments perform differently when timed in isolation. The introduction of barrier

calls for timing purposes can be disruptive for short intervals.

Using gprof

The Solaris utility gprof may be used for multiprocess codes, such as those that use

MPI. It can be helpful for profiling user routines, which are not automatically

instrumented with TNF probes by Sun HPC ClusterTools software. Several points

should be noted:

■ Compile and link your programs with –pg (Fortran) or –xpg (C).

■ Use the environment variable PROFDIRto profile multiprocess jobs, such as those

that use MPI.

■ Use the gprof command after program execution to gather summary statistics

either on individual processes or for multiprocess aggregates.

Note, however, that gprof has several limitations.

■ gprof requires recompilation and relinking.

■ Many libraries do not have gprof versions. For example, activity spent within

Sun MPI calls do not appear in gprof profiles.

CALL MPI_COMM_RANK(MPI_COMM_WORLD,ME,IER)
IF ( ME .EQ. 0 ) THEN
    initialization
END IF
! place barrier here
! CALL MPI_BARRIER(MPI_COMM_WORLD, IER)
T_START = MPI_WTIME()
    timed portion
T_END = MPI_WTIME()
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■ gprof apportions time equally among all callers. For example, assume a matrix-

multiply routine is called from one caller for small matrices and an equal number

of times from another caller for large matrices. gprof attributes time spent in the

matrix multiplication equally to both caller, even if the large-matrix operations

are substantially more time consuming.

■ gprof does not count time spent in sleeps and yields, which can skew results.

■ gprof loses the relationships between process ids (used to tag profile files) and

MPI process ranks.

■ gprof profiles from different processes may overwrite one another if a

multiprocess job spans multiple nodes.

■ gprof does not interoperate with Prism tracing.

Note that the Analyzer is simple to use, provides the profiling information that

gprof does, offers additional functionality, and avoids the pitfalls. Thus, gprof
users are highly encouraged to migrate to the Analyzer for both MPI and non-MPI

codes.

For more information about gprof , see the gprof man page. For more information

about the Forte Developer performance analyzer, see the Analyzer documentation.
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APPENDIX A

Sun MPI Implementation

This appendix discusses various aspects of the Sun MPI implementation that affect

program performance:

■ Yielding and Descheduling on page 133

■ Progress Engine on page 134

■ Shared-Memory Point-to-Point Message Passing on page 138

■ Full Versus Lazy Connections on page 146

■ RSM Point-to-Point Message Passing on page 147

■ Optimizations for Collective Operations on page 148

■ Network Awareness on page 149

■ Shared-Memory Optimizations on page 152

■ Pipelining on page 154

■ Multiple Algorithms on page 155

Many of these characteristics of the Sun MPI implementation can be tuned at run

time with environment variables, as discussed in Appendix B.

Yielding and Descheduling
In many programs, too much time in MPI routines is spent waiting for particular

conditions, such as the arrival of incoming data or the availability of system buffers.

This busy waiting costs computational resources, which could be better spent

servicing other users’ jobs or necessary system daemons.

Sun MPI has a variety of provisions for mitigating the effects of busy waiting. This

allows MPI jobs to run more efficiently, even when the load of a cluster node exceeds

the number of processors it contains. Two methods of avoiding busy waiting are

yielding and descheduling:
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■ Yielding – A Sun MPI process can yield its processor with a Solaris system call if it

waits busily too long.

■ Descheduling – Alternatively, a Sun MPI process can deschedule itself. In

descheduling, a process registers itself with the “spin daemon” (spind ), which

will poll for the gating condition on behalf of the process. This is less resource

consuming than having the process poll, since the spind daemon can poll on

behalf of multiple processes. The process will once again be scheduled either if

the spind daemon wakes the process in response to a triggering event, or if the

process restarts spontaneously according to a preset timeout condition.

Yielding is less disruptive to a process than descheduling, but descheduling helps

free resources for other processes more effectively. As a result of these policies,

processes that are tightly coupled can become coscheduled. Yielding and

coscheduling can be tuned with Sun MPI environment variables, as described in

Appendix B.

Progress Engine
When a process enters an MPI call, Sun MPI may act on a variety of messages. Some

of the actions and messages may not pertain to the call at all, but may relate to past

or future MPI calls.

To illustrate, consider the code sequence

Sun MPI behaves as one would expect. That is, the computational portion of the

program is interrupted to perform MPI blocking send operations, as illustrated in

FIGURE A-1.

computation
CALL MPI_SEND()
computation
CALL MPI_SEND()
computation
CALL MPI_SEND()
computation
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FIGURE A-1 Blocking Sends Interrupt Computation

Now, consider the code sequence

In this case, the nonblocking receive operation conceptually overlaps with the

intervening computation, as in FIGURE A-2.

FIGURE A-2 Conceptually, nonblocking operations overlap with computation.

In fact, however, progress on the nonblocking receive is suspended from the time the

MPI_Irecv() returns until the instant Sun MPI is once again invoked, with the

MPI_Wait() . There is no actual overlap of computation and communication, and

the situation is as depicted in FIGURE A-3.

computation
CALL MPI_IRECV(REQ)
computation
CALL MPI_WAIT(REQ)
computation
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FIGURE A-3 Computational resources are devoted either to user computation or to MPI
operations, but not both at once.

Nevertheless, reasonably good overlap between computation and nonblocking

communication can be realized, since the Sun MPI library is able to progress a

number of message transfers within one MPI call. Consider the code sequence

which combines the previous examples. Now, there is effective overlap of

computation and communication, because the intervening, blocking sends also

progress the nonblocking receive, as depicted in FIGURE A-4. The performance payoff

is not due to computation and communication happening at the same time. Indeed,

a CPU still only computes or else moves data — never both at the same time. Rather,

the speedup results because scheduling of computation with the communication of

multiple messages is better interwoven.

computation
CALL MPI_IRECV(REQ)
computation
CALL MPI_SEND()
computation
CALL MPI_SEND()
computation
CALL MPI_SEND()
computation
CALL MPI_WAIT(REQ)
computation
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FIGURE A-4 Progress may be made on multiple messages by a single MPI call, even if that
call does not explicitly reference the other messages.

In general, when Sun MPI is used to perform a communication call, a variety of

other activities may also take place during that call, as we have just discussed.

Specifically,

1. A process may progress any outstanding, nonblocking sends, depending on the

availability of system buffers.

2. A process may progress any outstanding, nonblocking receives, depending on the

availability of incoming data.

3. A process may generally poll for any messages whatsoever, to drain system

buffers.

4. A process must periodically watch for message cancellations from other processes

in case another process issues an MPI_Cancel() call for a send.

5. A process may choose to yield its computational resources to other processes if no

useful progress is being made.

6. A process may choose to deschedule itself, if no useful progress is being made.

A nonblocking MPI communication call will return whenever there is no progress to

be made. For example, system buffers may be too congested for a send to proceed, or

there may not yet be any more incoming data for a receive.

In contrast, a blocking MPI communication call may not return until its operation

has completed, even when there is no progress to be made. Such a call will

repeatedly try to make progress on its operation, also checking all outstanding

nonblocking messages for opportunities to perform constructive work (items 1–4

above). If these attempts prove fruitless, the process will periodically yield its CPU

to other processes (item 5). After multiple yields, the process will attempt to

deschedule itself via the spind daemon (item 6).
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Shared-Memory Point-to-Point Message
Passing
Sun MPI uses a variety of algorithms for passing messages from one process to

another over shared memory. The characteristics of the algorithms as well as the

ways in which algorithms are chosen at run time can largely be controlled by Sun

MPI environment variables, which are described in Appendix B. This section

describes the background concepts.

Postboxes and Buffers

For on-node, point-to-point message passing, the sender writes to shared memory

and the receiver reads from there. Specifically, the sender writes a message into

shared-memory buffers, depositing pointers to those buffers in shared-memory

postboxes. As soon as the sender finishes writing any postbox, that postbox, along

with any buffers it points to, may be read by the receiver. Thus, message passing is

pipelined — a receiver may start reading a long message even while the sender is

still writing it.

FIGURE A-5 depicts this behavior. The sender moves from left to right, using the

postboxes consecutively. The receiver follows. The buffers F, G, H, I, J, K, L, and M

are still “in flight” between sender and receiver and they appear out of order.

Pointers from the postboxes are required to keep track of the buffers. Each postbox

can point to multiple buffers, and the case of two buffers per postbox is illustrated

here.
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FIGURE A-5 Snapshot of a pipelined message. Message data is buffered in the labeled
areas.

Pipelining is advantageous for long messages. For medium-size messages, only one

postbox is used and there is effectively no pipelining, as suggested in FIGURE A-6.

FIGURE A-6 A medium-size message uses only one postbox. Message data is buffered in
the shaded areas.

Further, for extremely short messages, data is squeezed into the postbox itself, in

place of pointers to buffers that would otherwise hold the data, illustrated in

FIGURE A-7.

postboxes

buffers

M

postbox

buffers
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FIGURE A-7 A short message squeezes data into the postbox and does not use any buffers.
Message data is buffered in the shaded area.

For very long messages, it may be desirable to keep the message from overrunning

the shared-memory area. In that limit, the sender is allowed to advance only one

postbox ahead of the receiver. Thus, the footprint of the message in shared memory

is limited to at most two postboxes at any one time, along with associated buffers.

Indeed, the entire message is cycled through two fixed sets of buffers. FIGURE A-8

and FIGURE A-9 show two consecutive snapshots of the same cyclic message. The two

sets of buffers, through which all the message data is being cycled, are labeled X and

Y. The sender remains only one postbox ahead of the receiver.

FIGURE A-8 First snapshot of a cyclic message. Message data is buffered in the labeled
areas.

postbox

buffers
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FIGURE A-9 Second snapshot of a cyclic message. Message data is buffered in the labeled
areas.
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Connection Pools Vs. Send-Buffer Pools

In the following example, we consider n processes that are collocal to a node.

A connection is a sender-receiver pair. Specifically, for n processes, there are n x (n–

1) connections. That is, A sending to B uses a different connection than B sending to

A, and any process sending to itself is handled separately.

Each connection has its own set of postboxes. For example, in FIGURE A-10, there are

two unidirectional connections for each pair of processes. There are 5x4=20

connections in all for the 5 processes. Each connection has shared-memory resources,

such as postboxes, dedicated to it. The shared-memory resources available to one

sender are shown.
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FIGURE A-10 Shared-memory resources that are dedicated per connection include
postboxes and, optionally, buffer pools. The shared-memory resources
available to one sender are shown.

By default, each connection also has its own pool of buffers. Users may override the

default use of connection pools, however, and cause buffers to be collected into n
pools, one per sender, with buffers shared among a sender’s n–1 connections. An

illustration of n send-buffer pools is shown in FIGURE A-11. The send-buffer pool

available to one sender is shown.
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FIGURE A-11 Shared-memory resources per sender — for example, send-buffer pools. The
send-buffer pool available to one sender is shown.

Eager Versus Rendezvous

Another issue in passing messages is the use of the rendezvous protocol. By default,

a sender will be eager and try to write its message without explicitly coordinating

with the receiver (FIGURE A-12). Under the control of environment variables, Sun MPI

can employ rendezvous for long messages. Here, the receiver must explicitly

indicate readiness to the sender before the message can be sent, as seen in

FIGURE A-13.
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To force all connections to be established during initialization, set the

MPI_FULLCONNINIT environment variable:

% setenv MPI_FULLCONNINIT 1

FIGURE A-12 Eager Message-Passing Protocol

FIGURE A-13 Rendezvous Message-Passing Protocol

Eager

write data

Rendezvous

ready?

write data

acknowledgment
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Performance Considerations

The principal performance consideration is that a sender should be able to deposit

its message and complete its operation without coordination with any other process.

A sender may be kept from immediately completing its operation if:

■ Rendezvous is in force. (Rendezvous is suppressed by default.)

■ The message is being sent cyclically. This behavior can be suppressed by setting

MPI_SHM_CYCLESTARTvery high — for example,

% setenv MPI_SHM_CYCLESTART 0x7fffffff

■ The shared-memory resources (either buffers or postboxes) are temporarily

congested. Shared-memory resources can be increased by setting Sun MPI

environment variables at run time to handle any burst of message-passing

activity.

Using send-buffer pools rather than connection pools helps pool buffer resources

among a sender’s connections. For a fixed total amount of shared memory, this can

deliver effectively more buffer space to an application, improving performance.

Multithreaded applications can suffer, however, since a sender’s threads would

contend for a single send-buffer pool instead of for (n–1) connection pools.

Rendezvous protocol tends to slow performance of short messages, not only because

extra handshaking is involved, but especially because it makes a sender stall if a

receiver is not ready. Long messages can benefit, however, if there is insufficient

memory in the send-buffer pool or if their receives are posted in a different order

than they are sent.

Pipelining can roughly double the point-to-point bandwidth between two processes.

It may have little or no effect on overall application performance, however, if

processes tend to get considerably out of step with one another or if the nodal

backplane becomes saturated by multiple processes exercising it at once.

Full Versus Lazy Connections
Sun MPI, in default mode, starts up connections between processes on different

nodes only as needed. For example, if a 32-process job is started across four nodes,

eight processes per node, then each of the 32 processes has to establish 32–8=24

remote connections for full connectivity. If the job relied only on nearest-neighbor

connectivity, however, many of these 32x24=768 remote connections would be

unneeded.

On the other hand, when remote connections are established on an “as needed”

basis, startup is less efficient than when they are established en masse at the time of

MPI_Init() .
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Timing runs typically exclude warmup iterations and, in fact, specifically run several

untimed iterations to minimize performance artifacts in start-up times. Hence, both

full and lazy connections perform equally well for most interesting cases.

RSM Point-to-Point Message Passing
Sun MPI supports high-performance message passing by means of the remote

shared memory (RSM) protocol, running on the Sun Fire series high-performance

cluster interconnect (when available). Sun MPI over RSM attains:

■ Low latency from bypassing the operating system

■ High bandwidth from striping messages over multiple channels

The RSM protocol has some similarities with the shared-memory protocol, but it also

differs substantially, and environment variables are used differently.

Messages are sent over RSM in one of two fashions:

■ Short messages are fit into multiple postboxes and no buffers are used.

■ Pipelined messages are sent in 1024-byte buffers under the control of multiple

postboxes.

Short-message transfer is illustrated in FIGURE A-14. The first 23 bytes of a short

message are sent in one postbox, and 63 bytes are sent in each of the subsequent

postboxes. No buffers are used. For example, a 401-byte message travels as

23+63+63+63+63+63+63=401 bytes and requires 7 postboxes.

FIGURE A-14 A short RSM message. Message data is buffered in the shaded areas.

Pipelining is illustrated in FIGURE A-15. Postboxes are used in order, and each

postbox points to multiple buffers.
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FIGURE A-15 A pipelined RSM message. Message data is buffered in the shaded areas.

Optimizations for Collective Operations
Many MPI implementations effect collective operations in terms of individual point-

to-point messages. In contrast, Sun MPI exploits special, collective, algorithms to

exploit the industry-leading size of Sun servers and their high-performance

symmetric interconnects to shared memory. These optimizations are employed for

one-to-many (broadcast) and many-to-one (reduction) operations, including barriers.

To a great extent, users need not be aware of the implementation details, since the

benefits are realized simply by utilizing MPI collective calls. Nevertheless, a flavor

for the optimizations is given here through an example.

Consider a broadcast operation on 8 processes. The usual, distributed-memory

broadcast uses a binary fan-out, as illustrated in FIGURE A-16.
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FIGURE A-16 Broadcast With Binary Fan-Out, First Example

In Step 1, the root process sends the data "halfway" across the cluster. In Step 2, each

process with a copy of the data sends a distance "one fourth" of the cluster. For 8

processes, the broadcast is completed in Step 3. More generally, the algorithm runs

somewhat as

log2(NP) X time to send the data point-to-point

There are several problems with this algorithm. They are explored in the following

sections, and the solutions used in Sun MPI are briefly mentioned. For more

information, see the paper Optimization of MPI Collectives on Clusters of Large-Scale
SMPs, by Steve Sistare, Rolf vandeVaart, and Eugene Loh of Sun Microsystems, Inc.

This paper is available at:

 http://www.supercomp.org/sc99/proceedings/papers/vandevaa.pdf

Network Awareness
In a cluster of SMP nodes, the message-passing performance on a node is typically

far better than that between nodes.

For a broadcast operation, message passing between nodes in a cluster can be

minimized by having each participating node receive the broadcast exactly once. In

our example, this optimal performance might be realized if, say, processes 0-3 are on

one node of a cluster, while processes 4-7 are on another. This is illustrated in

FIGURE A-17.
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FIGURE A-17 Broadcast With Binary Fan-Out, Second Example
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Unless the broadcast algorithm is network aware, however, nodes in the cluster may

receive the same broadcast data repeatedly. For instance, if the 8 processes in our

example were mapped to two nodes in a round-robin fashion, Step 3 would entail

four identical copies of the broadcast data being sent from one node to the other at

the same time, as in FIGURE A-18.

FIGURE A-18 Broadcast With Binary Fan-Out, Third Example
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Or, even if the processes were mapped in a block fashion, processes 0-3 to one node

and 4-7 to another, if the root process for the broadcast were, say, process 1,

excessive internodal data transfers would occur, as in FIGURE A-19.

FIGURE A-19 Broadcast With Binary Fan-Out, Fourth Example

In Sun MPI, processes are aware of which other processes in their communication

groups are collocal with them. This information is used so that collective operations

on clusters do not send redundant information over the internodal network.

Shared-Memory Optimizations
Communications between two processes on the same node in a cluster are typically

effected with high performance by having the sender write data into a shared-

memory area and the receiver read the data from that area.

While this provides good performance for point-to-point operations, even better

performance is possible for collective operations.

Consider, again, the 8-process broadcast example. The use of shared memory can be

illustrated as in FIGURE A-20. The data is written to the shared-memory area 7 times

and read 7 times.
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FIGURE A-20 Broadcast Over Shared Memory With Binary Fan-Out, First Case

In contrast, by using special collective shared-memory algorithms, the number of

data transfers can be reduced and data made available much earlier to receiving

processes, as illustrated in FIGURE A-21. With a collective implementation, data is

written only once, and is made available much earlier to most of the processes.

FIGURE A-21 Broadcast Over Shared Memory With Binary Fan-Out, Second Case

Sun MPI uses such special collective shared-memory algorithms. Sun MPI also takes

into account possible hot spots in the physical memory of an SMP node. Such hot

spots can sometimes occur if, for example, a large number of processes are trying to

read simultaneously from the same physical memory, or if multiple processes are

sharing the same cache line.
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Pipelining
Even in the optimized algorithms discussed in the previous section, there is a delay

between the time when the collective operation starts and the time when receiving

processes can start receiving data. This delay is especially pronounced when the

time to transfer the data is long compared with other overheads in the collective

operation.

Sun MPI employs pipelining in its collective operations. This means that a large

message might be split into components and different components processed

simultaneously. For example, in a broadcast operation, receiving processes can start

receiving data even before all the data has left the broadcast process.

For example, in FIGURE A-21, the root (sender) writes into the shared-memory area

and then the receiving processes read. If the broadcast message is sufficiently large,

the receiving processes may well sit idle for a long time, waiting for data to be

written. Further, a lot of shared memory would have to be allocated for the large

message. With pipelining, the root could write a small amount of data to the shared

area. Then, the receivers could start reading as the root continued to write more.

This enhances the concurrency of the writer with the readers and reduces the

shared-memory footprint of the operation.

As another example, consider a broadcast among 8 different nodes in a cluster, so

that shared-memory optimizations cannot be used. A tree broadcast, such as shown

in FIGURE A-16, can be shown schematically as in FIGURE A-22, view a, for a large

message. Again, the time to complete this operation grows roughly as

log2(NP) X time to send the data point-to-point

In contrast, if the data were passed along a bucket brigade and pipelined, as

illustrated in FIGURE A-22, view b, then the time to complete the operation goes

roughly as the time to send the data point-to-point. The specifics depend on the

internodal network, the time to fill the pipeline, and so on. The basic point remains,

however, that pipelining can improve the performance of operations involving large

data transfers.
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FIGURE A-22 Tree Broadcast versus Pipelined Broadcast of a Large Message

Multiple Algorithms
In practice, multiple algorithms are used to optimize any one particular collective

operation. For example, network awareness is used to detect which processes are

collocal on a node. Communications between a node may use a particular network

algorithm, while collocal processes on a node would use a different shared-memory

algorithm. Further, if the data volume is sufficiently large, pipelining may also be

used.

Performance models for different algorithms are employed to make run-time choices

among the algorithms, based on process group topology, message size, and so on.
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APPENDIX B

Sun MPI Environment Variables

This appendix describes some Sun MPI environment variablesand their effects on

program performance. It covers the following topics:

■ Yielding and Descheduling on page 157

■ Polling on page 158

■ Shared-Memory Point-to-Point Message Passing on page 158

■ Shared-Memory Collectives on page 161

■ Running Over TCP on page 162

■ RSM Point-to-Point Message Passing on page 163

■ Summary Table on page 166

Prescriptions for using MPI environment variables for performance tuning are

provided in Chapter 6. Additional information on these and other environment

variables can be found in the Sun MPI Programming and Reference Guide.

These environment variables are closely related to the details of the Sun MPI

implementation, and their use requires an understanding of the implementation.

More details on the Sun MPI implementation can be found in Appendix A.

Yielding and Descheduling
A blocking MPI communication call might not return until its operation has

completed. If the operation has stalled, perhaps because there is insufficient buffer

space to send or because there is no data ready to receive, Sun MPI will attempt to

progress other outstanding, nonblocking messages. If no productive work can be

performed, then in the most general case Sun MPI will yield the CPU to other

processes, ultimately escalating to the point of descheduling the process by means of

the spind daemon.
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Setting MPI_COSCHED=0 specifies that processes should not be descheduled. This is

the default behavior.

Setting MPI_SPIN =1 suppresses yields. The default value, 0, allows yields.

Polling
By default, Sun MPI polls generally for incoming messages, regardless of whether

receives have been posted. To suppress general polling, use MPI_POLLALL=0.

Shared-Memory Point-to-Point Message
Passing
The size of each shared-memory buffer is fixed at 1 Kbyte. Most other quantities in

shared-memory message passing are settable with MPI environment variables.

For any point-to-point message, Sun MPI will determine at run time whether the

message should be sent via shared memory, remote shared memory, or TCP. The

flowchart in FIGURE B-1 illustrates what happens if a message of B bytes is to be sent

over shared memory.
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FIGURE B-1 Message of B Bytes Sent Over Shared Memory

For pipelined messages, MPI_SHM_PIPESIZE bytes are sent under the control of any

one postbox. If the message is shorter than 2 x MPI_SHM_PIPESIZE bytes, the

message is split roughly into halves.

For cyclic messages, MPI_SHM_CYCLESIZEbytes are sent under the control of any

one postbox, so that the footprint of the message in shared memory buffers is 2 x

MPI_SHM_CYCLESIZEbytes.

The postbox area consists of MPI_SHM_NUMPOSTBOXpostboxes per connection.

By default, each connection has its own pool of buffers, each pool of size

MPI_SHM_CPOOLSIZEbytes.

By setting MPI_SHM_SBPOOLSIZE, users can specify that each sender has a pool of

buffers, each pool having MPI_SHM_SBPOOLSIZEbytes, to be shared among its

various connections. If MPI_SHM_CPOOLSIZEis also set, then any one connection

mightconsume only that many bytes from its send-buffer pool at any one time.
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Memory Considerations

In all, the size of the shared-memory area devoted to point-to-point messages is

n x ( n – 1 ) x ( MPI_SHM_NUMPOSTBOXx ( 64 + MPI_SHM_SHORTMSGSIZE) +

MPI_SHM_CPOOLSIZE)

bytes when per-connection pools are used (that is, when MPI_SHM_SBPOOLSIZEis
not set), and

n x ( n – 1 ) x MPI_SHM_NUMPOSTBOXx ( 64 + MPI_SHM_SHORTMSGSIZE) + n x

MPI_SHM_SBPOOLSIZE

bytes when per-sender pools are used (that is, when MPI_SHM_SBPOOLSIZEis set).

Cyclic message passing limits the size of shared memory that is needed to transfer

even arbitrarily large messages.

Performance Considerations

A sender should be able to deposit its message and complete its operation without

waiting for any other process. You should typically:

■ Use the default setting of MPI_EAGERONLY, or set MPI_SHM_RENDVSIZEto be

larger than the greatest number of bytes any on-node message will have.

■ Increase MPI_SHM_CYCLESTARTso that no messages will be sent cyclically.

■ Increase MPI_SHM_CPOOLSIZEto ensure sufficient buffering at all times.

In theory, rendezvous can improve performance for long messages if their receives

are posted in a different order than their sends. In practice, the right set of

conditions for overall performance improvement with rendezvous messages is rarely

met.

Send-buffer pools can be used to provide reduced overall memory consumption for

a particular value of MPI_SHM_CPOOLSIZE. If a process will only have outstanding

messages to a few other processes at any one time, then set MPI_SHM_SBPOOLSIZE
to the number of other processes times MPI_SHM_CPOOLSIZE. Multithreaded

applications might suffer, however, since then a sender’s threads would contend for

a single send-buffer pool instead of for multiple, distinct connection pools.

Pipelining, including for cyclic messages, can roughly double the point-to-point

bandwidth between two processes. This is a secondary performance effect, however,

since processes tend to get considerably out of step with one another, and since the

nodal backplane can become saturated with multiple processes exercising it at the

same time.
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Restrictions
■ The short-message area of a postbox must be large enough to point to all the

buffers it commands. In practice, this restriction is relatively weak since, if the

buffer pool is not too fragmented, the postbox can point to a few, large,

contiguous regions of buffer space. In the worst case, however, a postbox will

have to point to many disjoint, 1-Kbyte buffers. Each pointer requires 8 bytes, and

8 bytes of the short-message area are reserved. Thus, to avoid runtime errors

( MPI_SHM_SHORTMSGIZE– 8 ) x 1024 / 8

should be at least as large as

max(

MPI_SHM_PIPESTART,

MPI_SHM_PIPESIZE,

MPI_SHM_CYCLESIZE)

■ If a connection-pool buffer is used, it must be sufficiently large to accommodate

the minimum footprint any message will ever require. This means that to avoid

runtime errors, MPI_SHM_CPOOLSIZEshould be at least as large as

max(

MPI_SHM_PIPESTART,

MPI_SHM_PIPESIZE,

2 x MPI_SHM_CYCLESIZE)

■ If a send-buffer pool is used and all connections originating from this sender are

moving cyclic messages, there must be at least enough room in the send buffer

pool to advance one message:

MPI_SHM_SBPOOLSIZE≥ ((np – 1) + 1) x MPI_SHM_CYCLESIZE

■ Other restrictions are noted in TABLE B-1 on page 166.

Shared-Memory Collectives
Collective operations in Sun MPI are highly optimized and make use of a general
buffer pool within shared memory. MPI_SHM_GBPOOLSIZEsets the amount of space

available on a node for the “optimized” collectives in bytes. By default, it is set to

20971520 bytes. This space is used by MPI_Bcast() , MPI_Reduce() ,

MPI_Allreduce() , MPI_Reduce_scatter() , and MPI_Barrier() , provided

that two or more of the MPI processes are on the node.

Memory is allocated from the general buffer pool in three different ways:
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■ When a communicator is created, space is reserved in the general buffer pool for

performing barriers, short broadcasts, and a few other purposes.

■ For larger broadcasts, shared memory is allocated out of the general buffer pool.

The maximum buffer-memory footprint in bytes of a broadcast operation is set by

an environment variable as

(n / 4) x 2 x MPI_SHM_BCASTSIZE

where n is the number of MPI processes on the node. If less memory is needed

than this, then less memory is used. After the broadcast operation, the memory is

returned to the general buffer pool.

■ For reduce operations,

n x n x MPI_SHM_REDUCESIZE

bytes are borrowed from the general buffer pool and returned after the operation.

In essence, MPI_SHM_BCASTSIZEand MPI_SHM_REDUCESIZEset the pipeline sizes

for broadcast and reduce operations on large messages. Larger values can improve

the efficiency of these operations for very large messages, but the amount of time it

takes to fill the pipeline can also increase. Typically, the default values are suitable,

but if your application relies exclusively on broadcasts or reduces of very large

messages, then you can try doubling or quadrupling the corresponding environment

variable using one of the following:

If MPI_SHM_GBPOOLSIZEproves to be too small and a collective operation happens

to be unable to borrow memory from this pool, the operation will revert to slower

algorithms. Hence, under certain circumstances, performance optimization could

dictate increasing MPI_SHM_GBPOOLSIZE.

Running Over TCP
TCP ensures reliable dataflow, even over los-prone networks, by retransmitting data

as necessary. When the underlying network loses a lot of data, the rate of

retransmission can be very high, and delivered MPI performance will suffer

accordingly. Increasing synchronization between senders and receivers by lowering

the TCP rendezvous threshold with MPI_TCP_RENDVSIZEmight might help in

certain cases. Generally, increased synchronization will hurt performance, but over a

loss-prone network it might help mitigate performance degradation.

% setenv MPI_SHM_BCASTSIZE 65536
% setenv MPI_SHM_BCASTSIZE 131072
% setenv MPI_SHM_REDUCESIZE 512
% setenv MPI_SHM_REDUCESIZE 1024
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If the network is not lossy, then lowering the rendezvous threshold would be

counterproductive and, indeed, a Sun MPI safeguard might be lifted. For reliable

networks, use

% setenv MPI_TCP_SAFEGATHER 0

to speed MPI_Gather() and MPI_Gatherv() performance.

RSM Point-to-Point Message Passing
The RSM protocol has some similarities with the shared-memory protocol, but it also

differs substantially, and environment variables are used differently.

The maximum size of a short message is MPI_RSM_SHORTMSGSIZEbytes, with a

default value of 401 bytes. Short RSM messages can span multiple postboxes, but

they still do not use any buffers.

The most data that will be sent under any one postbox using buffers for pipelined

messages is MPI_RSM_PIPESIZE bytes.

There are MPI_RSM_NUMPOSTBOXpostboxes for each RSM connection.

If MPI_RSM_SBPOOLSIZEis unset, then each RSM connection has a buffer pool of

MPI_RSM_CPOOLSIZEbytes. If MPI_RSM_SBPOOLSIZEis set, then each process has

a pool of buffers that is MPI_RSM_SBPOOLSIZEbytes per remote node for sending

messages to processes on the remote node.

Unlike the case of the shared-memory protocol, values of the MPI_RSM_PIPESIZE,

MPI_RSM_CPOOLSIZE, and MPI_RSM_SBPOOLSIZEenvironment variables are

merely requests. Values set with the setenv command or printed when

MPI_PRINTENV is used might not reflect effective values. In particular, only when

connections are actually established are the RSM parameters truly set. Indeed, the

effective values could change over the course of program execution if lazy

connections are employed.

Striping refers to passing a message over multiple hardware links to get the speedup

of their aggregate bandwidth. The number of hardware links used for a single

message is limited to the smallest of these values:

■ MPI_RSM_MAXSTRIPE

■ rsm_maxstripe (if specified by the system administrator in the hpc.conf file)

■ the number of available links
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When a connection is established between an MPI process and a remote destination

process, the links that will be used for that connection are chosen. A job can use

different links for different connections. Thus, even if MPI_RSM_MAXSTRIPEor

rsm_maxstripe is set to 1, the overall job could conceivably still benefit from

multiple hardware links.

Use of rendezvous for RSM messages is controlled with MPI_RSM_RENDVSIZE.

Memory Considerations

Memory is allocated on a node for each remote MPI process that sends messages to

it over RSM. If np_local is the number of processes on a particular node, then the

memory requirement on the node for RSM message passing from any one remote

process is

np_local x ( MPI_RSM_NUMPOSTBOXx 128 + MPI_RSM_CPOOLSIZE)

bytes when MPI_RSM_SBPOOLSIZEis unset, and

np_local x MPI_RSM_NUMPOSTBOXx 128 + MPI_RSM_SBPOOLSIZE

bytes when MPI_RSM_SBPOOLSIZEis set.

The amount of memory actually allocated mightbe higher or lower than this

requirement.

■ The memory requirement is rounded up to some multiple of 8192 bytes with a

minimum of 32768 bytes.

■ This memory is allocated from a 256-Kbyte (262,144-byte) segment.

■ If the memory requirement is greater than 256 Kbytes, then insufficient

memory will be allocated.

■ If the memory requirement is less than 256 Kbytes, some allocated memory

will go unused. (There is some, but only limited, sharing of segments.)

If less memory is allocated than is required, then requested values of

MPI_RSM_CPOOLSIZEor MPI_RSM_SBPOOLSIZE(specified with a setenv
command and echoed if MPI_PRINTENV is set) can be reduced at run time. This can

cause the requested value of MPI_RSM_PIPESIZE to be overridden as well.

Each remote MPI process requires its own allocation on the node as described above.

If multiway stripes are employed, the memory requirement increases

correspondingly.
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Performance Considerations

The pipe size should be at most half as big as the connection pool:

2 x MPI_RSM_PIPESIZE ≤ MPI_RSM_CPOOLSIZE

Otherwise, pipelined transfers will proceed slowly. The library adjusts

MPI_RSM_PIPESIZE appropriately.

For pipelined messages, a sender must synchronize with its receiver to ensure that

remote writes to buffers have completed before postboxes are written. Long

pipelined messages can absorb this synchronization cost, but performance for short

pipelined messages will suffer. In some cases, increasing the value of

MPI_RSM_SHORTMSGSIZEcan mitigate this effect.

Restriction

If the short message size is increased, there must be enough postboxes to

accommodate the largest size. The first postbox can hold 23 bytes of payload, while

subsequent postboxes in a short messages can each take 63 bytes of payload. Thus,

23 + ( MPI_RSM_NUMPOSTBOX– 1 ) x 63 ≤ MPI_RSM_SHORTMSGSIZE.
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Summary Table

TABLE B-1 MPI Environment Variables

name units range default

Informational

MPI_PRINTENV (none) 0 or 1 0

MPI_QUIET (none) 0 or 1 0

MPI_SHOW_ERRORS (none) 0 or 1 0

MPI_SHOW_INTERFACES (none) 0 – 3 0

Shared Memory Point-to-Point

MPI_SHM_NUMPOSTBOX postboxes ≥ 1 16

MPI_SHM_SHORTMSGSIZE bytes multiple of 64 256

MPI_SHM_PIPESIZE bytes multiple of 1024 8192

MPI_SHM_PIPESTART bytes multiple of 1024 2048

MPI_SHM_CYCLESIZE bytes multiple of 1024 8192

MPI_SHM_CYCLESTART bytes — 24576

MPI_SHM_CPOOLSIZE bytes multiple of 1024 • 24576 if

MPI_SHM_SBPOOLSIZE

is not set

• MPI_SHM_SBPOOLSIZE

if it is set

MPI_SHM_SBPOOLSIZE bytes multiple of 1024 (unset)

Shared Memory Collectives

MPI_SHM_BCASTSIZE bytes multiple of 128 32768

MPI_SHM_REDUCESIZE bytes multiple of 64 256

MPI_SHM_GBPOOLSIZE bytes >256 20971520

TCP

MPI_TCP_CONNTIMEOUT seconds ≥0 600
166 Sun HPC ClusterTools 4 Performance Guide • August 2001



MPI_TCP_CONNLOOP occurrences >=0 0

MPI_TCP_SAFEGATHER (none) 0 or 1 1

RSM

MPI_RSM_NUMPOSTBOX postboxes 1 – 15 128

MPI_RSM_SHORTMSGSIZE bytes 23 – 905 3918 bytes

MPI_RSM_PIPESIZE bytes multiple of 1024

up to 15360

64 Kb

MPI_RSM_CPOOLSIZE bytes multiple of 1024 256 Kb

MPI_RSM_SBPOOLSIZE bytes multiple of 1024 (unset)

MPI_RSM_MAXSTRIPE bytes ≥1 • rsm_maxstripe, if set by

system administrator in

hpc.conf file

• otherwise 2

MPI_RSM_DISABLED (none) 0 or 1 0

Polling and Flow

MPI_FLOWCONTROL messages >=0 0

MPI_POLLALL (none) 0 or 1 1

Dedicated Performance

MPI_PROCBIND (none) 0 or 1 0

MPI_SPIN (none) 0 or 1 0

Full Vs. Lazy Connections

MPI_FULLCONNINIT (none) 0 or 1 0

Eager Vs. Rendezvous

MPI_EAGERONLY (none) 0 or 1 1

MPI_SHM_RENDVSIZE bytes >=1 24576

MPI_TCP_RENDVSIZE bytes >=1 49152

MPI_RSM_RENDVSIZE bytes >=1 256 Kb

TABLE B-1 MPI Environment Variables (Continued)

name units range default
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Collectives

MPI_CANONREDUCE (none) 0 or 1 0

MPI_OPTCOLL (none) 0 or 1 1

Coscheduling

MPI_COSCHED (none) 0 or 1 (unset, or “2”)

MPI_SPINDTIMEOUT milliseconds >=0 1000

Handles

MPI_MAXFHANDLES handles >=1 1024

MPI_MAXREQHANDLES handles >=1 1024

TABLE B-1 MPI Environment Variables (Continued)

name units range default
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